

Lecture Notes in Computer Science 3414
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Manfred Morari Lothar Thiele (Eds.)

Hybrid Systems:
Computation
and Control

8th International Workshop, HSCC 2005
Zurich, Switzerland, March 9-11, 2005
Proceedings

13

Volume Editors

Manfred Morari
Swiss Federal Institute of Technology (ETH)
Automatic Control Laboratory
8092 Zurich, Switzerland
E-mail: morari@control.ee.ethz.ch

Lothar Thiele
Swiss Federal Institute of Technology (ETH)
Computer Engineering and Networks Laboratory
8092 Zurich, Switzerland
E-mail: thiele@tik.ee.ethz.ch

Library of Congress Control Number: 2005921209

CR Subject Classification (1998): C.3, C.1.m, F.3, D.2, F.1.2, J.2, I.6

ISSN 0302-9743
ISBN 3-540-25108-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11400745 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 8th Workshop on Hybrid Sys-
tems: Computation and Control (HSCC 2005) held in Zurich, Switzerland during
March 9–11, 2005. The annual workshop on hybrid systems attracts researchers
from academia and industry interested in modeling, analysis, and implementa-
tion of dynamic and reactive systems involving both discrete and continuous be-
haviors. The previous workshops in the HSCC series were held in Berkeley, USA
(1998), Nijmegen, The Netherlands (1999), Pittsburgh, USA (2000), Rome, Italy
(2001), Palo Alto, USA (2002), Prague, Czech Republic (2003), and Philadel-
phia, USA (2004). This year’s HSCC was technically co-sponsored by the IEEE
Control Systems Society.

The program consisted of 3 invited talks and 40 regular papers selected from
91 regular submissions. The program covered topics such as tools for analysis
and verification, control and optimization, modeling, engineering applications,
and emerging directions in programming language support and implementation.

We would like to thank the Program Committee members and reviewers for
an excellent job of evaluating the submissions and participating in the online Pro-
gram Committee discussions. Special thanks go to Markus P.J. Fromherz (Palo
Alto Research Center, USA), Edward A. Lee (University of California, Berkeley,
USA), and Pablo A. Parrilo (Massachusetts Institute of Technology, USA) for
their participation as invited speakers. We are also grateful to the Steering Com-
mittee for helpful guidance and support. Many other people worked hard to make
the HSCC 2005 a success. We would like to thank Frank J. Christophersen and
Ernesto Wandeler, the Publicity Chairs (with the help of Urban Mäder); Mar-
tine D’Emma and Monica Fricker for local arrangements; and Frank J. Christo-
phersen for putting together the proceedings. We would like to express our grat-
itude to HYCON and ARTIST, Networks of Excellence of the Sixth Framework
Programme of the European Commission, for their financial support.

January 2005 Manfred Morari and Lothar Thiele

Organization

Organizing Committee

Program Co- hairs Manfred Morari (ETH Zurich, Switzerland)
Lothar Thiele (ETH Zurich, Switzerland)

Local Chairs Frank J. Christophersen (ETH Zurich, Switzerland)
Ernesto Wandeler (ETH Zurich, Switzerland)

Program Committee

Alberto Bemporad (University of Siena, Italy)
Albert Benveniste (IRISA/INRIA, France)
Antonio Bicchi (University of Pisa, Italy)
Vincent Blondel (Université catholique de Louvain, Belgium)
Ed Brinksma (University of Twente, The Netherlands)
Paul Caspi (VERIMAG, France)
Jennifer Davoren (University of Melbourne, Australia)
Magnus Egerstedt (Georgia Institute of Technology, USA)
Giancarlo Ferrari Trecate (INRIA, France)
Maurice Heemels (Embedded Systems Institute, The Netherlands)
Tom Henzinger (University of California, Berkeley, USA)
João P. Hespanha (University of California, Santa Barbara, USA)
Bengt Jonsson (Uppsala University, Sweden)
Stefan Kowalewski (RWTH Aachen University, Germany)
Kim Larsen (Aalborg University, Denmark)
Edward A. Lee (University of California, Berkeley, USA)
Insup Lee (University of Pennsylvania, USA)
John Lygeros (University of Patras, Greece)
Ian M. Mitchell (University of British Columbia, Canada)
George J. Pappas (University of Pennsylvania, USA)
Ashish Tiwari (SRI, USA)
Claire J. Tomlin (Stanford University, USA)
Arjan van der Schaft (University of Twente, The Netherlands)
Jan H. van Schuppen (CWI, The Netherlands)
Long Wang (Peking University, China)

c

-

VIII Organization

Steering Committee

Rajeev Alur (University of Pennsylvania, USA)
Bruce H. Krogh (Carnegie Mellon University, USA)
Oded Maler (VERIMAG, France)
Manfred Morari (ETH Zurich, Switzerland)
George J. Pappas (University of Pennsylvania, USA)
Anders P. Ravn (Aalborg University, Denmark)

Sponsors

HYCON, a Network of Excellence of the Sixth Framework Programme
ARTIST, a Network of Excellence of the Sixth Framework Programme

Additional Referees

Parosh Abdulla
Alessandro Alessio
Madhukar Anand
Ahmed Attia
Mohamed Babaali
Eric Badouel
Andrea Balluchi
Giorgio Battistelli
Alexandre Bayen
Pierre-Alexandre Bliman
Francesco Borrelli
Peter Brende
Bernard Brogliato
Manuela Bujorianu
Kanat Camlibel
Frank J. Christophersen
Pieter Collins
Thao Dang
Gregory Davrazos
Alexandre Donze
Hidde de Jong
Stefano Di Cairano
Dimos Dimarogonas
Alexandre Donze
Arvind Easwaran
Aaron Evans
Emmanuel Fleury
Daniele Fontanelli

Mehdi Gati
Ronojoy Ghosh
Nicolo Giorgetti
Antoine Girard
Luca Greco
Esfandiar Haghverdi
Gabe Hoffmann
Andras Horvath
Jianghai Hu
Yerang Hur
Inseok Hwang
R. Izadi-Zamanabad
Pieter J.L. Cuijpers
Zhijian Ji
A. Agung Julius
Aleksandar Lj. Juloski
Jorge Julvez
R. Kakumani
Eric Kerrigan
Gaurav Khanna
Jesung Kim
Ioannis Kitsios
Tomas Krilavicius
Rom Langerak
Mircea Lazar
Andrea Lecchini
Didier Lime
Pritha Mahata

Oded Maler
Alexander Medvedev
David Muñoz de la Peña
Meeko Oishi
Lucia Pallottino
Simone Paoletti
Mihály Petreczky
Bruno Picasso
Benedetto Piccoli
Luis Pina
Vinayak Prabhu
Stephen Prajna
Robin Raffard
E. Rodŕıguez-Carbonell
Lorenzo Sella
Sriram Shankaran
Oleg Sokolsky
Marielle Stoelinga
Paulo Tabuada
Herbert Tanner
Nathan van der Wouw
Björn Victor
René Vidal
Yi Wang
Steven Waslander
Rafael Wisniewski
Guangming Xie
Chenggui Yuan

Table of Contents

Invited Papers

Coordinated Control for Highly Reconfigurable Systems
Markus P.J. Fromherz, Lara S. Crawford, Haitham A. Hindi 1

Operational Semantics of Hybrid Systems
Edward A. Lee, Haiyang Zheng . 25

SOS Methods for Semi-algebraic Games and Optimization
Pablo A. Parrilo . 54

Regular Papers

The Discrete Time Behavior of Lazy Linear Hybrid Automata
Manindra Agrawal, P.S. Thiagarajan . 55

Perturbed Timed Automata
Rajeev Alur, Salvatore La Torre, P. Madhusudan 70

A Homology Theory for Hybrid Systems: Hybrid Homology
Aaron D. Ames, Shankar Sastry . 86

Observability of Switched Linear Systems in Continuous Time
Mohamed Babaali, George J. Pappas . 103

Controller Synthesis on Non-uniform and Uncertain Discrete–Time
Domains

Andrea Balluchi, Pierpaolo Murrieri,
Alberto L. Sangiovanni-Vincentelli . 118

Qualitative Analysis and Verification of Hybrid Models of Genetic
Regulatory Networks: Nutritional Stress Response in Escherichia coli

Grégory Batt, Delphine Ropers, Hidde de Jong,
Johannes Geiselmann, Michel Page, Dominique Schneider 134

Optimal Control of Discrete Hybrid Stochastic Automata
Alberto Bemporad, Stefano Di Cairano . 151

X Table of Contents

Hybrid Decentralized Control of Large Scale Systems
Francesco Borrelli, Tamás Keviczky, Gary J. Balas, Greg Stewart,
Kingsley Fregene, Datta Godbole . 168

On the Stabilisation of Switching Electrical Power Converters
Jean Buisson, Pierre-Yves Richard, Hervé Cormerais 184

Bisimulation for General Stochastic Hybrid Systems
Manuela L. Bujorianu, John Lygeros, Marius C. Bujorianu 198

Position and Force Control of Nonsmooth Lagrangian Dynamical
Systems Without Friction

Sophie Chareyron, Pierre-Brice Wieber . 215

Existence of Cascade Discrete-Continuous State Estimators for Systems
on a Partial Order

Domitilla Del Vecchio, Richard M. Murray . 226

Refining Abstractions of Hybrid Systems Using Counterexample
Fragments

Ansgar Fehnker, Edmund Clarke, Sumit Kumar Jha, Bruce Krogh . . . 242

PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech
Goran Frehse . 258

Direct Torque Control for Induction Motor Drives: A Model Predictive
Control Approach Based on Feasibility

Tobias Geyer, Georgios Papafotiou . 274

Reachability of Uncertain Linear Systems Using Zonotopes
Antoine Girard . 291

Safety Verification of Controlled Advanced Life Support System Using
Barrier Certificates

Sonja Glavaski, Antonis Papachristodoulou, Kartik Ariyur 306

Polynomial Stochastic Hybrid Systems
João Pedro Hespanha . 322

Non-uniqueness in Reverse Time of Hybrid System Trajectories
Ian A. Hiskens . 339

Comparison of Four Procedures for the Identification of Hybrid Systems
Aleksandar Lj. Juloski, W.P.M.H. Heemels,
Giancarlo Ferrari-Trecate, René Vidal, Simone Paoletti,
J.H.G. Niessen . 354

Table of Contents XI

An Ontology-Based Approach to Heterogeneous Verification of
Embedded Control Systems

Rajesh Kumar, Bruce H. Krogh, Peter Feiler . 370

Mode-Automata Based Methodology for Scade
Ouassila Labbani, Jean-Luc Dekeyser, Pierre Boulet 386

Taylor Approximation for Hybrid Systems
Ruggero Lanotte, Simone Tini . 402

Infinity Norms as Lyapunov Functions for Model Predictive Control of
Constrained PWA Systems

Mircea Lazar, W.P.M.H. Heemels, Siep Weiland, Alberto Bemporad,
Octavian Pastravanu . 417

Air-Traffic Control in Approach Sectors: Simulation Examples and
Optimisation

Andrea Lecchini, William Glover, John Lygeros, Jan Maciejowski 433

Identification of Deterministic Switched ARX Systems via Identification
of Algebraic Varieties

Yi Ma, René Vidal . 449

Learning Multi-modal Control Programs
Tejas R. Mehta, Magnus Egerstedt . 466

A Toolbox of Hamilton-Jacobi Solvers for Analysis of Nondeterministic
Continuous and Hybrid Systems

Ian M. Mitchell, Jeremy A. Templeton . 480

On Transfinite Hybrid Automata
Katsunori Nakamura, Akira Fusaoka . 495

Design of Optimal Autonomous Switching Circuits to Suppress
Mechanical Vibration

Dominik Niederberger . 511

Interchange Formats for Hybrid Systems: Review and Proposal
Alessandro Pinto, Alberto L. Sangiovanni-Vincentelli,
Luca P. Carloni, Roberto Passerone . 526

Primal–Dual Tests for Safety and Reachability
Stephen Prajna, Anders Rantzer . 542

XII Table of Contents

Adjoint-Based Optimal Control of the Expected Exit Time for
Stochastic Hybrid Systems

Robin L. Raffard, Jianghai Hu, Claire J. Tomlin 557

Safety Verification of Hybrid Systems by Constraint Propagation Based
Abstraction Refinement

Stefan Ratschan, Zhikun She . 573

Generating Polynomial Invariants for Hybrid Systems
Enric Rodŕıguez-Carbonell, Ashish Tiwari . 590

Modeling, Optimization and Computation for Software Verification
Mardavij Roozbehani, Eric Feron, Alexandre Megre ts ki 606

Bisimulation for Communicating Piecewise Deterministic Markov
Processes (CPDPs)

Stefan Strubbe, Arjan van der Schaft . 623

Sensor/Actuator Abstractions for Symbolic Embedded Control Design
Paulo Tabuada . 640

Modeling and Control of Networked Control Systems with Random
Delays

Yan Wang, Zeng Qi Sun, Fu Chun Sun . 655

Controllability Implies Stabilizability for Discrete-Time Switched
Linear Systems

Guangming Xie, Long Wang . 667

Author Index . 683

Coordinated Control for
Highly Reconfigurable Systems

(Invited Paper)

Markus P.J. Fromherz, Lara S. Crawford, and Haitham A. Hindi

Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA

{fromherz, lcrawford, hhindi}@parc.com
http://www.parc.com/era

Abstract. The remarkable drop in the cost of embedded computing,

sensing, and actuation is creating an explosion in applications for em-

bedded software. As manufacturers make use of these technologies, they

attempt to reduce complexity and contain cost by modularizing their

systems and building reconfigurable products from simpler but smarter

components. Of particular interest have recently been highly reconfig-

urable systems, i.e., systems that can be customized, repaired, and up-

graded at a fine level of granularity throughout their lifetime.

High reconfigurability is putting new demands on the software that

is dynamically calibrating, controlling, and coordinating the operations

of the system’s modules. There is much promise in existing software

approaches, in particular in model-based approaches; however, current

techniques face a number of new challenges before they can be embedded

in the kind of real-time, distributed, and dynamic environment found in

highly reconfigurable systems. Here, we discuss challenges, solutions, and

lessons learned in the context of a long-term project at PARC to bring

such techniques to a highly reconfigurable paper path system.

1 Introduction

The remarkable drop in the cost of embedded computing as well as sensing
and actuation hardware is creating an explosion in applications for embedded
software. Yet while manufacturers are able to add ever more functionality and
safety features to their products, they also struggle with the resulting complexity.
Increasingly, companies attempt to reduce this complexity, decrease development
time, and contain cost by modularizing their systems and building reconfigurable
products from simpler but smarter networked components. This in turn requires
new capabilities from the software that is controlling and coordinating these
modules in order to provide an integrated system that is flexible, effective, robust,
and safe.

As an example, consider modern high-end printers. One such product comes
with about one hundred embedded processors, controlling everything from indi-
vidual motors in the paper transport to image processing functions to high-level

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 1–24, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 M.P.J. Fromherz, L.S. Crawford, and H.A. Hindi

Document
Description Control

Commands

Module
Models

System Controller

Machine Model

Model
Module
Control

Model
Module
Control

Model
Module
Control

Model
Module
Control

Fig. 1. A modular printing system (feeder, marking engine, and finishers) with model-

based auto-configuration and control at three levels

coordination of the entire system to the interaction with the operator. Figure 1
sketches such a system, together with controllers at three different levels (system,
module, and component). In this prototypical system, each of the four modules
comes with a model, a declarative description of its capabilities, which is passed
to the system controller at boot time. This system controller accepts a stream of
document descriptions (print jobs) and, using the models, plans and schedules
the necessary operations. This results in a stream of control commands to the
modules, which in turn control their individual components, many of which have
their own low-level controllers. The many controllers in such a system together
enable the totally automated operation of a highly complex system that can be
considered one of the most sophisticated robots today. These distributed con-
trollers monitor, coordinate, calibrate, optimize, and compensate hundreds of
processes with virtually no human involvement.

Today, such high-end print systems are put together from about ten to twenty
feeder, marking, and finishing modules. Given the trends and motivations indi-
cated above, it is conceivable that these numbers will increase by an order of
magnitude with a corresponding reduction in module size, leading to highly
reconfigurable (or hyper-modular) systems. We define a highly reconfigurable
system as a modular system that can be reconfigured both in the factory and
in the field, often dynamically and at a fine level of granularity. Consequently,
there is no final configuration, and both hardware and software modules have to
be designed without knowledge of future configurations and other modules that
form the context in which a module will operate. Where so far most of a system’s
behaviors were confined to individual modules, with little regard to concurrent
activities in other modules, now most of the behavior comes from the interaction
and collaboration of networked, tightly coupled modules.

Coordinated Control for Highly Reconfigurable Systems 3

We believe that highly reconfigurable systems with coordinated control will
appear in a number of domains. In some high-end cars, for example, a braking op-
eration already involves the coordinated execution of subsystems such as engine
and suspension control, in addition to the coordinated control of the brakes in all
four wheels. Today, though, these controllers require careful tuning, and subsys-
tems cannot be upgraded easily. Similarly, in the domain of assembly lines and
production systems, retooling and reprogramming the robot stations for new
product models sometimes takes days, if not weeks or even months, as much
of the equipment works without awareness of the environment. Adding coordi-
nating controllers that can reasons about the capabilities and coupled actions of
multiple robots will allow the overall system to adapt automatically when robots
are added, upgraded, or replaced over time. In other domains, there are strong
incentives to modularize systems from current monolithic designs. In the space
exploration domain, for example, weight is a dominant cost factor in the deploy-
ment of robots and material. Sustainable planetary missions will only be possible
with modular robots and reconfigurable structures that allow for local reuse and
reduced material transport across space. Overall, modular architectures promise
to lower production, deployment, and maintenance costs and at the same time
improve flexibility, performance, and safety. As a consequence, more emphasis
will be on the coordinated control of the diverse functions of modular systems.

There is much promise in existing software approaches to address the chal-
lenges of highly reconfigurable systems. In particular, reasoning techniques such
as model-predictive control, model-based planning and scheduling, knowledge-
based diagnosis, and intelligent configuration [21] promise powerful solutions to
the problems of embedded control and coordination. However, current techniques
face a number of challenges that revolve around the location and communica-
tion of knowledge in a distributed control system, namely knowledge about the
system’s capabilities, its states, and its goals. In designing architectures and algo-
rithms for such systems, we have to consider where this knowledge is generated,
where it will be applied, how it is to be communicated, and how it has to be
transformed in order to provide fully integrated system behavior without losing
the advantages of high reconfigurability. This leads to the fundamental tension
between module autonomy and integrated behavior: module controllers need to
be able to make valid and efficient local decisions that are consistent and even
optimal with respect to decisions of other relevant controllers.

This paper discusses challenges, solutions, and lessons learned in the context
of a long-term project to embed reasoning techniques in a highly reconfigurable
system. We provide a first description of our domain in Section 2. In Sections 3
and 4, we describe the top control design challenges we experienced so far, and
we present a set of principles for compositional control that we found useful in
addressing these challenges. In Section 5, the approach to our concrete control
coordination problem is presented and discussed. We note that the discussion of
design challenges and principles will necessarily be somewhat abstract. We invite
the reader to jump from Section 2 to Section 5 for a concrete embodiment. We
end with conclusions and thoughts about future work.

4 M.P.J. Fromherz, L.S. Crawford, and H.A. Hindi

2 A Simple Domain Example

As a simple model domain, consider a linear sequence of rollers that together are
transporting an object, such as a sheet of paper (Figure 2). Each roller is powered
by its own independent motor, and each motor is controlled by its dedicated
controller. The rollers are spaced such that a typical object will be moved by
several rollers at a time, e.g., between two and six consecutive rollers depending
on the object’s size. For our purposes, we treat each roller with associated motor
and controller as a separate transport module. We assume exactly one roller per
module and call its controller the module controller. Each module further has
associated sensors to detect the presence of the object. In general, all modules do
not have to be identical, but instead may differ in their elements (e.g., the number
of sensors) and in their behavior characteristics (e.g., velocity and acceleration
limits). When used in a production line, there will be multiple parallel and
interconnected material paths, with special branching modules for splitting and
merging these material paths. We disregard these capabilities in this paper.

ModuleRoller Sensor

Legend:

Controller Material

Fig. 2. Modular material path

At the top level of this system, a centralized planner (and scheduler) receives
a series of job requests and determines the overall flow of material to produce
these jobs [6, 20]. In the following, we provide a short overview of the planning
level. The remainder of this paper will focus on the problem of implementing
the planner’s output, in particular on controlling the transport of objects along
modular reconfigurable material paths.

A typical job description is a set of literals that describe an initial state and
a desired output, as in the following example.

Job-23
initial: goal:
Location(Job-23, Source) Location(Job-23, Destination)
Blank(Job-23) Image(Job-23, Black)
Color(Job-23, White) Color(Job-23, White)
Size(Job-23, A4) Size(Job-23, A4)
¬Aligned(Job-23)
In this example, Source and Destination are virtual locations where all

sources or destinations are placed. All other literals describe initial or desired
attributes of the job.

Coordinated Control for Highly Reconfigurable Systems 5

The movement of material by transports and the transformation of material
by machine actions can be directly translated from the plant model into tradi-
tional logical preconditions and effects that test and modify attributes of the
material. A simple example is as follows.

Print(?object)
preconditions: Location(?object, Machine-2-Input)

Blank(?object)
Aligned(?object)
CanPrintSize(Machine-2, ?size)

effects: Location(?object, Machine-2-Output)
¬Location(?object, Machine-2-Input)
Size(?object,?size)
¬Blank(?object)
Image(?object, Black)

duration: 13.2 secs
allocations: M-2-Printer at ?start + 5.9 for 3.7 secs

This action model describes preconditions before the action, such as its lo-
cation, and the effects of the action, such as a new location and an image. The
model also specifies a duration, with the intended semantics that the logical ef-
fects become true exactly when the action’s duration has elapsed. Actions can
specify the exclusive use of unit-capacity resources for time intervals specified
relative to the action’s start or end times. For example, the Print action in the
example above specifies exclusive use of the M-2-Printer from 5.9 seconds after
the start of the action until 3.7 seconds later.

There may be several different sequences of actions and thus different paths
that can produce a given job. A typical system may have anywhere from a few
to a few hundred transport modules moving objects between the manufacturing
stations. The setting is on-line in the sense that additional jobs arrive asyn-
chronously, perhaps several per second, while plans for previous jobs are being
executed.

We have implemented various temporal planners adapted to this on-line do-
main [6, 20]. The overall objective is to minimize the end time of the known jobs.
The latest planner [20] uses state-space regression to plan each job. Temporal
constraints are used to represent the order and durations of actions and to re-
solve resource contention. A* search is used to find the optimal plan for the job,
in the context of all previous jobs [21].

We assume that each transport module runs its roller at one of several prede-
termined velocities that are known to the planner through their action models.
For each job, the planner produces a plan that states where each object will be at
what time as it is transported along its path, taking into account the capabilities
of the modules as well as the plans for other objects in the material paths. The
necessary control commands are then sent to the selected modules for execution
at the selected times. In addition to being physically connected, module actions
are further coupled through the object. In our domain, with typical velocities of
0.5 to 3 m/s and roller spacing of no more than 15 cm, the set of modules acting

6 M.P.J. Fromherz, L.S. Crawford, and H.A. Hindi

on the sheet is changing rapidly. Sheets are typically packed tightly in the ma-
terial path, and sheet collisions are not allowed, so the tolerance for deviations
from the scheduled plan is very tight. Also, even minor velocity discrepancies
between the modules acting on the sheet may tear the paper. Thus, tight control
and coordination of the transport modules is required.

3 Control Challenges in Highly Reconfigurable Systems

In this section, we will reflect on control challenges that we have found in building
a prototype of such a highly reconfigurable system. We will focus on the issues
arising out of the reconfigurability of the system. We present these challenges in
three categories: compositional knowledge, hierarchical control, and distributed
coordination.

3.1 Compositional Knowledge

In a compositional system, the capabilities of the system arise out of the capa-
bilities of its constituent modules. In conventional control systems, knowledge
about these capabilities is often not available on-line. Even as many components,
from stepper motors to anti-lock braking systems, come with increasingly sophis-
ticated built-in controllers, these controllers are typically closed to the outside.
For reconfigurable systems, we believe that all factors relevant for interaction
should be captured in formal models and made available in open modules in or-
der to enable system auto-configuration. It can be surprisingly difficult, though,
to describe module features and constraints in a decomposable manner.

A suggested solution from the model-based reasoning community has been
the “no function in structure” principle [5], which requires that the laws of the
parts of a system may not presume the functioning of the whole. Such laws
may include forces on jointly controlled objects, the use of shared resources,
and the timing of operations. For example, behavior constraints often restrict
the interaction of different actions in the system: “if action A happens, action
B cannot happen at the same time.” This constraint on the second operation is
expressed directly with respect to the first operation, which may or may not occur
in a given configuration. A composable alternative is to express such interactions
as constraints on common resources which can then be resolved by a separate
coordinator: “action A (B) will require resource R”, where R is a shared resource,
with a resource coordinator that requires that any two actions using this resource
must be sequentialized.

In a compositional system, knowledge about module capabilities often needs
to be integrated at multiple levels of abstraction to plan, schedule, control, and
coordinate the actions that will achieve the goals. A first challenge is model com-
position, i.e., integrating the module models into subsystem and system models.
It is particularly difficult to integrate information about exceptions and excep-
tion handling, i.e., to capture and reason about abnormal behavior. A related
challenge is the reuse of lower-level models to generate higher-level models. This
model abstraction could start, for instance, from the detailed models of the indi-

Coordinated Control for Highly Reconfigurable Systems 7

vidual modules (perhaps even their electromechanical drawings) and automat-
ically generate the higher-level, coarser-grained models for the controllers at
supervisory or coordinating levels.

Model abstraction is further complicated by its integration with the control
abstraction at each level. For example, one abstraction from transport modules
to the planning level in our domain is to assume piecewise linear trajectories,
where the modules run at constant velocities, and velocities change discontinu-
ously from one module to another when slowing down or speeding up. In reality,
of course, the transport modules will likely change the velocity more gradually.
While this abstraction makes the planning problem significantly more tractable,
it has consequences for the interface and protocol between planner and module
controller. Even if all models are written “by hand” ahead of time, these chal-
lenges in model granularity, composition semantics, and interface protocols have
to be addressed.

3.2 Hierarchical Control

Compositional systems generally call for a hierarchical control approach, where
the system’s actions are monitored and directed at multiple levels of abstraction
in time and space. Designing a clean architecture that integrates pre-existing
module controllers and allocates the remaining control responsibilities remains
a difficult and often domain-specific challenge.

One particular issue where reconfigurable systems pose both a challenge and
an opportunity is reconciling the logical and physical architectures of the control
system. The logical architecture specifies the roles and connections of different
controllers in the system. The physical architecture specifies where those con-
trollers are executed and what interfaces and protocols are used internally and
to interface with the environment. The two architectures are typically conflated
in conventional systems. In reconfigurable systems, which often have a certain
redundancy in both computing and physical capabilities, the designer has the
opportunity to keep the two architectures separate. In fact, with open mod-
ules, sensors and actuators may be the only elements whose roles are fixed, and
controllers may be assigned their processors based on computation and com-
munication needs. As a consequence, the control system may also become more
robust, since control roles can be moved flexibly from failing to healthy compo-
nents when necessary.

We found the most challenging aspect of hierarchical control to be in excep-
tion handling. When a transport module in our domain fails to move an object
as expected, it is usually not able to correct the problem by itself. Worse, if one
object is delayed, other objects may have to be delayed as well in order to avoid
collisions, all while the modules try to get the objects back on track. In conven-
tional systems with larger modules, all exception handling can be delegated to
individual modules. Internal compensation is not possible with the kind of fine-
grained modularity of our domain, as the object is never completely inside just
one module. Instead, a module must be able to cooperate with other modules
to correct problems, e.g., to try to speed up or slow down the object. In other

8 M.P.J. Fromherz, L.S. Crawford, and H.A. Hindi

words, any unplanned operation has to be understood immediately in context
in order to take appropriate action to correct or contain the behavior.

Thus, the challenge in exception handling is how to coordinate compensation
and when to escalate recovery when things go wrong. To further illustrate this
point, consider some available options in our domain. Using a traffic metaphor,
it could be argued that each module controller, or an “object controller”, should
decide how to direct objects in case of an exception, akin to a car driver who may
decide to exit a highway and take an alternative route if she has been told of a
traffic jam ahead. However, this would not only require endowing the controller
with the full capabilities of the planner, but it would also require coordination
with every object in the path. In contrast to traffic, there is often little slack
in the system. Conversely, all deviations could be escalated immediately to the
planner, which would require tight supervisory control of all module controllers
as well as potentially constant replanning. Neither of these options is attractive
(or even feasible).

3.3 Distributed Coordination

We have repeatedly emphasized the challenge of coordination among multiple
controllers in what is inherently a highly distributed system. While the previ-
ous subsection primarily addressed the coordination of different control roles in
a control hierarchy, the control of many tightly coupled modules also requires
significant lateral coordination. This is the issue that posed the most challenges
for us from a control theory point of view. One of these challenges is observer
coordination. Since both sensors and controllers are distributed, the controllers
acting on the same object ideally receive and act on the same sensor data. This
requires that sensor updates are shared among all relevant controllers in a uni-
form fashion. For example, as an object in our model domain moves through
multiple transport modules, sensors in different modules will pick up the edge
transitions at different times, and this information must be communicated to all
other modules in such a way that all module controllers can act on the same
information. Solutions need to take into account communication issues such as
protocol limitations, network delays, and bandwidth constraints. In some do-
mains, sensor data from multiple sensors may have to be aggregated before it
can be sent to the controllers. While sensor fusion is not a new issue per se,
reconfigurable systems require that the algorithms are independent of the con-
figuration and potentially compensate for differences in the available modules.

A related challenge is controller synchronization. In our domain, it is easiest
to guarantee tight tolerances if all module controllers intrinsically behave in the
same way (e.g., implement the same control approach). Such controllers will act
in synchrony when presented with the same sensor data. Even this simplification
of a homogeneous system, however, requires that all the controllers cooperating
on the same task are synchronized. In particular, as module controllers join the
coordinated action, they need to be brought up to speed, so to speak, before
they can be relied upon to help control the joint process. More generally, as
multiple controllers cooperate temporarily on the control of a coupled process,

Coordinated Control for Highly Reconfigurable Systems 9

both their control processes and the membership process need to be coordinated.
This problem becomes even more complex in a heterogeneous system, with dif-
ferent types of controllers, potentially acting at different time scales, where new
controllers cannot learn from existing controllers as easily as in a homogeneous
system.

4 Design Principles for Compositional Control

In the process of designing and implementing a control system for our domain,
we have identified a number of principles as guidelines for the system’s design.

Multi-scale Control. A basic principle is to decompose or aggregate control
roles horizontally and vertically guided by the locality and timeliness of knowl-
edge required for the control tasks. This suggests, for example, to separate the
control of a module’s actuators from the coordination of multiple modules, and
it forced us to think deeply about each controller’s model and interface.

Closed Loop. Another basic principle is to allow for feedback throughout the
system and between all levels. This may be obvious, but it appears that many ex-
isting control systems still have a significant amount of open-loop control in both
supervisory and low-level controllers. This is often acceptable for well-engineered
systems where assumptions about the behavior of subsystems can be built into
the controllers. Open-loop control is less suitable for highly reconfigurable sys-
tems, with its need for tight synchronization and behavior coordination among
multiple modules.

Control Coordination. Where multiple modules interact in an immediate
sense and require integrated feedback of their actions, new, “floating” controllers
can facilitate the coordination of these modules. Such controllers are associated
with a task or a process that is determined by multiple controllers and are
logically “between” or “above” the modules. They may be either installed per-
manently or exist only temporarily and expressly to facilitate a particular task.
The use of coordinating controllers was not immediately obvious to us at first.
Alternatives would be to assign this role to a single supervisory controller (e.g.,
the planner) or to apply one of the decentralized coordination techniques com-
monly used in multi-agent systems (e.g., an auction mechanism). Our analysis
suggested, however, that it is more efficient and more powerful to create a tempo-
rary task controller that facilitates the coordination of the individual controllers.
In our domain, the result is an object controller that coordinates all aspects, from
membership to synchronization, of those modules currently acting on an object.
In a sense, coordination is adding a wider awareness to the self-awareness of an
individual module controller, but restricts it to the task at hand.

Encapsulation. Whenever possible, we try to encapsulate knowledge about
module or system behavior together with the algorithms acting on it; in other
words, to keep knowledge together, to act where the knowledge is, and not

10 M.P.J. Fromherz, L.S. Crawford, and H.A. Hindi

to replicate the same control role at multiple levels in the control hierarchy.
This means, for example, that all models for planning and scheduling in our
domain are located in (or moved to) the planner, and therefore all decisions about
plans, rerouting, and plan exception handling have to be made by the planner.
A downside is that many deviations and changes in an execution may have to
be escalated to supervisory controllers. This leads to the need for delegation.

Delegation. Delegation of control responsibility may sound like a straightfor-
ward hierarchical decomposition of goals or commands to lower and lower levels.
However, with the responsibility to control we also want to delegate the responsi-
bility to correct and compensate, within bounds. This is only practically feasible
if we also give the lower-level controller sufficient insight into the context within
which it will be working. For instance, the planner can give each module con-
troller information about the current state and imminent plans for the rest of
the system. To make this efficiently possible, this context information can be
summarized and only contain what is relevant to the module, e.g., in form of a
safe envelope around the commanded behavior. This tells the module controller
how much it can deviate from the plan without violating any constraints (e.g.,
leading to collisions with other objects). This general principle, to communicate
both goals and constraints between controllers, can be applied at all levels in
the control hierarchy. Delegation can be quite demanding, since it may require
substantial computation at the supervisory or coordinating control levels.

Autonomy. The goal of delegation is to allow individual controllers to monitor
and determine their behavior without constant external monitoring and synchro-
nization. Delegation, in other words, asks controllers to control their behaviors
with respect to both goals and constraints, and it gives them the autonomy to
act locally, and to keep changes local, while their behavior is within bounds.

Escalation. The corollary principle to delegation is escalation. This simply
means that controllers report feedback when their behavior is out of bounds
as defined by the constraints given by the higher-level controller. The excep-
tion is then to be handled by the level that has the necessary information and
time horizon to consider all effects of the exception. Delegation, autonomy, and
escalation determine a trade-off between locally fast and globally appropriate
action.

Explicit Contracts. In a reconfigurable system, the joint principles of con-
trol coordination, delegation, autonomy, and escalation are best implemented
through explicit representation of capability models, goals, and contexts. In our
domain, module models form the contracts from module controllers to the plan-
ner of what behaviors can be executed. Conversely, goal constraints used in
delegation are the contracts from the planner to the module controllers about
what they are allowed to change during execution and what not.

These principles together yield a “compositionally aware” system in which
knowledge about states and capabilities is shared and control is coordinated
as appropriate and no more, in turn leading to a system that is efficient in its

Coordinated Control for Highly Reconfigurable Systems 11

separation of concerns and still robust in the face of real-time distributed actions
of tightly coupled modules.

5 Coordinated Control for Tightly Coupled,
Reconfigurable Modules

This section describes a concrete approach to a specific application, highly mod-
ular printing systems. In these systems, as discussed above, there is a strong need
for coordinating multi-module behavior. A given sheet of paper is typically in
multiple modules at once, so in order to process the sheet correctly without dam-
aging it, the actuators in different modules must cooperate. This coordination
is particularly important because of the fast, real-time nature of the system.

module
controller

module
controller

module
controller

module
controller

module
controller

sheet
controller

sheet
controller

planner

Fig. 3. Control hierarchy. The bottom portion of the diagram shows two sheets inside a

sequence of modules controlled by module controllers. Each sheet controller communi-

cates with the module controllers acting on or about to act on its sheet (a dynamically

changing set). There is one sheet controller per sheet; a sheet controller is created when

each new sheet enters the system. At the top, the planner communicates with all the

sheet controllers

5.1 Hierarchical System Architecture

In our hierarchical approach, shown in Figure 3, the coordination task is assigned
to an entity called a sheet controller. There is one sheet controller per sheet; a
new controller is activated for each new sheet in the system. From the point of
view of the planner, the sheet controller serves as a proxy for the sheet control
task. The sheet controller communicates over a network with all the module
controllers currently interacting with its sheet as well as those about to interact
with it (see Figure 3). The sheet controller has three main roles:

12 M.P.J. Fromherz, L.S. Crawford, and H.A. Hindi

– Interpreting the plan for the sheet, translating it into trajectories for the
actuators to track, and distributing these trajectories, ensuring that the
trajectories of different modules are synchronized

– Serving as a conduit of feedback information between the module controllers
– Monitoring the progress of the sheet through the system and reporting to

the planner if necessary

The module controllers, in turn, are responsible for tracking the trajecto-
ries provided by the sheet controller and thus moving the sheet appropriately.
They also have direct access to sensor information. In order to perform track-
ing, each module controller must maintain a model of the local (single-module)
dynamics. As an example of a concrete implementation of a module controller,
consider a 2-degree-of-freedom LQG controller [1]. This controller takes as in-
put a reference signal, r, computed from the trajectory supplied by the sheet
controller, and the delayed and asynchronous sensor signals, y. The estimation
(model) part of the LQG controller is a Kalman filter that includes a simple
model of the worst-case network delay. The filter is implemented in a time-
varying measurement-update/time-update form to cope with the asynchronous
measurements. Throughout this section, we will use such an LQG controller
as an illustrative example of a physical module controller, though many of the
approaches described here would apply to other implementations as well.

At all levels of the hierarchy, the controller designs are model-based. They
make use of the principles of encapsulation, delegation, autonomy, escalation,
and coordination. Thus, for example, the sheet controller encapsulates all the
sheet-level knowledge, while the module controllers need not know there is such
an entity as a sheet at all. Individual module controllers need not even know
anything about any other module controllers; they simply communicate with the
sheet controller. The sheet controller, in turn, need not know anything about the
low-level details of the actuators and sensors. These principles allow the control
architecture to achieve locally fast but globally appropriate behavior, an efficient
separation of concerns, and robustness under tightly coupled distributed actions.

The next several sections will discuss various elements of our control and
coordination approach. We will first describe the sheet controller and its roles
in the system in more detail. Then, our mechanism for coordinating feedback
among the modules, using the sheet controller, will be further delineated. Next,
we will discuss our method for synchronizing the distributed module controllers
when they first join a control action (module-module coordination). Then we
will describe a method for implementing self-awareness at the module control
level. Finally, we will discuss various implementation issues.

There are other control challenges in the domain of high performance copiers
that we will not cover here. These include image registration, color consistency
control, banding artifact reduction, and also alternative approaches to (central-
ized) paper path control. These are covered in the survey paper by Hamby and
Gross [7] and in more detail in the references [13, 19, 4, 11].

Coordinated Control for Highly Reconfigurable Systems 13

5.2 Coordinating Control

The sheet controller is responsible for sheet-level concerns. It takes the plan
received (delegated) from the planner, which is in terms of tuples of modules,
operations, and times, and translates it into positions and times. It divides this
trajectory into segments for the individual actuators to follow. To fulfill this
responsibility, it must be aware of the machine configuration and the capabil-
ities of the various modules and their actuators. In order for the trajectories
to be trackable, the sheet controller may need to smooth the piecewise linear
trajectory implied by the plan’s waypoints. Since the sheet will be in multiple
modules at once, the trajectories generated for different actuators will overlap
in time (Figure 4). Trajectories for different actuators must be identical during
the overlapping portions in order to avoid damaging the sheet. Should anything
go wrong in the system that requires the sheet to be rerouted, the sheet con-
troller must accept updated plans from the planner, create updated trajectories
accordingly, and communicate the changes to the module controllers.

controller
sheet module

controllers

t

x

module3

module1 module2

planner

<module1, operation2, 3.2 seconds>
<module2, operation1, 3.7 seconds>
<module3, operation1, 4.2 seconds>

u

module1

module2

module3

t

Fig. 4. Plan translation and distribution by the sheet controller. The planner sends a

plan in the form of a list of tuples to the sheet controller, which converts it into trajec-

tories for the modules to track. During times of overlap, the trajectories are identical

up to positional translation. The module controllers track the identical trajectories,

producing synchronized actuator outputs

The sheet controller also monitors the progress of the sheet. It receives sensor
messages from the control modules and uses these to maintain an internal model
of the sheet’s progress. If something goes wrong, this kind of self-awareness allows
it to anticipate unacceptable errors and notify the planner. The definition of an
“unacceptable” error can be supplied by the planner based on the separation
between neighboring sheets; this knowledge provides a level of context awareness
and is important for successful delegation and autonomy. Additionally, since the
sheet controller is monitoring the sheet progress in the context of the system
configuration, it can identify where in the system (in which module) the error
has occurred. It could then use its sensor information to distinguish between
some different types of problems (e.g., a paper jam vs. a simple delay). This
information may be useful for escalation, particularly should the system need to
reconfigure to avoid blocked or damaged modules.

14 M.P.J. Fromherz, L.S. Crawford, and H.A. Hindi

Finally, the sheet controller serves as a clearinghouse for sensor information
from the modules. Each module has edge sensors that detect when the leading or
trailing edge of the sheet crosses them. Since multiple modules are acting on the
sheet at once, they all need access to this sensor information in order to accu-
rately track the desired sheet trajectories given them by the sheet controller. In
order to preserve the encapsulation of knowledge, so that the module controllers
need not know about each other, the modules send their sensor data to the sheet
controller, which then distributes it appropriately.

5.3 Distributed Feedback

In a tightly coupled system sharing sensor information over a network, timing is
crucial in coordinating the distributed feedback. When a sheet sensor is tripped,
for example, the module local to that sensor has access to the information im-
mediately. If the module were to use the sensor data right away, it would update
its internal model (observer), and its controller would respond well before the
other modules could do so, as they must receive the sensor information over the
network. The synchronization between module controllers would be destroyed.
Therefore, in our design the sensor information is not acted on immediately, but
is rather sent to the sheet controller without being used by the module. The
sheet controller then determines the set of modules that need that sensor data
(that are or are about to be acting on the sheet). It uses its knowledge of the
machine configuration to translate the sensor trigger into a sheet position, and
sends that data to the relevant modules, along with an apply time, ta. The apply
time is based on the maximum network delay and tells the modules when they
are allowed to use the data. Given a maximum round-trip network and process-
ing delay (module controller to sheet controller to module controller) d and a
sensor trigger time ts, ta = ts+d. The modules, including the one that originated
the sensor message, wait until ta to use the sensor data, at which time they all
update their internal models simultaneously, preserving their coordination (see
Figure 5). This approach assumes that the modules and the sheet controller all
have synchronized clocks, so that ta is the same globally for all modules.

Because the sensor data is not used until the apply time, it is delayed when
it is incorporated into the module controllers’ observers or other models. The
module controllers must therefore save a history of their local state and control
values for an amount of time d, so that they can roll back to the appropriate time
to apply the sensor data. Thus, at time ta, the module controller must perform
the following steps:

1. Access the saved state from time ta − d = ts, x(ts), and update it with the
new sensor data. In our example LQG controller, this update consists of
performing the measurement update portion of the Kalman filter.

2. Evolve the state forward from time ts until time ta to obtain x(ta), using the
control history, and update the state history accordingly. This step means
performing multiple time updates in the Kalman filter setting.

Coordinated Control for Highly Reconfigurable Systems 15

edge
detection

apply
time

tats

MC1

SC

MC2

Fig. 5. Diagram illustrating apply time. An edge detection occurs at a sensor in mod-

ule 2, whose module controller sends that information over the network to the sheet

controller. The sheet controller translates the edge detection event into a sheet position

and sends the data back to all module controllers involved with the sheet. The module

controllers wait until the apply time to make use of the sheet position data

5.4 Distributed Control Synchronization

Feedback coordination, as just described, keeps the module controllers synchro-
nized once they are running. In our system, however, new controllers are con-
stantly being added to (and leaving) the coordinated control action as the sheet
passes through the system. Thus, there is also the issue of bringing each new
controller into the control action appropriately; new controllers must synchro-
nize with the ones already in the control action. Our approach has been to
synchronize the internal controller state directly. The challenge is in obtaining
the current state in the presence of network delays. Here, we briefly outline the
mechanism from Hindi, et al. [9]. Similar work has recently appeared in other
areas, notably networked computer games [14, 17].

Consider a set of control processes {p0, . . . , pn−1}, where each process pi runs
the following state based iterations over time t = 0, 1, 2, . . .

xi(t+ 1) = f (xi(t), yi(t− d), t) ; xi(0) = xi0

ui(t) = g (xi(t), yi(t− d), t)

where xi is the state, ui is the control output, yi is measurement input, d is
some nonnegative fixed integer delay (e.g., the worst-case network delay), and f
and g are some functions of state, measurement, and time. Note that we make
no assumptions about the spaces over which x, u, or y are defined: they could
be numbers, symbols, discrete, or continuous. (For t < d, we assume that f and
g are functions of only x and t, and that they do not depend explicitly on y.
Hence, we can take yi(t) = ∅ (undefined) for t < d).

16 M.P.J. Fromherz, L.S. Crawford, and H.A. Hindi

It is clear that if the initial conditions are all equal and the processes are
driven with the same measurements, then the states and control outputs are
identical for all time. In other words, if

xi0 = x0; ∀i
yi(t) = y(t); ∀i, t,

then the processes all run the same recursion:

x(t+ 1) = f (x(t), y(t− d), t) ; x(0) = x0

u(t) = g (x(t), y(t− d), t) .
(1)

Note that this is true for any functions f and g of x, y, and t. We refer to such
a set of processes, with x(t) and u(t) identical for all time, as synchronized.

We are concerned with the following synchronization problem: We seek a
method for synchronizing a new process pn, which starts at some time t′ ≥ d, to
the existing processes {p0, . . . , pn−1}, for all time t ≥ t′. We assume pn knows f
and g, but not x0. We would like this method to work for any choice of functions
f and g of x, y, and t.

Synchronization with Delayed Measurements. For any t′ ≥ 0, it follows
immediately from (1) that pn would be synchronized with {p0, . . . , pn−1} for all
time t ≥ t′, and for any functions f and g of x, y and t, if we set

xn(t′) = x(t′) ; at time t′

yn(t− d) ≡ y(t− d) ;∀t ≥ t′
(2)

Now suppose that, because of the delay, at the desired synchronization time
t′, we can receive only x(t′ − d) but not the current state x(t′). In this case,
provided that t′ ≥ d, synchronization proceeds in two phases. First, starting d
time steps prior to t′, the process pn must collect a delayed history that is d time
steps deep, namely x(t′ − d) and {y(t′ − 2d), . . . , y(t′ − d− 1)}. Then, at time t′,
x(t′) is immediately computed by forward propagating the state from x(t′ − d)
to x(t′) by performing d iterations of the state recursion in (1) in one time step:

x(t′ − d+ 1) = f (x(t′ − d), y(t′ − 2d), t′ − d)
x(t′ − d+ 2) = f (x(t′ − d+ 1), y(t′ − 2d+ 1), t′ − d+ 1)

...
x(t′) = f (x(t′ − d+ (d− 1)), y(t′ − 2d+ (d− 1)), t′ − d+ (d− 1))

≡ f (x(t′ − 1), y(t′ − d− 1), t′ − 1) .
(3)

Thus, pn is synchronized from t′ onwards.
Essentially the same technique can handle the case of asynchronous measure-

ments, where at certain times some of the elements of the measurement sequence
{y(t − d) | t ≥ 0} could be missing, but the ones that arrive do so in the right

Coordinated Control for Highly Reconfigurable Systems 17

order. This scenario can still be modeled by (1) as follows: at each time t, define
y(t− d) as:

y(t− d) =

{
ym(t− d) ; if measurement arrives

∅ ; otherwise

where {ym(t − d) | t ≥ 0} is some uncorrupted sequence of measurements,
and the symbol ∅ denotes missing measurements. The functions f and g should
also be properly defined for values of ∅. Additionally, in the asynchronous case,
synchronization using forward propagation is only possible at times t′ when
delayed state x(t′ − d) is not missing. Otherwise it is necessary to wait until a
time at which the delayed state is available [9].

This synchronization mechanism enables distributed module controllers to
synchronize with an existing control action. The sheet controller is used as a
conduit for sending the state information (as well as the sensor information) to
each new controller.

State Machine Implementation. This section gives an example of how the
synchronization mechanism can be implemented in practice. The goal in this
example is to synchronize pn to {p0, . . . , pn−1} from time tDrive until a time
tOff. This will be accomplished by embedding the process in a finite state machine
(FSM), which is shown in Figure 5.4, drawn using Statechart notation [9, 8, 22].

exit/ −−

drive

entry/ compute contol+apply

 do/ compute control+apply

entry/ store measurement
exit/ forward prop. state

 do/ store measurement

synch

entry/ compute control
exit/ −−

comp

 do/ compute control

entry/ −−
exit/ −−

do/ −−

off

[t >= tOn][t >= tOff]

[t >= tDrive] [tLastMeas − tOn >= d]

Fig. 6. Simplified finite state machine implementation of synchronization mechanism

18 M.P.J. Fromherz, L.S. Crawford, and H.A. Hindi

The FSM has four states: off, synch, compute, and drive. In the off-state,
the FSM waits until a time tOn, at which point it transitions to the synch-
state. The time tOn is chosen to be sufficiently in advance of tDrive, such that
there is enough time and enough measurements arrive before tDrive so that
synchronization can be completed. The synch-state collects measurements, until
a time when it has a delayed measurement history that is d time steps deep and
a state measurement arrives. At that point it exits the synch-state, initializing
the control process by forward propagation. Then it transitions to the compute-
state, and executes the entry action, namely performing the first iteration of (1).
It then continues to perform the control computation (1), as shown in the do-
statement, until a time tDrive, at which point it transitions to the drive-state.
The drive-state is very similar to the compute-state, except that the control is
actually applied to the target system. Then, at a time tOff, the FSM turns itself
off. By embedding the process pn in an FSM, the desired synchronization can
be accomplished in a practical manner.

5.5 Real-time Self-aware Paradigm

Once the module controllers are synchronized, they can track the trajectories
supplied by the sheet controller. Though each controller can measure its track-
ing error through its internal observer, it cannot tell whether this error is con-
sidered “large,” except possibly through external context cues provided by the
sheet controller. It is useful, therefore, to think about adding an extra level of
self-awareness to the module controller, to enable it to better monitor its own
performance. The controller could then tell whether it was succeeding or fail-
ing to fulfill its contract (in the sense of Section 4) with the sheet controller.
If it was failing, it could then decide to employ corrective measures or escalate
the problem to the sheet controller. The idea of self-awareness has been gaining
recognition, especially in the AI community, the source of our motivation [2]. In
this section, we explore this notion in the context of real-time control systems,
as presented in Hindi, et al. [10].

Modeling Assumptions. We will be concerned with the general discrete time
control system shown in Figure 7. The system P is the dynamical plant to be
controlled, and K is the controller. The signal w(t) is a sequence of exogenous
inputs, and u(t) is the sequence of control inputs. The signal z(t) is the sequence
of performance outputs of the system which may not be measurable directly, and
y(t) is the sequence of measured outputs which are available to the controller.
We assume that both P and K are causal. We refer to a system as real-time
if, at each time step t, it is able to compute its corresponding output, based on
all inputs prior and possibly up to time t, essentially instantly. We assume that
both K and P are real-time systems. (P is trivially real-time if it is a physical
system).

We refer to the controller K as self-aware if it is able to monitor the progress
of its control action and somehow detect if it is failing to achieve its objective; it
is real-time self-aware if it is able to do this at each point in time. This abstract
definition will be made more concrete below.

Coordinated Control for Highly Reconfigurable Systems 19

w

u

z

y

P

K

Fig. 7. Generic control system

The following conditions on the system, labeled M , I, and K, are generally
assumed to be true:

(M) The plant P is a member of some model set M
(I) The exogenous inputs w are in some input set I
(K) The controller K really is being implemented correctly

The controller is also generally designed to solve some optimization problem
with some criterion J , which is usually a function of the performance variable z.
We remark that although the condition (K) may seem unnecessary or awkward,
experience has shown that getting the software and hardware to implement the
controller correctly without bugs or artifacts can be quite nontrivial in practice.

Adding Self-awareness. Self-awareness can easily be added to the controller
using ideas from the model validation literature [18, 15]. Suppose that in a situ-
ation in which conditions M , I, and K hold, it is also possible to derive certain
conditions that the control and the measured output must satisfy, respectively,
U and Y 1. This would be equivalent to the following:

(M ∧ I ∧K) ⇒ (U ∧ Y) (4)

For example, we could have

(U) The control input u lies in some set U
(Y) The measured output y lies in some set Y

In general, it is not possible to check that U (or Y) is true until the entire sequence
u(t) (or y(t)) has been observed. However, it is often possible to check for the viola-
tion of U and Y , at each point in time, i.e., in real-time. For example, suppose that
U imposes conditions on the signal u(t) that must be true at each point in time:

(u ∈ U) ⇔ (u(t) ∈ U(t); ∀ t)

and similarly for Y . Then violation can be detected by checking that those
conditions hold at each time step. Hence, the negation of (4) is more useful for
real-time applications:

1 The conditions could be also be joint in u and y, such as (u, y) ∈ Z. For simplicity

we keep them distinct here, but coupling would not change our results.

20 M.P.J. Fromherz, L.S. Crawford, and H.A. Hindi

¬M ∨ ¬I ∨ ¬K ⇐ ¬U ∨ ¬Y (5)

which is simply a logical statement of the basic model (in)validation paradigm.
We remark that in the robust control literature [18, 15], “model (in)validation”
has a very specific connotation. However, we will use the term more loosely here,
namely, as a reference to any practical implementation of (5).

Equation (5) states that, as long as our physical system satisfies our modeling,
input and control assumptions, M , I, and K, then both the measured output
and control input will remain in their prescribed sets. However, if the measured
output or control input violate conditions U or Y , then we know that at least
one of the assumptions on the model, input, or controller is incorrect2.

The above development shows that real-time self-awareness can be imple-
mented via the augmentation of the controller with on-line model (in)validation.
Hence, additional machinery would be added to K, which monitors the signals
y and u at each time step, and checks that they are consistent with M , I, and
K, by checking that U and Y are not violated.

In practice, it might not be possible to perform all the computations associ-
ated with Y , U , and the invalidation exactly. This could be either because the
computation is too expensive to do in real-time, or simply because we do not even
know how theoretically. Thus we will be content with reasonable approximations
to these various steps below.

Self-aware LQG Control. As a concrete application of the abstract ideas
above, consider the familiar formulation of LQG control [3, 1]:

(M) The plant P is a linear system, with Gaussian initial condition with zero
mean and known covariance
(I) The input w is made up of Gaussian i.i.d. processes and sensor noises, which
are zero mean, are uncorrelated with each other and the initial condition, and
have known covariance
(K) The controller K is a linear LQG optimal controller

An important fact about the LQG scenario, which can be used easily in practice,
is that all the resulting closed loop states, control signals, and outputs will also be
zero mean Gaussian random variables, whose covariances can also be computed
explicitly. Thus we can take

(U) u(t) ∼ N (0, Λu(t))
(Y) y(t) ∼ N (0, Λy(t))

2 Note that the reverse implication does not hold; specifically, it could happen that

one of M , I, or K is not true, but Y and U are still true. This could be viewed as

a fortuitous situation, where our controller seems to work, even though our original

assumptions are false. From a very pragmatic point of view, there should be no

objection to this situation, assuming that the variables y and u are able to capture

all system parameters and signals of interest.

Coordinated Control for Highly Reconfigurable Systems 21

where N (μ,Λ) denotes the normal distribution with mean μ and covariance
Λ. Hence an LQG controller can easily implement a very basic level of self-
awareness by checking, at each time step, that u and y are within their “5σ”
values; otherwise it can flag an error or warning. This can be viewed as a form
of (very crude) on-line model validation, in the sense of (5).

Of course, many other more complex options for U and Y are possible, with
calculation requirements ranging from solving optimization problems at each
time step to maintaining sophisticated real-time statistical estimators of differ-
ent quantities such as the performance variable z and the objective J . Similar
arguments apply to other common control design approaches such as l1 and H∞.

5.6 Implementation

Some of the more painful issues to resolve in developing a prototype often cen-
ter around integration and implementation. Our first choices for implementation
were motivated by the need for rapid prototyping. The module and sheet con-
trollers were developed using C, Matlab, Simulink, and the MathWorks xPC
rapid prototyping environment. The xPC environment allows development of
code within the Matlab environment that can then be compiled for a target em-
bedded platform. There are, of course, other possible choices for modeling and
development environments for real-time embedded systems, such as CORBA [16]
or Ptolemy [12].

Within this development framework, the module controllers use a Statechart
implementation in C based on Samek’s formulation [22] to perform synchroniza-
tion, as described earlier. The system models and control were developed using
linear techniques.

The module controllers in this implementation run on GENE-4310 single-
board computers (SBC). Each has a National Semiconductor 300MHz Geode
processor (Intel-compatible) and uses less than 16 MB of memory. The controllers
use a PC104 interface to two Diamond I/O cards. The SBCs use these I/O boards
to link to custom circuitry for the actuators and the sensors. This configuration
clearly has more processor power and memory than would be feasible in a real
product, but it does allow for freedom of experimentation in the prototyping
stage, and is compatible with the xPC environment and operating system. The
sheet controllers all run on a single central PC. One could imagine that the sheet
controllers could be located on distributed processors as well, and could even
travel with their respective sheets; our choice of centralized sheet controllers was
made largely for simplicity in early prototyping. The module controllers, sheet
controller PC, and planner communicate with each other over Ethernet, using
the UDP protocol. (The xPC environment does not support TCP.) Ethernet and
UDP allowed for easy monitoring and debugging of the communications, as well
as high bandwidth.

Although our hardware and software environment was useful for rapid pro-
totyping, there were several drawbacks that became apparent throughout the
system development and integration process. For example, the xPC environ-
ment does allow users to ignore many platform-specific and embedded coding
concerns, but it introduces significant overhead into the controllers. Addition-

22 M.P.J. Fromherz, L.S. Crawford, and H.A. Hindi

ally, xPC, Matlab, and Simulink are usable but not all that well suited to de-
veloping highly distributed systems with many concurrent components using
asynchronous messaging.

6 Conclusion

We have discussed here some of the challenges inherent in the control of highly re-
configurable systems and the design principles we have developed for meeting these
challenges. Knowledge modeling, how to formulate what a system knows about
itself, others, and the environment, comes to the fore in a distributed, composi-
tional, reconfigurable setting. One aspect of the modeling problem is the question
of where knowledge should be located in the system. This issue ties in with that
of hierarchical control design, or how to divide up and compose control respon-
sibilities, as control of a system requires knowledge about that system. Finally, a
hierarchical, reconfigurable system requires special care in synchronizing control
actions and feedback; this is the challenge of distributed coordination. The themes
of self-awareness and context awareness run throughout all of these challenges.

We have also described a particular application of these principles to a mod-
ular printing system. This implementation makes use of sheet controllers for
coordination. Module controllers use state machines to perform synchronization
when joining a sheet control action. This synchronization is preserved through
distributed feedback using apply times.

The module controllers described here are based on LQG control techniques.
They thus do not reason about an explicit on-line model. One direction of future
work is to investigate this type of more model-based approach at the mod-
ule control level. Such an approach could enable further explorations, such as
synchronization for heterogeneous module controllers. A model-based reasoning
approach would clearly be useful in expanding the self-awareness of the mod-
ule controllers, enabling them to perform more extensive self-diagnostics and
some level of exception handling. Additionally, it would enable them to better
interpret some level of context awareness provided by the sheet controller. More
detailed modeling of this type might also help in enhancing the sheet controller;
for example, the sheet controller could precisely take into account a module’s
capabilities when smoothing a trajectory for it to track.

There are also a number of larger research issues, three of which we describe
here.

One unresolved set of issues centers on control and computing architectures.
Our system is highly distributed, which gives some benefits in terms of modular-
ity and reconfigurability, but may have a cost in terms of control complexity. A
centralized controller becomes infeasible in larger systems with more and more
sensors and actuators. Sometimes there may be a happy medium between fully
distributed and fully centralized control, but there usually is no single answer.
What is missing today is an ability to compare different architectures analyt-
ically in terms of control quality, robustness, and reconfigurability, as well as
communication and processing requirements.

Coordinated Control for Highly Reconfigurable Systems 23

The architecture question also ties in with the problem of verification. With
complex, compositional systems, it is increasingly difficult to verify or sometimes
even understand their behavior. This complexity is exacerbated when automated
optimization or search-based solution methods are used. In these cases, it is
not only important to verify correct behavior but also, when a control choice is
made, to be able to explain the reasoning behind that choice to external entities,
including humans.

Complex, compositional systems also present the issue of model abstraction.
With each new composition in a model-based system comes the need for a new
model at a new granularity, perhaps with a different focus and aimed at a dif-
ferent type of reasoning engine. It would be useful for both development and
verification if this model abstraction could be done automatically. Such abstrac-
tion, if done properly, would assist both in designing hierarchical architectures
and in explaining and verifying compositional behavior.

In closing, highly reconfigurable systems allow designers to make the most of
the recent explosions in embedded computing, sensing, and actuator capabilities.
Reconfigurable systems can be made up of relatively simple components and
rapidly customized for particular needs, thus reducing product complexity and
development costs. On-line reconfigurability also enables a high level of system
flexibility and robustness. It is now up to software and control engineers to meet
the challenges imposed by these new systems and fully realize their potential.

References

1. Astrom, K.J., and Wittenmark, B.: Computer Controlled Systems. Prentice Hall,

1997

2. Bobrow, D., and Fromherz, M.P.J.: Compositional Self-Awareness. DARPA Work-

shop on Self-aware Computer Systems, Position Statement, May 2004

3. Bryson, A.E., and Ho, Y.-C.: Applied Optimal Control. Academic Press, 1975

4. Chen, C.-L. and Chiu, G.: Incorporating Human Visual Model and Spatial Sam-

pling in Banding Artifact Reduction. American Control Conference, Boston, June

2004

5. de Kleer, J. and Brown, J.S.: A Framework for Qualitative Physics. Proc. of the

Sixth Annual Conference of the Cognitive Science Society, 1984, pp. 11–18

6. Fromherz, M.P.J. , Bobrow, D.G., and de Kleer, J.: Model-based Computing for

Design and Control of Reconfigurable Systems. AI Magazine, Special Issue on

Qualitative Reasoning, vol. 24, no. 4, Winter 2003, pp. 120–130

7. Hamby, E. and Gross, E.: A Control-Oriented Survey of Xerographic Systems:

Basic Concepts to New Frontiers. American Control Conference, Boston, June

2004

8. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of Com-

puter Programming, vol. 8, 1987, pp. 231–274

9. Hindi, H.A., and Crawford, L.S.: Method and State Machine Implementation of

Synchronization of State Based Control Processes with Delayed and Asynchronous

Measurements. Palo Alto Research Center (PARC), Internal Report, September,

2004

24 M.P.J. Fromherz, L.S. Crawford, and H.A. Hindi

10. Hindi, H.A., Crawford, L.S., and Fromherz, M.P.J.: Toward Self-aware Real-time

Controllers Using Online Approximate Model Validation. Palo Alto Research Cen-

ter (PARC), Internal Report, December, 2004

11. Krucinski, M., Cloet, C., Horowitz, R., and Tomizuka, M.: A Mechatronics Ap-

proach to Copier Paperpath Control. First IFAC Conference on Mechatronic Sys-

tems, Darmstadt, Germany, September 2000

12. Lee, E.: Overview of the Ptolemy Project. Technical Memorandum UCB/ERL

M03/25, July 2, 2003, University of California, Berkeley, CA, 94720, USA

13. Li, P., Sim, T. and Lee, D.: Time Sequential Sampling and Reconstruction of Tone

and Color Reproduction Functions for Xerographic Printing. American Control

Conference, Boston, June 2004

14. Mauve, M.: Consistency in Continuous Distributed Interactive Media. ACM

CSCW, 2000, pp. 181–190

15. Newlin, M., and Smith, R.S.: A Generalization of the Structured Singular Value

and its Application to Model Validation. IEEE Transactions on Automatic Control,

1998, pp. 901-907

16. Object Management Group. http://www.omg.org/

17. Owada, Y., and Asahara, S.: Distributed Processing System, Distributed Process-

ing Method and Client Terminal Capable of Using the Method. US Patent Appli-

cation Publication US 2002/0194269 A1, December 2002

18. Poolla, K., Khargonekar, P., Tikku, A., Krause, J., and Nagpal, K.: A Time-

Domain Approach to Model Validation. IEEE Transactions on Automatic Control,

1994, pp. 951–959

19. Rotea, M. and Lana, C.: A Robust Estimation Algorithm for Printer Modeling.

American Control Conference, Boston, June 2004

20. Ruml, W. and Fromherz, M.P.J.: On-line Planning and Scheduling in a High-

speed Manufacturing Domain. ICAPS 2004 Workshop on Integrating Planning

into Scheduling, Whistler, BC, Canada, June 2004 (updated version submitted to

ICAPS 2005)

21. Russell, S. and Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd Ed.

Prentice Hall, 2003

22. Samek, M.: Practical Statecharts in C/C++. CMP Books, 2002

Operational Semantics of Hybrid Systems
(Invited Paper)

Edward A. Lee and Haiyang Zheng�

Center for Hybrid and Embedded Software Systems (CHESS)

University of California, Berkeley, 94720, USA

{eal, hyzheng}@eecs.berkeley.edu

Abstract. This paper discusses an interpretation of hybrid systems as

executable models. A specification of a hybrid system for this purpose

can be viewed as a program in a domain-specific programming language.

We describe the semantics of HyVisual, which is such a domain-specific

programming language. The semantic properties of such a language affect

our ability to understand, execute, and analyze a model. We discuss sev-

eral semantic issues that come in defining such a programming language,

such as the interpretation of discontinuities in continuous-time signals,

and the interpretation of discrete-event signals in hybrid systems, and

the consequences of numerical ODE solver techniques. We describe the

solution in HyVisual by giving its operational semantics.

1 Introduction

Hybrid systems are heterogeneous systems that include continuous-time sub-
systems interacting with discrete events. They are effective models for physical
systems interacting with software or undergoing discrete mode changes. Typi-
cally, the continuous subsystem is modeled by differential equations, while the
discrete events are modeled by finite state machines. Transitions between states
represent either discrete mode changes or actions taken by software subsystems.
Most of the major contributions in hybrid systems have been in the construction
of a systems theory, theories of control, and analysis and verification tools (see for
example [1, 2, 3, 4, 5, 6]). A few software tools have been built to support such an-
alytical methods, such as Charon [7], CheckMate [8], d/dt [9], HyTech [10], Kro-
nos [11], Uppaal [12], and a toolkit for level-set methods [13]. In addition, some
software tools provide simulation of hybrid systems, including Charon [7], Hysdel
[14], HyVisual [15], Modelica [16], Scicos [17], Shift [18], and Simulink/Stateflow
(from The MathWorks). An excellent analysis and comparison of these tools is
given by Carloni, et al. [19].

� This paper describes work that is part of the Ptolemy project, which is supported by

the National Science Foundation (NSF award number CCR-00225610), and Chess

(the Center for Hybrid and Embedded Software Systems), which receives support

from NSF and the following companies: Infineon, Hewlett-Packard, Honeywell, Gen-

eral Motors, and Toyota.

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 25–53, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

26 E.A. Lee and H. Zheng

In this paper, we focus on the simulation tools, but take the perspective that hy-
brid systems are not so much “simulated” as “executed.” We view the semantics of
hybrid systems as a concurrent model of computation, and the “simulation” tools
as compilers and/or interpreters for programming languages that happen to have a
hybrid systems semantics. Although many of the issues are closely related to those
that arise in the design of simulators (see for example [20]), the emphasis becomes
one of modularity and predictable and understandable behavior, rather than one
of accurate approximation of unachievable behavior. Of the above tools, Shift and
Modelica probably come closest to reflecting this philosophy, since they are consis-
tently presented as programming languages more than as simulation tools.

The view of hybrid systems as executable computational artifacts was stim-
ulated by the DARPA MoBIES project (model-based integration of embedded
software), which undertook the challenging task of establishing an interchange
format for hybrid systems. The goal was to facilitate exchange of models and
techniques between tools. The effort was led by the key proponents of model-
integrated computing [21], the developers of Charon, CheckMate, and HyVisual,
and users of Simulink/Stateflow. The result of this work was a formalism called
HSIF (hybrid system interchange format) [22]. A proposal for the next genera-
tion of interchange format can be found in [19].

One of the key objectives of HSIF, that of model exchange among diverse
tools, was at odds with another of its key objectives, that of defining an exe-
cutable and complete hybrid systems semantics. The diverse tools represented
by the HSIF community have significant differences in their semantics, often re-
flecting their differing objectives (e.g. verification vs. simulation). In this paper,
we set aside the concern for interchange of models, and focus instead on defin-
ing a clean and complete hybrid systems semantics. The objective is to define
behaviors, including subtle corner cases, by giving a complete semantics for a
programming language. We have implemented the semantics in HyVisual [15] in
a version scheduled to be released (in open-source form, as usual) concurrently
with the publication of this paper.

2 Example Model

We start by considering a fairly typical hybrid system example shown in figure
1 that we can use to frame the discussion. The model is deliberately small and
simple, making it easier to discuss semantic issues without the distracting com-
plexity of a more “real-world” example. The figure shows the visual syntax of
HyVisual [15], which is implemented within the Ptolemy II software framework
[23]. The reader should not be misled by the visual syntax. While visual syntaxes
are commonly used for models that approximate real systems, they can also be
used as a programming language syntax, in which case the model is the real
system (the program), in the same sense that the text of a C program is the
program. We nonetheless call a visual program like that in figure 1 a “model”
because calling it a “program” would confuse too many readers who assume that
programs must have textual syntaxes.

Operational Semantics of Hybrid Systems 27

The model in figure 1 is of a physical system consisting of two masses on
springs that oscillate.1 When the masses collide, they stick together with an
exponentially decaying stickiness. When the differential force of the springs ex-
ceeds the stickiness, the masses come apart. The three-dimensional rendition of
the physical system shown in the figure is a snapshot of an animation created
using the Ptolemy II graphics infrastructure [26]. The top-level of the hierarchy
in the figure shows a continuous-time model, where boxes represent actors and
connections between them represent continuous-time signals. The Masses block
encapsulates the spring-masses model. The other three blocks are plotters.

Fig. 1. A hybrid system of two masses on springs

The next level of the hierarchy shows a finite-state machine with an (unim-
portant) initial state and two states representing the two modes of operation.
Since states of this state machine represent modes of operation, we use the
terms “state” and “mode” interchangeably for them. In the “Separate” mode,
the masses are separately oscillating, and in the “Together” mode, they are stuck
together. The behavior in each of these modes is specified at the third level of the

1 This model was studied by Liu [24] and was inspired by microelectromechanical

accelerometers [25].

28 E.A. Lee and H. Zheng

Fig. 2. The refinements of the modes of the hybrid system in figure 1

hierarchy shown in figure 2. Each mode is given by a signal-flow block diagram
representing the ordinary differential equations that model the dynamics.

The traces of an execution are shown in figure 3, where it can be seen that
the masses start with separated positions, come together and collide, oscillate
together for a short time, come apart, then again collide and come apart. The

Operational Semantics of Hybrid Systems 29

three plots, produced by the three plotter blocks at the top level in figure 1, rep-
resent the positions, velocities, and accelerations of the two masses as a function
of time. The Masses block in figure 1 produces as outputs the positions of the

p1
p2

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20

P os itions

time

v1
v2

-1.5
-1.0

-0.5

0.0

0.5

1.0

0 2 4 6 8 10 12 14 16 18 20

Velocities

time

a1
a2

-2

-1

0

1

0 2 4 6 8 10 12 14 16 18 20

Accelerations

time

Fig. 3. The plots resulting from executing the hybrid systems model in figure 1

two masses (p1 and p2), their velocities (v1 and v2), and their accelerations (a1
and a2). The state machine diagram at the bottom of figure 1 shows the mode
logic. The state machine starts in the Init state, which has a single outgoing
transition with guard expression true.2 This guard expression evaluates to true,
so the transition is taken immediately, and the action expression (immediately

2 In the HyVisual syntax, each mode transition is annotated with two lines of text,

where the first line is the guard, a predicate that determines when the transition

is taken, and the second line is the action, a set of statements executed when the

transition is taken.

30 E.A. Lee and H. Zheng

below the guard expression) is executed. This action expression initializes the
positions and velocities in the destination mode, Separate.

The state machine remains in the Separate mode until the guard on its out-
going transition becomes true. The guard expression is “(p1 == p2) && (v1
- v2) > 0”, which becomes true when the two masses collide. At that point,
the state machine transitions to the Together mode. The action (shown in the
figure immediately below the guard) sets the position and velocity of the (now
joined) masses in the destination mode, and also initializes the stickiness. The
velocity in the destination mode is set to “(v1 + v2)/2”, which, assuming the
two masses are the same, implements the law of conservation of momentum.

The state machine will remain in the Together mode until the guard on its
outgoing transition becomes true. That guard expression is

stickiness < abs(force)

which becomes true when the force pulling the masses apart exceeds the stick-
iness. The action on the transition again initializes the positions and velocities
of the masses in the destination mode.

In HyVisual, when a guard expression becomes true, the transition must
be taken immediately. This is consistent with the physics being modeled in this
spring-masses example. Many hybrid system formalisms, however, define a guard
expression on a transition as an enabler. Rather than requiring that the tran-
sition be taken, it simply permits the transition to be taken. In a simulator,
however, this typically results in the transition to be taken at an arbitrary time
after the guard becomes true. In simulation, the time at which the transition
is taken is typically dependent on the step-size control algorithm of the ODE
(ordinary differential equation) solver. For this example, that behavior would
be inappropriate. Such hybrid system formalisms associate with each state an
invariant, which like a guard is a predicate. When the invariant becomes false,
a transition out of the state must be taken. In such a formalism, the spring-
masses example would be expressed by a combination of invariants and guard
expressions that would achieve the same effect.

The system is depicted schematically in figure 4. The physics of this problem
is quite simple if we assume idealized springs. Let p1(t) denote the right edge of
the left mass at time t, and p2(t) denote the left edge of the right mass at time

p1(t)

p2(t)

Fig. 4. A schematic illustration of the system that is modeled in figure 1

Operational Semantics of Hybrid Systems 31

t, as shown in figure 4. Let n1 and n2 denote the neutral positions of the two
masses, i.e. when the springs are neither extended nor compressed, so the force
is zero. For an ideal spring, the force at time t on the mass is proportional to
n1 − p1(t) (for the left mass) and n2 − p2(t) (for the right mass). The force is
positive to the right and negative to the left.

Let the spring constants be k1 and k2, respectively. Then the force on the
left spring is k1(n1 − p1(t)), and the force on the right spring is k2(n2 − p2(t)).
Let the masses be m1 and m2 respectively. Now we can use Newton’s law, which
relates force, mass, and acceleration, f = ma. The acceleration is the second
derivative of the position with respect to time, which we write p̈1(t) and p̈2(t)
respectively. Thus, as long as the masses are separate, their dynamics are given
by

p̈1(t) = k1(n1 − p1(t))/m1 (1)
p̈2(t) = k2(n2 − p2(t))/m2. (2)

If we integrate both sides twice, we get

p1(t) =
∫ t

t0

(∫ α

t0

k1

m1
(n1 − p1(τ))dτ + v1(t0)

)
dα+ p1(t0) (3)

p2(t) =
∫ t

t0

(∫ α

t0

k2

m2
(n2 − p2(τ))dτ + v2(t0)

)
dα+ p2(t0) (4)

Figure 2 shows the hierarchical models contained by the two modes, Separate
and Together. These models are called refinements of the modes. They give the
behavior of the modal component when the component is in the corresponding
mode. The two equations above are depicted by the state refinements in figure
2, where it is assumed that k1 = 1, m1 = 1, n1 = 1, and k2 = 2, m2 = 1, n2 = 2.
The initial values p1(t0), p2(t0), v1(t0) and v2(t0) are the initial states of the
integrators in the figures, which are set by the actions upon entering the mode.

When the masses collide, the situation changes. With the masses stuck to-
gether, they behave as a single object with mass m1 +m2 and positions p1(t) =
p2(t). This single object is pulled in opposite directions by two springs. Let

p(t) = p1(t) = p2(t).

The dynamics are then given by

p̈(t) =
k1n1 + k2n2 − (k1 + k2)p(t)

m1 +m2
. (5)

Again we can integrate both sides twice to get the relation represented by the
mode refinement at the top of figure 2.

3 Discussion of the Example

The most notable feature of our example, and the one which distinguishes it
most from other “programs,” is the continuous-time evolution of its “variables.”

32 E.A. Lee and H. Zheng

In the visual syntax of HyVisual, the lines connecting blocks (sometimes called
“wires” in analogy with circuit diagrams) represent variables of the program.
In a corresponding textual syntax, these variables would be given names and
referred to by name. In a visual syntax, however, there is usually no need to name
them, since their users can simply connect to them. Whereas in a textual syntax
“scoping rules” would limit the visibility of such variables, in a visual syntax
like HyVisual, visibility is limited by the constraints on wiring in the diagram,
for example that the wires cannot cross levels of the hierarchy. In HyVisual, to
make variables visible across levels of the hierarchy, we use named “ports.” In
figure 2, the ports labeled p1, p2, v1, v2, a1, a2, force, and stickiness are
the inside view of the same ports with the same names in figure 1. These ports
represent the continuously evolving variables representing position, velocity, and
acceleration of the masses, plus the force pulling them apart and the stickiness
holding them together.3

The continuous evolution of the values of such variables, of course, is what
presents the greatest challenge to a programming language designer, since contin-
uous evolution of variables is outside the domain of discourse of today’s comput-
ers. Thus, while a denotational semantics for a hybrid systems language might
embrace continuous evolution of the variable values, an operational semantics
can only define values at discrete points in time. It is the relationship between
such a denotational semantics and operational semantics that is the principal
topic of this paper.

One solution to this conundrum is to simply disallow continuous evolution. We
can invoke sampling theory to assert that any continuously evolving signal (with
finite bandwidth) can be sampled uniformly at a sufficiently high rate without loss
of information. Indeed, some of the tools mentioned above (notably Hysdel [14] and
Shift [18]) operate only on models that have been discretized by sampling by the
programmer. This greatly simplifies the programming language semantics, since
now the semantics of the model easily matches well-known techniques for
synchronous concurrent programming languages such as the synchronous/reactive
languages [27]. The problem is that even an example as simple as our spring masses
violates the finite bandwidth assumption. As shown in figure 3, the velocities and
accelerations both have discontinuities that imply infinite bandwidth. In hybrid
system modeling, these discontinuities are the principle subject of study, so a fail-
ure to properly represent them is a serious omission.

We can do better than uniform sampling with non-uniform sampling, where
we include the points of discontinuity in the samples. However, this is not quite
enough. Non-uniform sampling, by itself, is not sufficient to unambiguously rep-
resent discontinuities. We examine this issue next.

3 We use the term “continuously evolving” for signals whose values evolve continuously

rather than in discrete steps. We do not require continuously evolving signals to be

continuous. We will make this more precise below.

Operational Semantics of Hybrid Systems 33

4 Discontinuities in Continuously Evolving Signals

Continuous signals exhibit an intrinsic robustness under discretization. Mathe-
matically, the continuously evolving variables of figure 3 are typically represented
as functions of the form

x : T → Rn,

where T (called the time line) is a connected subset of the reals, R, and Rn is
a normed vector space consisting of n-tuples of real numbers with some norm.
This function is continuous at t ∈ T if for all ε > 0, there exists a δ > 0 such
that for all τ in the open neighborhood (t− δ, t+ δ) ⊂ R

||x(t) − x(τ)|| < ε.

This means that if we examine the value of the signal at a point in time, if the
signal is continuous at that point in time, then small errors in the time at which
we examine it result in small errors in the value.

In a computational setting, signal values may have data types significantly
different from Rn, in which case, if the set of data values form a topological
space, then the topological form of continuity provides similar robustness.

However, signals in hybrid systems are not typically continuous at all points
in time. Specifically, let D ⊂ T be a discrete subset4 of T . A signal is piecewise
continuous if it is continuous at all points in T\D, where D is some discrete
subset of T , and where the backslash represents set subtraction. However, this
leaves open the question in an operational semantics about how to represent the
signal at or near points in D.

A typical approach in mathematical modeling of hybrid systems is to define
signals to be continuous on the right at points in D. A function x : T → Rn is
continuous on the right at t ∈ T if for all ε > 0, there exists a δ > 0 such that
for all τ in the interval [t, t+ δ)

||x(t) − x(τ)|| < ε.

This makes explicit the non-robustness of piecewise continuous signals. It is
straightforward to generalize this to topological spaces rather than normed vector
spaces, so that the same argument may be applied to other data types than Rn.

An operational semantics must somehow represent that a signal value in-
finitesimally before some t ∈ D is significantly different from the value at t.
Unfortunately, no discretized rendition can properly represent this.

To make this concrete, assume that we seek an operational semantics for
an execution of a hybrid system on a computer. This semantics can represent
continuously evolving signals only on a discrete subset of real-valued times. Let
D′ ⊂ T be the discrete subset of the reals where it will explicitly represent sig-
nal values. We can require that the points of discontinuity D be in this set, or

4 A discrete subset is a subset for which there exists an order embedding to the integers

[28]. Note that “discrete” is a stronger condition than “countable.”

34 E.A. Lee and H. Zheng

D ⊂ D′. However, how can we choose D′ to represent the discontinuity? Suppose
t ∈ D. Then, since D′ is discrete,5 there is a t′ ∈ D′ where t′ < t and there is no
τ ∈ D′ such that t′ < τ < t. We say that t′ immediately precedes t. Since t′ < t,
there is a non-zero interval between the samples that span the discontinuity.
Given only the discrete samples, therefore, the discontinuous signal is fundamen-
tally indistinguishable from a continuous signal that simply changes sufficiently
rapidly. This is not splitting hairs. It means that an operational semantics based
on discrete samples cannot unambiguously represent discontinuities. In addition
to semantic difficulties, this ambiguity creates practical problems for numerical
ODE solvers. Variable step solvers typically adjust the spacing between sample
points to be smaller where signals are varying rapidly and larger where they
are varying more smoothly. With this ambiguity, such solvers must be made
explicitly aware of the discontinuities or they will be forced to reduce step sizes
down to resolution tolerances before giving up and deciding that the variability
represents a discontinuity.

Fig. 5. A portion of the plot of velocities in figure 3, showing multiple values at one

time

The key problem here is the form of the function

x : T → Rn.

Whereas this form works well in a mathematics that embraces the continuum
of R, it fails in the formal framework of computing, where continuums are not
directly manageable. Figure 5 shows a portion of the velocities plot from figure
3 where at time approximately 9.965 the masses collide. The plot shows a dot
for each computed value of the velocities, showing the discretization that is not
evident in figure 3. At time 9.965, the two velocity signals have more than one
value. They have both the value just prior to the collision and the value just
after the collision. Having two values at one time is semantically unambiguously
distinct from having two distinct values closely spaced in time. But it requires
augmenting the mathematical model for signals. We do that next.
5 The existence of an order embedding to the integers is essential to this argument

[28]. Countable sets would not be sufficient.

Operational Semantics of Hybrid Systems 35

5 The Semantics of Signals

To unambiguously represent discontinuities, we define a continuously evolving
signal to be a function

x : T ×N → V, (6)

where T ⊂ R is a connected subset (the time line), N is the non-negative
integers, and V is some set of values (the data type of the signal, such as Rn

for signals whose values are n-tuples of reals). In the terminology of the tagged
signal model [29], T ×N is the tag set. A particular tag is a member of T ×N ,
a tuple with a time value and an index. This models that at each time t ∈ T ,
the signal x can have finitely many values. To ensure that the number of values
at a time is finite, we require that for all t ∈ T , there exist an m ∈ N such that

∀n > m, x(t, n) = x(t,m). (7)

This constraint prevents what is sometimes called chattering Zeno conditions,
where a signal takes on infinitely many values at a particular time. Such condi-
tions would prevent an execution from progressing beyond that point in time,
assuming the execution is constrained to produce values in chronological order.

Assuming x has no chattering Zeno condition, then there is a least m satis-
fying (7). We call this least value of m the final index and x(t,m) the final value
of x at t. We call x(t, 0) the initial value at time t. If m = 0, then we say that
x has only one value at time t. Note that the values at time t are well ordered
using the ordinary ordering of integers.

Define the initial value function xi : T → V by

∀ t ∈ T, xi(t) = x(t, 0).

Define the final value function xf : T → V by

∀ t ∈ T, xf (t) = x(t,m),

where m is final index. Note that xi and xf are conventional continuous-time
functions.

A piecewise continuous signal is a function x of the above form satisfying
three conditions:

1. the initial value function xi is continuous on the left;
2. the final value function xf is continuous on the right; and
3. x has only one value at all t ∈ T\D, where D is a discrete subset of T .

It is easy to see that if D = ∅, then xi = xf is a continuous function. Otherwise
each of these functions is piecewise continuous.

6 Ideal Solver Semantics

In this section, we consider the semantics of a discrete representation of a hy-
brid system under a simple idealization, which is that over time intervals that are

36 E.A. Lee and H. Zheng

sufficiently small, the differential equations giving the dynamics can be solved
exactly. This finesses the issue of approximate executions based on numerical so-
lutions, which we will address below. This ideal solver semantics was introduced
in [30]. Note that it is not as far-fetched as it might sound. Many of the dif-
ferential equations in hybrid systems can be solved exactly (including those for
the spring masses example) by finding a closed form expression for the solution
over the intervals of continuous behavior. Even when we don’t have closed form
solutions, for many special cases numerical solutions yield exact answers (using
appropriate solvers). But even in cases where the solution must be approximated,
we would like to separate the issue of approximate ODE solutions from the other
semantic issues in hybrid systems. Hence, the idealization remains useful.

)),(()(ttxgtx =&

)),((ttxg ∫+=
t

t

dxtxtx
0

)()()(0 &

x& x

nRTx →:

nn RTRg →×:

RtT ⊂∞=),[0

τ τ

Fig. 6. Schematic of the ODE solver problem

In general, a hybrid systems model is a set of piecewise continuous signals
and a set of actors that establish relations between these signals. Examining
figures 1 and 2 we see that while the state machine is in any state, the actors
relating signals are integrators and Expression actors. For Expression actors,
the output is a memoryless function of the inputs. More general actors are al-
lowable, as we will discuss below, but for now, let’s assume that the actors are
either integrators or memoryless functions. In this case, a hybrid system can be
restructured to have the form shown in figure 6, which has two components: a
vector integrator and a function g giving the input to the integrator as a function
of its output and the current time.

The function g encapsulates the effects of all actors that are not integrators in
the model. Notice that in order for this abstraction to work, every directed cycle
in the model must have at least one integrator. The abstraction also requires
that data precedences be satisfied. That is, the two paths shown in figure 7 must
be semantically equivalent. This requires that the run-time execution engine
analyze the data dependencies and invoke actors in the order implied by those
data dependencies. Specifically, at each tag (t, n) ∈ T ×N , actor Expression1
must be invoked before actor Expression2. This point might seem obvious, but
some hybrid systems simulators have assumed the order of invocation of these
actors to be nondeterministic at a particular time.

The framework in figure 6 ignores the index portion of the tag. Indeed, this
conceptual framework is only valid over time intervals where signals have only

Operational Semantics of Hybrid Systems 37

one value. Over these regions of the time line, x is differentiable, so the framework
in the figure is equivalent to the vector differential equation

ẋ(t) = g(x(t), t), (8)

with some initial condition x(t0).
Let D ⊂ T be a discrete set that includes the times at which signals have

more than one value. Let D′ be a superset that includes D and the initial time,
t0. A discrete trace of the hybrid system is the set

{x(t, n) | t ∈ D′, and n ∈ N}. (9)

The discrete trace includes the values at each discontinuity plus the values at
the initial time and (possibly) some additional values. To be a valid trace, we
require that for each interval between times in D′, that (8) have a unique and
continuous solution, and that the endpoints of the solution in this interval be in
the trace. Notice that as long as there is no chattering Zeno condition, a trace
can be fully represented by a discrete subset of (9).

Specifically, consider the interval [ti, ti+1) where ti, ti+1 ∈ D and ti immedi-
ately precedes ti+1. Assume xf (ti) is known (our induction starts, obviously, with
xf (t0), which we assume we can obtain). We take this to be the initial condition
for x in figure 6, and we require that (8) have a unique solution over the interval
[ti, ti+1). Such a unique solution is assured if the interval is “sufficiently small”
and the function the function g : Rn ×T → Rn is continuous in the interval and
satisfies a local Lipschitz condition (see [31] or [32], for example). The details of
these conditions are not important for our purposes here. It is sufficient to know
that there are such conditions and that the conditions are checkable. The value
at the end of the interval will be taken to be the initial value x(ti+1, 0) at time
ti+1.

We now can begin to give an operational semantics under the ideal solver
assumption. Begin with the initial condition x(t0, 0), which we assume is given
(in figure 2 it is a parameter of the integrators). We then execute the model
until the final index at t0 (we discuss the semantics of this execution, which
we call the discrete phase of execution, below in section 8.3). The final value
of xf (t0) is the initial value x(t0) for the differential equation (8). We identify
a t1 such that the continuity and local Lipschitz condition of g is satisfied over
[t0, t1) (this is assured of not traversing a discontinuity, and therefore will not
miss any points in time where the signal has multiple values). We then solve the
differential equation to determine xi(t1) = x(t1, 0). We then perform a discrete
phase execution at t1 to get xf (t1) and repeat the process.

In this description of the ideal solver semantics, there are two key issues
that we have not fully resolved. The first is the semantics of the discrete phase
execution. The second is how to determine the step size, which takes us from
one time ti ∈ D′ to the next time ti+1 ∈ D′. We address these issues next, in
turn.

38 E.A. Lee and H. Zheng

7 Discrete Events

Hybrid systems mix continuous and discrete phenomena. The discontinuities in
the spring-masses example are the result of discrete mode transitions in system
that evolves in the time continuum. At these mode transitions, the behavior
of a system may be considerably more complex than in the spring-masses ex-
ample. In systems that mix software with physical systems, sequences of mode
transitions can be used to model the software. The events in such sequences
are ordered but not timed. This fits the realities of software, where timing is
not part of the semantics, and is consistent with abstractions for software that
are increasingly used for embedded software such as synchronous languages [27]
and time-triggered languages [33]. Then we take a step further, and introduce
intrinsically discrete signals within the semantics.

7.1 Transient States

The piecewise continuous signals in our semantics are continuous at all points
on the time line T except for a discrete subset D. At these discontinuities, a
signal may take on a finite sequence of values. An operational semantics needs
to define the construction of these sequences of values.

The first mechanism we will consider is transient states. Consider the modi-
fication of the spring-masses example that is shown in figure 8. In that example,
an additional state has been added (called “Time”) that has a refinement that
produces on one of the output ports the current time. The transition coming out
of the Time state has a guard expression “true”, which of course is always true.
Since in HyVisual semantics, when guard is true the transition must be taken,
the time spent in the state is zero. Such a state is called a transient state.6

A plot of the signal v1 with the additional output is shown in figure 9. At
any time t that the masses collide, there are three distinct values of the signal
v1, each in a well-defined order. Moreover, since this value is held for zero time,
it has no impact on the signal p1, which is the integral of v1. The zero-width
pulse integrates to zero.

Although the example in figure 8 has no particular usefulness, it is easy to
imagine using this capability to model a sequence of software-based actions,
which could, for example, be used to model software-based controllers.

7.2 Discrete Signals

So far, we have considered only continuously-evolving signals, which have a value
for all (t, n) ∈ T×N . In mixed hardware/software systems, however, some signals

6 Many hybrid system simulators will remain in a transient state for at least one time

step of the ODE solver. This effectively results in nondeterministic behavior, since

the programmer is typically unaware of the mechanisms that is used to define the

time steps. In our semantics, this would be incorrect behavior. Moreover, it is a poor

model for the behavior of software, since it neither models the actual time taken by

software nor provides a usable abstraction, such as the synchrony hypothesis [27].

Operational Semantics of Hybrid Systems 39

Fig. 7. The abstraction of figure 6 requires that these two paths be semantically equiv-

alent

Fig. 8. Variation of the model in figure 1 that has a transient state

are intrinsically discrete, and it makes little sense to talk about their values at
all points in time. HyVisual semantics supports such signals by augmenting the
set of possible values to

Vd = V ∪ {ε},

40 E.A. Lee and H. Zheng

Fig. 9. Plot of the output of the model in figure 8

Fig. 10. A portion of the HyVisual library of conversions between discrete and

continuously-evolving signals

where ε represents “absent” (equivalently, we could define signals to be partial
functions from T ×N to V).

A discrete signal is a function x : T×N → Vd, where x(t, n) = ε for all n ∈ N
and t /∈ D, where D ⊂ T is a discrete set. Moreover, as with continuously-

Operational Semantics of Hybrid Systems 41

evolving signals, discrete signals are constrained to have no chattering Zeno
condition, but in this case, the final value is required to be ε. Hence, the tags
where a discrete signal is not absent are a discrete subset of T ×N .

In HyVisual, a discrete signal is indicated by annotating a port that pro-
duces or consumes it with an attribute named DISCRETE. HyVisual performs a
simple consistency check to ensure that ports that produce discrete signals are
connected only to ports that consume discrete signals. A port that requires a
continuously-evolving signal (such the integrator input or output) is annotated
with an attribute named CONTINUOUS. If there is no annotation, then HyVisual
assumes the port is agnostic, in which case HyVisual will infer whether it is
operating on a discrete or continuous signal. The ports of the Expression actor
used in figure 2, for example, are agnostic.

In the operational semantics, discrete signals are involved only in the discrete
phases of execution. If all the ports of an actor are discrete, then the actor
itself is called discrete. Discrete actors are invoked only in the discrete phases of
execution. Of course, as with continuous actors, we require that data precedences
be satisfied. As discussed in section 6, the actors in figure 7, if provided with
discrete inputs, must react to those inputs in data-precedence order. Again, some
hybrid systems simulators assume this order to be nondeterministic.

It is possible in HyVisual to create models that have directed cycles that
consist entirely of discrete signals. Such cycles are required to have a delay. The
delay is detected by a dependence analysis. Each actor that introduces delay de-
clares as part of its interface definition that the value at a particular output port
does not depend on the value at a particular input port at a particular tag. The
scheduler uses this dependence information to determine the data precedences,
and hence determine the order in which actors must be invoked.

Recall from section 6 that directed cycles with continuous signals require
at least one integrator. We can now state the overall requirement on a model
precisely. Every directed cycle must have either a delay on a discrete signal or
an integrator on a continuous signal. Thus, mixed signal cycles are supported.

Note that we have left unsaid how an execution engine decides when a discrete
phase is complete. Recall that each signal can have any number of values at a
particular time, but it is required to have a final value after some finite number
of values. We will explain this below in section 8.3.

HyVisual provides a small library of actors to create discrete signals from
continuously-evolving ones, and vice versa. Some of these are shown in figure 10.
The EventSource actor produces one or more discrete events at specified (possi-
bly periodic) times. The LevelCrossingDetector produces a discrete event on
the output when the continuous-evolving input crosses a specified threshold. The
PeriodicSampler produces discrete events whose values are the initial values of
the continuously-evolving input signal at multiples of a specified sampling pe-
riod. Note that the HyVisual semantics give this actor an unambiguous semantics
even for samples at discontinuities. The TriggeredSampler actor uses a discrete
input signal to specify when to take samples of a continuously-evolving input

42 E.A. Lee and H. Zheng

Fig. 11. A simple model that illustrates discrete signals

signal. Whereas the PeriodicSampler uses the initial value of the input, the
TriggeredSampler uses whatever value has the same tag as the trigger event.

The example in figure 11 illustrates the use of a LevelCrossingDetector
actor combined with transient states. The result of an execution is shown in
figure 12. Note that although outputs produced by transient states integrate to
nothing, they nonetheless trigger level-crossing detectors. This predictable and
understandable behavior is a result of the clean semantics.

Operational Semantics of Hybrid Systems 43

The FirstOrderHold and ZeroOrderHold actor take discrete input signals
and produce continuously-evolving output signals. In the case of ZeroOrderHold,
the output signal value in the interval t ∈ [ti, ti+1) is equal to the final value of
the input signal at ti, where ti and ti+1 are discrete times when the input is not
absent and ti immediately precedes ti+1. The FirstOrderHold actor linearly
extrapolates from the final value xf (ti) given its derivative ẋf (ti).

-1

0

1

2

0.0 0.5 1.0 1.5 2.0

P iecewise Continuous Signal

time

-0.5

0.0

0.5

1.0

0.6 0.8 1.0 1.2 1.4

Detected Thres hold Cros s ings

time

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0

Integral of the Signal

time

Fig. 12. A simple model that illustrates discrete signals

Notice that the tagged signal model semantics of HyVisual, which unam-
biguously defines initial and final values, makes it easy to give predictable and
understandable behaviors for these actors.

Note that some hybrid system simulators, such as Simulink/Stateflow, do not
have discrete signals. Instead, discrete signals are approximated as piecewise-
constant signals. This is adequate for many purposes, but we believe that gen-
uinely discrete signals are a better model for the externally visible actions of
software.

44 E.A. Lee and H. Zheng

Fig. 13. A classic example of a Zeno system, the bouncing ball

7.3 Zeno Conditions

We have already discussed chattering Zeno conditions, where a signal fails to
reach a final value at some t ∈ T . It is also possible to get Zeno conditions where
a discrete signal has infinitely many events at distinct times within a finite time
interval. A classic example is the bouncing ball model, shown in figure 13.

Operational Semantics of Hybrid Systems 45

In the idealized bouncing ball example, there are infinitely many events in
a finite amount of time. An event is a collision of the ball with the surface on
which it bounces. Let D ⊂ T be the times at which the ball collides with the
surface. Notice that even though this is a Zeno system, the set D is discrete.
That is, there is an order embedding from D to the integers.

However, “discreteness” of sets is not a compositional property. In particular,
let D′ = N , the non-negative integers. Then D∪D′ is not a discrete set. We say
that a model is non-Zeno if it is free of chattering Zeno conditions and if D∪D′

is discrete, where D ⊂ T is the times at which the model has discrete events.
A sufficient condition for a model to be non-Zeno is that there is a lower

bound δ > 0 on the time between events, and that there be no chattering Zeno
conditions. Although this statement is rather obvious, the classical approach to
proving it leverages some fairly sophisticated mathematics, constructing a metric
space of signals using the so-called Cantor metric, and then invoking the Banach
fixed point theorem [28].

8 Actor Semantics

So far, our examples have included a limited library of actors consisting of in-
tegrators, state machines to represent modal behavior, Expression actors, and
a library of actors for converting between discrete and continuously-evolving
signals. In principle one could define a primitive library set that is sufficiently
expressive to represent many useful hybrid systems. But this would not be suf-
ficient. Modern software systems require both (1) user-defined components and
(2) compositionality. To support user-defined components, we need to define ex-
actly what is required of an actor for it to be usable in a hybrid system model.
To support compositionality, we need to define how a hybrid system model itself
can become an actor within another hybrid system model. We address both of
these problems by defining what we call an abstract semantics for actors. It is
abstract in that it omits details of execution that are not relevant, such as how
the actor actually performs computation. It strives for maximal “information
hiding,” imposing just enough constraints on actor designers to enable our two
objectives, and no more.

First, we leverage our ideal-solver semantics to observe that actors in model
will be required to react to inputs only at a discrete subset D′ of the time line
T . The memoryless actors (like the Expression actor), need only to provide a
function that can be evaluated where, given the values of the inputs and the
current time, the actor asserts the values of the outputs.

Some actors, however, need to be able to affect what times are present in
D′. The LevelCrossingDetector and PeriodicSampler in figure 10 are two
examples. So is the modal actor Masses in figure 1, and in fact any modal model
constructed hierarchically in HyVisual.

Discrete events are either predictable or unpredictable. For predictable events,
the time of the event is known before the execution has advanced to that time. To

46 E.A. Lee and H. Zheng

support both of these, HyVisual uses the mechanism developed by Liu [24]. First,
an actor provides a function that, given the state of the actor and the current
time, returns a “suggested” step size. The step size taken by the execution engine
is guaranteed to not exceed this suggestion. So an actor with predictable events
simply has to implement this function return appropriate suggestions. Second, an
actor provides a predicate that given the state of the actor and the current time,
returns true if the step taken to reach this current time was sufficiently small.
Actors with unpredictable events will return false if the execution has missed
an event. The execution engine is then required to backtrack and re-execute the
model with a smaller step size. Note that exactly the same mechanism is used
to implement variable step-size ODE solvers.

There are two consequences to this strategy. First, events may be missed.
Consider for example a guard on a mode transition that fails to become true
only because the step size was too large. Second, every actor must be able to
backtrack. We deal with these two issues next, in turn.

8.1 Event Detection

Considering the first consequence, the event detection problem for differential-
algebraic models (of which hybrid systems are examples) is studied in [34]. Meth-
ods specifically for hybrid systems are considered in [35], where a method is
proposed that under certain assumptions that are often satisfied, an event is
guaranteed to be detected. Moreover, the method guarantees that the boundary
is not crossed in the process of detecting it (which could result in attempting
to evaluate the function g in a region where it is undefined). This method is
implemented in Charon [7]. However, this mechanism requires that the solver be
able to identify and support the mechanisms that create the events. For exam-
ple, when guards on mode transitions are threshold checks on linear functions of
the continuously-evolving variables, the methods work well. At a minimum, the
technique requires that the guard expressions have a finite Taylor series expan-
sion, or that they be closely approximated by a finite Taylor series expansion.
This makes it more difficult to support user-defined actors that detect events. It
also makes compositionality more difficult, and the computational cost is high.

The method for event detection used in HyVisual allows for implementation
of such techniques because components can provide constraints on step sizes. As
discussed above, every actor can implement a function that suggests the next
step size, and that step size will not be exceeded by the solver. Note that this
mechanism would be implemented by an actor, not by the core infrastructure,
so its expensive computation would only be incurred when the model designer
chooses to use an actor that implements it. Although we agree that such methods
could be useful, we have not implemented the mechanism suggested in [35] in
any actor in HyVisual, and most particularly we have not implemented it in the
modal model actor, which defines the semantics of the state machines like that
shown in figure 1. The mechanism we have implemented for event detection in
the state machines is more computationally lightweight, but it does not offer any

Operational Semantics of Hybrid Systems 47

assurance that the model will not be evaluated in regions where the guard has
been crossed. However, it is adequate for many applications.

8.2 Backtracking

Since any actor can implement a predicate that rejects the last executed step
size, all actors must be able to backtrack after having provided outputs at a
specified time. To accomplish this, we require that actors follow a stateful abstract
semantics, which we now define.

An actor with a stateful abstract semantics provides two functions f and g,
where f is an output function and g is a state update function. For an actor
with n input ports and m output ports, these functions have the form

f : V n
d × T ×Σ → V m

d (10)
g : V n

d × T ×Σ → Σ, (11)

where Vd is the set of possible values at the input ports (including, possibly,
the absent value ε), T is the time line, and Σ is the state space of the actor.
Given these two functions, the execution engine controls the state of the actor,
and does not commit an actor to a new state until all actors have “approved”
the step size. In the Ptolemy II infrastructure, on which HyVisual is based, this
mechanism is implemented by actor by providing two distinct methods, fire()
and postfire(), the first of which reacts to inputs by providing outputs, and
the second of which commits the state changes (if any) of the actor. However,
as we will see below in section 10, this mechanism is not rich enough to fully
support compositionality.

8.3 Fixed Point Iteration

Making the state of an actor explicit also helps us solve the problem raised in
section 7.2, which is to determine when signals have reached their final value at
a time stamp. Suppose that an actor is defined by functions f and g of the forms
given by (10) and (11). Let the input be x : T × N → V n

d and the output be
y : T ×N → V m

d . Let the state of the actor at each tag be given by a function
σ : T ×N → Σ. Then at time t ∈ T , execution proceeds as follows:

y(t, 0) = f(σ(t, 0), t, x(t, 0))
σ(t, 1) = g(σ(t, 0), t, x(t, 0))
y(t, 1) = f(σ(t, 1), t, x(t, 1))
σ(t, 2) = g(σ(t, 1), t, x(t, 1))

· · ·

When all actors in the model have reached a point where their state no longer
changes, then the final values have been reached for all signals and the execution
at the time t is complete.

48 E.A. Lee and H. Zheng

9 ODE Solvers

So far, we have assumed an ideal ODE solver. Fortunately, the semantic frame-
work we have developed under this assumption accomodates, with some care,
practical numerical ODE solvers. These solvers typically include algorithms for
dynamically adjusting the step sizes. These step size adjustments typically re-
quire backtracking because they try a step size and then estimate the error. If
the error is too large, they reduce the step size and redo the calculation. The
abstract semantics for actors given in the previous section supports such back-
tracking. The key desired properties of an ODE solver are consistency (the error
divided by the integration step size goes to zero as the step size goes to zero)
and stability (errors do not accumulate as integration steps increase).

We consider two popular classes of ODE solvers, linear multistep methods
(LMS) and Runge-Kutta methods (RK). Assume a model of the form given by
figure 6, where again we ignore the index, assuming that the solver is applied over
regions of time where the signals involved have only one value. LMS methods
require solving the following equation at each time step tn,

k−1∑
i=0

αix(tn−i) + hn

k−1∑
i=0

βiẋ(tn−i) = 0, (12)

where hn = tn − tn−1, and k, αi, and βi are parameters of the particular LMS
method being used. For example, the well-known trapezoidal rule is a two-step
(k = 2) LMS method with the form

x(tn) − x(tn−1) −
hn

2
(ẋ(tn) + ẋ(tn−1)) = 0. (13)

This method has been proved stable and the most accurate among two-step LMS
methods.

Notice that in order to compute the output of an integrator at time tn, an
LMS method generally needs to have access to the input of the integrator ẋ(tn)
at that same time. In a model with no directed cycles, this poses no difficulty.
However, in a model of the form given in figure 6, the input to the integrator
cannot generally be known until its output is known. Such methods are called
implicit methods because the solution depends on itself. One possible solution
to this self-referential conundrum is to use iterative solution techniques like the
Newton-Raphson method [36]. A second problem with LMS methods is that
when there are more than two steps, past values of the signal x and its derivative
must be known. At the start time of a model and after any discontinuity, these
values are not known in any useful way.

Another common solution is to use an RK method. RK methods perform
interpolation at each integration step to approximate the derivative. An explicit
k stage RK method has the form

x(tn) = x(tn−1) +
k−1∑
i=0

ciKi, (14)

Operational Semantics of Hybrid Systems 49

where

K0 = hng(x(tn−1), tn−1),

Ki = hng(x(tn−1) +
i−1∑
j=0

Ai,jKj , tn−1 + hbi), i ∈ {1, · · · , k − 1}

and Ai,j , bi and ci are algorithm parameters calculated by comparing the form
of a Taylor expansion of x with (14). The first order RK method, also called the
forward Euler method, has the (much simpler) form

x(tn) = x(tn−1) + hnẋ(tn−1). (15)

Notice that there is no difficulty with self referentiality here, and the only past
information required is ẋ(tn−1), which can always be computed from x(tn−1),
which is known, even at the execution start time and after a discontinuity.

The so-called RK2-3 ODE solver is a k = 3 step method used by default in
HyVisual and given by

x(tn) = x(tn−1) +
2
9
K0 +

3
9
K1 +

4
9
K2, (16)

where

K0 = hng(x(tn−1), tn−1)
K1 = hng(x(tn−1) + 0.5hnK0, tn−1 + 0.5hn)
K2 = hng(x(tn−1) + 0.75hnK1, tn−1 + 0.75hn).

Notice that this method requires evaluation of the function g in figure 6 at
intermediate times tn−1 + 0.5hn and tn−1 + 0.75hn, in addition to the times
tn−1. This fact has significant consequences for compositionality of this method,
considered below in section 10.

In summary, the RK2-3 ODE solver performs the following steps:
1. Evaluate g(x(tn−1), tn−1) to get ẋ(tn−1).
2. Evaluate g again to get an estimate of ẋ(tn−1 + 0.5hn).
3. Evaluate g a third time to get an estimate of ẋ(tn−1 + 0.75hn).
4. Combine these estimates to get an estimate of x(tn).

In addition, after these steps are complete, the RK2-3 method estimates the
local truncation error as follows,

K3 = g(x(tn), tn)

ε = hn
−5
72

K0 +
1
12
K1 +

1
9
K2 +

−1
8
K3.

This estimate will be larger when the derivative of the signal varies more over
the interval [tn−1, tn). If the error estimate exceeds some specified threshold,
then the whole process needs to be repeated with a smaller step size.

A key consequence is that since g in figure 6 is a function representing the
combined effect of a composition of actors, it is necessary to be able to repeat-
edly execute these actors without altering the state of the actors. The abstract
actor semantics in section 8.2 supports this. However, this has unfortunate con-
sequences for compositionality, discussed next.

50 E.A. Lee and H. Zheng

10 Compositionality

Compositionality is property of programming languages where compositions of
language primitives can themselves be treated as a language primitive. Given a
composition of actors, if that composition conforms with the abstract semantics
that we have outlined, then the composition itself is an actor, and can be used in
a model like any other actor. The hierarchy we have seen in the various HyVisual
examples exploits this fact.

However, when considering ODE solvers, there is a more subtle issue. Notice
in figures 1 and 2 that each level of the hierarchy has its own director (the
director is not shown explicitly in the FSM levels, but it is there). A director
implements the ODE solver, so this fact means that we can use diverse ODE
solvers at different levels of the hierarchy. This can be very useful, since different
solvers are better for different models.

The subtle issue, however, is that intuition dictates that if we use the same
solver, then the behavior of a model should be the same whether we use hierarchy
or not. So, for example, in figures 1 and 2, if we eliminated the FSM level and
constructed a flat model (no hierarchy) that only included the behavior of the
masses when they are separate, then an execution should yield exactly the same
result as the hierarchical model during the times that the masses are separate.
In other words, hierarchy alone should not change behavior.

This seeming simple objective turns out to be hard to achieve. In particular,
the RK2-3 solver described in the previous section requires that actors be eval-
uated not just at the discrete times in the trace, but also at intermediate times
that play a role in the approximation. With hierarchical solvers, when we ask
for an evaluation at time tn−1 + 0.5h, for example, the inner solver will treat
this as the desired step, and will therefore evaluate the inner model at addi-
tional intermediate times tn−1 +0.5 · 0.5h and tn−1 +0.5 · 0.75h. In a flat model,
these evaluations will not occur. As a consequence, the numerical results of the
hierarchical model will differ from the results of the flat model. This is neither
expected nor desirable.

The solution that we have come up with violates information hiding across
levels of the hierarchy, but only in a disciplined way. When the same kind of
solver is being used across levels of the hierarchy, the solvers coordinate their
actions to behave as if the hierarchy were flat. This yields the invariant that
hierarchy does not change behavior as long as the same kind of solver is used.
But it leaves open the possibility of using multiple solvers.

11 Nondeterminism

All the examples here are all determinate systems. A key design objective in
HyVisual is to give deterministic execution to determinate models. We have
achieved that. Sometimes, however, useful models are nondeterministic.

One possible form of nondeterminsm is when a state machine has two or
more enabled transitions at some time. A key question, however, is how to assign

Operational Semantics of Hybrid Systems 51

an execution to such a model. It is incorrect to choose an arbitrary enabled
transition because this could result in a model producing misleading traces.
They appear determinate, but are in fact nondeterminate.

A better solution is Monte Carlo execution, where probabilities are assigned
to the outcomes and the execution uses random numbers to make the choices.
However, this requires that the probabilities be assigned as part of the modeling
process. In fact, HyVisual fully supports Monte Carlo execution of nondetermi-
nate models, where the probabilities are explicitly included in the model.

An intriguing possibility, not yet implemented in HyVisual, is to use model
checking to simultaneously explore all traces of a nondeterministic model. As
with many applications of model checking, scalability will be a key issue.

12 Conclusions

We have approached hybrid systems as a model of computation, and have pre-
sented HyVisual as a domain-specific programming language with hybrid sys-
tems semantics. We have introduced a tagged signal model for hybrid systems
that embraces discontinuities and discrete events along with the usual piecewise
continuous signals, and we have given a clear and simple executable semantics.
The semantics separates concerns for the accuracy of numerical approximation
techniques from other semantic issues. The result is a predictable, understand-
able, and composable semantics for executable models of hybrid systems.

References

1. Deshpande, A., Varaiya, P.: Information structures for control and verification of

hybrid systems. In: American Control Conference (ACC). (1995)
2. Henzinger, T.A.: The theory of hybrid automata. In Inan, M., Kurshan, R., eds.:

Verification of Digital and Hybrid Systems. Volume 170 of NATO ASI Series F:

Computer and Systems Sciences. Springer-Verlag (2000) 265–292
3. Kopke, P., Henzinger, T., Puri, A., Varaiya, P.: What’s decidable about hybrid

automata? In: 27th Annual ACM Symposioum on Theory of Computing (STOCS).

(1995) 372–382
4. Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for

hybrid systems. Automatica (1999)
5. Puri, A., Varaiya, P.: Verification of hybrid systems using abstractions. In: Hybrid

Systems Workshop. Volume Hybrid Systems II, LNCS 999., Springer-Verlag (1994)

359–369
6. Lynch, N., Segala, R., Vaandrager, F., Weinberg, H.: Hybrid I/O automata. In

Alur, R., Henzinger, T., Sontag, E., eds.: Hybrid Systems III. Volume LNCS 1066.

Springer-Verlag (1996) 496–510
7. Alur, R., Dang, T., Esposito, J., Hur, Y., Ivancic, F., Kumar, V., Lee, I., Mishra,

P., Pappas, G.J., Sokolsky, O.: Hierarchical modeling and analysis of embedded

systems. Proceedings of the IEEE 91 (2003) 11–28
8. Silva, B.I., Richeson, K., Krogh, B., Chutinan, A.: Modeling and verifying hybrid

dynamic systems using checkmate. In: Automation of Mixed Processes : Dynamic

Hybrid Systems (ADPM), Dortmund Germany, Shaker Verlag, Aachen (2000)

52 E.A. Lee and H. Zheng

9. Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate reachability analysis of

piecewise-linear dynamical systems. In: Hybrid Systems: Computation and Control

(HSCC). Volume LNCS 1790., Springer-Verlag (2000) 2131

10. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: (hytech): A model checker for hybrid

systems. International Journal on Software Tools for Technology Transfer 1 (1997)

110–122

11. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool kronos. In: Hybrid Systems

III: Verification and Control. Volume LNCS 1066., Springer-Verlag (1996) 208219

12. Larsen, K., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal on

Software Tools for Technology Transfer 1 (1997)

13. Mitchell, I., Tomlin, C.: Level set methods for computation in hybrid systems.

In: Hybrid Systems: Computation and Control (HSCC). Volume LNCS 1790.,

Springer-Verlag (2000) 310323

14. Torrisi, F.D., Bemporad, A., Bertini, G., Hertach, P., Jost, D., Mignone, D.: Hysdel

2.0.5 - user manual. Technical report, ETH (2002)

15. Cataldo, A., Hylands, C., Lee, E.A., Liu, J., Liu, X., Neuendorffer, S., Zheng, H.:

Hyvisual: A hybrid system visual modeler. Technical Report Technical Memoran-

dum UCB/ERL M03/30, University of California, Berkeley (2003)

16. Tiller, M.M.: Introduction to Physical Modeling with Modelica. Kluwer Academic

Publishers (2001)

17. Djenidi, R., Lavarenne, C., Nikoukhah, R., Sorel, Y., Steer, S.: From hybrid simu-

lation to real-time implementation. In: 11th European Simulation Symposium and

Exhibition (ESS99). (1999) 7478

18. Deshpande, A., Gollu, A., Varaiya, P.: The shift programming language for dy-

namic networks of hybrid automata. IEEE Trans. on Automatic Control 43 (1998)

19. Carloni, L.P., DiBenedetto, M.D., Pinto, A., Sangiovanni-Vincentelli, A.: Model-

ing techniques, programming languages, and design toolsets for hybrid systems.

Technical Report IST-2001-38314 WPHS, Columbus Project (2004)

20. Mosterman, P.: An overview of hybrid simulation phenomena and their support

by simulation packages. In Varager, F., Schuppen, J.H.v., eds.: Hybrid Systems:

Computation and Control (HSCC). Volume LNCS 1569., Springer-Verlag (1999)

165177

21. Sztipanovits, J., Karsai, G.: Model-integrated computing. IEEE Computer (1997)

110112

22. University of Pennsylvania MoBIES team: HSIF semantics (version 3, synchronous

edition). Technical Report Report, University of Pennsylvania (2002)

23. Lee, E.A.: Overview of the ptolemy project. Technical Report Technical Memo-

randum UCB/ERL M03/25, University of California, Berkeley (2003)

24. Liu, J.: Continuous Time and Mixed-Signal Simulation in Ptolemy II. M.s. thesis,

University of California, Berkeley (1998)

25. Lemkin, M.A.: Micro Accelerometer Design with Digital Feedback Control. Ph.d.,

University of California, Berkeley (1997)

26. Fong, C.: Discrete-Time Dataflow Models for Visual Simulation in Ptolemy II.

Master’s report, University of California, Berkeley (2001)

27. Benveniste, A., Berry, G.: The synchronous approach to reactive and real-time

systems. Proceedings of the IEEE 79 (1991) 1270–1282

28. Lee, E.A.: Modeling concurrent real-time processes using discrete events. Annals

of Software Engineering 7 (1999) 25–45

29. Lee, E.A., Sangiovanni-Vincentelli, A.: A framework for comparing models of

computation. IEEE Transactions on CAD 17 (1998)

Operational Semantics of Hybrid Systems 53

30. Liu, J., Lee, E.A.: On the causality of mixed-signal and hybrid models. In: 6th

International Workshop on Hybrid Systems: Computation and Control (HSCC

’03), Prague, Czech Republic (2003)

31. Sastry, S.: Nonlinear Systems: Analysis, Stability, and Control. Springer (1999)

32. Callier, F.M., Desoer, C.A.: Linear System Theory. Springer-Verlag (1991)

33. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered language

for embedded programming. In: EMSOFT 2001. Volume LNCS 2211., Tahoe City,

CA, Springer-Verlag (2001)

34. Park, T., Barton, P.I.: State event location in differential-algebraic models. ACM

Transactions on Modeling and Computer Simulation (TOMACS) 6 (1996) 137–165

35. Esposito, J., Kumar, V., Pappas, G.J.: Accurate event detection for simulating

hybrid systems. In: Hybrid Systems: Computation and Control (HSCC). Volume

LNCS 2034., Springer-Verlag (2001) 204217

36. Press, W.H., Teukolsky, S., Vetterling, W.T., Flannery, B.P.: Numerical Recipes

in C: the Art of Scientific Computing. Cambridge University Press (1992)

SOS Methods for Semi-algebraic Games and
Optimization
(Invited Paper)

Pablo A. Parrilo

Laboratory for Information and Decision Systems,

Massachusetts Institute of Technology (MIT), Cambridge,

MA 02139-4307, USA

parrilo@mit.edu

Abstract. Semialgebraic computations, i.e., the manipulation of sets

and logical conditions defined by polynomial inequalities in real vari-

ables, are an essential ”primitive” in the analysis and design of hybrid

dynamical systems. Fundamental tasks such as reachability analysis, ab-

straction verification, and the computation of stability and performance

certificates, all use these operations extensively, and can quickly become

the computational bottleneck in the design process. Although there is a

well-developed body of both basic theory and algorithms for these tasks,

the practical performance of most available methods is still far from be-

ing satisfactory on real-world problems. While there are several possible

causes for this (besides the NP-hardness of the task), a sensible expla-

nation lies in the purely algebraic nature of the usual methods, as well

as the insistence on exact (as opposed to approximate or ”relaxed”) so-

lutions. For these reasons, there is a strong interest in the development

of efficient techniques for (perhaps restricted) classes of semialgebraic

problems. In this talk we review the basic elements and present several

new results on the SOS approach to semialgebraic computations, that

combines symbolic and numerical techniques from real algebra and con-

vex optimization. Its main defining feature is the use and computation

of sum of squares (SOS) decompositions for multivariate polynomials via

semidefinite programming. These are extended, using the Positivstellen-

satz, to structured infeasibility certificates for polynomial equations and

inequalities. The developed techniques unify and generalize many well-

known existing methods.

In particular, we will discuss semialgebraic problems with at most two

quantifier alternations (i.e., classical polynomial optimization problems

as well as the related games and minimax problems). As an example, we

will solve in detail a class of zero-sum two-person games with an infinite

number of pure strategies, where the payoff function is a polynomial

expression of the actions of the players.

Although particular emphasis will be given to the hybrid systems

viewpoint, the basic ideas and algorithms, as well as these recent ex-

tensions, will be illustrated with examples drawn from a broad range

of related domains, including dynamical systems and geometric theorem

proving.

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, p. 54, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Discrete Time Behavior of Lazy Linear
Hybrid Automata

Manindra Agrawal and P.S. Thiagarajan

School of Computing,

National University of Singapore

{agarwal, thiagu}@comp.nus.edu.sg

Abstract. We study the class of lazy linear hybrid automata with finite
precision. The key features of this class are:

– The observation of the continuous state and the rate changes asso-

ciated with mode switchings take place with bounded delays.

– The values of the continuous variables can be observed with only

finite precision.

– The guards controlling the transitions of the automaton are finite

conjunctions of arbitrary linear constraints.

We show that the discrete time dynamics of this class of automata

can be effectively analyzed without requiring resetting of the continu-

ous variables during mode changes. In fact, our result holds for guard

languages that go well beyond linear constraints.

1 Introduction

We present a class of linear hybrid automata and show that their discrete time
behavior can be effectively computed and represented as finite state automata.
A hybrid automaton of the kind we study is meant to be a model of a closed
loop system consisting of a digital controller interacting with a plant whose state
variables evolve in a continuous manner. The controller will sample the state of
the plant at periodic discrete time instances. Typically, these time instances will
be determined by the system clock of the processor implementing the controller.
This state information will consist of the current values of the relevant plant
variables as observed by the sensors. These values will be digitized with finite
precision and reported to the controller. Using this information, the controller
may decide to switch the mode of the plant by generating suitable output signals
that will be transmitted to the actuators, which in turn will effect the desired
mode change.

An important feature in this setting -and this will be reflected in our automata-
is that the sensors will report the current values of the variables and the actuators
will effect changes in the rates of evolution of the variables with bounded delays.
More specifically, the state observed at the instant Tk is a state that held at some
time in a bounded interval contained in (Tk−1, Tk). Further, if an instantaneous
mode change has taken place at Tk from the standpoint of the digital controller,

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 55–69, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

56 M. Agrawal and P.S. Thiagarajan

then any necessary change in the rate of a variable will not kick in immediately.
Rather, it will do so at some time in a bounded interval contained in (Tk, Tk+1).

A restriction we impose is that each variable’s allowed range of values is
bounded. In addition, we focus, for simplicity, on the case where there is a
single rate vector associated with each mode instead of a bounded (rectangular)
region of flows as is often done [1]. Our automata are a variant of linear hybrid
automata [2] in that the guards controlling the mode switches are assumed to
be conjunctions of linear inequalities.

Our main result is that the discrete time behavior of such an automaton is
regular and moreover, this behavior can be effectively computed and represented
as a finite state automaton. Indeed, any reasonable language of constraints can
be used to form the guards (for instance, conjunctions of polynomial inequalities)
and the main result will continue to hold.

As is well known, hybrid automata have a great deal of expressive power. In
a variety of settings, the control state reachability problem is undecidable, as
reported for instance in [3, 4]. A number of undecidability results in a discrete
time setting have also been reported in the literature but these results are mainly
for piecewise-affine (and not, as considered here, piecewise constant) systems
with infinite precision; see for instance [5, 6]. A sharp delineation of the boundary
between decidable and undecidable features of hybrid automata is drawn in [7]
as well as [1].

These results, as also the positive results reported for example in [8, 9, 10, 11]
suggest that except under very restrictive settings, one can not expect to get
decidability if the continuous variables don’t get reset during mode changes (in
case their rates change as a result of the mode change). Viewed as a model of
digital controllers that interact with plants through sensors and actuators, the
resetting requirement severely restricts the modelling power of the automaton.
Our results show that by focusing on the discrete time behavior and requiring
finite precision, we can allow the continuous variables to retain their values
during mode changes. Furthermore, we can allow a rich class of guards and cope
with lazy sensors and actuators that have bounded delays associated with them.

Our work here is in a sense a generalization and in another sense specialization
of the work reported in [12]. Finite precision was not demanded in [12] but the
guards were required to be rectangular. In contrast we permit here the guards
to be far more general. We do not know at present whether the finite precision
assumption can be dropped for our linear hybrid automata though it is a natural
one in the setting that we are considering. A closely related earlier work is [13]
where the discrete time behavior of rectangular hybrid automata is studied but
with the requirement that all instantaneous transitions should take place only at
integer-valued instances of time. In our terms, [13] assumes that the sensors and
actuators function with zero delays which considerably simplifies the analysis.
On the other hand, [13] does not assume finite precision and yet establishes
a decidability result for automata with triangular guards (i.e. conjunctions of
constraints of the form x − y ∼ c where ∼ ∈ {<,≤, >,≥}) and rectangular
initial regions. It turns out that, as we observe in a later section, without finite

The Discrete Time Behavior of Lazy Linear Hybrid Automata 57

precision but with zero delays sensors and actuators and linear constraints we can
show a corresponding decidability result. As its title suggests, [13] is concerned
with controller synthesis problems too. By viewing our automata as suitable
open systems, we can also tackle controller synthesis problems using standard
techniques.

Though not directly related to our work here, there have been a number
of previous attempts to reduce the expressive power of timed and rectangular
automata by taking away their ability to define trajectories with infinite precision
[14, 15, 16]. Typically one demands, the set of admitted trajectories to be “fuzzy”;
if a trajectory is admitted by the automaton then it should also admit trajectories
that are sufficiently close to the trajectory where “closeness” is captured using a
natural topology over the trajectories. This does not lead to more tractability as
shown in [15] and [16]. The key difference between our work and these previous
works is that in our automata, the fuzziness lies in the gap between the observed
continuous state based on which a mode change takes place and the actual
continuous state that holds at that instant. Further, the actual rate at which a
variable may be evolving at an instant may be different from the rate demanded
by the current mode of the automaton.

In the next section, we formulate the model of lazy linear hybrid automata
with finite precision. In section 3 we prove our main result, namely, the language
of state sequences and action sequences generated by our automaton are regular
and that finite state automata representing these languages can be effectively
computed. In section 4 we discuss the restrictions placed on our automata and
point out that many of them can be easily relaxed. We also point how our main
result can be easily extended to a much richer class of guards. In the concluding
section we discuss the prospects for extending the results reported here.

2 Lazy Linear Hybrid Automata

Fix a positive integer n and one function symbol xi for each i in {1, 2, . . . , n}.
We view each xi as a function xi : IR≥0 �→ IR with IR being the set of reals and
IR≥0, the set of non-negative reals. We let Q denote the set of rationals.

A linear constraint is an inequality of the form a1 ·x1+a2 ·x2+. . .+an ·xn ∼ c
where a1, a2, . . . an as well as c are rational numbers and ∼ ∈ {<,≤, >,≥}. A
guard is a finite conjunction of linear constraints. We let Grd denote the set of
guards.

A valuation is just a member of IRn. The valuation V will be viewed as
prescribing the value V (i) to each variable xi. The notion of a valuation satisfying
a guard is defined in the obvious way.

A lazy linear hybrid automaton is a structure
A = (Q,Act, qin, Vin, D, ε, {ρq}q∈Q,B,−→) where:

– Q is a finite set of control states.
– Act is a finite set of actions.
– qin ∈ Q is the initial control state.

58 M. Agrawal and P.S. Thiagarajan

– Vin ∈ Qn is the initial valuation.
– D = {g, δg, h, δh} ⊆ Q is the set of delay parameters such that

0 < g < g + δg < h < h+ δh < 1.
– ε is the precision of measurement, ε ∈ Q.
– ρq ∈ Qn is a rate vector which specifies the rate ρq(i) at which each xi

evolves when the system is in the control state q.
– B = {v | Bmin ≤ v ≤ Bmax, Bmin, Bmax ∈ Q} is the allowed range.
– −→⊆ Q× Act×Grd×Q is a transition relation such that q �= q′ for every

(q, a, ϕ, q′) in −→.

We shall study the discrete time behavior of our automata. At each time instant
Tk, the automaton receives a measurement regarding the current values of the
xi’s. However, the value of xi that is observed at Tk is the value that held at some
t ∈ [Tk−1 +h, Tk−1 +h+ δh]. Further, the value is observed with a precision of ε.
More precisely, any value of xi in the half-open interval [(l− 1/2)ε, (l+ 1/2)ε) is
reported as lε where l is an integer. For any real number v, we will denote this
rounded-off value relative to ε as 〈v〉.

If at Tk, the automaton is in control state q and the observed n-tuple of values
(〈v1〉 , 〈v2〉 , . . . , 〈vn〉) satisfies the guard ϕ with (q, a, ϕ, q′) being a transition,
then the automaton may perform this transition instantaneously by executing
the action a and move to the control state q′. As a result, as usual, the xi’s
will cease to evolve at the rates ρq and instead start evolving at the rates ρq′ .
However, this change in the rate of evolution will not kick in at Tk but at some
time t ∈ [Tk + g, Tk + g+ δg]. In this sense, both the sensing of the values of the
xi’s and the rate changes associated with mode switching take place in a lazy
fashion but with bounded delays. We expect g to be close to 0, h to be close to
1 and both δg and δh to be small compared to 1.

Thus in the idealized setting, which we shall consider briefly later, the change
in rates due mode switching would kick in immediately (g = 0 = δg) and the
value observed at Tk is the value that holds at exactly Tk (h = 1 and δh = 0).
In addition, assuming perfect precision would boil down to setting 〈v〉 = v for
every real number v.

B specifies the range of values within which the automaton’s dynamics are
valid. The automaton gets stuck if any of the xi’s ever assume a value outside the
allowed range [Bmin, Bmax]. A number of the restrictions that we have imposed
are mainly for ease of presentation. Later, we will discuss how these restrictions
can be relaxed.

Our main result is that the control state and action sequence languages gen-
erated by a lazy linear hybrid automaton are both regular. Furthermore, these
languages can be computed effectively.

2.1 The Transition System Semantics

Through the rest of this section we fix a lazy linear hybrid automaton A as
defined above and assume its associated notations and terminology. We shall
often say “automaton” to mean “lazy linear hybrid automaton”. The behavior
of A will be defined in terms of an associated transition system.

The Discrete Time Behavior of Lazy Linear Hybrid Automata 59

A configuration is a triple (q, V, q′) where q, q′ are control states and V is a
valuation. q is the control state holding at the current time instant and q′ is the
control state that held at the previous time instant. V captures the actual values
of the variables at the current instance. The configuration (q, V, q′) is feasible iff
V (i) ∈ [Bmin, Bmax] for every i. The initial configuration is, by convention,
the triple (qin, Vin, qin). We assume without loss of generality that the initial
configuration is feasible. We let CA denote the set of configurations. Since A
will be clear from the context, we will often write C instead of CA.

As in the case of timed automata [17], a convenient way to understand the
dynamics is to break up each move of the automaton into a time-passage move
followed by an instantaneous transition. At T0, the automaton will be in its
initial configuration.

We assume that the unit of time has been fixed at some suitable level of
granularity and that the rate vectors {ρq} have been scaled accordingly. Sup-
pose the automaton is in the configuration (qk, Vk, q

′
k) at Tk. Then one unit of

time will pass and at time instant Tk+1, the automaton will make an instan-
taneous move by performing an action a or the silent action τ and move to a
configuration (qk+1, Vk+1, q

′
k+1). The silent action will be used to record that

no mode change has taken place during this move. Again, as often done in the
case of timed automata, we will collapse these two sub-steps of a move (unit-
time-passage followed by an instantaneous transition) into one “time-abstract”
transition labelled by a member of Act or by τ .

With this scheme in mind, we now define the transition relation
=⇒⊆ C × (Act ∪ {τ}) × C as follows.

– Let (q, V, q′) and (q1, V 1, q1′) be configurations and a ∈ Act. Then
(q, V, q′) a=⇒ (q1, V 1, q1′) iff q1′ = q and there exists in A a transition
of the form q

a,ϕ−→ q1 and there exist t̂1 ∈ [g, g + δg]n and t̂2 ∈ [h, h + δh]n

such that the following conditions are satisfied.
(1) Let vi = V (i) + ρq′(i) · t̂1(i) + ρq(i) · (t̂2(i) − t̂1(i)) for each i. Then

(〈v1〉 , 〈v2〉 , . . . , 〈vn〉) satisfies ϕ.
(2) V 1(i) = V (i) + ρq′(i) · t̂1(i) + ρq(i) · (1 − t̂1(i)) for each i.

– Let (q, V, q′) and (q1, V 1, q1′) be configurations. Then

(q, V, q′) τ=⇒ (q1, V 1, q1′) iff q1 = q1′ = q

and there exists t̂1 ∈ [g, g + δg]n such that

V 1(i) = V (i) + ρq′(i) · t̂1(i) + ρq(i) · (1 − t̂1(i)) for each i.

Basically there are four possible transition types depending on whether q = q′

and α ∈ Act. Suppose (q, V, q′) a=⇒ (q1, V 1, q1′) with a ∈ Act. Assume that
q

a,ϕ−→ q1 in A and t̂1 ∈ [g, g + δg]n and t̂2 ∈ [h, h+ δh]n are as specified above.
We first note that q1 �= q by the definition of the transition relation of A. The
requirement q1′ = q follows from our convention that q1′ is the control state
that held in the previous instant and we know this was q.

60 M. Agrawal and P.S. Thiagarajan

First consider the case q �= q′ and let us suppose that the configuration
(q, V, q′) holds at Tk. We take q �= q′ to mean that a change of mode from
q′ to q has just taken place (instantaneously) at Tk based on the observations
that were made available at Tk. However, at Tk, the automaton will continue
to evolve at the rate dictated by ρq′ . Indeed, each xi will, starting from Tk,
evolve at rate ρq′(i) until some Tk + t1 with t1 ∈ [g, g + δg]. It will then start
to evolve at rate ρq(i) until Tk+1. Consequently, at Tk+1, the value of xi will
be V 1(i) = V (i) + ρq′(i) · t1 + ρq(i) · (1 − t1). On the other hand, q1 �= q
implies that another instantaneous mode change has taken place at Tk+1 based
on the measurements made in the interval [Tk + h, Tk + h+ δh]. Suppose xi was
measured at Tk+t2 with t2 ∈ [Tk+h, Tk+h+δh]. Then in order for the transition
q

a,ϕ−→ q1 of A to be enabled at Tk+1, it must be the case that the observed values
of xi’s at Tk + t2 satisfy the guard ϕ. But then these values are 〈vi〉 with vi =
V (i)+ρq′(i)·t1+ρq(i)·(t2−t1). This explains the demands placed on the transition
(q, V, q′) a=⇒ (q1, V 1, q1′). It is worth noting that if q = q′ (i.e. no mode change
has taken place at Tk) then V 1(i) = V (i)+ρq(i) ·t1+ρq(i) ·(1−t1) = V (i)+ρq(i)
as it should be. Furthermore, V (i)+ρq(i) · t1 +ρq(i) · (t2 − t1) = V (i)+ρq(i) · t2.

Similar (and simpler) considerations motivate the demands placed on transi-
tions of the form (q, V, q′) τ=⇒ (q1, V 1, q1′). Here again, it is worth noting that,
in case q = q′, V 1(i) is determined uniquely, namely, V 1(i) = V (i) + ρq(i).

We now define the transition system
TSA = (RCA, (qin, Vin, qin), Act ∪ {τ},=⇒A) via:

– RCA, the set of reachable configurations of A is the least subset of C that
contains the initial configuration (qin, Vin, qin) and satisfies:
Suppose (q, V, q′) is in RCA and is a feasible configuration. Suppose further,
(q, V, q′) α=⇒ (q1, V 1, q) for some α ∈ Act ∪ {τ}. Then (q1, V 1, q) ∈ RCA.

– =⇒A is =⇒ restricted to RCA × (Act ∪ {τ}) ×RCA.

We will often write RC instead of RCA and write =⇒ instead of =⇒A. We
note that a reachable configuration can be the source of a transition in TSA
only if it is feasible. Thus infeasible reachable configurations will be deadlocked
in TSA.

A run of TSA is a finite sequence of the form
σ = (q0, V0, q

′
0)α0 (q1, V1, q

′
1)α1 (q2, V2, q

′
2) . . . (qk, Vk, q

′
k) where (q0, V0, q

′
0) is the

initial configuration and (qm, Vm, q
′
m) αm=⇒ (qm+1, Vm+1, q

′
m+1) for 0 ≤ m < k.

The st-sequence (state sequence) induced by the run σ above is denoted as st(σ)
and it is the sequence q0q1 . . . qk. On the other hand, the act-sequence induced
by σ is denoted as act(σ) and it is the sequence α0α1 . . . αk. We now define the
languages Lst(A) and Lact(A) as :

– Lst(A) = {st(σ) | σ is a run of A}.
– Lact(A) = {act(σ) | σ is a run of A}.

Our main result is that Lst(A) is a regular subset of Q� while Lact(A) is
a regular subset of (Act ∪ {τ})�. Moreover, we can effectively construct finite
state automata representing these languages. As a consequence, a variety of

The Discrete Time Behavior of Lazy Linear Hybrid Automata 61

verification problems and controller synthesis problems for our automata can be
effectively solved.

3 Proof of the Main Result

The transition guards in [12] were of the form xi = c for some constant c. This
fact was critical for the finite division of Bn resulting in a finite automata. If the
guards are more general then quantization of the continuous state space as done
in [12] is not possible. We shall address this point again in the next section.

However the extra structure provided by the finite precision of observations
comes to the rescue. As we show below, it enables us to generalize the proof idea
of [12].

Let A = (Q,Act, qin, Vin, D, ε, {ρq}q∈Q,B, F,−→) be a lazy automaton. We
assume for A, the terminology and notations defined in the previous section.

We shall generalize the proof strategy of [12]. Define Δ to be the largest
positive rational number that integrally divides every number in the finite set
of rational numbers {g, δg, h, δh, 1}. We next define Γ to be the largest positive
rational number that integrally divides each number in the finite set of rational
numbers {ρq(i)·Δ | q ∈ Q, 1 ≤ i ≤ n}∪{Bmin, Bmax}∪{Vin(i) | 1 ≤ i ≤ n}∪{ ε

2}.
Let ZZ denote the set of integers. We now define the map

‖·‖ : IR → ZZ × {I, S,⊥} as follows.

– If v ∈ (−∞, Bmin), then ‖v‖ = (kmin − 1,⊥) where kmin · Γ = Bmin.
– If v ∈ (Bmax,∞), then ‖v‖ = (kmax,⊥) where kmax · Γ = Bmax.
– Suppose v ∈ [Bmin, Bmax] and v = kΓ + v̂ with k ∈ ZZ and v̂ ∈ [0, Γ). Then

‖v‖ = (k, S) if v̂ = 0, and ‖v‖ = (k, I) if v̂ �= 0.

This map is extended in the obvious way to points in IRn: ‖(v1, v2, . . . , vn)‖ =
(‖v1‖ , ‖v2‖ , . . . , ‖vn‖).

The map ‖·‖ can also be extended in a natural way to configurations. De-
noting this extension also as ‖·‖, we define ‖(q, v, q′)‖ to be (q, ‖v‖ , q′). Let
DA = {‖c‖ | c ∈ CA}. Clearly DA is a finite set and we will often write D
instead of DA. Our goal is to show that the equivalence relation over the reach-
able configurations RC of A induced by the map ‖·‖ in turn induces a right
congruence of finite index over Q�.

We are now ready to tackle the main part of the proof.

Theorem 1. Let c1 and c2 be two reachable configurations such that ‖c1‖ =
‖c2‖. Suppose α ∈ Act ∪ {τ} and c1′ is a reachable configuration such that
c1 α=⇒A c1′. Then there exists a reachable configuration c2′ such that c2 α=⇒A c2′

and ‖c1′‖ = ‖c2′‖.

Proof. Clearly c1 is feasible and since ‖c1‖ = ‖c2‖, it follows that c2 is also
feasible.

Let c1 and c2 be configurations at time instant t. Let us split the unit time
interval in which c1 moves to c1′ into intervals of size Δ. We refer to these
smaller intervals as basic intervals. By the choice of Δ, there will be an integral

62 M. Agrawal and P.S. Thiagarajan

number, say m, of basic intervals in the unit time interval. Let c10 = c1, c11, . . .,
c1m be the configurations that hold at the end of each of these basic intervals
when the starting configuration is c1. Configuration c1′ is obtained by making
an instantaneous state transition from c1m. Let [t+uΔ, t+(u+1)Δ] be one such
basic interval. In this interval, assuming that [uΔ, (u+ 1)Δ] lies in the range of
[g, g + δg] or [h, h+ δh], one of the two types of events may occur:

Rate Change: For some J ⊆ {1, 2, . . . , n} and {tj}j∈J with tj ∈ [0, Δ], the
rate of variable xj changes at t+ uΔ+ tj for each j ∈ J .

Valuation: For some J ⊆ {1, 2, . . . , n} and {tj}j∈J with tj ∈ [0, Δ], the value
of the variable xj is recorded at time t+ uΔ+ tj for each j ∈ J .

While the first event affects the current configuration immediately (by making
the variables change at different rates), the affect of the second event is at the
end of unit interval when an instantaneous state transition is made based on the
values recorded by the event. We now prove a lemma about the behavior across
basic intervals that will be crucial in proof of the theorem.

Lemma 1. Let c1u and c2u be two configurations with ‖c1u‖ = ‖c2u‖ at the
beginning of basic interval [t+ uΔ, t+ (u+ 1)Δ]. For every i ∈ {1, 2, . . . , n} and
for every time instant t1i ∈ [0, Δ], there exists another time instant t2i ∈ [0, Δ]
such that the following holds:

– Suppose, starting from c1u, a rate change is affected for xi at time t+uΔ+t1i

and the valuation of xi at the end of interval is V 1u+1(i). Suppose, starting
from c2u, a rate change is affected for xi at time t+uΔ+t2i and the valuation
of xi at the end of the interval is V 2u+1(i). Then ‖V 1u+1(i)‖ = ‖V 2u+1(i)‖.

– Suppose, starting from c1u, valuation V 1(i) is made for variable xi at time
t+uΔ+t1i and its valuation at the end of the interval is V 1u+1(i). Suppose,
starting from c2u, valuation V 2(i) is made for variable xi at time t+uΔ+t2i,
and its valuation at the end of the interval is V 2u+1(i). Then, ‖V 1u+1(i)‖ =
‖V 2u+1(i)‖ and ‖V 1(i)‖ = ‖V 2(i)‖.

Proof. Let c1u = (qt, V 1u, q
′
t) and c2u = (qt, V 2u, q

′
t) with ‖V 1u‖ = ‖V 2u‖. Let

V 1u(i) = kΓ + α1 with k ∈ ZZ and 0 ≤ α1 < Γ .
We first handle a simple case: If ‖V 1u(i)‖ = (k, S) then V 1u(i) = V 2u(i) =

kΓ . So setting t2i = t1i will do the trick.
Suppose that ‖V 1u(i)‖ = ‖V 2u(i)‖ = (k, I). We first handle the case when

rate changes. Let (the initial rate of xi) ρqt(i) = �
ΔΓ with � ∈ ZZ and the changed

rate be �′
ΔΓ with �′ ∈ ZZ. We get the following value of xi at the end of basic

interval when starting from configuration c1u:

V 1u+1(i) = V 1u(i) +
�

Δ
Γ · t1i +

�′

Δ
Γ · (Δ− t1i)

= kΓ + α1 + �′Γ +
(�− �′)
Δ

Γ · t1i.

The Discrete Time Behavior of Lazy Linear Hybrid Automata 63

Thus, ‖V 1u+1(i)‖ lies in the range [k+ �, k+ �′]. Suppose we change the rate of
xi, when starting from configuration c2u after time ti. Then,

V 2u+1(i) = kΓ + α2 + �′Γ +
(�− �′)
Δ

Γ · ti

where α2 ∈ [0, Γ) since ‖V 1u(i)‖ = ‖V 2u(i)‖. Therefore, ‖V 2u+1(i)‖ also lies
in the range [k + �, k + �′]. Also, by appropriately choosing the value of ti, we
can make ‖V 2u+1(i)‖ take any value in its range. It therefore follows that there
always exists a ti such that ‖V 2u+1(i)‖ = ‖V 1u+1(i)‖.

Now suppose that a valuation is made instead of rate change. It is clear that
‖V 2u+1(i)‖ = ‖V 1u+1(i)‖ as this situation is same as rate changing to itself
above. Moreover, as configuration c1u moves to c1u+1, the norm of the value of
xi varies smoothly between ‖V 1u(i)‖ and ‖V 1u+1(i)‖. The same holds as c2u

moves to c2u+1. Since ‖V 1u(i)‖ = ‖V 2u(i)‖ and ‖V 1u+1(i)‖ = ‖V 2u+1(i)‖, it
follows that there will always be a time period in the basic interval during which
the norm of the value of xi, when started on configuration c2u will be equal to
‖V 1(i)‖. Fix any such time for valuation V 2(i) and we get ‖V 2(i)‖ = ‖V 1(i)‖.

��

The proof of the theorem now proceeds as follows: We have that starting from
c10 = c1, the configuration sequence at the end of basic intervals is c11, c12, . . .,
c1m and there is an instantaneous transition from c1m to c1′. The above lemma
shows that, starting from c20 = c2 with ‖c2‖ = ‖c1‖, there exist configurations
c11, c22, . . ., c2m at the end of basic intervals such that ‖c1j‖ = ‖c2j‖ for each j.
Further, if a rate change is made during the transition from c1 to c1′, the same
change is also made during the transition from c2 to c2′ (for different variables
the rate may change in different basic intervals). Also, if a valuation V 1 is made
during transition from c1 to c1′ then a valuation V 2 is made during transition
from c2 to c2′ such that ‖V 1‖ = ‖V 2‖. Finally, note that there is complete
freedom to choose a time instant to make a rate change or valuation for each
variable within the specified range and that time instants of different variables
can be chosen independently. Hence it is acceptable that for different variables
the rate change or valuation may occur in different basic intervals.

Now consider the instantaneous transition from c1m to c1′. This transition
depends on the current state qt, the valuation V 1 and some constraint ϕ. By
our assumption about finite precision of the observations, the observed values of
variable xi from the valuations V 1 and V 2 are 〈V 1(i)〉 and 〈V 2(i)〉 respectively.
We now note:

Lemma 2. For any v, v′ ∈ IR, If ‖v‖ = ‖v′‖ then 〈v〉 = 〈v′〉.

Proof. Let v = kΓ + v0 and v′ = k′Γ + v′
0 for v0, v′

0 ∈ [0, Γ). Since ‖v‖ = ‖v′‖,
k′ = k. Since Γ divides ε

2 , let ε = 2�Γ and k = k1 ·2�+k0 with k0 ∈ {0, 1, . . . , 2�−
1}. So, v = k1ε+k0Γ +v0 and v′ = k1ε+k0Γ +v′

0. We have: k0Γ +v0 <
ε
2 = �Γ

iff k0Γ < �Γ (since v0 ∈ [0, Γ)) iff k0Γ + v′
0 < �Γ (since v′

0 ∈ [0, Γ)). Therefore,
〈v〉 = 〈v′〉. ��

64 M. Agrawal and P.S. Thiagarajan

Since we know that ‖V 1(i)‖ = ‖V 2(i)‖, the above lemma gives that 〈V 1(i)〉 =
〈V 2(i)〉. Therefore, (〈V 1(1)〉 , . . . , 〈V 1(n)〉) satisfies ϕ iff (〈V 2(1)〉 , . . . , 〈V 2(n)〉)
does. This implies that if c2′ is the resulting configuration after making an in-
stantaneous transition from c2m, then ‖c2′‖ = ‖c1′‖. ��

We now define the finite state automaton
ZA = (D, (qin, ‖Vin‖ , qin), Act ∪ {τ},�) where:

– D ⊆ Q× (ZZ × {⊥, S, I})n ×Q, and
– the transition relation �⊆ D × (Act ∪ {τ}) × D is given by: (q, v̂, q1) α�

(q′, v̂′, q1′) iff there exist configurations (q, V, q1) and (q′, V ′, q1′) such that
(q, V, q1) α=⇒ (q′, V ′, q1′) and ‖V ‖ = v̂ and ‖V ′‖ = v̂′.

In what follows, we will often write ZA as just Z. Note that,we are setting all
the states of Z to be its final states.

We define Lst(Z) to be the subset of Q� as follows. A run of Z
is a sequence of the form (q0, v̂0, q′

0) α0 (q1, v̂1, q′
1) α1 . . . (qm, v̂m, q

′
m) where

(q0, v̂0, q′
0) = (qin, ‖Vin‖ , qin) and (qj , v̂j , q

′
j)

αj� (qj+1, v̂j+1, q
′
j+1) for 0 ≤ j < m.

Next we define q0q1 . . . qm ∈ Lst(Z) iff there exists a run of Z of the form
(q0, v̂0, q′

0) α0 (q1, v̂1, q′
1) α1 . . . (qm, v̂m, q

′
m). Clearly Lst(Z) is a regular subset

of Q� and it does not involve any loss of generality to view ZA itself as a repre-
sentation of this regular language.

Theorem 2. Lst(A) = Lst(ZA) and Lact(A) = L(ZA) where L(ZA) is the
regular subset of (Act ∪ {τ})� accepted by ZA in the usual sense. (Note that all
the states of ZA are final states.) Further, the automaton ZA can be computed
in time O(|Q|4 · 22n ·K3n · |Act|) where K = (Bmax−Bmin)

Γ .

Proof. To see that Lst(A) = Lst(Z) we first note that Lst(A) ⊆ Lst(Z) follows
from the definition of ZA. To conclude inclusion in the other direction, we will
argue that for each run (q0, v̂0 = ‖Vin‖ , q′

0)α0 (q1, v̂1, q′
1)α1 . . . (qm, v̂m, q

′
m) of Z

there exist V0, V1 . . . Vm ∈ IRn such that
(q0, V0, q

′
0) α0 (q1, V1, q

′
1) α1 . . . (qm, Vm, q

′
m) is a run of TSA. And

furthermore, ‖Vj‖ = v̂j for 0 ≤ j ≤ m. The required inclusion will then
follow at once. For m = 1, it is clear from the definitions and so suppose that
(q0, v̂0, q′

0) α0 (q1, v̂1, q′
1) α1 . . . (qm, v̂m, q

′
m) αm (qm+1, v̂m+1, q

′
m+1) is a run of Z.

By the induction hypothesis, there exists a run
(q0, V0, q

′
0)α0 (q1, V1, q

′
1)α1 . . . (qm, Vm, q

′
m) of TSA with the property, ‖Vj‖ = v̂j

for 0 ≤ j ≤ m.
Now (qm, v̂m, q

′
m) αm� (qm+1, v̂m+1, q

′
m+1) implies that there exist V ′

m

and V ′
m+1 such that (qm, V

′
m, q

′
m) αm� (qm+1, V

′
m+1, q

′
m+1) and ‖V ′

m‖ = v̂m and∥∥V ′
m+1

∥∥ = v̂m+1. But this implies that ‖V ′
m‖ = ‖Vm‖. Hence by Theorem 1,

there exists Vm+1 such that (qm, Vm, q
′
m) αm� (qm+1, Vm+1, q

′
m+1) and moreover∥∥V ′

m+1

∥∥ = ‖Vm+1‖. Thus Lst(A) = Lst(ZA). It now also follows easily that
Lact(A) = L(ZA).

Let us now analyze the complexity of constructing the automata ZA. We first
estimate the size of the automaton. Each state of the automata is of the form

The Discrete Time Behavior of Lazy Linear Hybrid Automata 65

(q, v̂, q′) with q, q′ ∈ Q and v̂ ∈ ({kmin, . . . , kmax} × {I, S} ∪ {kmin − 1, kmax} ×
{⊥})n. Therefore, The number of states is O(m2 · 2n ·Kn) where m = |Q| and
K = kmax − kmin. For constructing the transitions, we need to check if there is
a transition from (q, v̂, q′) to (q1, v̂1, q) labeled with the action α. It is clear that
the most complex case is when α ∈ Act and q �= q′ and we need to check for the
existence of at most O(m4 · 22n ·K2n · |Act|) such possible transitions.

To decide if such a transition exists from (q, v̂, q′) to (q1, v̂1, q) with v̂ =
((k1, d1), (k2, d2), . . . , (kn, dn)), v̂1 = ((k11, d11), (k12, d12), . . . , (k1n, d1n)), and
a given symbolic transition in the lazy automaton of the form (q, a, ϕ, q1) we
need to check if there exists V̂ and t̂1 and t̂2 such that:

– For each i, 1 ≤ i ≤ n:

ki · Γ < V (i) < (ki + 1) · Γ,

– For each i, 1 ≤ i ≤ n:
g ≤ t̂1(i) ≤ g + δg,

– For each i, 1 ≤ i ≤ n:

k1i · Γ < V (i) + ρq′(i) · t̂1(i) + ρq(i) · (1 − t̂1(i)) < (k1i + 1) · Γ,

– For each i, 1 ≤ i ≤ n:
h ≤ t̂2(i) ≤ h+ δh,

– For each i, 1 ≤ i ≤ n, letting:

ui = V (i) + ρq′(i) · t̂1(i) + ρq(i) · (t̂2(i) − t̂1(i)),

(〈u1〉 , 〈u2〉 , . . . , 〈un〉) satisfies ϕ.

The above are 10n linear inequalities in 4n variables along with one constraint
satisfaction check. The constraints themselves are linear inequalities and so one
can use linear programming to check if there exists a feasible solution. However,
the constraints require a “grid point” as a solution and to check if a grid point
lies inside a convex region is NP-hard. So we need to spend exponential time
(= O(Kn)) in checking if a grid point satisfies all the inequalities.

Therefore, the time complexity of the algorithm to construct the automata
is O(m4 · 22n ·K3n · |Act|). ��

4 Limitations and Generalizations

Our construction also works for several generalizations of the problem. On the
other hand, finite precision is really required in a number of settings.

66 M. Agrawal and P.S. Thiagarajan

4.1 The Need for Finite Precision

The finite division of Bn in the presence of guards defined by general hyperplanes
critically depends on the finite precision of the observation. For infinite precision,
such a division is not possible. We defer the proof to the full version of the paper.
We wish to emphasize that we do not claim that there is no finite state automaton
recognizing the set of state-sequences in the presence of infinite precision. The
only claim we make is that our way of constructing such an automaton will fail.

4.2 Infinite Precision When δg = δh = 0

There is one important case when infinite precision can be allowed: when we do
not allow any uncertainty in the time at which rate change and valuation are
made. In other words, when δg = δh = 0. (Note that g and h may be non-zero
and so these events may still occur with non-zero delays). We sketch an argument
to prove this below.

Compute Δ and Γ as before and split the space Bn into n-cubes of side
length Γ . Call the vertices of these cubes grid points. It is now easy to see that
the starting valuation of the system is at a grid point as well as valuation after
each basic interval (of length Δ) remains at a grid point irrespective of the
transitions that may occur. Therefore, there are only finitely many valuations
possible and this immediately leads to a finite automaton. Notice that guards
can be very general here, e.g., arbitrary polynomial surfaces.

In fact, even if the initial valuation is a rectangular region instead of a point
in IRn, the construction goes through after a slight modification. Now, instead of
only grid points, we get a region around each grip point that may be a possible
valuation. All these regions are identical to the initial region. However, we cannot
always put points in a region into one equivalence class since a guard surface
might intersect the region. We handle this in the following way.

Take a region around a grid point and suppose that the guards split it into
k k disjoint pieces. Mirror this split into the copy of the region around every
grid point. This increases the number of regions, however, note that now the
guards do not intersect any region around the chosen grid point. Repeating this
for all the grid points one-by-one splits the space into many more, but still finite,
number of regions such that no region is intersected by any guard. After each
basic interval, points in a single such region will evolve to points in another region
of identical shape. So we can collect points in each region in one equivalence class
and the automaton can be now be constructed as before. In fact, this argument
will go through even for more complex regions.

4.3 Initial Valuation Region

We have assumed that the initial valuation is a point in Qn. A more general
case is when initial valuation can be any point in an effectively presented (say,
as a conjunction of linear constraints) convex region of IRn. This is handled
easily. Calculate the Γ as before (ignoring Vin now as there is none). The n-
cubes of size length Γ will form an equivalence class as before. The initial region

The Discrete Time Behavior of Lazy Linear Hybrid Automata 67

intersects some of these cubes. Let these be ‖V1‖, ‖V2‖, . . ., ‖Vm‖. Introduce a
new initial state for ZA from which make a non-deterministic transition to each
of (qin, ‖Vi‖ , qin). The rest of the automata remains as before. Actually we can
permit the initial regions to be more complicated but what we have dealt with
should do for now.

4.4 Generalizing Guards

We have assumed the guards to consist of finite conjunctions of linear inequal-
ities. However, at no point in the proof we actually made use of this property
except when calculating the time taken to construct the automata ZA. In fact,
we can allow any reasonable computable function (polynomials for example) as
guards and the construction goes through without any changes. The only dif-
ference is that construction of the automata ZA may take more time since one
needs to check if a specific grid point satisfies a guard. Let T be the upper
bound on the time needed to evaluate any guard. Then the time complexity of
the construction will be O(|Q|4 · 22n ·K3n · |Act| · T).

4.5 Uncertainty in Rounding Off

We have assumed no uncertainty in rounding off valuations. In other words, we
assumed that every number in the interval [(k− 1

2)ε, (k+ 1
2)ε) is observed as kε.

A more realistic situation would be to assume some uncertainty even here. For
example, every number in ((k − 1

2)ε, (k + 1
2)ε) is observed as kε while (k + 1

2)ε
can be observed as either kε or (k + 1)ε.

This can be handled with no change in the construction. The crucial obser-
vation is that numbers of the form (k + 1

2)ε have norm (2k� + �, I) (assuming
ε = 2�Γ) since Γ integrally divides ε

2 . And as observed in the proof of Theo-
rem 1, if ‖V 1(i)‖ = (k′, I) = ‖V 2(i)‖ for any two valuations V 1 and V 2, then
V 1(i) = V 2(i). Therefore, if there is uncertainty in rounding off V 1(i), there will
be uncertainty in rounding off V 2(i) as well.

In fact, we can handle the more general case when there is a whole interval
of uncertainty. Specifically, let η with 0 < η ≤ 1

2 be such that any number in
((k− η)ε, (k+ η)ε) is observed as kε while any number in [(k+ η)ε, (k+ 1− η)ε]
can be observed to be either kε or (k + 1)ε. For this case, we choose Γ such
that it divides both ε and ηε. Now if ‖V 1(i)‖ = ‖V 2(i)‖ then either V 1(i) =
V 2(i) = (k±η)ε (both uncertain), or V 1(i), V 2(i) ∈ ((k+η)ε, (k+1−η)ε) (both
uncertain), or V 1(i), V 2(i) ∈ ((k − η)ε, (k + η)ε) (both certain). In each of the
cases, the required equivalence holds.

4.6 Additional Relaxations

We can also permit the rates of evolution at a control location to range over
a rectangular region instead of associating a single rate vector with each loca-
tion. The proof of the main result will go through with minor modifications.
We have not studied carefully the effect of more complex flow constraints while
being mindful of the undecidability result presented in [13] for triangular flow

68 M. Agrawal and P.S. Thiagarajan

constraints. We can easily handle state invariants formulated using linear con-
straints and the delay parameters can be permitted to spill across more than one
unit time interval. Finally, our construction will extend to a network of automata
that synchronize on common actions.

5 Conclusion

We have formulated here a class of lazy linear automata. These are basically
linear hybrid automata but where each automaton is accompanied by the delay
parameters {g, δg, h, δh} and a finite precision of measurement parameter ε. Our
main result is that the discrete time behavior of these automata can be effectively
computed if the allowed ranges of values for the variables are bounded.

We have not detailed the verification problems that can be settled effectively
for these automata. It is however clear that we can model-check the discrete time
behavior of our automata against a variety of linear time and branching time
temporal logic specifications. We can also view (a subset of) the transitions of
the automaton to be controllable and solve the problem of devising a switching
strategy that can win against a given specification; again, these specifications
can be a variety of linear time and branching time specifications.

We believe that associating non-zero bounded delays with the sensors and
actuators and demanding that the values of the plant variables be observed with
only finite precision are natural requirements. We also believe that it is useful
to focus on the discrete time behavior of hybrid automata. As our results show,
the pay-off is the ability to effectively solve a host of verification and controller
synthesis problems for a rich class of hybrid automata.

Finally, based on the results reported here, there is some hope that a even
larger class of lazy hybrid automata will turn out to be tractable in terms of
their discrete time behaviors. We have in mind automata in which the dynamics
of each mode is given by a simultaneous system of linear differential equations.

A related interesting problem which is open is to determine the border be-
tween the decidable and undecidable in the context of laziness, finite precision
and discrete time semantics. Here the undecidability results reported in [5, 6]
may provide the required technical tools.

References

1. Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid

systems. Proc. of the IEEE 88 (2000) 971–984
2. Henzinger, T.: The theory of hybrid automata. In: 11th LICS, IEEE Press (1996)

278–292
3. Asarin, E., Maler, O.: Achilles and the tortoise climbing up the arithmetical hier-

archy. J. of Comp. and Sys. Sci. 57 (1998) 389–398
4. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems

having piecewise-constant derivatives. Theoretical Comp. Sci. 138 (1995) 35–65
5. Blondel, V., Tsitsiklis, J.: Complexity of stability and controllability of elementary

hybrid systems. Automatica 35 (1999) 479–489

The Discrete Time Behavior of Lazy Linear Hybrid Automata 69

6. Blondel, V., Bournez, O., Koiran, P. Papdamitrou, C., Tsitsiklis, J.: Deciding

stability and mortality of piecewise affine dynamical systems. Theoretical Comp.

Sci. 255 (2001) 687–696

7. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid

automata? J. of Comp. and Sys. Sci. 57 (1998) 94–124

8. Henzinger, T.: Hybrid automata with finite bisimulations. In: 22nd ICALP, LNCS

944, Springer (1995) 324–335

9. Kesten, Y., Pnueli, A., Sifakis, J., Yovine, S.: Integration graphs: A class of decid-

able hybrid systems. In: Hybrid Systems, LNCS 736, Springer (1993) 179–208

10. McManis, J., Varaiya, P.: Suspension automata: A decidable class of hybrid au-

tomata. In: 6th CAV, LNCS 818, Springer (1994) 105–117

11. Puri, A., Varaiya, P.: Decidability of hybrid systems with rectangular differential

inclusions. In: 6th CAV, LNCS 818, Springer (1994) 95–104

12. Agrawal, M., Thiagarajan, P.: Lazy rectangular hybrid automat. In: 7th HSCC,

LNCS 2993, Springer (2003) 1–15

13. Henzinger, T., Kopke, P.: Discrete-time control for rectangular hybrid automata.

Theoretical Comp. Sci. 221 (1999) 369–392

14. Gupta, V., Henzinger, T., Jagadeesan, R.: Robust timed automata. In: HART ’97,

LNCS 1201, Springer (1997) 331–345

15. Henzinger, T., Raskin, J.F.: Robust undecidability of timed and hybrid systems.

In: HSCC ’00, LNCS 1790, Springer (2000) 145–159

16. Ouaknine, J., Worrell, J.: Revisiting digitization, robustness and decidability for

timed automata. In: 25th LICS, IEEE Press (2003) 198–207

17. Alur, R., Dill, D.: A theory of timed automata. Theoretical Comp. Sci. 126 (1994)

183–235

Perturbed Timed Automata�

Rajeev Alur1, Salvatore La Torre2, and P. Madhusudan3

1 University of Pennsylvania
2 Università degli Studi di Salerno

3 University of Illinois at Urbana-Champaign

Abstract. We consider timed automata whose clocks are imperfect. For

a given perturbation error 0 < ε < 1, the perturbed language of a timed

automaton is obtained by letting its clocks change at a rate within the

interval [1 − ε, 1 + ε]. We show that the perturbed language of a timed

automaton with a single clock can be captured by a deterministic timed

automaton. This leads to a decision procedure for the language inclu-

sion problem for systems modeled as products of 1-clock automata with

imperfect clocks. We also prove that determinization and decidability of

language inclusion are not possible for multi-clock automata, even with

perturbation.

1 Introduction

Traditional automata do not admit an explicit modeling of time and consequently
timed automata [1] were introduced as a formal notation to model the behavior
of real-time systems. Timed automata are finite automata extended with real-
valued variables called clocks, whose vertices and edges are annotated with clock
constraints that allow specification of constant bounds on delays among events.
Timed automata accept timed languages consisting of sequences of events tagged
with their occurrence times. Over the years, the formalism has been extensively
studied leading to many results establishing connections to circuits and logic, and
much progress has been made in developing verification algorithms, heuristics,
and tools (see [2] for a recent survey and [3, 4, 5] for sample tools). The class of
timed regular languages —languages definable by timed automata— is closed
under union, intersection and projection, but not under complementation, and
while language emptiness can be decided by symbolic algorithms manipulating
clock constraints, decision problems such as universality and language inclusion
are undecidable for timed automata [1].

The undecidability of language inclusion and nonclosure under complemen-
tation has motivated many researchers to search for ways to limit the expres-
siveness of timed automata (see for example [1, 6, 7, 8, 9, 10, 11, 12]). A canonical

� This research was partially supported by the US National Science Foundation under

grants ITR/SY0121431 and CCR0410662. The second author was also supported by

the MIUR grant ex-60% 2003 Università degli Studi di Salerno.

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 70–85, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Perturbed Timed Automata 71

example of a timed regular language whose complement is not timed regular, is
the language L1 of timed words containing some two symbols separated exactly
by 1 time unit. In fact, a single clock suffices to express L1. Typical proofs of
undecidability of language inclusion crucially use the language L1. One way to
avoid L1 is to require that the automaton be deterministic: since there can be
unboundedly many symbols in an interval of 1 time unit, nondeterminism is
necessary to accept L1. The class of deterministic timed automata is closed un-
der union, intersection, and complementation, and problems such as universality
and inclusion are decidable for deterministic timed automata [1]. An alternative
way to rule out L1 is inspired by the observation that L1 relies on the (infi-
nite) precision of the timing constraints. In robust timed automata fuzziness is
introduced in the language of an automaton semantically using a metric over
the timed words, and considering a word to be accepted/rejected only if a dense
subset around the word is accepted/rejected [13]. Unfortunately, language inclu-
sion remains undecidable under the robust semantics also, and robust languages
are not closed under complementation [14].

In this paper, we propose and study an alternative way of introducing im-
precision in timed automata by introducing errors in the rates of clocks. Given
a timed automaton A and a rational constant 0 ≤ ε < 1, let Lε(A) be the lan-
guage of the automaton in the perturbed semantics, where each clock increases
at a rate within the interval [1 − ε, 1 + ε]. If we add a perturbation ε to the
standard timed automaton accepting L1, then the resulting language consists
of timed words with some two symbols separated by a distance d such that
1 − ε ≤ d ≤ 1 + ε. Perturbed timed automata can be seen to be special kinds
of (initialized) rectangular automata [15]. It follows that a perturbed timed au-
tomaton can be translated to a timed automaton preserving the timed language,
and emptiness of perturbed languages is decidable.

Our main result is that if A has one clock, then the language Lε(A), ε > 0, can
be accepted by a deterministic timed automaton. Intuitively, when the clock has
a drift, then instead of guessing the event on which the clock gets reset, it suffices
to remember the first and the last possible times when the reset may occur in
every interval of length ε. More precisely, given a 1-clock automaton A with
m locations and c as the largest (integer) constant in its clock constraints, and
an error ε = 1/n, we show how to construct a deterministic timed automaton
B with O(cmn) clocks that accepts the language Lε(A). We also prove the
construction to be essentially tight via lower bounds on the number of clocks in
any equivalent deterministic automaton. This construction, however, does not
generalize when A has multiple clocks: we show that for every ε > 0, there exists
a timed automaton A with two clocks such that Lε(A) is not definable using
deterministic timed automata.

Our result leads to a decision procedure for checking inclusion for systems
expressed as products of 1-clock automata with perturbation. That is, consider
a system A expressed as a product of 1-clock components Ai, and a system B
expressed as a product of 1-clock components Bj . Then, given a perturbation
error ε > 0, we can test whether the language of the product of L(Ai) is included

72 R. Alur, S. La Torre, and P. Madhusudan

in the language of the product of Lε(Bj), using our translation from 1-clock
perturbed automata to deterministic ones. This procedure requires space that
is linearly proportional to 1/ε, linearly proportional to the maximum constant
c mentioned in the component automata, and polynomial in the size of the
automata.

Systems expressed as products of 1-clock nondeterministic timed automata
are common. For example, an asynchronous circuit with timing assumptions can
be expressed as a product of 1-clock automata modeling individual gates, where
the clock measures the time elapsed since the switch to the excited state, and
nondeterminism is used to model the unpredictable effect of an input in the
excited state (see for example [16, 17, 18, 19]). As we explain in the paper, the
results on perturbed timed automata can be used for checking inclusion L(I) ⊆
L(S), where I and S are asynchronous circuits with I being a refinement of S,
and where they are modeled using products of 1-clock automata. For establishing
decidability of this problem, it is crucial that we take product after perturbing
the components, rather than perturbing the standard product that allows precise
synchronization.

Related Work. There have been many attempts to introduce errors in timed
automata. As mentioned earlier, robust timed automata have been introduced
and studied by changing the notion of acceptance using a metric over timed
words that allows perturbation of occurrence times of events [13]. The impact of
introducing drifts in clocks on reachability is studied by Puri in [20]: a location
of a timed automaton A is defined to be limit-reachable if, for every ε ≥ 0, it is
reachable if we let the clocks change at a rate within the interval [1−ε, 1+ε], and
the paper shows that while limit reachability is different from standard reach-
ability, it can be decided by modifying the search in the region graph. Instead
of perturbing the clock rates, if we perturb the guards, and ask if a location is
reachable for every perturbation ε of the guards, then the problem is solvable
by similar techniques [21]. The benefits of disallowing precise timing constraints
have been observed in other contexts also. For example, the model checking
problem for real-time linear temporal logics with modalities bounded by inter-
vals becomes decidable if the intervals are required to be non-singular [22], and
the requirement for decidability of language emptiness of rectangular automata
that all clocks be initialized, can be relaxed if the guards are perturbed [23].

Among the numerous results pertaining to language inclusion for timed au-
tomata, the most relevant result for this paper is that checking whether the
language of a timed automaton A is contained in that of B is decidable if B has
a single clock [12]. This result, in conjunction with translation from initialized
rectangular automata to timed automata, however, does not imply decidabil-
ity of language inclusion problem for single-clock perturbed automata, since the
translation doubles the number of clocks. Furthermore, the algorithm in [12] has
high complexity and some recent work shows that it must require space that
is not even primitive-recursive in the input [24]. Our results hence show that
introducing perturbation leads to a sharp drop in complexity for the decision
procedures.

Perturbed Timed Automata 73

2 Perturbed Timed Automata

Let C be a finite set of clocks. The set of clock constraints Φ(C) is the smallest
set that contains:

– x ≤ y + c, x ≥ y + c, x = y + c, x ≤ c, x ≥ c and x = c for every x, y ∈ C
and rational number c; we call such constraints atomic clock constraints;

– ¬δ and δ1 ∧ δ2 where δ, δ1, δ2 ∈ Φ(C).

A clock interpretation is a mapping ν : C −→ R+, where R+ is the set of
nonnegative real numbers. If ν is a clock interpretation and d is a real number,
let (ν + d) denote the clock interpretation that maps each clock x to ν(x) + d.
If λ ⊆ C, let [λ → 0](ν) be the clock interpretation that maps each clock x ∈ λ
to 0 and maps each clock x �∈ λ to ν(x).

A timed automaton A is a tuple (Σ,Q,Q0, C,Δ, F) where:

– Σ is a finite set of symbols (alphabet);
– Q is a finite set of locations;
– Q0 ⊆ Q is a set of initial locations;
– C is a finite set of clock variables;
– Δ is a finite subset of Q × Σ × Φ(C) × 2C × Q (edges);
– F ⊆ Q is a set of final locations.

A timed automaton is deterministic if |Q0| = 1 and for each pair of distinct
edges (q, σ, δ1,λ1, q1), (q, σ, δ2,λ2, q2) ∈ Δ, δ1 ∧ δ2 is not satisfiable.

A state of a timed automaton A is a pair (q, ν) where q ∈ Q and ν is a clock
interpretation. An initial state is a state (q0, ν0) where q0 ∈ Q0 and ν0(x) = 0
for every x ∈ C. A final state is a state (q, ν) where q ∈ F . The semantics of
a timed automaton is given by a transition system over the set of its states.
The transitions of this system are divided into discrete steps and time steps. A
discrete step is of the form (q, ν) σ−→ (q′, ν′) where there is an edge (q, σ, δ,λ, q′) ∈
Δ such that ν satisfies δ and ν′ = [λ← 0]ν. A time step is of the form (q, ν) d−→
(q, ν′) where ν′ = ν + d, d ∈ R+. A step is (q, ν)

σ,d−→ (q′, ν′) where (q, ν) d−→
(q, ν′′) and (q, ν′′) σ−→ (q′, ν′), for some clock interpretation ν′′.

A timed word (σ, τ) over the alphabet Σ is such that σ ∈ Σ∗, τ ∈ R∗
+,

|σ| = |τ |, and if τ = τ1 . . . τk, then for each i < k, τi ≤ τi+1.
Let (σ, τ) be a timed word with σ = σ1 . . .σk and τ = τ1 . . . τk. A run r

of a timed automaton A on (σ, τ) is a sequence (q0, ν0)
σ1,τ1−→ (q1, ν1)

σ2,τ2−τ1−→
. . .

σk,τk−τk−1−→ (qk, νk).
The timed word (σ, τ) is accepted by a timed automaton A if there is a run r of

A on (σ, τ) starting from an initial state and ending in a final state. The (timed)
language accepted by A, denoted L(A), is defined as the set {(σ, τ) | (σ, τ) is
accepted by A}.

Nondeterministic timed automata are more powerful than their determinis-
tic counterparts. For example, consider the language L1 of timed words over the
single symbol a such that there are two occurrences of a one unit apart. A timed

74 R. Alur, S. La Torre, and P. Madhusudan

a a

0 1

a

a, x := 0

2

a, x = 1

Fig. 1. Timed automaton accepting words with two occurrences of a one unit apart

automaton accepting L1 is shown in Figure 1. This automaton nondeterministi-
cally guesses an occurrence of a on which it resets the clock x and then checks
that there is a following occurrence of a when x = 1.

Any deterministic strategy to check a pair of occurrences of a with the above
property would need to reset a clock on each occurrence of a. Intuitively, since a
clock cannot be reused until time 1 has elapsed and there could be an arbitrary
number of a occurrences in a time interval of length 1, in a deterministic au-
tomaton we would need to use an unbounded number of clocks, and thus there
is no deterministic timed automaton accepting this language (see [2] for a formal
proof).

Perturbed Semantics for Timed Automata

The clocks of a timed automaton are assumed to be perfect, and all clocks
increase at the exact rate 1 with respect to time. We proceed to introduce errors
in clock rates to model imprecision.

Let A be a timed automaton (Σ,Q,Q0,Δ,C, F) and let 0 ≤ ε < 1 be a
rational number. An ε-perturbed time step of A is (q, ν) d−→ε(q, ν′) where ν(x)+

d (1−ε) ≤ ν′(x) ≤ ν(x)+d (1+ε). An ε-perturbed step of A is (q, ν)
σ,d−→ε(q′, ν′)

where (q, ν) d−→ ε(q, ν′′) and (q, ν′′) σ−→ (q′, ν′), for some clock interpretation
ν′′.

An ε-perturbed run r of A on a timed word (σ, τ), where σ = σ1 . . .σk and

τ = τ1 . . . τk, is a sequence (q0, ν0)
σ1,τ1−→ ε(q1, ν1)

σ2,τ2−τ1−→ ε . . .
σk,τk−τk−1−→ ε(qk, νk).

The ε-perturbed language accepted by A, denoted Lε(A), is the language of all
the timed words (σ, τ) such that there is an ε-perturbed run r of A on (σ, τ)
starting from an initial state and ending in a final state.

As an example of an ε-perturbed language, consider again the timed au-
tomaton in Figure 1. For a given ε, the language Lε(A) contains all the timed
words over the symbol a such that some two a’s occur at a distance d, for some
d ∈ [1 − ε, 1 + ε].

Note that according to the definitions, L0(A) = L(A) for any timed automa-
ton A. Also, note that during a perturbed time step, the drifts in the clocks
are independent. Perturbation in the language of a timed automaton can also
be expressed by transforming a timed automaton into an initialized rectangular
automaton where the rate of change of each clock x is modeled by the differential
inclusion ẋ ∈ [1− ε, 1 + ε]. From the results on rectangular automata, it follows

Perturbed Timed Automata 75

that the timed language of the transformed automaton can be captured by a
(nondeterministic) timed automaton [15].

Proposition 1. For every timed automaton A and a rational constant 0 ≤ ε <
1, the perturbed language Lε(A) is a timed regular language.

3 Determinization

For the automaton A of Figure 1, while, as observed before, L(A) is not accepted
by any deterministic timed automaton, for each 0 < ε < 1 it is possible to
construct a deterministic timed automaton B that accepts Lε(A).

Let us say that two a events, or their occurrence times, are matching if they
are separated by a distance d ∈ [1 − ε, 1 + ε]. A timed word is in Lε(A) if it
contains a matching pair. Consider any three events within a time interval of
length 2ε occurring respectively at time t1, t2 and t3 with t1 < t2 < t3. If an
event a occurs at a time t ∈ [t2 +1−ε, t2 +1+ε], then also t ∈ [t1 +1−ε, t1 +1+
ε]∪ [t3 +1− ε, t3 +1+ ε] holds. In other words, if the events at occurrence times
t2 and t are matching, then either the occurrences at t1 and t are matching, or
the occurrences at times t3 and t are matching. This property is easily shown
by observing that since t3 − t1 ≤ 2ε, we have that t3 + 1 − ε ≤ t1 + 1 + ε and
thus the interval [t2 + 1− ε, t2 + 1 + ε] is contained in the union of the intervals
[t1 + 1− ε, t1 + 1 + ε] and [t3 + 1− ε, t3 + 1 + ε]. This implies that to search for
matching pairs, the event at time t2, and in fact, at any time between t1 and t3,
is not needed.

This property suggests to split any timed word into intervals such that each
interval has length at least 2ε and any two occurrences of a in it are at most 2ε
apart from each other. This can be achieved by resetting a clock xε every time it
exceeds 2ε. A reset of this clock corresponds to the beginning of a new interval.
Note that the total length of any � 1

2ε�+ 1 consecutive intervals is at least 1 + ε.
Then, we can use separate clocks to remember the time elapsed since the first

and the last occurrences of a in each such interval. A clock can be reused once it
exceeds 1 + ε (recall that the only time constraint in the timed automaton A is
x = 1). By a simple counting we just need � 1

2ε�+ 1 pairs of clocks to handle the
sampling. Since we need a clock for splitting the timed word into intervals, the
deterministic timed automaton B has exactly 2 (� 1

2ε� + 1) + 1 clocks. The role
of the guard x = 1 in A is played in B by guards of the form 1 − ε ≤ y ≤ 1 + ε,
where y is one of the clocks assigned to a 2ε interval.

3.1 Determinization Construction for Perturbed One-Clock
Automata

In this section, we outline the determinization for the perturbed languages of
1-clock timed automata.

Theorem 1. Let A be a timed automaton with one clock, c be the largest con-
stant used in A, and Q be the set of A locations. For a rational number 0 <
ε < 1, the language Lε(A) is accepted by a deterministic timed automaton with
O(� 1

ε� |Q| c) clocks and 2O(� 1
ε 	 |Q| c) locations.

76 R. Alur, S. La Torre, and P. Madhusudan

Proof. Consider a timed automaton A = (Σ,QA, QA
0 , {x},ΔA, FA) with a single

clock variable x. For the ease of presentation, we consider here the case when the
only constants used in the clock constraints of A are 0 and 1, and the atomic clock
constraints using constant 1 are of the form x ≤ 1, x < 1 or x = 1. The general
case reduces to this case simply constructing an equivalent automaton that keeps
track of the integral part of the clock value in the location. (This automaton also
needs to reset the clock every time it reaches 1. To trigger the resets, we require
that the input words contain a dummy event at each integral time. Note that
this does not add to the recognizing power of timed automata [2].)

Fix n = � 1
2ε� + 1. Let QA = {q1, . . . , qm}. In the following, we describe the

construction of a deterministic automaton B = (Σ,QB , {q0}, CB ,ΔB , FB) such
that L(B) = Lε(A).

The set of clocks CB contains a clock xε and clocks yα
i and zα

i for all qi ∈ QA

and α ∈ {0, 1, . . . , n}. Clock xε is used, as in the example discussed above, to
split the input word in intervals such that each interval has length at least 2ε
and any two symbols in it are at most 2ε apart from each other.

Let us number modulo (n + 1) these intervals in the order they appear,
starting from 0 for the first interval and so on. In the following, we refer to an
interval numbered with α also as an α-interval.

For a given timed word w as input, consider all the ε-perturbed runs of A on
w ending at qi such that the last reset of x is in the last α-interval. Clock yα

i is
used to store the maximum value of x that is reached at the end of the above
runs, i.e., this clock is reset in correspondence to the earliest among the last
resets of x in the above runs. Similarly, clock zα

i is used to store the minimum
value of x that is reached at the end of the above runs, i.e., this clock is reset in
correspondence to the latest reset of x in the above runs. Since these two events
are at most 2ε time apart from each other, after 1 unit of time has elapsed, any
possible value of x that can be reached on an ε-perturbed run of A resetting x
at any point in between these events can be reached by resetting x at one of
these two extreme points. Thus, sampling these events for each α-interval and
for each location qi suffices to capture all the ε-perturbed runs of A that end in
qi. Also, since the largest constant in the clock constraints of A is 1, the largest
value that needs to be compared with yα

i and zα
i is 1 + ε. Recall that the total

length of any n consecutive intervals in the considered splitting is at least 1 + ε.
Thus, after n + 1 intervals these clocks can be reused since they have exceeded
the value 1 + ε. At this point, in case there are edges of A from qi on which x is
not reset, then when reusing yα

i (resp. zα
i), we need to remember in the location

of B the fact that the value of the clock is larger than the maximum constant.
For this purpose, we just use a bit for each qi ∈ QA.

More precisely, the set of locations of B contains locations of the form
〈Q,a, b, α〉, where α ∈ {0, 1, . . . , n} and:

Q ⊆ QA, a =

⎛⎜⎜⎝
a0
1 . . . a

0
m

.

.
an
1 . . . a

n
m

⎞⎟⎟⎠ , b = (b1, . . . , bm)

Perturbed Timed Automata 77

Each component bi is either 0 or 1. Value 1 denotes that from qi we can take
edges as if there is a clock zβ

i whose value is larger than 1 + ε. Note that this
implies that also the value of yβ

i is larger than 1 + ε. Each component aβ
i is

1 if the pair of clocks yβ
i and yβ

i are used, and is 0 otherwise. The set Q is a
set of locations of A. In this construction, the component Q is used as in the
usual subset construction for determinizing finite automata. In particular, after
reading a timed word w, B will reach a location 〈Q,a, b, α〉 where Q contains all
the locations q such that there is an ε-perturbed run of A over w ending at (q, ν)
for some clock valuation ν. Component α simply implements a modulo (n + 1)
counter that stores the number of the current interval and gets incremented
whenever clock xε is reset.

The construction of B aims at maintaining the following invariant:

P1. For a timed word w, the run of the automaton B on w ends at a
state (〈Q,a, b, α〉, ν) such that
– Q is exactly the set of A locations qi such that there is an ε-

perturbed run of A over w ending at a state (qi, νi);
– aβ

i = 1 iff there is an ε-perturbed run of A on w ending at a
state (qi, νi) such that the last reset of x happened in the last β
interval;

– for each aβ
i = 1, ν(yβ

i) and ν(zβ
i) are the (upper and lower)

bounds on the values of x in the A states that can be reached by
an ε-perturbed run on w ending at location qi and such that the
last reset of x happened in the last β interval;

– bi = 1 iff there is an ε-perturbed run of A on w ending at a state
(qi, νi) such that νi(x) > 1.

The initial state q0 is 〈QA
0 ,a0, b0, 0〉, where:

a0 =

⎛⎜⎜⎝
a0
1 . . . a

0
m

0 . . . 0
.
0 . . . 0

⎞⎟⎟⎠ , b0 = (0, . . . , 0)

and a0
i = 1 if and only if qi ∈ QA

0 (the active clocks are those of the first interval
that correspond to the initial locations of A).

The set of final locations FB is the set of all locations 〈Q,a, b, α〉 such that
Q ∩ FA �= ∅.

For describing the edges of B we need to introduce first some notation. We
also assume that the guards of A edges are conjunctions of atomic constraints.
This is without loss of generality since the automaton A is nondeterministic and
top level disjunction can be modelled with nondeterminism. Let Iε(δ, y) be a
mapping that transforms every clock constraint δ involving only x into a clock
constraint involving a clock y, as follows:

– if δ is x ≈ c with ≈∈ {<,≤}, then Iε(δ, y) is y ≈ c(1 + ε);
– if δ is x ≈ c with ≈∈ {>,≥}, then Iε(δ, y) is y ≈ c(1 − ε);
– if δ = δ1 ∧ δ2, then Iε(δ, y) = Iε(δ1, y) ∧ Iε(δ2, y).

78 R. Alur, S. La Torre, and P. Madhusudan

For a guard δ and clocks y, z, we denote by g(δ, y, z) the clock constraint
Iε(δ, y) ∨ Iε(δ, z). For a B location s = 〈Q,a, b, α〉, a clock constraint δ over x
and a location qi ∈ Q, let h(δ, i, s) = δ if bi = 0 and otherwise, let h(δ, i, s) be
δ with every term x > 1 in it replaced by TRUE. For a location qi ∈ QA, we
denote by Δi the set of all edges contained in ΔA from qi. Given an edge e, we
denote by δe its guard and d(e) = i if the location entered when e is taken is qi.
Given a set X, we denote by P (X) the set of partitions of X into two sets. A
two-set partition is denoted by a pair of sets.

Consider a location s = 〈Q,a, b, α〉. For each qi ∈ Q fix a partition (Δ′
i,Δ

′′
i)

of Δi. For each of such choice of partitions, we insert in ΔB an edge such that:

– the guard is the conjunction of xε < 2ε and∧
qi∈Q

∧
e∈Δ′

i

(∨n
β=0(a

β
i = 1) ∧ g(h(δe, i, s), y

β
i , zβ

i)
)
∧∧

e∈Δ′′
i

(∧n
β=0(a

β
i = 1) → ¬g(h(δe, i, s), y

β
i , zβ

i)
)
;

– the destination location is 〈Q′,a′, b′, α′〉 where:

• Q′ is the set of all qj such that j = d(e) for some e ∈ Δ′
i and qi ∈ Q;

• a′β
i = 1 if and only if either:
∗ β = α and there is an edge in Δ′

i on which x is reset, or
∗ aβ

i = 1 and there is an edge in Δ′
i on which x is not reset;

(clocks yβ
j and zβ

j are in use in the new location either if they refer to
the current interval and x is reset on a possible edge from the current
state, or they inherit the values of previously used clocks that still
need to be considered)

• b′ = b (these bits can change only when entering the next interval in the
splitting of the input word);

• α′ = α;

– clocks are updated according to the following rules:

• for each edge e ∈ Δ′
i from qi to qj on which x is reset: if aα

j = 0 then
both yα

j and zα
j are reset, otherwise only zα

j is reset; (recall that by yα
j

and zα
j we wish to capture the time elapsed respectively from the earliest

among the last resets and the latest reset of x over all the runs ending at
qj for which the reset happens in the last α-interval. Thus, if the clocks
are already in use, we only have to reset the z-clock since the earliest
reset is captured when the y-clock starts being used.)

• let Δ̄j be the set of edges e in ∪iΔ
′
i on which x is not reset and such

that d(e) = j. Also, for an edge e from a location qi denote o(e) = i. In
case there is an edge in Δ̄j whose guard contains only atomic constraints
using constant 0 (that is, they are of the form x ≥ 0 or x > 0), then for
β �= α, clock yβ

j is assigned with the maximum of yβ
h over h = d(e) for

e ∈ Δ̄j and clock zβ
j is assigned with the minimum of zβ

h over h = d(e)
for e ∈ Δ̄j (we aim to keep the largest possible interval of x-values). In
the other cases, we compute for each edge e ∈ Δ′

i:

Perturbed Timed Automata 79

∗ yβ
e as the minimum between 1 + ε and the value of yβ

h for h = d(e),
and

∗ zβ
e as the maximum between 1 − ε and the value of zβ

h for h = d(e),
if there is a conjunct of δe (the guard of e) of the form x = 1, and
as the value of zβ

h for h = d(e), otherwise.
The choice of the values yβ

e and zβ
e aims to rule out all runs that cannot

be continued with Δ̄j edges. Then, for β �= α, yβ
j is assigned with the

maximum of yβ
e over Δ̄j and zβ

j is assigned with the minimum of zβ
e over

Δ̄j . If x < 1 is a conjunct of the guards of all the Δ̄j edges and the value
assigned to a y-clock is 1 + ε, we also need to remember that for this
clock, its value is actually the supremum of the actual values of x in the
represented runs (this can be handled with an additional bit).

With respect to the same partition we also insert in ΔB edges that differ
from the ones described above for the conjunct xε ≥ 2ε instead of xε < 2ε in
their guards, the clock xε is reset, and α′ = (α + 1) (mod(n + 1)). Moreover, b′

j

is set to 1 if there is an i such that there is an edge e ∈ Δ′
i from qi to qj that

does not reset x, and either aα′
i = 1 or bi = 1 (i.e., clock yα′

i is active or its value
is larger than 1 + ε). In fact, in both cases, there is a run of A that reaches qj

with the value of x larger than 1. Also, a′α′
j is set to 1 if and only if there is a

edge e ∈ Δ′
i from qi to qj that resets x.

The automaton B so defined is clearly deterministic (we use disjoint guards
on edges from a given location and symbol) but does not respect the definition of
a timed automaton. In fact, we use updates (that compute minimum and maxi-
mum over clock values) instead of resets. To determine the minimum/maximum
over clock values on an edge we can split an edge into several edges each corre-
sponding in turn to a variable being the minimum/maximum. For this purpose,
we can just add on each such edge an appropriate conjunct and then rename
the clock corresponding to the minimum/maximum with yα

j . Thus, we are done
since clock renaming does not add expressiveness to timed automata (see [25]
for example).

It is possible to prove by induction on the number of steps that the above
construction preserves the invariant P1. Thus, by the definition of FB , we can
conclude that L(B) = Lε(A).

a a a

0

a

a, x := 0

1

a, y = 1

2 3

a, x = 1

y := 0 y := 0 y = 1

Fig. 2. Automata 1
3 -accepting timed words with two occurrences of a at distance 3

2

80 R. Alur, S. La Torre, and P. Madhusudan

3.2 Lower Bounds

The determinization was based on “forgetting” events by covering them with
extreme events. This idea fails when there are 2 or more clocks in an automa-
ton. To see this consider the automaton A given in Figure 2. For ε = 1

3 , the
language Lε(A) contains all the timed words over the symbol a such that there
is a subsequence aaa where both pairs of events are distance 3

4 apart. In fact,
the only way to fulfill the constraints x = 1 and y = 1 on the edge from location
2 to location 3 is to let clock y increase at the fastest possible rate (i.e., 4

3) and
clock x increase at the slowest possible rate (i.e., 2

3). This timed language is ba-
sically the same as language L1 except for the fact that we require that the two
occurrences of a are 3

2 (instead of 1) time apart. Thus, using the same argument
as in [2], the complement of the language L 1

3
(A) cannot be accepted by any

timed automaton. Therefore, L 1
3
(A) cannot be accepted by any deterministic

timed automaton as deterministic timed automata are complementable. For any
choice of a rational number ε ∈ [0, 1[, we can generalize the intuition behind the
above example and construct a timed automaton that is not complementable.
Thus, we have the following:

Proposition 2. For each perturbation 0 ≤ ε < 1, there is a timed automaton A
with two clocks such that the complement of Lε(A) is not accepted by any timed
automaton.

We proceed to show that our construction of determinization for perturbed 1-
clock automata is essentially tight. Recall that for a perturbed timed automaton
A with locations Q, we built a deterministic timed automaton with O(�1/ε�Q|)
clocks. We can show that both these factors are unavoidable:

Theorem 2. Let n ∈ N and let ε = 1/n. Then there exists a 1-clock timed
automaton An with a constant number of locations such that any deterministic
timed automaton B accepting Lε(An) has at least n/4 clocks.

Proof. Consider the language L1 consisting of timed words over {a} where there
are two events a that are one unit apart. It is accepted by the 1-clock nonde-
terministic timed automaton A shown in Figure 1. Now let n ∈ N and ε = 1/n.
Let B be a deterministic timed automaton accepting Lε(A). Consider an in-
put where there are n/4 a events at times t1, . . . tn/4 where t1 = d1 and each
ti = ti−1 + 2ε + di, where each di < ε. In order to accept an extension of this
word, it is easy to see that an a-event is required in the range [1, 2] in subranges
defined by the set of all the values d1, . . . dn/4. If B uses less than n/4 clocks,
then there must be some a-event on which a clock was not reset. By making
small changes to the values di, we can show that B cannot accept the language
Lε(A).

Theorem 3. Let 0 < ε < 1 be any fixed rational number. For any n ∈ N, there
exists a 1-clock timed automaton An with O(n) states such that any deterministic
timed automaton B accepting Lε(An) has at least n clocks.

Perturbed Timed Automata 81

p1 p2 p3 pn−1

q1 q2 q3 qn−1

s
r1 r2 r3 rn−1

x := 0 x := 0 x := 0 x := 0

x = 1 x = 1 x = 1 x = 1

Fig. 3. Automaton used in the lower bound proof of Theorem 3

Proof. For any n, consider the language over Σ = {a}, consisting all timed words
(ak, τ1, τ2, . . . τk) such that there exist 1 ≤ i < j ≤ k with i + k − j = n and
τj − τi = 1. In other words, there are two events separated by exactly one unit
such that the length of the prefix till the first event and the length of the suffix
from the latter event add up to n. Figure 3 illustrates a 1-clock timed automaton
with O(n) states that guesses these events and accepts the language.

Now consider any deterministic automaton B accepting Lε(An). Consider a
word where n events all before time ε are fed to B. If B had less than n clocks,
then there must be some event where a clock was not reset; let this be the i’th
event. By suitably extending the word using n − i events after time unit 1 and
by timing the first such event after time 1, one can show that B either rejects a
word that is in Lε(An) or accepts a word that is not in Lε(An).

4 Language Inclusion

Let us now consider the inclusion problem for timed automata, which is the
problem of deciding whether L(B) ⊆ L(A), for two given timed automata B
and A. This question is relevant in the verification context where B can model a
timed system and A the safety specification. This problem however turns out to
be undecidable; in fact, checking whether L(A) is universal, which is a simpler
problem, is itself undecidable [1].

However, if A is a 1-clock timed automaton, then since we can build a deter-
ministic timed automaton A′ that accepts the perturbed language of A, it follows
that we can decide the language inclusion L(B) ⊆ Lε(A) by complementing A′,
taking its product with B and solving for emptiness. From the results in the
previous section, A′ has O(�1/ε�Q|c) clocks, if A has locations Q and c is the
maximum constant in its guards. Since the emptiness problem for timed au-
tomata is in PSpace, it follows that the inclusion problem can be solved in

82 R. Alur, S. La Torre, and P. Madhusudan

ExpSpace. Note that the only exponential factor is in ε and c. For a fixed ε (or
if ε was presented in unary) and bounded constants, the inclusion problem is in
PSpace:

Theorem 4. Given timed automata B and A, where A is a 1-clock automaton,
and a perturbation 0 < ε < 1, the problem of checking whether L(B) ⊆ Lε(A) is
decidable in ExpSpace. If ε and the constants in the clock constraints of A are
bounded, then the problem is in PSpace.

Turning to lower bounds for the above inclusion problem, it is easy to show
that the inclusion problem is PSpace-hard (using a reduction from QBF), and
this hardness holds for any fixed ε as well. However, we do not know whether
the ExpSpace upper bound is tight.

The double restriction to 1-clock automata and ε-perturbation is however
not necessary to obtain decidability. It turns out that the inclusion problem
L(B) ⊆ L(A) is solvable even when A is a 1-clock automaton [12]. However,
the decision procedure for this is extremely involved and uses techniques similar
to those used in solving questions on (unbounded) Petri nets, and no upper
bounds on the complexity are reported. In fact, recent results suggest that the
universality problem for 1-clock automata requires non-primitive-recursive space
complexity [24]. We note here that the problem is at least ExpSpace-hard:

Theorem 5. The universality problem for 1-clock timed automata is ExpSpace-
hard.

Proof. The proof proceeds by a reduction from the membership problem for
any ExpSpace Turing machine. Given an input of length n to such a Turing
machine M , we construct a 1-clock timed automaton that accepts the set of all
timed words that do not correspond to accepting runs of M on that word. Each
configuration of M is encoded as a string c1a1c2a2 . . . cmam where a1 . . . am is
the contents of the tape cell, m is the space required by M (m is exponential in
n) and each ci is a word of log m-bits that encodes the cell number i in binary.
A sequence of configurations is then encoded using strings of such sequences. In
addition, we require that an encoding of a sequence of configurations be timed
correctly, where the distance between a particular bit of ci in a configuration
is encoded exactly one unit from the corresponding bit of ci in the previous
configuration. A timed automaton with O(n) states and 1-clock can easily check
if the ci’s in each configuration are encoded correctly, and also check whether the
corresponding cells in successive configurations match using the fact that they
are exactly one unit of time apart. It follows that this automaton is universal iff
M does not accept the input word.

Perturbing 1-clock automata with bounded constants by a fixed ε however re-
sults in a simpler determinization construction (non-perturbed 1-clock automata
are not determinizable) and a reduction in complexity for the inclusion problem
to PSpace.

The restriction to 1-clock automata is crucial. Recall Proposition 2 which
states that there exist automata (in fact with two clocks) such that the com-
plement of its perturbed language is not timed regular. Using the property that

Perturbed Timed Automata 83

using two perturbed clocks one can require two events to be some precise distance
apart, we can encode computations of Turing machines to show that:

Theorem 6. Given timed automata B and A, and a perturbation ε > 0, the
problem of deciding whether L(B) ⊆ Lε(A) is undecidable.

4.1 Checking Refinement

An application of our results on perturbed timed automata is to check refine-
ment for systems modeled as products of 1-clock automata. Systems such as
asynchronous circuits can be modeled using products of nondeterministic 1-clock
automata: each gate in the circuit is modeled as a timed automaton where the
upper and lower bounds on the delay between the excitation of the gate and
the triggering of its output is captured using a single clock [16, 17, 18, 19]. It is
common to model the uncertainty of switching of gates (gates can miss unstable
signals, switching of gates can be after varying delays, etc.) using nondeter-
minism. The asynchronous circuit itself is then a product of 1-clock automata,
where the automata synchronize on input-output signals of the respective gates,
capturing the design of the circuit.

Consider two systems I and S, each modeled as a product of 1-clock au-
tomata, where S is a specification and I is a refinement of S, where some com-
ponents in S have been implemented using lower level components. We are in-
terested in checking whether all behaviors of I are behaviors of S as well. Let X
be the set of events present in the higher level specification S and let I contain
events over the set X ∪ Y , where Y is the new set of events introduced in the
implementation.

The problem of checking whether the timed behaviors of I are included in
that of S translates into checking if L(AI) ⊆ L(AS), where AI models the
behaviors of I and AS models the behaviors of S in which the new events Y can
occur at any time and are ignored. Our results suggest a new way to answer this
question. If AS = A1‖A2‖ . . .Ak, where each Ai is a 1-clock timed automaton,
then we can perturb each component Ai of S and then take the product. Such
a perturbation is natural in the setting of asynchronous circuits as they anyway
model unpredictable perturbation of their signals. We can hence proceed to
check whether L(AI) ⊆ Lε(A1)‖Lε(A2)‖ . . . Lε(Ak), which we know is decidable
using the results of the previous sections. Notice that in the above expression,
we first compute the ε-perturbed languages corresponding to each component
and then take the product, which ensures that synchronization is “fudged”. This
fudging of synchronization is crucial: if we consider Lε(A1‖ . . .Ak), then since
the automata can synchronize precisely on events, they can accept languages
that check whether two events are precisely one unit apart, and the perturbed
language of the products of 1-clock automata are not determinizable.

5 Conclusions

Motivated by the gap in the expressiveness in the nondeterministic and deter-
ministic timed automata, and undecidability of the language inclusion problem

84 R. Alur, S. La Torre, and P. Madhusudan

for nondeterministic timed automata, we initiated the study of timed automata
with perturbation in the clock rates. We have proved that one-clock automata
are determinizable in presence of perturbation. For systems expressed as prod-
ucts of one-clock automata, this leads to a decidable language inclusion if we
perturb individual components. However, if we allow perfect synchronization,
and perturb the product, we lose determinization and complementability. The
complexity of the inclusion test is exponential in the number of locations as
well as the magnitudes of the constants. It remains open whether exponential
dependence on the constants, including the perturbation error, can be avoided.
There is an alternative way of introducing errors by perturbing the guards of
the automaton instead of the clock rates: replace each atomic constraint x ≤ c
by x ≤ c+ ε, and x ≥ d by x ≥ d− ε. The resulting class of perturbed languages
has similar properties as the class studied in the paper. Finally, perturbed lan-
guages are not closed under projection, and thus, checking language inclusion
L(I) ⊆ L(S), when the specification S has internal events not mentioned in the
implementation I, is not possible by our techniques even when S is a product of
perturbed one-clock components. Thus, checking equivalence of timed circuits
composed of components with imperfect clocks, in terms of timed languages over
inputs and outputs, remains an interesting open problem.

Acknowledgments. We thank Radha Jagadeesan for helpful discussions.

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science

126 (1994) 183–235.

2. Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In:

Formal Methods for the Design of Real-Time Systems. LNCS 3185, Springer (2004)

1–24.

3. Larsen, K., Pettersson, P., Yi, W.: Uppaal in a nutshell. Springer International

Journal of Software Tools for Technology Transfer 1 (1997).

4. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool kronos. In: Hybrid

Systems III: Verification and Control. LNCS 1066, Springer-Verlag (1996) 208–

219.

5. Wang, F.: Efficient data structures for fully symbolic verification of real-time

software systems. In: TACAS ’00: Sixth Intl Conf on Tools and Algorithms for the

Construction and Analysis of Software. LNCS 1785 (2000) 157–171.

6. Henzinger, T., Manna, Z., Pnueli, A.: What good are digital clocks? In: ICALP

92: Automata, Languages, and Programming. LNCS 623. Springer-Verlag (1992)

545–558.

7. Alur, R., Fix, L., Henzinger, T.: Event-clock automata: a determinizable class of

timed automata. Theoretical Computer Science 211 (1999) 253–273 A preliminary

version appears in Proc. CAV’94, LNCS 818, pp. 1–13.

8. Alur, R., Courcoubetis, C., Henzinger, T.: The observational power of clocks. In:

CONCUR ’94: Fifth International Conference on Concurrency Theory. LNCS 836.

Springer-Verlag (1994) 162–177.

Perturbed Timed Automata 85

9. Alur, R., Henzinger, T.: Back to the future: Towards a theory of timed regular lan-

guages. In: Proceedings of the 33rd IEEE Symposium on Foundations of Computer

Science. (1992) 177–186.

10. Henzinger, T., Raskin, J., Schobbens, P.: The regular real-time languages. In:

ICALP’98: Automata, Languages, and Programming. LNCS 1443. Springer (1998)

580–593.

11. Ouaknine, J., Worrell, J.: Revisiting digitization, robustness, and decidability for

timed automata. In: Proc. of the 18th IEEE Symp. on Logic in Comp. Sc. (2003).

12. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata:

Closing a decidability gap. In: Proceedings of the 19th IEEE Symposium on Logic

in Computer Science. (2004).

13. Gupta, V., Henzinger, T., Jagadeesan, R.: Robust timed automata. In: Hybrid

and Real Time Systems: International Workshop (HART’97). LNCS 1201, Springer

(1997) 48–62.

14. Henzinger, T., Raskin, J.: Robust undecidability of timed and hybrid systems. In:

Hybrid Systems: Computation and Control, Third International Workshop. LNCS

1790 (2000) 145–159.

15. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid

automata. Journal of Computer and System Sciences 57 (1998) 94–124.

16. Brzozowski, J., Seger, C.: Advances in asynchronous circuit theory, Part II:

Bounded inertial delay models, MOS circuit design techniques. In: Bulletin of

the European Assoc. for Theoretical Comp. Sc. Volume 43. (1991) 199–263.

17. Rokicki, T.: Representing and modeling digital circuits. PhD thesis, Stanford

University (1993).

18. Maler, O., Pnueli, A.: Timing analysis of asynchronous circuits using timed au-

tomata. In: Proc. of CHARME’95. LNCS 987, Springer (1995) 189–205.

19. Tasiran, S., Brayton, R.: STARI: a case study in compositional and hierarchi-

cal timing verification. In: Proceedings of the Ninth International Conference on

Computer Aided Verification. LNCS 1254, Springer-Verlag (1997) 191–201.

20. Puri, A.: Dynamical properties of timed automata. In: Proceedings of the 5th

International Symposium on Formal Techniques in Real Time and Fault Tolerant

Systems. LNCS 1486 (1998) 210–227.

21. De Wulf, M., Doyen, L., Markey, N., Raskin, J.: Robustness and implementability

of timed automata. In: Proc. FORMATS. (2004).

22. Alur, R., Feder, T., Henzinger, T.: The benefits of relaxing punctuality. Journal

of the ACM 43 (1996) 116–146.

23. Agrawal, M., Thiagarajan, P.S.: Lazy rectangular hybrid automata. In: Hybrid

Systems: Computation and Control, Proc. of 7th Intl. Workshop. LNCS 2993,

Springer (2004) 1–15.

24. Ouaknine, J.: Personal communication. (2004).

25. Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods in

System Design 24 (2004) 281–320.

A Homology Theory for Hybrid Systems:
Hybrid Homology

Aaron D. Ames and Shankar Sastry

Department of Electrical Engineering and Computer Science,

University of California at Berkeley,

Berkeley, CA 94720

{adames, sastry}@eecs.berkeley.edu

Abstract. By transferring the theory of hybrid systems to a categorical

framework, it is possible to develop a homology theory for hybrid sys-

tems: hybrid homology. This is achieved by considering the underlying

“space” of a hybrid system—its hybrid space or H-space. The homotopy

colimit can be applied to this H-space to obtain a single topological space;

the hybrid homology of an H-space is the homology of this space. The

result is a spectral sequence converging to the hybrid homology of an

H-space, providing a concrete way to compute this homology. Moreover,

the hybrid homology of the H-space underlying a hybrid system gives

useful information about the behavior of this system: the vanishing of

the first hybrid homology of this H-space—when it is contractible and

finite—implies that this hybrid system is not Zeno.

1 Introduction

In this paper we develop a homology theory for hybrid systems: hybrid homology.
Up to this point, the limited mathematical understanding of hybrid systems has
precluded the development of such a theory. In this paper, a categorical definition
of a hybrid system is given; a hybrid system is essentially a small category H
of a specific form, called an H-small category, together with a functor from
this small category to the category of dynamical systems: SH : H → Dyn. This
definition establishes a strong connection between the area of hybrid systems and
the areas of algebraic topology and category theory. Preexisting mathematical
constructions in these areas can be applied to hybrid systems when they are
viewed from a categorical perspective.

The categorical approach to hybrid systems gives rise to the idea of the
underlying “space” of a hybrid system: its hybrid space or H-space, H. An H-
space is given by an H-small category H and a functor, SH : H → Top, from
this small category to the category of topological spaces. Pairs of this form—
small categories together with functors to the category of topological spaces—
have been well studied (cf. [1],[2],[3]); important preexisting constructions can be
applied to hybrid systems by exploiting this connection. A construction of special
interest is the homotopy colimit which associates to an H-space, H = (H,SH), a

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 86–102, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Homology Theory for Hybrid Systems: Hybrid Homology 87

single topological space, Top(H) := hocolimH(SH), referred to as the underlying
topological space of the H-space H.

The underlying topological space of an H-space allows us to define a homol-
ogy theory of H-spaces simply by considering the homology of this space. This
homology theory is termed hybrid homology and is denoted by HHn(H, A) :=
Hn(Top(H), A); here A is an abelian group. One of the main impetuses for con-
sidering the homotopy colimit is that there is a spectral sequence converging to
the homology of this space (cf. [1]). In the case of hybrid homology, this implies
the existence of the hybrid homology spectral sequence

E2
p,q = Hp(H,Hq(SH, A)) ⇒ HHp+q(H, A),

where Hq(SH, A) is the functor from the small category H to the category of
abelian groups given by composing the homology functor with the functor SH,
and Hp(H,Hq(SH, A)) is the homology of the small category H with coefficients
in the functor Hq(SH, A). In this paper it will be seen that this spectral sequence
gives very concrete ways to compute the hybrid homology of an H-space. Specif-
ically, because of the particular structure of an H-small category, this spectral
sequence reduces to a series of short exact sequences

0 −→ H1(H,Hn−1(SH, A)) −→ HHn(H, A) −→ H0(H,Hn(SH, A)) −→ 0.

In the case when the H-space H is contractible, i.e., when each domain of the
H-space is contractible, the spectral sequences collapses to yield isomorphisms

HHn(H, A) ∼= Hn(H, A),

where Hn(H, A) is the homology of the small category H with coefficients in an
abelian group A. The startling point is that these facts can be used to show that
the hybrid homology of an H-space dictates the type of behavior that a hybrid
system on this H-space can have, especially with regard to Zeno.

Given a (categorical) hybrid system H we can associate to it its underlying
H-space HH , and we are able to show that this space gives useful information
about the hybrid system. By considering the forgetful functor U : Hcat → Grph
from that category of H-small categories to the category of small graphs, we
are able to show that in the case when H is contractible and finite there is an
isomorphism

HHn(H, R) ∼= Hn(U(H), R),

where Hn(U(H), R) is the graph homology of the graph U(H). By considering
the underlying H-space HH of a hybrid system H , this result together with the
results of [4] allows us to show that when HH is contractible and finite

dimR HH1(HH , R) = dimR N (KU(H)) = 0 ⇒ H is not Zeno

where N (KU(H)) is the null space of the incidence matrix KU(H) of the graph
U(H). This final statement seems to imply that the definition of hybrid homology
is the right one because it gives useful information about the hybrid system. The
statement also supports the claim that the theory developed here has useful and
practical implications.

88

2 Categorical Hybrid Systems

Up to this point, a hybrid system has been defined to be a tuple which is a col-
lection of spaces subject to certain relations given by maps between these spaces.
A set of vector fields or flows is also included in the definition. To better under-
stand hybrid systems, we consider this collection of spaces and this collection of
flows separately; the former is referred to as a hybrid space or H-space and the
latter is a “flow” on this H-space. The motivation for this is derived from dy-
namical system theory where there is a clear distinction between the “underlying
topological space” of a dynamical system and a flow on that space. Paralleling
dynamical systems, a hybrid system is obtained by adding a collection of flows
to an H-space.

In this section, we give the classical definition of an H-space and then proceed
to give a categorical definition of an H-space in terms of a small category and a
functor; the advantage of the categorical definition of an H-space is that it is not
only more general but also more concise. We then proceed to give the definition of
a hybrid system utilizing the categorical framework developed—a hybrid system
is also defined by a small category and a functor. These constructions will be
essential in developing a homology theory for hybrid systems, although this seems
to be only the first step in exploring their power.

H-Space. Define a classical H-space (short for classical hybrid space) as a tuple

Hclass = (Q,E, D,G,R)

where

– Q = {1, ...,m} ⊂ Z is a set of discrete states.
– E ⊂ Q×Q is a set of edges which define relations between the domains. For
e = (i, j) ∈ E, we denote the source of e by s(e) = i and the target of e by
t(e) = j.

– D = {Di}i∈Q is a set of domains where Di is a topological space.
– G = {Ge}e∈E is a set of guards, where Ge ⊆ Ds(e) is also a topological space.
– R = {Re}e∈E is a set of reset maps or transition maps; these are continuous

maps from Ge ⊆ Ds(e) to Re(Ge) ⊆ Dt(e).

The subscript “class” indicates that this is a “classical” definition, meaning that
this definition is one of the most commonly used ones (cf. [5]). For a classical H-
space the pair (Q,E) is an oriented graph (technically a pseudograph), so we can
write a classical H-space as a tuple Hclass = (Γ,D,G,R). The graph Γ = (Q,E)
is referred to as the underlying graph of the H-space.

We can demand that the collection of topological spaces D be a collection of
manifolds M = {Mi}i∈Q, that the maps R be a collection of smooth embeddings
RS , and that the set of guards be a set of smooth manifolds, GM , such that
GM

e is an embedded submanifold of Ms(e). In this case we call the H-space
Gclass = (Q,E,M,GM , RS) a smooth classical hybrid space or a smooth classical
H-space or a classical G-space. This more restrictive definition is the starting
point for much of the literature on hybrid systems.

A.D. Ames and S. Sastry

A Homology Theory for Hybrid Systems: Hybrid Homology 89

Example 1. The hybrid system modeling a water tank system (cf. [5] for a com-
plete explanation, although we assume the reader is familiar with this example)
is a classical example of a hybrid system that displays Zeno behavior. Beyond
this observation, we will not discuss the dynamics of this hybrid system as in
this paper we are more interested in its underlying “space”. The hybrid space
for the water tank will be denoted by HW

class = (ΓW , DW , GW , RW). It has as its
underlying graph ΓW given by the diagram

1
e1��
e2

2

The other elements of the hybrid system are defined as: DW
1 = DW

2 = {(x1, x2) :
x1, x2 ≥ 0}, GW

e1
= {(x1, 0) : x1 ≥ 0}, GW

e2
= {(0, x2) : x2 ≥ 0}, and

RW
e1

(x1, x2) = RW
e2

(x1, x2) = (x1, x2). We will refer back to this example through-
out this paper in order to illustrate the concepts being introduced.

H-Small Categories. An H-small category is a small category H (cf. [6] for
more information on small categories and category theory in general) satisfying
the following conditions:

1. Every object in H is either the source of a non-identity morphism in H or the
target of a non-identity morphism but never both, i.e., for every diagram

a0
α1� a1

α2� · · · αn� an

in H, all but one morphism must be the identity (the longest chain of com-
posable non-identity morphisms is of length one).

2. If an object in H is the source of a non-identity morphism, then it is the
source of exactly two non-identity morphisms, i.e., for every diagram in H
of the form

either all of the morphisms are the identity or two and only two morphisms
are not the identity.

Important Objects in H-Small Categories. Let H be an H-small category.
We use Ob(H) to denote the objects of H and Morid/ (H) to denote the non-identity
morphisms of H; all of the morphisms in H are the union of these morphisms
with the identity morphism from each object to itself. For a morphism α : a → b
in H, its source is denoted by s(α) = a and its target is denoted by t(α) = b. For
H-small categories, there are two sets of objects that are of particular interest;
these are subsets of the set Ob(H). The first of these is called the wedge set,
denoted by ∧(H), and defined to be

∧(H) := {a ∈ Ob(H) : a = s(α), a = s(β), α, β ∈ Morid/ (H), α �= β}.

a0

a1
�

α1

a2
�

α 2

a3

�
α
3

· · · · · · · · ·an

α
n �

90

For all a ∈ ∧(H) there are two and only two morphisms (which are not the
identity) α, β ∈ Morid/ (H) such that a = s(α) and a = s(β), so we denote these
morphisms by αa and βa. Conversely, given a morphism γ ∈ H (which is not
the identity), there exists a unique a ∈ ∧(H) such that γ = αa or γ = βa. The
symbol ∧ is used because every object a ∈ ∧(H) sits in a diagram of the form:

Note that giving all diagrams of this form (of which there is one for each a ∈
∧(H)) gives all the objects in H, i.e., every object of H is the target of αa or βa,
or their source, for some a ∈ ∧(H). In particular, we can define ∨(H) = (∧(H))c

where (∧(H))c is the complement of ∧(H) in the set Ob(H).

Definition 1. A categorical H-space is a pair Hcat = (H,SH) where H is an
H-small category and SH : H → Top is a functor such that for every diagram of
the form

A �α
E

β� B

in H in which α and β are not the identity, either SH(α) or SH(β) is an inclusion.

Theorem 1. There is an injective correspondence

{Classical H− spaces, Hclass} −→ {Categorical H− spaces, Hcat}

This is a bijective correspondence if H has a finite number of objects.

Example 2. The categorical hybrid space for the water tank, HW
cat = (HW ,SW

H)
is defined by the following diagram:

Note that the H-small category HW is defined by the diagram on the left together
with the identity morphism on each object, while the functor SW

H is defined by

a = s(αa) = s(βa)

b = t(αa)
�

αa

c = t(βa)

β
a

�

a SW
H (a) = GW

e1

b

�
α

a

c

β
a

�

SW
H� SW

H (b) = DW
1

�
S

W
H

(α
a
) =

id

SW
H (c) = DW

2

S W
H (β

a) =
id�

d

α
d

�

�
β

d

SW
H (d) = GW

e2

S
W

H
(α

d
) =

id
�

�
S W

H (β
d) =

id

A.D. Ames and S. Sastry

A Homology Theory for Hybrid Systems: Hybrid Homology 91

the diagram of topological spaces on the right. To complete the description of
the functor SW

H , on identity morphisms SW
H is defined to be the identity map.

Smooth Categorical Hybrid Spaces. We can define a categorical G-space
in a way analogous to the definition of a categorical H-space, i.e., it is a pair
Gcat = (H,TG), where H is an H-small category and TG is a functor TG : H →
Man from H to the category of manifolds, such that the pair (H, I ◦TG) is also
a categorical H-space; here I : Man → Top is the inclusion functor. With this
definition, Theorem 1 yields the following corollary.

Corollary 1. There is an injective correspondence

{Classical G− spaces, Gclass} −→ {Categorical G− spaces, Gcat}

The Category of Dynamical Systems. We can consider both the category
of dynamical systems and the category of smooth dynamical systems. The cat-
egory of dynamical systems, denoted by Dyn, has as objects dynamical systems
and dynamical subsystems. A dynamical system is a pair (X,ϕ) where X is a
topological space and ϕ is a flow on that topological space—more precisely, this
is a local flow (cf. [7]). A morphism of two dynamical systems α : (X,ϕ) → (Y, ψ)
in this category is defined by a pair α = (h, r) of continuous maps, h : X → Y
and r : R → R, such that the following diagram

X̃ϕ ⊂ X × R
h× r� Ỹψ ⊂ Y × R

X

ϕ
� h � Y

ψ
�

commutes, i.e., h(ϕt(x)) = ψr(t)(h(x)); here X̃ϕ is the maximal flow domain
of the flow ϕ (as defined in [7]). Clearly, from this definition it follows that two
dynamical systems are isomorphic (in the categorical sense) if and only if they are
topologically orbital equivalent. A dynamical subsystem is a pair (U ⊆ X,ϕ|U)
where U is a topological space contained in X and ϕ|U is the restriction of a flow
ϕ on X to U ; we say that this dynamical subsystem is a subsystem of (X,ϕ).
Morphisms dynamical subsystems are defined in a way analogous to the
definition of morphisms of dynamical systems (cf. [8] for a definition).

Similarly, we can define the category Sdyn of smooth dynamical systems
whose objects are smooth dynamical systems and smooth dynamical subsys-
tems.1 A smooth dynamical system is a pair (M,V) where M is a manifold and
V is a vector field on that manifold (both of which are smooth). A morphism
between smooth dynamical systems α = (f, F) : (M,V) → (N,W) is given by
smooth maps, f : M → N and F : TM → TN , such that the diagram

1 This definition is a generalization of the one given in [9], although there it was defined

as the category of dynamical systems and not smooth dynamical systems.

of

92 A.D. Ames and S. Sastry

M
f� N

TM

V
� F� TN

W
�

commutes, and for each p ∈ M the restriction of F to the fiber TpM , F |TpM :
TpM → Tf(p)N , is linear. In the case when F is the pushforward of f , i.e.,
F = f∗, this definition implies that V and W are f -related (cf. [7]). A smooth
dynamical subsystem is a pair (S ⊆ M,V |S) where S is an embedded sub-
manifold of M and V |S is the restriction of a vector field V on M to S, and
hence a vector field along S. As in the case of dynamical systems, morphisms of
smooth dynamical subsystems are given in a way analogous to the definition of
morphisms of dynamical systems (cf. [8] for a definition).

Note that there is a projection functor PTop : Dyn→ Top from the category
of dynamical systems to the category of topological spaces given by PTop(X,ϕ) =
X on objects and PTop(h, r) = h on morphisms. Similarly, we have a projection
functor from the category Sdyn to the category Man, PMan : Sdyn → Man
defined in an analogous way.

Hybrid Systems. With the definitions of dynamical systems and smooth dy-
namical systems in hand, we can define hybrid systems. A classical hybrid system
is a tuple Hclass = (Hclass, Φ) = (Q,E,D,G,R,Φ) where Hclass is a classical H-
space and Φ = {ϕi}i∈Q where ϕi is a flow on the topological space Di, i.e.,
(Di, ϕi) is a dynamical system for each i ∈ Q.

Similarly, we can define smooth classical hybrid systems as pairs Gclass =
(Gclass, V) = (Q,E,M,GM , RS , V) where Gclass is a classical G-space and V =
{Vi}i∈Q where Vi is a smooth vector field on the manifold Mi, i.e., (Mi, Vi) is a
smooth dynamical system for each i ∈ Q.

Definition 2. A categorical hybrid system is a pair Hcat = (H,SH) where
H is an H-small category and SH : H → Dyn is a functor such that the pair
(H,PTop ◦ SH) is a categorical H-space. The H-space

HH = (H,PTop ◦ SH) := (H,SH
H)

is referred to as the underlying H-space of the hybrid system Hcat.

Theorem 2. If for each e ∈ E there exists a morphism of dynamical sub
systems

αe : (Ge ⊆ Ds(e), ϕs(e)|Ge
) → (Re(Ge) ⊆ Dt(e), ϕt(e)|Re(Ge)),

then there is an injective correspondence

{Classical Hybrid Systems, Hclass} −→ {Categorical Hybrid Systems, Hcat}.

-

A Homology Theory for Hybrid Systems: Hybrid Homology 93

Smooth Categorical Hybrid Systems. As in the case of categorical hybrid
systems, we can define a smooth categorical hybrid system. A smooth categorical
hybrid system is a pair Gcat = (H,TG) where H is an H-small category and
TG : H → Sdyn is a functor such that the pair (H,PMan ◦TG) is a categorical
G-space. As before, the underlying G-space of a smooth hybrid system Gcat is
given by

GG = (H,PMan ◦TG) := (H,TG
G).

With this notation there is the following corollary of Theorem 2.

Corollary 2. If for each edge e ∈ E there exists a morphism of smooth dynam-
ical subsystems

αe : (Ge ⊆ Ms(e), Vs(e)|Ge
) → (Re(Ge) ⊆ Mt(e), Vt(e)|Re(Ge)),

then there is an injective correspondence

{Smooth Classical Hybrid Systems, Gclass}
↓

{Smooth Categorical Hybrid Systems, Gcat}.

Remark 1. Because of Theorem 1 and 2, we use H and H to denote categorical
hybrid spaces and hybrid systems, respectively, and simply refer to them as
hybrid spaces and hybrid systems. Similarly, because of Corollary 1 and 2 we
use G and G to denote smooth categorical hybrid spaces and systems; we simply
refer to them as smooth hybrid spaces and systems.

The Categorical Framework for Hybrid Systems. To conclude this sec-
tion, we note that the categorical framework introduced here gives a unifying
framework for all of the definitions introduced here. More specifically, fixing
an H-small category H, an H-space, G-space, hybrid system or smooth hybrid
system is just given by the following functors

H
SH→ Top, H

TG→ Man, H
SH→ Dyn, H

TG→ Sdyn,

respectively. Namely, all that changes is the functor and the target category.
Here the H-small category can be thought of as the “discrete” component of
the hybrid system and the functor can be thought of as the “continuous” com-
ponent. This general framework indicates that in studying hybrid systems, one
need only consider functors from small categories to other categories. Note that
this categorical notion of hybrid systems, hybrid spaces, et cetera, makes easy
work of defining the category of hybrid systems and hybrid spaces. Studying
the properties of these categories would seem to be a promising area of future
research in hybrid systems.

94

3 Hybrid Homology

In this section, a homology theory for hybrid systems is developed. Recall from
Section 2 that every hybrid system has an underlying “space,” termed an H-
space. With every H-space, we can associate a single topological space through
the use of the homotopy colimit; the homology of this space is defined to be the
hybrid homology of an H-space. Fortunately, there is a spectral sequence con-
verging to the hybrid homology of an H-space. It will be seen that this spectral
sequence implies a series of short exact sequences computing the hybrid homol-
ogy in terms of the homology of a small category with coefficients in a certain
functor. In the case when the H-space is contractible, the hybrid homology of
this H-space is just the homology of a certain small category with coefficients in
an abelian group.

The Homotopy Colimit. Let C be a small category and F : C → Top a
functor from this category to the category of topological spaces. There are two
well known ways to associate to such a pair a single topological space. The first,
and more obvious way, is through a construction known as the colimit. This is
defined as

colimC(F) =

∐
a∈Ob(C) F(a)

x ∼ F(α)(x)
, α ∈ Morid/ (C).

This construction has been used in the past in hybrid systems, namely in [5],
although it was not recognized that this was actually the colimit as the categor-
ical definition of hybrid systems was not available in that paper; the hybrifold
was defined as colimH(S) for an H-space H = (H,S) (for the rest of the paper we
drop the “H” subscript, i.e., we take S = SH). The key point is that although
this construction is the obvious way of associating a single space to a hybrid
system, it does not seem to be the “correct” one. There are many ways to justify
this statement. In the context of algebraic topology, it has been known for a long
time that the colimit does not possess desirable properties with respect to homo-
topies of spaces. A more subtle argument follows by considering the homology of
these spaces; the colimit does not seem to encode the correct information about
the behavior of hybrid systems—namely, with respect to Zeno. This problem is
rooted in the fact that the colimit “forgets” about the information encoded in
the edges of a hybrid system.

There is another, albeit more complicated, way of associating a single topolog-
ical space to a hybrid system—through the homotopy colimit. This construction
seems to encode the correct information about the hybrid system, both with re-
spect to homotopies (cf. [1],[3]) and with respect to homology. For this reason we
focus on the homotopy colimit. For simplicity, we will not introduce the defini-
tion of the homotopy colimit but refer the interested reader to [1] for a complete
tutorial on homotopy colimits. The pertinent point regarding homotopy colimits
is the simple form that they take when considering H-spaces.

A.D. Ames and S. Sastry

A Homology Theory for Hybrid Systems: Hybrid Homology 95

Fig. 1. The colimit and homotopy colimit of the water tank hybrid space

Theorem 3. For an H-space H = (H,S),

hocolimH(S) =

(∐
b∈∨(H) S(b)

)
�
(∐

a∈∧(H) (S(a)× I)
)

(x, 0) ∼ S(αa)(x), (x, 1) ∼ S(βa)(x)
.

Example 3. For the water tank hybrid space HW = (HW ,SW), the colimit is
homotopic to the (2-dimensional) cone, while the homotopy colimit is homotopic
to the punctured cone (see Figure 1). It will be seen that the “hole” in this cone
is a warning that the hybrid system may be Zeno, i.e., if the hole was not present,
the hybrid system could not be Zeno—the topology of this space dictates the
types of behavior this hybrid system can display.

The Underlying Topological Space of an H-Space. Since the homotopy
colimit is a single topological space, we can define the underlying topological
space of an H-space as

Top(H) := hocolimH(S)

and we can consider the homology of this space. More explicitly, this gives a
definition of hybrid homology—the homology of an H-space. The authors believe
that this space will prove useful for other constructions on hybrid systems.

Definition 3. The homology of an H-space H = (H,S), denoted by HHi(H, A)
and termed the hybrid homology of H with coefficients in an abelian group A, is
defined to be

HHi(H, A) := Hi(Top(H), A) = Hi(hocolimH(S), A).

The Homotopy Colimit Spectral Sequence. One of the important benefits
of considering homotopy colimits is the homotopy colimit spectral sequence (cf.
[1]) that relates the homology of the homotopy colimit to that of the homology
of the underlying small category with coefficients in a functor. Note that there is
not a similar spectral sequence for the colimit; this alone motivates the use of the

96

homotopy colimit. Specifically, for a small category C and functor F : C→ Top,
there is a spectral sequence

E2
p,q = Hp(C,Hq(F, A)) ⇒ Hp+q(hocolimC(F), A).

Here A is an abelian group and Hq(F, A) : C → Ab is the functor from the small
category to the category of abelian groups obtained by composing the homology
functor Hq(−, A) : Top → Ab with F. The homology Hp(C,Hq(F, A)) is the
homology of the small category C with coefficients in the functor Hq(F, A). For
a review of this homology theory, we refer the reader to [1], [10] and [11].

In the case of an H-space H = (H,S) this spectral sequence gives us impor-
tant information about the underlying topological space of the hybrid system,
Top(H). In this case the spectral sequence becomes

E2
p,q = Hp(H,Hq(S, A)) ⇒ HHp+q(H, A),

and we refer to this spectral sequence as the hybrid homology spectral sequence.
Because H is an H-small category, and by definition the longest chain of com-
posable non-identity morphisms is of length one, for any functor L : H → Ab,

Hn(H,L) = 0,

for n ≥ 2. This implies that the spectral sequence will simplify even further into
a set of short exact sequences.

Short Exact Sequences from a Spectral Sequence. Suppose that there is
a spectral sequence E2

p,q ⇒ Hp+q. If E2
p,q = 0 except when p = 0, 1 then there

are short exact sequences

0 −→ E2
1,n−1 −→ Hn −→ E2

0,n −→ 0

for all n ≥ 0 (cf. [12]). Because Hn(H,L) = 0 for n ≥ 2 and any functor L : H →
Ab, for the hybrid homology spectral sequence E2

p,q = Hp(H,Hq(S, A)) = 0 for
p �= 0, 1. Therefore, we have established the following important theorem.

Theorem 4. For an H-space H = (H,S) and an abelian group A, there are
short exact sequences

0 −→ H1(H,Hn−1(S, A)) −→ HHn(H, A) −→ H0(H,Hn(S, A)) −→ 0.

Collapsing Spectral Sequences. For a spectral sequence E2
p,q ⇒ Hp+q, if

E2
p,q = 0 except when q = 0, then the spectral sequence is said to collapse. In

this case there is an isomorphism Hn
∼= E2

n,0. This isomorphism will yield the
theorem shown below, which will be used in the following section to establish a
very concrete method for computing the hybrid homology of an H-space in the
case when the hybrid homology spectral sequence collapses. This will happen for
a special class of hybrid systems, as given in the following definition.

A.D. Ames and S. Sastry

A Homology Theory for Hybrid Systems: Hybrid Homology 97

Definition 4. The H-space H = (H,S) is contractible if S(a) is contractible
for every a ∈ Ob(H) and S(α) ∼ id for every α ∈ Morid/ (H) (here ∼ denotes
homotopic). We say that H is finite if H has a finite number of objects and
hence a finite number of morphisms. The H-space H is connected if Top(H) is
connected.

Theorem 5. If the H-space H = (H,S) is contractible, then

HHi(H, A) ∼= Hi(H, A)

for an abelian group A. It follows that HHn(H, A) = 0 for n ≥ 2.

4 Morse Theory and the Euler Characteristic of H

It is interesting to note that we can define the Euler characteristic for an H-space
H. Moreover, it will be seen that the Euler characteristic of an H-space can be
expressed as a combination of the Euler characteristics of individual topological
spaces in the hybrid space. As an application, a Morse theory type of theorem
can be established for hybrid systems in a very special case.

The Euler Characteristic. Let F be a field. Since Top(H) is a topological
space, we can define the Euler characteristic of the hybrid homology of an H-
space in the usual fashion. If dimF HHi(H, F) is finite and nonzero for only a
finite number of i′s (here the dimension of HHi(H, F) is its dimension as a vector
space over F), then the Euler characteristic of H with coefficients in a field F is
given by

χ(H, F) =
∞∑

i=0

(−1)i dimF HHi(H, F).

The Euler characteristic also can be defined when considering HHi(H); since
this is not a vector space, the Euler characteristic is defined using the rank of an
abelian group. For an abelian group A, define its rank (over Z) by rankZ(A) =
dimQ (A⊗Z Q). In this case the Euler characteristic is defined to be

χ(H) =
∞∑

i=0

(−1)irankZHHi(H) =
∞∑

i=0

(−1)i dimQ HHi(H)⊗Z Q,

where, again, for this to be well–defined, HHi(H)⊗Z Q must be a finite dimen-
sional vector space and nonzero for only a finite number of i′s.

The main theorem of this section is that the Euler characteristic of an ar-
bitrary H-space can be computed in terms of the Euler characteristic of the
topological spaces that determine the H-space, i.e., the topological space S(a)
for a ∈ Ob(H). This theorem yields a corollary that allows for the easy compu-
tation of the Euler characteristic in a special case.

98

Theorem 6. For an H-space H = (H,S),

χ(H, F) =
∑

a∈Ob(H)

χ(S(a), F)−
∑

α∈Morid/ (H)

χ(S(s(α)), F).

Corollary 3. For an H-space H = (H,S),

χ(H) =
∑

a∈Ob(H)

χ(S(a))−
∑

α∈Morid/ (H)

χ(S(s(α))).

If H is contractible and finite then for an arbitrary field F

χ(H) = χ(H, F) = |Ob(H)| − |Morid/ (H)|

where |Ob(H)| is the number of objects of H and |Morid/ (H)| is the number of
(non-identity) morphisms.

Morse Theory. The Euler characteristic is important because it relates the
homology of a space with the behavior of flows on that space. It is possible
to give a “Morse type theorem” for hybrid homology by considering the Morse
theory of a smooth dynamical system.

Let (M,V) be a smooth dynamical system as defined in Section 2. Assume
that M is a boundaryless compact n-dimensional manifold and that V has only
isolated singularities (equilibrium points). If Index(V) is the index of V , then
the Poincaré-Hopf theorem states that

Index(V) = χ(M).

Similarly, if f is a Morse function on M , and C(f)k is the number of critical
points of index k, then the Morse theorem says that

χ(M) =
n∑

k=0

(−1)k C(f)k.

We will not review these definitions and constructions in this paper (for a com-
plete review, the reader is referred to [13] and [14]). The important point is that
it is possible to relate these results in smooth manifold theory to hybrid systems.

Now consider a smooth hybrid system G = (H,TG) where TG : H → Sdyn
and its corresponding underlying G-space GG = (H,P◦TG) := (H,TG

G). Assume
that for each object a ∈ Ob(H), TG (a) = (M(a), Xa) where M(a) is a smooth
manifold and Xa is a vector field on that manifold (this functor sends objects
in H to the subcategory of Sdyn whose objects are smooth dynamical systems),
and that M(a) is compact and boundaryless for every a ∈ Ob(H). In this case
call G a smooth compact boundaryless hybrid system.

Note that there is an embedding E : Gspc → Hspc from the category of
G-spaces, Gspc, to the category of H-spaces, Hspc (cf. [8]). The underlying topo-
logical space of a smooth hybrid system is defined by Top(G) := Top(E(G)), and

A.D. Ames and S. Sastry

A Homology Theory for Hybrid Systems: Hybrid Homology 99

we can consider the homology of these spaces, i.e., HHi(G, A) := HHi(E(G), A).
Note that in general Top(G) is not a smooth manifold, or even a manifold at
all. The amazing thing is that, regardless of this, it still is possible to obtain a
Morse type theorem for hybrid systems of this form, i.e., we have the following
corollary of Theorem 6.

Corollary 4. Let G be a smooth compact boundaryless hybrid system and GG

its underlying G-space. If n(a) = dim(M(a)), then

χ(GG) =
∑

a∈Ob(H)

Index(Xa)−
∑

α∈Morid/ (H)

Index(Xs(α))

=
∑

a∈Ob(H)

n(a)∑
k=0

(−1)kC(fa)k −
∑

α∈Morid/ (H)

n(s(α))∑
k=0

(−1)kC(fs(α))k

where fa is a Morse function of M(a) for each a ∈ Ob(H).

Remark 2. It would be desirable to determine a Morse type theorem involving
only the topological space Top(G), but this does not seem possible (at least in
any generality) because, as mentioned before, Top(G) is not a smooth manifold
and will almost never be one—or even homeomorphic to one. Generalizations of
this theorem seem most promising in the context of Conley index theory since
those results are based on topological spaces and flows on those spaces.

5 Characterization of Zeno Behavior Through Hybrid
Homology

In this section we show that the hybrid homology of an H-space in some ways
dictates the type of behavior that a hybrid system can have on this H-space. This
result also will be related to the homology of the graph Γ that a hybrid system
has as its basic indexing set. Namely, we will show that in the case when the
H-space underlying a hybrid system is contractible, the vanishing of the hybrid
homology in nonzero degrees implies that there are no Zeno executions. We will
not review the definition of a hybrid system, or executions of hybrid systems;
for a review of these definitions in the context of homology we refer the reader
to [4]. Note that examples can also be found in this paper.

The Homology of a Graph. Recall that it is possible to define the homology of
an oriented graph Γ = (Q,E) with coefficients in the real numbers: Hi(Γ, R). The
important point about the homology of a graph is that it is easy to compute—
one need only compute the null space of the incidence matrix of the graph. For
the graph Γ , the incidence matrix, denoted by KΓ , is a |Q| × |E| matrix given
by

KΓ =
(
λt(e1) − λs(e1) · · · λt(e|E|) − λs(e|E|)

)
where E = {e1, . . . , e|E|} and λi is the ith standard basis vector for R|Q|.

100

It is easy to show (for a proof see [4]) that, if N (KΓ) is the null space of KΓ ,
then

H0(Γ, R) ∼= R|Q|−|E|+dimR N (KΓ), H1(Γ, R) ∼= RdimR N (KΓ)

and Hn(Γ, R) = 0 for n ≥ 2. This implies that the Euler characteristic of Γ is
given by

χ(Γ) = dimR(H0(Γ, R))− dimR(H1(Γ, R)) = |Q| − |E|.

A Forgetful Functor. Given a small category C, we can “forget” about some
of its structure in order to obtain a graph; in other words, there is a forgetful
functor U : Cat → Grph where Cat is the category of small categories and
Grph is the category of small graphs. If C is a small category, then the graph
U(C) is obtained by forgetting about which arrows are composites and which are
identities; every functor F : C → C′ is also a morphism U(F) : U(C) → U(C′) of
graphs. For more details see [6].

It easily can be seen that the category Hcat of all H-small categories is a
full subcategory of the category Cat (cf. [8]). If I : Hcat → Cat is the inclusion
functor, then we have a functor from Hcat to Grph given by the composition

Hcat
I−→ Cat

U−→ Grph.

By abuse of notation, we will denote the composition of these two functors by
U as well, i.e., U : Hcat → Grph. This functor is important in that it relates the
hybrid homology of an H-space to the homology of a graph.

Theorem 7. Let H = (H,S) be a finite and contractible H-space, then

HHn(H, R) ∼= Hn(U(H), R)

where Hn(U(H), R) is the graph homology of the graph U(H).

An important corollary of this theorem is that it gives a very easy and con-
crete way to compute the hybrid homology of a contractible and finite H-space.

Corollary 5. Let KU(H) be the incidence matrix of the graph U(H), then if H
is contractible and finite

HH0(H, R) ∼= R|Ob(H)|−|Morid/ (H)|+dimR N (KU(H)), HH1(H, R) ∼= RdimR N (KU(H))

and HHn(H, R) = 0 for n ≥ 2.

Homological Relationships with Classical H-Spaces. If H = (H,S) is the
(categorical) H-space, obtained from the classical H-space Hclass = (Γ,D,G,R)
via the correspondence given in Theorem 1, or vise versa, then we can relate
these two “spaces” via homology—at least in the case when H is contractible and
finite. This relationship is given in the following proposition. This proposition
supports the claim that the definition of a categorical H-space is the right one
because it says that when the domains of the hybrid system are contractible the
hybrid homology of an H-space is isomorphic to the graph homology.

A.D. Ames and S. Sastry

A Homology Theory for Hybrid Systems: Hybrid Homology 101

Proposition 1. Let H = (H,S) be the finite H-space obtained from the classical
H-space Hclass = (Γ,D,G,R). If H is contractible, then

HHn(H, R) ∼= Hn(Γ, R)

and it follows that χ(H) = χ(Γ).

A rather startling point is that the underlying H-space of a hybrid system—
more specifically its homology—in some way dictates the behavior that this
hybrid system can display (for a complete discussion on this, as well examples
and a review of Zeno behavior, see [4]). Even more importantly, the type of
behavior that the homology of an H-space “notices” is exactly the behavior that
is central, and unique, to hybrid systems: Zeno behavior. This point is made
more clear in the following theorem:

Theorem 8. Let HH = (H,SH) := (H,PTop ◦ SH) be the underlying H-space
of the hybrid system H = (H,SH). If HH is contractible and finite, then

dimR HH1(HH , R) = dimRN (KU(H)) = 0 ⇒ H is not Zeno.

If HH is connected, it implies that dimR HH0(HH , R) = 1, and so we have
the following corollary to this theorem which is in a form more reminiscent of
“Morse-type” theorems.

Corollary 6. If HH is connected, contractible and finite, then

χ(HH) = |Ob(H)| − |Morid/ (H)| = 1 ⇒ H is not Zeno.

In many ways, this theorem (and its corollary) is more of a “Morse-type”
theorem than Theorem 4. The hope is, through the use of the categorical frame-
work for hybrid systems introduced here, to incorporate the dynamics of a hybrid
system into the above theorems in order to obtain tighter algebraic theorems on
the nonexistence of Zeno.

Example 4. For the water tank hybrid space HW , using Proposition 1, it is easy
to see that HH1(HW , R) ∼= HH0(HW , R) ∼= R. So we cannot say that the water
tank is not Zeno, which is good because it is Zeno.

References

1. Bousfield, A.K., Kan, D.M.: Homotopy Limits, Completions and Localizations.

Volume 304 of Lecture Notes in Mathematics. Springer-Verlag (1972)

2. Thomason, R.W.: First quadrant spectral sequences in algebraic K-theory. In

Dupont, J.L., Madsen, I.H., eds.: Algebraic Topology. Volume 763 of Lecture Notes

in Mathematics. Springer-Verlag (1978) 332–355

3. Vogt, R.M.: Homotopy limits and colimits. Mathematische Zeitschrift 134 (1973)

11–52

4. Ames, A.D., Sastry, S.: Characterization of Zeno behavior in hybrid systems using

homological methods. Submitted to ACC (2005)

102

5. Simic, S., Johansson, K.H., Sastry, S., Lygeros, J.: Towards a geometric theory

of hybrid systems. In Krogh, B., Lynch, N., eds.: HSCC. Volume 1790 of LNCS.,

Springer Verlag (2000) 421–436

6. Lane, S.M.: Categories for the Working Mathematician. second edn. Volume 5 of

Graduate Texts in Mathematics. Springer (1998)

7. Lee, J.M.: Introduction to Smooth Manifolds. Volume 218 of Graduate Texts in

Mathematics. Springer (2003)

8. Ames, A.D., Sastry, S.: A categorical theory of hybrid systems. Technical Report

(2004)

9. Haghverdi, E., Tabuada, P., Pappas, G.J.: Bisimulation relations for dynamical,

control, and hybrid systems. Submitted to Theoretical Computer Science (2003)

10. Gabriel, P., Zisman, M.: Calculus of Fractions and Homotopy Theory. Volume 35

of Ergenbnisse der Mathematik und Ihrer Grenzgebiete. Springer-Verlag (1967)

11. Thomason, R.W.: First quadrant spectral sequences in algebraic K-theory via

homotopy colimits. Communications in Algebra 10 (1982) 1589–1668

12. Weibel, C.A.: An Introduction to Homological Algebra. Cambridge University

Press (1994)

13. Milnor, J.: Morse Theory. Princeton University (1963)

14. Madsen, I., Tornehave, J.: From Calculus to Cohomology: De Rahm Cohomology

and Characteristic Classes. Cambridge University (1997)

A.D. Ames and S. Sastry

Observability of Switched Linear Systems in
Continuous Time�

Mohamed Babaali and George J. Pappas

Electrical and Systems Engineering,

University of Pennsylvania,

Philadelphia, PA USA

{babaali, pappasg}@grasp.cis.upenn.edu

Abstract. We study continuous-time switched linear systems with un-

observed and exogenous mode signals. We analyze the observability of

the initial state and initial mode under arbitrary switching, and char-

acterize both properties in both the autonomous and non-autonomous

cases.

1 Introduction

The general model being considered here is1

ẋt = A(rt)xt +B(rt)ut

yt = C(rt)xt +D(rt)ut
(1)

where xt ∈ Rn, ut ∈ Rm and yt ∈ Rp, and where A(·), B(·) and C(·) are real
matrices of compatible dimensions. The input signals u : [0,∞) → Rm are
assumed to be analytic. The exogenous, yet unobserved, mode (or switching)
signal

r : [0,∞) → Q � {1, . . . , s} (2)

is furthermore assumed to be right-continuous and to assume only a finite num-
ber of jumps in any finite interval of [0,∞), so that all trajectories of vector-
valued variables are well defined and infinitely right-differentiable over [0,∞).
Note that Zeno behaviors can thus not occur, even though no minimum separa-
tion between consecutive switches (or minimum dwell time) is imposed.

While observability is well understood in classical linear system theory [14],
it becomes more complex in the switched case. One reason is that the switching
gives rise to a richer set of problems. First, the discrete modes may or may
not be observed, giving rise to two sets of problems. Second, in the latter case,

� This work was supported by NSF CAREER Grant 0132716.
1 For notational convenience, we have chosen to subscript time: We will denote the

value of some signal x at time t by xt instead of the standard x(t), while x and x[t,t′]
will denote the whole signal and its restriction to [t, t′], respectively.

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 103–117, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

104 M. Babaali and G. J. Pappas

since one may also want to recover the modes, a distinction must be made
between recovering the modes and recovering the states. Moreover, one can no
longer decouple observation from control, which makes for the need to distinguish
between the autonomous and non-autonomous cases, creating the problem of
existence of controls allowing observation. Finally, two sets of problems arise
from the fact that one may want the observability properties to hold for either
all possible mode signals (i.e. universal problems) or for some mode signal (i.e.
existential problems), in which case a characterization of the class of signals
may be desired. In this paper, we assume that the mode signals are unobserved
(i.e. unknown), and study the mode and state observability properties under
arbitrary switching.

Observability of hybrid systems has recently been the center of a great deal of
attention. However, most of the resulting literature is not related to the problems
under consideration here. For instance, while the work in [6, 11, 12, 15, 23] was
carried out in a stochastic setting, the papers [3, 5, 9, 18, 13] studied observability
of hybrid linear systems, where the modes depend on the state trajectory, and
deterministic discrete-time switched linear systems were considered in [1, 21].
However, in contrast to classical linear systems, there are differences between the
discrete and continuous time cases in switched linear systems, which require them
to be studied independently. For example, in continuous-time, taking successive
time derivatives of the output allows the current mode to fully express itself
in infinitesimal time, i.e. provide all the information it can provide about the
current state. It is thus possible to decouple the modes in the known modes case,
as we will see later in this paper. However, arbitrary switching removes such a
luxury in discrete-time (see, e.g., [1]).

Returning to continuous-time switched linear systems, we first report the
results for observed switching. First, observability under arbitrary switching
has long been known to be equivalent to standard observability of every pair
(A(q), C(q)) (see, e.g., [8]). However, the existence of a mode signal making the
initial state observable, which has proven to be a challenging problem, has only
recently been characterized, and shown to be decidable, in [10, 19]. It was shown
to be equivalent to V = Rn, V being the minimal subspace of Rn invariant with
respect to each A(q)T , q ∈ Q, and containing

∑
q∈Q ImC(q)T . Furthermore, a

constructive procedure for designing the mode signal r was given in [19], along
with an upper bound on the minimum number of switches necessary to achieve
observability.

It appears that the unobserved switching case has only been analyzed in
[2, 7, 22]. In [22], the problem of recovering, simultaneously, the initial mode
and state was considered along with the switch detection problem, but for au-
tonomous systems. In [2], sufficient conditions were given for generic final state
determinability, which we do not consider here. Finally, in [7], notions of ob-
servability and detectability were proposed in the framework of linear switching
systems, of which our model is a special case. The authors considered the problem
of recovering both the initial state and initial mode for some input, again simul-

Observability of Switched Linear Systems in Continuous Time 105

taneously, and the problem of detecting the switches, generalizing the results of
[22] to the non-autonomous case.

In this paper, we give linear-algebraic characterizations of mode observabil-
ity and state observability under arbitrary and unobserved switching. The fact
that we analyze them separately not only provides criteria for simultaneous
state/mode observability (since such a property is characterized by the inter-
section of both sets of criteria), but provides some additional insight into the
specific problems. In particular, by showing that mode and state observability
are not necessary for each other, we relax some of the conditions previously given
in the literature.

The outline of this paper is as follows. In Section 2, we establish some notation
in order to simplify the subsequent exposition. In Section 3, we study the initial
mode and initial state observability problems for autonomous systems. The same
treatment is then repeated in the non-autonomous case in Section 4.

2 Notation

Letting w denote a trajectory (or execution) of some system comprising all
signals of interest, including inputs, outputs and states, we decompose w into
three collections of signals or portions of signals over time segments as w =
(wd, wo, wr), and we say a system Σ = {wi}i∈I is

(wd/wo) − observable (3)

if wd, the “desired” set of quantities, can be uniquely recovered when wo is
“observed”, while wr, i.e. the ‘rest”, is neither observed nor desired. In other
words, it means that

∀w,w′ ∈ Σ, (wo = w′
o ⇒ wd = w′

d). (4)

By default, the domains of all variables are the full spaces of definition, which is
often too restrictive since one may find systems that are not (wd/wo)-observable,
and yet exhibit trajectories for which wd can be observed from wo. Of course the
“golden” solution to the observation problem is to actually determine all such
trajectories, i.e., find Σ0 � {w ∈ Σ | ∀w′ ∈ Σ, wo = w′

o ⇒ wd = w′
d}, the

“observable” subset of trajectories. However, we will take a different approach
in this paper, and will instead isolate some components of interest (typically
inputs, known or unknown) and either restrict them a priori or ask whether the
system is observable for some value or for generic values of those components.

We thus define (wd ∈Wd/wo ∈Wo/wr ∈Wr)-observability as

∀w,w′ ∈ Σ, (wd ∈Wd, wo ∈Wo, wr ∈Wr, wo = w′
o ⇒ wd = w′

d). (5)

Note that w′ in (5) ranges over Σ: Indeed, for any execution w to determine wd,
one needs to rule out w′

d �= wd∧w′
0 = wo for all w′ ∈ Σ. In particular, restricting,

say wr, to {0} will be denoted “wr” instead of “wr ∈ {0}.” Moreover, since, any

106

two restricting sets being fixed (say Wo and Wd), one can compute the largest
possible third one (i.e., Wr) such that the system remains (wd ∈ Wd/wo ∈
Wo/wr ∈ Wr)-observable, we will set to compute it, and we will then say the
system is

(wd ∈Wd/wo ∈Wo/w
∗
r) − observable or (6)

(wd ∈Wd/wo ∈Wo/wr) − observable (7)

according as Wr is nonempty or generic2 (when wr lies in a vector space). In-
formally, (6) reads “is wd observable from wo for some wr?”, while (7) reads “is
wd observable from wo for generic wr?”, and are natural questions to ask when
wr is some input to the system. Finally, extending the previous conventions to
the case where the three components of w themselves have components, we can
summarize what has been studied in the following table.

Table 1. Observability Concepts

Property Paper
(r0, x0 �= 0/y, u)-observability [22]

(r0, x0/y, u∗)-observability [7]

(r0/y, u/x0)-observability

(x0/y, u)-observability

(r0/y, u∗)-observability

(x0/y, u∗)-observability

This paper

Finally, we establish the following notational conventions to ease the discus-
sion. First, let y(r, x0, u) be the output signal y of (1) when the initial state is
x0, the input signal is u and the mode signal is r. For any vector-valued signal
z, let z(N) denote its N th right-derivative with respect to time, and let

z[N] �

⎛⎜⎜⎜⎝
z
z′

...
z(N−1)

⎞⎟⎟⎟⎠ . (8)

Now, let the N -step observability matrix of a mode q ∈ Q be

ON (q) �

⎛⎜⎝C(q)
...
C(q)A(q)N−1

⎞⎟⎠ , (9)

the N -step behavior (Toeplitz) matrix of a mode q be

2 We define a generic subset of a finite-dimensional vector space as a set containing an

open and dense subset (here, all such subsets will be complements of finite unions of

proper subspaces), and a generic subset of the space S of analytic signals from [0, ∞)

to R
m as a set containing a set of signals that can be written {s ∈ S | s

[N]
t ∈ G} for

some integer N , some time t, and some generic subset G of R
Nm.

M. Babaali and G. J. Pappas

Observability of Switched Linear Systems in Continuous Time 107

ΓN (q) �

⎛⎜⎜⎜⎜⎜⎜⎝

D(q) · · · 0 0
C(q)B(q) · · · 0 0

C(q)A(q)B(q) · · ·
... 0

... · · · D(q)
...

C(q)A(q)N−1B(q) · · · C(q)B(q) D(q)

⎞⎟⎟⎟⎟⎟⎟⎠ , (10)

and define the following mapping as

YN (q, x, U) � ON (q)x+ ΓN (q)U, (11)

where U ∈ RmN , so that

y
[N]
t (r, x0, u) = YN (rt, xt, u

[N]
t). (12)

In words, YN (q, x, U) is the stack of the first N derivatives of the output yt when
rt = q, xt = x, and u

[N]
t = U .

For further reference, we define the following coupled system parameters

A(q, q′) �
(
A(q) 0

0 A(q′)

)
B(q, q′) �

(
B(q)

−B(q′)

)
C(q, q′) � (C(q) C(q′)) D(q, q′) � D(q) −D(q′),

(13)

and we note that the N -step Kalman observability matrix of the pair (A(q, q′),
C(q, q′)) is (ON (q) ON (q′)) and that the behavior matrix of the tuple (A(q, q′),
B(q, q′), C(q, q′), D(q, q′)) is simply ΓN (q) − ΓN (q′).

Furthermore, we let ρ(M), !(M) and M{1} denote the rank, the column
range space, and a (generalized) {1} -inverse of any real matrix M (see [4]). A
matrix N is a {1}-inverse of M if MNM = M . The pseudo-inverse is thus always
a {1}-inverse, and whenever M is of full column rank, any {1}-inverse N of M
is also a left inverse of M in the sense that M{1}M equals the identity matrix.
Moreover, x is a solution to the equation Y = Mx if and only if x = M{1}Y
for some {1}-inverse M{1} of M . Given a subspace V of Rn, we let PV denote
the matrix of the orthogonal projection on V . Finally, let A denote the set of
analytic signals from [0,∞) to Rm.

3 Autonomous Systems

In this section we assume that u = 0, hence the autonomous case. We start
with the important observation that the SLS (1) cannot be (r0/y, u)-observable.
Indeed, if x0 = 0, then y = 0 identically for all r, and so the measurements
give no information about r0. We therefore need to lower our expectation on the
observability of the initial mode, and relax the previous requirements. We thus
consider observability of the initial mode for generic initial states, and define
discernibility as follows.

108

Definition 1. The mode q is discernible from another mode q′ if for all T > 0,
whenever r[0,T] ≡ q and r′

[0,T] ≡ q′, the set

{x0 ∈ Rn | ∀x′
0 ∈ Rn, y[0,T](r, x0, 0) �= y[0,T](r′, x′

0, 0)}. (14)

is generic in Rn.

In words, q is discernible from q′ if, for generic initial states x0, one can rule
out q′ when observing y(r, x0, 0) over [0, T]. Before giving a characterization of
discernibility, let us establish the following straightforward lemma:

Lemma 1. Let M and M ′ be two real N ×n matrices, and define V � !(M)∩
!(M ′). Then

dimM−1(V) = n− ρ((M M ′)) + ρ(M ′), (15)

where M−1 denotes the set-valued inverse of M .

Proof. The Grassmann relation gives dim(V) = ρ(M) + ρ(M ′) − ρ((M M ′)),
the Rank Plus Nullity Theorem dim(M−1(V)) = dim(V) + dim ker(M) and
n = ρ(M) + dim ker(M), and the lemma follows. �
We have:

Proposition 1. A mode q is discernible from q′ if and only if

ρ((O2n(q) O2n(q′))) > ρ(O2n(q′)). (16)

Proof. Fix T > 0. We need to show that{
x0 ∈ Rn | ∀x′

0 ∈ Rn, y[0,T](r, x0, 0) = y[0,T](r′, x′
0, 0)

}
(17)

is a generic set if and only if (16) holds. Recalling that (O2n(q) O2n(q′)) is the
Kalman observability matrix of the pair (A(q, q′), C(q, q′)) and that y[0,T](r, x0, 0)

−y[0,T](r′, x′
0, 0) is its output in free evolution with initial state

(
x0
−x′

0

)
, we have

y[0,T](r, x0, 0) = y[0,T](r′, x′
0, 0) ⇔ (O2n(q) O2n(q′))

(
x0
−x′

0

)
= 0 (18)

since ker((O2n(q) O2n(q′))) is A(q, q′)-invariant. We can therefore shift our at-
tention to showing that the complement of

v(q, q′) �
{
x0 ∈ Rn | ∃x′

0 ∈ Rn, (O2n(q) O2n(q′))
(
x0
x′

0

)
= 0

}
(19)

in Rn is generic if and only if (16) holds. Defining V (q, q′) � !(O2n(q)) ∩
!(O2n(q′)), noting that v(q, q′) = O2n(q)−1(V (q, q′)), and then using Lemma
1, we get

dim v(q, q′) = n− ρ((O2n(q) O2n(q′))) + ρ(O2n(q′)). (20)

Therefore, we see that dim(v(q, q′)) < n, thus that its complement is generic, if
and only if (16) holds, which completes the proof. �

M. Babaali and G. J. Pappas

Observability of Switched Linear Systems in Continuous Time 109

Theorem 1. The SLS (1) is (r0/y, u/x0)-observable if and only if every pair of
different modes is mutually discernible.

Proof. (r0/y, u/x0)-observability means that the set

P � {x0 ∈ Rn | ∀r, r′, ∀x′
0, r

′
0 �= r0 ⇒ y(r, x0, 0) �= y(r′, x′

0, 0)} . (21)

is generic in Rn. Letting

Q(q, q′) � {x0 ∈ Rn | ∃r, r′, r0 = q, r′
0 = q′, ∃x′

0, y(r, x0, 0) �= y(r′, x′
0, 0)} ,

(22)

we get

P = Rn \ ∪q �=q′Q(q, q′). (23)

Now, by right-continuity of the mode signals, for every pair r, r′, there exists
0 < T ≤ ∞ such that r[0,T] ≡ q, r′

[0,T] ≡ q′, and so v(q, q′) ⊂ Q(q, q′) (see
Proposition 1). On the other hand, Q(q, q′) ⊂ v(q, q′) follows by considering
r ≡ q and r′ ≡ q′. Consequently,

P = Rn \ ∪q �=q′v(q, q′), (24)

and is generic if and only if each v(q, q′) is a proper subspace of Rn, and thus if
and only if every pair of modes is mutually discernible. �

Example 1. Consider (1), where s = 2, B(1) = B(2) = 0, D(1) = D(2) = 0, and
where

A(1) =
(

1 1
0 1

)
A(2) =

(
1 2
0 3

)
C(1) =

(
1 0

)
C(2) =

(
1 0

)
.

(25)

Then

(O4(1) O4(2)) =

⎛⎜⎜⎝
1 0 1 0
1 1 1 2
1 2 1 8
1 3 1 26

⎞⎟⎟⎠ , (26)

and has rank 3, while ρ(O4(1)) = ρ(O4(2)) = 2. Therefore, it is possible to
recover the initial mode for generic initial states. For instance,

y
[4]
0 (r0, x, o) =

⎛⎜⎜⎝
1
2
3
4

⎞⎟⎟⎠ (27)

could only have been produced by r0 = 1 (with x0 = (1, 1)). It is actually
possible to recover r0 uniquely whenever the second entry of x0 is not zero,
which constitutes a generic subset of R2.

110

We now turn to the study of the ability to recover the initial state x0 of
the system, based only on the output signal y. A first route for that is, first, to
recover the initial mode r0, and, then, to invert the Gramian to get x0. Noting
that this can only be done for generic x0, we state the following corollary to
Theorem 1.

Corollary 1. The SLS (1) is (x0/y, u)-observable if every mode is observable
and every pair of modes is mutually discernible.

Even though this route may seem to be the natural way to proceed, we will
now show that it is neither necessary nor sufficient for (x0/y, u)-observability,
which is in fact possible. In other words, it is possible to determine the initial
state from the output globally, for all mode signals, and without necessarily
recovering the modes. To this end, we define joint observability as follows:

Definition 2. Two different modes q and q′ are jointly observable if for all
T > 0, whenever r[0,T] ≡ q and r′

[0,T] ≡ q′,

∀x0, ∀x′
0, x0 �= x′

0 ⇒ y[0,T](r, x0, 0) �= y[0,T](r′, x′
0, 0). (28)

Note that, in contrast to discernibility, joint observability is symmetric. That
two modes are jointly observable means that one can recover the initial state
from the output without knowledge of the initial mode. We have:

Proposition 2. q and q′ are jointly observable if and only if they are both ob-
servable (i.e., ρ(On(q)) = ρ(On(q′)) = n) and the left inverses of their 2n-step
observability matrices agree on V (q, q′), i.e.

(O2n(q){1} −O2n(q′){1})PV (q,q′) = 0. (29)

Proof. Assume that q and q′ are both observable and satisfy (29), and suppose
that y[0,T](r, x0, 0) = y[0,T](r′, x′

0, 0) (with T > 0 and r[0,T] ≡ q and r′
[0,T] ≡ q′).

Then, recalling (18), we get

O2n(q)x0 = O2n(q′)x′
0. (30)

Furthermore, q and q′ being observable, (29) implies that v(q, q′) = v(q′, q) and
that (O2n(q) −O2n(q′))Pv(q,q′) = 0, which, in turn, implies that

O2n(q)x0 = O2n(q′)x0, (31)

since x0 ∈ v(q, q′). Combining (30) and (31), we get

O2n(q′)(x0 − x′
0) = 0, (32)

hence that x0 = x′
0 since q′ is observable.

Conversely, assume that, say q, is not observable. Then taking x0 ∈ ker(On(q))
\{0}, we get y[0,T](r, x0, 0) = y[0,T](r′, 0, 0) = 0 while x0 �= 0, hence that q and
q′ are not jointly observable. Finally, assuming q and q′ are both observable
but that (29) does not hold, we have the existence of Y ∈ V (q, q′) such that
(O2n(q){1}−O2n(q′){1})Y �= 0. Letting x0 = O2n(q){1}Y and x′

0 = O2n(q′){1}Y ,
we have x0 �= x′

0 but O2n(q)x0 = O2n(q′)x′
0 = Y , and thus y[0,T](r, x0, 0) =

y[0,T](r′, x′
0, 0) and q and q′ are not jointly observable. �

M. Babaali and G. J. Pappas

Observability of Switched Linear Systems in Continuous Time 111

A characterization of (x0/y, u)-observability follows.

Theorem 2. The SLS (1) is (x0/y, u)-observable if and only if every mode is
observable and any two different modes are jointly observable.

Proof. (x0/y, u)-observability means that

∀r, ∀r′, ∀x0, ∀x′
0, x

′
0 �= x0 ⇒ y(r, x0, 0) �= y(r′, x′

0, 0). (33)

Assume that every mode is observable, that any pair is jointly observable,
and that y(r, x0, 0) = y(r′, x′

0, 0). First, by right-continuity of both mode signals,
there exist 0 < T ≤ ∞ and two modes q, q′ such that r[0,T] ≡ q, r′

[0,T] ≡ q′. Then
x0 = x′

0 is implied by observability of each mode or joint observability of each
pair of modes according as q = q′ or q �= q′, by definition.

Conversely, assume that, say q, is not observable. Then letting r = r′ ≡ q,
and choosing x0 ∈ ker(On(q)) \ {0}, we have y(r, x0, 0) �= y(r′, 0, 0) even though
x0 �= 0. On the other hand, assuming the existence of a jointly unobservable pair
q, q′, letting r ≡ q and r′ ≡ q′, there must exist x0 �= x′

0 such that y(r, x0, 0) �=
y(r′, x′

0, 0), by definition of joint observability. �

Remark 1. In [22], it was established that (r0, x0 �= 0/y, u)-observability was
equivalent to the rank-2n condition

∀q, q′ ∈ Q, q �= q′ ⇒ ρ((O2n(q)O2n(q′))) = 2n. (34)

Since ρ([O2n(j)]) ≤ n for both j = q and j = q′, (34) is sufficient for mutual
discernibility of q and q′, and therefore for (r0/y, u/x0)-observability. In fact, by
(20), it is equivalent to

∀q, q′, q �= q′ ⇒ v(q, q′) = {0}, (35)

which is the least-dimensional possible subspace of conflict, and hence to (r0/
y, u/x0 �= 0)-observability. What we have thus shown is that it is possible to
recover r0 even if v(q, q′) �= {0}, and we have relaxed (34) into (16) to account
for such cases.

As for state observability, it turns out that (34) is not necessary for (x0/y, u)-
observability, simply because it is not necessary to recover the initial mode in
order to infer the initial state when the initial state is not trivial. For instance,
the system in Example 1 is (x0/y, u)-observable, but does not satisfy (34). Recall
that

v(1, 2) =
{(

α
0

) ∣∣∣α ∈ R

}
. (36)

If x0 �∈ v(1, 2), then one can uniquely infer r0 and recover x0, since every mode
is observable. However, if x0 ∈ v(1, 2), then

y
[2]
0 (r, x0, 0) =

(
α
α

)
⇒ x0 =

(
α
0

)
(37)

for all r, hence the claim.

112

4 Non-autonomous Systems

We now turn to the non-autonomous case, and study both existence and generic
problems in u. We will show that existence and generic properties will be equiv-
alent for the initial mode observability properties, and that the genericity re-
quirement on x0 can actually be waived. We will need the following definition
and lemma.

Definition 3. Two different modes q and q′ are controlled-discernible if for all
T > 0, whenever r[0,T] ≡ q and r′

[0,T] ≡ q′, there exists an input u such that

∀x0, ∀x′
0, y[0,T](r, x0, u) �= y[0,T](r′, x′

0, u). (38)

In other words, q and q′ are controlled-discernible if there exists a control making
it possible to distinguish them by their outputs.

Lemma 2. The two modes q and q′ are controlled-discernible if and only if there
exists a positive integer N such that

(I − PN (q, q′))
(
ΓN (q) − ΓN (q′)

)
�= 0, (39)

where PN (q, q′) is the matrix of the orthogonal projection on !(ON (q)) ∩ !
(ON (q′)). Moreover, (38) then holds if and only if (I − PN (q, q′))

(
ΓN (q) −

ΓN (q′)
)
u

[N]
0 �= 0.

Proof. First, note that since the inputs u are analytic, we have

y[0,T](r, x0, u) = y[0,T](r′, x′
0, u) (40)

⇐⇒∀N, y[N]
0 (r, x0, u) = y

[N]
0 (r′, x′

0, u) (41)

⇐⇒∀N, YN (q, x0, u
[N]
0) = YN (q′, x′

0, u
[N]
0). (42)

Therefore, q and q′ are controlled-discernible if and only if there exists u such
that

∀x0, ∀x′
0, ∃N, ON (q)x0 + ΓN (q)u[N]

0 �= ON (q′)x′
0 + ΓN (q′)u[N]

0 (43)

⇐⇒∃N, ∀x0, ∀x′
0, ON (q)x0 + ΓN (q)u[N]

0 �= ON (q′)x′
0 + ΓN (q′)u[N]

0 (44)

⇐⇒
(
!(ON (q)) + ΓN (q)u[N]

0

)
∩
(
!(ON (q′)) + ΓN (q′)u[N]

0

)
= ∅ (45)

⇐⇒(I − PN (q, q′))
(
ΓN (q) − ΓN (q′)

)
u

[N]
0 �= 0. (46)

Equivalence of (44) and (43) follows from the fact that the sets

SN �
{(

x0
−x′

0

)
∈ R2n

∣∣∣ (ON (q) ON (q′))
(

x0
−x′

0

)
+ (ΓN (q) − ΓN (q′))u[N]

0 = 0
}

(47)

are affine subspaces of R2n satisfying SN ⊂ SN ′ if N > N ′, and so ∩∞
N=1SN = ∅

if and only if SN eventually stabilizes at ∅.

M. Babaali and G. J. Pappas

Observability of Switched Linear Systems in Continuous Time 113

Therefore, there exists an input u such that (38) holds if and only if there
exists N such that (39) holds, and the set of such inputs then contains the set{

u ∈ A | u[N]
0 ∈ RmN \ ker

(
(I − PN (q, q′))

(
ΓN (q) − ΓN (q′)

)
u

[N]
0

)}
, (48)

which is generic. �

The next result establishes the decidability of the condition given in the
previous lemma.

Proposition 3. The two modes q and q′ are controlled-discernible if and only
if

Γ2n(q) − Γ2n(q′) �= 0, (49)

and, equivalently, if (39) is satisfied with N = 4n.

Proof. First, let us show that

∃N, (I − PN (q, q′))
(
ΓN (q) − ΓN (q′)

)
�= 0 (50)

⇐⇒∃N ′, ΓN ′(q) − ΓN ′(q′) �= 0, (51)

To see this, note that

(I − PN (q, q′))
(
ΓN (q) − ΓN (q′)

)
�= 0 (52)

⇐⇒ρ ((ΓN (q) − ΓN (q′) ON (q) ON (q′))) > ρ ((ON (q) ON (q′))) , (53)

which clearly proves the implication in (51). On the other hand, necessity in (51)
stems from the fact that if ΓN (q)−ΓN (q′) �= 0, then the rank of ΓN (q)−ΓN (q′),
thus that of (ΓN (q)−ΓN (q′) ON (q) ON (q′)), grows unbounded in N . Therefore,
since the rank of (ON (q) ON (q′)) is bounded by 2n,

ρ ((ΓN (q) − ΓN (q′) ON (q) ON (q′))) − ρ ((ON (q) ON (q′))) (54)

is unbounded.
Now, a straightforward consequence of the Cayley-Hamilton Theorem is that

ΓN (q) �= 0 for some N if and only if Γn(q) �= 0. Therefore, recalling that ΓN (q)−
ΓN (q′) is exactly the N -step behavior matrix of the tuple (A(q, q′), B(q, q′),
C(q, q′), D(q, q′)), we get that (51) holds if and only if Γ2n(q) − Γ2n(q′) �= 0.
Moreover, in that case, it is easy to see that ρ(Γ4n(q) − Γ4n(q′)) > 2n, and
therefore that the integer expressed in (54) is positive, and thus that (I −
P4n(q, q′))

(
Γ4n(q) − Γ4n(q′)

)
�= 0. �

Remark 2. An interesting question is whether the smallest N ′ in (51) could be
strictly smaller than the smallest N . Equivalently, can the degree of a polynomial
input u′ of smallest degree satisfying

114

y(r, 0, u) �= y(r′, 0, u), (55)

where r ≡ q and r′ ≡ q′, be strictly smaller then the degree of a polynomial
input u of smallest degree satisfying (38)? The answer is yes, and as an example,
take q = 1 and q′ = 2, with A(1) = B(1) = (1), A(2) = B(2) = (2), C(1) =
C(2) = (1), and D(1) = D(2) = 0, and let u ≡ −1. Then

y
[4]
0 (r, 0, u) =

⎛⎜⎜⎝
0
−1
−1
−1

⎞⎟⎟⎠ �= y
[4]
0 (r′, 0, u) =

⎛⎜⎜⎝
0
−2
−4
−8

⎞⎟⎟⎠ , (56)

hence (55). However, if u ≡ α, then whenever x0 = x′
0 = −α, we get

y(r, x0, u) = y(r′, x′
0, u). (57)

In fact, it can be verified that the minimum degree of a polynomial u for (38)
to hold is 1, as opposed, obviously, to 0 for (55).

We can now establish the following characterization of (r0/y, u∗)-observability
and (r0/y, u)-observability.

Theorem 3. The following are equivalent.

1. The SLS (1) is (r0/y, u∗)-observable.
2. The SLS (1) is (r0/y, u)-observable.
3. Every pair of different modes is controlled-discernible.

Proof. 2 ⇒ 1 is obvious.
1 ⇒ 3: Assume some pair of modes (q, q′) is not controlled-discernible. Then,

by definition, there exists no input u such that y(r, x0, u) �= y(r′, x′
0, u) for all

x0, x
′
0 when r ≡ q and r′ ≡ q′.

3 ⇒ 2: We need to show that the set of controls

U � {u ∈ A | ∀r, ∀r′, ∀x0, ∀x′
0, r

′
0 �= r0 ⇒ y(r, x0, u) �= y(r′, x′

0, u)} (58)

is generic if condition 3. holds. Let us show that it in fact contains

U4n �

⎧⎨⎩u ∈ A | u[4n]
0 ∈ R4mn \

⋃
q �=q′

ker
(
(I − P4n(q, q′))

(
Γ4n(q) − Γ4n(q′)

))⎫⎬⎭ ,

(59)

which is indeed generic if ever pair of modes is controlled-discernible, by Propo-
sition 3. That U4n ⊂ U follows from Lemma 2 and from the fact that, since the
mode signals are right-continuous, there exists for any r and r′ a time T > 0
such that r[0,T] ≡ q and r′

[0,T] ≡ q′. �

M. Babaali and G. J. Pappas

Observability of Switched Linear Systems in Continuous Time 115

As for state observability, we have:

Theorem 4. The following are equivalent.

1. The SLS (1) is (x0/y, u
∗)-observable.

2. The SLS (1) is (x0/y, u)-observable.
3. Every mode is observable and every pair of modes is either controlled-

discernible or jointly observable.

Proof. 2 ⇒ 1 is obvious.
1 ⇒ 3: If some mode q is not observable, then whenever x0 ∈ ker(On(q))\{0},

we have y(r, x0, u) = y(r, 0, u) for any u when r ≡ q. Assume now that q and q′

are neither controlled-discernible nor jointly observable. Then ΓN (q)−ΓN (q′) =
0 for all N and, letting r ≡ q and r′ ≡ q′, we get

y(r, x0, u) − y(r′, x′
0, u) = y(r, x0, 0) − y(r′, x′

0, 0), (60)

and so, by definition of joint observability, there exist two initial states x0 and x′
0

such that y(r, x0, 0) �= y(r′, x′
0, 0), and by (60), such that y(r, x0, u) �= y(r′, x′

0, u)
for all controls u.

3 ⇒ 2: We need to show that the set of controls

U � {u ∈ A | ∀r, ∀r′, ∀x0, ∀x′
0, x

′
0 �= x0 ⇒ y(r, x0, u) �= y(r′, x′

0, u)} (61)

is generic if condition 3. holds. Let us show that it in fact contains

U4n �

⎧⎨⎩u ∈ A | u[4n]
0 ∈ R4mn \

⋃
(q,q′)∈S

ker
(
(I− P4n(q, q′))

(
Γ4n(q)− Γ4n(q′)

))⎫⎬⎭ ,

(62)

where S is the set of controlled-discernible pairs of modes. By proposition 3,
U4n is of course generic. Now, take x0 �= x′

0, r, r
′ and T > 0 such that

r[1,T] ≡ q and r′[0, T] ≡ q′. If q = q′, then of course y(r, x0, u) �= y(r′, x′
0, u)

for all u ∈ A since q is observable. If q �= q′ and they are controlled-discernible,
then by Lemma 2 and Proposition 3, y[0,T](r, x0, u) �= y[0,T](r′, x′

0, u) if u ∈
U4n. If they are not controlled-discernible, then they are jointly observable
and so y[0,T](r, x0, u) �= y[0,T](r′, x′

0, u) for all u ∈ A since y[0,T](r, x0, u) −
y[0,T](r′, x′

0, u) = y[0,T](r, x0, 0) − y[0,T](r′, x′
0, 0). �

Remark 3. What we have just shown is that for switched linear systems with
arbitrary and unknown mode signals, single-experiment observability and generic
single-experiment observability, as defined in [17], are equivalent, whether one
wishes to observe the initial mode or the initial state.

Remark 4. In [7], recall that a necessary and sufficient condition for
(r0, x0/y, u

∗)-observability was established as the combination of controlled-
discernibility of each pair of modes and observability of each mode. While

116

controlled-discernibility of every pair of modes is indeed necessary and suffi-
cient for (r0/y, u∗)-observability, we have established that it is not necessary
for (x0/y, u

∗)-observability. Indeed, as noted in Remark 1, the system given in
Example 1 is (x0/y, u

∗)-observable even though ΓN (q) = 0 for any mode, mak-
ing controlled-discernibility an impossibility. Informally, it shows that it is not
necessary to recover the initial mode in order to figure out the initial state.

5 Conclusion

We have characterized several observability notions for continuous-time switched
linear systems. The analysis is of course still incomplete, and several problems
still need to be solved. For instance, mode and state observability properties
under fully or partially unknown inputs still have not been investigated in the
switched setting. Furthermore, we will be investigating the existential counter-
parts of our current results, i.e. conditions for existence of mode signals allowing
the initial or current mode or state to be inferred. It turns out that, in contrast
with the universal problems that reduce to instantaneous inversions, such prob-
lems will involve observing the outputs over a period of time, and will involve
the design of switching signals (as pointed out, e.g., in [22], and as is the case
in the known modes case [19]). In future work, we will furthermore explore the
connection between observability and bisimulation theory for discrete event and
hybrid systems [16, 20].

Acknowledgements

The authors wish to thank the anonymous reviewers for their careful reviews
and insightful comments, as well as Hakan Yazarel for valuable discussions.

References

1. M. Babaali and M. Egerstedt, “Observability of switched linear systems.” in Hybrid
Systems: Computation and Control (R. Alur and G. Pappas, eds.). Springer, 2004,

pp. 48–63.

2. A. Balluchi, L. Benvenuti, M. D. Di Benedetto, and A. L. Sangiovanni-Vincentelli,

“Observability for hybrid systems,” in Proceedings of the 42nd IEEE Conference
on Decision and Control, Maui, HW, December 2003.

3. A. Bemporad, G. Ferrari-Trecate, and M. Morari, “Observability and controlla-

bility of piecewise affine and hybrid systems,” IEEE Transactions on Automatic
Control, vol. 45, no. 10, pp. 1864–1876, October 2000.

4. S. L. Campbell and C. D. J. Meyer, Generalized Inverses of Linear Transforma-
tions. New York, NY: Dover, 1991.

5. P. Collins and J. H. van Schuppen, “Observability of piecewise-affine hybrid sys-

tems,” ser. Hybrid Systems: Computation and Control. Springer-Verlag, 2004.

6. E. F. Costa and J. B. R. do Val, “On the detectability and observability of discrete-

time Markov jump linear systems,” in Proceedings of the 39th IEEE Conference
on Decision and Control, Sydney, Australia, December 2000, pp. 2355–2360.

M. Babaali and G. J. Pappas

Observability of Switched Linear Systems in Continuous Time 117

7. E. De Santis, M. D. Di Benedetto, and G. Pola, “On observability and detectability

of continuous-time linear switching systems,” in Proceedings of the 42nd IEEE
Conference on Decision and Control, Maui, HW, December 2003.

8. J. Ezzine and A. H. Haddad, “Controllability and observability of hybrid systems,”

International Journal of Control, vol. 49, no. 6, pp. 2045–2055, 1989.

9. G. Ferrari-Trecate and M. Gati, “Computation of observability regions for discrete-

time hybrid systems,” in Proceedings of the 42nd IEEE Conference on Decision and
Control, Maui, HW, December 2003.

10. L. Gurvits, “Stabilities and controllabilities of switched systems (with applications

to the quantum systems),” in Proceedings of the Fifteenth International Symposium
on Mathematical Theory of Networks and Systems, Univ. Notre Dame, August

2002.

11. I. Hwang, H. Balakrishnan, and C. Tomlin, “Observability criteria and estimator

design for stochastic linear hybrid systems,” in Proceedings of the IEE European
Control Conference, Cambridge, UK, September 2003.

12. Y. Ji and H. Chizeck, “Controllability, observability and discrete-time jump linear

quadratic control,” International Journal of Control, vol. 48, no. 2, pp. 481–498,

1988.

13. A. Juloski, M. Heemels, and S. Weiland, “Observer design for a class of piece-

wise affine systems,” in Proceedings of the 41st IEEE Conference on Decision and
Control, Las Vegas, NV, December 2002.

14. T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice Hall, 1980.

15. M. Mariton, “Stochastic observability of linear systems with markovian jumps,” in

Proceedings of the 25th IEEE Conference on Decision and Control, Athens, Greece,

December 1986, pp. 2208–2209.

16. G. J. Pappas, “Bisimilar linear systems,” Automatica, vol. 39, no. 12, pp. 2035–

2047, December 2003.

17. E. D. Sontag, “On the observability of polynomial systems, I: Finite-time prob-

lems,” SIAM Journal on Control and Optimization, vol. 17, no. 1, pp. 139–151,

1979.

18. ——, “Nonlinear regulation: The piecewise linear approach,” IEEE Transactions
on Automatic Control, vol. 26, no. 2, pp. 346–358, April 1981.

19. Z. Sun, S. S. Ge, and T. H. Lee, “Controllability and reachability criteria for

switched linear systems,” Automatica, May 2002.

20. P. Tabuada and G. J. Pappas, “Bisimilar control affine systems,” Systems & Con-
trol Letters, vol. 52, no. 1, pp. 49–58, May 2004.

21. R. Vidal, A. Chiuso, and S. Soatto, “Observability and identifiability of jump linear

systems,” in Proceedings of the 41st IEEE Conference on Decision and Control,
Las Vegas, NV, December 2002, pp. 3614–3619.

22. R. Vidal, A. Chiuso, S. Soatto, and S. Sastry, “Observability of linear hybrid

systems,” ser. Hybrid Systems: Computation and Control. Springer-Verlag, 2003.

23. P. D. West and A. H. Haddad, “On the observability of linear stochastic switching

systems,” in Proceedings of the 1994 American Control Conference, Baltimore,

MD, June 1994, pp. 1846–1847.

Controller Synthesis on Non-uniform and
Uncertain Discrete–Time Domains�

Andrea Balluchi1, Pierpaolo Murrieri1,
and Alberto L. Sangiovanni-Vincentelli1,2

1 PARADES GEIE, Via di S. Pantaleo, 66, 00186 Roma, Italy

{balluchi, murrieri, alberto}@parades.rm.cnr.it
http://www.parades.rm.cnr.it

2 Dept. of EECS, University of California at Berkeley, CA 94720, USA

alberto@eecs.berkeley.edu
http://www.eecs.berkeley.edu/alberto

Abstract. The problem of synthesizing feedback controllers that per-

form sensing and actuation actions on non–uniform and uncertain dis-

crete time domains is considered. This class of problems is relevant to

many application domains. For instance, in engine control a heteroge-

nous and, to some extent, uncertain event–driven time domain is due

to the behavior of the 4-stroke internal combustion engine, with which

the controller has to synchronize to operate the engine properly. Simi-

lar problems arise also in standard discrete–time control systems when

considering the behavior of the system with controller implementation

and communication effects. The design problem is formalized in a hy-

brid system framework; synthesis and verification methods, based on

robust stability and robust performance results, are presented. The ef-

fectiveness of the proposed methods is demonstrated in an engine control

application.

1 Introduction

This paper considers the problem of synthesizing feedback controllers that per-
form sensing and actuation actions on non–uniform and uncertain discrete–time
domains. The approach was initially motivated by control problems in the au-
tomotive industry, but it is certainly extensible to other application domains.

In engine control applications the existence of non–uniform and, to some
extent, uncertain time–domains is a characteristic of the plant behavior itself and
the controller implementation. Heterogeneity in time domains arises in engine
control from nested control-loops of both:

� This research has been partially supported by the E.C. grant Control and Computa-
tion IST-2001-33520. The authors are members of the HyCon Network of Excellence,

E.C. grant IST-511368.

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 118–133, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Controller Synthesis on Non-uniform and Uncertain Discrete–Time Domains 119

– discrete–time domain control loops with fixed sampling rate, e.g. cruise con-
trol (with sampling time of the order of dsec) and throttle valve control (with
sampling time of the order of msec);

– event–driven control actions synchronized with the evolution of the engine
cycle1, such as control of the engine torque (delivered by each cylinder during
the power stroke), fuel injection (during the exhaust stroke in multi–point
injection engines) and spark ignition (either at the end of the compression
stroke or at the beginning of the power stroke).

In particular, event–driven control actions are synchronized with the engine cycle
and issued on a non–uniform discrete–time domain, characterized by drifts of
the activation times and frequency, which is synchronous with the crankshaft
revolution speed.

Moreover, similar problems arise also in standard discrete–time control sys-
tems when considering

– the effects of the implementation of control algorithms in embedded systems,
which range from uncertain and time–varying delays introduced in the loop
(e.g. latency due to scheduling of the algorithms on time–shared CPUs) to
the intermittent dropping of some executions of the control algorithm, due
to either computation overload of the CPU or communications errors with
sensors and actuators;

– sporadic failures on sensors, actuators, embedded controllers or communica-
tion.

The Lee-Sangiovanni Vincentelli (LSV) tagged-signal model (TSM) [1] is a for-
malism for describing aspects of models of computation that very naturally al-
lows the representation of signals defined on non–uniform time–domains. Ben-
veniste et al. [2] used the TSM to describe interacting synchronous and asyn-
chronous models of computation and communication. Controller design taking
into account implementation constraints was investigated by Bicchi et al. [3, 4],
who considered input signals quantization, and Palopoli et al. [5], who proposed
an optimal trade-off between closed–loop performances and scheduling for a
multi–rate control system that is in charge of controlling a number of indepen-
dent plants.

In this paper we address the problem of synthesizing and verifying control
algorithms that are executed at discrete times with phase drifts of the activation
event sequence and uncertainties in the activation times. Today, the best practice
in industry for dynamic compensators design for this class of control problems is
gain scheduling with possibly some on–line adaptation to the varying sampling
time. However, the correctness of the controller in terms of stability and closed–
loop performance under drifting of the sampling times is not formally guaranteed.

1 An interesting topic is the design of efficient interfaces between multi–rate feedback

loops characterized by phase and frequency drifts of the activation times. This topic

will be the subject of a future paper.

120 A. Balluchi, P. Murrieri, and A.L. Sangiovanni-Vincentelli

The synthesis and verification problems can be properly formalized and solved
using hybrid systems techniques. We show that fundamental results on robust
stability and robust performance can be successfully used and reformulated in a
hybrid system framework to obtain both:

– synthesis procedures that take into account time–domain uncertainties and
produce controllers with guaranteed performances, and

– formal verification techniques that guarantee the correctness of controllers
designed either abstracting or partially compensating time–domain uncer-
tainties.

We consider the design of dynamic compensators for continuous–time uncertain
plants with non–uniform and uncertain activation times. In particular, the final
aim is to design linear time–invariant dynamic controllers for sampled–data sys-
tems, derived from a non–uniform sampling of the plant model, which guarantee
stability and achieve desired rate of convergence despite sampling time variance.

The paper is organized as follows. In Section 2, the motivating automo-
tive application, namely the synthesis of an algorithm for idle speed control,
is described. In Section 3, fundamental results on robust stability and robust
performance are reviewed. In Section 4, the problem of the design of dynamic
compensators under non–uniform and uncertain activation times is formalized.
In addition, synthesis and verification methods obtained from the results pre-
sented in Section 3 are described. Finally, in Section 5, the proposed techniques
are applied to the idle speed control problem showing the degree of robustness
of a controller designed without taking into account time–domain uncertain-
ties and a synthesis procedure that, by considering them, produces a controller
with improved closed–loop stability. Some concluding remarks are presented in
Section 6.

2 Idle Speed Control Problem Formulation

The motivating application for the work presented in this paper is the synthesis
of an algorithm for idle speed control. The objective is to keep the speed of
the crankshaft within a specified range despite the actions of unpredictable but
bounded load torques acting on the crankshaft, when the engine is idle.

In Figure 1, a hybrid model describing the behavior of a 4–stroke 4–cylinder
spark ignition engine at idle is depicted (more details on the model are given
in [6, 7, 8]). The hybrid model has a urgent semantic, some nonlinear continuous
dynamics and some continuous variables with piece-wise constant evolutions.
Engine control inputs are:
– The throttle valve command uα, used to control the engine air charge2 m;
– The spark advance angle3 uϕ, which defines ignition timing.

2 Fuel injection is set according to the evolution of the air charge m so to have stoi-

chiometric mixtures, as requested for tailpipe emission control.
3 It denotes the angle performed by the crankshaft from the time at which the spark

is ignited to the time at which the piston reaches the next top dead center. It is

negative if the spark is given after the top dead center.

Controller Synthesis on Non-uniform and Uncertain Discrete–Time Domains 121

θ = 180

θ := 0
T := Tf(m, n)η(ϕ)
m := km(p) p
ϕ := uϕ

τ̇ = 1

V̇ = 0
α̇ = aα α + bα V
ṗ = ap(p) p + bp(p) s(α)
ṁ = 0
ϕ̇ = 0

Ṫ = 0
ṅ = an n + bn (T − Tl)

θ̇ = kn n

.

S

.

τ = τA

τ := 0
V := uα

Fig. 1. Hybrid model of the cylinders

The command uα to the throttle valve motor is a discrete–time signal produced
with a constant sampling period τA. The timer τ , the piece–wise constant vari-
able V , and the self-loop transition with guard condition τ = τA model the
uniform sampling of the discrete–time throttle valve control. To take into ac-
count the actuation delay, the desired spark advance uϕ has to be set for each
cylinder at the bottom dead center at the end of the intake stroke, so that the
ignition subsystem can be programmed to ignite the spark at the proper time.
Dead center events are modelled by the self-loop transition with guard condition
θ = 180 and reset θ := 0, where θ denotes the crankshaft angle.

The continuous state variables with no trivial dynamics are: the throttle
valve angle α; the intake manifold pressure p; the crankshaft revolution speed
n and the crankshaft angle θ. The evolution of the intake manifold pressure p
depends on the throttle valve angle α, which is controlled by the input uα. The
crankshaft speed n depends on the engine torque T and defines the evolution
of the crankshaft angle θ. At each dead–center, i.e. when θ reaches 180, the
crankshaft angle θ is reset and the engine torque T is set according to the
applied spark advance ϕ and the air charge m. Moreover, the air charge m
and the desired spark advance ϕ for the next expansion cycle are initialized
according to the current value of the intake manifold pressure p and the input
uϕ, respectively.

The design of the spark advance control algorithm is particularly challenging
since it is defined on a non–uniform discrete–time domain, with sampling period
varying according to the evolution of the crankshaft revolution speed.

122 A. Balluchi, P. Murrieri, and A.L. Sangiovanni-Vincentelli

3 Robust Stability of Time-Varying Linear Systems

In this section, the problem of designing a controller for non–uniform and un-
certain discrete–time domains is formally introduced and some relevant results
on robust stability and robust performance are briefly reviewed.

Consider a Linear Time Invariant (LTI) continuous–time system

ẋ(t) = Acx(t) +Bcu(t)
y(t) = Cx(t) , (1)

with x(t) ∈ Rn the continuous state, u(t) ∈ Rp the control signal, y(t) ∈ Ro the
output signal, and Ac ∈ Rn×n, Bc ∈ Rn×p and C ∈ Ro×n constant matrices.

The objective is to design a digital controller for system (1), which reads the
output y and issues a command u at some sampling times {τk} that are not uni-
formly spaced in time, as usually assumed. This kind of control problems arises
in standard discrete–time control when considering controller implementation
and communication issues. It also includes the case of hybrid systems with no
resets and controller activation times defined by the automaton transitions. In
this case, the non–uniformity of the time domain is given by the hybrid behavior
of the plant itself4.

By sampling the continuous–time dynamics (1) on a non–uniform time do-
main {τk}, the following Linear Time Variant (LTV) discrete–time system is
obtained:

x(k + 1) = A(k)x(k) +B(k)u(k)
y(k) = Cx(k) , (2)

where x(k) = x(τk), u(k) = u(τk) = u(t) ∀t ∈ [τk, τk+1), and y(k) = y(τk) are
samples of the corresponding continuous signals, and the system matrices are
obtained by integration of (1) over the interval [τk, τk+1], i.e.

A(k) = eAc(τk+1−τk)

B(k) =
∫ τk+1−τk

0 eAc(τk+1−τk−τ)dτ Bc .
(3)

Let the time domain {τk} be such that the sampling intervals τk+1 − τk satisfy

τk+1 − τk = τ0 + δ(k) with |δ(k)| ≤ Δ and Δ > 0 , (4)

where τ0 is a nominal constant sampling period and δ(k) is a bounded pertur-
bation. Then, in (2),

A(k) = Ā+ΔA(k)
B(k) = B̄ +ΔB(k) , (5)

where Ā = eAcτ0
and B̄ =

∫ τ0

0 eAc(τ0−τ)dτBc are the contributions associated
to the nominal sampling period τ0 and ΔA(k) = A(k)− Ā, ΔB(k) = B(k)− B̄
take into account sampling time variations.

4 For instance, in the idle speed control problem, activation times are triggered by

dead–center events that are produced when the crankshaft angle θ reaches 180.

Controller Synthesis on Non-uniform and Uncertain Discrete–Time Domains 123

Perturbations ΔA(k) and ΔB(k) in (5) are bounded5as follows:

– If Ac = 0, then ΔA(k) = 0 and

‖ΔB(k)‖ ≤ ‖Bc‖Δ ; (6)

– If Ac �= 0 and if the geometric multiplicity of the eigenvalues of Ac is equal
to their algebraic multiplicity, then

‖ΔA(k)‖ = σmax(ΔA(k))

≤
∥∥∥e−Acτ0

∥∥∥∥∥∥eAcδ(k) − I
∥∥∥

≤
∥∥Ā−1

∥∥ ‖Ac‖ k (Ac)
eᾱ(Ac)Δ − 1

ᾱ(Ac)
, (7)

‖ΔB(k)‖ = σmax(ΔB(k))

≤
∥∥Ā∥∥ ‖Bc‖ k (Ac)

eᾱ(Ac)Δ − 1
ᾱ(Ac)

, (8)

where k(A) = ‖T‖ ‖T−1‖ denotes the condition number with respect to
inversion of the matrix T such that T−1AT is in the Jordan normal form6and
ᾱ(A) = max{α(A), α(−A)}, with α(A) = max{Re(λ)|λ ∈ λ(A)} the spectral
abscissa of A. Note that, since limΔ→0

eᾱ(Ac)Δ−1
ᾱ(Ac) ≈ limΔ→0Δ, then the

upper bounds (7–8) converge to zero with Δ.

Upper bounds similar to (7–8) can be obtained when the geometric multiplic-
ity of the eigenvalues of Ac is lower than their algebraic multiplicity, in which
case the Jordan normal form has blocks of order greater than 1 (details on the
approximation of the norm of the exponential matrix can be found in [9]).

The design problem on non–uniform discrete–time domains can be success-
fully approached by exploiting interesting results on robust stability (see [10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]) for perturbed systems of type

x(k + 1) = [A+ΔA(k)]x(k) . (9)

To the best of our knowledge, the work of Bauer et al. [10], along with [16, 17, 18],
gives the tightest stability conditions for parametric uncertainties of type

ΔA(k) =
r∑

j=0

aj(k)Aj , (10)

5 Unless differently specified, we consider the Euclidean norm of matrices and vectors

defined as ‖z‖ =
√∑n

i=1 z2
i for z ∈ Rn and ‖M‖ = σmax(M) = max{λ|λ2 ∈

λ(MT M)}, for M ∈ Rn×n, with σmax(M) the maximum singular value of M and

λ(M) the set of eigenvalues of M .
6 It is well known that the matrix T is not unique; in what follows, less conservative

conditions will be obtained for T such that k(A) is minimized.

124 A. Balluchi, P. Murrieri, and A.L. Sangiovanni-Vincentelli

with Aj ∈ Rn×n and aj(k) ∈ [aj , aj], for j = 1, · · · , r. Introduce the set Ã of
extremal matrices

Ã = {Ã = A+
r∑

j=0

ajAj | aj = aj or aj = aj , for all j = 1, · · · , r } . (11)

The set Ã in (10) defines a polytope PÃ whose vertices coincide with extremal
matrices. In [10], the following result was presented:

Proposition 1. System (9) with time–varying dynamical matrix inside the poly-
tope PÃ is asymptotically stable7in norm-1 (norm–∞) if and only if there exists
a k̄ > 0 such that, for any sequence of k̄ matrices Ãj ∈ Ã,

[C1] ‖
k̄∏

j=1

Ãj‖1 < 1 (‖
k̄∏

j=1

Ãj‖∞ < 1, respectively) . (12)

Molchanov et al. [16] extended the previous result by proving that condition [C1]
can be formulated for any norm. Condition [C1] is strong since robust stability
for a dynamic matrix varying inside the polytope PÃ can be tested by checking
combinations of the extremal matrices in Ã only. However, it could require many
computations if the number r of elements in the linear combination (10) is large.
Indeed, the cardinality of Ã is 2r and the stability test on k steps requires 2rk

matrix multiplications. In [17, 18], simplified stability tests had been proposed
for specific classes of systems.

In [26], Blanchini compares stabilizability via gain scheduling (with mea-
surement of time–varying parameters) and robust state feedback for perturbed
systems of type (9–10) and shows that the two approaches are equivalent.

Sufficient conditions for robust stability, based on the Lyapunov approach,
had been proposed in [11, 12, 13, 14]. Given a positive-definite function V (X),
system (9) asymptotically converges8to the equilibrium with convergence rate
μ > 0 if the difference V (X(k + 1)) − μV (X(k)) is negative for any k ≥ 0.
By slightly extending the work in [11], the following sufficient condition can be
obtained:

Proposition 2. System (9) is globally asymptotically stable with rate of conver-
gence 0 < μ < 1 if

[C2] σmax(ΔA(k)) < −σmax(A) +

√
σ2

max(A) +
σmin(Q)
σmax(P)

, (13)

where P = PT > 0 is the solution of the discrete-time Lyapunov equation

7 Given z ∈ Rn, ‖z‖1 =
∑n

i=1 |zi| and ‖z‖∞ = maxn
i=1 |zi|. Given M ∈ Rn×n, ‖M‖1 =

maxn
j=1

∑n
i=1 |mij | and ‖M‖∞ = maxn

i=1
∑n

j=1 |mij |. A system is asymptotically

stable in norm-1 (norm–∞) if limk→∞ ‖x(k)‖1 = 0 (limk→∞ ‖x(k)‖∞ = 0).
8 The stability of the autonomous system coincide with BIBO stability if BC(k) is

bounded in norm.

Controller Synthesis on Non-uniform and Uncertain Discrete–Time Domains 125

AT P A− μP = −Q, for Q = QT > 0 . (14)

Finally, if the nominal matrix A in (9) verifies ‖A‖p < 1, for some norm ‖ · ‖p,
then a further condition that ensures robust stability is given by

[C3] ‖ΔA(k)‖p < 1− ‖A‖p . (15)

A simple proof is obtained by noting that, since

‖A+ΔA(k)‖p ≤ ‖A‖p + ‖ΔA(k)‖p < 1

then the next–state map is a contraction in the chosen p–norm.
Further robust stability conditions have been obtained using LMI techniques

(see [20, 22, 23, 25]) and H1 and H∞ formulations (see [19, 21, 24]). Such ap-
proaches will be evaluated in future work.

4 Dynamic Compensators Design Under Non-uniform
and Uncertain Activation Times

Standard design techniques based on frequency domain representations cannot
be applied to design control algorithms for system (2), since such system is not
time-invariant. However, often linear time–invariant controllers are adopted even
for time–varying plants. This is the case for instance when the design is subject
to very limiting constraints on the implementation platform. Consider the LTI
compensator

w(k + 1) = Fw(k) +Ge(k)
u(k) = Hw(k) + Le(k) (16)

where e(k) = r(k) − y(k) ∈ Ro is the error between the controlled output and
the reference signal r(k), w ∈ Rm is the state of the controller, F ∈ Rm×m,
G ∈ Rm×o, H ∈ Rp×m and L ∈ Rp×o are constant matrices.

By (2) and (16), the closed–loop system is described in the extended state
space X = [x,w]T as follows

[
x
w

]
(k + 1) =

(
A(k)−B(k)LC B(k)H

−GC F

)[
x
w

]
(k) +

(
B(k)L In×n

G 0m×n

)[
r
d

]
(k)

(17)
or equivalently, by (5),

X(k + 1) = [ĀC +ΔAC(k)]X(k) + [B̄C +ΔBC(k)]U(k) , (18)

where U = [r, d]T and

126 A. Balluchi, P. Murrieri, and A.L. Sangiovanni-Vincentelli

ĀC =
(
Ā− B̄LC B̄H
−GC F

)
, ΔAC(k) =

(
ΔA(k)−ΔB(k)LC ΔB(k)H

0n×n 0m×m

)
,

B̄C =
(
B̄L In×n

G 0m×n

)
, ΔBC(k) =

(
ΔB(k)L 0m×n

0m×1 0m×n

)
.

(19)

The closed–loop system (18) is both time–varying, due to the sampling time
variations, and parameterized in the controller matrices (16). Upper bounds
for the closed–loop perturbation matrices ΔAC(k) and ΔBC(k) are obtained
from (6),(7) and (8), including additional terms pA and pB that model parame-
ters uncertainties on A(k) and B(k) in (2). We have:

– If Ac = 0, then from (6)

‖ΔAC(k)‖ ≤ (‖Bc‖Δ+ pA + pB) γC with γC =
∥∥∥∥(I 0
−LC H

)∥∥∥∥
‖ΔBC(k)‖ ≤ (‖Bc‖Δ+ pB) ‖L‖

– If Ac �= 0 and if the geometric multiplicity of the eigenvalues of Ac is equal
to their algebraic multiplicity, then

‖ΔAC(k)‖ ≤
[(
‖Ā−1‖ ‖Ac‖+ ‖Ā‖ ‖Bc‖

)
k(Ac)

eᾱ(Ac)Δ − 1
ᾱ(Ac)

+ pA + pB

]
γC

‖ΔBC(k)‖ ≤
[∥∥Ā∥∥ ‖Bc‖ k(Ac)

eᾱ(Ac)Δ − 1
ᾱ(Ac)

+ pB

]
‖L‖

Conditions [C1], [C2] and [C3] – as formulated – can be applied for the verifi-
cation of the correctness of a given dynamic compensator (16), in presence of
time–domain and plant parameter uncertainties. On the other hand, they can
also be used for controller synthesis if included in an exploration algorithm of
the controller parameters space.

Among them, [C1] is the least conservative. However, for synthesis purposes
[C1] could be numerically unfeasible, due to the dependency of the extremal
matrices in (11) on the controller parameters: 2(2m+n)k̄ multiplications between
extremal matrices are necessary to perform the test on a given set of controller
parameters. Then, [C1] is more suitable for verification of a given controller,
possibly obtained using either [C2] or [C3].

The Lyapunov approach employed in [C2] allows the designer to set a de-
sired convergence rate in (14) and handle separately in (13) the robustness with
respect to time–domain and plant parameter uncertainties.

This approach can be specialized to the case of the design of dead–beat
controllers, obtained when the nominal closed–loop system has all poles in the
origin of the complex plane and having finite impulse response.

Proposition 3. If the nominal closed–loop matrix ĀC has all eigenvalues in 0,
then the closed-loop uncertain time-varying system is asymptotically stable, with
convergence rate μ ∈ (0, 1), provided that

Controller Synthesis on Non-uniform and Uncertain Discrete–Time Domains 127

[C4] σmax(ΔAC(k)) <

−σmax(ĀC) +

√√√√√σ2
max(ĀC) + μ

σmin(Q)
σmax(Q)

1− σ2
max(ĀC)

μ

1−
(

σ2
max(ĀC)

μ

)n+m (20)

for some symmetric positive–definite matrix Q.

Proof. The solution to the Lyapunov equation (14) for a given symmetric posi-
tive definite matrix Q and convergence rate μ, can be written as

P =
1
μ

∞∑
k=0

(ĀT
C)kQĀk

C

μk
.

If all eigenvalues of ĀC are in 0, then ĀC is nilpotent of order n+m and

P =
1
μ

n+m−1∑
k=0

(ĀT
C)kQĀk

C

μk
. (21)

Then,

σmax(P) = ‖P‖ ≤ 1
μ

n+m−1∑
k=0

‖(ĀT
C)kQĀk

C‖
μk

≤ σmax(Q)
μ

1−
(

σ2
max(ĀC)

μ

)n+m

1− σ2
max(ĀC)

μ

.

(22)
Inequality (22) gives a lower bound for σmax(Q)

σmax(P) , which substituted in (13) gives
condition [C4]. Q.E.D.

Notice that condition [C4] is much easier to test than [C2], since the Lyapunov
equation is explicitly solved. Moreover, it is important to observe that the time-
varying closed–loop system does not preserve the dead–beat response due to the
time–domain and plant parameters uncertainties.

5 Idle Speed Control Application

In this section, the design methodology proposed in Section 4 is applied to the
idle speed control problem described in Section 2. In particular, the design and
verification of spark advance control algorithms are illustrated. Spark advance
control is activated on the non–uniform discrete–time domain given by the dead-
center times {τk}. Since in idle speed control the engine speed is constrained by
specification, then the dead-center times sequence {τk} satisfies condition (4) on
bounded sampling time variation.

According to the model depicted in Figure 1, the torque generated by the
engine during the k–th power stroke depends on: the spark advance command
uϕ(τk−1) (set at the beginning of the compression stroke), the mass of loaded air
m(τk−1), and the engine speed at the beginning of the power stroke n(τk). The

128 A. Balluchi, P. Murrieri, and A.L. Sangiovanni-Vincentelli

engine torque, T (t), is modeled as a piece–wise constant signal, with discontinuity
points at dead-center times τk, i.e.

T (t) = Tf (m(τk−1), n(τk)) η(uϕ(τk−1)) for t ∈ [τk, τk+1) . (23)

The crankshaft dynamics, discretized on dead–center times {τk}, is

n(k + 1) = A(k)n(k) +B(k)u(k) , (24)

where the input u(k) comprises both the load disturbance Tl and the engine
torque T , i.e.

u(k) = Tl(k) + T (k) .

To control the engine speed n to a given reference value nr, the engine torque
T is modulated, using the spark advance command, so to implement the LTI
compensator (16), where e = n− nr and u = T . That is

T (k) = c(k)⊗ [n(k)− nr(k)]

with

C(z) = H(zI − F)−1G+ L =
pmz

m + pm−1z
m−1 + · · ·+ p0

qmzm + qm−1zm−1 + · · ·+ q0
. (25)

The one–step delay between spark advance control and engine torque in (23) is
attributed to the controller by fixing q0 = 0.

The results presented in Section 4 are applied to the closed–loop system given
by the plant (24) and the controller (25). The parameters of the compensator (25)
are chosen so as to obtain a dead–beat controller for the nominal LTI system.
The characteristic polynomial of the closed–loop system is

p(λ) = λm+1 +
qm−1 + b̄pm − āqm

qm
λm + · · ·+ q0 + b̄p1 − āq1

qm
λ +

b̄p0 − āq0
qm

.

The nominal closed–loop system has all poles in zero, provided that the controller
parameters verify

lm+1 = qm

0 = qm−1 + b̄pm − āqm

...
0 = b̄p0 − āq0 .

(26)

Condition [C4] can be applied to verify the correctness of the proposed spark
advance dead–beat controller. Since the open–loop dynamics is scalar, then
ΔAC(k) has rank one for any realization (16) of (25), hence ΔAC(k)TΔAC(k)
has an eigenvalue equal to the trace of ΔA(k)TΔA(k) and (n + m − 1) zero
eigenvalues. In particular, for the canonical reachable–form realization of (25),
the maximum singular value of the closed–loop perturbed matrix ΔAC is upper
bounded as follows

σmax(ΔAC) ≤ (‖ΔA(k)‖+‖ΔB(k)‖
∣∣∣∣pm

qm

∣∣∣∣)2 +‖ΔB(k)‖2
m−1∑
i=0

(pi−
qipm

qm
)2 . (27)

Controller Synthesis on Non-uniform and Uncertain Discrete–Time Domains 129

In engine control, the drift term A(k)n(k) in (24) is usually compensated by an
inner control loop. In this case, (27) simplifies to

σmax(ΔAC) ≤
[(

pm

qm

)2

+
m−1∑
i=0

(
pi −

qipm

qm

)2
]
‖Bc‖2 δ2(k) . (28)

The robustness of dead-beat controllers with respect to the time–domain uncer-
tainty given by the variability of dead–centers events is evaluated using condition
[C4]. For given values of desired convergence rates in the continuous–time do-
main9for the closed–loop time–varying system, the controller parameters that
maximize the admissible variation Δ of the sampling time and verify condition
[C4] are computed. The result is depicted in Figure 2. As expected, the bigger the
desired convergence rate, the smaller the admissible variation on the sampling
period.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3 Admissible Variations on δ

abs(α)

se
c

Fig. 2. Maximum variation of the sampling period for given convergence rate

Condition [C4] can also be used to obtain the largest time–domain uncer-
tainty Δ for which a desired convergence rate is guaranteed for the time-varying
closed–loop system, when there are some uncertainties in the plant model. In
particular, bounded uncertainties for the drift term of the crankshaft dynamics
are considered. The controller parameters that maximize the time–domain un-
certainty bound Δ are computed according to condition [C4]. Figure 3 reports
the result: the higher the desired convergence rate and plant model uncertainties,
the smaller the allowed time–domain variation will be.

Finally, a dead–beat idle speed controller developed by Magneti Marelli Pow-
ertrain is considered. Some experimental results obtained with the controlled
engine are reported in Figure 4. Table 1 reports the admissible uncertainties

9 The continuous–time convergence rate is computed as 1/τ0 ln(μ).

130 A. Balluchi, P. Murrieri, and A.L. Sangiovanni-Vincentelli

0 1 2 3 4 5 6

x 10
−3

0

0.5

1

1.5

2

2.5

3

3.5
Maximal Variations on Drift Terms

Δ

|Δ
 A

c |

Fig. 3. Admissible uncertainties in the drift term pA for given values of time–domain

uncertainty Δ. The family of curves denote different desired convergence rate for the

time-varying closed–loop system: the higher is the desired convergence rate, the smaller

is the admissible uncertainties in the drift term

Fig. 4. Experimental results on idle speed control provided by Magneti Marelli Pow-

ertrain, for a reference idle speed nr

in terms of upper bounds on ‖ΔA‖ and ‖ΔB‖, for which closed–loop stability
is guaranteed, according to conditions [C1], [C2], and [C4]. It is worthwhile to
note that checking the condition [C1] is feasible in this case since controller
parameters are fixed (the stability test converged at the 6–th step). Condition
[C3] could not be used since the proposed controller does not satisfies the
assumption of having nominal matrices with either norm-1, norm-2 or norm-∞
smaller than 1. From the upper bounds on ‖ΔA‖ and ‖ΔB‖, the corresponding
maximum time–domain perturbations Δ are obtained. Since the non–uniformity
of the dead–centers time domain depends on the crankshaft speed, then the
bounds on sampling period Δ are converted into corresponding intervals for the
crankshaft speed. Since [C1] is more accurate then [C2] and [C4], then it gives
much larger bounds. The range 450 − 1050 rpm covers typical operating inter-

Controller Synthesis on Non-uniform and Uncertain Discrete–Time Domains 131

Table 1. Maximum time–domain variations for idle speed dead–beat controller tuned

by Magneti Marelli Powertrain

bounds [C1] [C2] [C4]

‖ΔA‖/‖A‖ 34% 8% 1%

‖ΔB‖/‖B‖ 42% 11% 1.3%

Δ [sec] 0.03 0.008 0.001

n [rpm]) 450 − 1050 670 − 830 740 − 760

vals of crankshaft speeds for idle engines, considering nominal idle speed equal
to 750 rpm. According to the analysis, the proposed dead-beat controller has
no guaranteed stability outside the range 450− 1050 rpm. The results given by
[C2] and [C4] are quite conservative and the corresponding ranges of crankshaft
speed are not satisfactory.

6 Conclusions

This paper addressed the problem of robustly controlling non–periodically sam-
pled dynamics. The motivating application is the design and verification of an
idle speed controller for automotive applications. By sampling the continuous–
time crankshaft dynamics at dead–center times, an event–based nonlinear time–
variant model is obtained. Robust techniques developed in the last two decades
for linear–time variant discrete systems are revised with the aim of propos-
ing a design methodology that takes into account time–domain uncertainties.
The proposed methodology has been applied to the design and verification of a
dead–beat algorithm for idle speed control of an automotive engine. The largest
acceptable perturbations due to non-uniform sampling and plant uncertainties
for which a desired rate of convergence is guaranteed were evaluated.

References

1. Lee, E., Sangiovanni-Vincentelli, A.: A unified framework for comparing models of

computation. IEEE Trans. on Computer Aided Design of Integrated Circuits and

Systems 17 (1998) 1217–1229

2. Benveniste, A., Caillaud, B., Carloni, L.P., Caspi, P., Sangiovanni-Vincentelli, A.L.:

Heterogeneous reactive systems modelling: Capturing casuality and the correctness

of loosely time–triggered architectures (ltta). In: Procedeeings of Forth ACM In-

ternational Conference on Embedded Systems, Pisa, Italy (2004) 220–229

3. Picasso, B., Bicchi, A.: Stabilization of LTI Systems with Quantized State-

Quantized Input Static Feedback. LNCS. In: HSCC 2003. Springer Verlag (2003)

405–416

4. Bicchi, A., Marigo, A., Piccoli, B.: On the reachability of quantized control systems.

IEEE Trans. on Automatic Control 47 (2002) 546–563

132 A. Balluchi, P. Murrieri, and A.L. Sangiovanni-Vincentelli

5. Palopoli, L., Bicchi, A., Sangiovanni-Vincentelli, A.L.: Numerically efficient control

of systems with communication constraints. In: Proceedings of the 41st IEEE

Conference on Decision and Control 2002. Volume 2. (2002) 1626–1631

6. Balluchi, A., Benvenuti, L., Di-Benedetto, M.D., Pinello, C., Sangiovanni-

Vincentelli, A.L.: Automotive engine and power-train control: a comprehensive

hybrid model. In: Proc. 8th Mediterranean Conference on Control and Automa-

tion, MED2000, Patras, Greece (2000)

7. Balluchi, A., Benvenuti, L., Di-Benedetto, M.D., Villa, T., Wong-Toi, H.,

Sangiovanni-Vincentelli, A.L.: Hybrid controller synthesis for idle speed manage-

ment of an automotive engine. In: Proc. 2000 IEEE American Control Conference.

Volume 2., ACC, Chicago, USA (2000) 1181–1185

8. Balluchi, A., Benvenuti, L., Di-Benedetto, M.D., Pinello, C., Sangiovanni-

Vincentelli, A.L.: Automotive engine control and hybrid systems: Challenges and

opportunities. In: Proceedings of the IEEE, 88, “Special Issue on Hybrid Systems”.

Volume 7. (2000) 888–912

9. Loan, C.V.: The sensitivity of the matrix exponential. SIAM Journal of Number

Analysis 14 (1977) 971–981

10. Bauer, P., Premaratne, K., Duran, J.: A necessary and sufficient condition for

robust asymptotic stability of time-variant discrete systems. IEEE Transactions

on Automatic Control 38 (1993) 1427–1430

11. Farison, J., Kolla, S.: Relationship of sigular value stability robustness bounds to

spectral radius for discrete systems with application to digital filters. In: Proc.

IEEE. Volume 138. (1991)

12. Kolla, S., Yedavalli, R., Farison, J.: Robust stability bounds on time-varying per-

turbations for state space model of linear discrete time systems. International

Journal of Control 50 (1989) 151–159

13. Yaz, E., Xiaoru, N.: New robustness bounds for dyscrete systems with random

perturbations. IEEE Transaction on Automatic Control 38 (1993) 1866–1870

14. Xiaoru, N., Abreu-Garcia, J.D., Yaz, E.: Improved bounds for linear discrete-time

systems with structured perturbations. IEEE Transaction on Automatic Control

37 (1992) 1170–1173

15. Gajić, Z., Qureschi, M.: Lyapunov Matrix Equation in System Stability and Con-

trol, San Diago, CA. (1995) Academic.

16. Molchanov, A.P., Liu, D.: Robust absolute stability of time-varying nonlinear

discrete-time systems. IEEE Transactions on Circuits and Systems 49 (2002)

1129–1137

17. Premaratne, K., Mansour, M.: Robust stability of time-variant discrete-time sys-

tem with bounded parameter perturbations. IEEE Transactions on Circuits and

Systems 42 (1995) 40–45

18. Mandic, D.P., Chambers, J.: On robust stability of time-varying discrete-time

nonlinear systems with bounded parameter perturbations. IEEE Transactions on

Circuits and Systems 47 (2000) 185–188

19. De-Souza, C.E., Fu, M., Xie, L.: h∞ analysis and synthesis of discrete-time systems

with time-varying uncertainty. IEEE Transactions on Automatic Control 38 (1993)

459–462

20. Karan, M., Sezer, M.E., Ocali, O.: Robust stability of discrete-time systems under

parametric perturbations. IEEE Transactions on Automatic Control 39 (1994)

991–995

21. Johansson, M., Rantzer, A., Arzen, K.E.: Piecewise quadratic stability of fuzzy

systems. IEEE Transactions on Fuzzy Systems 7 (1999) 713–722

Controller Synthesis on Non-uniform and Uncertain Discrete–Time Domains 133

22. De-Oliveira, P.J., Oliveira, R.C.L.F., Peres, P.L.D.: A new lmi condition for robust

stability of polynomial matrix polytopes. IEEE Transactions on Automatic Control

47 (2002) 1775–1779

23. Schinkel, M., Chen, W., Rantzer, A.: Optimal control for systems with varying

sampling rate. In: Proc. of the American Control Conference, Anchorage, AK

(2002)

24. Yuan, L., Achenie, L.E.K., Jiang, W.: Robust H∞ Control for Linear Discrete-

Time Systems with Norm-Bounded Time-Varying Uncertainty. In: Systems and

Control Letters. Volume 27. (1996) 199–208

25. Hu, L.S., Lam, J., Cao, Y.Y., Shao, H.H.: A linear matrix inequality (lmi) approach

to robust h2 sampled-data control for linear uncertain systems. IEEE Transactions

on Systems, Man., and Cybernetics 33 (2003) 149–155

26. Blanchini, F.: The gain scheduling and the robust state feedback stabilization

proplems. IEEE Transaction on Automatic Control AC–45 (2000) 2061–2070

Qualitative Analysis and Verification of Hybrid
Models of Genetic Regulatory Networks:

Nutritional Stress Response in Escherichia coli

Grégory Batt1,2, Delphine Ropers1, Hidde de Jong1, Johannes Geiselmann3,
Michel Page1,4, and Dominique Schneider3

1 INRIA Rhône-Alpes, 655 avenue de l’Europe, Montbonnot,

38334 Saint Ismier Cedex, France

{Gregory.Batt, Delphine.Ropers, Hidde.de-Jong, Michel.Page}@inrialpes.fr
2 Université Joseph Fourier, Grenoble, France

3 Laboratoire Adaptation et Pathogénie des Microorganismes,

CNRS UMR 5163, Université Joseph Fourier, Grenoble, France

{Hans.Geiselmann, Dominique.Schneider}@ujf-grenoble.fr
4 Université Pierre Mendès France, Grenoble, France

Abstract. The switch-like character of the dynamics of genetic regu-

latory networks has attracted much attention from mathematical biol-

ogists and researchers on hybrid systems alike. We extend our previous

work on a method for the qualitative analysis of hybrid models of genetic

regulatory networks, based on a class of piecewise-affine differential equa-

tion (PADE) models, in two directions. First, we present a refinement

of the method using a discrete or qualitative abstraction that preserves

stronger properties of the dynamics of the PA systems, in particular the

sign patterns of the derivatives of the concentration variables. The dis-

crete transition system resulting from the abstraction is a conservative

approximation of the dynamics of the PA system and can be computed

symbolically. Second, we apply the refined method to a regulatory system

whose functioning is not yet well-understood by biologists, the nutritional

stress response in the bacterium Escherichia coli.

1 Introduction

The functioning and development of living organisms is controlled on the molec-
ular level by networks of genes, proteins, small molecules, and their mutual inter-
actions, so-called genetic regulatory networks. The dynamics of these networks is
hybrid in nature, in the sense that the continuous evolution of the concentration
of proteins and other molecules is punctuated by discrete changes in the activity
of genes coding for the proteins. The switch-like character of the dynamics of
genetic regulatory networks has attracted much attention from mathematical
biologists and researchers on hybrid systems alike (e.g., [1, 2, 3, 4, 5, 6, 7]).

While powerful techniques for the analysis, verification, and control of hy-
brid systems have been developed (see [8, 9] for reviews), the specificities of the

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 134–150, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Qualitative Analysis and Verification of Hybrid Models 135

biological application domain pose a number of challenges [10]. First, most ge-
netic regulatory networks of interest consist of a large number of genes that are
involved in complex, interlocked feedback loops. Second, the data available on
both the structure and the dynamics of the systems is currently essentially qual-
itative in nature, meaning that numerical values for concentration variables and
interaction parameters are generally absent. The above characteristics require
hybrid-system methods and tools to be upscalable and capable of dealing with
qualitative information.

In previous work [4, 11], we have developed a method for the qualitative anal-
ysis of hybrid models of genetic regulatory networks, using a class of piecewise-
affine differential equation (PADE) models that has been well-studied in math-
ematical biology [1, 2] (see also [5]). The method is based on a qualitative ab-
straction of the dynamics of the PA systems and exploits favorable mathematical
properties of the models to symbolically compute reachability properties. The
method has been implemented in the publicly-available computer tool Genetic
Network Analysis (GNA) [12] and validated on a well-understood network, the
initiation of sporulation in B. subtilis [13].

The present paper extends our previous work in two directions. First, we
present a refinement of the method using a qualitative abstraction that pre-
serves stronger properties of the dynamics of the PA systems, in particular the
sign patterns of the derivatives of the concentration variables. This information
is critical for the experimental validation of models of genetic regulatory net-
works, since experimental measurements of the system dynamics by means of
quantitative RT-PCR, reporter genes, and DNA microarrays usually result in
observations of changes in the sign of derivatives. The refinement of the method,
which has required us to deal with non-trivial technical difficulties arising from
discontinuities in the righthand-side of the PADE models, has resulted in a new
prototype version of the computer tool GNA. Second, we have applied the re-
fined method to a biological system whose functioning is not yet well-understood
by biologists, the nutritional stress response in the bacterium E. coli. This has
led to new insights into how the adaptation of cell growth to nutritional stress
emerges from the molecular interactions. Moreover, it has given rise to predic-
tions of the behavior of the system after a nutrient upshift, which are currently
being tested in our laboratory.

In Sections 2 and 3 of the paper, we review PADE models and their math-
ematical properties, with a special emphasis on a partition of the phase space
preserving the sign of the derivatives of the concentration variables. This parti-
tion forms the basis for the definition, in Section 4, of a qualitative abstraction,
transforming the continuous transition system associated with a PADE model
into a discrete transition system. The discrete transition system is a simulation
of the continuous transition system, thus providing a conservative approximation
of the network dynamics. Moreover, the discrete transition system can be easily
computed in a symbolic manner from inequality constraints on the parameters.
In Section 5, we describe the application of the method to the qualitative anal-

136 G. Batt et al.

ysis of the nutritional stress response in E. coli. The final section of the paper
discusses the results in the context of related work on hybrid systems.1

2 PADE Models of Genetic Regulatory Networks

The dynamics of genetic regulatory networks can be modeled by a class of
piecewise-affine differential equations (PADE) of the following general form [1, 2]:

ẋ = h(x) = f(x)− g(x)x, (1)

where x = (x1, . . . , xn)′ ∈ Ω is a vector of cellular protein concentrations, f =
(f1, . . . , fn)′, g = diag(g1, . . . , gn), and Ω ⊂ Rn

≥0 is a bounded n-dimensional
phase space box. The rate of change of each protein concentration xi, 1 ≤ i ≤ n,
is thus defined as the difference of the rate of synthesis fi(x) and the rate of
degradation gi(x)xi of the protein.

The function fi : Ω → R≥0 expresses how the rate of synthesis of the protein
encoded by gene i depends on the concentrations x of the proteins in the cell.
More specifically, the function fi is defined as

fi(x) =
∑
l∈Li

κl
i bl

i(x), (2)

where κl
i > 0 is a rate parameter, bl

i : Ω → {0, 1} a piecewise-continuous
regulation function, and Li a possibly empty set of indices of regulation functions.
The function gi expresses the regulation of protein degradation. It is defined
analogously to fi, except that we demand that gi is strictly positive. In addition,
in order to formally distinguish degradation rate parameters from synthesis rate
parameters, we will denote the former by γ instead of κ. Notice that with the
above definitions, h is a piecewise-affine (PA) vector-valued function.

A regulation function bl
i describes the conditions under which the protein

encoded by gene i is synthesized (degraded) at a rate κl
i (γl

i xi). It is defined in
terms of step functions and is the arithmetic equivalent of a Boolean function
expressing the logic of gene regulation [1, 2]. More precisely, the conditions for
synthesis or degradation are expressed using the step functions s+, s−:

s+(xj , θj) =
{

1, if xj > θj ,
0, if xj < θj ,

and s−(xj , θj) = 1− s+(xj , θj). (3)

where xj is an element of the state vector x and θj a constant denoting a
threshold concentration.

Figure 1(a) gives an example of a simple genetic regulatory network consisting
of two genes, a and b. When a gene (a or b) is expressed, the corresponding
protein (A or B) is synthesized at a specified rate (κa or κb). Proteins A and B

1 A detailed description of the method and the proofs of the propositions can be found

in [14].

Qualitative Analysis and Verification of Hybrid Models 137

regulate the expression of genes a and b. More specifically, protein B inhibits the
expression of gene a, above a certain threshold concentration θb, while protein
A inhibits the expression of gene b above a threshold concentration θ1

a, and the
expression of its own gene above a second, higher threshold concentration θ2

a.
The degradation of the proteins is not regulated and therefore proportional to
the concentration of the proteins (with degradation parameters γa or γb).

A
B

ba P P

(a)

ẋa = κa s−(xa, θ2
a) s−(xb, θb) − γa xa,

ẋb = κb s−(xa, θ1
a) − γb xb.

(b)

Fig. 1. (a) Example of a genetic regulatory network of two genes (a and b), each

coding for a regulatory protein (A and B). For legend, see Figure 4. (b) PADE model

corresponding to the network in (a)

The use of step functions s±(xj , θj) in (1) gives rise to complications, because
the step functions are discontinuous at xj = θj , and therefore h is discontinuous
on Θ =

⋃
i∈[1..n],li∈[1..pi]{x ∈ Ω | xi = θli

i }, the union of the threshold hyper-
planes (where the protein encoded by gene i is assumed to have pi threshold
concentrations). In order to deal with this problem, we can follow an approach
widely used in control theory, originally proposed by Filippov [15]. It consists
in extending the differential equation ẋ = h(x), x ∈ Ω \ Θ, to the differential
inclusion

ẋ ∈ K(x), with K(x) = co({ lim
y→x, y �∈Θ

h(y)}), x ∈ Ω, (4)

where co(P) denotes the smallest closed convex set containing the set P and
{limy→x, y �∈Θ h(y)}, the set of all limit values of h(y), for y �∈ Θ and y → x.
This approach has been applied in the context of genetic regulatory network
modeling by Gouzé and Sari [16].

In practice, K(x) may be difficult to compute because the smallest closed
convex set can be a complex polyhedron in Ω. We therefore employ an alternative
extension of the differential equation:

ẋ ∈ H(x), with H(x) = rect({ lim
y→x, y �∈Θ

h(y)}), x ∈ Ω, (5)

where rect(P) denotes the smallest closed hyperrectangular set containing the
set P [11, 14]. The advantage of using rect is that we can rewrite H(x) as a
system of differential inclusions ẋi ∈ Hi(x), i ∈ [1..n]. Notice that H(x) is an
overapproximation of K(x), for all x ∈ Ω.

Formally, we define the PA system Σ as the triple (Ω,Θ,H), that is, the
set-valued function H given by (5), defined on the n-dimensional phase space

138 G. Batt et al.

Ω, with Θ the union of the threshold hyperplanes. A solution of the PA system
Σ on a time interval I is a solution of the differential inclusion (5) on I, that is,
an absolutely-continuous vector-valued function ξ(t) such that ξ̇(t) ∈ H(ξ(t))
almost everywhere on I. In particular, ξ̇(t) ∈ H(ξ(t)) may not hold, if ξ reaches
or leaves Ω at t.

For all x0 ∈ Ω and τ ∈ R>0∪{∞}, Ξω
Σ(x0, τ) will denote the set of solutions

ξ(t) of the PA system Σ, for the initial condition ξ(0) = x0, and t ∈ [0, τ], if τ is
finite, or [0,∞), otherwise.2 Since the right-hand side of (5) is upper semicontin-
uous, the existence of at least one solution ξ on some time interval [0, τ], τ > 0,
with initial condition ξ(0) = x0 is guaranteed for all x0 in Ω [15]. However,
there is, in general, not a unique solution. The set Ξω

Σ =
⋃

x0∈Ω,τ>0 Ξω
Σ(x0, τ)

is the set of all solutions, on a finite or infinite time interval, of the PA system
Σ. We restrict our analysis to the set ΞΣ of the solutions in Ξω

Σ that reach and
leave a threshold hyperplane finitely-many times.

3 Mathematical Analysis of PA Systems

The dynamical properties of the solutions of Σ can be analyzed in the n-
dimensional phase space box Ω = Ω1× . . .×Ωn, where Ωi = {xi ∈ R | 0 ≤ xi ≤
max i} and max i denotes a maximum concentration of each protein, 1 ≤ i ≤ n.
The (n− 1)-dimensional threshold hyperplanes {x ∈ Ω | xi = θli

i }, 1 ≤ li ≤ pi,
1 ≤ i ≤ n, partition Ω into (hyper)rectangular regions. Since the regulation
of gene expression is identical everywhere in such a region (see below), it corre-
sponds to a regulatory mode. Consequently, the regions are called mode domains.
The set of mode domains of Ω is referred to as M.

max b

xb

max a xa
θ1
a θ2

a

M 1 M 2 M 4 M 5

M 6 M 7 M 8 M 9

M 11 M 12M 13 M 14M 15

M 10

M 3

θb

0

(a)

max b

θb

κb/γb

xb

xa
θ1
a

M 1

Ψ (M 4) Ψ (M 3)

M 3
M 4

M 5
M 2

Ψ (M 5)
0

Ψ (M 1)

κa/γa

θ2
a max a

Ψ (M 11)

M 11

(b)

Fig. 2. (a) Partition by mode domains of the phase space corresponding to the model

of Figure 1(b). (b) Focal sets and dynamics of the mode domains M1 to M5, and M11

2 In the sequel, we say, by abuse of terminology, that ξ is a solution of Σ on [0, τ],

τ ∈ R>0 ∪ {∞}.

Qualitative Analysis and Verification of Hybrid Models 139

Figure 2(a) shows the partitioning into mode domains of the two-dimensional
phase space of the example network. We distinguish between mode domains like
M7 and M2, which are located on (intersections of) threshold hyperplanes, and
mode domains like M1, which are not. The former domains are called singular
mode domains and the latter regular mode domains. We denote by Mr and Ms

the sets of regular and singular mode domains, respectively.
We introduce some simple topological concepts. For every hyperrectangular

region, R ⊆ Ω, of dimension k, 0 ≤ k ≤ n, we define the supporting hyperplane of
R, supp(R) ⊆ Ω, as the k-dimensional hyperplane containing R. The boundary
of R in supp(R) is denoted by ∂R. Suppose that M is a singular mode domain,
i.e. M ∈ Ms. Then R(M) is defined as the set of regular mode domains M ′

having M in their boundary, i.e. R(M) = {M ′ ∈Mr | M ⊆ ∂M ′}.
Using the definition of the differential inclusion (5), it can be easily shown that

in a regular mode domain M , H(x) reduces to the singleton set {μM − νM x},
for all x ∈ M , where μM is a vector of (sums of) synthesis rate constants
and νM a diagonal matrix of (sums of) degradation rate constants. This yields
the classical result that all solutions ξ in M monotonically converge towards
the focal set Ψ(M) = {ψ(M)}, where ψ(M) = (νM)−1μM [1]. We will make
the generic assumption that the focal sets Ψ(M), for all M ∈ Mr, are not
located in the threshold hyperplanes Θ. Figure 2(b) shows the focal sets of four
regular mode domains (M1, M3, M5 and M11). In the case of M11, we see that
Ψ(M11) ⊆ M11, so that ψ(M11) is an asymptotically stable equilibrium point
of Σ.

In a singular mode domain, the right-hand side of the differential inclusion
(5) reduces to H(x) = rect({μM ′−νM ′

x | M ′ ∈ R(M)}), for all x ∈ M [11, 16].
The focal set associated with the domain now becomes Ψ(M) = supp(M) ∩
rect({ψ(M ′) | M ′ ∈ R(M)}), which is generally not a single point in higher-
dimensional domains [11, 16]. Two different cases can be distinguished. If Ψ(M)
is empty, then every solution passes through M instantaneously [16] and M is
called an instantaneous mode domain. If not, then some (but not necessarily
all) solutions arriving at M will remain in M for some time, sliding along the
threshold planes containing M [16]. M is then called persistent. If Ψ(M) is a
single point, then all solutions in M monotonically converge towards this point.
In the case that Ψ(M) is not a single point, a weaker monotonicity property
holds [11, 16]. Figure 2(b) shows two singular mode domains, M2 and M4. M2

is an instantaneous mode domain (Ψ(M2) = ∅), whereas M4 is a persistent mode
domain in which solutions slide along the threshold plane. In this simple example,
it is intuitively clear how to define the flow in M4, given the dynamics in M3 and
M5. The use of differential inclusions as described above makes it possible to
define the flow in singular domains in a systematic and mathematically proper
way.

The fact that every mode domain is associated with a unique focal set has
provided the basis for the abstraction criterion employed in our previous work
[4, 11]. However, this criterion disregards that the system does not always ex-
hibit the same qualitative dynamics in different parts of a mode domain, in the

140 G. Batt et al.

sense that the sign pattern of the derivatives of the solutions ξ may not be
unique. Consider the case of M11 in Figure 2(b): depending on whether ξb(t) is
above, on, or below the focal concentration κb/γb in M11, ξb will be decreasing,
steady, or increasing. As a consequence, if we abstract the domain M11 away in
a single discrete state, we will not be able to unambiguously infer that solutions
entering this domain from M6 are increasing in the xb-dimension. This may lead
to problems when comparing predictions from the model with gene expression
data, for instance the observed variation of the sign of xb. Today’s experimental
techniques, such as quantitative RT-PCR, reporter genes, and DNA microar-
rays, usually produce information on changes in the sign of the derivatives of
the concentration variables.

The mismatch between the abstraction levels of the mathematical analysis
and the experimental data calls for a finer partitioning of the phase space, which
can then provide the basis for a more adequate abstraction criterion. Along these
lines, the regular and singular mode domains distinguished above are reparti-
tioned into (hyper)rectangular regions called flow domains. In the case that a
mode domain M is regular, it is split by the (n − 1)-dimensional hyperplanes
{x ∈ Ω | xi = ψi(M)}, i ∈ [1..n], that intersect with M . Under the same con-
dition, singular mode domains M are repartitioned by the (n − 1)-dimensional
hyperplanes {x ∈ Ω | xi = ψi(M ′)}, M ′ ∈ R(M), i ∈ [1..n]. The resulting set of
flow domains is denoted by D [14]. The partitioning of the phase space into 27
flow domains is illustrated for the example system in Figure 3(a). Every flow do-
main is included in a single mode domain, a relation captured by the surjective
function mode: D → M, defined as mode(D) = M , iff D ⊆ M . Similarly, the
function flow : Ω → D denotes the surjective mapping that associates a point in
the phase space to its flow domain: flow(x) = D, iff x ∈ D.

The repartitioning of mode domain M11 leads to six flow domains (Fig-
ure 3(a)). The finer partition guarantees that in every flow domain of M11, the
derivatives have a unique sign pattern. In D11.2, for instance, the xa-derivative
is negative and the xb-derivative is positive, whereas in D11.3 both deriva-
tives equal zero (in fact, D11.3 coincides with ψ(M11) and is an equilibrium
point of the system). The above property is true more generally. Consider a
point x in a flow domain D ∈ D. We denote by S(x) ∈ 2{−1,0,1}n

the set
of derivative sign vectors of the solutions in D passing through x, that is,
S(x) = {sign(ξ̇(tx)) | ξ ∈ ΞΣ in D, ξ(tx) = x, and ξ̇(tx) ∈ H(ξ(tx))}. Notice
that the definition of S as a set is a direct consequence of the use of differential
inclusions. Theorem 1 states that S(x) is the same for every x ∈ D.

Theorem 1 (Qualitatively-identical dynamics in flow domain). For all
D ∈ D, for all x,x′ ∈ D, S(x) = S(x′).

The theorem suggests that the partition of the phase space introduced in this
section can be used as an abstraction criterion better-adapted to the available
experimental data on gene expression. This idea will be further developed in the
next section.

Qualitative Analysis and Verification of Hybrid Models 141

max a

max b

θb

κb/γb

xb

xa
θ1
a θ2

a

D12.1
D12.2

D12.3D11.6D11.5

D11.4D11.3

D11.2D11.1

D4.1

D4.2

D14.1 D15.1D13.1

D5.2

D6.2D6.1 D7.1 D8.1 D9.1 D10.1

D3.2D2.2D1.1

D2.1 D3.1 D5.10

(a)

D2.2 D3.2 D4.2 D5.2D1.1

D3.1D2.1 D4.1 D5.1

D11.2

D11.4

D11.6 D12.3

D12.2

D12.1

D7.1

D13.1
D14.1 D15.1

D10.1
D9.1D8.1

D6.2D6.1

D11.1

D11.3

D11.5

(b)

(c) 0 < θ1
a < θ2

a < κa/γa < maxa and 0 < θb < κb/γb < max b

Fig. 3. (a) Partition by flow domains of the phase space of the model in Figure 1(b).

(b) State transition graph of the corresponding qualitative transition system. For the

sake of clarity, self-transitions are represented by dots and transition labels are omitted.

(c) Inequality constraints on parameters for which the graph in (b) is obtained

4 Qualitative Abstraction of the Dynamics of PA
Systems

As a preparatory step, we define a continuous transition system having the
same reachability properties as the original PA system Σ. Consider x ∈ D and
x′ ∈ D′, where D,D′ ∈ D are flow domains. If there exists a solution ξ of Σ
passing through x at time τ ∈ R≥0 and reaching x′ at time τ ′ ∈ R>0 ∪ {∞},
without leaving D ∪D′ in the time interval [τ, τ ′], then the absolute continuity
of ξ implies that D and D′ are either equal or contiguous. More precisely, one of
the three following cases holds: D = D′, D ∈ ∂D′, or D′ ∈ ∂D. We consequently
distinguish three types of continuous transition that correspond to these three

cases: internal, denoted by x
int−→ x′, dimension increasing, denoted by x

dim+

−→
x′, and dimension decreasing, denoted by x

dim−
−→ x′. The latter two terms refer

to the increase or decrease in dimension when going from D to D′. This leads
to the following definition:

Definition 1 (PA transition system). Σ-TS = (Ω,L,Π,→, |=) is the tran-
sition sytem corresponding to the PA system Σ = (Ω,Θ,H), where:
– Ω is the state space;
– L = {int, dim+, dim−} is a set of labels denoting the three different types

of transitions;
– Π = {Dsign = S | S ∈ 2{−1,0,1}n} is a set of propositions describing the

signs of the derivatives of the concentration variables;
– → is the transition relation describing the continuous evolution of the system,

defined by →⊆ Ω × L × Ω, such that x
l→ x′ iff there exists ξ ∈ ΞΣ and

τ, τ ′, such that 0 ≤ τ < τ ′, ξ(τ) = x, ξ(τ ′) = x′, and

142 G. Batt et al.

• if l = int, then for all t ∈ [τ, τ ′]: ξ(t) ∈ flow(x) = flow(x′),
• if l = dim+, then for all t ∈ (τ, τ ′]: ξ(t) ∈ flow(x′) �= flow(x),
• if l = dim−, then for all t ∈ [τ, τ ′): ξ(t) ∈ flow(x) �= flow(x′);

– |= is the satisfaction relation of the propositions in Π, defined by |=⊆ Ω×Π,
such that x |= Dsign = S iff S = S(x).

The satisfaction relation |= thus associates to each point x in the phase
space a qualitative description of the dynamics of the system at x. We define
any sequence of points in Ω, (x0, . . . ,xm), m ≥ 0, as a run of Σ-TS if for all
i ∈ [0..m–1], there exists some l ∈ L such that xi l→ xi+1. It is not difficult
to show that a PA system Σ and its corresponding PA transition system Σ-TS
have equivalent reachability properties (see Theorem 2 in [14]).

The continuous PA transition system has an infinite number of states and
transitions, as a consequence of which conventional tools for model checking
cannot be used to verify properties of the system. However, we can define a
discrete transition system, with a finite number of states and transitions, that
preserves important properties of the qualitative dynamics of the system. In
order to achieve this, we introduce the equivalence relation ∼Ω ⊆ Ω×Ω induced
by the partition D of the phase space: x∼Ωx′ iff flow(x) = flow(x′). From
Theorem 1 it follows that ∼Ω is proposition-preserving [17, 18], in the sense that
for all x,x′ ∈ D and for all π ∈ Π, x |= π iff x′ |= π.

The discrete or qualitative abstraction of a PA transition system Σ-TS, called
qualitative PA transition system, is now defined as the quotient transition system
of Σ-TS, given the equivalence relation ∼Ω [17, 18].

Definition 2 (Qualitative PA transition system). The qualitative PA tran-
sition system corresponding to the PA transition system Σ-TS = (Ω,L,Π,→, |=)
is Σ-QTS = (Ω/∼Ω

, L,Π,→∼Ω
, |=∼Ω

).

Proposition 1 (Qualitative PA transition system). Let Σ-QTS = (Ω/∼Ω
,

L, Π,→∼Ω
, |=∼Ω

) be the qualitative PA transition system corresponding to the
PA transition system Σ-TS = (Ω,L,Π,→, |=). Then

– Ω/∼Ω
= D;

– →∼Ω
⊆ D × L × D, such that D

l→∼Ω
D′ iff ∃ξ ∈ ΞΣ ,∃τ, τ ′, 0 ≤ τ < τ ′

such that ξ(τ) ∈ D, ξ(τ ′) ∈ D′, and
• if l = int, then for all t ∈ [τ, τ ′]: ξ(t) ∈ D = D′,
• if l = dim+, then for all t ∈ (τ, τ ′]: ξ(t) ∈ D′ �= D,
• if l = dim−, then for all t ∈ [τ, τ ′): ξ(t) ∈ D �= D′;

– |=∼Ω
⊆ D ×Π, such that D |= Dsign = S iff ∀x ∈ D: S(x) = S.

Notice that the transitions labeled by dim+ or dim− connect two different
flow domains, since in Proposition 1 we require that D �= D′. This corresponds
to a continuous evolution of the system along which it switches from one flow
domain to another. On the contrary, the transitions labeled by int correspond
to the continuous evolution of the system in a single flow domain. Notice also
that qualitative PA transition systems are non-deterministic.

Qualitative Analysis and Verification of Hybrid Models 143

As for Σ-TS, we define any sequence of flow domains (D0, . . . , Dm), m ≥ 0, as
a run of Σ-QTS iff for all i ∈ [0..m–1], there exists l ∈ L such that Di l→∼Ω

Di+1.
The satisfaction relation |=∼Ω

associates to every run a qualitative description
of the evolution of the derivatives over time. Σ-QTS can be represented by a
directed graph G = (D,→∼Ω

), called the state transition graph. The paths in G
represent the runs of the system. The state transition graph corresponding to the
two-gene example is represented in Figure 3(b), and (D1.1, D2.2, D3.2, D4.2, D4.1)
is an example of a run.

It directly follows from the definitions of quotient transition system and sim-
ulation of transition systems [17, 18] that Σ-QTS is a simulation of Σ-TS. The
converse is not true in general, so that Σ-QTS and Σ-TS are not bisimilar.

Proposition 2. Σ-QTS is a simulation of Σ-TS.

As a consequence of Proposition 2, if there exists a run (x0, . . . ,xm) of Σ-TS,
then there also exists a run (D0, . . . , Dm) of Σ-QTS such that xi ∈ Di, for all
i ∈ [0..m]. In other words, Σ-QTS is a conservative approximation of Σ-TS.

In [14] we introduce a second equivalence relation ∼Γ ⊆ Γ × Γ , defined on
the parameter space Γ of the PA system. Two parameter vectors p and p′

are equivalent, if their corresponding qualitative PA transition systems, and
hence the state transition graphs, are isomorphic. We show that a certain class
of parameter inequality constraints define regions P ⊆ Γ , such that for every
p,p′ ∈ P , it holds that p ∼Γ p′. More precisely, there exists some Q ∈ Γ/∼Γ

,
such that P ⊆ Q (Theorem 3 in [14]). As a consequence, for all vectors of
parameter values satisfying the inequality constraints, the system has the same
qualitative dynamics. Whereas exact numerical values for the parameters are
usually not available, the weaker information required for the formulation of the
inequality constraints can often be obtained from the experimental literature, as
illustrated in Section 5. Figure 3(c) shows the inequality constraints for which
the state transition graph of our example is obtained.

The inequality constraints also play a key role in the actual computation of
the qualitative PA transition system Σ-QTS [14]. The computation of Σ-QTS
is greatly simplified by the fact that the domains D and the focal sets Ψ(M)
are hyperrectangular sets, which allows them to be expressed as product sets,
i.e. D = D1 × . . . ×Dn and Ψ(M) = Ψ1(M)× . . . × Ψn(M). As a consequence,
the computation can be carried out for each dimension separately. For instance,
the repartitioning of mode domain D11 into flow domains (Figure 3(a)) is based
on the fact that the xa-component [0, θ1

a) is partitioned into two subsets by the
segment xa = 0, and the xb-component (θb,max b] into three subsets by the
segment xb = κb/γb. The product of these subsets yields the six flow domains
shown in the figure. Notice also that, in order to derive this result, we only need to
know the ordering of θ1

a and κa/γa in the xa-dimension, and that of θb and κb/γb

in the xb-dimension, which are fixed by the inequality constraints in Figure 3(c).
This result is true more generally and also applies to the transition relation→∼Ω

and the satisfaction relation |=∼Ω
. That is, the domains, the transitions, and

the sign pattern of the derivatives can be straightforwardly derived by means

144 G. Batt et al.

of symbolic computation using the inequality constraints. The algorithms are
described in more detail in [14] and have been implemented in a new prototype
version of the computer tool GNA [12]. The state transition graph generated
by GNA can be exported to standard model-checking tools like NuSMV and
CADP [22].

5 Application: Qualitative Analysis of Nutritional Stress
Response in E. coli

In case of nutritional stress, an Escherichia coli population abandons exponential
growth and enters a non-growth state called stationary phase. This growth-phase
transition is accompanied by numerous physiological changes in the bacteria,
concerning among other things the morphology and the metabolism of the cell,
as well as gene expression [19]. On the molecular level, the transition from expo-
nential phase to stationary phase is controlled by a complex genetic regulatory
network integrating various environmental signals. The molecular basis of the
adaptation of the growth of E. coli to nutritional stress conditions has been
the focus of extensive studies for decades [20]. However, notwithstanding the
enormous amount of information accumulated on the genes, proteins, and other
molecules known to be involved in the stress adaptation process, there is cur-
rently no global understanding of how the response of the cell emerges from the
network of molecular interactions. Moreover, with some exceptions, numerical
values for the parameters characterizing the interactions and the molecular con-
centrations are absent, which makes it difficult to apply traditional methods for
the dynamical modeling of genetic regulatory networks.

P

Activation

Inhibition

Abstract description of
a set of interactions

P1/P1’

CRP

P
Fis

P

P1 P2

P1 P2

TopA

Signal

P2

P1

Supercoiling

Activation

Synthesis of protein Fis
from gene fis

Fis

fis

GyrAB

gyrAB

topA

crp

cya

stable RNAs

cAMP·CRP Cya

rrn

fis

Fig. 4. Network of key genes, proteins, and regulatory interactions involved in the

nutritional stress network in E. coli. The contents of the boxes labelled ‘Activation’

and ‘Supercoiling’ are detailed in [21]

The above circumstances have motivated the qualitative analysis of the nu-
tritional stress response network in E. coli by means of the method presented
in this paper [21]. On the basis of literature data, we have decided to focus, as

Qualitative Analysis and Verification of Hybrid Models 145

a first step, on a network of six genes that are believed to play a key role in
the nutritional stress response (Figure 4). The network includes genes involved
in the transduction of the nutritional stress signal (the global regulator crp and
the adenylate cyclase cya), metabolism (the global regulator fis), cellular growth
(the rrn genes coding for stable RNAs), and DNA supercoiling, an important
modulator of gene expression (the topoisomerase topA and the gyrase gyrAB).

Based on this information, a PADE model of seven variables has been con-
structed, one protein concentration variable for each of the six genes and one
input variable (usignal) representing the presence or absence of a nutritional
stress signal [21]. As an illustration, the piecewise-affine differential equation
and the parameter inequality constraints for the state variable xtopA are given
below.

ẋtopA = κ1
topA + κ2

topA s+
(xgyrAB , θ3

gyrAB) s−(xtopA, θ1
topA) s+

(xfis , θ
4
fis) − γtopA xtopA

0 < κ1
topA/γtopA < θ1

topA < θ2
topA < θ3

topA < (κ1
topA + κ2

topA)/γtopA < max topA

The above equation and inequalities state that the basal expression of topA is
low (κ1

topA/γtopA < θ1
topA), whereas in the presence of a high concentration of Fis

(s+(xfis , θ
4
fis) = 1), and of a low level of DNA supercoiling (s+(xgyrAB , θ3

gyrAB)
s−(xtopA, θ1

topA) = 1), the concentration of TopA increases, converging towards
a high value ((κ1

topA + κ2
topA)/γtopA > θ3

topA).
Using the computer tool GNA, we have performed reachability analyses on

the qualitative PA transition system associated with the PADE model. The
simulation of the entry into stationary phase has given rise to a state transition
graph of 712 states, computed in 5.0 s on a PC (800 MHz, 256 Mb). Figure 5
represents the temporal evolution of two of the protein concentrations in a run.
The evolutions are consistent with the observations [21]. The coupling of GNA
with model-checking tools [22] has allowed a more systematic verification of
observed dynamical properties.

θ1
fis

θ2
fis

κ1
fis/γfis

θ3
fis

θ4
fis

θ5
fis

(κ1
fis + κ2

fis)/γfis

max fis

D1 D70

D75
D78 D86 D94 D102

D105
D61

D30
D31

D2 D99D83 D91

θ1
crp

κ1
crp/γcrp

(κ1
crp + κ2

crp)/γcrp

θ2
crp

θ3
crp

(κ1
crp + κ3

crp)/γcrp

(κ1
crp + κ2

crp + κ3
crp)/γcrp

max crp

D1

D2
D70

D75
D78

D83 D91
D86 D94

D99
D102

D105
D61

D30
D31

0 0

Fig. 5. Temporal evolution of Fis and CRP concentrations in the run (D1, . . . , D31).

Arrows indicate the sign of the derivative for persistent states

The application of the method has led to new insights into how the nutritional
stress signal results in the slowing-down of bacterial growth characteristic for
the stationary phase [21]. In summary, the analysis has brought to the fore

146 G. Batt et al.

the role of the mutual inhibition of Fis and CRP, which in the presence of a
nutritional stress signal results in the inhibition of fis and in the activation of
crp. This causes a decrease of the expression of the rrn genes, which code for
stable RNAs and are a reliable indicator of cellular growth. In addition to this
increased understanding of the transition from exponential to stationary phase,
the model has yielded predictions on the occurrence of oscillations in some of
the protein concentrations after a nutrient upshift, predictions that are currently
being tested in our laboratory. The scope of our study is now being enlarged to
more complex nutritional stress response networks.

The analysis of the nutritional stress response in E. coli has confirmed the
utility of the refined qualitative abstraction presented in this paper. Reparti-
tioning the mode domains, such that the sign patterns of the derivatives of the
concentration variables in the states of the qualitative PA transition system are
unique, avoids verification of dynamical properties to be over-conservative. Con-
sider Figure 6, which compares two-dimensional projections of a phase-space
slice of the stress response model. Depending on whether mode domains or
flow domains are used as the abstraction criterion, the state transition graph
will be different (compare (d) and (e) of Figure 6). Whereas the CTL formula
EF (ẋcrp > 0 ∧EF (ẋcrp < 0)) holds for the graph in (d), this is not true in (e),
thus revealing that the coarse-grained abstraction may cause models to escape
refutation by available experimental data.

θ2
cya θ3

cya max cya xcya

θ3
crp

θ2
crp

xcrp

max crp

κ1
cya+κ2

cya

γcya

κ1
crp+κ2

crp+κ3
crp

γcrp

(a)

θ3
crp M 32

M 61

θ2
cya θ3

cya max cya xcya

θ2
crp

xcrp

max crp

M 30 M 29

(b)

θ2
crp

θ2
cya θ3

cya max cya xcya

D61.1

D32.1θ3
crp

κ1
cya+κ2

cya

γcya

xcrp

max crp

D29.1D30.1
D30.2

κ1
crp+κ2

crp+κ3
crp

γcrp

(c)

(d)

ẋcrp?

M 61 M 32 M 29 M 30

ẋcrp?ẋcrp > 0

(e) D61.1 D32.1 D29.1 D30.2

ẋcrp > 0 ẋcrp > 0 ẋcrp > 0 ẋcrp = 0

D30.1

Fig. 6. (a) Two-dimensional projection of a slice of the phase space of the E. coli
stress response model for the variables xcrp and xcya . (b)-(c) Partitioning into (b) mode

domains and (c) flow domains of the projection. (d)-(e) Excerpts of state transition

graph resulting from the qualitative abstraction based on (d) mode domains and (e)

flow domains

The application of the fine-grained qualitative abstraction to the nutritional
stress response system has also revealed that it is notmuchmore computationally-
expensive than the coarse-grained abstraction used in our previous work. In fact,

Qualitative Analysis and Verification of Hybrid Models 147

when analyzing the transition from exponential to stationary phase, the refined
abstraction generates 712 persistent states, whereas the original qualitative PA
transition system has 39 persistent states. However, when defining a single ini-
tial state, corresponding to the biologically most plausible flow domain after
repartitioning of the mode domain, the refined abstraction yields only 40 per-
sistent states. A more systematic study of a PADE model with nine state and
two input variables, describing the initiation of sporulation in B. subtilis for the
wild-type and a dozen of mutant strains, confirms this result. On average, the
refined abstraction generates only twice as much states, under the condition that
the reachability analysis is carried out from a single flow domain.

6 Discussion and Conclusions

We have presented a method for the qualitative analysis and verification of hy-
brid models of genetic regulatory networks. The method is based on a class
of piecewise-affine differential equation models that has been well-studied in
mathematical biology. By defining a qualitative abstraction preserving the sign
pattern of the derivatives of concentration variables, the continuous PA tran-
sition system associated with a PADE model is transformed into a discrete or
qualitative PA transition system whose properties can be analyzed by means of
classical model-checking tools. The qualitative PA transition is a simulation of
the underlying continuous PA transition system and can be easily computed in
a symbolic manner by exploiting inequality constraints on the parameters.

The results of this paper extend our previous work [4, 11] in two directions.
In the first place, we have defined a refined partitioning of the phase space
which underlies a qualitative abstraction preserving stronger properties of the
qualitative dynamics of the system, i.e. the derivative sign pattern. The result-
ing qualitative PA transition system is better adapted to the abstraction level
of the experimental data, in the sense that it avoids verification of dynamical
properties to be over-conservative. In the second place, we have applied the im-
plementation of the method to the analysis of a system whose functioning is
not well-understood by biologists today, the nutritional stress response in the
bacterium E. coli. The application has led to biologically interesting results and
has confirmed the importance of the refined qualitative abstraction.

The hybrid character of the dynamics of genetic regulatory networks has
stimulated the interest in the application of hybrid-systems methods and tools
over the past few years [3, 4, 5, 6, 7]. Our approach differs from this related work
on several counts. Whereas we use piecewise-affine deterministic models, other
groups have employed multi-affine deterministic models [3, 7] or stochastic mod-
els [6]. Without denying the interest of the latter approaches, we note that the
class of models underlying our approach allows the qualitative analysis of high-
dimensional systems, and is therefore well-adapted to state-of-the-art measure-
ment techniques in molecular biology. The PADE models (1) in this paper have
been well-studied in mathematical biology [1, 2], and have also formed the basis
for other work in the field of hybrid systems [5]. However, the latter approach

148 G. Batt et al.

does not take into account the dynamics of the system on threshold hyper-
planes, where equilibrium points and other phenomena of interest may occur
[16]. In addition, we use a tailored method for the computation of a qualitative
PA transition system, instead of the generic quantifier elimination method used
in [5]. This allows us to fully exploit the favorable mathematical properties of
the PADE models (1), and thus promote the upscalability of the method to large
and complex networks (Section 5), even when using a fine-grained partitioning
of the phase space.

From a more general perspective, our approach can be seen as an applica-
tion of the notion of discrete abstraction, introduced to study the dynamics of
systems with an infinite number of states [17, 18]. Much work has focused on
the identification of classes of continuous and discrete dynamical systems for
which bisimulation relations with finite transition systems are guaranteed to ex-
ist. The results of this paper can be seen as showing that the weaker simulation
relation may also be of considerable practical interest, especially for classes of
systems for which the existence of a finite bisimulation cannot be guaranteed.
Discrete abstraction criteria similar to the one used in this paper, based on the
sign of the (higher) derivatives of continuous variables, have also been proposed
by other authors in the fields of hybrids systems [23] and qualitative reasoning
[24]. In comparison with these approaches, our work deals with a less general
class of models. However, this allows the development and implementation of
efficient, tailored algorithms for the practical computation of the qualitative dy-
namics of the system, even on (intersections of) threshold hyperplanes, where
discontinuities may occur.

The possibility to use efficient algorithms for the computation of the quali-
tative PA transition system rests, to a large extent, on the approximation of the
set K(x) in (4) by the set H(x) in (5). Because the latter set is hyperrectangu-
lar, the computation of domains, transitions, and sign patterns can be carried
out seperately in every dimension, using the ordering of parameter values fixed
by inequality constraints. Because H(x) is an overapproximation of K(x), the
state transition graph may contain sequences of states that would not occur in
the graph obtained by using K(x). As a consequence, a PADE model may fail
to be rejected by an observed time-series of measurements of the concentration
variables. However, due to the fact that the approximation of H(x) by K(x)
is conservative, a PADE model will never be falsely rejected. An obvious direc-
tion for further research would be to see whether finer approximations of H(x)
can be found that still allow tailored symbolic algorithms to be used that do
not compromise the upscalability of the method to large and complex genetic
regulatory networks.

References

1. Glass, L., Kauffman, S.: The logical analysis of continuous non-linear biochemical

control networks. J. Theor. Biol. 39 (1973) 103–129

2. Thomas, R., d’Ari, R.: Biological Feedback. CRC Press (1990)

Qualitative Analysis and Verification of Hybrid Models 149

3. Belta, C., Finin, P., Habets, L., Halász, A., Imielinski, M., Kumar, V., Rubin,

H.: Understanding the bacterial stringent response using reachability analysis of

hybrid systems. In Alur, R., Pappas, G., eds.: Proc. HSCC 2004. LNCS 2993,

Springer (2004) 111–125
4. de Jong, H., Gouzé, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Hybrid

modeling and simulation of genetic regulatory networks: A qualitative approach.

In Pnueli, A., Maler, O., eds.: Proc. HSCC 2003. LNCS 2623, Springer (2003)

267–282
5. Ghosh, R., Tomlin, C.: Symbolic reachable set computation of piecewise affine

hybrid automata and its application to biological modeling: Delta-Notch protein

signalling. Syst. Biol. 1 (2004) 170–183
6. Hu, J., Wu, W.C., Sastry, S.: Modeling subtilin production in B. subtilis using

stochastic hybrid systems. In Alur, R., Pappas, G., eds.: Proc. HSCC 2004. LNCS

2993, Springer (2004) 417–431
7. Asarin, E., Dang, T.: Abstraction by projection and application to multi-affine

systems. In Alur, R., Pappas, G., eds.: Proc. HSCC 2004. LNCS 2993, Springer

(2004) 32–47
8. Lygeros, J., Pappas, G., Sastry, S.: An introduction to hybrid system modeling,

analysis, and control. Preprints of 1st Nonlinear Control Network Pedagogical

School, Greece (1999)
9. Antsaklis, P., Koutsoukos, X.: Hybrid dynamical systems: review and recent

progress. In Samad, T., Balas, G., eds.: Software-enabled Control: Information

Technologies for Dynamical Systems. Wiley-IEEE Press (2003)
10. de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature

review. J. Comput. Biol. 9 (2002) 69–105
11. de Jong, H., Gouzé, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qual-

itative simulation of genetic regulatory networks using piecewise-linear models.

Bull. Math. Biol. 66 (2004) 301–340
12. de Jong, H., Geiselmann, J., Hernandez, C., Page, M.: Genetic Network Analyzer:

Qualitative simulation of genetic regulatory networks. Bioinformatics 19 (2003)

336–344
13. de Jong, H., Geiselmann, J., Batt, G., Hernandez, C., Page, M.: Qualitative sim-

ulation of the initiation of sporulation in B. subtilis. Bull. Math. Biol. 66 (2004)

261–300
14. Batt, G., de Jong, H., Geiselmann, J., Page, M., Ropers, D., Schneider, D.: Sym-

bolic reachability analysis of genetic regulatory networks using qualitative abstrac-

tion. Technical report RR-5362 INRIA (2004)
15. Filippov, A.: Differential Equations with Discontinuous Righthand Sides. Kluwer

Academic Publishers (1988)
16. Gouzé, J.L., Sari, T.: A class of piecewise linear differential equations arising in

biological models. Dyn. Syst. 17 (2002) 299–316
17. Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid

systems. Proc. IEEE 88 (2000) 971–984
18. Chutinan, A., Krogh, B.: Verification of infinite-state dynamic systems using ap-

proximate quotient transition systems. IEEE Trans. Automat. Contr. 46 (2001)

1401–1410
19. Huisman, G., Siegele, D., Zambrano, M., Kolter, R.: Morphological and physi-

ological changes during stationary phase. In Neidhardt et al. eds.: E. coli and

Salmonella: Cellular and Molecular Biology. ASM Press (1996) 1672–1682.
20. Hengge-Aronis, R.: The general stress response in E. coli. In Storz, G., Hengge-

Aronis, R., eds.: Bacterial Stress Responses. ASM Press (2000) 161–177

150 G. Batt et al.

21. Ropers, D., de Jong, H., Page, M., Schneider, D., Geiselmann, H.: Qualitative

simulation of nutritional stress response in E. coli. Technical Report RR-5412

(2004), submitted for publication

22. Batt, G., Bergamini, D., de Jong, H., Gavarel, H., Mateescu, R.: Model checking

genetic regulatory networks using GNA and CADP. In Graf, S., Mounier, L., eds.:

Proc. SPIN 2004. LNCS 2989, Springer (2004) 158–163

23. Tiwari, A., Khanna, G.: Series abstractions for hybrid automata. In Tomlin, C.,

Greenstreet, M., eds.: Proc. HSCC 2002. LNCS 2289, Springer (2002) 465–478

24. Kuipers, B.: Qualitative Reasoning: Modeling and Simulation with Incomplete

Knowledge. MIT Press (1994)

Optimal Control of Discrete Hybrid
Stochastic Automata

Alberto Bemporad and Stefano Di Cairano

Dip. Ing. Informazione, Università di Siena, via Roma 56, 53100 Siena, Italy

{bemporad, dicairano}@dii.unisi.it
http://www.dii.unisi.it

Abstract. This paper focuses on hybrid systems whose discrete state

transitions depend on both deterministic and stochastic events. For such

systems, after introducing a suitable hybrid model called Discrete Hy-

brid Stochastic Automaton (DHSA), different finite-time optimal con-

trol approaches are examined: (1) Stochastic Hybrid Optimal Control

(SHOC), that “optimistically” determines the trajectory providing the

best trade off between the tracking performance and the probability that

stochastic events realize as expected, under specified chance constraints;

(2) Robust Hybrid Optimal Control (RHOC) that, in addition, less op-

timistically, ensures that the system remains within a specified safety

region for all possible realizations of stochastic events. Sufficient condi-

tions for the asymptotic convergence of the state vector are given for

receding-horizon implementations of the above schemes. The proposed

approaches are exemplified on a simple benchmark problem in produc-

tion system management.

1 Introduction

Hybrid systems were proved to be a powerful framework for the analysis and
synthesis of embedded systems, as they provide a model in which continuous and
discrete behaviors coexist [1]. Several mathematical models were proposed in the
last years for deterministic hybrid systems, for the analysis of their structural
properties, and for controller synthesis. However, there are relatively few studies
regarding stochastic hybrid systems, except the remarkable results presented
in [2, 3] regarding modeling aspects, the ones in [4, 5, 6] regarding structural
properties, and important results in applications, such as air traffic control [7],
manufacturing systems [8], and communication networks [9].

In this paper we introduce a discrete-time model and suitable control algo-
rithms based on optimization techniques for a class of stochastic hybrid systems,
denoted as Discrete Hybrid Stochastic Automata (DHSA), in which the uncer-
tainty appears on the discrete component of the hybrid dynamics, in the form
of stochastic events that, together with their deterministic counterparts, deter-
mine the transition of the discrete state. As a consequence, mode switches of the
continuous dynamics become non-deterministic and uncertainty propagates also
to the continuous states.

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 151–167, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

152 A. Bemporad and S. Di Cairano

Unpredictable behaviors such as delays or faults in digital components and
discrete approximations of continuous input disturbances can be both modeled
by DHSA. The main advantage of DHSA is that the number of possible values
that the overall system state can have at each time instant is finite (although
it may be large), so that the problem of controlling DHSA can be conveniently
treated by numerical optimization.

The paper is organized as follows. Section 2 is concerned with modeling as-
pects. In Section 3 we present a control approach that uses stochastic information
about the uncertainty to obtain an optimal trajectory whose probability of real-
ization is known and in Section 4 we extend the approach to ensure also robust
safety properties. Finally, after presenting an application example in Section 5,
in Section 6 we provide sufficient conditions for the asymptotic convergence of
the state in case of receding-horizon implementations of the proposed optimal
control schemes.

2 Discrete Hybrid Stochastic Automaton

A model for deterministic hybrid systems called Discrete Hybrid Automaton
(DHA) was introduced in [10]. We introduce here the Discrete Hybrid Stochas-
tic Automaton (DHSA), that in addition takes into account possible stochastic
discrete state transitions.

2.1 Model Formulation

A DHSA is composed by four components: a Switched Affine System (SAS), an
Event Generator (EG), a stochastic (non-deterministic) Finite State Machine
(sFSM) and a Mode Selector (MS). The switched affine system satisfies the
equations

xr(k + 1) = Ai(k)xr(k) +Bi(k)ur(k) + fi(k),
yr(k) = Ci(k)xr(k) +Di(k)ur(k) + gi(k),

(1)

in which k ∈ K = {0, 1, . . . , } is the time index, i ∈ I = {1, 2, . . . , s} is the
current mode of the system, xr ∈ Xr ⊆ Rn is the continuous component of the
state, ur ∈ Ur ⊆ Rm is the continuous input vector, yr ∈ Yr ⊆ Rp is the output
vector and {Ai, Bi, fi, Ci, Di, gi}i∈I , are matrices of suitable dimensions. The
EG produces event signals δe(k) ∈ {0, 1}ne , that we consider as the endogenous
discrete input signals, defined as

δe(k) = fH(xr(k), ur(k), k), (2)

where fH : Xr×Ur×K → {0, 1}ne is the event generator function [10]. The mode
selector is defined by a discrete function fM : {0, 1}nb ×{0, 1}mb ×{0, 1}ne → I

i(k) = fM(xb(k), ub(k), δe(k)), (3)

where xb ∈ {0, 1}nb is the discrete state and ub ∈ {0, 1}mb is the discrete exoge-
nous input.

Optimal Control of Discrete Hybrid Stochastic Automata 153

e2

¬e1 e1, p2

¬e2

e1, p1

e1

¬e1

Nm Dn

Dmg

Fig. 1. Stochastic Finite State Machine: 3 states, 2 events and 2 stochastic transitions

The above three building elements are the same as presented in [10] for DHA.
The difference between DHA and DHSA1 is in the element defining the discrete
state dynamics: a Finite State Machine (FSM) in DHA, a stochastic FSM (sFSM)
in DHSA. While a FSM is defined by the purely discrete difference equation

xb(k + 1) = fB(xb(k), ub(k), δe(k)), (4)

where fB : {0, 1}nb × {0, 1}mb × {0, 1}ne → {0, 1}nb , a sFSM is defined by the
probability that the discrete state will take a given value at the next step, given
the actual state and inputs:

P [xb(k + 1) = x̄b] = fb(xb(k), ub(k), δe(k), x̄b), (5)

where fb : {0, 1}nb × {0, 1}mb × {0, 1}ne × {0, 1}nb → [0, 1]. The information
contained in the stochastic finite state machine is the following: Given the state
value at step k and the inputs δe(k), ub(k), the probability that the next discrete
state takes a certain value is known. An example of sFSM is reported in Figure 1.

Definition 1. Given a binary state xb(k) = x̄b, an exogenous binary input
ub(k) = ūb, an endogenous vector of events δe(k) = δ̄e, we say that a discrete
transition x̄b → x̂b to the successor state xb(k+1) = x̂b is enabled for (x̄b, ūb, δ̄e),
if the probability Px̄b→x̂b

= fb(x̄b, ūb, δ̄e, x̂b) > 0. An enabled transition is said
stochastic if Px̄b→x̂b

< 1.

Definition 2. Given a triple (x̄b, ūb, δ̄e), two or more enabled transitions are
called conflicting on (x̄b, ūb, δ̄e).

A more formal definition of conflicting transitions is given in [11], we just note
here that for a correctly defined sFSM the sum of the probabilities of conflicting
transitions at every given (x̄b, ūb, δ̄e) must be 1.

1 The resets maps introduced in [10] can be straightforwardly included also in DHSA,

so they are not explicitly considered in this paper.

154 A. Bemporad and S. Di Cairano

2.2 Computational Model

The DHSA formulation (1), (2), (3), (5) is good for modeling stochastic discrete
effects (such as stochastic delays, failures, unpredictable or external decisions),
but not conveniently exploitable for control design, as we will more clearly justify
in the beginning of Section 3. For this reason, we need rephrase the DHSA into
an equivalent model that is easier to manage in computations.

The key idea is that a sFSM having stochastic conflicting transitions can be
equivalently represented by a deterministic FSM having additional exogenous
random binary inputs w1 ,w2, . . ., wl, that we call uncontrollable events, where
if wi = 1 the corresponding stochastic transition, if enabled, is taken. Given a
system with l stochastic transitions, we denote by W ⊆ {0, 1}l the set of vectors
w = [w1(k) . . . wl(k)]T that satisfy the conditions[

(xb = x̄b) ∧ (ub = ūb) ∧ (δe = δ̄e)
]
→
[∑

i∈I(x̄b,ūb,δ̄e) wi = 1
]
,

∀(x̄b, ūb, δ̄e) ∈ {0, 1}nb × {0, 1}mb × {0, 1}ne : |I(x̄b, ūb, δ̄e)| > 1
(6)

where I(x̄b, ūb, δ̄e) ⊆ {1, . . . , l} is the subset of indices of the uncontrollable
events associated with the conflicting transitions on (x̄b, ūb, δ̄e) and | · | denotes
cardinality.

As an example, the sFSM represented in Figure 1 can be associated with
a FSM having additional uncontrollable events w1, w2 ∈ {0, 1} that affect the
stochastic transitions: transition Dn → Dn happens when e1 ∧ w2

2 is true,
while transition Dn → Dmg when e1 ∧ w1 is true, w1 and w2 are mutually
exclusive, and P[w1 = 1] = p1 and P[w2 = 1] = p2. More generally, a sFSM hav-
ing l stochastic transitions can be transformed into a deterministic automaton,
denoted as uncontrollable-events FSM (ueFSM), defined by the state-update
function:

xb(k + 1) = fB(xb(k), ub(k), δe(k), w(k)), (7)

where w(k) = [w1(k) . . . wl(k)]T ∈ W is the random vector of uncontrollable
events at time k and fB : {0, 1}nb × {0, 1}mb × {0, 1}ne ×W → {0, 1}nb .

An uncontrollable-events Discrete Hybrid Automaton (ueDHA) is obtained
from a DHSA by substituting the sFSM with its corresponding ueFSM (7),
leaving the switched affine system, the mode selector and the event generator
unchanged.

An ueDHA obtained from a DHSA is equivalent to the DHSA itself when
the additional exogenous variables w are produced by a random binary number
generator under the conditions

P[wi = 1] = pi, i = 1, . . . , l, w ∈W, (8)

that ensure that the uncontrollable events take value 1 with probability equal
to the one associated with the corresponding stochastic transition.

2 “∧” denote logic “and”.

Optimal Control of Discrete Hybrid Stochastic Automata 155

The advantages of transforming a DHSA into the related ueDHA are three:

1. Uncertainty is now associated with binary signals w(k).
2. The ueDHA is an extended DHA model, thus it can be converted into equiv-

alent hybrid models, and in particular into Mixed Logical Dynamical (MLD)
systems [12] for solving optimization problems.

3. The probability of a given discrete state trajectory can be obtained as a
function of the uncontrollable event vector {w(k)}N−1

k=0 , as explained in the
following paragraphs.

The uncontrollable events contain the whole information about stochastic tran-
sitions, thus, when vectors {w(k)}N−1

k=0 are known, the probability of the state
trajectory {x(k)}N

k=0 can be computed once {u(k)}N−1
k=0 and x(0) are also given.

Consider a system with l uncontrollable events and let w(k) = [w1(k) . . . wl(k)]T

be the uncontrollable event vector at step k. Consider an additional wl+1(k)
taking value 1 when the transition taken by the DHSA at step k is deterministic
and extend conditions (6) with this. Consider the vector p = [p1 . . . pl 1]T con-
taining the probability coefficients of the stochastic transitions. Then, consider
the products⎡⎢⎣ π(0)

...
π(N − 1)

⎤⎥⎦ =

⎡⎢⎣ wT (0)
...

wT (N − 1)

⎤⎥⎦·p, π = π(w(0), . . . , w(N−1)) =
N−1∏
k=0

π(k). (9)

The coefficient π(k) contains the probability of transition at step k, π the
probability of the complete trajectory. In this way it is possible to know the
probability to have a certain trajectory given the initial condition and input
signals.

Finally we mention that the well posedness of a DHSA is ensured if its related
ueDHA is a well posed DHA [10], if conditions (6) hold, and if the probability
coefficients of stochastic transitions are correctly defined as proven in [11], where
it is also shown the existing relations between DHSA, Markov Chains and Piece-
wise Deterministic Markov Processes [2, 13].

Thanks to the uncontrollable events, the whole statistical information about
transitions is removed from the system structure and associated to the stochastic
properties of the binary signals. In the following sections we will show how
the ueDHA can be used to formulate optimization problems that consider the
information regarding trajectory probability in the objective function and in the
constraints.

3 Stochastic Hybrid Optimal Control

In [11] we showed that it is not possible to obtain average state optimal control
of DHSA by exploiting similarities with Markov Chains average state optimal
control [14], as some of the control signals of the discrete dynamics are not exoge-
nous and they depend on the continuous dynamics. The only way to optimally

156 A. Bemporad and S. Di Cairano

control the average state is to use a “scenario enumeration” approach [15], which
however generates a numerically intractable problem as the optimal control hori-
zon N gets large. In this paper we take a different approach and consider the
problem of choosing the input profile that optimizes the most favorable situa-
tion, under penalties and hard constraints on the probability of the disturbance
realization that determines such a situation. Given a DHSA, by exploiting the
equivalent ueDHA and the probability computed in (2), we can formulate such
an optimal control problem as an MIP.

3.1 Problem Setup

Consider the convex performance index

Cd =
N−1∑
k=0

�k(x(k + 1) − rx(k + 1), u(k) − ru(k)), (10)

which is a function of x(k), u(k), k = 0, . . . , N − 1. Typically �k(x, u) = ‖Q(x−
rx)‖∞ + ‖R(u− ru)‖∞ where Q,R full rank or �k(x, u) = (x− rx)TQ(x− rx) +
(u− ru)TR(u− ru) where Q ≥ 0, R > 0, in which rx and ru are given references
on the state and on the input, respectively.

Next, consider the probability cost

Cp = ln
1

π(w(0), . . . , w(N − 1))
= − ln (π(w(0), . . . , w(N − 1))) , (11)

which is a function of w(k), k = 0, . . . , N − 1. The smaller is the probability
of a trajectory, the larger is the probability cost, so that the trajectories that
realize rarely are penalized. The most desirable situation is to obtain a trajectory
with good performance and high probability. For this reason, we define as the
objective function the cost

C = Cd + qpCp , (12)

in which qp ∈ (0,+∞) is a trade off coefficient called probability coefficient.
In order to hardly eliminate trajectories that realize rarely, we also wish to

impose the chance constraint

π(w(0), . . . , w(N − 1)) ≥ p̃ , (13)

where the coefficient p̃ ∈ (0, 1] is called probability limit.
The chance constraint (13) ensures that when the chosen input profile

{u(k)}N−1
k=0 is applied to the system, the corresponding trajectory {x(k)}N

k=0
realizes with probability greater or equal to p̃. Other constraints on probabilities
may be imposed, such as constraints defining the minimum allowed probability
at every single step.

The problem of optimally control a DHSA in respect to the cost function
(12), considering (13) as additional constraint is then formulated as:

Optimal Control of Discrete Hybrid Stochastic Automata 157

Problem 1 (Stochastic Hybrid Optimal Control, SHOC).

min
{w(k),u(k)}N−1

k=0

Cd + qpCp (14a)

s.t. DHSA dynamics (1), (2), (3), (7), (6) (14b)
chance constraint (13) . (14c)

3.2 Optimization Problem

In order to cast problem (14) as a mixed-integer linear or quadratic problem, we
need to transform (11) and (13) into linear functions of the uncontrollable event
values w. The performance index in (10) can be dealt with as described in [16]
for deterministic hybrid systems.

Consider a DHSA with l stochastic transitions whose probabilities are col-
lected in vector p = [p1 . . . pl]T , and consider the equivalent ueDHA with uncon-
trollable events w = [w1 . . . wl]T 3. The probability of a trajectory depends only
on the transitions, thus it can be computed as a function of the uncontrollable
events as π(w(0), . . . , w(N − 1)) =

∏N−1
k=0

∏l
i=1 πi(k) where πi(k) represents the

contribution of the stochastic transition i at step k on the trajectory probability,

πi(k) =
{

1 if wi(k) = 0
pi if wi(k) = 1. (15)

Equivalently, πi(k) = 1+(pi − 1)wi(k), wi(k) ∈ {0, 1}. The probability cost (11)
is equal to

−
N−1∑
k=0

l∑
i=1

lnπi(k). (16)

With an exp-log transformation, provided that π(w(0), . . . , w(N − 1)) > 0,
π(w(0), . . . , w(N − 1)) = exp(ln

∏
i,k πi(k)), thus lnπ(w(0), . . . , w(N − 1)) =

ln
∏

i,k πi(k) =
∑

i,k lnπi(k) =
∑

i,k ln(1 + (pi − 1)wi(k)). Although this ex-
pression is still nonlinear in wi(k) because of the logarithms, we note that
lnπi(k) = wi(k) ln (pi) for wi(k) ∈ {0, 1}. Hence, the logarithm of the trajectory
probability lnπ(w(0), . . . , w(N − 1)) =

∑N−1
k=0

∑l
i=1 wi(k) ln (pi), and therefore

the probability cost (16) can be expressed as a linear function of the uncontrol-
lable events wi(k) ∈ {0, 1}, so that the chance constraint (13) becomes a linear
constraint on wi(k) ∈ {0, 1}.

By converting the ueDHA into MLD form [10], the optimal control prob-
lem (14) can be solved by standard mixed integer programming solvers [17].

The solution of (14) is a couple (u∗, w∗), where u∗ is the optimal control se-
quence and w∗ is the desired uncontrollable events sequence. Only u∗ is actuated,
thus the actual trajectory may be different from the expected one. However, if
the realization of the stochastic events is equal to w∗ the actual trajectory is

3 This can be extended by considering the fictitious event for deterministic transitions

having pd = 1. As explained below its contribution will disappear because log pd = 0.

158 A. Bemporad and S. Di Cairano

equal to the one obtained from (14). The largest qp is, the most likely the actual
w will coincide with w∗, and the most cautious will be the control action.

In [11] it is shown that several DHA can be extracted from a single DHSA
by fixing a nominal behavior for the uncertain transitions, that is, by fixing
w = w̄ ∈ W in the equivalent ueDHA. The Stochastic Hybrid Optimal Control
problem solved on the DHSA will always give a better solution than the optimal
control problem formulated on an extracted DHA having Cd as cost function:
the solution of the SHOC has either higher probability or better performance.

4 Robust Hybrid Optimal Control of DHSA

The approach of Section 3 does not ensure that the behavior of the system
is correct when the actual w is different from w∗, as some constraints may
be violated for particular realizations. Therefore, this approach can be used
only if possible deviations from the desired trajectory are not critical. However,
considering those situations in which constraint violation is critical, we define
another control approach that considers not only the desired trajectory, but also
the possible deviations from it, due to unexpected stochastic transitions.

Definition 3. Given a stochastic system x(k+1) = f(x(k), u(k), φ(k)) in which
φ(k) ∈ Φ is a stochastic disturbance, the constraint h(x(k), u(k), φ(k)) < 0 is
robustly satisfied at time k if h(x(k), u(k), φ(k)) < 0, ∀φ(k) ∈ Φ.

Problem 2 (Robust Hybrid Optimal Control, RHOC).

min
{w(k),u(k)}N−1

k=0

Cd + qpCp (17a)

s.t. DHSA dynamics (1), (2), (3), (7), (6) (17b)
chance constraint (13) (17c)
constraint h(·) ≤ 0 is robustly satisfied, ∀k ∈ [0, N − 1] . (17d)

Compared to Problem 1, Problem 2 (RHOC) also requires that the optimal
input u∗ is such that a set of constraints h(·) ≤ 0 is always satisfied for all the
admissible values of stochastic events w that may realize.

By exploiting the techniques developed in Section 3 and in [12], problem (17)
can be rephrased as:

min
u,w,ξ

f(u,w, ξ) (18a)

s.t. Au u+Aw w +Aξ ξ ≤ b (18b)
P[w] ≥ p̃ (18c)
h(u,w, ξ) ≤ 0, ∀w ∈W such that P[w] > ps, (18d)

where u is the vector of deterministic decision variables, w is the vector of uncon-
trollable events, ξ is the vector of auxiliary variables (z, δ) obtained by translat-

Optimal Control of Discrete Hybrid Stochastic Automata 159

ing the ueDHA into MLD form4 and P[·] denotes the probability of its argument.
Cost function (18a), system dynamics/operation constraints (18b), and chance
constraint (18c) are the same of the SHOC problem (14). The quantified con-
straints (18d) are safety constraints that must be robustly enforced with respect
to stochastic events having at least probability ps ≥ 0: (18d) is the implicit
expression extended along the whole control horizon k ∈ [0, N − 1] on ueDHA
of h(x, u, φ) ≤ 0 in Definition 3, where the role of φ is taken by w. If ps = 0,
safety with respect to all trajectories having finite probability is ensured, hence
obtaining a complete robustness. Robustness in probability is otherwise enforced.

4.1 Robust Optimal Control Algorithm

Because of the quantified constraints (18d), problem (18) cannot be directly
formulated as an MIP. As the feasible values of (w, ξ) are finite, in principle it
is possible to explode the quantified constraints in several groups of constraints,
one for each realization of stochastic events, according to the so called “scenario
enumeration” approach of stochastic optimization [15]. However, the number of
scenarios is combinatorial with respect to the number of stochastic events and
control horizon, so that the numerical problem is intractable in most practical
cases.

On the other hand, one only needs to ensure robust safety of the optimal
sequence u∗, thus only the stochastic event sequences potentially unsafe and
enabled by u∗ must be considered. Following this consideration we can apply
a strategy based on the interaction between a “partially” robustly safe control
problem and a reachability analysis problem, described in Algorithm 4.1.

The algorithm is based on the iterative solution of an optimal control prob-
lem, whose dimension increases at each iteration of step 3.3.1., and that looks
for a candidate solution ũi, and a verification problem, whose dimension re-
mains constant, and that looks for an unsafe5 stochastic event sequence for
u = ũi. Both problems can be solved via MIP. The dimension of the control
problem keeps increasing as long as an unsafe stochastic sequence w̃i is found.
The ξ variables and the constraints are duplicated to explicitly enforce safety
with respect to the trajectory generated by w̃i while optimizing a different tra-
jectory: in this way we request that the trajectory generated by w̃i satisfies
h(x(k), u(k), w̃i(k)) ≤ 0, ∀k ∈ [0, N−1]. Algorithm 4.1 terminates in finite time
because the number of admissible stochastic event sequences w is finite.

Let V be the set of input sequences that fulfils constraints (18b), (18c) and
(18d) without quantification, and S be the set of input sequences that fulfils
(18b), (18c), (18d). V is the feasible input set for the SHOC problem, S is the
feasible input set for the RHOC problem, and S ⊆ V. The behavior of Algo-
rithm 4.1 is the following. At the beginning V is known, since it is defined by
the constraints of the optimal control problem, while S is not. The information

4 Possibly ξ also includes slack variables required to optimize infinity norms, unless

2-norms are used.
5 In case a set of robust constraints is considered, it is sufficient that one is violated.

160 A. Bemporad and S. Di Cairano

1. Let the control problem be (18) after removing quantification from (18d);

2. Set i = 0;

3. do
3.1. i ← i + 1

3.2. Solve the control problem and get a candidate solution ũi;

3.3. if ũi �= ∅

Solve a reachability problem for ũi and find w̃i : ∃k : h(x(k), ũi(k), w̃i(k)) > 0

3.3.1. if w̃i �= ∅

Add to the control problem variables ξi and constraints Au u + Aw w̃i +

Aξ ξi ≤ b and h(u, w̃i, ξi) ≤ 0 that enforce safety with respect to w̃i;

while ũi �= ∅ and w̃i �= ∅

4. if ũi = ∅

4.1. Problem (18) is unfeasible.

else
4.2. Set u∗ = ũi.

Algorithm 4.1: Robust hybrid optimal control algorithm

obtained from the verification problem is used to cut a part of V while maintain-
ing S ⊆ V. This procedure continues until the optimal point computed at step
3.2 belongs to S, and therefore the RHOC problem is solved, without in most
cases explicitly characterizing S.

Usually, only a small fraction of stochastic events affects the evolution of
the system when a particular control sequence is chosen, and an even smaller
fraction brings the system to the unsafe region. The iterative approach aims at
considering only these stochastic event sequences among all the possible ones,
thus solving many smaller problems rather than one large MIP in which all
possible realizations of stochastic events are enumerated. Nevertheless, it must
be noted that in the worst case Algorithm 4.1 still has a combinatorial complexity
with respect to the control horizon and the number of uncontrollable events.

Remark 1. The SHOC and RHOC approaches are different from the more com-
mon control approach for stochastic systems, where the average state is con-
trolled. In our setting, the uncertainty affecting DHSA has a discrete nature, so
that taking averages may lead to unsatisfactory solutions. Consider the following
problem: control to the origin the state of the system having three modes with
dynamics x(k+1) = x(k), x(k+1) = x(k)+u(k)−1, x(k+1) = x(k)+u(k)+1,
respectively mode 1, 2, 3. Consider the system starting in x(0) = 0 in mode 1 and
assume at time k̄ the mode switches to state 2 or 3, both with probability 0.5.
An average state control policy would choose u(k) = 0, ∀k, with the consequence
that the trajectories of the system will always diverge from the desired state.
On the other hand, SHOC and RHOC would choose one of the two possible
behaviors and optimize the system for that situation, e.g. by setting u(k) = 1 if
the system is predicted to switch to mode 2. In 50% of the cases the state would
be brought to the origin (clearly, in the remaining 50% the error would be larger
than in the case of the average control policy).

Optimal Control of Discrete Hybrid Stochastic Automata 161

5 Application Example

As a benchmark test we consider a problem in production systems where the
goal is to control a small factory production facility subject to random failures
depending on wear.

5.1 Modeling

The considered production facility is constituted by two lines having different
fixed production rates. The factory production rate must track a given reference
forecasted demand.

The production system accumulates wear. When the wear is above a certain
level, there is a probability pbreak that the system breaks. Maintenance can be
decided and executed to reduce wear, at the price of stopping the production.
Production is interrupted when the system is damaged and the system must be
repaired before production starts again.

The production rate dynamics ψ(k) is modeled as a first order asymptotically
stable linear system, the wear dynamics ν(k) as an integrator. The production
facility can be in three discrete states: Normal, Danger (=risk of damage) and
Damaged. The sFSM describing the possible discrete state transitions is pre-
sented in Figure 1, where the events e1, e2 represents the risky threshold cross-
ing (ν(k) ≥ 5.1) and the completion of the repairing (ν(k) ≤ 0.1), respectively.
There are three binary control commands, two for activating independently the
production lines and the third, mutually exclusive with the others, activating
maintenance. A more detailed description of the system can be found in [11].

5.2 Control Design and Results

All the tests presented here have been performed on an Intel Pentium Xeon
2.8 MHz running Matlab 6.5 and Cplex 9.0. We set N = 8, p̃ = 0.4 and the

0 2 4 6 8
1

1.5

2

2.5
Items per time unit

0 2 4 6 8
0

5

10

15

20
Wear level

0 2 4 6 8
 Normal

 Danger

Damage

Discrete State

0 2 4 6 8
OFF

ON1

ON2

ON12

MAN
Control Input

(a) Stochastic control, qp = 10.

0 2 4 6 8
1.4

1.6

1.8

2

2.2
Items per time unit

0 2 4 6 8
0

5

10

15

20
Wear level

0 2 4 6 8
 Normal

 Danger

Damage

Discrete State

0 2 4 6 8
OFF

ON1

ON2

ON12

MAN
Control Input

(b) Stochastic control, qp =

10−3.

Fig. 2. Stochastic control of a production system

162 A. Bemporad and S. Di Cairano

objective function
∑N

i=0 |(ψ(k) − r(k))|, in which r is the forecasted demand,
r(k) = 2,∀k ∈ [0, 8]. The constraints involve the discrete and continuous dy-
namics of the system and the additional mutual exclusivity constraint among
production line activation signals and maintenance execution signal. The trade
off coefficient qp is used as a tuning parameter and set either to 10 or to 10−3,
while pbreak = 0.1. The initial state is ψ(0) = 1.5, ν(0) = 3 and the discrete
state is Normal. The optimal control sequence found is applied in open loop.

The expected trajectory for qp = 10 has probability 0.66 and it is shown
in Figure 2(a). Note that the probability is higher than the limit p̃ because of
the probability cost Cp. In Figure 2(b) the expected trajectory for qp = 10−3 is
reported: it has higher performance but the probability of the optimal trajectory
decreases to 0.53. In both cases the computation time to solve the associated
MIP is less than 0.1 seconds.

The stochastic control does not ensure that constraints will be met when u∗

is implemented. If we require that the production rate remains above a certain
threshold ψ̄m = 0.92 items per time unit in all possible situations during the
whole horizon, a RHOC approach must be used. For qp = 10−3, the robust algo-
rithm requires two additional iterations to solve the problem and a computation
time of 0.68 seconds. The predicted trajectory is reported in Figure 3(a).

In Figure 3(b) the robust control solution is reported for qp = 10. In this case
only one additional iteration is required with respect to the stochastic control
under the same conditions and the computation time is 0.49 seconds.

Figures 3(c), 3(d) depict the worst case situation in which the system sud-
denly breaks down when it is in danger, in order to compare SHOC and RHOC.
Probability coefficients qp = 10−3 (Figure 3(c)) and qp = 10 (Figure 3(d)) are
tested in both approaches. The trajectory obtained by stochastic control (dashed
line) is initially closer to the desired production rate, but it crosses the line of
minimum desired rate. Instead, when the input profile obtained by robust con-
trol algorithm (solid line) is applied, the production rate remains in the desired
region during the whole control horizon.

6 Actuation Policies and Convergence Results

So far we have considered open loop optimal control problems. Feedback control
can be achieved through repeated optimization schema, such as Model Predic-
tive Control strategies. In this section we provide preliminary results on sufficient
conditions for asymptotic convergence of the state vector when SHOC/RHOC is
applied repeatedly. In order to prove convergence of the SHOC/RHOC control
of DHSA we separated the problem of obtaining convergence of a determinis-
tic system and the problem of obtaining convergence of a system affected by
stochastic disturbances. The first is solved using well known results of receding
horizon asymptotic convergence [12, 18], the second using techniques of Markov
Chain convergence theory [14].

Optimal Control of Discrete Hybrid Stochastic Automata 163

0 2 4 6 8
1

1.5

2

2.5

3
Items per time unit

0 2 4 6 8
0

5

10

15

20
Wear level

0 2 4 6 8
 Normal

 Danger

Damage

Discrete State

0 2 4 6 8
OFF

ON1

ON2

ON12

MAN
Control Input

(a) Robust control (qp =

10−3).

0 2 4 6 8
0.5

1

1.5

2

2.5
Items per time unit

0 2 4 6 8
0

5

10

15

20
Wear level

0 2 4 6 8
 Normal

 Danger

Damage

Discrete State

0 2 4 6 8
OFF

ON1

ON2

ON12

MAN
Control Input

(b) Robust control (qp = 10).

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3
Robust vs Stochastic in Worst Case

(c) RHOC vs. SHOC

(qp = 10−3).

0 1 2 3 4 5 6 7
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
Robust vs Stochastic in Worst Case

(d) RHOC vs. SHOC

(qp = 10).

Fig. 3. Robust control (solid) and comparison with stochastic control (dashed)

6.1 Repeated Open-Loop Optimal Control

The simpler policy is Repeated Open-Loop Optimal Control (ROLOC): from
a given state x(0) an SHOC/RHOC problem is solved and the whole input
sequence u∗ = {u∗(i)}N−1

i=0 is applied. Then, a new problem is solved from x(N),
and so on.

Since the system is stochastic, asymptotic convergence in probability is con-
sidered here. A sequence of random variables {φ(i)}∞

i=0 converges in probability
to a random variable φ̄ if ∀ε > 0, limi→∞ P[|φ(i) − φ̄| > ε] = 0 (see [19]).

Consider a DHSA in initial state x0, stochastic hybrid optimal control with
ROLOC policy and a target state x̄. Let X = Xr × {0, 1}nb be the full (con-
tinuous and discrete) state set and let R(x̄, N) ⊆ X be the set of states from
which the state x̄ is reachable within N steps. Define p̃ such that 0 < p̃ ≤
minx∈R(x̄,N){P [T (x, x̄)]} < 1, where T (x, x̄) is the trajectory with maximum
probability from state x to x̄. Let Xs ⊆ X be the set of states x0 for which prob-
lem (14) is feasible from x(0) = x0 and let the initial state be x0 ∈ R(x̄, N)∩Xs.

164 A. Bemporad and S. Di Cairano

Proposition 1. Consider the stochastic hybrid optimal control (14) applied in
ROLOC policy with horizon N from initial state x0 �= x̄. If:

1. the terminal state constraint x(N) = x̄ is used as an additional constraint
in the optimization,

2. the probability limit is fixed to p̃ and 0 < p̃ ≤ minx∈R(x̄,N){P [T (x, x̄)]} < 1,
3. ∀x ∈ R(x̄, N) ∩ Xs,∀w ∈ WN , x̃ = F (x, u∗, w) ∈ R(x̄, N) ∩ Xs, where u∗

is the deterministic component of the optimal solution and F is the function
that maps the initial state x, the input sequence u∗ and the stochastic event
sequence w in the final state x̃,

4. the objective state x̄ is an equilibrium point of the system, it is not affected
by stochastic events and the optimal performance index is zero for x = x̄,

then the state x converges asymptotically in probability to x̄.

Proof. Consider a generic instant kN , k ∈ K, k > 0. We are interested in
computing P[x(kN) = x̄].

By applying the total probability theorem we get

P[x(kN) = x̄] =P[x(kN) = x̄|x((k − 1)N) = x̄] P[x((k − 1)N) = x̄]+
P[x(kN) = x̄|x((k − 1)N) �= x̄] P[x((k − 1)N) �= x̄] . (19)

Because of hypothesis 4, P[x(kN) = x̄|x((k − 1)N) = x̄] = 1, and P[x(kN) =
x̄|x((k − 1)N) �= x̄] = p̂k−1 ≥ p̃ because of hypothesis 2. Denoting by Pk =
P[x(kN) = x̄], we can write (19) as Pk = Pk−1 + p̂k−1(1 − Pk−1).
We prove convergence by induction. For k = 1 we have P1 = P0 + p̂0(1 − P0) =
p̂0 ≥ p̃ =

∑0
i=0 p̃(1 − p̃)i where P0 = 0 because x0 �= x̄. Assume that

Pk−1 ≥
k−2∑
i=0

p̃(1 − p̃)i. (20)

Then Pk = Pk−1 + p̂k−1(1− Pk−1) ≥ Pk−1 + p̃(1− Pk−1) = Pk−1(1− p̃) + p̃. By
the induction hypothesis (20), Pk ≥

∑k−2
i=0 p̃(1 − p̃)i+1 + p̃ =

∑k−1
i=1 p̃(1 − p̃)i +

p̃(1 − p̃)0 =
∑k−1

i=0 p̃(1 − p̃)i, and thus we have
∑k−1

i=0 p̃(1 − p̃)i ≤ Pk ≤ 1. Since
limk→∞

∑k−1
i=0 p̃(1 − p̃)i = 1, we conclude that limk→∞ P[x(kN) = x̄] = 1. ��

Note that hypothesis 1 forces convergence to x̄, hypothesis 2 ensures feasi-
bility of (13) in optimization and hypothesis 3 ensures not to lose feasibility
because of an unexpected stochastic event; this hypothesis might be difficult to
verify, thus it can be convenient to verify a condition including it (e.g. that the
condition is feasible for each valid input sequence and not only for the optimal
one), and it can be removed if RHOC is used. Hypothesis 4 ensures that the
objective state will never be left, once it is reached. We can note that the larger
is p̃, the faster the probability of reaching the target state converges to one.

Optimal Control of Discrete Hybrid Stochastic Automata 165

6.2 Model Predictive Control

We now consider a Model Predictive Control (MPC) policy, where an optimal
control problem is repeated at each step k and only u∗(0) is applied as the input
u(k), while {u∗(1), . . . u∗(N − 1)} are discarded. In order to obtain convergence
of such an MPC policy, we make the probability limit p̃ time varying.

Consider solving problem (14) from the initial state x(0) = x0, with proba-
bility limit p̃(0) = p̃ as defined in hypothesis 2. Let (u∗, w∗) be the optimizer,
and let the predicted next state be x̂(1) = f(x(0), u∗(0), w∗(0)). After applying
the first input u∗(0) we get a new state x(1), from which a new optimization
problem is solved with probability limit p̃(1) defined by

p̃(k + 1) =

{
p̃(k)

P[w∗(k)] if xb(k + 1) = x̂b(k + 1)
p̃(0) if xb(k + 1) �= x̂b(k + 1).

(21)

The value P[w∗(k)] represents the probability of the transition predicted at step
k and it is known from the result of the MIP, while xb is the discrete component of
the state. The purpose of updating the probability limit is to force the probability
of a path between two unexpected transitions to be greater or equal than p̃,
therefore avoiding the generation of trajectories having “almost-0” probability.

Assumption 1. The “deterministic behavior” of the MPC closed-loop system,
where both u and w are manipulated variables, is asymptotically stable.

Assumption 1 can be satisfied by using final state constraints and defining cost
weight matrices in the objective function as reported in [12, 18], since the problem
is that of stabilizing a deterministic ueDHA by manipulating the inputs u and w
in a receding horizon fashion. When the above strategy is applied, we can prove
convergence using the same arguments of Proposition 1. A path that reaches
the objective without unexpected transitions in the worst case has probability
p̃, thus the probability of having one or more of them is 1 − p̃.

Proposition 2. The stochastic hybrid optimal control (14) applied to the DHSA
with MPC policy and probability limit update (21), under the same hypotheses of
Proposition 1 and Assumption 1, converges asymptotically in probability to the
objective state x̄.

Proof. The final state constraint and preliminary assumption on ueDHA ensure
that, if there are no unexpected transitions in an interval “long enough”, the
system state converges to the objective, as shown in [18]. The probability of
having no unexpected transitions in the worst case is p̃, and the probability of
having h of them is p̃(1− p̃)h. The probability of converging with not more than
m unexpected transition is

∑m
h=0 p̃(1− p̃)h. As k → ∞, there might be m→ ∞

unexpected transitions, but the probability of converging is
∑∞

h=0 p̃(1− p̃)h. This
series has been shown to converge at value 1, thus limk→∞ P[x(k) = x̄] = 1. ��

Even in this case we can relax hypothesis 3 if the RHOC approach is used.

166 A. Bemporad and S. Di Cairano

7 Conclusions

In this paper we have shown that by modeling hybrid systems affected by stochas-
tic uncertainty as DHSA several classes of optimal control problems can be
solved. We have shown how to trade off between performance and probability,
how to impose the chance constraints and how to satisfy constraints robustly.
The approach was exemplified on an application study and a set of sufficient con-
ditions, under which asymptotic convergence of repeated optimization schemes
can be proved, has been given.

References

1. Antsaklis, P.: A brief introduction to the theory and applications of hybrid systems.

Proc. IEEE, Special Issue on Hybrid Systems: Theory and Applications 88 (2000)

879–886

2. Pola, G., Bujorianu, M., Lygeros, J., Di Benedetto, M.: Stochastic hybrid models:

an overview with application to air traffic management. In: IFAC–ADHS03,IFAC

conference on analysis and design of hybrid systems. (2003)

3. Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems. In

Krogh, B., Lynch, N., eds.: Hybrid Systems: Computation and Control. Volume

1790 of Lecture Notes in Computer Science. Springer-Verlag (2000) 160–173

4. Bujorianu, M., Lygeros, J.: Reachability questions in piecewise deterministic

markov processes. In Maler, O., Pnueli, A., eds.: Hybrid Systems: Computation

and Control. Number 2623 in Lecture Notes in Computer Science, Springer-Verlag

(2003) 126–140

5. Liberzon, D., Chatterjee, D.: On stability of stochastic switched systems. In: Proc.

43th IEEE Conf. on Decision and Control, Paradise Island, Bahamas (2004)

6. Strubbe, S., Julius, A., van der Schaft, A.: Communicating piecewise deterministic

markov processes. In: in Proc. IFAC Conf. Analysis and Design of Hybrid Systems.

(2003) 349–354

7. Prandini, M., Hu, J., Lygeros, J., Sastry, S.: A probabilistic approach to aircraft

conflict detection. IEEE Transactions on Intelligent Transportation Systems 1
(2000) 199–220

8. Cassandras, C., Mookherje, R.: Receding horizon optimal control for some stochas-

tic hybrid systems. In: Proc. 41th IEEE Conf. on Decision and Control. (2003)

2162–2167

9. Hespanha, J.: Stochastic hybrid systems: application to communication networks.

In Alur, R., Pappas, G., eds.: Hybrid Systems: Computation and Control. Volume

2993 of Lecture Notes in Computer Science. Springer-Verlag (2004) 387–401

10. Torrisi, F., Bemporad, A.: HYSDEL — A tool for generating computational hybrid

models. IEEE Trans. Contr. Systems Technology 12 (2004) 235–249

11. Bemporad, A., Di Cairano, S.: Modelling and optimal control of hybrid systems

with event uncertainty. Technical report, University of Siena (02/04, 2004) Avail-

able at www.dii.unisi.it/∼dicairano/papers/tr0204.pdf.

12. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and

constraints. Automatica 35 (1999) 407–427

13. Davis, M.: Markov models and optimization. Chapman-Hall, London (1993)

14. Cassandras, C.: Discrete event systems. Aksen associates (1993)

Optimal Control of Discrete Hybrid Stochastic Automata 167

15. Birge, J., Louveaux, F.: Introduction to Stochastic Programming. Springer, New

York (1997)

16. Bemporad, A.: Hybrid Toolbox – User’s Guide. (2003) http://www.dii.unisi.it/
hybrid/toolbox.

17. ILOG, Inc.: CPLEX 8.1 User Manual, Gentilly Cedex, France. (2003)

18. Lazar, M., Heemels, W., Weiland, S., Bemporad, A.: Stability of hybrid model

predictive control. In: Proc. 43th IEEE Conf. on Decision and Control, Paradise

Island, Bahamas (2004)

19. Papoulis, A.: Probability, random variables and stochastic processes. McGraw-Hill

(1991)

Hybrid Decentralized Control of
Large Scale Systems

Francesco Borrelli1, Tamás Keviczky2, Gary J. Balas2, Greg Stewart3,
Kingsley Fregene3, and Datta Godbole3

1 Dipartimento di Ingegneria, Università del Sannio,

82100 Benevento, Italy

francesco.borrelli@unisannio.it
2 Department of Aerospace Engineering and Mechanics,

University of Minnesota,

Minneapolis, MN 55455, United States
3 Honeywell Laboratories, Minneapolis, MN 55418, United States

Abstract. Motivated by three applications which are under investiga-

tion at the Honeywell Research Laboratory in Minneapolis, we introduce

a class of large scale control problems. In particular we show that a for-

mation flight problem, a paper machine control problem and the coordi-

nation of cameras in a monitoring network can be cast into this class. In

the second part of the paper we propose a decentralized control scheme

to tackle the complexity of the problem. The scheme makes use of logic

rules which improve stability and feasibility of the decentralized method

by enforcing coordination. The decentralized control laws which respect

the rules are computed using hybrid control design.

1 Introduction

Past years have seen a significant interest in techniques for analyzing and con-
trolling hybrid systems. For certain classes of hybrid systems, it is possible to
solve control problems, to compute reachability and invariant sets and to verify
properties such as stability, controllability and observability [1, 2, 3, 4, 5, 6]. Large
part of current research is focused on exploring new methods, theory and algo-
rithms which are applicable to larger classes of systems and under less restrictive
assumptions. Recently, we have started to explore the use of current results in
hybrid control methodologies in order to simplify the design of controllers for
large scale dynamical systems.

Motivated by three applications which are under investigation at the Hon-
eywell Research Laboratory, we present a class of large scale control problems
and show how hybrid control can help in designing decentralized control strate-
gies. The three applications share the following characteristics: (i) they involve
large number of subsystems (order of hundreds) which can be independently
actuated, (ii) the subsystems are dynamically decoupled, (iii) the control objec-
tive can only be achieved through a collective behavior, and (iv) the feasible

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 168–183, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Hybrid Decentralized Control of Large Scale Systems 169

set of states of each subsystem is a function of other subsystems’ states. These
applications fall under the general class of optimal control problems for a set
of decoupled dynamical systems where cost function and constraints couple the
dynamical behavior of the systems.

The interest in decentralized control goes back to the seventies. Wang and
Davison were probably the first in [7] to envision the “increasing interest in de-
centralized control systems...” when “...control theory is applied to solve prob-
lems for large scale systems”. Decentralized control techniques today can be
found in a broad spectrum of applications ranging from robotics and formation
flight to civil engineering. Such a wide interest makes a survey of all the ap-
proaches that have appeared in the literature very difficult and goes also beyond
the scope of this paper. Approaches to decentralized control design differ from
each other in the assumptions they make on: (i) the kind of interaction between
different systems or different components of the same system (dynamics, con-
straints, objective), (ii) the model of the system (linear, nonlinear, constrained,
continuous-time, discrete-time), (iii) the model of information exchange between
the systems, and (iv) the control design technique used.

The ubiquity of sensor and actuator networks has been envisioned several
years ago [8]. The main focus of this paper is to propose a decentralized control
design technique which can be very efficient when hybrid control methodologies
are used. In this paper we focus on decoupled systems. The problem of decentral-
ized control for decoupled systems can be formulated as follows. A dynamical
system is composed of (or can be decomposed into) distinct dynamical sub-
systems that can be independently actuated. The subsystems are dynamically
decoupled but have common objectives and constraints which make them inter-
act between each other. Typically the interaction is local, i.e. the objective and
the constraints of a subsystem are function of only a subset of other subsystems’
states. The interaction will be represented by an “interaction graph”, where the
nodes represent the subsystems and an arc between two nodes denotes a coupling
term in the objectives and/or in the constraints associated to the nodes. Also,
typically it is assumed that the exchange of information has a special structure,
i.e., it is assumed that each subsystem can sense and/or exchange information
with only a subset of other subsystems. Often the interaction graph and the
information exchange graph coincide. A decentralized control scheme consists of
distinct controllers, one for each subsystem, where the inputs to each subsystem
are computed only based on local information, i.e. on the states of the subsystem
and its neighbors.

Due to the complexity of the problem, control of large scale systems is usually
approached using decentralization. Along with the benefits of a decentralized
design, one has to face inherent issues such as difficulties in ensuring stability
and feasibility of the system. One of the main objectives of this paper is to show
how coordination rules can be included in the decentralized control design by
using hybrid system techniques. Such rules improve the overall behavior of the
systems and make the control subproblems feasible where traditional design is
either infeasible or too conservative. Theoretical proofs of stability and feasibility

170 F. Borrelli et al.

in such design schemes are under investigation but in general difficult to give.
Nevertheless, the benefits and practicality of these techniques have been proven
by extensive simulations.

We will formulate hybrid constrained optimal control problems in discrete
time [3]. In particular, computational results are obtained by using on-line mixed-
integer optimization [3] or the evaluation of an equivalent lookup table obtained
by means of parametric programming [9]. However, the main concepts presented
in this paper are applicable to any control scheme and design methodology as
long as it can cope with continuous dynamics and logic rules.

2 Problem Formulation

Consider a set of Nv linear decoupled dynamical systems, where the i-th system
is described by the discrete-time time-invariant state equations:

xi
k+1 = f i(xi

k, ui
k) (1)

yi
k = hi(xi

k)

where xi
k ∈ Rni

, ui
k ∈ Rmi

, f i : Rni × Rmi → Rni

, hi : Rni → Rpi

are states,
inputs, state update function and output function of the i-th system, respectively.
Let U i ⊆ Rmi

and Yi ⊆ Rpi

denote the set of feasible inputs and outputs of the
i-th system

yi
k ∈ Yi, ui

k ∈ U i, k ≥ 0 (2)

where Yi and U i are given polytopes.
We will refer to the set of Nv constrained systems as team system. Let x̃k ∈

RNv×ni

and ũk ∈ RNv×mi

be the vectors which collect the states and inputs of
the team system at time k, i.e. x̃k = [x1

k, . . . , xNv

k], ũk = [u1
k, . . . , uNv

k], with

x̃k+1 = f(x̃k, ũk) (3)

We denote by (xi
e, u

i
e) the equilibrium pair of the i-th system and (x̃e,ũe) the

corresponding equilibrium for the team system.
So far the individual systems belonging to the team system are completely

decoupled. We consider an optimal control problem for the team system where
cost function and constraints couple the dynamic behavior of individual systems.
We use a graph topology to represent the coupling in the following way. We
associate the i-th system to the i-th node of the graph, and if an edge (i, j)
connecting the i-th and j-th node is present, then the cost and the constraints
of the optimal control problem will have a component which is a function of
both xi and xj . The graph will be undirected, i.e. (i, j) ∈ A ⇒ (j, i) ∈ A and
furthermore, the edges representing coupling change with time. Therefore, before
defining the optimal control problem, we need to define a graph (which can be
time-varying)

G(t) = {V,A(t)} (4)

Hybrid Decentralized Control of Large Scale Systems 171

where V is the set of nodes V = {1, . . . , Nv} and A(t) ⊆ V × V the set of
time-varying arcs (i, j) with i ∈ V, j ∈ V.

Once the graph has been defined, the optimization problem is formulated
as follows. Denote with x̃i

k the states of all neighbors of the i-th system at
time k, i.e. x̃i

k = {xj
k ∈ Rnj |(j, i) ∈ A(k)}, x̃i

k ∈ Rñi
k with ñi

k =
∑

j|(j,i)∈A(k) nj
k.

Analogously, ũi
k ∈ Rm̃i

k denotes the inputs to all the neighbors of the i-th system
at time k. Let

gi,j(xi, xj) ≤ 0 (5)

define interconnection constraints between the i-th and the j-th systems, with
gi,j : Rni × Rnj → Rnci,j . We will often use the following shorter form of the
interconnection constraints defined between the i-th system and all its neighbors:

gi
k(xi

k, x̃i
k) ≤ 0 (6)

with gi
k : Rni × Rñi

k → Rnci,k .
Consider the following cost

l(x̃, ũ) =
Nv∑
i=1

lik(xi, ui, x̃i
k, ũi

k) (7)

where li : Rni ×Rmi ×Rñi
k ×Rm̃i

k → R is the cost associated to the i-th system
and is a function of its states and the states of its neighbor nodes. Assume that
l is a positive convex function with l(x̃e, ũe) = 0.

Consider the infinite time optimal control problem

J̃∗
∞(x̃) � min

{ũ0,ũ1,...}

∞∑
k=0

l(x̃k, ũk) (8a)

subj. to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi
k+1 = f i(xi

k, ui
k),

yi
k = hi(xi

k),
i = 1, . . . , Nv, k ≥ 0

gi,j(xi
k, xj

k) ≤ 0,
i = 1, . . . , Nv, k ≥ 0,
(i, j) ∈ A(k)

yi
k ∈ Yi, ui

k ∈ U i,
i = 1, . . . , Nv, k ≥ 0

x̃0 = x̃

(8b)

For all x̃ ∈ RNv×ni

, if problem (8) is feasible, then the optimal input ũ∗
0, ũ

∗
1, . . .

will drive the Nv systems to their equilibrium points xi
e while satisfying state,

input and interconnection constraints.

Remark 1. Since we assumed that the graph is undirected, there will be re-
dundant constraints in problem (8). Note the form of constraints (6) is rather
general and it will include the case when only partial information about states
of neighboring nodes is involved.

172 F. Borrelli et al.

With the exception of a few cases, solving an infinite horizon optimal control
problem is computationally prohibitive. An infinite horizon controller can be
designed by repeatedly solving finite time optimal control problems in a receding
horizon fashion as described next. At each sampling time, starting at the current
state, an open-loop optimal control problem is solved over a finite horizon. The
optimal command signal is applied to the process only during the following
sampling interval. At the next time step a new optimal control problem based
on new measurements of the state is solved over a shifted horizon. The resultant
controller is often referred to as Receding Horizon Controller (RHC). Assume at
time t the current state x̃t to be available. Consider the following constrained
finite time optimal control problem

J̃∗
N (x̃t) � min

{Ut}

N−1∑
k=0

l(x̃k,t, ũk,t) + lN (x̃N,t) (9a)

subj. to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi
k+1,t = f i(xi

k,t, u
i
k,t),

yi
k,t = hi(xi

k,t),
i = 1, . . . , Nv, k ≥ 0

gi,j(xi
k,t, x

j
k,t) ≤ 0,

i = 1, . . . , Nv, (i, j) ∈ A(t),
k = 1, . . . , N − 1

yi
k,t ∈ Yi, ui

k,t ∈ U i

i = 1, . . . , Nv,
k = 1, . . . , N − 1

x̃N,t ∈ Xf ,
x̃0,t = x̃t

(9b)

where N is the prediction horizon, Xf ⊆ RNv×ni

is a terminal region, lN is the
cost on the terminal state. In (9) we denote with Ut � [ũ0,t, . . . , ũN−1,t]′ ∈ Rs,
s � Nv ×mN the optimization vector, xi

k,t denotes the state vector of the i-th
node predicted at time t+k obtained by starting from the state xi

t and applying
to system (1) the input sequence ui

0,t, . . . , u
i
k−1,t. The tilded vectors will denote

the prediction vectors associated to the team system.
Let U∗

t = {ũ∗
0,t, . . . , ũ

∗
N−1,t} be the optimal solution of (9) at time t and

J̃∗
N (x̃t) the corresponding value function. Then, the first sample of U∗

t is applied
to the team system (3)

ũt = ũ∗
0,t. (10)

The optimization (9) is repeated at time t + 1, based on the new state xt+1.
It is well known that stability is not ensured by the RHC law (9)–(10). Usually

the terminal cost lN and the terminal constraint set Xf are chosen to ensure
closed-loop stability. A treatment of sufficient stability conditions goes beyond
the scope of this work and can be found in the survey [10]. We assume that the
reader is familiar with the basic concept of RHC and its main issues, we refer
to [10] for a comprehensive treatment of the topic. In this paper we will assume

Hybrid Decentralized Control of Large Scale Systems 173

that terminal cost lN and the terminal constraint set Xf can be appropriately
chosen in order to ensure the stability of the closed-loop system.

In general, the optimal input ui
t to the i-th system computed by solving (9)

at time t, will be a function of the overall state information x̃t.

3 Motivating Examples

In this section we present three distinct applications that represent the class
of systems and control problems studied in this manuscript. All the examples
involve a significant number of subsystems for which the coupling cost and con-
straints are formulated in different ways. Next we discuss the main features
of each problem and refer the reader to appropriate publications for complete
details. More details can be found in [11].

3.1 OAV Formation Flight

Formation flight can be viewed as a large control problem which computes the
control inputs to Unmanned Aerial Vehicles (UAVs) in order to fly challenging
maneuvers while maintaining relative positions as well as safe distances between
each UAV pair.

Centralized and decentralized optimal control has been the most successful
technique to formulate and tackle such a problem [12, 13, 14, 15]. Centralized op-
timal or suboptimal approaches have been used in different studies. However,
as the number of UAVs increases, the solution of big, centralized, non-convex
optimization problems becomes prohibitive, even having the most advanced op-
timization solver, or using oversimplified linear vehicle dynamics. Decentralized
control for UAV formation flight with collision avoidance guarantees is attract-
ing significant research interest and is currently a very active area within the
aerospace control field.

Honeywell Research Laboratory in Minneapolis is studying formation flight
for a scalable autonomous ducted-fan UAV called Organic Air Vehicle (OAV).
The OAV is a highly nonlinear, constrained multi-input, multi-output (MIMO)
system. OAV formation flight is a complex task which is rendered tractable
via a hierarchical decomposition of the problem. In such a decomposition, the
lower level is made up of the OAV dynamics equipped with efficient guidance
and control loops. At the higher level, the controlled OAV can be represented
sufficiently well as a constrained MIMO linear system where the inputs to the
system dynamics are accelerations along the N,E, h-axes, and the states are
velocities and positions along the N,E, h-axes.

Future scenarios will implement hundreds of OAVs flying in formation. De-
tailed information about the OAV and an exhaustive list of references to forma-
tion flight can be found in [16]. The main message of this section is that OAV
formation flight falls in the class of problems (8) where f i and hi model the
high-level dynamics of the i-th OAV. The cost function will depend on the for-
mation’s mission and will include terms that minimize relative distances and/or

174 F. Borrelli et al.

velocities between neighboring vehicles. The coupling constraints arise from col-
lision avoidance. The interaction graph is full (each vehicle has to avoid all other
vehicles) but it is often approximated with a time-varying graph based on a
“closest spatial neighbors” model. In summary, the formation flight application
example is identified by the following characteristics

– Subsystems: Independently actuated, decoupled vehicle dynamics with ac-
celeration inputs along the N,E, h-axes. The states of each vehicle represent
velocities and positions along the N,E, h-axes.

– Subsystem Constraints: Bounds on speed and acceleration of the vehicles.
– Interaction Constraints: Collision avoidance constraints between vehicles.
– Objective Function: Minimization of relative distance and absolute position

errors in order to achieve a desired formation and arrive at a specified target,
respectively.

– Graph: Time-varying graph based on a “closest spatial neighbors” model.

3.2 Paper Machine

The papermaking process employs large arrays of actuators spread across a con-
tinuously moving web to control the cross-directional (CD) profiles of the paper
properties as measured by a scanning gauge downstream from the actuators.
A CD control system calculates actuator moves to maintain the measured CD
profiles of paper properties on target. An overview of industrial CD control sys-
tems can be found in [17]. The wet pulp slurry enters the machine where it is
distributed over a wide area and forced through a gap governed by the slice lip
where it is extruded onto a moving wire screen. The rest of the paper machine
first drains then dries the majority of the water from the pulp and a formed sheet
of paper is rolled up. The three main properties of interest are weight, moisture,
and caliper. We will consider the CD weight control problem using a slice lip
actuator array. CD control of the weight of a paper sheet is accomplished by
actuators at the headbox. The function of weight control actuators is to achieve
an even distribution of the pulp fibers across the width of the wire belt, despite
changing pulp properties. In a typical industrial CD control system controller
computations are performed at the spatial resolution of the actuator profile.
Such profiles have from 30 up to 300 elements, corresponding to the number of
actuators. The measurement signals are obtained from the scanning sensor at a
much higher spatial resolution with up to 2000 elements.

The dynamics of each actuator in the headbox is modeled as a first order
system with deadtime. The deadtime models the transport delay equivalent to
the time taken for the paper to travel from the actuators to the scanning sen-
sor. The model of each actuator system is described by the linear state update
function

xi
k+1 = Axi

k + Bui
k (11)

where xi
k represents the position of the i-th actuator at time k and at previous

time instants k − 1, . . . , k − p (where p is the order of the deadtime), and ui
k is

Hybrid Decentralized Control of Large Scale Systems 175

the desired position of the actuators. The output yj
k is the weight measured by

the j-th sensor

yj
k = Cx̃k + Ddj

k (12)

and it is ideally a function of all the actuator positions. The overall system model
includes additive disturbances d1

k, . . . , dm
k , which act on the measurements and

represent an inhomogeneous pulp weight distribution. Typically, the impulse
response of individual actuators, also known as the cross-directional (CD) bump
response is much narrower than the width of the paper sheet. This implies that
yj

k is a function of spatially “close” actuators only. Denoting the set of such
actuators with Sj , the output equation can be written as

yj
k =

∑
l∈Sj

Clx̃l,k + Ddj
k (13)

where Cl is the l-th element of the row vector C. An important factor in CD con-
trol is the presence of actuator constraints, which represent maximum-minimum
actuator positions and the presence of limits on relative positions between neigh-
boring actuators. This latter restricts the bending of the slice lip (i.e. neighboring
actuator positions cannot be too far from each other).

The control problem can be arranged in the form (8) by considering inde-
pendent actuator dynamics and an objective function which minimizes the error
between the desired and actual paper weight profile. In summary, the paper
machine application example can be described by the following features

– Subsystems: Independently actuated elements along the slice lip profile in
the paper headbox, where the inputs are the desired actuator movements
and the outputs are the actual actuator positions.

– Subsystem Constraints: Bounds on actuator positions.
– Interaction Constraints: Bounded deviation between neighboring valve move-

ments to prevent excessive bending and eventual breaking of the slice lip
profile.

– Objective Function: Tracking of paper weight profiles in the presence of
changing pulp properties. The paper weight measured by downstream sen-
sors is a function of neighboring actuator positions.

– Graph: Depending on the bending restrictions for the slice lip, a time-
invariant line graph or n closest neighbor interconnection gives the underly-
ing topology such as the one shown in Figure 1.

Fig. 1. Typical interconnection topology in the paper machine example

176 F. Borrelli et al.

3.3 Monitoring Network of Cameras

Monitoring and surveillance in public areas is nowadays accomplished by using a
plethora of cameras. As an example, main international airports can be equipped
with more than hundreds of cameras. Future monitored areas will be outfitted
with fixed wide-angle cameras and “Pan-Tilt-Zoom” (PTZ) cameras which can
communicate within a distributed network. These two types of cameras can be
used to achieve different goals such as identifying multiple targets or identify-
ing details on a moving target (e.g. the faces of several walking persons or the
numberplates on moving cars). Pan, tilt and zoom factors can be controlled by
PTZ cameras in order to achieve the desired goals. The accuracy and precision
of the captured detail will depend on properties such as size, position and speed
of the moving objects. These properties are better tracked by the wide-angle
cameras. The goal is to design control strategies for achieving “good” tracking
of the details.

The controller receives information about size, position and speed of the
objects from wide-angle cameras and information about the current tracking
accuracy and quality of the zoomed images from PTZ cameras. Based on such
information, pan, tilt and zoom factors will be commanded to achieve optimal
multi-objective tracking. In such a scenario, PTZ cameras are independently
actuated systems, which need to cooperate to achieve a certain goal. (A typical
example is tracking a walking person through the rooms and floors of a building).
The interaction constraints between cameras will ensure that the orientation
and zooming factors of neighboring cameras do not create a blind spot allowing
unmonitored intrusion into the environment. The characteristics of problem (8)
are easily identified for this example as well

– Subsystems: Independently actuated cameras where Pan, Tilt and Zooming
factors are controlled.

– Subsystem Constraints: Physical PTZ ranges of cameras.
– Interaction Constraints: Relative orientation and zooming factors have to be

constrained to avoid (or minimize the size of) blind spots in a given area.
– Objective Function: Tracking of multiple targets and details on a target.
– Graph: The graph connection will depend on the physical position of cam-

eras. Cameras in two adjacent rooms need to exchange information if the
rooms can be accessed from each other. There will be no need for communi-
cation if the rooms are far away and on different floors.

4 Decentralized Control Scheme

The previous examples are all characterized by the presence of a large number
of states (on the order of hundreds). We tackle the complexity associated to the
design of controllers for such class of large scale systems by using decentralized
optimal control schemes. In this section we present a possible way to decentralize
the RHC problem in (9). In Section 5 we show how feasibility and stability can
be practically improved by using coordination rules. Decentralization of RHC

Hybrid Decentralized Control of Large Scale Systems 177

problems raises issues of stability and feasibility to be addressed, which are
topics of current research in decentralized control design [18, 19, 20, 21, 22, 23].

As presented in the preliminary study [21], we decompose problem (9) into
Nv finite time optimal control problems, each one associated to a different node
as detailed next. Each node has information about its current states and its
neighbors’ current states. Based on such information, each node computes its
optimal inputs and its neighbors’ optimal inputs. The input to the neighbors
will only be used to predict their trajectories and then discarded, while the first
component of the optimal input to the node will be implemented where it was
computed.

Considering the overall problem description given by systems (1), graph G(t),
and RHC policy (9)-(10), let the following finite time optimal control problem
Pi(t) be associated to the i-th system at time t

min
Ũi

t

N−1∑
k=0

lit(x
i
k,t, u

i
k,t, x̃

i
k,t, ũ

i
k,t) + liN (xi

N,t, x̃
i
N,t) (14a)

subj. to xi
k+1,t = f i(xi

k,t, u
i
k,t), (14b)

yi
k,t = hi(xi

k,t), k ≥ 0

yi
k,t ∈ Yi, ui

k,t ∈ U i, (14c)
k = 1, . . . , N − 1

xj
k+1,t = f j(xj

k,t, u
j
k,t), (j, i) ∈ A(t), (14d)

yj
k,t = hj(xj

k,t), k ≥ 0

yj
k,t ∈ Yi, uj

k,t ∈ Uj , (j, i) ∈ A(t), (14e)
k = 1, . . . , N − 1

gi,j(xi
k,t, u

i
k,t, x

j
k,t, u

j
k,t) ≤ 0, (i, j) ∈ A(t), (14f)

k = 1, . . . , N − 1
gq,r(xq

k,t, u
q
k,t, x

r
k,t, u

r
k,t) ≤ 0, (14g)

(q, i) ∈ A(t), (r, i) ∈ A(t),
k = 1, . . . , N − 1

xi
N,t ∈ X i

f , xj
N,t ∈ X

j
f , (i, j) ∈ A(t) (14h)

xi
0,t = xi

t, x̃i
0,t = x̃i

t (14i)

where Ũ i
t � [ui

0,t, ũ
i
0,t, . . . , u

i
N−1,t, ũ

i
N−1,t]

′ ∈ Rs, s � (m̃i + mi)N denotes the
optimization vector, xi

k,t denotes the state vector of the i-th node predicted at
time t + k obtained by starting from the state xi

t and applying to system (1)
the input sequence ui

0,t, . . . , u
i
k−1,t. The tilded vectors denote the prediction vec-

tors associated to the neighboring systems assuming a constant interconnection
graph. Denote by Ũ i∗

t = [u∗i
0,t, ũ

∗i
0,t, . . . , u

∗i
N−1,t, ũ

∗i
N−1,t] the optimizer of problem

Pi(t). Note that problem Pi(t) involves only the state and input variables of the
i-th node and its neighbors at time t.

178 F. Borrelli et al.

We will define the following decentralized RHC control scheme. At time t

1. Compute graph connection A(t) according to a chosen policy.
2. Each node i solves problem Pi(t) based on measurements of its state xi

t and
the states of all its neighbors x̃i

t.
3. Each node i implements the first sample of Ũ i∗

t

ui
t = u∗i

0,t. (15)

4. Each node repeats steps 1 to 4 at time t + 1, based on the new state infor-
mation xi

t+1, x̃i
t+1.

In order to solve problem Pi(t) each node needs to know its current states,
its neighbors’ current states, its terminal region, its neighbors’ terminal regions
and models and constraints of its neighbors. Based on such information each
node computes its optimal inputs and its neighbors’ optimal inputs assuming
a constant set of neighbors over the horizon. The input to the neighbors will
only be used to predict their trajectories and then discarded, while the first
component of the i-th optimal input of problem Pi(t) will be implemented on
the i-th node. The solution of the i-th subproblem will yield a control policy for
the i-th node of the form ui

t = ki
t(x

i
t, x̃

i
t).

Even if we assume N to be infinite, the decentralized RHC approach de-
scribed so far does not guarantee that solutions computed locally are globally
feasible and stable (i.e. feasible for problem (9)). The reason is simple: At the
i-th node the prediction of the neighboring state xj is done independently from
the prediction of problem Pj(t). Therefore, the trajectory of xj predicted by
problem Pi(t) and the one predicted by problem Pj(t), based on the same initial
conditions, are different (since in general, Pi(t) and Pj(t) will be different). This
will imply that constraint fulfillment will be ensured by the optimizer u∗i

t for
problem Pi(t) but not for the overall problem (9).

A detailed discussion on feasibility and stability issues of decentralized RHC
schemes goes beyond the scope of this paper. Some important observations can
be found in [21, 19, 18, 20]. The main research topics include: (i) the choice of
the graph topology when it is not fixed or unique, (ii) the choice of local predic-
tion horizons, terminal weights and terminal regions and its effect on the global
performance and feasibility.

5 Application of Hybrid Theory in Decentralized Control

In general, it is very difficult to provide feasibility guarantees in a constrained
decentralized control problem. Nevertheless everyday life is full of decentralized
control problems. Although feasible solutions are not always found or even pos-
sible at all, these problems are solved day-by-day relying on certain rules that
help coordinate the single subsystem efforts. Examples range from traffic laws
to behavior of individuals in a community.

This suggests that it can be beneficial to make use of coordination rules in
some decentralized engineering control problems as well. Hybrid control design

Hybrid Decentralized Control of Large Scale Systems 179

techniques are able to cope with the hybrid nature of a problem governed by
differential equations and logic rules. For this reason we investigate the benefits
of hybrid system techniques in implementing coordination rules within the de-
centralized control framework presented in Section 4. A more formal discussion
follows.

We define a rule element to be a Boolean-valued function operating on the
states of a node and its neighbors’ states

� : (xi, x̃i) → X, X = {true, false} . (16)

We define a rule to be a propositional logic statement involving rule elements

R : (�1, �1, . . . , �n−1) → X, X = {true, false} . (17)

The logic statement R is a combination of “not” (¬), “and” (∧), “or” (∨),
“exclusive or” (⊕), “implies” (→), and “iff” (↔) operators. For instance, the
following logic expression of

R (X1, . . . , Xn−1) ↔ Xn (18)

involving Boolean variables X1, . . . , Xn can be expressed equivalently with its
conjunctive normal form (CNF)

k∧
j=1

⎛⎝⎛⎝∨
i∈Pj

Xi

⎞⎠∨⎛⎝ ∨
i∈Nj

¬Xi

⎞⎠⎞⎠ , Nj , Pj ⊆ {1, . . . , n}. (19)

The rule holds and its value is “true” if the statement is evaluated as true based
on the rule elements. The rule is not respected and its value is “false” when the
underlying statement is false.

We introduce two abstract function classes called coordinating functions,
which operate on a set of rules and the states of a node and its neighbors

F C
c : (�, xi, x̃i) → R (20)

F bin
c : (�, xi, x̃i) → {0, 1} (21)

where � is a set of rules defined in (17). The coordinating functions can be
defined to have either continuous or binary values. These function classes rely
on rules and states of the system and can be included in the cost function
(F C

c) or constraints (F bin
c) of subproblems. This means that the decentralized

problem (14) is modified in the following way

min
Ũi

t

Jdec
N (xi

t, x̃
i
t) + F C

c (�, xi
t, x̃

i
t)

subj. to constraints (14b)− (14i)
gc

(
xi

t,k, x̃i
t,k,F bin

c (�, xi
t,k, x̃i

t,k)
)
≤ 0, k = 1, . . . , N − 1

where Jdec
N (xi

t, x̃
i
t) denotes the cost function in (14a).

180 F. Borrelli et al.

If chosen appropriately, coordinating functions have the benefit of guiding
towards feasible sequences of decentralized solutions. When F C

c is used in the
cost function, trajectories which respect rules can be penalized less and have a
cost which is less than the cost of trajectories, which do not enforce the rules.
When F bin

c is used in the constraints, the local domain of feasibility is reduced
to the domain where only trajectories respecting rules are feasible. A crucial
assumption underlying this idea is that each component has to abide by the
same or at least similar set of rules.

Remark 2. We point out that the approach of this paper to large-scale control
problems is independent of the problem formulation. Continuous-time formula-
tions and other hybrid control design techniques could be used.

Simulation results of the decentralized control scheme applied to the pa-
per machine example are reported in [11] and show that similar performance is
achieved compared to a centralized solution.

6 Formation Flight Example

This section presents details of the decentralized control scheme (14)-(15) de-
scribed in Section 4 applied to the formation flight of vehicles flying at a certain
altitude. Each vehicle is modeled as a point mass in two dimensions with con-
straints on states and inputs. The coupling between vehicles stems from the
common objective of the team (moving in formation) and its constraints (vehi-
cles are not allowed to violate each others protection zones). Our intention is to
illustrate the use of hybrid system techniques that aid in retaining feasibility of
the decentralized scheme.

The autonomous aerial vehicle dynamical model used in this paper reflects the
simplified dynamics of the Organic Air Vehicle (OAV) mentioned in Section 3.1.
We describe the OAV dynamics by using the following linear discrete-time model

xk+1 = f(xk, uk) (23)

where the state update function f : R6 × R3 → R6 is a linear function of its
inputs and xk ∈ R6, uk ∈ R3 are states and inputs of the vehicle at time k,
respectively. In particular,

xk =
[
xk,pos

xk,vel

]
, u =

⎡⎣x-axis acceleration
y-axis acceleration
z-axis acceleration

⎤⎦
and xk,pos ∈ R3 is the vector of x, y and z coordinates and xk,vel ∈ R3 is the
vector of x-axis, y-axis and z-axis velocity components at time k. It is important
to emphasize that the approach proposed in this paper can easily accommodate
higher order, more complex linear or piecewise-linear models that describe the
OAV dynamics with higher fidelity.

Hybrid Decentralized Control of Large Scale Systems 181

In order to improve coordination and the likelihood of feasibility of the de-
centralized scheme, different “right-of-way” priorities can be introduced which
allow to have better prediction about neighbors’ trajectories. This can be easily
achieved if protection zones are modeled as parallelepipeds and the disjunctions
are modeled as binary variables. “Right-of-way” priorities can be translated into
weights and constraints on the binary variables which describe the location of a
vehicle with respect to a parallelepipedal protection zone of another vehicle (six
binary variables in three dimensions for each vehicle couple).

The main idea behind inter-vehicle coordination is to make use of “preferred”
decisions in the hybrid control problem that arises due to the non-convex collision
avoidance constraints. For illustration, consider the following scenario. Assume
that protection zones around vehicles are specified as square exclusion regions
centered around each vehicle’s position as depicted in Figure 2. If the edges of
the protection zones are of size p, then collision avoidance can be represented
by introducing binary decision variables associated to the feasibility of linear
inequalities defined over the system states. Disjunctions of the protection zones
can then be easily described by propositional logic statements involving the
binary decision variables. This mixture of logic states and dynamics is then
modeled in the MLD framework [3] by translating logic relations into mixed-
integer linear inequalities. Part of this translation is illustrated in Table 1 for the
purpose of describing the idea behind implementing inter-vehicle coordination
rules in two dimensions. The superscripts “E,W,N, S” stand for “east”, “west”,
“north” and “south” corresponding to positive x, negative x, positive y and
negative y directions, respectively. For instance, the value of the δN

i,j variable
is true if the i-th vehicle is “north” of the j-th vehicle, or in other words if
yi − p

2 > yj + p
2 .

Fig. 2. Square protection exclusion zones

182 F. Borrelli et al.

Table 1. Use of binary variables to express disjunctions

Disjunction Binary Big-M
inequality variable technique

1 : xi − p
2 ≥ xj + p

2 δE
ij =

{
1 if ineq. TRUE

0 if ineq. FALSE

xj − xi + p ≤ M(1 − δE
ij)

xj − xi + p > mδE
ij

2 : xi + p
2 ≤ xj − p

2 δW
ij =

{
1 if ineq. TRUE

0 if ineq. FALSE

xi − xj + p ≤ M(1 − δW
ij)

xi − xj + p > mδW
ij

3 : yi − p
2 ≥ yj + p

2 δN
ij =

{
1 if ineq. TRUE

0 if ineq. FALSE

yj − yi + p ≤ M(1 − δN
ij)

yj − yi + p > mδN
ij

4 : yi + p
2 ≤ yj − p

2 δS
ij =

{
1 if ineq. TRUE

0 if ineq. FALSE

yi − yj + p ≤ M(1 − δS
ij)

yi − yj + p > mδS
ij

Using the binary variables introduced in Table 1, the condition to be satisfied
for avoiding collision is

δE
ij OR δW

ij OR δN
ij OR δS

ij (24)

In order to establish desired coordination rules, we add a linear term of the
binary variables in the cost function that penalizes certain undesired relative po-
sitions between the i-th vehicle and its neighbors determined by the disjunction
associated to a particular binary variable.

For instance, if we would like to penalize having neighbors to the “east” side
of the i-th vehicle during a maneuver, then the corresponding term in the binary
variable coefficient vector should be a non-zero positive number cδ

i,j = [∗ 0 0 0]
for all j|(i, j) ∈ A(t).

Simulations involving two vehicles can be found in [11]. A more complex
example can be found at [24].

Note that these practical techniques will not imply feasibility by themselves
but help in avoiding undesirable formation behavior.

References

1. Antsaklis, P.: A brief introduction to the theory and applications of hybrid systems.

Proc. IEEE, Special Issue on Hybrid Systems: Theory and Applications 88 (2000)

879–886

2. Branicky, M., Borkar, V., Mitter, S.: A unified framework for hybrid control: model

and optimal control theory. IEEE Trans. Automatic Control 43 (1998) 31–45

3. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and

constraints. Automatica 35 (1999) 407–427

4. Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for

hybrid systems. Automatica 35 (1999) 349–370

Hybrid Decentralized Control of Large Scale Systems 183

5. Tomlin, C., Mitchell, I., Bayen, A., Oishi, M.: Computational techniques for the

verification of hybrid systems. Proceedings of the IEEE 91 (2003) 986–1001

6. Bemporad, A., Ferrari-Trecate, G., Morari, M.: Observability and controllability

of piecewise affine and hybrid systems. IEEE Trans. Automatic Control 45 (2000)

1864–1876

7. Wang, S., Davison, E.J.: On the stabilization of decentralized control systems.

IEEE Trans. Automatic Control 18 (1973) 473–478

8. Murray, E.R.M.: Control in an Information Rich World: Future Directions in

Control, Dynamics, and Systems. SIAM, (to appear) (2003)

9. Borrelli, F.: Constrained Optimal Control of Linear and Hybrid Systems. Volume

290 of Lecture Notes in Control and Information Sciences. Springer (2003)

10. Mayne, D., Rawlings, J., Rao, C., Scokaert, P.: Constrained model predictive

control: Stability and optimality. Automatica 36 (2000) 789–814

11. Borrelli, F., Keviczky, T.: Hybrid decentralized control of large scale systems.

Technical report, Università del Sannio. Benevento (IT). (2004, Downloadable at

http://www.ing.unisannio.it/grace/HomepageFB/HSCC05Full.pdf)

12. Stipanovic, D., Inalhan, G., Teo, R., Tomlin, C.J.: Decentralized overlapping con-

trol of a formation of unmanned aerial vehicles. Automatica 40 (2004) 1285–1296

13. Richards, A., Bellingham, J., Tillerson, M., How, J.P.: Coordination and control of

multiple uavs. In: AIAA Guidance, Navigation, and Control Conference, Monterey,

CA. (2002)

14. Shim, D., Kim, H., Sastry, S.: Decentralized reflective model predictive control of

multiple flying robots in dynamic enviroment. Technical report, Department of

Electical Engineering and Computer Sciences. University of California at Berkeley

(2003)

15. Dunbar, W.B., Murray, R.M.: Model predictive control of coordinated multi-vehicle

formation. In: Proc. 41th IEEE Conf. on Decision and Control. (2002)

16. Fregene, K., Borrelli, F.: OAV formation flight: a decentralized optimization based

approach. Technical report, Honeywell Laboratories, Minneapolis (2004,

Downloadable at http://www.aem.umn.edu/people/others/borrelli)

17. Stewart, G.E., Gorinevsky, D.M., Dumont, G.A.: Feedback controller design for

a spatially distributed system: The paper machine problem. IEEE Trans. Control

Systems Technology 11 (2003) 612–628

18. Camponogara, E., Jia, D., Krogh, B., Talukdar, S.: Distributed model predictive

control. IEEE Control Systems Magazine (2002)

19. Dunbar, W.B., Murray, R.M.: Receding horizon control of multi-vehicle formations:

A distributed implementation. In: Proc. 43th IEEE Conf. on Decision and Control.

(2004)

20. Richards, A., How, J.: A decentralized algorithm for robust constrained model

predictive control. In: Proc. American Contr. Conf. (2004)

21. Keviczky, T., Borrelli, F., Balas, G.J.: A study on decentralized receding horizon

control for decoupled systems. In: Proc. American Contr. Conf. (2004)

22. Keviczky, T., Borrelli, F., Balas, G.J.: Hierarchical design of decentralized receding

horizon controllers for decoupled systems. In: Proc. 43th IEEE Conf. on Decision

and Control. (2004)

23. Borrelli, F., Keviczky, T., Balas, G.J.: Collision-free UAV formation flight using de-

centralized optimization and invariant sets. In: Proc. 43th IEEE Conf. on Decision

and Control. (2004)

24. Online: http://www.aem.umn.edu/people/others/borrelli/ff.htm (2004)

On the Stabilisation of Switching Electrical
Power Converters

Jean Buisson, Pierre-Yves Richard, and Hervé Cormerais

Hybrid System Group, Supélec-IETR, Avenue de la Boulaie,

35511 Cesson Sévigné, France

Jean.Buisson@rennes.supelec.fr
http://www.supelec.fr

Abstract. This paper considers the control of switching power con-

verters which are a particular class of hybrid systems. Such systems,

which are controlled by switches, can be modeled using physical prin-

ciples. Taking advantage of the energetical properties of their models,

a Lyapunov function is proposed. This function, which has not to be

computed but is systematically deduced from the physical model, allows

to derive different stabilizing switching sequences. From a theoretical

point of view, asymptotic stability can be obtained, but it requires null

intervals between switching times. In order to ensure a minimum time

between switchings, this Lyapunov function has to be increasing for a

small duration by using a delay or a dead zone. A control law principle

that guarantees the invariance of a specified domain with respect to state

trajectories is proposed. Two examples are provided at the end of this

paper that demonstrate the efficiency of the proposed approach.

1 Introduction

Devices like power converters (Boost, Buck, Ćuk, multilevel converters) are
widespread industrial devices. They are used in many applications such as vari-
able speed DC motor drives, computer power supply, cell phone and cameras.
Those devices are electrical circuits controlled by switches (transistors, diodes).
Aiming at reducing switching losses and EMI (Electromagnetic Interference) of
power converters, a lot of soft switching techniques are developed so that high
efficiency, small size and low weight can be achieved. When they are operating
in normal conditions, those circuits have been designed and switches are used in
such a way that there is no discontinuity. Those devices are good candidate for
hybrid modelling, analysis and control. In this context, they can be modelled by
switched systems (without jump).

Those systems have received the attention of many researchers in the area
of control and hybrid systems. Some approaches use continuous models. From
a practical point of view, those devices are often controlled through a Pulse-
Width-Modulation (PWM). The models of power converters associated to PWM
can be approximated by an average model [1] [2], which is often non-linear.
Continuous control approaches are then used [2], some of them based on physical

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 184–197, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Stabilisation of Switching Electrical Power Converters 185

principles such as passivity based control [3], which takes into account energy
dissipation properties to design the controller. Sliding mode has also been used
to control such systems. This technique uses a high speed switched control law
to drive state trajectories onto a specified manifold and then maintains them on
this manifold for all susbequent time. Associated control actions can be either
piecewise continuous, requiring a PWM regulation scheme, or directly boolean
[2], [4], [3].

In [5], a Lyapunov approach is proposed in order to generate a stabilizing
continuous control. The associated Lyapunov function is obtained through a
constructive procedure requiring a partial differential equation to be solved. This
approach is restricted to non-singular systems.

A hybrid approach is proposed in [6] where the continuous model is dis-
cretized. The PWM period is divided in N subperiods allowing to take into
account the model switching during the period. A N-step model allows describ-
ing more precisely the state evolution during a period. The MLD framework is
used and a model predictive control is applied.

In [7] the circuit is modelled with a general piecewise affine model (PWA). A
hybrid automaton is used to take into account the control: guards are designed in
order to guarantee that the state trajectories will remain in a safe ball centered
on the set point. An iterative numerical algorithm is proposed to compute the
maximum radius of a ball such that at the boundary of the ball, control action
can force the trajectory to go inside the ball. To solve this problem, a grid is
defined on the ball boundary.

Studies on stability and stabilization of hybrid systems are mainly based
on the establishment of common or multiple Lyapunov functions, either in a
continuous time [8], [9] or in a discrete time [9] context. Those functions are
generally computed using a linear matrix inequality (LMI) problem formulation
[8]. However most of those works are concerned with free linear systems or with
systems sharing a common equilibrium. The systems studied here present a
common characteristic: in their different operating modes they have no common
equilibrium or no equilibrium. However, with a suitable control, they can exhibit
a behaviour similar to those of conventional stable systems near equilibrium. The
case of switched systems with no common equilibrium point may be dealt with,
using the concept of practical stability where the objective is to bring the system
trajectories to stay within given boundaries. In [10] a necessary and sufficient
condition for practical stabilizability of integrator switched systems is proposed.
Those results are extended to more general systems in [11] where a sufficient
condition is established and a switching law is built.

The approach proposed in this paper is a hybrid one based on physical consid-
erations. The objective is to design a Lyapunov function, which allows defining
switching sequences to stabilize such systems around prescribed references, which
are not equilibrium points for all the configurations. The paper is organized in
the following way: in Section 2 the characteristics of the models for the class of
systems under consideration are presented. Section 3 presents the main contri-
bution of this paper, which is the definition of the references and of a common

186 J. Buisson, P.-Y. Richard, and H. Cormerais

Lyapunov function that has not to be computed but is directly deduced from
the physical model. Different state feedback control laws based on this function
are proposed in section 4, and the problem of parameter uncertainties is also
addressed. Section 5 presents two examples, the Buck-Boost and the 3-level con-
verters, illustrating the approach. Finally, in section 6 conclusion and further
research directions are discussed.

2 Models of the Systems with Switching Power
Converters

The systems under consideration are electrical or electromechanical systems,
including electrical power converters, which are used to adapt the energy sup-
plied by a power source to a load. Those systems include power sources, energy
storage elements (inductances or capacitors), dissipative elements (resistances),
transformers, gyrators and switching components. In the following, the storage
and dissipative elements are supposed to be linear and the transformers and
gyrators are supposed to be constant. The physical switches are considered to
be ideal: in the state on, their voltage is null and in the state off, their current
is null. In most of those systems, physical switches are associated by pairs. In
each pair, one physical switch is controlled (e.g. transistor) while the other one
may be not (e.g. diode). In a normal operating mode both physical switches
commutate at the same time. Their association constitutes a commutation cell,
which will be called switch in the following.

In order to derive models for physical systems, different energy based ap-
proaches, such as circuit theory, bond graphs [12], Euler Lagrange, Hamiltonian
approach [13] can be used. For switching systems, extensions have been proposed
in [14] for the Hamiltonian approach or in [15] [16] among many other references
for the bond graph approach.

If storage elements are independent, all those approaches can lead, for one
mode, to model (1), which is called ”port controlled Hamiltonian systems with
dissipation” [14].

ẋ = (J −R)z + gu (1)

Vector u ∈ Rm corresponds to the energy sources which are generally either
constant in DC-DC or DC-AC converters or sinusoidal in AC-DC or AC-AC
converters. This vector is supposed constant in the following. Vector x ∈ Rn is the
state vector and n is the number of energy storage elements. State variables are
the energy variables (fluxes linkage in the inductors, charges in the capacitors),
z ∈ Rn is the co-state vector. Co-state variables are the corresponding coenergy
variables (currents, voltages). In the case where the components are linear, the
relation between those two vectors is given by:

z = Fx (2)

where F = FT # 0 . In simple cases, F is a diagonal matrix the elements of
which are the inverse of the values of capacitances or inductances. The quantity

On the Stabilisation of Switching Electrical Power Converters 187

ẋT z represents the power entering the storage elements. The energy, which is
stored in the system, can be expressed as:

E(x) = 1
2 x

TFx (3)

Both n × n matrices J and R are called structure matrices. Matrix J is skew
symetric, J = −JT ; it corresponds to a power continuous interconnection in the
network model. Matrix R is nonnegative; it corresponds to the energy dissipating
part of the circuit.

For any other mode, as physical switches commutate by pairs, storage ele-
ments are still independent and the state and costate keep the same components.
It also results that, for those systems, there is no jump on state variable when
switching [15]. Those hybrid systems can be considered from the hybrid point
of view as switching systems. As J , R and g may depend upon the mode, the
model can be expressed as:

ẋ = (J(ρ) −R(ρ))z + g(ρ)u (4)

ρ ∈ {0, 1}p is a boolean vector describing the configuration or mode of the
system, p is the number of switches (or pairs of physical switches). Matrixes
J(ρ) and R(ρ) have the same properties than J and R .

For this class of physical systems with pairs of physical switches, it is assumed
in the following that the three matrixes in (4) can be expressed using an affine
relationship:

J(ρ) = J0 +
p∑
1

ρiJi, R(ρ) = R0 +
p∑
1

ρiRi, g(ρ) = g0 +
p∑
1

ρigi (5)

where ρi are the components of ρ. This property which has been verified on
many usual devices (Buck, Boost, Ćuck) [17] [14] has also been formally proved
for multicellular serial converters [18].

3 Lyapunov Function

The control approach which is proposed in this paper is based on a common
Lyapunov function for the different modes. In the case of systems with a common
equilibrium, they are stabilized around this equilibrium. Here, as there is no
common equilibrium, the point around which the system will be stabilized has
to be defined first.

3.1 Admissible Reference

The objective is to design a switching control law such that the output of the
system take some specified value. Using the same approach as with an average
model where the control ρ is considered continuous but constrained, the following
definition of an admissible reference is proposed.

188 J. Buisson, P.-Y. Richard, and H. Cormerais

Definition 1. z0 = Fx0 is called an admissible reference for system (4)-(2)
where u is constant, if there exits ρ0 ∈ Rp, 0 ≤ ρ0i ≤ 1 such that constraint (6):

0 = (J(ρ0) −R(ρ0))z0 + g(ρ0)u (6)

is satisfied.

Remark 1. That admissible reference is an equilibrium for the average model.
For that control value, since ẋ = 0, the energy stored in each storage element of
the system corresponding to the average model remains constant.

If p < n , the admissible reference belongs to a subspace of Rn. p state
variables that are considered as the output of the model will be specified. The
other state variables as well as ρ0 are fixed by constraint (6).

In other cases, (6) is still verified, but (J(ρ0)−R(ρ0)) may be singular, x0 is
not necessarily unique and some state variables can be chosen arbitrarily.

3.2 Lyapunov Function

A function V is a Lyapunov function for system (1) in x0 if

– V (x, x0) > 0 anywhere excepted in x0 where V (x0, x0) = 0,
– V is radially unbounded,
– for any x, a control ρ can be chosen such that V̇ (x, x0) < 0.

If such a control law is applied, then x will converge asymptotically towards x0.
A contribution of this paper is to propose such a function.

Theorem 1 (Lyapunov function). Considering system (4)-(2), it is always
possible to find a boolean state feedback ρ (x) such that the function defined by
V (x, x0) = 1

2 (x− x0)TF (x− x0) , where x0 is an admissible reference according
to definition 1, is a Lyapunov function for the resulting closed-loop system.

Proof. Since there is no jump, V is positive, continuous and null only for x = x0.
The time derivative of V depends on the value of the control ρ and will be denoted
by V̇ρ.

V̇ρ = (x− x0)TFẋ = (z − z0)T ((J(ρ) −R(ρ))z + g(ρ)u) (7)

Using the skew symetry property of J(ρ), this expression becomes

V̇ρ = −(z − z0)TR(ρ)(z − z0) + (z − z0)T ((J(ρ) −R(ρ))z0 + g(ρ)u) (8)

Using the property of the admissible reference (6), this expression can be
rewritten:

V̇ρ = −(z − z0)TR(ρ)(z − z0)+
(z − z0)T (((J(ρ) −R(ρ)) − (J(ρ0) −R(ρ0)))z0 + (g(ρ) − g(ρ0))u) (9)

And finally, replacing R, J , g using (5)

V̇ρ = −(z − z0)TR(ρ)(z − z0) +
p∑
1

(z − z0)T ((Ji −Ri)z0 + giu)(ρi − ρ0i) (10)

On the Stabilisation of Switching Electrical Power Converters 189

Since R(ρ) is a nonnegative matrix, the first term of this expression is never
positive, and since 0 ≤ ρ0i ≤ 1, the second term can be made negative by
choosing each ρi according to the sign of (z − z0)T ((Ji −Ri)z0 + giu) . ��

For that class of systems, it is then possible to define without any compu-
tation, but only on physical consideration, a common Lyapunov function. Since
there is no jump, this function is continuous. Its time derivative is continuous
except on switching. The following section examines how this function can be
used in order to define control laws.

4 Control Strategies

State feedback control laws can be deduced from this Lyapunov function. By
state feedback, we mean that the control laws which define the switching se-
quences are dependent on system state. They may be classified in two classes:
the first one consists in choosing at each time a value of the control ρ such that
V̇ρ ≤ 0. In the second one, V̇ρ can take small positive values during a limited
time.

4.1 Asymptotically Stable Control

Analysing equation (10), it can be observed that, for a given value of the state,
at least one value of ρ can be choosen such that V̇ρ ≤ 0. In general, more than
one value will fulfill this condition. If any of those values is applied, asymptotic
stability is guaranteed. So different strategies can be used in order to satisfy
other specifications under the constraint V̇ρ ≤ 0.

Maximum descent strategy. One strategy consists in choosing, at each time,
the value of ρ such that all the terms in the sum are negative or null, which
gives, if R is constant, the lowest value of V̇ . Commutation surfaces are then p
hyperplanes defined by

(z − z0)T ((Ji −Ri)z0 + giu) = 0 (11)

This strategy will lead to sliding mode or zeno phenomena. Sliding mode will
take place if on a switching surface (11) both following reachability conditions
are satisfied:

((Ji −Ri)z0 + giu)TFẋ < 0 if ρi = 0 (12)
((Ji −Ri)z0 + giu)TFẋ > 0 if ρi = 1 (13)

For this approach, and more generally, for all the strategies such that the sum
(
∑

) in (10) is negative, we get:

V̇ρ ≤ −(z − z0)TR(ρ)(z − z0) (14)

and for systems for which R(ρ) # 0 for any value of the control ρ , it leads to

190 J. Buisson, P.-Y. Richard, and H. Cormerais

V̇ ≤ − inf
ρ
σ(FR(ρ)F)(x− x0)T (x− x0) (15)

where σ(.) denotes the smallest singular value. In this case, the system is expo-
nentially stable cf. theorem 3.3 in [8].

Minimum switching strategy. A second approach, which may be used in
order to decrease the number of switchings consists in keeping the same value
of ρ until the trajectory hits the switching surface defined by V̇ρ = 0 and to
choose on that surface a new value of ρ such that V̇ρ < 0. Even if it does not
lead to zeno phenomena, this approach will lead to faster and faster switching
when getting closer to the admissible reference.

4.2 Non Asymptotically Stable Control

Preceding strategies require an infinite bandwidth. But in practice, switching
frequency is limited. In order to reduce the switching frequency, different ap-
proaches can be used: include a delay (dwell time) between switching instants,
add a dead zone to the switching surfaces, use a synchronised approach and
switch only on sample instants. Those strategies lead to possibly switch when
V̇ρ > 0 and to oscillations around the reference. Typical behaviour will be pre-
sented in the examples. Relations between the amplitude of the oscillations and
the delay, the sampling time or the dead zone have still to be studied. The
following strategy allows mastering the amplitude of the oscillations.

ε-practically asymptotically stable control. The objective of this control
is to guarantee that the system state trajectories remain in a specified domain
around the reference. A ball is defined using the Lyapunov function:

B[x0, ε] =
{
x ∈ Rn | (x− x0)TF (x− x0) ≤ ε

}
(16)

The ball is attractive if, when the state is outside the ball, one of the switching
laws defined in 4.1 is applied. In order to avoid sliding motion the second strategy
can be applied. The ball will thus be reached in a finite time. Next, since the
boundary is a level surface for the Lyapunov function, the ball can be made
invariant if whenever a trajectory hits its boundary, the control switches to a
new value such that V̇ρ < 0 and keeps this value till the next meeting of the ball
boundary. With such a switching law, the system is ε-practically asymptotically
stable such as defined in [10], [11]. This solution allows to control the amplitude
of the oscillations, but not the interval between switchings.

4.3 Robust Control

In practice, there is always uncertainty about the values of the model param-
eters. Let suppose that this uncertainty is modelled by disturbances d on the
parameters of the model equations (4)-(2), bounded in some set D. Let define

Ωρ =
{
x ∈ Rn | ∀d ∈ D , V̇ρ < 0

}
(17)

On the Stabilisation of Switching Electrical Power Converters 191

This domain defines a subset of the state space where, for a given configuration
ρ, the derivative of function V , such as defined in (10) under the constraint (6),
is negative whatever the disturbance is. It follows immediately:

Proposition 1. Let Ω =
⋃

ρ Ωρ. Ω defines the domain where a control ρ can
be chosen such that V̇ρ < 0 whatever the perturbation d ∈ D is. Any domain O
such that O ⊇ Ω̄ can be made attractive and stable with an appropriate control
ρ(x) .

If x /∈ O then x ∈ Ω , any ρ such that x ∈ Ωρ may be applied and the
Lyapunov function will be robustly decreasing.

5 Examples

Two examples are presented in order to illustrate the proposed approach. The
first one is simple enough to make some computations by hand. The second one
allows to show the applicability on more complex systems.

Example 1 (Buck-Boost converter). Figure 1 represents a simplified circuit of a
well known power converter called Buck-Boost converter. Under normal oper-
ating conditions, the diode is conducting when the controlled physical switch is
open (ρ = 1) and blocked when the controlled physical switch is closed (ρ = 0).
The state vector x = (p, q)T is composed of the flux linkage in the inductance

i

rE vL C

Fig. 1. Buck-Boost converter

and the charge in the capacitor. The co-state vector z = (i, v)T is composed of
the current in the inductance and voltage on the capacitor with the sign conven-
tions represented on the figure. The matrixes corresponding to model (4), (5)
are:

J(ρ) =
(

0 ρ
−ρ 0

)
, R(ρ) =

(
0 0
0 1/r

)
, g(ρ) =

(
1 − ρ

0

)
, F =

(1
L 0
0 1

C

)
State equation is: (

ṗ
q̇

)
=
(

0 ρ
C

− ρ
L − 1

rC

)(
p
q

)
+
(

1 − ρ
0

)
E

Co-state equation is:(
i̇
v̇

)
=
(

0 ρ
L

− ρ
C − 1

rC

)(
i
v

)
+
(1−ρ

L
0

)
E

192 J. Buisson, P.-Y. Richard, and H. Cormerais

The set point is defined by :

v0 =
(

1 − 1
ρ0

)
E

i0 = − 1
ρ0r

(
1 − 1

ρ0

)
E

In this example it can be seen that the admissible reference necessarily belongs
to a subspace of R2 . Usually, it is the output voltage v0 that is specified, allowing
to define:

ρ0 =
E

E − v0

i0 =
v0(v0 − E)

rE

The proposed Lyapunov function is:

V =
1
2

(p− p0)2

L
+

1
2

(q − q0)2

C

And its derivative:

V̇ρ = − (v − v0)2

r
+ (v0i− i0v − E (i− i0)) (ρ− ρ0)

In the simulation, normalized values have been used (E = 1V, r = 1Ω, L = 1H,

−2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

v

i

−2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

v

i

(a) (b)

Fig. 2. Ideal control

C = 1F). First the output voltage is specified v0 = −1V. Then ρ0 = 0.5 and
i0 = 2A.

In the following, the state space trajectories corresponding to two different
initial conditions (-1,0) and (-1,3) are presented. Figure 2.a presents the case
where at each time, the value of ρ leading to the lowest value of V̇ is used. The

On the Stabilisation of Switching Electrical Power Converters 193

switching surface is depicted on the same figure in dashed line. It is then given
by (11):

0 = (v0i− i0v − E (i− i0))

We can observe a sliding mode. Sliding conditions are :

(v0 − E)E
L + i0

C

(
i+ v

r

)
≤ 0

(v0 − E)E
L + i0

v
rC ≥ 0

}
⇒ v < 1

Figure 2.b presents state trajectories when switching only if V̇ becomes null.
Switching surfaces, represented with dashed lines, are given for both values of ρ
by:

− (v − v0)2

r
+ (v0i− i0v − E (i− i0)) (ρ− ρ0) = 0

In this case, there is no sliding mode, but the time between two switchings
decreases towards zero when the state comes closer to the set point.

Figure 3 represents the two same cases but using an hysteresis ε = 0.2 on
switching surfaces in both cases. It results in both cases in a minimum time
between two switchings as well as oscillations on the output.

−2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

v

i

−2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

v

i

(a) (b)

Fig. 3. Control with hysteresis on switching surface

Figure 4 represents the two same cases but with discrete time control where
the sampling time is 0.1s. Figure 5 represents state space trajectories corre-
sponding to the ε-practically asymptotically stable control.

Example 2 (3-level converter). The 3-level converter of figure 6, is constituted
of three pairs of physical switches (1-2), (3-4) and (5-6). In each pair, when one
switch is on, the other one is closed. The control vector is ρ = (ρ1 ρ2 ρ3)

T . ρi = 1
if physical switch 2i is off and 0 if it is on. The state vector x = (p q1 q2)

T is
composed of the flux linkage in the inductance and the charges in the capacitors.
The co-state vector z = (i v1 v2)

T is composed of the current in the inductance

194 J. Buisson, P.-Y. Richard, and H. Cormerais

−2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

v

i

−2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

v

i

(a) (b)

Fig. 4. Discrete time control

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0

0.5

1

1.5

2

2.5

3

v

i

Fig. 5. ε-practically asymptotically stable control

i

r

E v1

L

C1

1

2 4

3

v2

6

5

C2

Fig. 6. 3-level converter in the configuration ρ = (0 1 1)

and voltages on the capacitors with the sign conventions represented on the
figure. The matrixes corresponding to the model (4), (5) are

J(ρ) =

⎛⎝ 0 1 − ρ1 − ρ2 −1 + ρ2 + ρ3
−1 + ρ1 + ρ2 0 0
1 − ρ2 − ρ3 0 0

⎞⎠

On the Stabilisation of Switching Electrical Power Converters 195

then

J0 =

⎛⎝ 0 1 −1
−1 0 0
1 0 0

⎞⎠ , J1 =

⎛⎝0 −1 0
1 0 0
0 0 0

⎞⎠ , J2 =

⎛⎝ 0 −1 1
1 0 0
−1 0 0

⎞⎠ , J3 =

⎛⎝ 0 0 1
0 0 0
−1 0 0

⎞⎠
and

R(ρ) = R0 =

⎛⎝ r 0 0
0 0 0
0 0 0

⎞⎠ , g(ρ) =

⎛⎝ρ1
0
0

⎞⎠ , g1 =

⎛⎝1
0
0

⎞⎠ , F =

⎛⎝ 1
L 0 0
0 1

C1
0

0 0 1
C2

⎞⎠
Then the state equation is⎛⎝ ṗ

q̇1
q̇2

⎞⎠ =

⎛⎝ − r
L

1−ρ1−ρ2
C1

− 1−ρ2−ρ3
C2

− 1−ρ1−ρ2
L 0 0

1−ρ2−ρ3
L 0 0

⎞⎠⎛⎝ p
q1
q2

⎞⎠+

⎛⎝ρ1
0
0

⎞⎠E

The constraint imposed for the reference are:

ρ10 + ρ20 = 1, ρ20 + ρ30 = 1 and
{
p0 = ρ10

EL
r

i0 = ρ10
E
r

At the equilibrium, the average model is not asymptotically stable; there are two
eigenvalues equal to zero. This implies, as explained in the remark of definition
1, that q10 and q20 (or v10 and v20) can be chosen arbitrarily. It is usual in order
to have a regular distribution of voltages to take v10 = 2

3E and v10 = 1
3E.

In the simulation, the following values are used: E = 90V, r = 20Ω, L =
75mH , C1 = C2 = 0.001F . The reference is v10 = 60V , v20 = 30V, and
i0 = 2A.

Two strategies have been used. The first one consists in choosing the value of
ρ minimizing V̇ρ. In the second one, the value of ρ minimizing (z − z0)T ż under
the constraint V̇ρ < 0 is used in order to cause maximal descent of the function
(z − z0)T (z − z0) .

Figure 7 and 8 present the results. Curve A corresponds to the first strategy
and B the second one. It can be noticed that the speed has been improved in
the second case.

6 Conclusion

In this paper a hybrid approach for the control of switching power converters
with linear components has been presented. Since those systems have no common
equilibrium, the admissible references around which the system can be stabilized
have been defined. We have proposed a Lyapunov function, which is directly
deduced from the physical model. Using this Lyapunov function, some examples
of switching laws providing asymptotic stability have been proposed. Theses
strategies imply a switching interval which can become null when reaching the

196 J. Buisson, P.-Y. Richard, and H. Cormerais

0
10

20
30

40
50

60
70 −10

0

10

20

30

401

1.5

2

2.5

3

3.5

V2
V1

I

A

B

Fig. 7. Co-state trajectories

0 0.01 0.02 0.03 0.04 0.05
0

20

40

60

V
2

0 0.01 0.02 0.03 0.04 0.05

0

10

20

30

V
1

0 0.01 0.02 0.03 0.04 0.05

1.5

2

2.5

3

I

Fig. 8. Time responses

reference. In order to avoid this difficulty, relaxed strategies have been proposed.
Two examples have proven the efficiency of this approach. Further works concern
the study of control laws combining different criteria as well as the study of
the relation between the hysteresis, the amplitude of the oscillation, the time
between switchings or the sample time. Another point which has to be studied
is the application of this approach to reference tracking.

On the Stabilisation of Switching Electrical Power Converters 197

References

1. Middlebrook, R., Ćuk, S.: A general unified approach to modeling switching con-

verter power stages. In: IEEE Power Electronics Specialists Conference. (1976)

18–34

2. Sira-Ramirez, H.: Non linear p-i controller design for switch-mode dc-to-dc power

converters. IEEE Transaction on circuits and systems 38 (1991) 410–417

3. Sira-Ramirez, H., Moreno, R.P., Ortega, R., Esteban, M.G.: Passivity-based con-

trollers for the stabilization of dc-t-dc power converters. Automatica 33 (1997)

499–513

4. Sira-Ramirez, H., Rios-Bolivar, M.: Sliding mode control of dc-to-dc power con-

verters via extended linearization. IEEE Transaction on circuits and systems-1 41
(1994) 652–661

5. Maschke, B., Ortega, R., van der Schaft, A., Escobar, G.: Lyapunov functions for

forced systems with application to stabilizing control. In: Proceedings 14th IFAC

World Congress. Volume E. (1999) 409–414

6. Geyer, T., Papafotiou, G., Morari, M.: On the optimal control of switch-mode dc-dc

converters. hybrid systems. In Alur, R., Pappas, G., eds.: Proc. 7th International

Workshop on Hybrid Systems: Computation and Control. Volume 2993 of Lecture

Notes in Computer Science., Springer (2004) 342–356

7. Senesky, M., Eirea, G., Koo, T.: Hybrid modelling and control of power electron-

ics. In Maler, O., Pnueli, A., eds.: Proc. 6th International Workshop on Hybrid

Systems: Computation and Control. Volume 2623 of Lecture Notes in Computer

Science., Springer (2003) 450–465

8. DeCarlo, R., Branicky, M., Pettersson, S., Lennartson, B.: Perspectives and results

on the stability and stabilizability of hybrid systems. Proceedings of the IEEE 88
(2000) 1069–1082

9. Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched

systems. IEEE Control Systems Magazine 19 (1999) 59–70

10. Xu, X., Antsaklis, P.J.: Practical stabilization of integrator switched systems. In:

Proceedings of the 2003 American Control Conference. (2003) 2767–2772

11. Xu, X., Zhai, G.: On practical stability and stabilization of hybrid and switched

systems. In: Proc. 7th International Workshop on Hybrid Systems: Computation

and Control. Lecture Notes in Computer Science, Springer (2004) 615–630

12. Karnopp, D., Margolis, D., Rosenberg, R.: System Dynamics : a Unified Approach.

2 edn. Wiley Interscience (1990)

13. van der Schaft, A.: L2 gain and passivity techniques in nonlinear control. Volume

218 of Lecture Notes in Control and Information Sciences. Springer-Verlag (1996)

14. Escobar, G., van der Schaft, A., Ortega, R.: A hamiltonian viewpoint in the

modeling of switching power converters. Automatica 35 (1999) 445–452

15. Buisson, J., Cormerais, H., Richard, P.: Analysis of the bond graph model of hybrid

physical systems with ideal switches. Journal of Systems and Control Engineering

216 (2002) 47–72

16. Strömberg, J.E.: A mode Switching Modelling Philosophy. PhD thesis, Linkping

(1994)

17. Buisson, J., Cormerais, H., Richard, P.: Bond graph modelling of power converters

with switches commutating by pairs. In Granda, J., Granda, J., eds.: Proc. ICBGM.

Volume 216. (2001) 47–72

18. Cormerais, H., Richard, P., Buisson, J.: A generic passivity based control for

multicellular serial converters. IFAC, Prague (submitted) (2005)

Bisimulation for General Stochastic
Hybrid Systems�

Manuela L. Bujorianu1, John Lygeros2, and Marius C. Bujorianu3

1Department of Engineering, University of Cambridge,

Cambridge, CB2 1PZ, UK

lmb56@eng.cam.ac.uk
2Department of Electrical and Computer Engineering,

University of Patras, Patras, GR26500, Greece

lygeros@ee.upatras.gr
3Computing Laboratory, University of Kent,

Canterbury CT2 7NF, UK

mcb8@kent.ac.uk

Abstract. In this paper we define a bisimulation concept for some very

general models for stochastic hybrid systems (general stochastic hybrid

systems). The definition of bisimulation builds on the ideas of Edalat

and of Larsen and Skou and of Joyal, Nielsen and Winskel. The main

result is that this bisimulation for GSHS is indeed an equivalence re-

lation. The secondary result is that this bisimulation relation for the

stochastic hybrid system models used in this paper implies the same

kind of bisimulation for their continuous parts and respectively for their

jumping structures.

Keywords: stochastic hybrid systems, Markov processes, simulation

morphism, zigzag morphism, bisimulation, category theory.

1 Introduction

Significant progress in verification of probabilistic systems has been done mostly
for discrete distributions or Markov chains. Continuous stochastic processes are
incomparable more difficult to verify. It is notorious that theorem proving of
stochastic properties (with the probability one) can be carried out on the unit
circle only. Model checking and reachability analysis are strongly conditioned
by abstraction techniques. When the state space is not only infinite but also
continuous, abstraction techniques must be very strong. Hybrid systems add an
extra level of complexity because of the hybrid nature of the state space (discrete
and continuous states coexist) and stochastic hybrid systems push further this

� This work has been supported by the European Commission under HYBRIDGE

project, IST-2001-32460.

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 198–214, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Bisimulation for General Stochastic Hybrid Systems 199

complexity by adding non-determinism and uncertainty. Therefore, it is imperi-
ous necessary to have an abstraction theory for stochastic processes that can be
used for verification and analysis of stochastic hybrid systems.

Reachability analysis and model checking are much easier when a concept of
bisimulation is available. The state space can be drastically abstracted in some
cases. In this paper, we focus on defining bisimulation relations for stochastic
hybrid systems, as a first step towards creating a framework for verification.

Besides of different bisimulation concepts in the concurrency theory, the no-
tion of bisimulation is present

• in the ‘deterministic world’: continuous and dynamical systems [21] or hybrid
systems [15];
• or in the ‘probabilistic world’: probabilistic discrete systems [18], labelled
Markov processes [5], piecewise deterministic Markov processes [22].

In this paper we define a bisimulation concept for some very general models
for stochastic hybrid systems (general stochastic hybrid systems, abbreviated
GSHS, introduced in [12, 9]). The definition of bisimulation builds on the ideas of
Edalat [5, 14] and of Larsen and Skou [18] and of Joyal, Nielsen and Winskel [17].
The main result is that this bisimulation for GSHS, which extends the Edalat
definition for labelled Markov processes, is indeed an equivalence relation. This
turns out to be a rather hard mathematical result, which employs the whole
stochastic analysis apparatus associated to a GSHS (viewed as a strong Markov
process defined on Borel space).

Being defined in a category theory context, this stochastic bisimulation, as
a notion of system equivalence, enjoys some fundamental mathematical proper-
ties. Moreover, we prove that this is a natural notion of bisimulation for GSHS
because the bisimilarity of two GSHS implies the bisimilarity of their diffusion
components and respectively of their jumping parts.

The rest of the paper is organized as follows. Next section gives a quick tour on
stochastic bisimulation. Moreover, it presents the main difficulties, which we have
to overcome when we have to define a concept of bisimulation for very general
Markov processes. As well, it is stressed that the key point in the construction of
bisimulation is the definition of morphism. Section 3 gives a short presentation
of GSHS. In section 4 we present different kind of morphism, which might be
associated to GSHS. In section 5 we define the concepts of simulation morphism,
zigzag morphism and stochastic bisimulation for GSHS. Also, we prove that this
bisimulation is an equivalence relation. Section 6 points out the specific features
of the bisimulation for GSHS. The paper ends with some conclusions and further
work.

2 A Quick Tour in Stochastic Bisimulation

The classical paper of Joyal, Nielsen and Winskel [17] presents a general cate-
gorical view of what bisimulation is for deterministic systems. This paper works
with a general category of models M, whose objects are the systems in question,

200 M.L. Bujorianu, J. Lygeros, and M.C. Bujorianu

and the arrows are the simulation morphisms. More, it is distinguished a sub-
category of the M called the path category P of path objects (with morphims
expressing how they can be extended). The meaning of a simulation morphism
ψ : X2 → X1 between two objects X2, X1 of M is that any path p of X2 is
matched by the path ψ ◦ p in X1. The abstract notion of bisimulation is for-
mulated in terms of certain special morphisms called P-open maps (which are
a stronger version of the simulation morphisms). Two objects X2 and X1 are
called P-bisimilar if and only if there exists an object X together with a span
of P-open maps between them: ψ1 : X → X1 and ψ2 : X → X2.

For the probabilistic case it is not easy to generalize this bisimulation. The
probabilistic bisimulation (for probabilistic systems) in the case of a discrete
state space has been developed by Larsen and Skou in [18].

For the continuous case (for Markov processes) this definition can not be
adapted straightforward. The main problem is how to define the simulation
morphisms and the open maps. In this case, we say that a Markov process M1

simulates another Markov M2 if there exist a surjective continuous morphism
ψ : X2 → X1 between their state spaces such that each transition probability
on X2 ‘is matched’ by a transition probability on X1. The meaning of this
‘matching’ is that for each measurable set A ⊂ X1 and for each u ∈ X2 we have

p2
t (u, ψ−1(A)) ≤ p1

t (ψ(u), A),∀t ≥ 0. (1)

where (p2
t) and (p1

t) are the transition functions corresponding to M2, respec-
tively to M1. A such morphism ψ is called a simulation morphism.
The open maps are replaced by the so-called zigzag morphisms, which are sim-
ulation morphism for which the condition (1) holds with equality.

Practically, a simulation condition as (1) is hard to be checked because the
time t runs in a ‘continuous’ set. Then, it is necessary to require supplementary
assumptions about the transition probabilities of the processes we are talking
about. This kind of simulation morphisms and zigzag morphisms have been de-
fined for some particular Markov processes: for labelled Markov processes [5]
and for stationary Markov processes with discrete time (defined on Polish or an-
alytic spaces) [14]. In these papers, the authors consider the categories of above
Markov processes as objects and the zigzag morphisms as morphisms. Then the
bisimulation notion for these processes is given in a ‘classical’ way. Two labelled
Markov processes, for example, are probabilistically bisimilar if there exists a
span of zigzag morphisms between them. In this context, we can point out an-
other reason why only some special kind of Markov processes are considered, as
follows. This bisimulation relation is always reflexive and symmetric. But, the
transitivity of a such relation (the bisimulation must be an equivalence relation)
is usually implied by the existence of semi-pullbacks in the Markov process cat-
egory considered [17, 14]. That means, in the respective category, for any pair of
morphisms ϕ1 : M1 → M and ϕ2 : M2 → M (M1,M2,M are objects in that
category) there exist an object M0 and morphisms πi : M0 → M i (i = 1, 2)
such that ϕ1 ◦ π1 = ϕ2 ◦ π2 as in the following diagram.

Bisimulation for General Stochastic Hybrid Systems 201

M0

π1

↙
π2

↘
M1 M2

↘
ϕ1

↙
ϕ2

M

The construction of the semi-pullback in the above categories of Markov
processes is strongly based on the stationarity property of the Markov processes
considered [5, 14]. In this case the transition probabilities do not depend on time!
Then the construction mechanism of the semi-pullback in a such categories of
Markov processes is reduced to the construction of the semi-pullback in the
category of transition probability functions and surjective transition probability
preserving Borel maps (as morphisms in the respective category) (see [14] for
the detailed construction).

In this paper, we develop a novel concept of stochastic bisimulation for gen-
eral stochastic hybrid systems. This concept of bisimulation might be formu-
lated, as well, for strong Markov processes defined on Borel spaces. Instead of
restricting ourself to some specific categories of Markov processes, we chose to
change the definitions of simulation morphisms and the zigzag morphisms. The
novelty consists of the way to define these morphisms. Specifically, we replace
the condition (1) by a ‘global condition’ which illustrate that the executions of
the simulated process can be matched by the execution of the simulator process.
Since, these process are not stationary, we require for these morphisms to ‘pre-
serve’ the kernel operators (or, dual the infinitesimal generators) of the processes
considered. Since the expressions of the generators are known [12], these kind
of conditions can be easily checked. Then the bisimulation relation is naturally
given via zigzag morphism spans between GSHS. Dually, this bisimulation can be
defined using morphisms between the excessive function cones associated to the
Markov processes. Moreover, the category of strong Markov processes defined
on Borel spaces with these zigzag morphisms as morphisms has semi-pullback,
then the bisimulation relation is an equivalence relation (the category of GSHS
as objects and with same zigzag morphisms as morphisms is a full subcategory
in the above category).

The probabilistic bisimulation (for labelled Markov processes) defined in [5]
can be derived from our concept of bisimulation, based on the whole theory that
relates the infinitesimal generators and the transition probabilities.

3 Stochastic Hybrid Systems

In this section we give a short presentation of the general model for stochastic
hybrid systems, introduced in [12], which is used in the following sections. It is
notably that in [4], a quite general model of stochastic hybrid systems that can
be related to GSHS as a particular case, has been implemented in Charon [1]).

202 M.L. Bujorianu, J. Lygeros, and M.C. Bujorianu

Definition 1. A General Stochastic Hybrid System (GSHS) is a collection
H = ((Q, d,X), b, σ, Init, λ, R) where

– Q is a countable set of discrete variables;
– d : Q → N is a map giving the dimensions of the continuous state spaces;
– X : Q → Rd(.) maps each q ∈ Q into an open subset Xq of Rd(q);
– b : X(Q, d,X) → Rd(.) is a vector field;
– σ : X(Q, d,X) → Rd(·)×m is a X(·)-valued matrix, m ∈ N;
– Init : B(X) → [0, 1] is an initial probability measure on (X,B(S));
– λ : X(Q, d,X) → R+ is a transition rate function;
– R : X × B(X) → [0, 1] is a transition measure.

We call the set X(Q, d,X) =
⋃

i∈Q{i} ×Xi the hybrid state space of the GSHS
and x = (i, xi) ∈ X(Q, d,X) the hybrid state. The closure of the hybrid state
space will be X = X ∪ ∂X, where ∂X =

⋃
i∈Q{i} × ∂Xi. It is known that

X can be endowed with a metric ρ whose restriction to any component Xi is
equivalent to the usual component metric [13]. Then (X,B(X)) is a Borel space
(homeomorphic to a Borel subset of a complete separable metric space), where
B(X) is the Borel σ-algebra of X.

We built a GSHS as a Markov string H [10] obtained by the concatenation of
some diffusion processes (xi

t), i ∈ Q together with a jumping mechanism given
by a family of stopping times (Si). Let ωi be a diffusion trajectory, which starts
in (i, xi) ∈ X. Let t∗(ωi) be the first hitting time of ∂Xi of the process (xi

t).
Define the function

F (t, ωi) = I(t<t∗(ωi)) exp(−
∫ t

0
λ(i, xi

s(ωi)))ds. (2)

This function will be the survivor function for the stopping time Si associated
to the diffusions (xi

t).

Definition 2 (GSHS Execution). A stochastic process xt = (q(t), x(t)) is
called a GSHS execution if there exists a sequence of stopping times T0 = 0 <
T1 < T2 ≤ . . . such that for each k ∈ N,
• x0 = (q0, x

q0
0) is a Q × X-valued random variable extracted according to the

probability measure Init;
• For t ∈ [Tk, Tk+1), qt = qTk

is constant and x(t) is a solution of the SDE:

dx(t) = b(qTk
, x(t))dt + σ(qTk

, x(t))dWt (3)

where Wt is a the m-dimensional standard Wiener;

• Tk+1 = Tk + Sik where Sik is chosen according with the survivor function (2).
• The probability distribution of x(Tk+1) is governed by the lawR

(
(qTk

,x(T−
k+1)), ·

)
.

It is known, from [9], that any GSHS, H, under standard assumptions (about
the diffusion coefficients, non-Zeno executions, transition measure, etc see [9] for
a detailed presentation) is a strong Markov process [19] and it has the càdlàg

Bisimulation for General Stochastic Hybrid Systems 203

property (i.e. for all ω ∈ Ω the trajectories t �→ xt(ω) are right continuous on
[0,∞) with left limits on (0,∞)). Here, (Ω,F , P) is the underlying probability
space associated to H as a Markov process. The model H can be thought of as
a family of random variables (xt)t≥0. For any x ∈ X, the measure Px (Wiener
probability) is the law of (xt)t≥0 under the initial condition x0 = x.

Let (Pt) denote the operator semigroup associated to H which maps Bb(X)
(the set of all bounded measurable functions f : X → R) into itself given by

Ptf(x) = Exf(xt), (4)

where Ex is the expectation w.r.t. Px. As well, we define the resolvent operators
associated to the semigroup (4) by V αf :=

∫∞
0 e−αtPtfdt, α ≥ 0 for all positive

B-measurable functions f . We write V for V 0 and we call it the kernel operator.
Then a function f is excessive (w.r.t. the semigroup (Pt) or the resolvent (V α))
if it is measurable, non-negative and Ptf ≤ f for all t ≥ 0 and Ptf ↗ f as t ↘ 0.
Let denote by EH the set of all excessive functions associated to H. The strong
Markov property can be characterized in terms of excessive functions [19].

For a GSHS, H, as a Markov process, the expression of the infinitesimal
generator L is given in [12]. For f ∈ D(L) (the domain of generator) Lf is given
by

Lf(x) = Lcontf(x) + λ(x)
∫

X

(f(y) − f(x))R(x, dy) (5)

where:
Lcontf(x) = Lbf(x) +

1
2
Tr(σ(x)σ(x)T Hf (x)). (6)

For a strong Markov process defined on a Borel space (which is the case for
GSHS), the opus of the kernel operator is the inverse operator of the infinitesimal
generator of the process [19].

A stochastic differential equation generates a much richer structure than just
a family of stochastic processes, each solving the stochastic differential equa-
tion for a given value. In fact, it gives a flow of random diffeomorphism, i.e. it
generates a random dynamical system (RDS) [2]. Therefore, the construction
of a GSHS as a Markov string (see [10]) of diffusions does not only generate a
Markov process, but it also generates an RDS (which is a ‘string’ of the RDS
components). The theory of random dynamical systems is relatively new and we
refer to [2], as the first systematic presentation of this theory. We present only
the necessary definitions that we need in this paper.

Let θt : Ω → Ω for all t ∈ [0,∞). (Ω,F , P, θt) (abbreviated θ) is called a
metric dynamical system, if: 1.The map θ : Ω × [0,∞) → Ω, (ω, t) �→ θt(ω) is
measurable from (Ω × [0,∞), F ⊗ B([0,∞)) to (Ω,F); 2. θ satisfies the flow
properties: (i) θ0 = idΩ and (ii) θ(t + s) = θt ◦ θs ∀s, t ∈ [0,∞); 3. θ is mea-
sure preserving, i.e. θtP = P ∀t ∈ [0,∞) (where fP := P ◦ f−1). The metric
dynamical system is necessary to model the random perturbations of an RDS.

A measurable random dynamical system on the measurable space (X,B) over
the metric dynamical system θ with time [0,∞) is a map ϕ : [0,∞)×Ω×X → X,
(t, ω, x) �→ ϕ(t, ω, x) with the following properties: 1. ϕ is B([0,∞)) ⊗ F ⊗ B/B

204 M.L. Bujorianu, J. Lygeros, and M.C. Bujorianu

- measurable; 2. If ϕ(t, ω) = ϕ(t, ω, ·) then ϕ forms a perfect cocycle over θ, i.e.
ϕ has the properties: (i) ϕ(0, ω) = idX and (ii) ϕ(t + s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω)
∀ω ∈ Ω ∀s, t ∈ [0,∞).

The RDS associated to a GSHS arises from its construction as a Markov
string: the shift operator (θt) of the corresponding Markov string is exactly the
metric dynamical system for the RDS and for each x ∈ X, ω ∈ Ω, t ≥ 0 the
value of the RDS cocycle ϕ(t, ω, x) is exactly xt(ω) with x as the starting point
(or ϕ(t, ω, x) is the execution of GSHS with x as the starting point). In other
words, the cocycle ϕ is a replacement of the flow from the determinist case.

In the next section we will define some concepts of morphism for stochas-
tic hybrid systems. The definitions will employ notions specific to the Markov
process theory as: kernel operator, excessive functions, etc. The three faces of a
stochastic hybrid system - Markov process, random dynamical system or dynam-
ical system - will give more intuitions about the notion of morphism which will
be proposed next. Some connections with theory of dynamical systems might be
available.

4 Morphisms Associated to GSHS

In this section we define a concept of morphism between GSHS intimately con-
nected with the morphisms between the associated cones of excessive functions.

Let H a GSHS defined as in section 3. We assume that H as Markov process
is transient (i.e. there exists a strict positive Borel measurable function q such
that V q is a bounded function). We define a preorder relation ≺H on X as

x ≺H y ⇐⇒ V f(y) ≤ V f(x),∀f ∈ Bb(X), f ≥ 0.

≺H is an order on the trajectories of H. That means: x ≺H y if and only if there
exist some time t ∈ [0, +∞) and ω ∈ Ω such that y = ϕ(t, ω, x). For each fixed
ω, the trajectory [ϕ(t, ω, ·)]t≥0 is totally ordered w.r.t. ≺H . If H degenerates
in a dynamical system then the relation ≺H is an order relation because H is
supposed to be transient. We will call ≺H the trajectory (pre)order of H.

One can define on X the fine topology, denoted by τf
H , which consists of the

sets G ⊆ X with the following property: ∀x ∈ G, ∀ω ∈ Ω ∃t0 ∈ (0, ζ(ω)) such
that ϕ(t, ω, x) ∈ G,∀t ∈ (0, t0) (each trajectory starting from x remains for a
while in G)1. The fine topology is the coarsest topology on X, which makes
continuous all excessive functions. The fine topology τf

H is separated and is finer
than the initial topology.

In the first step, we define the morphisms between the cones of excessive func-
tions. Let H1,H2 be two GSHS with state spaces X(1), respectively X(2). Let

1 Note that the fine topology can be defined in terms of hitting times for a Markov

process.

Bisimulation for General Stochastic Hybrid Systems 205

EH1 , EH2 the associated cones of excessive functions. An E-morphism (between
these two cones) can be defined as an application

Ψ : EH1 → EH2 (7)

such that the following properties hold: (i) Ψ(f + g) = Ψ(f)+ Ψ(g), ∀f, g ∈ EH1 ;
(ii) f ≤ g ⇒ Ψ(f) ≤ Ψ(g); fk ↗ f ⇒ Ψ(fk) ↗ Ψ(f); (iv) Ψ(f · g) = Ψ(f)·
Ψ(g), ∀f, g ∈ EH1 ; (v) Ψ(1) = 1. An E-morphism Ψ is called finite if f < +∞ ⇒
Ψ(f) < +∞.

Proposition 1. If ψ : X(2) → X(1) is measurable, monotone (i.e. u ≺H2 v ⇒
ψ(u) ≺H1 ψ(v)) and finely continuous then Ψ : EH1 → EH2 given by

Ψ(f) = f ◦ ψ (8)

for all f ∈ EH1 , is a finite E-morphism.

In some papers [20], an application ψ as in the Prop. 1 is called H-map.
Intuitively, in the formula (8) the H-map ψ can be thought of as a variable
change, i.e. for all f ∈ EH1

Ψ(f)(u) = f(ψ(u)),∀u ∈ X(2). (9)

Remark 1. (i) The map Ψ defined by (8) can be extended as a map between the
two cones of measurable positive functions defined on X(1), respectively X(2),
loosing the property of finely continuity. Prop.1 shows how a function between
the state spaces of H1,H2 can provide an E-morphism.

(ii) Conversely, if Ψ is an E-morphism as in (7) then there exists a unique
measurable monotone and finely continuous application ψ from X(2) to an ex-
tension of X(1) such that: Ψ(f) = f ◦ψ, ∀f ∈ EH1 . To obtain this result one can
use results from [20].

In the next section the notion of stochastic bisimulation will be defined based
on the concept of H-map. For this purpose the following results will guide us in
building the notions of simulation morphism and zigzag morphism.
A surjective H-map ψ : X(2) → X(1) induces an equivalence relation ∼ψ on X(2)

u ∼ψ v ⇔ ψ(u) = ψ(v). (10)

In this way, to each x ∈ X(1) we can associate an equivalence class û w.r.t. ∼ψ

such that û = ψ−1(x). Then, using (9), each function g belonging to the range
of Ψ can be extended to X(2)/∼ψ, i.e. g(û) = f(x) provided that û = ψ−1(x)
and g = Ψ(f).

Proposition 2. If ψ : X(2) → X(1) is a surjective and finely open H-map such
that each excessive function g ∈ EH2 has the property

u ∼ψ v ⇒ g(u) = g(v) (11)

then the E-morphism Ψ : EH1 → EH2 given by formula (8) is surjective.

206 M.L. Bujorianu, J. Lygeros, and M.C. Bujorianu

Proof. For each g ∈ EH2 we have to define f ∈ EH1 such that Ψ(f) = g. Let
f : X(1) → [0,∞) defined by f(x) = g(u) for each x ∈ X(1), where u ∈ X(2) is
such that ψ(u) = x (there exists a such u since ψ is surjective). The function f
is well defined because of (11). Then f can be written as f = g ◦ ψ−1 and for
any open set D ⊂ [0,∞) we have f−1(D) = ψ(g−1(D)). Since ψ is a finely open
map we obtain that f−1(D) is finely open in X(1). Then f ∈ EH1 . �

Remark 2. It is easy to check that if in the Prop. 1 both ψ and Ψ are surjective
then Ψ must be bijective. Therefore the two excessive function cones can be
identified and the two processes are equivalent.

5 Stochastic Bisimulation

In this section we develop a novel concept of bisimulation for GSHS. This con-
cept is inspired by the bisimulation concept for labelled Markov processes [5]
or stationary Markov processes with discrete time [14]. Because, our models are
not stationary Markov processes, we can not use the Edalat’s bisimulation.

To define the notion of bisimulation for GSHS, we need to give the definition
of simulation morphism and zigzag morphisms between GSHS. The main differ-
ence from the similar notions from [5] is that we replace the conditions about
the transition probabilities (which, in the non-stationary case, should depend
on time) with global conditions written in terms of kernel operators or excessive
functions associated to the GSHS. Similarly, these morphisms can be defined for
strong Markov processes with càdlàg property defined on Borel spaces.

Definition 3. A simulation morphism between two GSHS, H1 and H2 (the
process H1 simulates the process H2), is a H-map (i.e. measurable, monotone,
finely continuous application) ψ : X(2) → X(1) such that

V 2(f ◦ ψ) ≤ V 1f ◦ ψ, ∀f ∈ Bb(X(1)), f ≥ 0, (12)

where V 1 (resp. V 2) is the kernel operator associated to H1 (resp. H2).

The definition 3 illustrates, in terms of kernel operators, that the simulat-
ing process can make all the transitions of the simulated process with greater
probability than in the process being simulated. More intuitively, a simulation
morphism ψ is not only monotone, but it also refines the “distances” on the tra-
jectories since the trajectory order relations are defined by means of the kernel
operators. On the other hand, the finely continuity of ψ illustrates the fact that
to a trajectory of H1 corresponds a class of trajectories of H2.

Remark 3. Replacing the simulation condition (12) with an weaker one, using
the E-morphism Ψ generated by ψ with formula (8), one can define a simulation
morphism as follows

V 2 ◦ Ψ ≤ Ψ ◦ V 1. (13)

Bisimulation for General Stochastic Hybrid Systems 207

Definition 4. A surjective simulation morphism ψ between two GSHS, H1 and
H2 is called zigzag morphism if the formula (12) holds with equality, i.e.

V 2(f ◦ ψ) = V 1f ◦ ψ, ∀f ∈ Bb(X(1)), f ≥ 0. (14)

Remark 4. For a zigzag morphims the monotony is already implied by the zigzag
condition (14) (easy consequence of the way to define the order relations on the
spaces X(2) and X(1)).

Using the E-morphism Ψ generated by ψ, the condition (14) becomes

V 2 ◦ Ψ = Ψ ◦ V 1 (15)

i.e. the following diagram commutes

EH1
Ψ→ EH2

V 1 ↑ ↑ V 2

EH1
Ψ→ EH2

Then we can define a zigzag E-morphim Ψ (between two GSHS, H1 and H2)
as a surjective E-morphism such that the condition (15) yields.

Next, we define the stochastic bisimulation for GSHS as the existence of a
span of zigzag morphisms.

Definition 5. Let H1 and H2 be two GSHS. H1 is stochastic bisimilar to H2

(written H1 ∼ H2) if there exists a span of zigzag morphisms between them, i.e.
there exists a GSHS H12 and zigzag morphisms ψ1 (where ψ1 : X12 → X(1))
and ψ2 (where ψ2 : X12 → X(2)) such that

H12

ψ1

↙
ψ2

↘
H1 H2

Notice that if there is a zigzag morphism between two systems, they are
bisimilar since the identity is a zigzag morphism.

Remark 5. The notions of simulation morphism, zigzag morphism and stochastic
bisimulation can be formulated in a similar way for strong Markov processes
defined on Polish spaces (a Polish space is a homeomorphic image of complete
separable metric space) or analytic spaces (an analytic space is the continuous
image of a Polish space into another Polish space and is equipped with the
subspace topology of the latter space). In this paper, since the GSHS state space
is a Borel space, we consider only Markov processes defined on Borel spaces.

Remark 6. We can define a weak version of the stochastic bisimulation via E-
morphisms, i.e. H1 ∼ H2 if there exist a cospan of zigzag E-morphisms Ψ1 and
Ψ2 between their excessive function cones

208 M.L. Bujorianu, J. Lygeros, and M.C. Bujorianu

EH12

Ψ1

↗
Ψ2

↖
EH1 EH2

Let us consider the category of the strong Markov processes defined on Borel
spaces as the objects and zigzag morphisms as the morphisms. This category
contains as a full subcategory the category of GSHS as the objects and zigzag
morphisms as the morphisms.

Proposition 3. The category of the strong Markov processes on Borel spaces
as the objects and zigzag morphisms as the morphisms has semi-pullbacks.

Proof. Let M1,M2,M be strong Markov processes defined on the Borel spaces
X(1), X(2), X, respectively. Suppose that there exist two zigzag morphisms

ψ1 : X(1) → X, ψ2 : X(2) → X. (16)

We have to prove that there exist another object M0 (a strong Markov process
defined on a Borel space X(0)) and two zigzag morphisms π1 : X(0) → X(1) and
π2 : X(0) → X(2) such that the following diagram commutes

X(0)

π1

↙
π2

↘
X(1) X(2)

↘
ψ1

↙
ψ2

X

Let X(0) = {(x1, x2)|ψ1(x1) = ψ2(x2)} equipped with the subspace topology
of the product topology on X(1) × X(2). Note that X(0) is nonempty since ψ1

and ψ2 are supposed surjective. As well, X(0) is a measurable set of X(1) ×X(2)

(equipped with its Borel σ-algebra). We take M0 as the part of the product of
the Markov processes M1,M2 restricted to X(0), the process product is “killed”
outside of X(0) [13] For the relationships which exist between the kernel operators
of the processes M1,M2 and the kernel operator of their product, see [11] and
the references therein. Then π1 and π2 can be taken as the projection maps and
the equality ψ1 ◦ π1 = ψ2 ◦ π2 trivially holds.

On the other hand, if we define the stochastic bisimulation defined via zigzag
E-morphisms, then the pullback existence for the category of Markov processes
(with morphisms given by zigzag E-morphisms) is equivalent with the pushout
existence in the category of their excessive function cones (with the morphisms
given by zigzag E-morphisms). Let us take the following span of morphims be-
tween the excessive function cones

EM

Ψ1

↙
Ψ2

↘
EM1 EM2

Bisimulation for General Stochastic Hybrid Systems 209

Naturally, we consider E as the tensor product EM1 ⊗EM1 of the cones EM1 , EM1

(which correspond to the product of operator semigroups or to Markov process

product defined on X(1) × X(2)). Then the ‘inclusions’ EM1
Γ 1

↪→ E , Γ 1(f1) =

Ψ1(f)⊗Ψ2(f) if f1 = Ψ1(f) and EM2
Γ 2

↪→ E , Γ 2(f2) = Ψ1(f)⊗Ψ2(f) if f2 = Ψ2(f)
(essentially, Ψ1 and Ψ2 are surjective) gives the desired pushout construction,
i.e. the following diagram commutes

EM

Ψ1

↙
Ψ2

↘
EM1 EM2

↘
Γ 1

↙
Γ 2

E

Proposition 4. The stochastic bisimulation defined by Def. 5 on GSHS (or
strong Markov processes on Borel spaces) is an equivalence relation.

6 Specific Features of Bisimulation for GSHS

A zigzag morphism ψ : X(2) → X(1) between two GSHS, H1 and H2, induces
a relation R ⊂ X(2) × X(1) as follows: uRx ⇔ ψ(u) = x. Then the equivalence
relation ∼ψon X(2) can be thought of as the equivalence relation induced by R
in sense of [22], i.e. u ∼ψ v iff there exists x ∈ X(1) such that uRx and vRx
(which is exact the meaning of (10)). The equivalence relation induced by R on
X(2) is the trivial one (x can be equivalent only with itself).

The space X(2)/∼ψ
can be endowed with the σ-algebra B∗(X(2)), which is

the “saturation” of the Borel σ-algebra of X(2) w.r.t. ∼ψ (i.e. the collection of
all Borel sets of X(2) in which any equivalence class of X(2) is either totally
contained or totally not contained). A function on g : X(2) → R, which is mea-
surable w.r.t. B∗(X(2)) will be called saturated measurable function. It is clear
that a function measurable g is saturated measurable iff (11) holds. Each func-
tion f : X(1) → R measurable w.r.t. B(X(1)) can be identified with a saturated
measurable function g such that g = f ◦ ψ.

The morphism ψ can be viewed as a bijective mapping ψ : X(2)/∼ψ
→

X(1). It is clear that ψ is a measurable application. To identify the two above
measurable spaces ψ−1 must be measurable. The main idea, which results from
this reasoning, is that the measurable space (X(1),B(X(1))) can be embedded in
the measurable space (X(2),B(X(2))) and the measurable function on X(1) can
be identified with the saturated measurable functions on X(2).

Based on the theory of semigroups of Markov processes, one can obtain from
the zigzag condition (14): for almost all t ≥ 0 (i.e. except with a zero Lebesgue
measure set of times) the following equalities (versions of (1)) hold

p2
t (u, ψ−1(A)) = p1

t (x,A),∀x ∈ X(1),∀u ∈ û = ψ−1(x),∀A ∈ B(X(1)) (17)
P 2

t (f ◦ ψ)(u) = P 1
t f(x),∀x ∈ X(1),∀u ∈ û = ψ−1(x),∀f ∈ Bb(X(1))

210 M.L. Bujorianu, J. Lygeros, and M.C. Bujorianu

Note that ψ−1(A) ∈ B∗(X(2)). Therefore the transition probabilities of H1 sim-
ulates ‘equivalence classes’ of transition probabilities of H2.

Remark 7. The connection between the kernel operator and the infinitesimal
generator of the strong process Markov process allows us transform the condi-
tions (15) and (14) as follows

L(2) ◦ Ψ = Ψ ◦ L(1)

L(2)(f ◦ ψ) = L(1)f ◦ ψ, ∀f ∈ D(L(1)) (18)

where L(1) (resp. L(2)) is the infinitesimal generator of H1 (resp. H2). The
equality (18) holds provided that for each f ∈ D(L(1)) (the domain of L1) the
function f ◦ ψ belongs to D(L(2)) (the domain of L(2)).

Since for GSHS the expression of the infinitesimal generator is known, to
check if the formula (18) is true for two given GSHS is only a computation
exercice.
Recall that a GSHS has been constructed as a Markov string, i.e. a sequence of
diffusion processes with a jumping structure. Then the cone of excessive functions
associated to a GSHS can be characterized as a ‘sum’ of the excessive function
cones associated to the diffusion components. This characterization ‘explains’
the following result.

Proposition 5. A zigzag morphism ψ between two GSHS H1 and H2 defined
as in Def. 4 preserves the continuous parts of the two models.

Proof. Suppose that the two GSHS state spaces are X(1) = ∪
i∈Q1

{i}×Xi(1) and

X(2) = ∪
q∈Q2

{q} × Xq(2). We can suppose without loosing the generality that

each two modes have empty intersection and therefore X(1) = ∪
i∈Q1

Xi(1) and

X(2) = ∪
q∈Q2

Xq(2). The function ψ maps X(2) into X(1). From the construction

of H1, as Markov string, we have V 1f =
∑

i∈Q1
V i1f i,∀f ∈ Bb(X(1)),where, for

each i ∈ Q1, V i1 is the kernel operators of the component diffusion of H1 which
operates on Xi(1) and f i = f |Xi(1) ∈ Bb(Xi(1)). A similar expression can be
written for V 2 (i.e. V 2g =

∑
q∈Q2

V q2gq, g ∈ Bb(X(2))).

Let f be an arbitrary positive bounded measurable function on X(1). Then
for each i ∈ Q1 consider f i as before. Let Y i(2) = ψ−1(Xi(1)) (note that Y i(2)

is an open set) and ψi be the restriction of ψ, which maps Y i(2) into Xi(1).
Denote gi = f i ◦ ψi ∈ Bb(Y i(2)) and giq = gi|Y i(2)∩Xq(2) . The zigzag condition
(14) becomes W i2(f i ◦ ψi) = V i1f i ◦ ψi, where W i2 is the ‘restriction’ of V 2

to Y i(2), i.e. W i2gi =
∑

q∈Q2
V q2giq (more intuitively, W i2 is the sum of kernels

associated to the component diffusions of H2, which operate on Y i(2)). Then,
for all x ∈ Xi(1) we have

W i2gi(u) = V i1f i(x), (19)

Bisimulation for General Stochastic Hybrid Systems 211

provided that ψi(u) = x. Because V i1 corresponds to a diffusion process, it must
be the case that in the left hand side of (19) the ‘jumping part’ to not longer
exist (at least for the saturated measurable functions). Then the kernel W i2

corresponds to a continuous process (which might be a diffusion or a switching
diffusion process). �

Any zigzag morphism ψ can be extended by (finely) continuity to the bound-
ary of the state spaces. Or, we can suppose from the beginning that the zigzag
morphims operate on the closures of the state spaces. We have to assume that
the zigzag morphims ‘keep’ the boundary points, or, in other words, ψ : ∂X(2) →
∂X(1) is surjective.

Remark 8. The finely continuity of a zigzag morphism between two GSHS is im-
portant only when we use the connection with the associated excessive function
cones. Otherwise, we can replace this continuity with the continuity w.r.t. to the
initial topologies of the state spaces.

Proposition 6. A zigzag morphism ψ between two GSHS H1 and H2 defined
as in Def. 4 preserves the jumping structure of the two models.

Proof. For each x ∈ X(1) there exist, by surjectivity of ψ, some elements u ∈
X(2) such that ψ(u) = x. Then, for each f ∈ D(L(1)), a simple computation of
the right hand side of (18) gives

L(1)f(x) = L
(1)
contf(x) + λ1(x)

∫
X

(1)
(f(y) − f(x))R1(x, dy) (20)

and after, the left hand side of (18) is

L(2)(f ◦ ψ)(u) = L
(2)
cont(f ◦ ψ)(u) + λ2(u)

∫
X

(2)
[(f ◦ ψ)(v) − (f ◦ ψ)(u)]R2(u, dv).

(21)
From the Prop. 5 we have the equality of the continuous parts of (20) and (21).
Then the jumping parts (20) and (21) must coincide. Then

λ1(x)
∫

X
(1)

(f(y)−f(x))R1(x, dy) = λ2(u)
∫

X
(2)

[(f ◦ψ)(v)−(f ◦ψ)(u)]R2(u, dv).

The construction of GSHS H1 and H2, as Markov strings, shows that the tran-
sition measures R1 and R2 play the role of the transition probabilities when
the processes jump from one diffusion to another (see Def.2). Then they sat-
isfy (17), i.e. R2(u, ψ−1(A)) = R1(x,A),∀A ∈ B(X(1)). It easily follows that
λ1(x) = λ2(u),∀u ∈ û = ψ−1(x). �

Therefore, the stochastic bisimulation between two GSHS reduces to the
bisimulations between their continuous components and between their jump
structures. In this way our concept of bisimulation can be related with the bisim-
ulation for piecewise deterministic Markov processes (which are particular class
of GSHS) defined in terms of an equivalence relation between the deterministic
flows and the probabilistic jumps [22].

212 M.L. Bujorianu, J. Lygeros, and M.C. Bujorianu

7 Conclusions

In this paper we develop a notion of stochastic bisimulation for a category of gen-
eral models for stochastic hybrid systems (which are Markov processes) or, more
generally, for the category of strong Markov processes defined on Borel spaces.
The morphisms in this category are the zigzag morphims. A zigzag morphism
between two Markov processes is a surjective (finely) continuous measurable
functions between their state spaces which ‘commutes’ with the kernel operators
of the processes considered. The fundamental technical contribution is the proof
that this stochastic bisimulation is indeed an equivalence relation.

The secondary result of the paper is that this bisimulation relation for GSHS
(the stochastic hybrid system models we are dealing in this paper) implies the
same kind of bisimulation for their continuous parts and respectively for their
jumping structures.

This work is intended to be a foundation for applying formal methods to
stochastic hybrid systems. The category of GSHS we have introduced can be used
to employ various methodologies from formal methods that admit a categorical
support, like viewpoints and formal testing [6].

8 Further Work

From stochastic analysis viewpoint, most of the models of stochastic hybrid
systems are strong Markov processes. Then, many tools available for the Markov
process studying can be used to characterize their main features. On the other
hand, some of them can be included in the class of random dynamical systems
(stochastic extensions of the dynamical systems). Therefore the whole ergodic
theory or stability results available for random dynamical systems might be
applied to them. As well, stability results of random dynamical systems [3] can
be lifted to these models of stochastic hybrid systems. Moreover, because in the
deterministic case there are characterizations of the Lyapunov functions in terms
of excessive function [16], it might be possible to investigate similar connections
in the stochastic case.

From the verification and analysis of stochastic hybrid systems perspective,
a concept of stochastic bisimulation can facilitate the way towards a model
checking of stochastic hybrid systems.

The work presented in this paper and the above discussion allow us to point
out some possible research directions in the stochastic hybrid system framework:

• Use the stochastic bisimulation to get manageable sized system abstractions;
• Use the stochastic bisimulation to investigate the reachability problem;
• Make a comparative study of the different approaches on reachability analysis
for stochastic hybrid systems: 1. the approach based on the hitting times and
hitting probabilities for a target set [7]; 2. the approach based on the so-called
Dirichlet forms and excessive functions [8]; 3. the approach based on Lyapunov
function (for the switching diffusion processes) [23].

Bisimulation for General Stochastic Hybrid Systems 213

References

1. Alur, R., Grosu, R., Hur, Y., Kumar, V., Lee, I.: Modular Specifications of Hy-
brid Systems in CHARON, Proc. 3rd International Workshop on Hybrid Systems:
Computation and Control, LNCS 1790 (2000), 6-19.

2. Arnold, L.: Random Dynamical systems. Springer-Verlag, Berlin, (1998).

3. Arnold, L.: Lyapunov’s Second Method for Random Dynamical Systems. J. of Diff.

Eq. 177 (2001), 235-265.

4. Bernadskiy, M., Sharykin, R., Alur, R.: Structured Modelling of Concurrent
Stochastic Hybrid Systems. In Y. Lakhnech, Y. Sergio Eds., Proc. FORMATS’04

(2004), Springer LNCS 3253, 309-324.

5. Blute, R., Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for Labelled
Markov Processes. In Logic in Comp. Sc., IEEE Press (1997), 149-158.

6. Bujorianu, M.C., Bujorianu, M.L., Maharaj, S.: Towards a Formalization of View-
points Testing. In R. Hierons, T. Jeron Eds., Proceedings of Formal Approaches to

Testing of Software (2002), 137-151.

7. Bujorianu, M.L., Lygeros, J.: Reachability Questions in Piecewise Deterministic
Markov Processes. In O. Maler, A. Pnueli Eds., Hybrid Systems: Computation and
Control, 6th International Workshop, HSCC03, LNCS 2623 (2003), 126-140.

8. Bujorianu M.L : Extended Stochastic Hybrid Systems and their Reachability Prob-
lem. In R. Alur, G. Pappas Eds., Hybrid Systems: Computation and Control 7th

International Workshop, HSCC04, Springer LNCS 2993 (2004), 234-249.

9. Bujorianu, M.L., Lygeros, J.: General Stochastic Hybrid Systems. IEEE Mediter-

ranean Conference on Control and Automation MED’04, Turkey, (2004).

10. Bujorianu, M.L., Lygeros, J.: Theoretical Foundations of General Stochastic Hy-
brid Processes. Proc. 6th International Symposium on Mathematical Theory of

Networks and Systems (MTNS 2004).

11. Bujorianu, M.L.: Capacities and Markov Processes. Libertas Math., 24 (2004),

201-210.

12. Bujorianu, M.L., Lygeros, J.: General Stochastic Hybrid Systems: Modelling and
Optimal Control. Proc. 43th Conference in Decision and Control (2004).

13. Davis, M.H.A.: Markov Models and Optimization, Chapman & Hall, London

(1993).

14. Edalat, A.: Semi-pullbacks and Bisimulation in Categories of Markov Processes.
Math. Struct. in Comp. Science. 9 (1999), no.5, 523-543.

15. Haghverdi, E., Tabuada, P., Pappas, G.J.: Bisimulation Relations for Dynamical,
Control and Hybrid Systems. Submitted to Theor. Comput. Science.

16. Hmissi, M.: Semi-groupes Deterministes. Sem. Th. Potentiel 9 (1989), Paris, LNM

1393, 135-144.

17. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from Open Maps. Inf. and Comp.,

127(2) (1996), 164-185.

18. Larsen, K.G., Skou, A.: Bisimulation through Probabilistic Testing. Inf. and Comp.,

94 (1991), 1-28.

19. Meyer, P.A.: Processus de Markov. LNM., 26, Springer Verlag, Berlin, (1976).

20. Popa, E., Popa, L.: Morphisms for Semi-dynamical Systems. An. St. Univ. Iasi,

t.XLIV, f.2 (1998), 335-349.

214 M.L. Bujorianu, J. Lygeros, and M.C. Bujorianu

21. Schaft, A.J. van der: Bisimulation of Dynamical Systems. In R. Alur, G. Pappas

Eds., Hybrid Systems: Computation and Control, 7th International Workshop,

HSCC 2004, Springer LNCS 2993, 559-569.

22. Strubbe, S.N., Schaft, A.J. van der: Bisimulation for Communicating PDPs.
(2005), Proc. of Hybrid Systems: Computation and Control, HSCC05, to appear.

23. Yuan, C., Lygeros, J.: Stochastic Markovian Switching Hybrid Processes. (2004)

WP SHS, Public Deliverable DSHS3, EU project COLUMBUS (IST-2001-38314).

Position and Force Control of Nonsmooth
Lagrangian Dynamical Systems Without Friction

Sophie Chareyron and Pierre-Brice Wieber

INRIA Rhône-Alpes 38334 St-Ismier Cedex, France

{Sophie.Chareyron, Pierre-Brice.Wieber}@inria.fr
http://www.inrialpes.fr/bipop/

Abstract. Analyses of position and force control laws in the case of

perfectly rigid bodies have been made so far with strong assumptions

on the state of the contacts such as supposing that they are permanent.

We’re interested here in having a look at what happens when no such as-

sumptions is made: we are led therefore to propose a Lyapunov stability

analysis of a position and force control law in the mathematical frame-

work of nonsmooth Lagrangian dynamical systems, a typical example of

hybrid dynamical systems.

1 Introduction

Many applications of robot manipulators require contact phases between the
robots and their environments, and a regulation of both the position of the robots
and the reaction forces at the contact points is usually demanded in this case. So
far, analyses of the corresponding position and force control laws have been either
focusing on robot manipulators and environments with finite stiffnesses [1] or
they have been made in the case of perfectly rigid bodies with strong assumptions
on the state of the contacts [2] such as supposing that they are permanent [3].
Note that with such assumptions, the dynamical system solutions are ensured to
be continuous, so that they fit into the classical framework of control theory [4].
In the case of perfectly rigid bodies, when the assumption of permanent contact
is relaxed, the analysis of dynamical systems turns out to be greatly complicated,
we’re interested in this paper in having a look at what happens in this case, and
more precisely what happens with the propositions of [3].

As we will see in section 2, the dynamical behaviour of mechanical systems
with non permanent contact may present impacts, discrete events that intertwine
with the continuous dynamics, the landmark of hybrid dynamical system [5].
More precisely, the frictionless contact law that we will consider fits into the
smaller subclass of complementarity systems [5], [6]. Now, instead of considering
piecewise smooth solutions as is usually done for hybrid systems [7, 8], we will
consider here the wider class of nonsmooth solutions that has been proposed
in [9], [10], [11], [12], [13]. These solutions are introduced through an extensive use
of convex and nonsmooth analysis, and since these mathematical tools are still
unusual in control theory, we are going to spend some time in section 2 to present

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 215–225, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

216 S. Chareyron and P.-B. Wieber

them, and to see how this relates to the usual framework of hybrid systems.
Section 3 is then entirely devoted to analysing in this nonsmooth dynamics
framework the Lyapunov stability of the position and force control law proposed
in [3] without the strong assumption of permanent contacts.

2 Nonsmooth Lagrangian Dynamical Systems

2.1 Systems with Non-permanent Contacts

With n the number of degrees of freedom of the dynamical system, let us consider
a time-variation of generalized coordinates q : R → Rn and the related velocity
q̇ : R → Rn:

∀ t, t0 ∈ R, q(t) = q(t0) +
∫ t

t0

q̇(τ) dτ.

We’re interested here with Lagrangian dynamical systems which may experi-
ence non-permanent contacts of perfectly rigid bodies. Geometrically speaking,
the non-overlapping of rigid bodies can be expressed as a constraint on the posi-
tion of the corresponding dynamical system, a constraint that will take the form
here of a closed set Φ ⊂ Rn in which the generalized coordinates are bound to
stay [11]:

∀ t ∈ R, q(t) ∈ Φ.

This way, contact phases correspond to phases when q(t) lies on the boundary
of Φ, and non-contact phases to phases when q(t) lies in the interior of Φ. We
will suppose that this closed set is time-invariant, and we will have to suppose
that it is convex for the stability analysis of section 3.

We can define then for all q ∈ Φ the tangent cone [14]

T (q) =
{
v ∈ Rn : ∃ τk → 0, τk > 0,

∃ qk → q, qk ∈ Φ

with qk−q
τk

→ v
}
,

and we can readily observe that if the velocity q̇(t) has a left and right limit at
an instant t, then obviously −q̇−(t) ∈ T (q(t)) and q̇+(t) ∈ T (q(t)).

Now, note that T (q) = Rn in the interior of the domain Φ, but it reduces
to a half-space or even less on its boundary (Fig. 1): if the system reaches this
boundary with a velocity q̇− /∈ T (q), it won’t be able to continue its movement
with a velocity q̇+ = q̇− and still stay in Φ (Fig. 1). A discontinuity of the
velocity will have to occur then, corresponding to an impact between contacting
rigid bodies, the landmark of nonsmooth dynamical systems.

We can also define for all q ∈ Φ the normal cone [14]

N (q) =
{
v ∈ Rn : ∀ q′ ∈ Φ, vT (q′ − q) ≤ 0

}
,

and we will see in the inclusion (4) of section 2.3 that it is directly related to
the reaction forces arising from the contacts between rigid bodies.

Position and Force Control of Nonsmooth Lagrangian Dynamical Systems 217

Φ

q(t)

q̇−

T (q)

N (q)

N (q)

T (q)

Fig. 1. Examples of tangent cones T (q) and normal cones N (q) on the boundary of

the domain Φ, and example of a trajectory q(t) ∈ Φ that reaches this boundary with a

velocity q̇− ∈/ T (q)

Now, note that N (q) =
{
0
}

in the interior of the domain Φ, and it contains
at least a half-line of Rn on its boundary (Fig. 1): this will imply the obvious
observation that non-zero contact forces may be experienced only on the bound-
ary of the domain Φ, precisely when there is a contact. Discontinuities of the
contact forces might be induced because of that, what will be discussed later.

In the end, note that with these definitions, the state (q(t), q̇(t)) appears now
to stay inside the set

Ω =
{
(q, q̇) : q ∈ Φ, q̇ ∈ T (q)

}
.

2.2 Nonsmooth Lagrangian Dynamics

The dynamics of Lagrangian systems subject to Lebesgues-integrable forces are
usually expressed as differential equations,

M(q)
dq̇

dt
+ N(q, q̇) q̇ = f ,

with M(q) the symmetric positive definite inertia matrix that we will suppose
to be a C1 function of q, N(q, q̇) q̇ the corresponding nonlinear effects and f
the Lebesgues-integrable forces. Classical solutions to these differential equations
lead to smooth motions, with a locally absolutely continuous velocity q̇(t).

But we have seen that discontinuities of the velocity may have to occur in
the case of Lagrangian systems experiencing non-permanent contacts between

218 S. Chareyron and P.-B. Wieber

rigid bodies. A mathematically rigorous way to allow such discontinuities in the
dynamics of Lagrangian system has been proposed through measure differential
equations [11], [15],

M(q) dq̇ + N(q, q̇) q̇ dt = f dt + dr, (1)

with dt the Lebesgues measure and dr the reaction forces arising from the con-
tacts between rigid bodies, an abstract measure which may not be Lebesgues-
integrable. This way,the measureacceleration dq̇ maynot be Lebesgues-integrable
either so that the velocity may not be locally absolutely continuous anymore
but only with locally bounded variation (see the remark below) q̇ ∈ lbv(R, Rn)
[11] [15]. Functions with locally bounded variation have left and right limits at
every instant, and we have for every compact subinterval [σ, τ] ⊂ R∫

[σ,τ]
dq̇ = q̇+(τ)− q̇−(σ).

Considering then the integral of the measure differential equations (1) over a
singleton {τ}, we have∫

{τ}
M(q) dq̇ = M(q)

∫
{τ}

dq̇ = M(q)
(
q̇+(τ)− q̇−(τ)

)
,

∫
{τ}

(
N(q, q̇) q̇ − f

)
dt =

(
N(q, q̇) q̇ − f

) ∫
{τ}

dt = 0,

leading to the following relationship between possible discontinuities of the ve-
locities and possible atoms of the contact forces,

M(q)
(
q̇+(τ)− q̇−(τ)

)
=
∫

{τ}
dr,

or, M(q) being invertible,

q̇+(τ) = q̇−(τ) + M(q)−1
∫

{τ}
dr. (2)

Remark 1. A function f is of locally bounded variation on R if its variation
on any compact subinterval I of R is finite:

Var(f ; I) = sup
∑n

i=1 ||f(ti)− f(ti−1)|| < +∞.
t0 ≤ t1 ≤ . . . ≤ tn

∀ ti ∈ I

Note that in the framework of nonsmooth analysis, properties of functions with
bounded variation are far more important than their definition, we are partic-
ularly interested in the following two properties. First as we have already seen,

Position and Force Control of Nonsmooth Lagrangian Dynamical Systems 219

functions with locally bounded variation have left and right limits at every in-
stant, and if dq̇ denotes their differential measure (an abstract measure that may
not be Lebesgues-integrable), we have for every compact subinterval [σ, τ] ⊂ R∫

[σ,τ]
dq̇ = q̇+(τ)− q̇−(σ).

Then, functions with locally bounded variation can be decomposed into the
sum of a continuous function and a countable set of discontinuous step func-
tions [16]. In specific cases, as when data are piecewise analytic [12], the solu-
tion to the dynamics (1) can be shown to be piecewise continuous with possibly
infinitely (countably) many discontinuities. In this case, it is possible to focus
distinctly on each continuous piece and each discontinuity as in the framework
of hybrid systems [8],[17]. But this is usually done through an ordering of the
discontinuities strictly increasing with time, which can pose problem in partic-
ular when having to go through accumulations of impacts. The framework of
nonsmooth analysis appears therefore more appropriate for obtaining results in
the case of impacting systems, even though the calculus rules for functions with
bounded variation require some care, as shown with the following Proposition
that will be used in section 3.2,

Proposition 1. If x ∈ lbv(I, R) and y ∈ lbv(I, R), then the continuous function
Φ(x, y), t −→ Φ(x(t), y(t)) is an element of lbv(I, R) whose differential measure
equals

dΦ(x, y) = Φ(dx,
y+ + y−

2
) + Φ(dy,

x+ + x−

2
).

2.3 Inelastic Frictionless Unilateral Contacts

Following [11], we will consider that the non-permanent contacts that may be
experienced by our Lagrangian systems are perfectly unilateral, frictionless and
inelastic. Expressing the Rn valued measure dr as the product of a non-negative
real measure dμ and a Rn valued function r′

μ ∈ L1
loc(R, dμ; Rn),

dr = r′
μ dμ, (3)

the unilaterality of the contacts (no adhesive forces) together with the absence
of friction corresponds to the inclusion

∀ t ∈ R, −r′
μ(t) ∈ N (q(t)), (4)

and the inelasticity of the contacts corresponds to the complementarity condition

∀ t ∈ R, q̇+(t)T r′
μ(t) = 0. (5)

One can note that on top of this complementarity condition, the inclusion (4)
also induces a complementarity between r′

μ(t) and q(t), but for a more in-depth
presentation of these concepts and equations which are quite subtle, the inter-
ested reader should definitely refer to [11].

220 S. Chareyron and P.-B. Wieber

2.4 Some Lyapunov Stability Theory

The Lyapunov stability theory is usually presented for dynamical systems with
states that vary continuously with time [4], [17], [18], Fillipov systems for ex-
ample [19], [20], but we have seen that in the case of nonsmooth mechanics, the
velocity and thus the state x(t) = (q(t), q̇(t)) may present discontinuities. Lya-
punov stability theory is hopefully not strictly bound to continuity properties,
some results for discontinuous dynamical systems can still be derived both in
the usual framework of hybrid systems [21] and in the framework of nonsmooth
analysis [22]. In the following we will prefer this latter for the reasons mentioned
in Remark 1, which provides for example the following theorem.

Theorem 1. A closed invariant set S ⊂ Ω is globally stable if and only if there
exists a function V : Ω → R such that

(i) there exist two continuous strictly increasing functions α(.) and β(.) satisfy-
ing α(0) = 0, β(0) = 0 such that

∀x ∈ Ω, α(d(x,S)) ≤ V (x) ≤ β(d(x,S)),

with d(x,S) the distance between the state x and the set S, and
(ii) for all solutions x(t) to the nonsmooth dynamics (1), the function V (x(t))

is non-increasing with time.

Such a function is called a Lyapunov function with respect to the stable set S.

Note now that the position and force control law that we are going to study
in the next section is proved to be asymptotically stable in [3] through the use
of LaSalle’s invariance theorem. This latter is tightly bound to the continuity
of trajectories of the systems with respect to initial conditions, a property of
nonsmooth dynamical systems that holds only in some specific cases [13],[23].
For dynamical systems satisfying this continuity property, it is still possible to
propose a theorem equivalent to LaSalle’s [22],[24]. However in this paper, we
will only consider the global stability proposed in the previous theorem.

3 Lyapunov Stability Analysis of a Position and Force
Control Law

This section aims at analysing the Lyapunov stability of the position and force
control law proposed in [3] without the assumption of permanent contacts be-
tween the end-effector and its environment. Based on the nonsmooth analysis
framework and in particular in Theorem 1, we will be able to conclude on the sta-
bility of this control law with no need for any assumptions concerning the state
of the contact experienced by the systems. Note that [3] proved that both the
desired position and the desired contact forces were stable, but non-permanent
contacts unfortunately won’t allow to conclude on the stability of the contact
forces.

Position and Force Control of Nonsmooth Lagrangian Dynamical Systems 221

3.1 A Position and Force Control Law

Let us consider now that the Lebesgues-integrable forces f acting on the dy-
namics (1) consist of some external forces ef and a control u,

f = ef + u.

With the help of this control u, we would like to stabilize both the position
q of the dynamical systems and the reaction forces dr to some desired constant
values qd and rd dt (following (3), the desired contact forces are defined through
the product of the Lebesgues measure dt and a constant vector rd ∈ Rn). First
of all, these desired position and reaction forces have to be consistent with the
contact model (4),

−rd ∈ N (qd). (6)

Following then the proposition of [3], we define the control u through the
derivative of a strictly convex C1 potential function P (q), a dissipative term C q̇
with C a positive definite matrix, and a compensation of the external forces,

u = −dP

dq
(q)−C q̇ − ef . (7)

With this control law, the dynamics (1) becomes

M(q) dq̇ + N(q, q̇) q̇ dt = −dP

dq
(q) dt−C q̇ dt + dr, (8)

the equilibria of which, with q̇ = 0, are positions for which

0 = −dP

dq
(q) dt + r′

μ dμ.

This equation of measures is satisfied if and only if dμ = dt and

0 = −dP

dq
(q) + r′

μ, (9)

and through theorem VII.1.1.1 of [14], this corresponds together with (4) to the
specification of the minima of P (q) over the domain Φ: the equilibria of the
closed loop dynamics correspond to the minima of the potential function. More
precisely, since Φ is assumed to be convex and P (q) strictly convex, if there is
such a minimum then it is reached at a unique position: if there is an equilibrium
position of the closed loop dynamics, then it is unique.

If we assume now that the potential function satisfies explicitly

dP

dq
(qd) = rd,

then there is such a minimum through (6) and the same theorem of [14]: this
minimum is P (qd), reached at the position qd, and equation (9) becomes

0 = −rd + r′
μ,

so that the contact forces will be as desired at this equilibrium,

dr = rd dt.

222 S. Chareyron and P.-B. Wieber

3.2 Lyapunov Stability Analysis

Since P (q) has a global minimum reached at the unique position qd, with

K(q, q̇) =
1
2

q̇T M(q) q̇

the kinetic energy of the dynamical system, the function

V (q, q̇) = K(q, q̇) + P (q)− P (qd)

has 0 as a global minimum, reached at the unique state (qd, 0).
Since it is convex with a minimum reached at a unique position, we know

from proposition IV.3.2.5 and definition IV.3.2.6 of [14] that the function P (q)
is radially unbounded. Excluding pathological behaviours of the inertia matrix,
we can suppose quite directly then that the function V (q, q̇) is also radially
unbounded. Lemma 3.5 of [4] allows then to conclude that it satisfies condition
(i) of the theorem of section 2.4 with respect to the set S = {(qd, 0)}, appearing
therefore as a possible Lyapunov function.

Indeed, through Proposition 1 given in Remark 1, classical differentiation
rules of lbv allow to compute the time-derivative of the kinetic energy,

dK =
1
2

q̇T Ṁ(q, q̇) q̇ dt +
(q̇++ q̇−)

2

T

M(q) dq̇.

For the closed loop dynamics (8), this time-derivative is

dK =
1
2

q̇T
(
Ṁ(q, q̇)− 2N(q, q̇)

)
q̇ dt− q̇T dP

dq
(q) dt

− q̇T C q̇ dt +
(q̇++ q̇−)

2

T

dr,

(note that q̇+dt = q̇−dt = q̇ dt) where the first term is identically 0 since
Ṁ(q, q̇) − 2N(q, q̇) is an antisymmetric matrix and −q̇T C q̇ is non-positive
since C is a positive matrix. Recalling then relations (2) and (3), we have

(q̇++ q̇−)
2

T

dr = q̇+T dr − 1
2

[∫
{τ}

dr

]T

M(q)−1dr

= q̇+T r′
μ dμ

− 1
2

[∫
{τ}

dμ

]
r′

μ
T
M(q)−1r′

μ dμ

where the first term is identically 0 because of the complementarity condition
(5) and the second term is non-positive since the inertia matrix is positive and
dμ ≥ 0. All this ends up with

dK ≤ −q̇T dP

dq
(q) dt,

Position and Force Control of Nonsmooth Lagrangian Dynamical Systems 223

and since the time-derivative of the potential function is precisely

dP = q̇T dP

dq
(q) dt,

we are led to
dV = dK + dP ≤ 0.

The function V (x(t)) is therefore non-increasing with time, condition (ii) of the
theorem of section 2.4 is also satisfied, and the proof that the state (qd, 0) is
globally stable with the closed loop dynamics (8) is completed.

Note that what we have proved here is the stability of the state (qd, 0) only,
and not of the contact forces rd dt: on the contrary to what appears in [3],
non-zero contact forces can’t be stable in our case since, as we have seen in
section 2.1, non-zero contact forces may be experienced only on the boundary
of the domain Φ, when there is a contact. These forces may therefore jump to
zero in every neighbourhood of any equilibrium position, what is not compatible
with Lyapunov stability.

3.3 An Example

Following [3], we can see for example that with a strictly convex quadratic po-
tential function

P (q) =
1
2

(q − qd)
T W (q − qd) + rT

d (q − qd)

with a symmetric positive definite matrix W , the control law (7) becomes a
strictly linear feedback

u = −W (q − qd)− rd −C q̇ − ef

for which we know now that the equilibrium state (qd, 0), where the contact
forces are rd dt, is globally stable.

4 Conclusion

The stability of nonsmooth mechanical systems, a typical example of hybrid
dynamical systems, has been studied here in the framework of convex and non-
smooth analysis.

The position and force control law proposed in [3] can be proved to be stable
in this framework with no need for any assumptions concerning the state of
the contacts experienced by the systems. This result is obtained with the help
of differentiation rules for functions with locally bounded variations which are
somehow different from the more usual ones for locally absolutely continuous
functions, but which can be practiced in a very similar way, allowing to derive
a Lyapunov stability analysis for nonsmooth dynamical systems very similar to
what appears in the smooth case.

224 S. Chareyron and P.-B. Wieber

Extreme care must be taken though about the particularities of nonsmooth
dynamical systems: if we can propose a stability theorem such as the one of sec-
tion 2.4, which is very similar to usual theorems for smooth dynamical systems,
it doesn’t mean that the whole stability theory for smooth dynamics can be
translated to the nonsmooth case without specific and sometimes subtle adapta-
tions. The example of Lasalle’s theorem discussed in section 2.4 or the fact that
the contact forces can’t be stable for physical reasons speak for themselves.

References

1. Yabuta, T.: Nonlinear basic stability concept of the hybrid position/force control

scheme for robot manipulators. IEEE Trans. Robot. Automat. 8 (1992) 663–670

2. Bourgeot, J.M., Brogliato, B.: Tracking control of Lagrangian complementarity

systems. Int. J. of Bifurcation and Chaos, special issue on Nonsmooth Dynamical

Systems 15 (2005)

3. Wang, D., McClamroch, H.: Position and force control for constrained manipulator

motion: Lyapunov’s direct method. IEEE Trans. Robot. Automat. 9 (1993) 308–

313

4. Khalil, H.: Nonlinear systems. Prentice-Hall (1996)

5. Brogliato, B.: Some perspectives on the analysis and control of complementarity

systems. IEEE Transactions on Automatic Control 48 (2003) 918–935

6. Brogliato, B., Heemels, W.: Hybrid systems modeling and control. European

Journal of Control. Special issue on ”fundamental issues in control” 9 (2003) 177–

189

7. De Carlo, R. Branicky, S.P.S., Lennartson, B.: Perspectives and results on the

stability and stabilizability of hybrid systems. Proc. IEEE 88 (2000) 1069–1082

8. Lygeros, J. Johansson, K.S.S.J.Z., Sastry, S.: Dynamical properties of hybrid au-

tomata. IEEE Transactions on Automatic Control 48 (2003) 2–17

9. Schatzman, M.: A class of nonlinear differential equations of second order in time.

Nonlinear Analysis, Theory, Methods & Applications 2 (1978) 355–373

10. Moreau, J.J.: Liaisons unilatérales sans frottements et chocs inélastiques. C.R.

Acad.Sc.Paris 296 (1983) 1473–1476

11. Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In

Moreau, J.J., Panagiotopulos, P., eds.: Nonsmooth mechanics and Applications.

Volume 302. Springer Verlag (1988) 1–82

12. Ballard, P.: The dynamics of discrete mechanical systems with perfect unilateral

constraints. Archive for Rational Mechanics and Analysis (2000) 199–274

13. Ballard, P.: Formulation and well-posedness of the dynamics of rigid-body sys-

tems with perfect unilateral constraints. Philosophical Transactions: Mathemati-

cal, Physical & Engineering Sciences 359 (2001) 2327–2346

14. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algo-

rithms. Springer Verlag, Heidelberg (1996) Two volumes - 2nd printing.

15. Moreau, J.J.: An introduction to unilateral dynamics. In Fremond, M., Maceri,

F., eds.: Novel approaches in civil engineering. Springer Verlag (2001)

16. Moreau, J.J.: Bounded variation in time. In Moreau, J.J., Panagiotopulos, P.,

Strang, G., eds.: Topics in Nonsmooth Mechanics. Birkhäuser, Basel Boston Berlin

(1988) 1–74

Position and Force Control of Nonsmooth Lagrangian Dynamical Systems 225

17. Branicky, S.: Multiple lyapunov functions and other analysis tools for switched

and hybrid systems. IEEE Transactions on Automatic Control 43 (1998) 475–482

18. Zubov, V.: Methods of A.M. Lyapunov and their application. Noordhoff (1964)

19. Orlov, Y.: Extended invariance principle for nonautonomous switched systems.

IEEE Transactions on Automatic Control 48 (2003) 1448–1452

20. Bacciotti, A., Ceragioli, F.: Stability and stabilization of discontinuous systems

and nonsmooth lyapunov functions. ESAIM: COCV 4 (1999) 361–376

21. Ye, H. Michel, A., Hou, L.: Stability theory for hybrid dynamical systems. IEEE

Transactions on Automatic Control 43 (1998) 461–474

22. Chareyron, S., Wieber, P.: Stabilization and regulation of nonsmooth lagrangain

systems. Technical report, INRIA Rhône-Alpes (2004) submitted.

23. Paoli, L.: Problemes de vibro-impact: etude de la dépendance par rapport aux

donnees. C.R. Acad. Sci. Paris 339 (2004) 27–32

24. Tornambè, A.: Modeling and control of impact in mechanicl systems: theory and

experimental results. IEEE Transactions on Automatic Control 44 (1999) 294–309

Existence of Cascade Discrete-Continuous State
Estimators for Systems on a Partial Order

Domitilla Del Vecchio and Richard M. Murray

Control and Dynamical Systems,
California Institute of Technology,

1200 E California Boulevard, Mail Stop 107-81,
Pasadena, CA 91125

{ddomitilla, murray}@cds.caltech.edu

Abstract. In this paper, a cascade discrete-continuous state estimator on a partial
order is proposed and its existence investigated. The continuous state estimation
error is bounded by a monotonically nonincreasing function of the discrete state
estimation error, with both the estimation errors converging to zero. This work
shows that the lattice approach to estimation is general as the proposed estima-
tor can be constructed for any observable and discrete state observable system.
The main advantage of using the lattice approach for estimation becomes clear
when the system has monotone properties that can be exploited in the estimator
design. In such a case, the computational complexity of the estimator can be dras-
tically reduced and tractability can be achieved. Some examples are proposed to
illustrate these ideas.

1 Introduction

The analysis of systems that show “hybrid” behavior is precious to several engineering
areas. Embedded systems and complex systems such as the Internet, biological systems,
multi-agent systems, and many others provide examples of such a hybrid behavior. The
problem of estimating the state becomes relevant when asking to control these systems
or to verify the correctness of their behavior as is in the case of air-traffic control systems
(see for example [12] and [2]).

The coupling of continuous and discrete dynamics renders the analysis of these
systems hard. As pointed out by Bemporad [3], one of the biggest issues is complexity.
There are several causes of such complexity, and some are specific to the application do-
main. Among these, there is the absence of mathematical tools able to handle a uniform
analysis of both the logic evolution and of the continuous evolution. In Del Vecchio et
al. [6], it was shown that a partial order on the discrete variables can be used in order to
reduce complexity of the discrete state estimator and achieve scalability in the number
of variables to be estimated. In this paper, similar ideas are applied in order to estimate
the continuous and the discrete variables in a unified framework.

There is a wealth of research on hybrid observer design. The pioneering work of
Caines [4] proposes the observer tree method for the estimation of the discrete state of
a finite state machine. The observer tree method is used also in Balluchi et al. [1] for the

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 226–241, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Existence of Cascade Discrete-Continuous State Estimators 227

estimation of the discrete state. The estimator proposed in this paper is similar to the
decoupled estimator design proposed by [1], except that in the present work the contin-
uous and the discrete states are estimated simultaneously and asymptotic convergence
and thus tracking of the state is achieved. If the dimension of the discrete variables
set is very large, the estimation problem relying on observer-tree methods becomes in-
tractable. If the system has some order preserving properties with respect to a suitable
partial order, the method that is proposed in this paper generates a computationally effi-
cient estimator. As opposed to [13], which proposes to detect the discrete state change
a posteriori, here estimation and tracking of the state is sought.

The basic assumption this paper relies on is that the discrete state can be estimated
without the aid of the continuous state estimate. This assumption has already practical
interest for example in the case of multi-robot systems. In these systems, the discrete
variables (used in the control or communication protocol) are often updated on the basis
of their values and of the values of measurable continuous variables, such as position.
This way, the continuous state estimate can be driven by the discrete state estimate.
Thus, a cascade discrete-continuous state estimator is constructed that achieves con-
vergence of the estimation error to zero and thus tracks the value of the state. The
estimator is constructed on a larger variable space equipped with a partial order, where
the extended system has some properties that are referred to as order compatibility for
the discrete state dynamics and induced order compatibility for the continuous state dy-
namics. The proposed estimator can be constructed for any system that is observable
and discrete state observable, and thus the lattice approach to estimation is general.
The main advantage of this method is clear when the system enjoys some monotonic
properties that the estimator can exploit directly. In such a case the complexity of the
estimator is drastically reduced and a scalability property can be achieved in the number
of variables to be estimated. This is shown in simulation examples.

This paper is organized as follows. In Section 2, basic notions on partial orders
and on observability are reviewed. In Section 3, the model is introduced. In Section 4,
the estimation problem is stated formally, and a solution is proposed in Section 5. The
existence result of the proposed estimator is in Section 6. To show the generality of the
proposed estimation scheme, the estimator is constructed for three different examples in
Section 7. Section 8 gives some computational complexity estimates that clearly show
the cases where the developed approach reduces the computational burden.

2 Basic Concepts

This section reviews basic notions on partial order theory (see [5] for more details) and
on observability of deterministic transition systems.

2.1 Partial Orders

A partial order is a set χ with a partial order relation “≤”, and it is denoted (χ,≤). The
join “�” and the meet ”�” of two elements x and w in χ are defined as x�w = sup{x,w}
and x � w = inf{x,w}, if S ⊆ χ, ∨ S = sup S and

∧
S = inf S , where sup{x,w}

denotes the smallest element in χ that is bigger than both x and w, and inf{x,w} denotes

228 D.D. Vecchio and R.M. Murray

the largest element in χ that is smaller than both x and w. If x < w and there is no other
element in between x and w, we write x � w.

Let (χ,≤) be a partial order. If x � w ∈ χ and x � w ∈ χ for any x,w ∈ χ, then (χ,≤)
is a lattice. Let (χ,≤) be a lattice and let S ⊆ χ be a non-empty subset of χ. Then (S ,≤)
is a sublattice of χ if a, b ∈ S implies that a � b ∈ S and a � b ∈ S . If any sublattice
of χ contains its least and greatest elements, then (χ,≤) is called complete. Given a
complete lattice (χ,≤), we will be concerned with a special kind of a sublattice called
an interval sublattice defined as follows. Any interval sublattice of (χ,≤) is given by
[L,U] = {w ∈ χ : L ≤ w ≤ U} for L,U ∈ χ. That is, this special sublattice can
be represented by only two elements. For example, the intervals of (R,≤) are just the
familiar closed intervals on the real line. The cardinality of an interval sublattice [L,U]
is denoted |[L,U]|.

The power lattice of a set U, denoted (P(U),⊆), is given by the power set of U,
P(U) (the set of all subsets of U), ordered according to the set inclusion ⊆. The meet
and join of the power lattice is given by intersection and union. The bottom element is
the empty set, that is ⊥ = ∅, and the top element isU itself, that is 	 = U.

Let (P,≤) and (Q,≤) be partially ordered sets. A map f : P → Q is (i) an order
preserving map if x ≤ w =⇒ f (x) ≤ f (w); (ii) an order embedding if x ≤ w ⇐⇒
f (x) ≤ f (w); (iii) an order isomorphism if it is order embedding and it maps P onto Q.

A partial order induces a notion of distance between elements in the space. In this
paper, the distance function on a partial order is defined as follows.

Definition 1. (Distance on a partial order) Let (P,≤) be a partial order. A distance d on
(P,≤) is a function d : P × P→ R such that the following properties are verified:

(i) d(x, y) ≥ 0 for any x, y ∈ P and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);

(iii) if x ≤ y ≤ z then d(x, y) ≤ d(x, z).

Because this paper is concerned with a partial order on the space of the discrete
variables as well as with a partial order on the space of the continuous variables, it is
useful to introduce the Cartesian product of two partial orders (see [10] for example).

Definition 2. (Cartesian product of partial orders) Let (P1,≤) and (P2,≤) be two partial
orders. Their Cartesian product is given by (P1 × P2,≤), where P1 × P2 = {(x, y) | x ∈
P1 andy ∈ P2} and (x, y) ≤ (x′, y′) if and only if x ≤ x′ and y ≤ y′. For any (p1, p2) ∈
P1 × P2 the standard projections π1 : P1 × P2 → P1 and π2 : P1 × P2 → P2 are such
that π1(p1, p2) = p1 and π2(p1, p2) = p2.

2.2 Deterministic Transition Systems and Observability

The class of systems this work is concerned with are deterministic, infinite state systems
with output defined as follows. A deterministic transition system (DTS) is the tuple
Σ = (S ,Y, F, g), where S is a set of states with s ∈ S ; Y is a set of outputs with y ∈ Y;
F : S → S is the state transition function; g : S → Y is the output function. An
execution of Σ is any sequence σ = {s(k)}k∈N such that s(0) ∈ S and s(k + 1) = F(s(k))
for all k ∈ N. The set of all executions of Σ is denoted E(Σ).

Existence of Cascade Discrete-Continuous State Estimators 229

Definition 3. (Observability) The deterministic transition system Σ = (S ,Y, F, g) is
said to be observable if any two different executions σ1, σ2 ∈ E(Σ) are such that there
exists a k such that g(σ1(k)) � g(σ2(k)).

In the next section, the class of observable systems is restricted to the class of sys-
tems that are independent discrete state observable.

3 The Model

In this section, the distinction between the portion of the state that takes values in a finite
set and the portion that takes values in an infinite possibly dense set is explicitly made.
For a system Σ = (S ,Y, F, g), suppose that S = U × Z with U a finite set, and Z an
infinite possibly dense set;Y is a finite or infinite set; F = (f , h), where f : U×Y → U
and h : U ×Z → Z; g : U ×Z → Y is the output map. These systems have the form

α(k + 1) = f (α(k), y(k)) (1)

z(k + 1) = h(α(k), z(k)) (2)

y(k) = g(α(k), z(k)),

and they are referred to as the tuple Σ = (U × Z,Y, (f , h), g). The function f that
updates the discrete variable α can be represented by a set of logic statements, or, in
the case Y is finite, by a look-up table or recursive formula as is the case of finite state
machines ([9]). For each value of α, the equation (2) is a difference equation. Before
stating the problem in more detail, an additional definition is given.

Definition 4. (Independent discrete state observability) The system Σ = (U × Z,Y,
(f , h), g) is said to be independent discrete state observable if for any execution with
output sequence {y(k)}k∈N, the following are verified

(i) The set of α compatible with the pair (y(k), y(k + 1)), that is {α ∈ U | y(k) =
g(α, z(k)) and y(k + 1) = g(f (α, y(k)), h(α, z(k)))} := S(k) does not depend on z(k);

(ii) if two executions σ1 = {α1(k), z1(k)}k∈N and σ2 = {α2(k), z2(k)}k∈N are such that the
sequences {α1(k)}k∈N � {α2(k)}k∈N, then there is k > 0 such that α1(k) ∈ S(k) and
α2(k) � S(k).

Item (i) is trivially verified if g(α, z) = (gα(α), gz(α, z)), where gα : U → {Y1,Y2, ...,Ym}
partitions the set U in equivalence classes. We allow two steps in order to have an
equivalence class that is independent of z(k), as this is often the case when α acts in
the z dynamics. This assumption is made for the sake of simplicity. It can be relaxed
to allow a finite number of steps for obtaining a set S(k) that does not depend on z
with minor modifications to the estimator structure. From this definition, it follows that
an independent discrete state observable system admits a discrete state estimator that
does not involve the continuous state estimate. This property will allow to construct a
cascade discrete-continuous state estimator as defined in the following section.

230 D.D. Vecchio and R.M. Murray

4 Problem Statement

Consider the deterministic transition system Σ = (U ×Z,Y, (f , h), g), with the output
sequence {y(k)}k∈N. It is desirable to determine and track the value of the current state
(α(k), z(k)) of the system. This is more formally stated in the following problem.

Problem 1. (Cascade discrete-continuous state estimator) Given the deterministic tran-
sition system Σ = (U × Z,Y, (f , h), g), find functions f1, f2, f3, f4, f5 with f1 :
χ×Y×Y → χ, f2 : χ×Y×Y → χ, f3 : L×χ×Y×Y → L, f4 : L×χ×Y×Y → L,
f5 : L → ZE , withU ⊆ χ, (χ,≤) a lattice,Z ⊆ ZE with (ZE ,≤) a lattice, χ×ZE ⊆ L,
(L,≤) a lattice, such that the update laws

L(k + 1) = f1(L(k), y(k), y(k + 1))

U(k + 1) = f2(U(k), y(k), y(k + 1))

qL(k + 1) = f3(qL(k), L(k), y(k), y(k + 1))

qU(k + 1) = f4(qU(k),U(k), y(k), y(k + 1)) (3)

with zL(k) = f5(qL(k)) and zU(k) = f5(qU(k)), where L(k),U(k) ∈ χ, L(0) :=
∧
χ,

U(0) :=
∨
χ, qL(k), qU(k) ∈ L, qL(0) =

∧L, qU(0) =
∨L, and zL(k), zU(k) ∈ ZE ,

have the following properties

(i) L(k) ≤ α(k) ≤ U(k) (correctness);
(ii) |[L(k + 1),U(k + 1)]| ≤ |[L(k),U(k)]| (non-increasing error);
(iii) There exists k0 > 0 such that [L(k),U(k)]∩U = α(k) for any k ≥ k0 (convergence);
(i’) zL(k) ≤ z(k) ≤ zU(k);
(ii’) there is a nonnegative function V : N → R such that d(zL(k), zU(k)) ≤ V(k), with
V(k + 1) ≤ V(k);
(iii’) There exists k′0 > k0 such that d(zL′(k), zU′ (k)) = 0 for any k ≥ k′0, where L′ =∧

([L,U]∩U), U′ =
∨

([L,U]∩U), zL′ (k) = f5(qL′ (k)), zU′ (k) = f5(qU′ (k)), qL′ (k+1) =
f3(qL′ (k), L′(k), y(k), y(k + 1)), and qU′ (k + 1) = f4(qU′ (k),U′(k), y(k), y(k + 1)), with
qL′ (0) = qL(0) and qU′ (0) = qU(0), for some distance function “d”.

The update laws (3) are in cascade form as the variables L and U are updated on the
basis of their previous values and on the basis of the output, while the variables qL

and qU are updated on the basis of their previous values and on the basis of the values
of L and U respectively. Note that the lower and the upper bound estimates of z(k) are
outputs of the laws that update qL(k) and qU(k), which lie in the spaceL. Properties (iii)
and (iii’) roughly ask that the lower and upper bounds shrink to α(k) and z(k). Property
(ii’) gives a monotonic bound on the continuous variable estimation error.

Note that the distance function “d” has been left unspecified for the moment, as
its form depends on the particular partial order chosen (ZE ,≤). In the case in which
Z = ZE and the order is established component-wise, the distance can be the classical
euclidean distance. In the following section, a solution to the Problem 1 is proposed.

Existence of Cascade Discrete-Continuous State Estimators 231

5 Estimator Construction

Given the deterministic transition system Σ = (U × Z,Y, (f , h), g), a set of sufficient
conditions that allow a solution to Problem 1 is provided. With this respect, some defi-
nitions involving the extension of the system Σ to a lattice are useful.

Definition 5. (System extension) Consider the system Σ = (U × Z,Y, (f , h), g). Let
(χ,≤), (ZE ,≤), and (L,≤) be lattices with U ⊆ χ, Z ⊆ ZE , and χ × ZE ⊆ L. An
extension of Σ on the lattice (L,≤) is given by Σ̃ = (L,Y, F̃, g̃) such that

(i) F̃ : L ×Y → L and F̃|U×Z×Y = (f , h), and L − (U ×Z) is invariant under F̃;
(ii) F̃|χ×ZE×Y = (f̃ , h̃) where f̃ : χ × Y → χ, f̃ |U×Y = f , h̃ : χ × ZE → ZE , and

h̃|U×Z = h;
(iii) g̃ : L → Y and g̃|U×Z = g;
(iv) for any q ∈ L there exist (w1, z̄1), (w2, z̄2) ∈ χ×ZE such that (w1, z̄1) ≤ q ≤ (w2, z̄2),

where aL(q) := max(L,≤){(w, z̄) ∈ χ×ZE | q ≥ (w, z̄)} and aU(q) := min(L,≤){(w, z̄) ∈
χ ×ZE | q ≤ (w, z̄)}.

Item (iv) of the above definition establishes that the chosen lattices are such that any
element in L that is not in χ × ZE can be approximated by two elements in χ × ZE ,
aL(q) and aU(q). These are the lower and upper approximation of q respectively. Note
that if q ∈ χ × ZE , then aL(q) = aU(q) = q. The next definition links the discrete state
dynamics of Σ̃ with the partial order (χ,≤).

Definition 6. (Order compatibility) The pair (Σ̃, (χ,≤)) is said to be order compatible
if the following are verified

(i) {w ∈ χ | y(k + 1) = g̃(f̃ (w, y(k)), h̃(w, z(k))) and y(k) = g̃(w, z(k))} = [lw(k), uw(k)]
for lw(k), uw(k) ∈ χ;

(ii) f̃ : ([lw(k), uw(k)], y(k))→ [f̃ (lw(k), y(k)), f̃ (uw(k), y(k))] is order isomorphic.

Item (i) in the above definition establishes that the set of w ∈ χ compatible with the pair
(y(k), y(k+1)) for any execution σwith output sequence {y(k)}k∈N is a sublattice interval
in χ. Note that S(k) = [lw(k), uw(k)]∩U by definition . Two steps k, k+1 are allowed to
obtain a set of w ∈ χ compatible with the output that does not depend on the values of z.
For the construction of a cascade discrete-continuous state estimator, the case in which
the partial order (L,≤) is induced by the partial order (χ,≤) by means of the system
dynamics is of interest. Thus, a new notion of order compatibility is introduced in the
next definition.

Definition 7. (Induced order compatibility) The pair (Σ̃, (L,≤)) is said to be induced
order compatible if

(i) for any w1 ≤ w2 in [lw(k), uw(k)], there are lq(k,w1), uq(k,w2) ∈ L such that

{q ∈ L |π1 ◦ aL(q) = w1, π1 ◦ aU(q) = w2, y(k + 1) = g̃(F̃(q, y(k))), and y(k) = g̃

(q)} ⊆ [lq(k,w1), uq(k,w2)];

(ii) aL(lq(k,w1)) = (w1, lz(k,w1)) and aU(uq(k,w2)) = (w2, uz(k,w2)), for lz(k,w1), uz(k,
w2) ∈ ZE ;

232 D.D. Vecchio and R.M. Murray

(iii) F̃ : ([lq(k,w1), uq(k,w2)], y(k)) → [F̃(lq(k,w1), y(k)), F̃(uq(k,w2), y(k))] is order
preserving, and F̃ : (α × [lz(k, α), uz(k, α)], y(k))→ [F̃(α, lz(k, α), y(k)),
F̃(α, uz(k, α), y(k))] is order isomorphic;

(iv) for any [L,U] ⊆ [lw(k), uw(k)]

d
(
π2 ◦ aL ◦ F̃(lq(k, L), y(k)), π2 ◦ aU ◦ F̃(uq(k,U), y(k))

)
≤ γ(|[L,U]|),

for some distance function “d”,γ : N→ R a monotonic function of its argument.

Item (i) of this definition means that a sublattice interval in (χ,≤) compatible with the
output pair (y(k), y(k + 1)) induces a sublattice interval in (L,≤) corresponding to the
same output pair. Item (ii) specifies that such output interval is approximated by the
Cartesian product of two sublattice intervals in (χ,≤) and in (ZE ,≤). Item (iii) estab-
lishes the usual order preserving properties of the extension, and item (iv) establishes
that the size of the interval lattice in (ZE ,≤) induced by an interval [L,U] ∈ χ in-
creases with the size of [L,U]. A solution to the Problem 1 is proposed by the following
theorem.

Theorem 1. Given the system Σ = (U ×Z,Y, (f , h), g), assume that there are lattices
(χ,≤), (ZE ,≤), and (L,≤), with U ⊆ χ, Z ⊆ ZE, and χ × ZE ⊆ L such that the
pairs (Σ̃, (χ,≤)) and (Σ̃, (L,≤)) are order compatible and induced order compatible
respectively. Then a solution to Problem 1 is provided by

L(k + 1) = f̃ (lw(k) � L(k), y(k))

U(k + 1) = f̃ (uw(k) � U(k), y(k))

qL(k + 1) = F̃(qL(k) � lq(k, lw(k) � L(k)), y(k))

qU(k + 1) = F̃(qU(k) � uq(k, uw(k) � U(k)), y(k)). (4)

with zL(k) = π2 ◦ aL(qL(k)) and zU(k) = π2 ◦ aU(qU(k)).

Proof. The idea of the proof is analogous to the one proposed in [8]. Here, a sketch
is provided, which highlights the differences due to the more general framework con-
sidered in this paper. For the proof of (i)-(ii)-(iii), the reader is deferred to [6]. Define
U∗ = uw(k)�U(k), L∗ = lw(k)� L(k), q∗U = qU(k)� lq(k,U∗), and q∗L = qL(k)� lq(k, L∗).
The dependence of uq and lq on their arguments is omitted, as well as the dependence
of F̃ on y.

Proof of (i’). By using induction argument on k and exploiting the order preserving
property of F̃, one can show that qL(k) ≤ (α(k), z(k)) ≤ qU(k) (see Figure 1) for any k.
By the the fact that π2 ◦ aL and π2 ◦ aU are order preserving functions, (i’) follows (see
Figure 1).

Proof of (ii’). Using the order preserving property of F̃, of π2 ◦ aL, and of π2 ◦
aU , one deduces that zL(k + 1) ≥ π2 ◦ aL ◦ F̃(lq(k, L∗)) and zU(k + 1) ≤ π2 ◦ aU ◦
F̃(uq(k,U∗)) (see Figure 1). By exploiting the property (iii) of the distance function in
Definition 1, and the property (iv) given in Definition 7, one can infer that d(zL(k +
1), zU(k + 1)) ≤ γ(|[L∗,U∗]|). Since f̃ is order isomorphic, it follows that |[L∗,U∗]| =
|[f̃ (L∗, y), f̃ (U∗, y)]|. Thus, (ii’) of Problem 1 is satisfied with V(k) = γ(|[L(k),U(k)]|).

Existence of Cascade Discrete-Continuous State Estimators 233

U(k + 1)

y(k)

α(k + 1)

L(k + 1)

y(k + 1)

uw(k)

f̃

L∗

α(k)

L(k)lw(k)

U∗

U(k)

y(k)

uq

lq

(α(k), z(k))
q∗L

qU(k)

qL(k)

F̃

q∗U

y(k + 1)

qU(k + 1)

F̃(uq)

(α(k + 1), z(k + 1))

F̃(lq)

qL(k + 1)π2 ◦ aL

z(k + 1)

π2 ◦ aU
zU(k + 1)

zL(k + 1)

Fig. 1. Hasse diagrams representing the updates of the estimator in Theorem 1

Proof of (iii’). For k > k0, L′(k) = α(k) = U′(k) as [L(k),U(k)] ∩ U = α(k). As a
consequence, qL′ (k+1) = F̃(qL′ (k)� lq(k, α(k))) and qU′ (k+1) = F̃(qU′ (k)�uq(k, α(k))),
where lq(k, α) = (α, lz(k, α)) and uq(k, α) = (α, uz(k, α)). One then uses the facts that
(α, lz(k, α)) ≤ qL′ (k) � lq(k, α(k)), qU′ (k) � uq(k, α(k)) ≤ (α, uz(k, α)), the fact that F̃ :
(α×[lz(k, α), uz(k, α)])→ [F̃(α, lz(k, α)), F̃(α, uz(k, α))] is order isomorphic, and the fact
thatL−(U×Z) is invariant under F̃. Proceeding by contradiction, if for any k there are
(α′, z′1), (α′, z′2) in [qL′ (k), qU′ (k)] ∩ (U ×Z) that are compatible with the output, there
must be (α, z1), (α, z2) ∈ [qL′ (k − 1), qU′ (k − 1)] ∩ (U ×Z) such that (α′, z′1) = F(α, z1)
and (α′, z′2) = F(α, z2). Also, (α, z1), (α, z2) are compatible with the output as well (see
Figure 1). Since this is true for any k, one can construct two executions of Σ that are
different and share the same output sequence. This contradicts observability of Σ. Then
there must be k > k0 such that [qL′ (k), qU′ (k)] ∩ (U × Z) = (α(k), z(k)), and therefore
zL′ (k) = zU′ (k) = z(k).

In the following section, conditions in order to verify the assumptions needed for the
construction of the estimator given in Theorem 1 are given. I particular, observability
and discrete state observability are sufficient conditions for the estimator construction,
and therefore the proposed estimation approach on a lattice is general.

234 D.D. Vecchio and R.M. Murray

6 Estimator Existence

The following theorem shows that if the system Σ is observable and discrete state ob-
servable, the lattices (L,≤), (ZE ,≤), and (χ,≤) introduced in the previous section exist,
such that the extended system is both order compatible with (χ,≤) and induced order
compatible with (L,≤).

Theorem 2. Assume that the system Σ = (U×Z,Y, (f , h), g) is observable and discrete
state observable. Then there exist lattices (χ,≤), (ZE ,≤), (L,≤) withU ⊆ χ,Z ⊆ ZE,
and χ×ZE ⊆ L, and an extension Σ̃ of Σ on (L,≤) that is order compatible with (χ,≤)
and induced order compatible with (L,≤).

Proof. To prove that discrete state observability implies the existence of a lattice (χ,
≤) and an extension on (L,≤) of Σ that is order compatible with (χ,≤), the reader is
deferred to [7]. Briefly, it can be shown that the lattice (χ,≤) can be chosen as (χ,≤) =
(P(U),⊆). Moreover, the function f̃ : χ × Y → χ is defined f̃ (w, y) = f (α1, y) � ... �
f (αn, y) for any w = α1 � ... � αn, and f̃ (⊥, y) = ⊥. Next, lattices (ZE ,≤), and (L,≤)
with extensions h̃ and F̃ that satisfy the desired properties are constructed as well.

Define {z|y = g(α, z), α ∈ U} := m(α, y). ThenZE is defined in the following way:
(i) Z ⊆ ZE ; (ii) m(α, y) ∈ ZE for any y ∈ Y and α ∈ U; (iii) ZE is invariant under
h, i.e. if z̄ ∈ ZE , then h(α, z̄) ∈ ZE for any z̄ ∈ ZE and α ∈ U; (iv) ZE is closed
under finite unions and finite intersections. By construction, (ZE ,≤) is a lattice where
the order is established by inclusion. Each element in ZE is either a submanifold of Z
or a union of disjoint submanifolds. Also, (χ×ZE ,≤) is a lattice with order established
component-wise. Define (L,≤) := (P(χ×ZE),⊆). Obviously, χ×ZE ⊆ L. Any element
q ∈ L has the form q = (w1, z̄1) � ... � (wk, z̄k), where z̄ j ∈ ZE and wi ∈ χ.

Define the function F̃ : L × Y → L in the following way. For any q = (w1, z̄1) �
... � (wk, z̄k) ∈ L, define (omit the dependence on y for simplifying notation)

F̃(q) := F̃(w1, z̄1) � ... � (F̃(wk, z̄n),

where F̃(wi, z̄i) := (f̃ (wi), h̃(wi, z̄i)). Let wi = αi,1 � ... � αi,pi and z̄i = mi,1 � ... �
mi,ni with mi,1 submanifolds of Z, then h̃ : χ × ZE → ZE is defined such that
h̃(wi, z̄i) := �l, jh(αi,l,mi, j). From this definition, it follows that F̃ is order preserving.
Also, F̃(⊥) := ⊥.

The function g̃ : L → Y is defined in the following way. For any q ∈ L for
q = (w1, z̄1) � ... � (wk, z̄k), wi = αi,1 � ... � αi,pi , and z̄i = mi,1 � ... � mi,ni

g̃(q) := y iff g̃(wi, z̄i) = y,

with g̃(wi, z̄i) = y iff g(αi,l,mi, j) = y for any l, j, where g(αi,l,mi, j) = y if and only if
mi, j ⊆ m(αi, j, y) by definition of m(αi, j, y).

For any q = (w1, z̄1) � ... � (wk, z̄k) ∈ L, its lower and upper approximations are
defined as aL(q) := (w1 � ... � wk, z̄1 � ... � z̄k) and aU(q) := (w1 � ... � wk, z̄1 � ... � z̄k).
An example of elements in the lattice (L,≤) with lower and upper approximations is
shown in Figure 2.

The lattices and the system extension have been constructed. Now, the items of Def-
inition 6 and Definition 7 can be checked. Item (i) of Definition 6 is satisfied with

Existence of Cascade Discrete-Continuous State Estimators 235

aL((α1, z1) � (α2, z2)) = ⊥
aU((α1, z1) � (α2, z2)) = (α1 � α2, z1 � z2)

(α1, z1) � (α2, z2)

(α2, z1) (α1, z2) (α1, z1) (α2, z2)

(α1 � α2, z1 � z2)
∈ L and not in χ ×ZE

∈ χ ×ZE

(α2, z1) � (α1, z2)

⊥
Fig. 2. Hasse diagram representing elements in the lattice (L,≤)

[lw, uw] = [⊥,w] for w = α1 � ... � αn, with αi such that g(αi, z(k)) = y(k) and
g̃(f (αi, y(k)), h̃(αi, z(k))) = y(k + 1). Items (i)-(ii) of Definition 7 are satisfied with
{q ∈ L | y(k) = g̃(q), π1 ◦ aL(q) = ⊥, π1 ◦ aU(q) = w} = [⊥, uq(k,w)] with uq(k,w) =
(α1,m(α1, y(k))) � ... � (αn,m(αn, y(k))) if w = α1 � ... � αn. Also, aL(⊥) = ⊥ and
π2 ◦ aU(uq(k,w)) = m(α1, y(k)) � ... � m(αn, y(k)).

Item (iii) of Definition 7 is satisfied because F̃ is order preserving by construction
and because F̃ : α × [⊥,m(α, y)]→ [⊥, F̃(α,m(α, y))] is one-one because the system is
observable.

To verify (iv) of Definition 7, a distance function onZE is defined. For any z̄1, z̄2 ∈
ZE , define

d(z̄1, z̄2) :=

⎧⎪⎪⎨⎪⎪⎩
|dim(z̄1) − dim(z̄2)| if z̄1 and z̄2 are related

1 if z̄1 and z̄2 are not related,
(5)

where if z̄ = m1 � ... � mn, dim(z̄) :=
∑

i dim(mi), and dim(mi) denotes the dimension
of the submanifold mi ⊂ Z. Define dim(⊥) = 0, dim(z) = 1 for any z ∈ Z, thus a
submanifold isomorphic to Rm has dimension m + 1. Properties (i)-(ii) of Definition
1 are verified. (Note that any two points in Z are not related.) To verify (iii) of the
Definition 1, consider z̄1 ≤ z̄2 for z̄1, z̄2 ∈ ZE , and compute d(⊥, z̄1) and d(⊥, z̄2).
If z̄1 ≤ z̄2, by the way ZE has been constructed, it means that there are mi and m′i
submanifolds inZE such that z̄1 = m1 � ...�mn, and z̄2 = m′1 � ...�m′p with n ≤ p, and
for any i there is a j such that mi ⊆ m′j. Thus, dim(z̄1) = dim(m1) + ... + dim(mn) and
dim(z̄2) = dim(m′1)+ ...+ dim(m′p) with n ≤ p and dim(mi) ≤ dim(m′i). Thus expression
(5) defines a distance function according to Definition 1. Thus, for any [⊥,U] ⊆ [⊥, uw]
with U = α1 � ... � αn

d(⊥, π2 ◦ aU ◦ F̃(uq(k,U))) = d(⊥, h(α1,m(α1, y)) � ... � h(αn,m(αn, y))),

as F̃(uq(k,U)) = (f (α1), h(α1,m(α1, y))� ...� (f (αn), h(αn,m(αn, y)), aU ◦ F̃(uq(k,U)) =
(f (α1)� ...� f (αn), h(α1,m(α1, y))� ...�h(αn,m(αn, y))), and thus π2◦aU ◦ F̃(uq(k,U)) =
h(α1,m(α1, y)) � ... � h(αn,m(αn, y)). Concluding, the definition of distance yields to

236 D.D. Vecchio and R.M. Murray

d(⊥, h(α1,m(α1, y)) � ... � h(αn,m(αn, y))) =
n∑

i=1

dim(h(αi,m(αi, y)) ≤ dM |[⊥,U]|,

where dM = maxidim(h(αi,m(αi, y)).

Remark 1. In the case the system Σ is monotone and observable in two steps (see [8]),
the same result holds withZE = Z and L = χ ×Z.

This theorem shows that for observable and discrete state observable systems it is
always possible to construct the estimator on a lattice proposed in Theorem 1. However,
the main advantage of the use of such a method is clear when the space of discrete and/or
the space of continuous variables can be extended to lattices where the order relation
can be efficiently computed using algebraic properties. This is the case of the monotone
deterministic transition systems considered in [8]. To illustrate this point, in the next
section three examples are proposed.

7 Simulation Examples

The first example is a linear hybrid automaton where a lattice of the type constructed in
the proof of Theorem 2 is used. The second example is characterized by a continuous
dynamics which is monotone (see [11]), and this allows to have ZE = Z with a cone
partial order. The third example is a multi-robot example proposed in [8], which is a
monotone DTS, and thus it allows the largest complexity reduction.

α1

α2

α3

α4

α5

Y1

Y2

⊥

α2 α3 α4 α5

f̃ (Y2) Y2
Y1

f̃ 2(Y1)f̃ (Y1)

	
(χ,≤)

α1

Fig. 3. Map f and output function for the automaton of Example 1 (left). Lattice (χ,≤) and the
extended function f̃ (right)

Example 1. Linear discrete time hybrid automaton. Define U = {α1, α2, α3, α4, α5},
and α(k + 1) = f (α(k)) where f is defined in the Figure 3 left. Assume Z = Rn,

Existence of Cascade Discrete-Continuous State Estimators 237

z(k + 1) = A(α(k))z(k) + B(α(k)), where A(αi) = Ai ∈ Rn × Rn and B(αi) = Bi ∈ Z. The
output function g is such that g(α, z) = (gα(α), gz(α, z)), where gα : U → {Y1,Y2} and
gz(α, z) = C(α)z, with C(αi) = Ci ∈ Rm ×Z.

An instance of such an example is considered with n = 3, where A1 = ((1, 1, 1)′,(0,
1, 1)′, (0, 0, 1)′)′, A2 = ((1/2, 1/2, 1/2)′, (1, 2, 2)′, (0, 0, 1)′)′, A3 = ((2, 1, 1)′, (0, 1, 1)′,
(2, 0, 0)′)′, A4 = ((1, 1, 1)′, (1, 1, 0)′, (0, 0, 1)′)′, A5 = ((1, 0, 0)′, (1, 1, 1)′, (1, 1, 0)′)′,
C1 = (1, 0, 0), C2 = (1, 1, 2), C3 = (0, 0, 0), C4 = (1, 0, 0), and C5 = (0, 1, 1). The
values of Bi are not relevant for computing the estimator performance, and thus they
are omitted.

For the discrete state estimate, the minimal lattice (χ,≤) where the system is ex-
tended is shown in Figure 3 right. Its size is always smaller than |U|2 as pointed out in
[7], and its construction is analogous to the construction of the observer tree as done in
[4] and [1].

For the continuous state estimate, the lattice (ZE ,≤) is constructed according to the
proof of Theorem 2, where the submanifolds are affine linear subspaces. Thus, zU(k) at
each step k is a collection of affine linear subspaces, each given by the set of z ∈ R3

such that Mi(k)z = (Y(k) − Vi(k)), where Mi(k) = (C(αi)′, (C(f (αi))A(αi))′, ...,(C(f k−1

(αi))A(f k−2(αi)))′)′, Vi(k) = (0,C(f (αi))B(αi), ...C(f k−1(αi))B(f k−2(αi)))′, Y(k) = (y(0),
..., y(k − 1))′, and αi is such that f k−1(αi) ∈ [⊥,U(k)], for U(k) ∈ χ and i ∈ {1, .., 5}.
When only one αi is left in [⊥,U(k)] and the corresponding matrix Mi(k) has rank equal
to n, the estimator has converged. Thus, define d(⊥, zU(k)) =

∑5
i=1 β(Mi(k)) where

β(Mi(k)) :=

⎧⎪⎪⎨⎪⎪⎩
0 if f k−1(αi) � [⊥,U(k)]

(n + 1) − rank(Mi(k)) otherwise

As a consequence, when d(⊥, zU(k)) = 1, the estimator has converged and z(k) =
Mj(k)†(Y(k)−Vj(k)) for some j ∈ {1, ..., 5}, where Mj(k)† is the pseudoinverse of Mj(k).
Note that, after the first k at which d(⊥, zU(k)) = 1, the state of the system is tracked.
The behavior of d(⊥,U(k)) := |[⊥,U(k)]| and of d(⊥, zU(k)) are illustrated in the left
plot of Figure 4. Note that a simultaneous discrete-continuous state estimation allows
faster convergence rates of the continuous estimate with respect to the case in which the
continuous estimate takes place after the discrete estimate has converged.

In this example, the continuous variable space does not have monotone properties.
As a consequence, the representation of the elements of (χ,≤) and of (ZE ,≤) involves
a listing of objects: for χ, there is a listing of αis and for Z we have a listing of linear
subspaces. Moreover, to represent each linear subspace, a number of constants larger
than n (the number of constants needed for representing an element in Rn) is needed. A
measure of the complexity of the estimator is given in the sequel. If |U| is very large,
this choice of the partial orders renders the estimation process prohibitive. A case in
which a different partial order must be used for computational tractability, is presented
in Example 3.

Example 2. This example considers the case in which it is possible to choose ZE =

Z because the system is monotone (see [8] for a formal definition). Let again U =
{α1, α2, α3, α4, α5}, and α(k + 1) = f (α(k)) where f is defined in Figure 3 (left). The
continuous dynamics is given by

238 D.D. Vecchio and R.M. Murray

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

 Example 1

d(, U(k))

T

d(,z
U

(k))

T

time step k

2 4 6 8 10 12 14
0

2

4

6

8

10

2 4 6 8 10 12 14
0

20

40

60

80

100

Example 2

d(, U(k))

d(z
L
(k),z

U
(k))

time step k

T

Fig. 4. Estimator performance: example 1 (left) and example 2 (right)

z1(k + 1) = (1 − β)z1(k) − βzi,2(k) + 2βX(α(k))

z2(k + 1) = (1 − λ)z2(k) + λX(α(k)), (6)

where β = 0.1, λ = 0.1, X(αi) := 10i for i ∈ {1, ..., 5}. The minimal lattice (χ,≤)
is shown in Figure 3 (right). In this case L = χ × Z, where Z = R2, and the order
(Z,≤) is chosen such that (za

1, z
a
2) ≤ (zb

1, z
b
2) if and only if za

2 ≤ zb
2. The function h̃ :

χ × Z → Z is defined by defining the function X̃ : χ → R in the following way.
X̃(Y1) := max(X(α1), X(α2), X(α3)) = 30, X̃(Y2) := max(X(α3), X(α5)) = 50, and in
analogous way for the others, that is X̃(f̃ (Y2)) = 50, X̃(f̃ 2(Y1)) = 50, X̃(f̃ (Y1)) = 50,
and X̃(⊥) := 0. With this choice, h̃(w1, za) ≤ h̃(w2, zb) for any (w1, za) ≤ (w2, zb), that is
the system is monotone. Convergence plots are shown in Figure 4 (right).

As opposite to Example 1, in this case the representation of the elements in ZE

requires only n scalar numbers, and the computation of the order relation is straightfor-
ward. This alleviates the computational burden with respect to the previous example.

Example 3. This example shows the case in which there is a (χ,≤), whose order relation
can be computed algebraically, andZE = Z = R20, with order established according to
the cone order. There are N = 10 discrete variables updated in a highly coupled fashion
(the assignments), each living in the set {1, ...,N}. As a consequenceU = [1,N]N . This
example is the multi-robot example described in detail in [8], and it is a monotone DTS.
Here, only convergence plots are shown, and they are in Figure 5. The size ofU is of the
order of NN , but thanks to the monotonic properties of the system, the computational
complexity of the estimator is linear with N.

8 Complexity Considerations

The scope of the proposed examples is two-fold. First, they give an idea of the range of
systems to which the lattice estimation approach applies (just observable and discrete

Existence of Cascade Discrete-Continuous State Estimators 239

0 5 10 15 20
1

2

3

4

5

6

W
(k

)

0 5 10 15 20
0

20

40

60

time step k

V(k)

d(z
L
(k), z

U
(k))

Fig. 5. Estimator performance: example 3. W(k) represents the discrete state estimation error and
V(k) is the monotonic function bounding the continuous state estimation error

state observable systems). Second, they point out that the lattice approach alleviates the
computational burden of the estimator and even renders intractable problems tractable
when the system has monotone properties and a good choice of the lattices is made. To
make this point more formal, the computational complexity in each of the examples is
estimated as function of the continuous variables, the discrete variables, and the sizes of
the sets where the discrete variables lie. This section is not meant to be a formal treat-
ment of computational complexity, but has the scope of giving a qualitative measure of
the computational complexity diversity of the proposed examples. Let n be the number
of continuous variables (3 for the first example, 2 for the second, and 20 in the third),
N be the number of discrete variables (1 in the first example, 1 in the second example,
and 10 in the third example), and u be the set where each discrete variable lie (in the
first and second example u = U, and in the third u = {1, ...,N} and U = uN). The
computational cost of the estimator is computed as

computational cost ∝ S + aUC

where S is the sum of the sizes of the look-up tables used at each update of the estimator,
and aUC is the algebraic update cost of each estimator update. The cost of any set of
algebraic computation is set to 1. One can verify that S ∝ |u|2N in the first two examples,
and that S ∝ 2N in the third one. In the first example, aUC ∝ |u|Nn, and aUC ∝ 2n in the
second and third examples. This is shown in the following table.

Table 1. Estimator computational cost

Example 1 |u|2N + |u|Nn

Example 2 |u|2N + 2n

Example 3 2N + 2n

240 D.D. Vecchio and R.M. Murray

From the table, one notice that moving from Example 1 to Example 3 the compu-
tational burden due to the size of u decreases, and it disappears in the case of the third
example. This is due to the monotone properties of the continuous dynamics in Exam-
ple 2 and Example 3, and to the existence of a lattice (χ,≤) with algebraic properties in
Example 3. Note also that the complexity reduction that characterizes the third example
does not occur because the discrete variables dynamics decouples, as in fact it is heavily
coupled.

9 Conclusions

In this paper, a cascade discrete-continuous state estimator design is proposed under
observability and discrete state observability assumptions. As pointed out also in the
simulation examples section, the proposed approach is general. The main advantage
of using a lattice approach to the estimation problem is clear when the system has
monotone properties that can be exploited in the estimator construction. In this case,
the computational complexity is drastically reduced and a scalability property holds
in the number of variables to be estimated. Thanks to this feature, the estimator can be
efficiently designed even for systems with large discrete state spaces, for which the state
estimation problem is intractable if the monotone properties are not directly exploited
(see Example 3).

The results obtained in this paper suggest that a partial order structure is a possible
way for overcoming complexity issues in the estimation of hybrid systems. A future
research trust will try to generalize these ideas to the coupled discrete-continuous state
estimation problem. Given the promising results obtained using partial order theory for
state estimation problems, the authors will explore the possibility of applying similar
tools for other control and analysis problems in hybrid systems.

Acknowledgements

This work has been partially supported by AFOSR under grants F49620-01-1-0460 and
FA9550-04-1-0169.

References

1. A. Balluchi, L. Benvenuti, M. D. Di Benedetto, and A. Sangiovanni-Vincentelli. Design of
observers for hybrid systems. In Lecture Notes in Computer Science 2289,C. J. Tomlin and
M. R. Greensreet Eds. Springer Verlag, pages 76–89, 2002.

2. Alexandre Bayen, Jiawei Zhang, Claire Tomlin, and Yinyu Ye. Milp formulation and poly-
nomial time algorithm for an aircraft scheduling problem. In Proc. of American Control
Conference, 2003.

3. A. Bemporad, G. Ferrari-Trecate, and M. Morari. Observability and controllability of piece-
wise affine and hybrid systems. IEEE Transactions on Automatic Control, 45:1864–1876,
1999.

4. P. E. Caines. Classical and logic-based dynamic observers for finite automata. IMA J. of
Mathematical Control and Information, pages 45–80, 1991.

Existence of Cascade Discrete-Continuous State Estimators 241

5. B. A. Davey and H. A. Priesteley. Introduction to Lattices and Order. Cambridge University
Press, 2002.

6. D. DelVecchio and R. M. Murray. Discrete state estimators for a class of hybrid systems on
a lattice. In Lecture Notes in Computer Science 2993, R. Alur and G. Pappas Eds. Springer
Verlag, pages 311–325, 2004.

7. D. DelVecchio and R. M. Murray. Existence of discrete state estimators for hybrid systems
on a lattice. In Conf. on Decision and Control, 2004.

8. D. DelVecchio and R. M. Murray. Cascade discrete-continuous state estimators for a class
of monotone systems. In IFAC (Submitted), pages 76–89, 2005.

9. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, languages,
and Computation. Addison Wesley, 2001.

10. A. Jung S. Abramsky. Domain Theory. Handbook of Logic in Computer Science Volume 3.
1994.

11. H. L. Smith. Monotone Dynamical Systems. Mathematical Surveys and Monographs. Amer-
ican Mathematical Society, 1995.

12. Claire Tomlin, Ian Mitchell, , and Ronojoy Ghosh. Safety verification of conflict resolution
maneuvers. IEEE Transactions on Intelligent Transportation Systems, 2001.

13. R. Vidal, A. Chiuso, and S. Soatto. Observability and identifiability of jump linear systems.
In Conf. on Decision and Control, pages 3614 – 3619, Las Vegas, 2002.

Refining Abstractions of Hybrid Systems Using
Counterexample Fragments

Ansgar Fehnker1, Edmund Clarke2, Sumit Kumar Jha2, and Bruce Krogh2

1 National ICT Australia and University of New South Wales, Sydney, Australia

ansgar.fehnker@nicta.com.au
2 Carnegie Mellon University, Pittsburgh, USA

{emc, jha}@cs.cmu.edu
krogh@ece.cmu.edu

Abstract. Counterexample guided abstraction refinement, a powerful

technique for verifying properties of discrete-state systems, has been ex-

tended recently to hybrid systems verification. Unlike in discrete systems,

however, establishing the successor relation for hybrid systems can be a

fairly expensive step since it requires evaluation and over-approximation

of the continuous dynamics. It has been observed that it is often suf-

ficient to consider fragments of counterexamples rather than complete

counterexamples. In this paper we further develop the idea of fragments.

We extend the notion of cut sets in directed graphs to cutting sets of

fragments in abstractions. Cutting sets of fragments are then used to

guide the abstraction refinement in order to prove safety properties for

hybrid systems.

1 Introduction

Model checking for hybrid systems requires finite abstractions [1, 2, 3, 4]. Ab-
stractions of hybrid systems are usually quotient transition systems for the infi-
nite-state transition system that provides the semantics for the hybrid system.
The two principal issues in constructing these quotient transition systems are:
(i) identifying and representing the sets of hybrid system states that comprise
the states for the abstraction; and (ii) computing the transition relation for the
abstraction. Step (ii) is usually the most difficult and time-consuming step be-
cause it involves the computation of reachable sets for the continuous dynamics
in the hybrid system. The time involved in computing reachable sets for the
continuous dynamics makes the time required to perform model checking on the
abstraction negligible in the overall time required to perform the verify-refine
iteration described above.

Counterexample guided abstraction refinement (CEGAR) has been proposed
to guide the refinement process. This refinement strategy, originally developed
for discrete-state systems, uses counterexamples in the abstraction (runs that vi-
olate the specification) to determine how to refine the abstraction so that known
counterexamples are eliminated [5, 6]. This approach was extended to hybrid

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 242–257, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Refining Abstractions of Hybrid Systems 243

systems [1, 3] as follows. The abstraction is created based only on the discrete
transitions in the hybrid system. For a given counterexample in this abstraction,
reachability computations are performed to see if the counterexample could oc-
cur in the hybrid system. This process is called validation. If the reachability
computations show that the counterexample cannot occur in the hybrid system,
the counterexample in the abstraction is refuted and is said to be spurious. In-
formation from the overapproximated reachability computations is then used to
refine the abstraction. For most hybrid systems, reachability computations are
necessarily over-approximations, so the validity of a counterexample is always
relative to the currently used over-approximation method.

We made two observations in our work on CEGAR for hybrid systems. First,
rather than refuting a complete counterexample, it is sufficient and often a
lot cheaper to refute a fragment of the counterexample. Second, coarse over-
approximation methods to compute reachable sets are not only computationally
faster, but can also lead to smaller refinements and produce conclusive results
more quickly than those obtained with exact (but computationally expensive)
methods. These observations are the basis for the new approach to abstrac-
tion refinement proposed in this paper. The overall goal is to obtain as much
information as possible from an analysis of the graph representing all abstract
counterexamples, and to use this information to minimize the amount of time for
expensive reachability computations for the underlying hybrid system dynamics.

2 Preliminaries

Definition 1. A hybrid automaton is a tuple HA = (Z, z0, zf ,X, inv ,X0, T, g,
j, f) where

– Z is a finite set of locations with initial location z0∈Z, and final location zf .
– X ⊆ Rn is the continuous state space.
– inv : Z → 2X assigns to each location z ∈ Z an invariant inv(z) ⊆ X.
– X0 ⊆ X is the set of initial continuous states.
– T ⊆ Z × Z is the set of discrete transitions between locations.
– g : T → 2X assigns a guard set g((z1, z2)) ⊆ X to (z1, z2) ∈ T .
– j : T → (X → 2X) assigns to each (z1, z2) ∈ T and a reset or jump mapping

from X to 2X . The notation j(z1,z2) is used for j((z1, z2))
– f : Z → (X → Rn) assigns to each location z ∈ Z a continuous vector

field f(z). The notation fz is used for f(z). The evolution of the continuous
behavior in location z is governed by the differential equation χ̇(t) = fz(χ(t)).
The differential equation is assumed to have a unique solution for each initial
value χ(0) ∈ inv(z).

Definition 2. A transition system TS is a tuple (S, S0, Sf , R) with a set of
states S, a set of initial states S0 ⊆ S, a set of accepting states Sf ⊆ S, and a
transition relation R ⊆ S × S.

244 A. Fehnker et al.

Definition 3. The semantics of a hybrid automaton HA is a transition system
TS (HA) = (S̄, S̄0, S̄f , R̄) with:

– the set of all hybrid states S̄ = {(z, x)|z ∈ Z, x ∈ X, x ∈ inv(z)},
– the set of initial hybrid states S̄0 = {z0} × (X0 ∩ inv(z0)),
– the set of accepting hybrid states S̄f = {zf} × inv(zf)
– transitions R̄ with ((z1, x1), (z2, x2)) ∈ R̄, iff (z1, z2) ∈ T and there exist a

trajectory χ : [0, τ] → X for some τ ∈ R>0 such that: χ(0) = x1, χ(τ) ∈
g((z1, z2)), x2 ∈ j(z1,z2)(χ(τ)), and χ̇(t) = fz1(χ(t)) for t ∈ [0, τ], χ(t) ∈
inv(z1) for t ∈ [0, τ].

The first step in model checking hybrid systems is to find a suitable finite
abstraction, where the notion of abstraction for transition systems is defined as
follows.

Definition 4. Given a transition system C = (S̄, S̄0, S̄f , R̄), a transition system
A = (S, S0, Sf , R) is an abstraction of transition system C, denoted by A - C, if
there exist an abstraction function α : S̄ → S such that S0 = α(S̄0), Sf = α(S̄f)
(where α is extended to subsets of S̄ in the usual way),and

R ⊇ {(s1, s2)|∃(s̄1, s̄2) ∈ R̄, α(s̄1) = s1, α(s̄2) = s2}

In this paper, we are interested in constructing finite abstractions for C =
TS(HA), where HA is a given hybrid automaton. This given infinite-state tran-
sition system is referred to as the concrete system. An abstraction A may include
transitions that have no counterpart in C. Such spurious transitions may arise
in abstractions of hybrid systems because sets of reachable states for hybrid sys-
tems cannot, except for simple dynamics [7], be computed exactly, but have to
be overapproximated. The computations of sets of reachable states required for
our procedure are represented formally as follows.

For an abstraction function α, let Sα denote the partition of the set of hybrid
states S̄ defined by the inverse mapping α−1. Our procedure requires a method
for computing the set of states that can be reached from one element of Sα in
another element of Sα. That is, given two sets of hybrid states, S̄1, S̄2 in Sα, we
require a method for computing a subset of states in S̄2 that contains the set of
hybrid states that can be reached from states in S̄1. We denote such a method by
succ. Given a set of hybrid states S̄1 ⊂ S̄ the set of successor states is denoted by
succ(S̄1) = {s̄′|∃s̄ ∈ S̄1. (s̄, s̄′) ∈ R̄}. With this notation, an over-approximation
method succ is defined as:

Definition 5. Let HA be a hybrid automaton with TS (HA) = (S̄, S̄0, S̄f , R̄),
and let A = (S, S0, Sf , R) and α as in Defn. 4. Let S̄1 = α−1(s1), and S̄2 =
α−1(s2). Then succ : Sα×Sα → 2S̄ is the over-approximation of the set of hybrid
successors of S̄1 in S̄2 iff succ(S̄1, S̄2) ⊆ S̄2 and succ(S̄1, S̄2) ⊇ succ(S̄1) ∩ S̄2.

Our abstraction refinement procedure provides a framework to use the fact
that different over-approximation techniques have different computational loads
and accuracy. It was observed in [3] that combinations of coarse and precise

Refining Abstractions of Hybrid Systems 245

methods can improve the efficiency of the verify-refine iterations significantly. In
the following we assume a series of over-approximation methods succ1, . . . , succn

is given that provides a hierarchy of coarse to tight approximations. This hier-
archy will be used to assign weights to fragments that reflect the computational
effort required to apply the various over-approximation methods.

Our procedure is based on the analysis of sequences of states in abstractions
called fragments.

Definition 6. A fragment of a transition system TS = (S, S0, Sf , R) is a finite
sequence (s0, . . . , sn) such that (si−1, si) ∈ R for i = 1, . . . , n. A run is a frag-
ment with s0 ∈ S0. A state s is reachable if the there exists a run that ends in
s. An accepting run is a run (s0, . . . , sn) with sn ∈ Sf . The set of all accepting
runs of TS will be denoted by R(TS). A run (s0, . . . , sn) is loop-free if for all
i, j ∈ {0, . . . , n}, i �= j implies si �= sj.

We consider the verification of safety properties. The set of states Sf should
not be reachable, that is, the transition system should not have any accepting
run. We refer to Sf as the set of bad states and to accepting runs as counterex-
amples. Our analysis of counterexamples for abstractions will focus on sets of
fragments, using the following notions of cutting fragments and cutting sets of
fragments.

Definition 7. For n2 ≥ n1 ≥ 0, fragment �1 = (s0, . . . , sn1) cuts a fragment
�2 = (t0, . . . , tn2), denoted by �1 . �2, if there exists a i ∈ {0, . . . , n2 − n1} such
that ti+j = sj for j = 0, . . . , n1.

Definition 8. A set F1 of fragments cuts a set of fragments F2, denoted by
F1 . F2, if for each fragment �2 ∈ F2 there exist �1 ∈ F1 such that �1 . �2.
Set F1 is minimal if F1 . F2 and F1 \� �. F2 for all � ∈ F1. Given a transition
system TS, a set of fragments F cuts TS if F . R(A).

In words, a fragment �1 cuts another fragment �2 if �1 is a subsequence �2.
When a transition system is an abstraction of a hybrid system, a set of fragments
F that cuts the abstraction covers all counterexamples for the abstraction, that
is, any path from the initial state to the bad state (a counterexample) is cut
by one of the fragments in F . Any set of fragments that cuts F also cuts the
abstraction. The remainder of the paper shows how the minimal cutting sets of
fragments can be used to guide the refinement of abstractions for hybrid systems.

3 Validating Fragments

Abstractions can be represented as directed graphs, with states as nodes and
transitions as edges. The initial states can be considered as sources and the final
states as sinks. A cut set is a set of edges such that all paths from source to
sink contain at least one edge in the set. For example, for the graph in Fig. 1.(a)
transitions (G, J) and (B,E) are a cut set. All paths from source to sink pass

246 A. Fehnker et al.

I
J

H

G

F

L

E

A B

C

D

K

H

LG

J

F

E

A B

C

D

K

I

Fig. 1. The initial state of this transition system is A, the accepting state is L. Figure

1.(a) depicts a pair of transitions that cut the transition system. Cutting set can also

contain fragments of length greater than two (Fig. 1.(b))

through one of those edges. All accepting runs are cut, if those edges are deleted
from the graph.

This paper generalizes the idea of cut sets to sets of fragments that cut the
abstraction. For example, fragments (D,H) and (C,G, J) in Fig. 1.(b) form a
cut set since all runs from source to sink contain either (D,H) or (C,G, J). If
both fragments were spurious, then there would exist no run in the concrete
system that connects source to sink. Hence, the concrete system would satisfy
the safety property.

The process of determining whether or not a fragment is spurious is called
validating a fragment. For a given fragment (s0, . . . , sn) of an abstraction A with
abstraction function α, the objective is to determine if there exists a fragment
(s̄0, . . . , s̄n) of hybrid system C, such that si = α(s̄i), for all i = 0, . . . , n. Com-
putation of hybrid successors is the key step in the validation procedure. The
validation procedure uses methods succ1, . . . , succm for the validation step. The
procedure maintains a mapping X : (F × N) → {1, . . . ,m} that assigns method
X ((s0, . . . , sn), i) to validate transition i of fragment (s0, . . . , sn). Also, X̄ de-
notes the assignment of the least conservative method to every transition in the
given fragment.

The validation is performed as follows. Given abstraction A, concrete system
C, abstraction function α, and fragment (s0, . . . , sn):

S̄0 := α−1(s0)
for i = 1, . . . , n− 1

S̄i := α−1(si)
S̄i := succX ((s0,...,sn),i)(S̄i−1, S̄i)
if S̄i = ∅

return(“Fragment not valid“)
end % if

end % for
return“Fragment valid with respect to method “)

Refining Abstractions of Hybrid Systems 247

This procedure computes the hybrid successors along the fragment. There exist
no corresponding run to (s0, . . . , sn) if a set of successors S̄i becomes empty.

The need to consider fragments of length two or longer arises when all single-
transition fragments have been validated and some are found to be non-spurious.
Suppose for example, that (B,E) in Fig. 1.(a) has been shown to be spurious,
while (G, J) has been shown to be non-spurious. The next iteration has to choose
a cutting set from the abstraction in Fig. 1.(b). Fragment (G, J) however can not
be part of the next cutting set, since it is known to be non-spurious. Suppose
that (D,H) and (C,G, J) have not been validated yet. The set of fragments
(D,H) and (C,G, J) can then be chosen as the next cutting set, and one must
then check if they are spurious.

4 Using Sets of Fragments for Abstraction Refinement

Figure 2 presents our procedure for model checking hybrid systems using sets of
fragments to guide the abstraction refinement. The inputs to the procedure are:
C, a given concrete (hybrid) system; A, an initial abstraction for C; F , a set
of loop-free fragments that cuts A; and P : F → N, an assignment of weights
reflecting the computational effort required to validate each fragment. The con-
crete system is represented implicitly through the equations of the underlying
hybrid automaton. The initial abstraction includes the abstraction function and
a representation of the associated partition of hybrid states. In this paper we
assume the initial abstraction A = (S, S0, Sf , R) is defined as in [3]. This initial
abstraction has one abstract state for each control location, with the exception
of the initial location. For the initial location the abstraction includes two states,
one to represent the set of hybrid states S0 = z0 × (inv(z0)∩X0), and one state
to represent z0× (inv(z0)\X0). Given the initial abstraction A = (S, S0, Sf , R),
the initial set of fragments F is defined to be the set of transitions R. Initially,
X assigns the computationally cheapest method to all transitions in the initial
set F , and P initially assigns the weight associated with this method.

In each iteration through the main loop, a new abstraction is constructed
based on the results of validating sets of fragments. If there are no accepting
runs for the abstraction coming into the main loop (R(A) = ∅) the verification
terminates with a positive result: the bad state is not reachable in the hybrid
system.

The first step in each iteration is to compute a minimal cutting set of frag-
ments Fopt for which the set sum of the weights is minimized (Fig. 2(i)). Section
5 describes the algorithm for finding Fopt, which is a generalization of algorithms
for finding minimal cut sets of links in a graph.

Given the set of fragments Fopt, the inner loop iterates through the elements
of Fopt one at a time. Each fragment in Fopt will be validated (Fig. 2(ii)). This
iteration continues until all fragments have been validated (Fopt = ∅) or an
abstraction has been constructed for which the remaining fragments no longer
constitute fragments for the abstraction (Fopt �⊆ F). If the current fragment is a
valid accepting run, the procedure stops. Otherwise, if it is a valid fragment, the

248 A. Fehnker et al.

while R(A) �= ∅
Fopt := cutset(A, F , P) (i)

while Fopt �= ∅ ∧ Fopt ⊆ F
(s0, . . . , sn) :∈ Fopt, Fopt := Fopt \ (s0, . . . , sn)

valid := validate((s0, . . . , sn), A, C, X) (ii)

if valid ∧ s0 ∈ S0 ∧ sn ∈ Sf ∧ X = X̄
exit(“Found valid accepting run of A”)

elseif valid
(F , P, X) := augment(F , P, X , (s0, . . . , sn), A) (iii)

break
else

(A, F , P, X) := refine(A, F , P, X , (s0, . . . , sn)) (iv)

end % if

end % for

end % while

exit(“zf is not reachable for the HA”)

Fig. 2. Validation-refinement loop that uses cutting sets of fragments Fopt to guide the

refinement. Inputs to this procedure are: Concrete hybrid system C, initial abstrac-

tion A, initial set of loop-free fragments F that cuts A, an assignment to estimated

computational cost of validation P and, finally, an assignment to validation methods X

procedure augments the set of fragments as well as the assignment of weights and
methods (iii), leaves the inner while loop, and recomputes Fopt. If the fragment is
not valid, the abstraction, fragments, weights and method assignment are refined
(Fig. 2(iv)). This refinement may change F such that Fopt �⊆ F . In this case the
procedure exits the inner while loop and recomputes Fopt.

Augmentation (iii) and refinement (iv) depend on the outcome of the vali-
dation procedure (ii): either the procedure finds an empty set of successors, i.e.
there exists no corresponding fragment in C to (s0, . . . , sn), or the procedure
could not find an empty set of hybrid successors. The latter may be caused
by the over-approximation error of the selected methods. In this case there are
two options on how to proceed: Either, the over-approximation can be improved
by using a different approximation method, or the current fragment must be
replaced by extensions of the current fragment.

Choosing a different over-approximation method. The result of the validation
might be improved by a different approximation method in future iterations.
Changing the validation methods for fragment (s0, . . . , sn) is done by changing
the mapping X (which maps transitions in a fragment to the method that should
be used to validate them) for at least one transition in (s0, . . . , sn). If the proce-
dure changes the mix of methods used to validate (s0, . . . , sn) it has to update
function P accordingly.

Extending the fragment. If the over-approximation cannot improve, the current
fragment (s0, . . . , sn) will be replaced by new, extended fragments. This be-

Refining Abstractions of Hybrid Systems 249

after

i−1 i+1
i−1 i+1

i−1 i+1 i−1 i+1i

comp
i

reach
i

i

i

s

s

s s s s

s

ss

s s

s
s

beforebefore

after

Fig. 3. Left: Refinement by splitting states. Right: Refinement by purging transitions.

For a formal definition of the refinement operations see [3]

comes necessary if the validation step uses for each fragment the best available
over-approximation method. The new fragments will extend (s0, . . . , sn) in both
directions of the transition relation, i.e. sets {(s′, s0, . . . , sn)|(s′, s0) ∈ R} and
{(s0, . . . , sn, s

′)|(sn, s
′) ∈ R} are added to F . Recall the requirement that for

all �1, �2 ∈ F , �1 �. �2. The procedure enforces this requirement by removing
all fragments from F that are cut by some other fragment. It also removes all
fragments that contain self-loops. The set of new fragment ensures that there
are a sufficient number of fragments in F to cut RA, although one fragment was
removed. Finally, X and P are updated for all new fragments of F .

To avoid fragments of unlimited length the augmentation might extend frag-
ments only up to a certain length. First experiments show that an upper bound
of 2 to 4 is reasonable. Adding only a limited number of fragments may lead to a
situation in which a certain counterexample is not cut by any fragment. In this
case the procedure might add the complete counterexample to the cutting set,
and validate it in the next iteration.

Refinement. If the current fragment is not valid, the refinement step (iv) in Fig.
2 uses the sets S̄i that were computed in the validation step (ii), for i = 1, . . . , k.
For i = 1, ..., k − 1 the following steps are performed. If S̄i is a proper subset of
α−1(si), split si into two abstract states, one, sreach

i , to represent the states in
S̄i, and one, scomp

i to represent the states in α−1(si)\ S̄i (Fig. 3). The new states
sreach

i and scomp
i will have the same ingoing and outgoing transitions as Si, with

one exception. The transition from si−1 to scomp
i can be omitted, since there

exists no hybrid transition from any state in S̄i−1 to some state in α−1(si) \ S̄i.
All fragments from F that involve state si are removed, and the new transitions
of the abstraction are added to F . X assigns to the new fragments the default
method for single transitions, and P the weight that is associated with this
method. If S̄i is equal to α−1(si), then there is no need to refine the abstraction.

For i = k the transition (sk−1, sk) is omitted from the abstraction (Fig. 3),
since there exists no hybrid transition from any state in S̄k−1 to some state in

250 A. Fehnker et al.

α−1(sk). Similarly, all fragments from F that contain transition (sk−1, sk) are
removed.

5 Optimal Cutting Sets of Fragments

This section describes the cutset operation in step (i) of Fig. 2. Assume a finite
transition system A (the current abstraction), a set of fragments F and a weight
assignment P : F → N. The fragments in F have not been validated and are
candidate elements of the optimal cutting set. By assumption for the initial
abstraction, and by construction for all subsequent abstractions, all fragments
in F are loop-free. P assigns to each � ∈ F a weight; this weight reflects the
expected cost of validating this fragment. The weight of a set F ′ ⊆ F is the sum
of the weights of the elements. Furthermore, it is assumed that �1 . �2 implies
P(�1) ≤ P(�2). As a consequence it is required for all �1, �2 ∈ F that �1 �. �2,
i.e. no fragments in F cuts another.

Step (i) of the procedure in Fig. 2 computes a cutting set Fopt ⊆ F of A that
is minimal w.r.t. to P, i.e. it satisfies∑

f∈Fopt

P(f) = min
F ′ ⊆ F

F ′ . R(A)

∑
f∈F ′

P(f) (1)

Example. Suppose that we are given transition system A in Fig. 4 as abstraction.
Suppose furthermore that fragments (0, 4, 5), (1, 2, 4), (0, 1) and (4, 3) have not
been validated yet. Assume an associated weight of 2 with validating fragment
(0, 4, 5), a weight of 3 with (1, 2, 4), and a weight of 1 with fragments (0, 1) and
(4, 3). What subset of these fragments is the cutting set with the lowest sum of
weights? Obviously, we have to include fragment (0, 4, 5) in any cutting set. But
is the set with fragments (0, 4, 5) and (0, 1) sufficient? After all, this set cuts all
loop-free accepting runs.

Somewhat surprisingly, there exist an accepting run that is not covered by
fragment (0, 4, 5) or fragment (0, 1). Neither cuts accepting run (0, 4, 3, 1, 2, 4, 5),
although fragment (0, 4, 5) cuts it trivially once we remove loop (4, 3, 1, 2, 4).
This demonstrates that the problem of finding cutting sets of fragments is not
a simple cut set problem in a directed graph, for which it would be sufficient to
cut all loop-free runs. �

A standard cut set algorithm cannot be applied directly, since fragments in F
are not represented by single transitions in A. To solve this problem, we define a
collection of transition systems that observe A. The purpose of these observers is
to record the occurrence of a fragment in A. For example, the observer for frag-
ment (0, 4, 5) will help to distinguish between occurrence of a sequence (0, 4, 5)
and (2, 4, 5). The observers, one observer for each fragment in F , are composed
with a labelled version of abstraction A. Labelled transition systems, which are
called automata, and the composition of automata is defined as follows.

Refining Abstractions of Hybrid Systems 251

1

0

4 1

2

4

5

5
3

1

2

4

3

1

A

5 4

3 2

0

Fig. 4. Left: A finite transition system A. Right: The depth-first unrolling of A. The

unrolling stops if either the final state 5 is reached (solid), or if a loop has been detected

(dashed)

Definition 9. Given a set of labels Σ, an automaton A is a tuple (Σ,S, S0, Sf ,
R,L) where (S, S0, Sf , R) is a transition system and L : R → 2Σ a labelling
function.

Definition 10. Let Ai = (Σi, Si, S
0
i , S

f
i , Ri) be a finite number of automata,

i = 1, . . . , n. The synchronous composition A = A1|| . . . ||An is an automaton
(Σ,S, S0, Sf , R) with

– Σ =
⋃

i∈{1,...,n} Σi, the union of all alphabets.
– S = S1× . . .×Sn, S0 = S0

1 × . . .×S0
n, and Sf = Sf

1 × . . .×Sf
n. The projection

s|Si
will be denoted as si.

– (s, s′) ∈ R if
⋂

i∈{1,...,n} Li(si, s
′
i) is nonempty.

– L(s, s′) =
⋂

i∈{1,...,n} Li(si, s
′
i).

This is a very restricted notion of composition. The composition automaton can
only take a transition if all automata can take a transition with the same label.
However, the observing automata will be constructed such that they can always
synchronize with any transition in the observed automaton. Given a transition
system A and a set of fragments F of A, the procedure first extends A with labels,
and then introduces for each fragment in F a small automaton that observes the
occurrence of a fragment. The steps to obtain the observing automata are the
following:

1. Extend A = (S, S0, Sf , R) to an automaton Al = (Σ,S, S0, Sf , R) with
Σ = R and L mapping (s, s′) �→ {(s, s′)}.

2. For each � ∈ F , � = (s0, . . . , sn−1), introduce an observer automaton A� =
(Σ�, S�, S

0
� , S

f
� , R�,L�) with

– Σ� = Σ
– S� = {t0, . . . , tn−1}, where n is the length of fragment �.
– S0

� = {t0} and Sf
� = S�

– R� is the set {(ti, ti+1)|i = 0, . . . , n− 2} ∪ {(ti, t0)|i = 0, . . . , n− 1}}
– and L� is the following mapping

252 A. Fehnker et al.

Σ

A A

(1,2)

(4,5)

(4,3)

(0,4)

(2,4)

5 4

3 2

(0,1)

1

0

(3,1)

A

0 1
(1,2)

Σ
\ (1,2)

1
(0,4)

Σ

0

A

Σ

Σ \ (0,4)l (0,4,5)

(0,1)

(1,2,4)

A(4,3)

00

Σ

Fig. 5. The automata A(0,4,5), A(1,2,4), A(0,1), and A(4,3) observe the transitions in Al.

The only accepting state of Al is the state 5

(t, t′) �→

⎧⎨⎩ (si−1, si) if (t, t′) = (ti, ti+1), i = 0, . . . , n− 2
Σ \ (si−1, si) if (t, t′) �= (ti, ti+1), i = 0, . . . , n− 2
Σ if (t, t′) = (tn−1, tn)

The next step composes the labelled transition system Al with the observer
automata A� for all � ∈ F . This composition will be denoted as AF .

Example (Cont). Given the transition system A in Fig. 4, the first step is to ob-
tain Al by adding labels (Fig. 5). Recall that F = {(0, 4, 5), (1, 2, 4), (0, 1), (4, 3)},
and P(0, 4, 5) = 2, P(1, 2, 4) = 3, P(0, 1) = 1 and P(4, 3) = 1. The next step
includes a small observing automaton for each fragment (Fig. 5). The automaton
for fragment (0, 4, 5) has as many states as the fragment has transitions. In each
state the observer automaton can synchronize with any transition in Al.

If transition (0, 4) occurs in Al the observing automaton A(0,4,5) takes a
transition from state 0 to state 1. If transition (4, 5) occurs right after the first
transition, the observing automaton will take a transition back to the initial
state. This corresponds to the transition from (4, 1, 0, 0, 0)T to (5, 0, 0, 0, 0)T in
composition AF in Fig. 6. This transition marks an occurrence of the fragment
(0, 4, 5) in Al.

Figure 6 depicts the composition automaton AF , and the tree of all loop-
free counterexamples. There are two transitions labelled (4, 3) in AF . Transition
(4, 3) is an element of the set of fragments F that have not been validated yet. If
one could show that (4, 3) is spurious, it would eliminate both arcs in the graph
in one go. Obviously, the cut set algorithms for directed graphs cannot be used,
since several arcs in AF can represent the same fragment of Al.

The set with ((4, 1, 0, 0, 0)T , (5, 0, 0, 0, 0)T) and ((2, 0, 1, 0, 0)T , (4, 0, 0, 0, 0)T)
cuts composition AF .1 These transitions in AF mark the occurrence of fragments
(0, 4, 5) and (1, 2, 4) in A. The overall weight of this set is 5. The tree also
shows that the set containing fragments (0, 4, 5) and (0, 1) does not cut Al,

1 Column vectors are used for elements of product state spaces to distinguish them

from tuples of states that are fragments.

Refining Abstractions of Hybrid Systems 253

0,0
0,0,0

0,0
0,0,04,1,0

0,0

5,0,0
0,0

3,0,0
0,0

1,0,0
0,0

2,0,1
0,0

4,0,0
0,0

5,0,0
0,0

5,0,0
0,0

4,0,0
0,0

2,0,1
0,0

1,0,0
0,0

5,0,0
0,0

AF

(0,4)

(4,5)

(4,5)

(4,3)
(4,3)

(3,1) (2,4)

(2,1)

(0,1)
4,1,0
0,0

4,0,0
0,0

3,0,0
0,0

2,0,1
0,0

1,0,0
0,0

Fig. 6. Composition automaton AF , and the tree of all loop-free accepting runs

since transitions ((4, 1, 0, 0, 0)T , (5, 0, 0, 0, 0)T) and ((0, 0, 0, 0, 0)T , (1, 0, 0, 0, 0)T)
do not cut AF . It also shows that (0, 4, 5), (1, 0) and (4, 3) are a cutting set of A,
with an associated weight of 4. This is the optimal cutting set for this example.

The observers for the fragments (0, 1) and (4, 3) do not add anything and
could be omitted. Likewise, one observer for fragments that are equal except
for the last transition would be sufficient. However, maintaining those observers
does not increase the size of the composition, and we choose to maintain them
in this paper to treat the different fragments consistently. �

The construction of Al ensures that each transition has a unique label. Con-
sequently Al is deterministic. All observers are deterministic, too, and can syn-
chronize in each state with any transition of Al. The behavior of Al is not
restricted by the observers. This yields a close relationship between AF and Al,
and thus between AF and A. As a matter of fact for each π ∈ R(A) there exist
a πF ∈ R(AF) such that πF |S = π, and for each πF ∈ R(AF) there exist a
π ∈ R(A) such that such that πF |S = π, where πF |S is the projection of πF to
the states S of Al.

Lemma 1. Given a transition system A, a set of fragments F of A and the
composition automaton AF , the following holds.

(i) A subset F ′ ⊆ F cuts transition system A, i.e. F ′ . R(A) iff for all πF ∈
R(AF) there exists � ∈ F ′ such that � . πF |S.

(ii) Given � = (s0, . . . , sn), πF ∈ R(AF) the following holds: � . πF |S iff the
projection of the path πF to S×S� contains a transition from (sn−1, tn−1)T

to (sn, t0)T .

Proof: (i) This follows directly from the observation that πF |S is in R(A) for all
πF ∈ R(AF), and that for all path π ∈ R(A) there exists a πF , with πF |S = π.
(ii)”⇒” Transition (sn−1, tn−1)T to (sn, t0)T can only be taken if it was im-
mediately preceded by transitions synchronizing on labels (sn−i−1, sn−i)T , for
i = 1, . . . , n− 1.
”⇐”. Let πF |S = (z0, . . . , zm) and πF |S�

= (z′
0, . . . , z

′
m). By definition, � . πF |S

iff there exists a k such that zk+i = si for i = 0, . . . , n.

254 A. Fehnker et al.

First, we show that A� is in its initial state after the k-th transition of πF ,
that is, z′

k = t0. If k = 0, z′
k = t0 holds trivially. When k > 0 we have the

following: (zk−1, zk) is a transition of Al, but it is not a transition of fragment
�. The latter holds because zk = s0 and � is loop-free. Since (zk−1, zk) is not in
� it can synchronize only with a transition of A� that leads to its initial state.
This implies that z′

k = t0. The transition (zk+i, zk+i+1) will then synchronize
with (z′

k+i, z
′
k+i+1) on label (si, si+1), for i = 0, . . . , n− 2. At this point A� will

be in state tn−1. In this state, transition (zn−1, zn) of Al can only synchronize
with transition (tn−1, t0) of A� on label (sn−1, sn), which concludes the proof.�

Rather than selecting subsets of F that cut A, the procedure can select
subsets of RF , the transitions of AF , that cut AF . The advantage of transitions
above fragments is that it becomes sufficient to look at loop-free accepting runs.
A set R′

F ⊆ RF that cuts all loop-free accepting runs, also cuts all accepting
runs. Let Rlf (AF) be the set of all loop-free accepting runs.

Lemma 2. Given a transition system A, a set of fragments F of A and the
composition automaton AF . Let R′

F ⊆ RF , then R′
F . Rlf (AF) iff R′

F .
R(AF).

Proof: ”⇒” Suppose that we have an accepting run πF ∈ R(AF). From this we
can obtain a loop-free accepting run π′

F by eliminating all loops. According to
the precondition there exists a � ∈ R′

F such that � . π′
F , which means that �

appears somewhere in π′
F . Since the transitions that occur in πF are a super-set

of those that appear in π′
F we have � . πF , too. ”⇐” If a set of transitions cuts

all accepting runs, it will cut all loop-free accepting runs. �
Lemma 2 allows the consideration of only loop-free accepting runs of AF .

However, the example demonstrates that a cut set algorithm for directed graphs
cannot be used to find a cut set of AF , since fragments of A may be represented
by multiple transitions in AF . The cutting set problem can be solved by a trans-
lation to a set cover problem. A similar approach has been used in [8] to find
cut sets for attack graphs.

Given a finite (universal) set U and a set of sets C = {C1, . . . , Cn} with Ci ⊆ U
as input, a set cover algorithm computes the smallest subset Copt ⊆ C such that⋃

Ci∈Copt
Ci = U . The set cover problem is NP-complete, but a greedy approach

is guaranteed to find an solution that is at most lgn as bad as the optimal
solution in polynomial time (where n is the number of elements of U) [9]. The
greedy algorithm picks in each iteration the set from S that covers the greatest
number of uncovered elements of U , until the complete set U is covered.

The problem of finding a cutting set of fragments is a set cover problem,
where the universal set is Rlf (AF), and C contains for each fragment � in F set
C� = {πF ∈ Rlf (AF)|� . πF |S}. The problem is to find an optimal subset of C
that covers Rlf (AF). We compute the sets C� by a depth-first exploration of AF ,
that starts backtracking if it either finds a loop, or reaches an accepting state.
In the latter case it adds the accepting run to C� if � . π.

We modify the greedy algorithm to accommodate the fact that we are not
looking for the smallest cover of Rlf (AF), but for an optimal one. In each itera-

Refining Abstractions of Hybrid Systems 255

tion the algorithm adds the set C� to Copt that has the smallest associated cost
P(�) per covered run. In the latter it considers only runs that have not been
covered in earlier iterations. When all runs in Rlf (AF) are covered the procedure
tests if the set obtained by removing some C� from Copt covers all runs. If this is
the case, C� will be omitted from Copt.

The overall procedure to compute cutting sets of fragments can be summa-
rized as follows. Given a finite transition system A and a set of loop-free frag-
ments F , construct the composition automaton AF . Then, compute all loop-free
accepting runs Rlf (AF). For each fragment � compute the corresponding set C�,
which contains πF ∈ Rlf (AF), if � . πF |S . Finally, compute the optimal set
cover Copt. The optimal cutting set of fragments Fopt contains all fragments �
with C� ∈ Copt.

Example (cont). The composition automaton AF has only three loop-free coun-
terexamples (Fig. 6). The following table shows which of these, projected to S,
is cut by what fragment:

(0, 4, 5) (1, 2, 4) (0, 1) (4, 3)
(0, 4, 5) �
(0, 4, 3, 1, 2, 4, 5) � �
(0, 1, 2, 4, 5) � �

Given the set F = {(0, 4, 5), (1, 2, 4), (0, 1), (4, 3)} there are two sets of fragments
that cover all accepting runs: {(0, 4, 5), (1, 2, 4)} and {(0, 4, 5), (0, 1), (4, 3)}. The
latter is optimal with an overall weight of 4. �

6 Example

This section uses an adaptive cruise control system to illustrate the proposed cut
set approach. The results in [3] for this example show that analyzing fragments
of counterexamples rather than complete counterexamples can reduce the com-
putation time in CEGAR by an order of magnitude. Here we apply the concept
of cutting sets of counterexample graphs to guide the abstraction.

The adaptive cruise control system is part of a vehicle-to-vehicle coordination
system [10]. This system has two modes: cruise control mode (cc-mode) and
adaptive cruise control mode (acc-mode). The acc-mode tries to keep a safe
distance to the vehicle ahead, while the cc-mode tries to keep a constant speed.
The hybrid automaton is the composition of a four-gear automatic transmission
with the two mode acc-controller. An additional error state represents collisions.

Two different methods are used for validation. The first method, succcoarse ,
formulates the question if a trajectory between S1 and S2 exists as an optimiza-
tion problem. The second method succtight computes polyhedra which enclose
all trajectories that originate in S1. This over-approximation with polyhedra is
based on work presented in [2]. Both methods were discussed in [11]. The default
method for single transitions, succcoarse , has an associated weight of 1. If this
method fails to refute a fragment, the fragment is extended to a path of length

256 A. Fehnker et al.

(7,9)

5

6

7

13

9

10

11

4

1

2

12

14

5

6

7

8

9

10

11

4

1

2

12

5

6

7

8

9

10

3

4

1

2

1 :
2 :
3 :
4 :
5 :
6 :
7 :
8 :
9 :

10 :
11 :
12 :
13 :
14 :
15 :CBA

(4,13,7)

(2,3),

(3,4),

(2,11,4)

(4,8,7),

(1,2),

(1,2,3)

(11,4)

(11,4,8)

(13,7)

(2,6), (2,10)

(4,8), (3,7)
(2,3,7)

(4,12),

(4,8,9)

(8,7), (8,9)

(1,5)A

B

C

(7,6), (7,14),
(7,12), (13,7,9)
(13,7,9)

Fig. 7. Adaptive cruise control example. The initial state is 1, the final state, that

models collision, is state 9. Figure A depicts the initial abstraction. B and C depict

refinements. To the right, the sequence of cutting sets computed during verification.

Valid fragments in bold face, spurious ones in italics

two. For pairs of transitions succcoarse is applied first, with an associated weight
of 2. If this method fails to refute the fragment, method succtight will be applied
to the fragment next, with an associated weight of 6.

Our prototype implementation of the cut set method computes 15 cutting
sets to reach a conclusive result. The sequences of cut sets and abstraction refine-
ments are shown in Fig. 7. Three fragments were found to be spurious: (2, 3, 7)
of the fifth cut set for the first abstraction in Fig. 7.A, leading to the refine-
ment show in Fig. 7.B; (4, 8, 9) of the 10th cut set, leading to the refinement
in Fig. 7.C, and (13, 7, 9) of the 15th cut set. This final fragment was validated
before in the 14th iteration with succcoarse and found to be non-spurious. The
validation method for this fragment was consequently updated to succtight with
an associated weight of 6. The more accurate method then found in the 15th
iteration that (13, 7, 9) is spurious. This was the only time that succtight was
invoked. Because the only fragment of the cutting set is not valid, state 9 is
proven to be not reachable, which concludes the verification.

Note that the cut set in iteration 7 is not the optimal cut set; the 8th set
would have been optimal at this stage. Although the greedy approach fails to
compute the optimal cut set in this case, it does not compromise the final result,
since the computed sets are always cutting sets.

A complete analysis of the ACC example with the prototype implementation
of the cut set method in MATLAB takes 27.8 secs. on 1.2GHz Celeron processor,
compared to 28.1 secs. for our implementation of the CEGAR approach from [3].
Although the runtimes are very similar, the cut set approach invokes the coarse-
over-approximation 24 times vs. 29 invocations by CEGAR with fragments. Both
invoke succtight once. An analysis of the experimental results using the MATLAB
profiler indicates that only 2.3% of the computation time is spent computing cut
sets.

Refining Abstractions of Hybrid Systems 257

7 Conclusions and Future Work

This paper presents a method for guiding abstraction refinement for hybrid sys-
tems using sets of fragments of counterexamples, building on the notion of frag-
ment that was introduced in [3]. We use the concept of cutting sets of fragments.
These cutting sets of fragments focus on the analysis similar to the way in which
cut sets in directed graphs focus on bottlenecks. The aim is to refute as many
counterexamples as possible while minimizing the expected computational effort.

The procedure presented in this paper leaves room for many heuristic choices,
for example what mix of over-approximation methods is useful for what frag-
ments, and how to assign weights to validations. Effective heuristics will be
developed as we gain experience and insight with our prototype tool.

References

1. Alur, R., Dang, T., Ivančić, F.: Counter-example guided predicate abstraction of

hybrid system. In: TACAS. Volume 2619 of LNCS., Springer (2003)

2. Chutinan, A., Krogh, B.: Verification of polyhedral-invariant hybrid automata us-

ing polygonal flow pipe approximations. In Vaandrager, F., van Schuppen, J., eds.:

Hybrid Systems: Computation and Control. LNCS 1569, Springer Verlag (1999)

76–90

3. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald,

M.: Abstraction and counterexample-guided refinement in model checking of hy-

brid systems. International Journal of Foundations of Computer Science 14 (2003)

583–604

4. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In Tomlin,

C.J., Greenstreet, M.R., eds.: Hybrid Systems: Computation and Control HSCC.

Volume 2289 of LNCS., Springer (2002) 465–478

5. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided

abstraction refinement. In: Computer-Aided Verification. Volume 1855 of LNCS.,

Springer (2000) 154–169

6. Kurshan, R.: Computer-Aided Verification of Coordinating Processes: The

Automata-Theoretic Approach. Princeton University Press (1994)

7. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid au-

tomata? In: Proceedings of the 27th Annual Symposium on Theory of Computing,

ACM Press (1995) 373–382

8. Sheyner, O.: Scenario Graphs and Attack Graphs. PhD thesis, SCS, Carnegie

Mellon University (2004)

9. Skiena, S.: The Algorithm Design Manual. Telos/Springer-Verlag (1998)

10. Girard, A., Souza, J., Misener, J., Hedrick, J.: A control architecture for integrated

cooperative cruise control and collision warning systems. In: Proc. 40th IEEE Conf.

on Decision and Control. (2001)

11. Stursberg, O., Fehnker, A., Han, Z., Krogh, B.: Specification-guided analysis of

hybrid systems using a hierachy of validation methods. In: Proc. IFAC Conference

ADHS, Elsevier (2003)

PHAVer: Algorithmic Verification of Hybrid
Systems Past HyTech

Goran Frehse

Dept. of Electrical and Computer Engineering,

Carnegie Mellon University, Pittsburgh, PA 15213, USA

gfrehse@ece.cmu.edu
http://www.andrew.cmu.edu/~gfrehse

Abstract. In 1995, HyTech broke new ground as a potentially powerful

tool for verifying hybrid systems – yet it has remained severely lim-

ited in its applicability to more complex systems. We address the main

problems of HyTech with PHAVer, a new tool for the exact verification

of safety properties of hybrid systems with piecewise constant bounds

on the derivatives. Affine dynamics are handled by on-the-fly overap-

proximation and by partitioning the state space based on user-definable

constraints and the dynamics of the system. PHAVer’s exact arithmetic

is robust due to the use of the Parma Polyhedra Library, which supports

arbitrarily large numbers. To manage the complexity of the polyhedral

computations, we propose methods to conservatively limit the number

of bits and constraints of polyhedra. Experimental results for a naviga-

tion benchmark and a tunnel diode circuit show the effectiveness of the

approach.

1 Introduction

Systems with discrete as well as continuous dynamics, i.e., hybrid systems, are
notoriously complex to analyze, and the algorithmic verification of hybrid sys-
tems remains a challenging problem, both from a theoretic point of view as well
as from the implementation side. Ideally, one would like to obtain either an ex-
act result or a conservative overapproximation of the behavior of the system,
e.g., as the set of reachable states. An exact computation is possible with linear
hybrid automata (LHA) [1], which are defined by linear predicates and piecewise
constant bounds on the derivatives. They were proposed and studied in detail
by Henzinger et al., see [2] for an extensive discussion, who presented in 1995 a
tool called HyTech that could perform various computations with such systems
[3]. It featured a powerful input language and functionality, but suffered from a
major flaw: its exact arithmetic was using limited digits, which can quickly lead
to overflow errors. While it was successfully used to analyze a number examples,
see [4, 5] and references therein, the overflow problem prohibits any application
to more complex systems.

The valuable experiences with HyTech have prompted a number of sugges-
tions for improvement, a summary of which can be found in [4]. We address the

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 258–273, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech 259

most pressing ones with PHAVer (Polyhedral Hybrid Automaton Verifyer), a
new tool for analyzing linear hybrid automata with the following characteristics:

– exact and robust arithmetic based on the Parma Polyhedra Library [6],
– on-the-fly overapproximation of piecewise affine dynamics,
– conservative limiting of bits and constraints in polyhedral computations,
– support for compositional and assume-guarantee reasoning. 1

PHAVer’s extended functionality and computational robustness open up new
application domains as well as research issues that were abandoned because
of the limits of previous implementations. Exact arithmetic entails, in addi-
tion to the security and beauty of formal correctness, the significant advantage
of a separation of concerns. Problems of convergence, combinatorial explosion
and nondeterminism can be identified as such, which is very difficult if they
are intertwined with numerical difficulties. We present PHAVer’s algorithm for
overapproximating piecewise affine dynamics with LHA, which refines locations
with user-specified constraints. The constraints allow the user to include expert
knowledge in refining certain variables to a specified detail, and can be adapted
to the dynamics by prioritizing the size or the spread angle of the derivatives
of a location. Due to the exact arithmetic, the size of coefficients as well as
the number of constraints that define polyhedra can grow excessively. We pro-
pose methods to simplify polyhedra by limiting both the number of bits and
contraints. The applicability of PHAVer and the effectiveness of the proposed
methods are demonstrated with a navigation benchmark [7], and a tunnel diode
circuit [8]. In addition to the reachability algorithm, PHAVer includes a sepa-
rate engine for computing simulation relations between hybrid automata. It can
be used to verify equivalence or abstraction between different models, and for
assume-guarantee reasoning. For lack of space, the reader is referred to [9] for
further details on the approach.

Earlier attempts to improve over HyTech include the use of interval arith-
metic [10], which can quickly lead to prohibitively large overapproximations. An
algorithm specialized on rectangular automata was proposed in [11] and imple-
mented based on the HyTech engine. Unfortunately, it therefore also suffered
from the same flaws. While most tools for timed automata use exact computa-
tions, we are not aware of tools for hybrid systems, other than HyTech, to do
so. The first HyTech prototype was implemented in Mathematica and did not
have any numerical restrictions, but it was also 50–1000 times slower than the
later version written in C++ [12]. Our on-the-fly overapproximation essentially
performs a partitioning of the state space similar to the approach in [13]. For
the simplification of polyhedra it has been suggested to use bounding boxes or
oriented rectangular hulls [14]. Instead, we propose to simply drop the least sig-
nificant of the constraints, as this seems a good compromise in terms of accuracy
and speed. For a survey of verification tools for hybrid automata, see [15].

1 Not addressed are more advanced input capabilities like hierarchy, templates and

directional communication labels, since we consider these easily and more appropri-

ately handled by a GUI-frontend or editor.

260 G. Frehse

In the next section, we will briefly introduce the hybrid automaton model
used by PHAVer, which has a simple Input/Output structure to support com-
positional reasoning. In Sect. 3 we present the reachability analysis algorithm of
PHAVer, and its on-the-fly overapproximation of affine dynamics. Experimental
results are provided for a navigation benchmark. Methods to manage the com-
plexity of polyhedra by limiting the bits and constraints are proposed in Sect., 4,
and illustrated with a tunnel diode circuit. We sum up the results with some
conclusions in Sect. 5.

2 Hybrid I/O-Automata with Affine Dynamics

The theory of hybrid I/O-automata has been developed extensively by Lynch,
Segala, Vaandrager and Weinberg [16]. It is a very general framework that is
based on (almost) arbitrary trajectories of a set of variables, which can have
different dynamic types. Since our focus is on obtaining a computable framework
for compositional reasoning, we have proposed a simple concept of I/O-automata
in [9], which is largely based on the hybrid automata in [1]. Given a set Var of
variables, a valuation is a function v : Var → R. Let V (Var) denote the set of
valuations over Var. An activity is a function f : R≥0 → V (Var). Let act(Var)
denote the set of activities over the variables in Var. A set S of activities is
time-invariant if for all f ∈ S, d ∈ R≥0 : fd(t) := f(t+ d) ∈ S. Let ↓Var) be the
projection onto the variables in Var .

Definition 1 (Hybrid I/O-Automaton). [9]A hybrid Input/Output-auto-
maton (HIOA) H = (Loc, VarS, VarI , VarO, Lab, →, Act, Inv, Init) consists
of the following:

– A finite set Loc of locations.
– Finite and disjoint sets of state and input variables, VarS and VarI , and of

output variables VarO ⊆ VarS. Let Var = VarS ∪ VarI .
– A finite set Lab of synchronization labels.
– A finite set of discrete transitions →⊆ Loc×Lab× 2V (V ar)×V (V ar) ×Loc. A

transition (l, a, μ, l′) ∈→ is also written as l
a,μ−−→H l′.

– A mapping Act : Loc → 2act(Var) to time-invariant sets of activities.
– A mapping Inv : Loc → 2V (V ar) from locations to sets of valuations.
– Initial states Init ⊆ Loc × V (V ar) s.t. (l, v)∈Init ⇒ v ∈ Inv(l).

In PHAVer, we deal with hybrid automata that can be analyzed using polyhedra,
i.e., finite linear formulas. A linear expression is of the form

∑
i aixi + b, and a

convex linear formula is a finite conjunction of constraints
∑

i aixi + b �� 0, with
ai, b ∈ Z, xi ∈ Var and a sign ��∈ {<,≤,=}. A non-convex linear formula, or
linear formula, is a finite disjunction of convex linear formulas. A linear hybrid
automaton (LHA) [1] is a hybrid automaton in which the invariants and the
continuous transition relation are given by linear formulas over Var , and the
activities are given by linear formulas over the time derivatives of the variables. If

PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech 261

the dynamics are given by linear formulas over the derivatives and the variables,
we call it an affine hybrid automaton. 2

3 Reachability Analysis in PHAVer

A reachability analysis computes all states that are connected to the initial states
by a run. We enhances the fixpoint computation algorithm for reachability with
operators for the refinement of locations and the simplification of sets of states
described by polyhedra. The refinement of locations is used when affine dynamics
are overapproximated with LHA-dynamics, where locations are split into smaller
parts to improve the accuracy. The simplification operator fulfills two purposes:
Firstly, the overapproximation of sets of states with a simpler representation
keeps the complexity from growing beyond computationally manageable limits.
Secondly, since termination is not guaranteed for linear hybrid automata, over-
approximation of the sets of states as well as the set of derivatives can be used to
accelerate convergence and possibly force termination by reducing the model to
a class where reachability is decidable. The challenge lies in trading speed, ter-
mination and resource consumption against the loss of accuracy. The algorithm
used in PHAVer for computing the set of reachable states is shown in Fig. 1. We

procedure GetReach
Input: a set of initial states SI

Output: the set of states SR reachable from SI

(SI , {SI}) := refine loc(SI , {SI});
W, SR := time elapse(SI);
while W �= ∅ do

N := trans post(W);
(N, (SI , SR, W)) := refine loc(N, (SI , SR, W));
N := cheap difference(N, SR);
N := union approx(N, SR);
N := simplify(N);
N := time post(N, simplify(time deriv(N, Inv)));
SR := SR ∪ N ;
W := N

od.

Fig. 1. Reachability Algorithm in PHAVer

give a brief summary of the operators used. Let X, Y and Y1, . . . , Yz be arbitrary
sets of states, each described by a set of convex polyhedra for each location.

Post-operators: The operator time elapse(X, Y) computes the successors of a
set of states X by letting time elapse according to a set Y that attributes a set

2 In literature, a LHA is also referred to as a piecewise constant HA, and an affine HA

as a linear HA.

262 G. Frehse

of derivatives to each location. The successors of discrete transitions are given
by trans post(X). A detailed description can be found in [2].

Overapproximating Operators: The operator cheap difference(X, Y) com-
putes a overapproximation of X \ Y by returning the polyhedra in Y that are
not individually contained in some polyhedra of X. The gain in speed usually
far outweighs the fact that more states are iterated than necessary [2]. With
union approx (X, Y), the union of new states X and old states Y can optionally
be overapproximated, e.g., by using the convex hull. If there are no new states
for a location, the operator returns the empty set for that location. The simplify
operator is used to reduce the complexity the representation of states by over-
approximation. It can also be applied to the set of derivatives in the location.
Current options in PHAVer for simplify include a bounding box overapproxi-
mation, limiting the number of bits used by the coefficients of constraints, and
limiting the number of constraints.

Refinement Operators: The operator refine loc(X, (Y1, . . . , Yz)) partitions
the locations with states in X as described in Sect. 3.1 and maps the states
in Y1, . . . , Yz to the new set of locations. The operator time deriv(X, Y) com-
putes the set of derivatives that any state in X might exhibit, provided that the
states are confined to Y :

time deriv(X, Y) = {(l, ḟ(t))|∃(l, v) ∈ X, f ∈ Act(l), t ∈ IR≥0 :
(f(0) = v ∧ ∀t′, 0 ≤ t′ ≤ t : f(t′) ∈ Y)}

In the following section we give a more detailed description of the refinement
operator and its parameters.

3.1 On-the-Fly Over-Approximation of Affine Dynamics

While PHAVer’s computations are based on linear hybrid automata models, it
also accepts affine dynamics, which are then overapproximated conservatively.
The approximation error depends on the size of the location and the dynamics, so
PHAVer offers to partition reachable locations during the analysis. The partition-
ing takes place by splitting locations recursively along user-defined hyperplanes
until a minimum size is reached or the dynamics are sufficiently refined.

The relaxed affine dynamics are given by a convex linear formula for its
derivatives, i.e., a conjunction of constraints

aT
i ẋ+ âT

i x ��i bi, ai, âi ∈ ZZn, bi ∈ ZZ, ��i∈ {<,≤,=}, i = 1, . . . ,m. (1)

for each location. In the following, we assume the equalities to be modeled
using conjuncts of pairs of inequalities. In a location loc, the constraints (1)
are overapproximated conservatively with constraints of the form αiẋ ��i βi,
αi ∈ ZZn, βi ∈ ZZ, by finding the infimum of (1) inside the invariant Inv(loc).
Let

p/q = inf
x∈Inv(loc)

âT
i x, p, q ∈ ZZ.

PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech 263

If p/q exists, the set of ẋ that fulfill (1) is bounded by aT
i ẋ ��i bi−p/q, otherwise

the constraint must be dropped. The linear constraint on ẋ is then given by
αi = qai, βi = qbi − p.

The resulting overapproximation error depends on the size of the locations
and the dynamics but can be made arbitrarily small by defining suitably small
locations. PHAVer does so by recursively splitting a location along a suitable hy-
perplane chosen from a user-provided set. The splitting is repeated in reachable
locations until a certain threshold, e.g., a minimum size, is reached. We account
for the dynamics of the system using the spatial angle that is spanned by the
derivatives in a location. Let the spread �(X) of a set of valuations be defined
as

�(X) = arccos min
x,y∈X

xT y/|x||y|}

and the spread �deriv (loc,X, Y) of the derivatives of states X confined to states
Y in location loc as

�deriv (loc,X, Y) = � ({v|(loc, v) ∈ time deriv(X, Y)}) .

The spread of the derivatives is used in two ways: The refinement of a location
is stopped once the spread is smaller than a given minimum, or the constraints
are prioritized according to the spread of the derivatives in the location after the
splitting.

Recall that a hyperplane h is defined by an equation aT
hx = bh, where the

normal vector ah determines its direction and the inhomogeneous term bh its
position, for which we choose the center of the location. Let the slack of h in a
location loc be defined by

Δ(ah) = max
x∈Inv(loc)

aT
hx− min

x∈Inv(loc)
aT

hx.

In PHAVer, the user provides a list of candidate normal vectors ah,i and the
minimum and maximum slack that the hyperplanes will have in the refined
locations, i.e.,

Cand = {(ah,1, Δmin,1, Δmax,1), . . . , (ah,m, Δmin,m, Δmax,m)}.

This allows the user to include expert knowledge by choosing planes and location
sizes suitable for the system. The candidate hyperplanes are prioritized according
to a user-controlled list of criteria. We consider the criteria to be a map

split crit : {aTx �� b|a ∈ ZZn, b ∈ ZZ} × Loc× 2SH �→ (IR ∪∞∪−∞)z

that attributes a z-tuple of prioritizing measures, evaluated lexicographically, to
each constraint, and takes into account a set of valuations considered of interest.
Two special symbols are included: ∞ voids the constraint, but it can be overruled
by −∞, which takes precedence over all other factors. The currently implemented
measure split crit(aTx �� b, loc,N) takes into account the set N of reachable
states in the location, and offers the following choices:

264 G. Frehse

1. Prioritize constraints according to their slack:

split crit1 =
{
Δ(ah)/Δmin,h ifΔ(ah) > Δmin,h,
∞ otherwise.

2. Prioritize constraints that have reachable states only on one side:

split crit2 =
{

1 if ∃x, x′ ∈ N : aTx < b ∧ aTx′ > b
0 otherwise.

3. Prioritize constraints according to the spread of the derivatives. Discard
constraint if a minimum spread �min is reached and the slack is smaller
than Δmax,h:

split crit3 =

⎧⎨⎩−�deriv (loc,N, Inv) if �deriv (loc,N, Inv) ≥ �min

∨ Δ(ah) > Δmax,h,
∞ otherwise.

4. Prioritize constraints according to the derivative spread after the constraint
is applied:

split crit4 = −max{�deriv (loc,N, {(l, x) ∈ Inv | aTx ≤ b}),
�deriv (loc,N, {(l, x) ∈ Inv | aTx ≥ b})}.

For efficiency, the refinement is applied on the fly as shown in the reachability
algorithm of Fig. 1. The algorithms for splitting a location, and refining the
location with the prioritized candidate constraints are shown in Fig. 2 and Fig. 3.

procedure SplitLocation
Input: HIOA H = (Loc, VarS , VarI , VarO, Lab, →, Act , Inv , Init),

location loc, constraint aT
i x ��i bi, splitting label τH ,

list {Y1, . . . , Yn} of set of states of H for remapping

Output: Hybrid I/O-automaton H with split location loc

Loc:={l ∈ Loc | l �= loc} ∪ {(loc, ≤), (loc, ≥)};
→:={(l, a, μ, l′) ∈→ | l �= loc ∧ l′ �= loc}

∪{(l, a, μ, (loc, ≤)), (l, a, μ, (loc, ≥)) | (l, a, μ, loc) ∈→}
∪{((loc, ≤), a, μ, l′), ((loc, ≥), a, μ, l′) | (loc, a, μ, l) ∈→}
∪{(l, τH , {x′ = x|x ∈ Var}, l′) | l, l′ ∈ {(loc, ≤), (loc, ≥)}};

Act:={l �→ x(t) ∈ Act | l �= loc}
∪{(loc, ��) �→ x(t) | loc �→ x(t) ∈ Act , ��∈ {≤, ≥}};

for S ∈ {Y1, . . . , Yn} ∪ {Inv , Init} do
S:={(l, x) ∈ S | l �= loc}

∪{((loc, ��), x) | (loc, x) ∈ S ∧ aT
i x �� bi, ��∈ {≤, ≥}}

od.

Fig. 2. Splitting a location along a hyperplane

PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech 265

procedure refine loc
Input: HIOA H = (Loc, VarS , VarI , VarO, Lab, →, Act , Inv , Init),

set of investigated states N , set of candidate constraints

Cand = {(ah,1, Δmin,1, Δmax,1), . . . , (ah,m, Δmin,m, Δmax,m)},

list {Y1, . . . , Yn} of set of states of H for remapping

Output: Hybrid I/O-automaton H with locations in N refined

for loc ∈ {l ∈ Loc|∃x : (l, x) ∈ N} do
do

for i = 1, . . . , m do

bi:=1/2

(
max

x∈Inv(loc)
aT

h,ix + min
x∈Inv(loc)

aT
h,ix

)
;

ci:=split crit(aT
h,ix = bi, loc, N)

od;
k:=argmin

i=1,...,m
ci;

if ∞ /∈ ck ∨ −∞ ∈ ck then
SplitLocation(H, loc, aT

h,kx = bk, τH , {Y1, . . . , Yn})

od
while k exists and ∞ /∈ ck ∨ −∞ ∈ ck od

od.

Fig. 3. Refining states with a set of candidate constraints

3.2 Example: Navigation Benchmark

We illustrate the reachability analysis of PHAVer with a benchmark proposed
in [7]. It models an object moving in a plane, and following dynamically a set
of desired velocities vd(i) = (sin(iπ/4), cos(iπ/4))T , i = 0, . . . , 7, where i is
attributed to each unit square in the plane by a given map M . A special symbol
A denotes the set of target states, and B denotes the set of forbidden states for the
object. We veryfied that the forbidden states are not reachable for the instances
shown in Fig. 4, whose maps are given by:

MNAV01 = MNAV02 = MNAV03 =

⎛⎝B 2 4
2 3 4
2 2 A

⎞⎠ ,MNAV04 =

⎛⎝B 2 4
2 2 4
1 1 A

⎞⎠ .

The dynamics of the 4-dimensional state vector (x1, x2, v1, v2)T are given by(
ẋ
v̇

)
=
(

0 I
0 A

)(
x
v

)
−
(

0
A

)(
0

vd(i)

)
, with A =

(
−1.2 0.1

0.1 −1.2

)
.

The initial states for the instances are defined by x0 ∈ [2, 3] × [1, 2] and

v0,NAV01 ∈ [−0.3, 0.3] × [−0.3, 0], v0,NAV02 ∈ [−0.3, 0.3] × [−0.3, 0.3],
v0,NAV03 ∈ [−0.4, 0.4] × [−0.4, 0.4], v0,NAV04 ∈ [0.1, 0.5] × [0.05, 0.25].

As splitting constraints we use Cand = {(v1, δ1,∞), (v2, δ2,∞)}, where appro-
priate δi were established by some trial-and-error runs, and (split crit1) as split-
ting criterion. Note that x1, x2 need not be refined, since they depend only on v.

266 G. Frehse

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1

x 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1

x 2

(a) NAV01

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1

x 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1

x 2

(b) NAV02

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1

x 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1

x 2

(c) NAV03

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1

x 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1

x 2

(d) NAV04

Fig. 4. Reachable states in the x1, x2-plane (initial states darkest)

The other analysis parameters were left at their default setting. While we need
to specify bounds for the analysis region, we can handle the unbounded case by
checking that the reachable state space is strictly contained in the analysis region.
All instances shown were obtained with a-priori bounds of [−2, 2] on the veloci-
ties, and the reachable velocities remained within an interval [−1.1, 1.1], which
confirms our a-priori bounds as valid. Figure 4 shows the set of reachable states
computed by PHAVer as a result. Computation times and memory consumption
are shown in Table 1, and were obtained on a Pentium IV, 1.9GHz with 768 MB
RAM running Linux. For the instances NAV01–NAV03, the analysis was fairly
straightforward, with δi = 0.5. For the instance NAV04 we had to set δi = 0.25,
and the analysis did not terminate at first. We applied a heuristic: The convex
hull was computed for the first 20 iterations for speed, then switched to nor-
mal reachability, and at iteration 40 a bounding box simplification was triggered
manually. In comparison, for a predicate abstraction tool the following times
were reported in [17]: For NAV01–NAV03 34s, 153s (68MB) and 152s (180MB),
respectively, on a Sun Enterprise 3000 (4 x 250 MHz UltraSPARC) with 1 GB
RAM.

PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech 267

Table 1. Computation times and memory requirements

Automaton Reachable Set

Instance Time Memory Iter. Loc. Trans. Loc. Polyh.

NAV01 34.73 s 62.6 MB 13 141 3452 79 646

NAV02 62.16 s 89.7 MB 13 153 3716 84 1406

NAV02i 41.05 s 53.7 MB 13 148 3661 84 84

NAV03 61.88 s 90.0 MB 13 153 3716 84 1406

NAV04ii 225.08 s 116.3 MB 45 267 7773 167 362

i convex hull, ii convex hull up to iter. 20, bounding box at iter. 40

4 Managing the Complexity of Polyhedra

A set of symbolic states is described by a linear formula, the convex sub-formulas
of which define convex polyhedra, which in turn are described by a set of con-
straints. In exact fixpoint computations with polyhedra, the size of numbers
in the formula as well as the number of constraints typically increases unless
the structure of the hybrid system imposes boundaries, e.g., by resets or in-
variants. To keep the complexity manageable, we propose the simplification of
complex polyhedra in a strictly conservative fashion by limiting the number of
bits, i.e., the size of coefficients, and the number of constraints. We reduce only
inequalities to preserve the affine dimension of the polyhedron. In practice, both
simplifications are applied when the number of bits or constraints exceeds a
given threshold that is significantly higher than the reduction level. The result-
ing hysteresis between exact computations and overapproximations gives cyclic
dependencies time to stabilize.

4.1 Limiting the Number of Bits

We consider the ith constraint aT
i x ��i bi of a polyhedron of the form Ax+b �� 0,

where ai is a vector of the coefficients aij ∈ ZZ of A, i = 1, . . . ,m, j = 1, . . . , n, ��
is a vector of signs ��i∈ {≤, <,=}, and b is a vector of inhomogeneous coefficients
bi ∈ ZZ. We assume that the aij and bi have no common factor and that there
are no redundant constraints. The goal is to find a new constraint αT

i x ��i βi

with coefficients αij having less than z bits, i.e., |αij |, |βi| ≤ 2z+1 − 1, with the
least overapproximation possible. Expressing the new coefficients in terms of a
scaling factor f > 0, rounding errors rij , |rij | ≤ 0.5 and an error ri for the
inhomogeneous term we get αij = faij + rij and βi = fbi + ri. There is no
a-priori bound on ri, since it depends on the new direction αi and the other
constraints that define the polyhedron. With the bounds on the rij , we get
|faij + rij | ≤ 2z+1 − 1, and get upper bounds on f using |rij | ≤ 0.5 and, in
the best case, we expect βi to be close to fbi. Since βi must be rounded strictly
upwards to guarantee conservativeness, we get |ri| ≤ 1 as an optimistic estimate:

f ≤ (2z+1 − 3/2)/|aij |, and (2)
f ≤ (2z+1 − 2)/|bi|. (3)

268 G. Frehse

To predict the effects of rounding precisely is difficult and would lead to a mixed
integer linear program, so we employ a heuristic algorithm, shown in Fig. 5. Let
round(x) be a function that returns the next integer between x and zero, and
ceil(x) be a function that rounds to the next larger integer. First, we estimate f
based on (2),(3), then we compute a new βi using linear programming. If βi has
more than z bit, we decrease f and start over. The procedure is repeated until
all coefficients αij = 0, in which case the problem is infeasible. Note that it is not

procedure LimitConstraintBits
Input: Polyhedron as a set of constraints P = {aT

k x ��k bk|k = 1, . . . , m},

index i to constraint to be limited, desired number of bits z
Output: new constraint αT

i x ��i bi

success := false;
f := min{(2z+1 − 3/2)/|akj |, (2z+1 − 2)/|bi| | j = 1, . . . , n};
while ¬success do

for j = 1, . . . , n do αij := round(faij) od;
q := min

x∈P
αT

i x ;

if αi = 0 or q = −∞ then abort fi;
βi := ceil(q);
if |βi| ≤ 2z+1 − 1 then success := true
else f := min{f/2 − 3/(4|akj |), (2z+1 − 2)/|βi| | j = 1, . . . , n} fi;

od.

Fig. 5. Limiting the number of bits of a constraint

guaranteed that the new polyhedron is bounded. Figure 6 illustrates the basic
scheme. The normal vector ai of the constraint, shown in (a), is approximated
by αi, as shown in (b). Linear programming yields the inhomogeneous term q
that makes the constraint tangent to the polyhedron, as in (c). Rounding of q
yields βi, and the polyhedron outlined in (d).

Fig. 6. Limiting the number of bits of a constraint

4.2 Limiting the Number of Constraints

To reduce the complexity of a polyhedron, we propose to drop constraints based
on a criterion crit that measures the the difference between the polyhedron with
and without the constraint. As with limiting the number of bits, we usually chose

PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech 269

procedure LimitConstraintsByAngle
Input: Polyhedron P as a set of constraints aT

i x ��i bi, i = 1, . . . , m,

desired number of constraints z
Output: Polyhedron H

for i = 1, . . . , m, j = 1, . . . , m, j > i do α(i, j) := aT
i aj od;

H := {aT
k x ��k bk | k = argmink(maxj |akj |)} ∪ {aT

i x ��i bi| ��i∈ {=}};
C := P \ H;
while (|C| > 0 ∧ (|H| < z ∨ (bounded(P) ∧ ¬bounded(H))) do

j = argminj (maxi α(i, j)) s.t. aT
i x ��i bi ∈ H, aT

j x ��j bj ∈ C;
H := H ∪ {aT

j x ��j bj};
C := C \ {aT

j x ��j bj}
od.

Fig. 7. Reconstructing a polyhedron with a limited number of constraints by angle

prioritization

to not limit equalities in order to preserve the affine dimension of the polyhedron.
If an equality is to be limited, it must be replaced by two inequalities.

Let P be a set of linear constraints describing a convex polyhedron, and
P \i = P \ {aT

i x ��i bi} be the polyhedron without it’s ith constraint. Then the
difference between the points contained P and P \i is the polyhedron P¬i = P \i∪
{−aT

i x ��i−bi}, where (��i, ��i) ∈ {(<,≤), (≤, <)}, obtained by simply replacing
the ith constraint with its complement. It has less non-redundant constraints
than P and is therefore preferable in the formulations below. We consider three
methods:

1. volumetric: Let V (P) be the volume of the points contained in P . Then
crit = V (P \i) − V (P) = V (P¬i). Requires P¬i to be bounded.

2. slack: Let bmax = maxx aT
i x s.t. x ∈ P¬i. Then crit = (bmax − bi)/||ai||,

i.e., the distance, measured in the direction of ai, between the points farthest
apart in P¬i. Requires P¬i to be bounded in the direction of ai.

3. angle: crit = −maxj �=i aT
j ai. Measures the negative cosine of the closest

angle between the normal vector of the ith constraint and all others.

We consider two general procedures of selecting the z most important out of m
original constraints:

1. deconstruction: Starting from the entire set of constraints, drop the m − z
constraints with the least effect according to crit .

2. construction: Starting from an empty set of constraints, add the z constraints
with the greatest effect according to crit .

While deconstruction is more likely to preserve as much as possible of the original
polyhedron, construction requires less iterations if m > 2z. The criteria based
on volume and slack require the initial polyhedron to be bounded, for which one
could use, e.g., the invariant of the location.

The construction method with an angle criterion was the fastest in our ex-
periments. The algorithm is shown in Fig. 7, where C is the set of candidate

270 G. Frehse

constraints and H is the set of chosen constraints. H is initialized with the set
of equalities and an arbitrary initial constraint. Here we choose the one with the
smallest coefficients. In a while-loop, the constraint is chosen based on the best
of the worst-cases, i.e., the smallest angle with the constraints in H. Since aT

j ai

is the cosine of the angle, choosing the smallest angle translates into maximiz-
ing aT

j ai. The constraint is added to H and removed from the candidates C,
and the procedures is repeated until |H| ≥ z and the boundedness of P implies
boundedness of H.

4.3 Example: Tunnel-Diode Oscillator Circuit

Consider a tunnel-diode oscillator circuit [8]. It models the current I and the
voltage drop V of a tunnel diode in parallel to the capacitor of a serial RLC cir-
cuit, which are in stable oscillation for the given parameters. The state equations
are given by

V̇ = 1/C(−Id(V) + I),
İ = 1/L(−V − 1/G · I + Vin),

where C = 1 pF , L = 1 μH, G = 5 mΩ−1, Vin = 0.3 V , and the diode current

Id(V) =

⎧⎨⎩6.0105V 3 − 0.9917V 2 + 0.0545V if V ≤ 0.055,
0.0692V 3 − 0.0421V 2 + 0.004V + 8.9579e−4 if 0.055 ≤ V ≤ 0.35,
0.2634V 3 − 0.2765V 2 + 0.0968V − 0.0112 if 0.35 ≤ V.

The dynamics were approximated with LHA, similar to the approach in Sect. 3.1.
Figure 8(a) shows the convex hull of the reachable states starting from V ∈
[0.42V, 0.52V], I = 0.6mA. It also shows the invariants (dashed) generated
by the refinement algorithm using constraints Cand = {(V, 0.7/128, 0.7/16),
(I, 1.5/128, 1.5/16)}, i.e., max. 128 partitions in both directions, and splitting
criterion (split crit3, split crit1) with �min = arccos(0.99). The analysis with
PHAVer took 52.63s and 55MB RAM, with the largest coefficient taking up
7352 bits and at most 7 constraints per polyhedron.

A stopwatch was added to the system to measure the cycle time, i.e., the max-
imum time it takes any state to cross the threshold I = 0.6μA, V > 0.25V twice.
For the clocked circuit, the number of bits and constraints grows rapidly and a
more precise analysis, such as shown in Fig. 8(b) is only possible with limits on
both. We compare the exact analysis for constraints Cand = {(V, 0.7/32, 0.7/16),
(I, 1.5/32, 1.5/16)} with an analysis limiting the bits to 16 when a threshold of
300 bits is reached, and a limit of 32 constraints at a threshold of 56. Figures 9(a)
and 9(b) show a linear increase in the number of constraints, and an exponential
increase of the number of bits in the new polyhedra found at each iteration. The
analysis takes 979s (210MB) when exact, and 79s (39.6MB) when limited. At
a more than tenfold increase in speed, the overapproximation is negligible and
results in a cycle time estimate that is only 0.25 percent larger.

PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech 271

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Voltage V [V]

C
ur

re
nt

 I
[1

0e
−

9
A

]

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Voltage V [V]

C
ur

re
nt

 I
[1

0e
−

9
A

]

(a) V -I-Plane, invariants dashed

(b) Clocked

Fig. 8. Reachable states of Tunnel Diode Circuit

272 G. Frehse

(a) Number of bits (b) Number of constraints

Fig. 9. Clocked Tunnel Diode Circuit, exact (dashed) and with limits on bits and

constraints (solid)

5 Conclusions

PHAVer, a new tool for verifying safety properties of linear hybrid automata,
provides exact, robust arithmetic, on-the-fly overapproximation of affine dynam-
ics, and supports compositional and assume/guarantee-reasoning. To manage
the complexity of the underlying polyhedral computations, we proposed meth-
ods for conservatively limiting the number of bits and constraints that describe
a polyhedron. Experimental results for a navigation benchmark and a tunnel
diode circuit demonstrated the effectiveness of the approach. Future research
will focus on heuristics for guaranteeing termination, adapting the refinement
further to the dynamics and improved search algorithms. PHAVer is available at
http://www.cs.ru.nl/~goranf/.

Acknowledgements. The author is most grateful for the numerous inspiring
discussions with Prof. Bruce Krogh, whose insightful guidance was indispensable
in this work, and to Prof. Frits W. Vaandrager and Prof. Sebastian Engell for
their generous support and supervision. This research was supported in part by
the US ARO contract no. DAAD19-01-1-0485, the US NSF contract no. CCR-
0121547, and the Semiconductor Research Corporation under task ID 1028.001.

References

1. Henzinger, T.A.: The theory of hybrid automata. In: Proc. IEEE Symp. Logic in

Computer Science, LICS’96, New Brunswick, New Jersey, 27-30 July 1996, IEEE

Computer Society (1996) 278–292

2. Ho, P.H.: Automatic Analysis of Hybrid Systems. PhD thesis, Cornell University

(1995) Technical Report CSD-TR95-1536.

3. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HYTECH: A model checker for hybrid

systems. Int. Journal on Software Tools for Technology Transfer 1 (1997) 110–122

PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech 273

4. Henzinger, T.A., Preussig, J., Wong-Toi, H.: Some lessons from the hytech expe-

rience. In: Proceedings of the 40th Annual Conference on Decision and Control

(CDC’01), IEEE Press (2001) pp. 2887–2892

5. Cofer, D.D., Engstrom, E., Goldman, R.P., Musliner, D.J., Vestal, S.: Applications

of model checking at Honeywell Laboratories. In Dwyer, M.B., ed.: SPIN. Volume

2057 of LNCS., Springer (2001) 296–303

6. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex poly-

hedra and the Parma Polyhedra Library. In Hermenegildo, M.V., Puebla, G., eds.:

Static Analysis: Proc. Int. Symp. Volume 2477 of LNCS., Springer (2002) 213–229

7. Fehnker, A., Ivancic, F.: Benchmarks for hybrid systems verification. In Alur, R.,

Pappas, G.J., eds.: HSCC’04. Volume 2993 of LNCS., Springer (2004) 326–341

8. Gupta, S., Krogh, B.H., Rutenbar, R.A.: Towards formal verification of analog

designs. In: Proc. IEEE Intl. Conf. on Computer-Aided Design (ICCAD-2004),

Nov. 7–11, 2004, San Jose CA (USA). (2004)

9. Frehse, G., Han, Z., Krogh, B.H.: Assume-guarantee reasoning for hybrid i/o-

automata by over-approximation of continuous interaction. In: Proc. IEEE Conf.

Decision and Control (CDC’04), Dec. 14–17, 2004, Atlantis, Bahamas. (2004)

10. Henzinger, T.A., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond HYTECH:

Hybrid systems analysis using interval numerical methods. In Lynch, N.A., Krogh,

B.H., eds.: HSCC. Volume 1790 of LNCS., Springer (2000) 130–144

11. Preussig, J., Kowalewski, S., Wong-Toi, H., Henzinger, T.A.: An algorithm for

the approximative analysis of rectangular automata. In: Proceedings of the Fifth

International Symposium on Formal Techniques in Real-Time and Fault-Tolerant

Systems (FTRTFT). Number 1486 in LNCS, Springer-Verlag (1998) 228–240

12. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Hytech: the next generation. In: Proc.

IEEE Real-Time Systems Symp. (RTSS’95), IEEE Computer Society (1995) 56–65

13. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid

systems. IEEE Transactions on Automatic Control 43 (1998) 540–554

14. Stursberg, O., Krogh, B.H.: Efficient representation and computation of reachable

sets for hybrid systems. In Maler, O., Pnueli, A., eds.: HSCC’03. Volume 2623 of

LNCS., Springer (2003) 482–497

15. Silva, B.I., Stursberg, O., Krogh, B.H., Engell, S.: An assessment of the current

status of algorithmic approaches to the verification of hybrid systems. In: Proc.

40th Conference on Decision and Control (CDC’01). (2001)

16. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Information

and Computation 185 (2003) 105–157

17. Ivancic, F.: Modeling and Analysis of Hybrid Systems. PhD thesis, University of

Pennsylvania, Philadelphia, PA (2003)

Direct Torque Control for Induction Motor
Drives: A Model Predictive Control Approach

Based on Feasibility

Tobias Geyer and Georgios Papafotiou

Automatic Control Laboratory,

Swiss Federal Institute of Technology (ETH),

CH-8092 Zurich, Switzerland

{geyer, papafotiou}@control.ee.ethz.ch

Abstract. In this paper, we present a new approach to the Direct

Torque Control (DTC) problem of three-phase induction motor drives.

This approach is based on Model Predictive Control (MPC) exploiting

the specific structure of the DTC problem and using a systematic design

procedure. Specifically, by observing that the DTC objectives, which re-

quire the controlled variables to remain within certain bounds, are related

to feasibility rather than optimality, and by using a blocking control in-

puts regime for the whole prediction horizon we derive a low complexity

controller. The derived controller is an explicit state-feedback control law

that can be implemented as a look-up table. Even though the controller

is derived here for a DTC drive featuring a two-level inverter, the control

scheme can be extended to also tackle three-level inverters. Simulation

results demonstrate that the proposed controller leads to performance

improvements despite its simple structure.

1 Introduction

Enabled by significant technological developments in the area of power electron-
ics, variable speed induction motor drives have evolved to a state of the art
technology within the last decades. These systems, in which DC-AC inverters
are used to drive induction motors as variable frequency three-phase voltage
or current sources, are used in a wide spectrum of industrial applications. One
of the methods for controlling the induction motor’s torque and speed is Di-
rect Torque Control (DTC), which was first introduced in 1985 by Takahashi
and Noguchi [13] and is nowadays a industrial standard for induction motor
drives [14, 11].

The basic characteristic of DTC is that the positions of the inverter switches
are directly determined rather than indirectly, thus refraining from using a mod-
ulation technique like Pulse Width (PWM) or Space Vector (SVM) modulation.
In the generic scheme, the control objective is to keep the motor’s torque and
the amplitude of the stator flux within pre-specified bounds. The inverter is
triggered by hysteresis controllers to switch whenever these bounds are violated.

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 274–290, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Direct Torque Control for Induction Motor Drives 275

The choice of the new switch positions is made using a pre-designed look-up ta-
ble that has been derived using geometric insight in the problem and additional
heuristics.

The main reason that makes the design of the switching table difficult is
the fact that the DTC drive constitutes a hybrid system, i.e. a system incor-
porating both continuous and discrete dynamics - in particular discrete-valued
manipulated variables. Additionally, constraints on states, inputs and outputs
are present imposing further complications on the controller design, since the
underlying mathematical problems are intrinsically complex and hard to solve.

Recently, we have proposed in [9, 10] a systematic procedure for the design
of the DTC switching table by reformulating the control problem as a Model
Predictive Control (MPC) [8] problem for a two- and a three-level inverter.
Modelling the DTC drive as a hybrid system, introducing integer variables for
the inverter switch positions that represent the manipulated variables of the
control problem and expressing the control objectives in a cost function led to
a constrained finite time optimal control problem. By solving the underlying
optimization problem on-line and comparing the results with the behavior of
ABB’s ACS6000 drive [1] featuring a three-level inverter, we have demonstrated
a potential performance improvement in the range of 20 %. Subsequently, moving
towards the practical implementation of the method, we have pre-computed
off-line the optimal control problem for all feasible states and thus derived the
explicit state-feedback control law. The latter was done for a DTC drive featuring
a two-level inverter and for a specific operating point.

Nevertheless, the complexity of the derived state-feedback controller prohibits
the practical implementation on the currently employed controller hardware.
On the other hand, two observations suggest the existence of a low complexity
controller resulting from a systematic design procedure. Firstly, albeit their very
simple controller structure, the existing DTC schemes have proven to yield a
satisfactory control performance. Secondly, the post analysis of the derived state-
feedback control law reveals a simple and robust pattern in the solution to the
optimal control problem.

These observations have motivated the control scheme presented in this paper
which is based on the following fundamental property of DTC. The control
objectives only weakly relate to optimality but rather to feasibility, in the sense
that the main objective is to find a control input that keeps the controlled
variables within their bounds, i.e. a control input that is feasible. The second,
weaker objective is to select among the set of feasible control inputs the one that
minimizes the average switching frequency. The latter can be approximated by
the number of switch transitions over the (short) horizon.

We therefore propose an MPC scheme based on feasibility with a prediction
horizon N and an internal model of the DTC drive for the predictions. We
propose to switch only at the current time-step and to disregard switching within
the prediction horizon, which is equivalent to a move blocking strategy. This
greatly reduces the number of control input sequences from 8N to 8 and allows
us to evaluate a small number of input sequences by moving forward in time. For

276 T. Geyer and G. Papafotiou

each input sequence, we determine the number of steps the controlled variables
are kept within their bounds, i.e. remain feasible. Next we define the number
of switch transitions divided by the number of predicted time-steps an input
remains feasible as a cost function emulating the switching frequency. In a last
step, the control input is chosen that minimizes the cost function. We refer to this
concept as the Feasibility Approach. The simplicity of the control methodology
(with the only design parameter N) translates into a state-feedback control law
with a complexity that is of an order of magnitude lower than the one of its
counterpart obtained through solving the optimal control problem [9].

The paper is organized as follows. Starting with the derivation of a low com-
plexity piecewise affine model for the DTC drive in Section 2, we pose in Section 3
the control objectives. In Section 4, we first present the Feasibility Approach as
a control scheme that is evaluated on-line, and subsequently, we show how the
control problem can be pre-solved off-line and translated into a state-feedback
control law. Simulation results for the case of a two-level inverter are shown in
Section 5, while Section 6 summarizes the results and discusses the extendability
of the control approach to DTC drives featuring three-level inverters.

Due to the page limitation the paper had to be shortened by a few pages
(mostly Section 2). The full paper is available as technical report [4].

2 Modelling

2.1 Physical Setup

For the modelling of the DTC drive, all variables are transformed from the three-
phase system (abc) to an orthogonal dq0 reference frame with a direct (d), a
quadrature (q) and a zero (0) axis, that can be either stationary or rotating [6].
For the needs of this paper, the transformation of a vector ξabc = [ξa ξb ξc]T

from the three-phase system to the vector ξdq0 = [ξd ξq ξ0]T in the dq0 frame is

ua = +1

ub = −1

uc = +1

ias

ibs

ics

IM

+
Vdc
2

−Vdc
2

a b c

(a) The equivalent representation of a three-

phase two-level inverter driving an induction

motor

d

q
(−1, 1, −1) (1, 1, −1)

(1, −1, −1)

(1, −1, 1)(−1, −1, 1)

(−1, 1, 1)

(1, 1, 1) (−1, −1, −1)

(b) The voltage vectors on

the dq plane with switch

positions

Fig. 1. Physical setup and voltage vectors

Direct Torque Control for Induction Motor Drives 277

carried out through ξdq0 = P (ϕ)ξabc, where ϕ is the angle between the a-axis of
the three-phase system and the d-axis of the reference frame, and P (ϕ) is the
Park transformation [6].

An equivalent representation of a three-phase two-level inverter driving an
induction motor is shown in Fig. 1(a). At each phase, the inverter can produce
two different voltages −Vdc

2 , Vdc

2 , where Vdc denotes the voltage of the dc-link.
The switch positions of the inverter can therefore be fully described using the
three integer variables ua, ub, uc ∈ {−1, 1}, where each variable corresponds to
one phase of the inverter, and the values −1, 1 correspond to the phase potentials
−Vdc

2 , Vdc

2 , respectively.
There are 23 = 8 different vectors of the form uabc = [ua ub uc]T . Using

the Park transformation these vectors can be transformed into the dq0 frame
resulting in vectors of the form udq0 = [ud uq u0]T . The latter are shown in
Fig. 1(b), where they are mapped into the (two-dimensional) dq plane. Even
though they are commonly referred to as voltage vectors, this term describes the
switch positions rather than the actual voltages applied to the machine terminals.

The dynamics of the squirrel-cage rotor induction motor are commonly mod-
elled in a dq0 reference frame that can be either stationary or rotating. The
standard modelling approach, which can be found in detail in [6], yields a 5-
dimensional nonlinear state-space model, that uses as state variables the d- and
q-components of the stator and rotor flux linkages per second ψds , ψqs , ψdr and
ψqr, respectively, and the rotor’s rotational speed ωr. The 0-axis components are
neglected, since they do not contribute to the electromagnetic torque and are
decoupled from the dynamics in the d- and q-axis. The model parameters are
the stator and rotor resistances rs and rr, the stator, rotor and mutual induc-
tive reactances xls, xlr and xm, respectively, the inertia constant H expressed
in seconds, and the mechanical load torque T�.

In this standard dynamical model of the induction motor, the saturation of
the machine’s magnetic material, the changes of the rotor resistance due to the
skin effect and the temperature changes of the stator resistance are ignored. A
more elaborate presentation of the induction motor’s modelling procedure is out
of the scope of this paper. For details, the reader is referred to [6].

2.2 Low Complexity Modelling

In [9, 10], we have derived a low-complexity model of the DTC drive taking into
account that the stator flux dynamics are significantly faster than the dynamics
of the rotor flux and the rotational speed, and that the length of the stator flux
vector and the electromagnetic torque are invariant under a rotation of the flux
vectors. This model has the state vector

x(k) =
[
ψϑ

ds(k) ψ
ϑ
qs(k) cos(ϕ(k))

]T
, (1)

where ψϑ
ds(k) and ψϑ

qs(k) denote the d- and q-component of the rotated and
mapped stator flux vector, and ϕ(k) captures the position of the rotating refer-
ence frame with ϕ(k + 1) = ϕ(k) + ωrTs. The output vector

278 T. Geyer and G. Papafotiou

y(k) =
[
Te(k) Ψ2

s (k)
]T (2)

comprises the electromagnetic torque and the squared length of the stator flux
vector, and the input vector is composed of the integer variables ua, ub and uc

u(k) = uabc(k) =
[
ua(k) ub(k) uc(k)

]T ∈ {−1, 1}3 . (3)

For a summary of the low-complexity modelling, the reader is referred to [4],
whereas the complete modelling can be found in [9].

2.3 Piecewise Affine Model

In a subsequent step, we have computed in [9] a piecewise affine (PWA) model
for a DTC drive featuring a two-level inverter. PWA models [12] are defined by
partitioning the state-space into polyhedra and associating with each polyhedron
an affine state-update and output function

x(k + 1) = fj(k)(x(k), u(k)) (4a)
y(k) = gj(k)(x(k)) (4b)

with j(k) such that
[

x(k)
u(k)

]
∈ Pj(k), (4c)

where x(k), u(k), y(k) denote at time k the real and binary states, inputs and
outputs, respectively, the polyhedra Pj(k) define a set of polyhedra {Pj}j∈J
on the state-input space, and the real time-invariant functions fj(k) and gj(k)
are affine in the states and inputs, with j(k) ∈ J , J finite. For simplicity, we
will later drop the index j(k) and (4c), and use x(k + 1) = f(x(k), u(k)) and
y(k) = g(x(k)) to denote the PWA system (4). Note that the PWA system (4)
has no throughput, i.e. y(k) is independent of u(k).

To derive such a PWA model, all nonlinearities need to be replaced by PWA
approximation over a bounded set of (feasible) states X 0. The set X 0 can be
easily determined by translating the output hysteresis bounds imposed by the
control objectives into constraints on the state-space. Introducing the lower and
upper bounds on the electromagnetic torque Te,min and Te,max, respectively, and
noting that in the low-complexity model the torque is a linear expression of the
second state, the torque bounds can be directly translated into linear bounds
on x2(k)

D

xmψϑ
dr

Te,min ≤ x2(k) ≤ D

xmψϑ
dr

Te,max , (5)

where ψϑ
dr is equal to the length of the rotor flux, which is treated as a parameter

in the low-complexity model. Similarly for the stator flux, its lower and upper
bounds Ψ2

s,min and Ψ2
s,max turn into the quadratic state constraint

Ψ2
s,min ≤ x2

1(k) + x2
2(k) ≤ Ψ2

s,max. (6)

To account for measurement noise and small disturbances causing the torque or
the stator flux to slightly violate the imposed bounds, we relax (5) and (6) by
20 % of the corresponding bound width.

Direct Torque Control for Induction Motor Drives 279

The bounds on the third state are derived from the angle ϕ(k). To ensure
that the model remains feasible for at least N time-steps when starting with a
ϕ(k) close to π

3 , the bounds on ϕ(k) are set to 0 ≤ ϕ(k) ≤ π
3 + NωrTs, which

translate into the following bounds on x3(k)

cos(
π

3
+NωrTs) ≤ x3(k) ≤ 1 . (7)

Summing up, the constraints (5), (6) and (7) define the set of states X 0 for which
the PWA model is to be defined. Thus, the nonlinearities of the DTC drive need
to be approximated for x ∈ X 0 as shown in [9, 10].

Starting from a model description in the HYbrid Systems DEscription Lan-
guage Hysdel [15], and fixing the operating point, namely the parameters ωr

and ψϑ
dr, the model can be transformed into PWA form with the mode enumera-

tion algorithm [5]. This procedure yields a PWA model defined on a polyhedral
partition with 48 polyhedra in the six-dimensional state-input space.

3 Control Problem

The most prominent control objective concerning the induction motor is to keep
the electromechanical torque within bounds around its reference. In order to
avoid the saturation or demagnetization of the motor, the amplitude of the stator
flux has to be kept between certain pre-specified bounds around the reference
which are in general time-invariant. The control objective concerning the inverter
is to minimize the average switching frequency.

4 Feasibility Approach

Traditionally, based on the imposed bounds, the next voltage vector to be applied
to the induction motor is selected by evaluating a look-up table every Ts = 25μs.
The goal of this paper is to replace the look-up table by a new DTC scheme that
is based on a systematic design procedure. This controller needs to address the
above formulated objectives, i.e. to minimize the average switching frequency
while keeping the controlled variables (torque and length of the stator flux)
within the given bounds.

Similar to [9, 10], this controller is based on predictive control with a receding
horizon policy. Minimizing the average switching frequency leads to a prediction
horizon with an infinite number of steps. As such a problem in the context
of hybrid systems is computationally not tractable, we need to approximate
this objective. In [9, 10], we have done this by restricting the prediction horizon
N to a small number of steps (three or four) and by formulating an objective
function that postpones switching and penalizes the violation of the bounds using
soft constraints. In particular, we have allowed for switch transitions within the
prediction interval. Dynamic programming [3] allowed us to compute off-line the
explicit state-feedback control law for the whole state-space.

280 T. Geyer and G. Papafotiou

4.1 On-line Computation of the Control Input

On the other hand, the underlying optimization problem of the above stated
control problem is not so much based on optimality but rather on feasibility,
meaning that the controlled variables have to be kept within their bounds, i.e.
feasible. This insight greatly simplifies the control problem. Furthermore, we
propose to switch only at the current time-step k and to disregard switching
within the prediction horizon, which is equivalent to a move blocking strategy.
This greatly reduces the number of control input sequences from 8N to 8 and
allows us to evaluate a small number of control sequences by moving forward
in time. As a result, dynamic programming moving backwards in time becomes
obsolete.

More formally, let u(k − 1) denote the last voltage vector. If u(k − 1) is also
feasible at time-instant k, i.e. all controlled variables are predicted to lie within
their bounds at time-instant k + 1, a reasonable choice is to apply it again, i.e.
u(k) = u(k − 1). If not, however, the controller must choose another voltage
vector. For each of the remaining seven voltage vectors, one can easily com-
pute through open-loop predictions the number of time-steps this voltage vector
would keep the controlled variables within their bounds. This step reduces the op-
timal control problem to a feasibility problem. The voltage vector is chosen that
minimizes the average switching frequency over the prediction interval, i.e. the
number of switch transitions over the number of time-steps, thus re-introducing
the notion of optimality. This control concept, to which we refer as the Feasibil-
ity Approach, is summarized in Algorithm 1, where f and g refer to the PWA
model (4). An output vector y(k) is said to be feasible, if the corresponding
bounds are met, and U = {−1, 1}3 denotes the set of available voltage vectors.

Algorithm 1

function u(k) = Algo1 (x(k), u(k − 1))
x(k + 1) = f(x(k), u(k − 1))
if y(k + 1) = g(x(k + 1)) feasible

u(k) = u(k − 1)
else

for all u(k) ∈ U \ u(k − 1)
nu = −1
repeat

nu = nu + 1
x(k + nu + 1) = f(x(k + nu), u(k))

until
(
y(k + nu + 1) = g(x(k + nu + 1)) infeasible

)
or
(
nu = N

)
endfor
u(k) = arg minu(k)

||u(k)−u(k−1)||
nu

endif

Direct Torque Control for Induction Motor Drives 281

Compared to MPC, this control policy is by definition significantly simpler,
as only eight control sequences (or control strategies) need to be compared with
each other. Unlike in MPC, switch transitions within the prediction interval are
not considered, and can only be performed at the current time-instant k. Fur-
thermore, the length of the prediction horizon is time-varying, ranging from one
step to 10 or even 20 steps. As the next section will show, an explicit form of the
proposed controller can be computed easily. Even more important, the explicit
form has a low complexity but maintains or improves the control performance
with respect to MPC.

4.2 Off-line Computation of the State-Feedback Control Law

We restrict the computation of the explicit state-feedback control law to the set
of states X 0, which we have obtained by relaxing the bounds on the torque and
the flux by 20 %. Furthermore, we fix the operating point, namely the rotor speed
ωr and the length of the rotor flux ψϑ

dr, and set the lower and upper bounds on
the outputs (torque and stator flux). Next, we derive the PWA model defined
on X 0. Rewriting (5) and (6), let C denote the set of states whose corresponding
outputs are feasible

C = {x ∈ X 0 |
[
Te,min

Ψ2
s,min

]
≤ g(x) ≤

[
Te,max

Ψ2
s,max

]
, (8)

where we have replaced the quadratic expression in (6) by the PWA approxima-
tion for the stator flux.

Before presenting the computation of the state-feedback control law in three
stages, we introduce the following notation. Let n denote the time-step within
the prediction horizon N , Xn

feas the set of states at time-step k+n corresponding
to feasible outputs y(k + �) for all � ∈ {1, . . . , n}, Xn

infs the set of states at time-
step k+n with feasible outputs y(k+ �) for all � ∈ {1, . . . , n− 1}, but infeasible
outputs y(k + n), and Qn

u the set of states at time-step k that keep the outputs
for n time-steps feasible when applying the voltage vector u.

Stage I. First, we determine the set of states x(k) ∈ X 0 for which the controlled
variables are feasible at time-step k + 1 when applying u(k) = u(k − 1). We
denote this set of states as the core

Qc
u = {x ∈ X 0 | f(x, u) ∈ C} , (9)

and its complement in X 0 as the ring

Qr
u = X 0 \ Qc

u . (10)

Example 1. To visualize the algorithm, consider as an example a two-level in-
verter driving an induction machine with the rated voltage 3.3 kV and the rated
real power 1.587 MW. All parameters can be found in [9] in Tables 3 and 4.
The operating point is given by the rotor speed ωr = 0.8 p.u., the load torque

282 T. Geyer and G. Papafotiou

0.82
0.86

0.94
0.98

1.02

0.20
0.22

0.24
0.26

0.28
0.5

0.6

0.7

0.8

0.9

0.9

1.0

x1(k)x2(k)

x
3
(k

)

(a) The core

0.82
0.86

0.94
0.98

1.02

0.20
0.22

0.24
0.26

0.28
0.5

0.6

0.7

0.8

0.9

0.9

1.0

x1(k)x2(k)

x
3
(k

)

(b) The ring

Fig. 2. Core and ring for u(k − 1) = [1 − 1 − 1]

T� = 0.8 p.u., the torque bounds Te,min = 0.72 p.u. and Te,max = 0.88 p.u., and
the flux bounds Ψ2

s,min = 0.82 p.u. and Ψ2
s,max = 1.04 p.u.. After deriving the

PWA model on X 0 (enlarged by 20 % as in Section 2.3), and determining the
set C, the core and the ring can be easily computed as shown in Fig. 2 for the
voltage vector u(k − 1) = [1 − 1 − 1]. This operation takes on a Pentium IV
roughly 1 s. �

Stage II. For each new voltage vector u(k) ∈ U \u(k−1), the following procedure
is performed for the initial set1 X 0. Initially, we set n = 0. Next, we map the
polyhedra Xn from time-step k + n to k + n + 1 yielding Xn+1. The states
corresponding to infeasible outputs form the set Xn+1

infs . Consequently, we map
Xn+1

infs back to the time-step k and associate with them the number of time-steps
n. We denote these polyhedra by Qn

u, where u corresponds to the chosen voltage
vector u(k), and n denotes the number of time-steps this voltage vector u(k)
can be applied to the set of states before any of the outputs violates a bound.
If there remain any feasible states, we move one time-step forward in the future
by increasing n by one and repeat the above procedure.

This yields for each new voltage vector a polyhedral partition of the ring
{Qn

u}N
n=0, where each polyhedron is associated with a unique number indicating

for how many time-steps the respective voltage vector can be applied before any
of the controlled variables violates a bound.

1 Conceptually, this stage of the algorithm should be initialized with the ring Qr
u rather

than X 0. Let us note though that since the facets of the initial set are mapped forward

and backward in time, in the worst case, the complexity of the algorithm both in

terms of the computation time and the number of resulting polyhedra {Qn
u}N

n=0 is

exponential in the number of facets of the initial set. Therefore, as X 0 is by definition

a very simple polytopic set with only a few facets, whereas the ring is a non-convex

set with possibly many facets, we initialize Algorithm 2 with X 0 rather than the

ring.

Direct Torque Control for Induction Motor Drives 283

x1(k)

x
2
(k

)

X 0

(a) Initial set X 0 at

step k

x1(k)

x
2
(k

)

X 1
infs

X 1
feas

(b) Set X 1 at step k+1

x1(k)

x
2
(k

)

Q0
u

(c) Set Q0
u at step k

that yields infeasible

outputs at k + 1

Fig. 3. First step of Algorithm 2 in the x1x2 plane for u(k) = [1 − 1 − 1]

Next, the algorithm is summarized, where the two subfunctions mapForw and
mapBack are affine transformations of polyhedra using the PWA model (4) for
a fixed voltage vector u(k). Specifically, mapForw yields Xn+1 = {f(x, u) | x ∈
Xn, u = u(k)}, and mapBack yields Qn

u = {x | (fu ◦ . . . ◦ fu)(x) ∈ Xn+1
infs }, where

we have set fu(x) = f(x, u) and concatenated fu n times. Note that mapForw
maps a set of states by one time-step forward in time, whereas mapBack maps a
set of states by n time-steps backwards. The subscript feas (infs) refers to sets
of states corresponding to feasible (infeasible) outputs.

Algorithm 2

function {Qn
u}N

n=0 = Algo2 (C, X 0, u, N)
n = 0
while Xn �= ∅ and n < N

Xn+1 = mapForw (Xn, u)
Xn+1

feas = Xn+1 ∩ C
Xn+1

infs = Xn+1 \ Xn+1
feas

Qn
u = mapBack (Xn+1

infs , u)
Xn+1 = Xn+1

feas

n = n+ 1
endwhile
Qn

u = mapBack (Xn, u)

Example 1 (continued). Setting N = 4, we proceed with Example 1. Fig. 3
visualizes the first step (n = 0) of Algorithm 2 in the x1x2 plane, where the
same scaling is used for all three figures. Starting with the initial set of states
X 0 in Fig. 3(a), the voltage vector u(k) = [1 − 1 − 1] maps X 0 from time-step
k to k + 1 as shown in Fig. 3(b). The set X 1 comprises two parts. X 1

feas (X 1
infs)

contains the states corresponding to feasible (infeasible) outputs. This set X 1
infs

284 T. Geyer and G. Papafotiou

x1(k)

x
2
(k

) X 1

(a) Set X 1 at step k+1

x1(k)

x
2
(k

)

X 2
infs

X 2
feas

(b) Set X 2 at step k+2

x1(k)

x
2
(k

)

Q1
u

(c) Set Q1
u at step

k that yields feasible

outputs at step k + 1,

but infeasible outputs

at k + 2

Fig. 4. Second step of Algorithm 2 in the x1x2 plane for u(k) = [1 − 1 − 1]

is consequently mapped back from time-step k + 1 to k resulting in Q0
u and

indicating that this set is zero-step feasible for the chosen u(k). Furthermore, we
set X 1 = X 1

feas.
The second step (n = 1) is shown in Fig. 4 starting from the set X 1 at time-

step k + 1 in Fig. 4(a). Applying u(k) = [1 − 1 − 1] to this set maps it from
time-step k + 1 to k + 2 as shown in Fig. 4(b). Again, X 2

feas (X 2
infs) contains

the states corresponding to feasible (infeasible) outputs. The states in X 2
infs are

mapped back for two steps from k+2 to k yielding Q1
u which is shown in Fig. 4(c)

and refers to states which are one-step feasible for u(k).
Repeating the above procedure for n = 2, 3, 4 and collecting the sets Qn

u

yields the polyhedral partition {Qn
u}4

n=0 shown in Fig. 5. The outer polyhedra
correspond to outputs that are feasible for zero time-steps when applying u(k) =
[1 −1 −1], while the inner polyhedra are feasible for one, two, three and four time-
steps as x2(k) is increasing. Note that {Qn

u}4
n=0 is by construction a polyhedral

partition of the set X 0.
The computation time for the second stage for the given example is approx-

imately 2 min on a Pentium IV. �

Summing up, Stages I and II yield a semi-explicit control law that is eval-
uated by following Algorithm 1, with the main difference that the number of
steps nu is not calculated by mapping operations but rather by set membership
tests evaluating if the given state lies in the respective polyhedron. Specifically,
if for the given u(k − 1), the state x(k) lies in the core, reapply the last volt-
age vector again. Else determine for each new voltage vector the polyhedron in
{Qn

u}N
n=0 containing x(k), evaluate the associated number of time-steps nu, and

find the voltage vector u(k) with the lowest cost as defined in Algorithm 1. This
is formalized in Algorithm 3.

Direct Torque Control for Induction Motor Drives 285

0.82 0.86 0.94 0.98 1.02
0.20

0.22

0.24

0.26

0.28

0.9

Q0
u

Q1
u

Q2
u

Q3
u

Q4
u

x1(k)

x
2
(k

)

(a) Polyhedral partition in the x1x2

plane for x3 = 0.95

0.9
0.2

1

0.82
0.86

0.94
0.98

1.02

0.22
0.24

0.26
0.28
0.5

0.6

0.7

0.8

0.9

x1(k)x2(k)

x
3
(k

)

(b) Polyhedral partition in the three-

dimensional state space

Fig. 5. The resulting polyhedral partition {Qn
u}N

n=0 of Algorithm 2 for u(k) = [1 −1 −1]

and N = 4, where the colors correspond to the number of steps n

Algorithm 3

function u(k) = Algo3 (x(k), u(k − 1))
if x(k) ∈ Qc

u

u(k) = u(k − 1)
else

for all u(k) ∈ U \ u(k − 1)
determine nu such that x(k) ∈ Qnu

u

endfor
u(k) = arg minu(k)

||u(k)−u(k−1)||
nu

endif

Regarding the computational burden for the on-line computation of the con-
trol input, in the worst case, one core needs to be evaluated and the seven
polyhedral partitions of U \ u(k − 1) which feature in general a low number of
polyhedra.

Stage III. In the third stage we pre-compute Algorithm 3 and derive the fully ex-
plicit control law as a function of the last voltage vector u(k−1) and the current
state x(k). For u(k − 1) ∈ U , we evaluate for each polyhedron in {Qn

u}N
n=0 the

cost and associate with it the voltage vector u(k). Next, the core Qc
u is added

with zero cost and the voltage vector u(k) = u(k − 1). Finally, we compare
the cost expressions and iteratively remove (parts of) polyhedra with inferior

286 T. Geyer and G. Papafotiou

0.82 0.86 0.94 0.98 1.02
0.20

0.22

0.24

0.26

0.28

0.9
x1(k)

x
2
(k

)

(a) Polyhedral partition in the x1x2

plane for x3 = 0.95

0.82
0.86

0.94
0.98

1.02

0.20
0.22

0.24
0.26

0.28
0.5

0.6

0.7

0.8

0.9

0.9

1.0

x1(k)
x2(k)

x
3
(k

)

(b) Polyhedral partition in the three-

dimensional state-space

Fig. 6. Polyhedral partitions of the state-feedback control law resulting from Stage III

for u(k − 1) = [1 − 1 − 1], where each color corresponds to a voltage vector u(k) ∈ U

costs2. A detailed exposition and analysis of this algorithm can be found in [2].
This yields one polyhedral partition, where each polyhedron refers to a voltage
vector u(k) (and not to a number of time-steps). This procedure is repeated for
all the eight former voltage vectors u(k− 1) yielding eight different fully explicit
state-feedback control laws. As a result, the computational burden of evaluat-
ing the control law is reduced, as u(k − 1) directly defines the one polyhedral
partition that needs to be searched through in order to obtain u(k). However,
the memory requirements are higher since the polyhedral partitions of the fully
explicit control law are in general more complex than the one of the semi-explicit
control law.

Example 1 (continued). Applying Stage III to Example 1 yields for u(k − 1) =
[1 − 1 − 1] the explicit control law shown in Fig. 6. Each color corresponds to
a voltage vector u(k) ∈ U . In particular, the large polyhedron in the center of
the three-dimensional state space refers to u(k) = u(k− 1). The explicit control
law comprises a total of eight control laws similar to Fig. 6, where each one
corresponds to a formerly applied voltage vector u(k − 1) ∈ U .

2 As the cost expressions used in Algorithms 1 and 3 are rational, where the nominator

(in the case of a two-level inverter) is restricted to the integers two, four and six,

and the denominator to 0, . . . , N , the costs take only a few different values. This

increases the possibility that at a given time two or more voltage vectors have the

same associated cost leading to ambiguities in the choice of the next voltage vector. In

such cases, we suggest to remove the ambiguity by imposing an additional heuristic

selection criterion. Examples for such rules are to select the vector that keeps the

controlled variables feasible for the maximal number of steps, or to favor zero vectors.

Obviously, these ambiguities occur less frequently when the maximal horizon N is

increased.

Direct Torque Control for Induction Motor Drives 287

The computation was performed using the function mpt removeOverlaps of
the Multi-Parametric Toolbox [7]. The computation time was 15 min. �

5 Simulation Results

The simulation results presented in this section were derived for a DTC drive
featuring a two-level inverter. The parameters of the drive are the same as in [9],
and the operating point we consider is as in Example 1. As mentioned before,
the only design parameter which influences the calculation of the state-feedback
controller and consequently the performance of the drive, is the maximal horizon
N over which the feasibility of each voltage vector is considered.

In the following, we evaluate the performance of the proposed Feasibility
Approach in terms of the average inverter switching frequency. As a bench-
mark, we employ the Optimal DTC scheme presented in [9]. The corresponding
state-feedback controller [9], which was derived for a prediction horizon of two
and features a total of 47’000 polyhedra, yields for the above setup an average
switching frequency of 525 Hz. Note that in the Optimal DTC scheme switching
is allowed at every time-step within the prediction horizon, and that the com-
parison is based on the same case study as in [9]. In particular, the same drive
parameters, operating point and bounds imposed on the torque and the stator
flux are used.

The results obtained with the Feasibility Approach are summarized in
Table 1 for eight different values of the maximal horizon N . For the horizon
used in [9], i.e. N = 2, the switching frequency is significantly increased with
respect to the benchmark. This is to be expected, since the move blocking strat-
egy (no switching of the control input within the horizon) reduces the degrees
of freedom of the control algorithm. However, setting the maximal horizon to
N = 5 yields a switching frequency that is comparable to the one obtained with
the Optimal DTC approach, and the choices of N = 6 and N = 7 reduce the

Table 1. Performance and complexity of the state-feedback control law

N switching total number of polyhedra total number of polyhedra

frequency [Hz] in semi-explicit control law in fully explicit control law

2 632 292 1192

3 606 440 1891

4 572 625 2226

5 540 860 2907

6 510 1051 3362

7 495 1256 3737

8 547 1467 4443

9 574 1694 4758

288 T. Geyer and G. Papafotiou

switching frequency. Most important, this performance improvement is achieved
despite the complexity reduction of the state-feedback controller by an order of
magnitude with respect to its Optimal DTC counterpart.

Focusing on the case of N = 7, the relative switching frequency improvement
with respect to the benchmark amounts to 5.7 %. Furthermore, we should point
out that using the Feasibility Approach the bounds on the torque and the stator
flux are very strictly respected. The Optimal DTC scheme, however, allows for
small violations of the bounds; the degree of the violations can be adjusted
using a design parameter (penalty on the soft constraints for the bounds) that
affects the switching frequency. As tightening the bounds increases the switching
frequency, the expected performance improvement is even more pronounced.

For completeness, one should note that the switching frequency does not
monotonically decrease with N . This phenomenon has also been observed with
the Optimal DTC scheme and is currently under investigation. In particular,
a further increase of the horizon to N = 8 or N = 9 leads to a performance
deterioration with respect to N = 7.

6 Conclusions and Outlook

In this paper, we have presented the derivation and performance analysis of
a state-feedback controller based on MPC for the DTC problem of induction
motors driven by a two-level inverter. The proposed controller features a signif-
icantly lower complexity (by an order of magnitude) than its counterpart in [9]
for the same fixed operating point. It is derived through a simple and system-
atic design procedure and maintains and even improves the favorable control
performance properties obtained by the use of predictive control.

The controller presented in this paper could be extended in the following
two ways. Firstly, by considering changes in the operating point. This necessi-
tates the parametrization of the drive’s PWA model over the rotational speed
ωr and the torque and flux bounds. Concerning the bounds, only one parameter
is needed for the median of the torque bounds. The flux bounds and the width
of the torque bounds can be assumed to be in general time-invariant. Obviously,
the complexity of the resulting controller would be increased. Yet it is to be ex-
pected that the low complexity with respect to an accordingly extended optimal
controller in [9] is maintained.

Secondly, this paper can be extended by applying the presented method to
a DTC drive with a three-level inverter. As a result, two additional control
objectives, namely the regulation of the inverter’s neutral point potential and
the even distribution of the switching effort between the upper and the lower
half of the inverter, arise. A straightforward approach would be to accurately
model the nonlinear dynamics of the neutral point potential. To avoid such a
substantially more complex PWA model, a favorable approach is to refrain from
deriving the fully explicit controller and to rather use the semi-explicit realization
in combination with time-varying weights on the voltage vectors. An outer loop
should monitor the neutral point potential and set the weights accordingly to

Direct Torque Control for Induction Motor Drives 289

favor the selection of voltage vectors that keep the potential within given bounds
around zero. The same approach can be also used for the even distribution of
the switching effort. Since these control objectives are roughly and heuristically
defined, they do not require to be strictly met thus rendering the above approach
a sufficient approximation.

The full version of this paper is available as technical report [4] extending
the modelling in Section 2.

Acknowledgements

This work was supported by ABB Switzerland Ltd., and by the IST research
project IST-2001-33520 Control and Computation of the EU. The authors would
like to thank Christian Stulz, Pieder Joerg and Petri Schroderus of ABB ATDD,
Turgi, Switzerland, and Andreas Poncet of ABB Corporate Research, Baden-
Dättwil, Switzerland, for their continuous advice. Most importantly, we would
like to acknowledge the contribution of Manfred Morari from ETH Zürich,
Switzerland.

References

1. ABB Asea Brown Boveri Ltd. Product webpage of ACS 6000. online document.

www.abb.com/motors&drives.
2. M. Baotić and F.D. Torrisi. Polycover. Technical Report AUT03-11, Automatic

Control Laboratory ETH Zurich, http://control.ee.ethz.ch/, 2003.

3. D.P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,

1995.

4. T. Geyer, G. Papafotiou, and M. Morari. Direct torque control for induc-

tion motor drives: A model predictive control approach based on feasibil-

ity. Technical Report AUT04-09, Automatic Control Laboratory ETH Zurich,

http://control.ee.ethz.ch/, 2004.

5. T. Geyer, F.D. Torrisi, and M. Morari. Efficient mode enumeration of composi-

tional hybrid systems. In A. Pnueli and O. Maler, editors, Hybrid Systems: Com-
putation and Control, volume 2623 of Lecture Notes in Computer Science, pages

216–232. Springer-Verlag, 2003.

6. P.C. Krause. Analysis of Electric Machinery. McGraw-Hill, NY, 1986.

7. M. Kvasnica, P. Grieder, M. Baotić, and M. Morari. Multi parametric toolbox

(MPT). In R. Alur and G. Pappas, editors, Hybrid Systems: Computation and Con-
trol, volume 2993 of Lecture Notes in Computer Science, pages 448–462. Springer-

Verlag, 2004. http://control.ee.ethz.ch/~mpt.
8. J.M. Maciejowski. Predictive Control. Prentice Hall, 2002.

9. G. Papafotiou, T. Geyer, and M. Morari. Optimal direct torque control of three-

phase symmetric induction motors. Technical Report AUT03-07, Automatic Con-

trol Laboratory ETH Zurich, http://control.ee.ethz.ch/, 2003.

10. G. Papafotiou, T. Geyer, and M. Morari. Optimal direct torque control of three-

phase symmetric induction motors. In Proceedings of the 43th IEEE Conference
on Decision and Control, Atlantis, Bahamas, December 2004.

290 T. Geyer and G. Papafotiou

11. P. Pohjalainen, P. Tiitinen, and J. Lulu. The next generation motor control method

- direct torque control, DTC. In Proceedings of the European Power Electronics
Chapter Symposium, volume 1, pages 115–120, Lausanne, Switzerland, 1994.

12. E.D. Sontag. Nonlinear regulation: The piecewise linear approach. IEEE Trans-
actions on Automatic Control, 26(2):346–358, April 1981.

13. I. Takahashi and T. Noguchi. A new quick response and high efficiency control

strategy for the induction motor. IEEE Transactions on Industry Applications,
22(2):820–827, September/October 1986.

14. I. Takahashi and Y. Ohmori. High-performance direct torque control of an

induction motor. IEEE Transactions on Industry Applications, 25(2):257–264,

March/April 1989.

15. F.D. Torrisi and A. Bemporad. Hysdel — a tool for generating computational

hybrid models for analysis and synthesis problems. IEEE Transactions on Control
Systems Technology, 12(2):235–249, March 2004.

Reachability of Uncertain Linear Systems
Using Zonotopes�

Antoine Girard

Department of Electrical and Systems Engineering,

University of Pennsylvania, Philadelphia, PA 19104

agirard@seas.upenn.edu

Abstract. We present a method for the computation of reachable sets of

uncertain linear systems. The main innovation of the method consists in

the use of zonotopes for reachable set representation. Zonotopes are spe-

cial polytopes with several interesting properties : they can be encoded

efficiently, they are closed under linear transformations and Minkowski

sum. The resulting method has been used to treat several examples and

has shown great performances for high dimensional systems. An exten-

sion of the method for the verification of piecewise linear hybrid systems

is proposed.

1 Introduction

Reachability computation is required in several tasks such as verification or
synthesis of hybrid systems [10, 19]. Except for very specific classes of hybrid
systems [4, 15], exact computation of the reachable sets is impossible. The main
difficulty lies in the computation of the reachable sets of the continuous dynam-
ics. The importance of the problem has motivated much research on approximate
reachability analysis. Two main approaches have been developped. The first one
includes all abstraction methods (see for instance [1, 20]). The main idea is to
process the reachability analysis on a simple abstract system which approxi-
mates a more complex one. The second approach consists in computing directly
approximations of the reachable sets of the system [2, 5, 7, 14, 16, 18].

The success of such methods lies in the choice of an efficient representation
of the approximations of the reachable sets. Methods have been proposed using
several set representations such as general polytopes [7] oriented hyperrectangles
[18], orthogonal polyhedra [2], ellipsoids [14] or level sets [16]. These methods
have been used and have succeeded in solving some case studies. However, they
remain expensive and their use is only limited to small systems.

Thus, today, the challenge for new work on reachability is to find how we can
handle large-scale (or even middle-scale) systems. Recently [21], a new method
has been proposed allowing to process safety verification for linear systems of
high dimension (up to dimension 100 in a reasonnable time).

� Research partially supported by the Région Rhône-Alpes (Projet CalCel).

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 291–305, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

292 A. Girard

In this paper, we propose a method for the computation of an over-approxima-
tion of the reachable sets of uncertain linear systems. The reachable sets are
represented as the union of zonotopes (special polytopes). The resulting approx-
imations are of good quality. Moreover, the method can be used for large-scale
systems.

The paper is organized as follows. First, we introduce the mathematical no-
tion of zonotope. Then, we explain our algorithm for the computation of ap-
proximate reachable sets of uncertain linear systems. Afterwards, we present
some experimental results. Finally, we use it for hybrid system verification. For
a better readability, the proofs are state in the appendix.

2 Zonotopes: Definition and Properties

Zonotopes are a special class of convex polytopes. Traditionally, a zonotope is
defined as the image of a cube under an affine projection [22]. Equivalently, a
zonotope is a Minkowski sum of a finite set of line segments. In this paper, we
will use the following definition:

Definition 1 (Zonotope). A zonotope Z is a set such that:

Z =

{
x ∈ Rn : x = c+

i=p∑
i=1

xigi, −1 ≤ xi ≤ 1

}

where c, g1, . . . , gp are vectors of Rn. We note Z = (c,< g1, . . . , gp >).

Thus, it is clear that a zonotope is a polytope. Parallelepipeds and hyper-
rectangles are particular zonotopes.

Note that a zonotope Z = (c,< g1, . . . , gp >) is always centrally symmetric
and that the point c ∈ Rn is the center of Z. The collection of vectors g1, . . . , gp

is called the set of generators of Z. On figure 1, we represented a planar zonotope
with three generators. For a zonotope with p generators in Rn, the value of p/n
is called the order of the zonotope. For instance, a parallelepiped is a zonotope
of order 1. From a practical point of view, the definition 1 gives an efficient
representation of the set since the number of faces of a zonotope in Rn with p

g3

g2

g1

Fig. 1. Example of a zonotope with three generators

Reachability of Uncertain Linear Systems Using Zonotopes 293

generators is in O(pn−1) [11]. Zonotopes have long been studied in combinatorial
geometry [22]. Practical application of zonotopes have been shown in various
domains such as systems of polynomial equations [12], computational geometry
[11] or rigorous approximation of dynamical systems [13, 9].

In this paper, we propose using zonotopes to over-approximate the reachable
sets of uncertain linear systems. The use of zonotopes has been motivated by
two main properties:

1. Zonotopes are closed under linear transformation. Let L be a linear map and
Z = (c,< g1, . . . , gp >) a zonotope,

LZ =
{
Lx : x = c+

∑i=p
i=1 xigi, −1 ≤ xi ≤ 1

}
= (Lc,< Lg1, . . . ,Lgp >).

The image of a zonotope by a linear map can be computed in linear time
with regard to the order of the zonotope.

2. Zonotopes are closed under Minkowski sum. Let Z1 = (c1, < g1, . . . , gp >)
and Z2 = (c2, < h1, . . . , hq >) be two zonotopes,

Z1 + Z2 = (c1 + c2, < g1, . . . , gp, h1, . . . , hq >).

Thus, the Minkowski sum of two zonotopes can be computed by the con-
catenation of two lists.

3 Approximation of Reachable Sets

Let us consider the following uncertain linear system :

x′(t) = Ax(t) + u(t), ‖u(t)‖ ≤ μ (1)

where A is an n × n matrix and ‖.‖ denotes the infinity norm on Rn (‖x‖ =
maxi=n

i=1 |xi|). Given a set of possible initial values I, the reachable set of the
system at the time t is

Φt(I) = {y ∈ Rn : ∃x solution of (1) , x(0) ∈ I ∧ x(t) = y} .

The reachable set on the interval [t, t] from the set of initial values I can therefore
be defined by

R[t,t](I) =
⋃

t∈[t,t]

Φt(I).

In [10], a method using the maximum principle has been proposed for the com-
putation of the reachable sets of uncertain linear systems such as (1). In [5], a
general method for uncertain systems is proposed. This method works for any
uncertain system provided you can compute the reachable sets of an associated
deterministic system. This technique makes intensive use of the Minkowski sum.

294 A. Girard

Hence, it is generally expensive (particularly for high dimensional systems). For
the reasons mentioned in the previous section, the use of zonotopes may be a
good solution to avoid expensive computations of the Minkowski sum.

Let T be a positive real number, we want to compute an over-approximation
of the reachable set R[0,T](I). Our method has similarities with the flow pipe
technique [7] which has been used successfully for deterministic systems. Let
r > 0 be the time step, we assume that N = T/r is an integer. The reachable
set R[0,T](I) can be decomposed in the following way:

R[0,T](I) =
i=N−1⋃

i=0

R[ir,(i+1)r](I). (2)

Thus, if we are able to compute over-approximations of the sets R[ir,(i+1)r](I),
we can compute an over-approximation of the set R[0,T](I). Moreover, we have

R[ir,(i+1)r](I) = Φr(R[(i−1)r,ir](I)).

Therefore, we need to define conservative approximations of the maps R[0,r]
and Φr, for r arbitrary small. Moreover, since we aim to use zonotopes, these
conservative approximations must map zonotopes into zonotopes.

3.1 Conservative Approximation of Φr

Let Z be a zonotope in Rn. Let x ∈ Z, y ∈ Φr(x), there exists an admissible
input u such that

y = erAx+
∫ r

0
e(r−s)Au(s)ds.

Therefore,

‖y − erAx‖ ≤
∫ r

0
e(r−s)‖A‖μds =

er‖A‖ − 1
‖A‖ μ. (3)

Let us note βr = er‖A‖−1
‖A‖ μ, from the previous equation, Φr(Z) is included in

the set erAZ + �(βr) where �(βr) denotes the ball of center 0 and of radius βr

for the infinite norm. Note that �(βr) is actually a hypercube and consequently
it is a zonotope. Hence, the set erAZ + �(βr) over-approximating Φr(Z) is a
zonotope. Moreover, we can show that the quality of the approximation is good
for the Hausdorff distance.

Definition 2 (Hausdorff distance). The Hausdorff distance between two sub-
sets of Rn, S1 and S2 is

dH(S1, S2) = max
(

sup
x1∈S1

inf
x2∈S2

‖x1 − x2‖, sup
x2∈S2

inf
x1∈S1

‖x1 − x2‖
)
.

Lemma 1 (Conservative approximation of Φr)

1. Conservative approximation: Φr(Z) ⊆ erAZ + �(βr)
2. Convergence: dH(Φr(Z), erAZ + �(βr)) ≤ μ‖A‖er‖A‖r2.

Reachability of Uncertain Linear Systems Using Zonotopes 295

3.2 Conservative Approximation of R[0,r]

The over-approximation process of R[0,r] is a bit more complex. Let Z = (c,<
g1, . . . , gp >) be a zonotope; using (3) it is clear that

R[0,r](Z) ⊆ (
⋃

t∈[0,r]

etAZ) + �(βr). (4)

Thus, we shall over-approximate the reachable set of the deterministic linear
system x′ = Ax using a zonotope, and then add the set �(βr). Our method
for the approximation of the reachable set of the deterministic system is quite
similar to the one of [7] or [10] but with zonotopes.

In [10], for instance, the method proposed is the following. First, the reachable
set is approximated by the convex hull of Z and erAZ. Secondly, this set is
bloated in order to over-approximate the reachable set. The convex hull of two
zonotopes is generally not a zonotope, hence, we can not apply directly this
method to our problem. For instance, we can replace the convex hull by the
smallest zonotope enclosing Z and erAZ. This problem is complex and might be
very expensive to solve for high dimensional systems (see [11]). Therefore, we
take a rougher approximation which is very simple to compute:

P = (c+erAc
2 , < g1+erAg1

2 , . . . ,
gp+erAgp

2 , c−erAc
2 , g1−erAg1

2 , . . . ,
gp−erAgp

2 >). (5)

The center and the p first generators of the zonotope gives the mean value of
the zonotopes Z and erAZ. The p + 1 other generators are small (their norm
is O(r)) and allow to enclose both sets Z and erAZ. Afterwards, this set is
bloated. This is done by adding a ball of radius αr to the zonotope P . αr

must be big enough so that P + �αr contains the reachable set of the de-
terministic system (the computation of the value of αr can be found in ap-
pendix). The principle of the over-approximation of the reachable set is shown on
figure 2.

P

Z

erAZ

P + �(αr)

Fig. 2. Principle of the over-approximation of the reachable set

296 A. Girard

Lemma 2 (Conservative approximation of R[0,r]). Let P be defined as in
equation 5.
1. Conservative approximation: R[0,r](Z) ⊆ P + �(αr + βr)
2. Convergence:

dH(R[0,r](Z), P + �(αr + βr)) ≤ r‖A‖er‖A‖
(

μ
‖A‖ + (1

2 + r) supx∈Z ‖x‖
)

with αr = (er‖A‖ − 1 − r‖A‖) supx∈Z ‖x‖.

3.3 Reachability Algorithm

We can now present the reachability algorithm. The principle is similar to the
one of the method presented in [5]. First, the reachable set is initialized using
the method presented in the section 3.2. Afterwards, the image of the reachable
set by the flow of the deterministic system x′ = Ax is computed and bloated as
explained in the section 3.1.

Input: A zonotope of initial values I = (c, < g1, . . . , gp >)

Result: An approximation of the reachable set R[0,T](I)

N = T
r

αr = (er‖A‖ − 1 − r‖A‖) supx∈I ‖x‖
βr = er‖A‖−1

‖A‖ μ

P0 = (c+erAc
2 , < g1+erAg1

2 , . . . ,
gp+erAgp

2 , c−erAc
2 , g1−erAg1

2 , . . . ,
gp−erAgp

2 >)

Q0 = P0 + �(αr + βr)

R0 = Q0

for i ← 1 to N − 1 do
Pi = erAQi−1

Qi = Pi + �(βr)

Ri = Ri−1 ∪ Qi

end
return RN

Algorithm 1: Approximating the reachable set of system (1)

This algorithm, whose implementation is very simple, allows to compute an
over-approximation of the reachable set R[0,T](I). The approximation converges
to the reachable set as the time step becomes smaller.

Theorem 1 (Conservative approximation of R[0,T](I)). Let RN−1 be the
set computed by algorithm 1.
1. Conservative approximation: R[0,T](I) ⊆ RN−1
2. Convergence:

dH(R[0,T](I), RN−1) ≤ r‖A‖e‖A‖T

(
2μ
‖A‖ + (

1
2

+ r) sup
x∈Z

‖x‖
)
.

Reachability of Uncertain Linear Systems Using Zonotopes 297

3.4 Controlling the Expansion of the Order of Zonotopes

At each iteration of the loop of algorithm 1, the set Qi+1 is obtained by comput-
ing the image of Qi by a linear map and by adding the set �(βr). Consequently,
the order of the zonotope Qi+1 equals the order of Qi plus 1. Therefore, the
order of the zonotope Qi is O(i). The memory allocation needed to encode the
over-approximation of the set R[0,T](I) is in O(N2). We can also show that the
time needed for its computation is also O(N2). For large value of N the over-
approximation of R[0,T](I) can thus be quite expensive in memory and in time.

A solution to avoid this quadratic expansion is to limit the order of the
zonotopes Qi. Let m be the maximum order allowed for the zonotopes Qi. If
the order of the zonotope Qi is m, then following algorithm 1, the order of
Qi+1 should be m+ 1 which is greater to the maximum order allowed. We must
have recourse to a reduction step. It consists in taking 2n generators of Qi+1,
h1, . . . , h2n, and to replace them by n generators, such that the new zonotope of
order m contains Qi+1 (see figure 3). Equivalently, we have to over-approximate
the zonotope (0, < h1, . . . , h2n >) by a zonotope with n generators and whose
center is 0. Let x be a point of the zonotope (0, < h1, . . . , h2n >), then x =∑i=2n

i=1 xihi, where xi ∈ [−1, 1]. xj , the j-th component of x, is bounded in
absolute value by

∑i=2n
i=1 |hj

i | where hj
i is the j-th component of hi. Therefore,

(0, < h1, . . . , h2n >) is included in the interval hull[
−
∑i=2n

i=1 |h1
i | ,

∑i=2n
i=1 |h1

i |
]
× · · · ×

[
[−
∑i=2n

i=1 |hn
i | ,

∑i=2n
i=1 |hn

i |
]

which is a zonotope with n generators h′
1, . . . , h

′
n such that all the components

of the vector h′
j are equal to 0 except the j-th one which is given by

∑i=2n
i=1 |hj

i |.
The choice of the 2n generators of Qi+1 to be replaced is important for the

quality of the approximation. The best selection consists in taking the vectors
h1, . . . , h2n such that the over-approximation of the zonotope (0, < h1, . . . , h2n>)
by an intervall hull is as good as possible (intervall hulls are zonotopes whose gen-
erators have only one non zero component). Let Qi+1 = (c,< g1, . . . , g(m+1)n >)
and let us assume that the generators have been sorted so that:

‖g1‖1 − ‖g1‖∞ ≤ ‖g2‖1 − ‖g2‖∞ ≤ · · · ≤ ‖g(m+1)n‖1 − ‖g(m+1)n‖∞.

Fig. 3. Example of over-approximation of a zonotope by a zonotope of lower order

298 A. Girard

We choose for i ∈ {1, . . . , 2n}, hi = gi. These vectors are closed to vectors
with only one non zero component and therefore (0, < h1, . . . , h2n >) is well
approximated by an intervall hull.

Other heuristics for the reduction step can be found in [13, 9].

4 Experimental Results

The method has been implemented in the free scientific software package Scilab.
We used our method to compute the reachable set of numerous uncertain linear
systems of various size. In this section, we present some of our results.

First, we considered the two dimensional system defined by :

A =
(
−1 −4

4 −1

)
, μ = 0.05.

We computed an over-approximation of the reachable set R[0,2](I) for the set
of initial values I = [0.9, 1.1] × [−0.1, 0.1]. The over-approximation has been
computed using a time step of 0.02 (100 iterations). The maximum order allowed
for zonotopes is 10 (20 generators). The result is shown on figure 4. We can see
that the quality of the approximation is good.

We also computed an over-approximation of the reachable set R[0,1](I) of a
five dimensional system where the Jordan form of the matrix A is⎛⎜⎜⎜⎜⎝

−1 −4 0 0 0
4 −1 0 0 0
0 0 −3 1 0
0 0 −1 −3 0
0 0 0 0 −2

⎞⎟⎟⎟⎟⎠
The perturbations are bounded by μ = 0.01. The over-approximation has been
computed using a time step of 0.005 (200 iterations) and the maximum order

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

+ +

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

+ +

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

+
+
+
+
+
+
+
+
+
+
+

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

+
+
+
+
+
+
+
+
+
+
+

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

Fig. 4. Reachable set of the two dimensional example. Left: first iterations of the

algorithm. Right: over-approximation of the reachable set R[0,2](I)

Reachability of Uncertain Linear Systems Using Zonotopes 299

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−1.0 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 5. Reachable set of the five dimensional example: projection on coordinates x1

and x2 (left), x4 and x5 (right)

Table 1. Computation times of the reachable set of uncertain linear systems of several

dimensions. (Implementation: Scilab; Machine: Pentium III, 1 GHz)

Dimension 5 10 20 50 100

Cputime (s) 0.05 0.33 1.5 9.91 43.7

allowed for zonotopes is 40 (200 generators). Projections of the reachable set are
shown on figure 4.

We also used our method for high dimensional systems. Experimental results
are shown in table 1. We computed an over-approximation of the reachable set
R[0,1](I) of uncertain linear systems of several dimensions (with μ = 0.01). We
used a time step equal to 0.01 (100 iterations) and the maximum order allowed
for zonotopes is 5. The matrices were chosen at random and then normalized
(for the infinity norm). We can see that our algorithm has great performances.
Moreover, it particularly fits high-dimensional systems since it computes the
reachable set of a hundred dimensional system in less than 1 minute.

5 Verification of Hybrid Systems

Our method can of course be incorporated in a hybrid system verification pro-
cess. It is compatible with high level algorithms used by the toolboxes d/dt
[3] and CheckMate [8]. Let us consider hybrid systems where the continuous
dynamics are given by uncertain linear differential equations such as (1). In
each mode, the reachable set of the hybrid system can be computed efficiently
by our method. It remains for us to incorporate an event detection process
which checks at each step wether the reachable set intersects the guards of
the system or not. We will assume that the guards are specified by switching
planes:

Gq,q′ = {x ∈ Rn : dT
q,q′x = eq,q′}, where dq,q′ ∈ Rn, eq,q′ ∈ R.

300 A. Girard

5.1 Detecting Intersection with Switching Planes

Thus, at each step of algorithm 1, we have to check if Qi the over-approximation
of R[ir,(i+1)r](I) intersects the planes. This problem is equivalent to check if a
zonotope intersects a hyperplane.

Let Z = (c,< g1, . . . , gp >) be a zonotope and G = {x ∈ Rn : dTx = e} a
hyperplane, the intersection of Z and G is not empty if and only if

∃x1 ∈ [−1, 1], . . . , xp ∈ [−1, 1], dT c+
i=p∑
i=1

dT gixi = e.

Thus, the zonotope Z intersects the hyperplane G, if and only if

(e − dT c) ∈
[
−

i=p∑
i=1

|dT gi|,
i=p∑
i=1

|dT gi|
]
.

Hence, we can see that it is very easy to check if a zonotope intersects a hy-
perplane. Moreover, this is done in linear time with regard to the number of
generators of the zonotope as well as the dimension of the system.

5.2 Checking Robustness of the Two Tank System

The two-tank system (see figure 6) has been presented in [17] as an illustration
of limit cycles arising in hybrid systems. The system consists of two tanks and
two valves. The first valve allows to add water in the first tank, while the second
one allows to drain off the second tank. There are also a constant inflow in tank 1
and a constant outflow in tank 2. The system is obtained by linearization about
an operating point. The objective is to keep the water levels within some limits
using a feedback on/off switching strategy for the valves.

The two valve settings result in four discrete states for our piecewise linear
hybrid system. The discrete dynamics are given by the automaton presented
on figure 6. The continuous dynamics are given by affine differential equations
x′ = Aqx+ bq, q ∈ {1, 2, 3, 4} with

A1 =
(
−1 0

1 0

)
A2 =

(
−1 0

1 0

)
A3 =

(
−1 0

1 −1

)
A4 =

(
−1 0

1 −1

)
b1 =

(
−2 0

)t
b2 =

(
3 0

)t
b3 =

(
−2 −5

)t
b4 =

(
3 −5

)t

It is well known that this system has a stable limit cycle. In this part, we
propose to use our method to check the robustness of this limit cycle. Indeed,
the real continuous dynamics can not be exactly known, there are uncertainties
on the characteristics of the valves, variations of the inflow and of the outflow.
These uncertainties can be modeled by adding a small perturbation term:

x′(t) = Aq(t)x(t) + bq(t) + u(t), ‖u(t)‖ ≤ μ.

Reachability of Uncertain Linear Systems Using Zonotopes 301

x1

x2

Q0Q1

Q2 QB

4: on/on1: off/off

x1 = −1

x1 = −1

x1 = 1

x2 = 1

x2 = 1

x2 = 0

x2 = 0

3: off/on

2: on/off

Fig. 6. The two tank system

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

. .

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

. .

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

. .

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

. .

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

. .

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 7. Reachable set of the two tank system. Left: μ = 0.01. Right: μ = 0.1

The goal for us is to check if the periodic behaviour remains when we replace
the deterministic dynamics by the uncertain ones. It is easy to generalize the
method presented in the previous sections in order to handle uncertain affine
dynamics.

We computed the reachable set of the two tank system, for the initial discrete
state 3, and for the set of initial values of the continuous variable I = [1.5, 2.5]×
{1}. The reachable set has been computed for uncertainties bounded by 0.01 and
then by 0.1. The result is shown on figure 7. In both cases, we can check that
the periodic behaviour is conserved. Thus, the switching strategy is acceptable
since the water levels in each tank remain bounded.

302 A. Girard

6 Conclusion

In this paper, we presented a method for reachability analysis of uncertain linear
systems. The use of zonotopes allows an efficient implementation of the reach-
ability algorithm. The over-approximation of the reachable set converges as the
time step becomes smaller. An improvement of the algorithm has been proposed,
it consists in the reduction step (approximation of zonotopes by zonotopes of
lower order). Our method has been tested and has shown great performances for
high-dimensional systems. Furthermore, the method can be efficiently used for
reachability analysis of hybrid systems.

Future work should focus on several points. First, more general classes of lin-
ear systems should be considered. We believe that our method can be generalized
to linear systems of the form:

x′(t) = Ax(t) +Bu(t), u(t) ∈ U

where U is a zonotope. For some polytopic norm, the order of approximation of
the reachable set should be conserved. Secondly, a rigorous analysis of the error
introduced by the reduction step should be done. It is important to quantify
the influence of the maximum order allowed for zonotopes. The third important
point is the extension of the method to non-linear dynamics. The combination
of our method with several techniques already existing [5, 7, 13] could allow to
handle such dynamics.

References

1. R. Alur, T. Dang, F. Ivancic, Reachability analysis of hybrid systems via predi-

cate abstraction, Hybrid Systems : Computation and Control, C.J. Tomlin, M.R.

Greenstreet (Eds), no . 2289 in LNCS, pp 35-48, 2002.

2. E. Asarin, O. Bournez, T. Dang, O. Maler, Approximate reachability analysis of

piecewise linear dynamical systems, Hybrid Systems : Computation and Control,
N. Lynch, B. H. Krogh (Eds), no. 1790 in LNCS, pp 21-31, Springer, 2000.

3. E. Asarin, T. Dang, O. Maler, d/dt: A verification tool for hybrid systems, in the
Proc. of CDC’01, 2001.

4. E. Asarin, G. Schneider, S.Yovine. Towards computing phase portraits of polygonal

differential inclusions, Hybrid Systems : Computation and Control, C.J. Tomlin,

M.R. Greenstreet (Eds), no . 2289 in LNCS, pp 49-61, 2002.

5. E. Asarin, T. Dang, A. Girard, Reachability of non-linear systems using conser-

vative approximations, Hybrid Systems : Computation and Control, O. Maler, A.

Pnueli (Eds), no. 2623 in LNCS, pp 22-35, Spinger, 2003.

6. E. Asarin, T. Dang, Abstraction by projection and application to multi-affine sys-

tems, Hybrid Systems : Computation and Control, R. Alur, G.J. Pappas (Eds), no.

2993 in LNCS, pp 32-47, Springer, 2004.

7. A. Chutinan, B.H. Krogh, Verification of polyhedral invariant hybrid automata

using polygonal flow pipe approximations. Hybrid Systems : Computation and
Control, F. Vaandrager, J. van Schuppen (Eds), no. 1569 in LNCS, pp 76-90,

Springer, 1999.

Reachability of Uncertain Linear Systems Using Zonotopes 303

8. A. Chutinan, B.H. Krogh, Computational techniques for hybrid system verification,

IEEE Trans. on Automatic Control, vol. 48, no. 1, 2003, pp. 64-75.

9. Combastel C., A state bounding observer based on zonotopes, in Proc. of European
Control Conference, 2003.

10. T. Dang, Vérification et synthèse des systèmes hybrides, Thèse de Doctorat, In-

stitut National Polytechnique de Grenoble, 2000.

11. L.J. Guibas, A. Nguyen , L. Zhang, Zonotopes as bounding volumes, in Proc. of
Symposium on Discrete Algorithms, pp 803-812.

12. B. Huber and B. Sturmfels, A polyhedral method for solving sparse polynomial

systems, Math. of Computation, 64:1541-1555, 1995.

13. W. Kühn, Zonotope dynamics in numerical quality control, in Mathematical Visu-
alization, H.-C. Hege, K. Polthier (Eds), pp 125-134, Springer, 1998.

14. A. Kurzhanski, P. Varaiya, Ellipsoidal tehcniques for reachability analysis, Hybrid
Systems : Computation and Control, N. Lynch, B. H. Krogh (Eds), no. 1790 in

LNCS, Springer, 2000.

15. G. Lafferriere, G. Pappas, S. Yovine, Reachability computation for linear systems,

Proc. IFAC World Congress, E:7-12, 1999.

16. I. Mitchell, C. Tomlin, Level set methods for computation in hybrid systems, Hy-
brid Systems : Computation and Control, N. Lynch, B. H. Krogh (Eds), no. 1790

in LNCS, Springer, 2000.

17. M. Rubensson, B. Lennartson, S. Pettersson, Convergence to limit cycles in hybrid

systems: an example, Large Scale Systems: Theory and Applications, pp 704-709,

1998.

18. O. Stursberg, B.H. Krogh, Efficient representation and computation of reachable

sets for hybrid systems, Hybrid Systems : Computation and Control, O. Maler, A.

Pnueli (Eds), no. 2623 in LNCS, pp 482-497, Spinger, 2003.

19. C. Tomlin, I. Mitchell, A. Bayen, and M. Oishi, Computational techniques for the

verification and control of hybrid systems, Proc. of the IEEE, 91(7):986-1001, July

2003.

20. A. Tiwari, G. Khanna, Series of abstractions for hybrid automata, Hybrid Sys-
tems : Computation and Control, C.J. Tomlin, M.R. Greenstreet (Eds), no . 2289

in LNCS, pp 465-478, 2002.

21. H. Yazarel, G.J. Pappas, Geometric programming relaxations for linear system

reachability, in Proc. American Control Conference, 2004.

22. G.M. Ziegler, Lectures on polytopes, Graduate texts in Mathematics, Springer-

Verlag, 1995.

Appendix

Proof of Lemma 1 (Adapted from [5])

The proof of the first part of the lemma is a consequence of equation (3). Let us
prove the second part.

Let x ∈ erAZ + �βr, there exists z ∈ Z such that ‖erAz − x‖ ≤ βr. Let us
consider the constant input function u such that u(s) = ‖A‖

er‖A‖−1 (x − erAz) for
all s ∈ [0, r]. We can check that ‖u(s)‖ ≤ μ, therefore,

xu = erAz +
∫ r

0
e(r−s)Au(s) ds ∈ Φr(Z).

304 A. Girard

Then,

xu − x = erAz − x+
∫ r

0
e(r−s)Au(s) ds =

∫ r

0
e(r−s)Au(s) − 1

r
(x− erAz) ds

=
∫ r

0
e(r−s)Au(s) − er‖A‖ − 1

r‖A‖ u(s) ds

=
∫ r

0
e(r−s)Au(s) − u(s) − er‖A‖ − r‖A‖ − 1

r‖A‖ u(s) ds.

Therefore,

‖xu − x‖ ≤ μ

∫ r

0
(r − s)‖A‖e‖A‖(r−s) +

r‖A‖er‖A‖

2
ds ≤ μr2‖A‖er‖A‖.

Proof of Lemma 2

Let x be an element of Z, t ∈ [0, r], it is reasonnable to approximate the value
of etAx by x+ t

r (erAx− x). Indeed,

etAx− x− t

r
(erAx− x) =

k=∞∑
k=2

t(tk−1 − rk−1)
k!

Akx.

It follows that

‖etAx− x− t

r
(erAx− x)‖ ≤ (er‖A‖ − 1 − r‖A‖)‖x‖. (6)

Let αr = (er‖A‖ − 1 − r‖A‖) supx∈Z ‖x‖, from (4) and (6), we have R[0,r](Z) ⊆
Q + �(αr + βr) where Q = {x + t

r (erAx − x) : x ∈ Z, t ∈ [0, r]}. We can check
that the zonotope P defined by equation (5) contains the set Q. Therefore, the
first part of the lemma is proved.

Before proving the second part of the lemma, let us compute the distance
between P and Q. Let x ∈ P , there exist −1 ≤ xi ≤ 1, −1 ≤ λ ≤ 1, −1 ≤ yi ≤ 1,

x =
c+ erAc

2
+

i=p∑
i=1

gi + erAgi

2
xi +

c− erAc

2
λ +

i=p∑
i=1

gi − erAgi

2
yi.

Let y be the point defined by y = c+erAc
2 +

∑i=p
i=1

gi+erAgi

2 xi. We can check that
y is an element of Q. Moreover,

‖x− y‖ ≤ ‖c− erAc

2
λ +

i=p∑
i=1

gi − erAgi

2
yi‖ ≤ er‖A‖ − 1

2
‖cλ +

i=p∑
i=1

giyi‖.

Therefore, dH(P,Q) ≤ er‖A‖−1
2 supx∈Z ‖x‖. Now let us remark that,

dH(R[0,r](Z), P + �(αr + βr)) ≤ dH(R[0,r](Z), Q+ �(αr + βr)) + dH(P,Q).

Reachability of Uncertain Linear Systems Using Zonotopes 305

Thus, let x ∈ Q+ �(αr + βr), there exists y ∈ Q such that ‖x− y‖ ≤ αr + βr.
There exist z ∈ Z, t ∈ [0, r] such that y = z + t

r (erAz − z). Let x′ = etAz, from
equation (6), ‖x′ − y‖ ≤ αr. Moreover since x′ ∈ R[0,r](Z) we have

dH(R[0,r](Z), Q+ �(αr + βr)) ≤ 2αr + βr ≤ er‖A‖r2 sup
x∈Z

‖x‖ + er‖A‖rμ.

Proof of Theorem 1 (Adapted from [5])

From lemma 2, R[0,r](I) ⊆ Q0. Assume that R[(i−1)r,ir](I) ⊆ Qi−1, using
lemma 1

R[ir,(i+1)r](I) = Φr(R[(i−1)r,ir](I)) ⊆ Φr(Qi−1) ⊆ erAQi−1 + �(βr) = Qi.

Thus, by induction, the first part of the theorem is proved. Let us note δi−1 =
dH(R[(i−1)r,ir](I), Qi−1).

δi = dH(Φr(R[(i−1)r,ir](I)), erAQi−1 + �(βr))

≤ dH(Φr(R[(i−1)r,ir](I)),Φr(Qi−1)) + dH(Φr(Qi−1), erAQi−1 + �(βr)).

From lemma 1, dH(Φr(Qi−1), erAQi−1 + �(βr)) is bounded by μ‖A‖er‖A‖r2.
Furthermore, it is easy to show that

dH(Φr(R[(i−1)r,ir](I)),Φr(Qi−1)) ≤ er‖A‖dH(R[(i−1)r,ir](I), Qi−1).

Consequently, we have δi ≤ er‖A‖δi−1 + μ‖A‖er‖A‖r2. Therefore, for all i ∈
{0, . . . , N − 1}

δi ≤ eir‖A‖δ0 + μ‖A‖er‖A‖r2
k=i−1∑
k=0

ek‖A‖r

≤ eir‖A‖δ0 + μ‖A‖er‖A‖r2
eir‖A‖ − 1
er‖A‖ − 1

≤ e‖A‖(T−r)δ0 + μre‖A‖T .

The use of lemma 2 ends the proof of the second part of the theorem.

Safety Verification of Controlled Advanced Life
Support System Using Barrier Certificates

Sonja Glavaski1, Antonis Papachristodoulou2, and Kartik Ariyur1

1 Honeywell Laboratories, MN65-2810,

3660 Technology Dr., Minneapolis, MN 55418 - USA

{sonja.glavaski, kartik.ariyur}@honeywell.com
2 Control and Dynamical Systems,

California Institute of Technology, Pasadena, CA 91125 - USA

antonis@cds.caltech.edu

Abstract. In this paper we demonstrate how to construct barrier cer-

tificates for safety verification of nonlinear hybrid systems using sum of

squares methodologies, with particular emphasis on the computational

challenges of the technique when applied to an Advanced Life Support

System. The controlled system aims to ensure that the carbon dioxide

and oxygen concentrations in a Variable Configuration CO2 Removal

(VCCR) subsystem never reach unacceptable values. The model we use

is in the form of a hybrid automaton consisting of six modes each with

nonlinear continuous dynamics of state dimension 10. The sheer size of

the system makes the task of safety verification difficult to tackle with

any other methodology. This is the first application of the sum of squares

techniques to the safety verification of an intrinsically hybrid system with

such high dimensional continuous dynamics.

1 Introduction

Hybrid automata provide a unique modeling framework for the study of several
real world applications including the control of “systems of systems” along with
the concomitant hierarchical decision processes. The analysis of these systems
was initiated primarily in the theoretical computer science community, and sev-
eral methods have been developed to handle systems with large scale discrete
dynamics and simple continuous dynamics [1]. These approaches break down
in the face of more complicated continuous dynamics combined with complex
decision rules. Recently, control synthesis tools have been developed for hybrid
systems whose continuous dynamics are linear and time invariant [2]. However
most real controlled applications that can be modeled as hybrid automata con-
sist of several modes each with high dimensional nonlinear continuous dynamics;
the stability analysis, performance and safety verification of the overall design
becomes a cumbersome task indeed.

In this paper we are interested in the safety verification of a controlled ad-
vanced life support system. A description of the system specifics can be found

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 306–321, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Safety Verification of Controlled Advanced Life Support System 307

in [3] and [4]. We focus our attention on the Variable Configuration CO2 Removal
(VCCR) subsystem that consists of the main crew cabin and two adsorb/desorb
beds. The main purpose of VCCR subsystem is to keep the levels of O2 and CO2
inside the two beds at acceptable levels, something that a simple feedback con-
troller aims to achieve. The controlled system was simulated using SIMULINK�,
but a formal safety verification proof is desired, as the system is safety-critical.
We stress that no simulation procedure can ever guarantee the safety of the
system, however fine the gridding of the initial condition space is. Because of
the nature of the system these concentrations oscillate about the desired values;
our wish is to ensure the safe functionality of the system, so that the oscil-
latory concentrations do not reach unacceptable values. After some modeling
assumptions, the simplest adequate model for the system is in the form of a 6-
mode automaton, each subsystem described by 10-dimensional continuous state
dynamics.

In order to verify the safety of the system, we resorted to the construction of a
so-called barrier certificate, through a methodology that was developed recently
in [5]. The idea behind safety verification using barrier certificates is that their
existence guarantees that trajectories starting from a set of initial conditions
never enter unsafe operating conditions; in our case, given a fairly large set of
initial cabin concentrations we can verify the safety of the controlled system.
Moreover, a scenario in which the performance of one of the system parts is
degraded is considered, and safety is verified in this case too by constructing
another barrier certificate.

The computation of barrier functions is performed with the sum of squares
decomposition, which is in turn computed using semidefinite programming. This
is the first successful attempt to compute barrier functions for an intrinsically
hybrid system with high dimensional continuous dynamics. Finally, this method
of verification holds promise for safety verification of “systems of systems” where
switching control laws are already operational.

This paper is organized as follows. Section 2 states the relevant results used
in this paper. Due to space limitations, it is not possible to include all the
details. An interested reader is referred to [5] for more details. Section 3 describes
Advanced Life Support testbed and presents in detail the switching controller
used. In section 4 we discuss how the barrier certificates are constructed and
what computational challenges are encountered. Conclusions and future work
are presented in section 5.

2 Hybrid System Safety Verification Using the Sum of
Squares Decomposition

In this section we review briefly certain notions that will be used in the sequel,
such as how a so-called barrier certificate satisfying certain conditions can guar-
antee the safety of a system modeled as a hybrid automaton. We then present

308 S. Glavaski, A. Papachristodoulou, and K. Ariyur

briefly how these conditions can be tested efficiently using the sum of squares
technique, leading to the algorithmic construction of the actual certificate.

The framework we use to model the system is presented in more detail in [6].
The verification problem and solution is presented in detail in [5].

2.1 Problem Formulation

The continuous state of a hybrid dynamical system evolves according to a set of
continuous time differential equations determined by its discrete states, which
in turn are governed by a discrete event process (such as a finite automaton).
In this framework, a hybrid system is a tuple H = (X ,L,X0, I, F, T) with the
following components.

– X ⊂ Rn is the continuous state-space.
– L is a finite set of locations or modes. The overall state-space of the system

is X = L ×X , and a state of the system is denoted by (l, x) ∈ L ×X .
– X0 ⊂ X is a set of initial states.
– I : L → 2X is the invariant, i.e. the set of all possible continuous states while

at location l.
– F : X → 2Rn

is a set of vector fields, one for each location.
– T ⊂ X×X is a relation describing discrete transitions between two locations,

when a guard relation is satisfied.

The system evolves from the initial conditions in the set X0, through a
sequence of continuous flows and discrete transitions that are described by
the map T . A set of unsafe states is denoted Xu ⊂ X. In addition for each
location l ∈ L we define the set of initial and unsafe continuous states as
Init(l) = {x ∈ X : (l, x) ∈ X0} and Unsafe(l) = {x ∈ X : (l, x) ∈ Xu}. To
each tuple (l′, l) ∈ L × L with l �= l′, we associate a guard set Guard(l′, l) =
{x′ ∈ X : ((l′, x′), (l, x)) ∈ T for some x ∈ X}. The guard set describes when a
discrete transition between two locations should occur.

The safety verification problem aims in deciding whether the system can
reach a set of unsafe states Xu, given an initial set X0. To answer this question,
we use a recently developed tool, Barrier Certificates [5].

Theorem 1. [5] Let the hybrid system H = (X ,L,X0, I, F, T) and the un-
safe set Xu be given. Suppose there exists a barrier certificate, i.e. a collection
{Bl(x)} of functions Bl(x) for all l ∈ L, each of which is differentiable with
respect to its argument and satisfies

Bl(x) > 0 ∀ x ∈ Unsafe(l) (1)
Bl(x) ≤ 0 ∀ x ∈ Init(l) (2)

∂Bl(x)
∂x

fl(x) ≤ 0 ∀ x ∈ I(l) (3)

Bl(x) ≤ 0 for some l′ ∈ L and x ∈ Guard(l′, l) with Bl′(x) ≤ 0. (4)

Then the safety of the hybrid system H is guaranteed.

Safety Verification of Controlled Advanced Life Support System 309

Proof. Let such a barrier certificate be given and consider a trajectory of the
hybrid system from some initial condition (l0, x0) ∈ X0 and the evolution of
Bl(t)(x(t)) along this trajectory. The second condition asserts that Bl(x(t)) ≤ 0,
and the third and fourth conditions assert that {Bl(x)} is non-increasing along
jumps, and therefore can never attain a positive value. Consequently no such
trajectory can ever reach an unsafe state (lu, xu) ∈ Xu, as there Blu(xu) is
positive according to the first condition. Therefore the safety of the system is
guaranteed.

The last condition in the above theorem is not convex, but can be relaxed to
a convex condition as follows:

Proposition 1. Let the hybrid system H = (X ,L,X0, I, F, T), the unsafe set
Xu and some nonnegative constants σl,l′ be given. Suppose there exists a barrier
certificate, i.e. a collection {Bl(x)} of functions Bl(x) for all l ∈ L, each of
which is differentiable with respect to its argument and satisfies (1–3) and

Bl(x) − σl,l′Bl′(x) ≤ 0 for some l′ ∈ L and x ∈ Guard(l′, l). (5)

Then the safety of the hybrid system H is guaranteed.

Construction of barrier certificates is in general not easy, especially when the
continuous state dynamics are nonlinear. This is because testing non-negativity
even in the case of polynomial functions of degree greater than or equal to 4 is
NP-hard [7]. However, for systems whose continuous dynamics are polynomial
and for which initial and unsafe set descriptions are semialgebraic (i.e. described
by polynomial equalities and inequalities) the Sum of Squares decomposition [8]
can be used to construct polynomial barriers by solving a relevant semidefinite
programme (SDP) [9]. This technique inherits the worst-case polynomial time
complexity property of solving an SDP, and is therefore computationally attrac-
tive. This procedure is described in detail in [5].

We therefore restrict our attention to the case in which the continuous
state dynamics have a polynomial description and the unsafe, initial invariant
and guard sets as captured as semi-algebraic sets, i.e. they are captured by
a vector of polynomial inequalities gUnsafe(l) ≤ 0, gInit(l)(x) ≤ 0, gI(l)(x) ≤
0, and gGuard(l,l′)(x) ≤ 0. The search for a barrier certificate can then be
formulated as a Sum of Squares feasibility problem, given by the following
proposition:

Proposition 2. Let the hybrid system H and the descriptions of all the
sets I(l), Init(l) Unsafe(l) and Guard(l) be given. Suppose there exist
polynomials Bl(x), a positive number ε and vectors of sums of squares
σUnsafe(l)(x), σInit(l)(x), σI(l)(x) and σGuard(l,l′)(x) and σB′

l
(x) such that the

following expressions

310 S. Glavaski, A. Papachristodoulou, and K. Ariyur

Bl(x) − ε+ σT
Unsafe(l)(x)gUnsafe(l)(x) (6)

−Bl(x) + σT
Init(l)(x)gInit(l)(x) (7)

−∂Bl(x)
∂x

fl(x) + σT
I(l)(x)gI(l)(x) (8)

−Bl(x) + σB′
l
(x)Bl′(x) + σT

Guard(l,l′)(x)gGuard(l,l′)(x) (9)

are sums of squares for each (l, l′) ∈ L2, l �= l′. Then Bl(x) satisfies the condi-
tions of Theorem 1 and the safety of the system is guaranteed.

Each of the above four conditions is a computational relaxation to testing
the relevant condition in Proposition 1. For example condition (1) guarantees
that for all x ∈ Unsafe(l) we have:

Bl(x) ≥ ε− σT
Unsafe(l)(x)gUnsafe(l) > 0

since ε > 0, σUnsafe(l) are sum of squares and gUnsafe(l) ≤ 0 in the unsafe region.
A similar rationale holds for the other conditions.

The construction of the barrier certificates in this paper is done with the
aid of SOSTOOLS, a sum of squares programming solver [10] and SeDuMi, a
semidefinite programming solver [11].

3 The Advanced Life Support System

The Advanced Life Support test-bed is used to support large-scale, long-duration
testing of integrated regenerative life support systems under a closed and con-
trolled environment. This shall be used as the basis for future long duration
manned space exploration missions on the moon and other planetary surfaces.
An important goal is to maximize recovery of reusable resources from waste
products, generated by humans and plants, in order to create a self-sustainable
life support system during space exploration. One of the main components of
the life support system is the Air Revitalization system (ARS).

The Air Revitalization System provides fresh air to the crew chamber atmo-
sphere, by the following operations:

– Recovery and generation of oxygen;
– Removal of carbon dioxide from the crew cabin;
– Intermediate gaseous products processing and storage;
– Provisions for control during degraded operations.

The ARS comprises of three major subsystems that accomplish the above func-
tions - namely:

– Variable Configuration Carbon Dioxide Removal (VCCR);
– Carbon Dioxide Reduction System (CRS);
– Oxygen Generation System (OGS).

Safety Verification of Controlled Advanced Life Support System 311

The basic function of the VCCR is to recover CO2 from the crew cabin
by adsorption into an adsorber, desorb the accumulated CO2 and send it to
an accumulator for recovery of O2. It consists of the main crew cabin and two
adsorb/desorb beds, whose purpose is to keep the levels of CO2 and O2 inside the
two beds at acceptable levels, while tracking a desired reference concentration
of O2 and CO2. To achieve this, each bed goes into a 3 phase cycle in the
following sequence:

– An adsorb phase, in which CO2 is removed from the cabin and gets adsorbed
on the bed surface. The adsorbing bed returns CO2 lean air back in the cabin.

– An airsave phase in which the desorbing bed recycles CO2-lean air back to
the cabin from its gas phase. It is assumed that the solid phase CO2 is frozen
in this process, so that no gas escapes from the bed.

– The desorb phase, in which the adsorbed CO2 is removed from the adsorbent,
which is accumulated in the CO2 buffer.

The adsorber beds have a saturation capacity of solid-phase CO2 they can ad-
sorb. The system is configured in such a way so that when one of the beds is con-
nected to the crew cabin adsorbing CO2, the other one is undergoing airsave/
desorption. After every half-cycle, the beds change their roles and the adsorbing
bed goes through airsave/desorption and the desorbing bed goes through adsorp-
tion. It is assumed that all desorb/adsorb processes occur at a constant rate.

As seen from the above descriptions, this overall system provides a fairly
complex and rich set of interesting scenarios to model, simulate and control. A
more detailed description of the system specifics can be found in [4].

3.1 VCCR System Dynamics

The equations that describe the state evolution (i.e. the concentrations of CO2,
O2 and inerts in the beds and cabin) are different for the airsave, adsorb and
desorb processes. They are however simple mass balance equations, described
below in detail.

We denote x1 = ρc(CO2), the concentration of CO2 in the cabin, x2 =
ρ(CO2, 1), x3 = ρ(CO2, 2), the concentrations of CO2 in bed 1 and bed 2 re-
spectively and x4 = ṁCO2 the make-up mass flow of CO2 in the cabin. Similarly,
we denote z1 = ρc(O2) the concentration of O2 in the cabin, z2 = ρ(O2, 1) and
z3 = ρ(O2, 2) the concentrations of O2 in the two beds and z4 = ṁO2 the
make-up mass flow of O2 in the cabin.

The control variables are the volumetric flow rates of the two streams and
the make-up mass flow rate of the CO2 and O2 streams. We have the following
control laws:

– Volumetric flow rate from the cabin to the bed undergoing adsorption:

vad = vad,n + kads
p (x1 − x1,r) (10)

312 S. Glavaski, A. Papachristodoulou, and K. Ariyur

where vad,n and kads
p are constants and x1,r is a reference value for the desired

concentration of CO2 in the cabin.
– Volumetric flow rate from the cabin to the bed undergoing airsave is a con-

stant, vas.
– Volumetric flow rate from the cabin to the bed undergoing desorption:

vdes,i = kdes
p xi, i ∈ {2, 3} (11)

where kdes
p is a constant.

– The make-up mass flow rate of CO2 in the cabin is given by a PID controller.
In the frequency domain we have:

x4(s) = (kp +
ki

s
+ kds)(x1(s) − x1,r) (12)

To proceed we approximate the derivative term by a term with limited D
action, as follows:

x4(s) = (kp +
ki

s
+

kds

τs+ 1
)(x1(s) − x1,r)

=
s2(τkp + kd) + s(kp + kiτ) + ki

s(τs+ 1)
(x1(s) − x1,r) (13)

Going back to the time domain, we get:

τ ẍ4 = −ẋ4 + (τkp + kd)ẍ1 + (kp + kiτ)ẋ1 + ki(x1 − x1,r) (14)

Defining x5 = ẋ4, we have the following 2-state system:

ẋ4 = x5 (15)
τ ẋ5 = −x5 + (τkp + kd)ẍ1 + (kp + kiτ)ẋ1 + ki(x1 − x1,r) (16)

The value of ẍ1 is found by differentiating in time the respective equation in
the relevant mode.

– The make-up mass flow rate of O2 in the cabin is given by a PID controller
of the similar structure as for CO2:

ż4 = z5 (17)
τ ż5 = −z5 + (τkp + kd)z̈1 + (kp + kiτ)ż1 + ki(z1 − z1,r) (18)

where z1,r is a reference point for the desired O2 concentration in the cabin.

We will formulate the problem in the time-domain using a PID controller
for the make-up streams, although the analysis will be done using a PI con-
troller, for reasons that will be explained later. The system switches between 4
different modes.

Safety Verification of Controlled Advanced Life Support System 313

Mode 1: Adsorber 1 adsorbing, Adsorber 2 in airsave In this first cycle, bed 1
is adsorbing CO2 from the cabin. Bed 2 has just finished this cycle, and the
CO2-lean air in the bed is pumped back in the cabin, before the CO2 that was
accumulated in the bed is desorbed and removed. The equations describing the
system in this phase are given by:

Vcẋ1 = (vad,n + kads
p (x1 − x1,r))(x2 − x1) + vas,nx3 + rc(CO2) + x4

V1ẋ2 = −(vad,n + kads
p (x1 − x1,r))(x2 − x1) − rads(CO2, 1)

V2ẋ3 = −vas,nx3

ẋ4 = x5

τ ẋ5 = −x5 + (τkp + kd)ẍ1 + (kp + kiτ)ẋ1 + ki(x1 − x1,r)
Vcż1 = (vad,n + kads

p (x1 − x1,r))(z2 − z1) + vas,nz3 + rc(O2) + z4

V1ż2 = −(vad,n + kads
p (x1 − x1,r))(z2 − z1)

V2ż3 = −vas,nz3
ż4 = z5

τ ż5 = −z5 + (τkp + kd)z̈1 + (kp + kiτ)ż1 + ki(z1 − z1,r)

Mode 2: Adsorber 1 adsorbing, Adsorber 2 desorbing In this mode bed 1 is still
adsorbing, but bed 2 has pumped all CO2-free gas in the cabin and is now
desorbing. The switching from Mode 1 to Mode 2 is done when the concentration
of CO2 in bed 2 falls below a certain level, x3 ≤ xc.

Vcẋ1 = (vad,n + kads
p (x1 − x1,r))(x2 − x1) + rc(CO2) + x4

V1ẋ2 = −(vad,n + kads
p (x1 − x1,r))(x2 − x1) − rads(CO2, 1)

V2ẋ3 = −kdes
p x2

3 + rdes(CO2, 2)
ẋ4 = x5

τ ẋ5 = −x5 + (τkp + kd)ẍ1 + (kp + kiτ)ẋ1 + ki(x1 − x1,r)
Vcż1 = (vad,n + kads

p (x1 − x1,r))(z2 − z1) + rc(O2) + z4

V1ż2 = −(vad,n + kads
p (x1 − x1,r))(z2 − z1)

V2ż3 = −kdes
p x3z3

ż4 = z5

τ ż5 = −z5 + (τkp + kd)z̈1 + (kp + kiτ)ż1 + ki(z1 − z1,r)

Mode 3: Adsorber 2 adsorbing, Adsorber 1 in airsave This mode is the same as
Mode 1, under the intuitive symmetry. Switching from Mode 2 to Mode 3 is
done when both adsorption and desorption processes are complete. Because of
the saturation in these processes, the transition is done through an intermediate
stage, as will be discussed later on.

314 S. Glavaski, A. Papachristodoulou, and K. Ariyur

Vcẋ1 = vad,nx2 + (vad,n + kads
p (x1 − x1,r))(x3 − x1) + rc(CO2) + x4

V1ẋ2 = −vad,nx2

V2ẋ3 = −(vad,n + kads
p (x1 − x1,r))(x3 − x1) − rads(CO2, 2)

ẋ4 = x5

τ ẋ5 = −x5 + (τkp + kd)ẍ1 + (kp + kiτ)ẋ1 + ki(x1 − x1,r)
Vcż1 = (vad,n + kads

p (x1 − x1,r))(z3 − z1) + vas,nz2 + rc(O2) + z4

V1ż2 = −vas,nz2
V2ż3 = −(vad,n + kads

p (x1 − x1,r))(z3 − z1)
ż4 = z5

τ ż5 = −z5 + (τkp + kd)z̈1 + (kp + kiτ)ż1 + ki(z1 − z1,r)

Mode 4: Adsorber 2 adsorbing, Adsorber 1 desorbing This mode is the same as
Mode 3 modulo the implied symmetry.

Vcẋ1 = (vad,n + kads
p (x1 − x1,r))(x3 − x1) + rc(CO2) + x4

V1ẋ2 = −kdes
p x2

2 + rdes(CO2, 1)

V2ẋ3 = −(vad,n + kads
p (x1 − x1,r))(x3 − x1) − rads(CO2, 2)

ẋ4 = x5

τ ẋ5 = −x5 + (τkp + kd)ẍ1 + (kp + kiτ)ẋ1 + ki(x1 − x1,r)
Vcż1 = (vad,n + kads

p (x1 − x1,r))(z3 − z1) + rc(O2) + z4

V1ż2 = −kdes
p x2z2

V2ż3 = −(vad,n + kads
p (x1 − x1,r))(z3 − z1)

ż4 = z5

τ ż5 = −z5 + (τkp + kd)z̈1 + (kp + kiτ)ż1 + ki(z1 − z1,r)

3.2 Controller Switching Rules

The switching rules are as per Figure 1. We initialize the system in Mode 1, at
a configuration in which the initial concentration of CO2 in the cabin and bed 1
is about atmospheric (9.13g/m3) and in bed 2 is below atmospheric, 2.56g/m3.
Bed 1 is in adsorber mode and bed 2 is in airsave mode. In the next mode, airsave
ends and bed 2 starts desorbing. Switching from Mode 1 to Mode 2 should then
happen when the level of CO2 in bed 2 has reduced significantly. We set this level
to 5.5g/m3. For the switching from Mode 2 to Mode 3 the deciding factor is the
level of CO2 that has been adsorbed in bed 1, i.e. whether it has saturated, and
whether the level of CO2 is almost zero in bed 2, which is desorbing. Switching
to Mode 3 from Mode 2 happens when both of the following happen:

1. Bed 1 has saturated, i.e. it cannot adsorb more CO2.
2. Bed 2 cannot desorb further.

Safety Verification of Controlled Advanced Life Support System 315

Fig. 1. Switching rule with saturation

As the adsorption happens at a much slower rate than desorption, the bed
that is desorbing will reach saturation before the bed that is adsorbing. This
necessitates the introduction of an intermediate mode, mode 21, depicted in
Figure 1. The solid phase concentration for beds 1 and 2, x6 and x7 respectively,
which decide when switching occurs can be calculated as follows:

– Mode 1:

ẋ6 = rads(CO2, 1)
ẋ7 = 0

– Mode 2:

ẋ6 = rads(CO2, 1)
ẋ7 = −rdes(CO2, 2)

– Mode 3:

ẋ6 = 0
ẋ7 = rads(CO2, 2)

316 S. Glavaski, A. Papachristodoulou, and K. Ariyur

– Mode 4:

ẋ6 = −rdes(CO2, 1)
ẋ7 = rads(CO2, 2)

The rest of the cycle follows by symmetry.

Remark 1. We should stress that the control laws in the equations describing
the dynamics in the various modes are functions on the concentration of CO2 in
the cabin and the two beds: the flow rate of the two streams connecting the cabin
with the two beds depends on the discrepancy between the desired and actual
level of CO2 in the cabin. Moreover, the switching strategy is also a function
of the CO2 concentration in the beds. The feedback on the O2 concentration
is a “follower” of this strategy, and it is the only link between O2 and CO2
dynamics.

4 Constructing Barrier Certificates for VCCR System

In order to apply the Proposition 2, we have to introduce the initial and unsafe
sets, the invariant sets for the various modes and the guard sets as semi-algebraic
sets.

The initial conditions will be assumed to be in the following set:

X0 = {x ∈ X | (x1 − 9)2 + (x2 − 9)2 + (x3 − 2.5)2 + (x4 − 16)2 − 0.52 ≤ 0,
(z1 − 280)2 + (z2 − 280)2 + (z3 − 280)2 + (z4 − 80)2 − 52 ≤ 0,
(x6 − 20)(x6 − 30) ≤ 0,
(x7 − 220)(x7 − 240) ≤ 0} (19)

The unsafe set is given by:

Xu = {x ∈ X | (x1 − 7.1)(x1 − 12.6) ≥ 0, (z1 − 271)(z1 − 305) ≥ 0} (20)

If we assume that the inerts have a concentration of around 913g/m3 then the
above unsafe set corresponds to:

– CO2 in the range 0.59 – 1.05 %.
– O2 in the range 22.5 – 25.4 %.

We already mentioned that we assume that the system switches between 6 states,
the intermediate states 21 and 41 shown in Figure 1 take into account the satu-
rations in the beds. In all modes, part of the invariant set is described by:

Icom = {x ∈ X | (x1 − 9)2 + (x2 − 7)2 + (x3 − 7)2 + (x4 − 16)2 − 72 ≤ 0,
(z1 − 280)2 + (z2 − 280)2 + (z3 − 280)2 − 402 ≤ 0,
z4(z4 − 200) ≤ 0}

Safety Verification of Controlled Advanced Life Support System 317

For the various modes we further have:

I1,p = {x ∈ X |5.5 − x3 ≤ 0, x6(x6 −Qmax) ≤ 0, x7(x7 −Qmax) ≤ 0}
I2,p = {x ∈ X |x6(x6 − 0.99Qmax) ≤ 0, (x7 − 0.01Qmax)(x7 −Qmax) ≤ 0}
I21,p = {x ∈ X |x6(x6 − 0.99Qmax) ≤ 0, x7(x7 − 0.01Qmax) ≤ 0}
I3,p = {x ∈ X |5.5 − x2 ≤ 0, x6(x6 −Qmax) ≤ 0, x7(x7 −Qmax) ≤ 0}
I4,p = {x ∈ X |(x6 − 0.01Qmax)(x6 −Qmax) ≤ 0, x7(x7 − 0.99Qmax) ≤ 0}
I41,p = {x ∈ X |x7(x7 − 0.99Qmax) ≤ 0, x6(x6 − 0.01Qmax) ≤ 0}

The invariant set for each mode is then Il = Icom ∩ Il,p.
Switching between the various modes happens when the state in the partic-

ular mode finds itself in the guard set. The guard sets are shown in Figure 1,
reproduced here for convenience:

Guard(1, 2) = {x ∈ X |x3 − 6 ≤ 0}
Guard(2, 21) = {x ∈ X |x7(x7 − 0.05Qmax) ≤ 0}
Guard(21, 3) = {x ∈ X |(x6 − 0.95Qmax)(x6 −Qmax) ≤ 0}
Guard(3, 4) = {x ∈ X |x2 − 6 ≤ 0}

Guard(4, 41) = {x ∈ X |x6(x6 − 0.05Qmax) ≤ 0}
Guard(41, 1) = {x ∈ X |(x7 − 0.95Qmax)(x7 −Qmax) ≤ 0}

4.1 Computational Considerations

The system consists of 6 modes with continuous dynamics in each mode of state
dimension 12. The vector fields are already polynomial in their variables, which
facilitates the use of the Sum of Squares decomposition for the analysis, and are
of highest order 2. What is required therefore is to construct 6 functions Bl as
required by Proposition 1 each of which satisfies 4 SOS conditions.

Here we describe the computational challenges that were faced when these
barrier functions were constructed. The first issue that has to be dealt with
is numerical conditioning of the problem itself. Indeed the state variables have
equilibria that are orders of magnitude apart, which introduces an artificial nu-
merical conditioning. This can be removed by rescaling all states so that they
are of the same order of magnitude.

Secondly, the system with 12 states produces a semidefinite programme that
is on the boundary of what can be solved using any current SDP solver [11].
The situation is even worse, because the two states that represent the derivative
action z5 and x5 evolve on a different time scale than the rest of the system, owing
to the parameter τ which has to be small so that the derivative action extends to
high frequencies; this produces numerical stiffness in the resulting semidefinite
programme on top of increasing the state dimension by 2. We had to proceed by
removing these states from consideration and instead we considered the control
law that determines the make-up flow streams of O2 and CO2 as a pure PI
controller (setting the derivative term to zero).

318 S. Glavaski, A. Papachristodoulou, and K. Ariyur

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6
Behaviour of beds

st
at

e

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600
x 6

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

x 7

(a)

0 5 10 15 20 25 30 35 40 45 50
8.5

9

9.5

CO
2
 characteristic

x 1

0 5 10 15 20 25 30 35 40 45 50
0

5

10

x 2

0 5 10 15 20 25 30 35 40 45 50
0

5

10

x 3

0 5 10 15 20 25 30 35 40 45 50
10

15

20

x 4

0 5 10 15 20 25 30 35 40 45 50
0

5

10

st
at

e

time

(b)

0 5 10 15 20 25 30 35 40 45 50
270

280

290

O
2
 characteristic

z 1

0 5 10 15 20 25 30 35 40 45 50
0

200

400

z 2

0 5 10 15 20 25 30 35 40 45 50
0

200

400

z 3

0 5 10 15 20 25 30 35 40 45 50
0

100

200

z 4

0 5 10 15 20 25 30 35 40 45 50
0

5

10

st
at

e

time

(c)

Fig. 2. Controlled VCCR System Simulation outputs

Safety Verification of Controlled Advanced Life Support System 319

With these two modifications in place, we still had to choose the values σB′
l
(x)

in Proposition 2, due to the fact that their value cannot be computed using SOS
since that would result to a non-convex problem. We chose these values to be
0.5, values that were found to result in a feasible solution.

4.2 Simulation and Verification Results

Sample simulations of the system (with PI controllers) are presented in Fig-
ure 2. Figure 2(a) shows how the concentration of solid CO2 changes as the
beds switch from adsorb to desorb. Figure 2(b) shows how the concentrations of
CO2 in the main cabin and the two beds, as well as the mass flow rate of the
make-up stream vary with time. Figure 2(c) shows the same behavior for O2.
The locations here represents the cycle from 1 to 6, as the modes are shown in
Figure 1.

Given the initial, unsafe, invariant and guard sets and the considerations
explained above a set of quadratic Barrier functions was constructed using SOS-
TOOLS that proves the safe functionality of the system. Note that when Bl

is quadratic all conditions but condition (3) are of order 2 if B is of order 2.
Condition (3) is 4th order in this case. The certificates contain many terms, and
are therefore not reproduced here. For example, B1 is given by:

B1 = −9.1x5 − 29.0x6 − 2809.2z1 − 6.3x2 − 25.3x3 − 133.0x1 − 41.1z2 − 41.0z3
−12.8z4 + 4248.3 + .41x3z2 + 0.1x4z2 − 0.1x5z2 + 0.1x6z2 + 10z1z2
−76x4 +0.2x2z4 −0.2x3z4 −2x4z4 − 0.1x5z4 − 0.1x6z4 + 5.6z1z4 −0.4z2z4
+0.1z3z4 − 0.3x1z3 + 0.4x2z3 − 0.1x3z3 − 0.1x4z3 + 0.7x5z3 + 0.3x6z3

−27.9x1z1 + 2.8x2z1 + 7.5x3z1 − 10.8x4z1 − 1.1x5z1 + 4.9x6z1 − 1.1x1z2

−0.1x2z2 − 0.2x1x6 + 0.6x3x6 + 2.3x4x6 + 3.7x5x6 − 0.3x2x6 − 1.2x3x4

−1.6x1x5 + 0.4x2x5 − 0.4x3x5 + 1.5x4x5 − 3.8x1x2 − 2.3x1x3 + 5.6x2
3

+19.2x2
4 +2.0x2

5 +2.6x2
6 +488.1z2

1 +2.6z2
2 +1.2z2

3 + 3.6z2
4 +80.5x2

1 + 3.3x2
2

+3.6x2x3 + 47.7x1x4 − 2.4x2x4 + 13z1z3 + 0.1z2z3 − 3.9x1z4.

The same verification was performed in the case of a degraded adsorption
rate for the two beds; this was set to a 6.5% lower value than the nominal value.
The control law provides safe functionality in this case too, which is verified by
constructing a Barrier certificate.

5 Conclusion and Future Work

We demonstrated how the construction of a barrier certificate can verify the safe
functionality of a controller applied to a safety-critical hybrid system. It should
be appreciated that even though the controller and its switching rules are simple,
there is no other efficient methodology for verifying the safety of such a system.
On the other hand, construction of a barrier certificate for the controlled system

320 S. Glavaski, A. Papachristodoulou, and K. Ariyur

proves that the system will never enter an unsafe operating condition. Such a
conclusion would be impossible with any simulation procedure.

Though we have been able to provide a barrier certificate for our controlled
system, the description complexity of the system was on the limits of what can
be tackled with current semidefinite programming solvers. In such cases, the
special structure of the resulting sum of squares program should be taken into
account before solving it using semidefinite programming, as this will not only
reduce the computational burden but also remove numerical ill-conditioning.

This work has given us the opportunity to demonstrate the applicability of
rigorous analytical methods for verifying controllers for complex hybrid, non
linear dynamical systems. The above methodology can be applied to verification
problems in other applications.

Acknowledgements

This material is based on work supported by NASA Ames Research Center under
Contract No. NAS2-01067. We wish to acknowledge our program monitor, Dr.
Robert Morris at the NASA Ames Research Center, for his support, suggestions
and encouragement throughout the course of this project. We also acknowledge
the rest of our team, Ranjana Deshpande, Nitin Lamba, and Shankar Subra-
manian for their contribution to overall project on designing verifiable hybrid
controllers.

References

1. Wong-Toi, H.: The synthesis of controllers for linear hybrid automata. In: Pro-

ceedings of Conference on Decision and Control. (1997)

2. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and

constraints. Automatica 35 (1999) 407–427

3. Malin, J., Nieten, J., Schreckenghost, D., MacMahon, M., Graham, J., Thrones-

bery, C., Bonasso, R., Kowing, J.: Multi-agent diagnosis and control of an air

revitalization system for life support in space. Proceedings of the IEEE Aerospace

Conference (2000)

4. Subramanian, D., Ariyur, K., Lamba, N., Deshpande, R., Glavaski, S.: Control

design for a hybrid dynamical system: A nasa life support system. In: Hybrid

Systems: Computation and Control, LNCS 2293, Springer–Verlag (2004) 570–584

5. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-

cates. In: Hybrid Systems: Computation and Control, LNCS 2293, Springer–Verlag

(2004) 477–492

6. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicolin, X.,

Oliviero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.

Theoretical Computer Science 138 (1995) 3–34

7. Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlin-

ear programming. Mathematical Programming 39 (1987) 117–129

Safety Verification of Controlled Advanced Life Support System 321

8. Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Ge-

ometry Methods in Robustness and Optimization. PhD thesis, Cal-

ifornia Institute of Technology, Pasadena, CA (2000) Available at

http://www.control.ethz.ch/~parrilo/pubs/index.html.
9. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review 38 (1996)

49–95

10. Prajna, S., Papachristodoulou, A., Parrilo, P.A.: SOSTOOLS – Sum of Squares

Optimization Toolbox, User’s Guide. Available at http://www.cds.caltech.
edu/sostools and http://www.aut.ee.ethz.ch/parrilo/sostools (2002)

11. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-

metric cones. Optimization Methods and Software 11–12 (1999) 625–653 Available

at http://fewcal.kub.nl/sturm/software/sedumi.html.

Polynomial Stochastic Hybrid Systems

João Pedro Hespanha�

Center for Control Engineering and Computation,

University of California, Santa Barbara, CA 93101

Abstract. This paper deals with polynomial stochastic hybrid systems

(pSHSs), which generally correspond to stochastic hybrid systems with

polynomial continuous vector fields, reset maps, and transition intensi-

ties. For pSHSs, the dynamics of the statistical moments of the continu-

ous states evolve according to infinite-dimensional linear ordinary differ-

ential equations (ODEs). We show that these ODEs can be approximated

by finite-dimensional nonlinear ODEs with arbitrary precision. Based on

this result, we provide a procedure to build this type of approximations

for certain classes of pSHSs. We apply this procedure for several exam-

ples of pSHSs and evaluate the accuracy of the results obtained through

comparisons with Monte Carlo simulations. These examples include: the

modeling of TCP congestion control both for long-lived and on-off flows;

state-estimation for networked control systems; and the stochastic mod-

eling of chemical reactions.

1 Introduction

Hybrid systems are characterized by a state-space that can be partitioned into
a continuous domain (typically Rn) and a discrete set (typically finite). For
the stochastic hybrid systems considered here, both the continuous and the dis-
crete components of the state are stochastic processes. The evolution of the
continuous-state is determined by a stochastic differential equation and the evo-
lution of the discrete-state by a transition or reset map. The discrete transi-
tions are triggered by stochastic events much like transitions between states of a
continuous-time Markov chains. However, the rate at which these transitions oc-
cur may depend on the continuous-state. The model used here for SHSs, whose
formal definition can be found in Sec. 2, was introduced in [1] and is heavily
inspired by the Piecewise-Deterministic Markov Processes (PDPs) in [2]. Alter-
native models can be found in [3, 4, 5].

The extended generator of a stochastic hybrid system allows one to compute
the time-derivative of a “test function” of the state of the SHS along solutions
to the system, and can be viewed as a generalization of the Lie derivative for
deterministic systems [1, 2]. Polynomial stochastic hybrid systems (pSHSs) are
characterized by extended generators that map polynomial test functions into

� Supported by the National Science Foundation under grants CCR-0311084, ANI-

0322476.

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 322–338, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Polynomial Stochastic Hybrid Systems 323

polynomials. This happens, e.g., when the continuous vector fields, the reset
maps, and the transition intensities are all polynomial functions of the con-
tinuous state. An important property of pSHSs is that if one creates an in-
finite vector containing the probabilities of all discrete modes, as well as all
the multi-variable statistical moments of the continuous state, the dynamics
of this vector are governed by an infinite-dimensional linear ordinary differen-
tial equation (ODE), which we call the infinite-dimensional moment dynamics
(cf. Sec. 3).

SHSs can model large classes of systems but their formal analysis presents
significant challenges. Although it is straightforward to write partial differen-
tial equations (PDEs) that express the evolution of the probability distribution
function for their states, generally these PDEs do not admit analytical solutions.
The infinite-dimensional moment dynamics provides an alternative characteri-
zation for the distribution of the state of a pSHS. Although generally statisti-
cal moments do not provide a description of a stochastic process as accurate
as the probability distribution, results such as Tchebycheff, Markoff, or Bien-
aymé inequalities can be used to infer properties of the distribution from its
moments.

In general, the infinite-dimensional linear ODEs that describe the moment
dynamics for pSHSs are still not easy to solve analytically. However, sometimes
they can be accurately approximated by a finite-dimensional nonlinear ODE,
which we call the truncated moment dynamics. We show in Sec. 3 that, under
suitable stability assumptions, it is in principle possible for a finite-dimensional
nonlinear ODE to approximate the infinite-dimensional moment dynamics, up to
an error that can be made arbitrarily small. Aside from its theoretical interest,
this result motivates a procedure to actually construct these finite-dimensional
approximations for certain classes of pSHSs. This procedure, which is described
in Sec. 4, is applicable to pSHS for which the (infinite) matrix that characterizes
the moment dynamics exhibits a certain diagonal-band structure and appropri-
ate decoupling between certain moments of distinct discrete modes. The details
of this structure can be found in Lemma 1.

To illustrate the applicability of the results, we consider several systems that
appeared in the literature and that can be modeled by pSHSs. For each exam-
ple, we construct in Sec. 5 truncated moment dynamics and evaluate how they
compare with estimates for the moments obtained from a large number of Monte
Carlo simulations. The examples considered include:

1. The modeling of network traffic under TCP congestion control. We consider
two distinct cases: long-lived traffic corresponding to the transfer of files with
infinite length; and on-off traffic consisting of file transfers with exponentially
distributed lengths, alternated by times of inactivity (also exponentially dis-
tributed). These examples are motivated by [1, 6].

2. The modeling of the state-estimation error in a networked control system
that occasionally receives state measurements over a communication net-
work. The rate at which the measurements are transmitted depends on the
current estimation error. This type of scheme was shown to out-perform

324 J.P. Hespanha

periodic transmission and can actually be used to approximate an optimal
transmission scheme [7, 8].

3. Gillespie’s stochastic modeling for chemical reactions [9], which describes
the evolution of the number of particles involved in a set of reactions. The
reactions analyzed were taken from [10, 11] and are particularly difficult to
simulate due to the existence of two very distinct time scales.

2 Polynomial Stochastic Hybrid Systems

A SHS is defined by a stochastic differential equation (SDE)

ẋ = f(q,x, t) + g(q,x, t)ṅ, f : Q× Rn × [0,∞) → Rn, (1)

g : Q× Rn × [0,∞) → Rn×k,

a family of m discrete transition/reset maps

(q,x) = φ�(q−,x−, t), φ� : Q× Rn × [0,∞) → Q× Rn, (2)

∀� ∈ {1, . . . ,m}, and a family of m transition intensities

λ�(q,x, t), λ� : Q× Rn × [0,∞) → [0,∞), (3)

∀� ∈ {1, . . . ,m}, where n denotes a k-vector of independent Brownian motion
processes and Q a (typically finite) discrete set. A SHS characterizes a jump
process q : [0,∞) → Q called the discrete state; a stochastic process x : [0,∞) →
Rn with piecewise continuous sample paths called the continuous state; and m
stochastic counters N� : [0,∞) → N≥0 called the transition counters.

In essence, between transition counter increments the discrete state remains
constant whereas the continuous state flows according to (1). At transition times,
the continuous and discrete states are reset according to (2). Each transition
counter N� counts the number of times that the corresponding discrete transi-
tion/reset map φ� is “activated.” The frequency at which this occurs is deter-
mined by the transition intensities (3). In particular, the probability that the
counter N� will increment in an “elementary interval” (t, t + dt], and therefore
that the corresponding transition takes place, is given by λ�(q(t),x(t), t)dt. In
practice, one can think of the intensity of a transition as the instantaneous rate
at which that transition occurs. The reader is referred to [1] for a mathematically
precise characterization of this SHS. The following result can be used to com-
pute expectations on the state of a SHS. For briefness, we omit a few technical
assumptions that are straightforward to verify for the SHSs considered here:

Theorem 1 ([1]). Given a function ψ : Q×Rn × [0,∞) → R that is twice con-
tinuously differentiable with respect to its second argument and once continuously
differentiable with respect to the third one, we have that

∂ E[ψ(q(t),x(t), t)]
∂t

= E[(Lψ)(q(t),x(t), t)], (4)

where ∀(q, x, t) ∈ Q× Rn × [0,∞)

Polynomial Stochastic Hybrid Systems 325

(Lψ)(q, x, t) :=
∂ψ(q, x, t)

∂x
f(q, x, t) +

∂ψ(q, x, t)

∂t
+

+
1

2
trace

(∂2ψ(q, x)

∂x2 g(q, x, t)g(q, x, t)′
)
+

+

m∑
�=1

(
ψ

(
φ�(q, x, t), t

)
− ψ(q, x, t)

)
λ�(q, x, t), (5)

and ∂ψ(q,x,t)
∂t , ∂ψ(q,x,t)

∂x , and ∂2ψ(q,x)
∂x2 denote the partial derivative of ψ(q, x, t)

with respect to t, the gradient of ψ(q, x, t) with respect to x, and the Hessian
matrix of ψ with respect to x, respectively. The operator ψ �→ Lψ defined by (5)
is called the extended generator of the SHS. ��

We say that a SHS is polynomial (pSHS) if its extended generator L is closed
on the set of finite-polynomials in x, i.e., (Lψ)(q, x, t) is a finite-polynomial in x
for every finite-polynomial ψ(q, x, t) in x. By a finite-polynomials in x we mean
a function ψ(q, x, t) such that x �→ ψ(q, x, t) is a (multi-variable) polynomial of
finite degree for each fixed q ∈ Q, t ∈ [0,∞). A pSHS is obtained, e.g., when the
vector fields f and g, the reset maps φ�, and the transition intensities λ� are all
finite-polynomials in x.

Examples of Polynomial Stochastic Hybrid Systems

Example 1 (TCP long-lived [12]). The congestion window size w ∈ [0,∞) of
a long-lived TCP flow can be generated by a SHS with continuous dynamics
ẇ = 1

RTT and a reset map w �→ w
2 , with intensity λ(w) := p w

RTT . The round-
trip-time RTT and the drop-rate p are parameters that we assume constant. This
SHS has a single discrete mode that we omit for simplicity and its generator is
given by

(Lψ)(w) =
1

RTT

∂ψ(w)

∂w
+

pw
(
ψ(w/2) − ψ(w)

)
RTT

,

which is closed on the set of finite-polynomials in w. ��

Example 2 (TCP on-off [12]). The congestion window size w ∈ [0,∞) for a
stream of TCP flows separated by inactivity periods can be generated by a
SHS with three discrete modes Q := {ss, ca, off}, one corresponding to slow-
start, another to congestion avoidance, and the final one to flow inactivity. Its
continuous dynamics are defined by

ẇ =

⎧⎪⎨⎪⎩
(log 2)w

RTT
q = ss

1
RTT

q = ca

0 q = off;

the reset maps associated with packet drops, end of flows, and start of flows
are given by φ1(q,w) :=

(
ca, w

2

)
, φ2(q,w) := (off, 0), and φ3(q,w) := (ss, w0),

respectively; and the corresponding intensities are

326 J.P. Hespanha

λ1(q,w) :=

{
p w

RTT
q ∈ {ss, ca}

0 q = off
λ2(q,w) :=

{
w

kRTT
q ∈ {ss, ca}

0 q = off

λ3(q,w) :=

{
1

τoff
q = off

0 q ∈ {ss, ca}.

The round-trip-time RTT , the drop-rate p, the average file size k (exponentially
distributed), the average off-time τoff (also exponentially distributed), and the
initial window size w0 are parameters that we assume constant. The generator
for this SHS is given by

(Lψ)(q, w) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(log 2)w

RTT
∂ψ(ss,w)

∂w
+

pw
(

ψ(ca,w/2)−ψ(ss,w)
)

RTT
+

w
(

ψ(off,0)−ψ(ss,w)
)

k RTT
q = ss

1
RTT

∂ψ(ca,w)
∂w

+
pw

(
ψ(ca,w/2)−ψ(ca,w)

)
RTT

+
w
(

ψ(off,0)−ψ(ca,w)
)

k RTT
q = ca

ψ(ss,w0)−ψ(off,w)
τoff

q = off,

which is closed on the set of finite-polynomials in w. ��

Example 3 (Networked control system [7]). Suppose that the state of a stochastic
scalar linear system ẋ = ax + b ṅ is estimated based on state-measurements
received through a network. For simplicity we assume that state measurements
are noiseless and delay free. The corresponding state estimation error e ∈ R
can be generated by a SHS with continuous dynamics ė = a e + b ṅ and one
reset map e �→ 0 that is activated whenever a state measurement is received.
It was conjectured in [7] and later shown in [8] that transmitting measurements
at a rate that depends on the state-estimation error is optimal when one wants
to minimize the variance of the estimation error, while penalizing the average
rate at which messages are transmitted. This motivates considering the following
reset intensity λ(e) := e2ρ, ρ ∈ N≥0. This SHS has a single discrete mode that
we omitted for simplicity and its generator is given by

(Lψ)(e) := a e
∂ψ(e)

∂e
+

b2

2

∂2ψ(e)

∂e2 +
(
ψ(0) − ψ(e)

)
e2ρ,

which is closed on the set of finite-polynomials in e. ��

Example 4 (Decaying-dimerizing reaction set [10, 11]). The number of particles
x := (x1,x2,x3) of three species involved in the following set of decaying-
dimerizing reactions

S1
c1−−→ 0, 2S1

c2−−→ S2, S2
c3−−→ 2S1, S2

c4−−→ S3 (6)

can be generated by a SHS with continuous dynamics ẋ = 0 and four reset maps

φ1(x) :=
[x1−1

x2
x3

]
φ2(x) :=

[x1−2
x2+1
x3

]
φ3(x) :=

[x1+2
x2−1
x3

]
φ4(x) :=

[x1
x2−1
x3+1

]
with intensities λ1(x) := c1x1, λ2(x) := c2

2 x1(x1 − 1), λ3(x) := c3x2, and
λ4(x) := c4x2, respectively. Since the numbers of particles take values in the
discrete set of integers, we can regard the xi as either part of the discrete or
continuous state. We choose to regard them as continuous variables because we

Polynomial Stochastic Hybrid Systems 327

are interested in studying their statistical moments. In this case, the SHS has a
single discrete mode that we omit for simplicity and its generator is given by

(Lψ)(x) = c1x1
(
ψ(x1 −1, x2, x3)−ψ(x)

)
+

c2

2
x1(x1 −1)

(
ψ(x1 −2, x2 +1, x3)−ψ(x)

)
+ c3x2

(
ψ(x1 + 2, x2 − 1, x3) − ψ(x)

)
+ c4x2

(
ψ(x1, x2 − 1, x3 + 1) − ψ(x)

)
,

which is closed on the set of finite-polynomials in x. ��

3 Moment Dynamics

To fully characterize the dynamics of a SHS one would like to determine the
evolution of the probability distribution for its state (q,x). In general, this is
difficult so a more reasonable goal is to determine the evolution of (i) the prob-
ability of q(t) being on each mode and (ii) the moments of x(t) conditioned
to q(t). In fact, often one can even get away with only determining a few low-
order moments and then using results such as Tchebycheff, Markoff, or Bienaymé
inequalities to infer properties of the overall distribution.

Given a discrete state q̄ ∈ Q and a vector of n integers m = (m1,m2, . . . ,mn)
∈ Nn

≥0, we define the test-function associated with q̄ and m to be

ψ
(m)
q̄ (q, x) :=

{
x(m) q = q̄

0 q �= q̄,
∀q ∈ Q, x ∈ R

n

and the (uncentered) moment associated with q̄ and m to be

μ
(m)
q̄ (t) := E

[
ψ

(m)
q̄

(
q(t),x(t)

)]
∀t ≥ 0. (7)

Here and in the sequel, given a vector x = (x1, x2, . . . , xn), we use x(m) to denote
the monomial xm1

1 xm2
2 · · ·xmn

n .
PSHSs have the property that if one stacks all moments in an infinite vector

μ∞, its dynamics can be written as

μ̇∞ = A∞(t)μ∞ ∀t ≥ 0, (8)

for some appropriately defined infinite matrix A∞(t). This is because
∀q̄ ∈ Q,m = (m1, . . . ,mn) ∈ Nn

≥0, the expression (Lψ(m)
q̄)(q, x, t) is a finite-

polynomial in x and therefore can be written as a finite linear combination of
test-functions (possibly with time-varying coefficients). Taking expectations on
this linear combination and using (4), (7), we conclude that μ̇(m)

q̄ can be writ-
ten as linear combination of uncentered moments in μ∞, leading to (8). In the
sequel, we refer to (8) as the infinite-dimensional moment dynamics. Analyzing
(and even simulating) (8) is generally difficult. However, as mentioned above one
can often get away with just computing a few low-order moments. One would
therefore like to determine a finite-dimensional system of ODEs that describes
the evolution of a few low-order models, perhaps only approximately.

328 J.P. Hespanha

When the matrix A∞ is lower triangular (e.g., as in Example 3 with ρ = 0),
one can simply truncate the vector μ∞ by dropping all but its first k elements
and obtain a finite-dimensional system that exactly describes the evolution of
the moments. However, in general A∞ has nonzero elements above the main
diagonal and therefore if one defines μ ∈ Rk to contain the top k elements of
μ∞, one obtains from (8) that

μ̇ = Ik×∞A∞(t)μ∞ = A(t)μ+B(t)μ̄, μ̄ = Cμ∞, (9)

where Ik×∞ denotes a matrix composed of the first k rows of the infinite identity
matrix, μ̄ ∈ Rr contains all the moments that appear in the first k elements of
A∞(t)μ∞ but that do not appear in μ, and C is the projection matrix that
extracts μ̄ from μ∞. Our goal is to approximate the infinite dimensional system
(8) by a finite-dimensional nonlinear ODE of the form

ν̇ = A(t)ν +B(t)ν̄(t), ν̄ = ϕ(ν, t), (10)

where the map ϕ : Rk × [0,∞) → Rr should be chosen so as to keep ν(t) close to
μ(t). We call (10) the truncated moment dynamics and ϕ the truncation function.
We need the following two stability assumptions to establish sufficient conditions
for the approximation to be valid.

Assumption 1 (Boundedness). There exist sets Ωμ and Ων such that all
solutions to (8) and (10) starting at some time t0 ≥ 0 in Ωμ and Ων , respectively,
exist and are smooth on [t0,∞) with all derivatives of their first k elements
uniformly bounded. The set Ων is assumed to be forward invariant. ��

Assumption 2 (Incremental Stability). There exists a function1 β ∈ KL
such that, for every solution μ∞ to (8) starting in Ωμ at some time t0 ≥ 0, and
every t1 ≥ t0, ν1 ∈ Ων there exists some μ̂∞(t1) ∈ Ωμ whose first k elements
match ν1 and

‖μ(t) − μ̂(t)‖ ≤ β(‖μ(t1) − μ̂(t1)‖, t− t1), ∀t ≥ t1, (11)

where μ(t) and μ̂(t) denote the first k elements of the solutions to (8) starting
at μ∞(t1) and μ̂∞(t1), respectively. ��

Remark 1. Assumption 2 was purposely formulated without requiring Ωμ to be
a subset of a normed space to avoid having to choose a norm under which the
(infinite) vectors of moments are bounded. ��

The result that follows establishes that the difference between solutions to (8)
and (10) converges to an arbitrarily small ball, provided that a sufficiently large
but finite number of derivatives of these signals match point-wise. To state this

1 A function β : [0, ∞) × [0, ∞) → [0, ∞) is of class KL if β(0, t) = 0, ∀t ≥ 0; β(s, t)
is continuous and strictly increasing on s, ∀t ≥ 0; and limt→∞ β(s, t) = 0, ∀s ≥ 0.

Polynomial Stochastic Hybrid Systems 329

result, the following notation is needed: We define the matrices Ci(t), i ∈ N≥0
recursively by

C0(t) = C, Ci+1(t) = Ci(t)A∞(t) + Ċi(t), ∀t ≥ 0, i ∈ N≥0,

and the family of functions Liϕ : Rk × [0,∞) → Rr, i ∈ N≥0 recursively by

(L0ϕ)(ν, t) = ϕ(ν, t), (Li+1ϕ)(ν, t) =
∂(Liϕ)(ν, t)

∂ν

(
A(t)ν + B(t)ϕ(ν, t)

)
+

∂(Liϕ)(ν, t)

∂t
,

∀t ≥ 0, ν ∈ Rk, i ∈ N≥0. These definitions allow us to compute time derivatives
of μ̄(τ) and ν̄(τ) along solutions to (8) and (10), respectively, because

diμ̄(t)

dti
= Ci

(t)μ∞(t),
diν̄(t)

dti
= (Liϕ)(ν(t), t), ∀t ≥ 0, i ∈ N≥0. (12)

Theorem 2 ([13]). For every δ > 0, there exists an integer N sufficiently large
for which the following result holds: Assuming that for every τ ≥ 0, μ∞ ∈ Ωμ

Ci(τ)μ∞ = (Liϕ)(μ, τ), ∀i ∈ {0, 1, . . . , N}, (13)

where μ denotes the first k elements of μ∞, then

‖μ(t) − ν(t)‖ ≤ β(‖μ(t0) − ν(t0)‖, t− t0) + δ, ∀t ≥ t0 ≥ 0, (14)

along all solutions to (8) and (10) with initial conditions μ∞(t0) ∈ Ωμ and
ν(t0) ∈ Ων , respectively, where μ(t) denotes the first k elements of μ∞(t). ��

4 Construction of Approximate Truncations

Given a constant δ > 0 and sets Ωμ, Ων , it may be very difficult to determine
the integer N for which the approximation bound (14) holds. This is because,
although the proof of Theorem 2 is constructive, the computation of N requires
explicit knowledge of the function β ∈ KL in Assumption 2 and, at least for most
of the examples considered here, this assumption is difficult to verify. Neverthe-
less, Theorem 2 is still useful because it provides the explicit conditions (13) that
the truncation function ϕ should satisfy for the solution to the truncated system
to approximate the one of the original system. For the problems considered here
we require (13) to hold for N = 1, for which (13) simply becomes

Cμ∞ = ϕ(μ, τ), CA∞(τ)μ∞ =
∂ϕ(μ, τ)
∂μ

Ik×∞A∞(τ)μ∞ +
∂ϕ(μ, τ)

∂t
, (15)

∀μ∞ ∈ Ωμ, τ ≥ 0. Lacking knowledge of β, we will not be able to explicitly
compute for which values of δ (14) will hold, but we will show by simulation
that the truncation obtained provides a very accurate approximation to the
infinite-dimensional system (8), even for such a small choice of N . We restrict
our attention to functions ϕ and sets Ωμ for which it is simple to use (15) to
explicitly compute truncated systems.

330 J.P. Hespanha

Separable truncation functions: For all the examples considered, we consider
functions ϕ of the form

ϕ(ν, t) = Λν(Γ) := Λ

⎡⎣ ν
γ11
1 ν

γ12
2 ···νγ1k

k

...
ν

γr1
1 ν

γr2
2 ···νγrk

k

⎤⎦ , (16)

for appropriately chosen constant matrices Γ := [γij] ∈ Rr×k and Λ ∈ Rr×r,
with Λ diagonal. In this case, (15) becomes

Cμ∞ = Λμ(Γ), (17a)

CA∞(τ)μ∞ = Λ diag[Cμ∞]Γ diag[μ−1
1 , μ−1

2 , . . . , μ−1
k]Ik×∞A∞(τ)μ∞. (17b)

Deterministic distributions: A set Ωμ that is particularly tractable corresponds
to deterministic distributions Fdet := {P (· ; q, x) : x ∈ Ωx, q ∈ Q}, where
P (· ; q, x) denotes the distribution of (q,x) for which q = q and x = x with
probability one; and Ωx a subset of the continuous state space Rn. For a par-
ticular distribution P (· ; q, x), the (uncentered) moment associated with q̄ and
m ∈ Nn

≥0 is given by

μ
(m)
q̄ :=

∫
ψ

(m)
q̄ (q̃, x̃)P (dq̃ dx̃; q, x) = ψ

(m)
q̄ (q, x) :=

{
x(m) q = q̄

0 q �= q̄,

and therefore the vectors μ∞ in Ωμ have this form. Although this family of dis-
tributions may seem very restrictive, it will provide us with truncations that are
accurate even when the pSHSs evolve towards very “nondeterministic” distri-
butions, i.e., with significant variance. For this set Ωμ, (17) takes a particularly
simple form and the following result provides a simple set of conditions to test
if a truncation is possible.

Lemma 1 ([13]). Let Ωμ be the set of deterministic distributions Fdet with Ωx

containing some open ball in Rn and consider truncation functions ϕ of the form
(16). The following conditions are necessary for the existence of a function ϕ of
the form (16) that satisfies (15):

1. For every moment μ(m�)
q� in μ̄ the polynomial2

∑∞
i=1

qi=q�

a�,i x
(mi) must belong

to the linear subspace generated by the polynomials{ ∞∑
i=1

qi=q�

aj,i x(m�−mj+mi) : 1 ≤ j ≤ k, qj = q�

}
.

2. For every moment μ(m�)
q� in μ̄ and every moment μ(mi)

qi in μ∞ with qi �= q�,
we must have a�,i = 0. Here we are denoting by aj,i the jth row, ith column
entry of A∞. ��

2 We are considering polynomials with integer (both positive and negative) powers.

Polynomial Stochastic Hybrid Systems 331

Condition 1 imposes a diagonal-band-like structure on the submatrices of A∞
consisting of the rows/columns that correspond to each moment that appears in
μ̄. This condition holds for Examples 1, 2, and 3, but not for Example 4. However,
we will see that the moment dynamics of this example can be simplified so as
to satisfy this condition without introducing a significant error. Condition 2
imposes a form of decoupling between different modes in the equations for ˙̄μ.
This condition holds trivially for all examples that have a single discrete mode. It
does not hold for Example 2, but also here it is possible to simplify the moment
dynamics to satisfy this condition without introducing a significant error.

5 Examples of Truncations

We now present truncated systems for the several examples considered before and
discuss how the truncated models compare to estimates of the moments obtained
from Monte Carlo simulations. All Monte Carlo simulations were carried out
using the algorithm described in [1]. Estimates of the moments were obtained
by averaging a large number of Monte Carlo simulations. In most plots, we used
a sufficiently large number of simulations so that the 99% confidence intervals
for the mean cannot be distinguished from the point estimates at the resolution
used for the plots. Ir is worth to emphasize that the results obtained through
Monte Carlo simulations required computational efforts orders of magnitude
higher than those obtained using the truncated systems.

Example 1 (TCP long-lived). Since for this system it is particularly meaningful
to consider moments of the packet sending rate r := w

RTT , we choose ψ(m)(w) =
wm

RTT m , ∀m ∈ N≥0. We consider a truncation whose state contains the first and
second moments of the sending rate. In this case, (9) can be written as follows:[

μ̇(1)

μ̇(2)

]
=
[

0 − p
2

2
RT T2 0

] [
μ(1)

μ(2)

]
+
[1

RTT 2

0

]
+
[

0
− 3p

4

]
μ̄, (18)

where μ̄ := μ(3) evolves according to μ̇(3) = 3μ(2)

RTT 2 − 7pμ(4)

8 . In this case, (17) has
a unique solution ϕ, resulting in a truncated system given by (18) and

μ̄ = ϕ(μ(1), μ(2)
) :=

(μ(2))
5
2

(μ(1))2
. (19)

Figure 1 shows a comparison between Monte Carlo simulations and this trun-
cated model. A step in the drop probability was introduced at time t = 5sec to
show that the truncated model also captures well transient behavior. ��

Example 2 (TCP on-off). For this system we also consider moments of the send-
ing rate r := w

RTT on the ss and ca modes, and therefore we use

ψ
(0)
off (q, w) =

{
1 q = off

0 q ∈ {ca, ss}
ψ(m)

ss (q, w) =

{
wm

RTT m q = ss

0 q ∈ {ca, off}

332 J.P. Hespanha

0 1 2 3 4 5 6 7 8 9 10

0.02

0.04

0.06

0.08

0.1

0.12
probability of drop − p

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200
rate mean − E[r]

M. Carlo
red. model

0 1 2 3 4 5 6 7 8 9 10
0

50

100
rate standard deviation − Std[r]

M. Carlo
red. model

Fig. 1. Comparison between Monte Carlo simulations and the truncated model (18),

(19) for Example 1, with RTT = 50ms and a step in the drop-rate p from 2% to 10%

ψ(m)
ca (q, w) =

{
wm

RTT m q = ca

0 q ∈ {ss, off}

We consider a truncation whose state contains the zeroth, first, and second
moments of the sending rate. In this case, (9) can be written as follows:

⎡⎢⎢⎢⎢⎢⎢⎣

μ̇
(0)
off

μ̇
(0)
ss

μ̇
(0)
ca

μ̇
(1)
ss

μ̇
(1)
ca

μ̇
(2)
ss

μ̇
(2)
ca

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−τ−1
off 0 0 1

k
1
k

0 0

τ−1
off 0 0 − 1

k
−p 0 0 0

0 0 0 p − 1
k

0 0

τ
−1
off w0
RT T

0 0 log 2
RT T

0 − 1
k
−p 0

0 0 1
RT T2 0 0 p

2 − 1
k
− p

2

τ
−1
off w2

0
RT T2 0 0 0 0 log 4

RT T
0

0 0 0 0 2
RT T2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

μ
(0)
off

μ
(0)
ss

μ
(0)
ca

μ
(1)
ss

μ
(1)
ca

μ
(2)
ss

μ
(2)
ca

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎣
0 0
0 0
0 0
0 0

− 1
k
−p 0

p
4 − 1

k
− 3p

4

⎤⎥⎦ μ̄,

(20)

where μ̄ := [μ(3)
ss μ(3)

ca]′ evolves according to

μ̇(3)
ss =

τ−1
off w3

0

RTT 3 μ
(0)
off +

log 8

RTT
μ(3)

ss − (
1

k
+ p)μ(4)

ss , (21a)

μ̇(3)
ca =

3

RTT 2 μ(2)
ca +

p

8
μ(4)

ss − (
1

k
+

7p

8
)μ(4)

ca . (21b)

However, (21) does not satisfy condition 2 in Lemma 1 because the different
discrete modes do not appear decoupled: μ̇(3)

ss depends on μ(0)
off , and μ̇(3)

ca depends
on μ

(4)
ss . For the purpose of determining ϕ, we ignore the cross coupling terms

and approximate (21) by

μ̇(3)
ss ≈ log 8

RTT
μ(3)

ss − (
1

k
+ p)μ(4)

ss , μ̇(3)
ca ≈ 3

RTT 2 μ(2)
ca − (

1

k
+

7p

8
)μ(4)

ca . (22)

The validity of these approximations generally depends on the network param-
eters. When (22) is used, it is straightforward to verify that (17) has a unique
solution ϕ, resulting in a truncated system given by (20) and

Polynomial Stochastic Hybrid Systems 333

0 0.5 1 1.5 2 2.5 3

0.02
0.04
0.06
0.08

0.1

probability of drop − p

0 0.5 1 1.5 2 2.5 3
0

0.1

probability on each mode

ss
ca

0 0.5 1 1.5 2 2.5 3
0

10

20

mean rate − E[r]

ss
ca
total

0 0.5 1 1.5 2 2.5 3
0

50

rate standard deviation − Std[r]

ss
ca
total

Fig. 2. Comparison between Monte Carlo simulations (solid lines) and the trun-

cated model (20), (23) (dashed lines) for Example 2, with RTT = 50ms, τoff = 1sec,

k = 20.39 packets (corresponding to 30.58KB files broken into 1500bytes packets, which

is consistent with the file-size distribution of the UNIX file system reported in [14]),

and a step in the drop-rate p from 10% to 2% at t = 1sec

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10
E[e2]

M. Carlo
red. model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200
E[e4]

M. Carlo
red. model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5000
E[e6]

M. Carlo
red. model

Fig. 3. Comparison between Monte Carlo simulations (solid lines) and the trun-

cated model (24), (25) (dashed lines) for Example 3, with a = 1, q = 1, and a step in

the parameter b from 10 to 2 at time t = 0.5sec

μ̄ = ϕ(μ) =
[

μ
(0)
ss (μ

(2)
ss)3

(μ
(1)
ss)3

(μ
(0)
ca)

1
2 (μ

(2)
ca)

5
2

(μ
(1)
ca)2

]′
. (23)

Figure 2 shows a comparison between Monte Carlo simulations and the trun-
cated model (20), (23). The dynamics of the first and second order moments
are accurately predicted by the truncated model. In preparing this paper, sev-
eral simulation were executed for different network parameters and initial condi-
tions. Figure 2 shows typical best-case (before t = 1) and worst-case (after t = 1)
results. ��

334 J.P. Hespanha

Example 3 (Networked control system). Now ψ(m)(e) = em, m ∈ N≥0 and

(Lψ(m)
)(e) = a m ψ(m)

(e) +
m(m − 1)b2

2
ψ(m−2)

(e) − ψ(m+2ρ)
(e).

For ρ = 0, the infinite-dimensional dynamics have a lower-triangular structure
and therefore an exact truncation is possible. However, this case is less interesting
because it corresponds to a reset-rate that does not depend on the continuous
state and is therefore farther from the optimal [7, 8]. We consider here ρ =
1. In this case, the odd and even moments are decoupled and can be studied
independently. It is straightforward to check that if the initial distribution of
e is symmetric around zero, it will remain so for all times and therefore all
odd moments are constant and equal to zero. Regarding the even moments, the
smallest truncation for which condition 1 in Lemma 1 holds is a third order one,
for which (9) can be written as follows:[

μ̇(2)

μ̇(4)

μ̇(6)

]
=
[

2a −1 0
6b2 4a −1
0 15b2 6a

][
μ(2)

μ(4)

μ(6)

]
+
[

b2

0
0

]
+
[

0
0

−1

]
μ̄, (24)

where μ̄ := μ(8) evolves according to μ̇(8) = −28b2μ(6) + 8aμ(8) − μ(10). It
is straightforward to verify that (17) has a unique solution ϕ, resulting in a
truncated system given by(24) and

μ̄ = ϕ(μ(2), μ(4), μ(6)
) = μ(2)

(μ(6)

μ(4)

)3
. (25)

Figure 3 shows a comparison between Monte Carlo simulations and the truncated
model (24), (25). The dynamics of the all the moments are accurately predicted
by the truncated model. The nonlinearity of the underlying model is apparent
by the fact that halving b at time t = 0.5sec, which corresponds to dividing the
variance of the noise by 4, only results in approximately dividing the variance
of the estimation error by 2. ��

Example 4 (Decaying-dimerizing reaction set). For this system the test functions
are of the form ψ(m1,m2,m2)(x) = xm1

1 xm2
2 xm3

3 , ∀m1,m2,m3 ∈ N≥0 and

(Lψ(m1,m2,m2)
)(x) = c1

m1−1∑
i=0

(
m1
i) (−1)

m1−iψ(i+1,m2,m3)
(x)

+
c2

2

m1,m2∑
i,j=0

(i,j) 	=(m1,m2)

(
m1
i)

(m2
j

)
(−2)

m1−i(ψ(i+2,j,m3)
(x) − ψ(i+1,j,m3)

(x)
)

+ c3

m1,m2∑
i,j=0

(i,j)	=(m1,m2)

(
m1
i)

(m2
j

)
2

m1−i
(−1)

m2−jψ(i,j+1,m3)
(x)

+ c4

m2,m3∑
i,j=0

(i,j)	=(m2,m3)

(
m2
i)

(m3
j

)
(−1)

m2−iψ(m1,i+1,j)
(x), (26)

Polynomial Stochastic Hybrid Systems 335

Table 1. Comparison between estimates obtained from Monte Carlo simulations and

the truncated model for Example 4. The Monte Carlo data was taken from [11]

Source for the estimates E[x1(0.2)] E[x2(0.2)] StdDev[x1(0.2)] StdDev[x2(0.2)]

10,000 MC. simul. 387.3 749.5 18.42 10.49

model (27), (29) 387.2 749.6 18.54 10.60

where the summations result from the power expansions of the terms (xi − c)mi .
For this example we consider a truncation whose state contains all the first and
second order moments for the number of particles of the first and second species.
To keep the formulas small, we omit from the truncation the second moments
of the third species, which does not appear as a reactant in any reaction and
therefore its higher order statistics do not affect the first two. In this case, (9)
can be written as follows:⎡⎢⎢⎢⎣

μ̇(1,0,0)

μ̇(0,1,0)

μ̇(0,0,1)

μ̇(2,0,0)

μ̇(0,2,0)

μ̇(1,1,0)

⎤⎥⎥⎥⎦=

⎡⎢⎢⎣
−c1+c2 2c3 0 −c2 0 0

− c2
2 −c3−c4 0 c2

2 0 0
0 c4 0 0 0 0

c1−2c2 4c3 0 4c2−2c1 0 4c3
− c2

2 c3+c4 0 c2
2 −2c3−2c4 −c2

c2 −2c3 0 − 3c2
2 2c3 c2−c1−c3−c4

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

μ(1,0,0)

μ(0,1,0)

μ(0,0,1)

μ(2,0,0)

μ(0,2,0)

μ(1,1,0)

⎤⎥⎥⎥⎦+
⎡⎢⎣

0 0
0 0
0 0

−2c2 0
0 c2
c2
2 −c2

⎤⎥⎦μ̄,
(27)

where μ̄ := [μ(3,0,0) μ(2,1,0)]′ evolves according to

μ̇(3,0,0)
= (−c1 + 4c2)μ

(1,0,0)
+ 8c3μ

(0,1,0)
+ (3c1 − 10c2)μ

(2,0,0)
+ 12c3μ

(1,1,0)

+ (−3c1 + 9c2)μ
(3,0,0)

+ 6c3μ
(2,1,0) − 3c2μ

(4,0,0)
(28a)

μ̇(2,1,0)
= −2c2μ

(1,0,0) − 4c3μ
(0,1,0)

+ 4c2μ
(2,0,0)

+ 4c3μ
(0,2,0)

+ (c1 − 2c2 − 4c3)μ
(1,1,0)

− 5c2μ
(3,0,0)

2
+(4c2 − 2c1 − c3 − c4)μ

(2,1,0)
+4c3μ

(1,2,0)
+

c2μ
(4,0,0)

2
−2c2μ

(3,1,0).

(28b)

This system does not satisfy condition 1 in Lemma 1 because the μ(1,0,0), μ(0,1,0)

terms in the right-hand sides of (28) lead to monomials in x1 and x2 that do
not exist in any of the polynomials

{∑∞
i=1 aj,i x

(m�−mj+mi) : 1 ≤ j ≤ 6
}
. These

terms can be traced back to the lowest-order terms in power expansions in (26)
and disappear if we discard them. This leads to a simplified version of (27) for
which condition 1 in Lemma 1 does hold, allowing us to find a unique solution
ϕ to (17), resulting in a truncated system given (27) and

μ̄ = ϕ(μ) =
[(

μ(2,0,0)

μ(1,0,0)

)3
μ(2,0,0)

μ(0,1,0)

(
μ(1,1,0)

μ(1,0,0)

)2]′
. (29)

Ignoring the lowest-order powers of x1 and x2 in the power expansions is valid
when the populations of these species are high. In practice, the approximation
still seems to yield good results even when the populations are fairly small.
Figure 4 shows a comparison between Monte Carlo simulations and the truncated
model (27), (29). The coefficients used were taken from [11–Example 1]: c1 = 1,

336 J.P. Hespanha

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

500

1000

E[x
1
]

E[x
2
]

E[x
3
]

population means

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25 STD[x
1
]

STD[x
2
]

population standard deviations

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−1

−0.8

−0.6

Corr[x
1
,x

2
]

populations correlation coefficient

(a) Large population over a long

time scale

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

0

200

400

600

800

E[x
1
]

E[x
2
]

E[x
3
]

population means

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

0

5

10

15

20
STD[x

1
]

STD[x
2
]

population standard deviations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

−1.1

−1.05

−1

−0.95

−0.9

Corr[x
1
,x

2
]

populations correlation coefficient

(b) Large population over a short

time scale

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

E[x
1
]

E[x
2
]

E[x
3
]

population means

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

STD[x
1
]

STD[x
2
]

population standard deviations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

Corr[x
1
,x

2
]

populations correlation coefficient

(c) Small population over a long time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

0

10

20

30
E[x

1
]

E[x
2
]

E[x
3
]

population means

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

0

1

2

3

4
STD[x

1
]

STD[x
2
]

population standard deviations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−3

−1.1

−1.05

−1

−0.95

−0.9

Corr[x
1
,x

2
]

populations correlation coefficient

(d) Small population over short time

scale

Fig. 4. Comparison between Monte Carlo simulations (solid lines) and the truncated

model (27), (29) (dashed lines) for Example 4

c2 = 10, c3 = 1000, c4 = 10−1. In Fig. 4(a), we used the same initial conditions
as in [11–Example 1]: x1(0) = 400, x2(0) = 798, x3(0) = 0. The match is
very accurate, as can be confirmed from Table 1. The values of the parameters
chosen result in a pSHS with two distinct time scales, which makes this pSHS
computationally difficult to simulate (“stiff” in the terminology of [11]). Fig. 4(a)
shows the evolution of the system on the “slow manifold,” whereas Fig. 4(b)
zooms in on the interval [0, 5 × 10−4] and shows the evolution of the system
towards this manifold when it starts away from it at x1(0) = 800, x2(0) = 100,
x3(0) = 200. Figures 4(c)–4(d) shows another simulation of the same reactions
but for much smaller initial populations: x1(0) = 10, x2(0) = 10, x3(0) = 5. The

Polynomial Stochastic Hybrid Systems 337

truncated model still provides an extremely good approximation, with significant
error only in the covariance between x1 and x2 when the averages and standard
deviation of these variables get below one. ��

6 Conclusions and Future Work

In this paper, we showed that the infinite-dimensional linear moment dynamics
of a pSHS can be approximated by a finite-dimensional nonlinear ODE with
arbitrary precision. Moreover, we provided a procedure to build this type of
approximation. The methodology was illustrated using a varied pool of exam-
ples, demonstrating its wide applicability. Several observations arise from these
examples, which point to directions for future research:

1. In all the examples presented, we restricted our attention to truncation func-
tions ϕ of the form (16) and we only used deterministic distributions to com-
pute ϕ. Mostly likely, better results could be obtained by considering more
general distributions, which may require more general forms for ϕ.

2. The truncation of pSHSs that model chemical reactions proved especially
accurate. This motivates the search for systematic procedures to automat-
ically construct a truncated system from chemical equations such as (6).
Another direction for future research consists of comparing the truncated
models obtains here with those in [15].

An additional direction for future research consists of establishing computable
bounds on the error between solutions to the infinite-dimensional moments dy-
namics and to its finite-dimensional truncations.

References

1. Hespanha, J.: Stochastic hybrid systems: Applications to communication networks.

In Alur, R., Pappas, G., eds.: Hybrid Systems: Computation and Control. Number

2993 in Lect. Notes in Comput. Science. Springer-Verlag, Berlin (2004) 387–401

2. Davis, M.H.A.: Markov models and optimization. Monographs on statistics and

applied probability. Chapman & Hall, London, UK (1993)

3. Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems.

In Lynch, N.A., Krogh, B.H., eds.: Hybrid Systems: Computation and Control.

Volume 1790 of Lect. Notes in Comput. Science., Springer (2000) 160–173

4. Pola, G., Bujorianu, M., Lygeros, J., Benedetto, M.D.: Stochastic hybrid models:

An overview. In: Proc. of IFAC Conf. on Anal. and Design of Hybrid Syst. (2003)

5. Bujorianu, M.: Extended stochastic hybrid systems and their reachability problem.

In: Hybrid Systems: Computation and Control. Lect. Notes in Comput. Science.

Springer-Verlag, Berlin (2004) 234–249

6. Bohacek, S., Hespanha, J., Lee, J., Obraczka, K.: A hybrid systems modeling

framework for fast and accurate simulation of data communication networks. In:

Proc. of ACM SIGMETRICS. (2003)

338 J.P. Hespanha

7. Xu, Y., Hespanha, J.: Communication logics for networked control systems. In:

Proc. of 2004 Amer. Contr. Conf. (2004)

8. Xu, Y., Hespanha, J.: Optimal communication logics for networked control sys-

tems. In: Proc. of 43rd Conf. on Decision and Contr. (2004)

9. Gillespie, D.T.: A general method for numerically simulating the stochastic time

evolution of coupled chemical reactions. J. Comp. Physics 22 (1976) 403–434

10. Gillespie, D., Petzold, L.: Improved leap-size selection for accelerated stochastic

simulation. J. of Chemical Physics 119 (2003) 8229–8234

11. Rathinam, M., Petzold, L., Cao, Y., Gillespie, D.: Stiffness in stochastic chemically

reacting systems: The implicit tau-leaping method. J. of Chemical Physics 119
(2003) 12784–12794

12. Hespanha, J.: A model for stochastic hybrid systems with application to commu-

nication networks. Submitted to the Int. Journal of Hybrid Systems (2004)

13. Hespanha, J.P.: Polynomial stochastic hybrid systems (extended version). Techni-

cal report, University of California, Santa Barbara, Santa Barbara (2004) Available

at http://www.ece.ucsb.edu/~hespanha/techreps.html.
14. Irlam, G.: Unix file size survey – 1993. Available at

http://www.base.com/gordoni/ufs93.html (1994)

15. Van Kampen, N.: Stochastic Processes in Physics and Chemistry. Elsevier (2001)

Non-uniqueness in Reverse Time of Hybrid
System Trajectories

Ian A. Hiskens�

Department of Electrical and Computer Engineering,

University of Wisconsin-Madison, Madison, WI 53706

hiskens@engr.wisc.edu

Abstract. Under standard Lipschitz conditions, trajectories of systems

described by ordinary differential equations are well defined in both for-

ward and reverse time. (The flow map is invertible.) However for hybrid

systems, uniqueness of trajectories in forward time does not guarantee

flow-map invertibility, allowing non-uniqueness in reverse time. The pa-

per establishes a necessary and sufficient condition that governs invert-

ibility through events. It is shown that this condition is equivalent to

requiring reverse-time trajectories to transversally encounter event trig-

gering hypersurfaces. This analysis motivates a homotopy algorithm that

traces a one-manifold of initial conditions that give rise to trajectories

which all reach a common point at the same time.

1 Introduction

Uniqueness is a fundamental property of solutions of dynamical systems. Intu-
itively, uniqueness in forward time should imply reverse time uniqueness1. That
is certainly the case for systems described by ordinary differential equations, as
discussed in the background presentation in Section 2. However it is not neces-
sarily true for hybrid systems.

Hybrid system solutions are composed of periods of smooth behaviour sepa-
rated by discrete events [2]. Standard transversality conditions can be established
to ensure transitions through events are well behaved. An overview is provided
in Section 4. However those conditions are not sufficient to ensure reverse-time
mappings through events are well defined. It is shown in the paper that another
transversality-type condition must be satisfied to ensure uniqueness in reverse-
time (or equivalently flow-map invertibility.)

Recent investigations have established conditions governing the well-posedness
of solutions for various hybrid system formalisms. A complementarity modelling
framework [3] underlies the characterization of solutions of linear relay systems
[4, 5] and further extensions to piecewise-linear systems [6, 7]. A more general
hybrid automata framework is considered in [8]. In all cases, well-posedness is

� Research supported by the National Science Foundation through grant ECS-0332777.
1 In other words, invertibility of the flow map [1]. This is discussed further in Section 3.

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 339–353, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

340 I.A. Hiskens

addressed in the context of forward solutions, i.e., whether there exists a unique
(forward) solution for every initial state x0. It is noted in [5], though without dis-
cussion, that forward-time well-posedness does not imply well-defined behaviour
in reverse time. That reverse-time issue is addressed in this paper, in the con-
text of flow-map invertibility. It is shown in Section 7 that non-invertibility gives
rise to a manifold of initial conditions for trajectories which all reach a common
point at the same time. Such concepts have not previously been explored.

Analysis of system dynamic behaviour is normally only concerned with trajec-
tory evolution in forward time. In such cases, the issues raised here are inconse-
quential. However reverse-time trajectories form the basis for the adjoint system
equations, which underlie algorithms for solving boundary value and dynamic
embedded optimization problems [9, 10, 11]. Application of such algorithms to
hybrid systems must therefore consider these uniqueness issues.

2 Background

Existence and uniqueness properties for systems of the form

ẋ = f(x), x(0) = x0 (1)

where f : Rn → Rn are well known [12, 13]. In particular, if f ∈ C1, i.e., is
continuous in x and has continuous first partial derivatives with respect to x
over Rn, then (1) has a unique solution

x(t) = φ(t, x0) ≡ φt(x0), (2)

with φ(0, x0) = x0. Furthermore, the flow map φ(t, x0) is differentiable with
respect to x0. The sensitivity transition matrix is defined as

Φ(t, x0) � ∂φ(t, x0)
∂x0

. (3)

It is obtained by differentiating (1) with respect to x0 to give

Φ̇(t, x0) = Df(t)Φ(t, x0), Φ(0, x0) = I (4)

where

Df(t) � ∂f(x)
∂x

∣∣∣∣
x=φ(t,x0)

.

The transition matrix Φ(t, x0) is the solution of a set of linear time-varying
differential equations (4), so has the property

det Φ(t, x0) = exp
{∫ t

0
Trace{Df(τ)}dτ

}
, (5)

which implies Φ(t, x0) is nonsingular for all t.

Non-uniqueness in Reverse Time of Hybrid System Trajectories 341

Expanding φ(t, x0) in a Taylor series, and neglecting higher order terms,
results in

φ(t, x̄0) − φ(t, x0) ≈ Φ(t, x0)(x̄0 − x0) (6)
⇒ δx(t) ≈ Φ(t, x0)δx0. (7)

In other words a change δx0 in initial conditions2 induces a change δx(t) in the
trajectory at time t, with that change described (approximately) by Φ(t, x0).
Because Φ(t, x0) is nonsingular for all t, it may be concluded that given any
δx(t), it is always possible to find the corresponding δx0, i.e.,

δx0 = Φ(t, x0)−1δx(t). (8)

3 Reverse Time Trajectories

For systems of the form (1), the map φt ∈ C1. Furthermore, according to (5),
its derivative Dφt(x) = Φ(t, x) is always invertible. Therefore, by the inverse
function theorem [1], φt is a one-parameter family of diffeomorphisms. It follows
that φt has a C1 inverse φ−t, such that φ−t(φt(x)) = φ0(x) = x. This inverse
φ−t is referred to as the reverse time trajectory.

4 Hybrid Systems

Hybrid systems have the form

ẋ = fp(x), p ∈ P (9)

where fp : Rn → Rn, and P is some finite index set. Transitions between the
various subsystems fi → fj occur when the state x evolves to a point that
satisfies an event triggering condition,

sij(x) = 0 (10)

where sij : Rn → R. We shall assume sij ∈ C1. A more elaborate differential-
algebraic model, that incorporates switching and impulse effects, is described
in [14].

Assume all fp satisfy the differentiability condition of f in (1), and x is
continuous at events, i.e., impulses do not occur. Furthermore, assume that event
triggers are encountered transversally3,

∇sT
ij ẋ = ∇sT

ijfi �= 0 (11)

2 Parameter sensitivity can be incorporated through initial conditions by introducing

trivial equations

λ̇ = 0, λ(0) = λ0.

3 Tangential encounters are associated with grazing phenomena [15].

342 I.A. Hiskens

and that event switching is well defined, in the sense that accumulation effects
do not occur. Under those conditions, (9) has a unique solution that can be
expressed in the same form as (2).

Away from events, the sensitivity transition matrix Φ(t, x0) is defined ac-
cording to (4). It is shown in [14] that at an event i → j, occurring at time τ ,
sensitivities Φ generically jump4 according to

Φ(τ+, x0) = Φ(τ−, x0) + (fj − fi)
∇sT

ijΦ(τ−, x0)
∇sT

ijfi
(12)

=

(
I + (fj − fi)

∇sT
ij

∇sT
ijfi

)
Φ(τ−, x0) (13)

= Φ(δ, x(τ−))Φ(τ−, x0) (14)

where δ in (14) signifies the time increment τ+ − τ−. Notice that the transver-
sality condition (11) ensures that the denominator of (12) is non-zero.

Equation (12) can be rewritten

Φ+ = Φ− − (fj − fi)
∂τ

∂x0
(15)

where
∂τ

∂x0
= −

∇sT
ijΦ

−

∇sT
ijfi

4 No jump occurs if fi = fj or ∇sT
ijΦ(τ−, x0) = 0.

Nominal
trajectory

Perturbed
trajectory

Triggering
hypersurface

δx

fiδτ

fjδτ

x(τ) + δx

x(τ)

Φ+δx0

Φ−δx0

x(τ + δτ)

Fig. 1. Jump conditions

Non-uniqueness in Reverse Time of Hybrid System Trajectories 343

gives the sensitivity of event triggering time to initial conditions. For a pertur-
bation δx0, (15) gives

δx = Φ−δx0 + fiδτ = Φ+δx0 + fjδτ,

which is illustrated in Figure 1.

5 Uniqueness in Forward and Reverse Time

Generalizing (14) to a sequence of events occurring at times 0 < τ1 < τ2 < · · · <
τ� results in the sensitivity transition matrix at t > τ� having composition

Φ(t, x0) = Φ(t− τ+
� , x(τ+

�)) × Φ(δ, x(τ−
�)) × Φ(τ−

� − τ+
�−1, x(τ+

�−1)) × . . .

× Φ(τ−
1 , x0)

where Φ(τ−
� − τ+

�−1, x(τ+
�−1)) corresponds to transitions along smooth sections of

the flow, and Φ(δ, x(τ−
�)) describes the transition through an event at time τ�.

Property (5) ensures that matrices Φ(τ−
� −τ+

�−1, x(τ+
�−1)) are always nonsingular.

However the following theorem establishes conditions governing the singularity
of transition matrices Φ(δ, x(τ−

�)).

Theorem 1. The sensitivity transition matrix Φ(δ, x(τ−)) is singular if and only
if ∇sT

ijfj = 0.

Proof: The proof makes use of the fact that det(I + abT) = 1 + bTa, which is a
special case of det(I +AB) = det(I +BA) [16]. Then

det Φ(δ, x(τ−)) = det

(
I + (fj − fi)

∇sT
ij

∇sT
ijfi

)

= 1 +
∇sT

ij

∇sT
ijfi

(fj − fi)

=
∇sT

ijfj

∇sT
ijfi

,

which is zero if and only if ∇sT
ijfj = 0.

�

Therefore, for a hybrid system, Φ(t, x0) will be singular if the conditions of
Theorem 1 occur at any event. But if Φ(t, x0) is singular, the hybrid system
flow φt is not a diffeomorphism, and the reverse time trajectory φ−t is not well
defined.

Recalling (7), a perturbation δx0 in initial conditions will always result in a
well defined perturbation δx(t) in the trajectory at time t. However if Φ(t, x0)
is not invertible, the reverse mapping (8) is not valid. A general perturbation
δx(t) cannot be mapped backwards to a corresponding unique δx0. More specif-

344 I.A. Hiskens

Triggering
hypersurface

Trajectory

(a)

Triggering
hypersurface

Trajectory

(b)

Fig. 2. Conditions inducing singularity

ically though, if δx(t) lies in the range space of Φ(t, x0), then it can be mapped
backwards to a continuum of δx0

5.
It may be concluded that for hybrid systems, uniqueness of trajectories in

forward time does not guarantee uniqueness in reverse time.
Note that there is a subtle but important difference between the transversality

condition (11) and the singularity condition of Theorem 1, even though they have a
similar form.Transversality (11) ensures the trajectory has awell defined (forward)
encounter with the triggering hypersurface. Theorem 1 establishes conditions that
relate to the trajectory’s departure from the event. Furthermore, it should be em-
phasised that the triggering condition sij(x) = 0 is only active for subsystem i,
before the event. After the event, in subsystem j, it is no longer relevant.

Figure 2 illustrates ways in which the singularity condition of Theorem 1,
∇sT

ijfj = 0, may arise. In Figure 2(a), the post-event trajectory remains on
the triggering hypersurface for a non-zero time interval. This situation is rela-
tively common in practice, for example the action of anti-wind-up limits [17]. In
Figure 2(b), the post-event trajectory leaves the triggering hypersurface tangen-
tially. The examples of Section 8 consider both situations further.

These two cases motivate an interesting corollary of Theorem 1.

Corollary 2. The sensitivity transition matrix Φ(δ, x(τ−)) is nonsingular if and
only if the reverse-time trajectory φ−t(x(τ+)) is transversal to the triggering
hypersurface sij that induces the event at time τ .

5 Let u and v be the left and right eigenvectors of Φ(t, x0) corresponding to a zero

eigenvalue. Then if uT δx(t) = 0, δx0 will lie in the one-dimensional subspace defined

by δx0 = w + αv where δx(t) = Φ(t, x0)w and α is a scalar.

Non-uniqueness in Reverse Time of Hybrid System Trajectories 345

In other words, to ensure uniqueness in reverse time, the reverse-time trajec-
tory must “encounter” triggering hypersurfaces transversally. (Though keep in
mind these hypersurfaces are really only defined for the forward trajectory.) The
situations presented in Figure 2 illustrate reverse-time non-uniqueness when this
transversality condition is not satisfied. In both illustrations, the post-event seg-
ment of the trajectory could have originated from the dotted trajectory, rather
than the actual pre-event (solid) trajectory.

Note that the two cases depicted in Figure 2 are structurally quite different.
In Figure 2(a), reverse-time non-uniqueness persists under perturbations in the
initial conditions, whereas for Figure 2(b), perturbations destroy that property.
However this latter case has an interesting sliding interpretation when the trig-
gering hypersurface is common to both the pre- and post-trigger subsystems.
Referring to Figure 2(b), consider trajectories that emanate from either subsys-
tem and encounter the triggering hypersurface just above the switching point of
the nominal trajectory (the switching that induces reverse-time non-uniqueness).
Those trajectories will slide along the hypersurface until they reach that pivotal
switching point. From there they will depart the hypersurface and follow the
post-switching trajectory shown in the figure. The pivotal switching point sepa-
rates the sliding region from that associated with well-behaved switching.

Keep in mind that this sliding interpretation is only appropriate when the
triggering hypersurface is common to both subsystems. Corollary 2 is more gen-
erally applicable.

6 Impulses at Events

The hybrid system model established in Section 4 and used through Section 5
assumed continuity of x at events. However results can be generalized to allow
impulses at events. Assume the impulse mapping at event i→ j has the form

x+ = hij(x−)

where hij : Rn → Rn is a diffeomorphism, and x+, x− refer to the values of the
state just after, and just prior to, the event respectively6.

It is shown in [14] that with the inclusion of impulse effects, the sensitivity
transition matrix jump conditions (12)-(14) become

Φ(δ, x(τ−)) = Dh+ (fj −Dhfi)
∇sT

ij

∇sT
ijfi

(16)

where Dh � ∂hij

∂x . In this case, Theorem 1 takes a slightly modified form.

Theorem 3. For nonsingular Dh, the sensitivity transition matrix Φ(δ, x(τ−))
is singular if and only if ∇sT

ijDh
−1fj = 0.

6 An implicit impulse mapping h̆ij(x
+, x−) = 0 is also acceptable, though not used

here.

346 I.A. Hiskens

Proof: The proof is similar to that of Theorem 1. With Dh nonsingular,

det Φ(δ, x(τ−)) = det(Dh) det

(
I + (Dh−1fj − fi)

∇sT
ij

∇sT
ijfi

)

= det(Dh)

(
1 +

∇sT
ij

∇sT
ijfi

(Dh−1fj − fi)

)

= det(Dh)

(
∇sT

ijDh
−1fj

∇sT
ijfi

)
.

Given that Dh is nonsingular, singularity of Φ(δ, x(τ−)) corresponds to
∇sT

ijDh
−1fj = 0.

�

The condition established in Theorem 3 has a very similar interpretation
to that of Theorem 1. Now though, the post-event vector field fj is translated
via Dh−1 back to a pre-event coordinate system, where transversality is again
required for nonsingularity.

7 Homotopy Algorithm

To first order, deviations in a trajectory at time t are given by (7). If Φ(t, x0)
is singular then a deviation δx0 that coincides with the null-space7 of Φ(t, x0)
results in δx(t) = 0. As mentioned in Section 5, under such conditions φ(t, x0)
maps a continuum of x0 to a single point x(t). In fact, if Φ(t∗, x0) has rank
deficiency k, then x(t∗) = φ(t∗, x0) defines a k-manifold.

If Φ(t∗, x0) has a single zero eigenvalue, then

Σ = {x0 : φ(t∗, x0) − x(t∗) = 0} (17)

describes a 1-manifold, or curve. Homotopy methods can be used to generate suc-
cessive points along such curves. An Euler homotopy provides a robust predictor-
corrector algorithm [18].

Assume a point x̄0 on Σ is known. (This is a straightforward initial value
problem.) The first step of the homotopy algorithm is the (first order) prediction
of the next point on the curve. This is achieved by finding the vector that is tan-
gent to Σ at x̄0. This tangent vector is nothing more than the (normalized) right
eigenvector v of Φ(t∗, x̄0) corresponding to the zero eigenvalue. The prediction
of the next point is obtained by moving along v a predefined distance τ ,

x0,pred = x̄0 + τv,

where

Φ(t∗, x̄0)v = 0 (18)
‖v‖ = 1. (19)

7 The null-space is spanned by the right eigenvectors corresponding to zero eigenvalues.

Non-uniqueness in Reverse Time of Hybrid System Trajectories 347

Having found the prediction point, we now need to correct to a point x0 on the
curve. The Euler method does this by solving for the point of intersection of the
curve and a hyperplane that passes through x0,pred and that is orthogonal to v.
Points x0 on this hyperplane are given by,

(x0 − x̄0)T v = τ. (20)

The point of intersection of the curve and the hyperplane is therefore given by

φ(t∗, x0) − x(t∗) = 0 (21)

(x0 − x̄0)T v = τ. (22)

Note though that (21)-(22) describe n + 1 equations in n unknowns. However
the rank deficiency of (21) suggests that one of those equations is redundant,
and so can be discarded. It remains to determine which equation to discard.

Newton-Raphson solution of (21)-(22) proceeds via the iteration formula[
Φ(t∗, x0)

vT

]
Δx0 =

[
φ(t∗, x0) − x(t∗)
(x0 − x̄0)T v − τ

]
(23)

where Φ(t∗, x0) is singular, with a single zero eigenvalue. Solution of (23) re-
quires that uT (φ(t∗, x0)− x(t∗)) = 0, where u is the left eigenvector of Φ(t∗, x0)
corresponding to the zero eigenvalue. In other words, u describes the linear
dependence between the first n equations of (23). This implies that the best
equation to discard from (21) is that corresponding to the element of u with the
largest absolute value.

The next point on the curve is therefore given by Newton-Raphson solution of

F (x0) ≡
[
φ(t∗, x0) − x(t∗)
(x0 − x̄0)T v − τ

]
= 0 (24)

which utilizes the (nonsingular) Jacobian

DF (x0) =
[

Φ(t∗, x0)
vT

]
, (25)

where underlining in (24) and (25) indicates that the appropriate equation has
been discarded.

8 Examples

8.1 Example 1

As indicated in Section 5, anti-wind-up limits provide a common situation where
reverse-time transversality is not possible. This can be illustrated using a simple
example that consists of a linear continuous-time system

ẋ =
[
−1 2
−2 −1

]
x

348 I.A. Hiskens

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

Fig. 3. Example 1 response

together with an anti-wind-up limit restricting x1 ≤ 0.4. In terms of the hybrid
system representation of Section 4, this system may be modelled as

ẋ = f1(x) =
[
−1 2
−2 −1

]
x (subsystem 1)

ẋ = f2(x) =
[

0 0
−2 −1

]
x (subsystem 2)

with transitions from subsystem 1 to 2 triggered when

s12(x) = x1 − 0.4 = 0

and from subsystem 2 to 1 when

s21(x) = [−1 2]x = 0.

This latter condition ensures ẋ1 < 0 after switching, so behaviour is directed
away from the limit surface. The response of this system for initial conditions
x0 = [0 1]T is shown as a solid line in Figure 3.

At the instant prior to the limit being encountered (event triggering), the
sensitivity transition matrix Φ(τ−, x0) had eigenvalues 0.64± j0.40. However for
this event,

Φ(δ, x(τ−)) =
[

0 0
0 1

]

Non-uniqueness in Reverse Time of Hybrid System Trajectories 349

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

Triggering hypersurface

Fig. 4. Example 2 response

which clearly has a zero eigenvalue, with corresponding left eigenvector ∇sij =
[1 0]T .

The homotopy algorithm was used to locate other initial points that reached
the same final point at the same time. These are shown in Figure 3 as dashed
lines. Once the limit is encountered, the trajectories are indistinguishable. All
are well defined in forward time, but there is no unique reverse-time trajectory.

8.2 Example 2

Behaviour of the form shown in Figure 2(b) can be illustrated using the simple
hybrid system,

ẋ = f1(x) =
[

0
1

]
(subsystem 1)

ẋ = f2(x) =
[

1
x1

]
(subsystem 2)

with transitions from subsystem 1 to 2 triggered when

s12(x) = x2 = 0.

The solid line in Figure 4 shows the trajectory given by initial conditions x0 =
[0 −1]T . The singularity condition of Theorem 1 occurs at the switching point

350 I.A. Hiskens

x = [0 0]T , implying the trajectory is not unique in reverse time. This non-
uniqueness is confirmed by the dashed trajectory which starts at x0 = [−1 0.5]T ,
but coincides with the nominal trajectory from the point x = [0 0]T onwards.

If transitions from subsystem 2 to 1 were triggered when

s21(x) = s12(x)

then all trajectories emanating from below the dashed line would slide along the
x1-axis until reaching the point x = [0 0]T . From there they would all follow the
nominal trajectory shown.

Vmax

Vmin

1+sT1

1+sT2

sTw

1+sTw
KPSS Δω

VPSS

1

1+sTR

1+sTC

1+sTB

KA

1+sTA
Σ Efd

Vref

Vt
−

+

+

Efdmax

Efdmin

Fig. 5. Excitation system (AVR/PSS) representation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

Time (sec)

F
ie

ld
 v

ol
ta

ge
, E

fd
 (

pu
)

Fig. 6. Generator field voltage response

Non-uniqueness in Reverse Time of Hybrid System Trajectories 351

8.3 Example 3

A more elaborate power system case has also been considered. In this case,
generators were represented by a sixth order nonlinear model [19], and equipped
with the excitation system shown in Figure 5. This system includes clipping
limits on the stabilizer output VPSS , and anti-windup limits on the field voltage
Efd. The response of the generator field voltage Efd to a fault is shown in
Figure 6. Note that this trajectory is quite non-smooth, as is typical for power
systems.

At 0.086 sec, the anti-windup limit was encountered. As anticipated, the sen-
sitivity transition matrix Φ(δ, x(0.086−)) was singular, with a single zero eigen-
value at that event. The homotopy algorithm was again used to locate initial
points that converged to the same final point at the same final time. Results are
shown in Figure 7. The solid line corresponds to the original case. The dashed
trajectories originate from points given by the homotopy. Note that all curves
converge at 0.086 sec.

9 Conclusions

Hybrid system solutions are composed of periods of smooth behaviour sepa-
rated by discrete events. Standard transversality conditions can be established to

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0.6

0.65

0.7

0.75

0.8

0.85

Time (sec)

E
fd

 (pu)

G
en

 fl
ux

 (
pu

)

Fig. 7. Trajectories given by homotopy algorithm

352 I.A. Hiskens

ensure transitions through events are well behaved. However certain applications,
such as the adjoint equations in dynamic embedded optimization, require the
evaluation of behavior in reverse time. Standard transversality conditions are
not sufficient in that case. It is shown in the paper that another reverse-time
transversality-type condition must be satisfied to ensure a unique reverse-time
mapping through events.

When reverse-time trajectories are not well-posed, two situations may arise.
In the first case, a continuum of initial conditions can be found for trajecto-
ries that all reach the same point in state-space at the same time. It has been
shown that when this continuum is a 1-manifold, a predictor-corrector homo-
topy method can be used to trace that curve. Alternatively, trajectories ex-
hibiting reverse-time non-uniqueness may be isolated. In that case, under the
special condition that the event triggering hypersurface is common to both the
pre- and post-event subsystems, the ill-posed trajectory separates (reverse-time
non-unique) sliding behaviour from well-defined switching.

References

1. Hirsch, M., Smale, S.: Differential Equations, Dynamical Systems and Linear Al-

gebra. Academic Press, Orlando, FL (1974)

2. Liberzon, D.: Switching in Systems and Control. Birkhauser, Boston (2003)

3. van der Schaft, A., Schumacher, J.: Complementarity modeling of hybrid systems.

IEEE Transactions on Automatic Control 43 (1998) 483–490

4. Lootsma, Y., van der Schaft, A., Çamlibel, M.: Uniqueness of solutions of linear

relay systems. Automatica 35 (1999) 467–478

5. Pogromsky, A., Heemels, W., Nijmeijer, H.: On solution concepts and well-

posedness of linear relay systems. Automatica 39 (2003) 2139–2147

6. Heemels, W., Çamlibel, M., Schumacher, J.: On the dynamic analysis of piecewise-

linear networks. IEEE Transactions on Circuits and Systems-I 49 (2002) 315–327

7. Imura, J.I., van der Schaft, A.: Characterization of well-posedness of piecewise-

linear systems. IEEE Transactions on Automatic Control 45 (2000) 1600–1619

8. Lygeros, J., Johansson, K., Simić, S., Zhang, J., Sastry, S.: Dynamical properties

of hybrid automata. IEEE Transactions on Automatic Control 48 (2003) 2–17

9. Errico, R.: What is an adjoint model? Bulletin of the American Meteorological

Society 78 (1997) 2577–2591

10. Cao, Y., Li, S., Petzold, L., Serban, R.: Adjoint sensitivity analysis for differential-

algebraic equations: The adjoint DAE system and its numerical solution. SIAM

Journal on Scientific Computing 24 (2003) 1076–1089

11. Wardi, Y., Egerstedt, M., Boccadoro, M., Verriest, E.: Optimal control of switching

surfaces. In: Proceedings of the 43rd Conference on Decision and Control, Paradise

Island, Bahamas (2004) 1854–1859

12. Khalil, H.: Nonlinear Systems. 2nd edn. Prentice Hall, Upper Saddle River, NJ

(1996)

13. Perko, L.: Differential Equations and Dynamical Systems. Springer-Verlag, New

York, NY (1996)

Non-uniqueness in Reverse Time of Hybrid System Trajectories 353

14. Hiskens, I., Pai, M.: Trajectory sensitivity analysis of hybrid systems. IEEE

Transactions on Circuits and Systems I: Fundamental Theory and Applications 47
(2000) 204–220

15. Donde, V., Hiskens, I.: Shooting methods for locating grazing phenomena in hybrid

systems. International Journal of Bifurcation and Chaos (2004) Submitted.

16. Kailath, T.: Linear Systems. Prentice Hall, Upper Saddle River, NJ (1980)

17. Goodwin, G., Graebe, S., Salgado, M.: Control System Design. Upper Saddle

River, New Jersey: Prentice Hall (2001)

18. Garcia, C., Zangwill, W.: Pathways to Solutions, Fixed Points and Equilibria.

Prentice Hall, Englewood Cliffs, NJ (1981)

19. Sauer, P., Pai, M.: Power System Dynamics and Stability. Prentice Hall, Upper

Saddle River, NJ (1998)

Comparison of Four Procedures for the
Identification of Hybrid Systems

Aleksandar Lj. Juloski1, W.P.M.H. Heemels2, Giancarlo Ferrari-Trecate3,
René Vidal4, Simone Paoletti5, and J.H.G. Niessen6

1 Department of Electrical Engineering, Eindhoven University of Technology,

PO Box 513, 5600MB Eindhoven, The Netherlands

a.juloski@tue.nl
2 Embedded Systems Institute, PO Box 513,

5600 MB Eindhoven, The Netherlands

maurice.heemels@embeddedsystems.nl
3 INRIA, Domaine de Voluceau, Rocquencourt - B.P.105,

78153, Le Chesnay Cedex, France

Giancarlo.Ferrari-Trecate@inria.fr
4 Center for Imaging Science, Johns Hopkins University,

308B Clark Hall, 3400 N Charles St, Baltimore, MD 21218, USA

rvidal@cis.jhu.edu
5 Dipartimento di Ingegneria dell’Informazione, Universita’ di Siena,

Via Roma 56, 53100 Siena, Italy

paoletti@dii.unisi.it
6 Nyquist, Industrial Control, P.O. Box 7170,

5605 JD Eindhoven, The Netherlands

h.niessen@nyquist.com

Abstract. In this paper we compare four recently proposed procedures

for the identification of PieceWise AutoRegressive eXogenous (PWARX)

and switched ARX models. We consider the clustering-based procedure,

the bounded-error procedure, and the Bayesian procedure which all iden-

tify PWARX models. We also study the algebraic procedure, which iden-

tifies switched linear models. We introduce quantitative measures for

assessing the quality of the obtained models. Specific behaviors of the

procedures are pointed out, using suitably constructed one dimensional

examples. The methods are also applied to the experimental identifi-

cation of the electronic component placement process in pick-and-place

machines.

1 Introduction

In this paper we study four recently proposed procedures for the identification
of discrete time piecewise affine (PWA) models. The identification procedures
that we compare are the clustering-based procedure [1], the bounded-error pro-
cedure [2, 3], the Bayesian procedure [4] and the algebraic procedure [5, 6] (see
section 2 for brief descriptions). Of course, there are other methods available in

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 354–369, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Comparison of Four Procedures for the Identification of Hybrid Systems 355

literature, for instance the work given in [7] and [8]. However, due to the specific
knowledge of the authors and space limitations, the attention is restricted to the
four procedures mentioned before.

There is not much known how the procedures compare in particular situa-
tions. Some features of the clustering-based procedure have been analyzed the-
oretically in [9], but a formal analysis of the properties of the bounded-error,
algebraic and Bayesian procedures for noisy data is currently not available.
Therefore, we will study specific examples of PWA models that can help us
better understand properties of the methods in practical situations.

To be precise, the PWA models that the clustering-based, bounded-error and
the Bayesian procedures identify are PieceWise ARX (PWARX) models of the
form:

y(k) = f(x(k)) + e(k), (1)

where e(k) is the error term and the PWA map f(·) is defined as:

f(x) =

⎧⎪⎨⎪⎩
[x′ 1] θ1 if x ∈ X1,

...
[x′ 1] θs if x ∈ Xs.

(2)

In (2) x(k) is a vector of regressors defined as

x(k) � [y(k − 1) y(k − 2) . . . y(k − na)
u′(k − 1)u′(k − 2) . . . u′(k − nb)]′,

(3)

where k is the time index and y ∈ R, u ∈ Rm are the outputs and the inputs of
the system, respectively. For i = 1, . . . s, θi ∈ Rn+1 is a parameter vector (PV)
with n = na + nb.

The bounded regressor space X is partitioned into s convex polyhedral regions
{Xi}s

i=1, i.e.
s⋃

i=1

Xi = X ⊂ Rn and Xi ∩ Xj = ∅ i �= j. (4)

When the partition {Xi}s
i=1 is known we can define the mode μ(k) of the data

pair (x(k), y(k)), k = 1, . . . , N uniquely as:

μ(k) := i if x(k) ∈ Xi. (5)

The algebraic procedure identifies switched linear models of the form (1),
where

f(x) = [x′ 1]θi,

and i ∈ {1, . . . s} is arbitrary for each time index k. The problems of estimation of
parameters θ1, . . . , θs for switched linear and PWARX models are closely related,
and in the sequel we will treat them in parallel. In addition, the identification
of PWARX models requires also the estimation of the regions Xi, which would
form an extension of the algebraic procedure.

356 A.Lj. Juloski et al.

The general identification problem reads as follows: given the data set N =
{(x(k), y(k))}N

k=1 reconstruct the PWA map f(·), i.e. determine the PVs {θi}s
i=1

and the polyhedral partition {Xi}s
i=1.

Identification of PWARX models is a challenging problem since it involves
the estimation of both the PVs {θi}s

i=1 and the regions of the regressor space
{Xi}s

i=1 on the basis of the available data set N . In case that regions of the
regressor space are known a priori the problem complexity reduces to that of s
linear system identification problems [1].

In order to compare the procedures and asses the quality of the obtained
models we propose several quantitative measures in section 2. These measures
are “common sense” criteria (not the ones optimized by the methods themselves)
and reflect practical needs for identification. In section 3 we will address different
approaches to data classification of each of the procedures, and consequences on
the accuracy of the identified model. In section 4 we will investigate the effects of
the overestimation of model orders. In section 5 we will study the effects of noise.
In section 6 we will apply the procedures for the experimental identification of
the component placement process in pick-and-place machines. Finally, summary
and conclusions are presented in section 7.

2 The Compared Procedures

In this section we briefly discuss the four procedures we compare. The basic
steps that each method performs are: the estimation of the PVs {θi}s

i=1, the
classification of the data points (grouping data points attributed to the i-th
mode to the set Fi, i = 1, . . . , s) and the estimation of the corresponding regions
{Xi}s

i=1, for PWARX models.
The first two steps are performed in a different way by each procedure, as

discussed in the sequel, while the estimation of the regions can be done in the
same way for all methods. The basic idea is as follows. Having the data points
that are attributed to sets Fi and Fj , we are looking for a separating hyperplane
in the regressor space X described by:

M ′
ijx = mij , (6)

where Mij is a vector, and mij is a scalar, so that for each x(k) ∈ Xi, M ′
ijx(k) ≤

mij , and for each x(k) ∈ Xj M
′
ijx(k) > mij . If such a hyperplane can not be

found (i.e. the data set is not linearly separable) we are interested in a generalized
separating hyperplane which minimizes the number of misclassified data points.
The method we use for estimating the separating hyperplanes in this paper is
Multicategory Robust Linear Programming (MRLP). This method can solve the
classification problem with more than two data classes. For a detailed discussion
on MRLP see [10].

Comparison of Four Procedures for the Identification of Hybrid Systems 357

2.1 Clustering-Based Procedure

The clustering-based procedure [1] is based on the rationale that regressors that
lie close together are likely to belong to the same partition and the same ARX
model. The main steps of the procedure are:

– For each data pair (x(k), y(k)) a local data set (LD) Ck is built containing
its c− 1 nearest datapoints1 in the regressor space X. LDs that only contain
data pairs belonging to a single subsystem are referred to as pure LDs, while
LDs containing data generated by different subsystems are called mixed LDs.

– Calculate θLS
k for each LD using least squares on Ck and compute the mean

mk of Ck. Each datapoint (x(k), y(k)) is thereby mapped onto the feature
vectors ξk = [(θLS

k)′,m′
k]′.

– Cluster the points {ξk}N
k=1 in s clusters Di by minimizing a suitable cost

function.
– Since the mapping of the datapoints onto the feature space is bijective,

the data subsets {Fi}s
i=1 can be built using the clusters {Di}s

i=1. The PVs
{θi}s

i=1 are estimated from data subsets Fi by least squares.

The clustering procedure requires the model orders na, nb, and the number
of models s. The parameter c is the tuning knob of this procedure.

2.2 Bounded-Error Procedure

The main feature of the bounded-error procedure [2, 3] is to impose that the error
e(k) in (1) is bounded by a given quantity δ > 0 for all the samples in the esti-
mation data set N . At initialization, the estimation of the number of submodels
s, data classification and parameter estimation are performed simultaneously by
partitioning the (typically infeasible) set of N linear complementary inequalities

|y(k) − ϕ(k)′θ| ≤ δ, k = 1, . . . , N, (7)

where ϕ(k)′ = [x(k)′ 1], into a minimum number of feasible subsystems (MIN
PFS problem). MIN PFS problem is NP-hard, and the suboptimal algorithm
based on thermal relaxations is used. Then, an iterative refinement procedure is
applied in order to deal with data points (y(k), x(k)) satisfying |y(k)−ϕ(k)′θi| ≤
δ for more than one θi. These data are termed undecidable. The refinement
procedure alternates between data reassignment and parameter update, and, if
desirable, enables the reduction of the number of submodels. For given positive
thresholds α and β, submodels i and j are merged if αi,j < α, with

αi,j = ‖θi − θj‖2/min{‖θi‖2, ‖θj‖2}, (8)

whereas submodel i is discarded if the cardinality of the corresponding data
cluster Fi is less than βN . In [2, 3] parameter estimates are computed through

1 According to the Euclidean distance.

358 A.Lj. Juloski et al.

the �∞ projection estimator, but any other projection estimate, such as least
squares, can be used [11].

The bounded-error procedure requires that the model orders na and nb are
fixed. The main tuning parameter is the bound δ: The larger δ, the smaller the
required number of submodels at the price of a worse fit of the data. The op-
tional parameters α and β, if used, also implicitly determine the final number of
submodels returned by the procedure. Another tuning parameter is the number
of nearest neighbors c used to attribute undecidable data points to submodels
in the refinement step.

2.3 Bayesian Procedure

The Bayesian procedure [4] is based on the idea of refining the available a priori
knowledge about the modes and parameters of the hybrid system. Parameters θi

of the piece-wise affine map (2) are treated as random variables, and described
with their probability density functions (pdfs) pθi

(·). A priori knowledge on
the parameters can be supplied to the procedure by choosing appropriate a
priori parameter pdfs. The data classification problem is posed as the problem
of finding the data classification with the highest probability. Since this problem
is combinatorial, an iterative suboptimal algorithm is derived in [4], based on
sequential processing of data points in the collected data set. It is assumed that
the probability density function of the additive noise term e, pe(·) is given.

The parameter estimation algorithm has N iterations, and in each iteration
the pdf of one of the parameters is refined. In the k-th iteration of the algorithm
the most probable mode μ(k) of the data pair (x(k), y(k)) is computed, using the
available pdfs of the parameter vectors from step k − 1. Subsequently, the data
pair (x(k), y(k)) is assigned to the mode i that most likely generated it, and the
a posteriori pdf of parameter vector θi is computed, using as a fact that the pair
(x(k), y(k)) was generated by mode i. To numerically implement the Bayesian
procedure particle filtering algorithms are used (see e.g. [12]). In order to have a
good representation of the pdf a large number of particles may be needed. This
accounts for the majority of the computational burden.

After the parameter estimation phase, data points are attributed to the mode
that most likely generated them. For the estimation of regions a modification of
the standard MRLP procedure is proposed in [4]. Assume that the data point
attributed to the mode i ends up in the region Xj . If the probabilities that the
data point is generated by both modes are approximately equal, this misclas-
sification should not be penalized highly. Following this idea we introduce the
non-negative valued pricing functions, which assign price to misclassification of
data points. Pricing functions are plugged into the MRLP procedure.

The Bayesian procedure requires model orders na and nb, and the number
of modes s. The most important tuning parameters of the procedure are the a
priori parameter pdfs pθi

(·, 0), and the pdf of the additive noise pe. Also, the
particle filtering algorithm has several tuning parameters.

Comparison of Four Procedures for the Identification of Hybrid Systems 359

2.4 Algebraic Procedure

The method proposed in [5, 6] approaches the problem of identifying the class
of Switched ARX (SARX) models in an algebraic fashion. For deterministic
models, it provides a global solution that is provably correct in the noiseless
case, even when the number of models and the model orders are unknown and
different. For stochastic models, it provides a sub-optimal solution that can be
used to initialize any of the iterative approaches. The algebraic method exploits
the fact that in the noiseless case (e = 0), the data pair (x(k), y(k)) satisfies
z′(k)[1 θ′

i]
′ .= [y(k) − ϕ′(k)][1 θ′

i]
′ = y(k) − ϕ′(k)θi = 0 for a suitable PV θi.

Hence the following homogeneous polynomial of degree s holds for all k2

ps(z(k)) =
s∏

i=1

(z′(k)[1 θ′
i]

′) = νs(z(k))′hs = 0, (9)

where νn(z(k)) contains all Ms(na, nb)
.=
(
na+nb+s+1

s

)
monomials of degree s in

z(k) and hs ∈ RMs(na,nb) contains the coefficients of ps. Therefore, the identifi-
cation of multiple ARX models can be viewed as the identification of a single,
though more complex, hybrid ARX model νs(z(k))′hs = 0 whose hybrid PV hs

depends on the parameters of the ARX models {θi}s
i=1, but not on the switch-

ing sequence or the switching mechanism. Since the polynomial h′
sνs(z(k)) = 0

holds for all k, the hybrid PV can be identified by solving the following linear
system (using least squares with noisy data)

[νs(z(1)) · · · νs(z(k)) · · ·]′hs = 0 and hs(1) = 1. (10)

This linear system has a unique solution when the data are sufficiently exciting
and s, na and nb are known perfectly. When only upper bounds s̄, n̄a and n̄b for
s, na and nb, respectively, are available, one can still obtain a unique solution
by noticing that the last entries of each θi are zero, hence the last entries of
hs̄ must also be zero. Determining the number of zero entries requires a tuning
parameter in the case of noisy data. Given hs̄, the number of models s is the
number of non-repeated factors in ps̄ and the PVs of the original ARX models
correspond to the last n̄a + n̄b + 1 entries of the vector of partial derivatives of
ps̄,

∂ps̄(z)
∂z ∈ Rn̄a+n̄b+2, evaluated at a point zi ∈ Rn̄a+n̄b+2 that is generated by

the ith ARX model and can be chosen automatically once ps̄ is known. Given
the PVs, data pairs (x(k), y(k) are attributed to the model λ satisfying the rule

λ(k) = arg min
1≤i≤s

(y(k) − ϕ(k)′θi)2. (11)

This rule is applicable to SARX models, and by extension to all switching mech-
anisms. However, if additional knowledge about the switching mechanism (e.g.
PWARX models) is available, more appropriate classification rules can be used.

2 This product equation was introduced independently in [13] in the particular case

of s = 2 models.

360 A.Lj. Juloski et al.

2.5 Quality Measures

Since our aim is to compare the procedures, some quantitative measures for the
quality of the identification results are introduced. These measures will capture
the accuracy of the estimated PVs {θ̂i}s

i=1 and the accuracy of the estimated
partitions {X̂i}s

i=1.
When the model that generated the data is known, one can measure the

accuracy of the identified PV through the quantity:

Δθ = max
1≤i≤s

(
min

1≤j≤s

‖θ̂i − θj‖2

‖θj‖2

)
, (12)

where θ̂i are the reconstructed PVs and θj are the PVs of the generating model.
This measure is only applicable for the cases where the number of submodels
is the same for the generating and identified model. Δθ is zero for the perfect
estimates, and increases as the estimates worsen.

A sensible quality measure for the estimated regions is much harder to define.
For the case where n = 1 and s = 2 we propose the following index:

ΔX =
∣∣∣∣m12

M12
− m̂12

M̂12

∣∣∣∣ , (13)

where M12, m12, M̂12, m̂12 are the coefficients of the separating hyperplanes,
defined in (6), of the original and reconstructed model, respectively.

An overall quality measure which is also applicable when the generating
model is not known is provided by the sum of squared residuals (one step ahead
prediction errors):

σ̂2
ε =

1
s

s∑
i=1

SSRFi

|Fi|
, (14)

where the set Fi contains the datapoints classified to submodel i and the sum
of squared residuals (SSR) of submodel i is defined as:

SSRFi
=

∑
x(k)∈Fi

(y(k) − [x(k)′ 1]θi)2.

The value of the estimated model is considered acceptable if σ̂2
ε is small and/or

near the expected noise of the identified system.
Models with good one-step ahead prediction properties may perform poorly

in simulation. To measure the model performance in simulation we propose to
use the averaged Sum of the Squared simulation Errors (SSEsim),

SSEsim =
1

N − n

N∑
k=n+1

(y(k) − ŷ(k))2 , (15)

where ŷ(k) is the output of the simulation obtained by building x(k) from the
real inputs and previously estimated outputs. The idea behind (15) is that poorly

Comparison of Four Procedures for the Identification of Hybrid Systems 361

estimated regions may increase the simulation error, since these poor estimates
may lead to wrong choices of the next submodel.

When doing experimental identification σ̂2
ε and SSEsim are useful for select-

ing acceptable models from a set of identified models obtained by using the
procedures with different tuning parameters and estimates of the system orders.

3 Intersecting Hyperplanes

If the hyperplanes over the regressor space defined by PVs θi and θj intersect
over Xj , datapoints may be wrongly attributed to the data subset Fi. To shed
some light on this issue, consider the PWARX model y(k) = f(x(k)) + e(k)
where f is defined as:

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[x 1]

[
0.5
0.5

]
if x ∈ [−2.5, 0]

[x 1]
[
−1

2

]
if x ∈ (0, 2.5]

. (16)

The data set used for identification is depicted in figure 1, together with the
data classification obtained from the clustering-based and bounded error proce-
dures. It is seen that the clustering-based and the bounded-error procedures do
not experience problems with the intersecting PVs in this particular example.
The data classification using the algebraic procedure and the minimum pre-
diction error rule (11) is given in figure 1, right. It is seen that the minimum
error prediction rule can lead to misclassifications, and hence it is not the most
appropriate rule for the case of PWARX models.

−2 −1 0 1 2

−0.5

0

0.5

1

1.5

2

x(k)

y(
k)

submodel 1
submodel 2

−2 −1 0 1 2
0

1

2

3

x(k)

m
od

e

Fig. 1. left: Classification with clustering-based and the bounded-error procedures.

Both procedures yield Δθ = 0.0186 and ΔX = 0.0055 right: Data classification ob-

tained by using the algebraic procedure (yielding Δθ = 0.0276) and attributing each

data point to the submodel which generates the smallest prediction error

362 A.Lj. Juloski et al.

−3 −2 −1 0 1 2 3
0

100

200

300

400
b)

x(k)

pr
ic

e

−3 −2 −1 0 1 2 3
0

1

2

3
a)

m
od

e

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

x(k)

y(
k)

Fig. 2. Identification results for Bayesian procedure, initialized with a priori param-

eter pdfs pθ1(·; 0) = pθ2(·; 0) ∼ U [−2.5, 2.5] × [−2.5, 2.5], yielding Δθ = 0.1366 and

ΔX = 0.0228 left: a) Data points attributed to modes b) Price function for the wrong

classification right: Data set used for identification, the true model (solid) and the

identified model (dashed)

The data classification and the price function for misclassification using the
Bayesian procedure is depicted in figure 2, left. The price for misclassification of
wrongly attributed points is small in comparison to the weight for misclassifica-
tion of the correctly attributed points. The identified model with the Bayesian
procedure, together with the true model is depicted in the figure 2, right.

We stress that the classification methods employed by the clustering-based,
bounded-error and the Bayesian methods are based on heuristics. Theoretical
analysis of this issue is needed.

4 Overestimation of Model Orders

The clustering based, bounded-error and the Bayesian approach assume that the
system orders na and nb are known exactly, but in practice this is seldom the
case. The algebraic procedure is able to estimate the model orders directly from
the data set.

In order to investigate the effects of overestimating model orders we will
consider a 1-dimensional autoregressive autonomous system of the form

y(k + 1) =

{
2y(k) + 10 + e(k), if y(k) ∈ [−10, 0)
−1.5y(k) + 10 + e(k), if y(k) ∈ [0, 10].

(17)

The additive noise term e(k) is normally distributed, with zero mean and vari-
ance σ2

e = 0.01. The sequence y(k) was generated with y(0) = −10, and the
input was generated as u(k) ∼ U [−10, 10].

The true model orders are na = 1, nb = 0. Identification procedures were ap-
plied for all combinations of na = 1, . . . , 4 and nb = 1, . . . , 5. Note that for overes-

Comparison of Four Procedures for the Identification of Hybrid Systems 363

0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

n
b

lo
g(

σ2 ε)

n
a
=1

n
a
=2

n
a
=3

n
a
=4

0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

n
b

lo
g(

σ2 ε)

n
a
=1

n
a
=2

n
a
=3

n
a
=4

Fig. 3. left: σ̂2
ε for the clustering procedure with s = 2 and c = 20 right: σ̂2

ε for the

bounded error procedure

0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

n
b

lo
g(

σ2 ε)

n
a
=1

n
a
=2

n
a
=3

n
a
=4

0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

n
b

lo
g(

σ2 ε)

n
a
=1

n
a
=2

n
a
=3

n
a
=4

Fig. 4. σ̂2
ε for the Bayesian procedure left: with unprecise initial parameter pdfs right:

with precise initial parameter pdfs

timated model orders, the correct model is obtained by setting to zeroes the entries
in θi,Mij ,mij on positions corresponding to superfluous elements in the regressor.

Figure 3 shows the values of the criterion σ̂2
ε on the logarithmic scale, for

models with different model orders identified by the clustering-based procedure.
From figure 3 it is seen that the clustering procedure identifies the model with
σ̂2

ε value close to the noise in the system for true system orders, but that the
performance rapidly deteriorates when the model order is overestimated. The
problem with the overestimated order lies in the assumption that datapoints
close to each other in the regressor space belong to the same subsystem. When
overestimating the order of the model regressor is extended with elements which
do not contain relevant information for the estimation of the subsystems, but
change the distance between the regressors. If the true distance is denoted by
d0, the distance between the extended regressors is d2

e = d2
0 + d2

∗, where d2
∗ is

due to the added elements, and contains no useful information. Depending on

364 A.Lj. Juloski et al.

0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

n
b

lo
g(

σ2 ε)

n
a
=1

n
a
=2

n
a
=3

n
a
=4

Fig. 5. σ̂2
ε for the algebraic procedure

the true and overestimated model orders d∗ can easily be of the same or higher
order of magnitude as d0.

The results for the bounded-error procedure are shown in Figure 3, left. For
the case na = 1, nb = 0, a value of δ allowing to obtain s = 2 submodels is sought.
The procedure is then applied to the estimation of the over-parameterized models
using the same δ. When extending the regression vector, the minimum number of
feasible subsystems of (7) does not increase, and remains equal in this example.
Hence, the minimum partition obtained for na = 1, nb = 0 is also a solution in the
over-parameterized case. The enhanced version [3] of the greedy algorithm [14] is
applied here for solving the MIN PFS problem.

The results for the Bayesian procedure for two different initializations are
depicted in the figure 4. In figure 4, left the a priori parameter pdfs for the
case na = 1, nb = 0 are chosen as pθ1(·; 0) = pθ2(·; 0) = U([−5, 5] × [−20, 20]).
For increased orders, added elements in the parameter vector are taken to be
uniformly distributed in the interval [−5, 5] (while the true value is 0). In fig-
ure (4), right for the case na = 1, nb = 0 the a priori parameter pdfs are chosen as
pθ1(·; 0) = U([0, 4]×[8, 12]), pθ2(·; 0) = U([−4, 0]×[8, 12]), and all added elements
are taken to be uniformly distributed in the interval [−0.5, 0.5]. This example
shows the importance of proper choice of initial parameter pdfs for the Bayesian
procedure. With precise initial pdfs the algorithm manages to estimate relatively
accurate over-parameterized models. In the case when the a priori information
is not adequate the performance of the algorithm deteriorates rapidly.

The algebraic procedure is applied to the data set with s = 2, but unknown
model orders. The results are depicted in the figure 5. From 5 we see that the
procedure has no difficulties in estimating the over-parameterized model.

5 Effects of Noise

In this section we study effects of noise e on the identification procedures. The
first issue of interest is the effect that different realizations of noise with the

Comparison of Four Procedures for the Identification of Hybrid Systems 365

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

σ2
η

E
[Δ

θ]

algebraic
bounded−error
clustering−based
Bayesian 1
Bayesian 2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

σ2
η

V
ar

[Δ
θ]

algebraic
bounded−error
clustering−based
Bayesian 1
Bayesian 2

Fig. 6. Means (left) and variances (right) of the Δθ distributions for several variances

of noise σ2
η

same statistical properties have on the identification results. The second issue is
how statistical properties of noise influence identification results.

To shed some light on these issues we designed an experiment with the
PWARX model of section 4 (see (17)). For this model we generated a noise-
less data set of 100 datapoints. The procedures are applied 100 times on this
data set, after adding a different realization of normally distributed noise with
zero mean and variance σ2

e to the outputs y(k). For each identified model the
index Δθ is computed. In this way an approximate distribution of Δθ for each
σ2

e can be constructed. For each such distribution we computed its mean and
variance. For more details see [15]

Figure 6 depicts means and variances ofΔθ distributions as functions of σ2
e for

all four procedures. Again, we have two different initializations for the Bayesian
procedure, denoted in figure as “Bayesian 1” and “Bayesian 2”. For “Bayesian
1” we used pθ1(·; 0) = pθ2(·; 0) = U([−5, 5]× [−20, 20]), and for “Bayesian 2” we
used pθ1(·; 0) = U([0, 4] × [8, 12]), pθ1(·; 0) = U([−4, 0] × [8, 12]).

From figure 6 we can conclude that the clustering-based procedure and the
bounded-error procedure achieve similar performance with respect to noise. The
algebraic procedure is more sensitive to noise, as compared to the clustering-
based and bounded-error procedures. With precise initialization (“Bayesian 1”)
the Bayesian procedure achieves performance comparable to clustering-based
and bounded-error, while with imprecise initialization (“Bayesian 2”) the quality
measures are the worst of all procedures.

6 Experimental Example

In this section we show the results of the identification of the component place-
ment process in pick-and-place machines. The pick-and-place machine is used for
automatically placing electronic components on a Printed Circuit Board (PCB).
To study the placement process, an experimental setup was made. The photo

366 A.Lj. Juloski et al.

and the schematic of the setup are shown in figure 7. A detailed description of
the process and the experimental setup can be found in [16].

A data set consisting of 750 samples is collected. The data set is divided
into two overlapping sets of 500 points, the first set is used for identification,
and the second for validation. All four procedures were applied for several order
estimates and with different tuning parameters. The procedures were executed
for all the combinations of these orders and tuning parameters. The proposed
quality measures σ̂2

ε and SSEsim were used to choose acceptable identified models
for which the simulations were plotted. The best identified model was then chosen
by visual inspection.

For the clustering-based procedure figure 8, left shows the simulation based
on the validation data set for the best model obtained. In the upper panel of
the figure measured output yid and the simulated output ysim are depicted. The
lower panel shows which of the identified submodels is active at each time instant.
It turns out that the best models are obtained for high values of c. The same was
observed in [16]. A possible explanation is the following: because of the presence
of dry friction neither the free nor the impact mode are linear, but with large
LD’s the effects of dry friction can be ’averaged out’ as a process noise. Note
that the difference between the measured and simulated responses, which is due
to unmodeled dry friction, is clearly visible, e.g. on the time interval [225, 300].

As the number of modes s for the bounded-error procedure is not fixed, in
order to identify two modes, the right combination of the parameters α, γ and
δ has to be found. For the initial error bound δ we used 3σ̂ε ≈ 1, obtained
from the clustering-based procedure, assuming that this value would be a good
estimate for the variance of the measurement noise. Executing the bounded-error
procedure with δ’s in the vicinity of this 3σ̂2

ε resulted in identified models with
only one parameter vector, and a large number of infeasible points. Therefore,
we had to lower the error bound to δ = 0.30. For this value of δ the procedure
identified a model that distinguishes two submodels. Model identified with this
δ had a smaller values of both σ̂2

ε for the identification data set and SSEsim

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 7. Photo and the schematic representation of the experimental setup

Comparison of Four Procedures for the Identification of Hybrid Systems 367

0 50 100 150 200 250 300 350 400 450 500

0

5

10

15

20

25

ou
tp

ut

y
sim

y
id

0 50 100 150 200 250 300 350 400 450 500

1

2

time (samples)

m
od

e

0 50 100 150 200 250 300 350 400 450 500

0

5

10

15

20

25

ou
tp

ut

y
sim

y
id

0 50 100 150 200 250 300 350 400 450 500

1

2

time (samples)

m
od

e

Fig. 8. left: Simulation of the PWARX model generated by the clustering procedure

with na = 2, nb = 2, s = 2 and c = 90 for the validation data set with SSEsim = 1.98

right: Simulation of the PWARX model generated by the bounded-error procedure

with na = 2, nb = 2, δ = 0.3, α = 0.10, β = 0.01 and c = 40 for the validation data set

with SSEsim = 1.72 upper fig.: solid line: predicted response, dashed line: measured

response lower fig.: active mode

0 50 100 150 200 250 300 350 400 450 500

0

5

10

15

20

25

ou
tp

ut

a)

free mode
impact mode

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15
b)

in
pu

t

time (samples)

0 50 100 150 200 250 300 350 400 450 500

0

5

10

15

20

25

ou
tp

ut

y
sim

y
id

0 50 100 150 200 250 300 350 400 450 500

1

2

time (samples)

m
od

e

Fig. 9. Bayesian procedure. left: Data set used for identification a) position (portion

marked with ◦: data points used for the initialization of the free mode; portion marked

with ×: data points used for initialization of impact mode b) input signal right: upper
fig.: Simulation of the identified model (solid line: simulated response, dashed line:

measured response), SSEsim = 1.56 lower fig.: modes active during the simulation

for the validation data set than the model identified with the clustering-based
procedure. The simulation of the validation data set for the best identified model
is shown in the figure 8, right.

Physical insight into the operation of the setup facilitates the initialization
of the Bayesian procedure. For instance, although the mode switch does not
occur at a fixed height of the head, with a degree of certainty data points be-
low certain height may be attributed to the free mode, and, analogously data
points above certain height may be attributed to the impact mode. This a

368 A.Lj. Juloski et al.

priori information may be exploited to obtain the rough estimate of each of
the parameters through least squares, θLS

i . Also, the variance Ṽi of such esti-
mate may be obtained. This information is sufficient to describe the parame-
ter θi as a normally distributed random variable, with a mean θLS

i and vari-
ance Ṽi.

Portions of the identification data set that are used to initialize the procedure
are depicted in the figure 9, left, together with the input signal. Results of
simulation of the identified model are given in figure 9, right. The model yields a
lower value of SSEsim than the two models obtained with the clustering-based
and bounded-error procedures.

The algebraic procedure identified the parameters of the model, with σ̂2
ε =

0.0803. However, the data classification is not satisfactory, as the procedure
predicts rapidly oscillating mode values, while in the physical system such os-
cillations are impossible. It remains for the future work to check if estimated
parameters can be used to obtain the satisfactory PWARX model.

7 Conclusions

We conclude the paper by summarizing features and drawbacks of each identifi-
cation procedure, based on the insights obtained from the considered examples.

The algebraic procedure is well suited for the cases when the system that
generated the data can be accurately described with a switched linear system,
and no or little noise is present. It can also handle the cases with unknown
model orders. Noise and/or nonlinear disturbances in the data may cause poor
identification results.

When trying to identify a PWARX model using the data classification ob-
tained from the algebraic procedure one must be aware that the minimum pre-
diction error classification rule might lead to inaccurate classification. In such
cases, it is better to use one of the classification methods employed by other
procedures.

The Bayesian procedure is well suited for the cases where the sufficient phys-
ical insight into the underlying data generating process is available. By appro-
priate choice of the initial parameter pdfs the user might steer the procedure
towards identifying the model where the modes of the identified model represent
different modes of the physical system. On the other hand, poor initialization
may lead to poor identification results.

The bounded error procedure is well suited for the cases when there is no a
priori knowledge on the physical system and one needs to identify a model with a
prescribed bounded prediction error (e.g. approximation of nonlinear systems).
Tuning parameters allow for the tradeoff between the model complexity and
accuracy. However, finding the right combination of tuning parameters to get
the model with the prescribed structure (number of modes) may be difficult.

The clustering-based procedure is well suited for the cases when there is no a
priori knowledge on the physical system, and one needs to identify a model with
a prescribed structure. When using the clustering-based procedure one must be

Comparison of Four Procedures for the Identification of Hybrid Systems 369

aware of the possible erratic behavior (as described in section 4) in the cases
when the model orders are not known exactly.

References

1. Ferrari-Trecate, G., Muselli, M., Liberati, D., Morari, M.: A clustering technique

for the identification of piecewise affine and hybrid systems. Automatica 39 (2003)

205–217

2. Bemporad, A., Garulli, A., Paoletti, S., Vicino, A.: A greedy approach to identifi-

cation of piecewise affine models. In Maler, O., Pnueli, A., eds.: Hybrid Systems:

Computation and Control. Lecture Notes on Computer Science. Springer Verlag

(2003) 97–112

3. Bemporad, A., Garulli, A., Paoletti, S., Vicino, A.: Data classification and param-

eter estimation for the identification of piecewise affine models. In: Proceedings

of the 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas

(2004) 20–25

4. Juloski, A., Weiland, S., Heemels, W.: A Bayesian approach to identification of

hybrid systems. In: Proceedings of the 43rd Conference on Decision and Control,

Paradise Island, Bahamas (2004) 13–19

5. Vidal, R., Soatto, S., Ma, Y., Sastry, S.: An algebraic geometric approach to the

identification of a class of linear hybrid systems. In: Proc. of IEEE Conference on

Decision and Control. (2003)

6. Vidal, R.: Identification of PWARX hybrid models with unknown and possibly

different orders. In: Proc. of IEEE American Control Conference. (2004)

7. Roll, J., Bemporad, A., Ljung, L.: Identification of piecewise affine systems via

mixed-integer programming. Automatica 40 (2004) 37–50

8. Munz, E., Krebs, V.: Identification of hybrid systems using a priori knowledge. In:

Preprints of the 15th IFAC world congress, Barcelona, Spain (2002)

9. Ferrari-Trecate, G., Schinkel, M.: Conditions of optimal classification for piecewise

affine regression. In Maler, O., Pnueli, A., eds.: Proc. 6th International Workshop

on Hybrid Systems: Computation and Control. Volume 2623 of Lecture Notes in

Computer Science. Springer-Verlag (2003) 188–202

10. Bennett, K., Mangasarian, O.: Multicategory discrimination via linear program-

ming. Optimization Methods and Software 3 (1993) 27–39

11. Milanese, M., Vicino, A.: Optimal estimation theory for dynamic systems with set

membership uncertainty: an overview. Automatica 27 (1991) 997–1009

12. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters

for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal

Processing 50 (2002) 174–188

13. Verriest, E., Moor, B.D.: Multi-mode system identification. In: Proc. of European

Conference on Control. (1999)

14. Amaldi, E., Mattavelli, M.: The MIN PFS problem and piecewise linear model

estimation. Discrete Applied Mathematics 118 (2002) 115–143

15. Niessen, H., Juloski, A., Ferrari-Trecate, G., Heemels, W.: Comparison of three

procedures for the identification of hybrid systems. In: Proceedings of the Confer-

ence on Control Applications, Taipei, Taiwan (2004)

16. Juloski, A., Heemels, W., Ferrari-Trecate, G.: Data-based hybrid modelling of the

component placement process in pick-and-place machines. Control Engineering

Practice 12 (2004) 1241–1252

An Ontology-Based Approach to Heterogeneous
Verification of Embedded Control Systems

Rajesh Kumar, Bruce H. Krogh, and Peter Feiler

Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA

{rajeshk, krogh@ece.cmu.edu}, phf@sei.cmu.edu

Abstract. This paper presents an ontology-based approach to hetero-
geneous verification of embedded systems, that is, the integration of ver-

ification results from different tools and different models of embedded

system applications. We present an overview of our proposed framework

and explain the key components. We then describe an initial ontology

for embedded control applications and its mapping to a knowledge base.

We illustrate this initial framework using an example of an automotive

power window controller. The concluding discussion describes our cur-

rent work and future research directions.

Keywords: ontology, knowledge base, knowledge integration, theorem

proving.

1 Introduction

Since the 1980s tools based on formal methods, particularly model checking,
have emerged as powerful aids for the verification of digital hardware designs
[1]. Model checking of software has also advanced greatly with programs running
into thousands of lines having been verified [2]. Formal techniques provide more
rigorous guarantees about the correctness of a system than informal testing.

Much of the research in hybrid systems has been directed toward extending
the rigor of formal methods to applications where continuous dynamics need to
be accommodated, as in many embedded control system designs [3, 4]. While
this is a laudable goal, it is clear that the application of hybrid systems tools
will always require significant abstraction and simplification of models. This
means that complete verification of designs must incorporate information from
other sources, ranging from engineering insight to simulation studies. This is not
surprising since even for discrete systems abstraction, extensive simulation, and
engineering judgement are required for complete debugging and verification.

Our tool SVM (System Verification Manager) makes it possible to record
the relationships between requirements, models and verification processes, and
perform requirements-driven verification (formal and informal) using multiple
models and tools [5, 6]. This paper proposes a formal framework for collecting
verification information from many sources, including new tools for hybrid sys-
tem verification, and for using the information to verify system properties that

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 370–385, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Ontology-Based Approach to Heterogeneous Verification 371

are beyond the reach of any one tool or modelling formalism. We call this process
heterogeneous verification.

Heterogeneous verification currently occurs in an ad hoc fashion. This is
mainly due to the difficulty of keeping track of information as the system is
built,due to the volume of data as well as the distributed nature of development.
We propose an ontology-based approach as a foundation of a framework to cap-
ture development data formally and derive new information from heterogeneous
sources.

Section 2 defines the terminology in this paper and presents an overview of
some related research. Section 3 gives an overview of the proposed approach
and describes the overall process flow for performing heterogeneous verification.
Section 4 describes a base ontology for embedded control systems. Section 5 il-
lustrates the concepts of heterogeneous verification for an example of a power
window controller. The concluding section summarizes the contributions of this
paper and describes our current work on realizing the complete framework de-
scribed in this paper.

2 Definitions and Related Work

This section defines the key concepts on which our framework draws and dis-
cusses related research on knowledge representation and reasoning.

An ontology is an “explicit specification of a conceptualization” [7]. A concep-
tualization is a set of definitions that allows one to construct expressions about
some particular domain. A knowledge base is a collection of knowledge expressed
using some formal knowledge representation language [8]. In any application that
manipulates a large body of knowledge, knowledge management tools are needed
that integrate the disparate sources of data into a coherent body of interrelated
information. This is the problem of knowledge integration. New knowledge can
be obtained through automated deduction or automated reasoning [9].

Deductive databases deduce new facts from the facts in the database using rea-
soning rules [10]. Our verification support framework extends the idea of deduc-
tive databases with an ontology-based, user-extensible interface for programming
the reasoning logic. Mediators [11] and ontology extended databases [12] address
the problem of “semantic interoperation” among different data sources, that is,
combining information from different data sources even though they may be rep-
resented in different formats. The formalism of hybrid knowledge bases forms a
theoretical framework in which mediators can be expressed in a declarative way
[13]. Using an ontology, we essentially bypass the problem of mediation between
data sources since an ontology provides a formal structure for the information
obtained from different sources.

MILAN is an integrated simulation framework that allows a developer to
build different components of a system using different tools [14]. The Metropolis
toolset supports multiple analysis tools for design and simulation [15]; the only
formal verification tool it supports is SPIN. MILAN and Metropolis address
the problem of system design when components may be modelled using differ-

372 R. Kumar, B.H. Krogh, and P. Feiler

ent formalisms, and hence they address a different aspect of the larger problem
that we can call “heterogeneous system engineering.” Our framework aims to
support compositional verification across analysis tools. In addition to verifica-
tion, our framework would also facilitate activities such as consistency checking,
assumption tracking, and “what-if” kinds of analysis.

Our approach aims to fuse ontology technologies (which enable the capture
and representation of arbitrary domains) with theorem proving (which enable
analysis of the stored information to come up with newer pieces of informa-
tion). There are logic programming languages with special constructs to specify
ontologies, such as F-logic [16]. Rules can also be represented in logic-based on-
tology specification languages such as and ONION [17]. We use the ontology
editing tool Protegé [18], which supports the use of Prolog for logical analysis
and deduction.

3 Approach

Figure 1 presents the major components and flow of activities in the proposed
framework. An initial implementation of the proposed framework is presented
in Sect. 5.

Knowledge about the system verification that is relevant to managing the
system verification process is extracted from the verification activities and put
into a knowledge base. The structure of the knowledge base is defined by an
ontology in two stages. A base ontology reflects the fact that we are dealing with
a model-based system verification process and with the domain of embedded
systems. The ontology consists of a static ontology, a definition of knowledge
structure, and an epistemic ontology, a set of dependencies, conditions, and con-
straints on the facts in the knowledge base. The base ontology is defined once
as part of our framework. It is then augmented and refined by domain experts
(such as requirements engineers, verification engineers and designers) to reflect
knowledge of the application domain that is relevant to the verification process.
This process of ontology specialization is a continuous, ongoing process.

Once the knowledge base is defined, it is populated with verification facts
from disparate information sources (heterogeneous knowledge assimilation). The
heterogeneous information sources shown on the right in Fig. 1 include require-
ments documents stating properties of the system to be verified, models of the
system in different representations and different degrees of fidelity, and the re-
sults of performing various kinds of verification ranging from model checking to
simulation. These information sources evolve over time as developers create and
update models and perform various verification activities.

A verification manager operates on the knowledge base to determine the state
of system verification and to provide guidance on what verification activities
developers should focus on depending on the requirements. This activity involves
reasoning about the facts in the knowledge base (knowledge composition and
deduction). This activity is supported by a query language that operates on
the knowledge base. We are currently using the Horn clause language as our

An Ontology-Based Approach to Heterogeneous Verification 373

ontology
specialization

knowledge
assimilation

knowledge
composition,

deduction

specialized ontology

inferences +
knowledge gaps

queries

information

embedded system ontology

(base domain description)

knowledge base

database + epistemic rule base

update

Ve

existing docs hybrid analysis

simulation

heterogeneous information
sources

discrete analysis

targeted knowledge
acquisition

static ontology + epistemic ontology

entities,
relationships,
rules

domain
experts

verification
manager requirements

developers

model
development

&

verification
activities

Fig. 1. Elements of the ontology-based framework for heterogeneous verification

query language. A query processor takes (i) a query and (ii) the knowledge base
and generates a logic program by slicing the knowledge base; that is, it extracts
the information (facts as well as rules) that is relevant to the query. This logic
program is then fed to the inference engine.

The inference engine derives new facts and answers questions of interest
about the verification scenario using the stored information and the specified
epistemic rules. We are currently using Prolog as our inference engine. The new
pieces of information augment the knowledge base. Reasoning with incomplete
knowledge, the inference engine also identifies knowledge gaps, i.e., missing pieces
of information in the knowledge base in order to draw desired conclusions. These
knowledge gaps are then prioritized by the verification manager to guide devel-
opers to perform targeted verifications and re-verifications that focus on critical
system requirements. Thus, our ontology-based system verification framework
supports an evolutionary process of managing system verification throughout
the development life cycle.

4 An Ontology for Embedded Control Systems

This section describes a base ontology for verification of embedded control sys-
tems. The ontology consists of two parts: the static ontology and the epistemic
ontology. The static ontology defines the concepts of interest in embedded con-
trol systems through the entities and relations shown in Figs. 2 and 3. Our
static ontology describes the high level domain objects such as systems, models,
constraints, and their interrelationships. A heterogeneous verification scenario

374 R. Kumar, B.H. Krogh, and P. Feiler

Fig. 2. Relational database schema representation of the system part of base ontology

(see Fig. 3 for legend)

consists of one or more systems. A system can comprise one or more modules. A
module may either be atomic or compound. A compound module contains other
modules. Modules are implemented by models. Models may be related to one an-
other via relations such as abstraction, equivalence, sub-model and so forth. All
the relations are identified by unique relation identifiers. In Sect. 5 we illustrate
how inferences may be drawn from this information.

Requirements are represented in the form of constraints. A constraint may
either be a logical constraint, timing constraint, or structural constraint. A con-
straint may be compound in that it may consist of other sub-constraints.

Constraints are true or false on models, i.e. a model may satisfy a constraint.
A constraint being satisfied by a model is based on four classes of grounds or
causes: model checking, simulation, relation and analysis.

We use the term epistemic in the same sense as in [19]. The epistemic ontology
captures the expert’s understanding of the domain and can be regarded as the
logical rules that govern the reasoning on the concepts captured by the static
ontology.

The following rules comprise the base epistemic ontology for our example:

– signal relations and causality are transitive.
– any cut of the constraint coverage tree covers nodes above the cut.
– If constraint set A covers B and B is equivalent to C then set A covers C.

The above base domain ontology is specialized for the verification application
depending on the types of analyses that need to be considered. For the example
scenario we consider we need to refine the epistemic ontology to include the

Module

comprises

System
Sys

Relation

ID

ISA

Atomic Module Compound

Module

MSpecs

ModelImplement

name

Contains

Spec

ISA

Diff Eqn Boolean fmula

Eqn formula

MSignal

Signal

AP

SSignal

Rel_ID

ISA

Port Constant

Internal

signal

ID

Inp/Out

type

name

type

name

val

Satisfies

ISA

Ground

assertion
Conditional

Assertion

Model_name

Model_name

Ground_ID

Constraint_ID

name

type

Relation

Constraint_ID relation_ID
name

ID

An Ontology-Based Approach to Heterogeneous Verification 375

Fig. 3. Relational database schema representation of the constraint part of the base

ontology

following constraint satisfaction rules with respect to different relations between
models.

– the equivalence relation among models is reflexive and transitive.
– The abstraction relation on models (with or without respect to a given con-

straint) is transitive.
– A model satisfies a constraint if an abstraction of it (with or without respect

to a given constraint) satisfies that constraint.
– A system (model) satisfies a constraint if any of its subsystems (sub-models)

satisfies that constraint.

The ontology is further refined to incorporate sampling time information (see
the next section).

Constraint

Logical Constraint Timing Constraint Structural Constraint

ISA

CTL property LTL property Invariant

ISA

ISA

expression expression AP_id

cause_id

AP_id

within/after

duration

Size constraint

No dead code

Execution

constraint

Power

constraint

Weight

constraint

ID

Rel_id

Constant

Rel_id

Constant

Rel_id

Constant

Rel_id

Constant

equivalentcovers

Compound Constraint

contains

Ground

ISA

Modelcheck Simulate Relation Analysis

Connection

Rel ID toolname toolname toolname

SPortName

SModuleName DModuleName

DPortName

Cause

AP_id

ID

duration

ID

entity attribute relation Primary attribute

Null attribute ISA specialization

376 R. Kumar, B.H. Krogh, and P. Feiler

For a specific application the epistemic rules would be elicited from domain
experts. The expert articulations are in plain English. These are translated into
clauses in the logic program implementation. Much of the base epistemic ontol-
ogy consists of the consistency constraints. Some examples of constraints which
govern data consistency are

– Every “module”/“port” occurring in a “connection” should be valid, i.e. it
must be a known “module”/“port”.

– An “input” port cannot occur as a source port in a connection; mutatus
mutandis for the output case.

– A module cannot contain itself.
– Module containment is acyclic.
– Every module must have at least one implementing “model”.
– Every “constraint”/“model” referenced in “assertion”/“relation” must be

valid.

5 Example

We illustrate our framework for heterogeneous verification with the automo-
tive power window controller example that comes with a standard MATLAB
Simulink installation. The power window scenario consists of the controller and
the window system and sensors to sense the driver and passenger inputs (see
Fig. 4). The interface of the window system to the external world consists of two
commands which can be used to move the window up and down, respectively.
The window position is fed back to the controller.

The overall power window design includes the following types of models:

– purely discrete models for high-level discrete event control specification;
– combined discrete event and continuous time systems, i.e. hybrid dynamic

systems, to model the complete system;

Fig. 4. power window controller

An Ontology-Based Approach to Heterogeneous Verification 377

Table 1. Models of interest in the window controller application

Model Type
discrete-controller Stateflow

second-order-plant Simulink

multi-body-plant Simulink

discrete-controller-2nd-order-plant Simulink

discrete-controller-multi-body-plant Simulink

– energy domain models for the plant;
– automatically generated controller source code for the control subsystem.

The requirement for the up button function is stated as:
Req1: The driver/passenger move-up button when pressed shall cause the win-

dow to move up within 4s and the window shall never exert a force of more than
100N. The driver button has priority.

The above requirement is composed of two constraints. One is a safety con-
straint regarding the force and the other is a timing constraint. This is captured
in the knowledge base as a compound constraint having two ‘sub-constraint’s.

The models of interest in the power window scenario are shown in Table 1.
The second-order plant and the discrete-controller-second-order-plant models are
built for initial testing of the control algorithm. These models do not include any
of the actual physics of the plant. After an initial analysis of the discrete event
control and continuous dynamics using these models, a detailed plant model can
be used to evaluate performance in more realistic situations. Models at such a
level of detail are best designed in the power domain, i.e., as energy flows. The
detailed plant model uses energy-based components. Power Electronics are used
to model the actuator dynamics and the Multibody Toolset in Simulink is used
to model the power window plant. This is the multi-body plant model which is
included in the discrete-controller-multi-body-plant model. More specifically

– The discrete controller is model-checked against the discrete properties (e.g.,
the passenger move-up button when pushed causes the window to start mov-
ing up).

– The second-order plant is analyzed to check the time taken to close and open
the window.

– The full detailed model of the multi-body plant is simulated to check force
constraints on the system.

The detailed multi-body-plant model cannot be model-checked because it
contains a variety of continuous dynamic elements (e.g., friction in the system,
models of the DC motor, and the physical components such as gears with non-
linearities). To model check such a system, the usual process is to perform a
manual simplification in order to build a model in a formalism that can be
input to a model checking tool, e.g., Charon [20]. These simplified models are
often based on sweeping, simplifying assumptions that are not documented. For

378 R. Kumar, B.H. Krogh, and P. Feiler

example, to model check the force constraint one would have to construct a
hybrid automaton model of the discrete controller coupled to the continuous
plant model and introduce new continuous variables and their dynamics to model
the window force. Further simplifications are typically needed to construct a
model that can actually be analysed (e.g., approximating dynamics by simpler
ones, reducing the order, etc.).

Our heterogeneous verification approach makes it possible to pull in the in-
dividual analysis results for sub-models (the bullets above) to reason about the
complete system and infer results on models and systems for others. The tool
also documents the relations between different models constructed during the
course of the verification exercise. We illustrate this process now in the context
of the power windows example.

Heterogeneous Knowledge Assimilation

Figure 5 shows a screenshot of the Protegé tool. The static ontology defines
the database, which stores facts about the verification scenario. The static on-
tology is implemented as class definitions in Protegé. The verification scenario
facts are entered in the knowledge base as instances of the class definitions and
these instances are accessed by the Prolog reasoning engine. Protegé supports
the construction of the static ontology and provides an extensible architecture
for extended functionality. The Protegé Prolog plugin has been used to encode
epistemic ontology as Horn clauses. These clauses are imported into the knowl-
edge base as the reasoning rules. See Appendix A for the details of the logic
program implementation for the epistemic ontology.

Once the knowledge base is defined, it is populated with information about
the verification scenario as such information becomes available. For example, the
models store of the knowledge base is built by entering the model information
(Table 1) as the models are built.

Knowledge Inferencing

We now illustrate the reasoning abilities of the knowledge base with respect
to compositional deduction and multi-fidelity reasoning using the requirement
relating to the window force.

The models of interest (given in Table 1) are known to the knowledge base.
We also know the following facts:

– The window force constraint is true on the multi-body-plant. This is ob-
tained from simulation as discussed earlier.

– The multi-body-plant is a submodel of the discrete-controller-
multi-body-plant.

– The second-order-plant is a submodel of the discrete-controller-
second-order-plant.

– The multi-body-plant model is an abstraction of the second-order-plant
model with regard to the window force constraint.

An Ontology-Based Approach to Heterogeneous Verification 379

Fig. 5. Knowledge base implementation in Protegé

We have rules that state how properties propagate across abstractions and
also from submodels to higher-level models (see Appendix A, item 2).

Given the above information we can query the knowledge base for the models
that satisfy the window force sub-requirement. This constraint is identified by the
identifier frame(heterogeneous ver 2 Instance 41) in the knowledge base. 1

The following is the Prolog session for this query.

?-satisfies(frame(heterogeneous_ver_2_Instance_41), Y),model_name(Y, Name).
Y = frame(heterogeneous_ver_2_Instance_28); Name = multi_body_plant_M3; (i)
SUCCESS. redo (y/n/a)?y
Y = frame(heterogeneous_ver_2_Instance_27); Name =

discrete_controller_second_order_plant_HM1; (ii)
SUCCESS. redo (y/n/a)?y
Y = frame(heterogeneous_ver_2_Instance_29); Name =

discrete_controller_multibody_plant_HM2; (iii)
SUCCESS. redo (y/n/a)?y
Y = frame(heterogeneous_ver_2_Instance_25); Name= second_order_plant_M2; (iv)
SUCCESS. redo (y/n/a)?y
FAIL
?-

The multi-body plant satisfies the requirement (item (i) above) because it is one
of known facts provided to the knowledge base.

Since the multi-body-plant is a submodel of the discrete-controller-
multi-body-plant model,the requirement is true on the discrete-controller-

1 The identifiers are assigned by Protegé automatically as the knowledge base is built.

Class definition Instances Rules in Prolog

380 R. Kumar, B.H. Krogh, and P. Feiler

multi-body-plant (item (iii) above). This inference uses one of the rules pro-
vided to the knowledge base. This illustrates compositional deduction in the
framework. Similarly the truth/falsity of the discrete properties from model
checking the discrete controller propagates to the discrete-controller
-second-order-plant and the discrete-controller-multi-body-plant
models.

The truth of the window force constraint propagates to the second-order-plant
model across the abstraction relation between it and the multi-body-plant model
(item (iv)). Inferring properties across the abstraction relation is an example
of a bookkeeping task that is usually tedious in a heterogeneous verification
scenario because of the volume of data. This property then propagates to the
discrete-controller-second-order-plant model using the submodel relation (item
(ii) above).

The above illustrates the capability of multi-fidelity reasoning in the proposed
scheme. Some simple questions may be answered by considering models and
systems as black boxes (e.g. the propagation of the force sub-requirement to
the model of the second-order plant across the abstraction relation), while other
properties are handled by considering more detail (the example of compositional
deduction above).

If a query fails, the failed “proof” may be analyzed to arrive at the pieces of
missing information to drive new verification activities. This process is manual
currently since Prolog does not have a notion of proof objects. Identifying missing
information is one of the directions of future research.

Note that the relationships between the entities are simply stated and nothing
is specified about how they should be used - this is handled by the Prolog engine.
In other words, the encoding of the entities and relationships in the logic program
is declarative rather than functional. This enables a flexible use of the knowledge
base. For example, we can have queries going the opposite way to those described
above, such as the following query that requests the constraints that are true on
the discrete controller-second-order plant model.

satisfies(X, frame(heterogeneous_ver_2_Instance_27)).
X = frame(heterogeneous_ver_2_Instance_41); --- the force constraint.
SUCCESS. redo (y/n/a)?y
......

The knowledge base returns frame(heterogeneous ver 2 Instance 41),
which corresponds to window force sub-requirement.

Ontology Specialization

Finally we illustrate how our proposed scheme provides the flexibility of knowl-
edge base augmentation, incorporating newer kinds of information/reasoning ca-
pabilities by extending the ontology and the knowledge base. The initial knowl-
edge base does not have any sampling time related information about the models.
We extend the ontology to include:

– sampling time information for models - this is done by extending the static
ontology to add an additional attribute called sampling time for discrete
models.;

An Ontology-Based Approach to Heterogeneous Verification 381

– the semantics of the sampling time is added to the epistemic ontology leading
to new rules in the knowledge base (see discrete system sampling time
related information in Appendix A).

The sampling time information for models is then inserted into the knowledge
base and the corresponding rules enable propagation of discrete properties across
discrete models. Extensions of the ontology and the knowledge base enables the
handling of newer classes of analysis.

To summarize, we have shown how the knowledge base derived from the
ontology that we built for the power windows example can be used for the pur-
poses of compositional deduction and heterogeneous reasoning in a verification
scenario. We also showed how the framework offers the flexibility to incorporate
new types of information. We could also run consistency checks, e.g. to check
whether the interconnections in a system are type consistent. Such a query would
be handled using the available information about the ports of subsystems and
their types. We can do ‘what-if’ analysis by asserting and de-asserting facts in
the knowledge base and re-entering queries.

6 Discussion

This paper presents an illustration of how an ontology-based knowledge man-
agement scheme can address some of the problems of verification and validation
of hybrid systems. The natural question to ask is whether this approach is fea-
sible for real-scale systems. We believe that the answer to this question is ‘yes’,
because of the success of some recent tools and applications reported in the lit-
erature. For example, the European Computer Research Centre (ECRC) started
the MegaLog and ECRC Knowledge Base System (EKS) projects to demonstrate
the viability of deductive database technology for real-world applications. The
work in [21] shows how generic architectures for building large scale knowledge
bases are feasible . In [22], the application of deductive databases to standard
benchmarks like the Muenchner Verkehrs Verbund (MVV) knowledge base [23]
and the Wisconsin database benchmarks [24] is demonstrated.

Our work currently stands as follows. We have adopted the entity-relationship
diagram definition as our static ontology specification. There is a simple map-
ping of the static ontology specification into the class diagram implementation
in the tool we used (Protegé). Only parts of the knowledge base are accessed
through the Prolog interface for handling queries. We have shown examples of
applications of the knowledge base and also the extensibility of our framework
to handle newer analyses in Sect. 5.

As mentioned in Sect. 2, many ontology definition languages use Horn clause
language (or similar languages) to encode rules. We need a formal language for
the epistemic ontology. There exist notations for the static ontology (such as
RDF [25] , F-Logic [16]), but there is no equivalent one for the epistemic part.
We have used the Horn clause language. A language to specify the epistemic on-
tology touches on aspects of semantic meta-modelling. A theory of operations on

382 R. Kumar, B.H. Krogh, and P. Feiler

ontology-driven knowledge bases will extend the work of Wiederhold et al. [11].
A higher-level language is required since the framework we propose is meant to
be used in a large-scale, distributed verification scenario where it is unreasonable
to assume that the users will be familiar with logic programming.

We have used Prolog for the inference engine in our framework because Prolog
is a decidable system of logic based on Horn clauses derived from predicate logic.
The other attraction of using Prolog is that it is a declarative language. It is quite
clear that the full power of first-order predicate calculus is not required for our
domain since first-order logic works on the open world assumption where vari-
ables can range over infinite domains. Logic programming with its closed-world
assumption is more useful because we want to reason using the existing infor-
mation at any point of time. Logic programs without negation can only handle
monotonic queries, however, which is insufficient for our purpose since the abil-
ity to retract old conclusions is required. In addition, some of the functionality
required in such a knowledge management framework calls for constraint solving
(over the reals for example). Logic programming languages have been extended
to handle constraints, including non-monotonic modes of reasoning as well as
inconsistencies and uncertainties [26, 27, 28, 29]. Computational issues become
more important as the expressiveness increases, even when the logic remains de-
cidable. We plan to use the enhanced logic programming languages in the future
to support these additional concerns that arise in embedded control applications.

References

1. J.R. Burch, E.M. Clarke, D.E. Long, K.L. MacMillan, D.L. Dill: Symbolic model

checking for sequential circuit verification. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 13 (1994) 401–424
2. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In

Jensen, K., Podelski, A., eds.: Tools and Algorithms for the Construction and

Analysis of Systems (TACAS 2004). Volume 2988 of Lecture Notes in Computer

Science., Springer (2004) 168–176
3. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,

X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.

Theoretical Computer Science 138 (1995) 3–34
4. Alur, R., Henzinger, T., Wong-Toi, H.: Symbolic analysis of hybrid systems. In:

Proc. 37-th IEEE Conference on Decision and Control, 1997. (1997)
5. Aldrich, B., Fehnker, A., Krogh, B.H., Feiler, P.H., Han, Z., Lim, E., Sivashankar;,

S.: Managing verification activities with svm. Sixth International Conference on

Formal Engineering Methods (2004)
6. (http://www.ece.cmu.edu/∼webk/svm)
7. Gruber, T.: A translation approach to portable ontology specification. Knowledge

Acquisition 5 (1993) 199–220
8. Levesque, H.J., Lakemeyer, G.: The Logic of Knowledge Bases. The MIT Press

(2001)
9. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer-Verlag

(1995)
10. Ramamohanarao, K., Harland, J.: An introduction to deductive database lan-

guages and systems. The VLDB Journal 3 (1994) 107–122

An Ontology-Based Approach to Heterogeneous Verification 383

11. Wiederhold, G.: Interoperation, mediation and ontologies. International Sympo-

sium on Fifth Generation Computer Systems (FGCS94), Tokyo, Japan (1994)

12. Bonatti, P., Deng, Y., Subrahmanian, V.: An ontology-extended relational algebra.

Proc. 2003 IEEE Intl. Conference on Information Reuse and Integration, Las Vegas,

Nevada (2003) 192–199

13. Lu, J.J., Nerode, A., Subrahmanian, V.S.: Hybrid knowledge bases. IEEE Trans-

actions on Knowledge and Data Engineering, 8 (1996) 773–785

14. Ledeczi, A., Davis, J., Neema, S., Agrawal, A.: Modeling methodology for in-

tegrated simulation of embedded systems. ACM Transactions on Modeling and

Computer Simulation (2003)

15. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-

Vincentelli, A.: Metropolis: An integrated electronic system design environment.

(Transactions of IEEE Computer Society, April 2003 (Vol. 36, No. 4))

16. Maedche, A., Staab, S.: Ontologies in f-logic. (In: S. Staab, R. Studer (Eds.):

Handbook of Ontologies. Springer)

17. Gyssens, M., Paredaens, J., den Bussche, J.V., van Gucht, D.: A graph-oriented

object database model. IEEE Transactions on Knowledge and Data Engineering

6 (1994) 572–586

18. (http://protege.stanford.edu/)

19. Freiling, M.: Designing an inference engine: From ontology to control. Proceedings

of the International Workshop on Artificial Intelligence for Industrial Applications

(1988) 20–26

20. Alur, R., Grosu, R., Hur, Y., Kumar, V., Lee, I.: Modular specification of hybrid

systems in CHARON. In: HSCC. (2000) 6–19

21. Mylopoulos, J., Chaudhri, V.K., Plexousakis, D., Shrufi, A., Topologlou, T.: Build-

ing knowledge base management systems. VLDB Journal: Very Large Data Bases

5 (1996) 238–263

22. Bocca, J.B.: Compilation of logic programs to implement very large knowledge

base systems - a case study: Educe*. In: Proceedings of the Sixth International

Conference on Data Engineering, February 5-9, 1990, Los Angeles, California, USA,

IEEE Computer Society (1990) 361–369

23. Bocca, J., Pearson, P.J.: On prolog - dbms connections: a step forward from

educe. In: Peter M. D. Gray, Robert J. Lucas (Eds.): Prolog and Databases -

Implementations and New Directions. Ellis Horwood / John Wiley (1988) 55–66

24. Bitton, D., DeWitt, D.J., Turbyfill, C.: Benchmarking database systems a system-

atic approach. In: Proceedings of the 9th International Conference on Very Large

Data Bases, Morgan Kaufmann Publishers Inc. (1983) 8–19

25. (http://www.w3.org/RDF/)

26. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. Journal of Logic

Programming 19/20 (1994) 503–581

27. Subrahmanian, V.S.: Nonmonotonic logic programming. IEEE Transactions on

Knowledge and Data Engineering 11 (1999) 143–152

28. Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theor. Com-

put. Sci. 68 (1989) 135–154

29. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic program-

ming and its applications. Journal of Logic Programming 12 (1992) 335–367

384 R. Kumar, B.H. Krogh, and P. Feiler

Appendix A

Logic program implementation of epistemic ontology illustrated in the examples
section.

1. Some utility libraries defining set and list summation operations.

member(X,[X|_]).
member(X,[_|Y]) :- member(X,Y).
subset([A|X], Y):- member(A,Y), subset(X,Y).
subset([],Y).
intersection([],X,[]).
intersection([X|R], Y, [X|Z]) :- member(X,Y), !,

intersection(R,Y,Z).
intersection([X|R], Y, Z) :- intersection(R, Y, Z).
union([], X, X).
union([X|R], Y, Z) :- member(X, Y), !, union(R, Y, Z).
union([X|R], Y, [X|Z]) :- union(R, Y, Z).

sumlist([],0).
sumlist([H|T],N) :- sumlist(T,N1), N is N1+H.

2. Rules relating to constraint satisfaction

% Constraint satisfaction properties
not(Goal) :- \+ Goal.

satisfies_fact(X, Y) :-
instanceof(X, frame(’Constraint’)),
instanceof(Y, frame(’Model’)),
instanceof(Z, frame(’Satisfies’)),
constraint_satisfied(Z, X),
model_satisfied(Z, Y).

satisfies(X, Y) :-
(
satisfies_fact(X,Y) % X is known to be true on Y
)
;
(% A submodel of Y satisfies X
instanceof(X, frame(’Constraint’)),
instanceof(Y, frame(’Model’)),
instanceof(Z, frame(’ModelRelation’)),
model_relation(Z, frame(heterogeneous_ver_2_Instance_18)),
instanceof(P, frame(’Model’)),
model1(Z, P),
model2(Z, Y),
satisfies(X, P)
)
;
(% An abstraction of Y satisfies X
instanceof(X, frame(’Constraint’)),
instanceof(Y, frame(’Model’)),
instanceof(Z, frame(’ModelRelation’)),
model_relation(Z, frame(heterogeneous_ver_2_Instance_21)),
instanceof(P, frame(’Model’)),
model1(Z, P),
model2(Z, Y),
satisfies(X, P)
)
;
(% X is a compound constraint and Y satisfies all its subconstraints
instanceof(X, frame(’CompoundConstraint’)),
instanceof(Y, frame(’Model’)),
subconstraints(X, SubconstraintList),
not((member(C, SubconstraintList), not(satisfies(C, Y))))
).

An Ontology-Based Approach to Heterogeneous Verification 385

3. discrete system sampling time related information

satisfies(X, Y) :-
(% Y is a discrete model, and a discrete model Z with a
% lower sampling time than Y satisfies X
instanceof(X, frame(’Constraint’)),
instanceof(Y, frame(’DiscreteModel’)),
instanceof(Z, frame(’DiscreteModel’)),
constraint_ID(X, 3003),
satisfies_fact(X, Z),
sampling_time(Y, Yvalue), sampling_time(Z, Zvalue),
(Yvalue > Zvalue),
(implemented_sys(Y, Sys), implemented_sys(Z, Sys))
)

Mode-Automata Based Methodology for Scade

Ouassila Labbani, Jean-Luc Dekeyser, and Pierre Boulet

Laboratoire d’Informatique Fondamentale de Lille,

Université des Sciences et Technologies de Lille, Bâtiment M3,

Cité Scientifique, 59655 Villeneuve d’Ascq Cedex, France

{labbani, dekeyser, boulet}@lifl.fr

Abstract. In this paper, we present a new design methodology for syn-

chronous reactive systems, based on a clear separation between control

and data flow parts. This methodology allows to facilitate the specifica-

tion of different kinds of systems and to have a better readability. It also

permits to separate the study of the different parts by using the most

appropriate existing tools for each of them.

Following this idea, we are particularly interested in the notion of

running modes and in the Scade tool. Scade is a graphical development

environment coupling data processing and state machines (modeled by

the synchronous languages Lustre and Esterel). It can be used to spec-

ify, simulate, verify and generate C code. However, this tool does not

follow any design methodology, which often makes difficult the under-

standing and the re-use of existing applications. We will show that it is

also difficult to separate control and data flow parts using Scade. Reg-

ulation systems are better specified using mode-automata which allow

adding an automaton structure to data flow specifications written in

Lustre. When we observe the mode-structure of the mode-automaton,

we clearly see where the modes differ and the conditions for changing

modes. This makes it possible to better understand the behavior of the

system.

In this work, we try to combine the advantages of Scade and running

modes, in order to develop a new design methodology which facilitates

the study of several systems by respecting the separation between control

and data flows. This schema is illustrated through the Climate case study

suggested by Esterel Technologies1, in order to exhibit the benefits of our

approch compared to the one advocated in Scade.

1 Introduction

Development of complex and critical reactive systems requires reliable and ef-
ficient tools and methods. Some failures and crashes of these systems can lead
to data or time losses, incidents that can potentially be catastrophic. For this
reason, these systems are often submitted to severe requirements of good func-
tioning, aiming the zero error quality. Their reliability becomes at the same time

1 www.esterel-technologies.com

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 386–401, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Mode-Automata Based Methodology for Scade 387

a more and more important stake and a problem which gets harder and harder
to solve.

To address those needs, several studies have been launched in the reactive
system domain. We often speak about approaches and tools for modeling, simu-
lating, and checking of these systems. These tools are based on different models,
depending on their basic hypotheses (synchronous or asynchronous, control or
data flow, . . .) and use formal techniques having a well defined syntax accom-
panied by a rigorous semantics based on mathematical models.

In this paper, we study synchronous reactive systems and we propose a new
approach for modeling these systems. Our study is inspired by the principles
used in Scade (Lustre + Esterel) and mode-automata. It is based on the precise
and clear separation between control and data flow parts, that allow us, on the
one hand, to avoid the use of conditional structure of Lustre and to have a
best readability, and on the other hand, to facilitate the separated study of the
different parts by using the most appropriate tools for each part.

2 Context

2.1 Reactive Systems and Synchronous Approach

Reactive Systems are computer systems that react continuously to their envi-
ronment, by producing results at each invocation [1]. These results depend on
data provided by the environment during the invocation, and on the internal
state of the system. This class of systems contrasts with transformational sys-
tems and interactive systems. Transformational systems are classical programs
whose inputs are available at the beginning of their execution, and which deliver
their outputs when terminating, as compilers for instance. Interactive systems
are programs which react continuously to their environment, but at their own
speed, as operating systems for instance.

D. Harel and A. Pnueli [1] have given to reactive systems the image of a black
box that react to its environment at a speed determined by the latter (figure 1).

Specification of software or hardware reactive systems behavior is complex.
It can lead to difficult and important errors. Indeed, such systems are not only
described by transformational relationships, specifying outputs from inputs, but
also by the links between outputs and inputs via their possible combinations in
one step [3]. Modeling reactive systems is therefore a difficult activity.

Fig. 1. Reactive System

388 O. Labbani, J.-L. Dekeyser, and P. Boulet

In the beginning of the 80’s, the family of synchronous languages and for-
malisms has been a very important contribution to the reactive system area [2].
Synchronous languages have been introduced to make programming reactive sys-
tems easier [4]. They are based on the synchrony hypothesis that does not take
reaction time in consideration. Each activity can then be dated on the discrete
time scale. This hypothesis considers that the computer is infinitely fast and
each reaction is instantanous and atomic.

Synchronous languages are devoted to the design, programming and valida-
tion of reactive systems. They have a formal semantics and can be efficiently
compiled into C code, for instance. These languages can be classified into two
main families: declarative languages and imperative languages.

Declarative or data flow languages like Lustre ([5] and [6]) or Signal ([7]
and [10]) are used when the behavior of the system to be described has some
regularity like in signal-processing. Their main task consists in consuming data,
performing calculations and producing results.

Imperative or control flow languages like Esterel ([9], [8] and [16]) or Argos
[11] are more appropriate for programming systems with discrete changes and
whose control is dominant: for instance coffee machines. Their purpose is to
manage the processing of data by imposing an execution order to operations
and by choosing one operation among several exclusive.

However, rarely these systems have an exclusively regular or discrete behav-
ior. The most realistic and used embedded systems combine control and data
processing. Such global systems may be totally specified with imperative lan-
guages, but data dependences between operations can not be clearly specified
and furthermore problems may occur due to shared variables. Similarly, they
may be totally specified with declarative languages, but the control is hidden in
data dependences making it difficult to specify tests and branchings necessary
for verification or optimization purposes. For these reasons, we need efficient
tools and methods taking in consideration this kind of systems.

Several approaches have been proposed in this domain. We can find the multi-
languages approach which combines imperative and declarative languages, like
using Lustre and Argos [18]. It is based on a linking mechanism and allows the
re-use of existing code. However, when using several languages it is very difficult
to ensure that the set of corresponding generated codes will satisfy the global
specification. Another design method consists in using a transformational ap-
proach which allows the use of both types of languages for specification but,
before code generation, the imperative specifications must be translated into
declarative specifications, or vice-versa, allowing to generate a unique code in-
stead of multiple ones. N. Pernet and Y. Sorel give in [19] an example of this
approch which translates SyncCharts, a control flow language, into SynDEx, a
data flow language which allows automatic distributed code generation. How-
ever, definition of transformation rules remains a difficult task and can induce
several errors.

The transformational approach is efficient for describing reactive systems
combining control and data processing. However, there are systems whose be-

Mode-Automata Based Methodology for Scade 389

havior is mainly regular but can switch instantaneously from a behavior to an-
other. They are the systems with running modes. The most adapted method
to describe this kind of system consists in using a multi-styles approach which
makes it possible to describe with only one language the various behaviors of
the system. The mode-automata represent a significant contribution in this field.
Their goal consists in adding an automaton structure to the Lustre programs.

In our work we choose to study the transformational approach using Scade,
where Esterel code is transformed into Lustre, and the concept of mode-automata
allowing the description of different running modes of the system. The goal of our
work consists in proposing a mixed approach which can facilitate the specification
of a variety of synchronous reactive systems.

2.2 Scade

Scade (Safety Critical Application Development Environment) [13] is a graphical
development environment commercialized by Esterel Technologies. The Scade
environment was defined to help and assist the development of critical embedded
systems. This environment is composed of several tools such as a graphical editor,
a simulator, a model checker and a code generator that automatically translates
graphical specifications into C code.

The Scade language is a graphical data flow specification language that can
be translated into Lustre. Scade is built on formal foundations. It is deterministic
and provides efficient solutions for the development of reactive systems. Thus,
Scade enables the saving of a significant amount of verification efforts, essen-
tially because it supports a correct by construction process [14] and automated
production of the life cycle elements. It has been used in important European
avionic projects (Airbus A340-600, A380, Eurocopter) and is also becoming a
de-facto standard in this field.

Scade uses two specification formalisms: block diagrams for continuous control
and state machines for discrete control [12]. It adds a rigorous view of these
formalisms which includes a precise definition of concurrency and a proof that
all Scade programs behave deterministically.

By continuous control we mean sampling sensors at regular time intervals,
performing signal-processing computations on their values, and outputting val-
ues often using complex mathematical formulas. Data is continuously subject to
the same transformation. In Scade, continuous control is graphically specified
using block diagrams. Scade blocks are fully hierarchical: blocks at a description
level can themselves be composed of smaller blocks interconnected by local flows.

By discrete control we mean changing the behavior according to external
events originating either from discrete sensors and user inputs or from internal
program events. Discrete control is generally represented by state machines. A
richer concept of hierarchical state machines has been introduced in Scade to
avoid the state explosion problems. The Esterel Technologies hierarchical state
machines are called Safe State Machines (SSMs). These evolved from the Esterel
programming language and the SyncCharts state machine [15].

390 O. Labbani, J.-L. Dekeyser, and P. Boulet

Large applications contain cooperating continuous and discrete control parts.
To make the specification of such systems easier, Scade makes it possible to seam-
lessly couple both data flow and state machine styles. Most often, one includes
SSMs into block-diagram design to compute and propagate functioning modes.
Then, the discrete signals to which a SSM reacts and which it sends back are
simply transformed into boolean data flows in the block diagram.

Scade does not give any design methodology. It does not impose a well defined
technique or rules to follow for the construction of the system, which gives more
freedom to users. However, users can specify their system in a not very organized
way which makes it difficult to understand and to re-use existing specifications.
Thus, the application of formal verification techniques on such models is very
difficult and even impossible. Errors are more and more serious and the resulting
system will be unstable. It is also difficult to specify mainly regular systems which
change instantaneously their behavior with Scade. These systems are more easily
specified using mode-automata. In [20], F. Maraninchi and Y. Rémond show
through a production-cell case study that real industrial applications can be
better specified by using a mode-structure if their behavior is mainly regular. For
these reasons, it becomes necessary to introduce a design methodology and the
concept of running modes in Scade to facilitate the specification, the verification
and the re-use of various applications.

2.3 Mode-Automata

Informal Presentation. One way of facing the complexity of a system is to
decompose it into several ”independent” tasks. Of course the tasks are never
completely independent, but it should be possible to find a decomposition in
which the tasks are not too strongly connected with each other. Different for-
malisms are used in the reliability engineering framework in order to design
these models of systems under study: Boolean formalisms like block diagrams,
and states/transitions formalisms like Petri nets.

Mode automata have been proposed in [17]. They introduce, in the domain-
specific data-flow language Lustre for reactive systems, a new construct devoted
to the expression of running modes. It corresponds to the fact that several defini-
tions (equations) may exist for the same output, that should be used at distinct
periods of time.

A mode automaton is an input/output automaton. It has a finite number
of states, that are called modes. At each moment, it is in one (and only one)
mode. It may change its mode when an event occurs. In each mode, a transfer
function determines the values of output flows from the values of input flows.
Mode automaton can be combined in order to design hierarchical models. They
generalize both bounded Petri nets and block diagrams.

Figure 2 represents a simple example of mode-automaton. It has two states,
and equations attached to them. The transitions are labeled by conditions on
X. The important point is that X and its memory are global to all states. The
only thing that changes when the automaton changes states is the transition
function; the memory is preserved.

Mode-Automata Based Methodology for Scade 391

Fig. 2. Mode-automaton: simple example

Formal Definition. A mode-automaton is a tuple (Q, q0, Vi, Vo, I, f, T) where:

– Q is the set of states of the automaton part;
– q0 ∈ Q is the initial state;
– Vi and Vo are the sets of input and output variables, respectively. Input and

output variables form disjoint sets (i.e. Vi ∩ Vo = ∅);
– I : Vo −→ D is a function defining the default value of output variables;
– T ∈ Q × C(V) × Q is the set of transitions, labeled by conditions on the

variables of V = Vi ∪ Vo

– f : Vo −→ (Q −→ EqR(V)) is a function used to define the labeling of
states by total functions from Vo to the set EqR(vi ∪Vo) of expressions that
constitute the right parts of the equations.

EqR(V) has the following syntax: e ::= c|x|op(e, . . . , e)|pre(y) where c stands
for constants, x stands for a name in Vi ∪ Vo, y stands for a name in Vo and
op stands for all combinational operators. The condition in C(V) are Boolean
expressions of the same form, but without pre operators.

3 Case Study: Climate

3.1 Climate Description

In this section, we present our approach through a case study. We chose to study
the Climate example that contains both pure control logic and data handling.
In this example, we consider the simple case where the system responds to only
four inputs of Boolean type. These inputs correspond to the buttons Climate,
Left, Right and Ok (figure 3.a). As output, we can have: the climate mode, the
temperature, the level of ventilation and the ventilation mode (figure 3.b). The
types of the output values are as follows:

– ClimateMode: enum {Auto, Manual} initially Auto;
– Temperature: integer in [17, 27] initially 19;
– VentilationLevel: integer in [0, 100] initially 0;
– VentilationMode: enum{CAR, FACE, FEET,DEFROST,CIRCULATION}

initially CAR.

Initially, the climate is in automatic (Auto) mode. The switch to Manual
mode will be after the Adjust state that allows to confirm a choice using the OK
button (figure 4).

392 O. Labbani, J.-L. Dekeyser, and P. Boulet

Fig. 3. Climate: inputs and outputs

Fig. 4. The different states of Climate

The Auto State

– Set the temperature:
• Left button decrease the temperature by 1 down to 17;
• Right button increase the temperature by 1 up to 27.

– Climate button goes to state Adjust.

The Adjust State

– Navigate with Left/Right buttons through the ventilation mode and climate
mode in the following order: CAR, FACE, FEET, DEFROST, CIRCULA-
TION, Auto, Manual.

– OK button select the activated state and leave the Adjust mode. It goes to
the Auto state if ClimateMode is Auto, and to the Manual state otherwise.

Mode-Automata Based Methodology for Scade 393

Fig. 5. Climate in Scade

The Manual State

– Set the ventilation level:
• Left button decrease the ventilation level by 1 down to 0;
• Right button increase the ventilation level by 1 up to 100.

– Climate button goes to state Adjust.

The specification of the Climate system contains control and calculation. The
goal of our work consists in having a clear design of this specification, in which
we separate control and data parts.

3.2 Conception of Climate System with Scade

The solution proposed by Esterel Technologies using Scade for the conception of
Climate system is represented by figure 5.

This system possesses four inputs relative to buttons: Left, Right, Ok and
Climate. As output, it provides four results: ClimateMode, VentilationMode,
Temperature and VentilationLevel. Input values pass through a control part
represented by the SSM ClimateSSM of figure 6. This SSM gives ventilation
and climate modes as result. It also allows to activate the calculation part
HandleValue by two different signals: Incr and Decr which correspond to the
increase and decrease of the temperature or ventilation level. The activation of
HandleValue depends on input values (buttons pushed) and the present state
of the system. Each state in ClimateSSM represents a macro-state which specify
the behavior of the global state.

The operator FBY (followed by) which appears on figure 5 is a predefined
temporal operator in Scade. It makes it possible to preserve the value of a

394 O. Labbani, J.-L. Dekeyser, and P. Boulet

Fig. 6. ClimateSSM

Fig. 7. HandleValue in Scade

given expression on several cycles. In Scade, FBY(E, n, Init) is equivalent to
Init → pre(Init → pre(· · · → pre(E))) in Lustre, where E is an expression
which defines the sequence (e1, e2, . . . en) and n is a static expression which
value is strictly positive.

In the Climate example, FBY allows to keep the preceding value of
Temperature or VentilationLevel which will be transmitted to HandleValue
operator. Initially, FBY transmits the initial value of the temperature
(INITIAL TEMPERATURE) or that of the ventilation level (INITIAL VENTILATION).

By descending to a lower level of the hierarchy, the conception model that
corresponds to the operator HandleValue is indicated by figure 7. HandleValue
allows to increase or decrease a given value depending on the values of signals
Incr and Decr2.

In Scade, the correspondence between various levels of the hierarchy does not
use a naming mechanism but rather the link between inputs and outputs. For
example, inputs values: TEMPERATURE MIN, IncreaseTemp MAX, TEMPERATURE

2 Incr and Decr can not be activated at the same time.

Mode-Automata Based Methodology for Scade 395

and DecreaseTemp of the HandleValue operator which appear on figure 5 corre-
spond respectively to the values of Min, Max, Inc and Dec of the HandleValue
operator appearing on figure 7.

In this model, we notice that the calculation part HandleValue contains a
mixture of calculation (DecreaseValueUpToMin and IncreaseValueUpToMax)
and control (If Then Else). This mixture can make difficult the comprehension
of the system, as well as the use of already existing tools, dedicated exclusively to
processing the calculation part or the control part. Thus, as shown in the figures
7, HandleValue is composed of two calculation parts: DecreaseValueUpToMin
and IncreaseValueUpToMax. Independently of the values of Inc and Dec, the
two parts are activated and the output value will be chosen depending on signal’s
values of Inc and Dec. This corresponds to the strict and compound nature of
the conditional structure If Then Else in Lustre. In this case, the two branches
of the conditional structure are always evaluated which can introduce side-effect
problems.

The goal of our work consists in proposing a conceptual model that allows
to have a clear separation between control and data parts. This will allow us, on
the one hand, to avoid the use of the Lustre conditional structure and to have a
best readability, and on the other hand, to facilitate the separated study of the
different parts by using the most appropriate tools for each category, notably
concerning the application of the different formal verification techniques.

4 Control/Data Flow Separation Using Scade

First, we have tried to apply the concept of separated Control/Data Flow by
using Scade. To make this, we have studied the Climate example by separating
control and data parts. The diagram corresponding to our approach is shown on
figure 8.

In this example, we have divided the problem into three sub-problems that
correspond to the different states of the system: Auto, Adjust and Manual. The
activation of each state is made by the SSM ControlClimate depending on the
input values of Ok and Climate.

In this approach, we can clearly distinguish inputs and outputs of the system,
control parts, and data parts. Contrary to what its name indicates, the data part
does not only designate an exclusive data processing. It can also contain a SSM
followed by a data part, or only the control part. The lowest level in the hierarchy
represents an homogeneous part that can exclusively contain the control or the
elementary calculation.

The application of this approach in Scade raises some issues. For example, the
value of ClimateMode can be modified by two different states: Auto and Adjust.
However, in Scade it is impossible to link the same output to two different
operators. In Scade, each data must have a unique definition at a given time,
which makes the connection of the same output to several different operators
impossible. This requires the introduction of the If Then Else operators, which
complicate the model and break the control/data flow separation concept. To fill

396 O. Labbani, J.-L. Dekeyser, and P. Boulet

Fig. 8. Climate: trying the separation control/data flow with Scade

Fig. 9. Control/data flow separation model using Scade and Fork/Join operators

this gap, we have proposed to add special operators that play the role of Fork
and Join which allow the division of data between several operators. We have
also added a selector operator that receives as input a value provided by a SSM,
according to which it can choose the state to activate (figure 9).

The function of the Fork operator consists in diffusing the input value on
all its output points, while the role of the Join operator consists in giving an

Mode-Automata Based Methodology for Scade 397

Fig. 10. Example of the Join operator and its equivalent in Scade

output value among those received as inputs and according to the value provided
by the SSM.

Selector and Fork operators represent only an optimization of notations used
in Scade because, in this tool, it is possible to connect the same value to several
operator’s inputs. However, the Join operator replace the conditional structures
If Then Else and Switch Case used in Scade. In this context, one Join operator
with n inputs can be used to replace a structure of n− 1 If Then Else operators
or one Switch Case operator with n inputs.

In the case of the If Then Else operators, it is obvious that the complexity
of the model increases according to the number of inputs which makes difficult
the comprehension of the model. Thus, if we use the Switch Case operator,
calculation blocks are not conditioned and then all inputs must be computed
before the operator chooses the selected one. This behavior leads to difficult
problems and can be very expensive regarding time and memory. Moreover, the
default value used in Switch Case operator does not have any interest because
we suppose that one and only one component must be activated at a given
time3. For these reasons, we prefer introducing a Join operator which allows an
implicite use of conditional structures and facilitates the comprehension of the
model. Figure 10 gives an example of Join operator and its equivalent in Scade.

The model suggested in figure 9 makes it possible to have a better design
methodology based on the separation between control and calculation parts. This
representation gives a possible solution to complete the Scade model of figure 8
and facilitates the use of separation control/data flow model with Scade.

5 Using Mode-Automata with Scade

As indicated in section 2.3, the mode-automata makes it possible to divide the
specification of the system into several running modes. The switch between the
modes is made accordingly to the activation conditions which appear on the tran-

3 This concept enable us to avoid the introduction of the default value relating to the

condact operators in Scade.

398 O. Labbani, J.-L. Dekeyser, and P. Boulet

sitions. We notice that our approach of control/data flow separation presented in
section 4 is similar to that of the mode-automata. The idea consists in introduc-
ing the concept of running modes into Scade models to facilitate the specification
of the mainly regular systems and to give a more readable design methodology.

It is also easy to generate the Scade model relating to a given mode-
automaton. The basic idea consists in representing each operating mode in the
mode-automaton by a calculation part which will be controlled by a SSM equiv-
alent to the studied automaton. This procedure can be summarized as follow:

1. Extracting inputs and outputs of the system.
2. Building the SSM equivalent to the automaton structure.
3. Modeling each operating part of mode-automaton (Lustre equations) by a

calculation block in Scade.
4. Connecting the SSM and calculation parts using Selector, Fork and Join

operators.
5. adding the Delay operators if necessary.

Figure 11 gives an example of a mode-automaton and its equivalent in con-
trol/data flow separation model with Scade. In this example, the modes A and
B are respectively replaced by the components AC and BC. The switch between
the various modes is done via the SSM Control which, according to the value
of X and the state of the system, makes it possible to choose the component to
be activated. In this context, the Lustre equations of the mode-automatons are
replaced by calculation components in our design model, while the structure of

Fig. 11. Mode-automaton and its equivalent in control/data flow model

Mode-Automata Based Methodology for Scade 399

the automaton is replaced by a SSM responsible for the activation of the various
parts of calculation.

6 New Formalism for Scade

In this section, we propose a new formalism for Scade based on the running modes
concept. This formalism allows to have a clearer and easy to re-use model. For
that, we introduce the concept of components with same interface to facilitate
the introduction and deletion of components. In this context, the operators or
states of execution in a given level of hierarchy must have the same inputs and
outputs. Thus, if an operator does not modify an output value, its role only
consists in giving its preceding value. A global view of the model that we wish
to have for the Climate example is represented by figure 12.

Fig. 12. Control/Data Flow Separation: use of the components with single assignment

In this model, the various situations of the system are represented in tabs.
The activation of each case is done by the selector according to the value provided
by the control part (SSM). In other words, the part controled by a SSM can be
seen as a black box with a set of inputs and outputs. In this box and according
to the value provided by the selector we can connect various components having
a single assignment and the same type and number of inputs and outputs.

In the Climate example, the controllable part is made of three tabs corre-
sponding to the different states of the system: Auto, Adjust and Manual. These
three components have the same number and type of inputs and outputs. Their
role consists in providing output values according to input ones. This represen-
tation makes it possible to give a more readable model and facilitates the update
and re-use of various existing components. It is also important to note that our
model supports a hierarchical construction in all its design levels. This concept
is similar to that used in Scade.

400 O. Labbani, J.-L. Dekeyser, and P. Boulet

7 Conclusion and Future Work

In this paper, we have introduced a new formalism to specify complex syn-
chronous reactive systems. The goal of our works consists in having a clear model
separating control and data parts, which enables us to have a more readable and
reusable specification and a better use of the various existing tools.

First, we have studied the possibility of separation between control and data
parts using Scade. This study has shown that it is very difficult and even im-
possible to have a strict control/data flow separation with Scade, because each
variable can only have one definition at the same time and it is then impos-
sible to share the same variable between several operators. Thus, the ternary
and strict nature of the conditional structure If Then Else in Lustre can induce
several side-effect problems. We have also shown that the principle of the model
that we wish to have is very similar to that of running modes. For this reason
we have studied the mode-automata and the possibility of their integration in
our design model.

Based on these results, we have proposed a design model mixing mode-
automata and Scade. This model gives a good control/data flow separation model
by allowing the use of running modes when the system changes its behavior. Its
principle consists in adding some concepts in Scade allowing to take into account
this kind of behavior.

A strict separation between control and data parts is interesting for the mod-
eling of some systems where the distinction between the various running modes
is obvious. However, there are several systems which are mainly regular and
where the control part is not too present. In this case, the separation of the
system in several parts controllable by a SSM becomes very complex, it can in-
troduce problems of redundancy and unverifiable errors. In future work, to face
this problem, we will propose to use the concept of running mode locally for
a sub-part of the system which contains the control. We also wish to give an
internal format and to provide transformation rules making possible the switch
between our model and the internal format used in Scade. This would enable
the use of different services existing in Scade, in particular for formal verification
and code generation.

References

1. D. Harel and A. Pnueli: On the development of reactive systems. Logics and Models

of Concurrent Systems (NATO ASI Series). 13 (1985) 477–498

2. N. Halbwachs: Synchronous programming of reactive systems. Kluwer Academic

Pub. (1993)

3. L. Zaffalon and P. Breguet: Conception de Systèmes Réactifs. Revue Scientifique

de l’EIVD. (2001)

4. G. Berry and A. Benveniste: The synchronous approach to reactive and real-time

systems. Proceedings of the IEEE. September. 79 (1991) 1270–1282

Mode-Automata Based Methodology for Scade 401

5. P. Caspi, D. Pilaud, N. Halbwachs and J. A. Plaice: Lustre, a declarative lan-

guage for real time programming. Proceedings ACM Conference on Principles of

Programming Languages (1987)

6. N. Halbwachs and P. Caspi and P. Raymond and D. Pilaud: The synchronous

data-flow programming language LUSTRE. Proceedings of the IEEE. September.

79 (1991) 1305–1320

7. Albert Benveniste, Patricia Bournai, Thierry Gautier and Paul Le Guernic: SIG-

NAL: a Data Flow Oriented Language for Signal Processing. INRIA, centre de

Rennes IRISA. March. (1985)

8. Gerard Berry and Georges Gonthier: The Esterel Synchronous Programming Lan-

guage: Design, Semantics, Implementation. Science of Computer Programming. 19
(1992) 87–152

9. Frédéric Boussinot and Robert De Simone: The Esterel Language. Another Look

at Real-Time Programming. Proceedings of the IEEE. September. 79 (1991) 1293–

1304

10. P. Le Guernic and T. Gautier and M.Le Borgne and C. Le Maire: Programming

Real-Time applications with SIGNAL. Another Look at Real-Time Programming.

Proceedings of the IEEE. September. 79 (1991) 1321–1336

11. F. Maraninchi and Y. Rémond: Argos: an Automaton-Based Synchronous Lan-

guage. Computer Languages. Elsevier. 27 (2001) 61–92

12. Esterel Technologies: Efficient Development of Airborn Software with SCADE

SuiteTM . (2003). http://www.esterel-technologies.com/v3/?id=41490

13. Esterel Technologies: SCADE Language Reference Manual. (2004)

14. Peter Amey: Correctness by Construction: better can also be cheaper. Journal of

Defense Software Engineering. March. (2002)

15. Charle Andrés: Representation and Analysis of Reactive Behaviors: A Synchronous

Approach. Computational Engineering in Systems Applications (CESA). IEEE-

SMC. July. (1996) 19–29

16. Gérard Berry: The Foundations of Esterel. Proofs, Languages, and Interaction,

Essays in Honour of Robin Milner. MIT Press. (2000)

17. F. Maraninchi and Y. Rémond: Mode-automata: About modes and states for reac-

tive systems. European Symposium On Programming. LNCS 1381. March. (1998)

18. M. Jourdan and F. Lagnier and F. Maraninchi and P. Raymond: A multiparadigm

language for reactive systems. IEEE International Conference on Computer Lan-

guages (ICCL). Toulouse, France. (1994)

19. Nicolas Pernet and Yves Sorel: Optimized Implementation of Distributed Real-

Time Embedded Systems Mixing Control and Data Processing. International Con-

ference: Computer Applications in Industry and Engineering. Las Vegas, USA.

November. (2003)

20. Florence Maraninchi and Yann Rémond: Applying Formal Methods to Industrial

Cases: The Language Approach (The Production-Cell and Mode-Automata). Proc.

5th International Workshop on Formal Methods for Industrial Critical Systems.

Berlin. April. (2000)

Taylor Approximation for Hybrid Systems

Ruggero Lanotte and Simone Tini

Dipartimento di Scienze della Cultura, Politiche e dell’Informazione,

Università dell’Insubria, Via Valleggio 11, I-22100, Como, Italy

{ruggero.lanotte, simone.tini}@uninsubria.it

Abstract. We propose a new approximation technique for Hybrid Au-

tomata. Given any Hybrid Automaton H, we call Approx(H, k) the Poly-

nomial Hybrid Automaton obtained by approximating each formula φ in

H with the formulae φk obtained by replacing the functions in φ with

their Taylor polynomial of degree k. We prove that Approx(H, k) is an

over–approximation of H. We study the conditions ensuring that, given

any ε > 0, some k0 exists such that, for all k > k0, the “distance” be-

tween any vector satisfying φk and at least one vector satisfying φ is less

than ε. We study also conditions ensuring that, given any ε > 0, some

k0 exists such that, for all k > k0, the “distance” between any configura-

tion reached by Approx(H, k) in n steps and at least one configuration

reached by H in n steps is less than ε.

1 Introduction

Hybrid automata [1, 3] are a widely studied model for hybrid systems [18], i.e.
dynamical systems combining discrete and continuous state changes. Hybrid au-
tomata combine finite state machines with continuously evolving variables, and
exhibit two kinds of state changes: discrete jump transitions, occurring instan-
taneously, and continuous flow transitions, occurring while time elapses. These
two kinds of transitions are guarded by transition labels and activity functions,
respectively, which are constraints on the source and target value of the variables.

1.1 Reachability

Most of hybrid system applications are safety critical and require guarantees
of safe operation. To analyze safety properties (i.e. properties requiring that a
given set of bad configurations cannot be reached), the decidability of reach-
ability problem (i.e. whether or not a given configuration can be reached) is
determinant. Unfortunately, for most classes of hybrid systems, reachability is
undecidable [11]. However, for some of these classes, computing the successors
(or predecessors) of configurations sets in the underlying transition system is
reasonably efficient, and, therefore, reachability in a limited number of steps is
decidable.

Now, there are also classes of hybrid systems for which the successors of
configuration sets are not computable. A new methodology has been proposed

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 402–416, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Taylor Approximation for Hybrid Systems 403

in [10] to fill this gap. First of all, according to [10], an automaton A is an
approximation of another automaton B iff A is obtained from B by weakening
activity functions and transition labels. In such a way, all computations of B are
also computation of A, and, hence, if we prove that a bad configuration cannot
be reached by A in n steps, then we can infer that it cannot be reached by B
in n steps. Now, such a proof is possible since the approximation A is always
a linear hybrid automaton, for which the successors of configuration sets are
computable. The notion of approximation is then strengthened by the notion
of ε-approximation: Given any ε > 0, A is an ε-approximation of B iff, given
any vector vA satisfying an activity function (resp. transition label) in A, there
is a vector vB satisfying the corresponding activity function (resp. transition
label) in B such that the distance between vA and vB is below ε. This notion of
ε-approximation is motivated by the need to limit the error introduced by the
approximation. Finally, any approximation operator γ mapping automata into
their approximations is asymptotically complete iff, for any ε > 0 and for any
hybrid automaton B, an ε-approximation of B can be given by γ. In [10] an
asymptotically complete approximation operator, called rationally rectangular
phase-portrait approximation operator, is given which approximate all transition
labels and activity functions by products of intervals with rational endpoints.

1.2 Our Contribution

In the present paper, we propose a new approximation technique. Our idea is
to weaken transition labels and activity functions by replacing functions over
variables with their polynomial of Taylor. More precisely, given any hybrid au-
tomaton A and natural k, Approx(A, k) is the automaton obtained by replacing
in transition labels and activity functions each function f(−→x) over the variables
−→x with the polynomial of Mac Laurin for f of degree k, denoted P k(f,−→x),
i.e. the polynomial of Taylor for f of degree k w.r.t. vector

−→
0 . Of course, to

define Approx(A, k) we require that all functions f(−→x) are derivable k times.
Notice that Approx(A, k) is in the class of polynomial hybrid automata, for which
computing the successors of configuration sets is decidable [8, 9].

We shall prove that Approx(A, k) is an approximation for A according to
[10], i.e. that all transition labels and activity functions of Approx(A, k) are less
demanding than those of A. We shall study the conditions ensuring that our ap-
proximation is asymptotically complete, in the sense that, for each ε > 0 there
exists some k0 such that, for all k > k0, Approx(A, k) is an ε-approximation
for A. We note that looking for more accurate approximations for A is in some
sense mechanizable, since it simply requires taking increasing values for k. More-
over, we will argue that for most classical functions, computing the Mac Laurin
polynomial of degree k is quite efficient (i.e., polynomial w.r.t. k).

Now, looking for ε-approximations for small values of ε is a strategy suggested
in [10] to limit the error of the approximation. We observe that this analysis of
the error is syntactic, in the sense that it does not consider the behavior of A
and its approximation. In this paper we take a step toward a semantic analysis
of the error. We study conditions ensuring that, when k tends to the infinity,

404 R. Lanotte and S. Tini

the behavior of Approx(A, k) gets close to the behavior of A. More precisely,
these conditions ensure that, for each ε > 0, there is some k0 such that, for all
k > k0, if Approx(A, k) reaches a configuration c in n steps, then A reaches a
configuration c′ in n steps such that the distance between c and c′ is below ε.

1.3 Related Works

Approximation is a strategy widely used for the analysis of hybrid systems.
However, the literature presents different notions of approximations, that we
briefly comment in this section. Several papers (see, e.g., [2, 1, 4, 11, 12, 14, 15,
16]) show that for some classes of hybrid automata it is possible to map a given
automaton A into an approximation B and a property PA (like, for instance,
reachability) over A into a property PB over B such that: 1) A satisfies PA iff
B satisfies PB ; 2) the problem “B satisfies PB” is decidable.

Other papers (see, e.g., [5, 6, 7, 13, 17, 19, 20, 21]) consider classes of hybrid
systems for which the strategy previously described does not work, and study
how one can compute under-approximations and/or over-approximations of the
set of the reachable configurations.

Also [10] considers a class of hybrid automata for which the strategy of [2, 1,
4, 11, 12, 14, 15, 16]) does not work, but, instead of computing an approximation
of the reachable set of configurations of the original automaton, the idea is to
approximate syntactically the automaton, by weakening activity functions and
transition labels, so that the obtained automaton falls in the class of linear hybrid
automata, for which reachability in n steps is decidable.

As in [10], in this paper we approximate syntactically an automaton A with
another automaton, that we call Approx(A, k). Moreover, we study also how
close the behaviors of A and Approx(A, k) are.

1.4 Organization of the Paper

The paper is organized as follows. In Sect. 2 and Sect. 3 we recall the notions
on the theory of Hybrid Automata and Taylor approximation that will be em-
ployed in the paper. In Sect. 4 we introduce our definition of approximation of
an Hybrid Automaton, in Sect. 5 we do the syntactical analysis of the error,
and in Sect. 6 we do the semantical analysis of the error. In Sect. 7 we dis-
cuss efficiency issues. Finally, in Sect. 8 we outline some future developments
of our paper. Let us note that for lack of space proofs of propositions and the-
orems are omitted. Proofs can be found in the draft at the following URL:
http://www.di.unipi.it/~lanotte/pub.html.

2 Hybrid Automata

In this section we recall the formalism of Hybrid Automata (see, e.g., [18]).

2.1 Formulae

A vector of dimension n on a given set U is a tuple
→
u= (u1, . . . , un) in Un.

Taylor Approximation for Hybrid Systems 405

For a vector of real variables −→x = (x1, . . . , xn), let Φ(−→x) denote the set of
formulae over −→x defined as follows:

φ ::= f(x1, . . . , xn) ∼ c | ¬φ1 | φ1 ∨ φ2 | φ1 ∧ φ2

where φ, φ1, φ2 ∈ Φ(−→x), f : IRn → IR, c ∈ IR, and ∼∈ {<,≤,=,≥, >}.
We say that a formula φ ∈ Φ(−→x) is polynomial iff, for each subformula

f(x1, . . . , xn) ∼ c appearing in φ, f is a polynomial on the variables −→x .
Let φ ∈ Φ(−→x) and −→u ∈ IRn; we say that the vector −→u satisfies the formula

φ, written −→u |= φ, iff the following conditions hold:

−→u |= f(x1, . . . , xn) ∼ c iff f(−→u) ∼ c
−→u |= ¬φ1 iff −→u |= φ1 does not hold
−→u |= φ1 ∨ φ2 iff either −→u |= φ1 or −→u |= φ2−→u |= φ1 ∧ φ2 iff both −→u |= φ1 and −→u |= φ2

For a formula φ in Φ(−→x), let [[φ]] denote the set {−→u ∈ IRn | −→u |= φ} of the
vectors in IRn satisfying φ.

Without loss of generality, we shall assume that negation does not appear
in any formula, and that each relation symbol ∼ is in {≤, <}. Actually, given
any formula, negation can be removed by rewriting ¬(¬φ) as φ, ¬(φ1 ∧ φ2) as
¬φ1 ∨ ¬φ2, ¬(φ1 ∨ φ2) as ¬φ1 ∧ ¬φ2, ¬(f(−→x) < c) as f(−→x) ≥ c, ¬(f(−→x) ≤ c)
as f(−→x) > c, ¬(f(−→x) > c) as f(−→x) ≤ c, ¬(f(−→x) ≥ c) as f(−→x) < c, and
¬(f(−→x) = c) as f(−→x) > c ∨ f(−→x) < c. Then, relation symbols =, ≥ and >
can be removed by rewriting f(−→x) = c as f(−→x) ≤ c ∧ f(−→x) ≥ c, f(−→x) ≥ c as
−f(−→x) ≤ −c, and f(−→x) > c as −f(−→x) < −c.

2.2 The Formalism

Definition 1. An Hybrid Automaton H is a tuple (−→x , φinit, Q, q0, T, Act) s.t.:

– −→x = (x1, . . . , xn) is a vector of real variables.
– φinit ∈ Φ((x1, . . . , xn)) is the initial condition.
– Q is a finite set of states.
– q0 ∈ Q is the initial state.
– T ⊆ Q×Φ((x1, . . . , xn, x

′
1, . . . , x

′
n))×Q is a finite set of transitions. Variables

x′
1, . . . , x

′
n represent the new values taken by the variables x1, . . . , xn after

the firing of the transition.
– Act : Q → Φ((x1, . . . , xn, t, x

′
1, . . . , x

′
n)) is the activity function assigning to

each state q a formula Act(q). The variable t represents time elapsing.

Example 1 (Alur et al., [1]). The temperature of a room is controlled by a ther-
mostat, which continuously senses the temperature and turns the heater on
and off. When the heater is off, the temperature, denoted by variable x, de-
creases according to the exponential function xe−Kt, where K is a constant
determined by the room; when the heater is on, the temperature follows the
function xe−Kt + h(1− e−Kt), where h is a constant that depends on the power

406 R. Lanotte and S. Tini

�x = M

�
�

�
�

off

x′ − xe−Kt = 0
x, x′ ∈ [m, M]

�

x = m ∧ x′ − x = 0

�

x = M ∧ x′ − x = 0

�
�

�
�

on

x′ − (xe−Kt + h(1 − e−Kt)) = 0
x, x′ ∈ [m, M]

Fig. 1. The thermostat of [1] (x ∈ [m, M] stays for x ≥ m ∧ x ≤ M)

of the heater. We wish to keep the temperature between m and M degrees and
turn the heater on and off accordingly. The resulting Hybrid Automaton is in
Fig. 1.

Definition 2 (Fränzle, [8, 9]). An Hybrid Automaton is a Polynomial Hy-
brid Automaton iff φinit is a polynomial formula, for each state q, Act(q) is a
polynomial formula, and, for each transition (q, φ, q′), φ is a polynomial formula.

Let us explain now the behavior of an Hybrid Automaton H. A configuration
is a pair (q,−→u), where q is a state in Q and −→u is a vector in IRn representing
the value of the variables −→x . H can evolve from (q,−→u) to another configuration
(q′,−→u ′), written (q,−→u) → (q′,−→u ′), by performing either an activity step or a
transition step, where:

– an activity step describes the evolution from configuration (q,−→u) due to
remaining in state q and passing of time. In u units of time, the activity
Act(q) takes H to a new valuation of the variables, more precisely:

u ≥ 0 and (−→u , u,−→u ′) |= Act(q)
(q,−→u) → (q,−→u ′)

– a transition step describes the evolution from configuration (q,−→u) due to
the firing of a transition from state q. More precisely:

(q, φ, q′) ∈ T and (−→u ,−→u ′) |= φ

(q,−→u) → (q′,−→u ′)

A run r of H is a sequence of (activity and transition) steps (q0,−→u0) →
(q1,−→u1) → · · · → (qn,

−→un), where q0 is the initial state and −→u0 ∈ [[φinit]].
A configuration (qn,

−→un) is reachable iff there is a run (q0,−→u0) → (q1,−→u1) →
· · · → (qn,

−→un) leading to (qn,
−→un).

2.3 Regions

A region R of an Hybrid Automaton H is a set of configurations of H. The set
of the regions of H is denoted R(H). The set of the configurations reachable by
H from the configurations in region R is denoted Post(R,H). More precisely:

Post(R,H) = {(q′,−→u ′) | ∃(q,−→u) ∈ R such that (q,−→u) → (q′,−→u ′)}

Taylor Approximation for Hybrid Systems 407

Let Postn(H) denote either the region {(q0,−→u0) | −→u0 ∈ [[φinit]]}, if n = 0, or
the region Post(Postn−1(H),H), if n > 0. Moreover, let Post(H) denote the
region

⋃
n∈IN Postn(H). The following result is folklore.

Theorem 1. A configuration (q,−→u) is reachable in n steps from some configu-
ration (q0,−→u0) with −→u0 ∈ [[φinit]] iff (q,−→u) ∈ Postn(H). Hence (q,−→u) is reachable
iff (q,−→u) ∈ Post(H).

The following result is proved in [8, 9].

Theorem 2 (Fränzle, [8, 9]). The problem of reachability in n steps for Poly-
nomial Hybrid Automata is decidable.

3 Taylor Approximation

Let Cn denote the set of the possibly partial functions f : IRn → IR. Given a
function f ∈ Cn, let Dom(f) denote the domain of f .

Let Di
jf denote the ith derivate of f with respect to the coordinate jth.

Let Ck
n denote the subset of the functions in Cn that are derivable k times,

i.e., f ∈ Ck
n iff, for any i1, . . . , in with i1 + · · · + in = k, (Di1

1 . . . Din
n f) exists.

Definition 3. Given a function f ∈ Ck
n and a vector −→v ∈ Dom(f), the poly-

nomial of Taylor of degree k for f with respect to vector −→v is defined as follows:

P k(f,−→x ,−→v) =
∑

i1+...+in≤k

(
(Di1

1 . . . Din
n f)(−→v)

)
·
(
(x1 − v1)i1 · · · · · (xn − vn)in

)
i1! · · · · · in!

Given a vector −→u ∈ Dom(f), let rk(f,−→u ,−→v) denote the remainder (or error)
f(−→u) − P k(f,−→u ,−→v).

Hence, for all −→u ∈ Dom(f), P k(f,−→u ,−→v) is a polynomial that approximates
f(−→u), and rk(f,−→u ,−→v) quantifies the error of the approximation. The following
result, known as Lagrange Remainder Theorem, estimates rk(f,−→u ,−→v).

Theorem 3 (Lagrange). Given a function f ∈ Ck+1
n and two vectors −→u ,−→v ∈

Dom(f), there exists a vector −→v ′ on the segment linking −→u and −→v such that:

rk(f,−→u ,−→v)=
∑

i1+...+in=k+1

(
(Di1

1 . . . Din
n f)(−→v ′)

)
·
(
(u1 − v1)i1 · · · · · (un − vn)in

)
i1! · · · · · in!

From now on, for simplicity, we shall consider the polynomial of Mac Laurin
of degree k for f , i.e. the polynomial of Taylor of degree k for f with respect to
the vector

−→
0 . This polynomial will be denoted P k(f,−→x) instead of P k(f,−→x ,−→0).

Definition 4. Given a formula φ ∈ Φ(−→x) and a function f ∈ Ck+1
n , f is ana-

lytic in [[φ]] if there exist two naturals C and L such that, for any i1, . . . , in and
−→u ∈ [[φ]], it holds that:∣∣(Di1

1 . . . Din
n f)(−→u)

∣∣ ≤ L · Ci1+···+in

408 R. Lanotte and S. Tini

If f is analytic in [[φ]], given Ĉ and L̂ the minimal values satisfying the condition
of Def. 4 , for any k we shall denote with C(f, φ, k) the value L̂ · Ĉk+1

Intuitively, if f is analytic in [[φ]], Ĉ and L̂ permit us to have an upper bound
to
∣∣(Di1

1 . . . Din
n f)(−→u)

∣∣, for all −→u ∈ [[φ]] and for all i1, . . . , in.

Example 2. Trigonometric functions are analytic in any [[φ]]. As an example, for
the function sin(x) it is sufficient to take the constants L = C = 1. Exponential
and logarithmic functions are analytic in [[φ]] if φ constraints variables within
finite intervals. As an example, for function e2x and [[φ]] ⊆ [0, 10], it is sufficient
to take the constants C = 2 and L = e20.

If f is analytic in [[φ]], let Rk(f,−→x , φ) denote the polynomial

Rk(f,−→x , φ) =
C(f, φ, k) · nk+1 ·

∏n
i=1

(
(xi)2·� k+1

2 � + 1
)

⌊
k+1

n

⌋
!

Otherwise, if f is not analytic in [[φ]], let Rk(f,−→x , φ) be ∞.
Hence, Rk(f,−→u , φ) is an upper bound to the remainder rk(f,−→u ,−→0), for all

−→u ∈ [[φ]]. Moreover, if f is analytic in [[φ]], Rk(f,−→u , φ) gets close to 0 when k
tends to the infinity. Let us formalize these two intuitions.

Proposition 1. Let f be analytic in [[φ]]. It holds that:

– |rk(f,−→u ,−→0)| ≤ Rk(f,−→u , φ), for all −→u ∈ [[φ]]
– for all −→u ∈ [[φ]], limk→∞ Rk(f,−→u , φ) = 0.

4 Approximation of Hybrid Automata

Let us introduce now our notion of approximation for an Hybrid Automaton H.

Definition 5. Let H be an Hybrid Automaton where all functions appearing
in formulae are derivable k + 1 times. The approximation of degree k for H
is the Polynomial Hybrid Automaton Approx(H, k) that is obtained from H by
replacing each formula φ with a formula φk, which, in turn, is derived from φ

by replacing each non-polynomial subformula f(
→
y) ∼ c in φ with:{

P k(f,−→y) −Rk(f,−→y , φ) ∼ c if Rk(f,−→y , φ) �= ∞
true if Rk(f,−→y , φ) = ∞

where −→y stays for either −→x , if φ is φinit, or (−→x ,−→x ′), if φ is a transition label,
or (−→x , t,−→x ′), if φ is an activity function.

Since f(−→y) = P k(f,−→y) + rk(f,−→y ,−→0), for some remainder rk(f,−→y ,−→0) ∈
[−Rk(f,−→y , φ), Rk(f,−→y , φ)], and since we have assumed w.l.o.g. that ∼∈ {<,≤},
it holds that, for all −→u ∈ IRn, f(−→u) ∼ c implies P k(f,−→u) −Rk(f,−→u , φ) ∼ c.

Hence, Approx(H, k) is obtained from H by replacing formulae with less
demanding formulae (this fact will be formalized in Thm. 4).

Taylor Approximation for Hybrid Systems 409

�x = M

�
�

�
�

off

P3,f1 − R3,f1 ≤ 0

−P3,f1 + R3,f1 ≤ 0

x, x′ ∈ [m, M]

�

x = m ∧ x′ − x = 0

�

x = M ∧ x′ − x = 0

�
�

�
�

on

P3,f2 − R3,f2 ≤ 0

−P3,f2 + R3,f2 ≤ 0

x, x′ ∈ [m, M]

Fig. 2. Approx(H, 3), where H is the thermostat of [1]

Example 3. Let H be the thermostat of Fig. 1. Let us suppose that M,m > 0.
Let us call f1(x, t, x′) and f2(x, t, x′) the two functions x′ − xe−Kt and x′ −
(xe−Kt + h(1 − e−Kt)) of Fig. 1, respectively, and let us call φ1 and φ2 the two
activity functions f1(x, t, x′) = 0 and f2(x, t, x′) = 0, respectively. In Fig. 2 we
show the Polynomial Hybrid Automaton Approx(H, 3). Here, we have that:

– P3,f1 = P 3(f1, (x, t, x′)) = x′ − x+Ktx− K2

2 xt2

– P3,f2 = P 3(f2, (x, t, x′)) = x′ − x+Ktx− K2

2 xt2 − hKt+ hK2

2 t2 − hK3

6 t3.

Moreover, let us compute the polynomials R3,f1 = R3(f1, (x, t, x′), φ1) and
R3,f2 = R3(f2, (x, t, x′), φ2) of Fig. 2. We note that in states off and on we

have that t ∈
[
0, ln(m)−ln(M)

K

]
. Therefore the absolute value of derivate nth of

−e−Kt is less or equal than max(M
m , 1)Kn, and hence, the derivate nth of f1 is

less or equal than C1(2K)n, where C1 = max
(

m+1
m M, 1 +M

)
.

The absolute value of the derivate nth of h(1 − e−Kt) is less or equal than
max

(
hM+m

m , 2
)
Kn, and hence, the derivate nth of f2 is less or equal than

C2(2K)n, where C2 =
(
max

(
hM+m

m , 2
)

+max
(

m+1
m M, 1 +M

))
.

As a consequence R3,fi
= Ci · (6K)4 · (x4 +1) · (t4 +1) · ((x′)4 +1), for i = 1, 2.

We can recall now the notion of approximation of [10], which simply requires
that all formulae in the approximation H ′ are weaker than those in the original
automaton H, and prove that it is respected by our notion of approximation.

Definition 6 (Henzinger et al., [10]). An Hybrid Automaton H ′ is an ap-
proximation of an Hybrid Automaton H if H ′ is obtained from H by replacing
each formula φ with a formula φ′ such that [[φ′]] ⊇ [[φ]].

Theorem 4. Given any Hybrid Automaton H and k ∈ IN, the Polynomial Hy-
brid Automaton Approx(H, k) is an approximation of H according to Def. 6.

With the notion of syntactic approximation given in Def. 5, a notion of behav-
ioral approximation can be associated. Intuitively, the behavior of Approx(H, k)
approximates the behavior of H in the sense that all configurations that are
reachable by H are reachable also by Approx(H, k), in the same number of
steps. In Sect. 6 we will study conditions over H ensuring that, if k tends to the
infinity, then the behavior of Approx(H, k) gets close to the behavior of H.

410 R. Lanotte and S. Tini

Theorem 5. Given any Hybrid Automaton H and k, n ∈ IN, if Approx(H, k)
exists, then:

Postn(H) ⊆ Postn(Approx(H, k))

Notice that Thm. 5 implies that we have a sound method for proving that
some bad configuration of H cannot be reached in n steps. In fact, it is com-
putable whether some configuration can be reached in n steps by a Polynomial
Hybrid Automaton (see Thm. 2). Hence, if we prove that some bad configu-
ration cannot be reached by Approx(H, k) in n steps, then we infer that this
configuration cannot be reached by H in n steps.

5 Syntactical Analysis of the Error

In [10], Def. 6 is strengthened by the notion of ε-approximation, which requires
that any vector in IRn satisfying a formula φ′ of the approximation H ′ must be
“close” to at least one vector in IRn satisfying the corresponding formula φ in
the original automaton H, where “close” means that the “distance” between the
two vectors is bounded by ε. Intuitively, ε-approximations are motivated by the
need to limit the error introduced by the approximation.

Here, we reformulate the notion of ε-approximation of [10] in terms of a notion
of neighborhood of ray ε of a space in IRn.

Given two vectors
→
u= (u1, . . . , un) and

→
v= (v1, . . . , vn) in IRn, let d(

→
u,

→
v)

denote their distance
√

(u1 − v1)2 + · · · + (un − vn)2.
A space S in IRn is a set of vectors in IRn.

Definition 7. Given a space S in IRn and a real ε ≥ 0, the neighborhood of
ray ε of space S is the set of spaces

N(S, ε) = {S′ ⊇ S | ∀−→v ′ ∈ S′ ∃−→v ∈ S such that d(−→v ,−→v ′) ≤ ε}

The following properties demonstrate the solidity of Def. 7.

Proposition 2. Given spaces S1 and S2, and some ε, ξ ≥ 0, it holds that:

1. S1 ⊆ S2 implies ∀S′
1 ∈ N(S1, ε) ∃S′

2 ∈ N(S2, ε) such that S′
1 ⊆ S′

2
2. ε < ξ implies N(S1, ε) ⊂ N(S1, ξ)
3. ∀S′ ∈ N(S1 ∪ S2, ε) ∃S′

1 ∈ N(S1, ε), S′
2 ∈ N(S2, ε) such that S′ = S′

1 ∪ S′
2

4. ∀S′ ∈ N(S1 ∩ S2, ε) ∃S′
1 ∈ N(S1, ε), S′

2 ∈ N(S2, ε) such that S′ = S′
1 ∩ S′

2
5. N(S1, 0) = {S1}.

We can now reformulate the notion of ε-approximation of [10] by exploiting
Def. 7.

Definition 8 (Henzinger et al., [10], reformulated). An Hybrid Automaton
H ′ is an ε-approximation of an Hybrid Automaton H if H ′ is obtained from H
by replacing each formula φ with a formula φ′ such that [[φ′]] ∈ N([[φ]], ε).

Taylor Approximation for Hybrid Systems 411

�
�

�
	

q1

− sin(x′) ≤ 0
�

x − x′ = 0
�
�

�
	

q2

x, t, x′ ∈ [0, 100]

Fig. 3. The Hybrid Automaton H1

�
�

�
	

q1
− sin(x′) < −1
x, t, x′ ∈ [0, 100]

�
x, x′ ∈ [0, 100]

�
�

�
	

q2

x, t, x′ ∈ [0, 100]

Fig. 4. The Hybrid Automaton H2

Our aim is now to study the conditions over H ensuring that Def. 5 permits
us to define ε-approximations for H, for all ε > 0. We begin with two examples
showing that in some cases ε-approximations cannot be given.

The first examples suggests to consider only formulae φ constraining variables
within bounded intervals, thus avoiding variables that can tend to the infinity.
(This does not represent a critical issue, since the definition of convergence for
Taylor series requires that variables belong to bounded intervals.)

Example 4. Let H1 be the Hybrid Automaton in Fig. 3 and 0 < ε < π
2 . We can

show that there is no k such that Approx(H1, k) is an ε-approximation for H1.
Let φ be the activity function − sin(x′) ≤ 0 of state q1. We have that

[[φ]] = {[2i · π, (2i+ 1) · π] | i ∈ IN} ∪
{
[−2i · π,−(2i− 1) · π] | i ∈ IN≥0}

For any k, since P k(sin(x′), x′)−Rk(sin(x′), x′, φ) is a polynomial, it holds that

lim
x′→∞

|P k(− sin(x′), x′) −Rk(− sin(x′), x′, φ)| = ∞.

Therefore, there exists some x0 such that either (−∞,−x0] ⊆ [[φk]] or [x0,∞) ⊆
[[φk]]. Given any v = (2 ·i+ 3

2) ·π, for some i ∈ ZZ such that v ∈ (−∞,−x0] or v ∈
[x0,∞), there is no v′ ∈ [[φ]] with d(v, v′) ≤ ε, thus implying [[φk]] �∈ N([[φ]], ε).

As suggested by Ex. 4, let us introduce the notion of bounded formula.

Definition 9. A formula φ ∈ Φ(−→x) is bounded iff any function f appearing in
φ is analytic in [[φ]], and

φ ≡ φ′ ∧
∧

i∈[1,n]

xi ∈ [lxi
, uxi

],

for some φ′ ∈ Φ(−→x) and lx1 , ux1 , . . . , lxn
, uxn

∈ IR. In such a case we denote
with lφi and uφ

i the lower and the upper bound of xi in φ.

The second example suggests to take care with formulae f(−→x) ∼ c with
∼∈ {<,>}.

412 R. Lanotte and S. Tini

Example 5. Let H2 be the Hybrid Automaton in Fig. 4 and ε > 0. We can show
that for all k of the form k = 4h+ 2, with h ∈ IN, Approx(H2, k) cannot be an
ε-approximation of H2.

Let φ be the state activity function − sin(x′) < −1 of state q1. We have that
[[φ]] = ∅. For each k of the form k = 4h + 2, Dk+1(− sin(x′)) = cos(x′). There-
fore, Lagrange Remainder Theorem ensures that − sin(π

2) − P k(− sin(x′), π
2) =

cos(ξ)
π
2

k+1

(k+1)! , for some 0 ≤ ξ ≤ π
2 . Hence, since − sin(π

2) = −1 and cos(ξ)
π
2

k+1

(k+1)! ≥
0 for all 0 ≤ ξ ≤ π

2 , we have that P k(− sin(x′), π
2) ≤ −1. Now, it holds

that C(− sin(x′), φ, k) = 1 and Rk(− sin(x′), x′, φ) = (x′)
2� k+1

2 �+1
(k+1)! ≥ 0. So,

P k(− sin(x′), x′) − Rk(− sin(x′), x′, φ) < −1 is satisfied in a neighborhood of
π
2 , thus implying that [[φk]] �= ∅ and [[φk]] �∈ N([[φ]], ε) for any ε ≥ 0.

Notice that if we replace the activity function sin(x′) < −1 of state q1 with
sin(x′) ≤ −1, the argument of Ex. 5 falls. In fact, in such a case π

2 ∈ [[φ]], and,
if k tends to the infinity, Rk(− sin(x′), x′, φ) tends to 0 and P k(− sin(x′), x′) −
Rk(− sin(x′), x′, φ) ≤ −1 is satisfied only for values v that tend to π

2 . Now, if we
fix ε, we can choose some k0 such that, if k > k0, d(v, π

2) ≤ ε.
We prove now that for all H satisfying the restrictions suggested by Ex. 4

and Ex. 5 we are able to find ε-approximations for all ε > 0.

Theorem 6. Consider an Hybrid Automaton H for which Approx(H, k) exists
for all k > 0. If the following conditions hold:

– each formula appearing in H is bounded
– each formula f(x1, . . . , xn) ∼ c appearing in H is such that ∼ is ≤

then, for each ε > 0 there exists some k0 such that, for each k > k0, Approx(H, k)
is an ε-approximation of H.

Note that Thm. 6 can capture also formulae f(−→x) = c and f(−→x) ≥ c, which can
be rewritten as f(−→x) ≤ c ∧ −f(−→x) ≤ −c and −f(−→x) ≤ −c, respectively.

Actually, formulae f(−→x) ∼ c with ∼∈ {<,>} considered in Ex. 5 can be
admitted, provided that the hypothesis of Thm. 6 are strengthened.

Theorem 7. Consider an Hybrid Automaton H for which Approx(H, k) exists
for all k > 0. If the following conditions hold:

1. each formula appearing in H is bounded
2. each formula f(x1, . . . , xn) ∼ c appearing in H is such that ∼∈ {<,≤}
3. for any formula f(x1, . . . , xn) < c appearing in a formula φ of H, and vector

−→u ∈ [lφ1 , u
φ
1] × · · · × [lφn, u

φ
n], if f(−→u) = c, then −→u ∈ (lφ1 , u

φ
1) × · · · × (lφn, u

φ
n).

4. for any formula φ appearing in H, and vector −→u ∈ [lφ1 , u
φ
1] × · · · × [lφn, u

φ
n],

there exists an index j ∈ [1, n] such that one of the following facts hold:
(a) for each f(x1, . . . , xn) ∼ c appearing in φ such that f(−→u) = c, there

exists a neighborhood N(−→u , ε) with ε > 0 such that the function f is
strictly increasing on j in N(−→u , ε)

Taylor Approximation for Hybrid Systems 413

�
�

�
	

q1
3x′

< 27 ∧ −x′ ≤ −3
x, t, x′ ∈ [0, 100]

�
x, x′ ∈ [0, 100]

�
�

�
	

q2

x, t, x′ ∈ [0, 100]

Fig. 5. The Hybrid Automaton H3

(b) for each f(x1, . . . , xn) ∼ c appearing in φ such that f(−→u) = c, there
exists a neighborhood N(−→u , ε) with ε > 0 such that the function f is
strictly decreasing on j in N(−→u , ε)

then, for each ε > 0 there exists some k0 such that, for each k > k0, Approx(H, k)
is an ε-approximation of H.

Note that Thm. 7 captures also formulae f(−→x) = c, f(−→x) ≥ c and f(−→x) > c.
The following example shows that conditions 4a and 4b of Thm. 7 cannot

be relaxed by simply requiring that “for each f(x1, . . . , xn) ∼ c appearing in φ
such that f(−→u) = c, there exists a neighborhood N(−→u , ε) with ε > 0 such that
the function f is strictly monotonic on j in N(−→u , ε)”.

Example 6. Let H3 be the Hybrid Automaton in Fig. 5 and ε > 0. We can show
that there is no k such that Approx(H3, k) is an ε-approximation of H3.

Let φ be the activity function 3x′
< 27 ∧ −x′ ≤ −3 of state q1. Since −x′ is

decreasing and 3x′
is increasing, the fourth condition of Thm. 7 is violated for

u = 3. We have that [[φ]] = ∅.
For each k, Dk(3x′

) = ln(3)k · 3x′
. Therefore, Lagrange Remainder Theorem

ensures that, for all u, 3u−P k(3x′
, u) = ln(3)k+1 ·3ξ · (u)k+1

(k+1)! , for some 0 ≤ ξ ≤ u.
Hence, the remainder is greater than zero for all u > 0, thus implying 3u >
P k(3x′

, u). Now, it holds that C(3x′
, φ, k) = 3100 · ln(3)k+1 and Rk(3x′

, x′, φ) =

3100 · ln(3)k+1 · (u)
2� k+1

2 �
(k+1)! . Since Rk(3x′

, u, φ) is greater than 0 for all u > 0,

P k(3x′
, u) − Rk(3x′

, u, φ) < 3u, thus implying that, for each k, P k(3x′
, u) −

Rk(3x′
, u, φ) < 27 iff u < 3 + ek, for some ek > 0. Now, [[φk]] = (3, 3 + ek) is not

empty, thus implying [[φk]] �∈ N([[φ]], ε), for any ε ≥ 0.

6 Semantical Analysis of the Error

The notion of ε-approximation permits us to do a syntactical analysis of the
error. Our aim is now to do a semantical analysis of the error, i.e. we wish to
measure how the behavior of Approx(H, k) is close to the behavior of H.

We need before the preliminary notions of neighborhood of a region and of
asymptotic behavior for the class of functions f : IN → R(H).

Definition 10. Given a region R and a real ε ≥ 0, the neighborhood of ray ε
of region R is the set of regions

N(R, ε) = {R′ ⊇ R | ∀(q,−→v ′) ∈ R′ \R ∃(q,−→v) ∈ R such that d(−→v ,−→v ′) ≤ ε}

414 R. Lanotte and S. Tini

�
�

�
	

q1
3x′

< 27
x, t, x′ ∈ [0, 100]

�
x′ ≤ 1 ∧ x ∈ [3, 100]

�
�

�
	

q2
x′ ≤ 1

x, t ∈ [0, 100]

Fig. 6. The Hybrid Automaton H4

The following properties, analogous to those of Prop. 2, demonstrate the
solidity of Def. 10.

Proposition 3. Given regions R1 and R2, and some ε, ξ ≥ 0, it holds that:

1. R1 ⊆ R2 implies ∀R′
1 ∈ N(R1, ε) ∃R′

2 ∈ N(R2, ε) such that R′
1 ⊆ R′

2
2. ε < ξ implies N(R1, ε) ⊂ N(R1, ξ)
3. ∀R′ ∈ N(R1∪R2, ε) ∃R′

1 ∈ N(R1, ε), R′
2 ∈ N(R2, ε) such that R′ = R′

1∪R′
2

4. ∀R′ ∈ N(R1∩R2, ε) ∃R′
1 ∈ N(R1, ε), R′

2 ∈ N(R2, ε) such that R′ = R′
1∩R′

2
5. N(R1, 0) = {R1}.

Definition 11. Let f be any function f : IN → R(H). Function f(k) asymp-
totically tends to region R, denoted f(k) ≈k→∞ R, iff:

∀ε > 0 ∃k0 ≥ 0 such that ∀k > k0 f(k) ∈ N(R, ε)

Intuitively, Def. 11 says that f(k) gets close to R when k tends to the infinity.
Let us prove that, under a suitable hypothesis, if k tends to the infinity, then

the behavior of Approx(H, k) gets close to the behavior of H, in the sense that
Postn(Approx(H, k)) asymptotically tends to Postn(H).

Theorem 8. Consider an Hybrid Automaton H satisfying the hypothesis of
Thm. 6. For each n ∈ IN, it holds that

Postn(Approx(H, k)) ≈k→∞ Postn(H).

As in the case of Thm. 6, Thm. 8 admits also formulae f(−→x) = c and f(−→x) ≥ c.
We show now that the result of Thm. 8 does not hold if we take the hypothesis

of Thm. 7.

Example 7. Let H4 be the Hybrid Automaton in Fig. 6. H4 satisfies the hy-
pothesis of Thm. 7, whereas the activity function 3x′

< 27 of state q1 violates
the second condition of Thm. 6. We note that no configuration (q2, v) can be
reached by H4, for any v. On the contrary, we have already seen in Ex. 6 that
P k(3x′

) − Rk(3x′
, x′, φ) < 27 iff x′ < 3 + ek, for some ek > 0, and, hence,

Post2(Approx(H, k)) contains all (q2, v) such that v ≤ 1. We conclude that
Post2(Approx(H, k)) ≈k→∞ Post2(H) does not hold.

Taylor Approximation for Hybrid Systems 415

7 Efficient Implementation of Approx(H, k)

An effective algorithm for building Approx(H, k) from H requires an effective
algorithm for computing P (f,−→x) and C(f, φ, k) from f . Hence, we are interested
in the set P of the functions f for which P (f,−→x) and C(f, φ, k) are computable
in polynomial time w.r.t. k, for all formulae φ. Fortunately, P contains most of
the functions used in the applications considered in the literature.

We note firstly that P contains all functions p(−→x), with p any polynomial.
Then, P contains most of functions over one variable that are used in the

examples in the literature, such as cx, logc(x), sin(x), cos(x), tg(x), with c ∈ IR.
Finally, P contains functions y + f(−→x), where f is, in turn, a function in P.

Functions in this form permit us to simulate sum, composition and product of
functions by introducing new variables, as showed in the following example.

Example 8. The bounded formula x′ − xe−Kt = 0∧ x ∈ [m,M]∧ x′ ∈ [m,M] of
state off in Fig. 1 can be replaced with the following (also bounded) formula φ:

x′−xy = 0∧y−ez = 0∧z+Kt = 0∧x, x′ ∈ [m,M]∧y ∈
[m
M
, 1
]
∧z ∈

[
ln
(m
M

)
, 0
]

Now, the polynomial P k(y − ez, (y, z)) −Rk(y − ez, (y, z), φ) is equal to:

y − 1 − z − z2

2
− · · · − zk

k!
−

(M −m) · 2k ·
(
y2� k+1

2 � + 1
)(

z2� k+1
2 � + 1

)
M ·

⌊
k+1
2

⌋
!

and it is polynomially computable w.r.t. k.

8 Future Works

In this paper we have defined syntactical over–approximations for hybrid au-
tomata by means of Taylor polynomials, and we have studied their syntactical
and semantical convergence w.r.t. the original specifications.

As future work we will study also under–approximations based on this tech-
nique. Moreover, we will study also the function binding the approximation
degree k to the error measure ε. Finally, we will study strategies to approximate
only partially a function, to obtain a more accurate approximation. For instance,
the function y − ez of Ex. 8 can be approximated by the function

y − 1 − z − z2

2
− · · · − zk

k!
−

(M −m) ·
(
z2·� k+1

2 � + 1
)

M · (k + 1)!

that approximates only ez.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.H. Ho, X. Nicollin,

A. Olivero, J. Sifakis, and S. Yovine: The algorithmic analysis of hybrid systems.

Theor. Comput. Sci. 138(1), 1995, 3–34.

416 R. Lanotte and S. Tini

2. R. Alur and D.L. Dill: A theory of timed automata. Theor. Comput. Sci. 126(2),

1994, 183–235.

3. R. Alur, T.A. Henzinger, and P.H. Ho: Automatic symbolic verification of embed-

ded systems. IEEE Trans. Software Eng. 22(6), 1996, 181–201.

4. R. Alur, T.A. Henzinger, G. Lafferriere, and G.J. Pappas: Discrete abstractions of

hybrid systems. Proc. IEEE 88(7), 2000, 971–984.

5. E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli: Effective synthesis of

switching controllers for linear systems. Proc. IEEE 88(7), 2000, 1011-1025.

6. A.M. Bayen, E. Crück, and C.J. Tomlin: Guaranteed overapproximations of unsafe

sets for continuous and hybrid systems: Solving the Hamilton-Jacobi equation using

viability techniques. Proc. Hybrid Systems: Computation and Control, Lecture

Notes in Computer Science 2289, Springer, Berlin, 2002, 90–104.

7. A. Chutinan and B.H. Krogh: Verification of polyhedral-invariant hybrid automata

using polygonal flow pipe approximation. Proc. Hybrid Systems: Computation and

Control, Lecture Notes in Computer Science 1569, Springer, Berlin, 1999, 76–90.

8. M. Fränzle: Analysis of hybrid systems: An ounce of realism can save an infinity

of states. Proc. Computer Science Logic, Lecture Notes in Computer Science 1683,

Springer, Berlin, 1999, 126–140.

9. M. Fränzle: What will be eventually true of polynomial hybrid automata. Proc.

Theoretical Aspects of Computer Software, Lecture Notes in Computer Science

2215, Springer, Berlin, 2001, 340–359.

10. T.A. Henzinger, P.H. Ho, and H. Wong-Toi: Algorithmic analysis of nonlinear

hybrid systems. IEEE Trans. Automat. Contr. 43(4), 1998, 540-554.

11. T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya: What’s decidable about

hybrid automata? J. Comput. Syst. Sci. 57(1), 1998, 94–124.

12. T.A. Henzinger and R. Majumdar: Symbolic model checking for rectangular hybrid

systems. Proc. Tools and Algorithms for the Construction and Analysis of Systems,

Lecture Notes in Computer Science 1785, Springer, Berlin, 2000, 142–156.

13. A.B. Kurzhanski and P. Varaiya: Reachability under uncertainty. Proc IEEE Con-

ference on Decision and Control, 2002.

14. G. Lafferriere, G.J. Pappas, and S. Sastry: O-minimal hybrid systems. Math. Contr.

Sign. Syst. 13(1), 2000, 1–21.

15. G. Lafferriere, G.J. Pappas, and S. Yovine: A new class of decidable hybrid systems.

Proc. Hybrid Systems: Computation and Control, Lecture Notes in Computer Sci-

ence 1569, Springer, Berlin, 1999, 137–151.

16. G. Lafferriere, G.J. Pappas, and S. Yovine: Reachability computation for linear

hybrid systems. Proc. IFAC World Congress, 1999, 7–12.

17. I. Mitchell, A.M. Bayen, and C.J. Tomlin: Validating a Hamilton-Jacobi approxi-

mation to hybrid system reachable sets. Proc. Hybrid Systems: Computation and

Control, Lecture Notes in Computer Science 2034, Springer, Berlin, 2001, 418–432.

18. A. Pnueli and J. Sifakis (Eds.): Special issue on hybrid systems. Theor. Comput.

Sci. 138(1), 1995.

19. A. Puri, V. Borkar, and P. Varaiya: ε-approximation of differential inclusions. Proc.

Hybrid Systems: Verification and Control, Lecture Notes in Computer Science

1066, Springer, Berlin, 1996, 362–376.

20. C. Tomlin, I. Mitchell, A. Bayen, and M. Oishi: Computational techniques for the

verification and control of hybrid systems. Proc. IEEE 91(7), 2003, 986–1001.

21. H. Yazarel and G.J. Pappas: Geometric programming relaxations for non linear

system reachability. Proc. American Control Conference, 2004.

Infinity Norms as Lyapunov Functions for Model
Predictive Control of Constrained PWA Systems

Mircea Lazar1, W.P.M.H. Heemels2, Siep Weiland1, Alberto Bemporad3,
and Octavian Pastravanu4

1 Dept. of Electrical Eng., Eindhoven Univ. of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

m.lazar@tue.nl
2 Embedded Systems Institute, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
3 Dip. Ingegneria dell’Informazione, Università di Siena,

Via Roma 56, 53100 Siena, Italy
4 Dept. of Automatic Control and Industrial Informatics,

Technical Univ. “Gh. Asachi” of Iasi, Iasi 700050, Romania

Abstract. In this paper we develop a priori stabilization conditions for

infinity norm based hybrid MPC in the terminal cost and constraint set

fashion. Closed-loop stability is achieved using infinity norm inequalities

that guarantee that the value function corresponding to the MPC cost is

a Lyapunov function of the controlled system. We show that Lyapunov

asymptotic stability can be achieved even though the MPC value func-

tion may be discontinuous. One of the advantages of this hybrid MPC

scheme is that the terminal constraint set can be directly obtained as a

sublevel set of the calculated terminal cost, which is also a local piecewise

linear Lyapunov function. This yields a new method to obtain positively

invariant sets for PWA systems.

1 Introduction

Hybrid systems provide a unified framework for modeling complex processes
that include both continuous and discrete dynamics. The large variety of prac-
tical situations where hybrid systems are encountered (e.g., physical processes
interacting with discrete actuators) led to an increasing interest in modeling and
control of hybrid systems. Several modeling formalisms have been developed for
describing hybrid systems, such as Mixed Logical Dynamical (MLD) systems [1]
or Piecewise Affine (PWA) systems [2], and several control strategies have been
proposed for relevant classes of hybrid systems. Many of the control schemes for
hybrid systems are based on optimal control, e.g., like the ones in [3], [4], or
on Model Predictive Control (MPC), e.g., as the ones in [1], [5], [6], [7]. In this
paper we focus on the implementation of MPC for constrained PWA systems.
This is motivated by the fact that PWA systems can model a broad class of
hybrid systems, as shown in [8].

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 417–432, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

418 M. Lazar et al.

The implementation of MPC for hybrid systems faces two difficult problems:
how to reduce the computational complexity of the constrained optimization
problem that has to be solved on-line and how to guarantee closed-loop stability.
Most of the MPC algorithms are based on the optimization of a cost function
which is defined using either quadratic forms or infinity norms. If a quadratic
form is used to define the cost function, the MPC constrained optimization
problem becomes a Mixed Integer Quadratic Programming (MIQP) problem,
e.g., see [1] for details. This choice has led to fruitful results with respect to the
stability problem of hybrid MPC, mainly due to the fact that in this case, the
stabilization conditions can be reduced to a set of Linear Matrix Inequalities
(LMI). Such results have been initially derived in the context of state feedback
stabilization of PWA systems, as done in [3], [9]. The extension of the terminal
cost and constraint set method for guaranteeing stability in MPC (e.g., see [10]
for details) to the class of constrained PWA systems has been worked out in [7].
The terminal weight is calculated in [7] using semi-definite programming and
the terminal state is constrained to a polyhedral positively invariant set in order
to guarantee stability.

In the case when the infinity norm is used to define the cost function, the MPC
constrained optimization problem leads to a Mixed Integer Linear Programming
(MILP) problem, as pointed out in [5]. A piecewise affine explicit solution to
this problem can be obtained using multi-parametric programming, as shown
in [5], [6], [11], which may result in a reduction of the on-line computational
complexity (one still has to check in which state space region the measured
state resides). Regarding the stability problem, an a priori heuristic test for
guaranteeing stability of infinity norm based MPC of PWA systems has been
developed in [5]. Recently, an a posteriori procedure for guaranteeing stability
of hybrid systems with a linear performance index has been derived in [12] by
analyzing the explicit PWA closed-loop system. Another option to guarantee
stability is to impose a terminal equality constraint, as done in [1] for hybrid MPC
based on a quadratic form. However, this method has the disadvantage that the
system must be brought to the origin in finite time, over the prediction horizon
(this requires that the PWA system is controllable, while stabilizability should be
sufficient in general). As a result, a longer prediction horizon may be needed for
ensuring feasibility of the MPC optimization problem (fact which increases the
computational burden). Also, the terminal equality constraint is only proven to
guarantee attractivity. Lyapunov stability [13], next to attractivity, is a desirable
property from a practical point of view.

In this paper we guarantee asymptotic stability (including Lyapunov stabil-
ity) for infinity norm based hybrid MPC in the terminal cost and constraint
set fashion. A priori stabilization conditions are developed using infinity norm
inequalities, in contrast with the a posteriori verification proposed in [12]. If
the considered infinity norm inequalities are satisfied, then the value function of
the MPC cost is a Lyapunov function of the controlled PWA system. We show
that Lyapunov asymptotic stability can be achieved even though the MPC value
function may be discontinuous. This fact has been pointed out in [14] for nonlin-

Infinity Norms as Lyapunov Functions for Model Predictive Control 419

ear discrete-time systems and it has been used in [9] to derive a state-feedback
based stabilizing controller for discrete-time PWA systems. We calculate the
terminal weight by solving off-line an optimization problem. Several two-step
methods to transform this problem into a Linear Programming (LP) problem
are also presented. The terminal constraint set can be automatically obtained
as a polyhedron (or as a finite union of polyhedra) by simply taking one of the
sublevel sets of the calculated terminal cost, which is a local piecewise linear
Lyapunov function. Then the MPC constrained optimization problem that has
to be solved on-line still leads to a MILP problem.

The paper is organized as follows. Section 2 deals with preliminary notions
and Section 3 provides a precise problem formulation. The main result concerning
infinity norms as Lyapunov functions for MPC of constrained PWA systems
is presented in Section 4. Several possibilities to obtain the terminal weight
matrix are indicated in Section 5 and relaxations are developed in Section 6.
The conclusions are summarized in Section 7.

2 Preliminaries

Consider the time-invariant discrete-time autonomous nonlinear system described
by

xk+1 = g(xk), (1)

where g(·) is an arbitrary nonlinear function.

Definition 1. Given λ, 0 ≤ λ ≤ 1, a set P ⊂ Rn is a λ-contractive set for
system (1) if for all x ∈ P it holds that g(x) ∈ λP. For λ = 1 a λ-contractive
set is called a positively invariant set.

A polyhedron is a convex set obtained as the intersection of a finite number of
open and/or closed half-spaces. Moreover, a convex and compact set in Rn that
contains the origin in its interior is called a C-set [15].

For a vector x ∈ Rn we define ‖x‖∞ := maxi=1,...,n |xi|, where xi is the i -th
component of x, and for a matrix Z ∈ Rm×n we define

‖Z‖∞ � sup
x�=0

‖Zx‖∞
‖x‖∞

.

It is well known [16] that ‖Z‖∞ = max1≤i≤m

∑n
j=1 |Z{ij}|, where Z{ij} is the

ij -th entry of Z. Also, for a matrix Z ∈ Rm×n with full-column rank we define
Z−L := (Z�Z)−1Z�, which is a left inverse of Z (i.e. Z−LZ = In).

3 Problem Statement

Consider the time-invariant discrete-time PWA system [2] described by equations
of the form

xk+1 = Ajxk +Bjuk + fj when xk ∈ Ωj . (2)

420 M. Lazar et al.

Here, xk ∈ X ⊆ Rn is the state and uk ∈ U ⊆ Rm is the control input
at the discrete-time instant k ≥ 0. Aj ∈ Rn×n, Bj ∈ Rn×m, fj ∈ Rn, j ∈ S
with S := {1, 2, . . . , s} and s denoting the number of discrete modes. The sets
X and U specify state and input constraints and it is assumed that they are
polyhedral C-sets. The collection {Ωj | j ∈ S} defines a partition of X, meaning
that ∪j∈SΩj = X and Ωi ∩ Ωj = ∅ for i �= j. Each Ωj is assumed to be a
polyhedron (not necessarily closed). Let S0 := {j ∈ S | 0 ∈ cl(Ωj)} and let
S1 := {j ∈ S | 0 �∈ cl(Ωj)}, where cl(Ωj) denotes the closure of Ωj . Note that
S = S0 ∪ S1. In the sequel we assume that the origin is an equilibrium state for
(2) with u = 0, and therefore, we require that

fj = 0 for all j ∈ S0. (3)

Note that the class of hybrid systems described by (2)-(3) contains PWA
systems which may be discontinuous over the boundaries and which are PWL
in the regions whose closure contains the origin. The goal of this paper is to
develop for system (2) an asymptotically stabilizing infinity norm based MPC
scheme that leads to a MILP problem. For a fixedN ∈ N,N ≥ 1, let xk(xk,uk) =
(xk+1, . . . , xk+N) denote a state sequence generated by system (2) from initial
state xk and by applying the input sequence uk := (uk, . . . , uk+N−1) ∈ UN .
Furthermore, let XN ⊆ X denote a desired target set that contains the origin.

Definition 2. The class of admissible input sequences defined with respect to
XN and state xk ∈ X is UN (xk) := {uk ∈ UN | xk(xk,uk) ∈ XN , xk+N ∈ XN}.

Stated differently, the input sequence uk ∈ UN is admissible with respect to
XN and xk ∈ X if the following conditions are satisfied:

xk+1+i = Ajxk+i +Bjuk+i + fj when xk+i ∈ Ωj , (4a)
uk+i ∈ U, xk+i ∈ X for i = 0, . . . , N − 1, (4b)
xk+N ∈ XN . (4c)

Now consider the following problem.

Problem 1. At time k ≥ 0 let xk ∈ X be given. Minimize the cost function

J(xk,uk) � ‖Pxk+N‖∞ +
N−1∑
i=0

‖Qxk+i‖∞ + ‖Ruk+i‖∞ (5)

over all input sequences uk ∈ UN (xk).

Here, N denotes the prediction horizon, and P ∈ Rp×n, Q ∈ Rq×n and
R ∈ Rr×m are matrices which have full-column rank. The rank condition is
necessary in order to ensure that ‖Px‖∞ �= 0 for x �= 0. We call an initial state
xk ∈ X feasible if UN (xk) �= ∅. Similarly, Problem 1 is said to be feasible (or
solvable) for xk ∈ X if UN (xk) �= ∅. Let

VMPC(xk) � min
uk∈UN (xk)

J(xk,uk) (6)

Infinity Norms as Lyapunov Functions for Model Predictive Control 421

denote the value function corresponding to (5) and consider an optimal sequence
of controls calculated for state xk ∈ X by solving Problem 1, i.e.,

u∗
k � (u∗

k, u
∗
k+1, . . . , u

∗
k+N−1), (7)

which minimizes (5). Let u∗
k(1) denote the first element of the sequence (7).

According to the receding horizon strategy, the MPC control law is defined as

uMPC
k = u∗

k(1); k ∈ Z+. (8)

A more precise problem formulation can now be stated as follows.

Problem 2. Given Q, R and system (2) the objective is to determine P , N and
XN such that system (2) in closed-loop with the MPC control (8) is asymptoti-
cally stable in the Lyapunov sense and Problem 1 leads to a MILP problem.

Note that many of the hybrid MPC schemes only guarantee attractivity, e.g.,
see [1], [5], and not Lyapunov stability, which is important in practice (we thank
the reviewer for this remark).

Remark 1. A partial solution to Problem 2 has been presented in [5], where
a test criterion has been developed to a priori guarantee attractivity of the
origin for the closed-loop system. Unfortunately, the results of [5] did not yield
a systematic way for calculating the matrix P , but only a heuristic procedure.
Another option to guarantee stability in infinity norm based hybrid MPC is to
perform an a posteriori check of stability, after computing (8) as an explicit
PWA control law, as it has been done in [12].

4 Infinity Norms as Lyapunov Functions for Hybrid
MPC

In order to solve Problem 2 we aim at using the value function (6) as a candidate
Lyapunov function for the closed-loop system (2)-(8) and we employ a terminal
cost and constraint set method [10]. We also consider an auxiliary PWL control
action of the form

ũk � Kjxk, xk ∈ Ωj , k ∈ Z+, Kj ∈ Rm×n, j ∈ S. (9)

Let XU := ∪j∈S{x ∈ Ωj | Kjx ∈ U} denote the safe set with respect to state and
input constraints for this controller and let XN ⊆ XU be a positively invariant
set for the PWA system (2) in closed-loop with (9). In the sequel we require that
XN contains the origin in its interior. Now consider the following inequalities:

‖P (Aj +BjKj)P−L‖∞ + ‖QP−L‖∞ + ‖RKjP
−L‖∞ ≤ 1 − γj , j ∈ S (10)

and
‖Pfj‖∞ ≤ γj‖Px‖∞, ∀x ∈ XN ∩Ωj , j ∈ S, (11)

where {γj | j ∈ S} are scaling factors that satisfy 0 ≤ γj < 1 for all j ∈ S. Note
that, because of (3), (11) trivially holds if S = S0.

422 M. Lazar et al.

Theorem 1. Suppose (10)-(11) is solvable in (P,Kj , γj) for P with full-column
rank and j ∈ S, XN ⊆ XU is a positively invariant set for the closed-loop system
(2)-(9) that contains the origin in its interior and fix N ≥ 1. Then it holds that

1. If Problem 1 is feasible at time k ∈ Z+ for state xk ∈ Ωj, then Problem 1 is
feasible at time k + 1 for state xk+1 = Ajxk +Bju∗

k(1) + fj.
2. The MPC control (8) asymptotically stabilizes the PWA system (2) for all

feasible initial states (including the set XN), while satisfying the state and
input constraints (4).

3. The origin of the PWA system (2) in closed-loop with feedback (9) is locally
asymptotically stable, while satisfying the state and input constraints (4).

4. If X = Rn, U = Rm and (11) holds for XN = Rn, then the origin of the
PWA system (2) in closed-loop with feedback (9) is globally asymptotically
stable.

In order to prove Theorem 1 we will need the following result, the proof of which
can be found in the appendix.

Lemma 1. Consider the closed-loop PWA system (2)-(9):

xk+1 = (Aj +BjKj)xk + fj when xk ∈ Ωj , j ∈ S. (12)

Assume that (11) is solvable for some P with full-column rank. Then for any
l = 0, 1, 2, . . . there exists an αl > 0 such that for all xk ∈ XN

‖xk+l‖∞ ≤ αl‖xk‖∞, (13)

if (xk, xk+1, . . . , xk+l) is a solution of (12).

Now we prove Theorem 1.

Proof. Consider (7) and the shifted sequence of controls

uk+1 � (u∗
k+1, u

∗
k+2, . . . , u

∗
k+N−1, ũk+N), (14)

where the auxiliary control ũk+N denotes the control law (9) at time k +N .
1) If Problem 1 is feasible at time k ∈ Z+ for state xk ∈ Ωj then there

exists u∗
k ∈ UN (xk) that solves Problem 1. Then xk+N satisfies constraint (4c).

Since XN ⊆ XU is positively invariant for system (2) in closed-loop with (9), it
follows that uk+1 ∈ UN (xk+1). Hence, Problem 1 is feasible for state xk+1 =
Ajxk +Bju∗

k(1) + fj . Moreover, all states in the set XN ⊆ XU are feasible with
respect to Problem 1, as the PWL feedback (9) can be applied for any N .

2) In order to achieve stability we require for all feasible initial conditions
x0 ∈ X\{0} that the forward difference ΔVMPC(xk) := VMPC(xk+1)− VMPC(xk)
is strictly negative for all k ∈ Z+, which can be written as:

ΔVMPC(xk) = J(xk+1,u∗
k+1) − J(xk,u∗

k) ≤ J(xk+1,uk+1) − J(xk,u∗
k) =

= −‖Qxk‖∞ − ‖Ru∗
k‖∞ + ‖Pxk+N+1‖∞ + ‖Rũk+N‖∞

+ ‖Qx∗
k+N‖∞ − ‖Px∗

k+N‖∞ < 0, ∀x∗
k+N ∈ XN\{0}. (15)

Infinity Norms as Lyapunov Functions for Model Predictive Control 423

Here, xk ∈ Ωj is the measured state at the sampling instant k and x∗
k+1 =

Ajxk +Bju
∗
k + fj . Hence, it suffices to determine the matrix P such that there

exists ũk+N with

‖Pxk+N+1‖∞ + ‖Rũk+N‖∞ + ‖Qx∗
k+N‖∞ − ‖Px∗

k+N‖∞ ≤ 0, ∀x∗
k+N ∈ XN ,

(16)

in order to guarantee that ΔVMPC(xk) ≤ −‖Qxk‖∞ for all feasible initial condi-
tions x0 ∈ X\{0}. Since Q has full-column rank, there exists a positive number
τ such that ‖Qx‖∞ ≥ τ‖x‖∞ for all x ∈ X. Hence, it follows that (16) implies
that VMPC possesses a negative definite forward difference (see [13] for details).
Substituting (9) at time k +N and (2) in (16) yields the equivalent

‖P (Aj +BjKj)x∗
k+N + Pfj‖∞ + ‖RKjx

∗
k+N‖∞

+ ‖Qx∗
k+N‖∞ − ‖Px∗

k+N‖∞ ≤ 0, ∀x∗
k+N ∈ XN ∩Ωj , j ∈ S. (17)

Now we prove that if (10)-(11) holds, then (17) holds. Since P and {Kj | j ∈ S}
satisfy (10) we have that

‖P (Aj +BjKj)P−L‖∞ + ‖QP−L‖∞ + ‖RKjP
−L‖∞ + γj − 1 ≤ 0, j ∈ S.

(18)

Right multiplying the inequality (18) with ‖Px∗
k+N‖∞ and using the inequality

(11) yields:

0 ≥ ‖P (Aj +BjKj)P−L‖∞‖Px∗
k+N‖∞ + ‖QP−L‖∞‖Px∗

k+N‖∞

+ γj‖Px∗
k+N‖∞ + ‖RKjP

−L‖∞‖Px∗
k+N‖∞ − ‖Px∗

k+N‖∞ ≥
≥ ‖P (Aj +BjKj)P−LPx∗

k+N‖∞ + ‖QP−LPx∗
k+N‖∞

+ ‖Pfj‖∞ + ‖RKjP
−LPx∗

k+N‖∞ − ‖Px∗
k+N‖∞ ≥

≥ ‖P (Aj +BjKj)x∗
k+N + Pfj‖∞ + ‖RKjx

∗
k+N‖∞

+ ‖Qx∗
k+N‖∞ − ‖Px∗

k+N‖∞. (19)

Hence, inequality (17) holds and consequently ΔVMPC(xk) ≤ −τ‖xk‖∞. Next,
we show that VMPC(xk) is a positive definite, radially unbounded and decrescent
function [13]. From (6) and (5) we have that

VMPC(xk) ≥ ‖Qxk‖∞ ≥ τ‖xk‖∞, ∀N ≥ 1, ∀x ∈ X. (20)

Hence, VMPC(xk) is a positive definite and radially unbounded function.
For xk ∈ XN we have that the control law ũk = Kjxk when xk ∈ XN ∩Ωj is

admissible. Then it follows that the control sequence ũk := (ũk, . . . , ũk+N−1) ∈
UN is contained in UN (xk). Since there always exist some positive constants
γP and γQ such that ‖Pxk‖∞ ≤ γP ‖xk‖∞ and ‖Qxk‖∞ ≤ γQ‖xk‖∞ (e.g.,
γP = ‖P‖∞ and γQ = ‖Q‖∞), we have that

424 M. Lazar et al.

VMPC(xk) ≤ J(xk, ũk) = ‖Pxk+N‖∞ +
N−1∑
i=0

‖Qxk+i‖∞ + ‖RKji
xk+i‖∞ ≤

≤ γP ‖xk+N‖∞ + (γQ + κ)
N−1∑
i=0

‖xk+i‖∞, ∀xk ∈ XN , (21)

where κ = maxj∈S ‖RKj‖∞ and ji ∈ S is such that xk+i ∈ Ωji . From Lemma
1 it follows that there exist constants αi > 0 such that ‖xk+i‖∞ ≤ αi‖xk‖∞,
i = 1, . . . , N , and by letting β := γPαN + (γQ + κ)(1 +

∑N−1
i=1 αi) it follows that

VMPC(xk) ≤ β‖xk‖∞, ∀xk ∈ XN .

Hence, VMPC(xk) is a decrescent function [13] on XN (note that XN contains the
origin in its interior). Since VMPC(xk) is also positive definite it follows that

τ‖xk‖∞ ≤ VMPC(xk) ≤ β‖xk‖∞, ∀xk ∈ XN . (22)

Then, by applying the reasoning used in the proof of Theorem 3 and Theorem
4 from [9] (note that for any ε > 0 we can choose δ = (τ/β)ε < ε and hence,
continuity of VMPC(xk) is not necessary, see [9] and [13] for details) it follows that
the infinity norm inequalities (10)-(11) are sufficient for guaranteeing Lyapunov
asymptotic stability [13] for the PWA system (2) in closed-loop with the MPC
control (8).

3) Since {(P,Kj) | j ∈ S} satisfy (17) we have that

‖P (Aj+BjKj)xk+Pfj‖∞−‖Pxk‖∞ ≤ −‖Qxk‖∞ < 0, ∀xk ∈ XN \{0}, j ∈ S.
(23)

Then it follows that V (x) := ‖Px‖∞, which is a radially unbounded, positive
definite and decrescent function, possesses a negative definite forward differ-
ence. Hence, V (xk) is a common polyhedral Lyapunov function for the dynamics
xk+1 = (Aj + BjKj)xk + fj , j ∈ S. Then, the origin of the PWA system (2)
with feedback (9) is asymptotically stable on some region of attraction, e.g., the
polyhedral sublevel set given by the largest ϕ > 0 for which {x ∈ X | V (x) ≤ ϕ}
is contained in XU.

4) For the PWA system (2) with X = Rn and U = Rm we have that XU = Rn.
Since (23) holds for XN = Rn, it follows that the origin of the PWA system (2)
with feedback (9) is globally asymptotically stable. �

It follows from Theorem 1 that a terminal set XN can be easily obtained as
a sublevel set

XN � {x ∈ X | ‖Px‖∞ ≤ ϕ∗}, (24)

where ϕ∗ = supϕ{{x ∈ X | ‖Px‖∞ ≤ ϕ} ⊂ XU}. Since this set is a polyhedron,
Problem 1 leads to a MILP problem, which can be solved by standard tools
developed in the context of infinity norm based hybrid MPC [4].

Remark 2. We have shown that Lyapunov asymptotic stability can be guaran-
teed for the closed-loop system (2)-(8) and all feasible initial states, even though

Infinity Norms as Lyapunov Functions for Model Predictive Control 425

the MPC value function and the PWA dynamics (2) may be discontinuous.
This results from the fact that VMPC is radially unbounded, it possesses a neg-
ative definite forward difference and the inequality (22) holds on XN (note that
VMPC(0) = 0 and (22) implies that VMPC(x) is continuous at x = 0). Moreover,
it follows from Theorem 2 of [14] that the origin of the closed-loop system (2)-(8)
is locally exponentially stable (i.e. this property holds for all states in XN).

Remark 3. The set of feasible initial states with respect to Problem 1 depends on
the value of the prediction horizon N , due to the terminal constraint (4c). The
larger N , the larger the set of feasible states is. For a given terminal constraint
set XN and an assigned set of initial conditions, one can perform a reachability
(controllability) analysis in order to obtain the minimum prediction horizon
needed to achieve feasibility of Problem 1 for the desired set of initial states.
A procedure that can be employed to solve this problem for constrained PWA
systems is given in [6].

Finding the matrix P and the feedback matrices {Kj | j ∈ S} that satisfy
the infinity norm inequality (10) amounts to solving an optimization problem
subject to the constraint rank(P) = n. Note that this constraint can be replaced
by the convex constraint P�P > 0. Once a matrix P satisfying (10) has been
found, one still has to check that P also satisfies inequality (11), provided that
S �= S0. For example, this can be verified by checking the inequality

‖Pfj‖∞ ≤ γj min
x∈XN ∩Ωj

‖Px‖∞, j ∈ S(XN),

where S(XN) := {j | XN ∩Ωj �= ∅}∩S1. In order not to perform this additional
check, the inequality (11) can be removed by requiring that XN ⊆ ∪j∈S0Ωj is
a positively invariant set only for the PWL sub-system of the closed-loop PWA
system (2)-(9), i.e., for the system xk+1 = (Aj +BjKj)xk when xk ∈ Ωj , j ∈ S0,
as done in [7] for hybrid MPC based on quadratic forms. Note that the auxiliary
control action (9) defines now a local state feedback, instead of a global state
feedback, as in Theorem 1. In this case Theorem 1 can be reformulated as follows.

Corollary 1. Suppose that the inequality

‖P (Aj +BjKj)P−L‖∞ + ‖QP−L‖∞ + ‖RKjP
−L‖∞ ≤ 1 (25)

is solvable in (P,Kj) for P with full-column rank and j ∈ S0. Let XN ⊆ XU ∩
{∪j∈S0Ωj} be a positively invariant set for the closed-loop system xk+1 = (Aj +
BjKj)xk when xk ∈ Ωj, j ∈ S0 and assume that XN contains the origin in its
interior. Fix N ≥ 1. Then the first three statements of Theorem 1 hold.

Proof. From the fact that the terminal state is constrained to lie in XN ⊆ XU ∩
{∪j∈S0Ωj} and from (3) we have that fj = 0 for all j ∈ S0. Then it follows that
(11) holds with equality for γj = 0, ∀j ∈ S0. Since (P,Kj) satisfy (25) for all
j ∈ S0 it follows that (P,Kj) satisfy (10)-(11) for all j ∈ S0. Then the results
follow from Theorem 1. �

426 M. Lazar et al.

Example 1. Consider the following third order chain of integrators with a varying
sampling rate:

xk+1 =

⎧⎪⎨⎪⎩
A1xk +B1uk if [0 1 1]xk ≤ 0 , [1 0 0]xk < 4 , [−1 0 0]xk < 4
A2xk +B2uk if [0 1 1]xk > 0 , [1 0 0]xk < 4 , [−1 0 0]xk < 4
A3xk +B3uk + f otherwise

(26)
subject to the constraints xk ∈ X = [−15, 15]3 and uk ∈ U = [−1, 1], where

A1 =

⎡⎣1 0.4 0.08
0 1 0.4
0 0 1

⎤⎦ , A2 =

⎡⎣1 0.7 0.245
0 1 0.7
0 0 1

⎤⎦ , A3 =

⎡⎣1 0.8 0.32
0 1 0.8
0 0 1

⎤⎦ ,
B1 =

⎡⎣0.0107
0.08
0.4

⎤⎦ , B2 =

⎡⎣0.0572
0.245
0.7

⎤⎦ , B3 =

⎡⎣0.0853
0.32
0.8

⎤⎦ , f =

⎡⎣0.3
0.1
0.1

⎤⎦ .
The MPC tuning parameters are Q = I3 and R = 0.1. The following solution to
the inequality (10) has been found using a min-max formulation and the Matlab
fmincon solver (CPU time was 5.65 seconds on a Pentium III at 700MHz):

P =

⎡⎣24.1304 20.3234 4.9959
20.3764 35.9684 10.5832
6.3709 9.21 9.9118

⎤⎦ , K3 =
[
−0.8434 −2.063 −1.9809

]
, γ = 0.174,

K1 =
[
−2.3843 −4.5862 −3.1858

]
, K2 =

[
−0.8386 −2.1077 −2.1084

]
. (27)

XN has been obtained as in (24) for ϕ∗ = 2.64. Due to the input constraints
we have that XN ⊂ ∪j∈S0Ωj for system (26). However, inequality (11) holds for
system (26) and all x ∈ X. The initial state is x0 = [3 −1 2]� and the prediction
horizon of N = 8 is obtained as in Remark 3 for the matrices P , Q and R given
above. The simulation results are plotted in Figure 1 for system (26) in closed-
loop with the MPC control (8). As guaranteed by Theorem 1, the MPC control
law (8) stabilizes the unstable system (26) while satisfying the state and input
constraints. �

5 Solving the Stabilization Conditions

This section gives some techniques to approach the computationally challenging
problem associated with inequality (10). All these methods start from the fact
that if the matrix P is known in (10), then the optimization problem can be
recast as an LP problem. In the sequel we will indicate three ways to find an
educated guess of P . The first two methods are based on the observation that
a matrix P that satisfies (10)-(11) (for some Kj , j ∈ S) has the property that
V (x) = ‖Px‖∞ is a common polyhedral Laypunov function of the PWA system
(2) in closed-loop with some PWL feedback (9). Using this observation, an ed-
ucated guess of P is now based on functions V (x) = ‖Px‖∞ that satisfy this
necessary condition and thus, induce positively invariant sets for the closed-loop
system (2)-(9).

Infinity Norms as Lyapunov Functions for Model Predictive Control 427

0 5 10 15 20 25 30
−5

0

5

10

Samples

x1
,x2

,x3

0 5 10 15 20 25 30

−1

−0.5

0

0.5

1

Samples

u

Fig. 1. Example 1: State trajectory and Input history

5.1 A Quadratic Approach

One possibility to fix the terminal weight matrix is to use the approach of [7]
to calculate a polyhedral positively invariant set for the PWL sub-system of the
PWA system (2)-(9), i.e., for the system xk+1 = (Aj + BjKj)xk when xk ∈
Ωj , j ∈ S0. If the algorithm of [7] terminates in finite time and the resulting
polyhedral set is symmetric, then a good choice for P is the matrix that induces
this polyhedral set, i.e. {x ∈ X | ‖Px‖∞ ≤ c} for some c > 0. Note that this
type of approach to obtain P is based on the fact that the feedback matrices
{Kj | j ∈ S0} are already known, e.g., in [7] they are calculated via semi-
definite programming in order to obtain a common quadratic Lyapunov function.
The approach of [9] can also be used to compute the feedbacks that guarantee
quadratic stability and then, the algorithm of [7] can be employed to obtain a
polyhedral positively invariant set. Fixing P in (10) and solving in {Kj | j ∈ S0}
(and γj) amounts to looking for a different state feedback control law, which not
only renders the employed polyhedral set positively invariant, but also ensures
that VMPC(xk) possesses a negative definite forward difference.

5.2 “Squaring the Circle”

Another way to obtain polyhedral (or piecewise polyhedral) positively invari-
ant sets for closed-loop PWA systems that admit a common (or a piecewise)
quadratic Lyapunov function has been recently developed in [17]. In this ap-
proach, the polyhedral set can be constructed by solving the problem of fitting
a polyhedron in between two ellipsoidal sublevel sets of a quadratic Lyapunov
function, where one is contained in the interior of the other and the states on
the boundary of the outer ellipsoid are mapped by the closed-loop dynamics into
the interior of the inner ellipsoid. This problem can be solved using the recent
algorithm developed in [18] in the context of DC programming. The polyhedral
set is constructed by treating the ellipsoids as sublevel sets of convex functions,
and by exploiting upper and lower piecewise affine bounds on such functions.

428 M. Lazar et al.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x2

x1

Fig. 2. Example 2: State trajectory

Giving additional structure to the algorithm of [18] such that it generates a
polyhedron with a finite number of facets, a polyhedral positively invariant set
is obtained for system (2) and then P can be chosen as the matrix that induces
this polyhedron.

Example 2. Consider the example proposed in [5], i.e.,

xk+1 =

{
A1xk +Buk if [1 0]xk ≥ 0
A2xk +Buk if [1 0]xk < 0

(28)

subject to the constraints xk ∈ X = [−5, 5] × [−5, 5], uk ∈ U = [−1, 1] and with

A1 =
[

0.35 −0.6062
0.6062 0.35

]
, A2 =

[
0.35 0.6062

−0.6062 0.35

]
, B =

[
0
1

]
.

The common quadratic Lypunov function calculated in [7] for system (28)-(9)
with feedback matrices K1 = [−0.611 − 0.3572], K2 = [0.611 − 0.3572] and the
algorithm of [18] have been used to compute a polyhedral positively invariant
set for system (28). The two ellipsoidal sublevel sets of the quadratic Lyapunov
function plotted in Figure 2 are such that all the states on the boundary of the
outer ellipsoid go inside the inner ellipsoid in one discrete-time step. The matrix
P has been chosen as the matrix that induces the polyhedron plotted in Figure
2. Then (10) has been solved for the MPC tuning parameters Q = diag([0.6 1])
and R = 0.1, yielding the new state feedback matrices K1 = [−0.6897 − 0.1416]
and K2 = [0.1454 − 0.7461]. The simulation results obtained for N = 2 and the
initial states x0 = [1 1.5]� (circle line) and x0 = [−1 1.5]� (star line) are shown
in Figure 2 together with a plot of the polyhedral positively invariant set. �

Infinity Norms as Lyapunov Functions for Model Predictive Control 429

5.3 Square Matrices Q and P

If Q is square and invertible, a different way to simplify (10) is to parameterize
the terminal weight as P = 1

εQ, where 0 < ε < 1.

Lemma 2. Assume that {Kj , γj | j ∈ S} with 0 ≤ γj < 1 and ε satisfy the
inequality

‖Q(Aj +BjKj)Q−1‖∞ + ε‖RKjQ
−1‖∞ ≤ 1 − ε− γj , j ∈ S. (29)

Then P = 1
εQ and {Kj , γj | j ∈ S} satisfy the inequality (10).

Proof. From the fact that Q is square and invertible it follows that P = 1
εQ is

square and invertible. Then the inequality (10) can be written as

‖P (Aj +BjKj)P−1‖∞ + ‖QP−1‖∞ + ‖RKjP
−1‖∞ ≤ 1 − γj , j ∈ S.

By replacing P = 1
εQ and P−1 = εQ−1 in the above inequality yields the

equivalent inequality (29). �

For a fixed ε, finding {Kj , γj | j ∈ S} that satisfy the inequality (29) amounts
to solving an LP problem. Then the matrix P can be simply chosen as P = 1

εQ.

6 Relaxations

The a priori stabilization conditions for infinity norm based MPC of constrained
PWA systems developed in Section 4 amount to searching for a common Lya-
punov function and a common polyhedral positively invariant set for all sub-
systems of (2). Since in general there is no guarantee that such a function and
such a set exist, in the sequel we relax the conditions of Section 4 by employ-
ing different terminal weight matrices in cost (5), depending on the state space
region where the terminal state resides. Now consider the following problem.

Problem 3. At time k ≥ 0 let xk ∈ X be given. Minimize the cost function

J(xk,uk) � ‖Pjxk+N‖∞ +
N−1∑
i=0

‖Qxk+i‖∞ + ‖Ruk+i‖∞ whenxk+N ∈ Ωj , j ∈ S

(30)

over all input sequences uk ∈ UN (xk).

Let Qji := {x ∈ Ωj | ∃u ∈ U : Ajx+Bju+fj ∈ Ωi}, (j, i) ∈ S×S and let X :=
{(j, i) ∈ S×S | Qji �= ∅}. The set of pairs of indices X can be determined off-line
by performing a one-step rechability analysis for the PWA system (2) (note that
the one-step rechability analysis does not yield a combinatorial drawback). The
set X contains all discrete mode transitions that can occur in the PWA system
(2), i.e. a transition from Ωj to Ωi can occur if and only if (j, i) ∈ X . The infinity
norm inequalities (10) and (11) become:

‖Pi(Aj +BjKj)P−L
j ‖∞ + ‖QP−L

j ‖∞ + ‖RKjP
−L
j ‖∞ ≤ 1 − γji, (j, i) ∈ X

(31)

and

430 M. Lazar et al.

‖Pifj‖∞ ≤ γji‖Pjx‖∞, ∀x ∈ XN ∩Ωj , (j, i) ∈ X , (32)

where γji are scaling factors that satisfy 0 ≤ γji < 1, (j, i) ∈ X . Now Theorem
1 can be extended as follows.

Theorem 2. Suppose (31)-(32) is solvable in (Pj ,Kj , γji) for Pj with full-
column rank and (j, i) ∈ X . Let XN ⊆ XU be a positively invariant set for
the closed-loop system (2)-(9) that contains the origin in its interior. Fix N ≥ 1
and calculate the MPC control (8) by solving at each sampling instant Problem
3 instead of Problem 1. Then the four statements of Theorem 1 hold for Problem
3.

The proof is similar to the proof of Theorem 1 and is omitted here for brevity.
Since {(Pj ,Kj) | j ∈ S} satisfy (31) and (32) we have that

‖Pi(Aj +BjKj)xk + Pifj‖∞ − ‖Pjxk‖∞ ≤ −‖Qxk‖∞ < 0,
∀xk ∈ XN \ {0}, (j, i) ∈ X .

(33)

Then, it can be proven along the lines of the proof of Theorem 1 that the
discontinuous function V (x) := ‖Pjx‖∞ when x ∈ Ωj is a (piecewise linear)
Lyapunov function for the dynamics xk+1 = (Aj +BjKj)xk + fj , j ∈ S. Hence,
the origin of the PWA system (2) with feedback (9) is asymptotically stable on
some region of attraction, e.g., the piecewise polyhedral sublevel set given by the
largest ϕ > 0 for which {x ∈ X | V (x) ≤ ϕ} is contained in XU. The terminal
set XN can be obtained in this case as

XN � ∪j∈S{x ∈ Ωj | ‖Pjx‖∞ ≤ ϕ∗}, (34)

where ϕ∗ = supϕ{{x ∈ Ωj | ‖Pjx‖∞ ≤ ϕ} ⊂ XU}. Since this set is a finite union
of polyhedra, Problem 3 still leads to a MILP problem, which is a standard tool
in the context of infinity norm based hybrid MPC [4].

Note that the methods of Section 5.2 and Section 5.3 can also be applied
to reduce the optimization problem associated with the infinity norm inequality
(31) to an LP problem.

Remark 4. The sublevel sets of the Lyapunov function V (x) = ‖Pjx‖∞ when
x ∈ Ωj with Pj satisfying (33) are λ-contractive sets [15] and they are finite
unions of polyhedra (i.e. they are represented by a polyhedron in each region of
the PWA system). Hence, this yields a new method to obtain (in finite time) a
piecewise polyhedral λ-contractive set for the class of PWA systems, which takes
into account also the affine terms fj for j ∈ S1. If we set Pj = P for all j ∈ S
(as done in Section 4), this yields a new way to obtain polyhedral λ-contractive
sets for PWA systems.

7 Conclusions

In this paper we have developed a priori stabilization conditions for infinity
norm based MPC of constrained PWA systems. Stability has been achieved using

Infinity Norms as Lyapunov Functions for Model Predictive Control 431

infinity norm inequalities. If the considered inequalities are satisfied, then the
possibly discontinuous value function of the MPC cost is a Lyapunov function
of the controlled PWA system. The terminal weight(s) are obtained by solving
off-line an optimization problem. Several possibilities to reduce this problem
to an LP problem via a two-step procedure have been indicated. The terminal
constraint set is simply obtained by taking one of the sublevel sets of the terminal
cost, which is a local piecewise linear Lyapunov function. As a by-product we
have also obtained a new approach for the calculation of positively invariant sets
for PWA systems.

Acknowledgements. The authors would like to thank the reviewers for their help-
ful comments. They are also grateful for the financial support received from the
Dutch Science Foundation (STW), Grant “Model Predictive Control for Hybrid
Systems” (DMR. 5675) and from the Control Training Site program (Contract
HPMT-CT-2001-00278).

A Proof of Lemma 1

We will use induction to prove Lemma 1. For l = 0, the inequality (13) holds
for any α0 ≥ 1. Suppose (13) holds for some l ≥ 0. Now we will prove that (13)
holds for l + 1. We have that

‖xk+l+1‖∞ = ‖(Aj +BjKj)xk+l + fj‖∞ when xk+l ∈ XN ∩Ωj .

Due to the full-column rank of P , there exist positive numbers μP and γP such
that μP ‖z‖∞ ≤ ‖Pz‖∞ ≤ γP ‖z‖∞ for all z ∈ Rn. Then it follows that

‖xk+l+1‖∞ ≤ ‖(Aj +BjKj)xk+l‖∞ + ‖fj‖∞ ≤
≤ η‖xk+l‖∞ + μ−1

P ‖Pfj‖∞ ≤ η‖xk+l‖∞ + μ−1
P ‖Pxk+l‖∞,

where η = maxj∈S ‖Aj + BjKj‖∞ and in the last inequality we used (11) and
0 ≤ γj < 1 for all j ∈ S. The above inequality yields

‖xk+l+1‖∞ ≤ (η + μ−1
P γP)‖xk+l‖∞.

By the induction hypothesis there exists αl > 0 such that (13) holds for xk+l

and by letting αl+1 := (η + μ−1
P γP)αl > 0 it follows that

‖xk+l+1‖∞ ≤ αl+1‖xk‖∞.

�
References

1. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and

constraints. Automatica 35 (1999) 407–427

2. Sontag, E.: Nonlinear regulation: the piecewise linear approach. IEEE Transactions

on Automatic Control 26 (1981) 346–357

432 M. Lazar et al.

3. Rantzer, A., Johansson, M.: Piecewise linear quadratic optimal control. IEEE

Transactions on Automatic Control 45 (2000) 629–637

4. Borrelli, F.: Constrained optimal control of linear and hybrid systems. Volume 290

of Lecture Notes in Control and Information Sciences. Springer (2003)

5. Bemporad, A., Borrelli, F., Morari, M.: Optimal controllers for hybrid systems:

Stability and piecewise linear explicit form. In: 39th IEEE Conference on Decision

and Control, Sydney, Australia (2000) 1810–1815

6. Kerrigan, E., Mayne, D.: Optimal control of constrained, piecewise affine systems

with bounded disturbances. In: 41st IEEE Conference on Decision and Control,

Las Vegas, Nevada (2002) 1552–1557

7. Lazar, M., Heemels, W., Weiland, S., Bemporad, A.: Stabilization conditions for

model predictive control of constrained PWA systems. In: 43rd IEEE Conference

on Decision and Control, Paradise Island, Bahamas (2004) 4595–4600

8. Heemels, W., De Schutter, B., Bemporad, A.: Equivalence of hybrid dynamical

models. Automatica 37 (2001) 1085–1091

9. Mignone, D., Ferrari-Trecate, G., Morari, M.: Stability and stabilization of piece-

wise affine systems: An LMI approach. Technical Report AUT00-12, Automatic

Control Laboratory, ETH Zürich, Switzerland (2000)

10. Mayne, D., Rawlings, J., Rao, C., Scokaert, P.: Constrained model predictive

control: Stability and optimality. Automatica 36 (2000) 789–814

11. Baotic, M., Christophersen, F., Morari, M.: A new algorithm for constrained fi-

nite time optimal control of hybrid systems with a linear performance index. In:

European Control Conference, Cambridge, UK (2003)

12. Christophersen, F., Baotic, M., Morari, M.: Stability analysis of hybrid systems

with a linear performance index. In: 43rd IEEE Conference on Decision and Con-

trol, Paradise Island, Bahamas (2004) 4589–4594

13. Freeman, H.: Discrete-time systems. John Wiley & Sons, Inc. (1965)

14. Scokaert, P., Rawlings, J., Meadows, E.: Discrete-time Stability with Perturba-

tions: Application to Model Predictive Control. Automatica 33 (1997) 463–470

15. Blanchini, F.: Ultimate boundedness control for uncertain discrete-time systems

via set-induced Lyapunov functions. IEEE Transactions on Automatic Control 39
(1994) 428–433

16. Kiendl, H., Adamy, J., Stelzner, P.: Vector norms as Lyapunov functions for linear

systems. IEEE Transactions on Automatic Control 37 (1992) 839–842

17. Lazar, M., Heemels, W.P.M.H, Weiland, S., Bemporad, A.: On the Stability of

Quadratic Forms based Model Predictive Control of Constrained PWA Systems.

In: 24th American Control Conference, Portland, Oregon (2005)

18. Alessio, A., Bemporad, A.: A Recursive Algorithm for DC Programming and Appli-

cations in Computational Geometry. Technical report, Dipartimento di Ingegneria

dell’Informazione, Universitá di Siena, Via Roma 56, 53100 Siena, Italy (2004)

Air-Traffic Control in Approach Sectors:
Simulation Examples and Optimisation

Andrea Lecchini1, William Glover1, John Lygeros2, and Jan Maciejowski1

1 Control Lab, Department of Engineering,

University of Cambridge, CB2 1PZ Cambridge, UK

{al394, wg214, jmm}@eng.cam.ac.uk
http://www-control.eng.cam.ac.uk/

2 Department of Electrical Engineering, University of Patras, Rio,

26500 Patras, Greece

lygeros@ee.upatras.gr
http://www.sml.ee.upatras.gr/lygeros

Abstract. In this contribution we consider the approach to the runway

as a case study of our research on conflict resolution for Air-Traffic Con-

trol with stochastic models. We simulate the approach for landing and

optimise the maneuver through a simulation based optimisation strategy.

1 Introduction

In the current organisation of Air-Traffic Management the centralised Air-Traffic
Control is in complete control of the air-traffic and ultimately responsible for
safety. The main objective of Air-Traffic Control is to maintain safe separation
between aircraft by issuing proper instructions to the pilots. A conflict is defined
as the situation of loss of minimum safe separation between two aircraft. If
it is possible, Air-Traffic Control tries also to fulfil the (possibly conflicting)
requests of aircraft and airlines; for example, desired paths to avoid turbulence
or desired time of arrivals to meet schedule. In order to improve performance of
Air-Traffic Control, mainly in anticipation of increasing levels of traffic, research
effort has been spent in the last decade on creating tools for conflict detection
and resolution. A review of research work in this area of Air-Traffic Control is
presented in [1].

Uncertainty is introduced in air-traffic by the action of the wind field, in-
complete knowledge of the physical coefficients of the aircraft and unavoidable
imprecision in the execution of Air-Traffic Control instructions. In conflict detec-
tion the objective is to evaluate conflict probability over a certain future horizon
starting from the current positions and flight plans of the aircraft. In conflict
resolution the objective is to calculate suitable maneuvers to avoid a predicted
conflict. A number of conflict resolution algorithms have been proposed for a
deterministic setting, for example [2, 3, 4]. In a stochastic setting, research has
concentrated mainly on conflict detection [5, 6, 7, 8]. The main reason for this is
the complexity of stochastic prediction models which, even if it does not make

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 433–448, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

434 A. Lecchini et al.

it impossible to estimate conflict probability through Monte Carlo methods, it
makes the quantification of the effects of possible control actions intractable.

Air-traffic conflict resolution involves several hybrid aspects related either to
the nature of the system and to the control problem. The system itself contains
continuous dynamics, arising from the physical motion of the aircraft, discrete
dynamics, arising from the logic embedded in the Flight Management System,
and stochastic dynamics, arising from the effect of wind on the aircraft tracks and
uncertainty in the physical parameters of the aircraft (for example the mass).
Other hybrid aspects, from the point of view of Air-Traffic Control, are the
fact that aircraft follow a nominal path that is a sequence of straight lines and
that the motion of aircraft can not be freely adjusted. For example descending
aircraft follow a prespecified speed profile and therefore “descent” can be seen as
a discrete state with only a “1/0” value. Moreover, in conflict resolution, there are
two rather separate problems one has to solve: (i) coordination between aircraft
(e.g. selecting a landing sequence), which is typically a discrete combinatorial
problem, and (ii) selecting the parameters of the resolution maneuver within
the constraints imposed by the coordination, which is typically an optimisation
problem over a continuous set.

We are currently investigating — see also [9] — on the use a Monte Carlo
approach for conflict resolution in order to extend to this task the advantages
of the Monte Carlo framework, in terms of flexibility and complexity of the
prediction models that can be used. To this end, we adopt a Monte Carlo Markov
Chain randomised optimisation method introduced originally in [10, 11].

Here we illustrate our approach in the solution of a typical Air-Traffic Con-
trol situation involving aircraft approaching the runway in Approach Sectors.
In Section 1 we give a general formulation of the problem. The Monte Carlo
Markov Chain optimisation procedure is described in Section 2. In Section 3
and 4 respectively we illustrate Air-Traffic Control in Approach Sectors and
the air-traffic simulator. A simulation example with optimisation is presented in
Section 5. Section 6 contains conclusion and future objectives.

2 Penalty Formulation of an Expected Value
Optimisation Problem with Constraints

In this paper we formulate conflict resolution as a constrained optimisation prob-
lem. Given a set of aircraft involved in a conflict, the conflict resolution maneuver
is determined by a parameter ω which defines the nominal paths of the aircraft
The actual execution of the maneuver is affected by uncertainty. Therefore, the
sequence of actual positions of the aircraft during the resolution maneuver (for
example: the sequence of positions every 6 seconds which is a typical time inter-
val between two successive radar sweeps) a-priori of its execution is a random
variable denoted by X. A conflict is defined as the event that the positions of
two aircraft during the execution of the maneuver are too close. The objective is
to select ω in order to maximise the expected value of some measure of perfor-
mance associated to the execution of the resolution maneuver while ensuring a

Air-Traffic Control in Approach Sectors 435

small probability of conflict. In this section we introduce the formulation of the
problem in a general fashion.

Let X be a random variable whose distribution depends on some parameter
ω. The distribution of X is denoted by pω(x) with x ∈ X. The set of all possible
values of ω is denoted by Ω. We assume that a constraint on the random variable
X is given in terms of a feasible set Xf ⊆ X. We say that a realisation x, of
random variable X, violates the constraint if x �∈ Xf . Moreover, we assume
that for a realisation x ∈ Xf some definition of performance of x is given. In
general performance can depend also on the value of ω, therefore performance
is measured by a function perf(ω, x), x ∈ Xf , ω ∈ Ω. We assume that perf(ω, x)
takes values in (0, 1]. The probability of satisfying the constraint is denoted by
P(ω)

P(ω) =
∫

x∈Xf

pω(x)dx . (1)

The probability of violating the constraint is denoted by P̄(ω) = 1 −P(ω). The
expected performance for a given ω ∈ Ω is denoted by Perf(ω), where

Perf(ω) =
∫

x∈Xf

perf(ω, x)pω(x)dx . (2)

Ideally one would like to maximise the performance over all ω, subject to a
bound on the probability of constraint satisfaction. Given a bound P̄ ∈ [0, 1],
this corresponds to solving the constrained optimization problem

Perfmax |P̄ = sup
ω∈Ω

Perf(ω) (3)

subject to P̄(ω) < P̄. (4)

Clearly, a necessary condition for the problem to have a solution is that there
exists ω ∈ Ω such that P̄(ω) ≤ P̄, or, equivalently,

P̄min = inf
ω∈Ω

P̄(ω) < P̄. (5)

This optimization problem is generally difficult to solve, or even to approximate
by randomised methods. Here we approximate this problem by an optimisa-
tion problem with penalty terms. We show that with a proper choice of the
penalty term we can enforce the desired maximum bound on the probability of
violating the constraint, provided that such a bound is feasible, at the price of
sub-optimality in the resulting expected performance.

Let us introduce the function u(ω, x) defined as

u(ω, x) =

⎧⎨⎩perf(ω, x) + Λ x ∈ Xf

1 x �∈ Xf ,
(6)

436 A. Lecchini et al.

where Λ > 1. The parameter Λ represents a reward for constraint satisfaction.
The expected value of u(ω, x) is given by

U(ω) =
∫

x∈X

u(ω, x)pω(x)dx ω ∈ Ω . (7)

Instead of the constrained optimization problem (3)–(4) we solve the uncon-
strained optimization problem:

Umax = sup
ω∈Ω

U(ω). (8)

Assume the supremum is attained and let ω̄ denote the optimum solution, i.e.
Umax = U(ω̄). For ω̄ we would like to obtain bounds on the probability of violat-
ing the constraints and the level of suboptimality of Perf(ω̄) over Perfmax |P̄.
A basic bound on the probability of violating the constraint at ω̄ is the following.

Proposition 1. P̄(ω̄) satisfies

P̄(ω̄) ≤ 1
Λ

+
Λ− 1
Λ

P̄min . (9)

Proof. The optimisation criterion U(ω) can be written in the form

U(ω) =
∫

x∈Xf

(perf(ω, x) + Λ)pω(x)dx+
∫

x�∈Xf

pω(x)dx

= Perf(ω) + Λ− (Λ− 1)P̄(ω) .

By the definition of ω̄ we have that U(ω̄) ≥ U(ω) for all ω ∈ Ω. We therefore
can write

Perf(ω̄) + Λ− (Λ− 1)P̄(ω̄) ≥ Perf(ω) + Λ− (Λ− 1)P̄(ω) ∀ω

which can be rewritten as

P̄(ω̄) ≤ Perf(ω̄) − Perf(ω)
Λ− 1

+ P̄(ω) ∀ω . (10)

Since 0 < perf(ω, x) ≤ 1, Perf(ω) satisfies

0 < Perf(ω) ≤ P (ω) . (11)

Therefore we can use (11) to obtain an upper bound on the right-hand side of
(10) from which we obtain

P̄(ω̄) ≤ 1
Λ

+
Λ− 1
Λ

P̄(ω) ∀ω ∈ Ω.

We eventually obtain (9) by taking a minimum to eliminate the quantifier on
the right-hand side of the above inequality.

Air-Traffic Control in Approach Sectors 437

Proposition 1 suggests a method for choosing Λ to ensure that the solution
ω̄ of the optimization problem will satisfy P̄(ω̄) ≤ P̄. The following immediate
corollaries make this observation more explicit.

Corollary 1. Any

Λ ≥ 1 − P̄min

P̄ − P̄min
(12)

ensures that P̄(ω̄) ≤ P̄.

Typically such a bound will not be useful in practice, since the value of P̄min
will be unknown. If we know that there exists a parameter ω ∈ Ω for which the
constraints are satisfied almost surely a tighter (and potentially more useful)
bound can be obtained.

Corollary 2. If there exists ω ∈ Ω such that P̄(ω) = 0, then any

Λ ≥ 1
P̄

(13)

ensures that P̄(ω̄) ≤ P̄.

For cases where the existence of such an ω cannot be guaranteed, it suffices
to know P̄(ω) for some ω ∈ Ω with P̄(ω) < P̄ to obtain a bound.

Corollary 3. If there exists ω ∈ Ω for which P̂ = P̄(ω) is known, then any

Λ ≥ 1 − P̂

P̄ − P̂
(14)

ensures that P̄(ω̄) ≤ P̄.

The last bound will of course be more conservative than those of the previous
two corollaries. In addition to bounds on the probability that ω̄ satisfies the
constraints, we would also like to obtain a bound on how far the performance
Perf(ω̄) is from the ideal performance Perfmax |P̄. The following proposition
provides a basic bound in this direction.

Proposition 2. The performance of the maximiser, ω̄, of U(ω) satisfies

Perf(ω̄) ≥ Perfmax |P̄ − (Λ− 1)(P̄ − P̄min). (15)

Proof. By definition of ω̄ we have that U(ω̄) ≥ U(ω) for all ω ∈ Ω. In particular,
we know that

Perf(ω̄) ≥ Perf(ω) − (Λ− 1)
[
P̄(ω) − P̄(ω̄)

]
∀ω : P̄(ω) ≤ P̄ .

Taking a lower bound of the right-hand side, we obtain

Perf(ω̄) ≥ Perf(ω) − (Λ− 1)
[
P̄ − P̄min

]
∀ω : P̄(ω) ≤ P̄ .

Taking the maximum and eliminating the quantifier on the right-hand side we
obtain the desired inequality.

Clearly to minimise the gap between the optimal performance and the per-
formance of ω̄ we need to select Λ as small as possible.

438 A. Lecchini et al.

3 Simulation-Based Optimisation

In this section we recall a simulation-based procedure, to find approximate opti-
misers of U(ω). The only requirement for applicability of the procedure is to be
able to obtain realisations of the random variable X with distribution pω(x) and
to evaluate u(ω, x) pointwise. This optimisation procedure is in fact a general
procedure for the optimisation of expected value criteria. It has been originally
proposed in the Bayesian statistics literature [10].

The optimisation strategy relies on extractions of a random variable Ω whose
distribution has modes which coincide with the optimal points of U(ω). These ex-
tractions are obtained through Monte Carlo Markov Chain (MCMC) simulation
[12]. The problem of optimising the expected criterion is then reformulated as the
problem of estimating the optimal points from extractions concentrated around
them. In the optimisation procedure, there exists a tunable trade-off between es-
timation accuracy of the optimiser and computational effort. In particular, the
distribution of Ω is proportional to U(ω)J where J is a positive integer which
allows the user to increase the “peakedness” of the distribution and concentrate
the extractions around the modes at the price of an increased computational
load. If the tunable parameter J is increased during the optimisation proce-
dure, this approach can be seen as the counterpart of Simulated Annealing for
a stochastic setting. Simulated Annealing is a randomised optimisation strat-
egy developed to find tractable approximate solutions to complex deterministic
combinatorial optimisation problems [13]. A formal parallel between these two
strategies has been derived in [11].

The MCMC optimisation procedure can be described as follows. Consider
a stochastic model formed by a random variable Ω, whose distribution has not
been defined yet, and J conditionally independent replicas of random variable X
with distribution pΩ(x). Let us denote h(ω, x1, x2, . . . , xJ) the joint distribution
of (Ω,X1,X2,X3, . . . ,XJ). It is straightforward to see that if

h(ω, x1, x2, . . . , xJ) ∝
∏
j

u(ω, xj)pω(xj) (16)

then the marginal distribution of Ω, say h(ω), satisfies

h(ω) ∝
[∫

u(ω, x)pω(x)dx
]J

= U(ω)J . (17)

This means that if we can extract realisations of (Ω,X1,X2,X3, . . . ,XJ) then
the extracted Ω’s will be concentrated around the optimal points of U(Ω) for a
sufficiently high J . These extractions can be used to find an approximate solution
to the optimisation of U(ω).

Realisations of the random variables (Ω,X1,X2,X3, . . . ,XJ), with the de-
sired joint probability density given by (16), can be obtained through Monte
Carlo Markov Chain simulation. The algorithm is presented below. In the algo-
rithm, g(ω) is known as the instrumental (or proposal) distribution and is freely
chosen by the user; the only requirement is that g(ω) covers the support of h(ω).

Air-Traffic Control in Approach Sectors 439

MCMC Algorithm

Given ω(k), xj(k), j = 1, . . . , J realisations of random variable X(k) with dis-
tribution pω(k)(x), and uJ(k) =

∏J
j=1 u(ω(k), xj(k)) :

1 Extract
Ω̃ ∼ g(ω)

2 Extract
X̃j ∼ pΩ̃(x) j = 1, . . . , J

and calculate
ŨJ =

∏
j

u(Ω̃, X̃j)

3 Extract the new state of the chain as

[ω(k+1), uJ(k+1)]=

⎧⎨⎩ [Ω̃, ŨJ] with probability ρ(ω(k), uJ(k), Ω̃, ŨJ)

[ω(k), uJ(k)] with probability 1−ρ(ω(k), uJ(k), Ω̃, ŨJ)

where

ρ(ω, uJ , ω̃, ũJ) = min
{

1,
ũJ

uJ

g(ω)
g(ω̃)

}
This algorithm is a formulation of the Metropolis-Hasting algorithm for a desired
distribution given by h(ω, x1, x2, . . . , xJ) and proposal distribution given by

g(ω)
∏
j

pω(xj) .

In this case, the acceptance probability for the standard Metropolis-Hastings
algorithm is

h(ω̃, x̃1, x̃2, . . . , x̃J)
h(ω, x1, x2, . . . , xJ)

g(ω)
∏

j pω(xj)
g(ω̃)

∏
j pω(x̃j)

.

By inserting (16) in the above expression one obtains the probability ρ(ω, uJ , ω̃,
ũJ). Under minimal assumptions, the Markov Chain Ω(k) is uniformly ergodic
with stationary distribution h(ω) given by (17). Results that characterise the
convergence rate to the stationary distribution can be found for example in [12].

A general guideline to obtain faster convergence is to concentrate the search
distribution g(ω) where U(ω) assumes nearly optimal values. The algorithm
represents a trade-off between computational effort and the “peakedness” of the
target distribution. This trade-off is tuned by the parameter J which is the
power of the target distribution and also the number of extractions of X at each
step of the chain. Increasing J concentrates the distribution more around the
optimisers of U(ω), but also increases the number of simulations one needs to
perform at each step. Obviously if the peaks of U(ω) are already quite sharp,
this implies some advantages in terms of computation, since there is no need to
increase further the peakedness of the criterion by running more simulations. For

440 A. Lecchini et al.

the specific U(ω) proposed in the previous section, a trade-off exists between its
peakedness and the parameter Λ, which is related to probability of constraint
violation. In particular, the greater Λ is the less peaked the criterion U(ω) be-
comes, because the relative variation of u(ω, x) is reduced, and therefore more
computational effort is required for the optimisation of U(ω).

4 Air-Traffic Control in Terminal Airspace and Approach
Sectors

Terminal Airspace and Approach Sectors are perhaps the most difficult scenarios
in Air-Traffic Control. The management of traffic, in this case, includes tasks
such as determining landing sequences and issuing of “vector” maneuvers to
avoid collisions, holding the aircraft in “stacks” in case of congested traffic, etc.
Here, we give a schematic representation of the problem as described in [14].

During most of the flight, aircraft stay at cruising altitudes, above 30000 ft. In
the current organisation, the traffic at these altitudes has an en-route structure,
which facilitates the action of Air-Traffic Control. Aircraft follow prespecified
corridors at different flight levels. Two adjacent flight levels are separated by
100 ft ; for example, the altitude of 30000 ft is denoted by FL300.

Towards the end of the flight, aircraft enter the Terminal Airspace where air-
traffic controllers guide them from cruising altitudes to the entry points of the
Approach Sector, between FL50 and FL150. Ideally, aircraft should enter the
Approach Sector in a sequence properly spaced in time. Air-traffic controllers of
the Approach Sector are then responsible for guiding the aircraft towards the
proper runway. The tasks of Air-Traffic Control in the Approach Sectors include:
1) Maintain safe separation between aircraft. This is the most important re-
quirement for safety, in any sector, during all parts of the flight. Aircraft must
always maintain a minimum level of separation. A conflict between two aircraft
is defined as the situation of loss of minimum safe separation between them.
Safe separation is defined by a protected zone centred around each aircraft. The

3 o RUNWAY

x2

5 nmi

1500 ft

GLIDE PATH

x1

10000 ft

Fig. 1. Schematic representation of approach maneuver: elevation view

Air-Traffic Control in Approach Sectors 441

30 o RUNWAY

x2

5 nmi

GLIDE PATHGLIDE PATH

LEFT DOWNWIND

BASE LEG

FINALS

x1

Fig. 2. Schematic representation of approach maneuver: plan view

level of accepted minimum separation can vary with the density of the traffic
and the region of the airspace. A largely accepted shape of the protected zone
is defined by a vertical cylinder, centred on the aircraft with having radius 5
nmi and height 2000 ft, so that aircraft which do not have 5 nmi of horizontal
separation must have 1000 ft of vertical separation.
2) Descend aircraft from entry altitude to intercept localiser. Once aircraft have
entered the Approach Sector, Air-Traffic Control must guide them from the en-
try altitude (FL50 to FL150) to FL15. This is the altitude at which they can
intercept the localiser, i.e. the radio beacons which will guide them onto the
runway. The point at which the aircraft will actually start the descent towards
the runway is an important variable which has to be carefully chosen since it
can affect the rest of the maneuver and the coordination with other aircraft. The
reason is that aircraft fly following prespecified speed profiles which depend on
the altitude; they fly faster at high altitudes and slower at low altitudes. This
implies that aircraft, flying at lower altitudes, are slower in joining the landing
queue.
3) Sequence aircraft towards the runway. The air-traffic controllers must direct
the aircraft towards the runway in a properly spaced queue. This is done by
adjusting the waypoints (corners) of a standard approach route (STAR) — see
Figures 1 and 2. Typically the route is composed of four legs. During their
descent, aircraft are first aligned, on one of the two sides of the runway, in the
direction of the runway but with opposite heading. This leg is called the left/right
downwind leg, since aircraft are expected to land against the wind. Aircraft then
they perform a turn of approximately 90◦, to approach the localiser. This second
segment is called the base leg. Aircraft perform an additional turn in order to
intercept the plane of the localiser with an angle of incidence of approximately
30◦. The reason is that 30◦ is a suitable angle for pilots to perform the final turn
in the direction of the runway as soon as possible when the localiser has been
intercepted. It is required that aircraft intercept the localiser plane at least 5
nmi from the beginning of the runway and at an altitude of 1000−−1500 ft, so
that they can follow a 3◦ −−5◦ glide path to the runway.

442 A. Lecchini et al.

This approach geometry (which is referee to as the “trombone”) is advan-
tageous to air-traffic controllers as it allows them great flexibility in spacing
aircraft by adjusting the length of the downwind leg.

5 Simulation of the Air-Traffic

We have developed an air-traffic simulator that simulates adequately the be-
haviour of a set of aircraft for Air-Traffic Control purposes [15, 16]. Realistic
models of current commercial aircraft have been implemented according to [17].
The simulator contains also realistic stochastic models of the wind disturbance
[18]. The models contain continuous dynamics, arising from the physical motion
of the aircraft, discrete dynamics, arising from the logic embedded in the Flight
Management System, and stochastic dynamics, arising from the effect of the
wind and incomplete knowledge of physical parameters (for example the aircraft
mass, which depends on fuel, cargo and number of passengers). The simulator
has been coded in Java and can be used in different operation modes either to
generate accurate data, for validation of the performance of conflict detection
and resolution algorithm, or to run faster simulations of simplified models.

The nominal path for each aircraft is entered in the simulator as a sequence of
waypoints. The actual trajectories of the aircraft are then a perturbed version of
the nominal path, depending on the particular realisations of wind disturbances
and uncertain parameters. In Figures 3 and 4 several trajectory realisations cor-
responding to the same nominal path are displayed. In this example, the aircraft,
initially at 15000 ft, performs the approach maneuver described in the previous
section. In addition to stochastic wind terms, uncertainty about the mass of the
aircraft is introduced as an uniform distribution between two extreme values.
The figures suggest that the resulting uncertainty in the position of aircraft is
of the order of magnitude of a few kilometres.

Fig. 3. Several trajectory realisations of an approach maneuver (altitude is expressed

in feet and plan coordinates are expressed in meters)

Air-Traffic Control in Approach Sectors 443

Fig. 4. Travelled distance (meters) versus time (seconds) for several trajectory reali-

sations of an approach maneuver

6 Simulation of Arrivals and Optimisation

In this section, we optimise an approach maneuver with coordination between
two aircraft. We consider Aircraft One (A1) and Aircraft Two (A2) approaching
the runway as illustrated in Figure 5. In the figure, the glide path towards the
runway starts at the origin of the reference frame and coordinates are expressed
in meters. The aircraft are initially in level flight. The parameters of the approach
maneuver are the distance, from initial position, of the start of the final descent
(ω1) and the length of the downwind leg (ω2).

The initial position of A1 is [0 50000] and altitude 10000 ft. The approach
maneuver of this aircraft is fixed to ω̄1 = 30000 and ω̄2 = 50000. The initial
position of A2 is [0 50000] and altitude 10000 ft. The parameters of its approach
maneuver will be selected using the optimization algorithm. The range of the
optimisation parameters is ω2 ∈ [35000, 60000] and ω1 ∈ [0, ω2]. The motion of
the two aircraft is affected by the same uncertainty as in the simulation example
of Section 5.

We assume that the performance of the approach maneuver is measured
by the arrival time of A2 at the start of the glide path (T2). The measure of
performance is given by perf = e−a·T2 with a = 5 · 10−4. The constraint is
that the trajectory of A2 is not in conflict with the trajectory of A1. Aircraft
2 must also reach the altitude of 1500 ft before the start of the glide path. We
optimise initially with an upper bound on probability of constraint violation
given by P̄ = 0.3. It is easy to see that there exists a maneuver in the set
of optimisation parameters that gives negligible conflict probability. Therefore,
based on inequality (13), we select Λ = 3.5 in the optimisation criterion.

The results of the optimisation procedure are illustrated in Figures 6-9 for
different values of J and proposal distribution g. Each figure shows the scatter
plot of the accepted parameters during MCMC simulation. In all cases the first
10% of accepted parameters was discarded as a burn in period to allow con-
vergence of the chain to its stationary distribution. Figure 6 illustrates the case

444 A. Lecchini et al.

−6 −5 −4 −3 −2 −1 0

x 10
4

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
4

 ω
2

 ω
1

Fig. 5. Approach maneuvers for A1 (thin) and A2 (bold)

J = 5 and proposal distribution g uniform over the parameter space. In this
case, the ratio between accepted and proposed parameters during MCMC simu-
lation was 0.36. A region characterised by a low density of accepted parameters
can be clearly seen in the figure. These are parameters which correspond to a
conflicting maneuver where the aircraft are performing an almost symmetrical
approach. The figure also shows two distinct “clouds” of accepted maneuvers.
They correspond to a discrete choice that the air traffic controller has to make:
either land A2 before A1 (bottom right cloud) or land A1 before A2 (top left
cloud).

Figure 7 illustrates the case J = 50 and g uniform. In this case the ratio
between accepted and proposed states was 0.08. The case J = 50 is illustrated
also in Figure 8. In this case, however, the proposal distribution g was a sum of
100 Gaussian distributions N(μ, σ2I) with variance σ2 = 105m2. The means
of Gaussian distributions were 100 parameters chosen from those accepted in
the MCMC simulation for J = 5 and belonging to the cloud corresponding to
“A2 arrives before A1”. This appears to be the more promising cloud because
of the higher density of points; recall that the distribution of accepted points
is concentrated around the maximisers of U(ω). The choice of this proposal
distribution gives clear computational advantages since less computational time
is spent searching over regions of non optimal parameters. For this choice of g
the ratio between accepted and proposed parameters increased to 0.2. Figure
9 illustrates the case J = 100 and proposal distribution constructed as before
from states accepted for J = 50. In this case the ratio between accepted and

Air-Traffic Control in Approach Sectors 445

0 1 2 3 4 5 6

x 10
4

3.5

4

4.5

5

5.5

6
x 10

4

ω
1

ω
2

Fig. 6. Accepted states (50000) during MCMC simulation (J = 5, g uniform)

0 1 2 3 4 5 6

x 10
4

3.5

4

4.5

5

5.5

6
x 10

4

ω
1

ω
2

Fig. 7. Accepted states (1000) during MCMC simulation (J = 50, g uniform)

proposed parameters was 0.5. Figure 9 indicates that a nearly optimal maneuver
is ω1 = 35000 and ω2 = 35000. The probability of conflict for this maneuver,
estimated by 1000 Monte-Carlo runs, was zero.

446 A. Lecchini et al.

0 1 2 3 4 5 6

x 10
4

3.5

4

4.5

5

5.5

6
x 10

4

ω
1

ω
2

Fig. 8. Accepted states (1000) during MCMC simulation (J = 50, g sum of Gaussian

distributions)

0 1 2 3 4 5 6

x 10
4

3.5

4

4.5

5

5.5

6
x 10

4

ω
1

ω
2

Fig. 9. Accepted states (1000) during MCMC simulation (J = 100, g = sum of Gaus-

sian distributions)

7 Conclusions

In this paper we illustrated a Monte Carlo approach to air traffic conflict resolu-
tion in a stochastic setting. The main motivation for our approach is to enable the

Air-Traffic Control in Approach Sectors 447

use of realistic stochastic hybrid models of aircraft flight; Monte Carlo methods
appear to be the only ones that allow such models. We have formulated conflict
resolution as the optimisation of an expected value criterion with probabilis-
tic constraints. Here, a penalty formulation of the problem has been considered
which guarantees constraint satisfaction but delivers a suboptimal solution. A
side effect of the optimization procedure is that structural differences between
maneuvers (e.g. the sequencing choices in the landing example considered here)
are highlighted as “clouds” of maneuvers accepted by the algorithm.

Our current research is concerned with overcoming the suboptimality im-
posed by the need to provide constraint satisfaction guarantees. A possible way
is to use the Monte Carlo Markov Chain procedure presented in Section 3 to
obtain optimisation parameters that satisfy the constraint and then to optimise
over this set in a successive step.

Acknowledgement: This work was supported by the European Commission
under project HYBRIDGE IST-2001-32460 and EUROCONTROL under con-
tract C20051E/BM/03. The authors would like to thank EUROCONTROL Ex-
perimental Centre for having provided places to ‘Air-Traffic Control Familiari-
sation Course’ from which the case study considered in this paper has been
inspired.

References

1. Kuchar, J., Yang, L.: A review of conflict detection and resolution methods. IEEE

Transactions on Intelligent Transportation Systems 1 (2000) 179–189

2. Frazzoli, E., Mao, Z., Oh, J., Feron, E.: Aircraft conflict resolution via semi-definite

programming. AIAA Journal of Guidance, Control, and Dynamics 24 (2001) 79–86

3. Hu, J., Prandini, M., Sastry, S.: Optimal Coordinated Maneuvers for Three-

Dimensional Aircraft Conflict Resolution. AIAA Journal of Guidance, Control

and Dynamics 25 (2002)

4. Tomlin, C., Pappas, G., Sastry, S.: Conflict resolution for Air Traffic Management:

a case study in multi-agent hybrid systems. IEEE Transactions on Automatic

Control 43 (1998) 509–521

5. Paielli, R., Erzberger, H.: Conflict probability estimation for free flight. Journal of

Guidance, Control and Dynamics 20 (1997) 588–596 Available from World wide

Web: http://www.ctas.arc.nasa.gov/publications/papers/.

6. Irvine, R.: A geometrical approach to conflict probability estimation. In: 4th

USA/Europe Air Traffic Management R&D seminar, Santa Fe (2001) Available

from World Wide Web: http://atm2001.eurocontrol.fr/finalpapers/pap137.pdf.

7. Krystul, J., Bagchi, A., Blom, H.: Risk decomposition and assessment meth-

ods. Technical Report WP8, Deliverable D8.1, HYBRIDGE (2003) Available from

World Wide Web: http://www.nlr.nl/public/hosted-sites/hybridge/.

8. Hu, J., Prandini, M., Sastry, S.: Aircraft conflict detection in presence of spatially

correlated wind perturbations. In: AIAA Guidance, Navigation and Control Conf.,

Austin, Texas, USA (2003)

448 A. Lecchini et al.

9. Lecchini, A., Glover, W., Lygeros, J., Maciejowski, J.: Air Traffic Control with an

expected value criterion. Technical Report WP5, Deliverable D5.2, HYBRIDGE

(2004) Accepted for presentation at IFAC World Congress 2005. Available from

World Wide Web: http://www.nlr.nl/public/hosted-sites/hybridge.

10. Mueller, P.: Simulation based optimal design. In: Bayesian Statistics 6, J.O.

Berger, J.M. Bernardo, A.P. Dawid and A.F.M. Smith (eds.), Oxford University

Press (1999) 459–474

11. Mueller, P., Sanso, B., De Iorio, M.: Optimal Bayesian design by inhomogeneous

Markov chain simulation. Technical report (2003) Available from World Wide

Web: http://www.ams.ucsc.edu.

12. Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer-Verlag (1999)

13. van Laarhoven, P., Aarts, E.: Simulated Annealing: Theory and Applications.

D.Reidel Publishing Company (1987)

14. EUROCONTROL Experimental Centre: Air-Traffic Control Familiarisation

Course. (2004)

15. Glover, W., Lygeros, J.: A multi-aircraft model for conflict detection and resolu-

tion algorithm validation. Technical Report WP1, Deliverable D1.3, HYBRIDGE

(2003) Available from World Wide Web: http://www.nlr.nl/public/hosted-

sites/hybridge/.

16. Glover, W., Lygeros, J.: A stochastic hybrid model for air traffic control simulation.

In: Hybrid Systems: Computation and Control, 7th International Workshop. Vol-

ume 2993 of Lecture Notes in Computer Science., Philadelphia, PA, USA, Springer

(2004) 372–386

17. EUROCONTROL Experimental Centre: User Manual for the Base of Air-

craft Data (BADA) — Revision 3.3. (2002) Available from World Wide Web:

http://www.eurocontrol.fr/projects/bada/.
18. Cole, R., Richard, C., Kim, S., Bailey, D.: An assessment of the 60 km rapid update

cycle (ruc) with near real-time aircraft reports. Technical Report NASA/A-1, MIT

Lincoln Laboratory (July 15, 1998)

Identification of Deterministic Switched ARX
Systems via Identification of Algebraic Varieties�

Yi Ma1 and René Vidal2

1 Dept. of Elect. & Comp. Eng., UIUC, Urbana, IL 61801, USA

yima@uiuc.edu
2 Dept. of BME, J. Hopkins U., Baltimore MD 21218, USA

rvidal@cis.jhu.edu

Abstract. We present a closed-form (linear-algebraic) solution to the

identification of deterministic switched ARX systems and characterize

conditions that guarantee the uniqueness of the solution. We show that

the simultaneous identification of the number of ARX systems, the (pos-

sibly different) model orders, the ARX model parameters, and the switch-

ing sequence is equivalent to the identification and decomposition of a

projective algebraic variety whose degree and dimension depend on the

number of ARX systems and the model orders, respectively. Given an

upper bound for the number of systems, our algorithm identifies the vari-

ety and the maximum orders by fitting a polynomial to the data, and the

number of systems, the model parameters, and the switching sequence

by differentiating this polynomial. Our method is provably correct in the

deterministic case, provides a good sub-optimal solution in the stochas-

tic case, and can handle large low-dimensional data sets (up to tens of

thousands points) in a batch fashion.

1 Introduction

Hybrid systems are mathematical models that are used to describe continu-
ous processes that occasionally exhibit discontinuous behaviors due to sudden
changes of dynamics. In recent years, there has been significant interest and
progress in the study of the analysis, stability, and control of hybrid systems.
Knowing the system parameters, many successful theories have been developed
to characterize the behaviors of hybrid systems under different switching mech-
anisms. However, in practice, the parameters and the switching mechanism of a
hybrid system are often not known and we are faced with the task of identifying
the system from its input and output measurements.

In this paper, we propose an algebraic approach to the identification of a class
of discrete-time hybrid systems known as Switched Auto Regressive eXogenous
(HARX) systems, i.e., systems whose evolution is described as

� This work is supported by the NSF grant IIS-0347456 and the research startup funds

from UIUC ECE Dept. and Hopkins WSE. The authors thank Prof. R. Fossum for

valuable comments and Prof. A. Juloski for providing datasets for the experiments.

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 449–465, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

450 Y. Ma and R. Vidal

yt =
na(λt)∑

j=1

aj(λt)yt−j +
nc(λt)∑
j=1

cj(λt)ut−j (+ wt), (1)

where ut ∈ R is the input and yt ∈ R is the output of the system. The dis-
crete state λt, also called the mode of the system, can evolve due to a variety
of switching mechanisms. In this paper, we consider the least restrictive case:1

{λt} is a deterministic but unknown sequence that can take a finite number of
possible values: λ : Z → {1, 2, . . . , n}. The last term wt is zero for a determin-
istic switched ARX system and is a white-noise random process for a stochastic
system. The purpose of this paper is to characterize sufficient conditions and
develop efficient algorithms for solving the following problem:

Problem 1 (Identification of Switched Auto Regressive eXogenous Systems).

Given input/output data {ut, yt}T
t=0 generated by an HARX system (1), identify

the number of ARX models n, the orders of each ARX system {na(i), nc(i)}n
i=1,

the system parameters {aj(i)}na(i)
j=1 and {cj(i)}nc(i)

j=1 , and the discrete states {λt}.

We know from classic identification theory of linear systems that the configu-
ration space of the input/output data generated by a linear system is a subspace
whose dimension equals the order of the system. The problem of identifying the
system is equivalent to identifying this subspace from a finite number of samples
on the subspace. As we will show in this paper, for multiple linear systems the
configuration space is a union of subspaces (possibly of different dimensions),
which can be naturally described as a (projective) algebraic variety Z in an
ambient space PK . To some extent, there is a one-to-one correspondence be-
tween a hybrid linear system and the variety of its configuration space. Hence
the system identification problem can be cast as a special case of the problem
of identifying a low-degree (projective) algebraic variety from a finite number of
samples. Once the variety Z is known or retrieved from the input/output data,
the constituent systems correspond to the irreducible sub-varieties Zi of the va-
riety Z = Z1∪Z2∪· · ·∪Zn ⊆ PK , and can be obtained from the decomposition
of the ideal a(Z) of (homogeneous) polynomials associated with the variety Z
into prime ideals: a = p1 ∩ p2 ∩ · · · ∩ pn ⊆ C[z1, z2, . . . , zK].

When the orders of the constituents ARX systems are equal and known, our
previous work [23] has shown that a is a principal ideal whose decomposition is
equivalent to the factorization of its generator. However, when the orders of the
constituent ARX systems are different, depending on the switching sequence,
the configuration space of the HARX system may not simply be a union of the
configuration spaces of the constituent ARX systems, and the ideal a is in general
not a principal ideal, as demonstrated in [19] under the additional assumption
that the number of systems is known.

1 Least restrictive in the sense that there is no constraint on the temporal evolution of

the discrete state, hence our results also apply to other switching mechanisms, such

as Jump-Markov Linear Systems (JMLS) and PieceWise ARX (PWARX) systems.

Identification of Deterministic Switched ARX Systems 451

Paper Contributions. In this paper, we consider the most general case of HARX
systems with unknown number of models and unknown and possibly different or-
ders. We show that if the input/output data are sufficiently exciting, the HARX
system can be identified from a special polynomial p whose last nonzero term has
the lowest degree-lexicographic order in the ideal a. This polynomial is unique,
factorable, and independent of the switching sequence. Furthermore, the non-
repeated factors of this polynomial correspond to the constituent ARX systems.
Therefore, given an upper bound for the number of systems and the system
orders, our algorithm automatically identifies the number of systems and the
ARX model parameters using linear-algebraic techniques, and subsequently the
system orders and the switching sequence. Although the algorithm is developed
primarily for the noise-free deterministic case, the algorithm is numerically stable
and provides a good sub-optimal solution for the stochastic case with moder-
ate noises (see Remarks 1 and 4 in the sequel). We deal with larger noises by
iteratively refining the algebraic solution using Expectation Maximization (EM).

Relations to Previous Work. Work on identification (and filtering) of hybrid
systems first appeared in the seventies; a review of the state of the art as of
1982 can be found in [16]. After a decade-long hiatus, the problem has recently
been enjoying considerable interest in the hybrid systems community (see e.g.,
[4, 21, 22]) and also in the machine learning community (see e.g., [7, 15]). When
the model parameters and the switching mechanism (not the discrete states) are
known, the identification problem reduces to the design of observers for the hy-
brid state [1, 3, 8, 17], together with the study of observability conditions under
which hybrid observers operate correctly (see [21, 22] and references therein).
When the model parameters and the discrete states are both unknown, the
identification problem becomes much more challenging. Existing batch meth-
ods concentrate on the class of piecewise affine and piecewise ARX systems, i.e.,
models in which the regressor space is partitioned into polyhedra with affine or
ARX submodels for each polyhedron. For instance, [9] assumes that the number
of systems is known, and proposes an identification algorithm that combines
clustering, regression and classification techniques; [6] solves for the model pa-
rameters and the partition of the state space using mixed-integer linear and
quadratic programming; [5] uses a greedy approach for partitioning a set of in-
feasible inequalities into a minimum number of feasible subsystems; [12] iterates
between assigning data points to models and computing the model parameters
using a Bayesian approach. The only existing recursive method is for the class
of switched ARX models [20].

2 Identification of a Single ARX System

For the sake of completeness and comparison, let us first review some classic
results for the identification of a single discrete-time ARX system

yt = a1yt−1 + · · · + anayt−na + c1ut−1 + · · · + cncut−nc . (2)

The transfer function Ĥ(z) .= ŷ(z)/û(z) of the system (2) is given by:

452 Y. Ma and R. Vidal

Ĥ(z) = zmax(na−nc,0)H̃(z) =
zmax(na−nc,0)(znc−1c1 + znc−2c2 + · · · + cnc)

zmax(nc−na,0)(zna − zna−1a1 − zna−2a2 − · · · − ana)
. (3)

In principle, given an infinite input/output sequence, we can identify the param-
eters of the ARX model by directly computing Ĥ(z) as ŷ(z)/û(z).2 This requires
the ARX model to be identifiable, i.e., H̃(z) must have no pole-zero cancellation,
and û(z) to have no zero in common with a pole of Ĥ(z) and vice versa.

Alternatively, we may identify the system by identifying a subspace associated
with the input/output data. Let us define the vector of regressors as:

xt
.
=
[
yt, yt−1, . . . , yt−na , ut−1, ut−2, . . . , ut−nc

]T ∈ RK . (4)

where K
.= na + nc + 1. Thus, for all time t, the so-defined xt is orthogonal to

the vector that consists of the parameters of the ARX system:

b
.
=
[
1, −a1, −a2, . . . , −ana , −c1, −c2, . . . , −cnc

]T ∈ RK . (5)

i.e.∀t xt and b satisfy the equation bT xt = 0. In other words, b is the normal vector

to the hyperplane spanned by (the rows of) the following data matrix:

L(na, nc)
.
= [xmax(na,nc), . . . , xt−1, xt, xt+1, . . .]

T ∈ R∞×K . (6)

When the model orders na, nc are known, we can readily solve for b from the
null space of L(na, nc). In practice, the model orders may be unknown, and only
upper bounds n̄a and n̄c may be available, hence the vector of regressors xt is

xt
.
=
[
yt, yt−1, yt−2, . . . , yt−n̄a , ut−1, ut−2, . . . , ut−n̄c

]T ∈ RK , (7)

where K = n̄a + n̄c + 1. Obviously, for all t the following vector

b
.
=
[
1, −a1, −a2, . . . , −ana ,01×(n̄a−na), −c1, −c2, . . . , −cnc ,01×(n̄c−nc)

]T
(8)

satisfies xT
t b = 0. Notice that here the vector b is the one in (5) with additional

n̄a − na and n̄c − nc zeros filled in after the terms −ana
and −cnc

, respectively.
Let us define the data matrix L(n̄a.n̄c) in the same way as in equation (6).

Because of the redundant embedding (7), the vector b is no longer the only one
in null(L). It is easy to verify that all the following vectors are also in null(L):

b1
=
[
01×1, 1, −a1, . . . , −ana ,01×(n̄a−na−1),01×1, −c1, . . . , −cnc ,01×(n̄c−nc−1)

]T
,

b2
=
[
01×2, 1, −a1, . . . , −ana ,01×(n̄a−na−2),01×2, −c1, . . . , −cnc ,01×(n̄c−nc−2)

]T
,

...
... (9)

Therefore, the data {xt} span a low-dimensional linear subspace S of RK . Each
of the vectors in (8)-(9) uniquely determines the original system (2), including
its order and coefficients. However, a vector in the null space of L is in general a
linear combination of all such vectors and it is not necessarily one of the above.

In order to identify the original system from the data matrix L, we need to
seek a vector in null(L) that has certain desired structure. To this end, notice
that the last n̄c−nc entries of b in (8) are zero, hence the last non-zero entry of

2 Notice that this scheme is not practical, because computing ŷ(z) usually requires an

infinitely-long output sequence {yt}.

Identification of Deterministic Switched ARX Systems 453

b has the lowest order – in terms of the ordering of the entries of xt – among all
vectors that are in null(L). Therefore, we can obtain the first n̄a +nc +1 entries
of b from the null space of the submatrix of L defined by its first n̄a + nc + 1
columns. Since nc is unknown, we can incrementally take the first j = 1, 2, . . .
columns of the matrix L from the left to the right:

L1 .
= L(: , 1 : 1), L2 .

= L(: , 1 : 2), . . . , Lj .
= L(: , 1 : j), (10)

until the rank of the submatrix Lj stops increasing for some j = m. Under
the additional assumption that û(z) has no zeros at z = 0, null(Lm) gives the
first m entries of the desired vector b, because znc−1c1 + znc−2c2 + · · ·+ cnc

and
zd+max(nc−na,0)(zna−zna−1a1−zna−2a2−· · ·−ana

) are co-prime polynomials.3

Remark 1 (Identifying b and m in the Stochastic Case). In the stochastic case
(i.e., wt �= 0), the ultimate goal is to minimize the (squared) modeling error∑

t w2
t =

∑
t(b

T xt)2, which corresponds to the maximum-likelihood estimate
when wt is white-noise. The optimal solution b∗ can be found in a least-square
sense as the singular vector that corresponds to the smallest singular value of
Lm. However, in the noisy case, we cannot directly estimate m from the rank of
Lj since it might be full rank for all j. Based on model selection techniques [13],
m can be estimated from a noisy Lj by minimizing the sum of a data fitting
term and a model complexity term as

m = argmin
j=1,...,K

{ σ2
j (Lj)∑j−1

k=1 σ2
k(Lj)

+ κ · j
}

, (11)

where σk(Lj) is the kth singular value of Lj and κ ∈ R is a parameter weighting
the two terms. The data fitting term measures how well the data is approximated
by the model – in this case how close the matrix Lj is to dropping rank. The
model complexity term penalizes choosing models of high complexity – in this
case choosing a large rank.

There is, however, a much more direct way of dealing with the case of un-
known orders. The following lemma shows that the system orders na and nc

together with the system parameters b can all be simultaneously and uniquely
computed from the data.

Lemma 1 (Identifying the Orders of an ARX System). Suppose we are
given data generated by an identifiable ARX model whose input û(z) shares no
poles or zeros with the zeros or poles, respectively, of the model transfer function
Ĥ(z). If n̄a + n̄c + 1 ≤ na + nc + 1, then

rank
(
L(n̄a, n̄c)

)
=

{
n̄a + n̄c if and only if n̄a = na and n̄c = nc,

n̄a + n̄c + 1 otherwise.
(12)

3 Similar arguments and conclusions hold if in the definition of xt, we put the inputs

ut−1, . . . , ut−n̄c in front of the outputs yt−1, . . . , yt−n̄a instead.

454 Y. Ma and R. Vidal

Therefore the systems orders can be computed as:

(na, nc) = arg min
(n̄a,n̄c)∈Z2

{n̄a + n̄c : rank(L(n̄a, n̄c)) = n̄a + n̄c}. (13)

The parameter vector b is the unique vector in the null space of L(na, nc).

We omit the proof here due to the limit of space. In principle, the lemma
allows us to identify the precise orders na, nc and the vector b of the ARX system
from the (infinite) sequences of input {ut} and output {yt}. In practice, we are
usually given a finite input/output sequence. In such cases, we need to assume
that the sequence of regressors is sufficiently exciting, i.e., the T × (na + nc + 1)
submatrix

L
.
= [xmax(na,nc), . . . , xmax(na,nc)+T−1]

T
(14)

has the same rank na +nc as the “full” L matrix defined in (6).4 This condition
for identifiability from finite data can also be expressed in terms of the input
sequence. As shown in [2], the regressors are sufficiently exciting if the input
sequence {ut} is, i.e., if the following vectors

ut
.
= [ut, ut−1, . . . , ut−na−nc+1]

T ∈ Rna+nc , na + nc − 1 ≤ t ≤ T, (15)

span an (na + nc)-dimensional subspace.

3 Identification of Switched ARX Systems

From our discussion in section 2, we know that the regressors generated by a
sufficiently excited and identifiable ARX system live in a linear subspace in RK

where K = n̄a + n̄c + 1 and n̄a, n̄c are upper bounds on the orders of the system.
The problem of identifying the ARX system becomes one of seeking a vector in
the orthogonal complement to this subspace that has certain desired structure.

In this section we show how to generalize these concepts to the more chal-
lenging problem of identifying a switched ARX system (Problem 1). More specif-
ically, we consider an input/output sequence {ut, yt} generated by a switched
ARX system switching among a set of n ARX systems with parameters {bi}n

i=1
and possibly different orders {na(i), nc(i)}n

i=1. We assume that the HARX sys-
tem is identifiable, i.e., for all i = 1, . . . , n, the rational function H̃i(z) associated
with the ith ARX model has no zero-pole cancellation and the configuration sub-
spaces of all the ARX models do not contain one another.5 In general, we also
assume that we do not know the exact number of systems and system orders,
but we know certain upper bounds n̄, n̄a and n̄c, i.e.,

4 In the case of a redundant embedding, the sequence of regressors is said to be

sufficiently exciting if rank(L) = n̄a + nc + 1.
5 One way to ensure this is to assume that for all i �= j = 1, . . . , n, H̃i(z) and H̃j(z)

do not have all their zeros and poles in common. That is, there is no ARX system

that can simulate another ARX system with a smaller order. However, this is not

necessary because two ARX systems can have different configuration spaces even if

one system’s zeros and poles are a subset of the other’s. Determining both necessary

and sufficient conditions for the identifiability remains an open issue.

Identification of Deterministic Switched ARX Systems 455

n̄ ≥ n, n̄a ≥ na
.
= max{na(1), . . . , na(n)}, n̄c ≥ nc

.
= max{nc(1), . . . , nc(n)}. (16)

We now show how to identify a switched ARX system despite these uncertainties.

3.1 The Hybrid Decoupling Polynomial

One of the difficulties in identifying switched ARX systems is that we do not
know the switching sequence λt, hence we cannot directly apply the subspace
identification technique described in the previous section to each of the n ARX
systems. As we will soon see, in fact both the number of subspaces and their
dimensions depend not only on the number of systems and their orders but also
on the switching sequence. This motivates us to look for relationships between
the data {xt ∈ RK} and the system parameters {bi ∈ RK} that do not depend
on the switching sequence. To this end, recall that for every t there exists a mode
λt = i ∈ {1, 2, . . . , n} such that bT

i xt = 0. Therefore, the following polynomial
equation [23] must be satisfied by the system parameters and the input/output
data for any switching sequence and mechanism (JMLS or PWARX):

pn(xt)
.
=

n∏
i=1

(
bT

i xt

)
= 0. (17)

We call pn the hybrid decoupling polynomial (HDP). This polynomial equation
was introduced independently in [18] in the case of two models (n = 2).

The HDP eliminates the discrete state by taking the product of the equations
defining each one of the ARX systems. While taking the product is not the only
way of algebraically eliminating the discrete state, this leads to an algebraic
equation with a very nice algebraic structure. The HDP is simply a homogeneous
multivariate polynomial of degree n in K variables, which can be written linearly
in terms of its coefficients as

pn(z)
.
=

n∏
i=1

(
bT

i z
)

=
∑

hn1,...,nK zn1
1 · · · znK

K = hT
nνn(z) = 0. (18)

In eqn. (18), hI = hn1,...,nK
∈ R is the coefficient of the monomial zI =

zn1
1 zn2

2 · · · znK

K , where 0 ≤ nj ≤ n for j = 1, . . . , K, and n1 + n2 + · · ·+ nK = n;
νn : RK → RMn(K) is the Veronese map of degree n which is defined as [10]:

νn : [z1, . . . , zK]
T �→ [. . . , zI , . . .]T , (19)

with I chosen in the degree-lexicographic order (assuming the order z1 < z2 <

· · ·< zK); and Mn(K) .=
(
n+K−1

K−1

)
=
(
n+K−1

n

)
is the total number of independent

monomials. As shown in [10], the vector of coefficients hn ∈ RMn(K) is simply a
vector representation of the symmetric tensor product of the individual system
parameters {bi}n

i=1, i.e.,

Sym(b1 ⊗ b2 ⊗ · · · ⊗ bn)
.
=

∑
σ∈Sn

bσ(1) ⊗ bσ(2) ⊗ · · · ⊗ bσ(n) ∈ RMn(K), (20)

where Sn is the permutation group of n elements. We will show in the sequel how
hn can be recovered from the data and how the parameters of each individual
ARX system {bi}n

i=1 can be further retrieved from it.

456 Y. Ma and R. Vidal

3.2 Identifying the Number and Orders of ARX Systems

Assume for now that we know the number of systems n. We will show later how
to relax this assumption. Since the HDP (17)–(18) is satisfied by all the data
points {xt}T

t=1, we can use it to derive the following linear system on hn:

Ln(n̄a, n̄c) hn
.
=
[
νn(xmax{n̄a,n̄c}) · · · νn(xmax{n̄a,n̄c}+T−1)

]T
hn = 0T×1, (21)

where Ln(n̄a, n̄c) ∈ RT×Mn(K) is the matrix of the input/output data embedded
via the Veronese map.

Notice that to construct the matrix Ln, one needs to choose n̄a and n̄c.
If the constituent ARX systems have different orders, the choice can never be
the most compact for every ARX system. Nevertheless, there will always be less
redundancy in the embedding if n̄a, n̄c are the maximum orders na, nc for all the
ARX systems. To identify the maximum orders, we need some extra conditions
on the switching and input sequences.

Definition 1 (Sufficiently Exciting Switching and Input Sequences). A
switching and input sequence {λt, ut} is called sufficiently exciting for a switched
ARX system, if the data points {xt} generated by {λt, ut} are sufficient to de-
termine the union of the subspaces associated with the constituent ARX systems
as an algebraic variety.

Remark 2. When n̄a < na or n̄c < nc, the above condition requires Ln(n̄a, n̄c)
to be full rank, because at least one of the subspaces must have full dimension
n̄a + n̄c + 1. When n̄a ≥ na and n̄c ≥ nc, the above condition implies that the
null space of Ln(n̄a, n̄c) is contained in the span of the vectors {h}, where h is
the symmetric tensor product of any choice of n vectors of the form (8) or (9),
each one associated with one of the n ARX models.

Remark 3. The above condition is not as strong as it seems to be, as the set of in-
put and switching sequences that are not sufficiently exciting are a zero-measure
set. Notice, however, that the definition does not explicitly characterize the set
of sufficiently exciting input and switching sequences. Intuitively the switching
sequence should visit each one of the n modes frequently enough [20] and the
input sequence should be sufficiently exciting, as defined in the previous sec-
tion. A more precise characterization of sufficiently exciting input and switching
sequences remains elusive at this point.

Under the assumption of sufficiently exiting input and switching sequences,
the following theorem gives a formula for the maximum orders. The theorem is
a natural generalization of Lemma 1 from one to multiple ARX systems.

Theorem 1 (Identifying the Maximum Orders). Let {ut, yt} be input/
output data generated by an identifiable HARX system. Let Ln(i, j) ∈
RT×Mn(i+j+1) be the embedded data matrix defined in (21), but computed with
system orders i and j. If T is large enough and the input and switching sequences
are sufficiently exciting, then the maximum orders of the constituent ARX sys-
tems are given by:

(na, nc) = argmin
(i,j):Mn(i+j+1)<T

{
(i+j) : rank

(
Ln(i, j)

)
< Mn(i+j+1)

}
. (22)

Identification of Deterministic Switched ARX Systems 457

Proof. First notice that the maximum orders na and nc maybe achieved sepa-
rately by different ARX systems. Nevertheless, for any ARX system, if either
i < na or j < nc is true, at least one of the subspaces must be of dimension
i + j + 1. Therefore if the input and switching sequences are sufficiently ex-
citing so that this subspace is visited enough, then there is a large enough T
such that the entries of Ln(i, j) are independent monomials of degree n on these
regressors. The matrix Ln(i, j) drops rank only for a zero measure set of such
regressors. Therefore in general, for a sufficiently large T , there is no polyno-
mial of degree n that vanishes on the set of all regressors and we must have
rank(Ln(i, j)) = Mn(i+j+1). If i = na and j = nc, then there is exactly one
vector, i.e., hn, in the null space of Ln(i, j). Therefore, the maximum orders
na, nc are the ones for which na + nc is minimum and Ln(na, nc) drops rank, as
claimed.

Given the data matrix Ln(na, nc) embedded with the correct maximum or-
ders, we would like to retrieve the coefficient vector hn from its null space. There
are two potential difficulties. First, since the maximum orders na, nc may not
be tight for every constituent ARX system, the null space of Ln(na, nc) may be
more than one-dimensional, as we have known from a single ARX system. Sec-
ond, even if we know the discrete state for each time, the structure of the data
associated with each state is not exactly the same as that of the ARX system
itself: Suppose we switch to the ith system at time t0, then we have bT

i xt0 = 0.
However, the vectors b given in equation (9) are no longer orthogonal to xt0

even if the embedding is redundant for the ith system. In a sense, the regressor
at a switching time usually lives in a subspace whose dimension is higher than
that of the subspace associated with the ARX model generating the regressor.
Therefore, the configuration space of the data {xt} of an HARX system will not
exactly be the union of all the subspaces associated with the constituent ARX
systems. Let us denote the former as an algebraic variety Z ′ and the latter as
Z. Then in general, we have Z ′ ⊇ Z. In order to retrieve hn uniquely from the
data matrix Ln, we need to utilize its additional structure.

Lemma 2 (Structure of the Hybrid Decoupling Polynomial). The mono-
mial associated with the last non-zero entry of the coefficient vector hn of the
HDP pn(z) = hT

nνn(z) has the lowest degree-lexicographic order in all the poly-
nomials in a(Z) ∩ Sn, where Sn is the set of polynomials of degree up to n.

Proof. Any polynomial of degree n in a(Z) is a superposition of
∏n

i=1(b
T
σ(i)z)

where bσ(i) is a normal vector to the subspace associated with the ith ARX sys-
tem. Notice that hn is the symmetric tensor of b1, b2, . . . , bn defined in (8). For
the ith ARX system, the last non-zero entry of the vector bi always has the lowest
degree-lexicographic order among all normal vectors that are orthogonal to the
regressors z = xt associated to the ith system, see equations (8) and (9). There-
fore, the last non-zero entry of hn must have the lowest degree-lexicographic
order.

Theorem 2 (Identifying the Hybrid Decoupling Polynomial). Let {ut,
yt}T

t=0 be the input/output data generated by an identifiable HARX system. Let

458 Y. Ma and R. Vidal

Lj
n ∈ RT×j be the first j columns of the embedded data matrix Ln(na, nc), and

let m
.= min

{
j : rank

(
Lj

n

)
= j − 1

}
.If T is sufficiently large and the input and

switching sequences are sufficiently exciting, then the coefficient vector hn of the
hybrid decoupling polynomial is

hn =
[(

hm
n

)T
, 01×(Mn(K)−m)

]T ∈ RMn(K), (23)

where hm
n ∈ Rm is the unique vector that satisfies

Lm
n hm

n = 0 and hm
n (1) = 1. (24)

Proof. Let Z to be the union of the subspaces associated with the n constituent
ARX systems. Since the input and switching sequence is sufficiently exciting in
the sense of Definition 1, any polynomial of degree less than and equal to n that
vanishes on all the data points must be in the set a(Z) ∩ Sn.

From our discussion before the theorem, the configuration space Z ′ of the
data {xt} associated with the switched ARX system is in general a superset of
Z. The ideal a′(Z ′) of polynomials that vanish on the configuration space Z ′ is
then a sub-ideal of the ideal a(Z) associated with the union of the subspaces.
Furthermore, regardless of the switching sequence, the hybrid decoupling polyno-
mial pn(z) is always in a′∩Sn ⊆ a∩Sn. According to Lemma 2, the last non-zero
term of pn(z) has the lowest degree-lexicographic order among all polynomials
of degree n in a, so does it in a′. Since every solution Lnh̃ = 0 gives a polynomial
p̃n(z) = h̃

T

nνn(z) ∈ a ∩ Sn of degree n that vanishes on all data points, the last
non-zero entry of hn given by (23) obviously has the lowest degree-lexicographic
order. Therefore, we have pn(z) = hT

nνn(z).

In fact, in order to compute the coefficients hn of the hybrid decoupling
polynomial, we can do better than checking the rank of the submatrix Lj

n for
every j = 1, 2, The following corollary provides one alternative scheme.

Corollary 1 (Zero Coefficients of the Decoupling Polynomial). Let
{bi}n

i=1 be a set of K-vectors. Suppose that one of the bi has a maximal number of
zeros on its right, and without loss of generality, assume b1 = [b11, . . . , b1n1 , 0, . . . ,
0]T , with b1n1 �= 0. The multivariate polynomial pn(z) .= (bT

1 z)(bT
2 z) · · · (bT

nz)
has zero coefficients for all the monomials of νn

(
[zn1+1, zn1+2, . . . , zK]

)
; but the

coefficients cannot all be zeros for the monomials of νn

(
[zn1 , zn1+1, . . . , zK]

)
.

This corollary allows us to narrow down the range for m (where Lj
n first drops

rank) because m must fall between two consecutive values of the following:
1, Mn(K)−Mn(K−1), Mn(K)−Mn(K−2), . . . , Mn(K)− 1.
Remark 4 (Sub-Optimality in the Stochastic Case). In the stochastic case (i.e.,
wt �= 0), we can still solve for hm

n in (24) in a least-squares sense as the singular
vector of Lm

n associated with its smallest singular value, using a similar model
selection criterion for m as in Remark 1. However, unlike the single system case,
the so-found hn no longer minimizes the sum of least-square errors

∑
t w2

t =∑
t(b

T
λt

xt)2. Instead, it minimizes (in a least-square sense) a “weighted version”
of this objective: ∑

t

αt(bT
λt

xt)2
.=
∑

t

∏
i�=λt

(bT
i xt)2(bT

λt
xt)2, (25)

Identification of Deterministic Switched ARX Systems 459

where the weight αt is conveniently chosen to be
∏

i�=λt
(bT

i xt)2. Such a “soft-
ening” of the objective function allows a global algebraic solution. It offers a
sub-optimal approximation for the original stochastic objective when the vari-
ance of wt is small. One can use the solution as the initialization for any other
iterative optimization scheme (such as EM) to further minimize the original
stochastic objective.

Notice that in the above theorem, we have assumed that the switching se-
quence is such that all the ARX systems are sufficiently visited. What if only
a subset of the n systems are sufficiently visited? Furthermore, in practice, we
sometimes do not even know the correct number of systems involved and only
know an upper bound for it. The question is whether the above theorem still ap-
plies when the degree n we choose for the Veronese embedding is strictly larger
than the actually number of systems. This is answered by the following corollary
whose proof is straightforward.

Corollary 2 (Identifying the Number of ARX Systems). Let {ut, yt}T
t=0

be input/output data generated by an HARX system with n < n̄ discrete states. If
T is sufficiently large and the input and switching sequences are sufficiently excit-
ing, then the vector hn̄ found by Theorem 2 is the symmetric tensor product hn̄ =
Sym

(
b1⊗b2 · · ·⊗bn⊗e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸

n̄−n

)
, where e1

.= [1, 0, . . . , 0]T ∈ RK , i.e., hn̄ is

the coefficients of the polynomial pn̄(z) = hT
n̄νn̄(z) =

(
bT
1 z
)(

bT
2 z
)
· · ·
(
bT

nz
)
zn̄−n
1 .

Therefore, if we over-estimate the number of constituent systems or the switching
sequence does not visit all the systems, the solution given by Theorem 2 will
simply treat the nonexistent (or not visited) systems as if they had zero order6

and the information about the rest of the systems will be conveniently recovered.

3.3 Identifying the System Parameters and Discrete States

Theorem 2 allows us to determine the HDP pn(z) = hT
nνn(z), from input/output

data {ut, yt}T
t=0. The rest of the problem is to recover the system parameters

{bi}n
i=1 from hn. As shown in [23], one can obtain the system parameters directly

from the derivatives of the HDP pn(z) at a collection of n points as

bi =
Dpn(z)

eT
1 Dpn(z)

∣∣∣∣
z∈Hi

i = 1, . . . , n, (26)

where Hi = {z : bT
i z = 0} and e1 = [1, 0, . . . , 0]T ∈ RK . However, since the

value of the discrete state λt is unknown, we do not know which data points
{xt} belong to which hyperplane. In order to choose one point per hyperplane,
notice that we can always choose a point zn lying on one of the hyperplanes as
any of the points in the data set. However, in the presence of noise and outliers,

6 That is, the coefficient vector b = e1 corresponds to the “system” yt = 0 with

na = nc = 0, which is a trivial ARX system.

460 Y. Ma and R. Vidal

an arbitrary point in may be far from the hyperplanes. The question is then
how to compute the distance from each data point to its closest hyperplane,
without knowing the normals to the hyperplanes. The following lemma allows
us to compute a first order approximation to such a distance:

Lemma 3. Let z̃ ∈ Hi be the projection of a point z ∈ RK onto its closest
hyperplane Hi. The Euclidean distance from z to Hi is given by

‖z − z̃‖ =
|pn(z)|

‖(I − e1eT
1)Dpn(z)‖ + O

(
‖z − z̃‖2). (27)

Therefore, we can choose a point in the data set close to one of the subspaces
as:

zn = arg min
z∈{xt}

|pn(z)|
‖(I − e1eT

1)Dpn(z)‖ , (28)

and then compute the normal vector at zn as bn = Dpn(zn)/(eT
1 Dpn(zn)).

In order to find a point zn−1 in one of the remaining hyperplanes, we penalize
choosing a point from Hn in (28) by dividing the objective function by the
distance from z to Hn, namely |bT

nz|/‖Πbn‖. That is, we can choose a point on
or close to ∪n−1

i=1 Hi as
zn−1 = arg min

z∈{xt}

|pn(z)|
‖ΠDpn(z)‖

|bT
n z|

‖Πbn‖
, (29)

By repeating this process for the remaining hyperplanes, we obtain one point
per hyperplane, hence the system parameters {bi}n

i=1. We can then reconstruct
the discrete state trajectory {λt} from input/output data {xt}T

t=0 as

λt = argmin
i=1,...,n

(
bT

i xt

)2
, (30)

because for each time t there exists a generally unique i such that bT
i xt = 0.

There will be ambiguity in the value of λt only if xt happens to be at (or close to)
the intersection of more than one subspace associated to the constituent ARX
systems. However, the set of all such points is a zero measure set of the variety
Z ⊆ {z : pn(z) = 0}.

3.4 The Basic Algorithm and Its Extensions

Based on the results that we have derived so far, we summarize the main steps
for solving the identification of an HARX system (Problem 1) as the following
Algorithm 1.

Different Embedding Orders. The ordering of {yt} and {ut} in (7) is more ef-
ficient for the algorithm when na(i) are approximately the same for all the
constituent systems and nc(i) are much smaller than na(i). However, if na(i) are
rather different for different systems and nc(i) and na(i) are roughly the same,
the following ordering in time t

xt
.
=
[
yt, yt−1, ut−1, yt−2, ut−2, . . . , yt−na , ut−na

]T ∈ RK
(31)

results in less non-zero leading coefficients in hn, thus making Algorithm 1 more
efficient. However, if all the systems have the same na = nc, both embeddings
have the same efficiency.

Identification of Deterministic Switched ARX Systems 461

Algorithm 1 (Identification of HARX Systems).

Given input/output data {yt, ut} from a sufficiently excited switched ARX system, and

the upper bounds on the number n̄ and orders (n̄a, n̄c) of its constituent ARX systems:

1. Maximum System Orders. Identify the maximum orders (na, nc) according to

Theorem 1.

2. Veronese Embedding. Construct the data matrix Ln̄(na, nc) via the Veronese

map (19) based on the given number n̄ of systems and the maximum orders (na, nc)

identified from the previous step.

3. Hybrid Decoupling Polynomial. Compute the coefficients of the polynomial

pn̄(z)
.
= hT

n̄νn̄(z) =
∏n

i=1

(
bT

i z
)
zn̄−n
1 = 0 from the data matrix Ln̄ according to

Theorem 2 and Corollary 2. In the stochastic case, comply with Remarks 1 and 4.

4. Constituent System Parameters. Retrieve the parameters {bi}n
i=1 of each con-

stituent ARX system from the derivatives of pn̄(z) as described in the previous

subsection.

5. Key System Parameters. The correct number of system n is the number of

bi �= e1; The correct orders na(i), nc(i) are determined from such bi according to

their definition (8); The discrete state λt for each time t is given by equation (30).

Inferring the Switching Mechanisms. Once the system parameters and the dis-
crete state have been identified, the problem of estimating the switching mecha-
nisms, e.g., the partition of the state space for PWARX or the parameters of the
jump Markov process for JMLS, becomes a simpler problem. We refer interested
readers to [5, 9] for specific algorithms.

4 Simulations and Experiments

In this section we evaluate the performance of the proposed algorithm with
respect to the amount of noise in the data and the choice of the model orders.
We also present experiments on real data from a component placement process
in a pick-and-place machine.
Error as a Function of Noise. Consider the PWAR model taken from [14]

yt =

{
2ut−1 + 10 + wt if ut−1 ∈ [−10, 0],
−1.5ut−1 + 10 + wt if ut−1 ∈ (0, 10],

(32)

with input ut
i.i.d.∼ U(−10, 10) and noise wt

i.i.d.∼ N (0, σ2
η). We run our algorithm

with n = 2, na = 0 and nc = 1 for 10 different values of ση and compute the mean
and the variance of the error in the estimated model parameters, as shown in
Figure 1. The algebraic algorithm without any iterative refinement estimates the
parameters with an error7 of less than 3.7% for the levels of noise considered.
These errors are comparable to those of the Ferrari-Trecate and Bemporad’s

7 The error between the estimated parameters b̂ and the true parameters b is computed

as maxi=1,...,m. minj=1,...,n.

∥∥b̂i−bj

∥∥∥∥[0(K−1)×1 IK−1]bj

∥∥ .

462 Y. Ma and R. Vidal

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

ση
2

E
(Δ

θ)

Algebraic
Algebraic+EM

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2

4

6
x 10

−4

ση
2

σ2 Δ θ

Algebraic
Algebraic+EM

Fig. 1. Means (left) and variances (right) of the error in the estimation of the model

parameters for different levels of noise. Blue curves are for the purely algebraic Al-

gorithm 1; Green curves are for the EM algorithm initialized with the solutions from

Algorithm 1

algorithms reported in [14] which are about 1.5 ∼ 2.5%. The error is reduced
significantly to about 1% (see Figure 1 left) by using the algebraic algorithm
with iterative refinement via Expectation and Maximization (EM).
Error as a Function of the Model Orders. Consider the PWAR system
taken from [14]

yt =

{
2yt−1 + 0ut−1 + 10 + wt if yt−1 ∈ [−10, 0],
−1.5yt−1 + 0ut−1 + 10 + wt if yt−1 ∈ (0, 10],

(33)

with initial condition y0 = −10, input ut
i.i.d.∼ U(−10, 10) and noise wt

i.i.d.∼
N (0, 0.01).

We applied our algorithm8 with known number of models n = 2, but unknown
model orders (na, nc). For all κ > 1.3·10−8, our algorithm correctly estimates the
orders as na = 1 and nc = 0. For such orders, the estimates of the ARX model
parameters are [1.9878, 0, 10.0161]T and [−1.4810, 0, 10.0052]T , which have an
error of 0.0020.

We also evaluated the performance of our algorithm as a function of the
orders (na, nc) for a known number of models n = 2. Rather than estimating the
orders using formula (22), we use a fixed value for (na, nc) and search for the
polynomial in the null space of Ln(na, nc) with the smallest degree-lexicographic
order. We repeat the experiment for multiple values of na = 1, . . . , 4 and nc =
1, . . . , 10, to evaluate the effectiveness of equation (11) at finding the “correct”
null space of Ln(na, nc). Figure 2 shows the results for κ = 10−5. Notice that
for all the range of values of na and nc, the algorithm gives an error that is

8 Since the ARX model is an affine model with a constant input, we slightly modify

our algorithm by using homogeneous coordinates for the regressor xt, i.e., appending

an entry of “1.”

Identification of Deterministic Switched ARX Systems 463

0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

n
b

M
ea

n
su

m
 o

f s
qu

ar
es

 e
rr

or

n
a
=1

n
a
=2

n
a
=3

n
c
=4

Fig. 2. Mean sum of squares error for various orders of the ARX models

very close to the theoretical bound of 0.01 (the noise variance). These results
are significantly better than those reported in [14] for the Ferrari-Trecate and
Bemporad’s algorithms when applied with wrong model orders. The results are
comparable to those of Ferrari-Trecate and Bemporad’s algorithms when applied
with the true model orders.

Experimental Results on Test Datasets. We applied our algorithm with
n = na = nc = 2 to four datasets of T = 60, 000 measurements from a component
placement process in a pick-and-place machine [11]. For comparison with the
results in [14], we first report results on a down-sampled dataset of 750 consisting
of one out of every 80 samples. The 750 points are separated in two overlapping
groups of points. The first 500 points are used for identification, and the last
500 points are used for validation. Table 1 shows the average sum of squared
residuals (SSR) – one step ahead prediction errors, and the average sum of
squared simulation errors (SSE) obtained by our method for all four datasets,
as well as the SSE of Ferrari-Trecate’s and Bemporad’s algorithm for the first
dataset as reported in [14]. It is worth mentioning that the SSE and SSR errors
provided by our method are not strictly comparable to those [14]. This is because
Ferrari-Trecate’s and Bemporad’s algorithms apply to PWARX models in which
the mode λt is a piecewise linear function of the past inputs and outputs, while
our method applies to switched ARX models in which λt can evolve arbitrarily.
Therefore, for PWARX models λt is known automatically once the piece-wise
linear map has been learned, while for switched ARX models one must use the
measured output yt to determine λt as in (30).

We also tested our algorithm on the 60,000 measurements. We split the data
in two groups of 30,000 points each. The first group is used for identification and
the last group for simulation. Table 2 shows the average sum of squared residual
error (SSR) and the average sum of squared simulation error (SSE) for all four
datasets. Figure 3 shows the true and simulated outputs for dataset 1.

Overall, the algorithm demonstrates a very good performance in all four
datasets. The running time of a MATLAB implementation of our algorithm is
0.15 second for the 500 data points and 0.841 second for 30, 000 data points.

464 Y. Ma and R. Vidal

Table 1. Training and simulation errors for down-sampled datasets. Note that these

numbers are not strictly comparable as explained in the text

Dataset n na nc Our method’s SSR Our method’s SSE Ferrari-Trecate SSE Bemporad SSE

1 2 2 2 0.0803 0.1195 1.98 2.15

2 2 2 2 0.4765 0.4678 N/A N/A

3 2 2 2 0.6692 0.7368 N/A N/A

4 2 2 2 3.1004 3.8430 N/A N/A

Table 2. Training and simulation errors for complete datasets

Dataset n na nc SSR SSE

1 with all points 2 2 2 4.9696 · 10−6 5.3426 · 10−6

2 with all points 2 2 2 9.2464 · 10−6 7.9081 · 10−6

3 with all points 2 2 2 2.3010 · 10−5 2.5290 · 10−5

4 with all points 2 2 2 7.5906 · 10−6 9.6362 · 10−6

0 0.5 1 1.5 2 2.5 3

x 10
4

−5

0

5

10

15

20

25

30
y

sim
y

id

3 3.5 4 4.5 5 5.5 6

x 10
4

−5

0

5

10

15

20

25

30
y

sim
y

id

Fig. 3. Training and simulation sequences for complete datasets – the simulated and

the identified sequences overlap almost exactly

5 Conclusions

We have proposed a linear-algebraic solution to the problem of identifying (deter-
ministic) switched ARX systems. The algorithm can deal with the general case
in which the switches are arbitrary and the number and orders of the constituent
ARX systems are unknown. It can also tolerate moderate noises in the data. In
the future, we would like to investigate efficient ways for on-line implementation
of the algorithm as well as generalize our methods to state-space models.

References

1. A. Alessandri and P. Coletta. Design of Luenberger observers for a class of hybrid

linear systems. In Hybrid Systems: Computation and Control, pages 7–18. 2001.

Identification of Deterministic Switched ARX Systems 465

2. B.D.O. Anderson and C.R. Johnson. Exponential convergence of adaptive identi-

fication and control algorithms. Automatica, 18(1):1–13, 1982.

3. A. Balluchi, L. Benvenuti, M. Di Benedetto, and A. Sangiovanni-Vincentelli. De-

sign of observers for hybrid systems. In Hybrid Systems: Computation and Control,
volume 2289 of LNCS, pages 76–89. Springer Verlag, 2002.

4. A. Bemporad, G. Ferrari, and M. Morari. Observability and controllability of piece-

wise affine and hybrid systems. IEEE Trans. on Aut. Cont., 45(10):1864–76, 2000.

5. A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino. A greedy approach to identi-

fication of piecewise affine models. In Hybrid Systems: Computation and Control,
LNCS, pages 97–112. Springer Verlag, 2003.

6. A. Bemporad, J. Roll, and L. Ljung. Identification of hybrid systems via mixed-

integer programming. In IEEE Conf. on Decision & Control, pages 786–792, 2001.

7. A. Doucet, A. Logothetis, and V. Krishnamurthy. Stochastic sampling algorithms

for state estimation of jump Markov linear systems. IEEE Transactions on Auto-
matic Control, 45(1):188–202, 2000.

8. G. Ferrari-Trecate, D. Mignone, and M. Morari. Moving horizon estimation for

hybrid systems. IEEE Transactions on Automatic Control, 47(10):1663–1676, 2002.

9. G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari. A clustering technique

for the identification of piecewise affine systems. Automatica, 39(2):205–217, 2003.

10. J. Harris. Algebraic Geometry: A First Course. Springer-Verlag, 1992.

11. A. Juloski, W. Heemels, and G. Ferrari-Trecate. Data-based hybrid modelling of

the component placement process in pick-and-place machines. In Control Engi-
neeting Practice. To appear.

12. A. Juloski, S. Weiland, and M. Heemels. A Bayesian approach to identification of

hybrid systems. In IEEE Conf. on Decision & Control, 2004.

13. K. Kanatani and C. Matsunaga. Estimating the number of independent motions

for multibody motion segmentation. In Asian Conf. on Computer Vision, 2002.

14. H. Niessen and A.Juloski. Comparison of three procedures for identification of

hybrid systems. In Conference on Control Applications, 2004.

15. V. Pavlovic, J. M. Rehg, T. J. Cham, and K. P. Murphy. A dynamic Bayesian

network approach to figure tracking using learned dynamic models. In Proc. of the
Intl. Conf. on Comp. Vision, pages 94–101, 1999.

16. J. K. Tugnait. Detection and estimation for abruptly changing systems. Automat-
ica, 18(5):607–615, 1982.

17. D. Del Vecchio and R. Murray. Observers for a class of hybrid systems on a lattice.

In Hybrid Systems: Computation and Control. 2004.

18. E.I. Verriest and B. De Moor. Multi-mode system identification. In European
Control Conference, 1999.

19. R. Vidal. Identification of PWARX hybrid models with unknown and possibly

different orders. In IEEE Conf. on Decision & Control, 2004.

20. R. Vidal and B.D.O. Anderson. Recursive identification of switched ARX hybrid

models: Exponential convergence and persistence of excitation. In CDC, 2004.

21. R. Vidal, A. Chiuso, and S. Soatto. Observability and identifiability of jump linear

systems. In IEEE Conf. on Decision & Control, pages 3614–3619, 2002.

22. R. Vidal, A. Chiuso, S. Soatto, and S. Sastry. Observability of linear hybrid sys-

tems. In Hybrid Systems: Computation and Control, pages 526–539. 2003.

23. R. Vidal, S. Soatto, Y. Ma, and S. Sastry. An algebraic geometric approach to the

identification of a class of linear hybrid systems. In Proceedings of CDC, 2003.

Learning Multi-modal Control Programs

Tejas R. Mehta and Magnus Egerstedt

Georgia Institute of Technology,

School of Electrical and Computer Engineering,

Atlanta, GA 30332, USA

{tmehta, magnus}@ece.gatech.edu

Abstract. Multi-modal control is a commonly used design tool for

breaking up complex control tasks into sequences of simpler tasks. In

this paper, we show that by viewing the control space as a set of such

tokenized instructions rather than as real-valued signals, reinforcement

learning becomes applicable to continuous-time control systems. In fact,

we show how a combination of state-space exploration and multi-modal

control converts the original system into a finite state machine, on which

Q-learning can be utilized.

1 Introduction

In this paper we study the problem of controlling complex systems through the
decomposition of the control task into a sequence of control modes. Such a divide
and conquer approach has proved useful in that it allows the control designer to
construct a number of relatively simple control laws, rather than one complex
law. Successful examples of this approach include flight mode control in avionics
and behavior based control of autonomous robots.

The aim of this paper is to show that such multi-modal control design strate-
gies allow us to use standard reinforcement learning techniques on previously
computationally intractable problems, namely for continuous-time control sys-
tems, where the states and control signals take on values in uncountably large
sets. To see how this can be done, it should be noted that reinforcement learning
is readily applicable when the state space and the input set are finite sets and the
system is event driven (e.g. finite state machines or Markov decision processes).
See for example [9, 11, 16, 17].

However, by considering a finite number of feedback laws κi, i = 1, . . . ,M
(i.e. mappings from the state space to the input set), together with interrupts
ξj , j = 1, . . . , N , which are the conditions for the termination of the current
mode, a finite quantization of the control space is obtained. Note that the con-
trol set itself is not quantized but rather that the quantization acts at a functional
level. This observation takes care of the problem of quantizing the control in-
puts. Moreover, by adopting a Lebesque sampling strategy where a new state
is sampled only when the interrupts trigger, the continuous time problem is
transformed into an event-driven problem. The final piece of the puzzle is the

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 466–479, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Learning Multi-modal Control Programs 467

X
U

Q

(a)

X
Σ

Q
(b)

XQ
Σ

Q

(c)

Fig. 1. Depicted is the progression from X and U being smooth manifolds (a) to the

case when both the state space and the input set are finite (c) through the introduction

of multi-modal control procedures and Lebesque sampling

observation that, given an initial state x0 and a finite length multi-modal pro-
gram, only a finite number of states are reachable. These ideas are illustrated
in Figure 1, where the first figure corresponds to a case where the state space
X ∼ Rn and the input set U ∼ Rm. Depicted as a function of x and u is the so-
called Q-function that characterizes the utility of using control input u at state
x. In the next figure, U is replaced by Σ, which corresponds to a finite set of
control-interrupt pairs. Without discretizing U , a finite control space is obtained
by defining a finite set of available control modes. The final figure shows a situ-
ation where both the state space and the input space are finite. The input space
is again given by Σ, while XQ is the quantized state space obtained through an
exploration of the states that are reachable from x0 (in N steps) at the distinct
times at which the interrupts may trigger.

To go from a continuous time control system to a finite state machine is
certainly not a new idea. In particular, discretizations of the space-time do-
main are routinely used for establishing reachability properties. However, such
discretizations do not reflect the underlying dynamics in any meaningful way.
Alternatives are given in [2], where tokenized control symbols result in reachable
lattices, and in [15], where LTL specifications are defined for a quantized system
while guaranteeing that the specifications still hold for the original system. The
idea of structured state space explorations was pursued in [1], where the reach-
able part of the state space was implicitly discretized using rapidly-exploring
random trees. Additional results on motion description languages and tokenized
control strategies can be found in [3, 6, 7, 8]. Moreover, it is not necessary to
let the state space and input set be finite in order to apply learning techniques
[14]. For example, a set of basis functions can be defines for supporting the Q-
function such as sigmoids, wavelets, or Gaussian kernel functions. However, the
computational burden associated with these methods of often prohibitive.

In this paper we will make these preliminary, informal observations rigorous,
and the outline of the paper is as follows: In Section 2 we will discuss reinforce-
ment learning for discrete event-driven systems and see how these techniques
can be modified in order to incorporate multi-modal feedback strategies. In Sec-

468 T.R. Mehta and M. Egerstedt

tion 3 we switch our attention to continuous-time control systems, where the
state and control spaces are Rn and Rm respectively. Contained in this section
is moreover a robotics example, that illustrates the potential usefulness of the
proposed approach. Additional improvement and refinement issues are treated
in Section 4, followed by a brief robustness discussion in Appendix A.

2 Reinforcement Learning

For systems operating in unknown environments and/or with unknown dynam-
ics, reinforcement learning provides the means for systematic trial-and-error in-
teractions with the environment. Although the contribution of this paper is to
apply learning techniques to multi-modal hybrid systems, we will here briefly
cover the standard reinforcement-learning model.

2.1 Standard Reinforcement Learning

In the standard reinforcement-learning model, at each step (discrete time), the
agent chooses an action, u ∈ UF , based on the current state, x ∈ XF , of the
environment, where UF and XF are finite sets (Hence the subscript F). The
corresponding result is given by xk+1 = δ(xk, uk), where δ : XF × UF → XF

is the state transition function that encodes the system dynamics. Moreover,
a cost c : XF × UF → R is associated with taking action u at state x. The
agent should choose actions in order to minimize the overall cost. Given a policy
π : XF → UF , the discounted cost that we wish to minimize is given by

V π(x0) =
∞∑

k=0

γkc(xk, π(xk)),

where γ ∈ (0, 1) is the discount factor and xk+1 = δ(xk, π(xk)), k = 0, 1, . . .
We will use V ∗(x) to denote the minimum discounted cost incurred if the

agent starts in state x and executes the optimal policy, denoted by π∗. In other
words, the optimal value function is defined through the Bellman equation

V ∗(x) = min
u∈UF

[
c(x, u) + γV ∗(δ(x, u))

]
,∀x ∈ XF .

This equation simply states that the optimal value is obtained by taking the
action that minimizes the instantaneous cost plus the remaining discounted cost.
Once V ∗ is known, the optimal policy, π∗, follows directly through

π∗(x) = min
u∈UF

[
c(x, u) + γV ∗(δ(x, u))

]
,

which shows why knowing V ∗ is equivalent to knowing the optimal policy.
If we now let Q∗(x, u) be the discounted cost for taking action u in state x

and then continuing to act optimally, we observe that V ∗(x) = minuQ
∗(x, u),

and therefore
Q∗(x, u) = c(x, u) + γ min

u′∈ UF

Q∗(δ(x, u), u′).

Learning Multi-modal Control Programs 469

To find Q∗, we start by assigning a uniform value to every state-action pair, and
then randomly select state-action pairs (x, u) and update the Q-table using the
following Q-learning law

Qk(x, u) := Qk−1(x, u)+αk

(
c(x, u)+γ min

u′∈ UF

{
Qk−1(δ(x, u), u′)−Qk−1(x, u)

})
.

If each action is selected at each state an infinite number of times on an infinite
run and αk, the learning rate, is decayed appropriately, theQ values will converge
to Q∗ with probability 1. By appropriate decay of αk we mean that

∑
k αk = ∞

while
∑

k α
2
k < ∞, hence decreasing the learning rate over time (e.g. αk = 1/k)

will guarantee convergence. (For more details regarding reinforcement learning,
see for example [9, 11, 14, 16, 17].)

2.2 Learning Control Programs

We now define a new input space that corresponds to tokenized descriptions
of feedback laws and interrupts, as prescribed within the motion description
language (MDL) framework. Instead of interacting with the environment at each
step, the agent takes actions based on a feedback law κ, which is a function of
the state x. The agent furthermore continues to act on the feedback control law
κ until the interrupt ξ triggers, at which point a scalar cost is incurred.

Formally, let XF and UF be finite sets, as defined earlier, and let Σ = K×Ξ,
where K ⊆ UF

XF (the set of all maps from XF to UF) and Ξ ⊆ {0, 1}XF .
Moreover, let δ̃ : XF × Σ → XF be the state transition mapping, x̃k+1 =
δ̃(x̃k, (κk, ξk)), obtained through the following free-running, feedback mechanism
[8]: Let x̃0 = x0 and evolve x according to xk+1 = δ(xk, κ0(xk)) until the inter-
rupt triggers, i.e. ξ0(xk0) = 1 for some index k0. Now let x̃1 = x(k0) and repeat
the process, i.e. xk+1 = δ(xk, κ1(xk)) until ξ1(xk1) = 1. Now let x̃2 = x(k1), and
so on. Also let ζ : XF ×Σ → R be the cost associated with the transition.

We want to apply reinforcement learning to this model. To accomplish this
we must make a few modifications. First, note that card(Σ) is potentially much
larger than card(UF), where card(·) denotes the cardinality. This directly af-
fects the number of entries in our Q-table. If all possible feedback laws and
interrupts were available, the cardinality of the new input space would be [2card
(UF)]card(XF) with obvious implications for the numerical tractability of the
problem.

Second, in order to find Q∗, we start again by assigning a uniform value to
every state-action pair, and then iteratively update the Q values by randomly
selecting a state-action pair with the action comprising of one of the possible
feedback laws in K and interrupts in Ξ. The consequent Q-learning law is

Qk(x, (κ, ξ)) := Qk−1(x, (κ, ξ))

+αk

(
ζ(x, (κ, ξ)) + γ min

(κ′,ξ′)

{
Qk−1(δ̃(x, (κ,ξ)), (κ′, ξ′)) −Qk−1(x, (κ, ξ))

})
.

Since Ξ and K are finite, the set of all possible modes Σ is finite as well. Hence
the convergence results still hold, as long as each mode is selected for each state
an infinite number of times, and αk decays appropriately.

470 T.R. Mehta and M. Egerstedt

2.3 Example: Maze

Consider the problem of an agent navigating a M ×M planar grid (we will let
M = 10) with obstacles. For any of the M2 possible positions, the agent can
move either north (N), south (S), east (E), west (W), or not at all (ε). Each
such action, except of course ε, advances the agent one step, and it is understood
that there is a boundary along the perimeter of the grid that the agent can not
cross. Moreover the agent can advance through obstacles even though a hefty
cost is incurred whenever this happens. Starting from an arbitrary location, the
agent needs to find the shortest path to a specified goal, while avoiding obstacles.

We can restate this problem as a reinforcement learning problem, where the
agent must learn the optimal policy given the model of the environment. For-
mally, we have

– x = (x1, x2), where x1, x2 ∈ {0, 1, 2, . . . ,M − 1};
– u ∈ {N,S,E,W, ε};

– δ(x, u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(x1,min{x2 + 1,M − 1}) if u = N
(x1,max{x2 − 1, 0}) if u = S
(min{x1 + 1,M − 1}, x2) if u = E
(max{x1 − 1, 0}, x2) if u = W
(x1, x2) if u = ε

– c(x, u) =

⎧⎨⎩0 if δ(x, u) = xgoal

100 if δ(x, u) ∈ O
1 otherwise

Here, xgoal is the goal state, while O ⊂ X is the set of obstacles. Using standard
Q-learning, as previously described, the agent quickly learns the shortest path
to the goal and the resulting simulation result is shown in Figure 2(a).

In this example, each input corresponds to one step in the maze. However,
one could ask the question about the shortest mode string that makes the agent
reach the goal, following the development in [8]. Unfortunately, the total number
of feedback laws is card(K) = card(UF)card(XF), i.e. in this example we have 5100

possible control modes, which is a numerically intractably large number. Hence,
we have to reduce the size of K, and our particular choice is the set of constant
feedback laws, i.e. K = {κN , κS , κE , κW , κε}, where κN (x) = N, ∀x ∈ XF , and
so on. Similarly, we need to limit the size of the interrupt set, and we simply let
Ξ be set of interrupts that trigger after m steps, m = 1, 2, . . . , N . (We denote
these interrupts by Ξ = {ξ1, . . . , ξN}.) In this case card(Ξ) = N , and for the
particular problem we are interested in, we let N = 9 (since M = 10), so we
need 9× 5× 100 = 4500 entries in the Q-table. Note that, in order to keep track
of the number of steps, the state space has to be augmented in a straightforward
manner.

Now in order to find Q∗, and consequently the optimal policy, we start by
assigning a uniform value to every state-action pair (recall we have 4500 possible
such pairs). We then randomly select a state-action pair and update its Q-value
according to the previously discussed, modified Q-learning law. The result of
the simulation is shown in Figure 2(b). Note that this may not always be the

Learning Multi-modal Control Programs 471

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
10 x 10 MAZE

start = (4,0) goal = (4,8)

(a)

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
10 X 10 MAZE

start = (4 0) goal = (4 8)

(b)

Fig. 2. Robot navigating through a maze using a standard reinforcement-learning

model (left) and using modes with interrupts as the control set (right)

shortest path in terms of length (even though it happens to be the shortest in
this particular case), but it is the optimal path in terms of the length of the
mode string.

3 Learning Control Programs for Continuous Systems

Now that the discrete-time case with finite state and input spaces is covered, we
shift focus to the main contribution of this paper, namely the solution to the
problem of learning multi-modal control programs for continuous-time systems.
Suppose we have the following system:

ẋ = f(x, u), x ∈ X = Rn, u ∈ U = Rm, where x(t0) = x0 is given.

If at time t0, the system receives the input string σ = (κ1, ξ1), . . . , (κq, ξq), where
κi : X → U is the feedback control law, and ξi : X → {0, 1} is the interrupt,
then x evolves according to

ẋ = f(x, κ1(x)); t0 ≤ t < τ1
...

...
ẋ = f(x, κq(x)); τq−1 ≤ t < τq,

where τi denotes the time when the interrupt ξi triggers (i.e. changes from 0 to 1).
We are interested in finding a sequence of control-interrupt pairs that min-

imizes a given cost for such a system. For example, we might be interested in
driving the system to a certain part of the state space (e.g. to the origin), and
penalize the final deviation from this target set. Previous work on reinforcement

472 T.R. Mehta and M. Egerstedt

learning for continuous-time control systems can broadly be divided into two
different camps. The first camp represents the idea of a direct discretization of
the temporal axis as well as the state and input spaces (e.g. [4, 13]). The main
criticism of this approach is that if the discretization is overly coarse, the control
optimizing the discretized problem may not be very good when applied to the
original problem. Of course, this complication can be moderated somewhat by
making the discretization more fine. Unfortunately, in this case, the size of the
problem very quickly becomes intractable.

The second approach is based on a temporal discretization (sampling) in
combination with the use of appropriate basis functions to represent the Q-table
(e.g. [5, 12, 14]). Even though this is a theoretically appealing approach, it lacks
in numerical tractability. In contrast to both these two approaches, we propose
to let the temporal quantization be driven by the interrupts directly (i.e. not
by a uniform sampling) and let the control space have finite cardinality through
the interpretation of a control symbol as a tokenized control-interrupt pair. In
other words, by considering a finite number of feedback laws κi : X → U, i =
1, . . . ,M , together with interrupts ξj , j = 1, . . . , N , the control space (viewed at
a functional level) is finite even though the actual control signals take on values
in Rm. Another effect of the finite mode-set assumption is that it provides a
natural quantization of the state space. Moreover, if we bound the length of the
mode sequences, this quantization is in fact resulting in a finite set of reachable
states.

Given an input σ = (κ, ξ) ∈ Σ, where Σ ⊆ UX × {0, 1}X , the flow is given
by

φ(x0, σ, t) = x0 +
∫ t

0
f(x(s), κ(x(s)))ds.

If there exists a finite time T ≥ 0 such that ξ(φ(x0, σ, T)) = 1, then we let the
interrupt time be given by

τ(σ, x0) = min{t ≥ 0 | ξ(φ(x0, σ, t)) = 1}.

If no such finite time T exists then we say that τ(σ, x0) = τ∞ for some dis-
tinguishable symbol τ∞. Furthermore, we let the final point on the trajectory
generated by σ be

χ(σ, x0) = φ(x0, σ, τ(σ, x0))

if τ(σ, x0) �= τ∞ and use the notation χ(σ, x0) = χ∞ otherwise. Moreover let
χ(σ, χ∞) = χ∞,∀σ ∈ Σ.

This construction allows us to define the Lebesque sampled finite state ma-
chine (XQ

N , Σ, δ̃, x̃0), where N is the longest allowable mode string, and where
the state transition is given by

x̃0 = x0

x̃k+1 = δ̃(x̃k, σk) = χ(σk, x̃k), k = 0, 1, . . .

The state space XQ
N is given by the set of all states that are reachable from x̃0

using mode strings of length less than or equal to N .

Learning Multi-modal Control Programs 473

Now that we have a finite state machine describing of the dynamics, we can
run our learning algorithm, with an appropriate cost function, in order to obtain
the optimal control program as discussed earlier. However, in order to preserve
computing resources, we run this in parallel with the state exploration, and the
general algorithm for accomplishing this is given by

X := {x̃0, δ̃(x̃0, σ)}, ∀σ ∈ Σ
step(x̃0) := 0
step(δ̃(x̃0, σ)) := 1, ∀σ ∈ Σ
p := 1
Qp(x̃, σ) := const ∀x̃ ∈ X , σ ∈ Σ
repeat

p := p+ 1
x̃ := rand(χ ∈ X | step(χ) < N)
σ := rand(Σ)
x̃′ := δ̃(x̃, σ)
if x̃′ /∈ X then

step(x̃′) := step(x̃) + 1
X := X ∪ {x̃′}
Q(x̃′, σ) := const ∀σ ∈ Σ

end if
Qp(x̃, σ) := Qp−1(x̃, σ)

+ αp

(
ζ(x̃, σ) + γminσ′∈Σ

{
Qp−1(x̃′, σ′) −Qp−1(x̃, σ)

})
until mod(p,L) = 0 and |Qp(x̃, σ) −Qp−L(x̃, σ)| < ε, ∀ x̃ ∈ X , σ ∈ Σ

XQ
N = X

Unlike the earlier Q-learning algorithm, the state space is initially unknown
for this case, and we thus begin learning/exploring from the states we know
(namely x̃0 and all the states reachable in one step). At each iteration of the
learning process, we select a state randomly from the set of known states and we
select a mode randomly from the set of modes. In the algorithm, the function
step(x̃) represents the length of the shortest control program used so far to reach
state x̃ from the initial state x̃0. This is to ensure we only explore states that
are reachable from x̃0 using mode strings of length less than or equal to N , i.e.
X ⊆ XQ

N . We then calculate the next state and determine if it is a member of our
known state space (In practice, it is necessary to check if the next state belongs to
a neighborhood of a previously visited state). If not, add this state to the known
state space and make the corresponding change in the Q-table. We continue to
explore and update the state space and our Q-table (or value function) in this
manner until the Q-table is stationary. Note that in the algorithm, ε > 0 is a
small positive scalar and L is a large number needed to ensure that sufficiently
many state-action pairs are visited.

474 T.R. Mehta and M. Egerstedt

−1 0 1 2 3 4 5 6 7 8 9
−14

−12

−10

−8

−6

−4

−2

0

2

4

6

f
1

f
1

f
1

f
2

f
2

x1

x2

x
0

x
f

f1
f2

(a)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x1

x2

f
1

f
1

f
2

f
2

f
2

x
0

x
f

f1
f2

(b)

Fig. 3. In this example, M = 1 and δ = 0.75 and the resulting optimal mode strings are

(cost = final distance to the origin) σ̂ = (κ1, ξ13) · (κ2, ξ25) · (κ1, ξ15) · (κ2, ξ23) · (κ1, ξ15)

(left) and (cost = final distance to the origin combined with total distance travelled)

σ̂ = (κ2, ξ24) · (κ1, ξ12) · (κ1, ξ21) · (κ2, ξ13) · (κ1, ξ25) (right)

200 400 600 800 1000 1200 1400 1600 1800

200

400

600

800

1000

1200

Fig. 4. Experimental setup

3.1 Example

Consider the following simple planar integrator system:

ẋ = u, x, u ∈ R2, x0 =
(

1
1

)
.

Learning Multi-modal Control Programs 475

−1 0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Fig. 5. The final trajectory. Depicted is the path of the robot together with the range

sensor readings (IR-based) obtained throughout the final run. Note how the odometric

drift makes the maze look somewhat distorted

Moreover, let the modes be given by Σ = {σij = (κi, ξij), i = 1, 2, j = 1, . . . , 5},
where

κ1(x) =
(

1 0.1
0 −1

)
x

κ2(x) =
(

−1 0
−0.2 2

)
x

ξ1j =
{

1 if x2
2 < Mδj

0 otherwise

ξ2j =
{

1 if x2
1 < Mδj

0 otherwise
for j = 1, 2, . . . , 5,

where M, δ > 0. Note that the system is unstable in either mode. We want to
learn a mode string that will stabilize the system, i.e. drive it to the origin.
Although it may not be possible to drive the system to x = 0 with these partic-
ular control-interrupt pairs, we want to select a string of modes which bring the
system to a neighborhood of x = 0.

For the particular choice of modes, the reachable set has cardinality 2
∑N

i=0 5i,
where N is the maximum number of steps (or string length) and as can be
expected, the cardinality of the state space increases exponentially with respect
to the length of the control program. The resulting plot from solving the learning
problem using the combined state space exploration and Q-learning is shown in
Figure 3(a) in whichN = 5 and the cost is given solely by the final distance to the

476 T.R. Mehta and M. Egerstedt

origin. We could of course also change the cost to let it include an additive term
that measures the total distance travelled. The corresponding, learned optimal
trajectory for this cost is shown in Figure 3(b).

3.2 Example: Maze Revisited

We now apply this strategy for obtaining finite state machine descriptions of
continuous time multi-modal control systems to the previously discussed maze
problem. In particular, we still use the mode set {N,S,E,W, ε}, but define it
for a planar integrator instead of a finite state machine. We moreover let the
interrupts, which previously counted the number of steps taken, correspond to
a certain distance travelled. We apply this scheme to the problem of making a
robot negotiate a maze and in Figure 4 the experimental setup is shown, where
a Magellan Pro Mobile Robot from iRobot is to negotiate the maze. Figure 5
moreover shows final path obtained through the learning algorithm.

4 Refining the Learning Process

In this section we discuss some methods for enhancing the learning process. In
particular, for problems with large state and input spaces (basically all inter-
esting problems), the convergence is typically slow when using a purely random
exploration strategy. However, it is well-known that one can use knowledge about
the problem in order to speed up the learning process. The idea is to start out the
learning process completely at random, but as the system gains ”experience” the
state space exploration becomes less and less random. In other words, we bias
the selection of the state-action pairs to explore and update based on current
values of the Q-table.

In order to formalize this, some notation is needed. We let P (x, u) denote the
probability of selecting state-action pair (x, u) from XF ×UF , with

∑
x∈X

∑
u∈U

P (x, u) = 1. Initially we begin with

P0(x, u) =
1

card(X)card(U)
.

In other words, every state-action pair has an equal likelihood of being selected.
As we gain experience, we can change these probabilities to bias the selection in
favor of state-action pairs with lower Q-values (potentially ”good” state-action
pairs). There may be many appropriate methods for biasing these probabilities,
and one simple approach is to let the probability of selection state-action pair
(x, u) be given by

Pk(x, u) =
Qk−1(x, u)∑

x′∈XF

∑
u′∈UF

Qk−1(x′, u′)
.

Given such a biased probability distribution, we do not want to use it pre-
maturely, for this may lead us to not learn the optimal policy. Instead we want

Learning Multi-modal Control Programs 477

to introduce a confidence value, c ∈ [0, 1], which is based on the time step k and
the past Q-values. With a lower value of c, the exploration strategy should be
more random (i.e. use P0(x, u) when selecting a state-action pair), while higher
value of c suggest using a more biased exploration strategy (i.e. use Pk(x, u)).
Note that we still want to leave some amount of randomness in the selection
process in order to ensure that the entire state and input space is explored.
Hence, c should never equal 1. The degree of bias in the selection process and
the necessary experience will vary from problem to problem.

Based on our knowledge of the problem we can also start pruning the state-
space as we gain experience. This means that we could exclude states that we are
certain are not part of the optimal trajectory. This reduction in the size of the
state-space enables the learning process to converge faster since all the plausible
state-action pairs can be selected more often. However, great caution and high
degree of accuracy must be used when pruning the state-space to ensure that
the optimal policy is still learned since incorrectly pruning a potentially useful
state may mean that only a sub-optimal policy is learned.

5 Conclusions

In this paper we present a method for going from continuous time control systems
to finite state machines in a structured manner. In particular, by only considering
a finite number of modes, i.e. control-interrupt pairs, the input space is finite and
the continuous time dynamics has been replaced by a Lebesque sampled, discrete
time system. Moreover, by only allowing mode strings of a certain length, the
reachable state space (at the interrupt times) is finite as well. This construction
means that previously unavailable computational methods, such as reinforcement
learning, are now applicable in a straight forward manner.

Acknowledgements

This work was sponsored by the National Science Foundation through the pro-
gram ECS NSF-CAREER award (grant # 0237971).

References

1. A. Bhatia, and E. Frazzoli. Incremental Search Methods for Reachability Analysis

of Continuous and Hybrid Systems. Hybrid Systems: Computation and Control.
Springer-Verlag, 2004.

2. A. Bicchi, A. Marigo, and B. Piccoli. On the reachability of quantized control

systems. IEEE Transactions on Automatic Control, 4(47):546-563, April 2002.

3. A. Bicchi, A. Marigo, and B. Piccoli. Encoding steering control with symbols. IEEE
International Conference on Decision and Control, pages 3343-3348, 2003.

4. S.J. Bradtke, B.E. Ydstie, and A.G. Barto. Adaptive linear quadratic control using

policy iteration. American Control Conference, pages 3475-3479, 1994.

478 T.R. Mehta and M. Egerstedt

5. L. Crawford, and S.S. Sastry. Learning Controllers for Complex Behavioral Sys-

tems. Neural Information Processing Systems Tenth Annual Conference(NIPS 96),
1996.

6. M. Egerstedt. On the Specification Complexity of Linguistic Control Procedures.

International Journal of Hybrid Systems, Vol. 2, No. 1-2, pp. 129-140, March &

June, 2002.

7. M. Egerstedt, and D. Hristu-Varsakelis. Observability and Policy Optimization for

Mobile Robots. IEEE Conference on Decision and Control, Las Vegas, NV, Dec.

2002.

8. M. Egerstedt, and R.W. Brockett. Feedback Can Reduce the Specification Com-

plexity of Motor Programs. IEEE Transactions on Automatic Control, Vol. 48, No.

2, pp. 213–223, Feb. 2003

9. T. Jaakkola, M.I. Jordan, and S.P. Singh. On the Convergence of stochastic itera-

tive dynamic programming algorithms. Neural Computation 6(6), 1994.

10. L.P. Kaebling, M.L. Littman, and A.R. Cassandra. Learning Policies for Partially

Observable Environments: Scaling Up. Proceedings of the Twelfth International
Conference on Machine Learning, 1995.

11. L.P. Kaebling, M.L. Littman, and A.W. Moore. Reinforcement learning: A survey.

Journal Of Artificial Intelligence Research, 1996.

12. K. Morgansen, and R.W. Brockett. Optimal Regulation and Reinforcement Learn-

ing for the Nonholonomic Integrator. Proceedings of the American Control Confer-
ence, pp. 462-6, June 2000

13. R.S. Sutton. Generalization in Reinforcement Learning: Successful Examples Using

Sparse Coarse Coding. Neural Information Processing Systems 8, 1996.

14. R.S. Sutton, and A.G. Barto. Reinforcement Learning, An Introduction. MIT Press,

Cambridge, MA, 1998.

15. P. Tabuada and G. Pappas. Model Checking LTL over Controllable Linear Systems

is Decidable. Hybrid Systems: Computation and Control, Springer-Verlag, Prague,

Czech Republic, 2003.

16. J.N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine
Learning, 16(3), 1994.

17. C.J.C.H. Watkins, and P. Dayan. Q-learning. Machine Learning 8(3/4):257-277,

May 1992.

Appendix A. Robustness Analysis

Note that the entire argument presented in this paper concerning the finite state
space model hinges on the fact that we start from a fixed initial state. In this
section we will conduct a sensitivity analysis to show that if the mode string σ̂
is optimal when starting at x0, it is in fact still optimal for x̃0 = x0 +Δx0, for
some small perturbation Δx0. It is sufficient to show that if x0 is perturbed a
little, then x̃f , the point obtained after executing σ̂ from x̃0, lies within a small
neighborhood of xf , i.e. we need to show that Δxf = xf − x̃f is small.

In order to simplify the notation, we let the interrupt surfaces be encoded
by smooth functions gi(x) = 0, i.e. ξi(x) = 1 when gi(x) = 0 and ξi(x) = 0
otherwise. Also, the trajectory of x is given by x(t) = Φ1(t, t0) until g1(x) = 0.
Then it is given by x(t) = Φ2(t, τ1) until g2(x) = 0, and so on. Here Φi is
the state-transition function associated with ẋ = f(x, κi(x)), and τi is the time

Learning Multi-modal Control Programs 479

that interrupt ξi triggers, i.e. gi(x(τi)) = 0. Moreover we will denote this point
xhi

= x(τi). So for t ∈ [0, τ1), we get

˙̃x = f1(x̃, u) = f1(x+Δx0, u)

= f1(x, u) +
∂f1

∂x
Δx0 + o(Δx).

Hence,

Δ̇x =
∂f1

∂x
Δx0 + o(Δx),

meaning that for t ∈ [0, τ1), Δx(t) = Φ1(t, t0)Δx0 + o(Δx). To examine the
trajectory after the interrupt, we have to calculate the change in the interrupt
time τ1 and the position at this time, namely xh1 . Again, using the first order
approximation, we get

x̃(τ1 +Δτ1) = x(τ1 +Δτ1) +Δx(τ1 +Δτ1)
= x(τ1) + f1(x(τ1))Δτ1 +Δx(τ1) + o(Δτ1).

Here t = τ1 +Δτ1 is the time that the trajectory of x̃ hits the interrupt surface,
so we must have

g1(x̃(τ1 +Δτ1)) = 0,

which implies that

g1(x(τ1)) +
∂g1
∂x

(x(τ1))
[
f1(x(τ1))Δτ1)

]
+
∂g1
∂x

(x(τ1))Δx(τ1) + o(Δτ1) = 0.

Letting Lf1g1(x(τ)) := ∂g1
∂x (x(τ1))

[
f1(x(τ1))Δτ1)

]
, which is the Lie derivative of

g1 along f1, and assuming that this quantity is non-zero, we get

Δτ1 =
∂g1
∂x (x(τ1))Φ1(τ1, t0)Δx0

Lf1g1(x(τ1))
,

where we have ignored higher order terms. Hence,

Δxh1 = x̃(τ1 +Δτ1)

=
[
I −

f1
∂g1
∂x (x(τ1))

Lf1g1(x(τ1))

]
Φ1(τ1, t0)Δx0.

Now, based on the assumption that Lf1g1(x(τ1)) �= 0 (i.e. the interrupt triggers
non-tangentially), Δxh1 is small. Similarly we get that Δxh2 is small under the
assumption that Lf2g2(x(τ2)) �= 0. Continuing in this manner, we deduce that
Δxf will be small as long as Lfi

gi(x(τi)) �= 0, for i = 1, . . . ,M , and the result
follows.

A Toolbox of Hamilton-Jacobi Solvers for
Analysis of Nondeterministic Continuous and

Hybrid Systems

Ian M. Mitchell1 and Jeremy A. Templeton2

1 Department of Computer Science, University of British Columbia,

2366 Main Mall, Vancouver, BC, Canada V6T 1Z4

mitchell@cs.ubc.ca
http://www.cs.ubc.ca/∼mitchell

2 Department of Mechanical Engineering, Stanford University,

Bldg. 500, Stanford, CA, 94305

temple@stanford.edu
http://www.stanford.edu/∼temple

Abstract. Hamilton-Jacobi partial differential equations have many ap-

plications in the analysis of nondeterministic continuous and hybrid sys-

tems. Unfortunately, analytic solutions are seldom available and numer-

ical approximation requires a great deal of programming infrastructure.

In this paper we describe the first publicly available toolbox for approx-

imating the solution of such equations, and discuss three examples of

how these equations can be used in system analysis: cost to go, stochas-

tic differential games, and stochastic hybrid systems. For each example

we briefly summarize the relevant theory, describe the toolbox imple-

mentation, and provide results.

1 Introduction

Hamilton-Jacobi (HJ) partial differential equations (PDEs) have a long history
in optimal control and zero sum differential games; for example, see [1, 2, 3].
Unfortunately, analytic solutions of these equations can rarely be found for sys-
tems with nonlinear dynamics, and numerical approximation of such solutions
requires development of a significant code base to support tasks such as gridding,
initial conditions, approximation of spatial and temporal derivatives, temporal
integration and visualization.

Until now, no such collection of code was publicly available. In the next
section, we briefly describe the Toolbox of Level Set Methods, which the first
author has released [4] and which contains the algorithms necessary to approxi-
mate solutions of a broad class of time-dependent HJ PDEs. We have previously
described methods whereby these PDEs can be used to find reach sets for hy-
brid and continuous systems [5, 6], and the toolbox documentation [7] examines
several of these computations in detail.

The remainder of this paper discusses three different examples of how the HJ
PDE can be used to analyze nondeterministic continuous and hybrid systems:

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 480–494, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Toolbox of Hamilton-Jacobi Solvers 481

cost to go, stochastic differential games for continuous systems, and hybrid sys-
tems with stochastic switching between discrete modes. The underlying system
dynamics may be nonlinear in all cases. By nondeterminism, we mean more
than just stochastic perturbations to the system dynamics. While the latter
two examples do include stochastic continuous evolution governed by Brownian
motion and stochastic discrete evolution governed by Poisson point processes re-
spectively, the first two examples also include bounded input parameters whose
probabilistic distribution is unspecified. Such nondeterministic input parameters
are typically used to model best-case control and/or worst-case disturbance in
a robust fashion.

Approximations are computed by the toolbox on a Cartesian grid of the state
space, and hence these algorithms are subject to the curse of dimensionality:
costs rise exponentially with the dimension of the system. In practice, systems
of dimensions 1–3 can be examined interactively, while dimensions 4–5 are slow
but feasible.

Despite this limitation on dimension, we feel that the toolbox and the tech-
niques described below may prove useful in at least three ways. First, as a ped-
agogical tool for exploring optimal control and differential games in nonlinear
settings—until now examples of such methods have been extremely simplistic
because of the difficulty in finding analytic solutions. Second, as a method for
checking the results of faster but more specialized algorithms and solutions; for
example, the reduced order solution of a TCP transmission rate model proposed
in [8] and validated in section 5. Finally, there are some systems of interest which
are of sufficiently low dimension to be directly analyzed, such as the aforemen-
tioned TCP transmission rate model, or simple mobile robots.

2 The Toolbox of Level Set Methods

Level set methods are a collection of numerical algorithms for approximating
the solution of time-dependent HJ PDEs. The Toolbox of Level Set Methods
implements many of the basic level set algorithms in Matlab1 for any num-
ber of dimensions. Visualization, scripting and debugging tools are provided by
Matlab, and no additional toolboxes are required. Source code (in the form
of m-files) and documentation are provided [4, 7]. The algorithms on which the
toolbox is based are taken primarily from [9].

2.1 The Equations

The toolbox is designed to compute approximations of certain types of time-
dependent HJ PDEs, a class of equations whose most general form is

Dtϕ(x, t) +G(x, t, ϕ,Dxϕ,D
2
xϕ) = 0, (1)

1 Matlab is a product and trademark of The Mathworks Incorporated of Natick, Mas-

sachusetts. For more details see http://www.mathworks.com/products/matlab/.
The level set toolbox described in this document was developed by the first author,

and is neither endorsed by nor a product of The Mathworks.

482 I.M. Mitchell and J.A. Templeton

subject to bounded and continuous initial conditions ϕ(x, 0) = g(x) and the
monotonicity requirement [10]

G(x, t, r, p,X) ≤ G(x, t, s, p,Y), whenever r ≤ s and Y ≤ X, (2)

where X and Y are symmetric matrices of appropriate dimension. Since the
initial conditions may not satisfy (1), they are the limit as t→ 0 of the solution
ϕ(x, t). This PDE is also sometimes called first order hyperbolic (if there is no
D2

xϕ term) or degenerate parabolic (if the term involving D2
xϕ is not of full

rank). Unless G is linear and of full rank in the highest order derivative which
is present, even with smooth initial conditions ϕ may not remain differentiable
and hence (1) will have no classical solution. The appropriate weak solution for
the problems studied below is the viscosity solution [11], and the algorithms of
the toolbox are designed to approximate this solution.

A key feature of the viscosity solution of (1) is that under suitable conditions
ϕ remains bounded and continuous for all time. This property may not hold for
other types of HJ PDE, such as some instances of the minimum time to reach
function examined in section 3. The algorithms in the toolbox make use of the
continuity assumption to achieve improved accuracy. The terms presently imple-
mented in the toolbox, and the constraints placed on the dynamics—essentially
boundedness and continuity—are designed to maintain this assumption.

Although we focus below on methods of analysing continuous and hybrid
systems with HJ PDEs, these equations have many other applications including
dynamic implicit surfaces, fluid simulation, image processing, financial mathe-
matics, and resource management [9, 12, 13].

2.2 Using the Toolbox

The specific forms of (1) currently implemented by the toolbox and discussed
further below are

0 =Dtϕ(x, t) (3)
+ v(x, t) · ∇ϕ(x, t) (4)
+ H(x, t, ϕ,∇ϕ) (5)

− trace[L(x, t)D2
xϕ(x, t)R(x, t)] (6)

+ λ(x, t)ϕ(x, t) (7)
+ F (x, t, ϕ), (8)

potentially subject to constraints

Dtϕ(x, t) ≥ 0, Dtϕ(x, t) ≤ 0, (9)
ϕ(x, t) ≤ ψ(x, t), ϕ(x, t) ≥ ψ(x, t), (10)

where x ∈ Rd is the d dimensional state, ϕ : Rd×R → R is the level set function,
∇ϕ(x, t) = Dxϕ(x, t) is the gradient or vector of first partial derivatives of ϕ, and
D2

xϕ(x, t) is the Hessian matrix of second partial derivatives of ϕ. Note that the

A Toolbox of Hamilton-Jacobi Solvers 483

time derivative (3) and at least one term involving a spatial derivative (4)–(6)
must appear, otherwise the equation is not a time-dependent HJ PDE. While the
toolbox includes other types of terms, these are the ones most relevant to analysis
of nondeterministic continuous and hybrid systems, so we restrict our exposition
to them. Other types of terms are described in the toolbox documentation [7].
We now discuss the application(s) of each of these terms in system analysis.

Motion by a constant velocity field (4) is used for solving Hamilton-
Jacobi equations for systems without input parameters. The velocity field v :
Rd × R → Rd must be continuous, and describes the deterministic trajectories
ẋ = v(x, t) of the system to be analyzed. This term is essentially a special case
of the next one. Although not discussed in detail, the example in section 5 uses
this term for its continuous evolution.

General Hamilton-Jacobi terms (5) can be used for any first order spa-
tially dependent term that is continuous in x and t, satisfies the monotonicity
requirement (2) with respect to ϕ, and is homogenous of degree one in ∇ϕ(x, t).
Such terms arise in optimal control and zero sum differential games [14]. The
examples in sections 3 and 4 make use of this term.

The trace of the Hessian (6), which arises in Kolmogorov or Fokker-Plank
equations when working with stochastic differential equations [12]. The matrices
L and R must be continuous. This term appears in the PDEs in section 4.

Discounting terms (7), which arise in some types of optimal control prob-
lems [2] and in hybrid systems with nondeterminism arising from continuous
Markov chain-like switching between discrete modes [8]. The discount factor
λ : Rd × R → [0,+∞) must be continuous in x and t. Section 5 examines the
communication network model from [8], where λ can be thought of as the rate
of switching between modes.

Forcing terms (8), a catch-all for any part of the PDE that is independent
of the derivatives of ϕ. The forcing function must be continuous in x and t and
satisfy (2) with respect to ϕ. In a hybrid system analysis—such as the commu-
nication model in section 5—we solve a collection of HJ PDEs, one PDE for
each mode of the hybrid system. In this case, (8) can be used for components of
one mode’s PDE that depend on the value of another mode’s solution. However,
its use must be carefully considered. Although it may look like the correct way
to handle a running cost in a cost to go type example, section 3 demonstrates
an alternative formulation that does not require a forcing term and maintains
continuity of ϕ, even if the resulting cost to go is not continuous.

Constraints on the sign of the temporal derivative of ϕ (9). Such
constraints impose the condition that the implicit surface represented by the
level sets of ϕ should not grow or should not shrink. These constraints are used
in continuous reach set computations [5, 6].

Constraints on the value of ϕ (10), via the externally supplied continuous
function ψ : Rd × R → R. In hybrid system analysis, such constraints arise in
finding reach-avoid sets [5].

The toolbox is written as a collection of components, so the process of com-
puting an approximate solution to an HJ PDE consists of choosing the appro-

484 I.M. Mitchell and J.A. Templeton

priate components, providing appropriate parameters, calling a single function,
and visualizing the results. Part of the goal of the toolbox’s design is to em-
ulate the experience of using Matlab’s ordinary differential equation (ODE)
solvers as closely as possible, although the complexity of PDEs means that more
parameters must be provided and few defaults are available. Consequently, we
recommend that modification of and/or cutting and pasting from one or more
of the many documented examples is the best way to proceed when analyzing a
new system.

Among the parameters that the user must provide are a grid for the compu-
tational domain, initial conditions for ϕ, order of accuracy of derivative approx-
imations, types of terms (4)–(10), and any parameters needed by those terms.
The toolbox download [4] includes the source m-files for each of the components.
Source codes for all of the examples presented in this paper are also available
at the same web site, some as part of the base toolbox download and some as
separate downloads. Users are encouraged to modify or add components if the
available ones do not cover the case of interest; for example, the input dependent
stochastic term mentioned at the end of section 4.

Hybrid systems are not directly supported by the toolbox, because there is no
consistent modeling language or notation for general nondeterministic, nonlinear
hybrid systems. Until such time as one is available, we hope that the example
in section 5 and those in [7] make clear that analysis of such systems using the
toolbox is still quite feasible even if the discrete dynamics must coded by hand.

3 Cost to Go

For our first example, we look at a time-independent HJ PDE, also called a
stationary [6] or degenerate ellipic [10] equation. Consider a closed target set
T for a system evolving according to dynamics ẋ = f(x, b). The single input
parameter b ∈ B, where B ⊂ Rdb is compact and b(·) : [0, T] → B is measurable,
is attempting to minimize the cost to go to arrive at the target

ϑ(x) = min
b(·)

∫ T

0
�(x(t), b(t))dt, (11)

where the running cost �(x, b) > 0 is continuous and T = min{t ≥ 0 | x(t) ∈ T }
is the time of arrival at the target set. If � ≡ 1, then ϑ(x) is the minimum time
to reach function.

Following standard procedures [2] it can be shown that the cost to go function
is the viscosity solution of the time-independent HJ PDE

Ĥ(x,Dxϑ(x)) = �(x, b) in Rd \ T ,
ϑ(x) = 0 on ∂T ,

Ĥ(x, p) = min
b∈B

p · f(x, b).
(12)

Clearly this PDE is not of a form directly supported by the toolbox—it does not
even contain a temporal derivative. However, following [15] we can solve an aux-

A Toolbox of Hamilton-Jacobi Solvers 485

iliary time-dependent HJ PDE using the toolbox and extract an approximation
of the solution to (12). To summarize those results, let

G(x, ϑ(x),∇ϑ(x)) = 0 in Rd \ T ,
ϑ(x) = 0 on ∂T ,

(13)

be a general first order stationary HJ PDE, and assume that the boundary
conditions are noncharacteristic

d∑
i=1

pi
∂G(x, ϑ, p)

∂pi
�= 0 on ∂T . (14)

A time-dependent HJ PDE is found by making the changes of variables

ϑ(x) ← t and ∇ϑ(x) ← ∇ϕ(x, t)
Dtϕ(x, t)

in (13) and algebraic manipulation of the resulting equation into the form

Dtϕ(x, t) + H(x, t,∇ϕ(x, t)) = 0, (15)

where (14) ensures that this manipulation is locally feasible. The corresponding
initial conditions are ϕ(x, 0) = 0 on ∂T , ϕ(x, 0) < 0 inside T and ϕ(x, 0) > 0
on Rd \ T , with ϕ(x, 0) a continuous and strictly monotone function of distance
to T near its boundary. Typically ϕ(x, 0) is chosen as a signed distance function
for T .

Returning to the cost to go example, we find that the transformation process
described above leads to the time-dependent HJ PDE (15) with Hamiltonian

H(x, t, p) = min
b∈B

p · f(x, b)
�(x, b)

, (16)

which is solved using a combination of terms (3) and (5) from the toolbox. The
condition (14) in this case requires that ∇ϕ(x, 0) · f(x, b) �= 0 on ∂T , which is
equivalent to requiring that the vector field f not be tangent to the target set.

As a concrete example, we consider the minimum time to reach the origin for
a double integrator [16, 17]. The two dimensions are position x1 and velocity x2.
The system parameters are

f(x, b) =
[
x2
b

]
, T =

{[
0
0

]}
,

�(x, b) = 1, B = [−1,+1],
ϕ(x, 0) = ‖x‖2.

After solving (15), we set

ϑ(x) = {t | ϕ(x, t) = 0}. (17)

486 I.M. Mitchell and J.A. Templeton

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

position

ve
lo

ci
ty

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

position
ve

lo
ci

ty

(b)

Fig. 1. Contour plots of the minimum time to reach a target at the origin for a double

integrator with unit magnitude input. The largest contour represents a time to reach

of 2.4. In figure 1(a), the target is the origin. In figure 1(b), the target is the circle of

radius 0.2 centered at the origin

In practice, ϑ(x) is constructed during the integration of (15) so that the entire
time history of ϕ need not be stored at once. Figure 1(a) shows a contour plot
of ϑ(x).

Interestingly, in this particular case (cost to go with no discount), it is possible
to derive the same HJ PDE (15) with Hamiltonian (16) starting from the reach
set theory [6], but without the noncharacteristic assumption (14). The resulting ϕ
function is still continuous in time and space, but it may be constant with respect
to t at fixed x; consequently, we cannot uniquely define ϑ using (17). Choosing
ϑ(x) = min{t | ϕ(x, t) = 0} is a reasonable alternative, although this ϑ will no
longer be continuous (and hence the standard viscosity solution theory does not
apply). Figure 1(b) shows a contour plot of such a ϑ for T = {x | ‖x‖2 ≤ 0.2}.
The contour lines of the approximation become very tightly packed along the
curves where the analytic ϑ is discontinuous.

A variety of different algorithms have been more recently proposed for ap-
proximating minimum time to reach, cost to go or general stationary HJ PDE
solutions for systems with inputs and nonlinear dynamics [18, 19, 20, 21]. Because
the explicit time-dependent solvers of the toolbox are timestep restricted by a
CFL condition, it is likely that the method described above is the slowest of
the algorithms. However, it is quite general—although not derived above, this
method works for zero sum differential games, where (11) and (16) are modified
to include a maximization over an input a ∈ A which may appear in both the
dynamics f and the running cost �. The resulting Hamiltonian is nonconvex in
∇ϕ. Furthermore, because the function ϕ on which derivative approximations
are taken is continuous, this algorithm has the potential for better accuracy than

A Toolbox of Hamilton-Jacobi Solvers 487

those methods which depend on differentiating the sometimes discontinuous ϑ
function directly. Quantitative comparisons are challenging, because implemen-
tations of the other algorithms are not publicly available at the present time.

4 Stochastic Continuous Systems

The nondeterminism in the previous example was entirely due to input param-
eter b (and possibly a) whose value is bounded (and measurable with respect
to time), but otherwise unconstrained. Another class of nondeterminism which
appears often in models involves parameters whose values are drawn probabilis-
tically from some distribution. A popular model of system evolution in such cases
is the stochastic differential equation (SDE)

dx(t) = f(x(t), t, a, b)dt+ σ(x(t), t)dB(t), x(t0) = x0, (18)

where B(t) is a Brownian motion process of appropriate dimension, the drift
term f represents the deterministic component of the system evolution, and
the diffusion term σdB(t) represents the probabilistic component of the system
evolution. The functions f and σ must be continuous in x and t. If present, the
input parameters a and/or b are treated the same manner as in the previous
section. We interpret (18) in the Itô sense [12].

The mechanism by which we analyze the behavior of the system is the stochas-
tic differential game (SDG), whose expected cost is defined as

ϕ(x0, t0) = E

[
inf
b(·)

sup
a(·)

(∫ T

t0

�(x(s), s, a(s), b(s))ds+ g(x(T))

)]
, (19)

where the finite horizon T is a constant. The order of the optimization can be
swapped, and if the optimal choice of the outer input (b in this case) depends
on the choice of the inner input (a in this case), then a suitable definition of
nonanticipative strategies must be introduced [14]. The running cost � and ter-
minal cost g should be continuous in their parameters. The theory of first order
viscosity solutions was extended [22, 23] to determine that this expected cost is
the viscosity solution of the second order PDE

Dtϕ(x, t) + H(x, t,∇ϕ(x, t)) + 1
2 trace

[
σ(x, t)σT (x, t)D2

xϕ(x, t)
]

= 0. (20)

with Hamiltonian

H(x, t, p) = max
a∈A

min
b∈B

[p · f(x, t, a, b) + �(x, t, a, b)] , (21)

and terminal conditions ϕ(x, T) = g(x). If the order of the optimization in (19)
was swapped, so is the order of the optimization in (21). Transformation of (20)
into an initial value problem is accomplished by the change of variables t← T−t.
Provided that the user can perform the static optimization in (21) for fixed x, t
and p, the initial value version of (20) can be solved in the toolbox by combining
terms (3), (5) and (6).

488 I.M. Mitchell and J.A. Templeton

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

position

ve
lo

ci
ty

Fig. 2. Expected cost contours for the double integrator with stochastic viscosity. Dot-

ted lines show the 0.1 (inner circle) and 0.9 (outer circle) terminal cost contours. Dashed

lines show the same contours of the expected cost at T − t = 0.5 for the system without

stochastic viscosity. Solid lines show the expected cost at the same time for the system

with stochastic viscosity

As a quantitative example we return to the double integrator, but this time
impose a stochastically varying force whose standard deviation is proportional
to the velocity (akin to a stochastically varying viscosity)

dx(t) =
[

x2
b− k1x2

]
dt−

[
0

k2x2

]
dB(t).

The goal of the input will be to drive the system to the origin. To reward terminal
states close to the origin and penalize those further away, we use a terminal cost
criterion that is near zero close to the origin, and grows quickly and smoothly
towards one as distance increases. Mathematically,

ϕ(x, T) = g(x) = 1 −
[
1 + exp

(
‖x‖2−ρ

ερ

)]−1
,

where smaller ρ encourages the system closer to the origin, and smaller ε narrows
the region where the cost changes from zero to one. The parameters chosen for
simulation are

�(x, t, b) = 0, B = [−1,+1],
k1 = 0.5, k2 = 1.0,
ρ = 0.2, ε = 0.2.

Results shown in figure 2 compare the expected cost at T − t = 0.5 with (k2 as
above) and without (k2 = 0) stochastic viscosity. Note that the region expected

A Toolbox of Hamilton-Jacobi Solvers 489

to achieve very low cost (ϕ(x, t) ≤ 0.1) shrinks when k2 > 0, but the region able
to achieve at least some cost reduction (ϕ(x, t) ≤ 0.9) grows.

The theory [22, 23] is more general than (18) would imply—it allows σ to
depend on differential game inputs a and b as well; for example, perhaps the
noise is multiplicative in the inputs. The resulting HJ PDE includes optimization
over a and b on a single term containing both ∇ϕ and D2

xϕ. The toolbox does
not presently support such a term, but one could be added.

5 Stochastic Hybrid Systems

For our final application of the toolbox, we choose an example from the growing
theory of stochastic hybrid systems. In particular, we take a model of the trans-
mission window size for the Transmission Control Protocol (TCP) that handles
reliable end-to-end delivery of packets between computers on the Internet [8].
In this model a continuous approximation of the window size evolves determin-
istically in one of several modes of the hybrid system, but jumps stochastically
between the modes at a state-dependent rate.

Following [24] a stochastic hybrid system (SHS) for a set of discrete modes q ∈
Q and continuous states x ∈ Rd is defined by a continuous differential equation
ẋ = f(q, x, t), a collection of m discrete transition maps (q, x) = φj(q−, x−, t)
for j = 1, . . . ,m, and for each transition map a continuous λj(q, x, t) ≥ 0 that
can be thought of as a transition rate for that map.

If the resets φj are identity maps with respect to the continuous state (q, x) =
φj(q−, x, t), it is relatively straightforward to derive a Kolmogorov or Fokker-
Planck like PDE for this system

Dtϕ(q, x, t) + ∇ϕ(q, x, t) · f(q, x, t)

+
m∑

j=1

λj(q, x, t) (ϕ(φj(q, x, t), t) − ϕ(q, x, t)) = 0
(22)

This PDE can be solved with the toolbox using terms (3), (4), (7) and (8) on
a vector of level set functions, with one function and PDE for each mode q.
Although it looks like a discounting term, λj(q, x, t)ϕ(φj(q, x, t), t) is treated as
a forcing function with (8) because it depends on the value of another mode’s
ϕ. Given fixed finite horizon T > 0 and continuous terminal condition ϕT (q, x),
the solution of (22) at t0 < T is

ϕ(q0, x0, t0) = E[ϕT (q(T), x(T))] where q(t0) = q0 and x(t0) = x0.

Extensions of this simplistic model to nonidentity reset maps and to stochastic
continuous dynamics are explored in [8]. The PDEs thereby identified have so
far been implementable using components of the toolbox.

To demonstrate the process of implementing such PDEs in the toolbox, we
use the first TCP example from [8]. In this model, the files to be transmitted
are drawn from a mixture of M exponential distributions characterized by their

490 I.M. Mitchell and J.A. Templeton

Fig. 3. Stochastic hybrid system model of TCP flow. The only continuous variable is

window size w, whose continuous dynamics are deterministic. Nondeterminism enters

through the switches, which occur stochastically at rate λ and modify the window size

according to reset map φ. Modes SSi and CAi and the corresponding mode switches

will be replicated for each file size i = 1, . . . , M . This model is taken from [8]

mean file sizes ki, i = 1, . . . ,M (in packets). The TCP connection has three
basic modes: no current transmission (OFF), slow-start (SS), and congestion
avoidance (CA). Because the rate at which transmissions are completed depends
on the size of the file being transmitted, however, the SHS has a copy of each of
the latter two modes (SSi and CAi) for every element of the file size distribution;
consequently, there are 2M + 1 modes in the SHS.

A sketch of the SHS is shown in figure 3 (for M = 1). In every mode, the
only continuous state variable is the transmission window size w (in packets),
whose deterministic dynamics depend on the mode

f(OFF, w) = 0, f(SSi, w) =
(log 2)w
nackRTT

, f(CAi, w) =
1

nackRTT
,

where nack is the number of packets acknowledged for each ack packet received
and RTT is the round trip time (in seconds). There are three types of discrete
mode switches. From OFF to each of the CAi modes there is a switch correspond-
ing to transmission initiation with

λi
i(OFF, w) =

pi

τoff
, φi

i(OFF, w) = (CAi, w0),

where pi is the probability that the size of the next file will be drawn from the
distribution of mean size ki (

∑
i pi = 1), τoff is the average quiescent period

(actual quiescent times are drawn from an exponential distribution with this
mean) and w0 is the initial window size. From CAi and SSi to the same SSi

there are switches corresponding to dropped packets

λd
i (q, w) =

pdropw

RTT
, φd

i (q, w) = (SSi, w/2), q ∈ {SSi,CAi},

A Toolbox of Hamilton-Jacobi Solvers 491

where pdrop is the probability of dropping a packet. Finally, from CAi and SSi to
OFF there are switches corresponding to finishing a transmission

λf
i(q, w) =

w

kiRTT
, φf

i(q, w) = (OFF, 0), q ∈ {SSi,CAi}.

The total is 5M distinct switches. For more details on the SHS, see [8, 24].
The variable of interest in this model is the transmission rate r = w/RTT.

Because the reset maps affect the continuous state, we must solve a modified
version of (22), although the same basic terms are involved. To determine the
mean rate over a collection of modes Q′ ⊂ Q, we use terminal conditions

ϕT (q, w) =

{
r = w

RTT , if q ∈ Q′;
0, otherwise.

(23)

We examine 3 + M different cases: Qtotal = Q \ OFF, QSS = {SSi}M
i=1, QCA =

{CAi}M
i=1, and for each i = 1, . . . ,M a Qi = {SSi,CAi}.

Because the window size is reset upon completion of the transmission of each
file, we can expect that along any trajectory of the system the effect of that
trajectory’s initial window size will eventually disappear. Therefore, to find the
mean rate we solve the appropriate HJ PDEs until they converge to a constant
value, which will be the expected long term rate over the modes in Q′. The
standard deviation of the rate σ(r) is found by substituing r2 for r in (23) and
the formula σ2(r) = E[r2] − E[r]2. We calculate the rate mean and standard
deviation for each of the 5 cases (total, SS, CA, small files, and medium files)
over a variety of packet drop rates using the parameters for the M = 2 case
from [8]

τoff = 5 sec, RTT = 0.05 sec,
w0 = 0.693, nack = 1,

k1 =
3.5
ps
, k2 =

246
ps

,

p1 = 0.8887, p2 = 0.1113,

ps =
1500
1024

, pdrop ∈ [3(10−4), 3(10−1)],

where ps is the packet size in kilobytes. Results are shown in figure 4, and
correspond well with those in [8–figure 4].

While the procedure outlined above is much more computationally intense
than the analytic formulas deduced in [8], it is more general in several respects.
First, as the SHS theory develops the numerical solution can be extended through
other terms in the toolbox to treat stochastic continuous evolution and po-
tentially evolution dependent on control and/or disturbance input parameters.
Second, it provides a method of checking the analytic solution, which made as-
sumptions regarding the third moment of the rate distribution in order to find
closed form equations.

492 I.M. Mitchell and J.A. Templeton

10
−3

10
−2

10
−1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

drop probability

ra
te

 (
pa

ck
et

s/
se

c)

rate mean

total
SS
CA
small files
medium files

10
−3

10
−2

10
−1

0

10

20

30

40

50

60

70

80

drop probability

ra
te

 (
pa

ck
et

s/
se

c)

rate standard deviation

total
SS
CA
small files
medium files

Fig. 4. Expected rates and standard deviations as estimated by the toolbox for the

stochastic hybrid system model of TCP flow, using the two component model of transfer

file sizes. Compare with [8–figure 4]

6 Conclusions

We have demonstrated several applications of HJ PDEs to the analysis of non-
deterministic continuous and hybrid systems, and how the Toolbox of Level Set

A Toolbox of Hamilton-Jacobi Solvers 493

Methods can be used to approximate the solution of these nonlinear PDEs. Fur-
thermore, we have only touched on a small fraction of the problems in which such
PDEs could prove useful. Examples of extensions include SDGs with boundary
conditions [12, 10] and SHSs where both the continuous and discrete evolution
is stochastically driven [24, 25, 26, 27]. We encourage others to modify and con-
tribute to the toolbox, and we look forward to adding appropriate new features
as the theory advances and compelling examples become available.

Acknowledgements. The first author would like to thank Andrew L. Zimdars
for collaborative work examining HJ PDEs for stochastic continuous and hybrid
systems, and Professor João P. Hespanha for providing parameter values used
in his SHS model of TCP.

References

1. Isaacs, R.: Differential Games. John Wiley (1967)

2. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of

Hamilton-Jacobi-Bellman equations. Birkhäuser, Boston (1997)

3. Souganidis, P.E.: Two-player, zero-sum differential games and viscosity solutions.

In Bardi, M., Raghavan, T.E.S., Parthasarathy, T., eds.: Stochastic and Differen-

tial Games: Theory and Numerical Methods. Volume 4 of Annals of International

Society of Dynamic Games. Birkhäuser (1999) 69–104

4. http://www.cs.ubc.ca/∼mitchell/ToolboxLS.
5. Tomlin, C., Mitchell, I., Bayen, A., Oishi, M.: Computational techniques for the

verification of hybrid systems. Proceedings of the IEEE 91 (2003) 986–1001

6. Mitchell, I., Bayen, A., Tomlin, C.J.: A time-dependent Hamilton-Jacobi formula-

tion of reachable sets for continuous dynamic games. Submitted to IEEE Trans-
actions on Automatic Control (2004)

7. Mitchell, I.M.: A toolbox of level set methods. Technical Report TR-2004-09,

Department of Computer Science, University of British Columbia, Vancouver, BC,

Canada (2004)

8. Hespanha, J.P.: Stochastic hybrid systems: Application to communication net-

works. In Alur, R., Pappas, G.J., eds.: Hybrid Systems: Computation and Con-

trol. Number 2993 in Lecture Notes in Computer Science. Springer Verlag (2004)

397–401

9. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer-

Verlag (2002)

10. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second

order partial differential equations. Bulletin of the American Mathematical Society

27 (1992) 1–67

11. Crandall, M.G., Evans, L.C., Lions, P.L.: Some properties of viscosity solutions of

Hamilton-Jacobi equations. Transactions of the American Mathematical Society

282 (1984) 487–502

12. Øksendal, B.: Stochastic Differential Equations: an Introduction with Applications.

Sixth edn. Springer (2003)

13. Mangel, M.: Decision and Control in Uncertain Resource Systems. Academic Press,

Orlando, Fl (1985)

494 I.M. Mitchell and J.A. Templeton

14. Evans, L.C., Souganidis, P.E.: Differential games and representation formulas for

solutions of Hamilton-Jacobi-Isaacs equations. Indiana University Mathematics

Journal 33 (1984) 773–797

15. Osher, S.: A level set formulation for the solution of the Dirichlet problem for

Hamilton-Jacobi equations. SIAM Journal of Mathematical Analysis 24 (1993)

1145–1152

16. Athans, M., Falb, P.L.: Optimal Control. McGraw-Hill, New York (1966)

17. Broucke, M., Benedetto, M.D.D., Gennaro, S.D., Sangiovanni-Vincentelli, A.:

Optimal control using bisimulations: Implementation. In Benedetto, M.D.D.,

Sangiovanni-Vincentelli, A., eds.: Hybrid Systems: Computation and Control.

Number 2034 in Lecture Notes in Computer Science. Springer Verlag (2001) 175–

188

18. Tsai, Y.H.R., Cheng, L.T., Osher, S., Zhao, H.K.: Fast sweeping methods for

a class of Hamilton-Jacobi equations. SIAM Journal on Numerical Analysis 41
(2003) 673–694

19. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-

Jacobi equations: Theory and algorithms. SIAM Journal on Numerical Analysis

41 (2003) 325–363

20. Cardaliaguet, P., Quincampoix, M., Saint-Pierre, P.: Optimal times for constrained

nonlinear control problems without local controllability. Applied Mathematics and

Optimization 35 (1997) 1–22

21. Falcone, M.: Numerical solution of dynamic programming equations. In: Optimal

Control and Viscosity Solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser

(1997) Appendix A of [2].

22. Ishii, H.: On uniqueness and existence of viscosity solutions of fully nonlinear

second-order elliptic PDEs. Communications on Pure and Applied Mathematics

42 (1989) 15–45

23. Fleming, W.H., Souganidis, P.E.: On the existence of value functions of two-player,

zero-sum stochastic differential games. Indiana University Mathematics Journal

38 (1989) 293–313

24. Hespanha, J.P.: A model for stochastic hybrid systems with application to com-

munication networks. Submitted to the International Journal of Hybrid Systems
(2004)

25. Ghosh, M.K., Arapostathis, A., Marcus, S.I.: Ergodic control of switching diffu-

sions. SIAM Journal of Control and Optimization 35 (1997) 1952–1988

26. Filar, J.A., Gaitsgory, V., Haurie, A.B.: Control of singularly perturbed hybrid

stochastic systems. IEEE Transactions on Automatic Control 46 (2001) 179–190

27. Kushner, H.J., Dupuis, P.: Numerical Methods for Stochastic Control Problems in

Continuous Time. Springer-Verlag, Berlin, New York (1992)

On Transfinite Hybrid Automata

Katsunori Nakamura and Akira Fusaoka

Department of Computer Science,

Ritsumeikan University,

Nojihigashi, Kusatsu-city, SIGA, Japan 525-8577

fusaoka@cs.ritsumei.ac.jp

Abstract. In this paper, we propose a new method to deal with hy-

brid systems based on the concept of the nonstandard analysis and the

Büchi’s transfinite automata. An essential point of the method is a gener-

alization of hybrid automata with hyperfinite iteration of an infinitesimal

transition in ∗IR. This nonstandard model of hybrid automata allows dis-

crete but hyperfinite state transition, so that we can describe and reason

about the interaction of the continuous and discrete dynamics in the al-

gebraic framework. In this enlarged perspective of the hybrid automata,

we discuss about the asymptotic orbit of the dynamics that is peculiar

to the hybrid systems such as Zeno.

1 Introduction

A hybrid automaton is a well known as a standard framework in the formal-
ization of the hybrid system in which continuous and discrete dynamics are
interacting each other [1, 13]. Especially, it has been providing a useful basis for
the analysis or verification for the dynamical property of the hybrid systems such
as the automotive engine [2] or the robotics [9]. However, the hybrid automaton
has several limitations due to its simplicity and it is sometimes insufficient for
the fully treatment of hybrid dynamics. Among them, we focus on two problems:
the description of continuous dynamics and Zeno problem. The continuous dy-
namics is described in the form of differential equations in the hybrid automata.
This is one of advantages of the hybrid automata because many mathematical
methods and techniques are available in the fully established fields of control
theory. However, it is also one of reasons for the difficulty in the logical or me-
chanical treatment of hybrid dynamics. In the automatic synthesis or automatic
verification for the engine controllers, for example, the axiomatic framework is
necessary for the differential equation of the combustion dynamics in cylinder.
But we have no efficient reasoning system till now for the analysis and the real
number theory which is actually available for the complex differential equations.
On the other hands, so-called Zeno problem is related to the state transition of
automata. Namely, it is incomplete in the meaning that the limiting state can-
not be defined for the infinite sequence of discrete state transitions. The Zeno is
a phenomenon in which the infinite iteration of a discrete value change occurs
in the finite time that is familiar not only in the industrial hybrid system but

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 495–510, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

496 K. Nakamura and A. Fusaoka

also in our daily life [8, 12]. For example, a bouncing ball shows the Zeno orbit
in which a ball becomes to be rest in the finite time after the infinite iteration
of bouncing (discontinuous change of velocity). It is often pointed out that the
Zeno is a significant but hard problem from the standard treatment of the hy-
brid system, so that the non-Zeno condition is prerequisite assumption at many
studies of hybrid system. There have been many studies to deal with Zeno in
the hybrid automata [14, 17, 6], and the timed automata [3].

In this paper, we propose a new type of hybrid automata called a transfinite
hybrid automaton, which is a generalization of the standard one at two points.
First, we use the infinite recurrence equation instead of the differential equa-
tion based on the nonstandard analysis so that the whole behaviors of systems
including the continuous dynamics are represented by the discrete transition of
states. Secondly, the construction of Büchi’s transfinite automaton is introduced
in the frame of hybrid automata, which allows the infinite transitions among
the set of states [5]. In comparison with other methods, the transfinite hybrid
automaton has the following advantages:

(1) Since the continuous change is defined by the sequence of the actions with
the infinitesimal effect in the very small duration, we can deal with both the
continuous and discrete dynamics uniformly in the discrete but hyperfinite state
transition paradigm. Therefore, we need not deal with the derivative and inte-
gration. Instead, we use only arithmetic and simple algebra for IR and ∗IR so
that it is appropriate for the logical treatment of the hybrid system.
(2) The completeness in the space of discrete and continuous dynamics is natu-
rally introduced so that it allows to deal with the fixed point, for example, an
asymptotic behavior toward limits such as Zeno.

1.1 A Bouncing Ball

Let consider the motion of a bouncing ball. It is described by two variables x, v
which denote the height and velocity of a ball.

(a) Bouncing actions a − f

(b) Model of bouncing

ball as Hybrid

Automaton

Fig. 1. Bouncing ball system

Figure 1 gives the motion of the bouncing ball and its corresponding hybrid
automaton. In this paper, we keep the word “state” for the automaton, and use

On Transfinite Hybrid Automata 497

Fig. 2. Model of bouncing ball as Transfinite Automaton

the word “situation” to denote the physical status of the system. In Figure 1(b),
the system continuously evolves within the state q0 according to the differential
equation while it satisfies the invariant condition in q0. The state transition
occurs whenever the condition is violated. Although this model gives a simple
and elegant formulation, it is sometimes weak. For example, the state transition
eventually halts after the infinite repetition of bouncing but we cannot find
out this property from the visual representation. Figure 2 gives the automaton
proposed here for the bouncing ball. We use two types of transition. The first
is the usual transition represented by the arc from one state to another. The
second type is represented by the arc from a set of states to another state, which
means that after infinite visits to all states of the set, the machine transfers to
the designated state. Every transition is instantaneous. We denote by ∂a the
infinitesimal segment of the action a. Therefore, the ball moves to the situation
q1 after iterating the small falling ∂a infinitely at q0. The action b represents
the instantaneous motion of the ball bouncing. In the situation q2, it ascends
toward the highest point by repeating ∂c and reaches to the point at q3. Then it
moves to falling again. After the infinite iteration of these behaviors, the ball is
at rest in q4 and repeats the halting action forever in q5. The rational expression
((∂a)ωb(∂c)ωd)ωe(∂f)ω gives the action schema for the behavior of the ball.

1.2 Outline of the Methodology

The proposed method is essentially to build the transfinite automata which sim-
ulate the standard hybrid automata. It is schematically illustrated in Figure 3.
We have two worlds, ZZ (a world of a hybrid automata A moving in IR) and
∗ZZ(a world of a transfinite hybrid automata ∗A moving in ∗IR). The two map-
pings α and β gives the simulation condition. Namely, we can use β(∗A(α(s1)))
in ∗ZZ instead of s2 = A(s1) in ZZ.

From a logical point of view, this method corresponds to the nonstandard
model of hybrid automata. Let’s assume that an action is decomposable into
a sequence of n action-steps via the equi-distant discretization. We describe
the dynamics of each action-step in the standard world ZZ. We denote by L the
logical closure of the axioms and theorems in ZZ. We re-interpret the all formulas

498 K. Nakamura and A. Fusaoka

∗A
World ∗ZZ ∗s1 �∗s′

α β

World ZZ s1 � s2 = ◦(*s′)

A

�

�

Fig. 3. Simulation diagram

of L in ∗IR by the mapping α. By this transfer, all formulas in L are transformed
to the formulas in ∗IR. We call it *L. For example n is transfer to the infinite
integer ∗n. Since ∗IR allows a discrete but hyperfinite state transition, ∗A gives
a new situation as the result of performing the infinitesimal action or the infinite
iteration of action. Since the situations in ∗ZZ contains infinitesimal or infinite
values of system variables and these values have no actual meaning from the
physical point of view, the nonstandard situation must be pulled back to the
standard one by the mapping β. The mapping β must designate a standard
situation which is close to the given nonstandard situation.

Note that *L is syntactically equivalent to L because we alter only its in-
terpretation. So that all theorems in L hold even in *L(Transfer principle [16]).
This is an essential point of this method.

2 Nonstandard Discretization

In this paper, we treat the continuous dynamics in terms of hyperfinite recur-
rence equations. Therefore, we introduce the infinite division of an action with
continuous motion based on the nonstandard analysis. The infinitesimal segment
of action is called an infinitesimal action. We prove that any standard action is
equivalent to an infinite iteration of the infinitesimal action.

2.1 Nonstandard Real ∗IR

The nonstandard real number ∗IR is constructed from the real number IR via
the ultra product formation [16].

Definition 1 (Ultra filter). Let F be a family of the subsets of IN which satisfy
the following conditions, where IN is the set of all natural numbers.

(1) IN ∈ F , φ /∈ F
(2) if A ∈ F and A ⊂ B then B ∈ F
(3) if A ∈ F and B ∈ F then A ∩B ∈ F
(4) for any A ⊂ IN, A ∈ F or IN −A ∈ F
(5) if A ⊂ IN is finite then IN −A ∈ F

F is called an ultra filter. For example, the set of all co-finite sets {IN − A |
A is finite } is an ultra filter.

On Transfinite Hybrid Automata 499

Definition 2 (Hyperreal number). We fix an ultra filter F .

(1) Let W denote a set of sequences of real numbers (a1, a2, · · ·). The nonstan-
dard real number ∗IR is defined by introducing the following equivalence re-
lation into W

(a1, a2, · · ·) ∼ (b1, b2, · · ·) ⇔ {k | ak = bk} ∈ F

Namely, *IR = W/ ∼. We denote the equivalence class of (a1, a2, · · ·) by
[(a1, a2, · · ·)].
This means that the hyperreal number is regarded as the infinite sequence of
real numbers ignoring the difference of finite part.

(2) the nonstandard integer ∗IN ⊆ ∗IR is also introduced via the ultra product
formation. A set A ⊆ ∗IN is hyperfinite if there exists N ∈ ∗IN such that for
every x ∈ A, x < N .

We distinguish the nonstandard variables and function symbols from the stan-
dard one by attaching * to them, although it is omitted in the clear cases. The
usual real number a is treated by [(a, a, a, ...)], so that *IR contains IR itself. An
element of IR in *IR is called a standard number. For the elements of *IR, we
can define arithmetic operations and relations in the following way [10].

The usual arithmetic operations such as +,−,×, / are given by

[(a1, a2, ...)] + [(b1, b2, ...)] = [(a1 + b1, a2 + b2, ...)]

The usual relations such as < are given by

[(a1, a2, ...)] < [(b1, b2, ...)] ≡ {n | an < bn} ∈ F

Note that an element [(1, 1
2 ,

1
3 , ...)] is smaller than any real number [(a, a, ...)],

namely it is an infinitesimal. Also, a number ω = [(1, 2, 3, ...)] is infinite.

Definition 3 (Closeness). We define a relation a ≈ b if the distance from a
to b is infinitesimal, that is

(∀a, b ∈ *R)[a ≈ b iff a− b is infinitesimal]

A relation a ≈ b is an equivalence relation.
From the construction of *IR, every standard function f(x) is extended to the

nonstandard function *f(x), which holds any properties of the original function.
This is called the transfer principle. Dual to the transfer principle, the finite hy-
perreal number satisfying a certain property has the corresponding real number
with this property [10].

Theorem 1 (Transfer Principle). If a property holds for all real numbers,
then it holds for all hyperreal numbers.

Theorem 2 (monad, shadow). For every finite number a ∈ *IR, there is only
one standard number b ∈ IR such that a ≈ b. b is called a monad of a and denoted
by b = ◦a.

500 K. Nakamura and A. Fusaoka

The continuity, differentiation and Riemann integral of the IR-valued function is
defined in the *IR in the following way.

Definition 4 (Continuity, Differentiation and Riemann integral).

(1) A standard function f(x) is continuous at a standard number x if and only
if for all y ∈ *IR, *f(y) ≈ *f(x) if y ≈ x.

(2) A standard function f(x) is differentiable at a standard number x if and only
if there exists some d ∈ IR such that for every nonzero infinitesimal ε,

1
ε
[*f(x+ ε) − f(x)] ≈ d

(3) Let A standard function f(x) be continuous over [a, b]. For the nonstandard
sequence, x0 = a, x1, x2 · · · , xω = b such that xi+1 − xi = b−a

ω for every i,∫ b

a

f(x)dx = ◦

(
ω−1∑
k=0

*f(xk)
b− a

ω

)

2.2 Description of the Dynamics

Situation: The behavior of the hybrid system is represented in the terms of the
situation and the action. The situation is the physical status of the system at each
time instance and the action causes the time evolution via changing the situation.
The situation is described by the vector of IR-valued variables (x1, x2, · · · , xn).
We denote the set of situations by Sit. We assume that the situation contains
a special variable time. The set of action is Act ⊆ Sit × Sit. We define the
duration of action a at the situation s as τ(a, s) = time(a(s)) − time(s).

The nonstandard extension of situation is introduced via the similar way to
*IR.

Definition 5 (Nonstandard situation). We fix an ultra filter F . Let s1 =
(x1

1, x
1
2, ..., x

1
m), s2 = (x2

1, x
2
2, ..., x

2
m), · · · be a sequence of situations. Then the

nonstandard situation is defined by

*Sit = {([(x1
1, x

2
1, · · ·)], [(x1

2, x
2
2, · · ·)], · · · , [(x1

m, x
2
m, · · ·)] >

| {n | (xn
1 , x

n
2 , · · · , xn

m) ∈ Sit} ∈ F}

From this definition, we can always find the limiting situation [(s1, s2, ...)] ∈ *Sit
of any sequence of standard situations s1, s2, ... ∈ Sit . Namely,

[(s1, s2, ...)] = ([(x1
1, x

2
1, ...)], [(x

1
2, x

2
2, ...)], ..., [(x

1
m, x

2
m, ...)])

where sn = (xn
1 , x

n
2 , ..., x

n
m) for each n

Action: A dynamical system can be characterized generally as an infinite it-
eration of an action a, namely (s, a(s), a(a(s)), ...). In the following theorem, we
prove that there always exists the nonstandard situation which is the result of
infinite iteration of action.

On Transfinite Hybrid Automata 501

Theorem 3 (Infinite iteration of action). For any standard action a and
any situation s ∈ Sit, aω(s) ∈ *Sit for ω = [(1, 2, ...)].

Proof. Clearly, aω(s) = [(a1(s), a2(s), ...)] by the definition. From Definition 5,
aω(s) ∈ *Sit.

Definition 6 (Fixed point). An action a has a fixed point if and only if

∀n ∈ IN[aω(s) ≈ aω+n(s)]

A fixed point s is attractive if and only if there exists Z ⊆ *Sit such that

s ∈ Z and ∀s′ ∈ Z[s′ �= s→ (∀n ∈ IN[an(s′) ∈ Z]) ∧ aω(s′) ≈ s]

The fixed point s is repelling if and only if there exists Z ⊆ *Sit such that

s ∈ Z and ∃n ∈ IN∀s′ ∈ Z[s′ �= s ∧ an(s′) �∈ Z]

A fixed point s = aω(s0) is Zeno related to a, x if and only if

∃r ∈ IN[x(s) �≈ x(ar(s)) ∧ time(s) is finite

Definition 7 (Equi-time division of action). A standard action a is
n−divisible for any n ∈ N if there exists an action an such that an

n(s) = a(s)
and τ(an, sk) is constant for every sk = an

k(s) for k < n.

Theorem 4 (Infinite division of action). Assume that the action a is n-
divisible for every n. There exists ∂a ∈ ∗Act such that ∂ak(s) ∈ *Sit for each
k = 1, 2, ..., ω.

Proof. Let ξ(n, k) = an
k(s) for finite n, k. We define nonstandard situations

ξ(ω, k) = [(ξ(1, k1), ξ(2, k2), ..., ξ(n, kn), ...)], where kω = k and if km < m
2 then

km−1 = km else km−1 = km − 1.
By the definition 5, ξ(ω, k) ∈ *Sit. And also,

time(ξ(ω, k)) = [(time(ξ(1, k1), time(ξ(2, k2), ...,)] = time(s) + [(k1,k2,...)]
ω τ .

Therefore, we can conclude ξ(ω, k) = ∂ak(s).

In the following, we denote the duration of ∂a by ν, that is ν = τ
ω for the

duration τ of action a.
Clearly, a(s) = ∂aω(s). Namely, we can regard any standard action as an

infinite iteration of the infinitesimal action.

2.3 Nonstandard Recurrence Equation

The continuous parts of the hybrid dynamics can be easily transformed to the
hyperfinite recurrence equations via the infinite iteration of the infinitesimal
action if their differential equations satisfy the Lipschitz condition.

502 K. Nakamura and A. Fusaoka

Theorem 5 (Discretization). Let f : IRn → IRn be a standard function which
satisfies the Lipschitz condition: |f(x) − f(y)| < c|x− y|
Let ∂a be an infinitesimal action with the duration ν = T

ω such that
∂a : x′ = x+ f(x)ν
Then the function g(t) = ◦z(t) where z(t) = (∂a)i(x0) for (i+ 1)ν > t ≥ iν
gives a solution at t ∈ [0, T] for

dx

dt
= f(x); x(t0) = x0

Proof. Let ξi = (∂a)i(x0), namely ξi+1 = ξi + f(ξi)ν.
|ξi+1−ξi| = |ξi +f(ξi)ν−(ξi−1 +f(ξi−1)ν)| < |ξi−ξi−1|+ |f(ξi)ν−f(ξi−1)ν)| <
(1 + cν)|ξi − ξi−1|. Therefore,
|ξi+1 − ξi| < (1 + cν)i|ξ1 − ξ0| = (1 + cT

ω)
t
T ω|ξ1 − ξ0| < ecT |f(ξ0)|ν ≈ 0. Namely,

ξi+1 ≈ ξi, so that z(t) ≈ z(t′) if t ≈ t′. This means that z(t) is an S-continuous
function. It is known that every S-continuous function h(t) has a continuous
function ◦h(t) as a shadow [10]. Therefore, there exists a standard continuous
function g(t) = ◦z(t). Clearly, g(t0) = x0 and

∫ t

t0

f(x)dt ≈
i∑

k=0

f(ξk)ν = ξi − ξ0 ≈ ◦z(t) − ◦z(t0) = g(t) − g(t0)

Example 1. Consider the differential equation of the action a for the situation
(x, time)

dx

dt
+ kx = p, x(s0) = x0, time(s0) = 0

Let assume that we want to predict the situation s′ after t seconds. We deal with
this differential equation by using the piecewise constant model. The dynamics
for the variable x is described by an action ∂a with duration ν.
For every situation si,
x(si+1)) = (1 − kν)x(si) + pν, time(si) = time(si) + ν for i = 1, 2, ..., ω
where ν = t

ω .
The desired situation s′ is given by sω. By mathematical Induction rule (the

mathematical induction is also available in ∗IN [16]), we have

x(sω) = x0(1 − k
t

ω
)ω

We must find out the standard value near x(sω). We use a knowledge related to
infinitesimal arithmetic: (1 − 1

n)n ≈ e−1 if n is infinite. From this equation, we
have (1 − k t

ω)ω ≈ e−kt

Finally, we have the desired situation s′ = (x0e
−kt, t)

Note that we use only the simple arithmetic rules for real and hyperreal
numbers in the above argument.

On Transfinite Hybrid Automata 503

3 Transfinite Hybrid Automata

Büchi introduces the automaton on the infinite words indexed by ordinals [5],
which is a generalization of the usual automaton. Namely, Büchi’s transfinite
automaton contains the transition rules for the limit ordinals in addition to the
usual successor transitions. We use this construction to define the automata
which recognize the hyperfinite words whose letters are indexed by the nonstan-
dard integer. Since the hyperfinite integer has a similar linear and discrete order
structure to the ordinals, the idea of limit transitions can be used also to the
automata on hyperfinite words. Although the hybrid automaton defined here
is based on the nonstandard integers rather than ordinals, we call it ”transfi-
nite” hybrid automata because it inherits the limit transition rules from Büchi’s
transfinite automaton.

In the following, we use n instead of ∗ n to represent the hyper integer, that
is n ∈ ∗IN).

Definition 8 (word). Let Σ is a finite set of letters (called alphabet).

(1) For a (nonstandard) integer n, the n-sequence of letters a1a2, · · · an is called
a word on Σ with the length n. ε is the word with the length 0.

(2) For the sets U, V of words of Σ, we define the rational operation
U + V = {x | x ∈ U ∪ V }
U · V = {x1x2 | x1 ∈ U ∧ x2 ∈ V }
Uω = {xω | x ∈ U}
U† = {ε}∪U ∪U ·U · · ·∪Uω · · · , U† is the nonstandard extension of closure
U∗

(3) S ⊆ Σ† is called rational if and only if it can be obtained from finite subsets
using a hyperfine number of rational operations.

Definition 9 (Transfinite Hybrid Automaton).
A transfinite hybrid automaton A is an 8-tuple (Q,A,E, I, F,X,X0, D) where

1. Q is the finite set of states.
2. A is the finite set of infinitesimal actions.
3. E is the finite set of transition rules ; E ⊆ (Q×A×Q) ∪ (P(Q) ×Q)

where (P, q) �∈ E if q ∈ P
4. I ∈ Q is the initial state. X0 ∈ X is the initial situation.
5. F ⊂ Q is the set of the final states.
6. For the sequence of states q1, q2, · · · , qn,

Inf({q1, q2, · · · , qn}) = {q | {k | qk = q} is infinite }
7. X ⊆ IRm where m ∈ ∗IN is the set of situations. Namely, x = (x1, x2, · · · , xm)

∈ X is a vector of the continuous or discrete values of physical entities. We
use x′ = (x′

1, x
′
2, · · · , x′

m) ∈ X ′ for the result situation of the action. The
situation contains the special variable time or t.

8. D is the set of dynamics for each action of A. The dynamics of each action is
given by specifying its precondition and effect in the form of p(x) → x′ = f(x)
where f(x) is given by the algebraic formula formed from the arithmetic
operations of ∗IR.

504 K. Nakamura and A. Fusaoka

Example 2 (A bouncing ball automaton). (Figure 2)
A = ({q0, q1, q2, q3, q4, q5},E, q0, {q5}, {(x, v, t)}, D) where
E = {(q0, ∂a, q0), (q1, b, q2), (q2, ∂c, q2), (q3, d, q0), (q4, e, q5), (q5, ∂f, q5),
({q0}, q1), ({q2}, q3), ({q0, q1, q2, q3}, q4)}
The dynamics D for each action is
a : x �≈ 0 → (x′ = x− vτ(∂a); v′ = v − gτ(∂a); t′ = t+ τ(∂a);)
b : x ≈ 0 → (x′ = x; v′ = −vρ; t′ = t+ τ(b);), where 0 < ρ < 1
c : v �≈ 0 → (x′ = x− vτ(∂c); v′ = v − gτ(∂c); t′ = t+ τ(∂c);)
d : v �≈ 0 → (x′ = x; v′ = −v; t′ = t+ τ(d);)
e : x ≈ 0 → (x′ = 0; v′ = 0; t′ = t+ τ(e);)
f : x = 0 → (x′ = 0; v′ = 0; t′ = t+ τ(∂f);)

Definition 10 (Transition).

(1) A word α = a1a2 · · · an ∈ A† has a transition (q0, q1, · · · qn) of the automaton
A = (Q,A,E, q0, F,X,X0, D) if and only if there exists either (qi, ai, qi+1) ∈
E or {qi1, qi2, · · · , qir} ⊆ Inf({q0, q1, · · · qi}) such that ({qi1, qi2, · · · , qir},
qi+1) ∈ E

(2) α = a1a2 · · · an ∈ A† is recognizable if its transition (q0, q1, · · · qn) ends at
the final state qn ∈ F . The set of all recognizable words of A is called the
language of A which we denote by L(A).

Kleene’s theorem gives the fundamental result that the language L(A) of a
finite automaton A is equivalent to some rational expression. This correspond-
ing theorem is extended to the case of the transfinite automata [7, 18]. For the
transfinite automata defined here, the theorem also holds because of the straight-
forward application of the transfer principle in the nonstandard analysis.

Theorem 6 (Action schema). For given transfinite hybrid automata A =
(Q,E, q0, F,X,X0, D), there exists the rational expression E, E = L(A). A set
AS ⊆ A† is called a set of an action schema if it is rational.

Theorem 7 (Boolean operation of automata). Let A,B be two transfinite
hybrid automata over A. There exist transfinite hybrid automata which recognize
L(A ∪ B),L(A ∩ B), A† −A ∪ L(B).

Definition 11 (Execution).

(1) nonstandard execution. Let α = a1a2, · · · an ∈ AS be an action schema of
A = (Q,E, q0, F,X,X0, D) with the transition q0, q1, · · · qn. α is ∗−executable
if and only if there exists a sequence of situations w0, w1, · · · , wn ⊆ X such
that
(a) w0 = X0
(b) for all i = 1, 2, · · · , n

case 1: If (qi, ai, qi+1) ∈ E and p(x(wi)) holds where p(x) is the precon-
dition of action ai, then x(wi+1) = x′(wi).
case 2: if ({qi1, qi2, · · · , qir}, qi+1) ∈ E and x(wij) ≈ x(wik) for any r ≥
i, j > 0, then x(wi+1) = x(wij) for some j = 1, 2, · · · , r.

On Transfinite Hybrid Automata 505

(2) execution in the standard sense. Note that each situation wi of α is
always defined over ∗IR if it is ∗−executable. However, it is feasible only
when all values in wi have their shadows in the standard world. Namely, α
is executable in the standard sense if and only if it is ∗−executable and the all
situations w0, w1, · · · , wn ⊆ X have finite values. Especially, time(wij) must
be finite for each ij in every limit transition ({qi1, qi2, · · · , qir}, qi+1) ∈ E.
This means that a state is actually reachable after the limit transition only
when the machine spent finite time for the previous ω-iteration).

4 The Description of Hybrid System

4.1 Alternative Water Tank

Consider a coupling of two water tanks [14]. Let x, y denotes the level of water
in Tank A and Tank B. We assume that the tap in the bottom of each tank
discharges the water at a rate proportional to the level of each tank. Also the
constant flow denoted by p of the water is poured exclusively to either Tank A
(we call the state A) or Tank B (the state B) at each time (Figure 4).We use
the control strategy.

if st = A ∧ x ≥ h ∧ y < h then switch to B
if st = B ∧ y ≥ h ∧ x < h then switch to A

The levels of water x, y are described below: (where st is the state of Tank)

if st = A then
dx

dt
+ kx− p = 0 ∧ dy

dt
+ ky = 0

if st = B then
dx

dt
+ kx = 0 ∧ dy

dt
+ ky − p = 0

The corresponding hybrid automaton is given in Figure 5).

Fig. 4. Alternative water tank Fig. 5. Standard hybrid automaton

506 K. Nakamura and A. Fusaoka

4.2 The System Description in a Transfinite Hybrid Automaton

We can describe this system in a transfinite hybrid automaton as below.
Q = {q0, q1, q2, q3, q4, q5, q6}
A = {∂a, a, ∂b, b, c, d, e, f, g}
E = {{q0, ∂a, q0}, {q2, ∂b, q2}, {q1, c, q2}, {q3, d, q0}, {q4, e, q5}, {q5, f, q0}, {q5, g, q2},
{{q0}, q1}, {{q2}, q3}, {{q0, q1, q2, q3}, q4}, {{q0, q1, q2, q3}, q6}}
I = {Q = q0, x = hA, y = hB , t = 0}
F = {q6}
X = {x, y, t}
D = {
∂a : y �≈ h→ (x′ = (1 − kτ(∂a))x+ pτ(∂a)), y′ = (1 − kτ(∂a))y, t′ = t+ τ(∂a))
∂b : x �≈ h→ (x′ = (1 − kτ(∂b))x, y′ = (1 − kτ(∂b))y + pτ(∂b), t′ = t+ τ(∂b))
c : y ≈ h→ (x′ = x, y′ = h, t′ = t+Δ)
d : x ≈ h→ (x′ = h, y′ = y, t′ = t+Δ)
e : x ≈ h ∧ y ≈ h→ (x′ = h, y′ = h, t′ = t+Δ)
f : x′ = (1 − kΔ)x+ pΔ, y′ = (1 − kΔ)y, t′ = t+Δ
g : x′ = (1 − kΔ)x, y′ = (1 − kΔ)y + pΔ, t′ = t+Δ
}
where Δ is the infinitesimal which denotes the minimal unit time of the system
(the minimal clock or sampling time).

We present this automaton in Figure 6. The action schema of this
automaton is

((∂a)ωc(∂b)ωd)ωe(f((∂a)ωc(∂b)ωd)ω + g((∂b)ωd(∂a)ωc)ω)

Fig. 6. A transfinite hybrid automaton for the alternative water tanks

4.3 Simulation of System Behavior

By using this example, we present the simulation of system dynamics. This
system contains Zeno. We prove its existence and localize the Zeno point, and
discuss about how we can escape from it.

On Transfinite Hybrid Automata 507

[The existence of Zeno point]
The level of water x, y at the end of the action (∂a)ω, (∂b)ω was shown below.

x1 =
p

k
+
h(hA − p

k)
hA

, y1 = h when (∂a)ω was executed

x1 = h, y1 =
p

k
+
h(hB − p

k)
hB

, when (∂b)ω was executed

If we assume that the index 2n of values means n times iteration of (∂a)ω · (∂b)ω

and 2n+1 means the execution of (∂a)ω after n times iteration of (∂a)ω · (∂b)ω,
then

x2n+1 = p
k + h(h− p

k)
y2n

, y2n+1 = h, τ2n+1 = 1
k log(

y2n

h)

x2n = h, y2n = p
k + h(h− p

k)
x2n−1

, τ2n = 1
k log(

x2n−1
h ,tn) =

∑n
i=1 τi

The symbolic simulator gives the values x2n+1, y2n in the form of infinite
continued fraction.

x2n+1 = y2n =
p

k
+

h
(
h− p

k

)
p
k +

h(h− p
k)

p
k +

h(h− p
k)

p
k

+
h(h− p

k)
...

We can prove the relations h < x2n+1 < x2n−1, h < y2n < y2n−2 from
the mathematical induction. Namely, the sequences of x, y are monotonously
decreasing but bounded so that x, y have a limit point by the Weierstrass’s the-
orem. Namely, we have a standard x̂, ŷ, t̂ such that x2n+1 ≈ x̂, y2n ≈ ŷ, tn ≈ t̂.
From x2n+1 ≈ x2n−1 ≈ x̂ and a recurrence equation x2n+1 = p

k + h(h− p
k)

p
k +

h(h− p
k

)
x2n−1

,

we have x̂ = h. Similarly, we can get ŷ = h. On the other hand, we have
(xn+1 +yn+1) = (1−kΔ)(xn +yn)+pτ from the system description. By solving
this recurrence equation, we have t̂ = 1

k log(
(hA+hB)k−p

2hk−p). t̂ is finite so that we

can prove that the situation ŝ =< h, h, 1
k log(

(hA+hB)k−p
2hk−p) > is Zeno point.

[Escape from Zeno]
This Zeno point is repelling for t > t̂ so that the behavior of the system at
t > t̂ depends on the situation immediately after the Zeno point. Assume that
∂a is currently performed. Since the duration of any action should not be smaller
than the minimal sampling time Δ, the action ∂a continues during Δ even ∂a(τ)
becomes smaller than Δ. After passing Δ, the next value of y becomes lower than
h and the next system time is over t̂ (See Figure 7). So we can jump out from
the fixed point.

[Uncertainty]
It is uncertain which action f or g will be selected at the state q5 after Zeno.
If ∂a is executed immediately before q5, f is selected, and otherwise g is taken.

508 K. Nakamura and A. Fusaoka

Fig. 7. Monad around Zeno point

Fig. 8. The orbit of the water level of Tank A

However, ∂a and ∂b are exchanged intensively at the state q4, so that the next
state is undecidable. This is the inherent uncertainty in after-Zeno due to the
infinite discrete value change within a finite time.

The Figure 8 shows a result of the numerical simulation. We use some very
small numbers for Δ, and the other parameters are x0 = 2.0 ∧ y0 = 1.5 ∧ k =
0.5 ∧ h = 1.0 ∧ p = 0.9. The excursion of the level of tank is contained in the
envelope u = (hA + hB − p

k)e−kt + p
k

5 Concluding Remarks

We propose a new type of hybrid automata which aims at the formal analysis
and synthesis of the control plan for hybrid systems. In this system, executions
can be represented by transfinite sequences of infinitesimal actions over ∗IR for
the both continuous and discrete dynamics. We can deal with the convergent
(even also divergent) sequences such as Zeno in this framework. Although Büchi’s
transfinite automaton is formed over the countable ordinal, we use his idea for the
hypernumber ∗IN and ∗IR. The formulation based on the nonstandard analysis
is required because the state and its physical situation is defined after the limit
transition depending on the times of iteration (ω, 2ω, ω2, · · ·). Namely, we need to
incorporate the limit of functions over IR with the limit transition. The transfinite
transition on ordinal is possibly introduced to the standard hybrid automata

On Transfinite Hybrid Automata 509

directly, but it may be weak in this sense. The nonstandard formulation always
allows the transfinite state transition to be complete.

In order to deal with the hybrid dynamics in the transfinite hybrid automata,
the following inferential devices are required:

(1) a reasoning system for the extended arithmetic of the hyperfinite integer
and *IR
(2) a set of transfer rules between *IR and IR such as

◦(x+ y) = ◦x+ ◦y, ◦(xy) = ◦x◦y,

◦x �= 0 → ◦(1/x) = 1/◦x, ◦(1 +
x

ω
)ω = ex

A symbolic and numerical simulator is partially developed on MathematicaTM

of Wolfram Research Inc. The symbolic simulation of the recurrence equation
is troublesome because its solution is usually given in the form of very long
arithmetic formula.

Many problems remains for the future study. Especially, the synthesis or ver-
ification of the transfinite hybrid automata may not necessarily be easy. Büchi
proved the equivalence of the transfinite automata to the formulas of some sec-
ond order language for the countable ordinals [5]. This suggests that it may
be possibly used as the specification language for the transfinite behaviors of
dynamics.

References

1. Alur,R., Courcoubetis,C. Henzinger,T.A. and Ho, P.,1993. Hybrid Automata: An

algorithmic Approach to the Specification and Verification of Hybrid Systems,

Hybrid Systems (Grossman, R.L., et al. eds) LNCS 736, 209-229.

2. Balluci,A., Natale,F.Di., Sangiovanni-Vincentelli,A. and Schuppen, J.H.,2004. Syn-

thesis for Idle Speed Control of an Automotive Engine, Proc HSCC2004 LNCS
2993, 80-94.

3. Bérard,B., Picaronny,C.,1997. Accepting Zeno words without making time stand

still, Mathematical Foundations of Computer Science 1997, LNCS 1295, 149-158.

4. Bruyére,V. and Carton,O.,2001. Automata on Linear Orderings : in DLT2002 (Ito,
M., et al. eds) LNCS 2450, 103-115.

5. Büchi J.R.,1965. Transfinite Automata recursions and weak second order theory

of ordinals, In Proc. Int. Congress Logic, Methodology, and Philosophy of Science,
2-23.

6. Cassez F., Henzinger,T.A. and Raskn, JF.,2002. A Comparison of Control Prob-

lems for Timed and Hybrid Systems, Proc. HSCC2002 LNCS 2289, 134-148.

7. Choueka Y.,1978. Finite automata, definable sets, and regular expressions over

ωn-tape, J. Compute. System Sci., 17(1) 81-97.

8. Davis, Y. 1992. Infinite Loops in Finite Time: Some Observations, Proc.Int. Conf.
Principle of Knowledge Representation and Reasoning, 47-58.

9. Egerstedt M.,2000. Behavior Based Robotics Using Hybrid Automata, In Proc.
HSCC2000. LNCS 1790, 103-116.

510 K. Nakamura and A. Fusaoka

10. Goldblatt, R. 1998. Lecture on the Hyperreals: An Introduction to Nonstandard
Analysis, New York, Springer.

11. Grossman, R.L.,Larson R.G.,1995.An algebraic approach to hybrid systems, The-
oretical Computer Science, 138:101-112.

12. Hansen, M.R.,Pandya P.K. and Chaochen,Z,1995. Finite divergence, Theoretical
Computer Science, 138:113-139.

13. Henzinger, T.A.,1996. The Theory of Hybrid Automata, Proc. 11th Annual Sympo.
on Logic and Computer Science LNCS 96, 278-292.

14. Johansson, K.H.,Egerstedt,M.,Lygeros,J. and Sasty,S.,1994. On the Regularization

of Zeno Hybrid Automata, System & Control Letters, 38:141-150.

15. Iwasaki,Y.,Farquhar,A.,Saraswat,V.,Bobrow,D. and Gupta,V.,1995. Modeling

Time in Hybrid System: How Fast Is “ Instantaneous”, Proc. 14th Int. Conf. Ar-
tificial Intelligence, 1773-1781.

16. Robinson, A. 1974. Non-standard analysis, Amsterdam, North Holland.

17. Zhang, J., Johansson, K.H., Lygeros, J. and Sasty,S., 2000. Dynamical System

Revisited: Hybrid Systems with Zeno Execution, Proc.HSCC2000. LNCS 1790,
451-464.

18. Wojciechowski J.,1985. Finite automata on transfinite sequences and regular ex-

pressions, Fundamenta informaticæ, 8(3-4) 379-396.

Design of Optimal Autonomous Switching
Circuits to Suppress Mechanical Vibration

Dominik Niederberger

Automatic Control Laboratory, Swiss Federal Institute of Technology (ETH),

CH–8092 Zürich, Switzerland

niederberger@control.ee.ethz.ch
http://control.ethz.ch

Abstract. This paper demonstrates the use of a hybrid system approach

to design optimal controllers for smart damping materials. Recently, con-

trollers have been used to switch piezoelectric materials for mechanical

vibration suppression. These controllers allow a small implementation

and require little or no power. However, the control laws to switch these

circuits are derived heuristically and it remains unclear, if better control

laws exist. We present a new control approach based on a hybrid sys-

tem framework. This allows to derive optimal switching laws by solving

a receding horizon optimal control problem with multi-parametric pro-

gramming. Additionally, we show how to implement the optimal switch-

ing laws with analog electronic circuitry such that the resulting damping

circuits do not require power for operation. Simulations show the im-

provement of the damping compared with heuristically derived circuits

and experiments demonstrate that the autonomous damping circuits can

suppress vibration without requiring additional power.

1 Introduction

Generally, the performance of passive damping materials to suppress mechanical
vibration is very poor for low frequencies. The resulting strong vibration can
cause malfunction or even damage the material. In other cases, the vibration
can reduce the precision of machinery tools or unwanted noise radiation from
the material can occur. Therefore active vibration control was introduced [1, 2].
However, conventional active vibration control requires many bulky electronic
devices and power supply for its operation making this technology expensive
and not suitable for applications in highly integrated smart damping materials.
Thus, piezoelectric shunt damping was suggested where an electrical network
is attached to the terminals of a piezoelectric transducer as shown in Figure 1.
These shunt circuits Z can dissipate the transformed mechanical vibration energy
or store the energy and give it back to the mechanical system in the optimal
moment. Several electrical shunt topologies were proposed, for example the R
shunt[3] that is very easy to implement and does not require a power supply,
but its damping performance is very poor. More efficient are resonant shunts[3,
4, 5, 6], like R − L shunts. However, these shunts lack from the drawback that

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 511–525, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

512 D. Niederberger

Clamped beam Electrical Shunt Circuit Z

Piezoelectric

Fig. 1. Shunt Damping

they are very hard to tune and the inductance L needs to be very high (from
1 H to more than 100 H). Such a high inductance can only be implemented with
virtual[7] or synthetic[8] impedances and thus the R − L shunt requires power
for operation. Other shunts, like negative capacitor shunts [9], also require power
and are even more difficult to implement and tune.

In this paper, we will show how to implement a damping circuit that can
efficiently suppress structure vibration without requiring power for operation.
The idea is based on so called switching shunts as shown in Figure 2a), where
the first two cases will be investigated in this paper. We will demonstrate how
to design optimal switching controllers S for these shunts using a hybrid system
approach and how to implement these controllers completely autonomous, i.e.
without power supply. Experiments will show that these new shunts can damp
vibration without electrical power requirement.

2 Model and Control Problem Formulation

The aim of this paper is to develop an autonomous control device that can ef-
ficiently damp structural vibration and does not require any extra power for
operation. The model for the design of the optimal switching control is kept
as simple as possible. Only one or later two structural modes and the piezo-
electric transducer are modelled. It was shown in [10] that composite structures
with an electrically shunted piezoelectric transducer can be modelled as an elec-
trical equivalent system. In Figure 2b), the electrical equivalent circuit for one

Fig. 2. a) Different switching shunt topologies b) Electrical equivalent model of the

shunted piezoelectric composite structure

discussed in this paper

C

L

L

S

S

S

S

SS

R
R

ZZ

Rm Lm Cm

Pi Cp Z

v

Up

Uc

a) b)

Design of Optimal Autonomous Switching Circuits 513

structural mode with a shunted piezoelectric patch is shown. The state-space
representation of this system is

ẋ =

⎡
⎣ 0 1/Cm 0
−1/Lm −Rm/Lm −1/Lm

0 1/Cp −1/(CpZ)

⎤
⎦

︸ ︷︷ ︸
A

x +

⎡
⎣ 0

1/Lm

0

⎤
⎦

︸ ︷︷ ︸
B

P and y =
[
0 1 0

]︸ ︷︷ ︸
C

x, (1)

with the state vector x = [Uc, v, Up]T , where v denotes the velocity and P , Rm,
Lm, Cm, Cp, and Z the corresponding disturbance force, the equivalent damp-
ing, mass, stiffness, piezoelectric capacitance and the shunt impedance that has
to be designed. For more details, the reader is referred to Niederberger et al. [10].
The transfer function of the electrical equivalent system is equal to other models
considered for shunt damping[3, 11]. However, the electrical equivalent model al-
lows easy simulations of the shunted composite structure using electronic circuit
simulators like Saber1 or PSpice2. For models with several structure modes, the
method by Moheimani et al. [5] may be preferred. Using subspace identification,
the parameters of this model can easily be identified from experimental data.
We will consider both modelling techniques for the optimal control design in
Section 4. In the following, we want to find a switching sequence or switching
law S that minimizes the vibration using the switching R or R−L shunt shown
in Figure 2a). The objective is to solve the optimization problem

min
S(t)

∫∞
0 (Cx(t))2 dt = min

S(t)

∫∞
0 v2(t)dt, (2)

where the disturbance force P is either a Dirac-impulse or a colored noise dis-
turbance.

3 Heuristic Control Laws

3.1 Switching R Shunt Circuit

Figure 3a) shows the switching R shunt, where a resistor R is shunted to the
piezoelectric transducer depending on the switch state S. Based on the work of
Larson[12] to change the stiffness of acoustic drivers, Clark et al.[11] introduced
the State-Switching technique for shunt damping. First, the switch controller
was derived for a mechanical single degree of freedom (SDOF) system like in
Figure 3c). The aim is to suppress the vibration of mass M , that is attached by
a variable spring with either k = k0 or k = k0 +Δk where Δk > 0. Additionally,
the mass is damped by a damper d. The mass M is subjected to a tonal excitation
force with a frequency equal to the resonance frequency of the system. The idea
of State Switching is that the mass starts off in the high-stiffness (k = k0 +Δk).

1 SaberSketch, V2.4, Avant! Corp., 9205 S.W. Gemini Drive, Beaverton, Or 97008.
2 PSpice Schematics, Evaluation V9.1, Cadence Design Systems, www.cadence.com.

514 D. Niederberger

RCp Uz

Iz

Up

Spiezoelectric
m

e
ch

a
n
ic

a
l
st

ru
c
tu

re

R

L

Cp
Uz

Iz

Up

Spiezoelectric

m
e
ch

a
n
ic

a
l
st

ru
c
tu

re

M

d k

x

a) b) c)

Fig. 3. a) Switching R Shunt, b) Switching R − L Shunt c) Single degree of freedom

(SDOF) system whose stiffness can either be k = k0 + Δk or k = k0

When the mass reaches the maximum displacement, the potential energy is also
at a maximum, defined by

Emax
pot =

1
2

(k0 + Δk)︸ ︷︷ ︸
k

x2
max. (3)

At this point, the stiffness is switched to a low stiffness state (k = k0) such
that the potential energy is Emax′

pot = k0x
2
max/2, which is less than before. The

difference in energy is

ΔE =
1
2
(Δk)x2

max. (4)

This energy is released from the system, when switching occurs. The spring is
kept in the low stiffness state until the modal displacement returns to equilibrium
(i.e. x(t) = 0). Then the spring is switched back to the high stiffness state and
the entire cycle repeats. The control law for the stiffness k can be expressed as

k(t) =
{

k0 + Δk : x(t) · ẋ(t) ≥ 0
k0 : x(t) · ẋ(t) < 0.

(5)

This heuristic control law was then applied for shunted piezoelectric structures,
because one structural mode of the piezoelectric composite structure can be
modelled as a SDOF system and the corresponding stiffness is changed by the
piezoelectric actuator between its open and closed-circuit states by approxi-
mately 1/(1 − kij), where kij is the appropriate piezoelectric coupling factor.
The control law of the shunt impedance is then

Z(t) =
{
∞ Ω if x(t) · ẋ(t) ≥ 0
0 Ω if x(t) · ẋ(t) < 0 or S(t) =

{
0 if x(t) · ẋ(t) ≥ 0
1 if x(t) · ẋ(t) < 0,

(6)

for the ideal switch in Figure 3a) with R = 0 Ω. In real applications, R that
represents the switch is not 0 Ω and therefore it remains unclear if the heuristi-
cally derived control law still holds, since R �= 0 was not taken into account in
the derivation of the State-Switching law.

Design of Optimal Autonomous Switching Circuits 515

3.2 Switching R-L Shunt - The SSDI Technique

A switching R−L shunt is shown in Figure 3b). Depending on the switch state
S, an R− L network is connected to the terminals of a piezoelectric transducer
with the view of minimizing the vibration of the structure. The synchronized
switch damping inductor (SSDI)[13, 14] technique says that if the product of the
velocity v(t) and Uz becomes greater than zero, the switch is shut. The switch
is opened again, when the applied charge reaches a peak with the opposite sign
from where it began (about 1/2 of the time period of the Cp −L resonance). In
the SSDI technique, the optimal value of L is more than 20 times smaller than
for the standard R−L shunt. Therefore, virtual or synthetic inductors may not
be required.

4 Hybrid System Optimal Control Approach

4.1 Hybrid System Model

The systems with the switching electrical shunt circuits can be represented by
a piecewise affine (PWA) system like it was shown in Morari et al. [15]. For the
switching R or R− L shunted system, one obtains

x(t + 1) = Ai
dx(t) + Bi

du(t) IF S ∈ Pi, (7)

where S ∈ [0, 1] is the state of the switch, i ∈ [1, 2], P 1 = 0, P 1 = 1, A1
d is the

time discretized Matrix A in Equation 1 where Z → ∞, A2
d and Z is either a

resistor or a serial inductor-resistor network. Notice that the controller can only
affect S, whereas u is regarded as disturbance input. Although PWA systems
represent a modelling environment for a wide variety of hybrid systems, they
are not suitable for recasting the problem into a compact optimization problem.
Therefore, the model is transformed into a Mixed Logical Dynamical (MLD)
form (Bemporat and Morari) [16]. It can be used to recast the problem into a
mixed integer linear (MILP) or quadratic program (MIQP). The procedure to
reformulate the PWA system in Equation 7 is automated with the compiler HYS-
DEL (HYbrid System DEscription Language) [17], that generates the matrices
of the MLD.

4.2 Implicit Solution

In a first step, the optimal switch sequence is calculated for an impulse distur-
bance. This is done by using the model predictive control methodology with
online optimization. The idea is to use the model of the plant to predict the fu-
ture evolution of the system. At each time step t the controller chooses a sequence
of optimal future switch inputs through an online optimization procedure. Af-
terwards, only the first sample of the optimal sequence is implemented. Then at

516 D. Niederberger

Fig. 4. a) Implicit optimal control and b) heuristic control of the switching R shunt.

c) comparison of the performance for an impulse disturbance

time t + 1, a new set of measurements is taken and a new sequence is computed
based on the current state. This procedure is expressed in the following formula

min
S⊂St(0),...,St(m−1)

m−1∑
k=0

‖ Cx(k) ‖22

subj. to

⎧⎨
⎩

St(k) ∈ [0, 1]

x(t + 1) = Ai
dx(t) + Bi

du(t) IF S ∈ Pi,

(8)

where m is the prediction horizon. The cost function is the 2-norm of Cx(k). The
difference to the ∞-norm is that in the 2-norm case, the larger amplitudes of the
vibration get more weighted. However, in simulation it could be shown that the
optimal switching sequence is the same for both norms. Therefore, the ∞-norm
is used for the explicit solution in section 4.3, since in this case the optimization
problem can be cast as a (MILP) that can be solved faster. The optimization
problem was solved with either Cplex3 or the free available GLPK (GNU Linear
Programming Kit)4. For this class of problem, one has to choose a prediction
horizon m and a sampling time Ts. Very small sampling times result in a larger
number of prediction steps m and that makes the computation extremely long.
On the other hand, long sampling times prohibit the switching controller to
switch when it is optimal since it is not possible to switch within two samples.
Therefore, a tradeoff has to be made. This is done by plotting the optimized
cost function in Equation 8 as a function of Ts and m and choosing the optimal
parameters from that plot.

Model with one structural mode: In a first study, the optimization pro-
gram is run with a model that captures one structural mode, the piezoelectric
transducer and the electrical shunt circuit. For the switching R shunt, the simu-
lation results for an impulse response are shown in Figure 4 in comparison with

3 CPLEX 7.0, ILOG Inc., Gentilly Cedex, France.
4 GLPK, A. Makhorin, Department for Applied Informatics, Moscow Aviation Insti-

tute, Russia, http://www.gnu.org/software/glpk/glpk.html.

−0.1

0

0.1

−2
0
2

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

U
z

v
S

Heuristic State-Switching Controller

Time []

−0.1

0

0.1

−2
0
2

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

U
z

v
S

Time []

Receding Horizon Optimal Controller

0 10 20 30 40 50 60 70 80
−0.1

−0.05

0

0.05

0.1

0 10 20 30 40 50 60 70 80
−0.1

−0.05

0

0.05

0.1

v
v

Time [s

Heuristic State-Switching Controller

Receding Horizon Optimal Controller

a) b) c)

Design of Optimal Autonomous Switching Circuits 517

−0.02
0

0.02

−0.1
0

0.1

−2
0
2

−5
0
5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5
1

U
c

U
p

ν
I
z

S

Time []

Heuristic SSDI Controller

−0.02
0

0.02

−0.1
0

0.1

−2
0
2

−5
0
5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

1

U
c

U
p

ν
I
z

S

Time []

Receding Horizon Optimal Control
ν

Up

S

Iz

Td

Td

t

t

t

t

a) b) c)

Fig. 5. Heuristic versus RHOC with Ts = 0.02s. a) Heuristic Controller, b) RHOC

with m = 22. c) According to the RHOC, the switch is turned on Td = π
√

LCp/2

before the product of the velocity v(t) and Uz becomes greater than zero

the heuristic switching controller. One can see that the performance is slightly
improved. The difference to the heuristic controller is that the optimal controller
only briefly shuts the switch. In Figure 5, the results with the switching R − L
shunt are shown. It can be seen that the optimal controller behaves very sim-
ilar like the heuristic controller. However, it shuts the switch earlier than the
heuristic controller does. This is better shown in Figure 5c), where the optimal
controller shuts Td before v(t) · Uz(t) changes its sign. On the other hand, the
standard heuristic controller would shut exactly when v(t) ·Uz(t) becomes zero.

Model with two structural modes: In these simulations, the model cap-
tures two structural modes. Since the switching R shunt did not show promising
damping performance with either the heuristic or the receding horizon optimal
controller, we will only show the results with the switching R − L shunt. In
Figure 6, it can be seen that it is possible to damp two structural modes with
only one switching R − L shunt. Figure 6a) shows the result for an impulse
disturbance and Figure 6b) and c) show the time response to a colored noise
disturbance and the frequency spectrum of the corresponding response.

−0.1
0

0.1

−0.1
0

0.1

−2
0
2

−2
0
2

0 2 4 6 8 10 12 14
0

1

v
1

v
2

U
z

I
z

S

Time []

−0.4

−0.2

0

0.2

0.4

0 50 100 150 200 250
−0.4

−0.2

0

0.2

0.4

Open System (No Shunt)

RHOC (Implicit with m = 16)

v
1

+
v
2

v
1

+
v
2

Time []
0 0.5 1 1.5 2 2.5 3

5

10

15

20

25

30

35

40

45

50

55
Open System
RHOC (Implicit) m=16

Frequency [Hz]

M
a
g
n
it

u
d
e

[d
B
]

a) b) c)

Fig. 6. System with 2 structural modes: a) Impulse response: Open system (dashed

line), switching R − L shunt (solid line) b) broadband disturbance c) spectrum of the

broadband response

518 D. Niederberger

10
−3

10
−2

10
−1200

400

600

800

1000

1200

1400

1600

1800

∫
v
2

d
t

Ts

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 −2

0

2

−1

−0.5

0

0.5

1

x
x1

x2

x
3

−0.2 −0.1 0 0.1 0.2 −2

−1

0

1

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x1

x2

x
3

a) b) c)

Fig. 7. R-Shunt: a) Evaluation of optimal Ts with constant m = 2. b) Partition of the

state-space (m = 2, Ts = 0.08s). Red (light) corresponds to S = 0 and blue (dark) to

S = 1. c) Zoom into the origin of the partitioned state-space

4.3 Explicit Solution

Since the computation of the optimization problem at one time step takes several
seconds and the sampling time of real damping applications is generally in the
range of milliseconds, the implicit optimal control approach cannot be applied.
Therefore, a multi-parametric programming algorithm is used [18] to avoid the
online computation of the MILP. This is referred as to the explicit solution.
The idea of multi-parametric programming is to calculate the optimal s∗(0) as
a function of the state x(0). In this case, the state space gets partitioned into
regions where s∗(0) is either 0 or 1. This means that once the partition of the
state space is calculated, one can easily look-up the optimal switch state s∗ for
the actual state x(t) of the system. Moreover, the partition of the state-space
allows to derive the optimal control law. The multi-parametric programming to
compute the explicit optimal switching law can be formulated as

J∗
N (x0) = min

St(0),...,St(m−1)

m−1∑
k=0

‖ Cx(k) ‖∞ (9)

subj. to GSm ≤W + Ex0. (10)

This problem is solved using the Multi-Parametric Toolbox (MPT) [19] in Mat-
lab. For the current implementation of the multi-parametric programming algo-
rithm, only prediction horizons m below 2 are computationally feasible for the
presented switching shunt problem. The optimal sampling time Ts can be deter-
mined by plotting the cost-function of Equation 8 as a function of Ts with m = 2.
This is shown in Figure 7 a). Therefore, a sampling time of Ts = 0.08s was chosen.
In Figure 7b) and c), one can see the results of the multi-parametric program-
ming for the switching R shunt. The state-space is partitioned into red(light)
and blue(dark) regions whereas red(light) correspond to the open switch s = 0
and blue(dark) to the closed switch s = 1. The partitioned state-space gives the
information whether the switch should be shut or not. This is similar like a look-
up table. The same procedure is performed for the switching R − L shunt. In
Figure 8, one can see the simulation results with the explicit optimal controller
(off-line) and the implicit optimal controller (on-line) for the switching R − L

Design of Optimal Autonomous Switching Circuits 519

−0.02

0

0.02

−0.1

0

0.1

−2

0

2

−5

0

5

0 100 200 300 400 500 600 700 800 900 1000
0

1

x
v

I
z

U
z

S

Time []

Explicit Controller

−0.02

0

0.02

−0.1

0

0.1

−2

0

2

−5

0

5

0 100 200 300 400 500 600 700 800 900 1000
0

1

x
v

I
z

U
z

S

Time []

Implicit Controller

a) b)

Fig. 8. Switching R−L Shunt: a) Explicit solution with m = 2, Ts = 0.08s, b) Implicit

solution with m = 20, Ts = 0.02s

shunt. The results are very similar. The small difference appears due to the fact
that the explicit controller was designed for a sampling-time Ts = 0.08s, which
prohibits to switch at exactly the optimal time. On the other hand, the implicit
controller was simulated for Ts = 0.02s and a prediction horizon m = 10 that
explains the slightly better performance.

4.4 Approximation of the Optimal Switching Law

A quasi-optimal and continuous control law for the switching R or R−L shunt
can be deduced by inspecting the explicit and implicit solution of sections 4.2 and
4.3. The quasi-optimal control law should approximate the optimal controller as
good as possible, but its implementation as an electronic analog circuit should
be kept very easy.

Approximated Switching Law for Switching R Shunt: In simulations, a
strong correlation between x2 and x3, i.e. x2 = αx3, can be observed. If this
correlation is taken into account, the 3 dimensional regions in Figure 7 b) can
be cut along x2 = αx3 into regions of dimension 2. The obtained approximated
regions are plotted in Figure 9a). The switching law defined by these regions can
be described by

S(t) =
{

1 if x1(t) · x2(t) ≥ 0
0 if x1(t) · x2(t) < 0,

(11)

where x2 ∼ ẋ1. One can see that this is the same switching law like that of the
State-Switching in Equation (6) proposed by [11].

Approximated Switching Law for Switching R − L Shunt: It is more
difficult to obtain an approximated switching law for the R − L shunt, because
the regions of the explicit solution are of dimension 4. One possibility would be
to plot the regions in 2 dimensions by keeping two states constant. But even in
this case, it is tricky to formulate an approximated switching law. Therefore, we
will have a closer look at the simulated solution in the time domain. In Figure 5
where the optimal switching sequence is computed implicitly, it can be seen that

520 D. Niederberger

−2

0

2
−2

0

2

−2

0

2

x1 x2

x
3

S = 1

S = 1

S = 0

S = 0

x 3
=

α
x 2

a) b)

Fig. 9. a) Resulting regions, if the 3 dimensional regions are cut along x2 = αx3. b)

Vibration energy as a function of the switch on time Td and the inductor L. One can see

that the heuristic State-Switching Controller is not optimal, whereas the approximated

Receding Horizon Optimal Controller (RHOC) achieves optimal vibration reduction

the switch is turned on Td = π
√

LCp/2 before v(t) = 0 or the strain x(t) is at
a maximum, i.e. a quarter of the period of the L− Cp resonance. The switch is
turned off whenever the current Iz becomes zero after the switch was turned on.
Therefore one can formulate the following law:

S(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 if t ≥ Ti −
π
√

LCp

2︸ ︷︷ ︸
Td

∧Iz �= 0

0 else,

(12)

with Ti defined by v(Ti) = 0. This new switching law is very similar like that of
Richard et al. [13], but the time-shift Td is new and improves the damping per-
formance. The improvement can also be seen in Figure 9b), where the vibration
energy is plotted for different Td and L. The heuristic control law would keep
Td = 0, whereas the approximated optimal control law keeps Td on the curved
line where the vibration energy is minimal.

5 Implementation as an Autonomous Electrical Circuit

5.1 Circuit Design

Simulations in Section 4 showed that switching R−L shunts can efficiently sup-
press vibration. On the other hand, switching R shunts are not very promising,
although they are more efficient than simple R shunts. In the following, we will
demonstrate how to implement the switching R−L shunt such that the resulting
circuit does not require electrical power for its operation. The scope is to design
a circuit comprising an inductor, resistor and switch with corresponding logic
such that the switch is shut according to the rules derived from the approximated
optimal control design in Section 4.4. The problem can be solved by using a sec-
ond collocated piezoelectric patch as shown in Figure 10a). The voltage across

Design of Optimal Autonomous Switching Circuits 521

Fig. 10. a) Set-up of the clamped beam with 2 PZTs b) Sketch of the autonomous

shunt circuit that does not require power for operation. c) Photo of the circuit

this patch is related to the strain with Up = αx, where α is a constant. We
assume that the signal Up consists only of the structure mode that has to be
damped. This can be achieved by placing the piezoelectric patch at a location
where almost only the corresponding mode is observable. From Section 4.4, we
know that the switch is shut Td before the strain reaches its maximum. This is
implemented with a low-pass filter that changes the phase of Up such that the
filtered Ũp reaches its maximum Td before Up reaches its next maximum (Fig-
ure 10b). Two Z-diodes convert the sinusoidal signal into a rectangular signal Uc

that is supplied to the switch. The switch is designed to automatically turn off
when the current changes its sign according to Section 4.4. For this purpose, two
complementary field-effect transistors (MOSFETs) are used. When the signal
Uc is positive, M1 is on, if it is negative, M2 is on. The diodes D1 and D2 make
that the transistors turn off whenever the current changes its sign. In this case,
the whole switch remains off until Uc changes its sign. In this case the other
transistor turns on. This corresponds to the switching law derived from the op-
timal control design. The functionality of the circuit was successfully validated
by simulations in PSpice and Saber. A photo of the implemented circuit is shown
in Figure 10c).

5.2 Excitation of Higher Harmonics

Because of the switching, higher structural modes can be excited. The level
of excitation depends on the inductor value. The higher the inductance, the
smoother is the waveform of Uz and Iz and therefore the smaller is the excitation
of higher harmonics. The waveforms of Uz and Iz can be expressed as Fourier-
series

Uz(t) =
∞∑

k=1

ak sin
(

2πkt

Tm

)
, (13)

with the period Tm. The calculated Fourier coefficients ak are shown in Figure 11.
One can see that with an increase of the inductance ratio, the excitation of higher
harmonics decreases. For the design of the switching R − L shunt, one has to
check if there exist higher harmonics corresponding to structural resonances that
could be excited.

PZT2

PZT1
Beam

Uz

Up

cx

d

s s

n p

cx

d

Cp

Cp

Up

Iz

Uz

Cf

L

Vp1
Vp2

R

D1 D2

Us

Uc

Dz

Dz

Rf

PZT2PZT

PZT Damping

PZT Sensor

a) b) c)

1

522 D. Niederberger

−1

0

1
1/

6

0
0.2
0.4
0.6

−1

0

1

1/
3

0
0.2
0.4
0.6

−1

0

1

1/
2

0
0.2
0.4
0.6

−1

0

1

2/
3

0
0.2
0.4
0.6

−1

0

1

5/
6

0
0.2
0.4
0.6

0 0.5 1 1.5 2
−1

0

1

1

1 2 3 4 5 6 7 8 9 10
0

0.2
0.4
0.6

Time [s] k

Voltage Vz
In

d
u
ct

a
n
ce

R
a
ti

o
ak

−20

0

20

1/
6

0

2

4

−10

0

10

1/
3

0

2

4

−10

0

10

1/
2

0

2

4

−5

0

5

2/
3

0

2

4

−5

0

5

5/
6

0

2

4

0 0.5 1 1.5 2
−5

0

5

1

1 2 3 4 5 6 7 8 9 10
0

2

4

Time [s] k

Current Iz

In
d
u
ct

a
n
ce

R
a
ti

o

ak

a) b)

Fig. 11. Fourier coefficients for a) Uz and b) Iz. An inductor ratio of 1 corresponds to

the standard R − L shunt configuration

5.3 Experiments

This section shows some experimental results with the analog switching R − L
shunt that does not require power for operation. For simplicity, the first exper-
iment was carried out on a one-side clamped beam (Figure 10a). Two identical
collocated piezoelectric patches (Midé QP25N5) are used for shunt damping.
The positions of the patches are determined by maximizing the strain of the
corresponding structural mode to be damped (here 2nd mode). The beam is ex-
cited by either an additional piezoelectric patch or an electromechanical shaker.
The results are shown in Figure 12a) and b) for tonal excitation where a vi-
bration suppression of about 8 dB is achieved. In Figure 12c), one can see that
the vibration suppression depends on the magnitude of the vibration, i.e. on
the magnitude of the excitation force. If the magnitude of the excitation is too
low, the transistors do not work, because the generated voltages are to small
for the transistor’s threshold. On the other hand, if the excitation is too high
and thus the vibration is very high, the hysteresis of the piezoelectric material
starts to play a role. In this case, the vibration suppression is not very effective
anymore and the vibration suppression decreases for increasing excitation force.
In Figure 13, the response for broadband excitation is plotted. It can be seen
that the vibration suppression of the autonomous switching shunt is around 8dB,
whereas the R− L shunt with power supply achieves 18dB. On the other hand,
the standard R that is autonomous like the switching shunt, achieves only 1.5dB
of vibration suppression.

The second experiment was conducted on a plate mounted in a duct system
as shown in Figure 14a). The scope is to minimize the sound transmission of
the plate. This is done by using two bonded piezoelectric patches on the plate
that are connected to the autonomous switching R − L shunt. A QP25N from
Midé is used for damping and a QP10Ni for driving the switch. The QP10Ni is
based on the direct 3-3 piezoelectric effect and thus it provides higher output

5 Midé Technology Corporation, 200 Boston Ave, Suite 1000 Medford, MA 02155

U.S.A, www.mide.com

Design of Optimal Autonomous Switching Circuits 523

0 2 4 6 8 10 12
−4

−2

0

2

4

0 2 4 6 8 10 12
−20

−10

0

10

20

S
tr

a
in

U
p

z
t
2

V
o
lt

a
g
e

U
z

Time [ms]

−0.05
0

0.05

−20
0
20

0 2 4 6 8 10
−1

0

1

I
z

[m
A

]
U

z
[V

]
P

=
U

z
I
z

Time [ms]
0 2 4 6 8 10 12 14 16 18 20

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Excitation Force

V
ib

ra
ti

o
n

S
u
p
p
re

ss
io

n
[d

B
]

a) b) c)

Fig. 12. Tonal excitation of the beam. a) open loop (dashed) and shunted system

(solid) and corresponding voltage Uz. b) Current Iz, voltage Uz and power IzUz. c) Vi-

bration suppression of the shunted system as a function of the excitation’s magnitude.

The vibration suppression is measured at 314.2 Hz and the measurement points are

approximated by a 4th order polynomial

0 0.005 0.01 0.015 0.02
−6

−4

−2

0

2

4

6

0 0.005 0.01 0.015 0.02
−1.5

−1

−0.5

0

0.5

1

1.5

Time [s]

U
z

[V
]

I
z

[m
A

]

150 200 250 300 350 400

−40

−30

−20

−10

0

10

150 200 250 300 350 400
−1100

−1000

−900

−800

−700

−600

−500

−400

M
a
g
n
it

u
d
e

[d
B
]

Frequency [Hz]

Frequency [Hz]

P
h
a
se

[D
e
g
]

No Shunt

No Shunt

Autonomous

Autonomous

Switching Shunt

Switching Shunt

Standard R − L

Standard R − L

Shunt with Power

Shunt with Power

R shunt

a) b)

Fig. 13. Broadband excitation of the beam: a) Signals Uz and Iz of the shunt b)

Transfer-function from excitation to strain on the beam with different shunts

voltages and one can expect better performance since the transistors only work
after a certain threshold voltage. The results for broadband excitation are shown
in Figure 14b), where the magnitude of the sound-pressure transfer-function
Pout/Pin is plotted. One can see that a decrease of around 2dB is achieved. The
performance of a standard R−L shunt is around 8dB, but it requires additional
power for operation since the inductor L is very big and can only be implemented
with virtual inductors. Therefore, the autonomous switching R−L shunt could
be preferred depending on the application.

524 D. Niederberger

LR

Disturbance

Speaker Duct Plate

Pin Pout

S

150 155 160 165 170 175 180 185 190 195
−40

−35

−30

−25

−20

−15

Autonomous Switching L Shunt
Tuned R−L Shunt
No Shunt

Frequency [Hz]

M
a
g
n
it

u
d
e

o
f

P
o

u
t
(j

ω
)

P
i
n

(j
ω
)

[d
B
]

a) b)

Fig. 14. a) Set-up of the duct system with shunted plate b) Magnitude of the transfer-

function from Pin to Pout with different shunts

6 Conclusion

In this paper, a hybrid system approach was applied to derive optimal switching
laws of electronic circuits for mechanical vibration suppression. As the electronic
circuits are switched to a piezoelectric patch and form a hybrid systems, a hy-
brid system framework was applied to design the optimal switching controller.
The system was first modelled as a piecewise affine system and then a Receding
Horizon Optimal Control Problem was solved to obtain the optimal switch-
ing sequence. The Receding Horizon Optimal Controller could slightly improve
the damping compared to the heuristically derived switching shunt controllers.
Multi-parametric programming allowed to calculate the optimal switching law
explicitly by partitioning the state-space into regions where the switch was either
open or shut. From the partitioning, a switching law could be derived that was
implemented in an analog electronic circuit. This electronic shunt circuit does
not require power for operation. Experiments have demonstrated that the new
autonomous damping circuit could suppress vibration, but was less effective than
standard R−L shunt circuits. However, because R−L shunts require power for
operation, the new autonomous circuit is an interesting alternative depending
on the application.

Acknowledgments

The author wishes to thank his supervisor Prof. Manfred Morari for his con-
tinuous help and encouraging discussions. Support for this research has been
provided by grants from ETH (Zürich) and EMPA (Dübendorf). The experi-
mental facilities were provided by the EMPA (Dübendorf). Special thanks go to
Michal Kvasnika, Mato Baotic and Stanislaw Pietrzko for technical assistance.

References

1. Fuller, C.R., Elliott, S.J., Nelson, P.A.: Active Control of Vibration. Academic

Press Limited, 24-28 Oval Road, London (1996)

Design of Optimal Autonomous Switching Circuits 525

2. Elliott, S., Nelson, P.: Active noise control. IEEE-Signal-Processing-Magazine 10
(1993) 12–35

3. Hagood, N.W., von Flotow, A.: Piezoelectric materials and passive electrical net-

works. Journal of Sound and Vibration 146(2) (1991) 243–268

4. Tsai, M.S., Wang, K.W.: On the structural damping characteristics of active piezo-

electric actuators with passive shunt. Journal of Sound and Vibration 221 (1999)

1–22

5. Moheimani, S.: A survey of recent innovations in vibration damping and control

using shunted piezoelectric transducers. IEEE Transactions on Control Systems

Technology 11 (2003) 482–494

6. Niederberger, D., Fleming, A., Moheimani, S., Morari, M.: Adaptive multi-mode

resonant piezoelectric shunt damping. Smart Materials and Structures, Institute

of Physics Publishing 13 (2004) 1025–1035

7. Antoniou, A.: Realization of gyrators using operational amplifiers and their use in

rc-active networks synthesis. Proc. IEE 116 (1969) 1838–1850

8. Fleming, A.J., Behrens, S., Moheimani, S.O.R.: Synthetic impedance for implemen-

tation of piezoelectric shunt-damping circuits. IEE Electronics Letters 36 (2000)

1525–1526

9. Wu, S.Y.: Broadband piezoelectric shunts for structural vibration control. Patent

No. 6,075,309 (2000)

10. Niederberger, D., Morari, M., Pietrzko, S.: Adaptive resonant shunted piezoelectric

devices for vibration suppression. In: Proc. SPIE Smart Structures and Materials

- Smart Structures and Integrated Systems, Vol.5056, San Diego, CA USA (2003)

213–224

11. Clark, W.W.: Vibration control with state-switched piezoelectric materials. Jour-

nal of intelligent material systems and structures. 11 (2000) 263–271

12. Larson, G., Rogers, P., Munk, W.: State switched transducers: a new approach

to high-power, low-frequency, underwater projectors. Journal-of-the-Acoustical-

Society-of-America 103 (1998)

13. Richard, C., Guyomar, D., Audigier, D., Bassaler, H.: Enhanced semi-passive

damping using continuous switching of a piezoelectric devices on an inductor.

In: Proc. SPIE Smart Structures and Materials, Damping and Isolation, SPIE

Vol.3989, Newport Beach, CA (2000) 288–299

14. Corr, L., Clark, W.W.: A novel semi-active multi-modal vibration control law for

a piezoelectric actuator. Journal of Vibration and Acoustics, Transactions on the

ASME 125 (2003) 214–222

15. Morari, M., Baotic, M., Borelli, F.: Hybrid systems modelling and control. Euro-

pean Journal of Control (2003) 177–189

16. Bemporad, A., Morari, M.: Control of systems integrating logic. Automatica 35
(1999) 407–427

17. Torrisi, F., Bemporad, A., Mignone, D.: Hysdel - a tool for generating hybrid

models. Technical Report AUT00-03, Automatic Control Laboratory, ETH Zurich

(2000)

18. Sakizlis, V., Dua, V., Perkins, J., Pistikopoulos, E.: The explicit control law for

hybrid systems via parametric programming. In: Proc. of the 2002 American

Control Conference, Anchorage. (2002)

19. Kvasnica, M., Grieder, P., Baotic, M., Morari, M.: Multi-Parametric Toolbox

(MPT). (2003)

Interchange Formats for Hybrid Systems:
Review and Proposal

Alessandro Pinto1, Alberto Sangiovanni-Vincentelli1, Luca P. Carloni3,
and Roberto Passerone2

1 Department of Electrical Engineering and Computer Sciences,

University of California at Berkeley, Berkeley, CA 94720

{apinto, alberto}@eecs.berkeley.edu
2 Cadence Berkeley Labs, Berkeley, CA 94704

robp@cadence.com
3 Department of Computer Science,

Columbia University in the City of New York, NY 10027-7003

luca@cs.columbia.edu

Abstract. Interchange formats have been the backbone of the EDA

industry for several years. They are used as a way of helping the devel-

opment of design flows that integrate foreign tools using formats with

different syntax and, more importantly, different semantics. The need for

integrating tools coming from different communities is even more severe

for hybrid systems because of the relative immaturity of the field and

the intrinsic difficulty of the mathematical underpinnings. In this paper,

we provide a discussion about interchange formats for hybrid systems,

we survey the approaches used by different tools for analysis (simulation

and formal verification) and synthesis of hybrid systems, and we give a

recommendation for an interchange format for hybrid systems based on

the Metropolis metamodel. The proposed interchange format has rig-

orous semantics and can accommodate the translation to and from the

formats of the tools we have surveyed while providing a formal reasoning

framework.

1 Introduction

Hybrid systems have proven to be powerful design representations for system-
level design in particular for embedded controllers. The term hybrid refers to
the use of multiple models of computation in a unified framework. Often, hybrid
refers to a mix of continuous dynamical systems and finite-state machines even
though compositions of heterogeneous systems may be defined in larger semantic
domains. The needs for a way of mixing and matching different tools is very
much felt because of the relative novelty of this design representation and of the
immaturity of the tools available today. There are two camps in the community
who deals with hybrid systems: one would prefer to define a common model of
computation for hybrid systems that should be used uniformly across different
tools, the other pushes for an interchange format, i.e., a file, or a set of files, which

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 526–541, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Interchange Formats for Hybrid Systems: Review and Proposal 527

contains data in a given syntax that is understood by different interacting tools.
It is not a database nor a data structure, but a simpler object whose goal is to
foster the exchange of data among different tools and research groups. Of course,
the approach fostered by the first group has innumerable advantages but it faces
an uphill battle with respect to the existing tool vendors or providers such as
research groups since embracing this approach would require a substantial re-
write of their tools. The second approach could be strengthened by providing
rigorous semantics to the interchange format, thereby allowing a formal analysis
of the properties of the translation between different hybrid models.

Our goal in this paper is to provide a survey of models of computation used
in a number of tools for the design of hybrid systems and to propose a prototype
interchange format based on the Metropolis MetaModel (MMM) that should
favor the interaction among the groups involved in hybrid system research and
development.

In the U.S., the DARPA MoBIES project had the importance of an inter-
change format very clear and supported the development of HSIF as a way of
fostering interactions among its participants. However, limitations to its seman-
tics make the interchange of data between foreign tools difficult (for example,
HSIF does not support some of the features of Simulink/Stateflow model).
To motivate our views, we offer here some considerations about interchange
formats that are the result of our experience in the field of Electronic Design
Automation (EDA) and of a long history in participating to the formation of
standard languages and models for hardware design as well as of Columbus [1],
a research project supported by the European Community that spearheaded
collaboration across the ocean between European and US research groups.

We believe that an interchange format for tools and designs should:

– support all existing tools, modeling approaches and languages in a coherent
global view of the applications and of the theory;

– be open, i.e., be available to the entire community at no cost and with full
documentation;

– support a variety of export and import mechanisms;
– support hierarchy and object orientation (compact representation, entry er-

ror prevention).

By having these fundamental properties, an interchange format can become the
formal backbone for the development of sound design methodologies through the
assembly of various tools. The process of moving from the design representation
used by tool A to the one used by tool B is structured in two steps: first, a
representation in the standard interchange format is derived from the design
entry that is used by A, then a preprocessing step is applied to produce the
design entry on which B can operate. Notice that tool B may not need all the
information on the design that were used byA and, as it operates on the design, it
may very well produce new data that will be written into the interchange format
but that will not ever be used by A. Naturally, the semantics of the interchange
format must be rich enough to capture and “protect” the different properties
of the design at the various stages of the design process. This guarantees that

528 A. Pinto et al.

there will be no loss going from one design environment to another due to the
interchange format itself. The format is indeed a neutral go-between.

In our opinion, HSIF is an excellent model for supporting clean design of hy-
brid systems but not yet a true interchange format. Simulink/Stateflow in-
ternal format could be a de facto standard but it is not open nor it has features
that favor easy import and export. Modelica has full support of hierarchy and
of general semantics that subsumes most if not all existing languages and tools.
As such, it is indeed an excellent candidate but it is not open. In addition, all
of them have not been developed with the goal of supporting heterogeneous
implementations.

On the other hand, the Metropolis metamodel (MMM) has generality and
can be used to represent a very wide class of models of computation. It has a
clear separation between communication and computation as well as architecture
and function. While the metamodel itself is perfectly capable to express contin-
uous time systems, there is no tool today that can manage this information in
Metropolis.

In conclusion, we believe that no approach is mature enough today to recom-
mend its general adoption. However, we believe also that combining and lever-
aging HSIF, Modelica, and the Metropolis metamodel, we can push for
the foundations of a standard interchange format as well as a standard design
capture language where semantics is favored over syntax. The discussion of this
approach is the main goal of the paper.

2 Preliminaries

This section contains the definitions of hybrid systems and the Metropo-
lis metamodel language.

Hybrid Systems. The notion of a hybrid system that has been used in the
control community is centered around a particular composition of discrete and
continuous dynamics. In particular, the system has a continuous evolution and
occasional jumps. The jumps correspond to the change of state in an automaton
whose transitions are caused either by controllable or uncontrollable external
events or by the continuous evolution. A continuous evolution is associated to
each state by means of ordinary differential equations. The structure of the
equations and the initial condition may be different for each automaton state.
In the sequel, we follow the classic work of Lygeros et al. [2] to define a hybrid
system as used in the control literature. In this definition, a hybrid system is a
tuple H = (Q,UD,X, U, V,SC ,S,E, Inv,R,G). Without going into the detailed
definition of each element of the tuple, we just recall that the triple (Q,UD,E)
can be viewed as a Finite State Machine (FSM) having state set Q, inputs UD

and transitions defined by E. This FSM characterizes the structure of the discrete
transitions. A dynamical system is associated to each state and characterized by
a set of differential equations. Of particular interest are the mappings Inv, R, G.
Inv : Q → 2X×UD×U×V is a mapping called invariant that is defined over each

Interchange Formats for Hybrid Systems: Review and Proposal 529

state of the automaton and states the conditions under which a transition from
a state to another in the automaton must occur. R : E ×X ×U ×V→2X is the
reset mapping that defines the initial state of the continuous dynamics after a
particular transition has occurred. G : E → 2X×U×V is a mapping called guard.
G determines the conditions under which a transition may occur. The guard
and the invariant mappings are complex to analyze with respect to the behavior
of the hybrid system. Guards are partly responsible for the non-deterministic
behavior of a hybrid system since when a guard allows a transition to occur,
the hybrid system may or may not take that transition. The full semantics of a
hybrid system are beyond the scope of this paper and can be found in [2].

Metropolis and its Meta-model. The Metropolis metamodel [3] is a for-
malism with precise semantics, yet general enough to support the models of
computation [4] proposed so far and, at the same time, to allow the invention
of new ones. A behavior can be defined as concurrent occurrences of sequences
of actions. Some action may follow another action, which may take place con-
currently with other actions. The occurrences of these actions constitute the
behavior of a system that the actions belong to.

In the metamodel, special types of objects called process and medium are used
to describe computation and communication, respectively. Processes are active
objects characterized by a thread that specifies the possible sequence of actions
(or better of events, where an event is the beginning or ending of an action)
of the process. Medium, instead, are passive objects that offer services and are
used for implementing specialized communication protocols. For coordination,
one can write formulas in linear temporal logic [5], or use quantity managers to
describe a particular algorithmic implementation of constraints. Operationally,
a building block called quantity is defined in the metamodel language. Its task
is to attach tags to events. An execution is then divided in two steps. First,
processes issue requests to the quantity managers to annotate their events with
particular values of the quantities. Second, the control passes to the quantity
managers that order the event depending on the values that have been requested,
and decide which requests to grant. In a complex system, multiple quantities
could be needed. A quantity manager has to be defined for each quantity. Since
their scheduling decisions could depend on each other, the metamodel language
provides an interaction mechanism that the user can fully customize to give a
specific semantics to the model.

The semantics of the interchange format must be carefully defined to cover
all the languages of interest, while still providing efficient and tractable access
to subsets corresponding to particular domains of application. The Metropo-
lis metamodel serves this purpose. In fact, states and continuous processes are
defined in abstract terms, and can be tailored for the individual needs of a par-
ticular model of hybrid behavior. In particular, the mechanisms that determine
the operational semantics of the model can be customized by simply encoding
the appropriate scheduling policies as the resolution function of the quantity
managers dedicated to handling the transition relation and the discretized so-
lution of the continuous dynamics. This flexibility is essential to cleanly, and

530 A. Pinto et al.

natively, support different semantic models in a unified environment. In addi-
tion, the metamodel is in itself executable, and provides the high level abstract
semantics that regulates the scheduling and interaction of processes and quan-
tity managers. Thus, if different models of hybrid behavior are translated into
our interchange format, they can also be executed together. Their execution is
regulated by the specific choice of managers and resolution functions that are
used to glue the system together.

In addition, the full power of the metamodel constraint capabilities and
declarative specification can be used to ensure and/or verify that certain prop-
erties of interest are satisfied at the border of the domains. This capability is
especially important, as it provides a single unified environment for co-simulation
and co-analysis.

Note, in particular, that the semantics of interaction between different models
of computation is not fixed, but can be defined according to the implementa-
tion strategy. The metamodel is first used to define a common semantic domain.
Then, the appropriate refinement maps are used to embed each specific model
into the common refinement. The semantics of interaction is then the result
of applying the metamodel abstract semantics (defined in terms of action au-
tomata [3]) to the instances of the models. Thus, different model interactions
can be obtained by not only changing the common refinement, but also by play-
ing with the refinement maps. Experimenting with this technique is part of our
future work. In particular we aim at integrating different formalisms by showing
their individual strengths and weaknesses.

3 A Survey of Languages and Tools for Hybrid Systems

Table 1 shows the approach adopted by each language for modeling the basic
hybrid system structure. The first column indicates how discrete and continuous
signals are declared in each language. Some languages like Charon [6] and
Modelica [7] use special type modifiers to specify whether a variable is discrete
or continuous. However, the semantics is different in the two cases. While
Charon defines a discrete variable constant between two events, hence having
derivative equal to zero, the derivative of discrete variables in Modelica is not
defined. Graphical languages like HyVisual [8], Simulink [9], and Scicos [10]
rely on attributes associated with ports. Type of signals can be automatically
inferred during compilation. Hysdel [11] and CheckMate [12] describe the
hybrid system as a finite state machine connected to a set of dynamical systems
making the interface between discrete and continuous signals fixed and explicit.

Another basic feature is the association of a dynamical system to a specific
state of the hybrid automata. HyVisual and Charon seem to have the most
intuitive syntax and semantics for this purpose. In HyVisual a state of the
hybrid automata can be refined into a continuous time system. Charon al-
lows a mode to be described by a set of algebraic and differential equations.
In CheckMate, Simulink, and Hysdel a hybrid system is modeled with two
blocks: a state machine and a set of dynamical systems. A discrete state tran-

Interchange Formats for Hybrid Systems: Review and Proposal 531

Table 1. Various approaches to modeling hybrid systems

Name Continuous/Discrete State/Dynamics Continuous/Discrete
Specification Mapping Interface

Charon defined by modes refinenement indirect
language modifier into continuous dynamics

CheckMate separation between discrete output from event generator
FSMs and dynamical systems FSMs to dynamical systems first order hold

Hysdel real and boolean discrete output from event generator
signals FSMs to dynamical systems first order hold

HyVisual signal attribute, state refinement toContinuous,
automatic type detection into continuous models toDiscrete actors

Modelica defined by different equation sets indirect
language modifier depending on events (when statements)

Scicos defined by implemented by connections interaction between
port attribute of event selectors continuous/discrete states

Simulink automatic type detection discrete output from library blocks like
FSMs to dynamical systems zero-order hold.

Table 2. Main features offered by the languages/tools of Table 1

Name Derivative Automata Hierarachy Object Non-Causal Algebraic Dirac
Definition Oriented Modeling Loops Pulses

Charon yes modes of yes yes no no no
operation

CheckMate yes Stateflow no no no no no
specification

Hysdel discrete logic no no no no no
differences functions

HyVisual integration graphical yes yes no no no
editor

Modelica yes algorithm yes yes yes no not yet
sections

Scicos integration network of yes no no no no
condit. blocks

Simulink derivative and Stateflow yes no no no no
integration specification

sition can be triggered by an event coming from a particular event-generation
block that monitors the values of the variables of the dynamical system. On
the other hand, the finite state machine can generate events that are sent to a
mode-change that selects a particular dynamics depending on the event. Sci-
cos implements the automata as an interconnection of blocks whose discrete
state can affect the continuous state of blocks implementing the continuous dy-
namics. Finally, Modelica provides a set of conditional statements that can
change the set of equations describing the continuous state. The last column
in Table 1 describes how discrete and continuous signals and blocks interact
with each other. CheckMate and Hysdel use an event-generator and a mode-
change block. HyVisual and Simulink provide special library blocks to convert
a discrete signal into a continuous and vice versa. In Scicos, a block can have
both continuous and discrete inputs as well as continuous and discrete states.

532 A. Pinto et al.

Discrete states can influence continuous states. Charon and Modelica have
special modifiers for distinguishing between discrete and continuous signals. As
in all other languages, assignments of one to the other is not possible and can
be statically checked (by a simple type checker).

Table 2 shows the features provided by the different tools. All of them sup-
port the derivative operator. The specification of the discrete automata has dif-
ferent interpretations. Again, the most intuitive way of describing the discrete
automata is implemented by HyVisual and Charon. HyVisual , for instance,
has a finite state machine editor where a state machine can be described with
bubbles and arcs. Each bubble can then be refined into a continuous time system
or into another hybrid system.

Two features are very useful: Object orientation (OO), i.e. the possibility of
defining objects and extending them through inheritance and field/method ex-
tension, and non-causal modeling, i.e. the possibility of using implicit equations
to describe a dynamical system. None of the languages discussed above has a
clear definition of the semantics of programs that contain algebraic loops. All of
them rely on the simulation engine that, in presence of algebraic loops, either
stops with an error message or solves them using specialized algorithms. We
believe that a language has to give a meaning to programs containing algebraic
loops and the meaning should be independent from the simulation engine.

4 The Interchange Format

In this section, we present a set of requirements for an Interchange Format (IF)
and then we proceed to suggest a prototype IF, based on the MMM, by defining
its syntax and semantics.

Requirements. An interchange format should be able to capture all the main
features of the languages that have been already developed. It has to be a sort of
“maximum common denominator” among all hybrid system modeling environ-
ments. Specification in the interchange format are not supposed to be written
directly by designers. Instead, they should be produced by automatic tools that
translate specifications written with other languages into the interchange for-
mat. The set of supported features has to be rich enough to guarantee lossless
translations. For instance, if the interchange format did not support hierarchy,
only flat designs could be described. A translation from one language that sup-
ports hierarchy to the interchange format would still be possible but it would
inevitably flatten out the design structure, making it impossible to retrieve the
original description (the translation process then would be lossy in the sense
that the design structure would be lost forever).

We describe the set of features that we believe are essential for an interchange
format.

– Object orientation is used to group common properties of a set of objects
in a base class. It includes the features for defining complex data structures

Interchange Formats for Hybrid Systems: Review and Proposal 533

as well as incompletely specified processes. It is possible to extend processes
and add/determine part of their behaviors.

– Hierarchy is an essential feature for organizing, structuring and encapsulat-
ing designs. Flat designs are too complicated to handle because they expose
all their complexity in a single view. Even if the interchange format is not
supposed to be manipulated directly by designers, it has to retain the original
structure.

– Heterogeneous modeling is the ability of representing and mixing differ-
ent models of computation.

– Refinement is a language feature for specifying a formal relation between
components described at different levels of abstraction. Similarly to Ptolemy,
refinement can be used to associate a continuous time dynamics to a discrete
state. Since a design can be expressed at different levels of abstraction, formal
refinement is definitely an important feature.

– Implicit equations are naturally used by designers to describe dynamical
systems. An equation represents a constraint on a set of variables.

– Explicit declaration of discrete states and transitions manager. A
transition manager determines the possible sequence of discrete states of a
hybrid automata. Transitions from one state to another, even if defined by
the designer, are handled by the simulator, which is hidden. In order for the
sequence of states to be preserved across tools, a transition manager should
be explicitly described in the interchange format.

– Explicit declaration of invariant constraints. Invariants are constraints
on the state variables. A set of invariant constraints can be associated with
each state of a hybrid system. A specific logic should be supported by the
interchange format to specify invariants. Metropolis, for instance, defines
the logic of constraints (LOC) as a general way of declaring relations among
quantities.

– Explicit non-determinism must be supported by the interchange format.
Languages like the Metropolis metamodel have a keyword to specify non-
deterministic variables. It is up to the simulation engine to implement non-
deterministic choices and return, for instance, one of the possible simulation
traces. At the specification level the semantics of a non-deterministic sys-
tem should include all admissible traces. Non-determinism is important for
modeling the environment and for the emergent field of stochastic hybrid
systems.

– Explicit declaration of causality relations and scheduling for vari-
ables resolution. When a system is described with implicit equations, so-
phisticated techniques are required to understand dependency among vari-
ables. After the dependency analysis has been performed, an imperative
program can be written that evaluates variables with a specific order. This
step is usually hidden but should be explicit in the interchange format since
it contributes to the operational semantics of the language.

– General continuous/discrete interface. Each modeling environment de-
fines its own communication semantics between continuous and discrete do-
mains. Instead of defining a communication semantics, the interchange for-

534 A. Pinto et al.

mat should provide a set of language primitives that allow the designer to
implement any possible communication scheme.

Language syntax. Rather than focusing on object orientation and scoping,
we focus on the definition of a few base classes and synchronization statements
that should be provided by the interchange format. In order to support hetero-
geneous modeling, the interchange format should provide a set of basic building
blocks that can be used to build several models of computation. The Metropo-
lis metamodel provides three basic components: processes for doing compu-
tation, media for communication and quantity managers for synchronization
and scheduling and starting form this basic classes, we define the following:

– State is a process that extends the basic process class. It contains ports
representing input and output transitions. These ports are connected to other
states and are used to communicate output actions and reset maps.

– AnalogProcess is a continuous time process which extends the basic process
class. It contains: ports to access external variables that are stored in com-
munication media, and a set of equation statements that define the process
behavior.

– TManager (TM) is the transitions manager which implements the transi-
tions logic of the finite state machine. It defines a resolve method which
determines the current state.

– EManager (EM) is the equation manager. Each equation has a scheduler
associated with it. The scheduler defines a resolve method that computes
unknown values starting from known ones. It uses causality constraints to
determine inputs and outputs.

– ERManager (ERM) is a manager associated with each dynamical system. It
defines a resolve method that implements the algorithm to schedule the
equation resolution.

– Transition is a communication medium used to connect states.
– AnalogVar is a communication medium used to connect analog processes.

Besides the basic elements, few other keywords are needed:

– refine(Object, Netlist) creates a formal relation between an object and
a netlist of components. It is used to build models at different levels of
abstraction.

– invariant{ <formula on state variables> } is used to specify invari-
ants. <formula> is a relation on the state variables.

– causality(P,var1 -> var2) states that var1 depends on var2. The two
variables must be in the scope of the process P .

– scheduling(P1,P2,...,PN) specifies the scheduling order among processes
P1,...,PN belonging to a dynamical system.

Language semantics. Figure 1 shows a simple example of hybrid system de-
scribed in the interchange format. Following the Metropolis metamodel for-
malism, we graphically represent processes (analog and states) with squares,
communication media with circles and managers with diamonds. The system

Interchange Formats for Hybrid Systems: Review and Proposal 535

eqn(...)

TM

ERM

EM2

Computation/Communication

EM1

Dynamical system level

Equation level

Scheduling

Transition level

refine(S2,N)

S1

S2

A1

A2

eqn(...)

Fig. 1. Graphical representation of an hybrid system using the interchange format

has two discrete states which communicate through media. Each state is refined
into a dynamical system (or into another hybrid system). State S2, for instance,
is refined into a dynamical system composed of two analog processes, A1 and
A2. The behavior of an analog process is specified by equations. The netlist is
partitioned in the computation/communication netlist CN , which represents the
structure of the system, and the the managers netlist MN which limits the
possible executions of CN by imposing scheduling constraints. CN contains pro-
cesses and communication media. The set of processes P = {S,A} is partitioned
in the set of states S and the set of analog processes A. Each process behavior
is a sequence of events {ei} where an event can have an annotation associated
with it (e.g. time).

The execution of a program is defined as a sequence of event vectors v =
[ES ,EA] where ES(i) is the event executed by the i-th state process and EA(i) by
the i-th analog process. A special event calledNOP corresponds to the stalling of
a process (refer to [3] for a detailed explanation of the Metropolis metamodel
semantics). In this setting, an execution is valid if the transition event ES(i) from
state si to sj implies that the set of values associated with events in EA satisfies
the guard conditions defined on the transition. In addition, if the current state
is si and all events in ES are equal to NOP , then the set of values associated
with events in EA must satisfy the invariant constraints defined in si.

Operationally, the execution consists of a sequence of iterations during which,
processes in CN issue requests to MN which in turn grants only the requests
that are consistent with constraints like guards and invariants. The type of a
request depend on the process that issues it. State processes issue requests to
execute their output transitions while AnalogProcess processes issue requests
to evaluate their equations sets.

When requests are issued the control is passed to MN and a coordination
between TM , EM and ERM starts to ensure that invariants are satisfied, tran-

536 A. Pinto et al.

C< < 41

V
C< < 41

V
C
> 0

.

V
C
< 0

.
>V

C

V0

4 /

=−5

V
C

V0

< /1

=5

A)

+

−

R

C

Ch

D

B)

V

V0
V

C
−

+

Fig. 2. Simple hybrid system example. A) is the schematic representation of the circuit,

B) shows the finite state machine, transitions and invariants

sitions are consistently taken, and equations are evaluated in conformance with
causality and scheduling constraints. Note that there could be more than one
event vector satisfying all constraints and choosing one is a simulation choice
and not a restriction imposed by the language.

Example. Consider the continuous time system of Figure 2. Resistor R and
capacitor C are two continuous time processes.

Capacitor is a process derived from a general analog process (figure 3). The
AnalogProcess base class defines special functions for establishing connections
to quantity managers. The process has two ports to connect to communication
media and read/write variables value. The port type is an interface that declares
services that are defined (implemented) by communication media. Note that the
ports are not associated with a direction, which implies that the component
does not have a causality constraint associated with its description. A resistor
is described in the same way but the current/voltage relation is governed by
Ohm’s law v = R*i.

For the description of the system, we refer the reader to Figure 3. The entire
continuous time subsystem results from the interconnection of analog processes
into a netlist, called RCCircuit. Causality constraints and scheduling constraints
are specified in this netlist and are used to build the scheduling netlist.

Following is an example corresponding to the charge state of the circuit. Reset
maps as well as shared state variables are all accessed through ports. A media
has to provide a place to store these variables and also has to implement services
to access them. Depending on the implementation of these services, it is possible
to customize the communication semantics.

A finite state machine is represented as interconnection of states and tran-
sitions. The first part of the netlist instantiates all components including states
and communication media. The second part connects states to channels. The last
part describes the transitions. Each state declares a set of output transitions that
can be connected to the target state in the FSM netlist.

A top level netlist is needed for instantiation of the finite state machine and
association of dynamical systems to states. A snippet of the code is also shown

Interchange Formats for Hybrid Systems: Review and Proposal 537

process Capacitor extends AnalogProcess {
parameter double C;
port AnalogInterface i, v;
equations {

i = c * der(v);
}

}

process Charge extends State {
port AnalogChannel v0out, v0in, vc;
OutTransition vcth(vc >= 4, v0out = -5);
constraints {

invariant(vc>=1 && vc <= 4 && der(vc) >= 0);
}

}

netlist RCCircuit extends AnalogNetlist {
port AnalogInterface V0;
AnalogChannel current, voltagec, voltager = new AnalogChannel(0.0);
Sub S = new Sub();
Capacitor C = new Capacitor(1uF);
Resistor R = new Resistor(1K);
connect(S.in1,V0); connect(S.in2,voltagec); connect(S.out,voltager);
connect(R.v,voltager); connect(R.i,current); connect(C.i,current); connect(C.v,voltagec);
constraints {

causality(R,v->i); causality(C,i->v); causality(S,out-> in1 && in2); scheduling(S->R->C);
}

}

netlist RCFSM extends FSMNetlist {
Charge ch = new Charge();
Discharge dch = new Discharge();
AnalogChannel v0c2d, v0d2c = new AnalogChannel(0.0);
connect(ch.v0out,v0c2d); connect(ch.v0in,v0d2c);
connect(dch.v0out,v0d2c); connect(dch.v0in,v0c2d);
transition(ch.vcth,dch); transition(dch.vcth,ch);

}

netlist Top {
RCFSM myfsm = new RCFSM();
refine(myfsm.ch,RCCircuit);
refine(myfsm.dch,RCCircuit);
refineconnect(myfsm.ch.v0in, refinementof(myfsm.ch).V0);
refineconnect(myfsm.dch.v0in, refinementof(myfsm.dch).V0);
connect(myfsm.ch.vc,refinementof(myfsm.ch).voltagec);
connect(myfsm.dch.vc,refinementof(myfsm.dch).voltagec);

}

Fig. 3. Example of code describing an analog netlist, a state, an FSM and the top

netlist

in Figure 3. The top netlist uses the refine keyword to associate a dynamical
system to a state. A few more connections are specified in the top netlist. First of
all we have to connect the reset maps to the dynamical system input. In this case
the variable V0 is an input of the RCCircuit netlist. Also we have to connect the
variable corresponding to voltage across the capacitor to the state input port.
This variable will be checked during simulation for evaluating guards conditions
and invariant constraints.

5 Application Scenarios

Consider three hypothetical flows: one where a system is specified and simulated
using HyVisual, and then is formally validated using CheckMate. The second
is a similar flow where Modelica is used as design entry and simulation tool
instead of HyVisual. The third is when a design consists of two parts, one
modeled in Modelica and one in HyVisual and we wish to simulate the entire
system in Modelica.

538 A. Pinto et al.

To implement these flows, the basic operations are importing into the in-
terchange format from HyVisual and Modelica models and exporting the
interchange format into a CheckMate and a Modelica model. Using the in-
terchange format allows a linear number of translations and relative constraints
versus a quadratic number of translators if the interchange format is not used.

HyVisual to Interchange Format. Translating an HyVisual model into the
interchange format is straightforward.

Computation.There is a one-to-one correspondence between HyVisual states
and state processes in the interchange format. Each state can be refined into
another hybrid model or into a dynamical systems. This is possible because
the interchange format supports refinement of a generic object into a netlist.
Also a dynamical system in HyVisual is constructed as the interconnection of
library elements, each of them having a well defined input-output behavior. Each
component is mapped into an analog process whose set of equations is defined
by the behavior of the respective HyVisual component.

Communication. Each state process has input and output ports representing
respectively input and output transitions. Each HyVisual transition from state
si to sj is mapped into a transition medium between state process si and sj in the
interchange format. If a refinement is associated with the HyVisual transition,
then the correspondent transition medium is refined into a netlist.

For each variable v appearing in guard condition c on transition t, there has
to be an analog channel from the dynamical system that computes v to the state
having t as output transition.

Communication between analog processes in the same dynamical system are
implemented by analog communication channels.

Coordination. Each component in HyVisual is causal, i.e. it has inputs and
outputs and output values are computed as a function of the inputs. For each
analog process a set of causality constraints is added in such a way that outputs
depend on the inputs.

Causality and scheduling constraints are used respectively by the equation
resolution manager and the equation manager for computing the values of vari-
ables at a given time. These two managers in cooperation with the transition
manger implement all the algorithms that determine the system operational be-
havior. For instance, the Runge-Kutta solver can be implemented by the cooper-
ation of ERM and EM. The transition manager, instead, can be implemented so
that a request for backtracking is issued to the ERM when a threshold is missed.

Modelica to Interchange Format. A Modelica model has one or more
equation sections that describe its behavior. An equation section can contain if
and when statements whose condition expression generates events. Depending
on which event happens, different branches of the conditional statements (and,
therefore, a different set of equations) become active. There are several additional
restrictions. In particular, the number of variables has always to be equal to the
number of equations (non-determinism is avoided by construction).

Interchange Formats for Hybrid Systems: Review and Proposal 539

The translation of a Modelica program into the interchange format can be
done as follows.
Computation. Each Modelica model is a hybrid system. The number of state
processes and the transitions between them are determined by the number of
branches resulting from the combination of if and when statements in the equa-
tion sections of the model. Each state process is refined into a dynamical system
whose set of equations corresponds to the branch that is active in that state.
Since the interchange format supports hierarchy and non-causal modeling (as
well as object orientation) translation of the computation aspect does not re-
quire special analysis of the original program.
Communication. The only communication mechanism that we should pay atten-
tion to is the connection primitive that Modelica defines. Variables involved
in a connection are subject to an implicit equation. If the variables are defined as
flow variables that their sum as to be zero, otherwise they have to be equal. This
semantics can be implemented in the interchange format by an analog process
that explicitly declares the equations of a connection.
Coordination. Since Modelica allows non-causal modeling, causality analysis
must be performed on the original program to determine the causality and
scheduling constraints for each model. In the case of Modelica functions, this
is not needed since inputs and outputs are defined by special keywords.

Interchange Format to Modelica. Each process in the interchange format is
mapped to a Modelica model. If the process is a unrefined analog process then
the Modelica model only contains an equation section where all the equations
of the analog process are directly rewritten using the Modelica syntax.

An interconnection of state processes modeling an hybrid automata (where
each process is refined into a dynamical system) is mapped into a Model-
ica model presenting a when statement with as many branches as states. Each
branch is guarded by the guard conditions on the automata transitions. Also
each dynamical system that refines a state s is described as a set of equations
in the correspondent branch of the when statement representing s.

Note that a model in the interchange format always comes with causality
constraints on the variables. Instead of using model then, it is better to use
functions in Modelica that distinguish between input and output.

A composition of hybrid systems in the interchange format is a Model-
ica model that instantiates all the systems and interconnects them.

Note that a translation from Modelica to the interchange format and back
will only lose the connection statements since they are translated into analog
processes. However, a smart translator could recognize connection processes (e.g.,
by name) and generate a connection relation among the inputs of the analog
connection process.

Interchange Format to CheckMate. CheckMate models hybrid systems
using three basic blocks:

540 A. Pinto et al.

– Switched continuous system block (SCSB) of the form ẋ = f(x, σ) where σ
is a discrete variable.

– Polyhedral threshold block (PTHB) whose output is a Boolean variable
which is true if Cx ≤ d is satisfied. This block represents the conjunction of
all guard conditions.

– Finite state machine block (FSMB) that takes the output of PTHB and
generates σ.

The function f can be of three types: x = c, ẋ = Ax+ b and ẋ = f(x) where f
is a non linear function.

Before translating a model from the interchange format to CheckMate, we
must verify that the limitations on the guard conditions and on the fields are not
violated by the model to be translated. If this is not the case, an error should be
notified saying that the target language lacks properties that are required for the
description of the original model. After this step, we flatten the design hierarchy.
The program in the interchange format has to be analyzed and rewritten in the
form of a finite state machine where each state is refined into a dynamical system.
The CheckMate FSMB has the same states and transitions of the interchange
format one. To build the FSMB we replace each guard condition with a Boolean
input coming from the PTHB. The FSMB has an output σ denoting the current
state. For each dynamical system di which refines state si we derive its state
space representation. The CheckMate SCSB is the juxtaposition of all this
systems and the input σ decides which of this systems is used for computing the
state variables. Finally the CheckMate PTHB is obtained as the conjunction
of all guard conditions, state variables as inputs and as many Boolean outputs
as guard conditions.

6 Conclusions

Hybrid systems are important to a number of applications of great scientific and
industrial interest. Being hybrid systems at the same time complex and rela-
tively new, several tools are today available based on different assumptions and
modeling strategies. We reviewed the most visible tools for hybrid systems and
we presented the case for a novel interchange format based on the Metropo-
lis metamodel (MMM). To do so, we first gave a formal definition of the MMM.
We proceeded in listing the requirements and the formal definition of the format.
We concluded with examples of use of the interchange format in defining a de-
sign flow that includes HyVisual, Modelica and CheckMate to enter the
design, simulate it and formally verifying its properties. The interchange format
is at this point a proposal, since work still needs to be done to support it with
the appropriate debugging and analysis tools and to provide translators to and
from the new IF from and to existing tools.

We are confident that a variation of our proposal will be eventually adopted
by the community interested in designing embedded systems with particular
emphasis on control. We are open to any suggestion and recommendation to
improve our proposal.

Interchange Formats for Hybrid Systems: Review and Proposal 541

Acknowledgements. We gratefully acknowledge the discussions on this topic
with Janos Stzipanovits of Vanderbilt University and its team, Ed Lee of UC
Berkeley, Marika Di Benedetto of University of L’Aquila, Albert Benveniste of
INRIA, and the PARADES team (Andrea Balluchi, Alberto Ferrari, Massimo
Baleani, Leonardo Mangeruca and Paolo Murrieri). This work has been sup-
ported in part by the Columbus Project of the European Community, CHESS
ITR, and the GSRC.

References

1. (http://www.columbus.gr/)

2. Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for

hybrid systems. In: Automatica, Special Issue on Hybrid Systems. (1999)

3. Balarin, F., Lavagno, L., Passerone, C., Sangiovanni-Vincentelli, A., Sgroi, M.,

Watanabe, Y.: Modeling and designing heterogeneous systems. Technical Report

2002/01, Cadence Berkeley Laboratories (2002)

4. Lee, E., Sangiovanni-Vincentelli, A.: A framework for comparing models of com-

putation. IEEE Trans. Comput.-Aided Design Integrated Circuits 17 (1998) 1217–

1229

5. Pnueli, A.: The temporal logic of programs. In: Proc. 18th Annual IEEE Sympo-

sium on Foundations of Computer Sciences. (1977) 46–57

6. Alur, R., Dang, T., Esposito, J., Hur, Y., Ivancic, F., Kumar, V., Lee, I., Mishra,

P., Pappas, G.J., Sokolsky, O.: Hierarchical modeling and analysis of embedded

systems. Proceedings of the IEEE (2002)

7. Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica

2.1. J. Wiley & Sons (2004)

8. Hylands, C., Lee, E.A., Liu, J., Liu, X., Neuendorffer, S., Zheng, H.: Hyvisual: A

hybrid system visual modeler. Technical Report UCB/ERL M03/1, UC Berkeley

(2003) available at http://ptolemy.eecs.berkeley.edu/hyvisual/.
9. Dabney, J.B., Harman, T.L.: Mastering Simulink. Prentice Hall (2003)

10. Nikoukhah, R., Steer, S.: SCICOS A dynamic system builder and simulator user’s

guide - version 1.0. Technical Report Technical Report 0207. INRIA, (Rocquen-

court, France, June) (1997)

11. Torrisi, F.D., Bemporad, A., Bertini, G., Hertach, P., Jost, D., Mignone, D.: Hysdel

2.0.5 - user manual. Technical report, ETH Zurich (2002)

12. Silva, B.I., Richeson, K., Krogh, B., Chutinan, A.: Modeling and verifying hybrid

dynamic systems using checkmate. In: ADPM. (2000)

Primal–Dual Tests for Safety and Reachability

Stephen Prajna1 and Anders Rantzer2

1 Control and Dynamical Systems,

California Institute of Technology,

Pasadena, CA 91125 – USA

prajna@cds.caltech.edu
2 Department of Automatic Control,

Lund Institute of Technology,

SE 221 00 Lund – Sweden

rantzer@control.lth.se

Abstract. A methodology for safety verification using barrier certifi-

cates has been proposed recently. Conditions that must be satisfied by

a barrier certificate can be formulated as a convex program, and the

feasibility of the program implies system safety, in the sense that there

is no trajectory starting from a given set of initial states that reaches

a given unsafe region. The dual of this problem, i.e., the reachability

problem, concerns proving the existence of a trajectory starting from

the initial set that reaches another given set. Using insights from convex

duality and the concept of density functions, in this paper we show that

reachability can also be verified through convex programming. Several

convex programs for verifying safety, reachability, and other properties

such as eventuality are formulated. Some examples are provided to illus-

trate their applications.

1 Introduction

Safety verification or reachability analysis addresses the question whether an un-
safe region in the state space is reachable by some system trajectories starting
from a set of initial states. The need for safety verification arises as the complex-
ity of the system increases, and is also underscored by the safety critical nature
of the system. This is particularly important for modern engineering systems,
many of which have hybrid (i.e., a mixture of discrete and continuous) dynamics.

Various methods have been proposed for safety verification. For verification
of discrete (finite state) systems, model checking techniques [1] have been very
successful and have garnered a popularity that prompts the development of anal-
ogous approaches for verification of continuous systems, which mostly require
computing the propagation of initial states (see e.g. [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]).
Unfortunately, while these techniques allow us to compute an exact or near ex-
act approximation of reachable sets, it is difficult to perform such a computation
due to the infinite number of states. Not only that, the complexity is worse when
the system is nonlinear and uncertain.

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 542–556, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Primal–Dual Tests for Safety and Reachability 543

Recently, we proposed a method for safety verification that does not require
propagating the initial set, based on what we term barrier certificates [12]. Our
conditions for safety can be stated as follows. Given a system ẋ = f(x) with the
state x taking its value in X , a set of initial states X0 ⊂ X , and an unsafe set
Xu ⊂ X , suppose there exists a continuously differentiable function B : X → R
such that the inequalities

B(x) ≤ 0 ∀x ∈ X0, (1)
B(x) > 0 ∀x ∈ Xu, (2)

∂B

∂x
f(x) ≤ 0 ∀x ∈ X . (3)

are satisfied. Then the safety of the system is verified, namely, there is no tra-
jectory x(t) of the system such that x(0) ∈ X0, x(T) ∈ Xu for some T ≥ 0, and
x(t) ∈ X for all t ∈ [0, T]. In this case, the function B(x) is called a barrier
certificate.

The above method is analogous to the Lyapunov method for stability analy-
sis [13], and is closely related to the viability theory [14] and invariant sets [15]
approaches to safety verification. We would like to note that ideas parallel to
ours also appear in [16, 17]. When the vector field f(x) is polynomial and the
sets X , X0, Xu are semialgebraic, a polynomial barrier certificate B(x) can be
searched using sum of squares techniques [18, 19] in conjunction with semidef-
inite programming [20]. The method can also be extended to handle hybrid,
uncertain, and stochastic systems [12, 21] and successful application to a hybrid
system with 6 locations and 10 continuous state variables has been reported [22].

For hybrid systems, safety verification can also be performed by first con-
structing a discrete abstraction of the system [23, 2, 6, 7, 8, 9] and then perform-
ing verification on the resulting abstraction. This approach provides a nice hi-
erarchical way for managing the complexity of verification: start with a coarse
abstraction and successively refine it until safety is verified or a non-spurious
counter-example is found. However, a crucial and computationally demanding
component of the abstracting process is still the continuous reachability analysis,
which is required to determine whether or not a transition between two discrete
states in the abstraction is possible.

In constructing discrete abstractions of hybrid systems, barrier-certificate-
based analysis can be used for ruling out transitions between discrete states.
What is still missing is a method for proving that other transitions are indeed
possible. This is the problem of reachability, which for a system ẋ = f(x), the
state set X , the initial set X0 ⊂ X , and the target set Xr ⊂ X , amounts to
proving that there exists a trajectory x(t) of the system such that x(0) ∈ X0,
x(T) ∈ Xr for some T ≥ 0, and x(t) ∈ X for all t ∈ [0, T]. It is important to note
that failure in computing a barrier certificate that proves the unreachability of
the target set from the initial set does not by itself mean that the target set is
reachable from the initial set. For example, when using polynomial parameteri-
zation for B(x), it may be the case that we fail to find B(x) because the degree
of the polynomial is not high enough.

544 S. Prajna and A. Rantzer

In the present paper, we use the ideas of duality and density functions [24,
25] to formulate a “dual” test for reachability, thus forming a primal and dual
pair of safety and reachability tests. We show that reachability can be verified
through convex optimization, e.g., sum of squares technique and semidefinite
programming when the vector field is polynomial and the sets are semialgebraic.
In addition, another pair of convex programs for safety and reachability tests
will also be formulated, where the primal test now proves reachability and the
dual test proves safety. Either of these pairs can be used to rule out or establish
transitions between discrete states when creating abstractions of hybrid systems.
We will also show that this convex programming approach can be used to prove
properties such as eventuality or weak eventuality — whose definitions will be
presented later, or even other simple combinations of reachability/eventuality
and safety.

The outline of the paper is as follows. In Section 2, we give an intuitive
illustration of the duality idea by addressing the verification of a simple discrete
system. The main results of the paper are presented and proven in Section 3. In
Section 4, some examples will be presented to illustrate the applications of the
tests. Finally, some conclusions will be given in Section 5.

2 A Discrete Verification Example

To give an intuitive flavor of the duality ideas used in this paper, let us consider
the verification of a simple discrete system, shown in Figure 1. The system has
four states, labelled 1 through 4, and three transitions between states, repre-
sented by the directed edges in the graph. We assume that node 1 is the initial
state and node 4 is the unsafe state.

1

2

4

3

X0

Xu

Fig. 1. A simple discrete system. The nodes represent the states of the system, while

the directed edges represent transitions between states

Primal–Dual Tests for Safety and Reachability 545

For this system, conditions analogous to (1)–(3) that must be satisfied by a
barrier certificate can be formulated. One way to find a barrier certificate is by
solving the linear program

max B4 −B1

subject to B2 −B1 ≤ 0,
B3 −B2 ≤ 0,
B4 −B2 ≤ 0,

where the decision variables B1, B2, B3, B4 take values in the reals. This formu-
lation is similar to the continuous case: analogous to (3), we ask that Bi ≤ Bj

if there is a directed edge from node i to node j, whereas the objective function
in this case is the difference between the values of B at the unsafe state and at
the initial state. If there is a feasible solution of the above problem such that the
objective function is strictly positive, then the value of B at the unsafe state is
strictly greater than that at the initial state, i.e., there exists a barrier certifi-
cate for the system, and consequently we prove that there is no path going from
node 1 to node 4.

The dual of the above linear program is as follows:

min 0
subject to ρ12 ≥ 0, ρ23 ≥ 0, ρ24 ≥ 0,

ρ12 = 1,
ρ24 + ρ23 − ρ12 = 0,
ρ24 = 1,
ρ23 = 0.

The dual decision variable ρij can be interpreted as the transportation density
from node i to node j. The equality constraints basically state that conservation
of flows holds at each node – the total flow into a node is equal to the total flow
out. In addition, the first and third equality constraints indicate that there exist
a unit source at node 1, i.e., the initial state, and a unit sink at node 4, i.e.,
the unsafe state. This duality interpretation has been studied extensively in the
past, see e.g. [26] and references therein.

The existence of a feasible solution to the dual linear program implies the
existence of a path from the initial state to the unsafe state. This can be shown
using the facts that the flows are conserved and that there are a unit source
and a unit sink at the initial state and unsafe state, respectively. Hence, showing
that the dual linear program is feasible can be used for verifying reachability.
As a matter of fact, if we also add the objective function

∑
ρij to the dual

linear program, we obtain a linear programming formulation of the shortest path
problem. In this case, the nonzero entries corresponding to any optimal vertex
solution of the linear program will indicate a shortest path from the initial node
to the unsafe node.

The duality argument above can also be used to prove that the existence of
a barrier certificate is both sufficient and necessary for safety. For this, suppose

546 S. Prajna and A. Rantzer

that there exists no barrier certificate for the system, which is equivalent to the
maximum objective value of the primal linear program being equal to zero. This
objective value is attained by e.g., Bi = 0 for all i. The linear programming du-
ality [20] implies that there exists a feasible solution to the dual linear program,
from which we can further conclude the existence of a path from the initial state
to the unsafe state, as explained in the previous paragraph. In the continuous
case, a converse theorem for barrier certificates is proven in [27].

For the above example, the optimal objective value of the primal linear pro-
gram is equal to zero. The unique feasible solution to the dual linear program is
given by ρ12 = 1, ρ23 = 0, ρ24 = 1, which shows the path from node 1 to node 4.
Had the direction of the edge from node 2 to node 4 been reversed, for example,
the optimal objective value of the corresponding primal linear program will be
∞, and there will be no feasible solution to the dual linear program.

3 Main Results

We denote the space of m-times continuously differentiable functions mapping
X ⊆ Rn to Rp by Cm(X,Rp). The solution x(t) of ẋ = f(x) starting from
x(0) = x0 is denoted by φt(x0). For a set Z, we define φt(Z) = {φt(x) : x ∈ Z}.
The divergence of a vector field f ∈ C1(X,Rn) is denoted by ∇ · f(x). Finally,
let cl(X) denote the closure of a set X, and ∂X denote the boundary of X.

The following version of Liouville’s theorem (from [24]) will be used in the
proofs of the main theorems.

Lemma 1. Let f ∈ C1(D,Rn) where D ⊆ Rn is open and let ρ ∈ C1(D,R) be
integrable. Consider the system ẋ = f(x). For a measurable set Z, assume that
φτ (Z) is a subset of D for all τ between 0 and t. Then∫

φt(Z)
ρ(x)dx−

∫
Z

ρ(z)dz =
∫ t

0

∫
φτ (Z)

[∇ · (fρ)] (x)dxdτ. (4)

At this point, we are ready to state and prove the first pair of tests for safety
and reachability.

Theorem 1. Consider the differential equation ẋ = f(x) with f ∈ C1(Rn,Rn).
Let X ⊂ Rn and X0,Xu,Xr ⊂ X be bounded open sets, and suppose that there
exists a function B ∈ C1(Rn,R) satisfying

B(x) ≤ 0 ∀x ∈ X0, (5)
B(x) > 0 ∀x ∈ Xu, (6)

∂B

∂x
f(x) ≤ 0 ∀x ∈ X . (7)

Then the safety property holds, i.e., there exists no trajectory x(t) of the system
such that x(0) ∈ X0, x(T) ∈ Xu for some T ≥ 0, and x(t) ∈ X for all t ∈ [0, T].

Primal–Dual Tests for Safety and Reachability 547

On the other hand, if there exists a function ρ ∈ C1(Rn,R) satisfying∫
X0

ρ(x)dx > 0, (8)

ρ(x) < 0 ∀x ∈ cl(∂X \ ∂Xr), (9)
∇ · (ρf)(x) > 0 ∀x ∈ cl(X \ Xr), (10)

then the reachability property holds, i.e., there exists a trajectory x(t) of the
system such that x(0) ∈ X0, x(T) ∈ Xr for some T ≥ 0, and x(t) ∈ X for all
t ∈ [0, T].

Proof. For a proof of the first statement, assume that there exists a B(x) satis-
fying (5)–(7), while at the same time there is an initial condition x0 ∈ X0 such
that the trajectory x(t) of ẋ = f(x) starting at x(0) = x0 satisfies x(t) ∈ X
for all t ∈ [0, T] and x(T) ∈ Xu. Condition (7) states that the Lie derivative of
B(x) along this flow is non-positive. A direct consequence of this is that B(x(T))
must be less than or equal to B(x(0)), which is contradictory to (5)–(6). Thus
we conclude that the system is safe.

To prove the second statement, let X ⊂ X0 be an open set on which ρ(x) > 0.
We will first prove that there must be an initial condition x0 ∈ X whose flow
φt(x0) leaves X \ Xr in finite time. In fact, the set of all initial conditions in X
whose flows do not leave X \ Xr in finite time is a set of measure zero. To show
this, let Y be an open neighborhood of X \ Xr such that ∇ · (ρf)(x) > 0 on
cl(Y). Now define

Z =
⋂

i=1,2,...

{x0 ∈ X : φt(x0) ∈ Y ∀t ∈ [0, i]} .

The set Z is an intersection of countable open sets and hence is measurable.
It contains all initial conditions in X for which the trajectories stay in Y for
all t ≥ 0. That Z is a set of measure zero can be shown using Lemma 1 as
follows. Since φt(Z) ⊂ Y , Y is bounded, and ρ(x) is continuous, the left hand
side of (4) is bounded. For (4) to hold, we must have

∫
φτ (Z) [∇ · (fρ)] (x)dx → 0

as τ → ∞, or equivalently, the measure of φτ (Z) converges to zero as τ →
∞. Suppose now that Z has non-zero measure. We have a contradiction since
limt→∞

∫
φt(Z) ρ(x)dx = 0 whereas limt→∞

∫
Z
ρ(x)dx+

∫ t

0

∫
φτ (Z) [∇ · (fρ)] (x)dxdτ

is strictly positive. Thus Z must have zero measure. Since X \Xr ⊂ Y , it follows
immediately that the set of all initial conditions in X whose flows stay in X \Xr

for all time is a set of measure zero.
Now take any x0 whose flow leaves X \Xr in finite time, and assume that the

flow φt(x0) leaves X without entering Xr first. Let T > 0 be the first time instant
φt(x0) leaves X . That is, let φt(x0) ∈ X \ Xr for all t ∈ [0, T) and φT (x0) /∈ X .
Choose a neighborhood Z of x0 such that

ρ(x) > 0 ∀x ∈ Z,

ρ(x) < 0 ∀x ∈ φT (Z),
∇ · (ρf)(x) > 0 ∀x ∈ φτ (Z), τ ∈ [0, T].

548 S. Prajna and A. Rantzer

Now apply Lemma 1 again with t = T to obtain a contradiction. According
to the above, the left hand side of (4) is negative while the right hand side is
positive. Thus there is a contradiction, and we conclude that for x(0) = x0 there
must exist T ≥ 0 such that x(T) ∈ Xr and x(t) ∈ X for all t ∈ [0, T].

It is interesting to see that the roles of B(x) and ρ(x) in proving safety and
reachability can be interchanged, as in the second pair of tests stated in the next
theorem. The possibility of using the density function ρ(x) to prove safety was
first suggested in [28].

Theorem 2. Consider the differential equation ẋ = f(x) with f ∈ C1(Rn,Rn).
Let X ⊂ Rn and X0,Xu,Xr ⊂ X be bounded open sets, and suppose that there
exists a function B ∈ C1(Rn,R) satisfying∫

X0

B(x)dx < 0, (11)

B(x) > 0 ∀x ∈ ∂X \ ∂Xr, (12)
∂B

∂x
f(x) < 0 ∀x ∈ cl(X \ Xr). (13)

Then the reachability property holds, i.e., there exists a trajectory x(t) of the
system such that x(0) ∈ X0, x(T) ∈ Xr for some T ≥ 0, and x(t) ∈ X for all
t ∈ [0, T].

On the other hand, if there exists a function ρ ∈ C1(Rn,R) satisfying

ρ(x) ≥ 0 ∀x ∈ X0, (14)
ρ(x) < 0 ∀x ∈ Xu, (15)

∇ · (ρf)(x) ≥ 0 ∀x ∈ X , (16)

then the safety property holds, i.e., there exists no trajectory x(t) of the system
such that x(0) ∈ X0, x(T) ∈ Xu for some T ≥ 0, and x(t) ∈ X for all t ∈ [0, T].

Proof. To prove the first statement, consider a point x0 ∈ X0 such that B(x0) <
0. The flow φt(x0) must leave X \ Xr in finite time, since the Lie derivative
inequality (13) holds and B(x) is bounded below on X . Now assume that φt(x0)
leaves X without entering Xr first, and consider the first time instant t = T at
which it happens. From (13), it follows that B(φT (x0)) is strictly less than zero,
which is contradictory to (12). Thus we conclude that for x(0) = x0 there must
exist T ≥ 0 such that x(T) ∈ Xr and x(t) ∈ X for all t ∈ [0, T].

We proceed to proving the second statement. Assume that there is a ρ(x)
satisfying the conditions of the theorem, while at the same time there exists an
x0 ∈ X0 such that φT (x0) ∈ Xu for some T ≥ 0 and φt(x0) ∈ X for t ∈ [0, T]. Let
Z ⊂ X0 be a ball surrounding x0 such that also φT (Z) ⊂ Xu and φt(Z) ⊂ X for
t ∈ [0, T]. Now apply Lemma 1 with t = T to obtain a contradiction. According
to the assumptions of the theorem, the left hand side of (4) is negative and the
right hand side is non-negative. Hence there is a contradiction and the proof is
complete.

Primal–Dual Tests for Safety and Reachability 549

Remark 1. Modulo the following modifications on the assertions of the theorems,
the conclusions will still hold even when the sets are not bounded. In particular,
for the second part of Theorem 1, we need to add the condition that ρ(x) is
integrable on X and replace (10) by

∇ · (ρf)(x) ≥ ε ∀x ∈ cl(X \ Xr)

for a positive number ε. In the first part of Theorem 2, we need to add the
condition that B(x) is bounded below on X and replace (13) by

∂B

∂x
f(x) ≤ −ε ∀x ∈ cl(X \ Xr)

for a positive number ε.

In applications where the system has stable equilibrium points, it is often
convenient to exclude a neighborhood of the equilibria from the region where
the divergence inequality (16) must be satisfied, since the inequality is otherwise
impossible to satisfy without a singularity in ρ(x). This does not make the con-
clusion of the theorem weaker, as long as the excluded set does not intersect Xu

and is entirely surrounded by a region of positive ρ(x).
Similarly, the Lie derivative inequality (13) is impossible to satisfy when the

system has equilibrium points in X \ Xr. In this case, a neighborhood of the
equilibria should also be excluded from the region where the inequality is to be
satisfied. The conclusion of the theorem is still valid as long as the excluded set
is entirely surrounded by a region of positive B(x).

Notice in particular that all the tests presented above are convex program-
ming problems. This opens the possibility of computing B(x) and ρ(x) using
convex optimization. For systems whose vector fields are polynomial and whose
set descriptions are semialgebraic (i.e., described by polynomial equalities and in-
equalities), a computational method called sum of squares optimization is avail-
able if we use polynomial parameterizations for B(x) or ρ(x). The method is
based on the sum of squares decomposition of multivariate polynomials [18] and
semidefinite programming [20]. Software tools [19] are helpful for this purpose.
See [12] for details.

Remark 2. Strictly speaking, it should be noted that the tests in the above theo-
rems are not pairs of Lagrange dual problems [20] in the sense of convex optimiza-
tion. We deliberately do not use Lagrange dual problems to avoid computational
problems when we postulate B(x) or ρ(x) as polynomials. For example, the La-
grange dual problem of the safety test in Theorem 1 will require ∇ · (ρf)(x) to
be zero on X \ (X0∪Xu) (see [27]). Although useful for theoretical purposes, this
will hinder the computation of ρ(x) through polynomial parameterization and
sum of squares optimization. In this regard, some interesting future directions
would be to see if a pair of Lagrange dual problems can be formulated so that
both problems can be solved using sum of squares optimization, or more impor-
tantly, to see if the dual infeasibility certificate of one convex program can be
interpreted directly as a feasible solution to the dual convex program.

550 S. Prajna and A. Rantzer

In the reachability test of Theorem 2, the set of states {x ∈ X0 : B(x) < 0} is
said to satisfy the eventuality1 property: all trajectories starting from this set will
eventually reach Xr in a finite time. Analogously, in Theorem 1, the set of states
{x ∈ X0 : ρ(x) > 0} is said to satisfy the weak eventuality property: almost all
trajectories starting from this set will eventually reach Xr in a finite time. These
facts are evident from the proofs of the theorems. In many applications, it is of
paramount importance to prove eventuality (or even weak eventuality), e.g., to
prove that something “good” will happen. The eventuality or weak eventuality
tests for the whole initial set X0 can be performed simply by replacing (11) and
(8) by B(x) < 0 ∀x ∈ X0 and ρ(x) > 0 ∀x ∈ X0, respectively.

Example 1. To show that the weak eventuality property mentioned above cannot
in general be strengthened to eventuality, consider the system ẋ = x, with X =
(−5, 5) ⊂ R, X0 = (−1, 1), Xr = (−5,−4)∪(4, 5). The function ρ(x) = 1 satisfies
all the conditions that guarantee weak eventuality, hence almost all trajectories
starting from X0 will reach Xr in finite time. The only exception in this case is
the trajectory x(t) = 0.

While one may argue that the reachability property can be shown by running
a numerical simulation of ẋ = f(x) starting from a properly chosen x0 ∈ X0,
the merit of the tests in Theorems 1 and 2 is twofold. First, a solution to the
convex programs for reachability will automatically indicate which state x0 can
be chosen as the initial state (or a set of states from which almost all points can
be chosen as the initial state). Second, the use of these convex programs allows
us to also consider the worst-case analysis of systems with disturbance or the
controller design problem. For example, consider a system ẋ = f(x, d), where the
disturbance signal d(t) is assumed to be piecewise continuous, bounded, and take
its value in a set D. Then solving (11)–(13) with the Lie derivative inequality
replaced by

∂B

∂x
f(x, d) < 0 ∀(x, d) ∈ cl(X \ Xr) ×D

will prove reachability under all possible disturbance d(t), which obviously can-
not be proven using simulation. The same remark applies to eventuality, which
cannot be proven using simulation even when there exists no disturbance. On the
other hand, the density function ρ(x) is more appropriate for controller design,
as pointed out in [24]. For a system ẋ = f(x) + g(x)u where u is the control
input, the inequalities (8)–(9) and

∇ · [ρ(f + ug)](x) > 0 ∀x ∈ cl(X \ Xr),

(and similarly for (14)–(16)) are certainly convex conditions on the pair (ρ, ρu).
It is therefore natural to introduce ψ = ρu as a search variable and use convex

1 This property is also termed the liveness property in temporal logics [29]. We use

“eventuality” to avoid possible confusion with “liveness” in the sense of viability

theory.

Primal–Dual Tests for Safety and Reachability 551

optimization to find a feasible pair (ρ, ψ), then recover the control law as u(x) =
ψ(x)/ρ(x); see [28].

It is clear that the above tests can be combined to prove the reachability –
safety property:

there exists a trajectory x(t) such that x(0) ∈ X0, x(T) ∈ Xr for some
T ≥ 0, and x(t) /∈ Xu, x(t) ∈ X for all t ∈ [0, T],

or the eventuality – safety (or weak eventuality – safety) property:

for all (or almost all) initial states x0 ∈ X0, the trajectory x(t) starting
at x(0) = x0 will satisfy x(T) ∈ Xr for some T ≥ 0 and x(t) /∈ Xu,
x(t) ∈ X for all t ∈ [0, T].

For instance, the tests for eventuality – safety and weak eventuality – safety
properties are stated in the following corollary.

Corollary 1. Consider the differential equation ẋ = f(x) with f ∈ C1(Rn,Rn).
Let X ⊂ Rn and X0,Xu,Xr ⊂ X be bounded open sets, and suppose that there
exists a function B ∈ C1(Rn,R) satisfying

B(x) < 0 ∀x ∈ X0, (17)
B(x) > 0 ∀x ∈ (∂X \ ∂Xr) ∪ Xu, (18)

∂B

∂x
f(x) < 0 ∀x ∈ cl(X \ Xr). (19)

Then the eventuality – safety property holds. Similarly, if there exists a function
ρ ∈ C1(Rn,R) satisfying

ρ(x) > 0 ∀x ∈ X0, (20)
ρ(x) < 0 ∀x ∈ cl(∂X \ ∂Xr) ∪ Xu, (21)

∇ · (ρf)(x) > 0 ∀x ∈ cl(X \ Xr), (22)

then the weak eventuality – safety property holds. In this case, the safety property
holds also for trajectories that does not reach Xr in finite time.

4 Examples

4.1 Successive Primal–Dual Refinement

Consider the system

ẋ1 = x2,

ẋ2 = −x1 +
1
3
x3

1 − x2,

and let the set of states be X = (−3.5, 3.5) × (−3.5, 3.5) ⊂ R2. Furthermore,
define

X0 = (−3.4, 3.4) × (3.35, 3.45), X2 = (−3.5, 3.5) × (−3.5,−3.45),
X1 = (3.45, 3.5) × (−3.5, 3.5), X3 = (−3.5,−3.45) × (−3.5, 3.5).

552 S. Prajna and A. Rantzer

In this example, we will investigate the reachability of X1, X2, X3 from X0
(cf. Figure 3). This kind of analysis is encountered when constructing a dis-
crete abstraction of continuous or hybrid systems, or when analyzing a counter-
example found during the verification of such an abstraction.

The tests in Theorem 1 will be used for our analysis. Since the vector field is
polynomial and the sets are semialgebraic, we use polynomial parameterization
for B(x) and ρ(x), and then apply the sum of squares method to compute them.
Degree bound is imposed on B(x) and ρ(x). Because of this, we might not be
able to find a single B(x) or ρ(x) that prove safety/reachability for the whole X0.
If neither B(x) nor ρ(x) can be found, we divide the interval of x1 into two parts
and apply the tests again to the smaller sets. A set is pruned if B(x) is found,
and this process is repeated until a ρ(x) is found or the whole X0 is proven safe.

The result is as follows.

1. We prove that the set X1 is reachable from X0. The verification progress is
shown in Figure 2 (a).

2. It can be proven directly that X2 is not reachable from X0.
3. It is proven that the set X3 is reachable from X0. See Figure 2 (b).

For proofs of the corresponding reachability and safety, see Figure 3.
Obviously, the above bisection algorithm is just a simple, straightforward

approach to refine and prune the initial set, and other algorithms that are more
efficient can be proposed in the future.

4.2 Proving Eventuality

For the second example, consider the four dimensional system

ẋ1 = x2, ẋ3 = x4,

ẋ2 = −x3, ẋ4 = x2
1 − x4 + 2 + d,

where the time-varying disturbance input d(t) is assumed to take value in the
interval [−1, 1]. Let the set of states and the initial set be

X = {x ∈ R4 : x2
1 + x2

2 + x2
3 + x2

4 < 72},
X0 = {x ∈ R4 : x2

1 + x2
2 + x2

3 + x2
4 < 0.12}.

When there is no disturbance input, simulation indicates that the trajectory of
the system starting from the origin reaches the set

Xr,1 = {x ∈ R4 : (x1 + 1)2 + (x2 + 1.75)2 + (x3 − 2.25)2 + (x4 − 2)2 < 0.22}
in finite time. As we introduce the disturbance input and also the uncertainty
in the initial condition, some trajectories of the system will no longer reach the
above set. However, it is expected that these trajectories will still reach a larger
ball with the same center as Xr,1. Using B(x) of degree 4, it can be verified that
the set

Xr,2 = {x ∈ R4 : (x1 + 1)2 + (x2 + 1.75)2 + (x3 − 2.25)2 + (x4 − 2)2 < 32}
is reached in finite time by all trajectories of the system starting from X0.

Primal–Dual Tests for Safety and Reachability 553

(−3.4,3.4); ?

(−3.4,0); ? (0,3.4); ?

(−3.4,−1.7); S (−1.7,0); R

(a) X0 → X1

(−3.4,3.4); ?

(−3.4,0); ? (0,3.4); S

(−3.4,−1.7); ? (−1.7,0); S

(−3.4,−2.55); ? (−2.55,−1.7); S

(−3.4,−2.975); R

(b) X0 → X3

Fig. 2. Proving the reachability of X1 and X3 from X0 in the example of Section 4.1.

At each node we indicate the range of x1 on X0 for which safety and reachability are

tested. If neither is verified (denoted by ?), then the x1-interval is divided into two and

the tests are applied to the smaller sets. The annotation S (respectively R) indicates

that B(x) (respectively ρ(x)) is found. Breadth-first search starting from the leftmost

branch is used. When the degree of B(x) or ρ(x) is chosen equal to 8, the semidefinite

program for each safety or reachability test at any node can be solved in less than 4

seconds on a Pentium III 600 MHz laptop. The verification of X0 � X2 terminates at

the top node, since a barrier certificate B(x) can be found directly

554 S. Prajna and A. Rantzer

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x
1

x 2 X
1

(a) X0 → X1

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x
1

x 2

X
2

(b) X0 � X2

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x
1

x 2 X
3

(c) X0 → X3

Fig. 3. Possible transitions from X0 to X1, X2, X3 for the example in Section 4.1. In

(a) and (c), dashed curves are the zero level sets of ρ(x)’s that certify reachability. In

(b), dashed curve is the zero level set of B(x) that certifies safety. Thick solid lines at

the top of the figures are the initial sets for which the certificates are computed. Some

trajectories of the system are depicted by solid curves

Primal–Dual Tests for Safety and Reachability 555

5 Conclusions

In the previous sections, we use the insight from convex duality and the concept
of density functions to formulate a test for reachability, which together with
safety analysis using barrier certificates form a pair of convex programs for safety
and reachability tests. We have additionally presented another pair of safety and
reachability tests, also in the form of convex programs. This opens the possibility
to perform these tests using convex optimization. In particular, sum of squares
optimization can be used for this purpose when the vector field of the system is
polynomial and the sets are semialgebraic.

We have further commented on the use of this methodology for worst-case
reachability analysis or controller synthesis. It is pointed out that similar tests
can be derived for proving eventuality or weak eventuality, and the tests can be
combined to verify properties such as reachability–safety and eventuality–safety.
Some examples have been presented for illustration. While the present tests are
aimed for continuous reachability or safety analysis and hence are useful for
constructing abstractions of hybrid systems, we expect that all of them can also
be extended to handle hybrid systems directly, using an approach similar to the
one presented in [12].

References

1. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-

bridge, MA (2000)

2. Bemporad, A., Torrisi, F.D., Morari, M.: Optimization-based verification and sta-

bility characterization of piecewise affine and hybrid systems. In: Hybrid Systems:

Computation and Control, LNCS 1790. Springer-Verlag (2000) 45–58

3. Kurzhanski, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In:

Hybrid Systems: Computation and Control, LNCS 1790. Springer-Verlag, Heidel-

berg (2000) 203–213

4. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computations for

families of linear vector fields. Journal of Symbolic Computation 32 (2001) 231–253

5. Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimina-

tion. In: Hybrid Systems: Computation and Control, LNCS 2034. Springer-Verlag

(2001) 63–76

6. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems.

In: Computer Aided Verification, LNCS 2404. Springer-Verlag (2002) 365–370

7. Alur, R., Dang, T., Ivancic, F.: Progress on reachability analysis of hybrid systems

using predicate abstraction. In: Hybrid Systems: Computation and Control, LNCS

2623. Springer-Verlag, Heidelberg (2003) 4–19

8. Tomlin, C.J., Mitchell, I., Bayen, A.M., Oishi, M.: Computational techniques for

the verification of hybrid systems. Proceedings of the IEEE 91 (2003) 986–1001

9. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verifica-

tion. IEEE Transactions on Automatic Control 48 (2003) 64–75

10. Tiwari, A.: Approximate reachability for linear systems. In: Hybrid Systems: Com-

putation and Control, LNCS 2623. Springer-Verlag (2003) 514–525

556 S. Prajna and A. Rantzer

11. Yazarel, H., Pappas, G.: Geometric programming relaxations for linear systems

reachability. In: Proceedings of the American Control Conference. (2004)

12. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-

cates. In: Hybrid Systems: Computation and Control, LNCS 2993. Springer-Verlag,

Heidelberg (2004) 477–492

13. Khalil, H.K.: Nonlinear Systems. Second edn. Prentice-Hall, Inc., Upper Saddle

River, NJ (1996)

14. Aubin, J.P.: Viability Theory. Birkhäuser, Boston, MA (1991)

15. Jirstrand, M.: Invariant sets for a class of hybrid systems. In: Proceedings of the

IEEE Conference on Decision and Control. (1998)

16. Sankaranarayanan, S., Sipma, H., Manna, Z.: Constructing invariants for hybrid

systems. In: Hybrid Systems: Computation and Control, LNCS 2993. Springer-

Verlag (2004) 539–554

17. Tiwari, A., Khanna, G.: Nonlinear systems: Approximating reach sets. In: Hybrid

Systems: Computation and Control, LNCS 2993. Springer-Verlag (2004) 600–614

18. Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometry

Methods in Robustness and Optimization. PhD thesis, California Institute of

Technology, Pasadena, CA (2000)

19. Prajna, S., Papachristodoulou, A., Parrilo, P.A.: Introducing SOS-

TOOLS: A general purpose sum of squares programming solver.

In: Proceedings of the IEEE Conference on Decision and Con-

trol. (2002) Available at http://www.cds.caltech.edu/sostools and

http://www.aut.ee.ethz.ch/˜parrilo/sostools.

20. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,

Cambridge (2004)

21. Prajna, S., Jadbabaie, A., Pappas, G.J.: Stochastic safety verification using barrier

certificates. In: Proceedings of the IEEE Conference on Decision and Control.

(2004)

22. Glavaski, S., Papachristodoulou, A., Ariyur, K.: Controlled hybrid system safety

verification: Advanced life support system testbed. Submitted (2005)

23. Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.J.: Discrete abstractions of

hybrid systems. Proceedings of the IEEE 88 (2000) 971–984

24. Rantzer, A.: A dual to Lyapunov’s stability theorem. Systems and Control Letters

42 (2001) 161–168

25. Rantzer, A., Hedlund, S.: Duality between cost and density in optimal control. In:

Proceedings of the IEEE Conference on Decision and Control. (2003)

26. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and

Complexity. Dover Publications Inc., Mineola, NY (1998)

27. Prajna, S., Rantzer, A.: On the necessity of barrier certificates. In: Proceedings of

the IFAC World Congress. (2005) To appear.

28. Rantzer, A., Prajna, S.: On analysis and synthesis of safe control laws. In: Pro-

ceedings of the Allerton Conference on Communication, Control, and Computing.

(2004)

29. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:

Specification. Springer-Verlag, New York, NY (1992)

Adjoint-Based Optimal Control of the Expected
Exit Time for Stochastic Hybrid Systems

Robin L. Raffard1, Jianghai Hu2, and Claire J. Tomlin1

1 Dept. of Aeronautics and Astronautics, Stanford University

{rraffard, tomlin}@stanford.edu
2 School of Electrical and Computer Engineering, Purdue University

jianghai@ecn.purdue.edu

Abstract. In this paper, we study the problem of controlling the ex-

pected exit time from a region for a class of stochastic hybrid systems.

That is, we find the least costly feedback control for a stochastic hybrid

system that can keep its state inside a prescribed region for at least an

expected amount of time. The stochastic hybrid systems considered are

quite general: the continuous dynamics are governed by stochastic dif-

ferential equations, and the discrete mode evolves according to a contin-

uous time Markov chain. Instead of adopting the usual Hamilton-Jacobi

viewpoint, we study the problem directly by formulating it as a PDE

constrained optimization problem, and propose a solution using adjoint-

based gradient descent methods. Numerical results of the proposed ap-

proach are presented for several representative examples, and, for the

simple case, compared with analytical results.

1 Introduction

There has been considerable current research interest in stochastic hybrid sys-
tems (SHSs) [1, 2, 3, 4, 5] due to their ability to represent such systems as maneu-
vering aircraft [6], switching communication networks [7], etc. Most efforts have
been devoted to the analysis of such systems: for control, the main approach to
date relies on solving a dynamic programming problem using a Hamilton-Jacobi
formulation [1]. In this paper, we propose an alternative method for optimal
control of SHSs. The approach poses the optimal control problem as a partial
differential equation (PDE) constrained optimization program, and uses an ad-
joint method to solve this optimization program. The adjoint method, introduced
by Lions [8] and developed by Jameson [9] in the context of aerodynamic de-
sign, computes the gradient of an objective function whose variables are subject
to PDE constraints. It is a powerful method, due mainly to the flexibility with
which the optimal control problem can be formulated. Indeed, once the govern-
ing PDE, encoding the dynamics of the system, has been derived, many types of
optimization problems can be posed. For instance, any constraints on the con-
trol input or on the state variable can be handled, contrary to Hamilton-Jacobi
formulations.

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 557–572, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

558 R.L. Raffard, J. Hu, and C.J. Tomlin

In this paper, we focus on a particular practical optimal control problem.
Given a domain of the state space of a SHS, we aim to maintain the expected
sojourn time of the state within this domain above a certain threshold, while
minimizing the cost of the control input. Different stochastic differential equa-
tions govern the continuous state in each mode, and a continuous time Markov
chain dictates possible mode switches based on state and/or time. We first re-
view the SHS model [1], and transform the optimal control problem into a PDE
optimization problem. Then, we present and apply the adjoint method to this op-
timization problem. We present a set of interesting examples illustrating, through
numerical solution, the resulting control policies, and we conclude with a note
on further applications of the adjoint-based method in the context of SHSs.

2 Problem Formulation

2.1 Stochastic Hybrid Systems

General frameworks of stochastic hybrid systems have been proposed in [2, 3].
In this paper we focus on a special class called switched diffusions [1]. The state
(Xt,mt) of a switched diffusion system H consists of two parts: Xt ∈ Rn is the
continuous state, and mt ∈ S = {1, . . . , M} is the discrete state (or mode). The
dynamics of the state (Xt,mt) is characterized by the following:

– Continuous Dynamics. The continuous state Xt evolves according to a
stochastic differential equation (SDE) whose drift and variance terms depend
on the discrete mode mt.

dXt = u(Xt,mt) dt + σ(Xt,mt) dBt. (1)

Bt is a d-dimensional Brownian motion in some probability space (Ω,F , P),
with Ω the sample space, F the σ-field, and P the probability measure, and
u : Rn × S → Rn and σ : Rn × S → Rn×d are functions that are bounded
and Lipschitz continuous in the first argument. Moreover, we assume that
the possible values of σ are bounded away from zero.

– Discrete Dynamics. The discrete mode mt evolves according to a con-
tinuous time Markov chain with a generator matrix Λ(x) = [λkl(x)]1≤k,l≤M

whose components depend on the continuous state Xt = x. Note that, ∀k �= l,
λkl(x) ≥ 0 and λkk(x) = −

∑
l �=k λkl(x) ≤ 0. Equivalently, for Δt > 0, we

have

P (mt+Δt = l |mt = k,Xt = x) =

{
λkl(x)Δt + o(Δt), if l �= k,

1 + λkk(x)Δt + o(Δt), if l = k.
(2)

Thus, given that H is in discrete mode k and continuous state x at time t,
within a short time period Δt, mt+Δt jumps to a new mode l �= k with an
approximate probability λkl(x)Δt.

Adjoint-Based Optimal Control of the Expected Exit Time for SHSs 559

– Reset Condition. For simplicity, we assume trivial reset condition. In other
words, whenever a jump in mt occurs, Xt remains unchanged. Note that the
methodology developed in this paper is still applicable with general deter-
ministic reset conditions.

We now outline the procedures to obtain stochastic solutions (executions) to
the above stochastic hybrid system. Starting from an initial condition X0 = x and
m0 = k, the discrete state mt remains in mode k for a random amount of time Tk

while the continuous state evolves according to equation (1) with mt ≡ k until it
reaches XTk

. Then at time Tk the discrete state jumps to a new mode l �= k with
probability −λkl(XTk

)/λkk(XTk
) while the continuous state remains unchanged

at XTk
. This step is then repeated an infinite number of times. Note that if Λ is

independent of x, the distribution of Tk is exponential with rate−λkk; however, in
general, the random time Tk has a distribution dependent on the outcome of Xt.

In many practical applications, the variance term σ in the continuous dynam-
ics (1) characterizing the environment noises and the λkl terms in (2) governing
the transitions among operational modes are given and not adjustable, while
the drift term u in (1) can be controlled by users to a certain degree. In this
perspective, u can be treated as the control input of system H.

In the following, we shall use P (x,k) and E(x,k) to denote the probability and
expectation under the initial condition X0 = x and m0 = k.

2.2 Optimal Exit Time Control

Given a switched diffusion system H, we now formulate the problem studied in
this paper. Let U be an open set of Rn with compact support. Let (Xt,mt) be
a stochastic solution to H starting from X0 = x and m0 = k at time 0. We
consider the following stopping time:

τ = inf{t > 0 : Xt /∈ U}, (3)

which is called the exit time from U (or the sojourn time in U).

Remark 1. Note that the definition of τ in (3) does not involve mt. Therefore,
at exit time τ , the switched diffusion can be in any discrete mode mt ∈ S.

Define V (x, k) as the expected exit time from U , starting from (x, k):

V (x, k) = E(x,k)[τ]. (4)

Treating u as the feedback control of the system H, V (x, k) is determined by the
design of u. In practical situations, U is often referred to as the safe set in which
one wants the system state to stay. Then a natural problem is to find the least
expensive control u : U × S → Rn that can keep the system in U for at least
an expected amount of time. Specifically, let ρ, ξ : U × S → R+ be two positive
functions representing weights. The cost of the control, J(u), is written as

J(u) �
M∑

k=1

∫
U

ξ(x, k)‖u(x, k)‖2 dx , (5)

and the (weighted) cumulative expected exit time from U , Vcee(u), is defined as

560 R.L. Raffard, J. Hu, and C.J. Tomlin

Vcee(u) =
M∑

k=1

∫
U

ρ(x, k)V (x, k) dx. (6)

In particular, if ρ is the probability density function of (X0,m0) over U ×
S, then Vcee(u) coincides with the expected exit time from U with uncertain
(X0,m0).

Problem 1. The problem studied in this paper is

Minimize J(u) subject to Vcee(u) ≥ V0, (7)

for some constant V0 > 0.

For simplicity, but without loss of generality, we shall assume that ρ = ξ ≡ 1,
unless otherwise stated.

2.3 Reformulation as a PDE Constrained Optimization Problem

Problem (1) in its current form is not easy to analyze as the dependence of
Vcee(u) on the control u is implicit. In this section, we shall derive the PDE
satisfied by V (x, k) defined in (4), where u will appear as a coefficient to be
controlled.

Definition 1 (Generator of the Switched Diffusion). To the switched dif-
fusion (Xt,mt)t≥0, we associate an operator L (referred to as the generator) that
maps a function f ∈ C2

0 (Rn×S) to a new function Lf ∈ C0
0 (Rn×S) defined by

Lf(x,m) �
n∑

i=1

ui(x,m)
∂f(x,m)

∂xi
+

1
2

n∑
i,j=1

(σ(x,m)σ(x,m)T)ij
∂2f(x,m)
∂xi∂xj

+
M∑

k=1

λmk(x)f(x, k), ∀x ∈ Rn , ∀m = 1, . . . , M.

(8)

Here C2
0 (Rn × S) (resp. C0

0 (Rn × S)) denotes the set of functions on Rn × S
with compact support that are twice differentiable (resp. continuous) with re-
spect to the first argument. ui(x,m) denotes the i-th component of the vector
u(x,m) ∈ Rn.

Lemma 1. For all (x,m) ∈ Rn × S, and for any f ∈ C2
0 (Rn × S),

Mt �f(Xt,mt)−f(X0,m0)−
∫ t

0 Lf(Xs,ms) ds is a Martingale on (Ω,F , P (x,m)).

A proof of the above lemma can be found in [3].

Theorem 1. For all (x,m) ∈ U × S, V (x,m) = Ex,m[τ] is finite, and is a
solution of the following system of PDEs:

LV (x,m) = −1 , ∀x ∈ U, ∀m ∈ S,
V (x,m) = 0 , ∀x ∈ ∂U, ∀m ∈ S.

(9)

Adjoint-Based Optimal Control of the Expected Exit Time for SHSs 561

Proof. 1. By assumption, for each m ∈ S, σ(·,m) : x ∈ U �→ σ(x,m) ∈ Rn×d

is a continuous function whose values are bounded away from zero. Therefore
the PDE system (9) admits a unique solution V twice differentiable in its first
argument [10]. Since V∂U×S ≡ 0, we can construct Ṽ ∈ C2

0 (Rn × S), such that
Ṽ = V on Ū × S. Applying Lemma 1 to Ṽ , we have that

Mt � Ṽ (Xt,mt)− Ṽ (X0,m0)−
∫ t

0
LṼ (Xs,ms) ds (10)

is a Martingale on (Ω,F , P (x,m)).
Now, for each integer N ∈ N+, define τN � τ ∧N = min(τ,N). Then τN is a

stopping time with finite expectation Ex,m[τN] ≤ N < ∞. Therefore, applying
the optional sampling theorem to the Martingale Mt stopped at time τN , we
deduce that Ex,m[MτN

] = 0. In addition, ∀s ∈ [0, τN], Xs ∈ Ū ; therefore,∫ τN

0 LṼ (Xs,ms) ds =
∫ τN

0 LV (Xs,ms) ds = −τN , and thus,
Ex,m[τN] = Ex,m[Ṽ (X0,m0)− Ṽ (XτN

,mτN
)] ≤ 2 sup

(x,m)∈U×S

{|Ṽ (x,m)|} < ∞.

Applying the monotone convergence theorem, with τN → τ almost surely, we
deduce that Ex,m[τ] = sup

N
{Ex,m[τN]} ≤ 2 sup

(x,m)∈U×S

{|Ṽ (x,m)|} < ∞.

2. Since Ex,m[τ] < ∞, we can now apply the optional sampling theorem to Mt

stopped at time τ . We obtain Ex,m[Ṽ (Xτ ,mτ)]−Ex,m[Ṽ (x,m)] + Ex,m[τ] = 0.
Given the boundary conditions satisfied by V , we have Ṽ∂U×S = 0 and therefore,
Ṽ (Xτ ,mτ) ≡ 0. It follows that ∀(x,m) ∈ U × S, V (x,m) = Ṽ (x,m) = Ex,m[τ],
which proves the theorem. �

As a result of Theorem 1, Problem (1) can now be reformulated as follows:

Minimize J(u) =
∑M

m=1

∫
U
‖u(x,m)‖2 dx

Subject to
∑M

m=1

∫
U

V (x,m) dx ≥ V0;{
LV (x,m) = −1, ∀x ∈ U, m ∈ S;
V (x,m) = 0, ∀x ∈ ∂U, m ∈ S.

(11)

Note that the constraint on V in the above problem is written explicitly as a
system of coupled PDEs with boundary condition. In the next section, we shall
introduce tools to solve this kind of optimization problem.

3 PDE Constrained Optimization via Adjoint Method

The adjoint method is a gradient-based method which can numerically solve
optimization problems subject to PDE constraints [9, 8]. In Section 3.1, we will
first briefly review the adjoint method in its most general setting, and then apply
it to the optimal exit time control problem for switched diffusions in Section 3.2.

562 R.L. Raffard, J. Hu, and C.J. Tomlin

3.1 Adjoint Method for Solving PDE Constrained Optimization

Consider the following general PDE constrained optimization program.

Minimize J(u, v)
Subject to N (u, v) = 0

r(u, v) ≤ 0.
(12)

Here, N (u, v) = 0 denotes a PDE; v denotes the solution of the PDE; u is the
control variable, which is in general an adjustable coefficient of the PDE or an
adjustable term in the boundary conditions; J is the objective function of the
optimization program and has to be real valued; r is a function of u and v which
characterizes all the inequality constraints of the problem, such as bounds on the
control variable u or on the solution v. J and r are assumed to be differentiable
in u and v.

In order to apply the adjoint-method, we first need to reduce (12) into an
unconstrained optimization problem. For this purpose, we use a (logarithm)
barrier method:

Minimize I(u, v) = J(u, v)− ε1T log(−r(u, v))
Subject to N (u, v) = 0 ,

(13)

where 1T log(−r(u, v)) represents the inner product between the identity 1 and
log(−r(u, v)). Problem (12) and Problem (13) are equivalent when ε → 0. There-
fore solving (13) with ε 0 will approximately solve (12). The adjoint method
can then be used to derive the gradient of the cost function I with respect to the
control input u, subject to the constraint N (u, v) = 0, thus deriving a descent
direction for u in Problem (13). First, take a first variation of I:

δI =
(∂I

∂u

)T

δu +
(∂I

∂v

)T

δv. (14)

Similarly, a first order variation of the PDE gives the dependence of δv on δu:

δN =
(∂N

∂u

)
δu +

(∂N
∂v

)
δv = 0 , (15)

in which ∂N
∂u and ∂N

∂v are linear operators. Taking the inner product of (15) with
any differentiable function q (named costate) and subtracting it from (14), we
have

∀q , δI =
((∂I

∂u

)T

− qT ∂N
∂u

)
δu +

((∂I

∂v

)T

− qT ∂N
∂v

)
δv. (16)

Choosing q such that it satisfies the following adjoint PDE:

(
∂N
∂v

)T q =
∂I

∂v
, (17)

we derive δI as a function of δu only:

δI =
((∂I

∂u

)T

− qT ∂N
∂u

)
δu, (18)

which precisely defines the gradient of I with respect to the control variable u:

Adjoint-Based Optimal Control of the Expected Exit Time for SHSs 563

∇I(u) =
∂I

∂u
−

(
∂N
∂u

)T

q. (19)

With the gradient ∇I(u) in hand, one can then design an iterative algorithm
using gradient descent to solve Problem (13) numerically. Note that in each step
one has to solve the PDE and the adjoint PDE (17) in order to obtain the
gradient.

3.2 Adjoint Method Applied to Optimal Sojourn Time Control

We now demonstrate how the adjoint method can be applied to solve the optimal
sojourn time control Problem (11). We assume that ξ = ρ ≡ 1 on U .

First, we transform Problem (11) into the form of (13) as:

Minimize I(u) =
∑M

m=1

∫
U
‖u(x,m)‖2 dx− ε log(

∑M
m=1

∫
U

V (x,m) dx− V0)

Subject to
{

LV (x,m) = −1, ∀x ∈ U, m ∈ S;
V (x,m) = 0, ∀x ∈ ∂U, m ∈ S.

(20)
Note that instead of writing I(u, V), we omit V since it depends on u implicitly.
A first variation of the cost function I gives:

δI(u) = 2
M∑

m=1

∫
U

u(x,m)T δu(x,m) dx− ε

∑M
m=1

∫
U

δV (x,m) dx∑M
m=1

∫
U

V (x,m) dx− V0
. (21)

To compute δI as a function of δu only (and not as a function of δV , which
is not directly controllable), one needs to eliminate δV . For this purpose, we
take the first variation of the PDE constraint LV (x,m) = −1, which gives the
dependence of δV on δu:

n∑
i=1

[
δui(x,m)

∂V (x,m)
∂xi

+ ui(x,m)
∂ δV (x,m)

∂xi

]
+

n∑
i,j=1

1
2
(σ(x,m)σ(x,m)T)ij

∂2 δV (x,m)
∂xi∂xj

+
M∑

k=1

λmk(x)δV (x, k) = 0.
(22)

For each m, multiplying (22) by a costate function q(x,m) which is twice dif-
ferentiable in x and which is identically zero on ∂U (required for the integration
by parts in (24)), integrating over the domain U , and then summing over all m,
we obtain:

M∑
m=1

∫
U

(
qm

n∑
i=1

um
i

∂ δV m

∂xi
+

qm

2

n∑
i,j=1

(σm σm T)ij
∂2 δV m

∂xi∂xj

+qm
M∑

k=1

λmkδV k

)
dx = −

M∑
m=1

∫
U

n∑
i=1

qm ∂V m

∂xi
δum

i dx,

(23)

564 R.L. Raffard, J. Hu, and C.J. Tomlin

where for simplicity we drop the explicit dependence on x, and use V m for
V (·,m), um

i for ui(·,m), etc... Integrating by parts in (23) and using the bound-
ary condition that, on ∂U , V m ≡ 0 and qm ≡ 0, we have

M∑
m=1

∫
U

(
−

n∑
i=1

∂(qmum
i)

∂xi
+

1
2

n∑
i,j=1

∂2[qm(σm σm T)ij]
∂xi∂xj

+
M∑

k=1

λkmqk

)
δV m dx = −

M∑
m=1

∫
U

qm
n∑

i=1

∂V m

∂xi
δum

i dx.

(24)

Suppose for each m we choose qm so that the following adjoint PDE holds:

1
2

n∑
i,j=1

∂2[qm(σm σm T)ij]
∂xi∂xj

−
n∑

i=1

∂(qmum
i)

∂xi
+

M∑
k=1

λkmqk

=
ε∑M

m=1

∫
U

V m dx− V0
.

(25)

First substituting (25) into (24), and then the result into (21), we have

δI(u) =
M∑

m=1

∫
U

(
2um + qm∇V m

)T

δum dx.

So the gradient of I with respect to the control u for the discrete mode m is

∇Im = 2um + qm∇V m, m = 1, . . . , M. (26)

We emphasize here that qm in equation (26) is the solution to the adjoint equa-
tion (25) with boundary condition qm ≡ 0 on ∂U . Furthermore, the quantities
qm, um, etc. represent q, u, etc. in mode m; and not q or u to the power m.

Having obtained the gradient of I with respect to the control u, the gradient
descent algorithm for finding the optimal u can be formulated as follows.

Algorithm 1 (Adjoint based algorithm). Set ε = 1 and guess an initial
value for u.
Repeat (loop a)

Repeat (loop b)
1. Solve equation (9) for V , using the current control u.
2. Solve the adjoint equation (25) for q, using the current u and V .
3. Determine the gradient ∇I according to equation (26).
4. Line search: compute β > 0 so that I(u− β∇I) is minimized.
5. Update u := u− β∇I.

Terminate loop b when ||∇I|| is smaller than the stopping criteria αb.
Decrease ε by letting ε := με, where μ ∈ [0.1, 0.5].

Terminate loop a when ε is smaller than the stopping criteria αa.
Return uopt = u.

Adjoint-Based Optimal Control of the Expected Exit Time for SHSs 565

Remark 2. According to the analysis of Section 2, the admissible control u has to
be bounded and Lipschitz continuous on U . Thus, to be rigorous, a constraint of
the type umin ≤ u(x,m) ≤ umax should be added to the optimization problem to
ensure the boundedness of u. Regarding the Lipschitz continuity, the gradient∇I
should be projected on a functional subspace of Lipschitz continuous functions
after step 3 of Algorithm 1.

3.3 Validation Against Analytical Solution in a Simple Case

It is possible to solve Problem (1) analytically in some simple cases. In this
section, we shall present such a case studied in [11], and compare the analytical
result with the numerical ones obtained using Algorithm 1.

Suppose that M = 1, U = [−a, a] ⊂ R, and σ = 1 on U . Then the stochastic
hybrid system degenerates into a simple diffusion on the interval [−a, a]:

dXt = u(Xt) dt + dBt.

The expected exit time V (x) from U starting from x ∈ U satisfies
1
2
V ′′(x) + u(x)V ′(x) + 1 = 0 , V (−a) = V (a) = 0. (27)

Assume ξ ≡ 1, and ρ(x) is a unit pulse centered at the origin. Then Problem (11),
which is equivalent to Problem (1), can then be formulated as

Minimize
∫ a

−a

u2(x) dx, subject to equation (27) and V (0) ≥ V0.

Suppose in addition that the control u is odd in x, i.e., u(−x) = −u(x),
∀x ∈ U . Then V as a solution to (27) is even in x. Because of the symmetry, it
suffices to study the problem on the left half interval [−a, 0] only:

Minimize
∫ 0

−a

u2(x) dx , subject to equation (27) and V (0) ≥ V0. (28)

Denote y1 = V and y2 = V ′. Then the above problem is equivalent to the
following optimal control problem:

Minimize
∫ 0

−a

u2(x) dx, subject to

{
y′
1 = y2, y1(−a) = 0, y1(0) = V0,

y′
2 = −2uy2 − 2, y2(0) = 0.

Using the Maximum Principle, and identifying two first integrals in the
Hamiltonian equations, we can determine the optimal trajectory (y1, y2) as

y2(x) = Φ−1(x), y1(x) =
∫ x

−a

y2(x) dx, (29)

where Φ is a function defined by Φ(y) =
∫ y

0
dx

−2
√

1+x2(c1x+c2)
for some suitably

chosen constants c1 and c2. The optimal control u in this case can be determined
from y1 and y2 accordingly. For more details, see [11].

In Figure 1, we plot the analytic and the numerical results for the above
problem. One can see that Algorithm 1 generates results that fit the analytical
one exceedingly well.

566 R.L. Raffard, J. Hu, and C.J. Tomlin

u
∗ (

x
)

x
−1 −0.5 0 0.5 1

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

V
∗ (

x
)

x
−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 1. Validation against analytical results. Left : Optimal control u∗ returned by

Algorithm 1 (solid) and by the analytical solution (circles). Right : Optimal expected

sojourn time returned by Algorithm 1 (solid) and by analytical solution (circles)

4 Simulation Examples for Stochastic Hybrid Systems

We now apply our algorithm to investigate the optimal exit time control problem
for switched diffusions. Two main categories of switched diffusions are consid-
ered: time switching and state switching.

4.1 Time Switching

The time switching case refers to the case in which the variance σ(x,m) and
the mode transition rate Λ(x) are both independent of the continuous state x.
Therefore, for each mode m, the variance σσT is a constant matrix, and the time
the system spends in mode m before jumping to a new mode has an exponential
distribution.

For simplicity, in this section we assume that there are only two modes:
S = {1, 2}, and that, for each mode m = 1, 2, the variance σ(·,m) ≡ σmIn

for constants σ2
1 = 1 and σ2

2 = 2, where In is the n-by-n identity matrix. The
problem is then to determine the control u(·, 1) and u(·, 2) for the two modes.

Example 1 (Switching Between Two Modes in a 2-D Disk). Suppose U = B(0, a)
is the disk of radius a > 0 around the origin in R2. In cylindrical coordinates
x = (r, θ), the control u = (ur, uθ) is decomposed into the radial component ur

and ortho-radial component rθ, and the PDE (9) governing the expected sojourn
time V (x,m) = V ((r, θ),m) in U becomes

σ2
m

2

(∂2V ((r, θ),m)
∂r2 +

1
r

∂V ((r, θ),m)
∂r

+
1
r2

∂2V ((r, θ),m)
∂θ2

)
+

ur
∂V ((r, θ),m)

∂r
+

uθ

r

∂V ((r, θ),m)
∂θ

+
2∑

k=1

λmkV ((r, θ), k) + 1 = 0,

V ((a, θ),m) = 0 , ∀θ ∈ [0, 2π] ; V ((r, 2π),m) = V ((r, 0),m) , ∀r ∈ [0, a].

(30)

Adjoint-Based Optimal Control of the Expected Exit Time for SHSs 567

x
2

x1
−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
uo in mode 1

x
2

x1
−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
u∗ in mode 1

Fig. 2. Left : Initial guess for the control u in mode 1. Arrows represent the directions

and the amplitudes of the randomly generated control u. Right : Optimal control u∗ in

mode 1 returned by Algorithm 1. Note that it is radially-invariant

So the equivalent PDE-constrained optimization Problem (11) becomes

Minimize
∑2

m=1

∫ 2π

0

∫ a

0

(
u2

r((r, θ),m) + u2
θ((r, θ),m)

)
r dr dθ

Subject to
∑2

m=1

∫ 2π

0

∫ a

0 V ((r, θ),m) r dr dθ ≥ 2V0;
Equation (30).

(31)

Due to the rotational symmetry of the problem: the domain U , the cost
function and the constraints are all invariant under the rotations around the
origin, we conjecture that the optimal solutions are also radially symmetric:

Conjecture 1. The optimal control u∗ is of the form u∗ = ur(r)er, where er is
the radius unit vector.

We verify this conjecture numerically by applying the adjoint algorithm 1
using randomly generated initial guesses for the control u. We assume that the

switching rates are given by Λ =
[
−10 10
10 −10

]
. On the left of Fig. 2 we show a

typical initial guess for the control u in mode 1 (guesses for control in mode 2
are similar). The optimal control u∗ returned by the algorithm is shown on the
right of the figure, which is radially symmetric. That the algorithm converges to
the same solution from a wide selection of initial u demonstrates its robustness
with respect to initial guesses.

Two more scenarios are also simulated, one with a higher switching rate

Λ =
[
−20 20
20 −20

]
, and the other with no switching at all: Λ =

[
0 0
0 0

]
. In both

cases, the algorithm produces radially symmetric solutions. Thus we only plot
the radial component u∗

r of the solution u∗ in Fig. 3, with controls in mode 1 and
2 on the left and right, respectively. The higher switching rate case is plotted in
circles, and the no switching case in squares. For comparisons, we also plot the
simulation results for the non-hybrid case (only one mode) for three different σ:
σ = σ1 (dash dot lines), σ = σ1+σ2

2 (solid lines), and σ = σ2 (dot lines).

568 R.L. Raffard, J. Hu, and C.J. Tomlin

u
r
((

r,
2
π
),

1
)

r
0 0.2 0.4 0.6 0.8 1

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

u∗
r in mode 1

u
r
((

r,
2
π
),

2
)

r
0 0.2 0.4 0.6 0.8 1

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

u∗
r in mode 2

Fig. 3. Radial component u∗
r of the optimal control u∗ in mode 1 (left) and mode 2

(right) for the high switching rate case (circles) and no switching case (squares). Also

included are the u∗
r for the non-hybrid case (only one mode) with variance σ = σ1

(dash dot), σ = σ1+σ2
2 (solid), and σ = σ2 (dot)

In the higher switching rate case, the optimal controls in the two modes are
almost the same, and also close to the optimal control in the non-hybrid case
with variance σ = σ1+σ2

2 . This is because, due to the very frequent switchings
between the two modes, and the fact that quickly the distribution of mt will
converge to the stationary distribution of equal probability 1

2 in each mode, the
stochastic hybrid system switching between diffusions of variances σ1 and σ2,
can be approximated by a single diffusion with variance σ = σ1+σ2

2 .
For the zero switching rate case, the optimal controls in the two modes are

quite different from each other, and from the other cases as well. Barely any
control is exerted in mode 2 compared with in mode 1. The reason is that it
costs less control input to maintain the expected sojourn time above 2V0 in
mode 1, than maintaining the expected sojourn time above V0 in mode 2.

4.2 State Switching

Consider the following situation. The domain U is partitioned into a finite num-
ber of subdomains Uα. Consider a diffusion process Xt evolving on U accordingly
to dXt = u(Xt)dt+σ(Xt)dBt, where the variance σ(x) takes the constant value
σα for x ∈ Uα. Thus σ is piecewise constant on U . Assume that there is only
one mode m = 1.

Rigorously speaking, for the above Xt to be well defined one needs σ(x) to be
Lipschitz continuous in x, which is not the case here. However, one can “smooth
out” the transition of σ near the boundary of Uα to satisfy this requirement.
Specifically, one can make σ to be constant σα in a compact subset of Uα approx-
imately equal to Uα, and determine the value of σ for points near the boundary
with other subdomains via interpolation. The σ thus obtained is Lipschitz con-
tinuous in x, and using it one gets an approximate of the original process. As
an example, we partition the domain U = [−a, a]× [−b, b] into two subdomains:
Ua = [−a, 0]× [−b, b], and Ub = (0, a]× [−b, b]. We can choose the variance σ(x)

Adjoint-Based Optimal Control of the Expected Exit Time for SHSs 569

x
2

x1
−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

σ
a
2 = 1 σ

b
2 = 1.1

μ
a
 = −10 μ

b
 = 0

Safe vs. small risk

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

σ
a
2 = 1 σ

b
2 = 1.4

μ
a
 = −10 μ

b
 = 0

Safe vs. medium risk

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

σ
a
2 = 1

μ
a
 = −10

σ
b
2 = 2

μ
b
 = 0

Safe vs. risky

Fig. 4. Optimal control u∗ for Example 2. A constant nominal drift exists in domain

Ua. σ2
a = 1, while σ2

b = 1.1 (left); σ2
b = 1.4 (center); σ2

b = 2 (right). Note that

in different figures the sizes of the arrows representing the magnitude of the control

u∗ are not in the same scale: Left: ‖u∗‖max = 4.3. Center: ‖u∗‖max = 14.2. Right:
‖u∗‖max = 16.1

to be constant σa on U ε
a = [−a,−ε]× [−b, b] and σb on U ε

b = [ε, a]× [−b, b], with
ε > 0, and determine σ(x) on (−ε, ε)× [−b, b] by interpolation.

Example 2 (Safe vs. Risky in a 2-D Box). Suppose that U = [−a, a]× [−b, b] =
Ua ∪ Ub as defined above. In this example, we would like to study whether it is
more advantageous to try to stay in Ua with a low uncertainty (low variance) but
a constant drift pushing toward the left boundary, or to try to stay in Ub with no
uncontrollable drift but with high uncertainty (high variance). For this purpose,
we set the following conditions. σ(x) is constant equal to σaI2 on Ua for σ2

a = 1,
and constant equal to σbI2 on Ub for σ2

b = 2. To smooth out the transition of
σ(x), we use the parameter ε = 0.02. Furthermore, assume that on subdomain Ua

there is an uncontrollable constant drift (−10, 0)T to the left, while on Ua there
is no such drift. Thus Xt is governed by dXt = [μ(Xt) + u(Xt)] dt + σ(Xt) dBt ,
with μ(x) = (−10, 0)T if x ∈ Ua and μ(x) = 0 if x ∈ Ub.

First write the PDE governing the expected sojourn time V (x) as

σ2

2

(
∂2V

∂x2
1

+
∂2V

∂x2
2

)
+ (μ1 + u1)

∂V

∂x1
+ (μ2 + u2)

∂V

∂x2
= −1, ∀x ∈ U, (32)

with boundary condition V (x) ≡ 0 for x ∈ ∂U . Thus the problem becomes

Minimize
∫ a

−a

∫ b

−b
(u2

1 + u2
2) dx1 dx2

Subject to
∫ a

−a

∫ b

−b
V (x) dx1 dx2 ≥ V0, and equation (32),

(33)

Algorithm 1 can be extended easily to deal with the uncontrollable drift term.
The results are shown in Fig. 4 and are quite interesting. For very small values
of σb, (σ2

b = 1.1), the optimal control concentrates all the energy in the domain
Ub, trying to contain Xt near the center of Ub. However, as σ2

b = 1.4, the optimal
control is distributed on both Ua and Ub. If σ2

b increases further to 2, the optimal
control applies very little force on Ub and concentrates most of its energy near
the center horizontal line in Ua.

570 R.L. Raffard, J. Hu, and C.J. Tomlin

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

σ2(x,1) = 1.5

σ2(x,2) = 1.5

σ2(x,1) = 1

σ2(x,2) = 2

High Switching No Switching
Domain U

a
 Domain U

b

u∗ in mode 1
x

2

x1
−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V ∗(x, 1)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

σ2(x,1) = 1.5

σ2(x,2) = 1.5

Domain U
a

High Switching No Switching
Domain U

b

σ2(x,2) = 2

σ2(x,1) = 1

u∗ in mode 2

−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

V ∗(x, 2)

Fig. 5. Top: Optimal controls u∗ in mode 1 (left) and mode 2 (right) for Example 3.

Bottom: Optimal expected exit time V ∗(x, 1) (left) and V ∗(x, 2) (right)

4.3 General Switching

We now consider a general scenario that encompasses the previous two cases
as special instances. In this case, sudden changes in variance can occur either
due to the random discrete mode transitions or due to the state evolving into
different subdomains of U .

Example 3 (General Switching in a 2-D box). Let U = Ua ∪ Ub be as before.
Suppose that there are two discrete modes (M = 2). In subdomain Ua, the
switching rate between the two modes due to the continuous time Markov chain
mt is high, so the diffusion switches rapidly between mode 1 and mode 2. On
the other hand, the switching rate is zero on Ub so that once Xt enters Ub, mt

will remain in the same mode. In addition, assume that the variance on domain
Ua is σaI2 with σ2

a = 1.5, regardless of the discrete mode, while on Ub, the
variance is σbI2, with σ2

b = 1 if m = 1 and σ2
b = 2 if m = 2. To sum up,

we have σ(x, 1) = σ(x, 2) =
√

1.5I2 , Λ(x) =
[
−20 20
20 −20

]
, ∀x ∈ Ua ; σ(x, 1) =

I2, σ(x, 2) =
√

2I2 , Λ(x) =
[
0 0
0 0

]
, ∀x ∈ Ub. The optimal control u∗ for this

problem as obtained by Algorithm 1 is shown in Fig. 5. Under mode 1, u∗ tends

Adjoint-Based Optimal Control of the Expected Exit Time for SHSs 571

to drive Xt towards subdomain Ub where the variance is lower than in Ua. In
mode 2, u∗ tends to drive Xt towards Ua, in which the average variance is lower
than the variance in Ub. However, the optimal control does not drive the diffusion
near the center of Ua (as it drives the diffusion near the center of Ub, under mode
1). The interpretation is that the diffusion originally in mode 2, in Ub, will tend
to be driven to Ua, switch mode and then go back to Ub in mode 1. This is a
smart optimal control.

5 Conclusions and Extensions

In this paper we proposed to use the adjoint method to solve the optimal sojourn
time control problem for a class of stochastic hybrid systems. We formulated the
problem as a PDE-constrained optimization problem, and devised an algorithm
to solve it using the gradients computed via the adjoint method.

The adjoint method is a powerful tool that can be applied to many other opti-
mal control problems. Examples include optimal control of expected reward over
an infinite time horizon: V (x,m) = Ex,m[

∫ ∞
0 e−αs r(Xs,m) ds], which satisfies

LV (x,m)− αV (x,m) = −r(x,m) , m = 1, . . . , M.

As another example, we can choose V (x, t,m) = Ex,m[f(Xt,m)], which solves
the backward Kolmogorov equation:

∂V (x, t,m)
∂t

= LV (x, t,m). V (x, 0,m) = f(x,m).

Nevertheless, the adjoint method is not without its shortcomings. First, the
dimension of the state of the stochastic hybrid system sets the dimension of
the PDE to optimize. In implementation, PDEs can be numerically solved in
dimension 3 or 4 – for higher dimensions, the memory requirement becomes
problematic. Therefore, the adjoint method, which runs on a modern single pro-
cessor computer in a few seconds for the application presented above, can be
applied only for stochastic hybrid systems of continuous dimension say less than
4. Second, gradient descent methods for large scale optimization programs (n di-
mensions usually results in 100n grid points) might be very slow. Therefore, sec-
ond order optimization should be adopted. We are currently investigating these
issues. The first might be overcome by applying directly the adjoint method
in the Monte-Carlo space. Regarding the second, we are currently developing a
Newton method implementation.

References

1. Ghosh, M., Arapostathis, A., Marcus, S.I.: Optimal control of switching dif-

fusions with applications to flexible manufacturing systems. (SIAM J. Control

Optim. 31 (1993), 1183–1204)

572 R.L. Raffard, J. Hu, and C.J. Tomlin

2. Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems.

In Lynch, N.A., Krogh, B.H., eds.: Hybrid Systems: Computation and Control

(HSCC). Lecture Notes in Computer Science 1790, (Springer-Verlag) 160–173.

3. Bujorianu, M.L., Lygeros, J.: General stochastic hybrid systems: Modelling

and optimal control. (Proceedings of the IEEE Int. Conference on Decision and

Control, Atlantis, Bahamas, 2004)

4. Bujorianu, M.L.: Extended stochastic hybrid systems and their reachability prob-

lem. In Alur, R., Pappas, G.J., eds.: Hybrid Systems: Computation and Control

(HSCC). Lecture Notes in Computer Science (LNCS 2993), (Springer-Verlag) 234–

249.

5. Yuan, C., Lygeros, J.: Asymptotic stability and boundeness of delay switching

diffusions. In Alur, R., Pappas, G.J., eds.: Hybrid Systems: Computation and

Control (HSCC). Lecture Notes in Computer Science (LNCS 2993), (Springer-

Verlag) 646–659.

6. Hwang, I., Hwang, J., Tomlin, C.J.: Flight-mode-based aircraft conflict detection

using a residual-mean interacting multiple model algorithm. In: Proceedings of the

AIAA Guidance, Navigation, and Control Conference. AIAA-2003-5340 (2003)

7. Hespanha, J.P.: Stochastic hybrid systems: Application to communication net-

works. In Alur, R., Pappas, G.J., eds.: Hybrid Systems: Computation and Control

(HSCC). Lecture Notes in Computer Science (LNCS 2993), (Springer-Verlag) 387–

401.

8. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equa-

tions. (translated by S.K. Mitter, Springer Verlag, New York)

9. Jameson, A.: Aerodynamic design via control theory. (Princeton University Re-

port MAE 1824, ICASE Report No. 88-64, November 1988, also, J. of Scientific

Computing, Vol. 3, 1988, pp. 233-260)

10. Evans, L.: Partial Differential Equations. AMS Press (2002)

11. Hu, J., Sastry, S.: Optimal sojourn time control within an interval. (Proceedings

of the American Control Conference, Denver, CO. 3478–3483. 2003)

12. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence.

Wiley (1986)

13. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic

Press. Harcourt Brace and Company (1999)

14. Rogers, L., Williams, D.: Diffusions, Markov processes and Martingales. Vol.1,

2nd Ed., Cambridge (2000)

15. Durrett, R.: Stochastic Calculus: A Practical Introduction. CRC Press (1996)

16. Oksendal, B.: Stochastic Differential Equations. An Introduction with Applica-

tions. Springer-Verlag, Sixth Edition (2003)

Safety Verification of Hybrid Systems by
Constraint Propagation Based Abstraction

Refinement�

Stefan Ratschan1 and Zhikun She2

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany

stefan.ratschan@mpi-sb.mpg.de
http://www.mpi-sb.mpg.de/~ratschan

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

zhikun.she@mpi-sb.mpg.de
http://www.mpi-sb.mpg.de/~zhikun

Abstract. This paper deals with the problem of safety verification of

non-linear hybrid systems. We start from a classical method that uses in-

terval arithmetic to check whether trajectories can move over the bound-

aries in a rectangular grid. We put this method into an abstraction refine-

ment framework and improve it by developing an additional refinement

step that employs constraint propagation to add information to the ab-

straction without introducing new grid elements. Moreover, the resulting

method allows switching conditions, initial states and unsafe states to be

described by complex constraints instead of sets that correspond to grid

elements. Nevertheless, the method can be easily implemented since it is

based on a well-defined set of constraints, on which one can run any con-

straint propagation based solver. First tests of such an implementation

are promising.

1 Introduction

In this paper we provide a method for verifying that a given non-linear hybrid
system has no trajectory that starts from an initial state and reaches an unsafe
state. Our approach builds upon a known method that decomposes the state
space according to a rectangular grid, and uses interval arithmetic to check the
flow on the boundary between neighboring grid elements.

The reasons for choosing this method as a starting point are: it can do verifi-
cation instead of verification modulo rounding errors, it can deal with constants
that are only known up to intervals, and it uses a check that is less costly than

� This work was partly supported by the German Research Council (DFG) as part

of the Transregional Collaborative Research Center “Automatic Verification and

Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more

information.

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 573–589, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

574 S. Ratschan and Z. She

explicit computation of continuous reach sets, or checks based on quantifier elim-
ination. However, this method has the drawback that it may require a very fine
grid to provide an affirmative answer, and that it ignores the continuous behavior
within the grid elements. In this paper we provide a remedy to this problem.

In our solution we put the classical interval method into an abstraction refine-
ment framework where the abstract states represent hyper-rectangles (boxes) in
the continuous part of the state space. Here refinement corresponds to splitting
boxes into pieces and recomputing the possible transitions. In order to avoid
splitting into too many boxes, we employ an idea that is at the core of the
field of constraint programming: instead of a splitting process that is poten-
tially exponential in the dimension of the problem, try to deduce information
without splitting, in an efficient, but possibly incomplete, constraint propaga-
tion step. Here we use conditions on the motion of the trajectories within these
boxes to construct a constraint without a differentiation operator, whose solu-
tion contains the reach set. Then we employ a constraint propagation algorithm
to remove elements from the boxes that do not fulfill this constraint.

Many algorithms for checking the safety of hybrid systems are based on float-
ing point computation that involve rounding errors. This is a perfectly valid
approach. However, in some safety critical applications one would like to ver-
ify safety. Experience shows that just replacing floating point computation by
faithfully rounded interval operations either results in too wide intervals, or—in
combination with splitting—in inefficient algorithms. So we tried to develop a
genuine interval based approach here.

Our implementation of the algorithms is publically available [31].
The structure of the paper is as follows: in Section 2 we formalize our safety

verification problem; in Section 3 we put the classical interval based method into
an abstraction refinement framework; in Section 4 we improve the method, using
constraint propagation techniques; in Section 5 we discuss our implementation;
in Section 6 we illustrate the behavior of the implementation using a few example
problems; and in Section 8 we conclude the paper.

2 Problem Definition

We fix a variable s ranging over a finite set of discrete modes {s1, . . . , sn} and
variables x1, . . . , xk ranging over closed real intervals I1, . . . , Ik. We denote by Φ
the resulting state space {s1, . . . , sn} × I1 × · · · × Ik. In addition, for denoting
the derivatives of x1, . . . , xk we assume variables ẋ1, . . . , ẋk, ranging over IR
each, and for denoting the targets of jumps, variables s′, x′

1, . . . , x
′
k ranging over

{s1, . . . , sn} and I1, . . . , Ik, correspondingly.
In order to describe hybrid systems we use constraints that are arbitrary

Boolean combinations of equalities and inequalities over terms that may contain
function symbols like +, ×, exp, sin and cos (which further function symbols
might be allowed will become clear in Section 5). These constraints are used, on
the one hand, to describe the possible flow and jumps, and on the other hand,
to mark certain parts of the state space (e.g., the set of initial states).

Safety Verification of Hybrid Systems by Constraint Propagation 575

Definition 1. A state space constraint is a constraint over the variables x1,. . . ,xk.
A flow constraint is a constraint over the variables s, x1, . . . , xk, ẋ1, . . . , ẋk. A
jump constraint is a constraint over the variables s, x1, . . . , xk and s′, x′

1, . . . , x
′
k.

A hybrid system description (or short: description) is a tuple consisting of a flow
constraint, a jump constraint, a state space constraint describing the set of initial
states, and a state space constraint describing the set of unsafe states.

Example of a flow constraint for the case n = 2 and k = 1:(
(s = s1 → ẋ = x)

∧
(s = s2 → ẋ = −x)

)
We use these constraints to describe the following:

Definition 2. A hybrid system is a tuple (Flow, Jump, Init, UnSafe) where
Flow ⊆ Φ × IRk, Jump ⊆ Φ × Φ, Init ⊆ Φ, and UnSafe ⊆ Φ.

A hybrid system description gives rise to the hybrid system, for which each
constituting set is the solution set of the corresponding constraint of the hybrid
system description. For unrolling such a hybrid system to trajectories we employ
the following notation: for a function r : IR≥0 �→ Φ, limt′→t− r(t′) is the left limit
of r at t.

Definition 3. A continuous time trajectory is a function in IR≥0 �→ Φ. A tra-
jectory of a hybrid system (Flow, Jump, Init, UnSafe) is a continuous time
trajectory r such that

– if the real-valued component f of r is differentiable at t, and limt′→t− r(t′)
and r(t) have an equal mode s, then ((s, f(t)), ḟ(t)) ∈ Flow, and

– otherwise, (limt′→t− r(t′), r(t)) ∈ Jump.

A trajectory from a state x to a state y is a trajectory r such that r(0) = x and
there is a t ∈ IR≥0 such that r(t) = y.

Note that in this definition we can enforce jumps by formulating a flow con-
straint that does not allow continuous evolution in a certain region. A flow is a
trajectory without a jump (i.e., without an evolution according to the relation
Jump).

Definition 4. A system is safe if and only if there is no trajectory from an
initial to an unsafe state.

We would like to have an algorithm that, given a hybrid system description,
decides whether the corresponding system is safe. However, this is an undecidable
problem [16]. So we aim at an algorithm for which we know that, if it terminates,
the hybrid system described by the input is safe, and otherwise, we do not know
anything.

576 S. Ratschan and Z. She

3 An Interval Based Method

In this section we give an algorithm for verifying safety. Basically, it is the
result of taking a classical method for safety verification, and putting it in an
abstraction refinement framework. It seems that this classical method is in the
folklore of the hybrid systems community, and appears the first time in the
literature as a basis for a method that abstracts to timed automata [34]. It
checks the flow at the boundary of boxes using interval arithmetic and requires
that switching conditions, initial states and unsafe states be aligned to the box
grid. In contrast, our resulting algorithm allows these sets to be described by
complex constraints as introduced by Definition 1. We assume that we have
an algorithm that can test such constraints for falsehood, that is an algorithm
that either returns “false” or “unknown”. On details how to arrive at such an
algorithm see Section 5.

We abstract to systems of the following form:

Definition 5. A discrete system over a finite set S is a tuple (Trans, Init,
UnSafe) where Trans ⊆ S × S and Init ⊆ S, UnSafe ⊆ S. We call the set S
the state space of the system.

In contrast to Definition 2, here the state space is a parameter. This will
allow us to add new states to the state space during abstraction refinement.

Trajectories of such systems employ discrete time:

Definition 6. A trajectory of a discrete system (Trans, Init, UnSafe) over a
set S is a function r : IN0 �→ S such that for all t ∈ IN0, (r(t), r(t+1)) ∈ Trans.

When analyzing discrete systems, we would like to ignore details not relevant
to the property we want to verify, that is we would like to use abstractions. This
has to be done in a conservative way, that is, if the abstraction is safe, then the
original system should also be safe:

Definition 7. An abstraction function between a discrete system (Trans1,
Init1, UnSafe1) over S1 and a discrete system (Trans2, Init2, UnSafe2) over
S2 is a function α : S1 �→ S2 such that for every transition (x, y) ∈ Trans1,
(α(x), α(y)) ∈ Trans2, for every q ∈ Init1, α(q) ∈ Init2, and for every q ∈
UnSafe1, α(q) ∈ UnSafe2. A system is an abstraction of another one iff there
exists an abstraction function between the two.

Given a system that abstracts another one, we call the former the abstract
system and the latter the concrete system.

In our case we want to use abstraction to analyze hybrid instead of discrete
systems. Here we have the problem that in a hybrid system we have no notion
of transition. Usually, this problem is solved by defining an abstract transition
to correspond to either a jump or a (arbitrarily long) flow [2], or to a jump
followed by a flow [9]. For both methods one has to follow a flow over potentially
unbounded time, which can be extremely costly. Therefore, in our definition, we
only require that every concrete trajectory have a corresponding abstract one.

Safety Verification of Hybrid Systems by Constraint Propagation 577

Definition 8. An abstraction function between a hybrid system (Flow1, Jump1,
Init1, UnSafe1) and a discrete system (Trans2, Init2, UnSafe2) over S is a
function α : Φ �→ S such that:

– for all p, q in Φ, if there is a trajectory from p to q according to Flow1 and
Jump1, then there is a trajectory from α(p) to α(q) according to Trans2.

– for all q ∈ Init1, α(q) ∈ Init2, and for every q ∈ UnSafe1, α(q) ∈
UnSafe2.

A discrete system is an abstraction of a hybrid system, iff there exists an ab-
straction function between the two.

Since for every trajectory from Init to Unsafe of the first system there is a
corresponding trajectory from Init to Unsafe in the second system, we have:

Property 1. For a system C, for every abstraction Cα of C, if Cα is safe, then C
is safe.

Therefore we can prove safety on the abstraction instead of the concrete
system. If this does not succeed, we refine the abstraction, that is, we include
more information about the concrete system into it. This results in Algorithm 1.

Algorithm 1 Abstraction Refinement
let A be a discrete abstraction of the hybrid system represented by a description D
while A is not safe do

refine the abstraction A
end while

In order to implement the above algorithm, we need to fix the state space
of the abstract system. Here we use pairs (s,B), where s is one of the modes
{s1, . . . , sn} and B is a hyper-rectangle (box), representing subsets of the con-
crete state space Φ. More specifically, for the initial abstraction we use the
state space {(si, {x | (si, x) ∈ Φ}) | 1 ≤ i ≤ n}. When refining the abstraction
we split a box into two parts, creating two abstract states (s,B1) and (s,B2)
with B1 ∪B2 = B, from an abstract state (s,B).

In order to compute a discrete abstraction over this state space, we have
to show how to compute the transitions of the resulting abstraction, and its
set of initial and unsafe states. Here we assume that the input consists of a
hybrid system description with flow constraint Flow(s, x, ẋ), jump constraint
Jump(s, x, s′, x′), initial constraint Init(s, x) and unsafety constraint
UnSafe(s, x). Now

– we mark an abstract state (s,B) as initial iff we cannot disprove the con-
straint ∃x ∈ B Init(s, x), and

– we mark an abstract state (s,B) as unsafe iff we cannot disprove the con-
straint ∃x ∈ B UnSafe(s, x).

578 S. Ratschan and Z. She

In order to compute the possible transitions between two neighboring boxes
in the same mode, we first consider the flow on common boundary points. For a
box B = [x1, x1]×· · ·×[xk, xk], we let its j-th lower face be [x1, x1]×· · ·×[xj , xj]×
· · · × [xk, xk] and its j-th upper face be [x1, x1] × · · · × [xj , xj] × · · · × [xk, xk].
Two boxes are non-overlapping if their interiors are disjoint.

Lemma 1. For a mode s, and two non-overlapping boxes B ⊆ IRk and B′ ⊆ IRk

with B ∩ B′ �= ∅, let F be a face of B s.t. B ∩ B′ ⊆ F . If a flow in s leaves B
and enters B′ through a point x ∈ (B ∩B′), then

– ∃ẋj [Flow(s, x, (ẋ1, . . . , ẋk)) ∧ ẋj ≤ 0], if F is the j-th lower face of B, and
– ∃ẋj [Flow(s, x, (ẋ1, . . . , ẋk)) ∧ ẋj ≥ 0], if F is the j-th upper face of B

We denote the above constraint by outgoingF
s,B(x). Using this constraint we

can now construct a constraint for checking the possible transition between two
boxes in the same mode.

Lemma 2. For a mode s, two non-overlapping boxes B,B′ ⊆ IRk, if there is a
flow in mode s that comes from B and enters B′ through a common point of B
and B′, then

∃a
[
a ∈ B ∧ a ∈ B′ ∧

[
∀F ⊆ B

[
a ∈ F ⇒ outgoingF

s,B(a)
]]]

This is an immediate result of Lemma 1. We denote the corresponding con-
straint by transitions,B,B′ .

Now we compute a transition from (s,B) to (s′, B′) iff

– s = s′ and B = B′, or
– s = s′, B �= B′, and we cannot disprove transitions,B,B′ of Lemma 2, or
– there are x ∈ B and x′ ∈ B′ such that Jump(s, x, s′, x′) holds.

So, given a hybrid system description D and a set B of abstract states (i.e.,
mode/box pairs) such that all boxes corresponding to the same mode are non-
overlapping, we have a method for computing the set of initial states, set of
unsafe states, and transitions of a corresponding abstraction. We denote the
resulting discrete system by AbstractD(B).

Theorem 1. For all hybrid system descriptions D and sets of abstract states
B covering the whole state space such that all boxes corresponding to the same
mode are non-overlapping, AbstractD(B) is an abstraction of the hybrid system
denoted by D.

Proof. Let D be an arbitrary, but fixed hybrid system description, and let B be
arbitrary, but fixed set of abstract states covering the whole state space such
that all boxes corresponding to the same mode are non-overlapping. Denote
the hybrid system described by D by C1 = (Flow1, Jump1, Init1, UnSafe1)
and AbstractD(B) by C2 = (Trans2, Init2, UnSafe2). We first assume that the
jump relation Jump1 of the hybrid system C1 is empty. According to Definition 8
we need to construct an abstraction function α : Φ �→ B between C1 and C2. Let

Safety Verification of Hybrid Systems by Constraint Propagation 579

α : Φ �→ B be such that α(s, b) = (s,B) where (s,B) ∈ B with b ∈ B (the set B
might contain several such abstract states since the boxes might have common
boundaries, in that case one can choose any of these). Clearly, such an α exists
since the whole state space is covered by B.

Now we prove that α fulfills the two conditions stated in Definition 8:

– Assume that there is a trajectory from p to q. Since there are no jumps, both
p and q have the same mode s. We have to prove that there is an abstract
trajectory from α(p) to α(q). Suppose that the trajectory from p to q is cov-
ered by abstract states (s,B1), . . . , (s,Bt) in the following order according
to Flow1: α(p) = (s,B1), . . . , (s,Bt) = α(q). By Lemma 2, transitions,B1,B2 ,
transitions,B2,B3 , . . . , and transitions,Bt−1,Bt

hold. Therefore,AbstractD(B)
will contain all the transitions over these abstract states. This implies that
there is a trajectory from α(p) to α(q) according to Trans2.

– Let x ∈ Init1 be arbitrary but fixed. Let (s,B) = α(x). Then, since x ∈ B,
by the definition of AbstractD(B), α(x) ∈ Init2. A similar argument holds
for UnSafe1 and UnSafe2.

For a hybrid system with jump relation, we partition the trajectory into
parts according to where a jump occurs. Thus, a jump does not occur during
each part. Moreover, for each part, its end point and the starting point of the
next part satisfy the jump constraint. Therefore, the algorithm will compute
these transitions from an abstract state containing the end point to an abstract
state containing the starting point of the next part. Combining the above proof,
we can deduce that if there is a trajectory from x to y, then there is an abstract
trajectory from α(x) to α(y). ��

If the differential equations in the flow constraint are in explicit form ẋ =
Flow(x) then one can disprove the above constraints using interval arithmetic.
According to Lemma 2 one can take all faces F of the common boundary of
two boxes B and B′, evaluate Flow on F using interval arithmetic, and check
whether the resulting intervals have a sign that does not allow flows over the
boundary—as described by Lemma 1. In Section 5 a method will be described
that allows the flow constraints also to be in implicit form.

Now a concrete instantiation of Algorithm 1 can maintain the abstract state
space B as described earlier, compute a corresponding abstract system AbstractD
(B), and (since this abstract system is finite) check its safety—either by a brute
force algorithm or using more sophisticated model checking technology. We can
either recompute the abstract system AbstractD(B) each time we want to check
its safety, or we can do this incrementally, just recomputing the elements corre-
sponding to a changed element of the abstract state space (i.e., a box resulting
from splitting).

4 A Constraint Propagation Based Improvement

The method introduced in the previous section has two main problems: First,
splitting can result in a huge number of boxes, especially for high-dimensional

580 S. Ratschan and Z. She

problems; second, the method considers the flow only on the box boundaries and
ignores the behavior inside of the boxes. In this section we will try to remove
these problems.

In order to remove the first problem, we will refine the abstraction without
creating more boxes by splitting. Here we can use the observation that, for safety
verification, the unreachable state space is uninteresting, and there is no need
to include it into the abstraction. Therefore, instead of requiring an abstraction
function (Definition 8), we allow it to be a relation:

Definition 9. An abstraction relation between a hybrid system (Flow1, Jump1,
Init1, UnSafe1) and a discrete system (Trans2, Init2, UnSafe2) over S is a
relation α ⊆ Φ × S such that:

– for all q ∈ Φ, if there is a trajectory from an element of Init1 to q according
to Flow1 and Jump1, then for all qα with α(q, qα) there is a trajectory from
an element of Init2 to qα according to Trans2,

– for all q ∈ Init1, there is a qα ∈ Init2, with α(q, qα) and
– for all q ∈ UnSafe1, if q is reachable from Init1, then there is a qα ∈
Unsafe2 with α(q, qα).

A discrete system is an abstraction of a hybrid system iff there exists an ab-
straction relation between the two.

Clearly Property 1 also holds for this adapted definition.
Note that in the literature there is a similar notion of simulation relation [26,

10]. However, a simulation relation relates transitions between arbitrary states
instead of only trajectories that start from the initial set. Now we can modify
Theorem 1 as follows:

Theorem 2. For all hybrid system descriptions D and sets of abstract states B
containing all elements of the state space reachable from the initial set such that
all boxes corresponding to the same mode are non-overlapping, AbstractD(B) is
an abstraction of the hybrid system denoted by D.

Proof. We proceed in a similar way as in the proof of Theorem 1. We let D and
B be arbitrary, but fixed, fulfilling the conditions of the theorem, and denote
the continuous time hybrid system by C1 = (Flow1, Jump1, Init1, UnSafe1)
and AbstractD(B) by C2 = (Trans2, Init2, UnSafe2). We first assume that
the hybrid system has no jump relation. According to Definition 9 we have to
construct an abstraction relation α ⊆ Φ × B between C1 and C2.

Let α be such that α((s, x), (sα, B)) iff s = sα and x ∈ B.

– We prove that for every concrete trajectory from a p that is reachable from
Init1 to a q, there is a corresponding abstract trajectory (we cannot as-
sume p ∈ Init1 since, when introducing jumps later, this property has to
hold for all jump-less fragments). Since there are no jumps, both p and q
have the same mode s. Let pα and qα be arbitrary, but fixed, such that
α(p, pα) and α(q, qα). We prove that there is an abstract trajectory from

Safety Verification of Hybrid Systems by Constraint Propagation 581

pα to qα. Now let (s,B1), . . . , (s,Bt) be abstract states in B such that
the trajectory from p to q passes them in the following order according
to Flow1 : pα = (s,B1), . . . , (s,Bt) = qα. Such boxes exist, since B covers
the reach set of C1. By Lemma 2, transitions,B1,B2 , transitions,B2,B3 , . . . ,
and transitions,Bt−1,Bt hold. Therefore, AbstractD(B) will contain all the
transitions over these abstract states. This implies that there is a trajectory
from pα to qα according to Trans2.

– For all q ∈ Init1, there is a qα ∈ Init2, with α(q, qα) holds by definition of
AbstractD(B) since q is reachable and therefore covered by an element of B.
In the same way, for every reachable q ∈ UnSafe1 there is a qα ∈ UnSafe2
with α(q, qα).

For a hybrid system with jump relation we proceed analogously to Theorem 1.
��

So we can exclude parts of the state space from the abstraction process, for
which we can show that they are not reachable. In order to do this, we observe
that a point in a box B is reachable only if it is reachable either from the initial
set via a flow in B, from a jump via a flow in B, or from a neighboring box via
a flow in B.

We will now formulate constraints corresponding to each of these conditions.
Then we can remove points from boxes that do not fulfill at least one of these
constraints. For this, we first give a constraint describing flows within boxes:

Lemma 3. For a box B ⊆ IRk and a mode s, if a point y = (y1, . . . , yk) ∈ B is
reachable from a point x = (x1, . . . , xk) ∈ B via a flow in B and s, then∧

1≤m<n≤k

∃a, ȧ [a ∈ B ∧ Flow(s, a, ȧ) ∧ ȧn · (ym − xm) = ȧm · (yn − xn)]

Proof. Assume that r(t) = (r1(t), . . . , rk(t)) is a flow in B from x to y. So
r(0) = x and for a certain t ∈ IR≥0, r(t) = y. Then, for i, j ∈ {1, . . . , k}
arbitrary, but fixed, by the Extended Mean Value Theorem we have:

∃t′ ∈ [0, t] [ṙj(t′)(yi − xi) = ṙi(t′)(yj − xj)] .

Now choose such a t′ and let a = r(t′) and ȧ = ṙ(t′). Then, since r is a flow,
Flow(s, a, ȧ) and hence the whole constraint holds. ��

The intuition behind the above Lemma is that whenever we have a flow from
a 2-dimensional point (xn, xm) to a 2-dimensional point (yn, ym), then there
must be a point on the trajectory, where the vector field points exactly in the
direction (yn − xn, ym − xm). Therefore the box must contain such a point.

We denote the above constraint by flowB(s, x, y). Now we can write down a
constraint describing the first condition—reachability from the initial set:

Lemma 4. For a mode s and a box B ⊆ IRk, if z ∈ B is reachable from the
initial set via a flow in s and B, then

∃y ∈ B [Init(s, y) ∧ flowB(s, y, z)]

582 S. Ratschan and Z. She

The proof is trivial since it is an immediate consequence of Lemma 3. We
denote the above constraint by initflowB(s, z).

We also have a constraint describing the second condition—reachability from
a jump:

Lemma 5. For modes s and s′, boxes B,B′ ⊆ IRk, and z ∈ B′, if (s′, z) is
reachable from a jump from (s,B) via a flow in B′, then

∃x ∈ B∃x′ ∈ B′ [Jump(s, x, s′, x′) ∧ flowB′(s′, x′, z)]

The proof is trivial since it is also consequence of Lemma 3. We denote the
above constraint by jumpflowB,B′(s, s′, z).

And finally, we strengthen the condition mentioned in Lemma 2, to a con-
straint describing the third condition—reachability from a neighboring box.

Lemma 6. For a mode s and boxes B,B′ ⊆ IRk, if z ∈ B′ is reachable from a
common point of B and B′ via a flow in s and B, then

∃a
[
a ∈ B ∧ a ∈ B′ ∧

[
∀F ⊆ B[a ∈ F ⇒ outgoingF

s,B(a)]
]
∧ flowB′(s, a, z)

]
This is a consequence of Lemma 3 and Lemma 1. We denote the above con-

straint by boundaryflowB,B′(s, z).
Now a point in a box is only reachable if it is reachable according to Lemma 4,

Lemma 5, or Lemma 6:

Theorem 3. For a set of abstract states B, a pair (s′, B′) ∈ B and a point
z ∈ B′, if (s′, z) is reachable, then

initflowB′(s′, z) ∨
∨

(s,B)∈B
jumpflowB,B′(s, s′, z) ∨

∨
(s,B)∈B,s=s′,B �=B′

boundaryflowB,B′(s′, z)

We denote this constraint by reachableB′(s′, z). Now, if we can prove that
a certain point does not fulfill this constraint, we know that it is not reachable
from the set of initial states. For now we assume that we have an algorithm (a
pruning algorithm) that takes such a constraint, and an abstract state (s′, B′)
and returns a sub-box of B′ that still contains all the solutions of the constraint
in B′. See the next section for details on such algorithms.

Since the constraint reachableB′(s′, z) depends on all current abstract states,
a change of B′ might allow further pruning of other abstract states. So we can
repeat pruning until a fixpoint is reached. This terminates since we use floating
point computation here and there are only finitely many floating point numbers.
Given a set of abstract states B, we denote the resulting fixpoint by PruneD(B).

Now, since according to Theorem 2, we do not need to consider unreachable
parts of the state space in abstraction, we can do the operation B ← PruneD(B)
anywhere in Algorithm 1. So we do this at the beginning, and each time B is
refined by splitting a box.

Safety Verification of Hybrid Systems by Constraint Propagation 583

So our method can in some cases refine the abstraction without splitting,
which is a remedy for the first problem identified at the beginning of the section.
For doing so, it considers the flow not only on the boundary but also inside of the
boxes. Therefore, in addition, the result also provides a remedy for the second
problem!

Now observe that in the computation of AbstractD(B) we check whether one
abstract state is reachable from another one. But this information has already
been computed by PruneD(B). More precisely, we get this information from the
individual disjuncts of Theorem 3, and we do not need to recompute it. Clearly
this does not change the correctness of our abstraction process.

Moreover, we do not need to completely recompute AbstractD(B) after each
refinement step: for this we observe that our solver might prove that one of the
disjuncts of the constraint of Theorem 3 has an empty solution. For example, this
is trivially the case for boundaryflow and non-neighboring boxes. In such a case
we can remove the corresponding disjunct from the disjunction. Afterwards, the
constraint only depends on some, but not necessarily all other abstract states in
B, and we only have to re-compute it, if one of these changed (cf. the constraint
propagation algorithm AC-3 [25]).

5 Implementation

In this section we discuss our implementation of the algorithms introduced in
the previous sections.

First, we show how to arrive at a pruning algorithm as required by the previ-
ous section. Such algorithms are one of the main topics of the area of constraint
programming (for more information see http://slash.math.unipd.it/cp/).
Usually these work on conjunctions of atomic constraints over a certain domain.
For the domain of the real numbers, given a constraint φ and a floating-point
box B, they compute another floating-point box N(φ,B) such that N(φ,B) ⊆ B
(contractance), and such that N(φ,B) contains all solutions of φ in B (cf. the
notion of narrowing operator [5, 4], sometimes also called contractor). There
are several methods for implementing such a pruning algorithm. The most ba-
sic method [13, 11, 6] decomposes all atomic constraints (i.e., constraints of the
form t ≥ 0 or t = 0, where t is a term) into conjunctions of so-called primitive
constraints (i.e., constraints such as x + y = z, xy = z, z ∈ [a, a], or z ≥ 0)
by introducing additional auxiliary variables (e.g., decomposing x + 2y ≥ 0 to
2y = v1 ∧ x + v1 = v2 ∧ v2 ≥ 0). Then it applies a pruning algorithm for these
primitive constraints [21] until a fixpoint is reached. Here the floating point
results are always rounded outwards, such that the result remains correct also
under rounding errors. There are several variants, improvements and alternatives
in the literature [22, 5, 23, 24, 20].

The constraints introduced in the previous sections also contain existential
quantifiers. These can be treated by simply pruning the Cartesian product of

584 S. Ratschan and Z. She

the box corresponding to the free variables and the box bounding the quantified
variables [29]. For disjunctions one can prune the disjuncts and take the union
of the result [29]. Moreover, the constraints contain variables s and s′ ranging
over a finite set. These can be easily eliminated by a trivial substitution and
simplification.

We have implemented the algorithm on top of our RSolver [30] package
that provides pruning and solving of quantified constraints of the real numbers,
a graphical user interface, and several other features, and that uses the smathlib
library [18] for pruning primitive constraints. The implementation is publically
available [31], and we will make the source code open, which will make it easy
to extend it or to experiment with changes.

6 Computation Results

In this section we illustrate the behavior of our implementation on a few ex-
amples. Here we use the following splitting strategy: we split several boxes at a
time, one box per mode, choosing a box with widest side-length for each mode
and then bisecting it along its widest variable. In this way, we can avoid that we
keep splitting boxes in the same mode. Of course, one can choose other splitting
techniques.

Now we compare the computation results obtained by the basic method of
Section 3 and our improved method of Section 4 on some examples. The com-
putations were performed on a Pentium M 1.7 GHz notebook with 512 MB
memory. Note that we used the straightforward implementation described in
the last section, without any special optimizations whatsoever.

Example 1:

Flow: ẋ1 = x1 − x2, ẋ2 = x1 + x2
Empty jump relation
Init: 2.5 ≤ x1 ≤ 3.0 ∧ x2 = 0
Unsafe: x1 ≥ 0 ∧ x2 ≥ 0 ∧ x2 < −x1 + 2
The state space: [0, 4] × [0, 4]

For the basic method, after the 7-th splitting, one can get eight boxes and
prove that the region [0, 1]× [0, 1] can not be reached. After the 15-th splitting,
one gets sixteen boxes and prove that the set {x1 ≥ 0∧0 ≤ x2 < −x1+2} cannot
be reached. However, for the improved method, after splitting for the 7-th time
and calling the pruning method, we get seven boxes and can prove that the set
{x1 ≥ 0 ∧ 0 ≤ x2 < −x1 + 2} can not be reached.

The reason is that the improved method not only removes the box [0, 2]×[0, 1],
but also removes part of the box [0, 2] × [1, 2], both of which do not fulfill the
constraint in Theorem 3. The algorithm calls the pruning algorithm for 378 times
and costs 0.826 seconds.

Safety Verification of Hybrid Systems by Constraint Propagation 585

Example 2: from a paper by J. Preussig and co-workers [27].

Flow: ẋ = ẏ = ṫ = 1
Empty jump relation
Init: 0 ≤ x ≤ 1 ∧ y = t = 0
Unsafe: 0 ≤ x ≤ 2 ∧ 1 < y ≤ 2 ∧ 0 ≤ t < 1
The state space: [0, 2] × [0, 2] × [0, 4]

For the basic method, splitting does not improve the abstraction. However,
the improved method can prove that the trajectories starting from initial set do
not enter the unsafe states. The algorithm only executes the splitting once, calls
the pruning algorithm 10 times, gets 2 boxes, and costs 0.339 seconds.

Example 3: The flow constraints are constructed by setting all the parameters
in the two tanks problem [34] to 1.

Flow:
(
s = 1 →

(
ẋ1
ẋ2

)
=
(1−√

x1√
x1−√

x2

))
∧
(
s = 2 →

(
ẋ1
ẋ2

)
=
(1−

√
x1−x2+1√

x1−x2+1−√
x2

))
Jump: (s = 1 ∧ 0.99 ≤ x2 ≤ 1) → (s′ = 2 ∧ x′

1 = x1 ∧ x′
2 = 1)

Init: s = 1 ∧ (x1 − 5.5)2 + (x2 − 0.25)2 ≤ 0.0625
Unsafe:

(
s = 1 ∧ (x1 − 4.5)2 + (x2 − 0.25)2 < 0.0625

)
The state space: (1, [4, 6] × [0, 1]) ∪ (2, [4, 6] × [1, 2])

The basic method cannot prove that the trajectories starting from the ini-
tial states do not enter the unsafe states. The reason is that splitting does not
improve the abstraction. But the improved method can prove that the trajecto-
ries starting from initial do not enter the unsafe states. The algorithm does 11
splitting steps, calls the pruning algorithm 5658 times, gets 11 boxes in the first
mode and 12 boxes in the second mode, and costs 4.620 seconds.

Example 4: A predator-prey example

Flow:
(
s = 1 →

(
ẋ1
ẋ2

)
=
(−x1+x1x2

x2−x1x2

))
∧
(
s = 2 →

(
ẋ1
ẋ2

)
=
(−x1+x1x2

x2−x1x2

))
Jump:

(
(s = 1 ∧ 0.875 ≤ x2 ≤ 0.9) → (s′ = 2 ∧ (x′

1 − 1.2)2 + (x′
2 − 1.8)2 ≤ 0.01

)
∨
(
(s = 2∧1.1 ≤ x2 ≤ 1.125) → (s′ = 1∧(x′

1−0.7)2+(x′
2−0.7)2 ≤ 0.01)

)
Init: s = 1 ∧ (x1 − 0.8)2 + (x2 − 0.2)2 ≤ 0.01
Unsafe:

(
s = 1 ∧ x1 > 0.8 ∧ x2 > 0.8 ∧ x1 ≤ 0.9 ∧ x2 ≤ 0.9

)
The state space: (1, [0.1, 0.9] × [0.1, 0.9]) ∪ (2, [1.1, 1.9] × [1.1, 1.9])

Again, splitting does not improve the abstraction for the basic method. How-
ever, it does in our improved method. The algorithm proves safety, using 61
splitting steps, and 478533 calls to the pruning algorithm, resulting in 56 boxes
in the first mode and 61 boxes in the second mode, costing 117 seconds.

The main remaining problem of our improved method is that even in some
simple cases it still cannot prove that certain elements of the state space are
unreachable. For example, applying our method to the following example: Flow:
ẋ = ẏ = 1, Init: x = y = 0, State space: [0, 4]×[0, 4], when we start with splitting
along the variable x, we cannot remove parts below the x = y line. If we start
with splitting along y, we cannot remove parts above the x = y line. The reason
is, that we do not follow trajectories over more than one box.

586 S. Ratschan and Z. She

7 Related Work

The idea of using abstraction to compute the reach set of hybrid systems is
not new. Here the basic choice is, which data-structure to use for representing
subsets of the continuous part of the state space.

Kowalewski, Stursberg and co-workers pioneered the use of box represen-
tations [34, 32, 27, 28, 33]. Also in their method, interval arithmetic is used to
check the flow on the boundaries of a rectangular grid. Then timing informa-
tion is added by checking the flow within these boxes. As a result one arrives
at rectangular or timed automata. All appearing switching conditions, initial
states and unsafe states have to be aligned to the predefined grid, whereas in
this paper, we allow complex constraints. Moreover, their method has been de-
signed for a fixed grid, and a refinement of the abstraction requires a complete
re-computation, whereas in the present work, this can be done incrementally.
Also, their method does not include a step for refining the abstraction without
splitting, and it is harder to implement, since it does not build upon an existing
constraint solver. However, they generate additional timing information, and use
additional information on reachable subsets of faces.

Another frequently used technique for representing parts of the state space
are polyhedra [8, 1, 9, 2, 3]. This has the advantage of being flexible, but requires
involved algorithms for handling these polyhedra and for approximating reach-
able sets. In contrast to that, boxes are less flexible, but the corresponding
operations are simple to implement efficiently, even with validated handling of
floating-point rounding errors. It is not clear how one could adapt the pruning
mechanism of this paper to polyhedra.

Another method uses semi-algebraic sets for representation [35]. This is even
more flexible, and can produce symbolic output, but requires highly complex
quantifier elimination tools [12]. Again, it is not clear how one could employ a
pruning mechanism for such a representation.

There are also methods that use interval arithmetic to compute the reach set
explicitly, without abstraction. In one approach [15] an interval ODE solver is
used, and in another one [17] a constraint logic programming language [19] that
allows constraints with differentiation operators.

8 Conclusion

In this paper we have put a classical method for verifying safety of hybrid systems
into an abstraction refinement framework, and we have provided a constraint
propagation based remedy for some of the problems of the method. As a result,
we need to split into less boxes, we retain information on the flow within boxes,
and we can use complex constraints for specifying the hybrid system. Since the
method is based on a clear set of constraints, it can be easily implemented using
a pruning algorithm based on constraint propagation.

Our long term goal is to arrive at a method for which one can prove termina-
tion for all, but numerically ill-posed cases, in a similar way as can be done for

Safety Verification of Hybrid Systems by Constraint Propagation 587

quantified inequality constraints [29], and hybrid systems in which all trajecto-
ries follow polynomials [14]. Moreover, we will use counterexamples to guide the
refinement process [9, 2].

Interesting further questions are, whether work on constraint propagation
in the discrete domain can be useful in a similar way for pruning the discrete
state space, and whether similar pruning of the state space can be done for more
complex verification tasks, (i.e., for general ACTL queries).

Acknowledgement. The authors thank Martin Fränzle for carefully removing
some of our initial ignorance about the intricacies of hybrid systems.

References

1. R. Alur, T. Dang, and F. Ivančić. Reachability analysis of hybrid systems via

predicate abstraction. In Tomlin and Greenstreet [36].

2. R. Alur, T. Dang, and F. Ivančić. Counter-example guided predicate abstraction

of hybrid systems. In H. Garavel and J. Hatcliff, editors, TACAS, volume 2619 of

LNCS, pages 208–223. Springer, 2003.

3. E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of hybrid systems.

In CAV’02 - Computer Aided Verification, number 2404 in LNCS, pages 365–370.

Springer, 2002.

4. F. Benhamou. Heterogeneous constraint solving. In Proc. of the Fifth International
Conference on Algebraic and Logic Programming, 1996.

5. F. Benhamou, D. McAllester, and P. Van Hentenryck. CLP(Intervals) revisited.

In International Symposium on Logic Programming, pages 124–138, Ithaca, NY,

USA, 1994. MIT Press.

6. F. Benhamou and W. J. Older. Applying interval arithmetic to real, integer and

Boolean constraints. Journal of Logic Programming, 32(1):1–24, 1997.

7. B. F. Caviness and J. R. Johnson, editors. Quantifier Elimination and Cylindrical
Algebraic Decomposition. Springer, Wien, 1998.

8. A. Chutinan and B. H. Krogh. Verification of polyhedral-invariant hybrid automata

using polygonal flow pipe approximations. In Vaandrager and van Schuppen [37],

pages 76–90.

9. E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg, and

M. Theobald. Abstraction and counterexample-guided refinement in model check-

ing of hybrid systems. International Journal of Foundations of Computer Science,
14(4), 2003.

10. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

11. J. G. Cleary. Logical arithmetic. Future Computing Systems, 2(2):125–149, 1987.

12. G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quanti-

fier elimination. Journal of Symbolic Computation, 12:299–328, 1991. Also in [7].

13. E. Davis. Constraint propagation with interval labels. Artificial Intelligence,
32(3):281–331, 1987.

14. M. Fränzle. Analysis of hybrid systems: An ounce of realism can save an infinity

of states. In J. Flum and M. Rodriguez-Artalejo, editors, Computer Science Logic
(CSL’99), number 1683 in LNCS. Springer, 1999.

588 S. Ratschan and Z. She

15. T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi. Beyond HyTech:

hybrid systems analysis using interval numerical methods. In N. Lynch and

B. Krogh, editors, Proceedings of the Third International Workshop on Hybrid
Systems: Computation and Control (HSCC ’00), volume 1790 of LNCS. Springer,

2000.

16. T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about

hybrid automata. Journal of Computer and System Sciences, 57:94–124, 1998.

17. T. Hickey and D. Wittenberg. Rigorous modeling of hybrid systems using interval

arithmetic constraints. In R. Alur and G. J. Pappas, editors, Hybrid Systems:
Computation and Control, number 2993 in LNCS. Springer, 2004.

18. T. J. Hickey. smathlib. http://interval.sourceforge.net/interval/C
/smathlib/README.html.

19. T. J. Hickey. Analytic constraint solving and interval arithmetic. In Proceedings of
the 27th Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, 2000.

20. T. J. Hickey. Metalevel interval arithmetic and verifiable constraint solving. Jour-
nal of Functional and Logic Programming, 2001(7), October 2001.

21. T. J. Hickey, M. H. van Emden, and H. Wu. A unified framework for interval

constraint and interval arithmetic. In M. Maher and J. Puget, editors, CP’98,

number 1520 in LNCS, pages 250–264, 1998.

22. L. Jaulin, M. Kieffer, O. Didrit, and É. Walter. Applied Interval Analysis, with Ex-
amples in Parameter and State Estimation, Robust Control and Robotics. Springer,

Berlin, 2001.

23. O. Lhomme. Consistency techniques for numeric CSPs. In Proc. 13th Intl. Joint
Conf. on Artificial Intelligence, 1993.

24. O. Lhomme, A. Gotlieb, and M. Rueher. Dynamic optimization of interval nar-

rowing algorithms. Journal of Logic Programming, 37(1–3):165–183, 1998.

25. A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99–118, 1977.

26. R. Milner. An algebraic definition of simulation between programs. In Proc. of the
2nd International Joint Conference on Artificial Intelligence, pages 481–489, 1971.

27. J. Preußig, S. Kowalewski, H. Wong-Toi, and T. Henzinger. An algorithm for the

approximative analysis of rectangular automata. In 5th Int. School and Symp.
on Formal Techniques in Fault Tolerant and Real Time Systems, number 1486 in

LNCS, 1998.

28. J. Preußig, O. Stursberg, and S. Kowalewski. Reachability analysis of a class of

switched continuous systems by integrating rectangular approximation and rect-

angular analysis. In Vaandrager and van Schuppen [37].

29. S. Ratschan. Continuous first-order constraint satisfaction. In J. Calmet, B. Ben-

hamou, O. Caprotti, L. Henocque, and V. Sorge, editors, Artificial Intelligence,
Automated Reasoning, and Symbolic Computation, number 2385 in LNCS, pages

181–195. Springer, 2002.

30. S. Ratschan. Rsolver. http://www.mpi-sb.mpg.de/~{}ratschan/rsolver, 2004.

Software package.

31. S. Ratschan and Z. She. Hsolver. http://www.mpi-sb.mpg.de/~{}ratschan
/hsolver, 2004. Software package.

32. O. Stursberg and S. Kowalewski. Analysis of controlled hybrid processing systems

based on approximation by timed automata using interval arithmetic. In Proceed-
ings of the 8th IEEE Mediterranean Conference on Control and Automation (MED
2000), 2000.

Safety Verification of Hybrid Systems by Constraint Propagation 589

33. O. Stursberg, S. Kowalewski, and S. Engell. On the generation of timed discrete

approximations for continuous systems. Mathematical and Computer Models of
Dynamical Systems, 6:51–70, 2000.

34. O. Stursberg, S. Kowalewski, I. Hoffmann, and J. Preußig. Comparing timed and

hybrid automata as approximations of continuous systems. In P. J. Antsaklis,

W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid Systems, number 1273 in

LNCS, pages 361–377. Springer, 1997.

35. A. Tiwari and G. Khanna. Series of abstractions for hybrid automata. In Tomlin

and Greenstreet [36].

36. C. J. Tomlin and M. R. Greenstreet, editors. Hybrid Systems: Computation and
Control HSCC, number 2289 in LNCS, 2002.

37. F. Vaandrager and J. van Schuppen, editors. Hybrid Systems: Computation and
Control – HSCC’99, number 1569 in LNCS. Springer, 1999.

Generating Polynomial Invariants for
Hybrid Systems�

Enric Rodŕıguez-Carbonell1 and Ashish Tiwari2

1 LSI Department, Technical University of Catalonia,

Jordi Girona, 1-3 08034 Barcelona, Spain

erodri@lsi.upc.es
2 SRI International, 333 Ravenswood Ave, Menlo Park, CA, U.S.A.

Tel:+1.650.859.4774, Fax:+1.650.859.2844

tiwari@csl.sri.com

Abstract. We present a powerful computational method for automat-

ically generating polynomial invariants of hybrid systems with linear

continuous dynamics. When restricted to linear continuous dynamical

systems, our method generates a set of polynomial equations (algebraic

set) that is the best such over-approximation of the reach set. This shows

that the set of algebraic invariants of a linear system is computable. The

extension to hybrid systems is achieved using the abstract interpretation

framework over the lattice defined by algebraic sets. Algebraic sets are

represented using canonical Gröbner bases and the lattice operations are

effectively computed via appropriate Gröbner basis manipulations.

1 Introduction

Verification of hybrid systems is a challenging problem. While testing can guar-
antee the correctness of a specific behavior of the system, verification attempts
to provide correctness guarantee for all possible behaviors of the system. This
extensive coverage is achieved, in most cases, by representing and manipulating
sets of states of the system, rather than a single state. This jump from working
with a single state, as in testing, to working with sets of states, as in verification,
is also the main source of computational challenges in verification.

Arguably the most significant strides in the development of formal methods
and verification technology were made in the form of developing effective repre-
sentations for sets of states. The binary decision diagram representation provided
a crucial breakthrough for hardware circuit verification, and region construction

� The research of the first author was partially supported by Spanish FPU grant ref.

AP2002-3693 and the projects Maverish (MCYT TIC2001-2476-C03-01) and Logic-

Tools (TIN2004-03382) funded by the Spanish Ministry of Education and Science.

The second author was supported in part by the National Science Foundation under

grants CCR-0311348 and CCR-ITR-0326540 and NASA Langley Research Center

contract NAS1-00108 to Rannoch Corporation.

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 590–605, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Generating Polynomial Invariants for Hybrid Systems 591

played a similar role for timed systems. In this paper, we argue that a canonical
basis representation for algebraic sets provides an effective choice for a class of
hybrid systems with linear continuous dynamics.

A good representation for a set of states is one that allows efficient compu-
tation of some basic operations. In the case of discrete state transition systems,
these operations are well understood. Depending on the exact verification proce-
dure, some or all of the set union, set intersection, set complement, subset, and
projection operators may be required [11]. In the case of hybrid systems, we ad-
ditionally require that the representation behaves “nicely” along the continuous
evolutions at different locations of the hybrid system.

This paper explores the representation of sets of states Set ⊆ Rn by the set
of polynomials P ∈ Q[X1, . . . ,Xn] that form the kernel of Set , that is, P (s) = 0
for all s ∈ Set . Such a set of polynomials has several nice algebraic properties. It
is an ideal and has a finite basis representation. Furthermore, there is a canonical
fully-reduced basis, called a Gröbner basis, which can be effectively computed
(cf. ordered binary decision diagrams [4]). The set union, set intersection, and
set inclusion operators are efficiently computable on these canonical bases. The
same is also true of the quantifier-elimination (projection) operator.

Using the above properties of the canonical ideal basis, we show that both
continuous and discrete behaviors of hybrid systems can be processed. The main
contributions of this paper are:

(i) We show that, for any linear continuous dynamical system CS , the best al-
gebraic over-approximation of the reach set of CS can be computed (Section 3).
The proof of this result borrows some key insights from Lafferriere, Pappas and
Yovine [16], who use semi-algebraic sets and show that exact reach sets can be
computed for more restricted classes of linear vector fields.
(ii) We show that the method for over-approximating reach sets for linear dynam-
ical systems can be extended to hybrid systems using an abstract interpretation
framework, thanks to the various nice computational properties of Gröbner bases
(Section 4). We also present some experimental results obtained by using our
method to generate polynomial invariants for hybrid systems (Section 5).

1.1 Related Work

Sankaranarayanan et al. [18] presented an approach for generating polynomial
equational invariants for hybrid systems with more general (nonlinear) polyno-
mial dynamics. However, their approach is based on guessing a template for
the invariant and generating constraints that would guarantee that the guessed
parametric polynomial equation is an inductive invariant. We restrict ourselves
to linear dynamics, but our method is not based on guessing a template. In fact,
it is complete for linear systems. On the other hand, any extension of our method
to hybrid systems with more general continuous dynamics would require the use
of heuristics, such as [21, 18].

Region graphs suffice to compute exact reach sets for timed automata [2].
Polygonal sets have been used as representations for computing reachable states
for linear hybrid automata [1]. For more complex continuous dynamics, various

592 E. Rodŕıguez-Carbonell and A. Tiwari

representations have been used for computing over-approximations of the reach
sets, such as, union of convex polytopes [5], union of hyper-rectangles [8], and
ellipsoids [14]. Similar in the spirit of the result presented here, Kurzhanski and
Varaiya [14] show that the best ellipsoidal over-approximation of the reach set
for certain linear systems can be computed. We also note here that some of
the above works use abstract interpretation ideas, most notably in the form of
widening to accelerate reachability (or fixpoint) computation [12, 8].

Exact reach sets for a class of linear vector fields were computed as semi-
algebraic sets over state variables and special variables representing exponential
or trigonometric functions [16]. We contrast algebraic sets with semi-algebraic
sets as a choice for representing sets of states. Algebraic sets are defined as the
zeros of a finite set of polynomial equations. They admit unique canonical repre-
sentations on which various set operations and quantifier-elimination operation
can be efficiently performed. Semi-algebraic sets, on the other hand, are boolean
combinations of sets defined by polynomial equations and inequalities. By defi-
nition, they are closed under boolean operations. However, there is no standard
notion of canonical representation. There is a quantifier-elimination procedure,
but it is quite complex, both in theory and practice.

2 Preliminaries: Ideals of Polynomials

Let K[X] denote the set of polynomials over the variables X = {x1, . . . , xn}
with coefficients in the field K (K = R,Q). Given a set S ⊆ Kn of points, we
are interested in those polynomials P that evaluate to 0 at S, that is, P (s) =
0,∀s ∈ S. These polynomials form an ideal : an ideal is a set I ⊆ K[X] such that
it includes 0, is closed under addition and if P ∈ K[X] and Q ∈ I, then PQ ∈ I.

Given a set of polynomials B ⊆ K[X], the ideal generated by B is

〈B〉 = {f ∈ K[X] | f =
k∑

j=1

PjQj with Pj ∈ K[X], Qj ∈ B, k ≥ 1}.

For an ideal I, a set of polynomials B such that I = 〈B〉 is called a basis of
I. By Hilbert’s basis theorem, all ideals of polynomials admit a finite basis.
Thus, any ideal is associated to a finite system of polynomial equalities: the
ideal I = 〈P1(X), ..., Pk(X)〉 corresponds naturally to the system {P1(X) = 0,
..., Pk(X) = 0}. The solutions to this system are the common zeroes of all the
polynomials in I; this set of points, denoted by V(I) = {s ∈ Kn|P (s) = 0 ∀P ∈
I}, is called the variety of I (over Kn). A variety is also called an algebraic set.

For instance, the ideal 〈x(x2 + y2 − 1), y(x2 + y2 − 1)〉 is associated to the
system {x(x2 + y2 − 1) = 0, y(x2 + y2 − 1) = 0}. Its solution, which defines the
variety V(〈x(x2 + y2 − 1) ,y(x2 + y2 − 1)〉), is the union of the circle x2 + y2 = 1
and the origin. Notice that this set, unlike convex polyhedra [10, 5], is not convex
or even connected.

Reciprocally, given a set of points S ⊆ Kn, the polynomials vanishing on this
set form the ideal I(S) = {P ∈ K[X] | P (s) = 0 ∀s ∈ S}, called the ideal of

Generating Polynomial Invariants for Hybrid Systems 593

S. Notice that, for arbitrary ideals, the inclusion I ⊆ IV(I)1 may be strict: the
variety of the ideal of all multiples of x2 is just the origin, V(〈x2〉) = {0}; but
I({0}) = 〈x〉, and x �∈ 〈x2〉. We are interested in the ideals for which the equality
IV(I) = I holds; these ideals are complete in the sense that they include all
polynomials that evaluate to 0 at the points of the variety V(I) they represent.
Since any ideal I satisfying IV(I) = I is the ideal of the variety V(I), such an
ideal is called an ideal of variety.

3 Linear Systems

A linear (continuous dynamical) system CS is a tuple (X, Init , A, b) where X =
{x1, ..., xn} is a finite set of variables interpreted over the reals R, X = Rn is
the set of all valuations of the variables X, Init ⊆ X is the set of initial states,
and A ∈ Qn×n and b ∈ Qn×1 are the matrices that constrain the dynamics of
CS by the differential equation ẋ = Ax + b. Since interest is in computational
feasibility, the matrices A and b are assumed to contain rational entries.

The semantics, [[CS]], of a linear system CS = (X, Init , A, b) over an interval
I = [t0, t1] ⊆ R is a collection of mappings x : I �→ X satisfying (i) the initial
condition: x(t0) ∈ Init , and (ii) the continuous dynamics: for all t ∈ [t0, t1],
ẋ(t) = Ax(t) + b. In case the interval I is left unspecified, it is assumed to be
the interval [0,∞).

We say that a state s ∈ X is reachable in a continuous dynamical system CS
if there exists a function x ∈ [[CS]] such that s = x(t) for some t ∈ I. The set,
Reach(CS), is defined as the set of all reachable states of the system CS .

The problem of computing the exact reachability set Reach(CS) for a given
dynamical system CS is intractable in general. However, for purposes of verifi-
cation of safety properties, it often suffices to compute an over-approximation
(or superset) of the reachable set of states—if the over-approximation does not
intersect the set of bad states, then the original system will never reach a bad
state. An over-approximation of the reachable states is also called an invariant
of the system. The most precise invariant of a system is its exact reach set.

Lafferriere, Pappas and Yovine showed that the exact reach set can be com-
puted for a subclass of linear continuous dynamical systems [16]. Subsequently,
it was shown that invariants could be effectively constructed for more general
classes of linear systems [20]. We show here that the most precise equational
invariant for arbitrary linear systems can be computed. We focus on a special
case in Section 3.1, and generalize to arbitrary linear systems in Section 3.2.

3.1 Eigenvalues with Rational Components

Assume that the eigenvalues of A are of the form a + bi, where a, b ∈ Q and
i2 = −1. We do not assume that A is diagonalizable. The solution to the system
of differential equations ẋ = Ax + b is

1 We write IV instead of I ◦ V to denote the composition of I and V.

594 E. Rodŕıguez-Carbonell and A. Tiwari

Φ(s∗, t) = eAts∗ + eAt(
∫ t

0
e−Aτdτ) b , s∗ ∈ Init (1)

where Φ is the flow of the vector field. It can be easily proved that both eAt

and
∫ t

0 e−Aτdτ can be written as sums of terms of the form ctke±at cos(bt),
ctke±at sin(bt), where c ∈ Q, k ∈ N and the complex numbers λ = a+ bi are the
eigenvalues of the matrix A.

The set of reachable states of CS is

Reach(CS) = {s ∈ Rn : ∃s∗, t. (t ≥ 0 ∧ s∗ ∈ Init ∧ s = Φ(s∗, t))} (2)

We can express the solution Φ(s∗, t) given in Equation 1 in terms of polynomials
using up to four auxiliary variables u, v, w, z. Specifically, since we assume that
all eigenvalues of A are of the form a + bi with a, b ∈ Q, we can find positive
rational numbers p, q such that, for any eigenvalue λ = a+ bi of A, there exist
integers cλ, dλ such that cλ = a/p and dλ = b/q. Now we just need to replace ept

by u, e−pt by v, cos(qt) by w and sin(qt) by z: for any eigenvalue λ = a+ bi, we
replace eat by u|cλ| or v|cλ| depending on whether a > 0 or a < 0 respectively;
cos(bt) and sin(bt) can be similarly expressed in terms of w and z. Therefore,
we can express the flow Φ as a polynomial over the initial conditions and the
dummy variables t, u, v, w, z [16]. The reach set from Equation 2 can now be
written as

∃s∗, t, u, v, w, z . (t ≥ 0 ∧ s∗ ∈ Init ∧ s = Φ(s∗, t, u, v, w, z) ∧
u = ept ∧ v = e−pt ∧ w = cos(qt) ∧ z = sin(qt)) (3)

The exponentials and the trigonometric functions are eliminated by intro-
ducing new equations uv = 1 and w2 + z2 = 1 that capture the dependencies
between ept, e−pt, cos(qt) and sin(qt). Clearly, the resulting formula, given below,
represents an invariant of CS .

∃s∗, t, u, v, w, z . (t ≥ 0 ∧ u ≥ 1 ∧ s∗ ∈ Init ∧ s = Φ(s∗, t, u, v, w, z) ∧
uv = 1 ∧ w2 + z2 = 1) (4)

Using quantifier elimination for reals, this method gives a semi-algebraic invari-
ant for the linear system CS . Unfortunately, the formula above does not capture
all semi-algebraic relationships that exist between t, u, v, w and z.

One of the main observations of this paper is that the two equations uv = 1
and w2 + z2 = 1 are sufficient to capture all algebraic invariants of CS . Further-
more, to compute the algebraic invariants, the expensive step that involves doing
quantifier elimination over the reals can be replaced by a Gröbner basis [7] com-
putation step, which is simpler and often more efficient in practice. Since we use
Gröbner bases to eliminate variables, we need to employ an elimination term or-
dering in which the auxiliary variables are the biggest. In summary, the method
to compute the strongest algebraic invariants of CS is to use Gröbner bases to
eliminate the quantified variables in Equation 4.

Generating Polynomial Invariants for Hybrid Systems 595

The main result of the paper is that, if the initial conditions are described
by means of an ideal of variety, we obtain all polynomials that evaluate to 0 at
the exact reachability set of CS .

Theorem 1. Let CS = (X,V(I∗), A, b) be a linear system, where I∗ ⊆ Q[X∗]
is the ideal of variety of initial states. Let P1, ..., Pn ∈ Q[X∗, t, u, v, w, z] be the
polynomials approximating the flow Φ defined above. Then,

I(Reach(CS)) = 〈I∗,−x1 + P1, . . . ,−xn + Pn, uv − 1, w2 + z2 − 1〉 ∩ R[X]

Proof. The ⊇ inclusion is obvious. For the ⊆ inclusion, take an arbitrary polyno-
mial q ∈ I(Reach(CS)). Normalize the polynomial q using the following rewrite
rules2 to get a new polynomial r:

x1 → P1, . . . , xn → Pn, uv → 1, w2 → −z2 + 1

Our goal is to prove that r ∈ 〈I∗〉 (as an ideal in R[X,X∗, t, u, v, w, z]). Since
we have eliminated all occurrences of uv, w2 and xi, the polynomial r must be
of the form∑
l,m,n≥0

almn(X∗)tlumzn+blmn(X∗)tlumwzn+clmn(X∗)tlvmzn+dlmn(X∗)tlvmwzn

with a finite number of non-vanishing terms. We need to prove that the polyno-
mials almn(X∗), blmn(X∗), clmn(X∗), and dlmn(X∗) are in IV(I∗) = I∗. So, we
will prove that ∀s∗ ∈ V(I∗), almn(s∗) = blmn(s∗) = clmn(s∗) = dlmn(s∗) = 0.

Fix s∗ ∈ V(I∗). Under the substitution xi �→ Pi, u �→ ept, v �→ e−pt, w �→
cos(qt), z �→ sin(qt),X∗ �→ s∗, the polynomial q evaluates to 0 (for all t ≥ 0),
and so do the polynomials uv− 1, w2 + z2 − 1,−xi +Pi. Therefore, we have that
for all t ≥ 0, R(t) := r(s∗, t, ept, e−pt, cos(qt), sin(qt)) = 0, or equivalently∑

l,m≥0

tlempt(
∑
n≥0

almn(s∗) sinn(qt) + blmn(s∗) sinn(qt) cos(qt))+

tle−mpt(
∑
n≥0

clmn(s∗) sinn(qt) + dlmn(s∗) sinn(qt) cos(qt)) = 0

Since this function evaluates to 0 for all t ≥ 0, we claim without proof that
almn(s∗) = blmn(s∗) = clmn(s∗) = dlmn(s∗) = 0. This completes the proof. �

Example 1. Consider the following system of differential equations, which de-
scribes the dynamics of a charged particle under the influence of a magnetic
field: ⎛⎜⎜⎝

ẋ
ẏ
v̇x

v̇y

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
0 0 0 −1/2
0 0 1/2 0

⎞⎟⎟⎠
⎛⎜⎜⎝
x
y
vx

vy

⎞⎟⎟⎠
2 Simplification of q by a rewrite rule l → r simply means that you replace l by

r in q. Experts in Gröbner bases will notice that we are using the term ordering

lex(X > u > v > w > z > t > X∗).

596 E. Rodŕıguez-Carbonell and A. Tiwari

The solution is given by{
x = x∗ + 2 sin(t/2) v∗

x + (2 cos(t/2) − 2) v∗
y vx = cos(t/2) v∗

x − sin(t/2) v∗
y

y = y∗ + (−2 cos(t/2) + 2) v∗
x + 2 sin(t/2) v∗

y vy = sin(t/2) v∗
x + cos(t/2) v∗

y

where x∗, y∗, v∗
x, v

∗
y stand for the initial values. In this case the eigenvalues of

the system matrix are 0, i/2 and −i/2, which is consistent with the fact that
the non-algebraic terms in the solution are cos(t/2), sin(t/2). By introducing the
variables w and z to replace cos(t/2) and sin(t/2) respectively, we can rewrite
the solution as follows (there are no exponential terms in this case):{

x = x∗ + 2zv∗
x + (2w − 2)v∗

y vx = wv∗
x − zv∗

y

y = y∗ + (−2w + 2) v∗
x + 2zv∗

y vy = zv∗
x + wv∗

y

Now assume that the initial conditions satisfy v∗
x = 2, v∗

y = −2. Therefore we
have to eliminate x∗, y∗, v∗

x, v∗
y , w, z from the ideal

〈v∗
x − 2, v∗

y + 2,−x+ x∗ + 2zv∗
x + (2w − 2)v∗

y ,−y + y∗ + (−2w + 2) v∗
x + 2zv∗

y ,

−vx + wv∗
x − zv∗

y ,−vy + zv∗
x + wv∗

y , w
2 + z2 − 1〉

The elimination of the auxiliary variables yields the ideal 〈v2
x + v2

y − 8〉, which
corresponds to the law of conservation of energy. �

The method for generating the most precise equational (algebraic) invariants
of linear systems can be extended to handle state invariants that are specified
as polynomial equations. Before eliminating the quantified variables from Equa-
tion 4, we add all the equations representing any state invariant that may be
true.

It is difficult to generalize the method to compute the best semi-algebraic
invariant. Whereas the two equations uv = 1 and w2 + z2 = 1 capture all al-
gebraic relationships between the functions ept, e−pt, sin(qt) and cos(qt), there
is no finite set (basis) of inequalities that captures all the semi-algebraic rela-
tionships between these functions. This also partly explains why the decidability
results [15, 16] are not easy to generalize.

3.2 Generalization to Arbitrary Eigenvalues

Let L be the set of all eigenvalues of the matrix A. We now drop the assumption
that a, b ∈ Q for all a + bi ∈ L by generalizing the above ideas. First, let us
deal with the exponential terms e±at. To that end, we define R = {±Re(λ) |λ ∈
L} \ {0}. Since R is finite, we can obtain a finite basis B = {p1, ..., pk} of the
Q-vector space generated by R. By definition, this set has the properties that:

1. ∀a ∈ R, ∃ca1 , ..., cak ∈ Q such that a =
∑k

i=1 c
a
i pi.

(B is a system of generators)
2. ∀c1, ..., ck ∈ Q, if

∑k
i=1 cipi = 0, then necessarily c1 = · · · = ck = 0.

(B is Q-linearly independent)

Generating Polynomial Invariants for Hybrid Systems 597

Further, by multiplying the elements in B by appropriate correction factors,
we can ensure that the coefficients cai are integers, i.e. ∀a ∈ R, ∃ca1 , ..., cak ∈ Z such
that a =

∑k
i=1 c

a
i pi. By introducing the auxiliary variables ui = epit, vi = e−pit:

eat = e
∑k

i=1 ca
i pit =

k∏
i=1

eca
i pit =

k∏
i=1

{
u

|ca
i |

i if sign(cai) = 1
v

|ca
i |

i if sign(cai) = −1

So we can substitute the exponentials by means of the auxiliary variables.

Example 2. Let us consider that L = {λ1,λ2,λ3,λ4} = {1+
√

2, 1−
√

2, 1/2, 1/3}.
Taking B = {p1, p2} = {1 +

√
2, 1/6} as a basis, all coefficients are integers:

λ1 = p1, λ2 = −p1 + 12p2, λ3 = 3p2, λ4 = 2p2. So, if u1 = e(1+
√

2)t, v1 =
e−(1+

√
2)t, u2 = e(1/6)t, v2 = e−(1/6)t, then for instance e(1−

√
2)t = v1u

12
2 . ��

Trigonometric terms are handled likewise. Define I = {Im(λ) | λ ∈ L} \ {0}
and introduce 2l auxiliary variables wj , zj , representing cos(qjt), sin(qjt) for
1 ≤ j ≤ l, where q1, ..., ql ∈ R form a finite basis of I.

Theorem 1 can now be extended by replacing the four auxiliary variables by
2k + 2l auxiliary variables. The main observation is that the k + l equations,
uivi = 1 and w2

i + z2
i = 1, capture all the algebraic relationships between the

auxiliary variables. We state the following theorem without proof.

Theorem 2. Let CS = (X,V(I∗), A, b) be a linear system, where I∗ ⊆ Q[X∗]
is the ideal of variety of initial states. Let P1, ..., Pn ∈ Q[X∗, t, u1, v1, ..., uk, vk,
w1, z1, ..., wl, zl] be the polynomials approximating the flow Φ. Then,

I(Reach(CS)) = 〈I∗,−x1 + P1, . . . ,−xn + Pn,

u1v1 − 1, ..., ukvk − 1, w2
1 + z2

1 − 1, ..., w2
l + z2

l − 1〉 ∩ R[X]

4 Hybrid Systems

In this section we extend the technique for generating algebraic invariants to
hybrid systems using abstract interpretation [6]. At each location, we restrict
ourselves to linear continuous dynamics.

A hybrid system HS = (L,X, T , (Init)�∈L, (A)�∈L, (b)�∈L) consists of a finite
set L of locations; a finite set of continuous dynamical systems (X, Init�, A�, b�),
one associated with each location � ∈ L; and a finite set T ⊂ L×L×2X× (X →
X) of discrete transitions. A discrete transition τ = (�, �′, γ, α) ∈ T consists of
a source location � ∈ L, a target location �′ ∈ L, a guard γ which is a boolean
function of the variables X, and an action α which is a multiple assignment
of the variables. A state of the system HS is given by a location � ∈ L and a
valuation s ∈ X = Rn of the variables over the real numbers.

The semantics, [[HS]], of a hybrid system HS is a collection of infinite se-
quences of states (�, s) ∈ L × X of the form (�0, s0), (�1, s1), (�2, s2), . . . such
that s0 ∈ Init�0 specifies an initial state, and for each pair of consecutive states
(�i, si), (�i+1, si+1) one of the two transition conditions holds:

598 E. Rodŕıguez-Carbonell and A. Tiwari

- discrete transition: there exists a transition τ = (�i, �i+1, γ, α) ∈ T which is
enabled, i.e. γ(si) = true, and such that si+1 = α(si).
- continuous transition: the control location does not change, in other words
�i = �i+1 = �; and there is a trajectory going from si to si+1 along the flow
determined by A�, b�, i.e. there exist a time interval δ ≥ 0 and a differentiable
function x : [0, δ] → X such that x(0) = si, x(δ) = si+1 and ẋ(t) = A�x + b�

(and the state invariant, if any, holds).
A state (�, s) is reachable if there exists a sequence in [[HS]] where it appears.

The set of all reachable states of a hybrid system HS is denoted by Reach(HS).

�

�

�

�
ẋ = vx

ẏ = vy

v̇x = v̇y = ḃ = 0

ṫ = 1

right
�

�

�

�

ẋ = vx

ẏ = vy

v̇x = −avy

v̇y = avx

ḃ = 0

ṫ = 1

magnetic �

�

�

�
ẋ = vx

ẏ = vy

v̇x = v̇y = ḃ = 0

ṫ = 1

left

�x = d → Id �x = d → Id

�
x = 0 → vx := −vx; b := b + 1

Fig. 1. Dynamics of a charged particle

Example 3. The hybrid system in Figure 1, taken from [19], models the position
(x, y) and the velocity (vx, vy) of a charged particle on a plane with a reflecting
barrier at x = 0 and a magnetic field perpendicular to the plane in the region
x ≥ d (where d ≥ 0 is a parameter of the system). The variable b counts the
number of times the particle has collided against the reflecting barrier, and t is
a clock that measures the total time elapsed.

The hybrid system has three locations: in locations left and right, the particle
is moving freely under no external force, either toward or away from the barrier,
while in location magnetic it is moving under the effect of the magnetic field. The
three discrete transitions model the movement of the particle in and out of the
magnetic field and its collision with the barrier. In our analysis, we assume that
initially the particle is moving right with vx = 2, vy = −2 and x = y = t = b = 0;
also, the parameters d and a are set to 2 and 1/2 respectively. �

4.1 Reachable States as Fixpoints

Let us denote by Reach = Reach(HS) the set of all reachable states of a hybrid
system HS. Given a location �, we also write Reach� to represent the set of all
reachable states at location �, i.e. Reach� = {s | (�, s) ∈ Reach}.

We first characterize the (tuple of) reachable states (Reach�)�∈L using a
system of fixpoint equations. Consider a discrete transition τ = (�, �′, γ, α). The
states at location � where transition τ is enabled are given by Reach� ∩ γ. After
firing the transition, the new states reached are given by α(Reach� ∩ γ), where
α represents the mapping that updates the values of the variables. The set of

Generating Polynomial Invariants for Hybrid Systems 599

states in which location �′ is entered is obtained by summing up over all discrete
transitions that lead to �′:

Init�′ ∪ (
⋃

(�,�′,γ,α)∈T
α(Reach� ∩ γ)) .

The above states provide the initial conditions for the continuous evolution at
�′. Now, Reach�′ is obtained thus:

Reach�′ =
⋃
t≥0

Φ�′(Init�′ ∪ (
⋃

(�,�′,γ,α)∈T
α(Reach� ∩ γ)), t) . (5)

The above system of equations defines (Reach)�∈L in terms of itself. The least
fixpoint of this system of equations (with respect to the inclusion ⊆ ordering) is
the exact set of reachable states of HS. However, any fixpoint (not necessarily
the least) will give an over-approximation of the exact reach set.

The ability to compute a fixpoint of the above equations depends on the
choice of the representation for sets of states. Some choices are convex polyhedra
[5], algebraic sets, semi-algebraic sets [16], and ellipsoidal sets [14]. Using the re-
sults from Section 3, in the next subsections we will show how algebraic solutions
of the Fixpoint Equation 5 can be computed. The general framework (originally
defined for discrete transition systems) is called abstract interpretation [6].

4.2 Abstract Interpretation

Abstract interpretation [6] is a general framework for discovering invariant prop-
erties for a given discrete transition system. It works by solving a fixpoint equa-
tion X = F (X) (which determines the reachable sets for that system) over an
abstract domain. The abstract domain is defined by the representation used for
specifying sets of states. The application of abstract interpretation involves:

1. Choosing an abstract domain A: Each element in the abstract domain repre-
sents a set of states. The original fixpoint equation X = F (X) (defined over
arbitrary sets of states X) is transformed into a fixpoint equation Y = G(Y)
over the sets of states Y defined by the abstract domain.

2. Computing a solution of the fixpoint equation Y = G(Y) over the abstract
domain iteratively: A solution of the equation Y = G(Y) is obtained by com-
puting a fixpoint of the recurrence Y0 = ⊥ (the least element of the abstract
domain), Yk+1 = G(Yk). This recurrence may not necessarily converge in a
finite number of steps; in this case the termination is forced by means of the
application of a widening operator ∇ : A × A → A, at the cost of further
over-approximation. Such an operator must satisfy:
– ∀Y1, Y2 ∈ A, Y1 ⊆ Y1∇Y2 and Y2 ⊆ Y1∇Y2.
– For any increasing chain Y0 ⊆ Y1 ⊆ · · · , the new increasing chain defined

by Y ′
0 = Y0, Y ′

k+1 = Y ′
k∇Yk+1 is not strictly increasing (that is, it finitely

converges).
Under these hypotheses, the last element of the finite sequence Y ′

0 , Y
′
1 , Y

′
2 , . . .

yields a solution of the fixpoint equation.

600 E. Rodŕıguez-Carbonell and A. Tiwari

4.3 Operations with Ideals of Variety

We now show that the abstract domain of algebraic sets, represented as ideals
of variety, can be used to compute polynomial invariants for hybrid systems.
In Section 2 we presented this domain, and Section 3 showed how to handle
continuous evolution (that is, the Φ function in the Fixpoint Equation 5). We
now show how the rest of the operators used in Equation 5, viz. the assignment
transformation α, the set union ∪ and the set intersection ∩, can be effectively
computed over our choice of abstract domain. We will also present a widening
operator to guarantee termination.

Specifically, we use the following operations on algebraic sets (represented as
ideals) to abstract the corresponding operations on (arbitrary) sets, see [17]:

Assignment Transformation→Elimination of Variables. Given an ideal of vari-
ety I = 〈P1(X), ..., Pk(X)〉 and a multiple (polynomial) assignment (x1, . . . , xn)
:= (α1(X), . . . , αn(X)), we introduce auxiliary variables X̄ = {x̄1, . . . , x̄n}, to
denote the values of the variables before the assignment. Then the relationship
between the values before and after the assignment is described by the ideal

〈P1(X̄), . . . , Pk(X̄), x1 − α1(X̄), . . . , xn − αn(X̄)〉.

The output ideal of variety can be obtained by eliminating the auxiliary variables
X̄ in the ideal above by means of well-known elimination techniques based on
Gröbner bases [7].

Union of States → Intersection of Ideals. Given two ideals of variety I and
J , the union of the states represented by I and J is represented by the ideal
I(V(I) ∪ V(J)), which is equal to I ∩ J by duality. Therefore, the output ideal
of variety is the intersection ideal I ∩ J .

Intersection of States → Sum and Quotient of Ideals. Given two ideals of variety
I = 〈P1, ..., Pk〉 and J = 〈Q1, ..., Ql〉, we distinguish two cases:

– We want to represent V(I) ∩V(J) (this is the case when guards have poly-
nomial equalities like x = 0). The sum of ideals I + J = 〈P1, ..., Pk, Q1, ...,
Ql〉, which is generated by the union of the bases, has the property that
V(I + J) = V(I) ∩ V(J). However, I + J may not be an ideal of variety;
therefore we have to compute its closure IV(I + J)3.

– We want to represent V(I) ∩ (Kn \ V(J)) = V(I) \ V(J) (this is the case
when guards have polynomial disequalities like x �= 0). The quotient I : J
of ideals satisfies that I : J = I(V(I) \ V(J)), i.e. it is the maximal set of
polynomials that evaluate to 0 at V(I) \ V(J). Thus we take I : J as the
output ideal of variety.

3 If we take the complex numbers C as the field for the coefficients instead of R, by

Hilbert’s Nullstellensatz IV = Rad, the radical operator, which can be effectively

computed.

Generating Polynomial Invariants for Hybrid Systems 601

Widening Operator. Given two ideals of variety I and J , we are interested in
under-approximating the ideal I ∩ J so that we can guarantee termination of
the fixpoint computation. One way to achieve this is to restrict I ∩ J to poly-
nomials that have degree less or equal than a prefixed degree bound d. As the
ideal generated by these polynomials may not be an ideal of variety, the closure
operator IV must be applied. Formally, given two ideals of variety I, J and a
degree bound d, the widening is defined as:

I∇dJ = IV({P ∈ GB(I ∩ J,#) | degree(P) ≤ d}) ,
where GB(K,#) stands for a Gröbner basis of an ideal K with respect to the
graded term ordering4 #. We are experimenting with other widening operators
that would allow the generalization of Theorem 1 to hybrid systems.

It is well-known in computational algebraic geometry that canonical repre-
sentation for I∩J , I∪J , I : J , and elimination ideals can be effectively computed
from the corresponding representations for I and J .

Example 4. In the hybrid system model of the charged particle, let us denote by
Iright , Imagnetic and Ileft the ideals of variety corresponding to the states right ,
magnetic and left respectively. As the initial state is right with vx = 2, vy = −2,
x = y = b = t = 0, we get the following system of fixpoint equations:⎧⎨⎩ Iright = φright(〈vx − 2, vy + 2, x, y, t, b〉 ∩ α(IV(Ileft + 〈x〉)))

Imagnetic = φmagnetic(IV(Iright + 〈x− d〉))
Ileft = φleft(IV(Imagnetic + 〈x− d〉))

where α transforms (vx, b) into (−vx, b+ 1) and leaves the rest of the variables
unchanged, and the φ’s are the mappings abstracting the flows in continuous
transitions, taking as input an ideal of initial conditions and returning an ideal
of invariant polynomials (computed using the technique described in Section 3).

We approximate the fixpoint of this equation by using the widening operator
∇2. We get the following invariants:

Iright = 〈vy + 2, v2
x − 4〉 Ileft = 〈vy + 2, v2

x − 4〉
Imagnetic = 〈x− 2vy − 4 − d, v2

x + v2
y − 8〉

The reason why we get v2
x = 4 both at right and left is that our hybrid system

allows undesired behaviors, such as the particle in mode right making a transi-
tion to magnetic and then instantly moving again to left with no time elapse.
However, using the implicit invariants vx ≥ 0 at right and vx ≤ 0 at left , we
deduce that vx = 2 at right and vx = −2 at left . We add these invariants to the
guards and finally get the following more precise invariant:⎧⎨⎩

Iright = 〈vy + 2, vx − 2, 2db− 8b+ y + x〉
Imagnetic = 〈x− 2vy − 4 − d, v2

x + v2
y − 8, 2vx + y + 2db− 8b− 4 + d〉

Ileft = 〈vy + 2, vx + 2, 2db− 8b+ y − 8 − x〉

4 Gröbner bases and graded term orderings are used in this definition because they

allow us to prove that, when employing this widening operator, the fixpoint compu-

tation yields all the polynomial invariants of degree ≤ d, see [7, 17].

602 E. Rodŕıguez-Carbonell and A. Tiwari

5 Examples

We illustrate our method for generating polynomial invariants on some hybrid
systems taken from the literature. As an optimization, we did not compute the
closure IV always; nonetheless, the obtained invariants sufficed for proving the
properties of interest. We implemented our techniques in the algebraic geometry
tool Macaulay 2 [9] using a PC running Linux with a 2.5 GHz. processor and
512 MB of memory.

�
�

�
�

ṫ = 1

ẏ = 1

ż = 1

(on, 2) �
�

�
�

ṫ = 1

ẏ = 1

ż = 0

(off) �
�

�
�

ṫ = 1

ẏ = 1

ż = 1

(on, 1)

�t = a − b → t := 0
�

t = a → t := 0

�t = b → t := 0

Fig. 2. Hybrid system for a thermostat

Thermostat. Figure 2 shows a hybrid system, taken from [13], modeling a ther-
mostat. The system has three locations: in (on, 1) and (on, 2) the thermostat is
on, while in (off) the thermostat is off. There are three clocks: t tracks the time
elapsed at the current location, y tracks the total time, and z tracks the time
the thermostat has been on. There are also two parameters a and b that limit
the maximum time the thermostat is in the locations. The initial state is (on, 2)
with t = y = z = 0. Using ∇2, in 0.44 seconds we get the invariants⎧⎨⎩ I(on,2) = 〈y − t, z − t〉

I(off) = 〈−a2 + ab+ az + bz − by + bt〉
I(on,1) = 〈a2 − 2ab− az − bz + by + at〉

In [13] it was proved that, for a = ln(3), b = ln(2), the thermostat is on between
23.17/60 ≈ 38.6% and 23.51/60 ≈ 39.2% of the time within the first 60 time
units of operation. We can use the polynomial invariants above to refine these
bounds. At location (off), from the implicit invariant 0 ≤ t ≤ a and −a2 + ab+
az + bz − by + bt = 0 we get that

a2 − 2ab+ by

a+ b
≤ z ≤ a2 − ab+ by

a+ b
.

We also get the same inequalities at location (on, 1) by using the implicit in-
variant 0 ≤ t ≤ b and a2 − 2ab− az − bz + by + at = 0. Substituting a = ln(3),
b = ln(2), y = 60, we get the interval [23.03/60, 23.46/60] ≈ [38.4%, 39.1%] ,
which provides us with a better upper bound.

Train System. The hybrid system shown in Figure 3 and taken from [19] models
a train accelerating (location acc), moving at constant speed (location cons) and
decelerating until stopping (location dec). Once the train has halted, it remains

Generating Polynomial Invariants for Hybrid Systems 603

quiet for 2 seconds. There are four variables: the position of the train x, its
velocity v, a clock t and a counter s of the number of stops made so far. The
initial state is acc with x = v = s = t = 0.

�

�

�

�
ẋ = v

v̇ = 2

ṫ = 1

ṡ = 0

acc �

�

�

�
ẋ = v

v̇ = 0

ṫ = 1

ṡ = 0

cons �

�

�

�
ẋ = v

v̇ = −1

ṫ = 1

ṡ = 0

dec

�v = 5 → Id �true → Id

� v = 0 → t := t + 2; s := s + 1

Fig. 3. Train system

We obtain the following invariants in 0.32 seconds using ∇2:

Iacc = 〈−4x+ v2 − 115s+ 20t− 10v〉
Idec = 〈4x+ 115s− 20t− 20v + 75 + 2v2〉
Icons = 〈v − 5, 4x+ 115s− 20t+ 25〉

Note that these invariants, e.g. 4x+ 115s− 20t− 20v+ 75 + 2v2 = 0 at dec, can
be found analytically by computing the distance covered x in terms of the other
variables.

Charged Particle Revisited. Consider the hybrid system of the charged particle.
Assume now that both the distance parameter d and the magnetic field magni-
tude a are left unknown (which is a more general setting than in [19]). Under
these conditions the vector field in magnetic is no longer linear. However, notice
that, since a is constant, the solution to the system of differential equations still
has the same structure as in Section 3, with the difference that a may appear
in a denominator. We overcome this problem by introducing a new auxiliary
variable a′ to represent the value a−1 (we assume that a �= 0; the case a = 0 is
straightforward to analyze). We also employ the polynomial aa′ − 1 to represent
the equation aa−1 = 1.

As before, due to imprecisions in our modeling, we first obtain the following
invariants (in 1.80 seconds using ∇2):

Iright = 〈vy + 2, v2
x − 4〉 Ileft = 〈vy + 2, v2

x − 4〉
Imagnetic = 〈ax− ad− vy − 2, v2

x + v2
y − 8〉

Strengthening this invariant as in Example 4 and re-computing the fixpoint, in
0.70 seconds we get:⎧⎨⎩

Iright = 〈vy + 2, vx − 2,−ax+ 4b− 2adb− ay〉
Imagnetic = 〈ax− ad− vy − 2, v2

x + v2
y − 8, ay − 4b+ 2adb− 2 + ad+ vx〉

Ileft = 〈vy + 2, vx + 2, 4b− 2adb− ay + 4 − 2ad+ ax〉

604 E. Rodŕıguez-Carbonell and A. Tiwari

Let us see some properties of the system that these invariants allow us to
prove. First, by using the invariant ax+ay = 4b−2adb at right we can compute
the height where the particle collides as a function of the bounce counter b: by
setting x = 0 we get y = 2b(2−ad)/a. In particular, if ad = 2 the particle returns
to the origin for every bounce. Moreover, the invariants ax = ad + vy + 2 and
v2

x +v2
y = 8 let us find the maximum horizontal distance covered by the particle:

the maximum distance is achieved when ẋ = vx = 0, i.e. vy = ±2
√

2; then this
distance is x = d+ (2

√
2 + 2)/a when a > 0, x = d+ (−2

√
2 + 2)/a when a < 0

(the feasible solutions satisfy x ≥ d).

6 Conclusions

We presented a computational method for generating the most precise algebraic
invariant for linear dynamical systems. We then extended this method to com-
pute equational invariants for hybrid systems using an abstract interpretation
approach. The main computational technique is based on Gröbner basis com-
putation and we do not use the prohibitively expensive (quantifier elimination)
decision procedure for the reals. Canonical Gröbner bases provide a useful rep-
resentation for sets of states as they have several important properties such as
canonicity, closure under boolean operations and quantifier elimination.

As future work, we plan to integrate our techniques with other approaches
for dealing with inequalities. The resulting method would perform a much more
precise analysis of hybrid systems with a wider range of applicability.

Acknowledgments

The authors would like to thank the reviewers for insightful comments.

References

1. R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An

algorithmic approach to the specification and verification of hybrid systems. In

R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems,
volume 736 of LNCS, pages 209–229. Springer, 1993.

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

3. R. Alur and G. J. Pappas, editors. Hybrid Systems: Computation and Control, 7th
International Workshop, HSCC 2004, Philadelphia, PA, USA, March 25-27, 2004,
Proceedings, volume 2993 of Lecture Notes in Computer Science. Springer, 2004.

4. R. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.

ACM Computing Surveys, 24(3):293–318, 1992.
5. A. Chutinan and B. H. Krogh. Computing polyhedral approximations to flow pipes

for dynamic systems. In 37th IEEE Conference on Decision and Control, 1998.
6. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In 4th ACM
Symp. on Principles of Programming Languages, POPL 1977, pages 238–252, 1977.

Generating Polynomial Invariants for Hybrid Systems 605

7. D. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms. Springer-Verlag,

New York, 1996.

8. T. Dang and O. Maler. Reachability analysis via face lifting. In T. A. Henzinger

and S. Sastry, editors, HSCC, volume 1386 of LNCS, pages 96–109. Springer, 1998.

9. D. R. Grayson and M. E. Stillman. Macaulay 2: A software system for research in

algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.
10. N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems

by means of convex approximations. In B. Le Charlier, editor, SAS, volume 864

of LNCS, pages 223–237. Springer, 1994.

11. T. A. Henzinger. The symbolic approach to hybrid systems. In-

vited tutorial at Intl. Conf. on Computer-Aided Verification, CAV 2002.

http://www-cad.eecs.berkeley.edu/~tah/.
12. T. A. Henzinger and P.-H. Ho. A note on abstract interpretation strategies for

hybrid automata. In P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry (eds.),

editors, Hybrid Systems II, volume 999 of LNCS, pages 252–264, Berlin, 1995.

Springer-Verlag.

13. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear

hybrid systems. IEEE Transactions on Automatic Control, 43:540–554, 1998.

14. A. B. Kurzhanski and P. Varaiya. On ellipsoidal techniques for reachability anal-

ysis. Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applica-
tions and Algorithms, 9:347–367, 2002.

15. G. Lafferriere, G. J. Pappas, and S. Yovine. A new class of decidable hybrid

systems. In F. W. Vaandrager and J. H. van Schuppen, editors, HSCC, volume

1569 of Lecture Notes in Computer Science, pages 137–151. Springer, 1999.

16. G. Lafferriere, G. J. Pappas, and S. Yovine. Symbolic reachability computations

for families of linear vector fields. J. Symbolic Computation, 32(3):231–253, 2001.

17. E. Rodriguez-Carbonell and D. Kapur. An abstract interpretation approach for

automatic generation of polynomial invariants. In 11th Static Analysis Symposium
(SAS’04), volume 3148 of LNCS, 2004.

18. S. Sankaranarayanan, H. Sipma, and Z. Manna. Constructing invariants for hybrid

systems. In Alur and Pappas [3], pages 539–554.

19. S. Sankaranarayanan, H. Sipma, and Z. Manna. Constructing invariants for hy-

brid systems. Formal Methods in System Design, 2004. Preprint submitted for

publication.

20. A. Tiwari. Approximate reachability for linear systems. In O. Maler and A. Pnueli,

editors, Hybrid Systems: Computation and Control, HSCC 2003, volume 2623 of

Lecture Notes in Computer Science, pages 514–525. Springer, 2003.

21. A. Tiwari and G. Khanna. Nonlinear systems: Approximating reach sets. In Alur

and Pappas [3], pages 600–614.

Modeling, Optimization and Computation
for Software Verification�

Mardavij Roozbehani, Eric Feron, and Alexandre Megrestki

Laboratory for Information and Decision Systems (LIDS),

Massachusetts Institute of Technology, Cambridge, MA, U.S.A.

{mardavij, feron, ameg}@mit.edu

Abstract. Modeling and analysis techniques are presented for real-time,

safety-critical software. Software analysis is the task of verifying whether

the computer code will execute safely, free of run-time errors. The criti-

cal properties that prove safe execution include bounded-ness of variables

and termination of the program in finite time. In this paper, dynamical

system representations of computer programs along with specific models

that are pertinent to analysis via an optimization-based search for system

invariants are developed. It is shown that the automatic search for system

invariants that establish the desired properties of computer code, can be

formulated as a convex optimization problem, such as linear program-

ming, semidefinite programming, and/or sum of squares programming.

1 Introduction

Failure of real-time control systems, such as those used in spacecrafts, satellites,
multiple coordinating UAVs, automobiles and therapy machines may lead to loss
of human life or a huge loss in capital and products. However, safe operation
of these safety-critical control systems relies heavily on the embedded software.
According to Boeing Co. and Honeywell Inc., software development accounts for
60−80% of the effort spent on the development of complex control systems, while
much of this effort is expended on validation and verification of the software after
or during its development [10].

While real-time software must satisfy various resource allocation, timing,
computation and performance constraints, the very least to require is that the
software must execute safely, free of run-time errors. The critical software prop-
erties that must be verified/validated for safe execution include: (1) absence of
variable overflow, (2) absence of ‘array index out-of-bounds’ calls, and (3) termi-
nation of the functions and sub-functions and if required, the program itself in
finite time. Some additional properties that might be desired in a reliable, safety-
critical software include: (4) robustness to uncertain inputs, including feedback

� This work was supported by the National Science Foundation under Grant CNS-

0451865 and by the Boeing Co. under Grant MIT-BA-GTA-1.

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 606–622, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Modeling, Optimization and Computation for Software Verification 607

from analog systems, (5) validity of certain inequalities relating inputs and out-
puts, for instance, passivity and (6) absence of ‘dead-code’. Software analysis, is
the task of verification of some or all of the above properties.

Cousot [6],[8], published one of the most noteworthy approaches in the liter-
ature that deal with software analysis. The main method of verification is based
on the notion of abstract interpretation of computer programs. See also [9],[21].
According to [6, 7], abstract interpretation is defined as an approximate program
semantics derived from the domain of concrete semantic operations by replacing
it with a domain of abstract semantic operations. A limitation associated with
these methods is the introduction of a narrowing or widening operator, which
often causes the method to generate weak invariants, resulting in considerable
conservatism in analysis [5]. Nevertheless, these methods have shown to be prac-
tical for the verification of several properties of real-time, safety-critical systems
such as large-sized avionics systems. Alternative methods aiming at generating
stronger statements about the evolution of variables in software systems might
be found, for example, in the model-checking literature; however, the trade-off
often achieved by these methods is that of increased accuracy and the generation
of stronger properties of software (or software model) variables, often at the cost
of increased computational requirements and limited scalability to large systems.
Moreover, construction of the program models often cannot be fully automated.
Recently, there have been renewed efforts at establishing properties of software
systems by the combined use of abstractions or, better, bisimulation mechanisms,
and applying control theoretic principles to them. Much of the relevant literature
in that regard may be found in the recent field of hybrid systems [16]. See for
instance [11]. In general, it was found that many methods developed in system
and control theory for systems driven by differential equations were in principle
applicable to hybrid systems, possibly at the price of having to re-develop some
elements of theory, e.g. optimal control theory on hybrid systems [20, 15, 4] or
control of hybrid systems using bisimulations [18, 17].

In this paper we introduce a systems theoretic approach for software analysis.
We present modeling techniques through the introduction of linear-like models
that may represent a broad range of computer programs of interest to this paper.
These include single flow programs and gain scheduled piecewise linear systems,
used to control physical devices such as aerospace systems or automotive con-
trol systems. The main method of verification is an optimization-based search for
system invariants. We; therefore, suggest specific Lyapunov-like functions, whose
properties guarantee variable bounded-ness as well as other desired properties,
such as guaranteed program termination. We also show how the search for these
system invariants may be formulated as a convex optimization problem, such as
linear programming, semi-definite programming and/or a sums of squares prob-
lem. At the end, we sketch the block-wise analysis procedure for improving the
scalability of the proposed methods as analysis of large-size computer programs
is undertaken.

608 M. Roozbehani, E. Feron, and A. Megrestki

2 Automated Software Analysis: Preliminaries

In this section we introduce the fundamentals of software analysis through dy-
namical system models. We consider computer programs as dynamical systems
and introduce certain Lyapunov-like functions as certificates for the behavior of
these systems.

2.1 Computer Programs as Dynamical Systems

We view a computer program as a dynamical system which defines the rules
for iterative modification of operating memory, possibly in response to real-time
inputs. In particular, we consider models defined in general by a state space set
X with selected subsets X0 ⊂ X of initial states and X∞ ⊂ X of terminal states,
and by a set-valued function f : X �→ 2X , such that f(x) ⊂ X∞, ∀x ∈ X∞. The
dynamical system S = S(X, f,X0, X∞) defined by X, f,X0, X∞ is understood
as the set of all sequences X = (x(0), x(1), . . . , x(t), . . .) of elements from X
satisfying

x (0) ∈ X0, x (t + 1) ∈ f (x (t)) ∀t ∈ Z+
s.t. f(x) ⊂ X∞,∀x ∈ X∞

(1)

The uncertainty in the definition of x(0) represents the programs’s dependence
on parameters, and the uncertainty in the definition of x(t + 1) represents pro-
gram’s ability to respond to real-time inputs. From this viewpoint, analysis of
software means verification of certain properties of system (1). In Section 4, we
elaborate on the dynamical systems view of computer programs and suggest
specific models that are essentially equivalent to (1), yet are more suitable for
analysis purposes.

Definition 1. A computer program represented by a dynamical system S =
S(X, f,X0, X∞) is said to terminate in finite time if every solution X = x(t)
of (1) satisfies x(t) ∈ X∞ for some t ∈ Z+. In addition, we say that the state
variables remain bounded (do not overflow) if ∀t ∈ Z+, x(t) does not belong to
a certain (unsafe) subset X− of X for every solution X = x(t) of (1) .

2.2 Lyapunov Functions as Behavior Certificates

Definition 2. A Lyapunov function for system (1) is defined to be a function
V : X �→ R such that

V (x) < θV (x) ∀x ∈ X, x ∈ f (x) : x /∈ X∞. (2)

where θ is a positive constant.

Remark 1. The parameter θ in the above definition, is very important in pro-
viding the flexibility required for designing appropriate Lyapunov functions that
establish finite-time termination and/or bounded-ness. For instance if V (x0) < 0
and θ ≥ 1, (2) implies that V must strictly monotonically decrease along the

Modeling, Optimization and Computation for Software Verification 609

trajectories of (1) until they reach a terminal state. As we will see in the sequel,
this is suitable for establishing finite-time termination. However, with V (x0) < 0
and θ < 1, V is not required to decrease along the trajectories of (1), while it
remains negative. This is very important in proving absence of overflow in com-
puter programs without the finite-time termination property.

Termination in finite time. The following Theorem provides a useful criterion
for verifying finite-time termination in software analysis.

Theorem 1. If there exists a bounded function V : X �→ R−, and a constant
θ > 1 satisfying

V (x) < θV (x) ∀x ∈ X, x ∈ f (x) : x /∈ X∞. (3)

then a terminal state X∞ will be reached in a finite number of steps.

Proof. Since V is bounded, there exists M ∈ R+, such that −M ≤ V (x) < 0,
∀x ∈ X. Now, assume that there exists a sequence X = (x(0), x(1), . . . , x(t), . . .)
of elements from X satisfying (1) that does not reach a terminal state in finite
time. I.e. x (t) /∈ X∞, ∀t ∈ Z+. Then, V (x (t)) < −M for

t >
log M − log |V (x (0))|

log θ
, (4)

which contradicts bounded-ness of V.

Absence of overflow. We already saw that absence of overflow can be char-
acterized by avoidance of an unsafe subset X− of the state space X. Consider
a Lyapunov function V, defined according to (2) . Define the level sets Lr(V) of
V , by

Lr(V) = {x ∈ X : V (x) < r}

These level sets are invariant with respect to (1), in the sense that x(t + 1) ∈
Lr(V) whenever x(t) ∈ Lr(V). We use this fact, along with the monotonicity
property of V, to establish a separation between the reachable set and the unsafe
region of the state space.

Theorem 2. Consider the system (1) and let V denote the space of all Lyapunov
functions for this system satisfying (2) with some θ ≥ 1. An unsafe subset X−
of the state space X can never be reached along all the trajectories of (1) if there
exists V ∈ V satisfying

inf
x∈X−

V (x) ≥ sup
x∈X0

V (x) (5)

In addition, if
inf

x∈X−
V (x) ≥ 0 (6)

then, θ > 0 is sufficient.

610 M. Roozbehani, E. Feron, and A. Megrestki

Proof. The proof proceeds by contradiction. First consider the θ ≥ 1 case and
assume that (1) has a solution X = (x (0) , x (1) , ..., x (t−) , ...) , where x (0) ∈ X0
and x (t−) ∈ X−. Since V (x) is strictly monotonically decreasing along any
solution of (1) , we must have:

inf
x∈X−

V (x) ≤ V (x (t−)) < V (x (0)) ≤ sup
x∈X0

V (x) (7)

which contradicts (5) . Now, consider the case θ < 1 for which monotonicity
of V is not always implied. Partition X0 into subsets X0 and X0 such that
X0 = X0 ∪X0 and

V (x) ≤ 0 ∀x ∈ X0

V (x) > 0 ∀x ∈ X0

Note that either of X0 and X0 may happen to be empty. Now, assume that (1)
has a solution X= (x (0) , x (1) , ..., x (t−) , ...) , where x (0) ∈ X0 and x (t−) ∈
X−. Note that by assumption, V (x (t−)) ≥ 0 and thus

V (x (t)) > 0 ∀t < t−

V (x (t)) is therefore strictly monotonically decreasing over the sequence x (0) to
x (t−) . Hence, (7) must hold, which contradicts (5) . Finally, assume that (1) has
a solution X= (x (0) , x (1) , ..., x (t−) , ...) , where x (0) ∈ X0 and x (t−) ∈ X−.
In this case, we must have V (x (t)) ≤ 0, ∀t. This implies that V (x (t−)) < 0,
which contradicts (6) . Proof is complete.

Now, we turn our attention to development of general forms for system in-
variants that establish the desired properties and are appropriate for use in a
convex optimization framework. Among several properties of a reliable software
mentioned earlier, absence of overflow and finite-time termination are expected
in most applications.

Theorem 3. Consider the dynamical system S = S(X, f,X0, X∞) defined by
(1) and assume that there exists a real-valued function V : X �→ R such that

V (x) < 0 ∀x ∈ X0. (8)
V (x) < θV (x) ∀x ∈ X, x ∈ f (x) : x /∈ X∞. (9)

V (x) >
∥∥∥ x

M

∥∥∥2
− 1 ∀x ∈ X. (10)

where θ ∈ R+ is a constant, and no constraint on finiteness of the state space X
is imposed. Then, every solution X = x (t) of (1) remains bounded in the safe
region defined by |xi| < M, where each xi is a component of the state vector x.
Moreover, if θ > 1, every solution X = x (t) reaches a terminal state X∞ in
finite time.

Modeling, Optimization and Computation for Software Verification 611

Proof. Note that (8) and (9) imply non-positivity of V (x) on X \X∞. Moreover,
by (10) , V (x) is bounded from below by −1. Therefore, V (x) ∈ (−1, 0) . By
Theorem 1, (9) implies finite-time termination. Also, the unsafe region X− is
defined by |xi| ≥M. Therefore,∥∥∥ x

M

∥∥∥2
≥ 1, ∀x ∈ X−,

inf
x∈X−

V (x) = 0 ≥ 0 = sup
x∈X0

V (x)

Theorem 2 then completes the proof.

Remark 2. By imposing a quadratic form on V, the search for a Lyapunov-
like function satisfying (8) − (10) reduces to a semidefinite program [1]. As an
alternative, imposing a linear or piecewise linear form on V, along with replacing
condition (10) with 2n constraints

V (x) >
xi

M
− 1 ∀x ∈ X, i = 1..n

V (x) > − xi

M
− 1 ∀x ∈ X, i = 1..n

converts the problem of finding an appropriate system invariant to linear or
mixed integer/linear programming [3]. Another possibility is to let V be a poly-
nomial function of the state variables xi. In this case, the search for system
invariants restricted to the class of polynomials with real coefficients can be
formulated as a sums of squares problem [22],[23].

3 Models of Computer Programs

In this section we develop specific models of software that are convenient for
analysis purposes. Practical considerations such as convenience for automated
parsing/compiling, availability of an efficient relaxation technique and compat-
ibility with a particular numerical engine for convex optimization influence the
choice of modeling language.

3.1 Mixed Integer/Linear Systems

With the following Proposition, we first provide the motivation/intuition behind
using this model for software systems. (The statement of the proposition was
formulated in [14]. The authors were not able to find a published proof of the
proposition as stated below. Also, compare with [2].)

Proposition 1. Universality of mixed-integer linear models. Let f be any
arbitrary piece-wise affine function defined on a compact state space X, which
consists of finite unions of finite polytopes. Then, f can be defined precisely, by

612 M. Roozbehani, E. Feron, and A. Megrestki

imposing linear equality constraints on a finite number of binary variables and a
finite number of analog variables ranging over bounded intervals. I.e.

There exists matrices F and H, such that
f(x) = {F [x;w; v; 1] : s.t. ∃w ∈ [−1, 1]q ,∃v ∈ {−1, 1}r s.t. H[x;w; v; 1] = 0}

Proof. The proof is by construction. First, notice that without loss of generality

we may assume that x ∈ [−1, 1]n . Now, let X =
i=N⋃
i=1

Xk, where each Xi is

defined by a finite set of linear inequality constraints. I.e.

Xi :=
{
x | aT

kix ≤ bki, k = 1, ..., Ni

}
(11)

Note that by definition f (x) = 2Aix + 2Bi x ∈ Xi, where the constant 2
appears for convenience in notation only. Now, assign a binary variable vi ∈
{−1, 1} , to each Xi, i = 1...N − 1, according to the following rule,

vi = 1 ⇐⇒ x ∈ Xi, vi = −1 ⇐⇒ x /∈ Xi, i = 1, ...N − 1 (12)
i=N−1∑

i=1

vi = −N + 1 ⇐⇒ x ∈ XN ,
i=N−1∑

i=1

vi = −N + 3 ⇐⇒ x /∈ XN

Then we have

f (x) =
N−1∑
i=1

(1 + vi) (Aix + Bi)− (N − 3) (ANx + BN)−
N−1∑
i=1

vi (ANx + BN) ,

subject to

i=N−1∑
i=1

vi ≤ −N + 3, and (12) , and vi ∈ {−1, 1} , i = 1...N (13)

Now, we need to relate (11) and (12) , which is done in the following way;

x ∈ Xi ⇐⇒
(
aT

kix− bki

)
(vi + 1) ≤ 0, k = 1, ..., Ni (14)

Since by assumption, each Xi is bounded,

Rki := min
x∈Xi

aT
kix− bki

exists and is finite. Therefore, the condition x ∈ Xi, is equivalent to,

aT
kixvi +aT

kix−bkivi−bki−Rki (wki + 1) = 0, wki ∈ [−1, 1] , k = 1, ..., Ni (15)

Next, define auxiliary state vectors yi := xvi ∈ Rn. Notice that yi is the mul-
tiplication of an analog variable x, and a binary variable vi. We represent this
(nonlinear) transformation by an affine transformation involving auxiliary analog

Modeling, Optimization and Computation for Software Verification 613

variables zi ∈ [−1, 1]n , and zi ∈ [−1, 1]n , subject to a set of linear constraints,
in the following way,

yi = 4zi − x− vi1n − 1n, zi ≤
(vi + 1)

2
1n

zi ≥ 0, zi ≤ −vi1n, zi =
1
2

(x− zi)

equivalently,

yi = 4zi − x− vi1n − 1n, i = 1, .., N (16a)

zi +
1
2

(
W 1

i + In

)
1n =

(vi + 1)
2

1n (16b)

zi =
1
2

(
W 2

i + In

)
1n (16c)

zi +
1
2

(
W 3

i + In

)
1n = −vi1n (16d)

zi =
1
2

(x− zi) (16e)

where W k
i is defined by

W k
i = diag

{
wk

ji, j = 1, .., n
}

, i = 1, .., N, k = 1, .., 3, wk
ij ∈ [−1, 1]

Now, let Xe =
[
x y1 ... yn z1 ... zn z1 ... zn w v 1

]T
, where

w =
[
w11 ... wNN N w1

11 ... w1
Nn ... w3

Nn

]
, and v =

[
v1 ... vn

]
. Then,

f (x) : =

[
N−1∑
i=1

Ai − (N − 3) AN

]
x +

[
A1 −AN ... AN−1 −AN

]
y (17)

+
[
B1 −BN ... BN−1 −BN

]
v +

N−1∑
i=1

Bi + (−N + 3) BN

which is linear in x, y, v. Moreover, (17) is subject to constraints (13) , (15) , (16) ,
which are all linear equality constraints in Xe. This completes the proof.

So far, we have shown that imposing linear equality constraints on Boolean
variables and on analog variables ranging over bounded intervals allows one to
define arbitrary piecewise linear functions on finite unions of polytopes. This
observation serves as the basis for introducing the widely used class of models
which will be referred to as mixed integer/linear systems here. These models are
capable of providing relatively brief descriptions of complicated dependencies.

A mixed integer/linear system model has state space X ⊂ Rn. Its state
transition function f : X �→ 2X is defined by two matrices F,H of dimensions
n-by-(n + q + r + 1) and p-by-(n + q + r + 1), according to

f(x) = {F [x;w; v; 1] :
∃w ∈ [−1, 1]q ,∃v ∈ {−1, 1}r s.t. H[x;w; v; 1] = 0}

614 M. Roozbehani, E. Feron, and A. Megrestki

Natural Lyapunov function candidates for mixed integer/linear systems are
quadratic functionals. Within this class, checking monotonicity of Lyapunov
functions along system trajectories can be done by application of the traditional
quadratic relaxation techniques, starting with those used in deriving the bounds
for the MAX-CUT problem [19], which leads to semidefinite programming as
the Lyapunov function design tool.

Search for Lyapunov invariants using linear or semidefinite program-
ming. This section details our approach to compute Lyapunov invariants for
mixed integer/linear software models. Looking for a function V satisfying (8)−
(10), may be seen an infinite-dimensional convex programming problem in the
unknown V. This may be solved by first defining an appropriate, finite-dimensional
parameterization of V and then solving the resulting finite-dimensional, convex
optimization problem.

Linear parameterization of quadratic Lyapunov functions appear as

V (x) :=
[

x
1

]T

P

[
x
1

]
where P is a constant, symmetric matrix.

For the Lyapunov invariant parameterization considered above, the problem
of finding an invariant that satisfies the conditions (8)−(10) is about solving a set
of nonlinear constraints arising from these conditions. These conditions are often
non-convex conditions, which makes their exact solution often impractical, but,
fortunately also unnecessary. Instead, we will focus on using relaxed versions of
these conditions, which are much easier to solve using either linear or semidefinite
optimization routines. The main tool used towards obtaining these relaxations
is a Lagrangian relaxation procedure also known as S-procedure.

For example, the first of the three conditions does not require such a proce-
dure, since it is a linear constraint on the coefficients of P : Indeed, the require-
ment V (x(0)) < 0 may also be written as,[

x(0)
M
1

]T

P

[
x(0)
M
1

]
< 0. (18)

where M is the overflow limit. The second condition, (9) , may be written as[
F.[x(k) v(k) w(k) 1]

M
1

]T

P

[
F.[x(k) v(k) w(k) 1]

M
1

]
< θ

[
x(k)
M
1

]
P

[
x(k)
M
1

]
(19)

for any x(k), v(k), w(k) satisfying

H.
[
x (k) w (k) v (k) 1

]T = 0 and w(k) ∈ [−1, 1]q , v (k) ∈ {−1, 1}r (20)

The constraint v ∈ {−1, 1}r is equivalent to the quadratic constraint

vT M1v −
r∑

i=1

μi,1 = 0, with M1 = diag
{
μ1,1, μ2,1, . . . μr,1

}

Modeling, Optimization and Computation for Software Verification 615

for arbitrary μi,1 ∈ R, i = 1, . . . r. Likewise, the constraint w ∈ [1, 1]q is equiva-
lent to

wT E1w −
q∑

i=1

ηi,1 ≤ 0, with E1 = diag
{
η1,1, η2,1, . . . ηq,1

}
for arbitrary ηi,1 > 0, i = 1, . . . q. Formulating the proper Lagrangian relaxation,
condition (19) holds whenever condition (20) holds if there exists P , M1, E1 ≥ 0
and y1 ∈ Rsx×nH such that

LT
1 PL1−θLT

2 PL2<y1HM +HT
MyT

1 +LT
3 M1L3+LT

4 E1L4−LT
5 (Tr M1 + Tr E1) L5

(21)
where

HM := [Mhx hw hv h1] , FM :=
[
fx

fw

M
fv

M
f1
M

]
L1 :=

[
FM

01×(sx−1) 1

]
, L2 :=

[
In 0n×(sx−n)

01×(sx−1) 1

]
L3 := [In+q 0(n+q)×(r+1)], L4 := [0(r+1)×(n+q) Ir+1], L5 := [01×(sx−1) 1]

Likewise, (10) may be written as[
x(k)
M
1

]T [
In 0
0 −1

] [
x(k)
M
1

]
<

[
x(k)
M
1

]T

P

[
x(k)
M
1

]
(22)

for any x(k), v(k), w(k) satisfying

H.
[
x (k) w (k) v (k) 1

]T = 0 and w(k) ∈ [−1, 1]q , v (k) ∈ {−1, 1}r (23)

Thus condition (22) holds whenever condition (23) holds if there exists P , M2,
E2 ≥ 0 and y2 ∈ Rsx×nH such that

LT
2 P0L2−LT

2 PL2<y2HM +HT
MyT

2 +LT
3 M2L3+LT

4 E2L4−LT
5 (Tr M2 + Tr E2) L5

(24)

Thus, absence of overflow and finite execution time are guaranteed if there
exist P , M1, M2, E1 ≥ 0, E2 ≥ 0, y1, and y2 satisfying constraints (18, 21 and
24).

3.2 Linear Systems with Conditional Switching

In this model the state space of the system is the direct product

X = {0, 1, 2, . . . ,m} × Rn

= {(k, v) : k ∈ Z, 0 ≤ k ≤ m, v ∈ Rn}

of a discrete set and an n-dimensional Euclidean space, X0 = {(0, v0)}, X∞ =
{m} × Rn. The set-valued state transition map f : X �→ 2X is defined by
matrices Ak, Bk, Lk, Gk,Hk, Ik, Ck, Dk, where k ∈ {0, 1, . . . ,m − 1}, as well as

616 M. Roozbehani, E. Feron, and A. Megrestki

by a function p : {0, 1, . . . , m − 1} �→ {0, 1, . . . , m}, according to the following
rule:

f(k, v) = {(k + 1, Akv + Bkw + Lk) : w ∈ [−1, 1]}
when Ckv + Dk ≤ 0 and k < m,

f(k, v) = {(p(k), Gkx + Hkw + Ik) : w ∈ [−1, 1]}
when Ckv + Dk > 0 and k < m, and f(k, v) = {m, v} when k = m.

In this model, the discrete component k of the state vector x = (k, v) rep-
resents the “current line of the code”, while v is the real state vector being
processed and w represents bounded real-valued input data. All operations al-
lowed are affine, except for the conditional “go to p(k)” statements allowed on
every line. This model appears to be suitable for programs with simple flow,
as well as real-time interactions between simple logic and gain scheduled linear
systems.

Natural Lyapunov function candidates for linear systems with conditional
switching have the piecewise quadratic or piecewise linear form V (k, v) = σk(v),
where for every k ∈ {0, 1, . . . , m} the function σk : Rn �→ R is a quadratic or an
affine functional.

3.3 Trigonometric Polynomial Models

The models described in the previous sections are only capable of describing
piecewise linear transformations of analog variables. This is not always conve-
nient: for example, multiplication of two analog state variables can be represented
this way only approximately and this representation is particularly cumbersome.
In order to cover a larger class of analog operations, the trigonometric polynomial
models could be useful.

A trigonometric polynomial model has state space X which is a closed sub-
group of a poly-thorus Tn, where T denotes the unit circle in the complex plane.
Equivalently, one can think of X as a direct product of sets of the form Tk or
Zk

q , where Zq denotes the set of all complex numbers z such that zq = 1. The
word “trigonometric” refers to the natural parameterizations

T = {cos(t) + j sin(t) : t ∈ R}
of the unit circle. The state transition map f : X �→ 2X is defined by a vector
polynomial p with respect to 2 ∗ n + k complex variables, according to

f(x) = {y ∈ X : p(y, x, z) = 0 for some z ∈ Tk}.
Natural Lyapunov function candidates for trigonometric polynomial models are
real-valued trigonometric polynomials. Checking validity of a Lyapunov func-
tion candidate reduces to verification of positivity of a trigonometric polynomial
subject to a set of polynomial constraints, which can be done using the Shor’s
“sums of squares” argument: A polynomial is positive if it can be represented as
a sum of squares of polynomials. While it is not true that a positive polynomial
can always be represented as a sum of squares of polynomials, it can be shown
that the equivalence holds in the case of trigonometric polynomials.

Modeling, Optimization and Computation for Software Verification 617

4 A Numerical Example

Consider the following program:

x1 = 0;x2 = 0;
while x2 ≤ 100,

if x1 ≥ 0,
x1 = x1 − a;

else
x1 = x1 + b;

end
x2 = x2 + 1;
end

where a ∈ [100, 900] and b ∈ [200, 800] , are uncertain input parameters. Using 2
slack variables and 1 binary variable, a mixed integer/linear model of this piece
of code is defined by matrices F, and H, given as:

x(0) =
[

0
0

]
, n = 2, q = 2, r = 1.

F =
[

1 0 0 0 −a+b
2

b−a
2

0 1 0 0 0 1

]
, H =

[
1 0 −M

2 0 −M
2 0

0 1 0 R 0 R− 100

]
, R = M+100

2 ,

Given M = 1000 as the overflow limit, using (18) , (21) , (24) , the quadratic
Lyapunov function

V (x) =
1

2000
x2

1 −
1

5000
x1 −

1777
1000

x2 −
201

10000
x2

2 −
3

10000

was found to prove bounded-ness and finite-time termination for all a and b.

5 Block-Wise Analysis of Computer Programs

Block-wise analysis is a method for improving the scalability/computational cost
of the above techniques as analysis of large size computer programs is under-
taken. The basic idea here is to consider large-size software as the interconnection
of smaller size dynamical systems (functions, subfunctions and procedures that
we call them ”blocks”). These so called blocks interact via a subset of the pro-
gram states called ”global variables”. Correctness of each block is established
separately, known a priori, or assumed temporarily. The dynamics of each block
is then abstracted/approximated by equalities and/or inequalities relating the in-
puts and the outputs. In obvious cases, abstractions of this level may be provided
by the programmer to facilitate the analysis task. This way, the states/variables
that are local to each block are eliminated from the global model. Correctness
of the software will be established by verifying bounded-ness of global variables,
as well as verifying that when required, a final global state will be reached in

618 M. Roozbehani, E. Feron, and A. Megrestki

finite-time. In case correctness of some of the blocks were assumed temporarily,
their correctness need to be established rigorously, subject to the bounds avail-
able now, for global variables. To further clarify the concept, we implement the
method on the following example.

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT1, INIT2; float P, X;

void filter1 () {
static float E[2], S[2];
if (INIT1) {

S[0] = X; P = X;
E[0] = X; E[1]=0; S[1]=0;

} else {
P =0.5*X–0.7*E[0]+0.4*E[1]+1.5*S[0]–S[1]*0.7;
E[1] = E[0];
E[0] = X;
S[1] = S[0];
S[0] = P;
X=P/6+S[1]/5;
}

}

void filter2 () {
static float E2[2], S2[2];
if (INIT2) {

S2[0] =0.5*X; P = X;
E2[0] = 0.8*X; E2[1]=0; S2[1]=0;

} else {
P =0.3*X–E2[0]*0.2+E2[1]*1.4+S2[0]*0.5–S2[1]*1.7;
E2[1] = 0.5*E2[0];
E2[0] = 2*X;
S2[1] = S2[0]+10;
S2[0] = P/2+S2[1]/3;
X=P/8+S2[1]/10;
}

}

void main () {
X = 0; INIT1 = TRUE; INIT2=TRUE;
while (1) {

X = 0.98 * X + 85;
if (abs(X)<= 400) {

filter1 ();
X=X+100;
INIT1=FALSE;

} else if (abs(X)<=800) {

Modeling, Optimization and Computation for Software Verification 619

filter 2();
X=X–50;
INIT2=FALSE;

}
}}

For automated (block-wise) analysis of this program, the analyzer must be pro-
vided (either by a compiler or by the programmer) with the system invariant
that prior to each execution of filter1(), |X| ≤ 400. Next, filter() is modeled in
the following abstracted way:

wx ∈ [−1, 1] , s0 (0) ∈ [−400, 400] , e0 (0) ∈ [−400, 400] ,
P (0) ∈ [−400, 400] , s1 (0) = 0, e1 (0) = 0.

⎡⎢⎢⎢⎢⎣
P (k + 1)
e1 (k + 1)
e0 (k + 1)
s1 (k + 1)
s0 (k + 1)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0 0.4 −0.7 −0.7 1.5 0.5× 400 0
0 0 1 0 0 0 0
0 0 0 0 0 1× 400 0
0 0 0 0 1 0 0
0 0.4 −0.7 −0.7 1.5 0.5× 400 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P (k)
e1 (k)
e0 (k)
s1 (k)
s0 (k)
wx (k)

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Due to the presence of static variables e and s, bounded-ness of the above recur-
sion for an infinite number of iteration must be verified. Using LMIs (18)− (24)
with θ = 0.9,

∥∥[
P e1 e0 s1 s0

]∥∥ ≤ 2038 was proved.∥∥[
P e1 e0 s1 s0

]∥∥ ≤ 2038 →
∥∥[

P s1
]∥∥ ≤ 2038

|X| =
∣∣∣∣P6 +

s1

5

∣∣∣∣ ≤ 2038

√(
1
6

)2

+
(

1
5

)2

 531

This proves that in the worst case, the value of X, after execution of filter1()
cannot be greater than 531. Similarly, prior to each execution of filter2(), |X| ≤
800 is invariant. Next, filter2() is modeled in the following abstracted way:

wx ∈ [−1, 1] , s20 (0) ∈ [−400, 400] , e20 (0) ∈ [−640, 640] ,
P (0) ∈ [−800, 800] , s21 (0) = 0, e21 (0) = 0.

⎡⎢⎢⎢⎢⎣
P (k + 1)
e21 (k + 1)
e20 (k + 1)
s21 (k + 1)
s20 (k + 1)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0 1.4 −0.2 −1.7 0.5 0.3× 800 0
0 0 0.5 0 0 0 0
0 0 0 0 0 2× 800 0
0 0 0 0 1 0 10
0 1.4

2
−0.2

2
−1.7

2
1
3 + 0.5

2
0.3×800

2
10
3

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P (k)
e21 (k)
e20 (k)
s21 (k)
s20 (k)
wx (k)

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Again, using LMIs (18) − (24) with θ = 0.9,

∥∥[
P e1 e0 s1 s0

]∥∥ ≤ 9935 was
proved.

620 M. Roozbehani, E. Feron, and A. Megrestki∥∥[
P e1 e0 s1 s0

]∥∥ ≤ 9935 →
∥∥[

P s1
]∥∥ ≤ 9935

|X| =
∣∣∣∣P8 +

s1

10

∣∣∣∣ ≤ 9935

√(
1
8

)2

+
(

1
10

)2

 1591

This in turn, proves that in the worst case, the value of X, after execution of
filter2() cannot be greater than 1591. The main program is now abstracted in
the following way.

void main () {
X = 0;
while (1) {

X = 0.98 * X + 85;
if (abs(X)<= 400) {

X=531*w1; % w1∈ [−1, 1] , for block-wise analysis filter1() is
% abstracted by a simple input-output map.

X=X+100;
} else if (abs(X)<=800) {

X=1591*w2; % w2∈ [−1, 1] , for block-wise analysis filter2() is
% abstracted by a simple input-output map.

X=X–50;
}

}}

Using the explained methods, analysis of this program in turn proves that
|X| ≤ 4560. Therefore, regarding that X,P, S,E are floating point variables, we
proved that a run-time error due to an overflow in program variables cannot
occur.

6 Conclusions

A new framework for analysis of real-time software was introduced. It was shown
that software can be viewed/modeled as a dynamical system. Specific models
carrying this task were also introduced. System invariants, found by convex
optimization of certain Lyapunov-like functions prove the desired properties of
the software. These properties include bounded-ness of all variables within safe
regions and finite time termination of the program. To improve scalability of
these techniques for application to large-size computer programs, the method
of block-wise analysis of computer code was suggested. It was shown through a
numerical example, how this method can be applied.

References

1. S. Boyd, L.E. Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities

in Systems and Control Theory. Society for Industrial and Applied Mathematics,

1994.

Modeling, Optimization and Computation for Software Verification 621

2. A. Bemporad, D. Mignone, and M. Morari. Moving horizon estimation for hybrid

systems and fault detection. In Proc. American Control Conference, June 1999,

Pages:2471−2475.
3. D. Bertsimas, and J. Tsitsikilis. Introduction to Linear Optimization. Athena Sci-

entific, 1997.
4. M. S. Branicky, V. S. Borkar, and S. K. Mitter. A unified framework for hybrid con-

trol: model and optimal control theory. IEEE Transactions on Automatic Control,

43(1):31-45, 1998.
5. M. A. Colon, S. Sankaranarayanan, H. B. Sipma. Linear invariant generation using

non-linear constraint solving. In Computer Aided Verification (CAV 2003), vol.

2725 of Lecture Notes in Computer Science, Springer Verlag, pp. 420-433.
6. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Proc. 4th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’77, pages 238–252, 1977.
7. P. Cousot, and R. Cousot. Systematic design of program analysis frameworks. In

Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 269–282, San Antonio, Texas, 1979.

ACM Press, New York.
8. P. Cousot. Semantic foundations of program analysis. In S. Muchnick and N. Jones,

editors, Program Flow Analysis: Theory and Applications, chapter 10, pages 303–

342. Prentice-Hall, 1981.
9. D. Dams. Abstract interpretation and partition refinement for Model Checking.

Ph.D. Thesis, Eindhoven University of Technology, 1996.
10. B. S. Heck, L. M. Wills, and G. J. Vachtsevanos. Software technology for imple-

menting reusable, distributed control systems. IEEE Control Systems Magazine,

23(1): 21−35, 2003.
11. S. Prajna, and A. Jadbabaie. Safety verification of hybrid systems using barrier

certificates. Hybrid Systems: Computation and Control. Springer-Verlag lecture

notes in computer science, March 2004.
12. M. Johansson, and A. Rantzer. On the computation of piecewise quadratic Lya-

punov functions. In Proc. 36th IEEE Conference on Decision and Control, San

Diego, California, December 1997.
13. M. Johansson, and A. Rantzer. Computation of piecewise quadratic Lyapunov

functions for hybrid systems. IEEE Transactions on Automatic Control, 43(4), pp.

555-559, April 1998.
14. J. Harper, A. Megretski. Personal communication, 2000.
15. S. Hedlund and A. Rantzer. Optimal control of hybrid systems. In Proc. 38th IEEE

Conference on Decision and Control, Phoenix, Arizona, December 1999.
16. R. Alur, and G. J. Pappas (Eds.): Hybrid Systems: Computation and Control,

7th International Workshop, Lecture Notes in Computer Science, volume 2993,

Springer Verlag, March 2004.
17. G. Lafferriere, G. J. Pappas, and S. Sastry. Hybrid systems with finite bisim-

ulations. Hybrid Systems V, Lecture Notes in Computer Science, volume 1567,

Springer 1999.
18. G. Lafferriere, G. J. Pappas, and S. Sastry. Reachability analysis of hybrid systems

using bisimulations. In Proc. of the 37th IEEE Conference on Decision and Control,

pages 1623-1628, Tampa, 1998.
19. M. Laurent. Tighter linear and semidefinite relaxations for max-cut based on

the Lovász–Schrijver Lift-and-Project procedure. SIAM Journal on Optimization,

12(2):345−375.

622 M. Roozbehani, E. Feron, and A. Megrestki

20. J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability specifications for

hybrid systems. Automatica, 35(3):349-370, 1999.

21. D. Monniaux. Abstract interpretation of programs as Markov decision processes.

In Static Analysis Symposium, volume 2694 in Lecture Notes in Computer Science,

pages 237-254, Springer Verlag, 2003.

22. P. A. Parrilo. Minimizing Polynomial Functions. In Algorithmic and Quantitative

Real Algebraic Geometry, DIMACS Series in Discrete Mathematics and Theoreti-

cal Computer Science, Vol. 60, pp. 83–99, AMS.

23. K. Gatermann, and P.A. Parrilo. Symmetry groups, semidefinite programs, and

sums of squares. Journal of Pure and Appl. Algebra, Vol. 192, No. 1-3, pp. 95-128,

2004.

Bisimulation for Communicating Piecewise
Deterministic Markov Processes (CPDPs)

Stefan Strubbe and Arjan van der Schaft�

Twente University, PO BOX 217, 7500AE Enschede, The Netherlands

{s.n.strubbe, a.j.vanderschaft}@math.utwente.nl

Abstract. CPDPs (Communicating Piecewise Deterministic Markov

Processes) can be used for compositional specification of systems from

the class of stochastic hybrid processes formed by PDPs (Piecewise De-

terministic Markov Processes). We define CPDPs and the composition of

CPDPs, and prove that the class of CPDPs is closed under composition.

Then we introduce a notion of bisimulation for PDPs and CPDPs and we

prove that bisimilar PDPs as well as bisimilar CPDPs have equal stochas-

tic behavior. Finally, as main result, we prove the congruence property

that, for a composite CPDP, substituting components by different but

bisimilar components results in a CPDP that is bisimilar to the original

composite CPDP (and therefore has equal stochastic behavior).

1 Introduction

Many real-life systems nowadays are complex hybrid systems. They consist of
multiple components ’running’ simultaneously, having both continuous and dis-
crete dynamics and interacting with each other. Also, many of these systems
have a stochastic nature. An interesting class of stochastic hybrid systems is
formed by the Piecewise Deterministic Markov Processes (PDPs), which were
introduced in 1984 by Davis (see [1, 2]). Motivation for considering PDP systems
is two-fold. First, almost all stochastic hybrid processes that do not include dif-
fusions can be modelled as a PDP, and second, PDP processes have very nice
properties (such as the strong Markov property) when it comes to stochastic
analysis. (In [2] powerful analysis techniques for PDPs have been developed).
However, PDPs cannot communicate or interact with other PDPs and there-
fore, from a compositional modelling point of view, we should find a way of
opening the structure of PDPs to let them communicate/interact.

In [3], the automata formalism CPDP, which stands for Communicating
Piecewise Deterministic Markov Processes, is introduced. Basically, a CPDP
is a PDP-type system that can communicate (or interact) with other CPDPs.
In [3], this communication is formalized by means of a composition operator. In
this way, we may model complex stochastic hybrid systems (without diffusions)
as PDPs, based on the description of their components. Furthermore, in [4], it

� Both authors were supported by the EU-project HYBRIDGE (IST-2001-32460).

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 623–639, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

624 S. Strubbe and A. van der Schaft

is proven that for any CPDP that is closed, i.e. does not communicate anymore
with the environment, we can construct a corresponding PDP that expresses the
same stochastic process. Therefore, analysis techniques for PDPs can be used
for analyzing CPDPs.

In this paper we give a slightly different definition of CPDPs than the defini-
tion in [3]. This new definition is more convenient in the context of composition.
As in [3], we formalize the communication between CPDPs by means of a com-
position operator, and we prove that the composition of two CPDPs is again a
CPDP. (A partial proof of this was already given in [3]).

The main part of this paper is about bisimulation for CPDPs. It is well-
known that the composition of multiple subsystems leads to state space explo-
sion. One tool that has proved to be effective in dealing with the state space
explosion problem is bisimulation. Bisimulation can be seen as a state space
reduction technique: By bisimulation we can find systems with smaller state
spaces, that still have the same external behavior. Two systems have the same
external behavior if they cannot be distinguished in any composition context.
The notion of bisimulation was introduced by Milner [5] in the context of dis-
crete state processes. Since then, bisimulation has also been established in the
context of probabilistic and stochastic automata [6, 7], continuous time interac-
tive Markov chains (IMC) [8], continuous dynamical systems [9, 10] and general
(non-stochastic) hybrid systems [11, 12].

In this paper, we define bisimulation in the context of CPDPs. In some sense,
this notion of bisimulation for CPDPs integrates the notions of bisimulation for
IMC, stochastic automata and continuous/hybrid systems.

An important point is that CPDPs have a stochastic processes semantics
(see [4]). This implies that we want to define bisimulation in such a way that
two bisimilar CPDPs express equivalent stochastic processes. Therefore, we de-
fine bisimulation such that certain analytical properties of stochastic processes
still remain in the quotient systems obtained by bisimulation (by factoring out
equivalence classes). In particular, we prove that two bisimilar CPDPs have the
same stochastic (PDP) behavior. We also prove the congruence property that, in
the composition of multiple CPDPs, substitution of a component by a different
bisimilar component does not change the stochastic behavior of the composite
system.

From an analysis point of view, we can then reduce the state space of a
composite CPDP in a compositional way by substituting components by state-
reduced bisimilar components. To analyze the original composite CPDP, we can
then (because of the equivalence result of CPDPs and PDPs) use the PDP
analysis techniques on the state reduced composite CPDP.

The organization of the paper is as follows. In Section 2 we give the definition
of the PDP stochastic process. In Section 3 we give the definition of the CPDP
model. In Section 4 we define composition for CPDP and we prove that, under
certain conditions, the composition of two CPDPs is again a CPDP. In Section 5
we prepare the bisimulation notion for CPDPs by first defining bisimulation for
PDPs with output functions (called weighted PDPs). We prove that bisimilar

Bisimulation for CPDPs 625

weighted PDPs have equivalent stochastic behavior. Then in Section 6 we extend
the PDP bisimulation notion to CPDPs. Using the results of Section 5, we prove
that weighted bisimilar CPDPs have equivalent stochastic behavior. After that,
we prove that, in the composition of multiple weighted CPDPs, substitution of
a component by a different bisimilar component does not change the stochastic
behavior of the composite system. In the final section conclusions are drawn and
future research directions are discussed.

2 Definition of the PDP

The state space and the dynamics of a PDP are defined as follows: K is a
countable set of locations. For each ν ∈ K, d(ν) ∈ IN denotes the dimension of
the continuous state space of location ν. For each ν ∈ K, let Eν be an open
subset of IRd(ν) and let gν : IRd(ν) → IRd(ν) be a locally Lipschitz continuous
function on Eν . The flow φν(t, ζ) is uniquely determined by the differential

equation ˙̂
ζ = gν(ζ̂) and equals ζ̂(t), assumed that ζ̂(0) = ζ. The hybrid state

space of the PDP is now defined as

E = {(ν, ζ)|ν ∈ K, ζ ∈ Eν}.

Remark 1. In fact, the state space E of the PDP is in [2] extended such that E
also contains the boundary points that are backward reachable (via flow φ) but
not forward reachable from the interior of E.

For x = (ν, ζ) ∈ E define

t∗(x) =
{

inf{t > 0|φν(t, ζ) ∈ ∂Eν},
∞ if no such time exists.

where ∂Eν = Ēν\Eν is the boundary of Eν , Ēν is the closure of Eν .
The jump mechanism of the PDP is determined by a jump rate function λ

and a transition measure Q. The jump rate λ : E → IR+ is a measurable function
such that for each x = (ν, ζ) ∈ E, there exists ε(x) > 0 such that the function
s→ λ(ν, φν(s, ζ)) is integrable on [0, ε(x)[. With Γ ∗ we denote the boundary of
E that is reachable from the interior of E. The transition measure Q maps E∪Γ ∗

into the set P(E) of probability measures on the Borel space (E, E), where E is
the set containing all Borel sets of E (according to a ’natural’ topology, defined
in [2]), with the properties that for each fixed A ∈ E the map x→ Q(A, x), where
Q(A, x) denotes the probability of A according to the probability measure Q(x),
is measurable, and Q({x}, x) = 0 for all x ∈ E ∪ Γ ∗.

A PDP process, starting from initial state x0 = (ν0, ζ0), can be ’executed’
as follows: The dynamics of xt from t = 0 is determined by the vectorfield gν0

until either the boundary (i.e. the set ∂Eν0) is hit at time t∗(x0) or until a point
is generated by the Poisson process that has density λ(xt). In either case, a
jump takes place and the target hybrid state is determined by the probability

626 S. Strubbe and A. van der Schaft

measure Q(·, (ν0, φν0(t̂, ζ0))), where t̂ is the jump time. From the target state
this execution procedure can be repeated.

For a PDP it is assumed that there are no explosions (i.e. |φν(t, ζ)| �→ ∞ if
t �→ ∞) and that there is no Zeno behavior (i.e. for every starting point x ∈ E,
ENt < ∞ for all t ∈ IR+, where Nt is a random variable ’counting’ the number
of jumps up to time t and ENt is the expectation of Nt).

3 Definition of the CPDP

A CPDP automaton is a tuple (L, V, v, Inv,G,Σ,A, P, S, C), where

– L is a countable set of locations
– V is a set of variables. With d(y) for y ∈ V we denote the dimension of

variable y. y ∈ V takes its values in IRd(y). We also say that IRd(y) is the
valuation space of y.

– v : L → 2V maps each location to a subset of V , which is the set of active
variables of the corresponding location

– Inv assigns to each location l and each variable y ∈ v(l) an open subset
of IRd(y), i.e. Inv(l, y) ⊂ IRd(y). With Invl we denote the subset of the
valuation space of v(l) that is built from (or loosely speaking: is the product
of) the invariants of the individual variables. With ∂Invl we denote the set
of boundary points of l, which is equal to the set of valuations of v(l) where
each y ∈ v(l) takes value in Inv(l, y) and at least one y ∈ v(l) takes value in
∂Inv(l, y) := Inv(l, y)\Inv(l, y).

– G assigns to each location l and each y ∈ v(l) a locally Lipschitz continuous
function from IRd(y) to IRd(y), i.e. G(l, y) : IRd(y) → IRd(y). This vectorfield
uniquely determines a flow φl,y(t, y0) along this vectorfield.

– Σ is the set of communication labels. Σ̄ denotes the ’passive’ mirror of Σ
and is defined as Σ̄ = {ā|a ∈ Σ}.

– B is a finite set of boundary hit transitions and consists of 4-tuples (l, a, l′, R),
denoting a transition from location l ∈ L to location l′ ∈ L with commu-
nication label a ∈ Σ and reset map R. This reset map R assigns to each
boundary point of l for each active variable y ∈ v(l′) a probability measure
on the invariant (and its Borel sets) of y for location l′. We will denote the
measure of R for variable y at boundary point ζ by Ry(ζ).

– P is a finite set of passive transitions and consists of 4-tuples (l, ā, l′, R),
denoting a transition from location l ∈ L to location l′ ∈ L with passive
communication label ā ∈ Σ̄ and reset map R. R assigns to each interior
point of location l for each active variable y ∈ v(l′) a probability measure on
the invariant (and its Borel sets) of y for location l′.

– S is a finite set of spontaneous (also called Poisson) transitions and consists
of 5-tuples (l,λ, a, l′, R), denoting a transition from location l ∈ L to location
l′ ∈ L with communication label a ∈ Σ, jump-rate function λ and reset map
R. The jump rate λ : Invl → IR+ is a measurable function such that for
each ζ ∈ Invl, there exists ε(ζ) > 0 such that the function s→ λ(φl(s, ζ)) is

Bisimulation for CPDPs 627

integrable on [0, ε(ζ)[, where φl denotes the flow of the valuations of variables
v(l) for location l. R is defined on all interior points of l as it is done for
passive transitions.

– C is the choice function. C assigns to each boundary point (l, ζ) of the CPDP
a probability measure on the set of outgoing boundary hit transitions, i.e.
C(l, ζ) (with ζ ∈ ∂Invl) is a probability measure on Bl, where Bl is the set
of boundary hit transitions that have l as origin location. Furthermore, for
all l ∈ L and all ā ∈ Σ̄, such that for location l there is an outgoing passive
transition labelled ā, C assigns to each triplet (l, ζ, ā) (with ζ ∈ Invl) a
probability measure on the set of passive transitions leaving l and labelled ā.

We also impose the standard PDP conditions on a CPDP. For the details of
how this is done, we refer to [4].

Passive transitions are used to interact with the environment (see [3] for
an explanation of the communication mechanism established by the interplay
of boundary hit, spontaneous and passive transitions). The environment can
activate/trigger these passive transitions. When a CPDP does not have passive
transitions, then it can not be influenced by the environment, which means that
it is autonomous and can be executed ’on its own’.

Execution of a CPDP (L, V, v, Inv,G,Σ,A, P, S, C) without passive transi-
tions (i.e. P = ∅), starting from initial state x0 = (l0, ζ0), is done as follows:
The dynamics at t = 0 is determined by the vectorfield G(l0) until either the
boundary (∂Inv(l0)) is hit at time t∗(x0) (which is defined similarly as t∗ for the
PDP) or until a point is generated by a Poisson process of one of the spontaneous
transitions. For each spontaneous transition α = (l0,λα, l

′, Rα) a Poisson pro-
cess is ’running’ with density λα(xt). As soon as one of these Poisson processes
generates a point, the corresponding spontaneous transition will be taken. If the
first jump is caused by a boundary-hit at boundary point ζ, a boundary hit tran-
sition will be selected according to the probability measure C(l0, ζ). The new
continuous state in the target location of the active transition, will be selected
according to the probability measures of the reset map R of the boundary hit
transition. If the first jump is caused by one of the Poisson processes, the reset
map of the corresponding spontaneous transition will select the new continu-
ous state in the target location. From the new hybrid state on, this execution
procedure can be repeated.

4 Composition of CPDPs

In this section we define a composition operator for CPDPs. We prove that,
under certain conditions, the class of CPDPs is closed under this composition
operation. We also prove that the composition operator is commutative and
associative. For an explanation of the active/passive communication mechanism,
established by this composition operator, we refer to [3].

Suppose CPDPs Ai = (Li, Vi, vi, Invi, Gi, Σ,Bi, Pi, Si, Ci) are given. We as-
sume that the sets of communication labels are the same for A1 and A2 and we

628 S. Strubbe and A. van der Schaft

assume that V1 and V2 are disjoint. The composition A1||A2 of A1 with A2 is
defined as follows:

A1||A2 := (L, V, v, Inv,G,Σ,B, P, S, C), where L = L1 × L2, V = V1 ∪ V2,
v(l1, l2) := v(l1)∪v(l2), Inv((l1, l2), y) = Inv1(l1, y) if y ∈ V1 and Inv((l1, l2), y)=
Inv2(l2, y) if y ∈ V2, G((l1, l2), y) = G1(l1, y) if y ∈ V1 and G((l1, l2), y) =
G2(l2, y) if y ∈ V2. The sets B,P and S are determined by the following struc-
tural operational rules, where l1, l′1 ∈ L1 and l2, l

′
2 ∈ L2. For the boundary hit

transitions we have the rules

r1.
l1

a,R1−→ l′1, l2 � ā−→
(l1, l2)

a,R−→ (l′1, l2)
, r2.

l1
a,R1−→ l′1, l2

ā,R2−→ l′2

(l1, l2)
a,R−→ (l′1, l

′
2)

These rules should be interpreted as, r1: If (l1, a, l′1, R) ∈ B1 and there ex-
ist no l′2 and R2 such that (l2, ā, l′2, R2) ∈ P2, then ((l1, l2), a, (l′1, l2), R) ∈ B
(R will be defined next). r2: If (l1, a, l′1, R) ∈ B1 and (l2, ā, l′2, R2) ∈ P2, then
((l1, l2), a, (l′1, l

′
2), R) ∈ B. The rules r3 till r6 should be interpreted likewise. R

in rule r1 equals R1 for the variables of l′1 (and thus ignores the valuation of the
variables of l2 before the jump) and equals the ’identity’ map for the variables
in l2 (i.e. the values of the variables of l2 do not change with probability one).
R in rule r2 equals R1 for the variables of l′1 and equals R2 for the variables of
l′2. For the spontaneous transitions we have the rules

r3.
l1

a,R1,λ1−→ l′1, l2 � ā−→
(l1, l2)

a,R,λ−→ (l′1, l2)
, r4.

l1
a,R1,λ1−→ l′1, l2

ā,R2−→ l′2

(l1, l2)
a,R,λ−→ (l′1, l

′
2)

,

where R in rule r3 is derived from R1 as in rule r1 and R in rule r4 is derived
from R1 and R2 as in rule r2. For the passive transitions we have the rules

r5.
l1

ā,R1−→ l′1, l2 � ā−→
(l1, l2)

ā,R−→ (l′1, l2)
, r6.

l1
ā,R1−→ l′1, l2

ā,R2−→ l′2

(l1, l2)
ā,R−→ (l′1, l

′
2)
,

where R in rule r5 is derived from R1 as in rule r1 and R in rule r6 is derived
from R1 and R2 as in rule r2.

The reset maps of the boundary hit transitions (as a result of rules r1 and r2)
are defined well for boundary points where the variables of the second location l2
are in the interior of the invariant of l2. However, for ’double boundary points’,
i.e. for boundary points where both the variables of the first location and the
variables of the second location are on the boundaries of the invariants (of l1
and l2 respectively), the reset map is ill-defined because the target continuous
state is again a boundary state, which is not allowed for CPDPs. For now, we
say that the reset maps for these double boundary points are undefined.

Beside the rules r1 till r6, there are also the rules r1’ till r5’ which are the
mirrored versions of r1 till r5. This means that

r1’.
l1 � ā−→, l2

a,R2−→ l′2

(l1, l2)
a,R−→ (l1, l′2)

, r2’.
l1

ā,R1−→ l′1, l2
a,R2−→ l′2

(l1, l2)
a,R−→ (l′1, l

′
2)
,

Bisimulation for CPDPs 629

etc. For active transitions, the choice function C is defined as follows: If α ∈
B is derived from an active transition α1 ∈ B1 (via rule r1 or r2), then
C((l1, l2), (ζ1, ζ2))(α) equals C(l1, ζ1)(α1) (in case r1) and C(l1, ζ1) (α1) C(l2, ζ2,
ā) (α2) (in case r2 with passive transition α2) for ζ1 a boundary point and ζ2 an
interior point, equals zero for ζ1 an interior point and ζ2 a boundary point, and is
’undefined’ for ζ1 and ζ2 both boundary points. For the case that α ∈ B is derived
from an active transition α2 ∈ B2 (via rule r1’ or r2’), C((l1, l2), (ζ1, ζ2))(α) is
defined vice versa. For passive transitions, the choice function C is defined as
follows: If α ∈ P with label ā is derived from a passive transition α1 ∈ P1 (via
rule r5 or r6), then C((l1, l2), (ζ1, ζ2))(α) equals C(l1, ζ1, ā)(α1) (in case r5) and
C(l1, ζ1, ā)(α1)C(l2, ζ2, ā)(α2) (in case r6 with passive transition α2) for ζ1 and
ζ2 interior points. This ends the definition of composition of CPDPs.

In the definition of composition above, reset maps and choice function are not
defined for double boundary points. If our model would allow non-determinism
and the possibility to jump onto the boundary (like the more general CPDP model
of [13]), we expect that this ’problem’ can be solved in a more satisfactory way.

Theorem 1. The composition of two CPDPs is a CPDP that is undefined on
double boundary points assumed that there is no zeno-behavior. With other words,
if for the composition of two CPDPs we assign proper reset maps to the double
boundary points for the boundary hit transitions and properly define the choice
function for the double boundary points, then the composition is a CPDP as-
sumed that this completed composition is non-zeno.

Proof. It can directly be seen that the elements L,V ,v,Inv and G are proper
CPDP elements. It can also easily be seen that the transitions that are gen-
erated by the rules r1 till r6 (and their mirror rules) have proper reset maps
(except on the double boundary points) and are therefore proper CPDP tran-
sitions (except on the double boundary points). The only element that needs
a closer look is the choice function C. For C to be a proper CPDP element,
for each boundary point the values that C assigns to the boundary hit tran-
sitions should add up to one and also for each interior point (l, ζ) and each
passive label ā that is used by at least one transition of location l, the values
that C assigns to the passive transitions in l with label ā should add up to
one. Concerning the active transitions: At a boundary point (l1, ∂ζ1, l2, ζ2), with
∂ζ1 ∈ ∂Inv1(l1) and ζ2 ∈ Inv2(l2), the value of any active transition α of A1 with
label a is carried over to the corresponding active transition in A in case that
l2 � ā→ and in case that l2

ā→, this value is spread over the different active transi-
tions that are the result of α synchronizing with the passive ā-transitions in l2
(i.e. we get C(l1, ∂ζ1)(α1)C(l2, ζ2, ā)(α̃1)+ · · ·+C(l1, ∂ζ1)(α1)C(l2, ζ2, ā)(α̃n) =
C(l1, ∂ζ1)(α1), with α̃i the passive ā-transitions from l2). Therefore, because the
active transitions corresponding to active transitions in l2 get value zero, the
values add up to one. For boundary points (l1, ζ1, l2, ∂ζ2) we have the symmetric
case. For boundary points (l1, ∂ζ1, l2, ∂ζ2), C is undefined. Concerning the pas-
sive transitions: With a similar argument it can be shown that values of passive
transitions of Ai either carry over to passive transitions of A or are spread over

630 S. Strubbe and A. van der Schaft

a set of passive transitions of A such that the sum of the values does not change.
This ends the proof.

Remark 2. In the composition of CPDPs A1 and A2 we get for each joint location
(l1, l2) a combination of vectorfields from A1 and A1. In order to maintain the
PDP properties, this composition of vectorfields should be locally Lipschitz con-
tinuous. We also get a composition of reset-maps which should result in proper
reset maps etc. Because the CPDP is now, as opposed to [3], defined as having
multiple variables in one location, these ’properties maintained in composition’
are already proved in the PDP/CPDP-equivalence proof from [4].

Corollary 1. If the probability that two CPDPs (which are composed with each
other) reach their boundaries at the same time is zero, then the stochastic be-
havior of the composite system is fully specified and is equal to the behavior of a
PDP. Thus, if we then complete the composition of these two CPDPs to form a
new CPDP (which can always be done) in two different ways, then the stochastic
behaviors of these two completed CPDPs will be the same.

Theorem 2. The composition operator ||, which operates on the class of CPDPs,
is commutative and associative.

Proof. We identify joint locations (l1, l2) of A1||A2 with joint locations (l2, l1)
of A2||A1. It can directly be seen that the elements L,V ,v,Inv and G cause no
problems for commutativity and associativity. That the active/passive operator
|| generates the same transitions for A1||A2 as for A2||A1 and generates the same
transitions for (A1||A2)||A3 as for A1||(A2||A3) is proven in the case of labelled
transition systems in [14]. This result can easily be generalized to the case of
CPDPs.

5 Bisimulation for PDPs

In this section we introduce a notion of bisimulation for weighted PDPs (i.e.
PDPs together with a weight-function on the state space). Briefly said, two
PDP states x and y (in two different PDPs) are bisimilar if first, their piecewise
deterministic paths simulate each other (i.e. produce the same weight value for
each time instant). If second, at any time instant the states of the paths are again
bisimilar. If third, the jump intensities at states x and y are equal. If fourth, the
transition measures Q(x) and Q(y) are equivalent probability measures. (The
notion of equivalent measures will be defined below).

The state space of a PDP as defined in [2] is a standard Borel space. A mea-
surable space (E, E), with E the Borel sets of E, is called a standard Borel space,
if E is homeomorphic to a Borel subset of a complete separable metric space. In
order to prove stochastic equivalence of two bisimilar PDPs, we will need that
the quotient spaces (induced by a bisimulation relation) are also standard Borel
spaces.

Bisimulation for CPDPs 631

We define the equivalence relation on X that is induced by a relation R ⊂
X×Y with the property that π1(R) = X and π2(R) = Y as the transitive closure
of {(x, x′)|∃y s.t. (x, y) ∈ R and (x′, y) ∈ R}. We write X/R and Y/R for the
sets of equivalence classes of X and Y induced by R. We denote the equivalence
class of x ∈ X by [x]. We will now define the notion of measurable relations and
of equivalent measures, which we need for our notion of bisimulation for PDPs.

Definition 1. Let (X,X) and (Y,Y) be standard Borel spaces and let R ⊂ X×Y
be a relation such that π1(R) = X and π2(R) = Y . Let X ∗ be the collection of
all R-saturated Borel sets of X, i.e. all B ∈ X such that any equivalence class
of X is either totally contained or totally not contained in B. It can be checked
that X ∗ is a σ-algebra. Let

X ∗/R = {[A]|A ∈ X ∗},

where [A] := {[a]|a ∈ A}. Then (X/R,X ∗/R), which is a measurable space, is
called the quotient space of X with respect to R. A unique bijective mapping
f : X/R → Y/R exists, such that f([x]) = [y] if (x, y) ∈ R. We say that the
relation R is measurable if for all A ∈ X ∗/R we have f(A) ∈ Y∗/R and vice
versa.

If a relation on X × Y is measurable, then the quotient spaces of X and Y
are homeomorphic (under bijection f from Definition 1). We could say therefore
that under a measurable relation X and Y have a shared quotient space. In
the field of descriptive set theory, a relation R ⊂ X × Y is called measurable if
R ∈ B(X × Y) (i.e. R is a Borel set of the space X × Y). This definition does
not coincide with our definition of measurable relation. In fact, many interesting
measurable relations are not Borel sets of the product space X × Y .

Definition 2. Suppose we have measures PX and PY on standard Borel spaces
(X,X) and (Y,Y) respectively. Suppose that we have a measurable relation R ⊂
X×Y . The measures PX and PY are called equivalent with respect to R if we have
PX(f−1

X (A)) = PY (f−1
Y (f(A))) for all A ∈ X ∗/R (with f as in Definition 1 and

with fX and fY the mappings that map X and Y to X/R and Y/R respectively).

Suppose we have a PDP with state-space X and weightX is a real-valued
measurable function on X. Then we call the PDP together with weightX a
weighted PDP. The function weightX can be seen as a weight function on the
state-space. It can also be seen as an output at the state or as the observable
component. We call weightX the weight-function or the output-function. We
will now define a bisimulation notion for weighted PDPs. In this definition we
write Q(x) (or Q(y)) for the reset map of the PDP with state space X (or Y)
at state x (or y). We write φ(t, x) for the value of the state at time t when the
PDP with state space X starts at x at t = 0, etc.

Definition 3. Suppose we have two weighted PDPs with state-spaces X and Y
and weight-functions weightX and weightY . A measurable relation R ⊂ X × Y
is a bisimulation iff (x, y) ∈ R implies that

632 S. Strubbe and A. van der Schaft

– weightX(x) = weightY (y), t∗(x) = t∗(y) and λ(x) = λ(y).
– (φ(t, x), φ(t, y)) ∈ R for all t ∈ [0, t∗(x)[.
– Q(x) and Q(y) are equivalent probability measures with respect to R. Also
Q(φ(t∗(x), x)) and Q(φ(t∗(y), y)) are equivalent probability measures with
respect to R.

Two states x and y are bisimilar if they are contained in some bisimulation.

The following theorem shows that bisimilar PDPs exhibit equivalent stochas-
tic behavior. We make use of the Hilbert cube probability space, which has as
sample space Ω =

∏∞
i=1 Yi, where each Yi = [0, 1], and has the product Borel

sigma-algebra and product Lebesgue measure.

Theorem 3. If initial states x and y of two weighted PDPs (X, weightX) and
(Y,weightY) are contained in bisimulation R, then, assumed that the quotient
spaces are standard Borel spaces, we can construct the stochastic processes xt

and yt on the Hilbert cube (Ω,A, P) in such a way that for each ω ∈ Ω we have
weightX(xt(ω)) = weightY (yt(ω)).

Proof. Let R ⊂ X × Y be a bisimulation such that (x, y) ∈ R. Let (Ω,A, P)
be the Hilbert cube and Ui(ω) = ωi be the U [0, 1] distributed random variables.
We define for any z that has a corresponding survivor function F (t, z)

ψ1(u, z) =
{

inf{t|F (t, z) ≤ u}
+∞ if the above set is empty

We define the random variables S1,x, T1,x, S1,y and T1,y as S1,x(ω) = T1,x(ω) =
ψ1(U1(ω), x) and S1,y(ω) = T1,y(ω) = ψ1(U1(ω), y). Now we can define the
sample-functions up to the first jump. For z ∈ {x, y} we define: if T1,z(ω) = ∞
then zt(ω) = φ(t, z) for t ≥ 0, if T1,z(ω) < ∞ then zt(ω) = φ(t, z) for 0 ≤ t <
T1,z(ω).

Because (x, y) ∈ R, we have t∗(x) = t∗(y) and (φ(t, x), φ(t, y)) ∈ R for
t ∈ [0, t∗(x)[. We also have λ(φ(t, x)) = λ(φ(t, y)) for t ∈ [0, t∗(x)[. Now it can be
easily checked that F (t, x) = F (t, y) for all t ∈ IR and therefore ψ(u, x) = ψ(u, y)
and we have S1,x(ω) = S1,y(ω) and T1,x(ω) = T1,y(ω). Because (φ(t, x), φ(t, y)) ∈
R we have weightX(xt(ω)) = weightY (yt(ω)) up to T1,x(ω).

Now xT1(ω) and yT1(ω), where T1 := T1,x(ω) = T1,y(ω), need to be chosen in
accordance to Q(φ(T1, x)) and Q(φ(T1, y)) respectively. Because (x, y) ∈ R, we
have that Q′ := Q(φ(T1, x)) and Q′′ := Q(φ(T1, y)) are equivalent probability
measures with respect to R. Therefore, Q′ and Q′′ define the same probability
measure PZ on the quotient space (Z,Z). Let PX|z and PY |z be the conditional
probability measures of Q′ and Q′′ given the outcome z in Z. Because X, Y and
Z are all separable standard Borel spaces, these conditional probability measures
exist uniquely according to Th.8.1 in [15] and according to the same theorem
we have that for fixed A ∈ B(X) and B ∈ B(Y) the maps z → PX|z(A) and
z → PY |z(B) are measurable.

Bisimulation for CPDPs 633

Let ψ2 : [0, 1]×X∪∂X → Z be a measurable mapping such that lψ−1
2 (A, x) =

PZ(A, x) for all x ∈ X ∪ ∂X. The existence of this mapping follows from Corol-
lary 23.4 in [2] and from the fact that the mapping x → PZ(A, x) is measur-
able for fixed A ∈ Z. Let ψ3,x : [0, 1] × Z → X and ψ3,y : [0, 1] × Z → Y
be measurable mappings such that lψ−1

3,x(A, z) = PX|z(A) for A ∈ B(X) and
lψ−1

3,y(A, z) = PY |z(A) for A ∈ B(Y). The existence of these mappings fol-
lows from Corollary 23.4 in [2] and from the fact that for fixed A ∈ B(X)
and B ∈ B(Y) the mappings z → PX|z(A) and z → PY |z(B) are measurable.
Now the processes xt and yt restart at time T1(ω) from the states xT1(ω) =
ψ3,x(U3(ω), ψ2(U2(ω), φ(T1(ω), x))) and yT1(ω) = ψ3,y(U3(ω), ψ2(U2(ω),φ(T1(ω),
x))) and we have (xT1(ω), yT1(ω)) ∈ R̄, where R̄ is defined as {(x, y)|
f([x]) = [y]} (see Definition 1). To continue the sample function from time
T1(ω), we define S2,x = ψ1(U4(ω), xT1(ω)), S2,y = ψ1(U4(ω), yT1(ω)), T2,x =
T1,x(ω) +S2,x(ω), T2,y = T1,y(ω) +S2,y(ω), and we repeat the procedure above.

It can be seen that the stochastic processes above are well defined and that
for all t ≥ 0 and all ω ∈ Ω we have (xt(ω), yt(ω)) ∈ R̄. This means that
weightX(xt(ω)) = weightY (yt(ω)). This ends the proof.

Corollary 2. Because weightX and weightY in Proposition 3 are measurable
mappings, we have that zt = weightX(xt) and z′

t = weightY (yt) are well-defined
stochastic processes. Because weightX(xt(ω)) = weightY (yt(ω)), the stochastic
processes zt and z′

t are indistinguishable. Thus, if two weighted PDPs have bisim-
ilar initial states (and the quotient spaces are standard Borel spaces) then there
is a realization of the stochastic processes of their outputs (on the Hilbert cube)
such that the stochastic processes are indistinguishable .

Remark 3. For sake of simplicity we assumed that weight-functions take value
in IR. However, all results still hold if we take any other euclidean space than IR
as codomain of the weight functions.

6 Bisimulation for CPDPs

We will now generalize the notion of bisimulation for PDPs to CPDPs. To do
that, we need to introduce the concept of weighted CPDPs.

Definition 4. A weighted CPDP is a CPDP together with a set of output vari-
ables W = {w1, w2, · · · , wn}, where each wi takes value in IRd(wi), with d(wi) the
dimension of wi, and an output function weight which assigns to each w ∈ W
and each CPDP state x a value weight(w, x) ∈ IRd(w). weight is such that for
fixed w the functions weight(w, x) are measurable.

For composition of two CPDPs with state spaces X1 and X2, with disjoint
sets of output variables W1 and W2 and with output functions weight1 and
weight2, the composed output function weight assigns to (w, (x1, x2)) the value
weight1(w, x1) if w ∈ W1 and weight2(w, x2) if w ∈ W2. In order to define

634 S. Strubbe and A. van der Schaft

bisimulation for CPDPs we also need to introduce the notions of combined reset
map and combined jump rate function:

For CPDP A = (L, V, v, Inv,G,Σ,B, P, S, C) with hybrid state space E, We
define R, which we call the combined reset map, as follows. R assigns to each
triplet (l, ζ, a) with (l, ζ) ∈ ∂E and with a ∈ Σ such that l a−→ (i.e. there exists
a boundary hit transition labelled a leaving l), a measure on E. This measure
R(l, ζ, a) is for any l′ and any Borel set A ⊂ Invl′ defined as:

R(l, ζ, a)(A) =
∑

α∈Bl,a,l′

C(l, ζ)(α)Rα(A),

where Bl,a,l′ denotes the set of boundary hit transitions from l to l′ with label
a. (This measure is uniquely extended to all Borel sets of E). Now, for A ∈
B(E), R(l, ζ, a)(A) equals the probability of jumping into A via a boundary hit
transition with label a given that the jump takes place at (l, ζ). Furthermore, R
assigns to each triplet (l, ζ, ā) with (l, ζ) ∈ E and with a ∈ Σ̄ such that l ā−→, a
measure on E, which for any l′ and any Borel set A ⊂ Invl′ is defined as:

R(l, ζ, ā)(A) =
∑

α∈Pl,ā,l′

C(l, ζ, ā)(α)Rα(A).

(This measure is uniquely extended to all Borel sets of E). Now, R(l, ζ, ā)(A),
with A ∈ B(E), equals the probability of jumping into A if a passive transition
with label ā takes place at (l, ζ). We define the combined jump rate function λ
for CPDP A as

λ(l, ζ) =
∑

α∈Sl→

λα,

with (l, ζ) ∈ E. Finally, for spontaneous jumps, R assigns to each (l, ζ) ∈ E such
that λ(l, ζ) �= 0, a probability measure on E, which for any l′ and any Borel set
A ⊂ Invl′ is defined as:

R(l, ζ)(A) =
∑

α∈Sl→l′

λα(l, ζ)
λ(l, ζ)

Rα(A).

Now we are ready to give the definition of bisimulation for CPDPs.

Definition 5. Suppose we have two weighted CPDPs with state-spaces X and Y
and weight-functions weightX and weightY on a shared set of output variables
W . A measurable relation R ⊂ X × Y is a bisimulation iff (x, y) ∈ R, with
x = (l1, ζ1) and y = (l2, ζ2), implies that

– weightX(w, x) = weightY (w, y) for all w ∈ W , t∗(x) = t∗(y) and λ(x) =
λ(y).

– (φ(t, x), φ(t, y)) ∈ R for all t ∈ [0, t∗(x)[.
– If λ(x) = λ(y) �= 0, then R(x) and R(y) are equivalent probability measures

with respect to R. For any ā ∈ Σ̄ we have that either both l1 � ā−→ and l2 � ā−→

Bisimulation for CPDPs 635

or else R(x, ā) and R(y, ā) are equivalent probability measures. Also, if we
define (l1, ζ∗

1) := t∗(x) and (l2, ζ∗
2) := t∗(y), then we have for any a ∈ Σ

that either both l1 � a−→ and l2 � a−→ or else R(l1, ζ∗
1 , a) and R(l2, ζ∗

2 , a) are
equivalent measures.

Two states x and y are bisimilar if they are contained in some bisimulation.

Theorem 4. The stochastic processes of the outputs of two bisimilar closed
CPDPs, whose quotient spaces are standard Borel spaces, can be realized such
that they are indistinguishable.

Proof. The stochastic process of a closed CPDP A with combined reset map R
and combined jump rate function λ is equivalent (i.e. indistinguishable) with the
stochastic process of the PDP Ã that has the same state space and vectorfields
as the CPDP and that has λ as its jump rate function and has transition measure
Q(l, ζ) that equals R(l, ζ) for interior points and that equals

∑
a∈Σ R(l, ζ, a) for

boundary points (see [4] for the proof of this stochastic equivalence). This PDP
Ã is called the corresponding PDP of CPDP A. We prove that the corresponding
PDPs of two bisimilar closed CPDPs are bisimilar PDPs, then the result follows
from Corollary 2:

The first two lines of Definition 3 follow directly from the first two lines of Def-
inition 5. The third line: The fact that Q(x) and Q(y) are equivalent probability
measures for bisimilar interior points x and y follows from the fact that Q(x) =
R(x) and Q(y) = R(y) and, according to Definition 5, R(x) and R(y) are equiv-
alent probability measures. Finally, Q(φ(t∗(x), x)) and Q(φ(t∗(y), y)) are equiv-
alent probability measures because Q(φ(t∗(x), x)) =

∑
a∈Σ R(φ(t∗(x), x), a) and

Q(φ(t∗(y), y)) =
∑

a∈Σ R(φ(t∗(y), y), a) and, according to Definition 5,
R(φ(t∗(x), x), a) and R(φ(t∗(x), x), a) are equivalent measures for all a ∈ Σ.
This ends the proof.

In order to prove the main theorem 5 about bisimulation in the context of
composition, we need that a measurable relation R ⊂ X1×X2 naturally induces
a measurable relation R′ on (X1×Y)×(X2×Y) for any Y . This result is proved
in the following lemma. After that, the main theorem is stated.

Lemma 1. If R ⊂ X1 × X2 is a measurable relation such that π1(R) = X1,
π2(R) = X2 and X1/R and X2/R are standard Borel spaces, then

R′ := {((x1, y), (x2, y))|(x1, x2) ∈ R, y ∈ Y }

is a measurable relation on (X1×Y)×(X2×Y) and (X1×Y)/R′ and (X2×Y)/R′

are standard Borel spaces.

Proof. From the proof of Theorem 3 we know that (because X1/R is a standard
Borel space) there exists a measurable ψ : [0, 1]×X1/R → X1, such that ψ([0, 1]×
[x]) = {x̃ ∈ X1|[x̃] = [x]}. We first proof that (X1 × Y)/R′ = X1/R × Y , which
is indeed a standard Borel space.

636 S. Strubbe and A. van der Schaft

Take B ∈ B∗(X1 × Y) (i.e. B is Borel in X1 × Y and for any y we have: if
(x, y) ∈ B and [x] = [x̃] then (x̃, y) ∈ B). Now there exist Borel sets BX1

i and
BY

i such that
B = ∪∞

i=1B
X1
i ×BY

i .

Because ψ is measurable, we have that for all i that ψ−1(BX1
i) ∈ B([0, 1]×X1/R).

This means that there exist Borel sets BX1/R
i,j and B

[0,1]
i,j , such that

∪∞
i=1ψ

−1(BX1
i) ×BY

i = ∪∞
i,j=1B

[0,1]
i,j ×B

X1/R
i,j ×BY

i

Because we have that if (x, y) ∈ B and [x] = [x̃] then (x̃, y) ∈ B), we can also
write

∪∞
i=1ψ

−1(BX1
i) ×BY

i = ∪∞
i,j=1[0, 1] ×B

X1/R
i,j ×BY

i ,

from which we can see that R′ maps B to ∪∞
i,j=1B

X1/R
i,j ×BY

i , which is a Borel set
in X1/R × Y and therefore (X1 × Y)/R′ is a standard Borel space. Analogously
we get that R′ maps B ∈ B∗(X2 × Y) to Borel sets in X2/R × Y . Measurability
of R′ can now, with the results above, easily be derived from the measurability
of R. This ends the proof.

Theorem 5. Suppose we have three weighted CPDPs with state spaces X1,X2
and Y , and with output functions weightX1 on WX , weightX2 on WX and
weightY on WY respectively. Suppose R ⊂ X1 ×X2 is a bisimulation and X1/R
and X2/R are standard Borel spaces. Then,

R′ := {((x1, y), (x2, y))|(x1, x2) ∈ R, y ∈ Y }

is a bisimulation on (X1 × Y) × (X2 × Y) and (X1 × Y)/R′ and (X2 × Y)/R′

are standard Borel spaces.

Proof. Suppose ((x1, y), (x2, y)) ∈ R′ with x1 = (l1, ζ1), x2 = (l2, ζ2) and y =
(ly, ζy). We have to prove the three lines of Definition 5 to be true.

First line: For w ∈ WX , weightX1||Y (w, x1, y) = weightX1(w, x1) =
weightX2(w, x1) = weightX2||Y (w, x1, y) and for w ∈ WY , weightX1||Y
(w, x1, y) = weightY (w, y) = weightX2||Y (w, x1, y). t∗(x1, y) = min{t∗(x1),
t∗(y)} = min{t∗(x2), t∗(y)} = t∗(x2, y). λ(x1, y) = λ(x1)+λ(y) = λ(x2)+λ(y) =
λ(x2, y).

Second line: The flow φ from states (x1, y) and (x2, y) consists of two parts,
the x-part: φ(t, x1) and φ(t, x2), and the y-part: φ(t, y). The x-part and y-part
flows are evolving independently. Then it follows from the fact that
(φ(t, x1), φ(t, x2)) ∈ R for all t ∈ [0, t∗(x1, y)[that (φ(t, x1, y), φ(t, x2, y)) ∈ R′

for t ∈ [0, t∗(x1, y)[.
Third line (part one): Suppose λ(x1, y) �= 0 (and consequently λ(x2, y) �= 0).

Take arbitrary A1 ∈ B∗(X1) and B ∈ B(Y). Let A2 be the element of B∗(X2)
that corresponds (according to R) to A1. Then A1 × B ∈ B∗(X1 × Y) and
A2×B ∈ B∗(X2×Y). Furthermore,A1×B andA2×B correspond with each other
(according to R′). It can be seen that R(x1, y)(A1×B) = λ(x1)

λ(x1)+λ(y)R(x1)(A1)+

Bisimulation for CPDPs 637

λ(y)
λ(x1)+λ(y)R(y)(B) = λ(x2)

λ(x2)+λ(y)R(x2)(A2) + λ(y)
λ(x2)+λ(y)R(y)(B) = R(x2, y)(A2 ×

B). It can be shown for i ∈ {1, 2}, that the σ-algebra B∗(Xi × Y) is generated
by the collection of sets of the form Ai × B with Ai ∈ B∗(Xi) and B ∈ B(Y).
Then it follows that R(x1, y) and R(x2, y) are equivalent measures with respect
to R′ (under the assumption that λ(x1, y) �= 0).

Third line (part two): It can be seen that if (l1, ly) ā−→, then also (l2, ly) ā−→
(and vice versa). Suppose (l1, ly) ā−→ and (l2, ly) ā−→. Take A1 ∈ B∗(X1) and
B ∈ B(Y). Let A2 be the saturated Borel set of X2 corresponding to A1.
We distinct three cases: If l1

ā−→ and ly
ā−→ (case 1), then R(x1, y, ā)(A1 ×

B) = R(x1, ā)(A1)R(y, ā)(B) = R(x2, ā)(A2)R(y, ā)(B) = R(x2, y, ā)(A2 × B).
If l1

ā−→ and ly � ā−→ (case 2), then R(x1, y, ā)(A1 × B) = R(x1, ā)(A1)Iy(B) =
R(x2, ā)(A2)Iy(B) = R(x2, y, ā)(A2 × B) (here Iy(B) is the probability mea-
sure that equals one if y ∈ B and zero if y �∈ B). If l1 � ā−→ and ly

ā−→
(case 3), then R(x1, y, ā)(A1 × B) = Ix1(A1)R(y, ā)(B) = Ix2(A2)R(y, ā)(B) =
R(x2, y, ā)(A2 × B). We can now conclude that R(x1, y, ā) and R(x2, y, ā) are
equivalent probability measures.

Third line (part three): It can be seen that if (l1, ly) a−→, then also (l2, ly) a−→
(and vice versa). Suppose (l1, ly) a−→ and (l2, ly) a−→. Take A1 ∈ B∗(X1) and
B ∈ B(Y). Let A2 be the saturated Borel set of X2 corresponding to A1. We dis-
tinct three cases: If t∗(x1) < t∗(y) (case 1), then, if we define x∗

1 := φ(t∗(x1), x1),
x∗

2 := φ(t∗(x1), x2) and y∗ := φ(t∗(x1), y), we get R(x∗
1, y

∗, a)(A1 × B) =
R(x∗

1, a)(A1)Iy∗(B) = R(x∗
2, a)(A2)Iy∗(B) = R(x∗

2, y
∗, a)(A2 × B). If t∗(x1) >

t∗(y) (case 1), then, if we define x∗
1 := φ(t∗(y), x1), x∗

2 := φ(t∗(y), x2) and
y∗ := φ(t∗(y), y), we get R(x∗

1, y
∗, a)(A1 × B) = Ix∗

1
(A1) × R(y∗, a)(B) =

Ix∗
2
(A2) × R(y∗, a)(B) = R(x∗

2, y
∗, a)(A2 × B). If t∗(x1) = t∗(y) (case 3: dou-

ble boundary point), then both R(x∗
1, y

∗, a) and R(x∗
2, y

∗, a) are undefined. We
can now conclude that R(x∗

1, y
∗, a) and R(x∗

2, y
∗, a) are equivalent probability

measures. This ends the proof.

Corollary 3. If a component of a complex CPDP (consisting of multiple CPDPs
composed with the composition operator ||) is substituted by a different but bisim-
ilar component, then the stochastic behavior of the complex CPDP will not
change.

We now give two examples of bisimular CPDPs. The examples highlight
different aspects of CPDP bisimulation.

Example 1 (State space transformation/reduction). If we have a CPDP which
has linear time invariant dynamics ẋ = Ax,weight(x) = Cx, in (one of) its
locations and T is a state space transformation matrix, then the CPDP that is
obtained by transforming the dynamics into ˙̃x = TAT−1x̃, weight(x̃) = CT−1x̃,
is bisimilar to the original CPDP. Classical state space reduction within a CPDP
with LTI dynamics also results in a bisimilar CPDP.

Example 2 (Combining Poisson processes). Suppose we have a CPDP which has
two spontaneous transitions, with jump rate functions λ1(x) and λ2(x) and reset

638 S. Strubbe and A. van der Schaft

maps R1(x) and R2(x), that have the same label and the same origin and target
location. Replacing these two transitions by one spontaneous transition with the
same origin and target location and with jump rate function λ1 + λ2 and reset
map λ1

λ1+λ2
R1 + λ2

λ1+λ2
R2, will not change the CPDP up to bisimilarity.

7 Conclusions

We introduced the CPDP model for compositional modelling of PDP systems.
We defined a composition operator on CPDPs based on the communication via
active and passive events and we defined a notion of bisimulation. We proved that
the output processes of closed bisimilar CPDPs are indistinguishable stochastic
processes and we also proved that, within a CPDP composition context, substi-
tuting a component by another bisimilar component, does not change the system
up to bisimilarity. This means that we can use bisimulation as a compositional
technique for state reduction. Components that are state-reduced by bisimula-
tion are still of the PDP type and also the composition of these components is
still of the PDP type. This means that both the components and the compos-
ite system can in principle be analyzed by using PDP analysis techniques (as
developed in [2]).

In for example [8] and [10] algorithms are given for finding maximal bis-
mulations for a given system. Since the class of CPDPs is very broad, general
algorithms for bisimulation may be difficult to formulate or may not be very
useful. Instead, an interesting direction for future research is to define subclasses
of CPDPs (such as CPDPs with linear dynamics) that allow development of
automatic bisimulation techniques.

References

1. Davis, M.H.A.: Piecewise Deterministic Markov Processes: a general class of non-

diffusion stochastic models. Journal Royal Statistical Soc. (B) 46 (1984) 353–388

2. Davis, M.H.A.: Markov Models and Optimization. Chapman & Hall, London (1993)

3. Strubbe, S.N., Julius, A.A., van der Schaft, A.J.: Communicating Piecewise De-

terministic Markov Processes. In: Preprints Conference on Analysis and Design of

Hybrid Systems ADHS 03. (2003) 349–354

4. Strubbe, S.N., van der Schaft, A.J.: Stochastic equivalence of CPDP-automata and

Piecewise Deterministic Markov Processes. Accepted for the IFAC world congress

2005 (2005)

5. Milner, R.: Communication and Concurrency. Prentice Hall (1989)

6. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information

and Computation 94 (1991) 1–28

7. D’Argenio, P.R.: Algebras and Automata for Timed and Stochastic Systems. PhD

thesis, University of Twente (1997)

8. Hermanns, H.: Interactive Markov Chains. Volume 2428 of Lecture Notes in Com-

puter Science. Springer (2002)

9. Pappas, G.: Bisimilar linear systems. Automatica 39 (2003) 2035–2047

Bisimulation for CPDPs 639

10. van der Schaft, A.: Bisimulation of dynamical systems. In: HSCC 2004. Volume

2993 of Lecture Notes in Computer Science., Springer (2004) 555–569

11. Lafferriere, G., Pappas, G., Sastry, S.: Hybrid systems with finite bisimulations.

Lecture Notes in Computer Science 1567 (1999) 186–203

12. van der Schaft, A.: Equivalence of hybrid dynamical systems. In: Proceedings

of the 16th international symposium on Mathematical Theory of Networks and

Systems. (2004)

13. Strubbe, S.: Public Deliverable 17 of the Hybridge project. Technical report,

Twente University (2004)

14. Strubbe, S.: PD16 of Hybridge, Semantics and interaction-structures for the

CPDP-model. Technical report, Twente University (2004)

15. Parthasarathy, K.: Probability Measures on Metric Spaces. Academic Press (1967)

Sensor/Actuator Abstractions for
Symbolic Embedded Control Design

Paulo Tabuada

Department of Electrical Engineering,

University of Notre Dame,

Notre Dame, IN 46556

ptabuada@nd.edu
www.nd.edu/∼ptabuada

Abstract. In this paper we consider the problem of developing sen-

sor/actuator abstractions for embedded control design. These abstrac-

tions take the form of inequalities relating sensor/actuator characteris-

tics with the continuous dynamics’ output. When satisfied, they allow to

decouple control design from the choice of sensor/actuators, thus simpli-

fying control design while ensuring implementability.

1 Introduction

The development of control theory has traditionally ignored hardware implemen-
tation to focus on the development of a large and important body of theoretical
results. Nevertheless, the existing theory is responsible for the wide success of
nowadays highly sophisticated and complex controlled systems. The fundamental
reason behind this success has been the availability of dedicated computational
hardware and sensor/actuators enabling faithful implementations of theoretically
developed control laws. However, with the advent of networked embedded control
systems we can no longer rely on such assumption. Instead, control algorithms
are needed for tiny embedded devices with reduced computational capabilities,
low resolution sensors and actuators and strong power limitations. We have thus
reached a turning point where we need to rethink the foundations of systems
and control theory in order to incorporate the impact of hardware limitations
into the behavior achievable by control.

In this paper we take initial steps along this research direction by developing
sensor/actuator abstractions for embedded control design. If, on one hand, one
would like to have a design theory incorporating implementation details into
feedback design, on the other hand, one would also like to restrict such details
to the essential minimum. These apparently contradictory objectives can be met
by summarizing implementation platform information in a reduced number of
parameters. The approach described in this paper captures such platform ab-
stractions in the form of inequalities relating sensor/actuator parameters and
the observations of the continuous dynamics, over which specifications are de-
fined. By satisfying these inequalities, it is guaranteed that any control design

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 640–654, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Sensor/Actuator Abstractions for Symbolic Embedded Control Design 641

regulating the output behavior of the continuous dynamics can be implemented
in a given platform. Alternatively, these inequalities can also be used to define
platform requirements sufficient to run such embedded control software. Finally,
the introduced inequalities also emphasize several possible tradeoffs between sen-
sor/actuator quantization and saturation characteristics. In particular, we are
able to provide answers to the following questions:

Can we determine if a given control design is implementable with certain
sensor/actuator quantization characteristics?

Can we compensate poor sensor quantization by good actuator quantization,
or vice-versa, in order to implement a given control design?

Can we determine if a given control design is implementable with certain
sensor/actuator saturation characteristics?

Can we compensate sensor/actuator quantization with sensor/actuator satu-
ration, or vice-versa?

The sensor/actuator abstractions presented in this paper are developed in
the framework of symbolic control that was introduced by the author and co-
workers in the sequence of papers [1, 2, 3, 4]. This symbolic approach is based on
the existence of finite abstractions (bisimulations) of continuous control systems
in several cases of interest including controllable linear systems and flat systems
in discrete time. Once these symbolic models are available, it is possible to auto-
matically synthesize (hybrid) controllers enforcing specifications given by regular
languages, finite-state machines or temporal logics. Such finite controllers ma-
nipulate continuous states and inputs symbolically and allow for simple software
implementations.

Recently, there has been an increase in the attention devoted to problems
of control with limited resources. Several authors have addressed the problem
of control in the presence of limited communication [5, 6, 7, 8] as well as stabi-
lization in the presence of quantization [9, 10]. Closer to the work presented in
this paper is the control of systems with quantized inputs. In [11] the effect of
input quantization on reachability is analyzed and in [12] input quantization is
used as a tool providing a fresh computational perspective of optimal control
problems. The presented work differs from quantized control in that the finite
symbolic models (bisimulations) used to derive controllers are not obtained by
quantizing the inputs. In fact, the objective of this work is precisely to analyze
the validity of our symbolic models across a different range of platforms hav-
ing different quantization but also saturation characteristics. A clear advantage
of the proposed approach is the independence of the symbolic model from the
implementation platform. Different symbolic approaches to embedded control
include maneuver-automata [13] and motion description languages [14, 15] as
well as control under limited computational resources [16, 17].

This paper is organized as follows. In Section 2 we describe the models of con-
trol systems used throughout the paper and in Section 3 we recall the symbolic
approach to embedded control developed by the author and coworkers. Models
of sensor/actuator quantization and saturation are introduced in Section 4. We
then present abstraction results for sensor quantization in Section 5, actuator

642 P. Tabuada

quantization in Section 6, sensor saturation in Section 7 and actuator satura-
tion in Section 8. The main contribution summarizing the abstraction results is
presented in Section 9 and the paper ends with some discussion of the presented
results in Section 10.

2 The Models

2.1 Notation

We introduce some notation required for the remaining paper. When working
with vectors x ∈ Rn or matrices A ∈ Rn×m we shall denote by xT and AT the
transposed vector and matrix, respectively. The absolute value of a real number
α is denoted by |α| while the infinity norm of a vector x = (x1, x2, . . . , xn) ∈ Rn

is denoted by ||x|| and defined as:

||x|| = max
i

|xi| (1)

This vector norm induces a norm on matrices when regarded as the represen-
tation of linear transformations between normed vector spaces. We shall denote
by ||A|| the matrix norm induced by (1) for any matrix A ∈ Rn×m. This matrix
norm can be computed as:

||A|| = max
i

(∑
j

|aij |
)

(2)

We will also need some notation to discuss the ”size” of sets. Given a set S ⊆
Rn, we denote by diam(S) the diameter of S which is the supremum over the
Euclidean distances between every two pairs of points in S. When dealing with a
finite collection of sets S = {Si}i∈I , we shall use the notation diam(S) to denote
mini∈I diam(Si).

2.2 Control Systems

In this paper we consider a class of systems which are know to admit finite
bisimulations: discrete time linear controllable systems [1, 2]. Even though many
of these results carry over to nonlinear flat systems we will restrict our attention
to linear systems to make the results more concrete.

Definition 1. A discrete time linear control system Σ is defined by the following
difference equation:

x(t+ 1) = Ax(t) +Bu(t), x ∈ Rn, u ∈ Rm, t ∈ N

where A and B are matrices of appropriate dimensions.

Throughout the remaining paper we will assume that the columns of B are
linearly independent. This results in no loss of generality since we can always

Sensor/Actuator Abstractions for Symbolic Embedded Control Design 643

achieve linear independence by eliminating the inputs associated with linearly
dependent columns of B. The Pre operator associated with a linear control
system defines the set of all points that can reach in one step a given point
x ∈ Rn:

Pre(x) = {x′ ∈ Rn | ∃u ∈ Rm , Ax+Bu = x′}

This operator admits the usual extension to sets S ⊆ Rn:

Pre(S) =
⋃
x∈S

Pre(x)

For linear systems controllability admits the following simple characterization:

Definition 2. A discrete time linear control system Σ is said to be controllable
when the following matrix has full row rank:

[B|AB|A2B| . . . |An−1B] (3)

In this case, there are m numbers k1, k2, . . . , km satisfying ki ≥ ki+1, k1 + k2 +
. . .+km = n and the vector space generated by the columns of (3) is also generated
by the following basis:

B = { b1, Ab1, A2b1, . . . , A
k1−1b1,

b2, Ab2, A
2b2, . . . , A

k2−1b2,

...
bm, Abm, A

2bm, . . . , A
km−1bm}

where b1, b2, . . . , bm are the columns of B up to re-ordering. Basis B induces a
natural observation function H = [HT

1 |HT
2 | . . . |HT

m]T : Rn → Rm for Σ defined
by:

Hix =
{

0 if x ∈ B\{Aki−1bi}
γi if x = Aki−1bi

(4)

for γi ∈ R+ and i = 1, 2, . . . ,m. The image of the linear map H is then the
natural output space of Σ.

The above definition of output map is natural in the sense that it guarantees
that the pair (A,H) is observable, that is, the observability matrix:

O =

⎡⎢⎢⎢⎢⎢⎣
H

HA
HA2

...
HAn−1

⎤⎥⎥⎥⎥⎥⎦
has full rank. Full rank of O also implies full rank of the extended observability
matrix O = [OT

(HAn)T]T . In particular, this implies that O has a left inverse,

644 P. Tabuada

simply denoted by O−1. In addition to the extended observability matrix we
will also use repeatedly γmax, γmin to denote, respectively, maxi∈{1,2,...,m} γi and
mini∈{1,2,...,m} γi.

Specifications for the desired behavior of a controllable linear system Σ are
given in terms of a finite number of predicates on the output space Rm of Σ.
These predicates p ∈ P are defined by a surjective map π : Rm → P. Each p ∈ P
thus defines a set of points in the observation space of Σ by {x ∈ Rm | π(x) =
p} = [p]. We shall say that a point x satisfies predicate p when π(x) = p, or
equivalently x ∈ [p]. In addition, we will abuse language and use the same letter
P to denote the partition of Rm induced by π and defined by the sets {[p]}p∈P .

3 Symbolic Control of Continuous Systems

The sensor/actuator abstractions introduced in this paper are developed in the
context of symbolic control of continuous systems based on finite bisimulations.
This symbolic control methodology has been developed by the author and co-
workers in the series of papers [1, 2, 3, 4]. The essence of the approach is the
possibility of constructing a finite abstraction (bisimulation) of the continuous
dynamics allowing to translate the initial control problem from the continuous to
the purely discrete domain. This process was shown to be possible for a reason-
able class of control systems including controllable linear systems and discrete
time flat systems. The symbolic model is a finite state representation of all the
symbolic output behaviors that can be generated by a given system Σ through
a map π : Rm → P from the output space of Σ to a finite set of symbols P.
Standard supervisory control or temporal logic synthesis techniques can then
used to obtain a finite supervisor enforcing any regular or ω-regular language
specification on the symbolic output of the finite bisimulation. The resulting
finite supervisor is then refined to a hybrid controller combining discrete switch-
ing logic with continuous state/input information in order to enforce the desired
specification on the continuous plant. Throughout the paper we shall use the
expression symbolic controller to refer to this type of controller. The architec-
ture of the resulting closed loop is displayed in Figure 1 and can be intuitively
described as follows. At any time t ∈ N, the symbolic controller Tc sends a list of
possible symbols {σ1(t), σ2(t), . . . , σk(t)} to the controlled system. Each symbol
σ represents a region [σ] ⊆ Rn in the state space of Σ that can/should be reached
in the next time step in order to enforce the specification. Since there are several
possible symbols, a choice is made by the white box which represents a discrete
decision mechanism. We are thus regarding the white box as a discrete control
input capturing the nondeterminism inherent to the specification. Once a symbol
has been chosen, it is communicated to Tc (in order to update its internal state)
and it is enforced by feedback on Σ. Enforcing symbol σ requires selecting an
input u such that the pair (x, u) satisfies (x, u) ∈ Pre([σ]). Continuous input u
forces the continuous system Σ to jump from the current state x to a new state
contained in the set defined by [σ], that is Ax+Bu ∈ [σ]. Depending on the sen-
sor/actuator characteristics it may or may not be possible to implement a given

Sensor/Actuator Abstractions for Symbolic Embedded Control Design 645

Fig. 1. Feedback interconnection between a symbolic supervisor Tc and a discrete time

linear system Σ

symbolic command σ by a pair (x, u) ∈ Pre([σ]). Sensor/actuator characteristics
thus limit the behaviors that can be achieved by symbolic control.

To illustrate such limitations consider a control system with output space R
and three predicates neg, zer, pos defined by:

π(x) =

⎧⎨⎩ pos if x > 0
zer if x = 0
neg if x < 0

Consider now the following specifications defined by regular expressions on the
labels {neg, zer, pos}:

zer · neg · (neg + pos) · pos∗ zer · neg · pos · pos∗

Even though both specifications use the same predicates it may not be possible
to implement them on the same hardware platform. At the third time step, the
first specification requires the implementation of a transition to the set associated
with (neg + pos) while the second specification requires a transition to the set
associated with pos. Actuator saturation may now prevent point x = −10 to
be controlled to a positive value, while it may still be possible to control it to a
negative value such that in a subsequent step it can reach a positive value. In this
case the hardware characteristics would allow to implement the first specification
but not the second.

Two different approaches can be taken towards the study of symbolic control
implementability. Specific results for a particular control design can be given or
sufficient, but conservative, results applying to any control design can be devel-
oped. In this paper we consider sufficient implementability conditions ensuring

646 P. Tabuada

that any control design can be implemented. Since these are only sufficient con-
ditions, specific information regarding the control design will have to be used in
order to assert implementability. However, such sufficient conditions provide a
valuable working assumption allowing to decouple control design considerations
from hardware implementation details. The essence of our approach consists in
the following observation:

Since any discrete time controllable linear system Σ admits a finite bisim-
ulation with respect to any choice of predicates on the output space1, ensuring
that arbitrary symbolic commands can be implemented on the hardware platform
is sufficient to ensure that any control design based on the same predicates is
implementable on the hardware platform.

Our sufficient abstractions will then relate sensor/actuator characteristics
with the nature of the predicates defined on the observation space. At the tech-
nical level our results rely on several facts related to the existence of finite bisim-
ulations of controllable linear systems [1, 2, 3, 4]. For the purpose of this paper,
however, it is sufficient to recall the following:

Given a finite set of predicates P = {p1, p2, . . . , pl} and a surjective map
π : Rm → P defined on the output space of controllable discrete time linear
system Σ, the symbolic commands σ issued by discrete supervisor Tc correspond
to subsets of Rn defined by the following equalities:

p1 = π ◦ Hx (5)
p2 = π ◦ H(Ax+Bu1) (6)
p3 = π ◦ H(A2x+ABu1 +Bu2) (7)

...
pk1 = π ◦ H(Ak1−1x+Ak1−2Bu1 + . . .+Buk1−1) (8)

for some u1, u2, . . . , uk1−1 ∈ Rm and p1, p2, . . . , pk1 ∈ P.
In other words, each symbolic command represents a set defined by the ex-

istence of a sequence of predicates p1, p2, . . . , pk1 ∈ P and a sequence of inputs
u1, u2, . . . , uk1−1 ∈ Rm such that the current state satisfies predicate p1, the next
state satisfies predicate p2, the following state satisfies p3 and so on.

4 Sensor/Actuator Models

In this paper we are mainly interested in two characteristics of sensors/actuators:
quantization and saturation. We model a sensor as a map S from R to some
space (finite or infinite) of measurements M . For simplicity of presentation we
will assume the existence of a sensor Si for each state xi. The complete state
measurement is therefore given by the vector [S1(x1) S2(x2) . . . Sn(xn)]T . We
will also assume that M ⊆ R as this allows to model an ideal sensor by the
indentity map on R. Quantization is described by the number ΔS defining how
state values are transformed into measurements:

1 See Definition 2 for output space.

Sensor/Actuator Abstractions for Symbolic Embedded Control Design 647

S(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΓS if x ≥ ΓS + 1
2ΔS

ΓS − 1 if x ∈ [ΓS − 1
2ΔS , ΓS + 1

2ΔS [
...

2ΔS if x ∈ [32ΔS ,
5
2ΔS [

ΔS if x ∈ [12ΔS ,
3
2ΔS [

0 if x ∈ [− 1
2ΔS ,

1
2ΔS [

−ΔS if x ∈ [− 3
2ΔS ,− 1

2ΔS [
−2ΔS if x ∈ [− 5

2ΔS ,− 3
2ΔS [

...
−ΓS + 1 if x ∈ [−ΓS − 1

2ΔS ,−ΓS + 1
2ΔS [

−ΓS if x < −ΓS − 1
2ΔS

(9)

A sensor S thus maps sets of length ΔS into its mid-point and saturates with
the value ΓS or −ΓS when the threshold ΓS + 1

2ΔS or −ΓS − 1
2ΔS is reached,

respectively. The number ΓS characterizes the saturation of the sensor. A sensor
with quantization ΔS and saturation ΓS will be called a (ΔS , ΓS)-sensor. Given
a set of sensors S1, S2, . . . , Sn used to measure the state we will simply refer to
the quantization of such set by ΔS = maxi∈{1,2,...,n} ΔSi

and we will refer to the
saturation of the set by ΓS = mini∈{1,2,...,n} ΓSi .

Actuators are similarly described. They are modeled by a map A from an
output space O ⊆ R to R. Actuators are also described by quantization ΔA and
saturation ΓA. The map A has the same form as (9) but ΔS and ΓS are now
ΔA and ΓA, respectively.

5 Sensor Quantization

In this section we address the effects of sensor quantization on implementability
of control designs. In particular, we answer the following question:

How should sensor quantization be related to the predicates p ∈ P in order to
implement a given design?

Proposition 1. Let Σ be a discrete time controllable linear system and P a
finite set of predicates on the output space of Σ. If the following inequality is
satisfied:

diam(P) > ||O||ΔS (10)

then every symbolic controller enforcing a specification defined over the symbolic
output P is implementable with (ΔS ,∞)-sensors and (0,∞)-actuators.

Before proving this result we make some remarks regarding inequality (10).
As it was intuitively expected, increasing sensor quantization has the unpleasant
effect of increasing also the diameter of the observation predicates. Therefore if
a certain minimum diameter for the predicates is required to express certain
properties, an upper bound on sensor quantization is also being enforced. Fur-
thermore, the linear relation between diam(P) and ΔS is characterized by the

648 P. Tabuada

observability properties of Σ as defined by ||O||. In fact, a less conservative es-
timate for the bound on the diameter of P is given by diam(P) > ||HAn||ΔS

as can be seen from (18) in the proof of Proposition 1. However, the extended
observation matrix captures, in a single object, all the continuous dynamics in-
formation required for all the abstractions presented in this paper.

Proof. We first consider the case where m = 1, that is, Σ only has one input. In
this case, the set represented by a predicate pi ∈ P is of the form [αi, βi], [αi, βi[,
]αi, βi] or]αi, βi[for αi, βi ∈ R ∪ {∞}. For simplicity we will only consider the
case [αi, βi] since the same argument applies to the remaining cases. Let σ be a
symbolic command issued by Tc. As discussed in Section 3, each such command
is associated with a subset of Rn defined by points y ∈ Rn satisfying:

p1 = π ◦ Hy (11)
p2 = π ◦ HAy = π ◦ H(Ay +Bu1) (12)
p3 = π ◦ HA2y = π ◦ H(A2y +ABu1 +Bu2) (13)

...
pk1 = π ◦ HAn−1y = π ◦ H(Ak1−1y +Ak1−2Bu1 + . . .+Buk1−1) (14)

for some u1, u2, . . . , uk1−1 ∈ R and p1, p2, . . . , pk1 ∈ P. If a point x will move
to Ax + Bu = y ∈ [σ], then by replacing y with Ax + Bu in equations (11)
through (14) and using (4), we see that the only constraint involving u is given
by:

π ◦ H(Ak1x+Ak1−1Bu) = pk1 (15)

Denoting by x̂ the quantized value of x, we have x = x̂+ d with ||d|| ≤ ΔS

2 . We
can therefore rewrite (15) in terms of x̂ which leads to the following equation
that has to be satisfied for all ||d|| ≤ ΔS

2 :

HAk1 x̂+ HAk1d+ HAk1−1Bu ∈ [αk1 , βk1] (16)

A sufficient condition for solvability of the above equation is:

HAk1 x̂+ HAk1−1Bu ∈ [αk1 + |HAk1d|, βk1 − |HAk1d|]

Since this equation can always be solved for u, provided that the right hand side
is a nonempty set, we must have:

βk1 − |HAk1d| > αk1 + |HAk1d| ⇔ diam(pk1) = βk1 − αk1 > 2|HAk1d| (17)

Furthermore, as:

2|HAk1d| ≤ 2||HAk1 ||||d|| (18)
= 2||nTO||||d||
≤ 2||n||||O||||d||
≤ ||O||ΔS

Sensor/Actuator Abstractions for Symbolic Embedded Control Design 649

where n denotes the vector (0, 0, . . . , 0, 1) ∈ Rn, we conclude that if:

diam(P) > ||O||ΔS

holds, then (17) also holds and a transition from any x ∈ X to some Ax+Bu =
y ∈ Y can be implemented.

We now consider the general case. Since we can always under-approximate
a set associated with p ∈ P by the Cartesian product of m sets of the form
[α, β], that is Πn

j=1[αj , βj], and since by (4) the observation function decouples
the influence of each input channel, we can apply the previous argument to each
of the m input channels obtaining m conditions of the form diam(P) > ||O||ΔS .

�

6 Actuator Quantization

We now turn to the effects of actuator quantization and the following related
question:

How should sensor and actuator quantization be related to the predicates p ∈
P in order to implement a given design?

Proposition 2. Let Σ be a discrete time controllable linear system and P a
finite set of predicates on the output space of Σ. If the following inequality is
satisfied:

diam(P) > ||O||ΔS + γmaxΔA (19)

then every symbolic controller enforcing a specification defined on the symbolic
output P is implementable with (ΔS ,∞)-sensors and (ΔA,∞)-actuators.

Equation (19) shows that actuation quantization further contributes to limit
the diameter of the predicates. However, we also see that when diam(P) has been
fixed by some particular design, several different combinations of sensor/actuator
quantization can be used in the implementation.

Proof. We use the notation of the proof of Proposition 1 and start by considering
the single input case, that is m = 1. To implement a symbolic command σ, the
following equation must have a solution in u for every d satisfying ||d|| ≤ ΔS

2
(see (16)):

HAk1 x̂+ HAk1−1Bu ∈ [αn, βn] − HAk1d (20)

To solve (20) for u it is sufficient to have:

γu ∈ [αk1 + ||O||ΔS

2
− HAk1 x̂, βk1 − ||O||ΔS

2
− HAk1 x̂] (21)

since |HAk1d| ≤ ||O||ΔS

2 , as shown in the proof of Proposition 1. Using now
u = zΔA with z ∈ Z and solving for z we obtain:

z ∈ 1
γΔA

[αk1 + ||O||ΔS

2
− HAk1 x̂, βk1 − ||O||ΔS

2
− HAk1 x̂]

650 P. Tabuada

Since z is an integer, the previous equation is satisfied only when the right-hand
side interval has length greater than 1, that is:

1
γΔA

(
βk1 − ||O||ΔS

2
− αk1 − ||O||ΔS

2

)
> 1

which can be rewritten as:

diam(pk1) − ||O||ΔS > γΔA

and as it must be satisfied for every p ∈ P, leads to (19).
We now consider now the multi input case. As in the proof of Proposition 1

we under-approximate a set associated with a predicate p ∈ P by a Cartesian
product of sets of the form [αi, βi] and use the previous argument for each of the
m input channels. We thus obtain a set of sufficient inequalities of the form

diam(pki
) − ||O||ΔS > γiΔA

which are satisfied by taking γi to be γmax. �

7 Sensor Saturation

Having discussed quantization effect in the previous sections we now turn to the
effects of saturation. The motivation for the results to be presented comes from
the following question:

How should sensor saturation be related to the predicates p ∈ P in order to
implement a given design?

Proposition 3. Let Σ be a discrete time controllable linear system and P a
finite set of predicates on the output space of Σ. If for every predicate p ∈ P the
following inclusion holds:

[p] ⊆
{
z ∈ Rm | ||z|| ≤ ΓS/||O−1||

}
(22)

then every symbolic controller enforcing a specification defined on the symbolic
output P is implementable with (α, ΓS)-sensors and (β,∞)-actuators for any
α, β ∈ R+

0 .

The previous result shows that by properly restricting the output predicates
we can achieve implementability, with respect to sensor saturation, indepen-
dently of the symbolic controller design. A less conservative approach would
require inclusion (3) to hold, not for every p ∈ P, but only for the predicates
appearing in the behavior enforced by a particular choice for discrete supervisor
Tc. This option, even though less conservative, would no longer be independent
of symbolic controller design as it requires knowledge of Tc.

In any case, the effect of sensor actuation is decoupled from the effect of
sensor or actuator quantization. This implies that we cannot trade quantization
by saturation or vice-versa.

Sensor/Actuator Abstractions for Symbolic Embedded Control Design 651

Proof. Given the sensor saturation characteristics, only the states belonging to
Πn

i=1[−ΓSi
, ΓSi

] can be measured. Conservatively, we further restrict the set
of observable states to [−ΓS , ΓS]n ⊆ Πn

i=1[−ΓSi
, ΓSi

]. In order to implement
symbolic commands issued by Tc, it is sufficient to guarantee that every state
trajectory of the controlled behavior remains within the set [−ΓS , ΓS]n. Consider
now a symbolic command σ issued by Tc. Such command is associated with a set
[σ] ⊆ Rn defined by equations (5) through (8). If the current state x, satisfying

Hx = z (23)

will jump to a state x ∈ [σ], then we can compactly write (23) and (5) through (8)
as:

Ox = Z

with:

Z =

⎡⎢⎢⎢⎢⎢⎣
z
z1
z2
...

zk1

⎤⎥⎥⎥⎥⎥⎦
for zi ∈ [pi], i = 1, 2, . . . , k1. Since O admits a left inverse by construction,
x = O−1Z and:

||x|| = ||O−1Z|| ≤ ||O−1||||Z||

Furthermore, zi ∈ [p] and the assumption [p] ⊆
{
z ∈ Rm | ||z|| ≤ ΓS/||O−1||

}
implies ||Z|| ≤ ΓS/||O−1|| from which we conclude ||x|| ≤ ΓS , thus ensuring that
controlled trajectories remain in the set [−ΓS , ΓS]n, as desired. �

8 Actuator Saturation

The last considered effect is actuator saturation motivated by the following ques-
tion:

How should sensor and actuator saturation be related to the predicates p ∈ P
in order to implement a given design?

Proposition 4. Let Σ be a discrete time controllable linear system and P a
finite set of predicates on the output space of Σ. If for every predicate p ∈ P
inclusion (22) holds and:

ΓA >
ΓS

γmin

(
1 + ||O||

)
(24)

then every symbolic controller enforcing a specification defined on the symbolic
output P is implementable with (α, ΓS)-sensors and (β, ΓA)-actuators for any
α, β ∈ R+

0 .

652 P. Tabuada

As expected, actuator saturation scales linearly with observation saturation.
This is natural since an input making the continuous system jump in one step
between two maximally distant points inside the sensor range may be required.
This lower bound on input saturation can be reduced by requiring, as part of the
specification, that only δ length jumps can be taken. In this case we can replace
ΓS by δ in above expression (24) to reduce the lower bound on ΓA. Once again
we see that saturation effects can be decoupled from quantization effects.

Proof. As usual we treat the single input case first. From the proof of Propo-
sition 2 we know that solvability of (21) for u is a sufficient condition for im-
plementability. It then suffices to ensure that γu can reach the following lower
bound:

γu > αk1 − ||O||ΔS

2
− HAk1 x̂

for all possible values of αk1 and x̂. Since both αk1 and x̂ are bounded by ΓS , it
follows that if ΓA > ΓS

γmin
(1 + ||O||) we can choose u ∈ [−ΓA, ΓA] such that:

γu > ΓS + ||O||ΓS

≥ αk1 − HAk1 x̂

≥ αk1 − ||O||ΔS

2
− HAk1 x̂

thus obtaining the desired sufficient condition.
Following the same argument we obtain for the multi-input case m inequali-

ties of the form ΓA > ΓS

γi
(1 + ||O||) which are enforced by taking γi to be γmin.

�

9 Main Result

For convenience we summarize Propositions 1,2,3 and 4 in the following theorem:

Theorem 1. Let Σ be a discrete time controllable linear system and P a finite
set of predicates on the output space of Σ. If the following inequalities hold:

diam(P) > ||O||ΔS + γmaxΔA (25)

ΓA >
ΓS

γmin

(
1 + ||O||

)
(26)

and for every predicate p ∈ P the following inclusion also holds:

[p] ⊆
{
z ∈ Rm | ||z|| ≤ ΓS/||O−1||

}
(27)

then every symbolic controller enforcing a specification defined on the symbolic
output P is implementable with (ΔS , ΓS)-sensors and (ΔA, ΓA)-actuators.

Theorem 1 collects, in the form of inequalities, the abstractions developed
in this paper. These inequalities represent simple and intuitive conditions for

Sensor/Actuator Abstractions for Symbolic Embedded Control Design 653

implementability: the sets [p] have to be large enough to accommodate the er-
rors introduced by sensor and actuator quantization as described by (25); sensor
saturation limits the range of states that can be measured and the symbolic out-
puts p ∈ P must represent sets [p] reflecting such state limitations as described
by (27); and actuator saturation has to permit arbitrary jumps between states
that can be measured as described by (26). In all these equalities the system
dynamics plays a fundamental role defined by the presence of the extended ob-
servation matrix in all the inequalities. A large value for ||O|| poses additional
limitations on the relation between sensing, actuation and output predicates
since it implies an increase of the ”size” of the sets [p], an increase on actuator
saturation and a reduction on the ”size” of the output space that can be used
to define predicates.

10 Discussion

The sensor/actuator abstractions presented in this paper are clearly conservative
and can be improved in several different ways. However, improving the equalities
in Theorem 1 would require embedding quantization and saturation information
into control design. As with any design problem, the right level of abstraction de-
pends on the particular problem being solved. When the presented abstractions
fail to hold, determining implementability of a given design requires a deeper
analysis of the effects of the implementation platform in the given design. How-
ever, the presented results are still useful as a working assumption for the early
design phases decoupling control requirements from hardware requirements.

There several other hardware requirements that should also be addressed and
have not been discussed in this paper. These include (real-time) computational
capabilities and power consumption among others. Developing similar abstrac-
tions to capture the influence of these properties on embedded control design in
currently being addressed by the author.

References

1. Tabuada, P., Pappas, G.J.: Finite bisimulations of controllable linear systems. In:

Proceedings of the 42nd IEEE Conference on Decision and Control, Hawaii (2003)

2. Tabuada, P.: Flatness and finite bisimulations in discrete time. In: Proceedings of

the Sixteenth International Symposium on Mathematical Theory of Networks and

Systems, Leuven, Belgium (2004)

3. Tabuada, P., Pappas, G.J.: From discrete specifications to hybrid control. In:

Proceedings of the 42nd IEEE Conference on Decision and Control, Hawaii (2003)

4. Tabuada, P., Pappas, G.J.: Linear Time Logic control of linear systems.

IEEE Transaction on Automatic Control (2004) Under review, available at

www.nd.edu/∼ptabuada.
5. Hristu, D., Morgansen, K.: Limited communication control. Systems and Control

Letters 37 (1999) 193 – 205

6. Wong, W.S., Brockett, R.: Systems with finite communication bandwidth con-

straints II: Stabilization with limited information feedback. IEEE Transactions on

Automatic Control 44 (1999) 1049–1053

654 P. Tabuada

7. Hespanha, J., Ortega, A., Vasudevan, L.: Towards the control of linear systems

with minimum bit-rate. In: Proceedings of the Int. Symp. on the Mathematical

Theory of Networks and Systems, Notre Dame, Indiana (2002)

8. Tatikonda, S., Mitter, S.: Control under communication constraints. IEEE Trans-

actions on Automatic Control 49 (2004) 1056–1068

9. Elia, N., Mitter, S.: Stabilization of linear systems with limited information. IEEE

Transactions on Automatic Control 46 (2001) 1384–1400

10. Liberzon, D.: Hybrid feedback stabilization of systems with quantized signals.

Automatica 39 (2003) 1543–1554

11. Bicchi, A., Marigo, A., Piccoli, B.: On the rechability of quantized control systems.

IEEE Transaction on Automatic Control (2002)

12. Pancanti, S., Leonardi, L., Pallottino, L., Bicchi, A.: Optimal control of quantized

linear systems. In Tomlin, C., Greenstreet, M.R., eds.: Hybrid Systems: Compu-

tation and Control. Lecture Notes in Computer Sience. Springer-Verlag (2002)

351–363

13. Frazzoli, E.: Explicit solutions for optimal maneuver-based motion planning. In:

Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii

(2003)

14. Hristu-Varsakelis, D., Egerstedt, M., Krishnaprasad, P.: On the structural com-

plexity of the motion description language mdle. In: Proceedings of the 42nd IEEE

Conference on Decision and Control, Maui, Hawaii (2003)

15. Austin, A., Egerstedt, M.: Mode reconstruction for source coding and multi-modal

control. In Alur, R., Pappas, G.J., eds.: Hybrid Systems: Computation and Control.

Volume 2993 of Lecture Notes in Computer Science. Springer-Verlag (2004) 36–49

16. Krogh, B., Maler, O., Mahfoudh, M.: On control with bounded computational

resources. In Damm, W., Olderog, E.R., eds.: Formal Techniques in Real-Time

and Fault-Tolerant Systems, 7th International Symposium, FTRTFT 2002. Volume

2469 of Lecture Notes in Computer Science. Springer-Verlag (2002) 147–164

17. Palopoli, L., Pinello, C., Vincentelli, A.S., Elghaoui, L., Bicchi, A.: Synthesis

of robust control systems under resource constraints. In Tomlin, C., Greenstreet,

M.R., eds.: Hybrid Systems: Computation and Control. Lecture Notes in Computer

Sience. Springer-Verlag (2002) 337–350

Modeling and Control of Networked Control
Systems with Random Delays�

Yan Wang, Zeng Qi Sun, and Fu Chun Sun

State Key Lab of Intelligent Technology and Systems,

Department of Computer Science, Tsinghua University,

Beijing 100084, P. R. China

Abstract. This paper discusses the problems of control design and sta-

bility analysis of the networked control systems(NCSs) with random

delays. The network-induced delays of the NCS are considered as in-

terval variables governed by a Markov chain. Using the upper and lower

bounds of the delays, a discrete-time Markovian jump system with norm-

bounded uncertainties is presented to model the NCS. Based on this

model, a state feedback controller can be constructed via a set of lin-

ear matrix inequalities. Simulations are given to illustrate the proposed

results.

1 Introduction

The research of the networked control systems has a large interest in distributed
control applications. In an NCS, the communication network is used as a medium
to interconnect the different components of an industrial control system. The net-
worked control architecture reduces cost of installation and reconfiguration, and
offers ease of maintenance, and great flexibility (see [11]). Inevitably, the com-
munication network which connects sensors, actuators and controllers introduces
different forms of time delay (see [5]). The delays could potentially deteriorate
the stability and control performance of the system. Since the network-induced
delays are usually time-varying and nondeterministic, the traditional modeling
and control methodologies for delay systems may not gain satisfying performance
for the control of NCSs.

Based on past output measurement, predictor-based delay compensation
method for NCSs with random delays using queues was developed by Luck and
Ray in [8]. Liou and Ray proposed the synthesis of a stochastic regulator in the

� The work was supported by the National Key Project for Basic Research of China

(Grant No: G2002cb312205), the National Science Foundation for Key Technical

Research of China (Grant No: 90205008, 60334020), the National Science Foun-

dation of China (Grant No: 60174018 and 60084002), China Postdoctoral Science

Foundation (Grant No: 2003034150), and the National Excellent Doctoral Disser-

tation Foundation (Grant No: 200041). Corresponding author: Yan Wang, E-Mail:

w-yan@mail.tsinghua.edu.cn

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 655–666, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

656 Y. Wang, Z.Q. Sun, and F.C. Sun

presence of randomly varying delays from the controller to actuator in [7]. The
stochastic optimal controller and the optimal state estimator of an NCS on ran-
dom delay networks were presented by Nilsson in [9]. In [9], a Markov chain was
applied to model the delays and the LQG optimal controller was derived for the
NCS. Walsh et al. analyzed the stability of nonlinear networked control systems
using the perturbation method in [11]. The hybrid systems stability analysis
technique was used to discuss the stability of NCSs in [13]. Lian analyzed and
modeled a MIMO networked control system with multiple time delays in [6].
In the stochastic approaches of [4], [7], [8] and [9] etc., the stochastic Riccati-
iteration equation is difficult to solve since the iteration involves expectation
calculation of stochastic variables. The linear matrix inequality(LMI) approach
offers efficient numerical schemes for the analysis and design of control systems
(see [2]). The motivations of this paper are to present a new model for the NCSs
with random delays and to design the control law in terms of LMIs.

In this paper, we will first describe the NCS as a discrete-time Markovian
jump system. Effects of network queues, varying network loads can be described
by the states of a Markov chain. In each different mode rk = i of the Markov
chain, the delay is a variable in an interval instead of the random delay with
probability distribution function proposed by Nillson (see [9]). Based on the
delay intervals which are related to different modes of the Markov chain, the
corresponding NCS is described by a discrete-time Markovian jump system with
norm-bounded uncertainties. Using this NCS model, LMI technique can be ap-
plied to design the controller.

This paper is organized as follows. The discrete-time Markovian jump system
with norm-bounded uncertainties is derived to describe the NCS in Sect. 2.
Section 3 studies the stability problem of the networked control system. Section
4 presents the design of the controller based on LMI. A numerical example is
provided in Sect. 5. Finally, concluding remarks are offered in Sect. 6.

Notation: If Ǎ = [ǎij] and Â = [âij] are two matrices with property that
ǎij < âij for all i, j, the interval matrix [Ǎ Â] is defined as

[Ǎ Â] = {C = [cij] : ǎij ≤ cij ≤ âij , for all i, j}. (1)

Throughout the paper, the superscript T stands for matrix transposition.
λmin(·), λmax(·), respectively, mean the minimum and the maximum eigenvalue
of the corresponding matrix. Rn denotes n dimensional Euclidean space. E{·}
and E{·|y}, respectively, denote the expectation operator and the conditional
expectation operator on y.

2 System Modeling and Assumptions

Consider the networked control system in Fig. 1. The assumptions about the
control system are described as follows:

1. The sensor is time-driven, the controller and actuator are event-driven.
2. For analysis purpose, the sensor-controller delay τsc

k and controller-actuator
delay τ ca

k are lumped together as τk = τsc
k + τ ca

k .

Fig. 1. Networked control system

3. The network induced delay is bounded. The total delay is shorter than one
sampling period h.

4. The network clock is synchronized.
5. The probability of data loss, due to noise in the communication medium

and protocol malfunctions, is zero.

In this paper, effects of network queues, varying network loads can be de-
scribed by the states of a Markov chain. The transitions between different states
in the network are modeled with a discrete state Markov chain {rk} with tran-
sition probabilities:

℘{rk+1 = j|rk = i} = ℘ij ,∀i, j ∈ S. (2)

S = {1, 2, ..., N} is a finite state space about the network loads. Together with
every state in the Markov chain, we provide an interval variable to model the
delay for the corresponding network loads. The network delay of the NCS is
denoted as τk(rk), and τk(rk) ∈ [τ̌k(rk), τ̂k(rk)], τ̌k(rk) and τ̂k(rk) are lower and
upper bounds of the interval variable at state rk.

Consider a continuous-time linear plant model:

ẋ(t) = Ax(t) + Bu(t), (3)

where x(t) ∈ Rn, u(t) ∈ Rm. Matrices A, B are real matrices with appropriate
dimensions. We assume that the plant state x(t) can be measured directly.

When the control loop is closed over the network, in order to analyze the
closed-loop system in discrete-time, we will discretize the continuous-time plant
at the sampling instants as:

xk+1 = Φxk + Γ0(τk)uk + Γ1(τk)uk−1, (4)

where

Φ = eAh, Γ0(τk) =
∫ h−τk

0
eAsdsB, Γ1(τk) =

∫ h

h−τk

eAsdsB. (5)

657Modeling and Control of NCSs with Random Delays

658 Y. Wang, Z.Q. Sun, and F.C. Sun

Clearly, Γ0(τk) and Γ1(τk) are continuous on τk(rk) ∈ [τ̌k(rk), τ̂k(rk)]. From
(5), we can find lower and upper bounds for each element of Γ0(τk) and Γ1(τk),
i.e.,

Γ0(τk) ∈ [Γ̌0(rk), Γ̂0(rk)]
= {Γ0(τk) = [γ0ij(τk)] : γ̌0ij(rk) ≤ γ0ij(τk) ≤ γ̂0ij(rk), for all i, j}, (6)

Γ1(τk) ∈ [Γ̌1(rk), Γ̂1(rk)]
= {Γ1(τk) = [γ1ij(τk)] : γ̌1ij(rk) ≤ γ1ij(τk) ≤ γ̂1ij(rk), for all i, j}, (7)

where, Γ̌0(rk) = [γ̌0ij(rk)], Γ̌1(rk) = [γ̌1ij(rk)], Γ̂0(rk) = [γ̂0ij(rk)] and Γ̂1(rk) =
[γ̂1ij(rk)].

Introduce

Γ̄0(rk) =
1
2
(Γ̌0(rk) + Γ̂0(rk)), Γ̃0(rk) =

1
2
(Γ̂0(rk)− Γ̌0(rk)), (8)

then the elements γ̃0ij(rk) of Γ̃0(rk) are nonnegative. The interval matrix is given
by

Γ0(τk) = Γ̄0(rk) + ΔΓ0(τk) = Γ̄0(rk) + δ · Γ̃0(rk), −1 ≤ δ ≤ 1. (9)

From the interval system theory, ΔΓ0(τk) = δ · Γ̃0(rk) can be decomposed as

ΔΓ0(τk) = E0(rk)Δ0(τk)D0(rk), ΔT
0 (τk)Δ0(τk) ≤ I, (10)

where

E0(rk) =
[√

γ̃011(rk)e1 · · ·
√

γ̃01m(rk)e1 · · ·
√

γ̃0nm(rk)en

]
, (11)

D0(rk) =
[√

γ̃011(rk)f1 · · ·
√

γ̃01m(rk)fm · · ·
√

γ̃0nm(rk)fm

]T
, (12)

where ei(i = 1, 2, ..., n) and fi(i = 1, 2, ...,m) are identity vectors. Thus,

Γ0(τk) = Γ̄0(rk) + E0(rk)Δ0(τk)D0(rk). (13)

Similarly, Γ1(τk) can be denoted by

Γ1(τk) = Γ̄1(rk) + ΔΓ1(τk) = Γ̄1(rk) + E1(rk)Δ1(τk)D1(rk), ΔT
1 (τk)Δ1(τk) ≤ I.

(14)
Let

E(rk) = [E0(rk) E1(rk)], H0(rk) =
[

D0(rk)
0

]
,

H1(rk) =
[

0
D1(rk)

]
, Δ(τk) =

[
Δ0(τk) 0

0 Δ1(τk)

]
, (15)

then

[ΔΓ0(τk) ΔΓ1(τk)] = E(rk)Δ(τk)[H0(rk) H1(rk)], ΔT (τk)Δ(τk) ≤ I. (16)

Modeling and Control of NCSs with Random Delays 659

From the above analysis, when the network-induced delay is varying in an
interval defined by a Markov chain, the discretized plant can be denoted by

xk+1 = Φxk+[Γ̄0(rk)+ΔΓ0(τk)]uk+[Γ̄1(rk)+ΔΓ1(τk)]uk−1, when rk = i, (17)

where ΔΓ0(τk) and ΔΓ1(τk) are given by (16).
Equation (17) can be regarded as a discrete-time Markovian jump system

with norm-bounded uncertainties (see [12]). The state feedback controller for
system (17) can be written as

uk = Fixk, when rk = i. (18)

Introduce a new state variable zk =
[

xk

uk−1

]
. From (17) and (18), we can

describe the closed loop system as

zk+1 = (Gi + ΔGi)zk, when rk = i, (19)

where

Gi =
[

Φ + Γ̄0iFi Γ̄1i

Fi 0

]
,

ΔGi =
[

ΔΓ0(τk)Fi ΔΓ1(τk)
0 0

]
=

[
Ei

0

]
Δ(τk)

[
H0iFi H1i

]
. (20)

Let Mi =
[

Ei

0

]
, Ni =

[
H0iFi H1i

]
, then

ΔGi = MiΔ(τk)Ni. (21)

The goals of this paper are to establish the stochastic stability of the closed
loop system (19) and to design a controller for the NCS using LMI technique.

3 Stochastic Stability of the NCS with Random Delays

In this section, we will present a sufficient condition for the stochastic stability
of system (19). For this purpose, we will introduce the following definition (see
[3]) and lemma (see [10]).

Definition 1. For system (19), the equilibrium point 0 is stochastically stable
if for every initial state (z0, r0)

E{
∞∑

k=0

|zk(z0, r0)|2 | z0, r0} < ∞. (22)

660 Y. Wang, Z.Q. Sun, and F.C. Sun

Lemma 1. Let A,E,F and H be real matrices of appropriate dimensions with
‖F‖2 ≤ 1. Then for P > 0 and scalar ε > 0 satisfying εI −ET PE > 0, we have

(A + EFH)T P (A + EFH)
≤ AT PA + AT PE(εI − ET PE)−1ET PA + εHT H. (23)

Theorem 1. Let the state of the plant (4) and the delay history be available
when the control command (18) is calculated. The closed loop system (19) is
stochastically stable if there exist matrices Pi > 0 and constants εi > 0 satisfying
the following LMIs[

GT
i P̃iGi − Pi + εiN

T
i Ni GT

i P̃iMi

MT
i P̃iGi −(εiI −MT

i P̃iMi)

]
< 0, i = 1, ..., N, (24)

where

P̃i =
N∑

j=1

℘ijPj , i = 1, ..., N. (25)

Proof. Define the Lyapunov function Vk(zk, rk) as follows:

Vk(zk, rk) = zT
k P (rk)zk, (26)

when rk = i, P (rk) = Pi > 0. Then we have

E{Vk+1(zk+1, rk+1)|zk, rk = i} − Vk(zk, rk = i)

=
N∑

j=1

℘(rk+1 = j|i)zT
k+1Pjzk+1 − zT

k Pizk

=
N∑

j=1

℘ijz
T
k (Gi + ΔGi)T Pj(Gi + ΔGi)zk − zT

k Pizk

= zT
k {(Gi + ΔGi)T P̃i(Gi + ΔGi)− Pi}zk

= zT
k {(Gi + MiΔ(τk)Ni)T P̃i(Gi + MiΔ(τk)Ni)− Pi}zk. (27)

From Lemma 1 and (24), it follows that

E{Vk+1(zk+1, rk+1)|zk, rk = i} − Vk(zk, rk = i)
≤ zT

k {GT
i P̃iGi − Pi + GT

i P̃iMi(εiI −MT
i P̃iMi)−1MT

i P̃iGi + εiN
T
i Ni}zk

= zT
k Qizk < 0. (28)

For xk �= 0, Pi > 0 and Qi < 0 imply

E{Vk+1(zk+1, rk+1)|zk, rk} − Vk(zk, rk)
Vk(zk, rk)

<
zT
k Qizk

zT
k Pizk

≤ α− 1, (29)

where

α = 1−min
i∈S
{λmin(Qi)
λmax(Pi)

} < 1. (30)

Modeling and Control of NCSs with Random Delays 661

Similar to the proof in [1], with Pi > 0 and Qi < 0, we have

lim
N→∞

E{
N∑

k=0

|zk(z0, r0)|2 | z0, r0} ≤ M̃, (31)

where M̃ is a positive number. Thus the closed loop system (19) is stochastically
stable. $%

In Theorem 1, we assume the controller has been given. Hence, the sampling
period could be designed based on (5), (8), (11), (12), (14) and (24).

4 Controller Design of the NCS with Random Delays

In this section, the state feedback controller in the form of (18) will be designed
to stabilize the system (17). Using the new variable zk, we obtain

uk =
[
Fi 0

]
zk, when rk = i. (32)

Let F̄i =
[
Fi 0

]
, F̄i ∈ Rm×(n+m), then, the parameters Gi and ΔGi can be

rewritten as:

Gi =
[

Φ Γ̄1i

0 0

]
+

[
Γ̄0i

I

]
F̄i = Li + RiF̄i,

ΔGi = MiΔ(τk){
[
0 H1i

]
+ H0iF̄i}

= MiΔ(τk)(Si + H0iF̄i). (33)

From Theorem 1, the closed loop system is stochastically stable if⎡⎣ (Li + RiF̄i)T P̃i(Li + RiF̄i)− Pi

+εi(Si + H0iF̄i)T (Si + H0iF̄i)
∗

MT
i P̃i(Li + RiF̄i) −(εiI −MT

i P̃iMi)

⎤⎦ < 0, (34)

where ∗ is used as an ellipse for terms induced by symmetry.
Define Xi = P−1

i . Partition Xi into four blocks corresponding to the structure
of F̄i, then

F̄iXi =
[
Fi 0

] [
X11i X12i

XT
12i X22i

]
= Fi[X11i X12i] = Yi. (35)

Pre- and post-multiplying (34) by diag(Xi, I) yields⎡⎣ (LiXi + RiYi)T P̃i(LiXi + RiYi)−Xi

+εi(SiXi + H0iYi)T (SiXi + H0iYi)
∗

MT
i P̃i(LiXi + RiYi) −(εiI −MT

i P̃iMi)

⎤⎦ < 0. (36)

662 Y. Wang, Z.Q. Sun, and F.C. Sun

Let λi = 1
εi

> 0 and

Ui =
[√

℘i1(LiXi + RiYi)T · · · √℘iN (LiXi + RiYi)T
]
,

Vi =
[√

℘i1M
T
i · · ·

√
℘iNMT

i

]
,

Q = diag(X1 · · ·XN). (37)

It follows that the inequalities (36) are equivalent to the following LMIs:⎡⎢⎢⎣
−Xi (SiXi + H0iYi)T Ui 0

SiXi + H0iYi −λiI 0 0
UT

i 0 −Q λiV
T
i

0 0 λiVi −λiI

⎤⎥⎥⎦ < 0, i = 1, . . . , N. (38)

The following stabilization theorem follows directly.

Theorem 2. If there exist matrices Xi > 0, Yi and constants λi > 0, i =
1, ..., N , satisfying the inequalities (38), then the state feedback controller (18)
stochastically stabilizes system (17). The feedback gains can be obtained by:

Fi = Yi

[
XT

11i

XT
12i

]
(X11iX

T
11i + X12iX

T
12i)

−1. (39)

In Theorem 2, Xi > 0 guarantees X11i > 0, hence, the matrices X11iX
T
11i +

X12iX
T
12i are nonsingular.

5 Numerical Example

To illustrate the proposed theoretical results, a numerical example is considered
in this section. The system setup is given by Fig. 1. The sampling period is
chosen as h = 0.05s. The network loads: low network load, medium network
load and high network load, respectively, are denoted by the state rk = 1, 2, 3 of
a Markov chain {rk} with the following transition probability matrix:

℘ =

⎡⎣0.5 0.5 0
0.3 0.6 0.1
0.3 0.6 0.1

⎤⎦ . (40)

The delays corresponding to the three states are:

τk ∈ [0, 0.2h] if rk = 1,
τk ∈ [0.2h, 0.6h] if rk = 2,
τk ∈ [0.5h, h] if rk = 3.

The remote controlled plant is:

ẋ(t) =
[

0 1
−3 −4

]
x(t) +

[
0
1

]
u(t). (41)

Modeling and Control of NCSs with Random Delays 663

Discretizing the plant at the sampling instants yields:

xk+1 = Φxk + Γ0(τk)uk + Γ1(τk)uk−1. (42)

Note that the delay is varying in known intervals governed by the Markov
chain. Using (8), (11), (12) and (14), (42) can be described in the form of discrete-
time Markovian jump system with uncertainties. The parameters are calculated
as follows:

Φ = eAh =
[

0.9965 0.0453
−0.1358 0.8154

]
. (43)

For rk = 1,

Γ̄01 =
[

0.0069
−0.079

]
, Γ̄11 =

[
−0.0057
0.1242

]
,

E1 =
[

0.0831 0
0 0.3524

]
, H01 = H11 =

[
0.0831
0.3524

]
.

For rk = 2,

Γ̄02 =
[

0.0007
0.0322

]
, Γ̄12 =

[
0.0005
0.0130

]
,

E2 =
[

0.0221 0
0 0.1141

]
, H02 = H12 =

[
0.0221
0.1141

]
.

For rk = 3,

Γ̄03 =
[

0.0002
0.0119

]
, Γ̄13 =

[
0.0010
0.0334

]
,

E3 =
[

0.0123 0
0 0.109

]
, H03 = H13 =

[
0.0123
0.109

]
.

Introducing the new variable zk, using Theorem 2, the matrices Xi and Yi

satisfying (38) can be obtained:

X1 =

⎡⎣ 303.4385 −110.5042 6.6678
−110.5042 428.5714 −21.9731

6.6678 −21.9731 345.4269

⎤⎦ ,

X2 =

⎡⎣ 305.0778 −109.8815 3.9862
−109.8815 473.9414 −7.4259

3.9862 −7.4259 358.9820

⎤⎦ ,

X3 =

⎡⎣ 268.5643 −81.3332 2.3294
−81.3332 342.7914 −5.8254
2.3294 −5.8254 357.9405

⎤⎦ .

Y1 =
[
1.0497 12.7165 −43.1885

]
,

Y2 =
[
5.4711 −20.9985 −4.7462

]
,

Y3 =
[
4.2948 −10.3812 −4.4617

]
.

664 Y. Wang, Z.Q. Sun, and F.C. Sun

0 50 100 150
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

K

X

X1
X2

Fig. 2. The control performance of the NCS with initial condition [0.01 0.17]T

0 50 100 150
−6

−4

−2

0

2

4

6
x 10

−3

k

u

Fig. 3. The control law obtained from Theorem 2

Then the controller is calculated,

F1 =
[
0.0172 0.0391

]
,

F2 =
[
0.0021 −0.0437

]
,

F3 =
[
0.0073 −0.0283

]
. (44)

Modeling and Control of NCSs with Random Delays 665

Figure 2 shows the control performance of the system with the initial condition
[0.01 0.17]T when the control loop is closed over the network. The controller
(44) stochastically stabilizes the original system. The control law is depicted in
Fig. 3.

Comparison with earlier results: Based on LQG optimal design technique,
the stochastic optimal controller of an NCS on random delay networks was pre-
sented by Nilsson. However, in his approach, the stochastic Riccati-iteration
equation is extremely difficult to solve and computationally demanding since
the iteration involves expectation calculation of stochastic variables. By con-
trast, the present controller design is in the form of LMI, which offers efficient
numerical schemes for the analysis and design of control systems.

6 Conclusion

In this paper, the upper and lower bounds of the network-induced delays of the
NCS are defined by the states of an underlying Markov chain. Based on the
intervals, the NCS is described by a discrete-time Markovian jump system with
norm-bounded uncertainties. The state feedback controller is presented in terms
of LMI using the stochastic Lyapunov function approach. The results of stability
analysis for the NCS could be used as a criterion to verify the system sampling
period.

References

1. Boukas, E. K., Shi, P.: Stochastic stability and guaranteed cost control of discrete-

time uncertain systems with Markovian jump parameters. International Journal of

Robust and Nonlinear Control. 8 (1998) 1155–1167

2. Boyd, S., Ghaoui, L. E., Feron, E., Balakrishnan, V.: Linear matrix inequalities in

system and control theory. (1994) SIAM, Philadephia.

3. Ji, Y., Chizeck, H. J., Feng, X., Loparo, K. A.: Stability and control of discrete-

time jump linear systems. Control Theory and Advanced Applications. 7 (1991)

247–270

4. Hu, S. S., Zhu, Q. X.: Stochastic optimal control and analysis of stability of net-

worked control systems with long delay. Automatica 39 (2003) 1877–1884

5. Lian, F. L., Moyne, J., Tilbury, D.: Performance evaluation of control networks:

Ethernet, controlNet, and deviceNet. IEEE Control Systems Magzine. 21 (2001)

66–83

6. Lian, F. L., Moyne, J., Tilbury, D.: Analysis and modeling of networked control

systems: MIMO case with multiple time delays. Proceeding of American Control

Conference. (2001) 4306–4312

7. Liou, L.-W., Ray, A.: A stochastic regulator for integrated communicaiton and

control systems: Part I-Formulation of control law. Journal of Dynamic Systems,

Measurement and Control. 113 (1991) 604–611

8. Luck, R., Ray, A.: An observer-based compensator for distributed delays. Auto-

matica. 26 (1990) 903–908

666 Y. Wang, Z.Q. Sun, and F.C. Sun

9. Nisson, J.: Real-time control systems with delays. 1998 Ph.D. thesis, Department

of Automatic Control. Lund Institute of Technology, Lund, Sweden

10. Souza, C., Xie, L.: Delay-dependent robust H∞ control of uncertain linear state-

delayed systems. Automatica. 35 (1999) 1313–1321.

11. Walsh, G., Beldiman, O., Bushnell, L. G.: Asymptotic behavior of nonlinear net-

worked control systems. IEEE Transaction on Automatic Control. 40 (2001) 1093–

1097

12. Yuan, C., Mao, X.: Robust stability and controllability of stochastic differential

delay equations with Markovian switching. Automatica. 40 (2004) 343–354

13. Zhang, W., Branicky, M. S., Phillips, S. M.: Stability of networked control systems.

IEEE Control Systems Magzine. 21 (2001) 84–99

Controllability Implies Stabilizability for
Discrete-Time Switched Linear Systems

Guangming Xie and Long Wang

Center for Systems & Control,

LTCS and Department of Mechanics and Engineering Science,

Peking University, Beijing, 100871, China

{xiegming, longwang}@mech.pku.edu.cn

Abstract. A switched linear system is said to be controllable, if for any

given initial state and terminal state, one can find a switching sequence

and corresponding input such that the system can be driven from the

initial state to the terminal state. Necessary and sufficient condition on

the controllability of switched linear systems has been established, and a

single switching sequence can be constructed to realize the controllabil-

ity. In this paper, the stabilizability problem for switched linear systems

is formulated and we show that controllability implies stabilizability for

switched linear systems. In our framework, we using periodically switch-

ing sequence and piecewise constant feedback controller. Two stabiliza-

tion design methods, the pole assignment method and the linear matrix

inequality method are proposed. Furthermore, if a switched linear sys-

tem is both controllable and observable, then an observer-based output

feedback controller can be constructed when the system state is not avail-

able. In this case, the well-known Separation Principle is shown to still

hold. All these results are built upon our previously established funda-

mental geometric properties of controllability realization as well as the

important fact that both controllability and observability can be realized

through a single switching sequence.

1 Introduction

Switched systems, an important class of hybrid systems, have received much
attention in recent years. In the control of complex and highly uncertain sys-
tems, traditional methodologies based on a single controller do not always pro-
vide satisfactory performance. The key idea in switched control is to build a
bank of alternative controllers and switch among them online based on measure-
ments and prescribed switching strategies. Stability of switched control systems
has been studied extensively and some valuable results have been established
in the literature. On the other hand, controllability and observability are two
fundamental concepts in modern control theory, and have close and essential
connections with feedback stabilization, observer design, system decomposition,
model reduction, linear quadratic optimal control, etc [1]. Controllability and ob-
servability of switched linear systems have been studied by a number of papers

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 667–682, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

668 G. Xie and L. Wang

[2-10]. [2] first studied one-period controllability and one-period observability for
periodically switched systems, and some sufficient and necessary conditions were
established. Then [3] introduced the concepts of multiple-period controllability
and multiple-period observability which are natural extension of the one-period
ones, and necessary and sufficient criteria were derived as well. It was also proved
that the controllability can be realized in n periods at most, where n is the state
dimension.

Aside from [2, 3], [4] first investigated controllability for general switched lin-
ear systems, where not only control input but also switching signal were taken
as control means. The concept of controllability for switched linear systems is a
natural extension of that for ordinary linear systems. Namely, a switched linear
system is said to be controllable, if for any given initial state and terminal state,
one can find a switching sequence and corresponding input such that the system
can be driven from the initial state to the terminal state. A sufficient condi-
tion and a necessary condition for controllability of switched linear systems were
presented, respectively [4]. It was proved that the necessary condition was also
sufficient for 3-dimensional systems with only two subsystems. Subsequently, [5]
proved the sufficiency for 3-dimensional systems with arbitrary number of sub-
systems. Then, necessary and sufficient geometric type criteria for controllability
and observability were derived in [6, 7] and [9]. The discrete-time counterparts
were addressed in [8]. Furthermore, it was proved that the controllability can
be realized by a single switching sequence [6, 9, 10], a direct consequence is the
criterion given in [7, 8]. There are many other results on controllability and ob-
servability of general hybrid systems[11-16].

As is well known in modern control theory, for a controllable (ordinary) linear
system, there exists a (static) state feedback controller such that the closed-
loop system is asymptotically stable, i.e., controllability implies stabilizability.
Since the concept of controllability has been formulated and well investigated
for switched linear systems, it is natural to formulate the stabilization problem
for switched linear systems and ask the following fundamental question:

Does controllability still imply stabilizability for switched linear systems?
In this paper, we will try to answer this question in discrete-time domain.

We will show that if the system is controllable, then we can adopt periodically
switching sequence and piecewise constant feedback controller to stabilized the
system. Consider a discrete-time switched linear system given by

x(t+ 1) = Ar(t)x(t) +Br(t)u(t)
y(t) = Cr(t)x(t) (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rp is the input, and y(t) ∈ Rq is the output.
The scalar function r(k) : {0, 1, · · ·} → I = {1, 2, · · · , N} is the switching signal
to be designed. Moreover, r(t) = i means that the subsystem (Ai, Bi, Ci) is
activated.

The system (1) is said reversible, if all the matrices Ai are nonsingular, i ∈ I.
In this paper, we only consider reversible switched systems.

Controllability Implies Stabilizability 669

Notations: We use standard notations throughout this paper. Given a matrix
B ∈ Rn×p, denote Im(B) as the range of B, i.e., Im(B) = {y|y = Bx, x ∈ Rp}.
Given a matrix A ∈ Rn×n and a linear subspace W ⊆ Rn, let 〈A|W〉 be the
minimal invariant subspace containing W, i.e., 〈A|W〉 =

∑n
i=1A

i−1W. For no-
tational simplicity, denote 〈A|B〉 = 〈A|Im(B)〉. The notation

∏n
i=1Ai stands

for the matrix product A1 · · ·An, and
∏1

i=n Ai stands for the matrix product
An · · ·A1, respectively. For any integer M > 0, set M = {0, 1, · · · ,M − 1}. XT

is the transpose of the matrix X and Sym{X} is used for the symmetric ex-
pression X + XT . X > 0 (resp. < 0) means that X is positive definite (resp.
negative definite). I and 0 denote the identity and zero matrices of appropriate
size, respectively. In a symmetric matrix, the symbol (•)T denotes the corre-
sponding symmetric block. A matrix A ∈ Rn×n is said to be Schur-stable if all
its eigenvalues lie within the unit circle.

In what follows, the stabilizability problem will be first formulated for switched
linear systems. In our formulation, we will adopt periodical switching signals and
piecewise constant state feedback controllers. We will show that our formulation
is a natural extension of that for ordinary linear systems.

For system (1), a switching sequence is to specify when and to which subsys-
tem one should switch at each instant of time.

Definition 1. A switching sequence π is a set of finite scalars

π
def
= {i0, · · · , iM−1} (2)

where M ≤ ∞ is the length of π, im ∈ I is the index of the mth subsystem
(Aim

, Bim
), for m ∈M . Denote

Aπ =
0∏

m=M−1

Aim
(3)

We call Aπ the transfer matrix of the switching sequence π.

Given a switching sequence π = {i0, · · · , iM−1}, an associated periodical
switching signal r(·) can be determined as

r(kM +m) = im, m ∈M,k = 0, 1, 2, · · · . (4)

Definition 2. System (1) is said to be stabilizable (via state feedback) if there
exist a switching sequence π = {i0, · · · , iM−1} and a series of state feedback gains
K1, · · · ,KM such that the system is asymptotically stable under the periodical
switching signal (4) and the piecewise constant state feedback controller

u(t) = Kδ(t)x(t) (5)

where
δ(kM +m) = m+ 1, m ∈M,k = 0, 1, 2, · · · . (6)

670 G. Xie and L. Wang

Remark 1. If N = 1, then system (1) reduces to an ordinary linear system.
In this case, it is easy to see that the concept of stabilizability in Definition 2
reduces to the traditional one for ordinary linear systems as well.

Remark 2. The definition is stronger than that given in [9] for continuous case,
where stabilizability is defined in open-loop form. The equivalence of them for
switched systems is still an open problem.

In the rest of this paper, we will first give a brief review of controllability
and observability, and the related realization problem for switched systems in
Section 2. The review and discussions will help us to understand the charac-
teristics of controllability and observability of switched systems. Next, we prove
that controllability implies stabilizability for switched linear systems in Section
3. Moreover, two stabilization design methods are presented. Subsequently, in
Section 4, we will show that observability guarantees the existence of a stable
state observer for switched systems. Hence, observer-based state feedback stabi-
lization can be constructed. Then, an illustrative example is presented in Section
5. Finally, we conclude the whole paper in Section 6.

2 Controllability and Observability

In this section, some basic results on controllability and observability of switched
linear systems will be given, including definitions, criteria and realizations.

Definition 3. [8] For system (1), state x is reachable (controllable), if there
exist a positive integer M , a switching signal r(m) : M → I, and input sequence
u(0), · · · , u(M), such that x(0) = 0 and x(M) = x (x(0) = x and x(M) = 0).
System (1) is said to be completely reachable (controllable) if any state x is
reachable(controllable).

For system (1), [8] defined a subspace sequence as follows

W1 =
N∑

i=1

〈Ai|Bi〉,Wm =
N∑

i=1

〈Ai|Wm−1〉,m = 2, · · · , n (7)

Let R, C denote the set of all reachable states and the set of all controllable
states of system (1), respectively. Then [8] gave the following result.

Proposition 1. [8] For system (1), R ≡ C ≡ Wn.

By Proposition 1, we know that for system (1), controllability is equivalent
to reachability, and the system is controllable if and only if Wn = Rn.

On the other hand, from Definition 3, we know that the controllability of
switched systems relies not only on inputs but also on switching signals. Namely,
given any two states x0, xf , one needs to find not only a suitable switching signal
but also a series of appropriate inputs such that the system can be driven from
x0 to xf . Thus, it is important not only to give mathematical conditions to

Controllability Implies Stabilizability 671

check controllability, but also to provide a concrete effective method of finding
the suitable switching signal and the corresponding inputs to realize it.

[10] discussed this problem and formulated it as the controllability realization
problem. In the sequel, we will briefly review the main results in [10]. Further-
more, the simultaneous controllability/observability realization problem will also
be discussed.

Given a switching sequence π = {i0, · · · , iM−1}, the reachable state set of π
is defined as

R(π)
def
= {x|∃ inputs u(m), m ∈M such that x(0) = 0 and x(M) = x.} (8)

It is easy to verify that the reachable state set is a linear subspace given by

R(π) = Im
([

(
1∏

m=M−1

Aim)Bi0 (
2∏

m=M−1

Aim)Bi1 · · · BiM−1

])
(9)

Similarly, the controllable state set of π is defined as

C(π)
def
= {x|∃ inputs u(m), m ∈M such that x(0) = x andx(M) = 0.} (10)

The controllable state set is also a linear space given by

C(π) = Im
([

Bi0 , A
−1
i0
Bi1 , · · · ,

M−2∏
m=0

A−1
im
BiM−1

])
(11)

It is easy to see that R(π), C(π) ⊆ Wn, ∀π, and C =
⋃

∀ π C(π), R =
⋃

∀ π R(π).
Given two switching sequences π1 = {i0, · · · , iM−1} and π2 = {j0, · · · , jL−1},

the product of π1 and π2 is defined as

π1 ∧ π2
def
= {i0, · · · , iM−1, j0, · · · , jL−1} (12)

Since it is easy to verify that (π1 ∧ π2) ∧ π3 = π1 ∧ (π2 ∧ π3), we just denote it
by π1 ∧ π2 ∧ π3. Given a switching sequence π, the kth power of π is defined as

π∧k def
=

k times︷ ︸︸ ︷
π ∧ · · · ∧ π (13)

Proposition 2. [10] Given any switching sequences π1, π2 and π, we have

R(π1 ∧ π2) = Aπ2R(π1) + R(π2) (14)

R(π∧n) = 〈Aπ|R(π)〉 (15)

Aπ∧nR(π∧n) = R(π∧n) (16)

R(π) = AπC(π), C(π) = A−1
π R(π) (17)

672 G. Xie and L. Wang

Theorem 1. [10] For system (1), there exists a basic switching sequence πb,
such that R(πb) = Wn.

Proof. We will provide a brief proof here since the main ideas will be used later.
Suppose dim(Wn) = d. By (7), there must exist subspaces V1, · · · ,Vd such that

Wn =
d∑

l=1

Vl (18)

and each Vl has the following form

M−1∏
m=1

Aim
〈Aj |Bj〉 (19)

where i1, · · · , iM−1, j ∈ I, 0 ≤ M < ∞. Consider the subspace which has the
form (19), we can choose a switching sequence as

πα = {
n times︷ ︸︸ ︷
j, · · · , j} (20)

such that R(πα) = 〈Aj |Bj〉. Furthermore, we can select another switching se-

quence as πβ = {i1, · · · , iM−1} such that
M−1∏
m=1

Aim〈Aj |Bj〉 = Aπβ
R(πα) ⊆

R(πα∧πβ). Thus, for the subspaces V1, · · · ,Vd, we can select appropriate switch-
ing sequences π1, · · · , πd such that Vl ⊆ R(πl), for l = 1, · · · , d. By (18), we have

Wn =
d∑

l=1
Vl ⊆

d∑
l=1

R(πl). Since it is obvious that
d∑

l=1
R(πl) ⊆ Wn, we have

Wn =
d∑

l=1
R(πl).

Now, we can construct the switching sequence πb as follows. First, if R(π∧n
1) =

Wn, we can take πb = π∧n
1 . If not, there must exist k ∈ {2, · · · , d} such that

(without loss of generality, suppose k = 2)

R(π2) �⊆ R(π∧n
1) (21)

By Proposition 2, we have R(π2 ∧ π∧n
1) = Aπ∧n

1
R(π2) + R(π∧n

1). By (16), we
have R(π2 ∧ π∧n

1) = Aπ∧n
1

(
R(π2) + R(π∧n

1)
)
. It follows that

dim(R(π2 ∧ π∧n
1)) = dim(Aπ∧n

1
(R(π2) + R(π∧n

1))) = dim(R(π2) + R(π∧n
1))

By (21), we have R(π2) + R(π∧n
1) � R(π∧n

1). Thus, we know that dim(R(π2 ∧
π∧n

1)) > R(π∧n
1)) ≥ 2. Similarly, we can construct switching sequences π1 =

π1, πi = πi ∧ (πi−1)
∧n

, i = 2, · · · , d and πb = πd. By analogous analysis, we have
dim(R(πl)) ≥ l, for l = 1, · · · , d. On the other hand, since R(πb) ⊆ Wn, we have
dim(R(πb)) ≤ d. Thus, we have dim(R(πb)) = d. Hence, R(πb) = Wn. This
completes the proof of Theorem 1.

Controllability Implies Stabilizability 673

Remark 3. Reversibility of system (1) is necessary for (15-17). If the system is
not reversible, we can not find a single switching sequence in a constructive way
to realize the controllability.
Remark 4. Since R ⊆ Wn and R(πb) ⊆ R, by Proposition 2, we have that
C(πb) = R(πb) = R = Wn. This proves Proposition 1.

Remark 5. Theorem 1 reveals an essential feature of controllability of switched
systems, i.e., one particular switching sequence is enough to realize controllability
and reachability, namely, the system can be driven from any initial state to any
terminal state through the switching sequence πb by only choosing appropriate
control inputs.

Remark 6. The proof of Theorem 1 presents a constructive procedure to build
up the switching sequence πb.

Remark 7. Since πb is not unique, which is the “optimal” one, how to define
optimality for switching sequences and how to find the optimal one are problems
of interest which will be discussed in a separate paper.

As for observability, we can establish similar results as follows.
Definition 4. [8] System (1) is (completely) observable, if there exist a positive
integer M and a switching signal r(t) : M → I, such that the output sequence
{y(0), · · · , y(M)} and the input sequence {u(0), · · · , u(M)} are sufficient to de-
termine x(0).

Definition 5. [8] The system (1) is (completely) constructible, if there exist a
positive integer M and a switching signal r(t) : M → I, such that the output se-
quence {y(0), · · · , y(M)} and the input sequence {u(0), · · · , u(M)} are sufficient
to determine x(M).

We define a subspace sequence as follows

Y1 =
N∑

i=1

〈AT
i |CT

i 〉,Ym =
N∑

i=1

〈AT
i |Ym−1〉,m = 2, · · · , n. (22)

By the Duality Principle, we have
Proposition 3. For system (1), the following statements are equivalent:

(i) the system is observable;
(ii) the system is constructible;
(iii) Yn = Rn.

Furthermore, by analogous analysis and duality, we have
Proposition 4. For system (1), there exists a basic switching sequence πo such
that the observability can be realized through πo.

Remark 8. Consider the switching sequence πb∧πo, where πb is given in Theorem
1 and πo is given in Proposition 4, it is easy to see that both controllability and
observability can be realized by πb ∧ πo. The proof of this fact is omitted due to
space limitation. This important property of controllability and observability is
the starting point for observer-based state feedback controller design.

674 G. Xie and L. Wang

3 Controllability Implies Stabilizability

In this section, we will show that controllable switched linear system is stabi-
lizable. Two different approaches, the classical pole assignment method and the
more popular linear matrix inequality (LMI)-based formulation are presented,
respectively.

Lemma 1. Given a switching sequence π = {i0, · · · , iM−1}, if R(π) = Rn, then
there exist state feedback gains K1, · · · ,KM such that the matrix

Ac =
0∏

m=M−1

(Aim
+Bim

Km+1) (23)

is nonsingular and Schur-stable.

Proof. Since R(π) = Rn, the matrix

Q =

[
(

1∏
m=M−1

Aim
)Bi0 , (

2∏
m=M−1

Aim
)Bi1 , · · · , BiM−1

]
(24)

is of full rank. Moreover

Ac = AiM−1

∏0
m=M−2(Aim

+Bim
Km+1)

+BiM−1KiM−1

∏0
m=M−2(Aim

+Bim
Km+1)

= AiM−1AiM−2

∏0
m=M−3(Aim

+Bim
Km+1)

+AiM−1BiM−2KiM−2

∏0
m=M−3(Aim

+Bim
Km+1)

+BiM−1KiM−1

∏0
m=M−2(Aim +BimKm+1)

= · · ·
= Aπ +

∏1
m=M−1Aiim

Bi0K1

+
∏2

m=M−1Aiim
Bi1Ki1(Ai0 +Bi0K1)

+ · · ·
+AiM−1BiM−2KiM−2

∏0
m=M−3(Aim

+Bim
Km+1)

+BiM−1KiM−1

∏0
m=M−2(Aim +BimKm+1)

Thus, we can rewrite Ac as

Ac = Aπ +Q
[
K̂T

1 , K̂
T
2 , · · · , K̂T

M−1, K̂
T
M

]T
(25)

where K̂1 = K1, K̂m = Km

∏0
l=m−1(Ail

+Bil
Kl+1), m = 2, · · · ,M .

Given a nonsingular and Schur-stable matrix Ac, on the one hand, since
Q is of full rank, there exist appropriate K̂1, · · · , K̂M satisfying the algebraic
equation above. On the other hand, since Ac is nonsingular, we know that each
(Ail

+Bil
Kl+1) is nonsingular. Thus, we can get

K1 = K̂1,Km = K̂m

(
0∏

l=m−1

(Ail
+Bil

Kl+1)

)−1

,m = 2, · · · ,M. (26)

This completes the proof of Lemma 1.

Controllability Implies Stabilizability 675

Theorem 2. For system (1), controllability implies stabilizability.

Proof. Since the system is controllable, by Theorem 1, there exists a switching
sequence such that its reachable set equals the full space. Thus, by Lemma 1, we
can take the periodical switching signal generated by π and the feedback gains
K1, · · · ,KM given in (26) such that Ac is Schur-stable. This implies that the
closed-loop system is stable as well.

Remark 9. In fact, the proof of Lemma 1 provides a pole assignment algorithm
for stabilization design of switched systems, i.e., we can first select any Schur-
stable and nonsingular matrix As, then calculate appropriate state feedback
gains Km, m = 1, · · · ,M such that Ac = As. Moreover, it should be pointed out
the controllability of a switched linear system does not mean that each of its
subsystems (viewed as an ordinary linear system) is controllable (in the sense of
Kalman). As a matter of fact, the former is a much weaker condition than the
latter [6, 9, 10]. Hence, Theorem 2 reveals a fundamental property of switched
linear systems.

In what follows, we will present another design method: the LMI-based
method. In our discussion to follow, we will often invoke the following lemma.

Lemma 2. [17] Let the matrices U ∈ Cn×m,W ∈ Ck×n, and Φ = ΦT ∈ Cn×n

be given. Then the following statements are equivalent:
i) There exists a matrix V ∈ Cm×k satisfying UVW + (UVW)T + Φ < 0;

ii) The following two conditions hold

NUΦN T
U < 0 or UUT > 0

N T
W ΦNW < 0 or WTW > 0

where NU and N T
W are the orthogonal complements of U and WT , respectively.

It follows that
NUU = 0,

N T
WWT = 0.

By Lemma 1, we know that there exists a positive definite matrix P such
that

AT
c PAc − P < 0 (27)

is feasible if R(π) = Rn. Based on this fact, we obtain the following LMI type
stabilization result.

Theorem 3. Suppose system (1) controllable, and hence without loss of gen-
erality, suppose there exists a switching sequence π = {i0, i1, · · · , iM} such that
R(π) = Rn, then there exist a positive definite matrix S, nonsingular matrices
Vm, m = 2, · · · ,M and matrices Fm,m = 1, · · · ,M such that the following LMI

676 G. Xie and L. Wang⎡⎢⎢⎢⎢⎢⎢⎢⎣

S AiM−1VM +BiM−1FM 0 · · · 0 0
(•)T VM + V T

M AiM−2VM−1+BiM−2FM−1 · · · 0 0
0 (•)T VM−1+V T

M−1 · · · 0 0
...

...
.

...
0 0 0 · · · V2+V T

2 Ai0S+Bi0F1
0 0 0 · · · (•)T S

⎤⎥⎥⎥⎥⎥⎥⎥⎦
>0

(28)
is feasible. Furthermore, the system can be stabilized with the periodical switching
signal generated by π and the state feedback gains given by

K1 = F1S
−1, Km = FmV

−1
m , m = 2, · · · ,M. (29)

Proof. Setting S = P−1, (27) is equivalent to

AcSA
T
c − S < 0 (30)

Denote

Ām+1 = Aim +BimKm+1, m ∈M

H1 = Ā1, Hm = ĀmHm−1, m = 2, · · · ,M.

Condition (30) can be written as

[In − ĀM]
[
−S 0
0 HM−1SHT

M−1

] [
I

−ĀT
M

]
< 0

Define NU = [I − ĀM] and W = [0 I], then (30) is equivalent, by Lemma
2, to [

−S 0
0 HM−1SHT

M−1

]
+ Sym

{[−ĀM

−I

]
VM [0 I]

}
< 0

that is [
−S −ĀMVM

(•)T −VM − V T
M + HM−1SHT

M−1

]
< 0 (31)

Denote Ψ2 =
[
−S −ĀMVM

(•)T −VM − V T
M

]
. Since S > 0, we get from (31) that Ψ2 must

be negative definite. Moreover, (31) can be written as

[
I 0 0
0 I −ĀM−1

]⎡⎣ −S −ĀMVM 0
(•)T −VM − V T

M 0
0 0 HM−2SHT

M−2

⎤⎦⎡⎣ I 0
0 I
0 −ĀT

M−1

⎤⎦ < 0

By Lemma 2, we get the equivalent inequality⎡⎣ −S −ĀMVM 0
(•)T −VM − V T

M 0
0 0 HM−2SHT

M−2

⎤⎦+ Sym
{⎡⎣ 0

−ĀM−1
−I

⎤⎦VM−1[0 0 I]
}
< 0

Controllability Implies Stabilizability 677

that is ⎡⎣ −S −ĀMVM 0
(•)T −VM − V T

M −ĀM−1VM−1
0 (•)T −VM−1 − V T

M−1 + HM−2SHT
M−2

⎤⎦ < 0 (32)

Denote

Ψ3 =

⎡⎣ −S −ĀMVM 0
(•)T −VM − V T

M −ĀM−1VM−1
0 (•)T −VM−1 − V T

M−1

⎤⎦ ,
Ψ3 must also be negative definite since S > 0. Repeating the similar procedure
(M − 1) times, we get the equivalent inequality of Mn-dimension as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎣

−S −ĀMVM 0 · · · 0 0
(•)T −VM − V T

M −ĀM−1VM−1 · · · 0 0
0 (•)T −VM−1 − V T

M−1 · · · 0 0
...

...
.

...
0 0 0 · · · −V3 − V T

3 −Ā2V2
0 0 0 · · · (•)T −V2 − V T

2 + H1SHT
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0

(33)
which is equivalent, by Schur complement, to⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−S −ĀMVM 0 · · · 0 0 0
(•)T −VM − V T

M −ĀM−1VM−1 · · · 0 0 0
0 (•)T −VM−1 − V T

M−1 · · · 0 0 0
...

...
.

...
...

0 0 0 · · · −V3 − V T
3 −Ā2V2 0

0 0 0 · · · (•)T −V2 − V T
2 −H1S

0 0 0 · · · 0 (•)T −S

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

(34)
By change of variables

F1 = K1S, Fm = KmVm, m = 2, · · · ,M. (35)

we get (28). This completes the proof.

Remark 10. It can be seen from (28) that Vm + V T
m > 0, m = 2, · · · ,M . This

means that Vm is of full rank.

Remark 11. Theorem 3 claims two things: first, the matrix inequality (27) can be
equivalently transformed into the linear matrix inequality (28); second, control-
lability is a sufficient condition for the feasibility of that linear matrix inequality.

678 G. Xie and L. Wang

4 Observer-Based Output Feedback Stabilization

In case the system state is not easy to measure directly, one may design an
observer to reconstruct the system state by using input and output information.
For system (1), we can construct a full-dimension state observer as follows:

x̂(t+ 1) = Ar(t)x̂(t) +Br(t)u(t) + Lδ(t)(y(t) − Cr(t)x̂(t)) (36)

where x̂(t) ∈ Rn is the reconstructed state, r(t) is a periodical switching signal
generated by some switching sequence π = {i0, · · · , iM−1} (to be designed),
δ(t) is given in (6). Furthermore, we adopt the observer-based output feedback
controller as follows:

u(t) = Kδ(t)x̂(t) (37)

Denote zT (t) = [xT (t) x̂T (t) − xT (t)], then the augmented observer-based
output feedback (closed-loop) system can be described as

z(t+ 1) =
[
Ar(t) +Br(t)Kδ(t) Br(t)Kδ(t)
0 Ar(t) − Lδ(t)Cr(t)

]
z(t) (38)

By similar analysis, asymptotical stability of system (38) is equivalent to the
Schur-stability of

Ã =
[
Ac ∗
0 Ao

]
where Ac is given in (23) and

Ao =
1∏

m=M

(Aim−1 − LmCim−1). (39)

It is easy to see that Ã is Schur-stable if and only if both Ac and Ao are Schur-
stable. Hence, the observer-based output feedback stabilization problem for sys-
tem (1) boils down to finding feedback matrices K1, · · · ,KM and gain matrices
L1, · · · ,LM such that Ac and Ao are both Schur-stable.

Notice that the Schur-stability ofAo is equivalent to the existence of a positive
definite matrix Po satisfying

− Po +AT
o PoAo < 0 (40)

Combining (40) with (30), Theorem 3 can be extended to the case of observer-
based output feedback control. Its proof is similar to that of the direct state
feedback case, due to space limitation, we present the result without proof.

Theorem 4. Suppose system (1) is controllable and observable, and hence with-
out loss of generality, suppose there exists a switching sequence π={i0, i1,· · · , iM}
such that controllability and observability can both be realized by π, then there exist
a positive definite matrix S, nonsingular matrices Vm, m = 2, · · · ,M and matri-
ces F1, · · · , FM such that (28) is feasible, meanwhile, there exist a positive definite

Controllability Implies Stabilizability 679

matrix Po, nonsingular matrices G1, · · · , GM−1, and matrices X1, · · · ,XM such
that the following LMI⎡⎢⎢⎢⎢⎢⎣

Po (•)T 0 · · · 0 0
G1Ai0 − X1Ci0 G1 +GT

1 (•)T · · · 0 0
...

...
.

...
0 0 0 · · · GM−1 +GT

M−1 (•)T

0 0 0 · · · PoAiM−1 − XMCiM−1 Po

⎤⎥⎥⎥⎥⎥⎦ > 0 (41)

is feasible. Furthermore, the system can be stabilized with the periodical switching
signal generated by π and the observer-based output feedback controller given in
(36), (37) with feedback matrices given in (29) and gain matrices given by

Lm = G−1
m Xm, m = 1, · · · ,M − 1, LM = P−1

o XM . (42)

Remark 12. Theorem 4 shows that the design of state feedback gains is indepen-
dent of that of observer gains. This means that the Separation Principle holds
for switched linear systems as well.

5 Illustrative Example

In this section, we give a numerical example to illustrate the usefulness and
effectiveness of our methods.

Example 1. Consider the periodical switched system (1) with I = {1, 2, 3} and

A1 =

⎡⎣0 0 0
0 2 0
0 0 2

⎤⎦ , B1 =

⎡⎣1
1
0

⎤⎦ , C1 = [1 0 1];

A2 =

⎡⎣2 0 0
0 0 0
0 0 2

⎤⎦ , B2 =

⎡⎣0
1
1

⎤⎦ , C2 = [1 1 0]; (43)

A3 =

⎡⎣2 0 0
0 2 0
0 0 0

⎤⎦ , B3 =

⎡⎣1
0
1

⎤⎦ , C3 = [0 1 1];

First, it is easy to verify that the system is both controllable and observable.
Next, we construct a switching sequence to realize them. Since

Span{B1, B2, B3} = R3,

We take πi = {i} such that Span{Bi} ⊂ R(πi), i = 1, 2, 3. Let π = π1 ∧ π2 ∧ π1,
it is easy to verify that

R(π) = R3.

680 G. Xie and L. Wang

0 2 4 6 8 10 12 14 16 18 20
−200

−100

0

100

200

300

400

−− ο −− x
1
(t)

−− + −− x
2
(t)

−− ∇ −− x
3
(t)

t/s

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

||
x(

t)
 ||

t/s

Fig. 1. Simulation results of direct state feedback

Thus, the controllability can be realized by π. Furtermore, it is easy to verify
that observability can be realized by π as well.

As a result, by Theorem 2, the system should be stabilizable. In fact, by
solving the LMI (28), we can take the direct state feedback control law (5), (6)
with

K1 =
[
0 −0.0549 0

]
,K2 =

[
0 0 −0.1519

]
,K3 =

[
−0.1694 0 0

]
to stabilize the system asymptotically (see Fig. 1 for simulation results).

Furthermore, by solving the LMI (41), we can construct a full-dimension state
observer (36) with

L1 =
[
0 0 0.3

]T
, L2 =

[
0.1765 0 0

]T
, L3 =

[
0 0.1279 0

]T
and take the observer-based output feedback control law (37) with

K1 =
[
0 −0.0549 0

]
,K2 =

[
0 0 −0.1519

]
,K3 =

[
−0.1694 0 0

]
to stabilize the system asymptotically (see Fig. 2 for simulation results).

Controllability Implies Stabilizability 681

0 2 4 6 8 10 12 14 16 18 20
−50

0

50

100

150

200

250

300

350

400

−− ο −− x
1
(t)

−− + −− x
2
(t)

−− ∇ −− x
3
(t)

t/s

0 2 4 6 8 10 12 14 16 18 20
−350

−300

−250

−200

−150

−100

−50

0

50

100

−− ο −− e
1
(t)

−− + −− e
2
(t)

−− ∇ −− e
3
(t)

t/s

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

||
x(

t)
 ||

t/s

Fig. 2. Simulation results of observer-based state feedback

6 Conclusions

Based upon our previously established geometric properties of controllability re-
alization, we prove that controllability implies stabilizability for switched linear
systems. The result is a natural extension of the corresponding feedback stabi-
lization theorem for linear systems in modern control theory. The future work
includes finding algorithm to acquire optimal switching sequence to realize con-

682 G. Xie and L. Wang

trollability and finding geometric conditions which characterize stabilizability
for switched systems.

Acknowledgements

This work is supported by NSFC (60404001 and 10372002) and National 973
Program (2002CB312200). The authors are grateful to the reviewers for their
helpful and valuable comments and suggestions for improving this paper.

References

1. W. M. Wonham, Linear Multivariable Control: A Geometric Approach, Springer-

Verlag, Berlin, 1985.
2. J. Ezzine and A. H. Haddad, “Controllability and observability of hybrid systems,”

Int. J. Control, 49(6), 2045-2055, 1989.
3. G. Xie and D. Zheng, “Research on Controllability and Reachability of Hybrid

Systems,” Proc. of Chinese Contr. Conf., 114-117, 2000.
4. Z. Sun and D. Zheng, “On stabilization of switched linear control systems,” IEEE

AC, 46(2), 291-295, 2001.
5. G. Xie, D. Zheng, and L. Wang, “Controllability of switched linear systems,” IEEE

AC, 47(8), 1401 -1405, 2002.
6. G. Xie and L. Wang, Necessary and sufficient conditions for controllability of

switched linear systems, Proc. of American Control Conference. 1897-1902, 2002.
7. Sun, Z., Ge, S.S., and Lee, T.H., Controllability and reachability criteria for

switched linear systems, Automatica, 38(5), 775-786, 2002.
8. S. S. Ge, Z. Sun, and T. H. Lee, “Reachability and controllability of switched linear

discrete-time systems,” IEEE AC, 46(9), 1437-1441, 2001.
9. G. Xie and L. Wang, “Controllability and stabilizability of switched linear sys-

tems,” Systems and Control Letters, 48(2), 135-155, 2003.
10. G. Xie and L. Wang, “Reachability realization and stabilizability of switched linear

discrete-time systems”, J MATH ANAL APPL, 280 (2): 209-220, 2003.
11. A. Bemporad, G. Ferrari-Trecate, M. Morari, “Observability and controllability

of piecewise affine and hybrid systems”, Proceedings of the IEEE Conference on
Decision and Control, v 4, 1999, p 3966-3971

12. A. Bemporad, G. Ferrari-Trecate, M. Morari, “Observability and controllability of

piecewise affine and hybrid systems”,IEEE Transactions on Automatic Control, v

45, n 10, Oct, 2000, p1864-1876.
13. R. vidal, S. Shankar, A. Chiuso, S. Soatto, “Observability of Linear Hybrid Sys-

tems”, Proceeding of the 2003 Hybrid systems: cotnrol and computation, p526-539.
14. R. Vidal, “Identification of PWARX hybrid models with unknown and possibly dif-

ferent orders”, Proceedings of the 2004 American Control Conference, 2004, p547-

552.
15. A. Balluchi, L. Benvenuti, M. D. Di Benedetto, A. L. SangiovanniCVincentelli,

“Design of Observers for Hybrid Systems”, Proceeding of the 2002 Hybrid systems:
cotnrol and computation, p76-89.

16. A. Balluchi, M. D. Di Benedetto, L. Benvenuti, A. L. Sangiovanni-Vincentelli, “Ob-

servability for Hybrid Systems”, Proceedings of the IEEE Conference on Decision
and Control, v 2, 2003, p1159-1164.

17. R. E. Skelton, T. Iwasaki and K. Grigoriadis, “A unified approach to linear control

design”, Taylor and Francis series in Systems and Control, 1997.

Author Index

Agrawal, Manindra 55

Alur, Rajeev 70

Ames, Aaron D. 86

Ariyur, Kartik 306

Babaali, Mohamed 103

Balas, Gary J. 168

Balluchi, Andrea 118

Batt, Grégory 134

Bemporad, Alberto 151, 417

Borrelli, Francesco 168

Boulet, Pierre 386

Buisson, Jean 184

Bujorianu, Manuela L. 198

Bujorianu, Marius C. 198

Carloni, Luca P. 526

Chareyron, Sophie 215

Clarke, Edmund 242

Cormerais, Hervé 184

Crawford, Lara S. 1

de Jong, Hidde 134

Dekeyser, Jean-Luc 386

Del Vecchio, Domitilla 226

Di Cairano, Stefano 151

Egerstedt, Magnus 466

Fehnker, Ansgar 242

Feiler, Peter 370

Feron, Eric 606

Ferrari-Trecate, Giancarlo 354

Fregene, Kingsley 168

Frehse, Goran 258

Fromherz, Markus P.J. 1

Fusaoka, Akira 495

Geiselmann, Johannes 134

Geyer, Tobias 274

Girard, Antoine 291

Glavaski, Sonja 306

Glover, William 433

Godbole, Datta 168

Heemels, W.P.M.H. 354, 417

Hespanha, João Pedro 322

Hindi, Haitham A. 1

Hiskens, Ian A. 339

Hu, Jianghai 557

Jha, Sumit Kumar 242

Juloski, Aleksandar Lj. 354

Keviczky, Tamás 168

Krogh, Bruce H. 242, 370

Kumar, Rajesh 370

La Torre, Salvatore 70

Labbani, Ouassila 386

Lanotte, Ruggero 402

Lazar, Mircea 417

Lecchini, Andrea 433

Lee, Edward A. 25

Lygeros, John 198, 433

Ma, Yi 449

Maciejowski, Jan 433

Madhusudan, P. 70

Megre ts ki, Alexandre 606

Mehta, Tejas R. 466

Mitchell, Ian M. 480

Murray, Richard M. 226

Murrieri, Pierpaolo 118

Nakamura, Katsunori 495

Niederberger, Dominik 511

Niessen, J.H.G. 354

Page, Michel 134

Paoletti, Simone 354

Papachristodoulou, Antonis 306

Papafotiou, Georgios 274

Pappas, George J. 103

Parrilo, Pablo A. 54

Passerone, Roberto 526

Pastravanu, Octavian 417

Pinto, Alessandro 526

Prajna, Stephen 542

684 Author Index

Raffard, Robin L. 557

Rantzer, Anders 542

Ratschan, Stefan 573

Richard, Pierre-Yves 184

Rodŕıguez-Carbonell, Enric 590

Roozbehani, Mardavij 606

Ropers, Delphine 134

Sangiovanni-Vincentelli, Alberto L.

118, 526

Sastry, Shankar 86

Schneider, Dominique 134

She, Zhikun 573

Stewart, Greg 168

Strubbe, Stefan 623

Sun, Fu Chun 655

Sun, Zeng Qi 655

Tabuada, Paulo 640

Templeton, Jeremy A. 480

Thiagarajan, P.S. 55

Tini, Simone 402

Tiwari, Ashish 590

Tomlin, Claire J. 557

van der Schaft, Arjan 623

Vidal, René 354, 449

Wang, Long 667

Wang, Yan 655

Weiland, Siep 417

Wieber, Pierre-Brice 215

Xie, Guangming 667

Zheng, Haiyang 25

	Frontmatter
	Invited Papers
	Coordinated Control for Highly Reconfigurable Systems
	Operational Semantics of Hybrid Systems
	SOS Methods for Semi-algebraic Games and Optimization

	Regular Papers
	The Discrete Time Behavior of Lazy Linear Hybrid Automata
	Perturbed Timed Automata
	A Homology Theory for Hybrid Systems: Hybrid Homology
	Observability of Switched Linear Systems in Continuous Time
	Controller Synthesis on Non-uniform and Uncertain Discrete--Time Domains
	Qualitative Analysis and Verification of Hybrid Models of Genetic Regulatory Networks: Nutritional Stress Response in {\itshape Escherichia coli}
	Optimal Control of Discrete Hybrid Stochastic Automata
	Hybrid Decentralized Control of Large Scale Systems
	On the Stabilisation of Switching Electrical Power Converters
	Bisimulation for General Stochastic Hybrid Systems
	Position and Force Control of Nonsmooth Lagrangian Dynamical Systems Without Friction
	Existence of Cascade Discrete-Continuous State Estimators for Systems on a Partial Order
	Refining Abstractions of Hybrid Systems Using Counterexample Fragments
	PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech
	Direct Torque Control for Induction Motor Drives: A Model Predictive Control Approach Based on Feasibility
	Reachability of Uncertain Linear Systems Using Zonotopes
	Safety Verification of Controlled Advanced Life Support System Using Barrier Certificates
	Polynomial Stochastic Hybrid Systems
	Non-uniqueness in Reverse Time of Hybrid System Trajectories
	Comparison of Four Procedures for the Identification of Hybrid Systems
	An Ontology-Based Approach to Heterogeneous Verification of Embedded Control Systems
	Mode-Automata Based Methodology for Scade
	Taylor Approximation for Hybrid Systems
	Infinity Norms as Lyapunov Functions for Model Predictive Control of Constrained PWA Systems
	Air-Traffic Control in Approach Sectors: Simulation Examples and Optimisation
	Identification of Deterministic Switched ARX Systems via Identification of Algebraic Varieties
	Learning Multi-modal Control Programs
	A Toolbox of Hamilton-Jacobi Solvers for Analysis of Nondeterministic Continuous and Hybrid Systems
	On Transfinite Hybrid Automata
	Design of Optimal Autonomous Switching Circuits to Suppress Mechanical Vibration
	Interchange Formats for Hybrid Systems: Review and Proposal
	Primal--Dual Tests for Safety and Reachability
	Adjoint-Based Optimal Control of the Expected Exit Time for Stochastic Hybrid Systems
	Safety Verification of Hybrid Systems by Constraint Propagation Based Abstraction Refinement
	Generating Polynomial Invariants for Hybrid Systems
	Modeling, Optimization and Computation for Software Verification
	Bisimulation for Communicating Piecewise Deterministic Markov Processes (CPDPs)
	Sensor/Actuator Abstractions for Symbolic Embedded Control Design
	Modeling and Control of Networked Control Systems with Random Delays
	Controllability Implies Stabilizability for Discrete-Time Switched Linear Systems

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

