

Lecture Notes in Computer Science 3297
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Nuno Jardim Nunes Bran Selic
Alberto Rodrigues da Silva
Ambrosio Toval Alvarez (Eds.)

UML Modeling
Languages
and Applications

«UML» 2004 Satellite Activities
Lisbon, Portugal, October 11-15, 2004
Revised Selected Papers

13

Volume Editors

Nuno Jardim Nunes
Universidade da Madeira, Campus da Penteada
Mathematics and Engineering Department
9000-390 Funchal, Portugal
E-mail: njn@uma.pt

Bran Selic
IBM Rational Software
770 Palladium Drive, Kanata, Ontario K2V 1C8, Canada
E-mail: bselic@ca.ibm.com

Alberto Rodrigues da Silva
INESC-ID and Instituto Superior Técnico
Rua Alves Redol, 9, 1000-029 Lisboa, Portugal
E-mail: alberto.silva@acm.org

Ambrosio Toval Alvarez
Universidad de Murcia, Campus de Espinardo
30100 Murcia, Spain
E-mail: atoval@um.es

Library of Congress Control Number: 2005921517

CR Subject Classification (1998): D.2, D.3, K.6, I.6

ISSN 0302-9743
ISBN 3-540-25081-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11399971 06/3142 5 4 3 2 1 0

Preface

The �UML� 2004 conference was held in Lisbon (Portugal) from October 11
through October 15, 2004. It was the seventh conference in a series of annual
events that started in 1998. �UML� has rapidly become one of the leading
venues to present and discuss the development of object-oriented modeling. In
order to reflect the changes in the field, the �UML� conference series will be
continued from 2005 onwards under the name MODELS (Model Driven Engi-
neering, Languages and Systems).

In an effort to make this year’s conference more useful and effective for a wider
community, including academics and practitioners working in areas related to
UML and modeling in general, a set of satellite events was organized, including
workshops dedicated to specific research topics, an industry track, a poster/demo
session, and a tools exhibit. This volume is a compilation of the contributions
presented at these satellite events.

Workshops at �UML� 2004 took place during the first three days of the
conference (from October 10 to 12). Following the tradition of previous �UML�
conferences, �UML� 2004 workshops provided a collaborative forum for groups
of (typically 15 to 30) participants to exchange recent or preliminary results,
to conduct intensive discussions on a particular topic, or to coordinate efforts
between representatives of a technical community. Ten workshops were held,
covering a variety of hot topics, which have been covered in the workshop re-
ports contained in this volume. Each workshop lasted for a full day. A novelty
with respect to previous �UML� conferences was the inclusion of a Doctoral
Symposium, which was well received, to provide an explicit space for young re-
searchers developing their thesis on some aspect related to UML. We would like
to emphasize the relevant and innovative topics considered in the workshops at
this �UML� conference edition as well as the high level of participation in all
of them. All these workshops were selected by the Program Committee indicated
below, after a formal review process. Special thanks are given to all members
for their valuable support. We would like to thank also the Spanish Ministry
of Science and Technology (project DYNAMICA/PRESSURE TIC 2003-07804-
C05-05) for its aid in the workshop reports’ publication.

The purpose of the industry track was to report on innovative results and
experiences in the industrial application of software modeling and model-driven
development in industrial settings. Competitive pressures and the all too familiar
problems of traditional programming-oriented approaches to software develop-
ment have led to some remarkable and highly innovative applications of model-
driven development in industry. The organizing committee of the �UML� con-
ference series felt that it was appropriate and timely to provide a forum where
such results could be reported, not only to describe new and interesting tech-
niques and technologies but also to demonstrate that model-driven development
has been applied successfully and widely beyond the research lab environment.

VI Preface

The resulting 12 industry papers—all peer reviewed—combine a set of submis-
sions selected by a dedicated Industry Track Program Committee (see below)
and a set of invited papers from domain experts with proven results in indus-
try. These papers are not mere experience reports, although experience is an
important facet of all of them, but they describe important contributions to the
evolving body of theory of model-driven development.

The poster/demo session took place during the main conference, from
October 13 to 15. The 11 accepted submissions were displayed in the coffee-
break room, enabling contributors to get the most feedback on their work. The
list of accepted posters/demos spans many different research areas, from model-
based testing to user-interface design; and also many application domains, from
distributed systems to critical systems. The poster/demo contributions are avail-
able in this volume in the form of extended short papers. One of the goals of the
UML is to provide tool support and interchange. Here you have an opportunity
to be familiar with many interesting research projects.

Live demonstrations of cutting-edge systems were an important and exciting
part of the conference. The tool exhibits session provided an excellent oppor-
tunity where participants analyzed and viewed the most relevant UML- and
MDA-related tools in action and discussed these systems with their creators or
distributors. The tool exhibits session took place during the main conference,
from October 13 to 15, and included the following live demos: (1) “seCAKE: A
Complete CASE Tool with Reuse Support”, dTinf; (2) “Making UML Diagrams
Accessible for Visually Impaired Programmers”, FNB; (3) “The Suite of Telel-
ogic Products: Doors/Analyst, TAU/Developer, and TAU/Architect”, Telelogic;
(4) “IBM Rational Rose XDE Products”, Sinfic; and (5) “Nucleus BridgePoint”,
Mentor Graphics. The tool exhibit contributions are available in this volume in
the form of extended short papers.

Following this preface are several important pages listing the many people
and organizations without which this event would not have been possible. Please
take a moment to peruse these pages and join us in thanking them for their
dedication and support. We also thank the staff at Springer for the help with
the production of this volume.

Finally we think the excellent contributions in this volume speak for them-
selves.

November 2004 Nuno Jardim Nunes
Bran Selic

Alberto Silva
Ambrosio Toval

Organization

Executive Committee

General Chair Stephen J. Mellor (Mentor Graphics, USA)
Conference Chair Ana Moreira (New University of Lisbon, Portugal)
Program Co-chairs Thomas Baar (EPFL, Switzerland)

Alfred Strohmeier (EPFL, Switzerland)
Industry Track Chair Bran Selic (IBM Rational Software, Canada)
Tutorials Chair Ezra K. Mugisa (University of the West Indies at

Mona, Jamaica)
Workshop Chair Ambrosio Toval (University of Murcia, Spain)
Panel Chair Jon Whittle (NASA Ames Research Center, USA)
Posters Chair Nuno Jardim Nunes (University of Madeira,

Portugal)

Organizing Team

Publicity Chairs João Araújo (New University of Lisbon, Portugal)
Geri Georg (Colorado State University, USA)

Local Arrangements Chair Isabel Sofia Brito (Politécnico de Beja,
Portugal)

Tools Exhibition Chair Alberto Silva (Technical University of Lisbon,
Portugal)

Local Sponsors Chair Fernando Brito e Abreu (New University of Lisbon,
Portugal)

Web Chair Miguel Goulão (New University of Lisbon,
Portugal)

Workshop Program Committee

Eric Dubois (Luxembourg)
Jean Michel Bruel (France)
Juan Hernández (Spain)

Ivan Porres (Finland)
Roel Wieringa (The Netherlands)

VIII Organization

Industry Track Program Committee

Michael von der Beeck (Germany)
Francis Bordeleau (Canada)
Alan Brown (USA)
Steve Cook (USA)
Anders Ek (Sweden)
Karl Frank (USA)
David Frankel (USA)
Sebastien Gerard (France)
Geri Georg (USA)
Eran Gery (Israel)
Øystein Haugen (Norway)
Brian Henderson-Sellers (Australia)

Allan Kennedy (UK)
Luciano Lavagno (Italy)
Nikolai Mansurov (Canada)
Grant Martin (USA)
Steve Mellor (USA)
Alan Moore (UK)
Birger Møller-Pederson (Norway)
Laurent Rioux (France)
Jim Rumbaugh (USA)
Ed Seidewitz (USA)
Thomas Weigert (USA)

Posters/Demos Program Committee

Alberto Silva (Portugal)
Ambrosio Toval (Spain)
Bran Selic (USA)

João Araújo (Portugal)
Leonel Nbrega (Portugal)

Organization IX

Sponsors

SINFIC
http://www.sinfic.pt

Springer Verlag
http://www.springeronline.com

Mentor Graphics
http://www.mentor.com

IBM France
http://www.ibm.com/fr

Supporters

ACM Special Interest Group
on Software Engineering
http://www.acm.org

IEEE Computer Society
http://www.ieee.com

New University of Lisbon
http://di.fct.unl.pt

Turismo de Lisboa
http://www.tourismlisbon.com

Object Management Group,
http://www.omg.org

Table of Contents

Workshops

Consistency Problems in UML-Based Software Development
Zbigniew Huzar, Ludwik Kuzniarz, Gianna Reggio,
Jean Louis Sourrouille . 1

5th International Workshop on Aspect-Oriented Modeling
Dominik Stein, Jörg Kienzle, Mohamed Kandé . 13

Software Architecture Description and UML
Paris Avgeriou, Nicolas Guelfi, Nenad Medvidovic 23

SVERTS – Specification and Validation of Real-Time and Embedded
Systems

Susanne Graf, Øystein Haugen, Ileana Ober, Bran Selic 33

Essentials of the 3rd UML Workshop in Software Model Engineering
(WiSME’2004)

Martin Gogolla, Paul Sammut, Jon Whittle . 43

Open Issues in Industrial Use Case Modeling
Gonzalo Génova, Juan Llorens, Pierre Metz, Rubén Prieto-Dı́az,
Hernán Astudillo . 52

Models for Non-functional Aspects of Component-Based Software
(NfC’04)

Jean-Michel Bruel, Geri Georg, Heinrich Hussmann, Ileana Ober,
Christoph Pohl, Jon Whittle, Steffen Zschaler . 62

OCL and Model Driven Engineering
Jean Bézivin, Thomas Baar, Tracy Gardner, Martin Gogolla,
Reiner Hähnle, Heinrich Hussmann, Octavian Patrascoiu,
Peter H. Schmitt, Jos Warmer . 67

Critical Systems Development Using Modeling Languages
(CSDUML’04): Current Developments and Future Challenges (Report
on the Third International Workshop)

Jan Jürjens, Eduardo B. Fernandez, Robert B. France,
Bernhard Rumpe, Constance Heitmeyer . 76

XII Table of Contents

Doctoral Symposium
Marcus Alanen, Jordi Cabot, Miguel Goulão, José Sáez 85

Industry Track

Function Net Modeling with UML-RT: Experiences from an Automotive
Project at BMW Group

Michael von der Beeck . 94

Supporting the Building and Analysis of an Infrastructure Portfolio
Using UML Deployment Diagrams

Jeffrey A. Ingalsbe . 105

Model-Driven Development of Enterprise Applications
Vinay Kulkarni, Sreedhar Reddy . 118

Lessons Learned Applying UML in the Design of Mission Critical
Software

Robert G. Pettit IV, Julie A. Street . 129

System-on-Chip Verification Process Using UML
Qiang Zhu, Tsuneo Nakata, Masataka Mine, Kenichiro Kuroki,
Yoichi Endo, Takashi Hasegawa . 138

SoftContract: Model-Based Design of Error-Checking Code and
Property Monitors

Luciano Lavagno, Marco Di Natale, Alberto Ferrari, Paolo Giusto . . . 150

Tailoring IEEE 1471 for MDE Support
Eric Jouenne, Véronique Normand . 163

Data Communications Standards: A Case for the UML
Otto Preiss, Tatjana Kostic, Christian Frei . 175

Experiences in Modeling for a Domain Specific Language
Steve Anonsen . 187

Six Lessons Learned Using MDA
Stephen J. Mellor, Leon Starr . 198

Applying MDA and UML in the Development of a Healthcare System
Chris Raistrick . 203

Table of Contents XIII

Managed Architecture of Existing Code as a Practical Transition
Towards MDA

Nikolai Mansurov, Djenana Campara . 219

Posters / Demos

EPTUD: An Eclipse Plugin for Testing UML Designs
Trung Dinh-Trong, Nilesh Kawane, Sudipto Ghosh, Robert France,
Anneliese A. Andrews . 234

Towards a Platform for Debugging Executed UML-Models in Embedded
Systems

Philipp Graf, Clemens Reichmann, Klaus D. Müller-Glaser 238

The TopModL Initiative
Pierre-Alain Muller, Cédric Dumoulin, Frédéric Fondement,
Michel Hassenforder . 242

PAMPERO: Precise Assistant for the Modeling Process in an
Environment with Refinement Orientation

Claudia Pons, Roxana Giandini, Gabriela Pérez, Pablo Pesce,
Valeria Becker, Jorge Longinotti, Javier Cengia 246

Tools for Critical Systems Development with UML
Jan Jürjens, Pasha Shabalin . 250

Incremental MDD Through Generative Causal Connectedness
T.D. Meijler . 254

Model-Driven Engineering of Middleware-Mediated Distributed Systems
Raul Silaghi, Alfred Strohmeier . 259

Profile Suite for Model Transformations on the Computation
Independent Level

Micha�l Śmia�lek . 264

The ProjectIT-RSL Language Overview
Carlos Videira, João Leonardo Carmo, Alberto Rodrigues da Silva . . . 269

A UML-Based Tool for Designing User Interfaces
Pedro F. Campos, Nuno J. Nunes . 273

The AGEDIS Tools for Model Based Testing
Alan Hartman, Kenneth Nagin . 277

XIV Table of Contents

Tool Exhibits

Tools Exhibits
Alberto Rodrigues da Silva . 281

Author Index . 293

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities, LNCS 3297, pp. 1–12, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Consistency Problems in UML-Based Software
Development

Zbigniew Huzar1, Ludwik Kuzniarz2, Gianna Reggio3, and Jean Louis Sourrouille4

1 Department of Computer Science, University of Technology,
, Poland

2 School of Engineering, Blekinge Institute of Technology,
Ronneby, Sweden

3 DISI, Università di Genova, Genova, Italy
4 Department of Information Technology and Computer Engineering, INSA,

Lyon, France

Abstract. This survey of the workshop series Consistency Problems in UML-
based Software Development aims to help readers to find the guidelines of the
papers. First, general considerations about consistency and related problems are
discussed. Next, the approaches proposed in the workshop papers to handle the
problems are categorized and summarized. The last section includes extended
abstracts of the papers from the current workshop.

1 Why Consistency?

The introduction of the first workshop could have been the same for the series: The
Unified Modeling Language (UML) has become an industrially accepted standard for
object-oriented modeling of large, complex systems as well as a basis for software
development methodologies. During the development process, artifacts representing
different aspects of the system are produced. The artifacts should be properly related
to each other in order to form a consistent description of the developed system. The
problems concerning and related to consistency between diagrams and models
produced within the UML-based development process are presented and discussed
within the scope of the workshop. In particular, two kinds of problems concerning
consistency are addressed – those related to consistency between diagrams within a
given model and named as an intra-consistency problem and those concerning
consistency between different models and named as an inter-consistency problem. The
papers selected and included in the workshop materials are intended to present a
spectrum of problems that occur when consistency is concerned, starting from a
general perspective and methodology for systematic checking of consistency, through
possible ways of extending UML to enable consistency checking and checking
consistency through model transformations, followed by examples of practical
realization of the checking in practice and possible tools support, ending with
formalization of the notions of consistency.

The number of submissions and participants shows the importance of the issue.
Each workshop proposed to focus on particular topics: consistency definition and

Worcław
Worcław

2 Z. Huzar et al.

verification (I), examples of inconsistencies (II), and dependency relationship (III).
However, the papers tackle problems in all areas related to consistency, from several
points of view and using various approaches.

1.1 Intra-model Consistency

Consistency problems do not seem to arise in many notations such as programming
languages. So, a preliminary question is: Where are the UML consistency problems
coming from?

When using the UML during the development process, many artifacts representing
different aspects of the system are produced, and these artifacts should be properly
related to each other in order to form a consistent description of the developed system.
There are two main reasons for having many different UML artifacts describing the
same system:

– multiview nature of UML models: at some level of abstraction a system is
described as a collection of views dealing with different, possibly overlapping,
aspects,

– the system is developed throughout different phases and iterations, with each one
producing a new, more refined description of the system.

Another source of inconsistency is the imprecise semantics of the UML. A UML
expression (i.e., a set of model elements) may have multiple interpretations, among
which some are inconsistent. Why is the UML semantics not precise? It was the wish
aim of the UML authors not to supply a precise definition of the UML to broaden the
area in which the UML applies. An advantage is that such imprecise UML models can
be implemented in many ways. The counterpart is that we do not know if there is one
possible implementation of a UML model. This issue is called intra-model or
horizontal consistency. For instance, intra-consistency is expected between model
elements representing the static and dynamic views of the modeled domain.

1.2 Inter-model Consistency

Furthermore, consistency problems arise in the UML because there is no definition of
relationships between models preserving consistency such as the refinement
relationship. A UML–based software development is a modeling process. From the
requirements to the code, the software development process produces more and more
detailed models. A model is a collection of UML model elements that represent a
system at a given level of abstraction. At each level, the produced model should be
consistent with the models at the upper, more abstract levels. This issue is called
inter-model or vertical consistency. For example, a design model should be inter-
consistent with an analysis model.

1.3 Main Issues Related to Consistency Addressed in Contributions

The papers presented and discussed during the workshops deal with the following
important issues: definition of consistency, relationships between consistency and

 Consistency Problems in UML-Based Software Development 3

development process, approaches to check consistency, and checking tools. The
positions are briefly summarized below. Regarding tools, the two main
approaches are:

– to check directly that the UML model has the required properties (expressed by
OCL or other means), using standard tools when available, and

– to translate the model into a formal language such as B or production rules, and
then to perform checks using companion tools of the target language.

2 A Survey of the Workshop Contributions

2.1 Consistency Definitions

Rule-Based Definitions
The semantics of the UML includes constraints that induce restrictions on the use of
notations in order to ensure that model interpretations are licit [26]. To avoid
inconsistencies and to make the semantics precise, most papers propose adding
constraints or well-formedness rules such as the UML ones [4,7,8,9,11,19,21,25,
26, 27,30]. A model is inconsistent when it violates the added constraints, i.e., when
there is no licit interpretation [27]. In [20], a class diagram is consistent if there is at
least one instantiation possible that satisfies all the diagram constraints. UML
artifacts form a hierarchy and all the components of an artifact should be intra and
inter consistent for the artifact to be consistent [11]. Some papers only deal with
model properties that do not ensure the entire model consistency: the behavior
should be deadlock free [24], sequence diagrams should be consistent with
statecharts [3,15], etc.

[2] presents an approach to define which UML models are intra-consistent
following an algebraic approach, that is distinguishing in a UML model a “signature”
which defines the model vocabulary, which is then used to check the well-definedness
of the other parts in quite a modular way.

Refinement
Furthermore, constraints are added to enforce the inter-model consistency, i.e., to
define the refinement relationship. Applying the ODP consistency approach [6], a set
of specifications (models) is consistent if there exists a specification that is the
refinement of each of the specifications in the set with respect to a refinement
relationship. In [21], consistency constraints include conformance to standard, good
practice and stakeholders´ specific constraints. [13] presents a general framework for
defining refinement relationships between UML models, trying to distinguish
between abstraction refinement and semantics refinement, where only the first may be
automatically checked.

Translational Definitions
Adding constraints can be seen as a declarative approach. In a translational approach,
a model is consistent if its translation into a formal language (such as B or Object-Z)

4 Z. Huzar et al.

satisfies some good properties [6,24,23,20,3]. This approach does not enforce the
entire UML model consistency, for instance in [20] only class diagrams, object
diagrams and statecharts are taken into account, while [24] only deals with behavior.
Quite different, but also based on transformations, graphical consistency conditions
specify the situations that must not occur [16]. [22] introduces a formal language
OOL, and proposes transforming a subset of UML models into OOL specifications.
The well-defined consistency and a refinement calculus of OOL are then used to
check the corresponding UML models.

Constraint Completeness
A further question is to write the entire list of constraints: examples of classification
are given (between pairs of diagrams in [8], by abstraction levels in [26]), but it is
likely that no complete list exists. Assuming that syntactic rules are expressed
formally and semantic rules use natural language, if all the constraints cannot be
expressed by syntactic rules, consistency cannot be checked automatically [21,27].

Role of Dependency in Defining Consistency
[29] presents a UML profile allowing one to express dependency relationships among
model elements characterized by behavioral properties, such as call/update/access
preservation, to help establish correct refinement among models. These relationships
are formally defined using Description Logic. Similarly, [17] sketches another profile
for expressing different kinds of dependency, precisely implicit and explicit usage
among model elements.

2.2 Consistency and Development Process

Refinement
During the development process, model consistency should be preserved through
refinement: Object-Z and CSP provide refinement concepts for checking the
translations of UML models in [24], while in [16] model transformations are
expressed using graphs. Another approach proposes defining a profile with
transformation rules using the UML extension mechanisms [25].

Development Methodology
Moreover, models should be consistent with the development methodology or
process (e.g., USDP: Unified Software Development Process in [11], COMET in
[8], general process in [19]). In [11] a three-layer framework is adapted to the
development process, while [6] uses the ODP principle of viewpoints (i.e., partial
specifications) to check UML consistency. Good practice rules and specific
development rules should also be added [21] or followed [18], preferably in a UML
profile [25,27]. [5], instead, considers the consistency problem in the component-
based development process KobrA. [14] considers the problem of the consistency
among the artifacts produced following the USDP and proposes a UML profile
expressing such artifacts and defining rules expressed with OCL to enforce

 Consistency Problems in UML-Based Software Development 5

consistency; such rules are then checked using any standard OCL tool. [2] proposes
a UML based development method which requires models to be produced with a
precise structure, and equipped with guidelines helping to detect the most probable
inconsistencies.

Incompleteness
Several authors underline that the under-specification of the UML induces
incompleteness [26,19], while models should be complete for consistency checks.
Rules can be checked on existing models, and examples of results given in [19] show
that inconsistencies are related to the development practices of the designers.

Domain Specific Cases
[10] presents the consistency aspects of the MERODE method for developing
information systems; the method is based on the formal language CSP and proposes
the use of views of three different kinds, with two having a UML-like syntax. [1]
treats consistencies due to a too rigid application of design patterns; to avoid these
they propose presenting patterns using an extension of the UML 2.0 collaboration
template, which allows to constrain the parameters and to perform some actions at the
instantiation time, such as deletion of model elements.

2.3 Consistency Checking

Most papers deal with either intra-model consistency [4,6,7,8,9,11,15,20,21,23,24,
26], some with inter-model consistency [11,16,25], others deal with both, such as
[23], which translates models into B that supplies a refinement relationship.
Obviously, a tool is required to check consistency, not only to automatically check
constraints but also to help users to find and correct errors. Depending on the
approach, declarative or translational, tools are faced with different problems.
Examples of checks applied to models are given in [14,15,18].

Constraint Checking
Each tool is associated with a suitable representation for the constraints. The most
direct way to express constraints is the OCL (Object Constraint Language). The
checking tool is standard and could be embedded in the modeling tools, as in [14].
The OCL used to express the rules is enriched with a transitive closure operator and
temporal operators in [4], and with actions in [8]. [26,21] use production rules that
add reasoning capabilities to constraints, and unlike OCL which is side-effect free,
allow actions such as corrections or tips. The graph rewriting rules in [30] describe
the resolution actions for detected inconsistencies. Based on rules in XML, the xlinkit
framework allows checking consistency of models mapped to XML using the XMI
[9]. The graphical conditions in [16] are kinds of patterns, and checking constraints
comes down to matching graphs in the UML model. [29] describes a tool, RACOoN,
for checking consistency conditions expressed in Description Logic by combining a
UML tool, an XML translator and a logical reasoning tool.

6 Z. Huzar et al.

Model Translation
Model translation into a formal language is very appealing since checking tools
already exist. Only the notions common to UML and the target language can be
translated, and the inter-consistency definition depends on its refinement
relationship. In [6] a detailed discussion of the translational approaches illustrated
with LOTOS and Object-Z is given. In [24], static aspects are translated into
Object-Z while behavioral ones are translated into CSP: only deadlocks and
interface properties are checked. The B specification and the UML model are
handled in parallel in [7], but the question of how to automate the translation of
UML/OCL models into B is not answered. UML models are decorated with
additional expressions to allow the translation into B in [20], but for temporal
properties another approach is proposed. LTS and traces are used in [3] to check
behavior properties. [5] proposes to reduce the consistency issues into deadlock
detection problems to be checked using the SPIN tools. On the other hand, [10]
describes a tool, MERMAID, which monitors the constructions of the models
required by the MERODE method, helping to ensure their consistency (also if
some post-mortem checks are implemented). Simulation approaches do not give
proofs but they increase the confidence in the model, e.g., trace validation in [15].
Translation to description logic is suggested in [28] to maintain consistency,
together with the use of an accompanying tool to prove the feasibility of the
approach. Consistency checking based on the consistency rules expressed as
graphs rewriting rules and their implementation in the UML CASE tool is
presented in [30].

3 Extended Abstracts

On Understanding of Refinement Relationship
Bogumiła Hnatkowska, Zbigniew Huzar, Lech Tuzinkiewicz
The software development process is both iterative and incremental in nature.
Modeling constitutes an important step of this process; its key artifacts are described
as models, i.e. abstract representations of the entities being modeled. There are many
relationships between models. The «refine» relationship is an interesting one as it
reflects the evolution of artifacts within the software development process. The
relationship is not precisely defined in the UML standard. Its informal definition
relates to other, not well-defined notions: “perspective”, “abstraction level”, and
“semantic level”. The paper proposes definitions of these notions in the UML terms.
Refinements defined in the paper are based on the change of abstraction levels and on
the change of semantic levels. The first kind of refinement is independent of the
interpretation of models while the second kind depends on model interpretation.
Therefore two models’ categories were introduced: non-interpretable and
interpretable, based on the formal definition of abstract and semantic levels. The
elaborated definitions may be used for describing different step-wise model
transformations.

 Consistency Problems in UML-Based Software Development 7

Consistency and Refinement of UML Models
Zhiming Liu, He Jifeng, Xiaoshan Li, Yifeng Chen
In UML-based software development, artifacts created in the development process are
modeled and analyzed from static and dynamic views using different kinds of UML
notations. Under the multiple views of UML, the developers can decompose a
software design into smaller parts of manageable scales. A development process starts
from a system requirement model consisting of a class diagram, a family of sequence
diagrams, and a family of state diagrams. Such a model can be established through
horizontal requirement incrementally by adding information and incorporating use
cases one by one. A development process also cycles through a number of steps of
vertical refinement from the requirement model into a system design model.
Therefore, the horizontal and vertical consistency are the inevitable challenging
issues, which arise from such a multi-view and multi-notational approach.

In this paper, we use a formal object-oriented specification language (OOL) to
formalize and combine UML models. With OOL, a specification of an object system
is a combination of its class declarations, method declarations and specifications of
method bodies. Different sub-models of a system model are formalized as different
parts in an OOL specification. The consistency of the different sub-models is defined
as the well-formedness of the corresponding OOL specification. With the
formalization, we develop a set of refinement laws of UML models to capture the
essential nature, principles, nature and patterns of object-oriented design. We can
apply the refinement calculus of OOL specifications to treat refinement of system
models in UML. With the support of the incremental and iterative features of object-
orientation and the Rational Unified Process (RUP), the refinement process will
preserve the consistency and correctness of the system.

UML 2.0 Model Consistency – The Rule of Explicit and Implicit Usage
Dependencies
Shiri Kremer-Davidson, Yael Shaham-Gafni
The notion of dependency is modeled in UML using the Dependency relation. The
UML specification intentionally defines the Dependency concept vaguely in order to
serve as a "catch all" relation, describing any relationship that is not a generalization
or association. The specification further defines several subtypes of Dependency:
Abstraction, Realization, Substitution, and Usage, which have a stronger semantic
meaning. For all of these modeling constructs the UML specification does not
describe any relation to the behavioral aspects or to model elements representing
runtime entities.

In this paper we investigate the runtime implications for the usage dependency.
We define the notions of explicit dependencies: dependencies that are explicitly
created by the modeler as part of the static aspect of a UML model, and implicit
usage dependencies: usages that can be inferred form the behavioral portions of a
UML model. Based on these notions we propose a definition for the semantics of
the usage dependency and a corresponding consistency notion. We propose an
implementation of such semantics and consistency through a UML Profile. We
provide an example to illuminate our ideas and describe several scenarios in which
having knowledge of the explicit and implicit dependency information and the
consistency between them is beneficial.

8 Z. Huzar et al.

Consistency Checking of USDP Models
Bogumila Hnatkowska, Anita Walkowiak
The aim of the paper is to propose a method for checking consistency of UML
models. Because the content of UML models strongly depends on used
methodology it was assumed that models that are basic outcomes of USDP process
are considered. Our aim was to improve the USDP process with some mechanisms
validating prepared models against some known rules. The rules belong to two
categories:

– well-formed rules, defined in UML standard document,
– new well-formed rules resulting from applying USDP for software development.

In the paper three USDP models are refined and formalized, i.e. Context Model,
Use Case Model, and Analysis Model. The models are defined in terms of a new
language called Robust Software Development UML (RSD_UML). RSD_UML is a
part of Robust Software Development Profile (RSDP). The profile introduces new
stereotypes basing on standard UML elements. RSD_UML language is defined
similarly to UML standard. Its syntax and static semantics are defined formally by
OCL expressions, while its dynamic semantics is defined informally, in natural
language. It was observed that most of the intra-consistency rules relate to the way of
proper construction of models. For example, the rules state that collaboration at given
semantic level (e.g. analysis) should represent a behavioral element from the previous
model (e.g. requirements). Example models written in XMI were prepared in two
different CASE tools, i.e. Rational Rose, and Poseidon for UML. OCL Evaluator was
used for models verification against inter and intra-consistency rules.

Formalizing Behaviour Preserving Dependencies in UML
Ragnhild Van Der Straeten
In the context of Model-Driven Development (MDD), models are primary assets that
embody a consistent view on the system under study. On the one hand, during model
driven software development, software models can evolve into a new version.

Model refactorings are a particular kind of model evolution which preserve the
behaviour as specified by the model. On the other hand, within the software
development life-cycle, models can gradually be refined resulting in a full-fledged
implementation. At every refinement step, this refinement process adds more concrete
details to the model. In general, refinements preserve certain correctness issues, e.g.
program refinements imply the preservation of program correctness. The behaviour
preserving properties identified in this paper for model refactorings can also be used
in the context of refinements. These properties express that certain parts of the
specified behaviour have to be preserved. In the context of model refinements, these
behaviour preserving properties can be interpreted as correctness properties between a
certain model and its refined version. In the rest of the paper, we refer to these
properties as behaviour preserving properties. The goal of this paper is threefold. First
of all, definitions of behaviour preserving properties are given in the context of UML
models. During the development process, we also want to indicate between which
UML elements or models certain properties are valid. In UML the dependency
relationship is used to describe relationships between models and their elements.

 Consistency Problems in UML-Based Software Development 9

However, it lacks a precise definition. Thus, the second aim of the paper is to extend
the UML metamodel with specialized dependency relationships expressing the
preservation properties. Thirdly, these dependency relationships are formalized
using a logic approach. This allows the automatic checking of these relationships
between UML models and elements. This is illustrated by a simple but nevertheless
representative example.

Behavioral Consistency Checking for Component-Based Software Development
Using the KobrA Approach
Yunja Choi, Christian Bunse
The KobrA method is a structured approach for component-based system
development, providing a natural way of identifying and refining system components
by separating the external view (interface or contract) from its internal view (detailed
functionalities and their realization). The method is designed to reduce system
complexity by separating concerns and facilitates software reuse, thus, saving time
and effort for software development.

Nevertheless, understanding the overall interactions and relations of many
components in a KobrA model often goes beyond human capability, mainly due to its
way of specifying different aspects of a component in various UML diagrams. For
example, statecharts are used to specify the abstract level component behavior and
activity/sequence/collaboration diagrams are used to specify detailed internal component
behavior. While this approach facilitates a systematic, iterative specification-refinement
paradigm, it can also produce unexpected inconsistencies among these different diagrams
as well as among the different levels of refinement. A systematic consistency checking
mechanism is a must to ensure the basic quality of a system.

In this paper, we aim at providing an overall consistency checking mechanism
integrated into the development process of KobrA, named consistency checking using
environment modeling. We first define generic consistency requirements in the KobrA
approach, with an emphasis on the behavioral consistency between different levels of
specifications and realizations. The consistency requirements are then reinterpreted as
consistency between a set of state transition systems describing the system behavior
(reactive systems) and a sequence of stimuli describing the system environment
(action systems). Two behavioral models are considered consistent if the reactive
system accepts every stimulus generated by the action system. In this way, we
transform various consistency issues into a deadlock detection problem that can be
automated. We demonstrate the automated consistency checking using the model
checker SPIN on a hypothetical elevator system.

Implementing Consistency Management Techniques for Conceptual Modeling
Raf Haesen, Monique Snoeck
Most software development methodologies justify the use of multiple independent
models to represent all aspects at the different stages in the development process. This
can make the resulting information system inconsistent at different levels:
inconsistencies can arise between different views of a single system, between

10 Z. Huzar et al.

documents at different development life cycle stages, or in a single document. The use
of a single model and different views to that model can avoid this problem: all views
have to be built according to well-formedness rules for that view and consistency
between the related views must be checked. In this way it is possible to obtain a
model that reaches a feasible level of validity and improved completeness. Validity
means that all statements made by the model are correct and relevant to the problem,
whereas completeness means that the model contains all the statements about the
domain. This paper presents different techniques to maintain consistency of one view
and the use of the same techniques to enforce and check consistency between the
views. First we discuss the three strategies of consistency management: consistency
by analysis, consistency by monitoring and consistency by construction. Finally we
present a concrete implementation of these rules in a modeling tool, based on the
object-oriented domain modeling method MERODE.

Improving Pattern Support in UML CASE Tool
Samir Ammour, Xavier Blanc, Mikal Ziane, Philippe Desfray
In this paper we improve the UML2.0 Collaboration Templates mechanism to better
support patterns in UML CASE tools. In our research and prototyping activities, we
have identified that two important problems lead to severe limitations: Collaboration
Templates are not versatile enough to support design patterns correctly. First, they
constrain their parameters inappropriately. Second, the instantiation of UML
Collaboration Templates does not allow us to modify or to suppress model elements,
which is sometimes necessary. Both problems make it difficult to maintain the UML
models’ consistency when applying design patterns. Collaboration Templates may
lead to inconsistencies in models. We thus propose to explicitly constrain
Collaboration Template parameters using pattern constraints and to allow the
suppression or modification of model elements using pattern actions. Pattern
constraints are OCL expressions to control which elements can be bound to the
template parameters to preserve the consistency of models. Pattern actions are written
in an action language such as Action Semantics or an extension of OCL. They are
used to modify and delete model elements to remove inconsistencies when applying
design patterns. We have prototyped this approach in the Objecteering UML CASE
tool. Both these improvements proved quite useful in several applications, and will be
included in a future version of the Objecteering CASE tool.

References

I. L. Kuzniarz, G. Reggio, J.L. Sourrouille, Z. Huzar, Workshop on Consistency Problems in
UML-based Software Development I, UML 2002, Blekinge Institute of Technology,
Research Report 2002:06. Available at http://www.ipd.bth.se/uml2002/.

II. L. Kuzniarz, G. Reggio, J.L. Sourrouille, Z. Huzar, M. Staron, Workshop on Consistency
Problems in UML-based Software Development II, UML 2003, Blekinge Institute of
Technology. Research Report 2003:06. Available at
http://www.ipd.bth.se/consistencyUML/UML2003workshop.asp.

 Consistency Problems in UML-Based Software Development 11

III. Z. Huzar, L. Kuzniarz, G. Reggio, J.L. Sourrouille, Workshop on Consistency Problems in
UML-based Software Development III, UML 2004. Available at http://uml04.ci.
pwr.wroc.pl/.

1. S. Ammour, X. Blanc, M. Ziane and P. Desfray, Improving Pattern Support in UML CASE
Tools, in III

2. E. Astesiano and G. Reggio, An Algebraic Proposal for Handling UML Consistency,
in II

3. P. Bhaduri and R. Venkatesh, Formal Consistency of Models in Multi-View Modelling,
in I

4. J.-P. Bodeveix, T. Millan, C. Percebois, C. Le Camus, P. Bazex and L. Feraud, Extending
OCL for verifying UML models consistency, in I

5. Y. Choi and C. Bunse, Behavioral Consistency Checking for Component-based Software
Development Using the KobrA Approach, in III

6. J. Derrick, D. Akehurst and E. Boiten, A framework for UML consistency, in I
7. G. Génova, J. Llorens and J. M. Fuentes, The Baseless Links Problem, in II
8. H. Gomaa and D. Wijesekera, Consistency in Multiple-View UML Models: A Case Study,

in II
9. C. Gryce, A. Finkelstein and C. Nentwitch, Lightweight Checking for UML Based

Software Development, in I
10. R. Haesen and M. Snoeck, Implementing Consistency Management Techniques for

Conceptual Modeling, in III
11. B. Hnatkowska, Z. Huzar, L Kurniarz and L. Tuzinkiewicz, A systematic approach to

consistency within UML based software development process, in I
12. B. Hnatkowska, Z. Huzar, L Kuzniarz and L. Tuzinkiewicz, Refinement relationship

between collaborations, in II
13. B. Hnatkowska, Z. Huzar and L. Tuzinkiewicz, On Understanding of Refinement

Relationship, in III
14. B. Hnatkowska and A. Walkowiak, Consistency Checking of USDP Models, in III
15. T. Huining Feng and H. Vangheluwe, Case Study: Consistency Problems in a UML Model

of a Chat Room, in II
16. J. Hendrik Kausmann, R. Heckel and S. Sauer, Extended Model Relations with Graphical

Consistency Conditions, in I
17. S. Kremer-Davidson and Y. Shaham-Gafni, UML 2.0 Model Consistency – the Rule of

Explicit and Implicit Usage Dependencies, in III
18. L. Kuzniarz and M. Staron, Inconsistencies in Student Designs, in II
19. C. Lange, M.R.V. Chaudron, J. Muskens, L.J. Somers and H.M. Dortmans, An Empirical

Investigation in Quantifying Inconsistency and Incompleteness of UML Designs, in II
20. K. Lano, D. Clark and K. Androutsopoulos, Formalising Inter-model Consistency for the

UML, in I
21. W. Qian Liu, S. Easterbrook and J. Mylopoulos, Rule Based detection of Inconsistency in

UML Models, in I
22. Z. Liu, H. Jifeng, X. Li and Y. Chen, Consistency and Refinement of UML Models, in III
23. R. Marcano and N. Levy, Using B formal specifications for analysis and verification of

UML/OCL models, in I
24. H. Rasch and H. Werheim, Consistency between UML Classes and Associated State

Machines, in I
25. W. Shen, Y. Lu and W. Liong Low, Extending the UML Metamodel to Support Software

Refinement, in II

12 Z. Huzar et al.

26. J.-L. Sourrouille and G. Caplat, Checking UML Model Consistency, in I
27. J.-L. Sourrouille and G. Caplat, A Pragmatic View on Consistency Checking of UML

Models, in II
28. R. Van Der Straeten, T. Mens and J. Simmonds, Maintaining Consistency between UML

Models Using Description Logic, in II
29. R. Van Der Straeten, Formalizing Behaviour Preserving Dependencies in UML, in III
30. R. Wagner, H. Giese and U. A. Nickel, A Plug-In for Flexible and Incremental

Consistency Management, in II

 LNCS 3297, pp. 13 – 22, 2005.
© Springer-Verlag Berlin Heidelberg 2005

5th International Workshop on
Aspect-Oriented Modeling

Dominik Stein1, Jörg Kienzle2, and Mohamed Kandé3

1 University of Duisburg-Essen, Schützenbahn 70, D-45117 Essen, Germany
dstein@cs.uni-essen.de

2 School of Computer Science, McGill University, Montreal, QC H3A 2A7, Canada
Joerg.Kienzle@mcgill.ca

3 Condris Technologies, Switzerland
Mohamed.Kande@condris.com

Abstract. This report summarizes the outcome of the 5th Workshop on Aspect-
Oriented Modeling (AOM) held in conjunction with the 7th International
Conference on the Unified Modeling Language – UML 2004 – in Lisbon,
Portugal. The workshop brought together researchers and practitioners from
two communities: aspect-oriented software development (AOSD) and software
model engineering. It provided a forum for discussing the state of the art in
modeling crosscutting concerns at different stages of the software development
process: requirements elicitation and analysis, software architecture, detailed
design, and mapping to aspect-oriented programming constructs.. This paper
gives an overview of the accepted submissions, and summarizes the results of
the different discussion groups.

1 Introduction

This paper summarizes the outcome of the 5th edition of the successful Aspect-
Oriented Modeling Workshop series. An overview of what happened at previous
editions of the workshop can be found at [12].

The workshop took place at the Vila Galé Opéra Hotel in Lisbon, Portugal, on
Monday, October 11th 2004, as part of the 7th International Conference on the Unified
Modeling Language – UML 2004 [1]. Participation was based on the submission of a
position paper addressing aspect-oriented modeling issues. A total of 17 papers were
submitted and reviewed by the program committee, 13 of which were accepted to the
workshop. In order to leave enough time for discussion, only a one-and-a-half-hour
session was dedicated to presentations. Four papers were chosen as representatives of
the workshop submissions, and intended to stimulate and provide provocative input to
the following discussion sessions. In the late morning session, the attendees split into
three groups to independently discuss specific questions concerning the eligibility of
concrete UML model elements to represent aspect-oriented concepts. From there, the
discussions quickly led to other topics. The results of the discussion groups were
collected at the end of the workshop, and presented and re-discussed with the entirety
of the workshop participants. Finally, a catalogue of questions indented as an agenda
for future research was established.

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

14 D. Stein, J. Kienzle, and M. Kandé

The rest of this report is structured as follows: Section 2 gives an overview to the
accepted papers. Section 3 summarizes the results of the discussion groups. Section 4
concludes the report and presents identified future research directions.

2 Overview of Accepted Position Papers

A total of 13 papers were accepted to the workshop (see below). This section presents
a brief overview of the papers, organized according to the software development life
cycle phase they apply to. This structure should make it easier for an interested reader
to identify the submissions that pertain to his / her research area.

Some of the papers deal with modeling of aspects at the requirements phase:
Navarro et al. (8), for example, introduce a UML profile for ATRIUM [7], a
methodology that allows the concurrent definition of requirements and software
architectures using both goal-oriented and aspect-oriented techniques. The profile
presented in the paper comes with a graphical notation that helps visualizing goal
models. Within those goal models, candidate aspects arise implicitly from goals that
participate in weaving relationships. Spies et al. (11) explain i* [13] ("eye-star"), an
early-requirements engineering technique developed by Yu. They describe how the
models being generated using this technique may be mapped to "concern templates"
as introduced by Brito and Moreira [2], thus allowing the identification of
candidate aspects.

One paper concentrated on domain models: In his paper, Steimann (12) claims that
domain models are inherently aspect free. He picks up common usages of the term
"aspect" in modeling, and investigates their meaning in software modeling: He
compares aspects to roles, discusses aspects as ordering dimensions, takes a look at
domain-specific aspects, and reasons on aspects of modeling. Finally, he provides a
proof of his claim with help of predicate logic.

Other papers focus on the impact of aspect-oriented techniques on the design phase
and the design process: For example, Li et al. (4) elucidate the necessity of having an
aspect-oriented design in order to achieve the full benefits when it comes to (aspect-
oriented) programming. On the other hand, they identify limitations in prevailing
aspect-oriented programming languages that impose important drawbacks on the
(aspect-oriented) design. Having said that, they describe a development process that
copes with these problems. Park and Kang (9) present an approach to support design
phase performance simulation and analysis with help of aspect-oriented techniques.
They make use of separate models to specify the core functionality and the
performance requirements of a system, and map them to distinct AspectJ [6] code
modules. By keeping performance specifications separate from functional
specifications, they gain benefits in both the specification and the adaptation
("feedback") of the performance requirements. Kamalakar and Ghosh (3) illustrate
how the aspect-oriented modeling technique developed by France et al. [3] can be
used to encapsulate middleware-specific functionality in distinct design models.
Later, these models can be woven into models specifying the business functionality of
an arbitrary application, thus leading to a higher reusability of the middleware-
specific design. The ideas are illustrated on a case study using CORBA.

 5th International Workshop on Aspect-Oriented Modeling 15

Besides that, some papers were concerned with the verification and testing of
aspect-oriented models: Nakajima and Tamai (7), for example, propose to use Alloy
[5], a lightweight formal specification language and analysis tool, for the precise
description of models as well as their verification. They demonstrate the use of Alloy
– i.e., how to specify aspects and how to weave them – with help of two examples,
logging and access control. Tessier et al. (13) present a formalized method, based on
static model analysis, for the early detection of conflict in aspect models. To do so,
they investigate the crosscutting relationships between aspects and their base classes,
summarize the outcome in a table, and feed the collected data to formal expressions.
That way they are able to detect possible conflicts in the ordering of aspects, in
transverse specifications, or accidental recursion, etc.

Multiple papers deal with modeling notations: Barra et al. (1) investigate the UML
2.0 specification [10] in order to find suitable abstraction means for the representation
of aspect-oriented concepts. In particular, they analyze the new UML 2.0 elements
Ports and Connectors – in connection with the revised specification of Interfaces,
Association Classes, and Components – and discuss their eligibility to represent join
points, advice, introductions, etc. Han et al. (2) introduce a MOF [9] meta-model for
AspectJ – capturing the syntax and semantics of each of its language constructs – in
order to allow the modeling of AspectJ programs. They give a detailed description of
each meta-class, its semantics, its attributes, as well as the associations it participates
in. Further, they provide a corresponding visualization. Muller (6) presents View
Components, an approach to compose generic view models (each capturing a
particular functionality) to a given base model. He points out the problems
encountered when using relationships to express composition directives, and explains
why parameterization might overcome some of these problems. Mahoney et al. (5)
focus on the specification of aspects using state charts. Using aspect-oriented
techniques, the authors show how to define abstract statecharts that can later be
woven into other statecharts, thus making behavior models reusable. Their approach
bases on the reinterpretation of certain events of one statechart in the other statecharts.
Reina et al. (10) inspect numerous existing aspect-oriented modeling approaches and
observe that most of them are closely related to particular aspect-oriented
programming platforms. They propose to rise the level of abstraction of aspect models
to platform-independent models (PIMs) in the Model-Driven Architecture (MDA) [8].
In order to express each aspect PIM most appropriately, aspect-specific profiles or
meta-model extensions should be used.

List of Position Papers

(1) Barra, E., Génova, G., Llorens, J., An Approach to Aspect Modeling with UML 2.0
(2) Han, Y., Kniesel, G., Cremers, A.B., A Meta Model and Modeling Notation for AspectJ
(3) Kamalakar, B., Ghosh, S., A Middleware Transparent Approach for Developing CORBA-

based Distributed Applications
(4) Li, J., Houmb, S.H., Kvale, A.A., A Process to Combine AOM and AOP: A Proposal

Based on a Case Study

16 D. Stein, J. Kienzle, and M. Kandé

(5) Mahoney, M., Bader, A., Elrad, T., Aldawud, O., Using Aspects to Abstract and
Modularize Statecharts

(6) Muller, A., Reusing Functional Aspects: From Composition to Parameterization
(7) Nakajima, S., Tamai, T., Lightweight Formal Analysis of Aspect-Oriented Models
(8) Navarro, E., Letelier, P., Ramos, I., UML Visualization for an Aspect and Goal-Oriented

Approach
(9) Park, D., Kang, S., Design Phase Analysis of Software Performance Using Aspect-

Oriented Programming
(10) Reina, A.M., Torres, J., Toro, M., Separating Concerns by Means of UML-Profiles and

Metamodels in PIMs
(11) Spies, E., Rüger, J., Moreira, A., Using i* to Identify Candidate Aspects
(12) Steimann, F., Why Most Domain Models are Aspect Free
(13) Tessier, F., Badri, L., Badri, M., Towards a Formal Detection of Semantic Conflicts

Between Aspects: A Model-Based Approach

3 Results of Discussion Groups

A primary goal of the workshop was to provide a platform for researchers to discuss
the impact of aspect-oriented software development on software model engineering,
and vice versa. Therefore, a major part of the workshop was spent debating on
important aspect-oriented modeling issues. In order to maximize productivity, the
participants split into three discussion groups, each of six to eight persons. The results
of the discussion are summarized in the following subsections.

3.1 Reasons for Aspect-Oriented Modeling

During the workshop, we observed that different participants had different
motivations and expectations regarding the new area of aspect-oriented modeling.
One of the contributions of this workshop was to identify and discuss the benefits of
expressing aspects at software modeling level. Many participants agreed that aspect-
oriented modeling is important because it expresses crosscutting structures and
behavior at a higher level of abstraction than aspect-oriented code. However, several
other interesting opinions were expressed. In particular, people expect aspect-oriented
modeling to provide means for:

• Resolving conflicts in software models. The idea is to use aspects at modeling
level to allow designers detect and resolve conflicts at early stages of the
development process. Typically, code-level conflicts that result from weaving
processes or aspect compositions should be detected and resolved at early
stages, not at execution time.

• Modeling reusable business rules. The idea is to express business rules as
aspects in software models that can be reused for various systems, and at
different levels of abstraction.

• Model evolution and maintenance. Similar to programming level aspects,
modeling aspects need to provide mechanisms for modularizing crosscutting
concerns in software models in order to facilitate both the evolution and
maintenance of models.

 5th International Workshop on Aspect-Oriented Modeling 17

• Expressing reusable functions. The idea is that aspects can be used to express
reusable functions, such as annotation diagrams for performance
measurements.

• Managing requirements. The idea is that requirements captured from different
stakeholders are naturally entangled; they should be expressed as separate
aspects of the system at hand. People hope that advancing aspect-oriented
modeling can help separate, combine and/or manage requirements.

To achieve these expectations much research needs to be done. We hope that
submissions to future workshops will address some of the above issues.

3.2 Aspect-Oriented Modeling and Terminology

At the workshop, one discussion dealt with the terminology in aspect-oriented
modeling and its relation to the terminology in aspect-oriented programming. Some of
the participants thought that aspect-oriented software development in general and
aspect-oriented modeling in particular could benefit from the definition of an aspect-
oriented vocabulary. Terms such as "aspect", "join point" and "weaving" might have
similar, yet slightly different meanings at different levels of software development –
similar to what happens in object-orientation: High-level analysis objects are not
identical to programming language-level objects.

Firstly, the definition of "aspect" from the programming language-level was looked at:
an aspect at the programming language-level is a modularized implementation of a
concern that otherwise (in a non-aspect-oriented implementation) would crosscut the
program structure (or its behavior). The two key elements in this sentence are
"modularize" and "crosscut". Most participants agreed that an aspect at the model-level is
a modularized model of a concern that otherwise (in a non-aspect-oriented model) would
crosscut the main model structure. Some participants, however, interpret the word
"aspect" more like what others call "concern", and hence believe that especially at the
early stages of software development there are no such things as "crosscutting aspects".
At that level, every concern is a first-class citizen, so to speak. It was discovered that the
particular conception of "aspects" often differs considerably depending on the abstraction
level that researchers are working on (cf. section 3.3, as well).

Then the discussion moved on to try and define the term "join point", which was
initially suggested to designate at modeling-level all those points at which models can
be merged / composed / woven together. Unfortunately, the term "join point" was
deemed problematic, as it is coined by AspectJ, coming with a well-defined meaning
that may cause considerable misconception when used in the modeling domain. "Join
points" in the modeling domain commonly refer to a more generalized concept, such
as "some points where aspects can hook onto" (for example). The question arose
whether or not "join points" should be named differently in the modeling domain to
highlight this distinction.

Likewise, the term "weaving" was put to question, and opposed to "composition".
"Composition" of models has been known in software modeling for a long time, and
the knowledge gained in this area of research helps the aspect-oriented modeling

18 D. Stein, J. Kienzle, and M. Kandé

community to specify and assess the effects of model-"weaving". However, it remains
unclear if both terms may be used as true synonyms, or whether "weaving" is a
special kind of "composition".

Unfortunately, no general consensus was reached for any of the terms "aspect",
"join point", and "weaving". While one part of the participants believed that using an
aspect-oriented vocabulary throughout the software development life cycle would
benefit the aspect-oriented software development community, the other participants
deemed it too early to try and define these terms in a concise way.

3.3 Aspects in the Modeling Process

During the discussion it became manifest that in the conventional software
development process – i.e., in requirements engineering, analysis, design, and
implementation – different aspects appear in different phases and on different levels
of abstraction. Requirement level aspects such as maintainability or reusability are
specified during early stages of software development, for example, while other issues
such as caching or synchronization seem to be rather implementation level aspects
that cannot easily be traced back to particular requirements in all cases. Finally, there
are concerns that are present throughout the entire software lifecycle, e.g., security,
persistence, or auditing, which are most likely to take different forms during
development. At one level, they might be modeled as aspects, i.e. their model
crosscuts the main model structure, but on other levels they do not.

It turns out that expectations for, and problems of, aspect-oriented modeling often
differ considerably between development phases and abstraction levels. Differences
exist, for example, in what should be modeled as an aspect, what should be regarded
as a join point, how and when aspects should be composed with the primary model,
etc. Therefore, authors were asked to clearly indicate at which level of abstraction, or
phase of software lifecycle, their work is situated in order to avoid misunderstandings
during the discussion.

3.4 Aspect-Oriented Modeling and UML Model Elements

One major issue in the discussion groups was to elucidate to what extent existing
UML model elements are capable of expressing aspect-oriented concepts, and/or why
they fail to do so. The UML elements of interest were: UML classes, UML packages,
UML collaborations, UML use cases, UML templates, UML (2.0) components, ports
and connectors, OCL statements, as well as sets of UML diagrams (e.g., class
diagrams, collaboration diagrams, state charts, etc.). These model elements were
collected from previous work on aspect-oriented modeling and current workshop
submissions, supplemented by brain storming in the morning session of the workshop,
and then discussed by each individual group.

Everyone agreed that current UML model elements were deemed to lack important
characteristics of aspects:

The UML class construct provides a module for encapsulating state and behavior,
and therefore seems suitable to model an aspect. Abstract classes, for instance, could
be used to encapsulate partial behavior, which can then be completed and reused in

 5th International Workshop on Aspect-Oriented Modeling 19

subclasses. However the class construct alone is not sufficient to model the
encapsulated behavior; additional UML diagrams such as state diagrams or sequence
diagrams are needed. Also, a class cannot expose required interfaces, or join points, to
the rest of the system.

The new UML 2.0 component element offers that possibility to expose required
interfaces. This feature could be used to explicitly declare a component’s join points
as part of its interface. This means, however, that aspects can only hook onto such
declared join points, which makes it hard to handle unforeseen extensions.

UML sequence diagrams were briefly discussed regarding the new fragments
feature introduced in UML 2.0, which might make it possible to declare potential
extension points.

UML templates allow a modeler to expose interfaces, and to reuse partial model
elements and configure them to his / her needs. Unfortunately, standard UML
templates are not powerful enough. All currently known approaches that use templates
to model aspects had to extend the template mechanism and step outside the UML.

Finally, UML packages were looked at. They are the most general UML model
element, since they can contain any other diagram.. They provide a nice means for
separating and grouping together all elements related to a certain concern, and
therefore do a great job in modularizing an aspect. Their capabilities, however, are
limited when trying to model the weaving, i.e. showing how elements of an aspect
affect external entities.

To summarize, aspects in aspect-orientation were identified to meet much of the
characteristics of the previously mentioned UML elements, such as:

• being the encapsulation of (some structural and/or behavioral) properties,
• being first-class entities that can exist on their own right,
• being instantiatable classifiers that can have multiple instances, each having its

own state, etc.

However, essential differences between aspects in aspect-orientation and existing
model elements in the UML were identified as well. For example, aspects were
identified to:

• provide introspection capabilities (e.g. pointcuts) and intercession capabilities
(e.g. pieces of advice or introductions),

• provide a mechanism to define (extrinsic) properties of other elements,
• break encapsulation of other elements, etc.

Concerning the introspection capabilities of aspects, possible solutions were
sketched during the discussion: Pointcuts, such as in AspectJ for example, were
identified as declarative expressions of introspection. These expressions could be
looked at as patterns that are matched against the elements of the base system.
Looking for ways to express patterns in the UML, the participants identified UML
templates and the Object Constraint Language (OCL) as possible solutions.
Adaptations to these approaches were deemed necessary, though, as UML templates
are designed to generate – rather than match – model elements, while the OCL is not
capable of expressing timely patterns (such as denoted by AspectJ's cflow construct),

20 D. Stein, J. Kienzle, and M. Kandé

for example. Possible help on how to deal with introspection capabilities on the
modeling level could also be found in the MOF specification, as it already contains
reflective capabilities.

In conclusion, the discussed ideas were deemed to be still very immature, and
therefore need to be further investigated. Finding appropriate modeling solutions that
can address all issues mentioned above was considered subject for future research.

3.5 Aspect-Oriented Modeling and Weaving of Models

Another important discussion topic dealt with the question how to weave models, and
what model elements should serve as join points. In general, weaving on the modeling
level was deemed to be more powerful than weaving on the implementation level:
Firstly, weaving on the modeling level can use any model element as join point
(rather than being restricted to some Join Point Model as in AspectJ, for example).
Secondly, weaving on the modeling-level brings aspect-orientation to just any
platform, and hence makes aspect-oriented development independent of the
availability of an aspect-oriented compiler for the programming language used for
implementation.

A general problem of weaving pertains to the correctness of models. Since aspects
break up encapsulation of the primary model elements, weaving is most likely to
change their semantics. Therefore, means must be found to identify and resolve
weaving conflicts, and research in validation and testing of woven models is essential.

Besides that, parallels between weaving of models in aspect-oriented modeling and
the transformation of models in the Model-Driven Architecture (MDA) have been
pointed out. In a MDA context, weaving was considered to be a horizontal model
transformation – rather than a vertical model transformation (which was considered to
represent a refinement). The Query View Transformation (QVT) language was
deemed to bring much benefit to the specification of weaving.

Another matter of interest was to identify the point in the software development
process when an aspect is woven with the rest of the model (e.g., at the requirements
elicitation phase, during the design phase, or not until the implementation phase).
Currently there seems to be no general rule that determines the ideal time for
weaving. Some aspects might be woven at an early stage, some aspects only at
implementation-time, depending on the kind of aspect and the specific application is
applies to. The workshop participants expressed the desire to find more general
criteria, or heuristics, that would provide a guidance that helps developers to
determine when weaving of which aspects should be accomplished, at what point in
time, and in what order.

Finally, the issue of symmetric models vs. asymmetric models was raised [4].. In
an asymmetric model, there exists a base model of the system under development that
captures its main functionality. At weave time, aspects get woven into the base model,
and hence the weaving transformation is asymmetric. In symmetric models, no
distinction is made among different models because of the concern they address.
There is no base, and hence the weaving transformation is symmetric.

Not much time was spent on discussing these two models, but it seems like the
differences are similar to the ones identified at the programming language level, for
example when comparing AspectJ [6] to Hyper/J [11]. The asymmetric model is

 5th International Workshop on Aspect-Oriented Modeling 21

easier to work with on a conceptual level. It simplifies identifying aspects since they
crosscut the base model. Also, the asymmetric model can be seen as an add-on to
standard object-oriented modeling. The symmetric model is appealing because of its
simplicity, but might require a complete rethinking of the way we do modeling.

4 Concluding Remarks and Outlook

The purpose of this paper is not to provide a complete and widely accepted opinion on
aspect-oriented modeling of all the authors, organizers, and workshop participants.
Our intention is to give an essential input for future research on aspect-oriented
modeling, pointing thus researchers to current problems and possible matters of
interest. To do so, the authors' goal was to draw a full picture of all topics that have
been discussed at the workshop.

There are several active research groups in the aspect-oriented community and the
software model engineering community working on theoretical and practical aspect-
oriented modeling issues. However, as the workshop discussions have shown, there is
still lots of interesting work to be done to make aspect-oriented modeling cover the
whole software development lifecycle. In particular, we need to make use of a widely
accepted vocabulary; to provide well-defined modeling elements for "aspects"; to
define a standardized way of identifying "join points", and supporting "weaving"
mechanisms, while allowing modelers to evaluate and validate alternative aspect-
oriented designs. Workshops such as this one can play a major role in addressing the
above modeling issues.

At the end of the workshop, the participants were asked to provide a list of important
questions to be looked at in a near future. They will be considered when establishing the
agenda for envisioned successor workshops. The identified questions were:

• What is the benefit of using aspect-oriented modeling? What are the reasons for
using it in the context of each software development phase?

• What prior art applies to aspect-oriented modeling? What can be learned from
its origins, e.g. object-oriented abstraction mechanisms, model composition and
transformation, and techniques using reflection?

• How can modeling notations visualize aspect-specific peculiarities? For
example, how can we depict aspect-oriented introspection and intercession
capabilities?

Acknowledgements

We'd like to thank everybody who helped to make this workshop a success: In
particular, the members of the organization committee who could not make it to the
workshop, i.e., Faisal Akkawi, Omar Aldawud, Grady Booch, Tzilla Elrad and Jeff
Gray; the members of the program committee, Mehmet Aksit, Atef Bader, Siobhán
Clarke, Bill Harrison, Hoda Hosny, Karl Lieberherr, Peri Tarr and Aida Zakaria.
Finally, we would like to thank all the submitters and participants.

22 D. Stein, J. Kienzle, and M. Kandé

References

[1] Baar, Th., Strohmeier, A., Moreira, A., Mellor, St., Proc. of 7th International Conference
on the Unified Modeling Language 2004, Lisbon, Portugal, October 10-15, 2004

[2] Brito, I., Moreira, A., Integrating the NFR Framework in a RE Model, Early-Aspects
Workshop at 3rd International Conference on Aspect-Oriented Software Development
2004, Lancaster, UK, March 22, 2004

[3] France, R., Kim, D.K., Georg, G., Ghosh, S., An Aspect-Oriented Approach to Design
Modeling, in: IEE Proc. – Software, Special Issue on Early Aspects: Aspect-Oriented
Requirements Engineering and Architecture Design, to appear in 2004

[4] Harrison, W., Ossher, H., Tarr, P., Asymmetrically vs. Symmetrically Organized
Paradigmes for Software Composition, TR RC22685, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, USA, December 2002

[5] Jackson, D., Shlyakhter, I., Sridharan, M., A Micromodularity Mechanism, in: Proc. of
9th International Symposium on Foundations of Software Engineering 2001, Vienna,
Austria, September 10-14, 2001, pp. 62-73

[6] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G., An
Overview of AspectJ, in: Proc. of the 15th European Conference on Object-Oriented
Programming 2001, Budapest, Hungary, June 18-22, 2001, pp. 327-353

[7] Navarro, E., Ramos, I., Pérez, J., Software Requirements for Architectured Systems, in:
Proc. of 11th International Conference on Requirements Engineering 2003, Monterey,
CA, September 8-12, 2003, pp. 356-366

[8] OMG, MDA Guide, Version 1.0, OMG Document omg/2003-05-01, May 2003
[9] OMG, MOF 2.0 Core Final Adopted Specification, OMG Document ptc/03-10-04

[10] OMG, UML 2.0 Infrastructure Specification, UML 2.0 Superstructure Specification,
OMG Documents pct/03-09-15 and ptc/03-08-02

[11] Tarr, P., Ossher, H., Sutton, S., Hyper/J: Multi-Dimensional Separation of Concerns for
Java, in: Proc. of the 24th International Conference on Software Engineering 2002,
Orlando, Florida, May 19-25, 2002, pp. 689-690

[12] The 5th International Workshop on Aspect-Oriented Modeling, Homepage, List of
Position Papers, and Schedule, http://www.cs.iit.edu/~oaldawud/AOM/index.htm

[13] Yu, E., Modeling Strategic Relationships for Process Reengineering, PhD Thesis,
DKBS-TR-94-6, Department of Computer Science, University of Toronto, 1995

Software Architecture Description and UML

Paris Avgeriou1, Nicolas Guelfi1, and Nenad Medvidovic2

1 Software Engineering Competence Center (SE2C), University of Luxembourg,
6, rue Richard Coudenhove-Kalergi, L-1359, Luxembourg

{paris.avgeriou, nicolas.guelfi}@uni.lu
2 Computer Science Department, School of Engineering,

University of Southern California, Los Angeles, CA 90089-0781 U.S.A
neno@usc.edu

Abstract. The description of software architectures has always been
concerned with the definition of the appropriate languages for designing
the various architectural artifacts. Over the past ten years, formal or
less formal Architecture Description Languages (ADLs) and supporting
methods and tools have been proposed by researchers. More recently,
UML has been widely accepted in both industry and academia as a lan-
guage for Architecture Description (AD), and there have been approaches
to UML-based AD either by extending the language, or by mapping ex-
isting ADLs onto it. The upcoming UML 2.0 standard has also created
great expectations about the potential of the language to capture soft-
ware architectures, to allow for early analysis of systems under devel-
opment and to support qualities. Furthermore, the latest trends such
as MDA and the aspect-oriented paradigm are tightly connected with
both UML and AD, thus promoting new approaches which combine the
two. This workshop attempted to delve into this multi-faceted field, by
presenting the latest research advances and by facilitating discussions
between experts.

1 Introduction

Industry and academia have reached consensus that investing in architectural
design in the early phases of the lifecycle is of paramount importance to the
project’s success [2, 4, 5, 7, 10]. Moreover an undoubted tendency to create an
engineering discipline in the field of software architecture is apparent if we con-
sider the published textbooks, the international conferences devoted to it, and
recognition of architecting software systems as a professional practice [4]. Despite
the attention drawn to this emerging discipline, there has been little guidance
regarding how to describe a software architecture. Evidently there have been
advances in the field, especially concerning design and evaluation methods, as
well as reusable architectural artifacts such as architectural patterns and frame-
works. And there is growing consensus nowadays about certain aspects of the
task of software architecture description, such as the satisfaction of stakehold-
ers’ concerns through multiple views [1, 5]. But a software architecture needs
to be rigorously described if we expect to benefit from its advantages such as

LNCS 3297, pp. 23–32, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

24 P. Avgeriou, N. Guelfi, and N. Medvidovic

communication of stakeholders, early analysis of the system, support of qualities
and trouble-free maintenance. Unfortunately the problem of describing software
architectures has not been solved; on the contrary we are still at early stages of
addressing it [4].

One of the greatest challenges in describing software architectures, and a ‘hot’
topic of research nowadays, is the definition of the appropriate languages. The
past ten years, formal or less formal Architecture Description Languages (ADLs)
and supporting methods and tools have been proposed by researchers [8]. More
recently, the Unified Modeling Language is being de facto accepted in both
industry and academia as a language for Architecture Description (AD), and
there have been approaches of UML-based AD either by extending the language,
or by mapping existing ADLs onto it. The upcoming UML 2.0 standard has
also created great expectations about the potential of the language to capture
software architectures, to allow for early analysis of systems under development
and to support qualities. Furthermore, MDA and the Aspect-Oriented paradigm
are tightly connected with both UML and AD, thus promoting new approaches
which combine the two.

The workshop on Software Architecture Description and UML made an effort
to look into these issues from a holistic viewpoint inside the UML community. It
has brought together researchers and practitioners who work on diverse aspects
of Architectural Description (AD) of software systems, related to the Unified
Modeling Language. It thus fostered a presentation of the latest approaches
on the field from both industry and academia, as well as a creative discussion
between the participants in specific themes.

The rest of this workshop report is organized as follows: Section 2 presents the
theme of the keynote speech, which discussed the upcoming UML 2.0 standard
with respect to specifying and enforcing software architectures. Section 3 out-
lines the contents of the papers that were presented in the workshop and involved
the issues of components, connectors, architecture-based analysis, static and dy-
namic modeling of architectures with UML 2.0 and a development methodology
that combines Aspect-Oriented Modeling and MDA. Section 4 describes the find-
ings of the discussion panel that consisted of three invited experts, who discussed
architectural issues from the viewpoint of three respective qualities: security, mo-
bility and performance. Finally Section 5 concludes with a brief synopsis of the
state-of-the-art and future trends.

2 Specifying and Enforcing Software Architectures

The keynote speech1 concerned the theme of specifying and enforcing software
architectures during the development and evolution of the system. Current soft-
ware architecting practice often fails in both these activities: first, architecture
is not explicitly specified, which results in architectural intent being ‘hidden’

1 The keynote speaker, Bran Selic, is an IBM Distinguished Engineer and the chair of
the OMG task force, responsible for the finalization of the UML 2.0 standard.

Software Architecture Description and UML 25

or possibly ‘buried’ inside the code; second, as a result of this lack of architec-
ture specification, the architecture cannot be enforced, i.e. it cannot be properly
implemented and maintained. It thus runs the risk of getting corrupted by de-
velopers that don’t understand it, even by minor changes such as bug fixes. This
results in ‘architectural decay’, where the system implementation gradually drifts
apart from the original architectural intent.

Architectures are meant to be modeled at different levels and different lan-
guages, including the code level in a programming language. Models can therefore
be refined continuously at various levels of detail, from different viewpoints, until
the system is fully specified at the code level. In this respect, a software system is
distinguished from other engineering products, by the unique characteristic that
the model per se evolves into the system implementation. The model-driven de-
velopment paradigm implements this principle, based on two complementary
techniques: abstraction that is supported by modeling languages, and automa-
tion of the transformations between the models, that is provided by tools. Thus,
enforcing the architecture can be much more straightforward, since the archi-
tectural decisions can be passed on to the system through code generation. The
benefits are increased productivity and assured quality, since it will then be
impossible to corrupt the architectural intent by low-level programming.

The following definition of an engineering model was proposed: “a reduced
representation of a system that highlights the properties of interest from a given
viewpoint”. This definition emphasizes the following aspects: that the model is an
abstraction of the system at a specific level of detail; that it is often looked upon
from different viewpoints that demonstrate different sides of the system; and that
representing the system is not merely “syntactic sugar” but a meaningful visual
aid. A software architecture in particular is a model that enables communication
between the different stakeholders, drives the construction of the system and
determines the system’s capacity for evolution growth.

The rest of the discussion focused on the run-time view of software architec-
tures, which deals with the run-time organization of significant software compo-
nents interacting through interfaces, and being composed of successively smaller
components and interfaces. The application of UML 2.0 in describing run-time
architectures was elaborated. First, it was stressed that run-time architectures
should not be modeled only statically through class diagrams but also at an
instance level through collaborations. Then the most fundamental new concept
in the upcoming UML 2.0 standard for architectural description was discussed:
structured classes. These are originated from Architecture Description Languages
and describe the inner structure of a class, either through a behavior specifica-
tion or through a collaboration of parts through connectors. It is highly rec-
ommended that architects use structured classes to describe the hierarchical
decomposition of systems’ run-time structures. Ports are also a key concept in
structured classes, since they are points of grouped interactions, they specify
provided and required interfaces, and they decouple the structured class from
external entities. Structured classes are joined by connectors through their ports,
and connectors in turn can be constrained by a specific behavior protocol that

26 P. Avgeriou, N. Guelfi, and N. Medvidovic

can be appropriately specified with the use of interaction diagrams. The impor-
tance of structured classes lies in the fact that they can be rigorously specified
and thus facilitate code generation in order to enforce the architecture. Finally,
the Component element has been “upgraded” in UML 2.0 to subclass Structured
Class and to allow for mappings to specific platforms (e.g. EJB).

As a concluding remark, it was stressed that “to architect is to model”. The
process of architecting is inherently a modeling activity which captures the ar-
chitectural intent and subsequently enforces it during system development and
evolution, thus preventing ‘architectural decay’. Model-driven technologies are a
promising approach in the software architecture field, and UML 2.0 in particu-
lar, encapsulates much of what was defined in classical architectural description
languages and also supports architectural enforcement.

3 Issues in Software Architecture Description with UML

In order to facilitate the presentation of key topics in the field and to allow
for extensive discussion on them, only six papers were selected to be presented
to the workshop. The papers were chosen through a rigorous reviewing pro-
cess, aimed at singling out high-quality submissions that concern a wide gamut
of research issues: components, connectors, architectural analysis, architecture
description in industrial projects, behavioral modeling and new trends such as
Aspect-Orientation and MDA.

3.1 Documenting Architectural Connectors with UML 2

The paper by Ivers et al. discusses the issue of UML 2 support for Architectural
Connectors, a concept which is treated by the software architecture community
as a first-class entity, just like components. The authors recollect that UML 1.x
was an awkward fit in representing architectural connectors, which led to design-
ers making their own conventions, either by using the existing UML elements,
or by extending the language. There was much anticipation in the architecture
community to see whether the upcoming UML standard would provide a better
support for connectors. The authors examine the concept of connectors in UML
2 with respect to how well it satisfies 4 criteria:

– semantic match - connectors naturally signify pathways of interaction.
– visual clarity - connectors should be distinguishable from components and

be represented by a minimum number of visual elements.
– completeness - connectors should be able to represent behavior, state and

interfaces.
– tool support.

The authors briefly analyze to what extent these criteria are fulfilled by four
standard UML 2 elements, which could be used as connectors, namely Associa-
tions, Association Classes, Classes and Connectors. Their findings are that none
of these elements is a perfect match, instead there is a tradeoff in using each
one of them. The authors conclude that even though UML 2.0 is much more

Software Architecture Description and UML 27

apt for architectural documentation in several aspects, representing connectors
still seems to be problematic. It must be noted that the analysis presented in
this paper focused on standard UML elements, and not on extensions of the
language.

3.2 Using UML for SA-Based Modeling and Analysis

The paper by Cortellessa et al. reports on how their research group is using
UML to specify Software Architectures (SA) for different kinds of analysis. They
outline four different approaches related to SA-based model-checking, testing,
performance and reliability analysis respectively:

– Model checking - It is performed through the Charmy framework that aims to
assist the software architect in designing Software Architectures and in val-
idating them against functional requirements. Formal model checking tech-
niques are used to check the consistency between the SA models and func-
tional requirements. The description of the architecture is based on stereo-
typed class diagrams for the component and connector view, state machines
for the component behavior and scenarios for the specification of temporal
properties.

– Testing - It aims to check to what extent a system under implementation
conforms to its architectural specification. It offers the advantage of testing
early and at a higher-level of abstraction. It allows the detection of structural
and behavioral problems from UML stereotyped class diagrams and state
diagrams respectively, as well as the specification of test cases as sequence
diagrams. Test cases are firstly specified at an architectural level and then
refined into the code level.

– Performance analysis - It is achieved through the SAPone approach which
automatically generates a performance model, based on a Queueing Network
model (QN), from a SA specification described by UML 2.0 Diagrams. The
UML profile for Schedulability, Performance and Time (SPT) is utilized in
order to annotate the UML diagrams with performance-related information.

– Reliability analysis - It focuses on modeling the reliability of a system as
a function of the reliability of individual components and connectors. The
authors have proposed an extension of UML to represent concepts in the
reliability domain, especially for component-based systems, and thus produce
reliability models at an architectural level.

Finally the authors introduce their ongoing work which aims to provide a
framework for incorporating all the above approaches into the same analysis
framework. Their rationale is based on the need to tradeoff between functional
and non-functional properties, by integrating the analyses of individual proper-
ties. They have introduced a framework that aims at such an analysis integra-
tion, independently of the notations or languages used for the different kinds of
properties.

28 P. Avgeriou, N. Guelfi, and N. Medvidovic

3.3 Flexible Component Modeling with the ENT Meta-model

The paper by Brada identifies two problems in current component meta-models:
(i) they merely reflect the present state-of-the-art in component technology with-
out allowing for extensions that could accommodate future developments; (ii)
the visual languages associated with the meta-models, similarly, offer specific,
preset views on components rather than more adaptable visualizations. The au-
thor proposes an approach in order to alleviate both these deficiencies:

– by introducing the ENT component meta-model which is open to future
technological developments and which enables us to define the component
characteristics from the users point of view (rather than in just technological
terms). This meta-model is built upon an analysis of a number of research
and industrial component meta-models.

– by proposing a flexible graphical notation that, based on the meta-model
abstractions, allows the users’ to adjust the visual representation of compo-
nent interfaces. This concept is similar to using multiple views for showing
different aspects of a system’s architecture.

The author advocates that this approach would allow present or future com-
ponent metamodels to be mapped to the ENT metamodel, even if such mappings
always entail semantic gaps. Finally, the combination of components specified
in this metamodel with architectural connectors would be a challenging field of
future research.

3.4 Designing the Software Architecture of an Embedded System
with UML 2.0

The paper by Frick et al. discusses the results of an industrial project for model-
driven development of embedded systems software. Part of this methodology
was to devise an architecture description language, based on selected elements
of UML 2.0, particularly leveraging the port concept. The authors focused on
describing the software architecture of embedded systems as interconnections
of modules through explicitly-specified provided and required interfaces. Pairs
of required and provided interfaces are perceived as contracts that the module
must conform to, and they are usually attributed to the module’s ports. Thus
a module imports or exports a service specified by a contract, through a port.
Furthermore a module implementation can be either: (i) a behavioral model in
terms of a state machine that implements the module services; (ii) a composite
module that has an internal structure as mandated in the UML 2.0 composite
structures package; (iii) code written in a programming language and wrapped
in the context of UML. The first two cases support code generation, therefore,
all three implementations are considered executable.

Another significant aspect of this approach is that it aims at product-family
architecture design, where individual products, or variants are specific configu-
rations of module variants. Subsequently the latter are different implementations
of the same interface. This is a very helpful concept in the development of em-

Software Architecture Description and UML 29

bedded systems, as environment components can be considered as variants and
they can be simulated in order to test embedded control software.

3.5 Behaviors Generation from Product Lines Requirements

The paper by Ziadi et al. draws upon the current research trend to model vari-
ability in Product Lines (PL). Related research work has so far concentrated on
the static architecture of PL; the authors extend it to the behavioral aspects. In
specific the authors propose an approach to derive the behavioral specification
of individual products from that of a Product Line. To begin with, they exploit
the ability of UML 2.0 to algebraically compose sequence diagrams through spe-
cial composition operators. Therefore, they specify PL behavioral requirements
as algebraic expressions extended with constructs to specify variability. Build-
ing on that, they synthesize the detailed behavior for each product member in
the PL in two stages: The first stage uses abstract interpretation of the vari-
ability operators in scenarios to get behavior specialization of the PL according
to given decision criteria; in the second stage, the resulting product behavior
specifications, expressed as sequence diagrams, are synthesized into statecharts.

This approach thus helps to refine behavioral specifications for the whole
product family, which are specified in high-level sequence diagrams, into product-
specific implementation-level statecharts. Therefore it fosters efficient, formalized
traceability between requirements on a Product Line level and detailed design
of individual products in PL. It can also promote reuse of statecharts between
products that share common behavior.

3.6 A UML Aspect-Oriented Modeling Approach for Model-Driven
Software Development

The paper by Vachon and Mostefaoui introduces a development methodology
that combines Aspect-Oriented Modeling and Model-Driven Architecture (MDA),
which have both received growing interest from the research community. The au-
thors claim that these approaches naturally complement each other: MDA sep-
arates the business model, the computation model and platform specific-design
decisions into distinct development steps and documents the transformation from
one to another; aspect-orientation separates core functional requirements from
“crosscutting application concerns” while at the same time merging them in
a clean and explicit manner. Consequently, combining the two approaches en-
tails the ‘weaving’ of aspects in the different MDA models and supporting the
transformations among them.

Their method supports an iterative stepwise refinement process that not only
takes care of the satisfaction of functional requirements in an MDA fashion,
but also introduces aspects early: these are woven into platform-independent
design decisions and then transformed to platform-specific models. From the
aspect-orientation side, the authors propose a UML Profile as a modeling nota-
tion, called Aspect-UML, for the specification of aspects and their join points.
From the MDA side they present the MDA-based development phases, focus-
ing particularly on the transformation of platform independent models (PIM)

30 P. Avgeriou, N. Guelfi, and N. Medvidovic

into platform specific models (PSM). In specific they explain how to transform
Aspect-UML models into selected PSM, using a mapping between their corre-
sponding metamodels. They also explain how new generation transformation
tools can potentially automate the transformation of an Aspect-UML PIM into
target PSM.

4 Architectural Support for Qualities

The aim of the discussion panel was to discuss critical, but under-addressed is-
sues pertaining to software architectural description. Three distinguished experts
were invited to the discussion in order to shed some light on the architectural
support for 3 respective qualities, namely security, mobility and performance.
The short talks of the experts and the subsequent discussions are summarized
in the following paragraphs.

Dr. Jan Jürjens2 explored the field of architectural design for security-critical
systems [6]. Dr. Jürjens advocated that the main problem in the software archi-
tecture of security-critical system is that security is not designed up-front as an
architecture-level issue, but rather “circumvented” at a later stage, resulting in
potential security compromises. The remedy that is proposed for this problem,
is an approach, entitled Model-based Security Engineering. It deals with archi-
tectural design artifacts arising in industrial development of security-critical sys-
tems (e.g. UML models) and requires tool-supported security analysis. It man-
dates the automatic analysis of models against security requirements and then
follows a round-trip engineering style, where code or tests are generated from
models and vice versa. The approach suggests the use of UML for the typical
reasons of standardization, broad industry adoption and extensive tool support.
A UML profile, named UMLsec, has been proposed in order to grasp the details
of secure systems development. Finally this approach suggests the use of secure
architectural patterns in a formal, methodological way, using the aforementioned
UMLsec profile.

Professor Raffaela Mirandola3 elaborated on the issue of mobility of software
systems. She advocated that mobility of code is an architectural-level design issue
that serves several goals such as service customization, dynamic functionality
extension, fault-tolerance, performance improvement etc. Unfortunately there
is no silver bullet in designing architectures of mobile systems, instead there is
always the risk of performance shortcomings. She also explained that the current
architectural styles for mobile systems can be classified into two categories: those
where only code moves and those where code moves along with its state. As far
as the locations where mobility of software takes place, they can be logical or
physical, they can be nested, and finally they can also be mobile themselves.
There are currently two approaches to modeling architectures of mobile systems

2 Dr. Jürjens is affiliated to the Technical University of Munich, Germany.
email: juerjens@in.tum.de

3 Professor Mirandola is affiliated to Universita di Roma “Tor Vergata”, Italy.
email: mirandola@info.uniroma2.it

Software Architecture Description and UML 31

[9]: (i) UML-based modeling which is visual, extensible, a de-facto standard
in industry for architectural design but has imprecise semantics; (ii) “mobility-
oriented” Process Algebras which are unambiguous, have compositional features,
and facilitate analysis, but are overly complex, not widely used and they lack
support for architectural design. Typically, as in other cases, bridging between
formal and semi-formal approaches is a key research issue in this area.

Professor Murray Woodside4 tackled the issue of performance modeling [11]
with respect to software architecture modeling. He stressed the fact that the re-
lation between the performance model and the architecture is bi-directional: the
performance model is constructed upon the architectural model, and the results
of performance modeling are a valuable feedback in selecting and validating the
various design choices in the architectural model. Performance modeling is ac-
tually based on architectural high-level information such as architectural styles,
partitioning of functionality into components etc., but it also requires additional
low-level details, such as workload and demands for operations. Analysis of per-
formance models subsequently takes place through formal techniques such as
queueing, petri nets, layered queueing, simulation etc. An interesting aspect
that arises from performance modeling is that different architectural configura-
tions can be compared against each other, as long as some parameters such as
workload, the platform and the number of processors are kept invariant. How-
ever, it is of paramount importance to evaluate the tradeoff between the detail
and accuracy (and therefore cost) of performance modeling and the value of the
produced results. A useful rule of thumb in this case is to match the precision
of performance data to the level of detail in the architecture model.

5 Epilogue

We can safely conclude that the description of software architectures is still a very
relevant subject in the research community. The practice of software architect-
ing is growing, and there are many notations used in the scope of architectural
description. UML is gaining more and more prominence and has made steps
forward in this direction but can still be awkward to use for certain aspects of
architectural description. The support for qualities has been under-represented
in ADLs in the past, and this has not changed with UML; nor will the use of
UML per se provide such support. A synergy between experts in the domains of
the various qualities and software architecture, is a challenging issue and a neces-
sity. The UML 2.0 standard is currently being explored for its appropriateness
in the field, while some shortcomings have already been identified and attempts
are made to overcome them. Nevertheless UML 2.0 is likely to redraw the land-
scape substantially. We are looking forward to this development, and will gauge
UML 2.0’s native architectural support, and software engineering community’s
reactions to it in deciding on possible follow-ons to this workshop.

4 Professor Woodside is affiliated to Carleton University, Canada.
email: Murray.Woodside@sce.carleton.ca

32 P. Avgeriou, N. Guelfi, and N. Medvidovic

References

1. Avgeriou, P., Guelfi, N., Razavi, R.: Patterns for documenting software architec-
tures. Proceedings of the 9th European Pattern Languages of Programming (Eu-
roPLOP) conference. July 2004, Irsee, Germany.

2. Bosch, J.: Design and Use of Software Architectures. Addison-Wesley, 2000.
3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.: Pattern-

Oriented Software Architecture, Volume 1: A System of Patterns. John Wiley and
Sons, 1996.

4. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R.,
Stafford, J.: Documenting Software Architectures: Views and Beyond. Addison-
Wesley, 2002.

5. IEEE, Recommended Practice for Architectural Description of Software-Intensive
Systems. IEEE std. 1471-2000, 2000.

6. Jürjens, J.: Secure Systems Development with UML. Springer-Verlag 2004.
7. Kruchten, P.: The 4+1 view model of architecture. IEEE Software, November 1995.
8. Medvidovic, N. and R. N. Taylor: A Classification and Comparison Framework for

Software Architecture Description Languages. IEEE Trans. Softw. Eng. 26 (2000),
pp. 70-93.

9. Grassi, V., Mirandola, R., Sabetta, A.: A UML Profile to Model Mobile systems.
In Proc. of UML 2004 conference, 11-15 October 2004, Lisbon, Portugal. Springer
LNCS 3273.

10. Shaw, M., Garlan, D.: Software Architecture - Perspectives on an emerging disci-
pline. Prentice Hall, 1996.

11. Petriu, D, Woodside, M.: A Metamodel for Generating Performance Models from
UML Designs In Proc. of UML 2004 conference, 11-15 October 2004, Lisbon, Por-
tugal. Springer LNCS 3273.

Appendix: Acknowledgement

We extend our thanks to all those who have participated in the organization of
this workshop, particularly to the program committee, which is comprised of:

– Arsanjani Ali, IBM Global Services, USA
– Bosch Jan, University of Groningen, the Netherlands
– Dubois Eric, CRP Henri Tudor, Luxembourg
– Egyed Alexander, Teknowledge Corporation, USA
– Ewetz Hans, Clearstream International, Luxembourg
– Garlan David, Carnegie Mellon University, USA
– Issarny Valerie, INRIA, France
– Kruchten Philippe, University of British Columbia, Canada
– Ortega-Arjona Jorge, Universidad Nacional Autonoma de Mexico, Mexico
– Pastor Oscar, Universidad Politecnica de Valencia, Spain
– Poels Geert, University of Arts and Sciences Brussel, Belgium
– Razavi Reza, University of Luxembourg, Luxembourg
– Riehle Dirk, Stanford University, USA
– Romanovsky Alexander, University of Newcastle, UK
– Rosenblum David, University College London, UK
– Sharif Niloufar, Clearstream International, Luxembourg

, LNCS 3297, pp. 33 – 42, 2005.
© Springer-Verlag Berlin Heidelberg 2005

SVERTS – Specification and Validation of Real-Time
and Embedded Systems

Susanne Graf1, Øystein Haugen2, Ileana Ober1, and Bran Selic3

1 VERIMAG, Grenoble, France
{Susanne.Graf, Ileana.Ober}@imag.fr

2 University of Oslo, Oslo, Norway
Oystein.Haugen@ifi.uio.no

3 IBM, Canada
bselic@ca.ibm.com

Abstract. This paper presents an overview on the workshop on Specification
and Validation of Real-time and embedded Systems that has taken place for the
second time in association with the UML 2004 conference. The main themes
discussed at this year’s workshop concerned modeling of real-time features
with the perspective of validation as well as some particular validation issues.

1 Introduction

Embedded applications have often strong constraints with respect to time related
aspects. Moreover, overall systems may be huge, and even if the embedded hard real-
time components are relatively small, there is some global interdependence and the
existence of a global model in a uniform framework is an important issue. The
Unified Modeling Language UML can play this role, even if the real-time aspects are
not really integrated today in existing tools. UML aims at providing an integrated
modeling framework encompassing architecture descriptions and behavior
descriptions. A first step to the integration of extra functional characteristics into the
modeling framework has been achieved by the “UML profile for schedulability, Time
and Performance” [OMG03] and more recently a “UML Profile for Modelling
Quality of Service and Fault Tolerance Characteristics and Mechanisms (QoS)”
[OMG04]. One of the objectives of UML is to support the model driven approach
(MDA) which consists of transforming models towards executable implementations.

In order to be able to exchange models with the aim to applying formal validation,
it is important to have a common understanding of the (dynamic) semantics of the
given notations in the modeling and the validation tool. Other important issues in the
domain of real-time are methodology and modeling paradigms allowing us to break
down the complexity and tools which are able to verify designed systems well.

The IST project Omega [Omega, GH04] aimed precisely at the definition of a
UML profile for real-time and embedded systems with a semantic foundation and
with tool support for validation. Some of the criteria for defining this profile were

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities

34 S. Graf et al.

• Taking into account the fact that validation is just one – although important -
aspect of the problem, another main objective of modeling is deriving
implementations. Therefore, the chosen profile should be appropriate for the
domain of applications and not just for a particular validation tool.

• Fixing a dynamic semantics and a notion of consistency between notations is
important in order to guarantee consistency between the validated model and
the implementation.

The profile that has been developed in Omega is a rich subset of UML with some
extensions: it distinguishes a time independent subset for modeling systems
consisting of reactive components, for which an operational semantics has been
defined [DJP*02, ZH03] and a real-time profile compatible with SPT, but which,
contrary to SPT, fixes a concrete syntax and provides a semantic foundation
[GOO03]. Notice that this real-time framework defines a set of constructive time
constraints, expressive enough to define a precise semantics for all the time
constraints introduced in SPT as tag values or stereotypes by means of constraints
between well defined occurrences of events. Events represent time points, and we
have defined naming conventions for events associated with the execution of any
syntactic construct1.

Several verification approaches and tools have been adapted to handle this profile
and connected to UML tools via the XMI standard exchange format. Some of the
requirements for the tools and methods were:

• To be flexible with respect to the semantic choices so as to be open for easy
integration of semantic variations, at least concerning the resolution of non
determinism induced by the intrinsic concurrency.

• Not to impose too strict constraints on the modeling approach and the
development methodology, by nevertheless providing guidelines for the
usage of tools.

• The mapping to the input language of the tool should not provide an obstacle
for the use of the tool compared with modeling directly in the tools notation,
meaning that a careful reflection concerning the concepts to be preserved is
needed.

An overview on the Omega validation approach can be found in [Omega, GH04],
where the tool, taking into account the most complete version of the profile, in
particular the real-time aspects, was presented last year at SVERTS [OGO03]. The
work done in this project raised a lot of questions. Concerning the handling of
semantic issues in the context of UML, one question was to what extent the semantics
should be fixed so that the diagrams are still able to represent an intuition that can be
shared amongst different users. Another issue was to define a profile with a semantics
able to take into account the different modeling paradigms used in the context of real-
time and embedded systems; there we had to recognize that it is hard to model

1 This is a similarity to UML 2.0 where a start and a finish event is associated with every

behavior execution, but we have introduced a concrete syntax for these events, and we have
defined a set of concrete attributes these events may have.

 SVERTS – Specification and Validation of Real-Time and Embedded Systems 35

synchronous interaction directly2, and this was discussed at last year’s workshop.
Concerning the interaction with CASE tools, the conclusion must be drawn that
exchange of models between tools is not there today, and this is due to both
weaknesses of the exchange format itself and of the existing tools.

The aim of this workshop was to bring together researchers from academia and
industry to discuss and progress in these issues, as well as other issues in the context
of time, scheduling and architecture in UML and UML related notations, such as
notations for expressing time and architecture related requirements, semantic issues,
analysis tool and modeling paradigms.

2 The Contributions

Seven contributions of very high quality were presented, selected from 19 regular
submissions. All presentations were backed by a full paper of between 8 and 20
pages. All of the papers together with a report on the workshop’s result are also
published separately as a technical report at Verimag [GHOS04]. The corresponding
presentation slides have been made available from the workshop website at
www-verimag.imag.fr/EVENTS/2004/SVERTS. In this section, we only give
summaries of each paper. The papers presented looked at the workshop’s themes from
very different angles.

2.1 Comparing UML Profiles for Non-functional Requirement Annotations:
The SPT and QoS Profiles [BP04]

This contribution compares two of the before mentioned UML profiles adopted by
OMG for annotating non-functional requirements of software systems, SPT, formally
adopted in 2003 and the QoS profile. The SPT profile was the first attempt to extend
UML with basic timing and concurrency concepts, and to express requirements and
properties needed for conducting schedulability and performance analysis. While the
SPT profile is focused on these two types of analysis, the more recent QoS Profile has
a broader scope, aiming to allow the user to define a wider variety of QoS
requirements and properties.

The SPT and QoS profiles are - together with the simple time model already
included in UML 2.0 - the most important standardization efforts for modelling time,
and a comparison is therefore important. The authors applied the two profiles to the
same, rather elaborate, example – an embedded automation system.

While the QoS profile is almost UML 2.0 compliant, the SPT profile is a standard
profile for UML 1.x and the UML 2.0 version has yet to be made. The authors
claimed that SPT is easier to apply but is less flexible.

According to the results of the study there are mechanisms that are lacking in both
profiles, and the authors have suggested improvements.

2 It is possible to define workarounds allowing the description of an equivalent behaviour as by

using a synchronous approach, but not in a direct way at the same level of abstraction.

36 S. Graf et al.

2.2 A Formal Framework for UML Modelling with Timed Constraints:
Application to Railway Control Systems [MCM04]

In the context of railway signalling systems, time related features play a relevant role
at the validation process and specialists are confronted more and more with the
necessity of applying formal methods as a means for preventing software faults. UML
offers a standard notation for high quality systems modelling; however its lack of a
standardized formal semantics explains the existence of few tools supporting analysis
and verification. The authors of this contribution propose a formal support of UML
model-based verification by mapping a subset of UML to time-extended B
specifications [Abr96]. The main goal is to enable consistency checking through
UML diagrams using existing tools for B. The approach is illustrated by means of the
application to a railroad level crossing system, with convincing results.

UML’s lack of formal semantics is a recurring theme and the common approach to
remedy it is to give a transformation mapping from a subset of UML to some formal
language with an existing tool support. This paper also does this. The subset of UML
considered here consists of a subset of UML 1.4 state machines plus OCL [OMG03b]
for the definition of pre- and post conditions. The formal language to which this
subset is transformed is B. As verification using the B approach is an interactive
process, the approach brings in some extra efforts for the designer.

2.3 On Real-Time Requirements in Specification-Level UML Models [PM04]

The design of software systems usually advances from abstract to more concrete.
Unfortunately, proper specification of real-time related issues has often been
postponed to the implementation phase, potentially leading to increased complexity in
design. This has at least partly been due to the lack of suitable abstractions and
notations for expressing real-time requirements at an abstract level, using e.g. use
cases. In this paper, an approach is introduced, where use-case level behavioural
specifications can be augmented with real-time properties. It is also shown that these
properties can be treated as a separate issue from the underlying behaviour for e.g.
eased reasoning. The verification and validation of such specifications from the
viewpoint of automated tool support is briefly discussed.

Contrary to the previous paper [MCM04], the authors provide also a notation for
their UML-like concept. Some have compared “joint actions” with formalized use
cases. This may be a valid comparison, but it is also possible to see these joint actions
as a new concept based on pre- and post-conditions on the same general abstraction
level as use cases. TLA theorem proving [Lam94] has been applied for formal
verification of the example railroad crossing model, and a mapping to timed automata
and corresponding model checking by the Kronos tool for model-checking of timed
automata [Yov97].

2.4 Incremental Design and Formal Verification with UML/RT in the FUJABA
Real-Time Tool Suite [BGHS04]

Model checking of complex time extended UML (UML/RT) models is limited today
due to two main obstacles: (1) The state explosion problem restricts the size of the
UML/RT models which can be addressed and (2) standard model checking

 SVERTS – Specification and Validation of Real-Time and Embedded Systems 37

approaches cannot be smoothly integrated into the usually incremental and iterative
design process. The presented solution for incremental design and verification with
UML/RT within the FUJABA3 Real-Time Tool Suite [BG*04] overcomes these two
obstacles by applying a compositional reasoning approach that is based on a restricted
notion of UML patterns and components. A mapping of a – somewhat restricted -
subset of the UML/RT component model and additional real time extensions for
UML state diagrams to hierarchical timed automata of Uppaal [LPY97] is presented
which enables compositional model-checking of partial models such as patterns and
components. The developed tool support makes an incremental and iterative design
and verification process possible where only the patterns and components which have
been modified have to be rechecked rather than the whole UML/RT model.

This approach is based on the assume/guarantee paradigm for safety properties
[Pnu85] which requires decomposing global specifications into properties of patterns
and components and their environments. The case study used to illustrate the
approach and where it can be applied successfully, is a shuttle railroad where several
shuttles may join to build temporary convoys. This approach is interesting because of
its obvious practical potentials.

2.5 An Analysis Tool for UML Models with SPT Annotations [HMPY04]

This paper describes a plug-in for the Rhapsody tool, which demonstrates how
simple UML models with SPT annotations can be analysed using the Times tool - a
tool for modelling, schedulability analysis, and code generation for timed systems.
The plug-in takes as input an UML model corresponding to a model that can be
handled by the Times tool, consisting of a set of components whose behaviours are
specified by statecharts with operation calls, where operations are defined by SPT
timing parameters for their execution time, deadline and priority. The output is a
network of timed automata extended with tasks that can be analysed using the
Times tool [AF*03]. In particular, the Times tool will show whether the operations
invoked from the UML model are guaranteed to meet their deadlines or not under
the given assumption.

A case study is presented where the method is applied to an SPT annotated UML
model of an adaptive cruise controller. The tool Times is run as a plug-in to the
commercial Rhapsody UML tool.

2.6 Worst-Case Execution Time Analysis from UML-Based RT/E Applications
[MGLT04]

Moving from code-centric to model-centric development seems to be a promising way
to cope with the increasing complexity of real-time embedded systems. Validation is
then one of the key-points of their development. Relating to this goal, schedulability
analysis methods are generally used to validate a part of the system’s real-time
requirements. These methods rely on estimations of the Worst-Case Execution Time
(WCET) of every task of the system. This paper presents some approaches to derive
these WCET estimates from a detailed UML model of the application.

3 “From UML to Java And Back Again”.

38 S. Graf et al.

The approach aims to combine a static and a dynamic approach where the static
analysis finds all possible execution paths and then the dynamic analysis means
selecting some of these executions and calculating WCET based on information on
the execution time of the instruction set of the processor on which the system will be
executed. The work is carried out in the Accord/UML modelling tool [LGT98] and
the validation tool Agatha based on symbolic execution [Lug04]. The advantage of
this approach over the usual one, consisting of measuring WCET of tasks, is that it
provides over-approximations. It gives good scalability and will make it more
attractive for practitioners. The disadvantage of the approach is that in its present
form, without relatively precise information on the underlying platform, such as out-
of-order executions and caches, the over-approximations tend to be huge. Also, it
remains to be shown if in the context of object orientation architecture dependent
features can be exploited in any way.

2.7 Validating UML Models of Embedded Systems by Coupling Tools [HMP04]

To support multi-disciplinary development of embedded systems, a coupling has been
performed between a UML-based CASE tool (Rose RealTime) – used to model the
embedded software - and a tool for modelling of the continuous dynamics of physical
parts of the system (Simulink). The aim is simultaneous simulation of the software
model and its environment model in both tools, thus allowing an early exploration of
the possible design choices over multiple disciplines. A first prototype of the coupling
has been implemented, where it turned out that achieving a common notion of time
and a proper treatment of timers and data exchange was the most difficult part. To this
end, a separate component is inserted as “glue” between the tools to take care of
smoothing out the differences.

The work has been inspired by the need to model Océ copying machines where the
software resides on a very intricate mechatronic system.

3 Workshop Results

Most presentations address modelling and validation or analysis of safety critical
systems and more particularly real-time issues in the context of UML. The main
subjects addressed in the papers and the discussions concerned the following themes.

3.1 Modelling and Semantics for Validation

Several papers address the modelling of real-time systems using an extended subset of
UML for which validation support can be provided. The choice of the presented
approaches was to identify a subset that could be directly mapped into the input language
of some tool, providing the semantics and the validation support for this approach.

Most of the resulting frameworks propose useful modelling concepts, and at least
one in use today seems to be integrated in a real development process [BGHS04].
Nevertheless they all represent partial frameworks for modelling certain aspects of
systems and none of them provides a complete framework for a model based

 SVERTS – Specification and Validation of Real-Time and Embedded Systems 39

approach, where a rich model is maintained and appropriate verification models are
just like the code obtained in an algorithmic way. Nevertheless, the presented profiles
represent interesting aspects and may be adapted in the context of such a framework.

A clear consensus is that in the context of safety critical real-time systems, the
existence of a formal semantics of all the defined concepts is needed in order to allow
reasoning on the modelled systems. Nevertheless, it seems to be unclear if in the
context of UML a standard semantic framework could be achieved; there are many
actors and many different possible semantic choices, even in the context of real-time
and embedded systems. A reasonable requirement could be that tool providers have to
provide a readable description of the semantics chosen in their tool. How to obtain
such “readable” semantics is an interesting research topic.

3.2 Validation and Analysis

The properties that are important in the context of real-time systems concern both
functional and reactivity properties defining constraints on the duration between
occurrences of events.

Functional properties may be completely time independent, but it might be useful
to consider a timed model (which is often quite abstract) in order to guarantee
progress properties or for systems where time is used for guaranteeing correct
synchronization (e.g. through the use of timeouts).

In systems where computations are distributed or where communication times are
more important than execution times, reactivity properties can often be verified on a
model in which only assumptions on durations are made and resource constraints are
abstracted.

Furthermore, schedulability of a system under a given constraint on the set of
resources is verified generally on models where actions are abstracted to a duration
constraint (e.g. a deadline) and an execution time constraint. Important parameters of
this analysis are the execution time constraints used, and obtaining good
approximations – mainly worst case execution times (WCET) – is an important topic.
Results obtained in other contexts (see e.g. [TSH*03]) tend to indicate that good
approximations of WCET can only be obtained in conjunction with a relatively
detailed model of the platform, and, on the other hand, the dynamic aspects brought in
by object orientation do not allow one to really profit from these aspects.

Finally, whenever the system under analysis comprises parts controlling a physical
system with continuous behaviour, one has to analyse the correct interplay between a
continuous and a digital behaviour where important properties are stability and
controllability for example.

Some of the validation problems may be somehow associated with particular
design phases or view points. Fixing the parameters of one analysis influences the
options for the others, but there is not necessarily a predefined order in which things
need to be done. Also, in the context of a model based development approach, any
update of the model must allow one to redo all the validations which might be altered
by the change.

The papers presented at the workshop, put forward methods for one of the before
mentioned validation or analysis problems. Most of them provide semantics in
terms of timed automata [AD94] or some extension of them as they provide a

40 S. Graf et al.

convenient model for combining time constraints, control flow and concurrency.
The work on computation of WCET uses a simpler model by considering execution
times of basic instructions as costs of transitions which have to be added so as to be
able to compute the maximal cost of a set of finite executions. The work on the
interaction between a continuous and a discrete model involves co-simulation
between two tools providing both discretized timed executions. It does not
necessitate a hybrid model encompassing both kinds of computations as it builds
upon existing tools for such models.

The feasibility of validation and analysis for realistic models is an important issue.
In the context of real-time systems however, the use of abstraction and compositional
verification is made more difficult due to the fact that time constraints are hard to
decompose. Approaches based on property decomposition can be applied only in
absence of resource dependent time constraints.

3.3 UML and Safety Critical Systems

Notice that the problems induced by inheritance or dynamic evolution of the system
configuration are not addressed by any of the contributions, but are mostly excluded
from the considered settings. The appropriateness of object orientation for this kind of
systems has been questioned a lot. Should we consider these approaches as an
additional argument for this doubt?

Reuse is sometimes mentioned as one of the main arguments for object orientation,
but it is rarely brought into practise. But even without reuse, object orientation has a
lot of advantages concerning the structuring of a system. It is also useful, when in
every instance of the system all the parameters are fixed and the configuration has a
more or less) static nature, as this is required when a system has to be certified.

Clearly, an interesting research topic is to study how more dynamics can be
introduced in the specifications of safety critical real-time systems without
compromising static (off-line) verification.

4 Conclusions

With respect to the expression of time constraints there are two opposed trends:

1. There are those frameworks based on a small set of relatively low level but
expressive concepts as they are handled in validation tools,

2. And those providing the user mainly with a set of relatively rigid patterns for
the expression of time constraints. The contribution [BP04] show that even
closely related profiles define redundant concepts which are even incompatible
at the syntactic level.

Some effort clearly remains to be made concerning this issue.
Concerning validation of timing constraints, an important issue is to provide

methodologies allowing the application of compositional methods also in a non
distributed setting.

Concerning the computation of bounds of execution times of tasks, it remains to be
understood in how good approximations can be obtained in an object oriented setting.

 SVERTS – Specification and Validation of Real-Time and Embedded Systems 41

References

[Abr96] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183-235, 1994.

[AF*03] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang
Yi. Times: a tool for schedulability analysis and code generation of real-time
systems. Proc. of 1st International Workshop on Formal Modelling and Analysis
of Timed Systems, LNCS, 2003.

[BGHS04] Sven Burmester, Holger Giese, Martin Hirsch, and Daniela Schilling: Incremental
Design and Formal Verification with UML/RT in the FUJABA Real-Time Tool
Suite, SVERTS 2004, in [GHOS04], 2004

[BG*04] Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, J., Wagner, R.,
Wendehals, L., Zündorf, A. Tool Integration at the Meta-Model Level within the
FUJABA Tool Suite. Int. Journal on Software Tools for Technology Transfer
STTT, 2004 (accepted).

[BP04] Simona Bernardi and Dorina Petriu. Comparing UML Profiles for Non-functional.
Requirement Annotations: the SPT and QoS Profiles, SVERTS 2004, in
[GHOS04], 2004

[DJP*02] W. Damm, B. Josko, A. Pnueli, A. Votintseva, Understanding UML: A Formal
Semantics of Concurrency and Communication in Real-Time UML. Proc. of
FMCO’02, November 5---8, 2002, Leiden, the Netherlands, LNCS Tutorials
2852.

[GHOS04] Susanne Graf, Oystein Haugen, Ileana Ober and Bran Selic, Proceedings of the
Workshop on Specification and Validation of Real-time Embedded Systems,
SVERTS 2004, Lisbon. Verimag research report 2004-10-x, 2004.

[GOO03] Susanne Graf, Ileana Ober, Iulian Ober. Timed Annotations with UML. In:
Workshop on Specification and Validation of UML models for Real Time and
Embedded Systems (SVERTS2003), San Francisco, October 2003. accepted at
STTT

[GH04] Susanne Graf, Jozef Hooman. The Omega project: Correct Development of
Embedded Systems. In Proc. of European Workshop on Software Architectures,
EWSA, associated with ICSE 2004, LNCS, 2004

[HMPY04] John Håkansson, Leonid Mokrushin, Paul Pettersson, and Wang Yi. An Analysis
Tool for UML Models with SPT Annotations, SVERTS 2004, in [GHOS04], 2004

[HMP04] Jozef Hooman, Nataliya Mulyar, Ladislau Posta. Validating UML models of
Embedded Systems by Coupling Tools, SVERTS 2004, in [GHOS04], 2004

[Lam94] L. Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems 16 (1994) pp. 872–923

[LGT98] A. Lanusse, S. Gérard, and F. Terrier. Real-Time Modelling with UML: The
ACCORD Approach. In UML98, Beyond the Notation. Mulhouse, France. 1998.

[LPY97] K. Larsen, P. Pettersson, WangYi. UPPAAL in a Nutshell. Springer Int. Journal of
Software Tools for Technology 1, 1997

[Lug97] D. Lugato, et al., Validation and automatic test generation on UML models: the
AGATHA approach. Special issue of the Int. Journal on Software Tools for
Technology Transfer, STTT 2004 (accepted).

[MCM04] Rafael Marcano, Samuel Colin and Georges Mariano. A Formal Framework for
UML Modelling with Timed Constraints: Application to Railway Control
Systems, SVERTS 2004, in [GHOS04], 2004

42 S. Graf et al.

[MGLT04] Chokri Mraidha, Sébastien Gérard, François Terrier, David Lugato. Worst-Case
Execution Time Analysis from UML-based RT/E Applications, SVERTS 2004, in
[GHOS04], 2004

[OGO04] Iulian Ober, Susanne Graf, Ileana Ober. Validation of UML models via a mapping
to communicating extended timed automata. 11th Int. SPIN Workshop. Barcelona,
Spain, LNCS 2989, 04/2004, accepted for publication in STTT.

[OMG03] OMG. UML Profile for Schedulability, Performance, and Time, Version 1.0,
formal/03-09-01, 09/2003.

[OMG03b] OMG. Object Constraint Language, version 2.0. final adopted specification,
document ptc/2003-10-14, 10/2003.

[OMG04] OMG. UML Profile for Modelling Quality of Service and Fault Tolerance
Characteristics and Mechanisms. Specification, ptc/2004-06-01, 06/2004.

[Omega] The homepage of the Omega project can be found at http://www-omega.imag.fr/
[PM04] Risto Pitkänen and Tommi Mikkonen. On Real-Time Requirements in

Specification-Level UML Models, SVERTS 2004, in [GHOS04], 2004
[Pnu85] A. Pnueli. In Transition from Global to Modular Temporal Reasoning about

Programs, in Logics and Models for Concurrent Systems, NATO, ASI Series F,
Vol. 13, Springer Verlag, 1985

[TSH*03] St. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona, M. Langenbach, R.
Wilhelm, Ch. Ferdinand. An Abstract Interpretation-Based Timing Validation of
Hard Real Time Avionics. Proc. of the Int. Performance and Dependability
Symposium (IPDS), 2003.

[Yov97] Sergio Yovine. Kronos: A verification tool for real-time systems. In the Int.
Journal on Software Tools for Technology Transfer, STTT 1 (1997) 123–133

[ZH03] M. van der Zwaag, J. Hooman. A Semantics of Communicating Reactive Objects
with Timing. In Proc. of Workshop on Specification and Validation of UML
models for Real-Time Embedded Systems, SVERTS 2003, technical report
Verimag 2003/10/22, accepted at STTT

Essentials of the 3rd UML Workshop in
Software Model Engineering (WiSME’2004)

Martin Gogolla1, Paul Sammut2, and Jon Whittle3

1 University of Bremen, Germany
2 Xactium, Great Britain
3 QSS/NASA Ames, USA

Abstract. This paper reports on a workshop held at the 7th UML con-
ference. It describes motivation and aims, organisational issues, abstracts
of the accepted papers, and questions raised during discussion.

1 Motivation and Aims

Model Driven Architecture (MDA) is an OMG initiative that attempts to
separate business functionality specification from the implementation of that
functionality on specific middleware technological platforms (e.g., CORBA,
C#/DotNet, Java/EJB, XML/SOAP). This approach is intended to play a key
role in the fields of information system and software engineering. MDA is sup-
posed to provide a basic technical framework for information integration and
tools interoperation based on the separation of platform specific models (PSMs)
from platform independent models (PIMs). Models of low granularity and high
abstraction will represent the various functional and non-functional aspects of
computer systems. In the long term there will be well defined operations, im-
plemented by commercial tools that will allow us to build, transform, merge or
verify these different models. Key standards in the MDA will be based on OMG
recommendations like UML, MOF, XMI, CWM, QVT.

In fact, MDA can be considered an implementation of a more general trend
that has been gathering momentum in recent years called Model Driven Develop-
ment (MDD). This aims to make models the primary driving assets in all aspects
of software development, including system design, platform and language defini-
tion and mappings as in MDA, but also design data integration, design analysis,
tool specification and product family development.

The stage is set but the effort to move from the present situation to the idyllic
automatic generation of executable models for various platforms and other appli-
cations of MDD remains huge. We need to mobilize the creative energies of a very
broad category of contributors, from tool builders to theoretical specialists in
fields like language compilers, graph rewriting, model checking, metamodelling,
and ontology engineering. We need to bring together young researchers planning
to invest in this emerging new area as well as more experienced professionals
with experience in areas related to automatic code generation, transformational
and generative approaches or model checking.

LNCS 3297, pp. 43–51, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

44 M. Gogolla, P. Sammut, and J. Whittle

2 Organisational Issues

This workshop is the third in a series of workshops started at UML’2002 [1] and
continued at UML’2003 [2]. The paper selection process was carefully supported
by an international programme committee and additional referees. All accepted
papers can be found in [3].

Programme Committee

– Jean Bezivin, University of Nantes, France
– Krysztof Czarnecki, University of Waterloo, Canada
– Phillipe Desfray, Softteam, USA
– Johannes Ernst, NetMesh, USA
– Jacky Estublier, University of Grenoble, France
– Andy Evans, Xactium, Great Britain
– Martin Gogolla, University of Bremen, Germany
– Stuart Kent, Microsoft Research, Great Britain
– Steve Mellor, ProjTech, USA
– Paul Sammut, Xactium, Great Britain
– Laurie Tratt, Kings College London, Great Britain
– Jos Warmer, De Nederlandsche Bank, Netherlands
– Jon Whittle, QSS/NASA Ames, USA
– James Willans, Xactium, Great Britain

The workshop was structured into 4 thematic sessions:

– Principles, Theories and Methodologies (Papers 3.1-3.3)
– Tools and Industrial Experience (Papers 3.4-3.6)
– Model Testing and Compliance (Papers 3.7-3.9)
– Applying MDA to Ontologies (Papers 3.10-3.11)

3 Presented Papers

3.1 Towards a Basic Theory to Model Driven Engineering

Author: Jean-Marie Favre
Abstract: What is a model? What is a metamodel? What is a language? What
is a transformation? How are these concepts related? It is striking to see that,
though MDE is supposed to be about precise modelling, MDE core concepts
are usually described in natural language or at best, using sketchy a-la UML
diagrams. These diagrams are very often inconsistent and too vague to reason
about. Most of the time, they are neither validated, not even used by their au-
thors. When precise descriptions are provided, it is only to describe a specific
technology. But since Model Driven Engineering is a about supporting multiple
Technological Spaces (TS), the concepts of model, metamodel, and transforma-
tion should be declined, not only in the MDA TS, but also in the Grammarware
TS, Documentware TS, Dataware TS, etc. To cope with these problems, we de-
cided to start research on defining a megamodel of MDE. This paper shows how

Essentials of the 3rd UML Workshop in Software Model Engineering 45

the set theory and language theory could help in understanding MDE concepts
and their relationships. The megamodel could also be seen as a first version of
a rudimentary theory for reasoning about MDE concepts.

3.2 A Tool Architecture Supporting Change Propagation

Authors: Marcus Alanen, Ivan Porres
This article discusses a tool architecture that supports the construction of a
Model-Driven Development (MDD) tool as a collection of loosely coupled com-
ponents. Each component performs a highly specialized task under the coordina-
tion of an active model repository. The key issue in this architecture is to decide
how to notify changes produced by a component to the other components and
when.

3.3 Are Models the DNA of Software Construction?

Authors: Friedrich Steimann, Thomas Kühne
Abstract: MDA is advocated as the next step in software construction. It builds
on the availability of a powerful modelling language and model compilers that
translate models into executable code. In the following, Dr. Con-known as a
harsh critic of UML and as a sceptic of the feasibility of MDA- and Dr. Pro-a
believer in the MDA vision-are discussing whether MDA is fundamentally flawed
from the beginning or represents the most promising new development paradigm
we work on today.

3.4 A Case Study on a Transformation Focused Industrial MDA
Realization

Authors: Miroslaw Staron, Ludwik Kuzniarz, Ludwik Wallin
Abstract: Model Driven Architecture (MDA) is a proposal to the realization
of a vision of model driven software development defined by the Object Man-
agement Group (OMG). Its adoption, nevertheless, varies in different endeavors
at different companies. The presented industrial case study performed at Volvo
Information Technology (Volvo IT) contributes with the evaluation of how the
team studied values profiles, constraints, transformations and other elements
used in their realization of MDA. In addition it provides an insight into the
practical MDA based framework development process followed at that company.
The findings of the study may provide a tangible basis to the forthcoming en-
deavors of a similar kind together with the experiences (the process) of the MDA
realization which are presented in this paper.

3.5 The TopModL Initiative

Authors: Pierre-Alain Muller, Cedric Dumoulin, Frederic Fondement, Michel
Hassenforder
Abstract: We believe that there is a very strong need for an environment to
support research and experiments on model-driven engineering. Therefore we

46 M. Gogolla, P. Sammut, and J. Whittle

have started the TopModL project, an open-source initiative, with the goal of
building a development community to provide an executable environment for
quick and easy experimentation, a set of source files and a compilation tool
chain, and a web portal to share artefacts developed by the community. The aim
of TopModL is to help the model-engineering research community by providing
the quickest path between a research idea and a running prototype. In addition,
we also want to identify all the possible contributions, understand how to make it
easy to integrate existing components while maintaining architectural integrity.
At the time of writing we have almost completed the bootstrap phase (known as
Blackhole), which means that we can model TopModL and generate TopModL
with TopModL. Beyond this first phase, it is now of paramount importance
to gather the best possible description of the requirements of the community
involved in model-driven engineering to further develop TopModL, and also to
make sure that we are able to reuse or federate existing efforts or goodwill. This
paper is more intended to set up a basis for a constructive discussion than to
offer definitive answers and closed solutions.

3.6 Traceability Across Refinement Steps in UML Modeling

Authors: Claudia Pons, Ralf-Detlef Kutsche
Abstract: Documenting the refinement relationship between layers allows de-
velopers to verify whether the code meets its specification or not, to trace the
impact of changes in the business goals and execute test assertions written in
terms of abstract model’s vocabulary by translating them to the concrete model’s
vocabulary. Refinement has been studied in many formal notations such as Z and
B and in different contexts, but there is still a lack of formal definitions of re-
finement in semi-formal languages, such as the UML. The contribution of this
article is to clarify the abstraction/refinement relationship between UML mod-
els, providing basis for tools supporting the refinement driven modeling process.
We formally describe a number of refinement patterns and present PAMPERO,
a tool integrated in the Eclipse environment, based on the formal definition of
model refinement.

3.7 Specification-Driven Development of an Executable
Metamodel in Eiffel

Authors: Richard Paige, Phillip J. Brooke, Jonathan S. Ostroff
Abstract: Metamodels precisely define the constructs and underlying well-
formedness rules for modelling languages. They are vital for tool vendors, who
aim to provide support so that concrete models can be checked formally and
automatically against a metamodel for conformance. This paper describes how
an executable metamodel - which supports fully automated conformance check-
ing - was developed using a model-driven extension of test-driven development.
The advantages and disadvantages of this approach to building metamodels are
discussed.

Essentials of the 3rd UML Workshop in Software Model Engineering 47

3.8 Challenges and Possible Solutions to Model Compliance in the
Context of Model Driven Development

Authors: Juan Pablo Zamora Zapata, Francis Bordeleau, Jean-Pierre Corriveau,
Toby McClean
Abstract: Specifications define requirements. Numerous authors address the val-
idation of implementations against such requirements. But there generally exists
a large semantic gap between implementations and specifications, thus signifi-
cantly limiting such validation approaches. Model driven development promotes
the creation of a series of models to go from specification to implementation. Con-
sequently, compliance can now be tackled between such models. In this paper, we
specifically explore the challenges faced in the task of verifying the compliance
of the structure of a design model against a specification model.

3.9 Running and Debugging UML Models

Authors: Miguel Pinto Luz, Alberto Rodrigues da Silva
Abstract: Software development evolution is a history of permanent searches to
raise the abstraction level to new limits, thus overcoming new frontiers. Exe-
cutable UML (xUML) comes this way as the expectation to achieve the next
level in abstraction, offering the capability of deploying a xUML model in a
variety of software environments and platforms without any changes. This pa-
per comes as a first expedition inside xUML, exploring the main aspects of its
specification including the action languages support and the fundamental MDA
compliance. We also explore the model debugging capabilities as a premature
means of conceptual fail discovery. In this paper is presented a new xUML tool
called XIS-xModels that gives Microsoft Visio new capabilities of running and
debugging xUML models. Keywords: UML, executable UML, Model Debugging,
Action Language.

3.10 Approaching OWL and MDA Through Technological Spaces

Authors: Dragan Gasevic, Dragan Djuric, Vladan Devedzic, Violeta Damjanovic
Abstract: Web Ontology Language (OWL) and Model-Driven Architectures
(MDA) are two technologies being developed in parallel, but by different commu-
nities. They have common points and issues and can be brought closer together.
Many authors to date have stressed this problem and proposed several solutions.
The result of these efforts is the recent OMG’s initiative for defining an ontol-
ogy development platform. However, the problem of transformation between an
ontology and MDA-based languages has been solved using rather partial and
ad hoc solutions, most often by XSLT. In this paper we analyze OWL and
MDA-compliant languages as separate technological spaces. In order to achieve
a synergy between these technological spaces we define ontology languages in
terms of MDA standards, recognize relations between OWL and MDA-based
ontology languages, and propose mapping techniques. In order to illustrate the
approach, we use an MDA-defined ontology architecture that includes ontology

48 M. Gogolla, P. Sammut, and J. Whittle

metamodel and ontology UML Profile. Based on this approach, we have imple-
mented a transformation of the ontology UML Profile into OWL representation.

3.11 Augmenting Domain Specific UML Models with RDF

Authors: Jörn Guy Süß, Andreas Leicher
Abstract: Models are created and maintained in the context of their problem
domain. Inclusion of domain rules and background knowledge by means of pro-
files can be complicated and demanding. This paper presents an alternative
approach based on the Resource Description Framework, which attaches back-
ground knowledge and rules as present in ontologies at the fringes of the model,
rather than to include them within the model. Logical reasoning and queries are
thus possible in the context of ontologies and background imported from differ-
ent sources into RDF. Further, the paper discusses representation of complete
UML and MOF Models using RDF Schema.

4 Additional Accepted Papers

4.1 A Formal Model of Component Behaviour

Authors: Remi Bastide, Eric Barboni, Amelie Schyn
Abstract: This paper presents a component model inspired by the CORBA Com-
ponent Model, and an associated formal notation based on Petri nets and ded-
icated to the modelling of concurrent and distributed components. The model
is illustrated by a case study that illustrates its hierarchical features, and shows
how the main features of components can be mapped to the constructs of the
Petri net.

4.2 Modeling and Transforming the Behavioural Aspects of Web
Services

Authors: Behzad Bordbar, Athanasios Staikopoulos
Abstract: This paper introduces the modeling, mapping and transformation of
behavioural aspects of interacting Web services, within the context of MDA.
There are certain systems, such as Web services, where the dynamic aspects are
of high importance and need to be considered during the modeling and transfor-
mation process so as to create accurate representations in their target domains.
To demonstrate the approach, a realistic example is presented involving a num-
ber of Web services participating in a business process expressed as choreography
of exchanged messages.

4.3 Defining Model Driven Engineering Processes

Authors: Frederic Fondement, Raul Silaghi
Abstract: Software engineering techniques made it possible for developers to
build larger, and more accurate, reliable, and maintainable software-intensive

Essentials of the 3rd UML Workshop in Software Model Engineering 49

systems. This was essentially possible by introducing techniques for raising the
level of abstraction for describing both the problem and its solution, and by
clearly establishing a methodology to define the problem and how to move to
its solution. Model Driven Engineering (MDE) targets precisely at organizing
such levels of abstraction and methodologies. It encourages developers to use
models to describe both the problem and its solution at different levels of ab-
straction, and provides a framework for methodologists to define what model to
use at a given moment (i.e., at a given level of abstraction), and how to lower
the level of abstraction by defining the relationship between the participating
models. Such an MDE process is supposed to be defined by means of assets and
methodologists have the duty to provide such assets. However, it is not yet clear
what exactly these assets are, despite the fact that techniques to express them
have already been widely studied. This position paper addresses this issue by
identifying some of the MDE assets that have to be provided, and shows how
they should be defined in order to enable them to participate in different MDE
process definitions.

4.4 Systematic Validation of Model Transformations

Author: Jochen M. Küster
Abstract: Like any piece of software, model transformations must be validated
to ensure their usefulness for the intended application. Properties to be validated
include syntactic correctness as well as general requirements such as termination
and confluence (i.e., the existence of a unique result of the transformation for
every valid input). This paper introduces the idea of systematic validation and
then focuses on validation of syntactic correctness for rule-based model trans-
formations.

4.5 Towards a Language for Querying OMG MOF-Based
Repository Systems

Authors: Ilia Petrov, Stefan Jablonski
Abstract: This paper introduces a SQL-aligned declarative query language called
mSQL (meta-SQL) for querying OMG-MOF based repository systems. Querying
repository systems may be related to querying multi-database systems having
a powerful data dictionary. The problem of schematic heterogeneity in multi-
database, which is elegantly solved through higher order queries and the advan-
tages they bring to various filed have been discussed in. Systems of this kind
find extensive application in data-intensive Web applications, information, ap-
plication and heterogeneous data source integration. Some of the key features of
mSQL are: support for higher order queries and schema independent querying,
unified handling of repository data and metadata, quantification over repository
model elements. Additional areas to which mSQL may be applied are: query-
ing schematically disparate models e.g. abstract schemata of components; in-
formation (schema) discovery; generic browsing of complex data collections and
scientific repositories.

50 M. Gogolla, P. Sammut, and J. Whittle

4.6 Mapping UML Class Diagrams to Object-Oriented Logic
Programs for Formal Model-Driven Development

Authors: Franklin Ramalho, Jacques Robin
Abstract: MODELOG aims at automatically mapping UML class, object, state-
chart, activity and collaboration diagrams adorned with Object-Constraint Lan-
guage expressions to non-monotonic, dynamic, object-oriented logic programs in
Transaction Frame Logic (TFL). Coupled with the Flora-2 inference engine for
TFL, MODELOG will fill five gaps in the current UML-based infrastructure for
the Common Warehouse Meta-model, Model-Driven Architecture and Seman-
tic Web visions: (1) automated data transformation transactions specified using
the Meta-Object Facility for data warehousing and mining, (2) automated UML
model transformations for refinement and refactoring, (3) formal verification of
UML models, (4) complete UML model compiling into running code and (5) de-
ductive and abductive inference in intelligent agents leveraging UML semantic
web ontologies. In this paper, we present the MODELOG mapping of UML class
diagrams to structural TFL clauses.

4.7 Improving SoC Design Flow by Means of MDA and UML
Profiles

Authors: Elvinia Riccobene, Alberto Rosti, Patrizia Scandurra
Abstract: We tackle the problem of improving the SoC (System on a Chip) design
flow in order to provide a modeling framework which allows exchange, reuse
and integration of IP (Intellectual Property) models. In this paper, we present a
UML profile of the SystemC language exploiting the MDA capabilities of defining
modeling languages, platform independent and reducible to platform dependent
languages. Furthermore, we discuss the advantages of high-level modeling SoC
components in the style of UML using the SystemC design primitives, rather
than designing at a lower level by means of coding.

4.8 An Object Oriented Model Transformer Framework Based on
Stereotypes

Authors: Weerasak Witthawaskul, Ralph Johnson
Abstract: MDA modelers, like programmers in general, will develop and reuse li-
braries. Some of these libraries will hide details of the platforms, so the mapping
from a PIM to a PSM will have to transform libraries as well. Some libraries
provide common object services while others provide domain specific function-
alities. These libraries will not just be class libraries, but also profiles containing
stereotypes. Mercator is an extensible tool for transforming a PIM that uses
platform independent libraries to a PSM. It allows model compiler developers
to specify stereotype-based transformation both for transforming new libraries
and for transforming libraries to new platforms. Using the Mercator framework
and platform independent libraries, it becomes possible to extend the tool to
migrate from one technology to another by creating new mappings for the new
technology and reusing the same PIM.

Essentials of the 3rd UML Workshop in Software Model Engineering 51

5 Questions Raised During Discussion

– What do notions like modeling-in-the-small and modeling-in-the-large
refer to? What is the relationship between modeling-in-the-small and
programming-in-the-large?

– Will the field ‘Software Engineering’ emerge sometime in the future to ‘Model
Engineering’? Is ‘Software Model Engineering’ something in between?

– Are ‘Models’ the basic building blocks for software construction? What is
the difference between modelling, specifying and programming?

– What kind of languages do we need for modeling: One big language or many
small languages? In case we have many languages, how do the different lan-
guages cooperate?

– A question coming up on many events discussing ‘models’: How do we inte-
grate structural and behavioral models?

– What about the importance of the UML? Will other modeling languages
like Microsoft’s Whitehorse initiative decrease the influence of UML? On
the other hand, will it strengthen the importance of modeling languages in
general?

– What is the relationship between domain specific languages and profiles for
modeling languages?

– What is beyond the model? ... the metamodel? ... the megamodel? ... the
megametamodel? ... the metamegamodel?

Acknowledgement

The organizers of this 3rd workshop gratefully acknowledge the initiative of Jean
Bezivin and Robert France in establishing this series of workshops.

References

1. Jean Bezivin, Robert France: Proc. 1st UML Workshop in Software Model Engi-
neering (WiSME’2002). www.metamodel.com/wisme-2002.

2. Jean Bezivin, Martin Gogolla: Proc. 2nd UML Workshop in Software Model Engi-
neering (WiSME’2003). www.metamodel.com/wisme-2003.

3. Martin Gogolla, Paul Sammut, Jon Whittle: Proc. 3rd UML Workshop in Software
Model Engineering (WiSME’2004). www.metamodel.com/wisme-2004.

, LNCS 3297, pp. 52 – 61, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Open Issues in Industrial Use Case Modeling

Gonzalo Génova1, Juan Llorens1, Pierre Metz2,
Rubén Prieto-Díaz3, and Hernán Astudillo4

1 Carlos III University of Madrid
{ggenova, llorens}@inf.uc3m.es

2 Cork Institute of Technology, Ireland
metz@cit.ie

3 James Madison University, VA, USA
prietorx@cisat.jmu.edu

4 Universidad Técnica Federico Santa María, Chile
hernan@inf.utfsm.cl

http://www.ie.inf.uc3m.es/uml2004-ws6/

Abstract. Use Cases have achieved wide use as a specification tool for
observable behavior of systems. However, there is still much controversy,
inconsistent use, and free-flowing interpretations of use case models, in fact,
not even experts widely recognized in the community agree on the semantics of
concepts. Consequently, use case models are dangerously ambiguous, and there
is an unnecessary divergence of practice. The purpose of the workshop was to
identify and characterize some sources of ambiguity. It gathered specialists
from academia and industry involved in modeling use cases to exchange ideas
and proposals, with an eye to both clear definition and practical application.
Some presented topics were discussed in-depth (the UML metamodel for use
cases, use case instances, use cases in MDD/MDA, use case model vs.
conceptual model, and tools for use cases specification), while others were left
as open issues for future research. We hope our suggestions will be useful to
improve the metamodel of use cases, and stimulate further research to reach a
stronger coupling between the use case model and other static, behavioral and
architectural models.

1 Motivation and Goals

In UML there are two main representations for use cases: textual specifications and
diagrams. From a methodological standpoint, these “two worlds” have been evolving
in isolation to each other. A full semantic connection between use case specification
items and UML use case diagrams as initially desired by Jacobson et al. in the OOSE
method does not exist. This important topic is still open to discussion and agreements,
and the original impetus of the workshop comes from this dichotomy between textual
vs. graphical representations for use cases.

1.1 The Graphical World

UML has been aiming to formalize use cases through object-oriented semantics by
declaring the metamodel element UseCase as a subtype of Classifier, which contains

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

 Open Issues in Industrial Use Case Modeling 53

Attributes, Operations and Methods, while not defining use case documentation
properties or providing a tailorable use case template. This has given use cases an
explicit OO formalization as desired by Jacobson et al. in OOSE. However, the
absence of a reconciling explanation of this formalization with textual use case
specifications as promoted by the literature, and of guidance on how to actually
document use cases, has caused a certain lack of understanding among both
practitioners and researchers.

The graphical world of diagrams is dominated by use case relationships. UML’s
explanations of Include and, in particular, of Extend remain vague, and may even
seem to be contradictory. In spite of being treated asymmetrically as two different
types of use case relationships, UML’s explanations do not reveal any convincing
distinction; precise and unambiguous definitions of terms and semantics are missing.
Moreover, UML appears to mix the instance and the type view when defining the use
case relationships Include and Extend.

Another aspect where UML fails to be fully clear is regarding the meaning of use
case Generalization: there is no indication whether subtyping and/or object-oriented
inheritance semantics are meant.

1.2 The Textual World

The literature commonly emphasizes and promotes written use case specifications for
functional requirements capture, which are organized according to a template; there is
an implicit commitment to what a use case template should include. In contrast, use
case diagrams have been used merely as an adequate graphical view on, or “entry
point” to, these written specifications.

Practitioners and experts in the community frequently warn against over-
emphasizing use case diagrams and strenuously advise never to neglect the use case
textual specifications: in practice a use case diagram serves as a support for text but
not vice versa (“a bubble does not tell us the story”). Furthermore, the techniques in
the textual world are much more expressive and powerful compared to the use case
relationship capabilities in UML. Finally, UML does not provide graphical modeling
means for many aspects used in the textual world such as linking use cases through
pre- and post-condition relations.

The current literature avoids making any commitment and prefers to highlight
UML’s current elusive use case relationship semantics, add to these semantics, or
even arbitrarily modify these semantics, thereby keeping the practical use case
concepts fuzzy. Some authors even fully discourage the use of particular use case
relationships, or recommend getting rid of variety and having only a single but
powerful use case relationship.

1.3 Open Areas for Research

Some of the open areas identified before the workshop are:

 Alignment of textual specification and graphical representation: use case
relationships, use case standard templates, use case contracts, any information
missing or extra in the two representations.

54 G. Génova et al.

 Little semantic connection between use case specification items and UML use
case diagrams. In particular, UML lacks support for the connection proposed
by Jacobson et al. in OOSE.

 Collaboration vs. participation among actors of a use case. Actors may have a
collaborative or participatory role in a use case, yet UML diagrams do not
allow distinguishing them.

 Functional vs. structural view of use cases. Use cases may be expanded to
represent functional characteristics of parts of systems, yet this expansion is
not possible in UML’s graphical view.

 Relationships among use cases, composition: UML allows include and extend,
yet composition has a different semantics; some meaningful relationships
could be borrowed from other notations, such as “precedes” from OPEN/OML
and “mitigates” from Misuse Cases; dependency information encoded in pre-
and post-conditions cannot be depicted graphically either.

1.4 Organization

The workshop was organized by Gonzalo Génova (Carlos III University of Madrid,
Spain), Juan Llorens (Carlos III University of Madrid, Spain), Pierre Metz (Cork
Institute of Technology, Ireland), Rubén Prieto-Díaz (James Madison University, VA,
USA) and Hernán Astudillo (Universidad Técnica Federico Santa María, Chile).

Submitted papers were reviewed by an international team of experts composed by
the organizers and Shane Sendall (University of Geneva, Switzerland), Roderick
Coleman (Free consultant, Germany), Wolfgang Weber (University of Applied
Sciences, Darmstadt, Germany), Sadahiro Isoda (Toyohashi University of Technology,
Japan), Joaquin Miller (X-Change Technologies, USA), Guy Genilloud (IT/business
consultant, Switzerland), Paul Bramble (Independent consultant, USA) and Bruce
Anderson (Managing Consultant, Application Innovation, IBM Business Consulting
Services, UK). Each paper received between 2 and 4 reviews before being accepted.

2 Initial Positions of the Authors

The initial two sessions of the workshop were devoted to presentation of the accepted
papers, which represented a good mixture of experiences and researches both from
academia and industry, as was one of the goals of the workshop. The authors came to
the workshop with the following positions:

 Bruce Anderson [1]. My point of view comes from practice, from wanting
UML to illuminate and support my work. While use cases can usefully be
considered at various levels of formality, I would like an underlying
representation that allows clear semantic relationships between use cases and
other artifacts, and in particular business process models, data models, test
plans, system interface objects and business rules. UML should model
accurately and informatively the ways in which use case models are
structured, in particular for reuse and comprehensibility. This requires the
metamodel to include detail at the level of steps and alternatives.

 Open Issues in Industrial Use Case Modeling 55

 Nelly Bencomo, Alfredo Matteo [2]. Model Driven Software tries to focus
on the modeling of systems independently of the platform, then using
transformations. These models should be translated to specific platforms (for
example in the field of middleware/distributed applications specific
platforms are CORBA, .NET, Web Services etc).

 Clay Williams, Matthew Kaplan, Tim Klinger, and Amit Paradkar [3]. We
argue that use case modeling should be done in the context of a rich
conceptual model. Use cases are written in terms of this model using
structured natural language. We also discuss problems that arise when trying
to align this representation with the UML 2.0 metamodel, including
metaclass misalignment and the lack of a representation for use case content.
We close by discussing four applications of our representation: prototyping,
estimation, refinement to design, and test case creation.

 Michal Smialek [4]. Use cases should have precisely defined notations which
are comprehensible by various groups of people in a software development
project. In order to meet these diverse views, several notations are necessary.
These notations should be easily transformable and should have clear
mappings to other models including the conceptual model.

 Sadahiro Isoda [5]. The current UML's use-case specification has a lot of
problems and even nonsense. All these problems are due to three
fundamental defects originated in OOSE. These are the illusionally "actors
call use cases" conjecture, mixing-up designer's simulation with real
execution and poor understanding of OO. The problems can be easily solved
by recognizing anew what a use case is and then modeling it guided by plain
OO technology.

 Gonzalo Génova, Juan Llorens [6]. In UML, use cases are meta-modeled as
classifiers. Classifiers specify a set of instances, and use case instances are
said to be concrete system-actor interactions. But it is not clear how an
interaction can have classifier features such as attributes, operations and
associations. Therefore, we challenge the notion that use case instances are
interactions. We also propose a notion of use case (a coordinated use of
system operations) that is very close to the traditional protocol, therefore
concluding that use cases and protocols are not essentially different things.

 Guy Genilloud, William F. Frank [7]. It is shown that that the UML ontology
is unnatural (at odds with English). As a consequence, the UML standard
contains numerous sentences that confuse the picture between use cases, use
case instances, and use case types. It is no surprise, therefore, that many use
case practitioners do not understand the Extend relationship. The ontology of
the RM-ODP, on the other hand, is more natural and more easily abided by.
Using it, one would explain Extend for what it is, a relationship between
specifications. Following this approach is key to reconciling the
diagrammatic and textual specification techniques for use cases.

 Joaquin Miller [8]. I suggest we take an indirect approach to finding
techniques to specify use cases using UML: look at use cases from the ODP
viewpoint; choose ODP concepts well suited to specifying a use case; find

56 G. Génova et al.

corresponding UML constructs; adapt the UML constructs as required. I arrive
at: A particular use case of a certain system is a part of the community contract
of a community of a certain type. That community is represented as a UML
collaboration. I discuss how that community can be specified using UML.

3 Workshop Results

The remaining two sessions of the workshop were devoted to discussions and
synthesis work, trying to reach agreement wherever it was possible. We first
established a list of open issues and related them to the presented papers. Then the
issues related to two or more papers were discussed in-depth: the UML metamodel
for use cases [3, 5, 6, 7, 8], use case instances [5, 6, 7], use cases in MDD/MDA [1,
2, 4], use case model vs. conceptual model [3, 4], and tools for use cases
specification [4, 5]. Other issues related to only one paper, or not particularly related
to any of the papers, were not specifically discussed, but we mention them below.
The following subsections summarize the discussions and agreements about the
issues discussed in-depth.

3.1 The UML Metamodel for Use Cases

This was the main issue discussed, since it was addressed more or less directly by the
majority of papers, and specifically by [3, 5, 6, 7]. We agreed that the chapter devoted
to use cases and the use case metamodel in the UML2 Specification [UML2] is
extremely confusing, with problems that originated in Jacobson’s OOSE, were
handed over to UML, and then retained so long. There are several inconsistent views
and interpretations of use cases, all of them supported by the UML2, and each of them
having its own difficulties. Many textual explanations in the Specification do not stick
to the terminology used in the metamodel itself. This is very important for tool
developers that try to be compliant with the UML2 Specification: if the metamodel is
inconsistent, compliance becomes an impossible task, and incompatible
interpretations of use cases lead to development of tools without interoperability.

We identified specifically the following problems:

 Use case ontology. The UML2 Specification introduces a dichotomy
between type/specification (of a thing), on the one side, and instance (the
thing itself), on the other side. For use cases, the terms are “use case” for the
specification and “use case instance” for the individual. However, these
terms are not consistently used, since “use case” very often means “use case
instance” [7, section 2.1], leading practitioners to frequent confusions.

 Use case features. UseCase is a specialization of Classifier, therefore it
inherits Classifier’s structural and behavioral features, i.e. attributes and
operations. There is not a single word in the UML2 Specification that
explains the meaning of use case features. If use case instances are
“interactions”, being each instance a sequence of message instances
exchanged between the system and the actors instances as they

 Open Issues in Industrial Use Case Modeling 57

communicate, then we cannot understand the meaning of use case attributes
and operations: what is the sense of an interaction, a collaboration among
instances, having attributes and operations? [6, section 2] We cannot think of
an example of this. The UML Specification should clarify this.

 UseCase as a specialization of BehavioredClassifier. We do not
understand why UseCase specializes BehavioredClassifier instead of
Behavior [3, section 3.1.1; 6, section 2], since a use case is supposed to
specify a sequence of actions, that is, a behavior. We do not understand why
Behavior specializes Class either.

 System behavior, Actor behavior, or both. There are two inconsistent
views about use cases in the UML2 Specification. On the one side, it seems a
use case specifies actions performed by the subject (i.e., the system to which
the use case apply); on the other side, it seems a use case specifies also
actions performed by the actor when communicating with the subject. It is
not clear, therefore, whether the use case specifies actor behavior or not [6,
section 1]. This is of great importance for deciding the contents of a use case:
should actor behavior be included in the use case specification, or not?
Moreover, if actor behavior is included within the use case specification,
then it has no sense saying that actors are associated with use cases, and
communicate with them from the outside, as the explanations in the UML
Specification and the graphical notation of use case diagrams indicate.

 Use cases as types. The UML Specification is misleading too when it says
that a use case can be used to type one of the parts or a roles in a
collaboration [6, section 1]: if the use case specifies the interaction, then it
cannot specify one of the parts of the interaction at the same time.

 Use cases vs. protocol interfaces. UML2 has introduced the concept of a
protocol interface with an associated state machine with the same purpose as
use cases, namely, to specify system or subsystem usages [6]. What is the
difference between use cases and protocol interfaces?

We left also some open questions that can serve as starting points for future research:

 Generalization of use cases. What does it mean? How are use case features
inherited? (This requires clarification of the notion of use case features.)
Does specialization mean subtyping too? (This requires clarification of
notion of use case instance.) How is use case contents inherited (pre and post
conditions, action steps, state machines…)?

 Pre and post conditions. What is the precise meaning of pre and post
conditions? When should they be checked, at run time, or at specification
time? Can pre and post conditions be used to establish sequential
relationships between use cases?

 Extend and Include relationships. Are extensions and inclusions true use
cases themselves, or are they mere fragments that deserve a different name
(such as system action or activity)? Should they be visible in the use case
description as separate artifacts, or are they merely configured in the model
in a transparent way to the user?

58 G. Génova et al.

 Failures and alternatives. How do we best express failures and choices?
What terminology should be used?

 Internal behaviors/algorithms. How do we tie business rules to action
steps? What is the relationship between use cases and system operations?

 Log-in and log-off. Should these be considered as separate use cases on
their own with some relationship to other use cases (for example, through pre
and post conditions), or should they rather be considered as mere fragments
within other use cases?

3.2 Use Case Instances

Another major issue that was discussed is the improper use of the term “instantiation”
to refer to the performance of actions specified in a use case [5, 6, 7]. We agreed that
use case instances are not “things” that execute themselves or are executed by
something else, therefore use case classifiers are not specifications of sets of “things”.
A behavior is not a thing, it is rather something a thing does (or something a group of
things jointly do). In particular, a scenario is not an instance of a use case, and a use
case does not instantiate a scenario. Rather, a use case is a complex, composite action
template; a use case is a description of a behavior, and a scenario is also a description
of behavior: the use case considers alternatives, exceptions, etc., while the scenario is
a concrete path through the use case behavior specification.

We agreed, then, that use case instances are not “things”, but we did not reach a
full agreement on “instantiation” being a wrong term to refer to “the performance of
actions specified in a use case”. If not wrong, it seems at least to be confusing. The
term “use case simulation” was proposed [5, sections 3.2 and 4.3] and received with
interest, but it was not accepted by everybody.

3.3 Use Cases in MDD/MDA

The integration of use cases within Model Driven Development / Model Driven
Architecture requires a better definition of use case contents [1, 2, 4], specifically a
better definition of use case description of behavior through sequences of action steps
[3, 4], use case pre and post conditions [7], and relationship between use case model
and conceptual model [1, 3, 4].

The UML2 Specification allows for several textual and graphical representations of
use case behavior, but does not provide any rules for transformations between
different representations at the same level of abstraction. It does not provide either
any rules for transformations of these representations to other artifacts at levels closer
to implementation. Obviously, a use case must allow very informal descriptions that
promote a good communication with stakeholders. However, to make them more
precise, we suggest use case contents can be expressed also in semi-formal ways
which should not hinder communication with stakeholders and which could be used
as a refinement of those informal descriptions. Specifically, we identified several
different directions to achieve this goal:

 Open Issues in Industrial Use Case Modeling 59

 Use case model vs. conceptual model. Establish a clear link between the
concepts employed in use case descriptions and the vocabulary employed in
the conceptual model.

 Semi-formal structure for expressing steps. Express action steps in simple
sentences with a semi-formal structure (for example, subject-verb-object).
This approach has been verified in several domains with good results [4].
However, maybe this is not feasible for all domains, an issue which deserves
also further research.

 Execution semantics for action steps. Use action steps with clear execution
semantics that allow execution or simulation of the use case behavior at an
abstract level (for example, input/output statements, computations, alternatives/
exceptions checking, etc.) [3].

Other closely related issues were not discussed in-depth, and we left them as open
questions for future research:

 Should we extend the metamodel to achieve this level of precision, or should
we rather use the profile mechanism [4]?

 Should we have one notation for use case contents, or different ones for
different problem domains or different groups of people [4]?

 Should OMG focus more on defining transformations related to the
Computation Independent Model and Platform Independent Model (CIM-
CIM and CIM-PIM)? Should these transformations be based on more
precisely defined use case model [4]?

 Pre and post conditions: how are they related to the conceptual model and to
the action steps in the description of behavior?

 How do we tie the use case model to the architecture, designs, user interfaces
and code that implement it? This question requires an answer imperatively,
since there is currently a lot of effort and research about MDA/MDD and it is
not clear how Use Cases (and its benefits) are related to the definitions of
Platform Independent Models (PIMs), Platform Specific Models (PSMs) and
transformations among models.

3.4 Use Case Model Versus Conceptual Model

We also provide some suggestions to tie use cases to the vocabulary they use (in the
business model), since it is good practice to keep the development of the use case
model and the conceptual model in step during requirements work [3, 4]:

 The conceptual model must be consistent with the terms used for information
items (the vocabulary) mentioned in the use case steps, with a clear mapping
between them in both directions, maybe tool-supported, and expressed with a
convenient notation.

 Different stakeholders may use different terms for the same concepts,
therefore a good control of synonyms is required.

60 G. Génova et al.

A promising field for research seems to be the construction of tools for automatic
transformation and synchronization of the conceptual model with the use case model.
This of course is possible when use cases are described by means of a restricted
language (a subset of natural language with simple syntax that can be parsed). Would
such tools be worth sacrificing informal language descriptions, or a richer, more
natural, syntax?

3.5 Tools for Use Case Specification

Closely related to the MDD/MDA approach also is the need to develop tools that
support the development of the use case model and other related software artifacts.
We propose specifically:

 The UML metamodel should be carefully re-examined so that it allows
building tools that simulate use case executions. The current metamodel says
too little about use case content (e.g. steps), thus making this task difficult,
even impossible [5, section 4.3].

 Tools should support transformations (that have well-defined semantics)
between different use case representations and between use case representations
and behaviors at the design level [3, 4]. Tools should also support
synchronization with the vocabulary, as was stated in the previous section.

Tool support should not limit the possibilities to represent use cases with different
notations serving particular domains. Thus an observation was made that this would
necessitate that the tools have certain configuration capabilities. These capabilities
would allow for defining templates for use case domain-specific notations, and what
is more important – templates for transformations to other models.

3.6 Other Issues

Other issues more or less loosely related to the MDD/MDA approach were not
specifically discussed, and we left them as open questions for future research:

 Use case model and requirements. What is the difference between the use
case model and the functional requirements? Do we need separate artifacts to
express them? How do we tie non-functional requirements to use cases?

 Business processes and use cases. How are they related to each other?
How can we derive system use cases from the descriptions of business
processes?

 Level of abstraction and formality. How many levels of abstraction are
desirable in a use case model? Which level of detail is it desirable to reach?
What level of formality can be reasonably attained by means of natural
language?

 Context for use cases. How do we describe the data context for a use
case? How do we relate data state in inclusions or extensions to their base
use case?

 Open Issues in Industrial Use Case Modeling 61

 Test cases. How do we create test cases that get the right coverage?
 Inspection of use cases. What kind of rules can we give to guide inspection

of use cases?
 Metrics for use cases. What kind of metrics can we establish for use cases?

4 Conclusions and Future Work

The summary of workshop discussions shows that our main interests lie all around
two main poles: a) problems posed by deficiencies in the UML2 Specification
regarding use cases, i.e. semantics of use cases; and b) the use case model in the
context of MDD/MDA, i.e. pragmatics of use cases. We hope our suggestions will be
useful to improve the metamodel of use cases, and stimulate further research to reach
a stronger coupling between the use case model and other static, behavioral and
architectural models. These two issues are closely related too, i.e. the quality of the
UML Specification has a practical impact: a better definition of use case semantics
(metamodel) is required to achieve a wider consensus about good practices in writing
use cases and to build tools that can effectively support a use case driven development
(MDD/MDA); also, the UML2 metamodel should not ignore well-established
industrial practices.

Publication of workshop proceedings in the Journal of Object Technology is
scheduled for February, 2005. New versions of the accepted papers will undergo a full
review process before final publication, to achieve a higher degree of unification
among them.

The workshop discussions were extremely participative and fruitful, and we hope
there will be similar workshops at future UML Conferences (from now on called
MoDELS Conference).

More information can be found on the workshop web site.

References

1. Bruce Anderson. “Formalism, technique and rigour in use case modelling”
2. Nelly Bencomo, Alfredo Matteo. “Traceability Management through Use Cases when

Developing Distributed Object Applications”
3. Clay Williams, Matthew Kaplan, Tim Klinger, and Amit Paradkar. “Toward Engineered,

Useful Use Cases”
4. Michal Smialek. “Accommodating informality with necessary precision in use case

scenarios”
5. Sadahiro Isoda. “On UML2.0's Abandonment of the Actors-Call-Use-Cases Conjecture”
6. Gonzalo Génova, Juan Llorens. “The Emperor's New Use Case”
7. Guy Genilloud, William F. Frank. “Use Case Concepts from an RM-ODP Perspective”
8. Joaquin Miller. “Use Case from the ODP Viewpoint”

Models for Non-functional Aspects of Component-Based
Software (NfC’04)

Jean-Michel Bruel1, Geri Georg2, Heinrich Hussmann3, Ileana Ober4,
Christoph Pohl5, Jon Whittle6, and Steffen Zschaler5

1 Laboratoire d’Informatique, University of Pau,
B.P. 1155, F-64013 Pau, France

bruel@univ-pau.fr
2 Computer Science Department, Colorado State University,

Fort Collins CO 80523, USA
georg@cs.colostate.edu

3 Institut für Informatik, Universität München,
Amalienstraße 17, 80333 München, Germany

hussmann@informatik.uni-muenchen.de
4 UMR Verimag, Centre Equation, 2, avenue de Vignate,

38610 Gi-Aères, France
ileana.ober@imag.fr

5 Fakultät Informatik, Technische Universität Dresden,
01062 Dresden, Germany

christoph.pohl|steffen.zschaler@inf.tu-dresden.de
6 NASA Ames Research Center, MS 269-2,

Moffett Field, CA 94035, USA
jonathw@email.arc.nasa.gov

Abstract. The goal of this workshop was to look at issues related to the integration
of non-functional property expression, evaluation, and prediction in the context of
component-based software engineering. The accepted papers looked at the issue
from a very broad range of perspectives, such as development process, modelling
for analysis vs for construction, or middleware componentisation. The afternoon
session was completely used for discussions: discussion topics ranged from the
limits of the research domain and the definition of fundamental terms and concepts
to issues of compositionality.

The workshop had a very inspiring and productive atmosphere, and we are
looking forward to organising future instalments of the series.

1 Introduction

Developing reliable software is a complex, daunting, and error-prone task. Therefore,
many researchers are interested in improving the support for developers creating such
software. Component-based software engineering has emerged as an important para-
digm for handling complexity. The goal of this workshop was to look at issues related
to the integration of non-functional property expression, evaluation, and prediction in
the context of component-based software engineering. In this area it was our main
focus to look at model-based approaches, preferably, but not limited to, UML-based

LNCS 3297, pp. 62–66, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

Models for Non-functional Aspects of Component-Based Software (NfC’04) 63

approaches. This includes semantic issues, questions of modelling language definition,
but also support for automation, such as analysis algorithms, MDA-based approaches,
or tool-support for refinement steps.

2 Overview of Papers Presented

All of the papers together with a report on the workshop’s result are also published
separately as a technical report at Dresden University of Technology [2]. The corre-
sponding presentation slides have been made available from the workshop’s website
www.comquad.org/nfc04. In this section, we only give summaries of each paper. All of
the papers presented looked at the workshop’s theme from very different angles. We will
use this motivation for a first classification of the papers in the following.

2.1 Non-functional Aspects Management for Craft-Oriented Design [4]

The authors of this paper discuss a technology to combine different view-points used by
different teams (or ‘crafts’) developing different parts of a complex application. The key
idea is in the introduction of a so-called ‘pivot’-element, which serves as an interface
between the different models of the different teams. Each team together with project
management decides which part of its models is to be public and how these models are
to be represented. Thus, teams can work largely independent of each other, while still
enabling project management gain a global overview of the system and ensure overall
consistency. The major motivation for this work lies in the development process, namely
in the support for diverse teams cooperating in a large project.

2.2 Formal Specification of Non-functional Properties of Component-Based
Software [5]

This paper presents a formal specification of timeliness properties of component-based
system, as an example for a formal, measurement-based approach to specifying non-
functional properties. The approach is motivated by the separation of roles in component-
based software development and uses separate specifications for components, containers,
system services and resources. The specification is modular and allows reasoning about
properties of the composed system. As the previous paper, this paper’s main motivation
is in the development process, however, it is more driven by the different needs of roles
such as the component developer and the application assembler.

2.3 A Model-Driven Approach to Predictive Non Functional Analysis of
Component-Based Systems [3]

This paper discusses an idea to use model transformation to refine a platform-independent
model (PIM) into an analysis model in addition to the platform-specific model (PSM)
driving development towards implementation. The authors discuss relevant relationships
between the two different refinement paths (PIM to PSM and PIM to analysis model), and
describe in more detail a refinement leading to a queueing network model for average-
case compositional performance analysis. A major motivation for this paper is in the
requirement to analyse non-functional properties of the system under development based
on models of it.

64 J.-M. Bruel et al.

2.4 Tailor-Made Containers: Modelling Non-functional Middleware Services
[1]

This paper discusses the generation of tailor-made application servers from specifica-
tions of the non-functional properties to be supported. The authors suggest to model
application servers as a collection of core services and aspects implementing support
for individual non-functional properties. The idea is then to generate application servers
from these parts, depending on the non-functional specifications of the components or
applications to be executed. This paper is mostly motivated by experiences the authors
made when providing runtime support for realtime properties.

2.5 OMG Deployment and Configuration of Distributed Component-Based
Applications

Another important motivation for modelling non-functional properties of component-
based applications lies in the actual deployment of such applications, which may ne-
cessitate reconfiguration of individual components or the complete application. As this
important area had not been covered by any of the submissions, we invited Francis
Bordeleau—who is one of the co-authors of the OMG deployment and configuration
specification—to give a presentation on the concepts in this specification and how these
relate to models of non-functional properties of component-based software. The talk was
very well received. Its main message was that although the current specification does not
specifically address non-functional properties, these must be considered an important
ingredients in particular to reconfiguration decisions for specific target platforms or user
groups.

3 Workshop Results

There are several ways that separation of concerns surfaced in the papers: The paper
on craft-oriented design separated the concerns of different specialists working together
towards a common goal. Achieving independence of different roles in the development
process was one motivation behind the paper on formal specification of timeliness prop-
erties, while the paper on a model-driven approach to prediction separated concerns of
construction vs analysis of systems. Finally, the paper on tailor-made containers sepa-
rated different non-functional aspects.

A number of questions have been discussed in the afternoon sessions:

– Domain limits: This question was about defining the domain of research. In partic-
ular, we discussed terminology issues, such as what is a non-functional property?

– Where should we put support for non-functional properties? And, when in the de-
velopment process do we need to consider them?

– Is there a difference between the concept of component and the concept of resource?
Is there such a thing as a resource component?

– What are the different kinds of composition that are of relevance?

We’ll summarize the outcome of the discussions in the following subsections.

Models for Non-functional Aspects of Component-Based Software (NfC’04) 65

3.1 Domain Limits

After much discussion—especially on the definition of non-functional properties—we
arrived at the following understandings.

– By starting from the requirements down to the code, functional properties are those
identified first.

– A property is not functional or non-functional by itself. It depends on the point
of view, or intent of the system. The functionality label is dependent on the client
of this property. For example, the security feature of a communication line can be
functional for a certain system, but not for another one.

– Clearly there is still a wide view of what a non-functional issue is.

3.2 Support for Non-functional Properties

The consensus here was that

– Non-functional properties need to be considered throughout the entire development
process.

– For verification purposes, many non-functional properties require separate analysis
models to be constructed (information comes both from the development models
and non-functional properties expertise) and analyzed. The results of such analyses
need to feed back into the development process. Most of the time, the properties
are verified at several steps of the development process and thus at several levels
of abstraction. Analysis results and models can in general not be maintained over
functional refinement steps, but rather must be recreated at each different level of
abstraction.

– Representation of non-functional properties changes with the stage of development
process. For example, properties are expressed very explicitly in the requirements,
but can be represented by certain structures in the architecture, or by a middleware
configuration. This requires sophisticated notions of refinement and traceability.

3.3 Resources Versus Components

Some of the talks where considering resources as components, while others separated
the two concepts. This started a discussion on these notions. The general conclusion
was that there is no formal difference between components and resources. However, it
is practical to distinguish them for hiding implementation details and complexity. They
can be distinguished based on usage, where resources represent an encapsulation of
lower-level components.

3.4 Composition

We identified four different kinds of composition, but left this for further discussion:

1. What are the semantics of composition for models vs components executing in a
container?

2. How do the properties of individual components contribute to the properties exhib-
ited by the composition?

66 J.-M. Bruel et al.

3. Is there a semantic difference between composing components for an application vs
middleware components (containers)?

4. What are the semantics of composition when the constituent elements are not or-
thogonal? For example, how can we compose models of one component dealing
with security properties of this component and with response time properties of the
same component?

4 Conclusion

While non-functional properties especially of component-based software is still an open
field, we did reach consensus on some points. This encourages us to continue the series
of workshops.

There is still work to do:

– Industry is still waiting for an easy way to annotate models with one generally
accepted and known notation for non-functional properties.

– The role of standardizing committees in this process needs to be understood. Industry
and academia are expecting them to provide a framework for thinking about non-
functional properties in research and application. Concrete case studies are needed
to evaluate the usefulness of standards. Finally, standardization may need to be more
domain-specific.

We hope to continue this series of workshops in the future.

Acknowledgements

This work has been partially funded by the French National Science Fund (FNS/ACI/
JC-9067) and the German Research Council (DFG FOR 428/COMQUAD).

References

1. Ronald Aigner, Christoph Pohl, Martin Pohlack, and Steffen Zschaler. Tailor-made containers:
Modeling non-functional middleware services. In Bruel et al. [2].

2. Jean-Michel Bruel, Geri Georg, Heinrich Hussmann, Ileana Ober, Christoph Pohl, Jon Whit-
tle, and Steffen Zschaler, editors. Proc. Workshop on Models for Non-functional Aspects of
Component-Based Software. Technical report TUD-FI04-12-Sept.2004, Dresden University
of Technology, 2004.

3. Vincenzo Grassi and Raffaela Mirandola.A model-driven approach to predictive non functional
analysis of component-based systems. In Bruel et al. [2].

4. Francois Mekerke, Wolfgang Theurer, and Joel Champeau. Non-functional aspects manage-
ment for craft-oriented design. In Bruel et al. [2].

5. Steffen Zschaler. Formal specification of non-functional properties of component-based soft-
ware. In Bruel et al. [2].

 LNCS 3297, pp. 67 – 75, 2005.
© Springer-Verlag Berlin Heidelberg 2005

OCL and Model Driven Engineering

Jean Bézivin1, Thomas Baar2, Tracy Gardner3, Martin Gogolla4, Reiner Hähnle5,
Heinrich Hussmann6, Octavian Patrascoiu7, Peter H. Schmitt8, and Jos Warmer9

1 University of Nantes, France
Jean.Bezivin@sciences.univ-nantes.fr

2 EPFL Lausanne, Switzerland
Thomas.Baar@epfl.ch

3 IBM in Hursley, United Kingdom
tgardner@uk.ibm.com

4 University of Bremen, Germany
gogolla@Informatik.Uni-Bremen.DE

5 Chalmers University, Gothenburg, Sweden
reiner@cs.chalmers.se
6 University of Munich, Germany

Heinrich.Hussmann@inf.tu-dresden.de
7 Computing Laboratory, University of Kent, United Kingdom

O.Patrascoiu@kent.ac.uk
8 Universität Karlsruhe, Germany
pschmitt@ira.uka.de

9 De Nederlandsche Bank, Nederland
jos.warmer@ordina.nl

Abstract. Precise modeling is essential to the success of the OMG’s Model
Driven Architecture initiative. At the modeling level (M1) OCL allows for the
precision needed to write executable models. Can OCL be extended to become a
full high-level executable language with side-effects? At the meta-level (M2),
queries, views and transformations are subjects that will be vital to the success of
the OMG’s Model Driven Architecture initiative. Will OCL 2.0 become an
essential part of the Queries/Views/Transformations standard and what will be its
application areas in industry? Can the features of OCL 2.0 be used in the Model
Driven Engineering (MDE) approach? This workshop aims at bringing together
people from academia that are expected to report on inspiring ideas for innovative
application scenarios and tools, and industrial practitioners, which are expected to
provide statements on their view of the future of OCL in the context of MDE.

1 Introduction

The workshop was organized as a part of Seventh International Conference on the
Unified Modeling Language <<UML>> 2004 in Lisbon, Portugal. It continued a series
of OCL workshops held at previous UML conferences: York, 2000, Toronto 2001, and
San Francisco 2003 and outside UML conferences in Amsterdam and Canterbury.
Following the successful model of its predecessors this workshop addressed both
people from academia and industrial practitioners. The aim was to provide a forum for

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

68 J. Bézivin et al.

the exchange of views on the future of OCL, to foster the identification of strategic
goals for OCL and increase cooperation within OCL community.

OMG initiated in 2002 the standardization process for MOF 2.0 Query/ Views/
Transformations. In 2003, as a result of OMG’s RFP, several proposals for the
standardization of QVT were submitted. In this situation it is important to look ahead
to the future of OCL. The main focus of this workshop was the investigation of
OCL’s relation with the OMG’s Model Driven Architecture (MDA) framework, at the
meta-model level (M2) with the future standard for QVT. There is a clear need for a
high-level language to enable modelers to specify behavior at a high level of
abstraction. OCL can be extended to become such an Executable UML language. An
interesting question is what extensions need to be added to OCL enable this.

At the same time we solicited contributions using OCL as a constraint language on
the application modeling level. Substantial progress has been achieved in this area
over the last years and we encouraged in particular the submission of case studies and
papers on the relation between OCL and annotation languages.

Precise modeling is essential to the success of the Model Driven Engineering
(MDE) approach to develop software systems (SS). OCL can play a role at multiple
levels. At the meta-level (M2), queries, views and transformations are subjects that
will be vital to the success of the MDE. Will OCL 2.0 become an essential part of
the Queries/Views/Transformations standard and what will be its application areas
in industry?

At the modeling level (M1) OCL allows for the precision needed to write
executable models. Currently OCL is restricted to side-effect free queries. Can OCL
be extended to become a full high-level executable language with side effects?

How will the powerful features of OCL 2.0 be used in the Model Driven
Engineering approach? Is OCL 2.0 more powerful than needed, or is not powerful
enough? This workshop aimed at bringing together people from academia that are
expected to report on inspiring ideas for innovative application scenarios and tools,
and industrial practitioners, which are expected to provide statements on their view of
the future of OCL in the context of Model Driven Engineering.

2 Objectives of the Workshop

The workshop focused on:

• Object Constraint Language and the OCL2.0 standard.
• Model Driven Engineering.
• OMG’s Queries/Views/Transformations.

The objective of the workshop was to bring together a mix of leading industry,
government, and university software architects, component software framework
developers, researchers, standards developers, vendors, and large application
customers to do the following:

• Better understand the features of OCL 2.0 and how far they go in solving
problems in software industry.

• Better understand the relation between OCL and QVT.
• Identify key directions, convergence approaches and characterize open

research problems and missing architectural notions in MDE.

 OCL and Model Driven Engineering 69

The workshop consisted of a set of 9 invited presentations and a final discussion
session. Topics of interest listed in the Call for Participation included (but were not
limited to):

• OCL – the query language for Model Driven Engineering.
• Contributions to the standardization process of QVT.
• Extensions of OCL to support QVT.
• Reports on OCL or QVT case studies, tools, or applications.
• Theoretical/fundamental aspects of OCL.
• Case studies for precise modeling using OCL.
• OCL as an Executable UML language.
• Dynamic concepts in OCL.

3 Presented Papers

1. On Generalization and Overriding in UML 2.0, Fabian Büttner and Martin Gogolla,
University of Bremen, Computer Science Department, Database Systems Group.

In the upcoming Unified Modeling Language specification (UML 2.0), subclassing
(i.e., generalization between classes) has a much more precise meaning with respect to
overriding than it had in earlier UML versions. Although it is not expressed explicitly,
UML 2.0 has a covariant overriding rule for methods, attributes, and associations. In
this paper, we first precisely explain how overriding is defined in UML 2.0. We relate
the UML approach to the way types are formalized in programming languages and we
discuss which consequences arise when implementing UML models in programming
languages. Second, weaknesses of the UML 2.0 metamodel and the textual
explanations are addressed and solutions, which could be incorporated with minor
efforts, are proposed. Despite of these weaknesses we generally agree with the UML
2.0 way of overriding and provide supporting arguments for it.

2. OCL for the Specification of Model Transformation Contracts, Eric Cariou,
Raphaël Marvie, Lionel Seinturier, and Laurence Duchien, LIFL - Université des
Sciences et Technologies de Lille, UMR CNRS 8022 - INRIA Futurs, 59655
Villeneuve d’Ascq Cédex – France, {cariou,marvie,seinturi,duchien}@lifl.fr

A major challenge of the OMG Model-Driven Architecture (MDA) initiative is to
be able to define and execute transformations of models. Such transformations may be
defined in several ways and with various motivations. Our motivation is to specify
model transformations independently of any transformation technology. To achieve
this goal, we propose to define transformation contracts. We argue that model
transformation contracts are an essential basis for the MDA, they can be used for
specification, validation and test of transformations. This paper focuses on the
specification of model transformation contracts. We investigate the way to define
them using standard UML and OCL features. In addition to presenting the approach
and some experimental results, this paper discusses the relevance and limits of
standard OCL to define transformation contracts.

3. Rule-Based Simplification of OCL Constraints, Martin Giese, Reiner Hähnle,
and Daniel Larsson, Chalmers University of Technology, School of Computer

70 J. Bézivin et al.

Science and Engineering, 41 296 Gothenburg, Sweden, {giese, reiner,
danla}@cs.chalmers.se

To help designers in writing OCL constraints, we have to construct systems that
can generate some of these constraints. This might be done by instantiating templates,
by combining prefabricated parts, or by more general computation. Such generated
specifications will often contain redundancies that reduce their readability. In this
paper, we explore the possibilities of simplifying OCL formulae through the repeated
application of simple rules. We discuss the different kinds of rules that are needed,
and we describe a prototypical implementation of the approach.

4. OCL as Expression Language in an Action Semantics Surface Language,
Stefan Haustein and Jörg Pleumann, Computer Science Dept. VIII/X, University of
Dortmund, Germany, {stefan.haustein,joerg.pleumann}@udo.edu

With the specification of Action Semantics in UML 1.5, the OMG laid ground to
manipulating object diagrams in a formal way, which is a necessary prerequisite for
QVT. In QVT, of course the manipulations take place at M1 level instead of M0, but
due to the architecture of UML, the same mechanisms can simply be reused.
Unfortunately, the Action Semantics specification does not mandate a surface
language, limiting its practical application. Due to the high overlap with the Object
Constraint Language, in this article we propose a surface language that is based on
and aligned with OCL.

5. Disambiguating Implicit Constructions in OCL, Kristofer Johannisson,
Department of Computing Science, Chalmers University of Technology and Göteborg
University, S-41296 Göteborg, Sweden, krijo@cs.chalmers.se

A rule system for type checking and semantic annotation of OCL is presented. Its
main feature is the semantic annotation and disambiguation of syntax trees provided
by an OCL parser, in particular for implicit property calls and implicit bound
variables. It is intended as a component to be plugged in to other systems that handle
OCL. An implementation of the system is available.

6. Comparing Two Model Transformation Approaches, Jochen M. Küster and
Shane Sendall and Michael Wahler, Computer Science Department, IBM Zurich
Research Laboratory, CH-8803 Rüschlikon, Switzerland, email: {jku, sse,
wah}@zurich.ibm.com

For the MDA vision to become a reality, there must be a viable means to perform
model-to-model transformation. In this paper, we compare and contrast two approaches
to model transformation: one is a graph transformation-based approach, and the other is
a relational approach, based on the QVT-Merge submission for OMG’s MOF 2.0
Query/View/Transformation Request for Proposal. We apply them both to a common
example, which involves transforming UML state machines to a CSP specification, and
we look at some of the concrete and conceptual differences between the approaches.

7. Composition of UML Described Refactoring Rules, Slavisa Markovic, Swiss
Federal Institute of Technology, Department of Computer Science, Software Engineering
Laboratory, 1015 Lausanne-EPFL, Switzerland, e-mail: Slavisa.Markovic@epfl.ch

 OCL and Model Driven Engineering 71

Refactorings represent a powerful approach for improving the quality of software
systems. A refactoring can be seen as a special kind of behavior preserving model
transformation. The Object Constraint Language (OCL) together with the metamodel
of Unified Modeling Language (UML) can be used for defining rules for refactoring
UML models. This paper investigates descriptions of refactoring rules that can be
checked, reused and composed. The main contribution of this paper is an algorithm to
compute the description of sequentially composed transformations. This allows one to
check if a sequence of transformations is successfully applicable for a given model
before the transformations are executed on it. Furthermore, it facilitates the analysis
of the effects of transformation chain and its usage in other compositions.

8. Embedding OCL expressions in YATL, Octavian Patrascoiu and Peter Rodgers,
Computer Laboratory, University of Kent, UK , {O.Patrascoiu, P.J.Rodgers}@kent.ac.uk

Modeling is a technique used extensively in industry to define software systems,
the UML being the most prominent example. With the increased use of modeling
techniques has come the desire to use model transformations. While the current OMG
standards such as Unified Modeling Language (UML) and Meta Object Facility
(MOF) provide a well-established foundation for defining models, no such well-
established foundation exists for transforming models. The current paper describes
how the OCL expressions are integrated in a transformation language called YATL
(Yet Another Transformation Language) to provide support for model querying. The
paper presents also the transformation environment and the main features of YATL.

9. Relations in OCL, D.H.Akehurst, Computing Laboratory, University of Kent,
D.H.Akehurst @kent.ac.uk

OCL is proposed as a query language within the QVT framework. The main QVT
submission bases the specification of transformations on the concept of relations.
Relations are not first class entities within the OCL. By extending OCL with the
concept of Relations it can better serve the needs of the QVT framework. In
particular this enables OCL to be used as a semantic interpretation of a QVT
transformation language and may even facilitate the use of OCL as a transformation
specification language.

4 Number of Participants

The workshop attracted 28 participants. There exists already a kind of “OCL
community”, more and more people are interested in Model Driven Engineering, and
many of these people attended the UML conference series.

5 Discussion Session

The final session discussed the following topics:
• Does OCL need extensions?
• Does OCL need refactoring?

72 J. Bézivin et al.

• Is it possible to embed/include OCL in other languages/systems? If yes,
how hard is it?

• What is the relation between OCL and QVT?
• Has OCL been used in industry in large scale projects?

6 Organizers

• Jean Bézivin, University of Nantes, France
• Thomas Baar, EPFL Lausanne, Switzerland
• Tracy Gardner, IBM in Hursley, United Kingdom
• Martin Gogolla, University of Bremen, Germany
• Reiner Hähnle, Chalmers University, Gothenburg, Sweden
• Heinrich Hußmann, University of Munich, Germany
• Octavian Patrascoiu, University of Kent, United Kingdom (contact)
• Peter H. Schmitt, Universität Karlsruhe, Germany
• Jos Warmer, De Nederlandsche Bank, Nederland

Jean Bézivin is professor of Computer Science at the University of Nantes,
France. He got his Master degree from the University of Grenoble and Ph.D. from the
University of Rennes. Since 1980 he has been very active in Europe in the object-
oriented community, starting the ECOOP series of conference (with Pierre Cointe),
the TOOLS series of conferences (with Bertrand Meyer), the Objet'9X industry
meeting (with Sylvie Caussarieu and Yvan Gallison), and more recently the
<<UML>> series of conferences (with Pierre-Alain Muller). He founded in 1979, at
the University of Nantes, one of the first Master programs in Software Engineering
entirely devoted to Object Technology (Data Bases, Concurrency, Languages and
Programming, Analysis and Design, etc.). His present research interests include
object-oriented analysis and design, reverse engineering, knowledge-based software
engineering, product and process modeling, model engineering and more specially the
techniques of model transformation. He is a member of the ATLAS group, a new
INRIA team created at the University of Nantes in relation with the LINA CNRS Lab.
On the subjects of model-driven engineering and MDA(tm), he has been recently
leading the OFTA industrial group in France, co-animating a CNRS specific action
and a Dagstuhl seminar. He is currently involved in several EU projects.

Thomas Baar holds a diploma degree in Computer Science from Humboldt-
University of Berlin and a doctoral degree from University of Karlsruhe. In his
doctoral thesis, a formal semantics of OCL based on metamodeling techniques is
proposed. He published about 10 papers focusing on theoretical and practical issues of
OCL. Since 2003, he is a post-doc assistant at the EPFL, Lausanne, Switzerland. His
current research area is specification, verification, and testing of software.

Tracy Gardner has a Mathematics and Computer Science degree from the
University of Bath and a PhD in the area of programming/modelling language design
which was a winner of the CPHC/BCS Distinguished Dissertations award 2000. Tracy
has spent time as a practitioner of model-driven development, using the UML-based

 OCL and Model Driven Engineering 73

Rational Rose Real-Time product while working for Marconi Telecommunications
Ltd. Since joining IBM in 2001 Tracy has been involved in model-driven component
technologies for business integration. Dr Gardner's current work is on applying Model-
Driven Development to the Business Integration domain; she was the main contributor
to a UML profile for automated business processes with a mapping to BPEL4WS and
is now collaborating on IBM's response to the OMG's Business Process Definition
Metamodel and MOF 2.0 Queries/Views/ Transformations RFPs. Tracy has presented
on model-driven development at a number of industry conferences (including OMG
MDA? Implementers' Workshops, Enterprise UML 2003, 1st European Conference on
Model-Driven Software Engineering).

Martin Gogolla is professor for Computer Science at University of Bremen,
Germany and is the head of the Research Group Database Systems. His research
interests include object-oriented design, formal methods in system design, semantics
of languages, and formal specification. Before joining University of Bremen he
worked for the University of Dortmund and the Technical University of
Braunschweig. His professional activities include: teaching computer science;
publications in journals and conference proceedings; publication of two books;
speaker to university and industrial colloquia; referee for journals and conferences;
organizer of workshops and conferences (e.g. the UML conference); member in
national and international program committees; contributor to international computer
science standards (OCL 2.0 as part of UML 2.0).

Reiner Hähnle is a Professor in Computer Science at Chalmers University of
Technology, Gothenburg, Sweden since 2000. He received diploma and PhD degrees
in Computer Science from University of Karlsruhe in 1987 and 1992, respectively. He
received a habilitation degree from Technical University of Vienna in 1997. His main
research interests are non-classical logics, automated deduction, and the use of formal
methods in software engineering. He authored and/or edited three books and is in the
author list of over 60 publications. He wrote commissioned articles for both the
Handbook of Philosophical Logic (2nded) and the Handbook of Automated
Reasoning. He was president of the Technical Committee on Multiple-Valued Logic
of IEEE CS from 2000 to 2001. He is a member of the steering committees of the
IJCAR, FTP, Tableaux, and FloC conference, and co-founder of the Intl Tableaux
Conference. He organized numerous workshops and conferences. In 2002, he was
conference chair of CADE. Currently, he is involved in IJCAR, MDAFA, and
CASSIS as PC member or invited speaker. He is member of the editorial board of
Soft Computing, Multiple-Valued Logic, and QPQ (an online journal for publishing
peer-reviewed source code for deductive software components). He has been involved
in numerous national and international research projects as leader and grant holder.
He has been reviewer for several research funding agencies such as the NSF of the US
or FP6 of the EU.

Heinrich Hussmann holds a diploma degree in Computer Science from Munich
University of Technology and a doctoral degree from University of Passau. He did
research and education work at universities in Munich, Passau and Dresden. For
several years, he was a systems engineer and team leader in the advanced
development laboratory of the telecommunications division of Siemens. From 1997 to

74 J. Bézivin et al.

2002 he was full professor for Computer Science at Dresden University of
Technology, and since March 2003 he is full professor for Computer Science (Media
Informatics) at the University of Munich (LMU). He participated in over 10 national
and international projects in the area of software engineering and telecommunications,
and is author of over 50 scientific publications, including three internationally
published books. He is member of the program committee of the UML conferences
since 1999 and a member of the steering committee since 2003. He was conference
chair of the UML conference 2002 in Dresden.

Octavian Patrascoiu focused at the beginning of his academic career on
programming languages and language processors. He published four books about
programming languages, programming techniques and programming language
processors. He also presented research papers at numerous conferences. In the last
few years, he moved into the area of developing software tools for software quality
assesment, software modelling and code generation. He had collaborations with
software companies like IBM, Verilog, Telelogic, and TLC.

Peter H. Schmitt holds a diploma and doctoral degree in Mathematics from the
University of Heidelberg. His main research contributions at that time lay in the area
of Mathematical Logic and Universal Algebra. From 1985 to 1988 he worked for
IBM Germany. Since 1988 he is a full professor for theoretical computer science at
the University of Karlsruhe. From 1994 to 2000 he has been the chairman of the
special interest group on logic and computer science of the German Computer
Science Society (GI). Since 1998 he is a member of the Scientific Directorate of
SCHLOSS DAGSTUHL, International conference and research centre for Computer
Science. He has been involved in numerous, national and international, research
projects on automated deduction and non-classical logic. He is author of some 50
scientific papers. He wrote a textbook on the theory of Logic Programming and co-
edited a three-volume handbook on Automated Deduction. He is currently working in
the area of formal specification and verification of programs.

Jos Warmer is one of the founders of OCL. He was responsible for OCL in the
UML 1 core team and has been the leader of the OCL 2 submission team. He has
been written books on UML, OCL and recently about MDA. He is a member of the
programming committee of the <<UML>> series of conferences. He has been
involved in organizing OCL workshops at the <<UML>> conferences, and is co-
editor of the LNCS book that was the result of these workshops.

7 Conclusions

This workshop was of clear relevance to the OCL community since it discussed the
future role of OCL in the MDE world. The presented papers and the final discussion
lead to the following ideas:

1. OCL needs to be refactored by extending the standard library and providing a
better concrete syntax.

2. The OCL2.0 standard needs to be improved to avoid misunderstandings and
ambiguities.

 OCL and Model Driven Engineering 75

3. OCL can be easily embedded in other languages and systems (see papers 4
and 8).

4. Both OCL and QVT share a common package of classes at the abstract
syntax and semantic levels (e.g. types and expressions).

5. OCL should be used as a query language in QVT
6. OCL can be used in large-scale systems to specify constraints and contracts

(see paper 2).

Critical Systems Development
Using Modeling Languages (CSDUML’04):

Current Developments and Future Challenges
(Report on the Third International Workshop)

Jan Jürjens1,�, Eduardo B. Fernandez2,
Robert B. France3, Bernhard Rumpe4, and Constance Heitmeyer5

1 Software & Systems Engineering, Dep. of Informatics, TU Munich, Germany
2 Dep. of Computer Science and Engineering, Florida Atlantic University, USA

3 Computer Science Department, Colorado State University, USA
4 Software Systems Engineering, TU Braunschweig, Germany

5 Naval Research Laboratory, USA

Abstract. We give a short report on the contributions to and some dis-
cussions made and conclusions drawn at the Third International Work-
shop on Critical Systems Development Using Modeling Languages
(CSDUML’04).

1 Introduction

A critical system is a system in which compelling evidence is required that
the system satisfies critical properties, such as real-time, safety, security, and
fault-tolerance properties. The construction of high-quality critical systems, e.g.,
avionics systems, life-critical medical systems, weapons systems, and control sys-
tems for nuclear power plants, can be enormously difficult and costly. In recent
years, many critical systems have been developed, and deployed which do not
satisfy critical requirements. This has led in many cases to catastrophic system
failures.

Part of the difficulty of critical systems development is that producing com-
pelling evidence of the system’s correctness can be enormously expensive. Due
to high costs, producing detailed system specifications and designs along with
evidence that these artifacts satisfy critical properties is normally avoided. Us-
ing UML to construct a system model that satisfies critical properties may help
lower these costs since UML models are easy to understand, are amenable to
mechanized analysis to check critical properties, and can be used to synthesize
correct, executable code.

The workshop series on “Critical Systems Development Using Modeling Lan-
guages (CSDUML)” aims to gather practitioners and researchers to contribute

� http://www4.in.tum.de/˜juerjens . Supported within the Verisoft Project of the
German Ministry for Education and Research.

LNCS 3297, pp. 76–84, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

Critical Systems Development Using Modeling Languages 77

to overcoming the challenges one faces when trying to exploit these opportuni-
ties. The previous editions of the series were the CSDUML’02 satellite workshop
of the UML’02 conference in Dresden (Germany) and the CSDUML’03 satellite
workshop of the UML’03 conference in San Francisco. Both had been very suc-
cessful satellite workshops of the UML conferences. The workshop report at hand
now gives an overview on the contributions for and outcomes of the CSDUML’04
workshop, which took place on October 12, 2004, as part of the UML’04 con-
ference (October 10 – 15, 2004, in Lisbon, Portugal). It was again organized in
cooperation with the pUML (precise UML) group and the working group on
Formal Methods and Software Engineering for Safety and Security (FoMSESS)
of the German Computer Society (GI).

In the following, we first give an overview on the various contributions to the
workshop. We will then attempt to draw some conclusions on the current state
of the art and future challenges in the area of the workshop.

2 Contributions

The workshop featured an invited talk with the title “On the Role of Tools in
Specifying the Requirements of Critical Systems” by Constance Heitmeyer (head
of the Software Engineering Section of the Naval Research Laboratory’s Center
for High Assurance Computer Systems and one of the internationally leading
experts in the formal specification and formal analysis of software and system
requirements and of high assurance software systems). Furthermore, there was
a panel with the title “Providing tool-support for critical systems development
with UML: Problems and Challenges” consisting of distinguished experts, which
created some lively discussions on the subject.

For contributed presentations, out of a number of high quality papers submit-
ted to the workshop, seven were selected to be presented in talks at the workshop
and included as full papers in the proceedings. Three additional papers were se-
lected to be presented as short talks and included as short papers. Furthermore,
there were six posters presented at the workshop, which are included in the
proceedings as abstracts. The highly selective acceptance rate again kept the
workshop focused, and at a high level of quality, while allowing sufficient time
for discussion.

C. Heitmeyer (Center for High Assurance Computer Systems,
Naval Research Laboratory): On the Role of Tools in Specifying the
Requirements of Critical Systems (Invited Talk)

In 1978, a group of researchers led by Dave Parnas developed a tabular notation
for specifying software requirements called SCR (Software Cost Reduction) and
used the notation to specify the requirements of a mission-critical program, the
Operational Flight Program for the A-7 aircraft. Since then, the requirements of
many critical programs, including control software for nuclear power plants and
other flight programs, have been specified in SCR. To support formal representa-

78 J. Jürjens et al.

tion and analysis of software requirements, NRL has developed a state machine
model to define the SCR semantics and built a suite of tools based on this se-
mantics for checking requirements specifications for properties of interest. Such
tools are especially valuable for specifying and analyzing the requirements of
software systems where compelling evidence is required that the system satisfies
critical properties, such as safety and security properties. This talk described the
many different roles that formally based software tools can play in debugging,
verifying, and validating the requirements of critical software systems. The au-
thor’s recent experience and lessons learned in specifying the requirements of a
security-critical cryptographic system and two software components of NASA’s
International Space System were also described.”

R. B. France (Colorado State University), C. Heitmeyer (CHACS,
NRL), H. Hußmann (LMU Munich), F. Parisi-Presicce (George
Mason University and Univ. di Roma La Sapienza), A. Pataricza
(Budapest University of Technology and Economics), and B. Rumpe
(TU Braunschweig): Providing Tool-Support for Critical Systems
Development with UML: Problems and Challenges (Panel)

Among the panelists, and also the other workshop participants, a number of
controversial issues were discussed. A selection of the discussion points and some
of the opinions are given below.

Sufficient Precision of UML for Cricitical Systems Development. A
range of different opinions were expressed concerning the question whether the
UML is presently, or ever will be, sufficiently precisely defined to be suitable for
critical systems development. The issue was raised by panelist Heinrich Hußmann
who expressed doubt that this will ever be the case. Other workshop participants
suggested that with UML as a family of languages, at least a core of UML might
be defined in a precise way. Others expressed the concern that precision is not
only necessary for critical systems development, but for any kind of advanced
tool-supported use of UML, since any aspects of UML that should be supported
by tools firstly have to be defined precisely enough to put one in the position to
provide the tool-support.

Role of Tools for Researchers. Panelist Bernhard Rumpe raised the discus-
sion point that researchers working on tool support for UML should consider
the question what the intended use of the tools developed should be. This could
start from tools as a means to validate one’s ideas with respect to correctness,
implementability, feasibility, scalability etc.. It could include the use of tools to
demonstrate to academic peers the usefulness of one’s concepts or tool-buidling
as an activity helping to focus the activities of one or more research groups. A
more ambitious goal would be the use as an “in-house” tool by the developers
in their own projects. Finally, one could try to actually sell the tools to others
who would like to use them (or give them away for free but at least sell support

Critical Systems Development Using Modeling Languages 79

services). Again, a range of opinions were expressed. Bernhard Rumpe expressed
concern that with academic tools intended to be used by others, this might incur
a considerable effort in support and maintenance in the long run. On the other
hand, panelist Connie Heitmeyer suggested that it is an important goal to try
to put tools to use, for example to achieve technology transfer from research to
industrial practice.

Other Issues. As part of the general discussion, several other points were raised.
For example, panelist Connie Heitmeyer proposed for discussion whether UML
is ideally suited specifically for describing critical requirements (as opposed to
the design of critical systems), or whether a different notation might be required
for that.

P. Conmy and R. Paige (University of York): Using UML OCL and
MDA to Support Development of Modular Avionics Systems

A Model Driven Architecture approach to the development of Integrated Modu-
lar Avionics Systems is explained. For this, the required system behavior is cap-
tured in a Platform Independent Model using UML models that are extended
with OCL constraints. The model and the constraints are then transformed to a
Platform Specific Model. The paper discusses potential benefits and difficulties.

M. Huhn, M. Mutz, and B. Florentz (TU Braunschweig): A
Lightweight Approach to Critical Embedded Systems Design Using
UML

The paper presents a pragmatic approach to the UML based design of critical
systems that has been applied in the automotive domain. For that, it focuses
on so-called lightweight formal methods auch as automated static analysis and
validation of dynamic behaviour by simulation (although there is a potential for
also incorporating a fully formalized model analysis). The paper also presents a
tool with binding to commercial CASE tools used in industry.

J. Tenzer (University of Edinburgh): Exploration Games for
Safety-Critical System Design with UML 2.0

The paper presents an approach which aims to provide a smooth transition
from informal UML design models to the kind of precise specifications that are
needed in the formal verification of critical systems. The approach is based on
exploration games played by the modeler to detect flaws and determine sources
of unacceptable imprecision. As part of the game, the design is then improved.
The paper discusses these ideas at the hand of UML 2.0 activity diagrams and
state machines using a small critical system and gives an outlook on planned
tool-support.

80 J. Jürjens et al.

R. Heldal (Chalmers University of Technology), S. Schlager
(University of Karlsruhe), and J. Bende (Chalmers University of
Technology): Supporting Confidentiality in UML: A Profile for the
Decentralized Label Model

This work has as its goal to incorporate a decentralized label model into the UML
by defining a UML profile. The profile allows one to specify the confidentiality
of data in UML models by annotating classes, attributes, operations, values
of objects, and parameters of operations. From the annotated, code in the Java
extension Jif (Java information flow) can be generated in a way which guarantees
that the confidentiality constraints are not violated.

S. H. Houmb (Norwegian University of Science and Technology),
G. Georg, R. B. France, and D. Matheson (Colorado State
University): Using Aspects to Manage Security Risks in Risk-Driven
Development

The approach presented in this paper extends the CORAS framework, which
is an integrated risk management and system development process for security-
critical systems based on AS/NZS 4360, RUP, and RM-ODP. In particular, it
now makes use of aspects to specify security risk treatment options and to imple-
ment security mechanisms. One thus gets an aspect-oriented risk-driven develop-
ment process where security requirements can be identified in each development
phase. The requirements can be treated by making use of the aspects, which
facilitates development and evaluation of security treatment options as well as
system evolution.

M. V. Cengarle (TU Munich) and A. Knapp (LMU Munich): UML
2.0 Interactions: Semantics and Refinement

This paper is concerned with High-Level Message Sequence Charts (HMSCs)
which in version 2.0 are newly integrated into UML for interaction modelling.
More specifically, it considers the possibility of writing negated specifications
that was introduced at the opportunity, which can be used to rule out behaviour
from implementations. The paper puts forward a trace-based semantics for UML
2.0 interactions that captures the standard composition operators for UML 2.0
interactions from HMSCs, and also the added negation and assertion operators.
Based on that, several alternatives for treating negation in interactions can be
discussed. The proposed semantics determines whether a trace is positive, neg-
ative, or inconclusive for a given interaction.The paper also defines notions of
implementation and refinement for sets of interactions based on this.

T. Massoni, R. Gheyi, and P. Borba (Federal University of
Pernambuco): A UML Class Diagram Analyzer

The presented work deals with the automated analysis of UML models which
include OCL constraints. More specifically, it presents an approach for the au-

Critical Systems Development Using Modeling Languages 81

tomated analysis of UML class diagrams, based on the formal object-oriented
modeling language Alloy. It allows us to use Alloy’s tool support for class dia-
grams, by applying constraint solving to automatically find valid snapshots of
models. The aim of this automation is in particular to support the identification
of inconsistencies or under-specified models of critical software.

I. Johnson (VT Engine Controls); C. Snook, A. Edmunds, and
M. Butler (University of Southampton): Rigorous Development of
Reusable, Domain-Specific Components, for Complex Applications

This paper uses a UML profile called UML-B to develop failure management
systems in a model-based refinement style. It thus aims to provide rigorous val-
idation and verification in the presence of systems in evolution. The UML-B
profile can be translated into a formal notation called B-method using the U2B
translation tool. It includes a constraint and action language to assist behav-
ioral modeling. The aim is thus the reuse of reliable, domain-specific software
components, in particular in avionics for safety-critical airborne systems.

Z. Dwaikat (George Mason University and Cigital) and
F. Parisi-Presicce (George Mason University and Univ. di Roma La
Sapienza): From Misuse Cases to Collaboration Diagrams in UML

The research presented here aims to integrate the concepts of misuse and abuse
cases from software security into software engineering. The goal is to include the
ability to consider abnormal scenarios into software development. More specif-
ically, misuse behavior is described in collaboration diagrams. These are sup-
ported by a formal semantics given as positive resp. negative graphical con-
straints that are based on typed and attributed graphs. It allows one to detect
and remove redundancies and conflicts.

B. Beckert and G. Beuster (University of Koblenz): Formal
Specification of Security-Relevant Properties of User Interfaces

This paper explains how to formally model security relevant properties of user
interfaces using the Object Constraint Language (OCL) at the hand of, firstly,
the input-output functionality of an operating system. Secondly, using a text-
based email system as an example, it is explained how input-output-related
security properties of an application can be formally specified with the goal of
formal verification.

E. Beato (Universidad Pontificia de Salamanca); M. Barrio-Solórzano,
C. E. Cuesta, and P. de la Fuente (Universidad de Valladolid):
Verification Tool for the Active Behavior of UML

This paper presents a verification approach for behavioral specifications in UML.
The model-checker SMV is used to verify properties of systems specified in UML
class diagrams, statecharts and activity diagrams.

82 J. Jürjens et al.

M. Bujorianu (University of Cambridge) and M. C. Bujorianu
(University of Kent): Towards Engineering Development of
Distributed Stochastic Hybrid Systems with UML

This work investigates the possibilities to provide a bridge between systems con-
trol engineering and software engineering using UML. Specifically, it is examined
how to use UML to model stochastic hybrid systems.

J. Knudsen, R. Gottler, M. Jacobsen, M. W. Jensen, J. G. Rye-
Andersen, and A. P. Ravn (Aalborg University): Integrating an
UML Tool in an Industrial Development Process - A Case Study

This paper reports on experiences with integrating a UML CASE tool into an in-
dustrial software development process in the field of embedded systems. As part
of the process, the application documentation, test specifications and program
code are kept in the tool so that the tool is fully integrated into the development
process.

M. Sand (University of Erlangen-Nuremberg): Verification and Test
of Critical Systems with Patterns and Scenarios in UML

This work introduces an approach for verification and test of critical hardware
near embedded systems. The approach aims to provide automated tools for the
simulation or verification of the models against requirements. These require-
ments, as well as standardized general solutions for providing them, are intro-
duced using patterns and scenarios.

K. Tabata, K. Araki, S. Kusakabe, and Y. Omori (Kyushu
University): A Case Study of Software Development Using
Embedded UML and VDM

The goal of the work sketched in this paper is to design a software development
method for embedded systems which combines the formal method VDM++
with Embedded UML, which is a model-based software development method
that incorporates best practices and specialized processes from embedded system
development.

O. Tahir, C. Sibertin-Blanc, J. Cardoso (Université Toulouse): A
Semantics of UML Sequence Diagrams Based on Causality Between
Actions

The goal of the work sketched in this paper is to propose a semantics for the
UML sequence diagrams based on a relation of causality between the actions of
emission and reception of messages. A particular interest of the research lies in
the relationships between different kinds of behavioral diagrams, such as state-
charts and sequence diagrams.

Critical Systems Development Using Modeling Languages 83

3 Conclusion and Future Work

As a conclusion that can be drawn from the success of the workshop, it seems that
the topic of critical systems development using modeling languages such as UML
is enjoying increasing attention. As was reported in several of the talks, there is
an increasing number of industrial projects making increasingly sophisticated use
of UML or similar notations for developing systems that have to satisfy intricate
critical requirements. This shows that the various obstacles that were mentioned
are not unsurmountable, but that, in fact, in various application scenarios people
have managed to deal with them. Therefore, it seems that the use of UML and
related notations is beginnig to reach a level of maturity which allows serious
industrial use.

On the other hand, the various discussions at the workshop, during the panel
session, the talks, the coffee breaks, and the workshop dinner also showed that,
although the topic of critical systems development using modeling languages
such as UML is seen to be a very worthwhile and timely one, many challenges
still remain. The various issues that were touched and were it was felt that the
final answer has not been found yet include:

– the development of sophisticated tool-support (such as automated theorem
provers) for critical systems development using modeling languages such as
UML,

– in particular, how to find the optimal trade-off between precision and flexi-
bility in a notation such as UML,

– whether the use of such notations for critical systems development scales up
sufficiently in an industrial context,

– and whether UML itself is suitable also for describing critical requirements
(as opposed to design) or whether something else is needed.

These points already promise to again give an exciting sequel to the CSDUML
workshop series in 2005. More information can be found at [CSD05].

The 2004 workshop proceedings with the contributed papers are available as
[JFFR04]. As with previous CSDUML workshops, it is planned to edit a special
section of the Journal of Software and Systems Modeling (Springer-Verlag) with
selected contributions of the workshop. Up-to-date information on this and the
workshop can be found at the workshop home-page [CSD04].

Acknowledgements. We would like to express our deepest appreciation especially
to the invited speaker Connie Heitmeyer and also to the panelists and to the
authors of submitted papers for their valuable contribution. We thank no less
the program committee members and the additional referees for their expertise.
We would also like to thank the UML’04 conference chair Ana Moreira (New
University of Lisbon), the workshop chair Ambrosio Toval (University of Mur-
cia), the local arrangements chair Isabel Sofia Brito (Politécnico de Beja), and
the students involved in the organization at TU Munich (in particular Dimitri
Kopjev and Britta Liebscher) for their indispensable help. In addition, some of
the organizers thank their various projects (including the Verisoft project) for
funding.

84 J. Jürjens et al.

References

[CSD04] CSDUML 2004 webpage. http://www4.in.tum.de/˜csduml04, 2004.
[CSD05] CSDUML 2005 webpage. http://www4.in.tum.de/˜csduml05, 2005.
[JFFR04] J. Jürjens, E. B. Fernández, R. B. France, and B. Rumpe editors. Critical

systems development with uml (csduml 2004). TU Múnchen Technical
Report, 2004. UML 2004 satellite workshop proceedings.

 LNCS 3297, pp. 85 – 93, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Doctoral Symposium

Marcus Alanen1, Jordi Cabot2, Miguel Goulão3, and José Sáez4

1
Åbo Akademi University, Turku, Finland

maalanen@abo.fi
2

Estudis d'Informàtica i Multimèdia, Universitat Oberta de Catalunya, Spain
jcabot@uoc.edu

3
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

miguel.goulao@di.fct.unl.pt
4

Universidad de Murcia, Spain
jsaez@um.es

Abstract. The UML 2004 Doctoral Symposium was the first Doctoral
Symposium in the UML Conference series. The Doctoral Symposium sought to
bring together PhD Students working in areas related to UML and modeling in
general. It was a full-day workshop held in parallel with the remaining
workshops of the conference. Ten students were selected and were given the
opportunity to present and discuss their research goals, receiving high-quality
feedback from the rest of participants of the workshop, including a number of
volunteer seniors that helped making the Symposium a success. The Doctoral
Symposium will also be present in the next edition of the conference.

1 Introduction

The first Doctoral Symposium in the UML conference series was held on the 10th of
October at UML 2004. The aim of the Symposium was to bring together PhD students
working in areas related to UML and modeling in general. It was organized by five
PhD Students: Marcus Alanen (Åbo Akademi University), Jordi Cabot (Universitat
Oberta de Catalunya), Miguel Goulão (Universidade Nova de Lisboa), José Sáez
(Universidad de Murcia) and Devon Simmonds (Colorado State University).

The Symposium was intended for students who had already settled on a specific
research proposal and had some preliminary results, but still had enough time
remaining before submitting their dissertation, so that they could benefit from the
Symposium discussions.

Ten students were selected to participate in the Symposium. Submissions were
judged on originality, significance, technical merit, presentation quality and relevance
to the conference topics. Each paper was reviewed by, at least, two reviewers of the
Program Committee, composed of a group of reviewers with large experience in the
UML conference: Fernando Brito e Abreu, João Araújo, Jean Bézivin, Robert France,
Gonzalo Génova, Martin Gogolla, Heinrich Hussmann, Ivan Porres, Bran Selic,
Friedrich Steimann, Ernest Teniente, Ambrosio Toval and Belén Vela.

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

86 M. Alanen et al.

The selected students had the opportunity to present and to discuss their research
goals, methods and results within a constructive and international atmosphere. They
received high-quality feedback from the rest of participants of the workshop,
including a number of volunteer seniors that attended the Symposium or part of it.

The papers presented by the selected students covered a wide range of topics, from
aspects modeling to model transformation and from model validation to new methods
for Information Systems development, representing most of the major topics of the
main conference. All papers are available online at the Symposium web page:

http://ctp.di.fct.unl.pt/UML2004/phdSymp.htm

2 Structure of the Doctoral Symposium

The workshop was structured in four different sessions where we tried to group the
presentations addressing related topics. Each session was composed of two or three
thirty minutes presentations where each presentation included at least ten minutes for
discussion.

The first session dealt with aspects in the requirements (work of Isabel Brito),
analysis and design stages (work of Y. Raghu Reddy). Then we moved on to papers
related with model-driven development, focused on the transformations from
Platform Independent Models (PIMs) to Platform Specific Models (PSMs) and to
code, either in the specific field of Pervasive Systems Development (Javier Muñoz),
in the integration of Security Patterns (Diego Ray) or in the generation of databases
structures to control multiplicity constraints (H.T. Al-Jumaily).

The third session included some papers on model validation (Jörn Guy Süβ),
coordination diagrams (David Safranek) and model testing (Trung Dinh-Trong).
Finally, two presentations proposed new methods for IS development from conceptual
models. The first one proposed creating generic conceptual models for each
application domain (Ruth Raventós) while the second one proposed the use of
ontologies as the initial conceptual model (Jordi Conesa).

The presentations are described below, in order of presentation at the Symposium.
Unfortunately two students were unable to attend the Symposium. In both cases their
respective supervisor presented the work instead.

2.1 Aspect-Oriented Requirements Engineering (by Isabel Brito)

The work described focuses on a particular aspect of separation of concerns. While
separating concerns into individual modules decreases software complexity and
enhances understandability and traceability, there are properties which do not lend
themselves to such strict modularization and are said to be cross-cutting the system.
Usually they cannot be encapsulated into one component but rather are scattered
throughout the system. Examples of this include non-functional requirements such as
distribution, security and synchronization.

Aspect-oriented software development aims to address these issues by providing
means for identification, separation, representation and composition of cross-cutting
concerns. Although aspects have been used in software development, research on the

 Doctoral Symposium 87

use of aspects at the requirements stage is still immature. The goal of the work is to
develop a framework for aspect-oriented requirements engineering that supports the
identification, specification, modeling and composition of cross-cutting concerns at
the requirements level.

A brief outline of how to accomplish these four tasks is given. Identifying concerns
can be done using e.g. common techniques for requirements elicitation and reusing
already developed catalogs. Specifying concerns is divided into four subtasks;
identifying responsibilities and priorities of concerns, contributions between concerns,
and dependencies among concerns. Modeling is accomplished by building a
requirements analysis model as well as a behavioral model. Composition of concerns
is done using match points, conflict handling and defining composition rules.

2.2 An Aspect Oriented Approach to Early Software Development
(by Y. Raghu Reddy, presented by Robert France)

Locating related requirements and tracking the impact of changing requirements are
two tasks that contribute significantly to the complexity in the development of large
scale software systems. This work concerns the development of a rigorous aspect-
oriented development approach to support these tasks during the early stages of
software development.

The proposed approach is called Requirements Aspect-Oriented Modeling (RAM)
and allows identifying cross-cutting concerns at the requirements level (requirements
aspects). The RAM approach creates a link between requirements aspects and their
corresponding design aspects by providing experience-based generic solutions that aid
in the identification of conflicts between cross-cutting concerns.

The approach is expected to provide system architects with techniques to
systematically identify, represent, and trace concerns throughout the software life
cycle. The approach is based on the notion of viewpoints and uses the Role-Based
Modeling Language (RBML) to represent cross-cutting concern solutions.

2.3 Pervasive Systems Development with the Model Driven Architecture
(by Javier Muñoz)

Computing based systems growth is reaching all environments of our daily life.
Pervasive systems live around us, providing services to the inhabitants of a home, the
workers of an office or the drivers in a car park.

The development of this kind of systems is very hard because they have to achieve
devices interoperability in a heterogeneous environment in order to satisfy system
requirements. This situation requires solid engineering methods for developing robust
systems. In this context, this work seeks to improve current state of the art of
pervasive systems development techniques by means of an MDA based method for
pervasive systems development.

It proposes the Pervasive Modeling Language (Perv-ML) a precise language for
building Platform Independent Models (PIMs). Perv-ML promotes the separation of
roles between analysts and architects. Analysts specify the services, structural and

88 M. Alanen et al.

interaction model. Afterwards, architects specify what COTS devices and/or software
systems are in charge of each service.

As a Platform Specific Model (PSM), it proposes a language for modeling an OSGi
system. OSGi is a Java middleware initially created for hosting software of residential
gateways. Then, it applies graph grammars to define the transformations from Perv-
ML to OSGi. Finally, using a set of templates, it generates the code from the PSMs.

2.4 A Systematic Approach to Testing UML Design Models (by Trung Dinh-
Trong, presented by Sudipto Ghosh)

The research proposes a systematic approach to testing design models described by
UML class diagrams, sequence diagrams and activity diagrams. This approach can
help in finding and removing faults in designs before these are implemented. The
work suggests a dynamic testing approach in which executable forms of UML
design models are exercised with test inputs. The expected behavior of a design
under test is compared to the actual behavior that is observed during testing, and
differences are reported.

The approach includes a set of test adequacy criteria leading to high rates of fault
detection, and a technique to systematically generate test suites satisfying these
criteria. It also addresses the issue of UML model execution, and the questions of how
can faults be detected, and what types of faults.

None of the studied approaches for UML model execution generate test
infrastructure code that supports systematic testing of models. Most of the test input
generation techniques only provide test requirements without providing how to derive
test inputs from the requirements. The testing approach presented can be applied to
models that consist of class, sequence and activity diagrams.

The testing begins when the user provides a design under test (DUT) and a set of
adequacy criteria to the system. The model is transformed into an EDUT (executable
DUT) by translating it to Java, and finally, the test cases generated from the adequacy
criteria and test drivers are added to the model to form the TDUT (testable DUT).
Code to detect failures checks that all variables in conditions and parameters in
method calls are initialized, and that the target object of a message exists. Other
checks based on OCL are delegated to an external tool.

To date, the fault detection ability of the algorithm to execute and observe UML
design testing has been validated using two case studies with promising results.

2.5 Integration of Security Patterns in Software Models Based on Semantic
Descriptions (by Diego Ray)

This proposal aims to develop a tool-supported implementation framework for
business model driven security engineering. It includes a new security engineering
process that results from a fusion of software and systems engineering with security
engineering and formal methods for the design and analysis of secure systems. The
objective is to provide methodologies and tools for the generation of executable
systems with fully configurable security infrastructures.

 Doctoral Symposium 89

The proposed model is a variation of Boehm’s basic spiral model for software
development processes, where security engineering is integrated in the development
phase of the cycle. This integration relies on the use of security patterns that represent
security services with specific profiles and solutions for different environments. Each
pattern will be described using XML-based meta-models. The proposal will also
include the necessary pattern language.

The approach also aims to define mechanisms to automate the analysis of security-
enhanced models in order to find the security patterns and to allow the inclusion of
these patterns in the model, as well as defining appropriate mechanisms to validate
the integrity of models with respect to security requirements.

2.6 Plugging Active Mechanisms to Control Dynamic Aspects Derived from the
Multiplicity Constraint in UML (by H. T. Al-Jumaily)

This research shows how the process of transforming conceptual schemas to logical
schemas in database design is sometimes subject to semantic losses. In particular, the
problem is focused on the case of the cardinality constraint problem.

The issue is addressed by integrating add-ins to existing database CASE tools to
automatically generate triggers which verify specific conditions on insertion, deletion
and update operations in the database. The tools are used when generating the logical
database schema (tables and constraints) from the UML model.

Triggers are defined according to the SQL 2003 standard, as event-condition-
action rules that are activated by a database state transition. The two other important
concepts are event (INSERT / DELETE / UPDATE in the database table) and
activation time (BEFORE / AFTER), which defines whether the trigger is activated
before or after the event.

The problem of multiplicity is split in two cases. In the first case, triggers must be
generated for one-to-many associations, where two events must be considered:

1) deleting or updating in the one-table: the many-table must be cascade-deleted
or updated, but no checks about multiplicity are carried out

2) deleting or updating in the many-table, minimum cardinality constraints must
be checked to assure that there are enough detail items related to the master
item. Insertion also needs the verification of the maximum multiplicity.

The second case deals with many-to-many associations, implemented with three
tables. Here, inserting, deleting or updating in any of the three tables must be
followed by the corresponding verification with the appropriate trigger.

Automatic triggers are also used to maintain the consistency in data when there are
generalizations involved in the conceptual model, and these generalizations have been
mapped to a three-table architecture.

The last part of the research paper describes how the add-in has been designed and
integrated into the CASE tool, and explains how the user interacts with it and sets the
options needed to generate the triggers.

90 M. Alanen et al.

2.7 A Standards-Based UML-Profile for Message-Based Information
Dissemination (by Jörn Guy Süβ)

Integrating information systems using message queues and XML documents has been
considered difficult to design and manage, although they are reliable in operation.
Combined with transformation technology they have been called the “preferred
enterprise application integration engine”. The work develops a UML profile for this
domain, relying on UML and other OMG standards. Specifically, OCL is used for
constraints on the UML metamodel level.

Usage of UML and modeling in general can be divided into three categories:
sketches, blueprints and programs. The work looks at the viability of UML usage in
blueprinting, where models are kept in a tool along with diagrams which show the
different viewpoints of the system under discussion. The work first studies the
available means for creating a standards-based UML profile for blueprinting business
systems, and then discusses the solution in the form of the EVE framework, where
OCL constraints are verified by a server separate from the actual developer's
modeling environment.

Currently, the service platform, validator and local profile for analysis are
implemented, while some profiles are near completion or exist only as a draft. In
parallel to this development, a real industry example is modeled to ensure that the
method defined by the profiles is viable.

2.8 Visual Coordination Diagrams (by David Safranek)

The objective of the work is to define a universal formal visual language for
concurrent systems. Such a formalism should be capable of handling both the
coordination and the behavioral aspects of concurrent systems. Properties of
importance are the suitability of the formalism for modeling heterogeneity, hierarchy
and component-based structure. In general, visual formalisms for concurrent systems
are split into two groups. The first group is formed by state-based formalisms, e.g.
statecharts, and the second one by dataflow-based formalisms, e.g. message sequence
charts. Both approaches emphasize different aspects of modeled systems and can be
combined in a particular design.

The proposed research strives to incorporate both the state-based and the dataflow-
based approaches into a single formalism. Based on previous research, these two
approaches are going to be separated into two independent layers of the language, and
at both layers heterogeneity should be achieved. The proposed language, Visual
Coordination Diagrams, focuses on the coordination level whereas the behavioral
level is represented by state transition diagrams, formalized as a Mealy machine.
Components of the system are grouped into networks at the coordination layer, where
input and output ports connect components. The network structure is hierarchical.

The goal of VCD is to build a framework for the coordination of different
statecharts and other visual formalisms. The development of a graphical tool for
creation and modification of VCD diagrams is in progress. It will make use of current
suitable verification tools.

 Doctoral Symposium 91

2.9 Model and Function Driven Development (by Ruth Raventós)

This work proposes an Information System development approach that may provide a
substantial increase in Information Systems development productivity and, at the
same time, facilitate changes to accommodate new functional requirements. This new
approach is called Model and Function Driven Development.

Its main features are the distinction between the model and the function of a
Conceptual Schema (CS) and its reuse of generic conceptual schemas.

In this approach, the conceptual schema of a particular IS, called specific CS, is not
generated from scratch. It is obtained by refining a generic CS of the same domain.
The generic CS of a given domain consists of the elements that should be present in
all or many CSs for that domain. As an example, the generic CS for an auction
domain will contain all the common elements appearing in any particular CS for an
auction IS, like the concepts of auction, bidder and bid.

Both, the specific and the generic CS, include two kinds of knowledge: about its
domain and about the functions it must perform. The former is called the model and
the latter the function.

The work explains how the model and the function of the specific CS can be
obtained by refinement of the model and function of the general CS after using a
predefined set of domain-independent schema transformation operations.

To facilitate the refinement of the function part, the generic CS must be kept flexible
enough. To this end, some of the ideas of the frameworks are applied when defining the
CS, such as: the concepts of hot-spot, template methods and hook methods.

2.10 Ontology-Driven Information Systems: Pruning and Refactoring of
Ontologies (by Jordi Conesa)

Ontology-Driven Information Systems is a method to develop conceptual schemas as
refinements of the knowledge contained in general ontologies, instead of generating
the conceptual schema from scratch. It differs from the previous proposal in that the
starting point is not a general conceptual schema for the domain but a general
ontology, which is supposed to be a universal conceptual schema, and thus, the initial
conceptual schema is much larger. On the other hand, this proposal only addresses the
static part of the IS.

 The method comprises three different steps: refinement, pruning and refactoring of
ontologies. During the refinement the general ontology is extended (if necessary) with
the knowledge required to model the IS. After that, the ontology contains all the
necessary knowledge but it is too large to be used as a final conceptual schema.

That is why we need the pruning phase. During this phase we delete from the
ontology all the superfluous elements to the final conceptual schema. Afterwards, we
may apply some refactoring techniques to the resulting conceptual schema to
obtaining the final schema.

The main focus of the work is the development of the pruning and refactoring
phases. The work describes a method that given a set of concepts of direct interest
deletes all the irrelevant concepts of the extended ontology. The concepts of direct
interest are those appearing in the requirements of the IS we want to specify. Taking

92 M. Alanen et al.

into account this set of concepts and the relationships between them and the other
elements of the ontology, the method guarantees the removal of the irrelevant
elements without losing any of the needed semantics of the IS.

3 Honorary Best Student Paper Award

In conjunction with the Conference Chair of the UML 2004, the Doctoral Symposium
organizers decided to promote an honorary best student paper award. The members of
the program committee attending the Symposium, along with the organizers, based
their judgment on the contents and actual presentation of the work. Overall
participation in the workshop was also considered. Based on these criteria, Jörn Guy
Süβ received the award for his work titled “A Standards-based UML-profile for
message-based information dissemination”. The award was sponsored by the Director
of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, and presented
by Ana Moreira, the UML 2004 Conference Chair. The award consisted of a
certificate and was accompanied by an attractive, fully illustrated book on Portugal.

4 Conclusions

The first Doctoral Symposium of the UML conference series can be considered a
success. The participants considered the comments made by the reviewers to the
submitted abstracts and the feedback received during the presentation Symposium as
a positive contribution that will help them to improve the quality of their work.

The presence of a significant number of workshop attendees (over 20), including
participants, committee members, organizers and several PhD students contributed to
lively discussions which challenged each presenter within a very constructive
environment.

Although no time was allocated explicitly from the schedule for a general
discussion on common problems for PhD Students or for comparisons between
different educational institutes PhD programs and working conditions, we should
stress the funding problems that the students need to overcome when doing their
thesis: two of the selected students and one of the organizers could not attend the
Symposium due to funding problems. Most of the PhD students participating in the
Symposium were not registered for the main conference. We believe that, when doing
a PhD thesis, it is of the greatest importance to attend as many conferences as
possible, and thus more efforts should be devoted to make this possible.

The Doctoral Symposium will continue at the Models 2005 conference, with Jeff
Gray as chair handling the organization. It will have a different format, where each
student will be assigned a mentor who will lead the discussion following the student’s
presentation. Due to the mentoring aspect of the event, the Symposium will be open
only to those students and mentors participating directly in it. We expect this will
improve the quality of the Symposium even further. Further details on the new edition
of the Doctoral Symposium can be found at:
http://www.cs.colostate.edu/models05/cfpDoctoralSymposium.html

 Doctoral Symposium 93

Acknowledgments

The organizers of the Symposium would like to thank all the seniors that volunteered
to make the Symposium a great success. In particular, we are very grateful to all the
members of our Senior Program Committee, and especially to the seniors that
attended the workshop and shared some of their time helping the students to improve
their work.

We would also like to thank Ambrosio Toval and Ana Moreira, for their valuable
advice during the preparation of the Symposium.

Finally the organizers are grateful to all PhD students attending the Symposium for
submitting and/or sharing their ideas.

 LNCS 3297, pp. 94 – 104, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Function Net Modeling with UML-RT:
Experiences from an Automotive Project at BMW Group

Michael von der Beeck

BMW Group,
80788 München, Germany

Michael.Beeck@bmw.de

Abstract. This paper presents the function net modeling approach that has
been developed within an automotive project at BMW Group aimed at soft-
ware development for electronic control units. This modeling approach pro-
vides a graphical, quite abstract representation of a (typically large) set of
functions to be realized in software or hardware. Function net models are de-
scribed in UML-RT, a dialect of the UML. They only represent structural in-
formation, where two architectural views are precisely separated: the logical
view uses capsule structure diagrams of UML-RT in order to model independ-
ent of (later) HW/SW design decisions. Design decisions are taken in the tech-
nical view using UML-RT’s component and deployment diagrams. The devel-
opment of function net models is tightly integrated within several activities of
the overall system development process: with requirements engineering, with
behaviour modeling and code generation as well as with version and configu-
ration management.

1 Motivation

Within the development of embedded systems in the automotive industry the follow-
ing challenges have to be mastered:

 The number of functions to be realized increases considerably.
 The average complexity of the functions themselves grows.
 A vast number of interactions exists between functions – even between func-

tions from different domains e.g. the comfort and chassis domains.
 A migration from hardware (HW) to software (SW) solutions occurs: more and

more functionality has to be realized in SW.
 Safety-relevant applications require high quality assurance and especially high

correctness issues.

Putting these pieces together, a very complex task of system development results.
In order to master this complexity a clear graphical system view of the overall set of
functions is necessary. We denote models that provide such an overview as function
net models.

Within an automotive project at BMW Group in the context of safety-relevant
systems for the chassis domain, a function net modeling method - based on
UML-RT, a dialect of the standard modeling notation UML - has been developed

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

 Function Net Modeling with UML-RT 95

and applied. Beside the purely conceptual part of the function net modeling ap-
proach we have also developed comprehensive tool support which integrates func-
tion net modeling in a seamless system development process from requirements
engineering to code generation.

The rest of the paper is structured as follows:

2 Requirements for Function Net Modeling

In the following subsections we discuss the requirements for function net modeling:
general requirements as well as requirements for method and tool support.

2.1 General Requirements

In order to achieve a clear graphical system view of the set of all (or a large number
of) functions to be developed, the function net modeling method must satisfy the
following requirements:

 Function net models must offer an intuitive understanding - even for non-
experts reading and modifying function net models.

 Function net models must allow efficient modeling.
 The function net modeling approach should use abstraction and hierarchical

structures in order to avoid overwhelming model representations.
 For clarity reasons function net models shall be developed with a precisely de-

fined modeling notation.

2.2 Requirements on Method and Tool Support

Function nets must provide a graphical representation of functions, SW-components,
HW-components, and of partitioning information. Furthermore, interfaces (e.g. func-
tion interfaces) must be precisely defined. Functions shall be modeled in a hierarchi-
cal way. Moreover, a clear distinction between logical and technical architecture
modeling has to be provided. Finally, instance information (e.g. function instances) as
well as type information (e.g. function types) shall be presentable. Function net mod-
els must be developed in a tightly integrated way with other development activities.
Particularly, integration with requirements engineering, with behaviour modeling, and
with code generation must be provided.

In section 2 the set of requirements for the function net modeling approach is
presented. Section 3 describes why UML-RT has been selected as modeling language
for the function net modeling approach. Modeling rules for function net modeling are
discussed in section 4. The use of the UML-RT modeling constructs is presented in
section 5. In section 6 we focus on the separation between logical and technical
architecture. Section 7 discusses why function net modeling is (up to now) restricted
to structural modeling. The tight integration of function net modeling in an overall
system development process is described in section 8. The experiences with function
net modeling in an automotive project at BMW Group are summarized in section 9.
Finally, we draw our conclusions and make several suggestions for possible future
enhancements.

96 M. von der Beeck

3 Reasons for Using UML-RT as Modeling Language

Taking into account the set of requirements for function net modeling, first of all, we
intended to use the UML (Version 1.x) as modeling language due to its comprehen-
sive set of expressive, intuitive modeling notations and because the UML constitutes
an OMG standard and – more important - a quasi-industrial modeling standard. Fur-
thermore, quite comprehensive UML tool support exists. However, UML is not tailored
for a specific application domain – and especially not for embedded systems - and its
application for the structuring of (embedded) systems exhibits a few insufficiencies:
hierarchical modeling of structures is only supported by aggregation relationship.
Furthermore, interface definitions do not distinguish between elements to be imported
and those to be exported. In contrast, UML-RT, which can be regarded as a speciali-
zation of the UML for embedded systems, supports component-oriented modeling. In
particular, UML-RT exhibits the following properties: structures can be defined in an
evidently hierarchical way. In addition, interface elements can be distinguished be-
tween import and export elements. Comprehensive tool support (Rational Rose Real-
Time [1]) exists for UML-RT, such that we selected the UML-RT notation for func-
tion net modeling.1

4 Modeling Rules for Function Net Modeling

Using a modeling language like UML-RT does of course not guarantee that adequate
function nets are developed. In addition, modeling rules are necessary which deter-
mine how the notation UML-RT should be used. Therefore, a comprehensive set of
constructive and precise modeling rules for function net modeling has been devel-
oped. The set of modeling rules cannot be presented in detail in this article. However,
an overview will be given in the following.

Some modeling rules restrict the use of UML-RT for function net modeling:

 Function net models only specify structural information, no behaviour informa-
tion. Therefore, only structure diagrams, component diagrams, and deployment
diagrams of UML-RT are used.

 Attributes and operations are not used.
 The use of ports and protocols has been restricted.

Some other modeling rules provide naming conventions:

 Naming conventions exist for capsules, capsule roles, signals, protocols, ports,
connectors, components, and component instances.

 Stereotypes are used to determine specific uses of nodes for modeling busses,
sensors, actuators, and gateways.

More complex rules support the development of clearly arranged function nets:

 One such rule describes the use of mediators. These are (stereotyped) capsules that
gather several connectors to reduce the (visible) complexity of function nets.

1 Nowadays, we would choose UML 2.0 as the modeling language for function net modeling,

because it offers all modeling capabilities of UML-RT, but will probably constitute a more
widespread standard modeling language in future.

 Function Net Modeling with UML-RT 97

We not only defined the modeling rules for function net modeling, but also en-
hanced the commercial UML-RT tool Rational Rose RealTime by analysis functions,
which check whether a given UML-RT model fulfills the modeling rules.

5 Use of the UML-RT Modeling Constructs

Before explaining the use of the diverse UML-RT modeling notations, we provide a
very simple function net model example by figure 1. This figure presents a system
that calculates the car velocity from signals provided by four wheel sensors and which
displays the resulting velocity.

Fig. 1. A logical function net model describing the structure of a system calculating the car
velocity from four wheel sensors and displaying the resulting velocity

5.1 UML-RT Language Constructs for the Logical Architecture

Capsules are used to model functions. They offer precisely defined interfaces, the
communication is signal based and defined by interfaces and channels. Functions can
be hierarchically refined by a system of communicating (sub)functions. Ports and
protocols (of capsules) model function interfaces. A port specifies a communication
point of a capsule. The protocol associated with this port contains two sets of signals:
the set of signals, which can be exported at this port and the set of signals, which can
be imported at this port. Connectors model channels between function interfaces.

98 M. von der Beeck

5.2 UML-RT Language Constructs for the Technical Architecture

Components of UML-RT are used for the modeling of SW-components, whereas
nodes are used to model HW-components like ECUs (Electronic Control Units), sen-
sors, actuators, and gateways.

6 Distinction Between Logical and Technical Architecture

The function net modeling method offers a clear separation between logical and tech-
nical architecture. In the logical architecture a function is modeled without taking any
information into account how this function will be realized in software or hardware,
i.e. by SW-components or HW-components. However, this realization information is
given in the technical architecture. Logical and technical architecture are related by
the partitioning activity that describes how the logical architecture is mapped to the
technical architecture. An example is given in figure 2.

Fig. 2. A logical and a technical architecture modeled in UML-RT. Additional arrows shall
illustrate mapping and refinement issues

Here, function nets for the logical as well as for the technical architecture are
given. Structure diagram FunAngvelSensor shows four capsule roles of capsule type
Fun-AngvelWhlSensor that are contained in capsule role funAngVelSen-
sorR1 – shown in structure diagram Fahrzeug - of type FunAngVelSensor.

 Function Net Modeling with UML-RT 99

Partitioning of these four capsule roles is now performed as follows: Capsule Fu -n
AngvelWhlSensor is mapped onto component CmpAngVelWhlSensor that is
shown in a component diagram. Moreover, four instances of this component are
mapped to two nodes, which are modeled in a deployment diagram: two component
instances are mapped on SignalCoordinatorFront and the other two compo-
nent instances are mapped on SignalCoordinatorRear.

This separation between logical and technical architecture provides several ad-
vantages:

 It simplifies the development of several (alternative) technical architectures
starting from one common (logical) architecture in order to achieve optimal
solutions for different quality criteria, e.g. safety-related issues (like compliance
with a given safety integrity level) and performance issues (e.g. bus load
optimization).

 It allows reuse of purely logical architectural information in order to develop
enhanced or quite new architectures.

7 Restriction of Function Net Modeling to Structural Information

The presented function net model approach only models structural information, but
no behavioural information, although UML-RT provides very appropriate modeling
notations for behaviour modeling like state and sequence diagrams. The reason for
this restricted use is given as follows: the use of the tool ASCET SD [2] from ETAS
for code generation was mandatory in the project where the function net modeling
approach was developed. Since ASCET SD models must contain complete struc-
tural as well as behavioural information before code generation begins, the question
arises as to when and how the behavioural information shall be modeled in the
overall development process. If behaviour is (already) modeled within function net
modeling, e.g. using state diagrams of UML-RT, the resulting behaviour model
information must be transformed to ASCET SD behaviour models. However, this is
a non-trivial task due to the very intricate differences in the semantics of UML-
RT’s and ASCET SD’s state diagrams. Therefore we decided to follow a pragmatic
approach: to only model structural information in UML-RT and to develop a possi-
bility for transforming UML-RT function net models (which only contain structural
information) to ASCET SD models, such that behaviour modeling will only be done
(subsequently) in ASCET SD.

8 Embedding Function Net Modeling in the Overall Development
Process

Function net modeling comprises the development of logical as well as technical
architecture. However, these development activities must be adequately embedded in
the overall development process. We have realized a tight integration of function net
modeling with the following activities of the overall development process:

100 M. von der Beeck

 Requirements engineering
 Behaviour modeling and code generation
 Version and configuration management

Figure 3 illustrates these integrations. The integrations are not only defined on a
conceptual level, but are also realized by comprehensive tool support. In the follow-
ing subsections the integration aspects are described in more detail.

Fig. 3. Embedding of function net modeling in an overall development process

8.1 Requirements Engineering

We have developed navigational support between requirements and elements of func-
tion net models. We use the DOORS tool [3] for the modeling of requirements. For
each requirement the set of function net model elements that satisfy this requirement
can be shown. So if the user has selected a requirement in DOORS he can use a com-
mand which – if not already opened – opens the corresponding function net and
highlights the corresponding function net model elements. This navigational support
also works in the other way round.

8.2 Behaviour Modeling and Code Generation

A UML-RT function net model (which only contains structural information) has to be
transformed to a (preliminary) ASCET SD model, such that this model can subse-
quently be manually enriched by behavioural information. Then, the resulting ASCET

 Function Net Modeling with UML-RT 101

SD model (containing structural as well as behavioural information) is used by the
ASCET SD tool for code generation. We have developed a tool, which automatically
performs the abovementioned transformation from UML-RT function net models to
(equivalent) ASCET SD models.

8.3 Version and Configuration Management

In order to allow simultaneous development of a function net model by several people
a systematic support of version and configuration management is necessary. Analo-
gous to the requirement that the tool ASCET SD shall be used for code generation
there has been the requirement that the tool CM Synergy [4] shall be used for version
and configuration management. Since there did not exist an adequate integration be-
tween Rational Rose RealTime and CM Synergy, we developed an integration be-
tween these tools such that arbitrary parts of a UML-RT function net model can be
stored separately.

9 Experiences

In this section we describe experiences with the application of function net modeling
within the abovementioned automotive project at BMW Group.

9.1 Methodology Issues

The function nets, which have been modeled, are quite complex. Therefore it was
necessary that the function net modeling approach allows the possibility of selecting
an arbitrary level of abstraction such that an adequate level of granularity can be
achieved. This requirement is fulfilled by our function net modeling approach.

A clear separation between type information (e.g. capsules, protocols, signals, and
components) and instance information (e.g. capsule instances, protocol instances,
signal instances, and component instances) is necessary. UML-RT fulfills all of these
separation issues - except the distinction between signals and signal instances: UML-
RT only offers signals (which provide type information). Therefore we developed a
capability to also model signal instances in UML-RT.

As described in section , a comprehensive set of constructive and precise model-
ing rules has been developed. They simplify the development of function net models
and are important to achieve a common understanding of function net models. In
addition, the possibility of automatic checks, whether function nets satisfy the model-
ing rules, tremendously simplifies development.

Experience with object-oriented notations helps users to apply the function net ap-
proach. However, the set of UML-RT diagram notations to be used for modeling
function nets is quite restricted, so that potential users of the function net modeling
approach who do not have experience with object-oriented notations do not have to
learn UML-RT completely.

4

102 M. von der Beeck

9.2 Tool Support Issues

The possibility of extending the functionality of Rose RT by extensive use of the
RRTEI (Rational Rose RealTime Extensibility Interface) allowed us to fulfill the
following requirements:

 to realize automatic checks of function net models with respect to our modeling
rules for function nets

 to develop a user friendly support for the partitioning process (i.e. to determine
which capsule instances are mapped to which node instances)

 to automatically perform bus load estimations
 to integrate function net modeling tightly in an overall system development

process.

Therefore, we could combine the use of a commercially available UML-RT tool
with the realization of project specific requirements from BMW Group.

9.3 Integration Issues

In general, the tight integration of function net modeling in an overall system devel-
opment process was an indispensable precondition for gaining acceptance for the
function net modeling approach within the application project. In addition, we discov-
ered the following issues:

The work to link all requirements with corresponding elements of the function net
model is quite a tedious task. Furthermore, it is necessary that the requirements be
structured in a systematic way such that it is easier to decide which requirements have
to be linked with which function net model elements.

Tool support for the transformation from UML-RT function net models to ASCET
SD models is a necessary precondition if this transformation shall be performed in an
efficient way. However, our transformation tool up to now only works in a unidirec-
tional (only from function net models to ASCET SD models, but not vice-versa) and
non-incremental way (it always transforms complete function net models, such that
previously generated or manually enhanced ASCET SD models are overwritten). To
achieve a more efficient overall development process a bi-directional and incremental
transformation tool would be necessary.

Finally, adequate tool support for versioning and configuration of (parts of)
function net models is indispensable if several persons develop a common function
net model.

10 Conclusions

In this paper the function net modeling approach has been presented. This approach
provides a graphical, quite abstract representation of a (typically large) set of func-
tions to be realized in the automotive domain.

 Function Net Modeling with UML-RT 103

A complete method has been developed:

 It is based on the given modeling notation UML-RT.
 It provides a set of constructive modeling rules which are specifically de-

signed for the development of function nets. In particular the rules define that
only a small part of the UML-RT notation is used for the development of
function net models.

 The method comes with comprehensive tool support. This has been achieved by
using a commercially available UML-RT tool which has been extended by indi-
vidual scripts in order to provide additional functionality and which has been
tightly integrated with other tools that support other activities in the overall
development process.

11 Outlook

It is quite obvious that a migration from UML-RT to UML 2.0 for the modeling of
function nets might be promising, since UML 2.0 will constitute a more standardized
and widespread language than UML-RT. In addition, the migration work should be
justifiable, because UML-RT concepts like ports, protocols, connectors, and capsules
(which however do not exist in UML 1.x) are either contained in UML 2.0 or can be
easily substituted by UML 2.0 modeling concepts.

Alternatively, an automotive-specific UML 2.0 profile e.g. based on the EAST-
ADL [5], i.e. the architecture description language of the ITEA project EAST-EEA,
or a systems engineering specific profile of UML 2.0 like SysML [6] could substitute
UML-RT as the basis of function net modeling.

Our restriction of function nets to a specification of purely structural issues can
be seen as a pragmatic decision in order to avoid intricate (semantic) transforma-
tions between behavioural models in UML-RT and Ascet SD. However, in princi-
ple it makes sense to explore behaviour modeling within the application domain
of function nets. With respect to a possible migration to UML 2.0 the use of pro-
tocol automata for the modeling of behaviour in function interfaces could be
promising, such that interfaces will no more comprise just signatures, but real
behavioural entities.

Finally, the integration aspects of function net modeling could be extended. It
might be promising to examine how testing activities can be tightly integrated with
function net modeling.

Acknowledgement

The function net modeling approach and its tool support were developed with the help
of many colleagues: in particular, I would like to thank M. Bayerlein, M. Huang, M.
Köhlert, P. Mai, R. Mehlhorn, Th. Nowak, F. Ratzinger, R. Sandner, W. Schwerin,
and B. Wimmer for their very noteworthy contributions.

104 M. von der Beeck

References

1. Rational Rose RealTime: http://www.rational.com
2. ASCET SD: http://en.etasgroup.com/products/ascet_sd
3. DOORS: http://www.telelogic.com/products/doorsers/
4. CM Synergy: http://www.telelogic.com/products/synergy/
5. EAST-EEA Embedded Electronic Architecture, Deliverable D3.6, Definition of language

for automotive embedded electronic architecture, http://www.east-eea.net
6. SysML (Systems Modeling Language), http://www.sysml.org

 LNCS 3297, pp. 105 – 117, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Supporting the Building and Analysis of an
Infrastructure Portfolio Using
UML Deployment Diagrams

Jeffrey A. Ingalsbe

Ford Motor Company
jingalsbe@ford.com

Abstract. Rational, objective analysis of an infrastructure portfolio requires that
the portfolio be represented in a consistent and understandable way. For an or-
ganization whose portfolio includes legacy systems, systems under develop-
ment, systems on fundamentally different and incongruous platforms, and sys-
tems with little or no documentation, the task is daunting. This paper describes
work currently being undertaken to represent the IT portfolio of Ford Motor
Company from an infrastructure perspective using UML deployment diagrams.
The objective of the work is to support the analysis of the portfolio and its sub-
sequent alignment with key IT strategies. To accomplish this, the UML de-
ployment diagram was extended and a template created. This paper discusses
the extensions, the template, and its ongoing deployment to the organization.
Tool considerations and future work are discussed as well

1 Introduction

Alignment of IT strategies with key business strategies has been understood for some
time to be a top priority of organizations interested in getting the maximum value out
of their IT dollar [1]. However, optimal alignment requires the capability to ration-
ally, objectively analyze an existing IT infrastructure portfolio [2] which, in turn, re-
quires that the portfolio be represented in a consistent and understandable way. For
an organization whose portfolio includes legacy systems, systems under development,
systems on fundamentally different and incongruous platforms, and systems with little
or no documentation, the task is daunting. Additionally, even if the task were under-
taken, there might be organizational change constraints that would work against its
success. This paper describes work currently being undertaken to represent the IT
portfolio of Ford Motor Company from an infrastructure perspective using UML
deployment diagrams. The objective of the work is to support the analysis of the
portfolio and its subsequent alignment with key IT strategies. Specifically, those
strategies are to optimize cost, quality and value to Ford through simplification. To
accomplish this, the UML deployment diagram was extended and a template created.
This paper discusses the extensions, the template, its initial deployment to the organi-
zation, tool considerations, and future work.

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

106 J.A. Ingalsbe

2 Scope and Context

The representation and subsequent analysis of the IT portfolio of Ford Motor Company
from an infrastructure perspective are on-going and being accomplished by the execu-
tion of an alignment process. It prescribes the systematic, collaborative, building of the
portfolio, its analysis to find alignment opportunities, and its transformation through the
execution of those alignment opportunities. This paper focuses on the UML deploy-
ment diagram extensions and its deployment. It does not, however, address in detail the
end-to-end process in which it was used. That is the topic of another paper.

3 Choosing the UML: The Risks

The Unified Modeling Language is a set of notations that provide a standard way to
visualize, specify, construct, and communicate the artifacts of software intensive sys-
tems [3]. It is considered by most to be the defacto standard. UML deployment dia-
grams are used to model the static deployment of a system by showing the configura-
tion of run time nodes and the components that live on them [3]. Considered in the
abstract the UML and specifically, the UML deployment diagram, seemed to be the cor-
rect choice to represent constituent elements of an infrastructure portfolio. Considered
with reference to a specific organization with its specific goals, personnel, resources and
constraints led to the identification of four risks to the success of the initiative.

3.1 Personnel (Current Workload, Training, and Competence)

The personnel posessing the knowledge required to render the deployment diagrams
were not trained in the UML, could not be considered competent in the UML, and had
little time to dedicate to the task. The introduction of a new notation (the UML) and a
new artifact (the deployment diagram) into an organization for representing all future
work is one thing. But their introduction into an organization for representing all
work past, present, and future is quite another. While systems currently under de-
velopment are likely to have dedicated architects whose methodology could be modi-
fied to include a new notation and artifact, legacy systems (i.e. systems in production)
are not. After a system is released to production a different set of personnel with a
much different skill set manage its operation and maintenance. Additionally, those
personnel may manage multiple systems, not just one. Consequently, the risks were:
the personnel had no formal training (formal training would cost and take time), could
not be considered competent (becoming competent would cost and take time), and
had existing workloads (the impact to productivity while being trained, becoming
competent, and then doing the work would be a reason to resist the initiative).

3.2 Tools (Cost and Deployment)

Object modelling tools were expensive and the time required to evaluate, select,
purchase, and deploy would introduce an unacceptable delay. Object Modeling tools
that support the UML are costly. Evaluation, selection, purchase, and deployment of

 Supporting the Building and Analysis of an Infrastructure Portfolio 107

a tool to support the composition of UML deployment diagrams by application own-
ers numbering in the hundreds would be costly and time consuming. The risk: with-
out a modeling tool, could the deployment diagrams be built?

3.3 Knowledge Base (Sample Libraries and Similar Efforts)

In this paper, a knowledge base is used to mean a collection of samples, rules of
thumb, white papers, and lessons learned related to producing UML deployment dia-
grams for an enterprise. To the best of our knowledge, the knowledge base for de-
ployment diagrams is small as compared to the other UML models. Perusing the
knowledge bases for the major tool vendors reveals that the use of deployment dia-
grams has not progressed to the point where there is a lot of samples or knowledge.
Therefore, the effort to build an infrastructure portfolio based on the UML deploy-
ment diagram would have to be joined with an effort to build a library of deployment
diagrams for different classes of systems. E.g. data warehouse systems, web services
systems, traditional client server systems, etcetera. The risk was: without a knowl-
edge base from which the application owners could draw, could the deployment dia-
grams be built?

3.4 Usage (Across Business Units at Multiple Levels)

A conceptually accessible deployment diagram to be used across business units by
technical personnel for analysis, by middle management for planning, and by senior
management for understanding might be impossible to create. The infrastructure port-
folio's use would range vertically from technical personnel through middle manage-
ment and horizontally across business units. Therefore it had to be accessible concep-
tually across a wide range of personnel. The risk was: with such a diverse user base,
could a useful deployment diagram be produced?

4 Choosing the UML: Mitigating the Risks

The following subsections detail the decisions that were made to mitigate the risks of
choosing the UML.

4.1 Regarding Personnel (Current Workload, Training, and Competence)

The knowledge of the content of the deployment diagrams was distributed. The
competency to render them using the UML was central. A S.W.A.T. team was formed
to produce a template (to ensure consistency and understandability) and review drafts
as they were produced. The goal of this effort was to represent the portfolio in a
consistent and understandable manner such that it could be rationally and objectively
analyzed. Since the current workload of the application owners and architects was
already significant, and the cost of training all of them was too high, and the time
lapse required for all of them to gain competency was too long even if training was
affordable, it seemed clear that some of the effort and all of the competence would

108 J.A. Ingalsbe

have to be provided centrally. That is, a core team would be created to provide the
competence in building UML deployment diagrams but the application owners and
architects would still have to gather and provide the data necessary to render the
diagrams. The S.W.A.T. team would be trained and become competent in creating
deployment diagrams using the UML This S.W.A.T. team would create a template to
be used as a starting point by the application owners and architects (containing all the
information necessary to conduct the analysis of the portfolio). The application own-
ers would then use the template to build the draft deployment diagrams and would
then review those drafts with the S.W.A.T. team for sign off.

4.2 Regarding Tools (Cost and Deployment)

The effort had to begin immediately, but the tool would have to go through the
evaluation, selection, purchase, and deployment processes which would introduce an
unacceptable delay. An office automation tool was specified for tactical use while the
strategic tool wound its way through the corporate processes. Implicit in the goal to
represent the portfolio in a consistent and understandable way such that it could be ra-
tionally and objectively analyzed was that the analysis take place in a timely manner.
That is, the analysis was intended to support the optimization of cost, quality and
value to Ford through simplification of the infrastructure portfolio. That optimization
could not wait several quarters to begin. Since the cost of object modeling tools was
high and the time to evaluate, select, purchase, and deploy the was long, neither could
the tool be provided for all application owners and architects, nor could the optimiza-
tion wait for the tool to be evaluated, selected, purchased, and deployed. Therefore, it
seemed clear that an interim tool would have to be used while waiting for the final
tool to wind its way through the process and be used by the S.W.A.T. team. Dia-
grams rendered in the interim tool would have to be transferred into the final tool
upon its arrival. Therefore, discussions with tool vendors would have to involve the
automation of this process.

4.3 Regarding Knowledge Base (Sample Libraries and Similar Efforts)

To the best of our knowledge, a usable knowledge base related to the production of
deployment diagrams for the enterprise did not exist. The S.W.A.T. team (see above)
would produce the knowledge base in parallel with the effort by identifying classes of
systems and lessons learned by those pesonnel leading the effort. Providing a tem-
plate to be used as a starting point by the application owners and architects (contain-
ing all the information necessary to conduct the analysis of the portfolio) would help
ensure consistency and understandability but would not capitalize on the fact that
across all business units there are classes of systems whose deployment would be re-
markably similar (e.g. E.g. data warehouse systems, web services systems, traditional
client server systems, etcetera). Therefore, it seemed clear that knowledge base
would have to be created which would grow as the documentation of the portfolio
grew. The S.W.A.T. team would identify classes of systems as they were encoun-
tered and enter them into the knowledge base.

 Supporting the Building and Analysis of an Infrastructure Portfolio 109

4.4 Regarding Usage (Across Business Units at Multiple Levels)

The template (see above) would be specified collaboratively with concerned parties
from each class of user. Thus ensuring maximum understandability horizontally and
vertically in the organization. Since Ford IT is a huge global enterprise spanning mul-
tiple brands, multiple business units, multiple continents, and multiple packages of
management it would be seem that developing a deployment diagram that would be
conceptually accessible (understandable) to personnel vertically and horizontally
within the organization would be impossible. It seemed clear that the template would
only be successful if developed in collaboration with key concerned parties vertically
and horizontally within the organization.

5 Extending the UML

The rich set of modeling concepts and notations that are provided by the UML are
sufficient for many software modeling projects. In order to meet the requirements of
this effort it was necessary to make use of the three built-in extension mechanisms :
Constraints, Stereotypes, and Tagged Values. These three extension mechanisms are
used separately and together to define new modeling elements that have distinct se-
mantics, characteristics, and notation relative to the built in UML modeling elements
specified by the UML metamodel. The following sections discuss how each exten-
sion mechanism is used in the template.

5.1 Stereotypes

Stereotypes represent a subclass of an existing metamodel element with the same
form (attributes and relationships) but with a different intent [UML 1.3]. Gener-
ally stereotypes represent a usage distinction. They may have required tagged
values that add information needed by elements with the stereotype. In the tem-
plate, stereotypes are used to create new model elements from packages and
nodes. That is, package and node elements are stereotyped to allow them to have
additional meaning as used in the context of our template. It could be argued that
stereotyping the packages may have not been necessary because a named package
with a constraint on its contents and a diagrammatic convention for displaying it
would have sufficed. However, it seemed conceptually consistent to stereotype
the package.

5.2 Tagged Values

A tagged value is a keyword-value pair that may be attached to any kind of model
element (including diagram elements as well as semantic model elements). The key-
word is called a tag. Each tag represents a particular kind of property applicable to
one or many kinds of model elements. In the template, specific tagged values are at-
tached to stereotyped nodes.

110 J.A. Ingalsbe

5.3 Constraints

A constraint is a semantic relationship among model elements that specifies conditions
and propositions that must be maintained as true; otherwise, the system described by
the model is invalid (with consequences that are outside the scope of UML). Certain
kinds of constraints (such as an association “xor” constraint) are predefined in UML,
others may be user-defined. A constraint represents semantic information attached to a
model element, not just to a view of it. A constraint is shown as a text string in braces
({ }). In the template, constraints are used to restrict the contents of packages, restrict
association properties, and restrict tagged values on nodes.

6 The Template

The Template is a set of rules and guidelines (enforced by UML extensions) that
when constructed yields a deployment diagram. It could have been considered a top
level package or, possibly a stereotype of a diagram. Diagrammatically, the adorn-
ments for components were suppressed to help keep the diagrams to one page, al-
though there is no serious impact if they are not. The UML template was developed
iteratively and collaboratively with input from information architects, application ar-
chitects, security architects, infrastructure architects, operations personnel, middle
management personnel, senior management personnel, capacity demand management
personnel, and optimization consultants. At each and every juncture the template was
evaluated with respect to four goals:

6.1 Consistency

To support analysis across a group of deployment diagrams certain things about indi-
vidual deployment diagrams must hold true, including a standard style (fonts,

Fig. 6.1. Real estate apportionment

C
lients

P
resentation

A
pplication

D
atabase

S
torage

Upstream Systems

Downstream Systems

 Supporting the Building and Analysis of an Infrastructure Portfolio 111

adornments, use of color), a standard real estate apportionment (division of the
model real estate into regions which are assigned a specific purpose), and consistent
specification of technology products. Figure 6.1 shows how the real estate of the
template was apportioned using packages. Each package has constraints on its posi-
tion relative to the other packages in the model and on the nodes it can contain.

Understandability: To support usage by diverse groups with varying intentions cer-
tain things about individual deployment diagrams must hold true, including naming of
model elements (nodes, packages, stereotypes, constraints, and tagged values) that is
understood by all concerned parties.

Support of analysis: It was understood from the outset that the portfolio would be
initially analyzed relative to a handful of known drivers, including utilization, end of
life, end of lease, cost, kinds and versions of equipment, and kinds and versions of
technologies. To support that analysis across groups of deployment diagrams certain
information must be present on individual deployment diagrams, including financial
data, utilization data, and technology product data.

Support of resultant actions: It was also understood from the outset that certain ac-
tions would be called for as a result of the analysis, including consolidation on like
technologies or nodes, migration to new or shared technologies or nodes and decom-
missioning of technologies or nodes. To support those actions across groups of de-
ployment diagrams certain information must be present on individual deployment
diagrams, including things like interrelationships between systems (upstream and
downstream systems).

The result of the collaborative iterations was a template with a common style sheet,
real estate apportionment using stereotyped packages with constraints, consistent
naming of model elements, and stereotyped nodes.

6.2 Real Estate Apportionment Packages

Supporting the goal of consistency required a standard real estate apportionment.
That is, it needed to be clear when viewing one of hundreds (perhaps thousands) of
deployment diagrams that certain groups of elements would always be found in a cer-
tain area of the model. For example, upstream systems (other systems that master
data which is used by the system under question) always appear in a package located
on the top of the model whose width spans the entire model. Accomplishing this re-
quired stereotyping the packages, placing constraints on the position of each package
relative to the other packages and placing constraints on the contents of the packages.
The following subsections present all of these.

6.3 Technology Products and Services

Supporting the goal of consistency required the consistent specification of technol-
ogy products in the models. That is, a line drawn between an application node and a
database node indicates a communication association exists. The properties of that

112 J.A. Ingalsbe

association might indicate that the network services are provided by the LAN and
IP Services and protocols. While the data access services are provided by sql net.
Understanding the services provided by a technology product requires referencing
the Ford Architecture Framework which provides a structure for classifying and or-
ganizing the components of the Ford Enterprise Architecture. Supporting the goal of
consistency then required that all properties of associations and all tagged values of
nodes reference the Ford Architecture Framework. If a technology product has not
been classified it must be submitted to the Architecture Management group for their
future consideration.

6.4 Upstream Systems and Downstream Systems

An upstream system is one that sources data for the system being modeled. A down-
stream system is one that sinks data for the system being modeled. They are repre-
sented as stereotyped nodes. An upstream system could be a directory service that
masters user identification data used by the system to determine whether a user is part
of a certain organization. Access to the directory service might be on demand via a
system call or nightly via an ftp pull. A downstream system could be an analytical
system that receives test data from the system being modeled. Access to the analytical
system might be via an ftp push of a flat file. To specify this information six tagged
values were identified for upstream and downstream systems: who, what, source,
target, mechanism, and frequency.

Who: This specifies the name of the system that will be sourcing the data.
What: This specifies the business data being sourced. It is a natural language de-
scription of the data, for example “car sales volume data”.
Source(From): This specifies the source of the data in general terms, for exam-
ple“db2 tables on Facility C”.
Target(To): This specifies the target of the data, in general terms, for example “a flat
file on facility C”.
Mechanism: This specifies the mechanism for the data transfer between the source
and the target, for example “via an ftp pull or push” or “via an sql query”.
Frequency: This specifies the frequency of the data transfer between the source and
the target, for example Daily, Weekly, Monthly, or On-Demand. daily More detail
can be added, for example D2x would specify that the transfer takes place twice daily.

When completely specified, the tagged values of an upstream system can be strung
together to form a sentence that makes sense. E.G. Who provides what from this
source to that target via this mechanism at that frequency. Using a concrete example:
System X provides user training data from an Oracle database to a flat file via an ftp
push, nightly.

Each node represents one “kind of” upstream system. For example, if there are 17
upstream systems sourcing the same data to the system in the exact same format then
one may draw one node and specify the 17 unique upstream systems in a legend at the
bottom of the page or in an excel attachment. Please note that these upstream systems

 Supporting the Building and Analysis of an Infrastructure Portfolio 113

are not solely those systems that give your application feeds; they are also applica-
tions that source data in a real-time basis through mechanisms such as sql queries.

6.5 Client Package

Clients are nodes that allow actors to interact with the system being modeled. It is
important to note that the actors are people not systems. Systems that interact with
the system being modeled are either upstream or downstream systems. A client could
be a customer interacting over the internet using a standard web browser. Alterna-
tively, a client could be an engineer interacting over the intranet using custom written
client-server software. To specify this information three tagged values were identi-
fied for upstream and downstream systems: who, kind, and software stack.

Who: This specifies the business role of the client accessing the system.
Mechanism: This specifies the mechanism used for accessing the system, for exam-
ple "public internet client", "intranet client", or "3270 terminal emulator client".
Stack: This specifies the software stack or load required for the user to access the
system, for example "Internet Explorer", "Citrix Client", or "Business Objects Client".

6.6 Presentation Package

Presentation nodes are those responsible for presenting the application to clients. For
a typical web application, presentation nodes comprise web server components.
However, application servers can function as http servers (read web servers) in
addition to running application code in the context of some higher level API (read
servlets, EJB, and ASP for example). So it is possible for a node to exist in the
application package and the presentation package. For a typical mainframe applica-
tion, there is no distinct presentation node. The mainframe presents the application
via green screens. For a typical UNIX x-windows application, there is again no
distinct presentation node. The application node presents the application. When load
balancing is required, it may be depicted by representing each node separately and
representing the load balancer as its own node. It could be argued that an xor con-
straint on multiple associations between a client and the load balanced servers would
depict the same relationship but it seemed conceptually less accessible. The associa-
tions connecting clients to presentation nodes and presentation nodes to
application nodes, for example, must specify the network services and data access
services that are required (referencing the architecture framework). To specify a
presentation node four tagged values were identified: machine name, software stack,
security services, and monthly costs.

Machine Name: This specifies the server and its known attributes. This is linked to
an asset management repository to eliminate typos.
Software Stack: This specifies the software that must be on the node in order for the
application to run. It is not the entire load but the incremental load for the application
being modeled.

114 J.A. Ingalsbe

Security: This specifies the list of the security services that the application uses, for
example WSL, WSL-X, or RACF.
Monthly Costs: This specifies the monthly application costs and the monthly server
costs incurred by the application running on the server.

6.7 Application Package

Application nodes are those responsible for the execution of business logic. For a
typical web application, application nodes might comprise application server compo-
nents. For a typical mainframe application, application nodes might comprise custom
code written in Cobol executing on a mainframe. To specify an application node, four
tagged values were identified: machine name, software stack, security services, and
monthly costs. These are detailed in section 6.5.

6.8 Database Package

Database nodes are those responsible for database management. For a typical web ap-
plication, database nodes might comprise Oracle database components on a UNIX
box. For typical mainframe applications, database nodes might comprise db2 database
components on a mainframe. Fail over database servers should be noted. To specify a
database node, four tagged values were identified: machine name, software stack, se-
curity services, and monthly costs. These are detailed in section 6.5.

6.9 Storage Package

Storage nodes are those responsible for storage management. For a typical web ap-
plication, storage nodes might comprise storage components on a SAN. For a typical
mainframe application, storage nodes might comprise storage components on a SAN
as well. Mirrored storage and backup storage should be specified. To specify a stor-
age node, four tagged values were identified: function (primary, mirrored, or
backup), type (local or SAN), amount (used versus allocated) and monthly costs.

Function: This specifies whether the storage is primary, mirrored, or backup.
Type: This specifies whether the storage is local or SAN.
Allocated: This specifies how much storage has been allocated.
Used: This specifies how much of the storage is in use.
Monthly Cost: This specifies whether the storage costs per gigabyte.

7 Deployment of the Template

7.1 The Pilot

The deployment of the template took place in a pilot alignment process limited to
one |sub-business unit. The scope of the effort included 183 applications managed
by 26 application owners. At a high level, the process involved 4 steps. Figure 7.1
shows the steps.

 Supporting the Building and Analysis of an Infrastructure Portfolio 115

Fig. 7.1. High Level Pilot Process

7.2 Pilot Results

The pilot was considered a demonstrable success. Key lessons learned are docu-
mented in the following subsections.

7.2.1 Centralized Help for the Most Complex Models
The UML deployment diagram template was sent out to all application owners in the
pilot. They were instructed to use the template as a starting point for rendering de-
ployment diagrams for all of their applications. After a two week time period a re-
view was scheduled with the S.W.A.T. team and the application owner to review each
deployment diagram. In virtually every case, the application owner came to the re-
view meeting without having completed any of the deployment diagrams, with a
handful of questions and a high level of frustration. After a handful of meetings went
this route, a process change was suggested and implemented. After distributing the
template and training materials, a meeting would be set up with the application own-
ers, S.W.A.T. team members, and appropriate architects. During this meeting
S.W.A.T. team members would lead the collaborative building of a deployment dia-
gram for the system that the application owner viewed as his or her most complex.
The application owner and architect would then be responsible for composing de-
ployment diagrams for the rest of the systems under their purview. After implement-
ing this process change, virtually all application owners came to the review meeting
having completed the deployment diagrams, with very few questions, and a high level
of satisfaction.

7.2.2 Side Effect of Building Models
The feedback from virtually all application owners was a sense of surprise and delight
that the process of building the deployment diagrams gave them an understanding of
their systems that they had previously not possessed. This was especially true for ap-
plication owners of legacy applications they had inherited.

Engage
Business Unit
Senior Man-

agement

1

Distribute
template and

training materi-
als

2

Sign Off
Deployment
Diagrams

4

Meet to re-
view draft de-
ployment dia-

grams

3

116 J.A. Ingalsbe

7.2.3 Critical Mass
The first application owners to execute the process and build their deployment dia-
grams experienced more difficulty and higher levels of frustration than their peers
who executed the process later in the pilot. This can be attributed to several things.
First, the S.W.A.T. team was inexperienced… their skill mixture was diverse and lev-
eled out as time went on…

7.3 Subsequent Analysis of the Portfolio

The analysis of the portfolio has begun. In the first sub-business unit to begin, analy-
sis was performed by senior architects, and infrastructure representatives. It was per-
formed in semi-weekly collaboration meetings where the deployment diagrams were
examined as a group in order to determine whether the infrastructure supporting the
deployment was underutilized, at the end of its useful life, at the end of a lease, or a
nonstandard version. The result of this analysis was the identification of $5,000,000
in yearly savings.

The deployment of the template to several more business units has taken place with
nearly 700 deployment diagrams having been produced and hundreds more being
worked on.

8 Conclusions and Further Work

This paper described extensions to UML deployment diagrams and a template used as
a starting point and guide for the creation of those deployment diagrams. The exten-
sions and template have proven useful in the creation of consistent, understandable
models the can be rationally and objectively analyzed in large numbers with respect to
predefined goals like simplification and optimization of cost. Specifically, with only
a fraction of the portfolio composed and analyzed , the return on investment for the
effort is very high.

The template was used successfully in an environment where formal training and
demonstrated competency in the UML did not exist. However, it required the efforts
of a central group to collaborate on the composition of the most complex models.

Tool selection is complete although there remains work to be done to support
automated analysis across models. As the number of completed deployment diagrams
approaches 1,000 it is becoming imperative that these models be under formal con-
figuration management in a searchable repository supporting analysis and intercon-
nections between other enterprise tools. Work is ongoing in this area.

As the deployment diagrams are used more widely it is becoming clear that differ-
ent organizations have knowledge of different pieces of data within the models. That
is, there may exist layers of information that are viewed by different people at differ-
ent times. Specifically, application architects might understand the how the compo-
nents should be deployed and their interrelationships but they don't know which spe-
cific nodes those will be. Farm personnel might understand how the standard
components of their farm can be home to portions of the application but they don't
know how the network infrastructure operates. Work is currently being done to de-

 Supporting the Building and Analysis of an Infrastructure Portfolio 117

termine whether there should be different views of the deployment diagrams that re-
late to functions within the organization.

Admittedly, there are other modeling languages that could have been used and other
models that could have been produced that would have allowed some of the same analy-
sis capabilities. However, the effort would have had no synergy with other pockets of
UML use within the organization, in particular in the area of systems development.

8.1 Applicability to Others

This template and process were used in the automotive domain. However, it seems
clear that those with similar goals (i.e. consistent, understandable representation of an
infrastructure portfolio and rational, objective analysis of that infrastructure portfolio)
in different domains could find success. The template can be used universally to all
types of architectures. Its usefulness in documenting legacy systems, in particular, is
significant. For those looking for efficiencies, its support of analysis is perhaps its
biggest benefit. However, it is believed that taking this process and template to an-
other domain would hinge on the use of a S.W.A.T. team similar to this effort.

Finally, The template could be made more prescriptive and used for the develop-
ment of future state diagrams that conform to patterns (e.g. transaction pattern, col-
laborative pattern, and analysis pattern).

References

[1] Dominic Barrow, "An IS Strategy We Can All Understand”, Strategy Magazine, July 2000
[2] Louis C.K. Ma, Janice M. Burn, Robert D. Galliers, Philip Powell, “Successful Manage-

ment of Information Technology: A Strategic Alignment Perspective”, Proceedings of the
31st Hawaii International Conference on System Sciences, IEEE Computer Society, 1998.

[3] Ivar Jacobson, Grady Booch, James Rumbaugh, "The Unified Modeling Language User
Guide”, Addison-Wesley, 1999

 LNCS 3297, pp. 118 – 128, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Model-Driven Development of Enterprise Applications

Vinay Kulkarni and Sreedhar Reddy

Tata Research Development and Design Centre, Pune, India
{vinay.vkulkarni, sreedhar.reddy}@tcs.com

Abstract. Modern business systems need to cater to rapidly evolving business
requirements in an ever-shrinking window of opportunity. Modern business
systems also need to keep pace with rapid advances in technology. For
developing large and complex applications, industrial practice has traditionally
used a combination of non-formal notations and methods. Different notations
are used to specify the properties of different aspects of an application and these
specifications are transformed into their corresponding implementations
through the steps of a development process. The development process relies
heavily on manual verification to ensure the different pieces integrate into a
consistent whole. This is an expensive and error-prone process demanding large
teams with broad-ranging expertise in business domain, architecture and
technology platforms. We present a model-driven development approach that
addresses this problem by providing a set of modeling notations for specifying
different layers of a system namely user interface, application functionality and
database; a set of code generators that transform these models into platform-
specific implementations; an abstraction for organizing application specification
into work-units and an associated tool-assisted development process. Models,
being at a higher level of abstraction, are easier to understand and verify for
properties of interest. Model based code generation incorporating proven design
and architectural patterns results in significant gains in productivity and
uniformly high quality. Models defined using these different notations are
instances of a single meta model. This enables well-formedness constraints to
be specified between different models ensuring their consistency leading to
smooth integration of implementations of these models. The approach has been
used extensively to construct medium and large-scale enterprise applications
resulting in improved productivity, better quality and platform independence.
We also discuss issues that need to be addressed for the approach to gain wider
acceptance in the industry.

1 Introduction

Faced with the problem of developing large and complex applications, industrial
practice uses a combination of non-formal notations and methods. Different notations
are used to specify the properties of different aspects of an application and these
specifications are transformed into their corresponding implementations through the
steps of a development process. The development process relies heavily on manual

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

 Model-Driven Development of Enterprise Applications 119

verification to ensure the different pieces integrate into a consistent whole. This is an
expensive and error-prone process demanding large teams with broad-ranging
expertise in business domain, architecture and technology platforms. In this paper, we
present a model-driven development approach that addresses this problem by
providing a set of modeling notations for specifying different layers of a system
namely user interface, application functionality and database; a set of code generators
that transform these models into platform-specific implementations; an abstraction for
organizing application specification into work-units and an associated tool-assisted
development process.

Industry practice addresses scale and complexity by breaking down the problem
along different axes, for instance, architecture layers and development phases as
shown in Fig. 1. Functional break up results in various components. For a layered
architecture the application is split up so that each piece implements the solution
corresponding to a layer in the architecture. Different phases of the development
process determine the properties of the application that are to be implemented during
a particular phase. For example, a banking system may be broken down into
different functional components like Foreign Exchange, Retail banking etc. A
functional component like Retail banking will have a User Interface layer describing
the way a user interacts with the system, an Application layer implementing the
business functionality and a Database layer making information persistent. A
development process consisting of phases such as Analysis, Design and
Implementation will implement different properties of a layer. The Analysis phase
for the application layer of Retail Banking will define the domain object models, use-
cases etc. The Design phase will define implementation architecture and identify
various design strategies such as object-relation mapping, concurrency management,
auditing strategy etc. The Implementation phase will code application logic, database
queries etc in the chosen platform.

Analysis UI prototype UML diagrams

Design GUI standards Design Strategies
ER diagrams +
Table design

Coding JSP implementation C++/Java code
RDBMS
Implementation

 User
Interface(UI)

Application Database

Fig. 1. Break up of application based on development phases and architecture layers

120 V. Kulkarni and S. Reddy

2 Model Driven Development

The development of an application starts with an abstract specification that is to be
transformed into a concrete implementation on a target architecture [2]. The target
architecture is usually layered with each layer representing one view of the system
e.g. Graphical User Interface (GUI) layer, application logic layer and database layer.

The modeling approach constructs the Application specification using different
abstract views - GUI layer model, App layer model and Db layer model each defining
a set of properties corresponding to the layer it models as shown in Fig. 2.
Corresponding to these specifications are the three meta models - GUI layer meta
model, App layer meta model and Db layer meta model which are views of a single
Unified meta model. Having a single meta model allows us to specify integrity
constraints to be satisfied by the instances of related model elements within and
across different layers. This enables independent transformation of GUI layer model,
App layer model and DB layer model into their corresponding implementations
namely GUI layer code, App layer code and Db layer code. These transformations
can be performed either manually or using code generators. The transformations are
specified at meta model level and hence are applicable for all model instances. If each
individual transformation implements the corresponding specification and its
relationships with other specifications correctly then the resulting implementations
will glue together giving a consistent implementation of the specification as depicted
in Fig. 2. Models can be kept independent of implementation technology and the
application specifications can be targeted to multiple technology platforms through
model-based code generation. Construction of application specification in terms of

View of
Unified meta model

GUI layer meta model App layer meta model Db layer meta model

Decomposes
 into

Application specification

GUI layer model App layer model Db layer model

Instance of

Composed of
Application implementation

GUI layer code App layer code Db layer code

Model-to-code transformation

Fig. 2. Model based development approach

 Model-Driven Development of Enterprise Applications 121

independent models helps divide and conquer. Automated code generation results in
higher productivity and uniformly high quality. Modeling helps in early detection of
errors in application development cycle. Associated with every model are a set of
rules and constraints that define validity of its instances. These rules and constraints
could include rules for type checking and for consistency between specifications of
different layers.

3 Architecture of a Client-Server Application

A typical client-server application is implemented across three architecture layers – user
interface, application functionality and database. Each layer is implemented on a
different platform supporting different primitives. For example, User interface platforms
like Visual Basic provide windows and controls as implementation primitives.
Application logic is implemented in a programming language like C++ or Java with
classes and methods as the primitives while the database layer is implemented using
tables and columns in a relational database system. These three layers are implemented
independently and combined later to get an integrated implementation.

The following sections describe the models for the different layers – Application,
User Interface and Database - of a client server application in greater detail. For
brevity, we have left out many details from each of the models. We also briefly
describe how business logic, architectural choices and design strategies are specified.

3.1 Application Layer

The application layer implements the business functionality in terms of business
logic, business rules and business process. The functionality is modeled using classes,
attributes, methods and associations between classes. A business process models the
application as a set of tasks and defines the order in which these tasks are executed.

Fig. 3. Meta model for Application layer

Class

Method

Association

has

source

DataType

ofType

destination

Attribute

has

Process

Task

has

realizes

precedes

1..* 1..*

1..*

1..*

1..*

1..*

*
 * *

 * * *

*

*

* *

122 V. Kulkarni and S. Reddy

Each task is implemented by a method of a class. This layer can be specified as an
instance of the meta model in Fig. 3. Business logic is coded in a high level language
and translated into a programming language of choice with code fragments
corresponding to the selected design and architectural strategies suitably woven in.

Example: A banking system allows a user to open and operate an account with a
bank. Two classes corresponding to this system are User and Account. An association
between User and Account specifies the account belonging to a user. Account number
is an attribute of Account and name is an attribute of User. The account opening
process involves filling up an account opening form, verification of the form and
approval of the form. A user can operate the account only after it is approved.

3.2 User Interface Layer

A user interacts with an application through its user interface. The user feeds in
information using forms and browses over available information using queries and
reports. Forms, queries and reports are implemented in a target platform using
standard graphical user interface primitives such as windows, controls and buttons. A
window is a unit of interaction between the user and the system and is composed of
controls and buttons. A control accepts or presents data in a specific format. The user
can perform a specific task by clicking on a button.

Example: The user of a banking system needs a query window to inquire about
past transactions and the current balance. She also needs a form window to withdraw
money from her account. These windows will use appropriate controls to represent
account number and date of transaction.

The user interface is best specified in terms of windows, data to be shown in each
window, controls to be used to represent this data, possible navigation between
windows and actions that can be performed. The core of a model for such a
specification is as shown in Fig 4. In the figure a UIClass represents a logical
grouping of the data to be shown in a window. Each UIClass represents a view of the
application data. The association mapsto between UIAttribute and Attribute defines
the view. This enables type-correct representation of value of the Attribute on the

Fig. 4. Model for User interface layer

UIAttribute *

Window

UIClass Button

has has
Class

Method Attribute
has has

mapsto

callshas

opens

1..* 0..1

0..1

*

*
*

*
1..*

*

1..* 1..*

**

0..1 0..1

 Model-Driven Development of Enterprise Applications 123

Window. This also ensures the user can enter only values that are valid for the
attribute of a class. The association calls between Button and Operation enables type-
correct invocation of operation. This also ensures the right set of objects get created
and passed as parameters to the method invocation. The mapsto association enables
copying of the right values from window to the parameter objects.

Additionally for uniform look and feel of the user interface, a particular data type
should be represented by the same control in all the windows. In the banking system the
same format should be used for all dates in all the windows. Similarly the same format
should be used for account number in all the windows. An association between data
type and control, as shown in Fig, 5, will allow specification of such GUI standards.

3.3 Database Layer

The database layer provides persistence for application objects using RDBMS tables,
primary key and query based access to these tables, and an object oriented view of
these accesses to the application layer.

In a relational database, the schema is made up of tables, columns and keys where
a column has a name and a simple data type, and relations between tables are
specified using foreign keys. An object model specifies similar information in terms
of classes, attributes and associations. A row in a table contains data for an instance of
a class. Therefore, the mappings essential to object / relational integration are between
a table and a class, between a column and an attribute, and between an association and
a key as shown in Fig 6.

Example: The persistent information for the banking system will include details
about accounts and users. Two tables User and Account implement this persistent
information. These tables have columns corresponding to user name and account
number. The association between a user and an account is implemented by having
account number as a foreign key in the User table and a primary key in the
Account table.

Fig. 5. A model for specifying GUI standards

represented

Control

CalendarControl

DataType

Date

instanceOf instanceOf

represented

0..10..1

**

124 V. Kulkarni and S. Reddy

Similar to the mapsto association of User Interface model, the mapsto association
between Attribute and Column ensures type correctness. The implements association
allows correct coding of class associations using appropriate Primary and Foreign
keys. This association uniquely identifies the related classes and the tables. These
classes and tables must be related through mapsto association. Such constraints can be
specified in the meta model.

3.4 Business Logic

Business logic specifies the computations to be performed by the application in terms
of methods. The language for specifying business logic frees the application
developer from low-level implementation concerns such as memory management,
pointers, resource management etc and is retargettable to programming languages of
choice such as Java, C++, C# etc.

4 Model Validation

Modeling helps early detection of errors in application development cycle. Associated
with every model are a set of rules and constraints that define its valid instances. They
include rules for type checking and for consistency between models of different
layers. Below are a few of the validation rules for the models presented so far:

– User interface should allow specification of all Tasks in the business process and
the interaction sequence be consistent with the precedes relationship between
the Tasks

– User interface should display data that is consistent with respect to the parameters
being passed to the operations invoked from the Window

Fig. 6. Meta model for database layer

Class

Attribute Association

has source

Table

Key Column

has has

implements

DataType

ofType

destination

mapsto

composed

1..* 1..* 1..*

** *

1..* 1..*

**

0..1 0..1 0..1 0..1 * 1..*

1..*
*

mapsto
**

 Model-Driven Development of Enterprise Applications 125

– Database layer should ensure that implements association is implemented in a
consistent manner. For example, the 1:M association between classes User and
Account should be implemented by making the primary key of User table as
foreign key of Account table.

5 Integration

Figure 7 shows specifications for a banking system. The association has between
class User and class Account is implemented in the database layer by the column
AccNo that is the Primary key in Account table and Foreign key in User table. Click
of Deposit button invokes Deposit method of the corresponding Account.

The above example illustrates the advantages of using different notations to specify
the different layers of an application. Making these specifications into instances of a
single meta model allows us to specify the relationships between the different
specifications. The notations proposed have well defined semantics. These properties
allow specifications to be independently transformed into implementations that are
guaranteed to integrate into a consistent whole.

6 Component-Based Development Process

A typical business application can be divided into a set of interacting functional units
e.g. Foreign Exchange, Business Partner, Retail Banking of a banking system. A
functional unit has high internal cohesion and interacts with other functional units in a
well-defined manner. Typically, this functional decomposition is the basis for arriving
at a development process with separate teams being assigned to separate functional
units. Interactions between functional units manifest in a functional unit requiring
some functionality provided by other functional units. One has to ensure consistency
of such provider – supplier relationships during the development. Ensuring this
consistency is a manual, effort intensive and error prone process.

Database

User
Name
AccNo

Account
AccNo
Balance

User
 String Name;

has

Account
 String AccNo;
 Double Balance;

 Withdraw, Deposit

Application
User Interface

Withdraw Deposit

Name

A/c No

Amount

Fig. 7. Specifications for a banking system

126 V. Kulkarni and S. Reddy

We introduce component as an abstraction to model functional decomposition. A
component has an interface and a dependency. A component interface is specified in
terms of the model elements such as classes, operations, queries etc. A component
explicitly models the components it depends upon. A component can only use the
model elements specified in the interface of the component it depends upon. A
component specification consists of model and code. The dependency relationship is
honoured both in model and code. Explicit modeling of the dependencies enables
automated consistency checking of provider – supplier relationship.

We introduce a component-based development process that supports the transition
of a component through the various development phases namely analysis, design,
construction, testing and deployment in a tool-assisted manner. The process provides
a set of roles each responsible for performing a set of well-defined tasks on a
component as shown in Fig. 8. A component has two associated workspaces namely
model workspace and code workspace. Tools automate some of the tasks.

7 Discussion

The approach presented in this paper has been realized in our model driven
development environment [1]. The approach has been used to develop several large
business applications a representative set is summarized in the table below. The column
Domain model refers to the domain classes and not to the implementation classes.

We discuss our experience in using this approach in these projects. Several projects
had a product-family nature wherein a product-variant needed to be quickly put together
and customized to meet the specific requirements of a customer. Model-driven
development approach has helped in quickly retargeting the application functionality on
multiple technology platforms. This was achieved using a relatively unskilled workforce
as the technology and architecture concerns were largely taken care of by the tools. The

Fig. 8. Meta model for MDD framework

Tool
automatesTaskIn
*

Process

Task

belongsTo

precedes

1..*

*

* *

Role
play
s

1..* *

Interface

Component

hasdepends

*

 * 1
Workspace

Code
Workspace

Model
Workspace

1
*has

User

laysRoleO
n

1..*
*

*

*

automates

performs
* *

 Model-Driven Development of Enterprise Applications 127

tool-assisted component-based development process helped in early detection of errors
that would otherwise have led to late-stage integration problems. Also, all the projects
reported significant improvements in productivity and quality.

Specifications Generated code Project
Domain
model
(no of
classes /
screens)

Size
(kloc)

Kind

Size
(kloc)

Kind
Technology
Platforms

Streight
Through
Processing
system

334 / 0 183 Business
logic,
Business
rules,
Queries

3271 Application
layer,
Database
layer,
Architectur
al glue

IBM S/390, Sun
Solaris, Win
NT, C++, Java,
ICS, MQ Series,
WebSphere,
DB2

Negotiated
dealing
system

303 / 0 46 Business
logic,
Queries

627 Application
layer,
Database
layer,
Architectur
al glue

IBM S/390,
Win NT, C++,
CICS, MQ
Series, COM+,
DB2

Distributor
manageme
nt system

250 / 213 380 Business
logic,
Business
rules,
Queries,
GUI

2670 Application
layer,
Database
layer, GUI
layer,
Architectur
al glue

HP-UX, Java,
JSP, Weblogic,
Oracle, EJB

Insurance
system

105 / 0 357 Business
logic,
Business
rules,
Queries

2700 Application
layer,
Database
layer,
Architectur
al glue

IBM S/390, Sun
Solaris, C++,
Java, CICS,
DB2, CORBA

The projects also reported a few problems with the approach. In model-driven
development approach, part of the specification is in model form and part of it in code
form. However debugging support was available only at the code level leading to
difficulties in debugging. Also, the cycle-time required to effect a small change and
verify its correctness was found to be significantly greater for the model-based
approach then the traditional approach. However, the fact that a model-level change
gets automatically reflected at multiple places in a consistent manner was appreciated.

Though we have illustrated the approach using a three-layer architecture, it lends
itself to any architectural decomposition that has well-defined layers with well-defined
relationships between them. The approach can be extended to support successive levels
of refinement with guarantees of integrity at each level of refinement until a level is
reached that can be automatically transformed into an implementation.

128 V. Kulkarni and S. Reddy

Many architectural and design strategies cut across the layers. In the present
approach, this requires each tool to be aware of these cross cutting aspects. As a
result, customizing for such cross cutting aspects requires consistent modifications to
several tools leading to maintenance problems. We are investigating approaches to
specify these aspects as modular building blocks that can be suitably composed.

8 Conclusions

We have presented the advantages of using different notations for different layers of
application architecture. We have illustrated how having a single meta-model to
describe the models corresponding to these notations and their relationships lends itself
to an elegant implementation method. The implementation method allows independent
transformations of specifications of the different layers and guarantees their integration
into a consistent whole. The ability to develop an application by specifying and
transforming each layer separately addresses the problem of scale. We have discussed
our experience in using this approach in several large business applications.

References

[1] MasterCraft – Component-based Development Environment’ Technical Documents, Tata
Research Development and Design Center.

[2] Sreenivas A, Venkatesh R and Joseph M,. Meta-modelling for Formal Software
Development in Proceedings of Computing: the Australian Theory Symposium (CATS
2001), Gold Coast, Australia, 2001. pp. 1-11.

 LNCS 3297, pp. 129 – 137, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Lessons Learned Applying UML in the Design of
Mission Critical Software

Robert G. Pettit IV and Julie A. Street

The Aerospace Corporation,
15049 Conference Center Drive,
Chantilly, Virginia 20151 (USA)

[rob.pettit, julie.street]@aero.org

Abstract. This paper provides a series of lessons learned with respect to
designing mission-critical software systems using the object-oriented paradigm
and specifically with the application of the Unified Modeling Language (UML).
The experiences captured in this paper are based on the authors’ observations
across multiple software systems and pertain to both the development processes
and to UML modeling.

1 Introduction

High quality development of mission critical software systems is difficult. Many
critical systems are developed, fielded, and used that do not satisfy their criticality
requirements, sometimes with spectacular failures. Part of the difficulty of critical
systems development is that correctness is often in conflict with (initial) cost.

This paper documents findings from a study to investigate best practices and
lessons learned associated with mission critical software systems developed using
object-oriented methods and the Unified Modeling Language (UML) [1-2]. As the
industry standard for object-oriented modeling, UML is employed by nearly all
modern object-oriented software projects. This paper specifically focuses on UML
version 1.4 rather than version 2.0 simply because at this time, there is not a sufficient
practitioner base in UML 2.0 to adequately capture lessons learned.

The organization of this paper is as follows:

• Section 2 establishes the context surrounding the lessons learned in this paper.
• Section 3 captures the lessons learned over the course of these development

efforts in terms of both process and the application of UML models.
• Section 4 concludes the paper and discusses what can be done to further

improve the state of the practice.

2 Current Status

The lessons learned documented in this paper are part of an ongoing effort to document
experiences with applying object-oriented software design practices to real-time,
concurrent, and embedded systems. These lessons learned are derived from several
different software development efforts observed by the authors during the period of

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

130 R.G. Pettit IV and J.A. Street

2000-2004. The observed systems for this study were predominantly embedded
software systems, often with real-time, reactive, and concurrent characteristics. Thus,
the experiences captured in this paper tend to focus on those aspects.

While the anonymity of the observed projects must be maintained, we can
generally categorize these projects in the domain of aerospace-related ground
systems. The size and complexity of these projects was ranged from very small (less
than 100 objects and 10 team members) to very large (over 1000 objects and over 100
team members). Regardless of size, each project represented some mission critical
functionality of the ground system.

In terms of software design artifacts, all of the observed projects used UML 1.4 as
the standard modeling language without applying any specialized profiles.
Additionally, none of the observed projects used any special CASE tool for capturing
real-time features or modeling embedded hardware components. Thus, as opposed to
many existing works that focus on the shortcomings of UML and supporting CASE
tools, the lessons learned in this paper only focus on how the basic features of UML
can be better utilized in constructing mission-critical software designs.

3 Lessons Learned

This section documents the lessons learned in designing mission critical software
systems with UML. These experiences are based on the authors’ insight into projects
dealing with large-scale software systems often in embedded environments and with
real-time requirements and a high degree of concurrent processing. These lessons
learned are captured in terms of two fundamental areas. Section 3.1 addresses
experiences applied to the software development process and its effect on software
design. Section 3.2 then presents lessons learned with the application of UML for
modeling software designs within the targeted class of systems.

3.1 Process Lessons

In constructing object oriented software designs for critical systems, the software
development process plays at least an equal role to that of the actual modeling
activities. Decisions that are made from the very beginning of the software
development effort can have a dramatic impact on the ultimate success or failure of
that effort. The issues captured below represent the most common and important
lessons learned with respect to the software development process as observed by the
authors. The reader should note that the lessons in this section are not new
revelations. Quite to the contrary, most of these points have been touted for many
years. Surprisingly, though, most of these lessons learned are still not heeded in
current software development efforts and are included to reiterate their importance.

3.1.1 Well-Defined Process
Simply employing a modeling language such as UML by itself is not sufficient. To
successfully design a robust, maintainable, and flexible software system that meets
the requirements and expectations of the customer, a well-defined process must be
employed. The distinction between a well-defined development process and a general
process framework also needs to be understood. Many projects opt for the latter,

 Lessons Learned Applying UML in the Design of Mission Critical Software 131

selecting such frameworks as the spiral development process [3] or the unified
process [4]. While these frameworks are a good starting point, it is crucial for each
project to capture the specific process flows, activities, and milestones that will be
employed for their projects. This is nominally accomplished through the creation of a
software development plan that documents not only the framework being applied, but
also the specific process steps applied for the project.

3.1.2 Development Effort
Related to the process lessons learned, project managers must realize that simply
adopting object-oriented practices does not reduce the development effort. In fact, for
the first object-oriented effort, the development effort may actually increase due to the
learning curve associated with adopting a new technology. The most positive
experiences observed in this area are found with projects that have not necessarily
changed their overall development effort, but rather have shifted more effort to up-
front requirements definition and problem analysis. When these up-front activities
were performed well, detailed design and implementation efforts were observed to be
reduced at least marginally. Most notably, however, projects with a solid analysis
model and software architecture were observed to reduce their maintenance efforts
and reduce future efforts when adding features to their systems.

3.1.3 Improved Stakeholder Insight
One of the most immediate benefits observed from adopting a use-case driven UML
design is the improved visibility to stakeholders. Through applying this highly visual
modeling, software engineers are able to more readily communicate with systems
engineers and even to the end customer. This results in an increased confidence with
the system being developed and promotes a greater understanding of requirements
early in the lifecycle. Furthermore, by using a standard language such as UML,
engineers do not have to repeat the learning curve to understand the modeling
constructs employed by each project.

3.1.4 Requirements Traceability
The lack of thorough requirements traceability is one of the most common and critical
problem areas observed in current object-oriented development efforts. Often,
requirements are traced to the use cases for a particular system or subsystem, but are
not propagated to the individual design elements. When requirements are not
completely traced to the specific design elements (e.g. classes, messages, statecharts,
etc.), there is a tendency to lose focus as to the specific responsibility of the classes
being designed. This can lead to costly changes late in the lifecycle and can also lead
to incorrect or missing functionality in the delivered system. Additionally, gaps in
requirements traceability complicate the testing and verification process, especially at
the unit or white-box level.

3.1.5 Prototype Development
Many modern development efforts employ prototyping to achieve a better
understanding for portions of the system under development. This is especially
prevalent in the development of embedded software systems where prototypes are
often used to gain increased understanding and confidence with respect to the
embedded hardware with which the software must interact. While prototyping can

132 R.G. Pettit IV and J.A. Street

provide valuable insight to the final system, extreme care should be exercised when
applying the results of the prototype. Specifically, care should be taken to
appropriately update the software design based on the results of the prototype. On
projects where OO CASE tools were used, it has been noted that prototype code
developed outside the tool actually hindered the development team’s ability to use the
tool properly [7]. It is the authors’ observation that disconnects between design and
implementation are one of the leading contributors to future maintenance and upgrade
efforts within a software system.

3.2 Modeling Lessons

While the previous section focused on issues surrounding the software development
process, this section focuses on the technical aspects of constructing object-oriented
software designs for critical systems. Specifically, this section captures lessons
learned with respect to modeling embedded, real-time, and concurrent software
system designs using the UML. As noted previously, these lessons pertain to the basic
features of UML 1.4 and do not depend on special extensions or CASE support.

3.2.1 Modeling Interfaces
Capturing interfaces to external devices is a critical element in the design of software
systems dealing with embedded hardware. One simple, yet often overlooked approach
is to develop a context diagram that clearly delineates the external devices with

Temperature Control System

Control Heater

Control AC

Themostat

Display Settings

Fig. 1. Use Case Diagram

 Lessons Learned Applying UML in the Design of Mission Critical Software 133

Fig. 2. Context Diagram (NB: Some CASE tools force this to be drawn with the system as a
package rather than a composite class as shown.)

respect to the software system. For each of these embedded devices, there should be a
corresponding interface class whose sole responsibility is to encapsulate the specific
interface characteristics of the device. By modeling each interface with its own class,
the resulting software design improves flexibility and reduces dependencies on
specific hardware interfaces. This allows for hardware to be replaced or upgraded
while minimizing the impact to the software design.

In practice, many projects only identify system context through the use case model.
This is often insufficient for embedded systems since not all embedded devices will be
represented by an actor. Another common practice is to encapsulate hardware interface
knowledge within a controller class. However, this practice reduces the flexibility of
the software design by coupling the control logic with the specific interface details.
Following the guidelines in the previous paragraph reduces this coupling and increases
the flexibility and future maintainability of the software design.

To illustrate this point, consider a simple temperature control system where a
thermostat is used to control a heater and an air conditioner (AC). The thermostat is
responsible for maintaining the desired room temperature and for displaying the
current settings. The use case diagram for this system is shown in Figure 1. While
this use case diagram does capture the black box functionality of the system and
identify the thermostat as an actor, it does not readily identify other embedded device
controllers that the software must handle. If this diagram were augmented with a
context diagram (drawn on a UML class diagram) as in Figure 2, we could then easily
capture the fact that the system must interface with a temperature sensor, along with
controllers for the heater and air conditioner. Note that this approach does not prevent
software engineers from modeling detailed hardware information. Rather, it forces
this detailed hardware information to be isolated in specific interface classes. Thus,
performance and flexibility concerns can both be addressed.

Temperature Control System

Temperature Sensor Interface
<<input device interface>>

Temperature Sensor
<<external input device>>

AC
<<external output device>>

AC Interface
<<Output Device Interface>>

Heater
<<external output device>>

Heater Interface
<<Output Device Interface>>

Thermostat
Thermostat Interface

<<IO Device Interface>>

<<System>>

Temperature Control System

Temperature Sensor Interface
<<input device interface>>

Temperature Sensor
<<external input device>>

AC
<<external output device>>

AC Interface
<<Output Device Interface>>

Heater
<<external output device>>

Heater Interface
<<Output Device Interface>>

Thermostat
Thermostat Interface

<<IO Device Interface>>

<<System>>

134 R.G. Pettit IV and J.A. Street

3.2.2 Balancing Static and Dynamic Models
A common trend in object-oriented software design is to focus greater effort towards
creating static models (class diagrams) than creating dynamic models (interaction
diagrams). This practice results in an unbalanced design that, while providing a good
data model, may not completely capture the behavioral aspects of events and
messages that are prevalent in embedded software systems. Without adequately
capturing this dynamic behavior, it is difficult to assess whether the final design will
completely satisfy the functional or performance requirements of a system. Thus,
when determining the development process to be used, care must be taken to allow
sufficient attention to both dynamic and static aspects of the design as well as the
ability to easily iterate between the models.

3.2.3 Choice of Interaction Diagrams
When constructing dynamic models, many projects choose to exclusively use
sequence diagrams for capturing the message and event sequences of individual use
case scenarios. While sequence diagrams provide a powerful mechanism to illustrate
the sequence of events through a single scenario, they do not easily lend themselves to
capturing the overall context of object interactions across multiple scenarios. For this
view, the collaboration diagram actually provides greater clarity. By utilizing both
forms of UML interaction diagrams, engineers can achieve a more complete
description of both the sequence of events within a scenario and of the behavior
across a set of scenarios.

Fig. 3. Sequence Diagram

 Lessons Learned Applying UML in the Design of Mission Critical Software 135

Fig. 4. Collaboration Diagram

As an example, again consider the temperature control system. In a typical design
effort, each use case scenario would be realized in a sequence diagram such as that
found in Figure 3 for the “control heat” scenario. While this sequence diagram
certainly illustrates the sequence of events that occur for this scenario, it does not
illustrate how the objects in this scenario might also be used in other scenarios.
Instead of looking at individual sequence diagrams to derive this information, a
collaboration diagram, as shown in Figure 4, can be used to illustrate the context of
interactions across multiple scenarios or even for the entire software architecture
(depending on size). As can be seen in Figure 4, this collaboration diagram shows the
interactions that occurred in the previous sequence diagram and also adds information
showing how the thermostat interface object interacts with the AC controller. It also
shows how the temperature sensor is used to update the temperature object that is then
used by both the AC and Heat controllers. Applying both of these dynamic views
enhances the resulting design and further ensures completeness and consistency with
respect to inter-object behavior.

3.2.4 Identification of Concurrency
As previously mentioned, the systems observed in this study were often composed of
several concurrent tasks. However, many of these systems did not make use of the
UML features to identify and handle concurrent objects. Rather than using the UML
active object designation and the associated message communication constructs (e.g.
asynchronous or synchronous) many projects chose to specify concurrent interactions
and message behavior in separate (text) documents. One commonly cited reason for
not relying on the UML active object construct is that active objects are somewhat
limited in their ability to model detailed information like task management, priority,
and protocols. However, the problem with not using the active object designation in

 : Thermostat
Interface

 : Heat
Control

 : Temperature

 : Heater
Interface

 : Temperature Sensor
Interface

 : AC
Control

 : AC
Interface

startHeat
stopHeat

setDesiredTemp

startAC

stopAC

getDesiredTemp
getCurrentTemp

heaterCommand

getDesiredTemp
getCurrentTemp

setCurrentTemp

acCommand

136 R.G. Pettit IV and J.A. Street

design models is that this often leads to a disconnect between the as-built software
and the UML design artifacts. A better solution would be to use the UML designation
for active objects or at least use a stereotype to designate concurrently executing
objects. Supplemental information can then be captured in outside documentation as
necessary, but with this approach, the design accurately reflects the concurrent
behavior of the objects.

Note that some projects have chosen to create custom stereotypes or UML
extensions to handle these specifics [7-9], but these are non-standard and potentially
not supported by CASE tools. UML 2.0 has additional profiles to address some of
these limitations.

3.2.5 Statecharts
In the authors’ experience, statecharts are one of the most underused UML diagrams
in designing mission critical software system. The hierarchical statecharts employed
by the UML offer significant expressive power for capturing the reactive, state-
dependent behavior often found in these systems. Hierarchal states charts can be used
to describe complex behavior in one class as opposed to having to decompose the
static structure into several smaller classes, which can be confusing [7]. Statecharts
should be constructed for each class that encapsulates state dependent behavior. The
events and actions within the statechart should then be reconciled with the input and
output messages for the class as captured in collaboration or sequence diagrams.
From the projects we observed, those that judiciously employed statechart modeling
experienced less ambiguity with the behavioral aspects of their designs and
experienced a greater satisfaction of their software requirements.

3.2.6 Modeling Performance Requirements
Most mission critical software systems must conform to some set of performance
requirements in addition to the functional requirements. However, performance
requirements are often not modeled in the UML diagrams. For example, in the
scenario captured by the sequence diagram in Fig. 3, it would be beneficial to show
that there should be no more than a 1° Celsius deviation between current and desired
temperatures. It would also be beneficial to show that there should be no more than a
100ms delay between detecting a low temperature event and engaging the heating
unit. Ideally, these performance requirements would be captured using UML
constraints. However, many case tools do not currently allow constraints to be added
to interaction diagrams. Thus, designers often capture these requirements in other
documents (if at all). At a minimum, though, these requirements should be annotated
with a note on the interaction diagrams.

4 Conclusions

Object-oriented development practices offer significant benefits for designing modern
software systems. In particular, UML offers many benefits to engineers with its
multiple views and its status as the industry standard object-oriented modeling
language. Unfortunately, many projects do not take full advantage of the features

 Lessons Learned Applying UML in the Design of Mission Critical Software 137

offered by UML. To address this problem, this paper documents some of the most
common lessons learned in applying UML during the design of mission critical
software systems, particularly those addressing the areas of embedded, real-time, and
concurrent systems. These lessons learned are the result of ongoing efforts to
document experiences gained applying object-oriented technologies within this class
of systems. In capturing these lessons, it has been the authors’ experience that process
issues are as prevalent as modeling issues. By documenting and applying lessons
learned through practical experiences, it is hoped that the quality of software designs
will continue to improve.

References

1. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Reference
Manual. Reading, MA: Addison-Wesley, 1999

2. OMG. Unified Modeling Language Specification, Version 1.4, September 2001.
3. B. Boehm, “A Spiral Model of Software Development and Enhancement”, IEEE Computer

21(5), May 1998.
4. I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development Process.

Reading, MA: Addison-Wesley, 1999.
5. R. Pettit, “Establishing Inspection Criteria for UML Models,” UML 2002 Tutorial

Proceedings, Dresden, Germany, October 2002.
6. H. Gomaa, Designing Concurrent, Distributed, and Real-Time Applications with UML,

Reading, MA: Addison-Wesley, 2000.
7. L.A.J Dohmen and L.J Somers. “Experiences and Lessons Learned Using UML-RT to

Develop Embedded Printer Software.” PROFES 2002 Proceedings, Rovaniemi, Finland,
December 2002.

8. Moore, Alan. “Extending UML to Enable the Definition and Design of Real-Time
Embedded Systems.” STSC CrossTalk, June 2001.

9. Axelsson, Jakob. “Unified Modeling of Real-Time Control Systems and their Physical
Environments Using UML”, IEEE Computer, 2001.

 LNCS 3297, pp. 138 – 149, 2005.
© Springer-Verlag Berlin Heidelberg 2005

System-on-Chip Verification Process Using UML

Qiang Zhu1, Tsuneo Nakata1, Masataka Mine2, Kenichiro Kuroki3,
Yoichi Endo3, and Takashi Hasegawa3

1 Fujitsu Laboratories LTD., 1-1, Kamikodanaka 4-chome,
Nakahara-ku, Kawasaki 211-8588, Japan

{shu.kyou, nakata.tsuneo}@jp.fujitsu.com
2 Fujitsu Cadtech Limited, 2-3-9, Shin-Yokohama, KouHouKu-Ku,

Yokohama, 222-0033, Japan
mine@fjct.fujitsu.com

3 Fujitsu Limited, 1-1, Kamikodanaka 4-chome, Nakahara-ku,
Kawasaki 211-8588, Japan

{kkuroki, y.endo, thasegaw}@jp.fujitsu.com

Abstract. In this paper, we propose a verification methodology for System-On-
Chip (SoC) design using Unified Modeling Language (UML). We introduce
UML as a formal model to analyze and formalize the specification. The
specification and implementation validation can be performed systematically by
introducing UML. We applied our method to a Mobile Media Processors SoC.
We improved the quality of the specification written in informal natural
language through UML modeling techniques. The test scenarios and coverage
metrics for implementation are derived from the UML model systematically.
The result shows that our proposal is effective for eliminating errors from both
specification and implementation.

1 Introduction

With the increasing complexity of hardware-software heterogeneous systems such as
SoC, we have to face two crises in SoC design. The design crisis is caused by design
productivity gap [1] due to chip complexity growing 58% but design productivity
currently growing 21% annually. This means the current SoC design methodology
cannot adapt to the growth of complexity of SoC.

With the increasing functionality and gate counts, we have to face another crisis for
SoC design, named verification crisis. According to our experiences, more than 70%
period of the SoC development lifecycle is used to verify the correctness of the
design. Nevertheless, despite a huge effort of verification, most of chips must respin
once or twice after they released. Unfortunately, each chip respin usually costs
hundreds of thousands dollars. This indicates we need a new verification process for
SoC development. Note that we use verification as the same meaning of test in
software area in this paper because the notion of test always means diagnosis of
circuits in the hardware community.

In the software community, the use case driven approach is proposed for
requirements analysis. It is not only useful for clarifying the functionality of the

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

 System-on-Chip Verification Process Using UML 139

system but is also is useful for system validation [2]. Object-Oriented Analysis and
Design (OOAD) techniques [3] [4] can help designers to seamlessly integrate the
result of analysis into the implementation. UML [5] is employed as a modeling
language to characterize the results of analysis and design obviously, clearly and
comprehensively. In SoC design, Hardware Description Language (HDL) such as
VHDL [6], Verilog [7] are programming languages for implementing hardware at the
Register Transfer Level (RTL) [8]. Recently, C/C++ based design flow was proposed
using SystemC [9] or SpecC [10]. SystemC is a C++ library proposed to make an
executable model from the algorithmic level to the RTL level by introducing timing,
structure, and parallel description. SpecC is another modeling language for realizing
an executable specification at the early design stage for SoC. SCE [11] is a
development environment for SoC using SpecC. An object-oriented design process
for system-on-chip using UML and SystemC is proposed in [12] through extending
UML notation to represent parallelism, structure and timing. Such techniques tend to
concentrate on the design process and make an effort to depart from RTL to the
behavior levels so that designers can develop SoC more efficiently. However, these
techniques have not provided good solutions for resolving the verification crisis.

For avoiding both design and verification crises, we propose a novel design and
verification process from high-level specifications to RTL implementations using the
Unified Modeling Language (UML), Component Wrapper Language (CWL) [13] and
SystemC shown in Fig. 1. The key strategies of our approach are:

Refining the design from requirements analysis to the RTL implementation
incrementally.
Integrating validation and verification processes not only for the RTL
implementation, as well as for the specification based on formalized UML and
CWL models.

The design crisis can be mitigated by introducing incremental refinement of design
through system level functionality and performance analysis techniques [12] [14]. The
verification crisis can be avoided through eliminating errors from the design
specification at an early stage based on a formalized specification model.

Fig. 1. SoC Design & Verification Process

140 Q. Zhu et al.

In this paper, we focused on how to integrate UML and CWL into the verification
process for a real SoC development in Fujitsu. We describe our verification strategies
in Section 2. In Section 3, we introduce how to apply our process to Mobile Media
Processors (MMPs) [15]. We show our application results in section 4 to discuss the
effect of our approach. Finally, we give conclusions and future work of our activity.

2 Verification Strategy for SoC

An SoC contains functional hardware components or reusable Intellectual Properties
(IPs), embedded CPUs, embedded memories, external interface controllers, software,
mixed-signal blocks, and common buses. Its size should be more than 500K gates.
Sometimes, a real-time OS is introduced in the CPU to develop more complicated
software program. The internal RAM is usually used for storing large intermediate
computation results for reducing the communication to outside of the system.

The verification strategy focuses on the structure of SoC. We emphasize three
levels of verification:

(1) Components functionality
(2) Components communication
(3) Chip-level integration

Furthermore, at each level we use UML and CWL to formalize the specification of
components, communication, and chip-level specification. The formal specification
not only helps us remove the errors from the specification but also is useful to derive
test scenarios, verification metrics systematically.

2.1 Modeling Functionality Using UML

For validating functionality of each component in an SoC, we focus on the specification
as well as the implementation. In the specification, we confirm who are the users of the
target component, what are the functions it performs, and how users use such functions.
We employ UML to model such information captured from specification and validate
that there are no incompleteness, inconsistency errors in the specification. Figure 2
shows the modeling flow that translates the specification into an UML model.

Use Case Analysis

Static Analysis

Dynamic Analsysis

Use Case Diagram
Use Case Description

Class Diagram

Sequence Diagram
State Chart Diagram

Fig. 2. UML modeling flow from specification

 System-on-Chip Verification Process Using UML 141

The UML modeling flow includes three steps:

Use Case Analysis captures users, functions, and their relationships using use case
diagrams. Fig. 3 depicts an example of a use case diagram. Actors in use case
diagrams describe the external components who want to utilize functions of the target
component. Use cases express the functionality of target component. The stereotypes
<<include>>, <<extend>> represent the relationship between use cases [16]. The
boundary of the target component can also be modeled in use case diagrams using the
system boundary notation. Use case diagrams can help us clarify who want to use the
target component, what functions the target component provides and what are the
relationship among actors-actors, use cases-use cases, and actors-use cases. Certainly,
we can find the same information from traditional specification documents written in
informal natural language. Unfortunately, those are usually dispersed in traditional
specifications and not well organized. In some cases, the relationships among them
are not clear due to ambiguities in the nature language specification. Use case
diagrams can make them clear, compact and unambiguous.

2D/ 3D Gr aphi cs

Host CPU

Dr aw i mage

VRAM

I ni t i al i z e
Dr awi ng

Ut i l i z e
Render r i ng

LCDC

<<ext end>><<i ncl ude>>

Fig. 3. An example of use case diagram

After clarifying use cases, actors and their relationships, we must know how actors
use such functions. The usages of use case are represented by clarifying event flows
among the target component and its associated actors. An event represents an input
trigger from an actor to the target component or an output signal from the target
component to an actor. A path of event flow expresses an interaction among the target
component and actors while performing use case. The event flow for a use case is
written in natural language, namely use case description. Table 1 shows an example of
use case description.

In use case descriptions, we must clarify the following items for each use case: pre-
condition, post-condition, basic path, alternative path, and exceptional path [17]
respectively.

The use case description can help us clarify interactions among the target component
and actors. Furthermore, pre-condition gives us restrictions before performing the use
case, and post-condition provides the expected conditions after performing the use case.
Actually, it is not feasible to find such information from traditional specification
documents because designers always only consider the implementation of functionality
without concerning themselves about third-party use. However, such design practice can

142 Q. Zhu et al.

cause errors due to incompleteness of the specification. In some cases, designers can
carry over such errors into the implementation, which then requires enormous effort to
remove in later stages of development.

Table 1. An example of use case descriptions

Use Case Draw Image

Pre-condition • Frame buffer must be cleared
• Reset must switch off

Post-condition • Image data output to VRAM

Basic path 1. This use case starts while Host CPU has already prepared the
display list for drawing image.

2. Host CPU writes display list system’s FIFO.
3. 2D/3D Graphics reads display list from FIFO and starts

drawing image according to commands of display list.
4. 2D/3D Graphics outputs image data to VRAM.

Alternative path At step 2 of the basic path, Host CPU writes display list that
includes SYNC command to system’s FIFO.

At step 3 of the basic path, 2D/3D Graphics stops after reading
SYNC command, and then 2D/3D graphics restarts drawing
image after receiving a blank pulse from LCDC.

Exceptional path At step 2 of the basic path, Host CPU writes display list
includes undefined commands.

At step 3 of basic path, 2D/3D graphics raises an error interrupt
to Host CPU and clears system’s FIFO.

Static Analysis concentrates on the structure and data types that appear in the
specification. We use UML class diagrams to describe them and their relationships.
We stipulate there are two types of classes in SoC specifications. One represents
components, namely the control class. Another is the data type class that appears in
input/output events. For example, we can find such classes from the use case
description mentioned in Table 1. “Host CPU”, “VRAM”, “FIFO”, “2D/3D graphics”
should be objects of control classes and “display list”, “image”, “sync command”
should be objects of data type classes. Fig. 4 shows an example of class diagrams.
The class notated with the <<SoCModule>> stereotype indicates a control class and
the <<SoCDataType>> stereotype represents a data type class.

Dynamic Analysis captures a system-level behavior by considering the input/output
events in event flows for each use case. We use UML sequence diagrams and state
chart diagrams to describe behaviors of the target component.

We use sequence diagrams to formalize event flows in use case descriptions
written in natural language. The events in use case descriptions can be modeled with
operations of a class. Fig. 5 shows an example of sequence diagrams for the
alternative path described in Table 1.

 System-on-Chip Verification Process Using UML 143

<<SoCModule>>
Host CPU

<<SoCModule>>
FIFO

<<SoCModule>>
2D/3D Graphics

<<SoCModule>>
VRAM

<<SoCDataType>>
Image

<<SoCDataType>>
Display List

<<SoCDataType>>
Command

1 0..*

Fig. 4. An example of class diagrams

<<SoCModul e>>
: 2D/ 3D gr aphi cs

: Host CPU : VRAM

DL: Di spl ay_Li st

: LCDC

1. 0 cr eat e_dl

1. 1
wr i t e_f i f o(DL)

1. 2 [DL = SYNC] :
r ead_f i f o(DL)

1. 3 wai t _sync

1. 4 bl ank

1. 5 wr i t e_vr am(i mage)

Fig. 5. An example of sequence diagrams

Initialization

Drawing

Waiting DL

Processing DLStop

reset [status = OFF]

draw end

write_fifo

read_fifo [fifo.size = 0] write_fifo
reset [status = ON] /init()

Fig. 6. An example of state chart diagrams

144 Q. Zhu et al.

We employ state chart diagrams to clarify the state transitions at the system level
for all event flows. From the analysis of all sequence diagrams, we can capture state
transition from input/output events, and describe them with a state chart diagram. Fig.
6 shows an example of state chart diagrams. State chart diagrams can help us find the
paths of event flow that are not listed in use case descriptions. This lets us validate
whether the specification or UML model is complete or not.

2.2 Modeling Communication Using CWL

The analysis and modeling method mentioned above can be found in object-orient
analysis and modeling techniques. We also adopt them into SoC developments.
However, in SoC designs, communication among components is much different from
software. We need a specification description for modeling the communication between
the input and output ports of a component at the signal level. Unfortunately, we have not
found a proper notation to model such properties efficiently in UML. Component
Wrapper Language (CWL) [13] has been proposed to model the interface protocol of IP
cores. We introduce CWL to model the communication protocol among components.
The communication protocols are divided into the atomic transactions that are used
from operations (events) modeled in sequence diagrams in the UML model as a method
call. The CWL model translates such method call into the signal-level communications.

2.3 Validating Functionality of Components

We adopt two strategies for validating the functionality of components in our
verification process:

♦ Validating the UML model to find errors in the specification due to
incompleteness and inconsistency.

♦ Verifying the implementation using test scenarios and functional coverage
metrics that are derived from the UML model.

In this paper, we focus on how to utilize the UML model to validate the
implementation systematically. Fig. 7 shows the basic idea of our approach.

>0x10000

0x000002-0x00ffff

Random TimingInterrupt

0Length Error

………Decoding

Exceptional

0x000000Special DataAlternative

0x000001Normal DataBasic

Encoding

>0x10000

0x000002-0x00ffff

Random TimingInterrupt

0Length Error

………Decoding

Exceptional

0x000000Special DataAlternative

0x000001Normal DataBasic

Encoding

Use Case Level Event Flow Level Operation Level

Use case diagramUse case diagram

Even flowEven flow

Sequence diagramSequence diagram OperationOperation

Class diagramClass diagram

T
est Scenarios

Fig. 7. Deriving test scenarios from UML model

 System-on-Chip Verification Process Using UML 145

First, we derive test scenarios from use case diagrams. The test scenarios at
use case level must cover all use cases that appear in use case diagrams. Second,
we focus on event flows and sequence diagrams to capture all paths of event flow
for each use case. We list the test scenarios at the event flow level that include the
basic, alternative, and exceptional paths. Finally, we extract parameters at the
operation level from classes and their operations to determine the parameter
values for a test scenario at the event flow level. Usually, the number of
parameter values is so large that it results in a combinatorial explosion. In such
cases, we use boundary value analysis [18] used in software testing that only
choose maximum, minimum, typical values as well as boundary values from
restrictions of data type classes. The functional coverage is a metric to measure
how many test scenarios have been performed out of all the test scenarios derived
from the UML model.

2.4 Validating Communication of Components

For validating the correctness of communications among components, we generate an
HDL protocol checker from the CWL description using CWL2HDL tool [19] shown
in Fig. 8. We insert the protocol checker among components to check whether there
are any protocol violations of communications during functional validation of the
implementation.

Fig. 8. Protocol checker for communication

We use transaction coverage, which is the state transition coverage of protocol
checker to measure the coverage for communication protocols of the test scenarios.

After validation of components and their communications, we integrate them into
a chip level verification. In chip integration testing, we also derive test scenarios
and functional coverage from the UML model captured from a chip level
specification to confirm the correctness of the specification as well as the
implementation.

3 Applying for a Media Processing SoC

We applied our method to a Mobile Media Processors in Fujitsu [10]. In this section,
we describe the details of our application.

146 Q. Zhu et al.

3.1 Overview of the MMPs

Fig. 9 shows the architecture of MMPs. It includes MPEG-4 and JPEG hardware
codec components, a two-dimensional tree-dimensional (2D/3D) graphics accelerator,
and a camera interface (up to 2M pixels) with two YUV sensors, image scaling and
rotation components, LDC interface and so on. To eliminate the need for external
memory, MMPs incorporates 64Mbits of SDRMA as a system-in-package through a
local memory controller. All functional components are connected with a local bus.

Peripheral Bus

Bus

SDRAM
Controller

Bus Bridge

JTAG I/F

Timer

8KB

M
em

or
y

C
on

tr
ol

le
r

R
A

M
 1

6K
B

D
M

A
C

 [1
ch

]

IRC C-unitI2C

MPEG4
Codec

GPIO

2D/3D
Graphics

YUV
Sensor

Processor
Core

H
os

t-
C

P
U

 I
/F

Controller /
Bus-Wrapper Bus Bridge

Local-Bus

RotationJPEG
CODEC

Camera
Interface

Scaler LCD I/F
Controller

YUV
Sensor

ITU656

Fig. 9. The architecture of MMPs

3.2 Verification Process for MMPs

We integrated our process into a traditional design process for reinforcement of the
verification process using UML and CWL. We organized a verification team that was
separate from the design team. Designers developed the chip based on traditional
design style: determining the chip level specifications, making the component
specifications and their communication specifications, then implementing them into
the HDL source code. Debugging the implementation and white box verification for
each component was performed as usual. Note that all specifications created by
designers are written in natural language. On the other hand, the verification team
analyzed specification and translated them into UML and CWL respectively. While
the verification team found errors due to incompleteness, inconsistency in the UML &
CWL model, the verification team confirmed such errors with the designers to
eliminate them from the specification or the UML & CWL model. After validation of
the specification, the verification team derived test scenarios from the UML model to
validate the implementation of components, communications, and chip integration
with the black box verification.

3.3 Application Results

We took 6 months and 12 verification engineers to validate the specification and
perform black box verification for each component, communication, and chip
integration. We made code coverage, functional coverage, transaction coverage reach

 System-on-Chip Verification Process Using UML 147

100% for each component, their communication and chip integration. The chip
released in about 1.5 months after finishing the verification and implementation. So
far, we have not found any serious errors after the first chip released.

Specification Analysis & Modeling

Component White Box Verification

Component & Communication Black Box Verification

Chip Level Integration

1 2 3 4 5 6

Months

N
um

ber of B
ugs

Fig. 10. The results for errors and their discovery time

Fig. 10 shows the progress for errors and their discovery time. The verification
team found 132 errors due to incompleteness and inconsistency of specification in
analysis and modeling phase. The design team found 40 bugs from the source code
through white box verification. Then the verification team found 51 errors from the
implementation with black box verification using test scenarios and test benches
derived from the UML model and CWL protocol checker. In chip integration test, we
only found three bugs from the implementation. These results indicate that most
errors can be removed at an early stage of design, especially in analysis and modeling
phase by our proposed verification process.

Table 2. Specification errors for components

Name #Pages #Error1 #Errors2 #EPP
191 6 21 1.41
21 6 4 4.76

51 0 4 0.78

28 2 3 1.79

Image

Processing

Component
s

17 2 0 1.18

74 0 16 2.16

80 4 2 0.75

21 4 17 10.00

44 1 11 2.73

13 0 6 4.62

Control

Component
s

22 0 9 4.09

148 Q. Zhu et al.

Table 2 shows the number of errors for each component that we found in the
specification during the analysis and modeling phase. The components named “Image
Processing Components” indicate image-processing components include 2D/3D
graphics, MPEG, JPEG codec etc. The components named “Control Components” are
controllers such as “LCD Interface”, “Bridge”, “Host CPU Interface”, and so on. The
“#Pages” shows the number of pages for each component specification written in
natural language. The “#Errors1” shows the number of errors in the specification due
to incompleteness. The “#Errors2” represents the number of errors due to
inconsistency. “#EPP” shows the number of errors occurred for per 10 pages of the
specification written in natural language. The results of Table 2 shows our process
can effectively help us improve qualify of the specification before validation of the
implementation.

Table 3 shows the results of bugs we found from implementation using test
scenarios from the UML model. The “Name” shows the name of components as same
as Table 2. The “#Scenarios” depicts the number of test scenarios for each
component. The “#Bugs” shows the number of errors we found from the
implementation. The number of scenarios in some control components is very high,
because we used the random test pattern generation to assure that the combination of
parameters were sufficient to test the all paths in these components.

Table 3. Implementation bugs for components

Name #Scenarios #Bugs
3,141 7
629 3

172 2

1,069 2

Image

Processing

Components

372 3

995 9

3,419 6

168,556 3

234 0

> 50M 10

Control

Components

57 5

4 Conclusions and Future Work

In this paper, we proposed a verification process that integrates UML and CWL to
validate the functionality and communication protocols for SoC. We applied our
method to a Mobile Media Processor developed in Fujitsu. We found 132 errors from
the specification written in natural language by designers and discovered 51 bugs
from the implementation with black box verification using test scenarios and coverage
metrics that are derived from the UML model. The application results show our
method is not only helpful to improve the quality of specification, but also useful to
eliminate bugs from the implementation efficiently.

 System-on-Chip Verification Process Using UML 149

In future work, we will develop a tool, which could help us validate the
completeness and consistency of the UML model automatically. Meanwhile, we will
also improve our process through applying it to production SoC developments.

References

 [1] Semiconductor Industry Association, International Technology Roadmap for
Semiconductors: 1999 edition. Austin, Texas: International SEMATECH, 1999

 [2] I. Jacobson, Object-Oriented Software Engineering A Use Case Driven Approach,
Addison-Wesley Toppan, 1995.

 [3] J. Rumaugh, M. Blaha, W. Lorensen, F. Eddy. Object-Oriented Modeling and Design,
Prentice Hall, 1991.

 [4] Baudoin, Claude & Hollowell, Glenn. Realizing the Object-Oriented Lifecycle. Upper
Saddle River, NJ: Prentice Hall, 1996.

 [5] OMG home page, http://www.omg.org/
 [6] Standard VHDL Language Reference Manual, IEEE Std. 1076-1987, 1998.
 [7] Thomas, Donald E, and Philip R. Moorby, The Verilog Hardware Description Language,

second edition, Kluwer Academic Publishers, 1994.
 [8] Standard for VHDL Register Transfer Level Synthesis, IEEE Std. 1076-6-1999, 1999.
 [9] SystemC OSCI, http://www.systemc.org
[10] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, S. Zhao, SpecC: Specification Language and

Methodology. Kluwer Academic Publishers, 2000.
[11] S. Abdi, J. Peng, H. Yu, D. Shin, A. Gerstlauer, R. Doemer, and D. Gajski, "System-on-

Chip Environment: SCE Version 2.2.0 Beta Tutorial," TR 03-41, December 2003.
[12] Q. Zhu, A. Matsuda, S. Kuwamura, T. Nakata, and M. Shoji, "An object-oriented design

process for System-on-Chip using UML", Proc. of the 15th Int. Symposium on System
Synthesis (ISSS 2002), 1-4 October, Kyoto, Japan, pp. 249-254.

[13] Component Wrapper Language, http://www.labs.fujitsu.com/en/techinfo/cwl/index.htm
[14] P. Lieverse, T. Stefanov, P. van der Wolf, Ed Deprettere, “System Level Design with

Spade: an M-JPEG Case Study,” IEEE/ACM International Conference on Computer
Aided Design ICCAD2001, pp26-32, November 2001.

[15] Press Release of Fujitsu Microelectronics America Inc., http://www.fma.fujitsu.com/
newsArt.asp?code=033004b

[16] Object Management Group, OMG Unified Modeling Language Specification 1.3, 2001
[17] C. Larman, Applying UML and Patterns: an introduction to object-oriented analysis and

design, Prentice Hall Jpan, 1998.
[18] E. Dustin, J. Rashka, J. Paul, Automated Software Testing: Introduction, Management,

and Performance, Addison-Wesley, 2002.
[19] CWL2HDL, http://www.labs.fujitsu.com/en/techinfo/cwl/download_tools.htm

SoftContract: Model-Based Design of Error-Checking
Code and Property Monitors

Luciano Lavagno1, Marco Di Natale2, Alberto Ferrari3, and Paolo Giusto4

1 Cadence Berkeley Labs, Berkeley, CA
2 Scuola Superiore Sant’Anna, Pisa, IT

3 PARADES, Roma, IT
4 Cadence Automotive Team, San Jose, CA

Abstract. This paper discusses a model-based design flow for requirements in dis-
tributed embedded software development. Such requirements are specified using
a language similar to Linear Temporal Logic which allows one to reason about
time and sequencing. They consist of assertions which must hold for a design,
given some assumptions on its environment. They can be checked both during
simulation and, at least for a subset, even on the target. Of course the guarantee of
correctness is ensured only as long as the assertion express the complete design
intent, and the simulation stimuli cover all possible cases. While this is generally
not true, the simulation-based approach is a practical manner to ensure correct-
ness with a good degree of confidence, while avoiding the intricacies of software
formal verification. Assertions related to deadline satisfaction can also be checked
statically by a schedulability analysis tool. The key contribution of the paper is the
extension to the embedded software domain of assertion-based verification, and
the automated generation of property-checking code in multiple target languages,
from simulation, to prototyping, to final production.

1 Introduction

Today, car manufacturers provide specifications to sub-system suppliers, who design
software and hardware subsystems that may include mechanical parts (e.g. injectors and
throttle bodies). In general, volumes are large, cost and dependability being major driving
forces. Once the sub-systems are provided back to the car manufacturers, they have to be
integrated on the car and then the overall system must be tested. If the car manufacturer
detects errors during the extensive testing period, which includes driving under extreme
conditions, a chain of engineering changes is initiated that may (and it often does!) cause
major delays in the design. Such problems are traceable for the most part to software
errors, because of incorrect understanding of the specifications and unpredictable side
effects when the subsystems are interconnected. The loop is particularly painful since
testing is done when the car is almost ready for its launch on the market.

This paper addresses directly this issue, and discusses a model-based design flow
for properties in distributed embedded software design, thus extending the traditional
accepted model-based design paradigm. The proposed methodology supports the defi-
nition of requirements on the performance and dependability of a real-time distributed

LNCS 3297, pp. 150–162, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

SoftContract: Model-Based Design of Error-Checking Code and Property Monitors 151

system, as well as the validation that they are met in the fully implemented system.
In this context, we first consider applications of automotive electronics that set strin-
gent requirements in particular on dependability attributes such as safety, availability,
maintainability, and also confidentiality, due to the complexity of its design chain.

Current model-based design flows, such as those based on Ascet-SD [1] or Simulink
[2] specifications and Real-Time Workshop Embedded Coder [2] or TargetLink [3]
implementations, emphasize automated transformations of specifications early in the
design cycles, therefore reducing the risk of incorrect implementations. Yet they neglect
automated transformations of properties. The basic tenet of the proposed novel flow
is that both functional (e.g. relating I/O values) and non-functional (e.g. specifying
performance requirements) properties, must be stated formally at the highest possible
level in the flow, immediately deriving them from the informal requirements captured
in a natural language. The traditional mechanism for representing functional and some
non-functional properties, e.g. I/O rates, is the definition of a testbench, which verifies
operationally that the properties are satisfied. This method is not efficient, because it is
too implicit, non-declarative and partial.

Constraints that a design must satisfy are decomposed, checked and propagated along
the design flow, whether it uses a top-down, bottom-up or V-cycle path including spec-
ification, implementation and integration. In particular, propagation entails automated
transformation from one domain to another when crossing levels of abstraction (e.g.
temporal logic formulae translated into simulation monitors and then into on-line error-
checking software). Decomposition and checking, on the other hand, enable a clean
design by contract between different parties involved in different design levels (e.g.
system architect and software designer).

The goal of contract-based design is speeding up dramatically the design and im-
prove the quality of embedded systems. The former is achieved by enabling a clear
communication of requirements between various parties involved in the specification,
design and validation of embedded systems. The latter is obtained by describing and
automatically tracking satisfaction of constraints throughout the design flow, including
post-production and on-line (run-time) checking, in a formal way.

1.1 Previous Work

Past work in this area, which traditionally belongs to the formal and semi-formal veri-
fication methods, can be identified both on the hardware and on the software side. On
the hardware side, assertion-based verification is emerging as a promising evolutionary
method to introduce formal techniques to specify and check properties starting from the
Register Transfer Level, as opposed to merely checking equivalence between optimized
and unoptimized designs or between layout and netlist. Recent standardization efforts,
such as the PSL proposal by Accellera [4], aim at defining languages that are close to the
way in which designers are used to model, e.g. Verilog and VHDL, and which provide
a full range of options including full temporal logic, both in untimed (e.g. every request
shall eventually be granted) and timed (e.g. every request shall be granted within 15 clock
cycles) forms. The Rosetta work [5] also aimed at defining a very generic mechanism,
based on sets and logics, to reason about properties of hardware designs.

152 L. Lavagno et al.

On the software side, Hoare triples have been classically used to describe the pre-
conditions that must hold in order for a statement to be executed correctly (“assump-
tions”, in the terminology of this paper) and the post-conditions that are guaranteed to
hold after the execution of the statement (“assertions”, in the terminology of this paper).
However, their use has been typically limited to imperative languages, and their full
power in general required the availability of a theorem prover in order to check that the
post-condition is indeed implied by the pre-condition and the statement logic. In this
context, we are pragmatically more interested in defining properties that are useful within
a specific domain, written in a user-friendly language, and easy to check by simulation
or on a prototype, rather than being used to formally prove the correctness of a design.
More recently, the Object Management Group has standardized the Object Constraint
Language, which has similar goals, i.e. to precisely state requirements that objects, sce-
narios and software systems modeled in the Unified Modeling Language must satisfy.
The OCL, however, is very expressive, and suffers from the lack of a standard executable
semantics for the UML (which should be added in the upcoming UML 2.0 standard,
also from the OMG). Thus it becomes suitable for automated checking and decompo-
sition only if an application-dependent subset is chosen by a specific UML profile. For
example, the proposed UML Profile for Schedulability, Performance and Time [6] (SPT)
defines a subset of the OCL that can be used for representing deadlines, execution times,
usage of shared resources and so on. While subsetting is not necessarily a disadvantage,
since it improves expressiveness, still having to learn several sub-dialects of the same
language for different tasks is more difficult than using, as in this proposal, a specially
tailored one that is suitable for all the verification tasks in the chosen application area
(real-time software implementation and verification).

Before the SPT standardization effort UML had been enriched with non-standard
stereotypes and timing notations in order to provide ground for a-priori verification of
timing constraints. Some examples are the MAST project [7] and the work by Sak-
sena [8]. The latter originated from research on the ROOM methodology. It added a
simple formalism for timing constraints to the standard port-based ROOM components.
The proposed methodology and toolset allowed for the automatic generation of embed-
ded SW and a-priori guarantees on the schedulability properties of components.

Another notable effort aimed at providing an integrated environment for expressing
functional and non-functional constraints is the HRT-HOOD methodology for hierar-
chical object-oriented design [9]. HRT-HOOD components (objects) are characterized
by timing attributes and constraints, which can be analyzed for schedulability at design
time. In [10] Cornwell proposed the use of the Z formal language for expressing the func-
tional behavior of HRT-HOOD components, thus allowing for the automatic generation
of Ada95 code.

Finally, and most important, Real-Time Logic [11] is probably the best known for-
malism among real-time systems researchers for expressing timing constraints. In [12]
Mok proved it amenable to early run-time checking of timing constraints. The SARTOR
proposal for an integrated environment [13] makes use of RTL, together with AND/OR
dataflow graphs and Modecharts for specifying the control, dataflow and concurrency
domains of embedded applications. The integrated toolset aims at providing automatic
generation of code and a priori timing analysis (guaranteed satisfaction) of timing con-

SoftContract: Model-Based Design of Error-Checking Code and Property Monitors 153

straints, but it lacks any kind of automated transformation from one domain to the other,
and it does not.

In this work we use the Logic Of Constraints [14], which is a language reminiscent of
various temporal logics (CTL, LTL and RTL) and which has been developed specifically
to reason about various quantitative aspects of an embedded system (not just time). LOC
is useful for our purposes, because it can be translated into simulation monitors for on-
the-fly checking, rather than requiring full-fledged model checking, which suffers from
inherent state explosion problems. Moreover, its semantics is based on sequences of
events over signals, and it is thus easy to use for designers who are familiar with tools such
as Simulink. This proved to be a key advantage with respect to more classical temporal
logics such as CTL and LTL, which were designed more with protocol verification in
mind. LOC moreover allows one to associate and reason about any annotation, not just
time but also e.g. energy or memory, with events in the system.

1.2 Terminology and Conceptual Model

A design is a modeled piece of hardware and/or software, which must be implemented
as a result of the design activities. A design can be represented as a structure, i.e. an
interconnection of components (also called modules or blocks) connected via nets to each
other’s ports (mechanisms to communicate between blocks, such as shared variables or
messages). Each component, and thus eventually the whole design, may have a functional
model, describing how its output ports relate over time with its input ports. Both structure
and functionality are described using any appropriate modeling language such as C,
StateCharts, Simulink, Verilog, VHDL, and so on.

An event is an update of value (not necessarily a change of value, i.e. the updated
value may be the same as the old one) of a port of a module of the design. For exam-
ple, the arrival of a value from a sensor, the decision to change the state of a design
component, or the generation of a command to an actuator are all events. Each event
is annotated with a time of occurrence, and optionally with other quantities (such as
energy) for which constraints can be specified. Although our definition of design is in-
dependent of the chosen Model-Of-Computation (MOC), for the sake of this paper we
focus on the Discrete Event (DE) MOC for functional and performance modeling. DE is
a particularly amenable to represent control and RT automotive applications, since it is a
sort of a least common denominator between other MOCs which can be used to embed
dataflow networks, Simulink networks, Hardware Description Languages, StateCharts
and synchronous languages into a common semantic framework.

Events can only occur on explicitly defined ports of components (ports are the mech-
anisms through which blocks communicate), or on specifically exposed viewports.View-
ports are internal aspects of the block, like state for example, that the designer chooses
to expose about their internal behavior, which is otherwise hidden. This black-box se-
mantics is essential for efficient implementation and decomposition, since prematurely
exposing information about internal aspects of a design leads to poor portability, modifi-
ability, re-usability, verifiability and optimizability. Black-boxing also improves security
of a company’s Intellectual Property, by hiding implementation details.

The environment of a design is a part of the whole system which cannot or need
not be implemented by the considered team (e.g. the engine for the electronic control

154 L. Lavagno et al.

unit implementors, or the sensor sample conditioning filters for the control algorithm
implementors). In other words, this paper considers a design flow in which the top-level
model is (recursively) decomposed into sub-models, whose design must be carried out by
different teams or individuals, possibly belonging to different companies. Unambiguous
communication between these teams or individuals, by means of assertions on the design
that they must guarantee by implementation and assumptions on the environment that
they can make, is one of the key advantages of this proposal over the state of the art.

A property is LOC formula, involving events and their annotations (e.g. time of
occurrence), which must be true, and which can play different roles depending on the
context. An assertion is a property which must be guaranteed to hold by a design. For
example, the statement that the latency between an input and an output event must be
less than 0.1 msec is an assertion. An assumption is a property which limits the set of
environment behaviors to be considered, and thus exhibits some freedom that can be
exploited by knowing that some cases can never occur. For example the statement that
the maximum rate of arrival of input events is 1 per msec is an assumption.

Quite often, a requirement on a design component is expressed as a pair including:
an assertion that is assumed by users of the component to hold, and guaranteed by its
implementer to hold, and an assumption that is assumed by the implementer of the
component to hold, and must be guaranteed by its users to hold, as illustrated by the
following simple example. First of all, the designer in charge of assigning priorities to
tasks running on a real-time executive can make assumptions on the maximum rate of
arrival of events triggering them and on their WCET, and must satisfy assertions on
the priority ranking (e.g. based on Rate Monotonic Analysis). Then the team who is
in charge of implementing the tasks can make assumptions on the maximum rate of
arrival of events and on priorities, and must satisfy assertions on their WCET. Finally,
the integrator of the control unit in the car can assume priorities and WCETs and must
satisfy assertions on event arrival rates.

A monitor finally is a component of a design whose main task is to verify that an
assumption or an assertion on another component or set of components is satisfied.
Monitors are executable checkers that can be used in simulation, prototyping and pro-
duction code in order to ensure that the design contracts are respected. A key aspect
of the proposed design methodology is the ability to derive various kinds of monitors
for the various stages (simulation, formal verification, prototyping, production) from
a single specification (model-based contract design). This ensures a consistent flow of
information between various phases of design, verification and usage of components of
an embedded system.

2 Design Flow

In the proposed design flow, the requirements on a design are first specified as assertions
which must hold, given some assumptions on its environment. In order to be able to
define such assertions and assumptions, one must have defined a skeletal structure for the
design, at the very least the I/O ports with which it communicates with its environment.
Assertions are checkable only when the functionality of the design has been specified.
Some of them, e.g. those related with timing, are checkable only when the functional

SoftContract: Model-Based Design of Error-Checking Code and Property Monitors 155

model has been annotated with performance information, so that the time information
attached to events reflects the effects of the underlying architecture.

These requirements can be used both bottom-up and top-down. Bottom-up, they
clearly specify the contract that the implementer promises to obey with respect to the
users of a component. Assertions are guaranteed provided that assumptions are satisfied
(e.g., this piece of software written in C computes the response with a precision of 1%
provided that “int” variables have at least 32 bits). Top-down they specify requirements
that the implementer must obey, and state the assumptions he can make on the users of
the component.

An essential aspect of a bottom-up design flow is the composition of assertions
on individual components, while checking that the used components guarantee each
other’s assumptions. A full-fledged compositional proof methodology would require
theorem proving, an expensive proposition today even for safety-critical applications.
More practically, monitors can be used to trace the requirements throughout the lifetime
of a component. This is already common practice for safety-critical embedded software,
e.g. in the automotive industry. In this case, code devoted to verifying that the input values
received by a piece of code match the assumptions made by the designer of that piece of
code, and that only legal values are produced as a result of the internal computations, can
constitute a very significant portion of the total software content of a design. For example,
governments have imposed regulations for the automotive industry that limit the level of
chemical emissions from car engine exhausts. In order to comply with these regulations,
a vehicle must satisfy the European On Board Diagnostics, a standard which imposes
a set of properties of the system that must hold and are checked at run-time. This is
implemented through a set of monitors allocated to the different electronic control units,
which check relevant values of the state of the software (variables). These monitors are
typically coupled with other components that implement recovery and logging in case
of violations.

One of the innovations of our flow is, as discussed above, the use of the very same
description of an assertion or an assumption (quite often they come in pairs, describing
the conditions under which a given property is guaranteed to hold) for the various phases
of the design. This is essential in order to ensure precise contractual obligations between
parties in the system design flow. It also dramatically eases handoff points between teams
or companies in the design flow, by making requirements explicit and formal, and speeds
up implementation of the final code, by automatically generating the required monitors
in the given context, from simulation to run-time.

In top-down design, on the other hand, requirements on the global I/O of the system
are decomposed into sub-properties that must hold for each component of the design.
The collection of sub-properties on other components, not under design by a specific
team, together with assumptions on the global top-level environment, become the set
of assumptions that an implementer can make on his component’s environment, as
illustrated in Section 3.

2.1 Property Specification Language

Logic Of Constraints [5] is a formalism designed to reason about execution traces. It
consists of basic relational, Boolean and implication operators, with additions that make

156 L. Lavagno et al.

it possible to specify system level quantitative functional and performance constraints
without compromising the ease of analysis. The basic components of an LOC formula
are: events (defined above), the index variable i and annotations:

1. Annotation: each event may be associated with one or more annotations.Annotations
can be used to denote the time, power, area, or any value related to the event. E.g.,
Display[i − 5].t denotes the t annotation (by convention time, while annotation v
represents its value) of the i − 5-th event of the Display port.

2. Index variable: LOC permits only one event index variable i, a positive integer,
in a given expression (the limitation helps ensuring checkability in bounded mem-
ory). Index expressions of events may be any arithmetic operations involving i and
constants, e.g. Display[i − 5], Stimuli[i].

LOC can be used to specify some very common and useful real-time performance
constraints:

– rate: E.g. “Displays are produced every 10 time units”:
Display[i].t − Display[i − 1].t == 10

– latency: E.g. “Display is generated no more than 25 time units after Stimuli”:
Display[i].t − Stimuli[i].t <= 25

– jitter: E.g. “every Display is no more than 4 time units away from the corresponding
tick of the real-time clock with period 10”:

Display[i − 1].t − (i) ∗ 10 <= 4

– throughput: E.g. “at least 100 Display events will be produced in any period of 1001
time units”:

Display[i].t − Display[i − 100].t <= 1001

– burstiness: E.g. “no more than 1000 Display events will arrive in any period of 9999
time units”:

Display[i].t − Display[i − 1000].t > 9999

– maximum rate of change: E.g. “the (discrete) derivative of the value of S shall not
exceed 10”:

(S[i].v − S[i − 1].v)/(S[i].t − S[i − 1].t) < 10

For a LOC formula to be formally proven for a design, it needs to hold for all possible
traces and all values of the index i, as it appears in the index expressions of the formula.
For a formula to be checked for a particular simulation trace, it needs to hold for that trace
only and all values of i. In the rest of the paper we are concerned only about checkability.

Both assertions and assumptions are expressed as LOC formulae to be checked.
Their respective violation, however, is the sign of a breach of the contract by different
parties (roughly speaking, if an assertion formula is not checked, i.e. it is violated, then
it is my fault, while if an assumption is violated, then it is somebody else’s fault). LOC
formulae are, by construction, easy to check during simulation. It is also possible to
generate code that checks them at runtime on a prototype. It may even be possible to
check them at runtime on the real system, if their satisfaction is vital to the correct
operation of the system. Logging these data on the target system is very useful in order

SoftContract: Model-Based Design of Error-Checking Code and Property Monitors 157

to enable maintenance personnel to determine the state of the car and of its components,
and to decide whether some intervention is required (“design for serviceability”). In
addition, violations of assumptions or assertions can be used at runtime to trigger driver
notifications and to enable default “safe” behaviors of the embedded controllers.

2.2 Target Language Translations

The properties specified using the language above can be translated automatically, into:

– Off-line database query code, which checks that both assertions and assumptions
are satisfied on a given set of simulation traces. Probes are automatically generated
and instantiated in order to collect enough information to answer the queries corre-
sponding to all the properties being checked. The example described in Section 3
was checked in this off-line mode of design by contract.

– On-line monitor modules written in whatever simulation language is used for design
verification. These monitors emit error messages when the assertion or assumption
is violated, as well as a warning at the end of the simulation if an assertion or
assumption is neither satisfied nor violated.

– On-line code to be integrated within the software tasks, to which the ports referenced
in the property text belong. Integration of the code into specific “supervisory tasks”,
running under RTOS control and having access to local variables of other tasks, can
also be generated in a second phase, for properties that refer to ports of components
mapped to different tasks. This code can be used in a prototype, for debugging in
the field, at least for that portion of property-generated code that is not intrusive
and does not cause excessive load for the target CPU. Note that taking a consistent
snapshot of the state of a distributed system may be very expensive, or even just
impossible. All properties selected for runtime checking on the target must thus be
local, with respect to the mapping onto the chosen architecture.

– Off-line and on-line hardware-assisted property checkers, using in-circuit debuggers
or on-chip real-time tracers. The hardware resources provided by the these devices
strongly limit the number and complexity of the properties that can be concurrently
checked.

3 A Design Example

For the sake of illustrating our proposal, we describe an example of a safety critical
application, typically implemented on a distributed multi-cluster ECU architecture. The
application is a simplified version of an Adaptive Cruise Control (ACC), shown in
Figure 1. TheACC includes “regular” cruise control features, but must also automatically
decrease the speed of the vehicle, if an obstacle is detected at a distance less than the
safety distance threshold. In this case, actuation signals are automatically sent to the
brake system and to the engine control system.

The functional model that we used includes models of the driver, the radar system, the
engine, and the brake. The ACC algorithm determines the gas pedal position (therefore
replacing the driver) based upon the vehicle speed, the distance between the vehicles,
and their relative speed. The control strategy is defined by the ACC Finite State Machine.

158 L. Lavagno et al.

Fig. 1. The adaptive cruise control application

Based on choices from the driver, it decides which position of the gas pedal is provided
to the engine control. The position may be determined either automatically, if the FSM
is in the state “ACCon”, or by the driver.

3.1 Some Simple Properties

An important safety feature of our algorithm, that can be used to test the contract-based
design flow, is that the current value of the gas pedal is retained in case the new position
determined automatically is very different (for example due to data corruption) from the
current one. This is expressed by the following LOC property:

define limit_change (comp, act, thr) {
abs (comp[i].v - act[i-1].v) > thr ->
act[i].v == act[i-1].v }

instantiated as the following requirement (assumption plus assertion):

assume FSM.State[i].v == ACCon
assert limit_change (FSM.GasPedalPositionFSM,
FSM.GasPedalPositionACC, FSM.threshold);

Here FSM is the name of the block whose inputs and outputs are used in the property,
state is a viewport exposing its state, GasPedalPositionACC is the output of
the automated cruise control block (and input to the FSM block) which determines the
required position to decelerate smoothly when required, GasPedalPositionFSM is
the output of the FSM block which goes directly to the actuator, and threshold is a

SoftContract: Model-Based Design of Error-Checking Code and Property Monitors 159

parameter which must be tuned on the prototype car in order to provide a smooth and
safe driving experience. Finally, -> denotes logical implication.

Another assertion that was checked in this design, using the LOC database monitors,
is the following: if the distance between vehicles goes below a given threshold, then
within 30 seconds the distance will be again above threshold.

define rate (g, thr, tol) {
abs (g[i].t - g[i-1].t) < thr + thr * tol and
abs (g[i].t - g[i-1].t) > thr - thr * tol) }

define slowdown (dist, thr, delta) {
dist[i-delta].v < thr -> dist[i].v >= thr; }

assume ACCCore.Speed - Radar.OtherVehSpeed < 10
and rate (ACCCore.speed, 0.001, 0.01)

assert slowdown (ACCCore.distance,
ACCCore.threshold, 30 / 0.001);

Here we assume that the difference between vehicle speeds is less that 10m/s, other-
wise, the only safe option for the driver is to brake by himself (this is not a drive-by-wire
system, only an enhanced cruise control). Here ACCCore.speed is the speed of the
current vehicle (an input to the ACC controller ACCCore), Radar.OtherVehSpeed
is the speed of the other vehicle, as measured by theRadar,distance is their distance
and threshold is a parameter defining the distance at which the speed must begin to
be reduced. Time is measured here in terms of discrete controller invocation intervals,
which is consistent e.g. with the Simulink semantics, and assumptions on the rate es-
tablish the relationship between invocations and time. For example, since the ACCCore
model is invoked once every millisecond and the tolerance tol on the invocation rate is
1%, the index difference 30 / 0.001 refers to a time interval of 30 seconds plus or minus
1%.

Debounce assertions are important to correctly evaluate Boolean signals produced
by the environment. When a switch is pressed, the output signal oscillates until it reaches
a new stable value. The debouncing functionality guarantees that only the final value
of the switch signal is used as input value. In our example, the switches that turn on
and off the cruise control and the adaptive feature must be debounced before evaluation.
The requirements to debounce a switch in a time window of 200ms can be expressed as
follows:

event EdgeSwitch { Switch[j-1].v!=Switch[j].v }
assert EdgeSwitch[i+1].t-EdgeSwitch[i].t > 0.2;

This example uses an “event definition” facility of LOC, which allows one to define
new events based on the occurrence of logic and relational conditions on existing events.

3.2 Assertion/Assumption Decomposition

We will now consider an example of how decomposition of assertions into pairs of
assumptions and assertions can be used to define and verify the interface between two
teams or companies working on two portions of the system. The adaptive cruise control
must guarantee a certain degree of comfort during cruise. For instance the vehicle should
not accelerate or decelerate, after reaching the cruising speed, by more than a 0.5 m/s2,
which can be expressed with the following assertion:

160 L. Lavagno et al.

assert FSM.State[i].v == ACCon =>
abs(Acceleration[i].v) < 0.5;

The overall system, as shown in Figure 1, is decomposed into ACC, Engine control
and Brake control. The ACC provides the gas pedal position to the Engine control, which
translates it to a request for a given amount of torque. The Engine finally produces the
torque. The previous assertion, checked at run-time, would inform the designer if a
violation on the vehicle acceleration occurred, but would not explain if this was due to
a design error of the engine control or of the ACC control. If the two control units are
built by different sub-system makers, it would be problematic to pinpoint the cause of
the error in the design.

Following our methodology, the assertion should be decomposed into three parts:

1. an assertion on the torque requested by the ACC,
2. an assertion on the torque provided by the Engine control and the engine, and
3. an assertion on the relation between vehicle acceleration and torque.

The third assertion is always satisfied in a given gear, since it checks the inputs and
outputs of a mechanical system, that is the powertrain of the vehicle. In this case, a
torque smaller than 20 ensures an acceleration smaller than 0.5. The first assertion on
the behavior of the ACC can thus be expressed as follows:

assert FSM.State[i].v == ACCon =>
abs(ACC.TorqueRequest[i].v) < 20;

The Engine control unit maker is using the same property as an assumption, instead
of an assertion, checking that the torque request, when the cruise control is on, is limited
as specified and agreed. The second assertion thus is expressed as follows:

assume FSM.State[i].v == ACCon
and abs(ACC.TorqueRequest[i].v) < 20

assert abs(Engine.Torque[i].v) < 20;

A violation of the vehicle acceleration is now shown by different checkers, and the
sub-system causing the violation is easily found, even before system integration.

More complex comfort assertions can be efficiently added to the design, such as
checking the jerk (i.e. the rate of change of the acceleration) of the vehicle, hence the
rate of change of the generated torque.

The design described here was created using the Cadence Automotive System De-
sign Platform (also known as SysDesign). Plant models were imported from Simulink
via a special Real-Time Workshop target. The Engine control model along with the task
structure was imported from Ascet-SD [1], a model based design environment for al-
gorithmic development, with code generation capabilities for both prototype and target.
The definition of the target multi-ECU architecture, the task allocation to the ECUs, the
bus modeling and the simulation were performed in SysDesign.

Properties were checked automatically using a tool which compiles the LOC formula
into a fragment of C code which reads the SysDesign simulation database and checks
the validity of the formula off-line over a simulation run.

SoftContract: Model-Based Design of Error-Checking Code and Property Monitors 161

3.3 Lessons Learned

Although this project is currently at the research stage, and it has not been applied to
any real-life example, its motivations stem from the observation of the current state of
the art of model-based design in the automotive world, and of worldwide trends in the
car electronics industry.

The key observation that we made during both the experiment described in this sec-
tion, and during previous attempts at defining a model-based design flow for properties,
is that the language used is extremely important, i.e. it is not just syntactic sugar. While
this work is the latest (and certainly not the last) one in a long stream of property-based
formal modeling approaches, we believe that it is unique in that the language used fits
very well the working habits of designers that are supposed to use it. The notions of
events, sequences and indices are familiar to everyone involved in discrete control, im-
plemented on a computer. Hence the Logic Of Constraints is easy to use, much easier
than forms of temporal logics or higher-order logics. It is, however, powerful enough
to express properties of interest for a significant example, and we could easily generate
efficient code for checking it both on-line and off-line.

In the future, practical application of the methodology and language proposed in
this paper will require the definition and implementation of modeling mechanisms that
are even more user-friendly, e.g. taking the form of a Simulink block-set. It will also
require cooperation with companies and groups that are expert in the area of data logging
and monitoring, and of parameter tuning, since they have the capability to extract the
atoms on which the LOC is built, and hence are essential in order to efficiently check
properties both on-line and off-line on the target system, both in the prototyping and in
the production phases.

4 Conclusions

This paper proposes a model-based design flow for assertions and assumptions that
together ensure the correctness, both functional and non-functional, of a complex em-
bedded system. The paper uses examples, terminology and scenarios from the auto-
motive software domain, but the flow is applicable to any safety-critical mixed hard-
ware/software system. Assertion-based verification is becoming a cornerstone of hard-
ware design. What is new in the case of safety-critical embedded systems is the extension
to the software domain of assertion-based verification, and the automated generation of
code in multiple target languages, from simulation database queries, to simulation mon-
itors, to prototyping, to final production. This leads to:

– faster time-to-market, by reducing design iterations,
– real contract-based design between specifiers (system architects), implementors

(software designers) and integrators, by allowing
• fast verification by the sub-system providers that the assertions made by the

architect on sub-systems are satisfied and
• delivery of partial assumptions and assertions from sub-system providers to

system integrators for earlier verification of end-to-end assertions.

162 L. Lavagno et al.

– faster implementation, thanks to automated target code generation for assumption
and assertion checking,

– safer implementation, due to the formal property specification mechanism.

In the future we are planning to explore the use of assertions and assumptions for
automated testbench generation, e.g. by constraint solving.

References

1. Ascet-SD, E.: (2004) http://www.etas.de.
2. Simulink, T.M., StateFlow: (2004) http://www.mathworks.com.
3. dSPACE TargetLink: (2004) http://www.dspace.de/.
4. Language, A.P.S.: (2004) http://www.accellera.org/.
5. Alexander, P., Kong, C., Barton, D.: Rosetta usage guide (2003) http://www.sldl.org.
6. Group, O.M., ed.: UML Profile for Schedulability, Performance, and Time. OMG document

ptc/02-03-02 (2002)
7. Medina, J., Harbour, M.G., Drake, J.: Mast real-time view: A graphic uml tool for modeling

object-oriented real-time systems. In: Proceedings of IEEE Real-Time Systems Symposium.
(2001)

8. Saksena, M., Freedman, P., Rodziewic, P.: Automated implementation of executable object
oriented models for real-time embedded control systems. In: Proceedings of IEEE Real-Time
Systems Symposium. (1997)

9. Burns, A., Welling, A.J.: HRT-HOOD: A design method for hard real-time. Journal of
Real-Time Systems 6 (1994) 73–114

10. Cornwell, P.D.: Reusable Component Engineering For Hard Real-Time Systems. PhD thesis,
University of York (1998) YCST-98-04.

11. Jahanian, F., Mok, A.: Modechart: a specification language for real-time systems. IEEE
Transactions on Software Engineering 20 (1994) 933–947

12. Mok, A., Liu, G.: Early detection of timing violation at runtime. In: Proceedings of IEEE
Real-Time Systems Symposium. (1997)

13. Puchol, C., Mok, A.: Integrated design tools for hard real-time systems. In: Proceedings of
IEEE Real-Time Systems Symposium. (1998)

14. Chen, X., Hsieh, H., Balarin, F., Watanabe, Y.: Automatic generation of simulation monitors
from quantitative constr aint formula. In: Proceedings of Design Automation and Test in
Europe. (2003)

 LNCS 3297, pp. 163 – 174, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Tailoring IEEE 1471 for MDE Support

Eric Jouenne and Véronique Normand

THALES Research & Technology,
Domaine de Corbeville 91404 Orsay, France

{eric.jouenne,veronique.normand}@thalesgroup.com

Abstract. THALES is a supplier of complex systems in the Defence and Aero-
space domains. A number of THALES Units are currently involved in transi-
tioning parts of their systems and software engineering processes from docu-
ment-driven to model-driven engineering (MDE). MDE puts models on the
critical path of system and software development, turning the role of model
from contemplative to productive. Putting MDE into practice in operational
contexts intrinsically puts heavy demands on the tooled-up process.

A first challenge is to support MDE tooled-up process definition, implemen-
tation, assembly, and deployment all the while addressing industrial concerns
for adaptability, maintainability and scalability. A second challenge is to be able
to introduce MDE innovations in existing development processes at mastered
cost, all the while managing the legacy.

The MIRROR Pilot Program was launched three years ago in THALES to
address these challenges. The concept of MDE methodological component was
identified as a building block for supporting the definition and building of MDE
tooled-up processes. An implementation approach for this concept is developed
here within the context of a THALES industrial case, based on an extension of
the IEEE Recommended practice for architectural description of software-
intensive systems, IEEE Std 1471-2000.

1 Introduction

The THALES business core is in supplying complex systems, mainly in the Defence
and Aerospace domains. These systems have long life cycles; their development often
requires large multi-disciplinary teams (system, software and/or hardware engineer-
ing). System and software engineering processes are the backbone of THALES de-
velopment. It is through definition, formalization, and development process respect
that system development maturity is achieved [4].

The THALES development projects feature different types of risks, different levels
of complexity requiring different skills and team sizes. The engineering processes
need to be adaptable to accommodate these different projects needs. It must be possi-
ble to plug or unplug parts of a process without breaking the overall structure.

Often inside a Business Unit, different business domains cohabit. For instance, a
Business Unit develops at the same time a maritime patrol system and a weapon navi-
gation system. Both systems are mainly Control and Command, but underlying con-
cepts, platforms and technologies are different. Development process is a way to capi-

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

164 E. Jouenne and V. Normand

talize and to spread development know-how. Processes must be generic enough to be
shared and capitalized at company or department level, but must be customizable
enough to be relevant at project level.

Processes describe roles, activities and work products for each involved stake-
holder. The process work products can be documentation, models or source code. A
number of tools are deployed to support the implementation of engineering processes.
Each tool covers specific aspects (requirements capture, architecture structure descrip-
tion, traceability information capture, …) of one or more activity. Processes are inter-
related activities, and then tools must communicate and share information to ensure
process continuity. Systems engineering requires seamless tool chains that fully sup-
port the continuity of activities. Tools are used to ensure productivity and quality,
which means that tool chains are on the critical path of many projects. Tooled-up
processes1 are assembled and managed by dedicated Tools & Methods organisations
in THALES.

Processes have a long life cycle comparing to tools and technologies. In a process
definition, activities, concerns and roles are the most stable parts. Methodological and
technological choices have a shorter life cycle but tools (either commercial or in-
house) have the shortest. To be able to master and limit impacts of evolutions, each of
the previous aspects must be as much as possible independent of others. For instance,
if technological choices like “UML as modelling language” have been made, UML
profiles and modelling rules should be as much as possible independent from a spe-
cific UML modeller.

A number of THALES Units are currently involved in transitioning parts of their
processes from document-driven to model-driven engineering (MDE). MDE puts
models on the critical path of system and software development, turning the role of
model from contemplative to productive. Putting MDE into practice in operational
contexts intrinsically puts heavy demands on the tooled-up process: modelling rules
and practices need to be precisely defined for each model work product; model edi-
tion, analysis, transformation and management require dedicated tools or tool exten-
sions at each step of the process.

A first challenge is to support MDE tooled-up process definition, implementation,
assembly, and deployment all the while addressing industrial concerns for adaptabil-
ity, maintainability and scalability.

A second challenge is to be able to introduce MDE innovations in existing devel-
opment processes at mastered cost, all the while managing the legacy. While some
business contexts can allow for in-depth process evolution, more often a process is in
place, which includes some level of modelling, and only limited evolutions can be af-
forded with respect to cost / benefit, project schedule constraints, legacy management
constraints, etc.

The MIRROR Pilot Program was launched three years ago in THALES to address
these challenges. MIRROR is addressing core issues for the definition and adoption of
MDE approaches in the THALES group, including methodological, technological and
tooling concerns [5].

The concept of MDE methodological component was identified in MIRROR as a
building block for supporting the definition and building of MDE tooled-up proc-

1 A “tooled-up process” is the union of a process and its supporting tool chain.

 Tailoring IEEE 1471 for MDE Support 165

esses. An implementation approach for this concept is developed here within the con-
text of a THALES industrial case, based on an extension of the IEEE Recommended
practice for architectural description of software-intensive systems, IEEE Std 1471-
2000.

This paper is organised as follows. Section 2 recalls the requirements in building a
MDE process, introduces the concept of MDE methodological component and de-
scribes the extensions made to IEEE Std 1471-2000 to support the specification of
UML–based viewpoints in a MDE methodological component. Section 3 presents the
application that was performed of this approach in the context of the THALES Air-
borne Systems Unit. Section 4 discusses the insight retrieved from this experiment
with regards to the different challenges THALES Business Units are facing for intro-
ducing MDE innovations in existing industrial development processes. Section 5 lists
a number of perspectives regarding future MIRROR work on MDE methodological
components for defining and assembling tooled-up processes.

2 Extending IEEE 1471 for MDE Processes

A Model-Driven Engineering process organises engineering activities around the
building and exploitation of a number of inter-related model work products represent-
ing different aspects of the system under development, at different levels of abstrac-
tion. Engineering activities involve the building, analysis and transformation of mod-
els of the system, and the generation of code, configuration file, tests out of the
models.

Building a MDE process requires:

• The definition of the model work products. A model work product uses a precisely
defined modelling language, with precisely defined modelling rules; this language
may be standard or specific to a company, a domain, a method, a technology.
Model work products are set in a global frame with well-defined consistency rela-
tionships between models.

• The definition of transformation rules between given sets of models, of rules and
procedures for generating code or documents from the models. These rules embody
development know-how at domain or technological level.

• The identification of verification rules and techniques upon these models (func-
tional, performance, quality verification).

• The integration of dedicated tools and tool extensions to support the model edition,
verification, transformation, configuration management and generation practices in
a cost-effective, industrial way.

• The definition of the engineering activities, practices and roles with regards to the
model work products, the overall organisation and integration of the MDE tooled-
up process, and the documentation of the process.

The concept of MDE methodological component was identified in MIRROR as a
building block for supporting this complex MDE process-building task. This concept
is presented hereafter; an implementation approach for this concept is then developed,
based on an extension of the IEEE-1471 standard.

166 E. Jouenne and V. Normand

2.1 The Concept of MDE Methodological Component

A structural unit, the MDE methodological component [2,7], has been identified by
MIRROR to be used as a vector for defining, implementing and deploying MDE
methodologies. MDE Components are defined as containers for coherent and self-
defined domain, technological, or methodological know-how. These containers may
serve as building blocks for building complete and coherent tooled-up processes.
A MDE methodological component is a unit for2:

1. Defining and Documenting a MDE Process: A MDE component can hold the
specification of a modelling language and organisational rules for a work product;
the specification of a model transformation; the specification of verification rules;
the specification of a process or sub-process in terms of activities, roles and work
products; guidelines. Specification means were defined in MIRROR for each type
of information; a modeling language is typically defined as a MOF3 model for ab-
stract syntax and a UML profile for concrete syntax; the UML SPEM4 Profile is
used for process specification.

2. Assembling and adapting a MDE process for a project: MDE components are
modular process assets that can be assembled to build a complete process; specific
extension mechanisms are defined to enable adaptation to contexts.

3. Developing and managing tool support for a MDE process: A MDE component
holds information that can be exploited at tool-level, for implementing the process,
enhancing model edition productivity and supporting the automation of some trans-
formation and verification activities. This involves the generation of modeller ex-
tensions such as edition accelerators, well-formed ness rules checkers, quality
analysis scripts, transformation scripts, documentation or code generator, etc.

Several granularities are foreseen for a MDE Component, including:

• A standalone definition of a model work product: modeling language, consis-
tency rules, guidelines supporting related modeling activities, etc.

• A complete development process that assembles a set of MDE Component into a
full MDE chain.

The MDE methodological component concept is designed to fulfill process needs
in term of tooled-up, pluggable, and deployable, “development know-how” units.
MIRROR has been experimenting several approaches to the definition and deploy-
ment of MDE components. This paper focuses on the usage of the IEEE Recom-
mended practice for architectural description of software-intensive systems, IEEE Std
1471-2000 [1] as a MDE component specification support.

2.2 IEEE 1471 Recommendation

The THALES development processes are largely “architecture centric”; mastering
product architecture has been identified as a key practice for mastering the overall

2 In this paper we will mainly focus on aspect 1 and 2 that are pre requisite for aspect 3.
3 Meta-Object Facility.
4 Software Process Engineering Metamodel.

 Tailoring IEEE 1471 for MDE Support 167

product. The definition of architectural viewpoints on a system is precisely the topic
of the IEEE 1471.

IEEE 1471 is the Recommended Practice for Architectural Description developed by
the IEEE’s Architecture Working Group. IEEE set the following goals to the standard:

1. To take a wide scope interpretation of Architecture applicable to software intensive
systems.

2. To establish a conceptual framework for talking about architecture issues.
3. To identify and promulgate architectural best practices.

Fig. 1. IEEE 1471 conceptual model

Figure 1 above represents the conceptual model proposed in IEEE 1471. This
model is articulated around two key concepts: view and viewpoint.

− View: “A representation of a whole system from the perspective of a related set of
concerns.”

− Viewpoint: “A specification of the conventions for constructing and using a view.
A pattern or template from which to develop individual views by establishing the
purposes and audience for a view and the techniques for its creation and analysis.”

“Like a legend on a map or chart, a viewpoint provides a guide for interpreting and
using a view, and appears in a conforming AD together with the view it defines.”[3]

168 E. Jouenne and V. Normand

A viewpoint is seen as a reusable asset that can be shared between projects and
teams. Each viewpoint embeds its language, its modelling rules, its analysis methods,
its completeness and coherency checking rules, and its guidelines.

Interestingly enough, [3] notes that: “It would be useful to have a standard way to
document viewpoint declarations in the UML, such that they may be notationally de-
picted, stored and manipulated by tools.” This concern clearly matches the MIRROR
concern that led to the concept of MDE methodological component outlined above.
Our approach here is to base the work product specification part of our MDE compo-
nents upon the IEEE 1471 Viewpoint concept, and to develop UML specification
means for this Viewpoint concept.

The following section describes how the IEEE 1471 concepts were extended by
MIRROR to support the specification of UML–based viewpoints.

2.3 Extending the IEEE 1471 Concepts

Hereafter represents the extended conceptual model for supporting UML-based View-
points. The main extended concepts are:

Fig. 2. Extended IEEE1471-MDE conceptual model5

5 Grey boxes are original concepts coming from [1] while white boxes are concepts that extend

IEEE 1471. Parts of the white boxes are based on [3].

Model

View ArchitecturalDescription

Diagram

ViewPoint

MetaModel
Language

{union}

<<subset>>

{AD.
language}

Profile

AnalysisMethod

ModellingRules

ModelTemplate

language

ownLanguage

modelOrganisation
analysis

governs

views

1..*

views

1

1..*

references

view

diagrams

1

*

selects
AD

vp

*

1..*

conformsTo

1

1

defines

DT
1

vp

*

guides

*
1

uses

rules

1..*

UMLprofile

abstractSyntax

1

concreteSyntax

1

organization profiles *

1..*

1..*

reference

1referencedMetamodel

1

uses

rules

*

 Tailoring IEEE 1471 for MDE Support 169

− Model: A representation of a part of the function, structure and/or behaviour of a
system. A model is composed of different views and conforms to a meta-model.

− Language: concepts and concrete notation that is used in the viewpoint.
− Meta-model: A MOF model describing concepts of a domain, technique or

technology. It is the abstract syntax of the viewpoint’s language.
− UML Profile: Set of UML extensions (stereotypes and tagged values) that is view-

point’s meta-model mapping on UML. UML profile is the concrete syntax of the
viewpoint’s language.

− Architectural Description: Architectural description is extended from [1]. It be-
comes a model. The meta-model of an Architectural description is then the union
of the meta-models of its viewpoints.

− Viewpoint: Viewpoint is extended to make explicit the notion of viewpoint lan-
guage as a MOF model and a UML profile. Viewpoint also embeds a “model or-
ganisation template” which is a way to describe how concepts will be stored in the
model. The viewpoint also provides modelling rules.

− Modelling Rules: A set of rules that describes the usage of the profile. Modelling
rules are a way to identify and specify contents and graphical rules of required
UML diagrams.

The following section describes how we apply the extended IEEE 1471 Viewpoint
to support the specification of MDE methodological components in an industrial
THALES context.

3 Application

The case concerns THALES Airborne System (TAS), a THALES Business Unit op-
erating in the Avionics business domain. TAS has a strong background in using mod-
elling and object-oriented technology, with a UML tooled-up process for software en-
gineering deployed in Rafale and Mirage contexts since 1998. This process is regularly
enhanced and improved through consolidations and innovation introduction. [4]

The authors were actively involved in the identification and definition of MDE
innovations for the TAS development processes.
Process innovations are managed through an iterative and incremental process:

1. Legacy Analysis: During this phase, existing processes are analysed and potential
improvement areas are identified.

2. Solution Design and Experimentation: For a given improvement area, solutions
are investigated, prototyped and experimented; impacts are identified, and a
cost/benefit analysis is conducted as part of the effort.

3. Decision: Results are then submitted to a Steering Committee which decides to de-
ploy or not.

3.1 Analysis Phase

The studied development process revolves around the production of a UML model
that can be characterised as a « high-level design model », a hybrid model answering
architectural concerns and partial code generation objectives.

170 E. Jouenne and V. Normand

TAS uses a Component-Based Development approach for its architecture design.
Three abstraction levels have been identified:

• A coarse grain level that can be seen as system level.
• A medium grain level that can be seen as software component level.
• A fine grain level that can be seen as software classes level.

A specific UML profile is used to capture technical concepts.
Users rely on only two guidelines for mastering their activities and work products:

• A design recommendations guideline: Here designers find a full glossary of all
the domain and technical concepts, they also find modelling rules and the descrip-
tion of the activities. Per activity, they find the modelling steps they need to follow.

• A model organization guideline: Here designers find how the model is structured
in term of UML packages and where each type of model element must be stored in
the UML Case tool.

Regarding process definition, the analysis resulted in the identification of a number
of limitations in the UML model (and the underlying engineering activities) regarding
the capture of structural, functional and behavioural aspects of the design.

Regarding process documentation material, the conclusions were that if required
information was available, it was vague and distributed in different parts of the two
documents. Therefore, it is hard to know when and where specific aspects must be
produced.

3.2 Design and Experimentation Phase

Our approach was to introduce modularity in the definition of the TAS work products
through defining a MDE component for each aspect of the design model work product
under consolidation. Each MDE component was defined as an IEEE 1471 Viewpoint
along the principles presented in section 2.

The following items are mandatory to fully define a MDE Component, which con-
tains all the required information for a Viewpoint definition. A document template
was defined for Viewpoint specification, containing the following sections:

1. Concerns: What is (are) the Viewpoint objective(s)?
2. Roles and Activities: Definition of Process activities for building the View. As

much as possible, the modelling language for process description should be the
SPEM UML profile, otherwise a textual description is allowed.

3. Language: Definition of the Viewpoint meta-model (concepts) and of the UML
profile6 (concrete notation) used for the Viewpoint.

4. Modelling Rules: Modelling guidance (how to use the profile for specific purpose)
is provided in natural language.

5. Model organisation: Definition of how the model is structured in terms of pack-
ages and where model elements must be stored.

6. Rationale: Definition of how the modelling and storing choices aim at fulfilling
viewpoint’s objectives and needs.

6 Mapping the Viewpoint meta-model to UML results in the UML profile.

 Tailoring IEEE 1471 for MDE Support 171

7. Viewpoint dependencies: A Viewpoint covers a subset of engineering concerns.
Covering all concerns means building a coherent set of viewpoints. Often, some
viewpoint will depend on another. By making the dependencies explicit, we allow
process designers to master their kind of “Viewpoints architecture”.

8. Analysis methods: Specification of the methods for analysing and verifying the
model, e.g. for quality, well-formed ness, performance.

A number of Viewpoints were identified in the TAS context, both within the scope
of the existing modelling practices and for extending these practices to cover the iden-
tified limitations. These Viewpoints are structuring vectors for both consolidating ex-
isting modelling practices and introducing MDE innovations. The identified View-
points are listed below:

• Structural Viewpoint: The core Viewpoint on which most of the other View-
points will be based. In this Viewpoint, essential architectural elements and rela-
tions are described along a component-based approach, using different concepts
depending on the abstraction level (system, component, class, interface, port, ser-
vice).

• Delegation Viewpoint: The Structural Viewpoint defines components with inter-
faces that offer services. This Viewpoint addresses the definition of interface ser-
vices realization across the different abstraction levels (from coarse grain compo-
nents to classes).

• Realization Viewpoint: All architectural elements must collaborate to at least one
functional or non-functional requirement. This Viewpoint specifies the collabora-
tion of architectural elements for requirement realization and the related behav-
ioural scenarios.

• Performance Viewpoint: In the real-time embedded domain, performance and,
more generally, technical dimensioning concerns are critical. This Viewpoint ad-
dresses the specification and verification of performances features using UML
techniques.

• Scheduling Viewpoint: This Viewpoint addresses the scheduling of the system
computations, in relation to the features of the underlying real-time multi-task plat-
form. This viewpoint is critical.

Structure, Realization, and Delegation viewpoints were produced and experi-
mented for all abstraction levels as a priority. The experimentation led to several it-
erations before obtaining satisfactory results validated by reviews including both end
users and Method and tools stakeholders.

3.3 Decision Phase

Each new or consolidated Viewpoint was presented to the process innovation Steering
Committee along with an analysis of its impact, costs and expected benefits. Struc-
tural and Delegation viewpoint innovations were accepted for short-term deployment
in a business context; the deployment of other innovations was delayed due to cost or
project schedule constraints.

172 E. Jouenne and V. Normand

4 Discussion

Our extended Viewpoint concept has proven a valuable tool for specifying in a modu-
lar way UML model work products in a MDE process.

Our Viewpoints are self-contained and coherent units that fully specify the model-
ing rules and practices for addressing a given engineering concern, at a given step of
the process, within a given model work product. Viewpoint dependencies are man-
aged explicitly, allowing the process engineer to master a kind of “viewpoints archi-
tecture”, controlling Viewpoint assembly and modification impacts.

The Viewpoint “template” is a valuable tool for unifying tooled-up process defini-
tion at company or department level, and for building capitalized MDE process assets.
A common Viewpoint typology can be defined, and a Viewpoint library can be de-
veloped. In the TAS context, the set of Viewpoints was first defined for the Weapon
navigation systems department; these viewpoints are currently adapted to fit the needs
and practices of the Maritime patrol system department.

The enabled modularity, based on the separation of engineering concerns, facili-
tates the management of the overall MDE process definition complexity for the
method designer, but also for the tool developer, for the user of the method and for
the manager in charge with deployment decision.

For the tool developer, the Viewpoint is a unit for managing process tooling
requirements, and for organizing tool facilities that can be assembled and deployed in
the tool chain for a MDE tooled-up process. For example, the TAS Delegation view-
point is used as an input for the specification of a dedicated set of helpers developed
as plug-able extensions to the UML modeler tool.

For the user of the method, a presentation of modeling practices along engineering
concerns may be easier to exploit, with regards to monolithic specifications.

This extended Viewpoint also seems a meaningful unit for MDE innovations intro-
duction in an engineering process. It federates in a unique repository all the stake-
holders required information. Articulating modelling practices around modular View-
points focused on engineering concerns allows managers to define priorities and to
incrementally deploy innovations, on a Viewpoint basis. The managers are provided a
clear view on the targeted engineering concerns, and impacts on legacy, cost and
benefits can be assessed separately.

5 Perspectives

The extended Viewpoint concept that was presented in this paper and applied in the
operational TAS context provides the basis for MDE methodological component as
defined in section 2.1. It takes the form of (meta) models and textual documents for
MDE process definition and documentation, and for process innovation management.
MIRROR is currently taking MDE components one-step further through developing
approaches for turning meta-models and profile constituents into productive assets for
tooled-up processes.

Meta-models are first-class constituents of MDE components. MIRROR is cur-
rently investigating the exploitation of the meta-models and profiles to automate dif-
ferent aspects of the production of tooled-up processes:

 Tailoring IEEE 1471 for MDE Support 173

• Generating the methodological documentation of described concepts: Con-
cepts constitute the language that will be shared between all stakeholders; they are
carefully modeled and documented. The meta-model is a concept repository that
can be used for generating different kinds of documents (training, glossaries, proc-
ess guidelines), alleviating the costs of document maintenance.

• Generating modeling tool extensions for syntactical checking of the model:
UML tools have built-in facilities for syntactical checks on basic UML; the model-
ing language defined for a given model in a MDE process defines specific model-
ing rules the checking of which requires dedicated tool extensions. These rules are
fully defined in the meta-model (concepts, relations, cardinalities and constraints).
Scripts for the syntactical checking of models can be generated out of the meta-
model information, for a given UML profile, and for a target UML modeler, thus
decoupling rule specification and UML modeler-specific script implementation.

• Generating productivity enhancement tool extensions: Using a UML profile in
a basic UML modeler often requires many costly tool manipulations for the end
user to set the proper stereotypes and tagged values. Users have to work at UML
level rather than at domain concepts level. Dedicated GUIs can be developed to
enable edition at this domain level; these wizards hide the UML details through
providing domain-level edition facilities. A large part of these wizards can be de-
duced from the meta-model information. MIRROR is exploring the usage of the
meta-model to generate GUI or contextual menus, decoupling concepts definition
from specific UML tool and specific UML profile usage.

Along with these automation perspectives, MIRROR is developing the different
dimensions of MDE methodological component storage, composition, versioning, and
deployment.

Last but not least, MDE components are work products of process assets develop-
ment. Then, a methodology for developing MDE component is mandatory to ensure
productivity and quality. We need a tooled-up process for tooled-up process defini-
tion.

Acknowledgement

We thank all Thales Airborne Systems members, especially Frédéric Maraux, Laure-
line Vagner, François Pennaneac’h, Patrice Colzatto, and Bernard Kerbiquet ,for their
contribution. We also thank all MIRROR project members, especially Benoit Lan-
glois, for their contribution and the time they spent in reviews.

References

[1] IEEE Architecture Working Group, IEEE Recommended Practice for Architectural De-
scription of Software-Intensive Systems,IEEE Std 1471-2000, IEEE, 2000

[2] MDA Components: Challenges and opportunity J.Bezivin, S.Gerard, P-A. Muller, L.Rioux
Metamodelling for MDA 24-25th November 2003 York

[3] Using the UML for Architectural Description. In Proceeding of <>'99 The Unified Model-
ing Language: Beyond the Standard. 2nd International Conference, pages 32--48, 1999

174 E. Jouenne and V. Normand

[4] THALES Systèmes Aéroportés : L’approche processus avec UML. J.Bargallo, F Maraux.
2e conférence annuelle d’ingénierie système AFIS. Toulouse 2001

[5] Practicall Experiences in the Application of MDA. M de Miguel, J Jourdan, S Salicki In
Proceeding of “UML” 2002 The unified modelling language. 5th International conference.
P128-139, 2002

[6] OMG. Model Driven Architecture (MDA) Guide v1.0.1 Document number ab/2003-06-01,
June 12, 2003.

[7] P. Desfray, “When a Major Software Trend Meets our Toolset, Implemented since 1994,
Nov 2001 - http://www.omg.org/mda/presentations.htm

 LNCS 3297, pp. 175 – 186, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Data Communications Standards: A Case for the UML

Otto Preiss, Tatjana Kostic, and Christian Frei

ABB Switzerland, Corporate Research,
5405 Baden-Daettwil, Switzerland

{otto.preiss, tatjana.kostic, christian.frei}@ch.abb.com
http://www.abb.com

Abstract. This paper argues for the UML as a means to rigorously specify data
models and communications services of industrial data communications stan-
dards. Such standards contain among others the syntactic and semantic descrip-
tion of the application data to be exchanged among devices and systems of dif-
ferent vendors. As a consequence of the growing number and complexity of
types of application data and their resulting specific communications services, it
becomes almost impossible to maintain specification consistency and avoid
ambiguities on the basis of informal, textual notations. By means of example,
this paper discusses the recently accepted IEC 61850 standard “Communica-
tions networks and systems in substations” and its shortcomings due to the lack
of formal notations. It is shown how many of these shortcomings can be over-
come and additional benefits provided through the use of UML models – models
that could ultimately find their way into the normative parts of such standards.

1 Introduction

Industrial automation is largely based on distributed systems, which increasingly have
to integrate products and applications of different vendors. In order to do so, many
domain-specific data communications standards (often called “protocol standards”)
are defined. This can be for domains such as manufacturing control, automotive control,
or control of substations and equipment which are part of our electric power systems.

In the past, protocol standards were rather simple. That is, they had a relatively
small number of data types defined and also a small number of types of application
communications services. Further, the data types were comparably simple and close
to what software programmers would call primitive data types. The mapping of the
application data items to underlying communications stacks was also rather straight-
forward, not at last because the standards usually defined all or the required layers1 of
a communications stack on their own.

This simplicity, however, has turned into complexity. The complexity has a num-
ber of reasons. (a) Structurally much more complex pieces of information shall be
exchanged. (b) More elaborate communications services are realized through the
adoption of communications techniques and service models that were introduced in

1 Layers in the sense of the 7-layer model of the ISO/IEC 7498 [1].

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

176 O. Preiss, T. Kostic, and C. Frei

standard information technology (IT). For example, this includes communications
techniques based on confirmed and unconfirmed services, elaborate event models,
security services, transaction support, remote procedure calls, etc. (c) It is desirable
that the communications standards can make use of existing communications layers or
profiles (such as Ethernet for physical and link layer, IP and TCP for network and
transport layer, etc.). However, these more complex pieces of information and more
complex types of services are still constrained by the soft real-time nature of the in-
dustrial control applications. As a result, the mix of domain-specific requirements
with the reuse of standard IT approaches and technologies leads to big, complex stan-
dards with many implicit and explicit dependencies among parts of such a standard.

In this paper, we argue that while in the past it was possible to specify and main-
tain data models of protocol standards based on informal, textual notations, it is now
simply impossible to do so. We support our arguments by comparing the “prose text
and table” approach of the IEC 61850 with a rigorous specification using the UML.
During our work, which consisted of the formalization of the IEC 61850 data and
service model, we identified numerous existing inconsistencies in the standard. We
also learned to appreciate the availability of a UML model during the development of
software that is in one or the other way using the IEC 61850 standard. As a further
motivation for UML models, we should not forget that it is the software developers
who need to understand the specifications written mainly by substation domain ex-
perts. Hence, to avoid the many possible interpretations of software developers, a com-
mon language for specification should be chosen that facilitates the developers tasks.

The rest of the paper is structured as follows: Sections 2 and 3 briefly introduce the
application domain and the IEC 61850, respectively. By means of one concrete ex-
ample, Section 4 compares the specification of the IEC 61850 application data model
“as-is”, i.e. through informal text and tables, with a UML-based specification. Section
5 lists the specific advantages of the UML approach, before Section 6 concludes with
a short summary and outlook.

2 Application Domain

Electric power networks (power grids) are vast systems that are responsible for trans-
porting energy from generation sites to end-consumers such as individual households
or larger industries. The nodes in such a network are called substations and take over
the voltage transformation and/or the routing of energy flow by means of the installed
switchgear (e.g. transformers, circuit breakers). Substations are controlled by Substa-
tion Automation Systems (SAS), which are composed of all the electronic equipment
that continuously control, monitor, and protect the network and its high voltage
equipment, so as to avoid unplanned electricity outages.

An SAS can be classified as a distributed soft real-time system and as such is one
possible type of data acquisition and process control system. It is usually composed of
20 to 100 Intelligent Electronic Devices (IED) which are connected by a high-speed
communications network with possibly routers and gateways. Any device that can run
executable code and provides a data communications interface would classify as an
IED (e.g. an intelligent sensor, an embedded device, a programmable controller, a
workstation PC). While some real-time critical functions are executed more or less

 Data Communications Standards: A Case for the UML 177

autonomously on a single IED, other functions are realized in distributed form over
many IEDs. However, even the functions running on a single IED are expected to
communicate with the outside world, e.g. to provide some status information to
operators.

A communications standard is required to be able to exchange application data
among IEDs, particularly among IEDs from different vendors, in a predefined way.
This is needed to prevent costly, project-specific hardware and software develop-
ments. The IEC 61850, discussed in the next section and called the standard in the
sequel, is the first comprehensive and recently accepted standard in the Substation
Automation (SA) domain.

3 The IEC 61850 Standard: Communication Networks and
Systems in Substations

The IEC 61850 set of documents [2] is divided into ten parts (Part 1 - Part 10) but
content-wise circles around five major topics, where all but the functional model have
a normative character:

• Functional modeling: a functional model of the SA domain is conceived, but is
mainly used to derive the quality of service requirements on the communications
system (standard’s Part 5). However, it implicitly documents the authors’ think-
ing, i.e. their conceptualization of the relevant aspects of the SA domain.

• Data modeling: a data model for SAS is defined. It defines the syntax (naming
scheme) and semantics of the application level data that can be exchanged in SA
systems (Parts 7-2, 7-3 and 7-4).

• Communication service modeling: a communications service model defines the
different ways of accessing data of IEDs (Part 7-2).

• Communications protocol stacks: the communication services and data models are
mapped to concrete data communications protocol stacks (Parts 8 and 9).

• SAS engineering and testing: an XML based Substation Configuration Language
(SCL, Part 6) is defined to describe the substation and the automation system to-
pology, as well as the communications–relevant configuration data of IEDs. Part
10 describes the recommended conformance testing for IEC 61850 compliance.

The standard implicitly introduced a terminology that we conceptualized and ex-
plain with the help of Fig. 1 and Fig. 2. We will only briefly visit those concepts that
are relevant to the discussion in this paper. A more detailed discussion is available in
[3] and, of course, in the standard itself.

The functionality of a substation automation system is described by a “logical sys-
tem” that is comprised of the set of functions that operate in the substation environ-
ment. This is seen on the left branch of the conceptual model in Fig. 12. Functions can
be thought of as high-level system operations, e.g. “open a high voltage switch (called
breaker) to de-energize an overhead line”. Functions are conceptually realized by
(collaborations of) primitive, atomic functional building blocks, the so-called Logical

2 The role annotations of associations are used to support the reading of the conceptual dia-

gram, e.g. a Function is "+distributed over" 1…n Physical Devices.

178 O. Preiss, T. Kostic, and C. Frei

Nodes (LN). The standard identifies some 90 predefined types of logical nodes in Part
7-4. The physical configuration of an SAS is modelled as a distributed system of
interconnected devices, typically IEDs (right branch of Fig. 1). A certain SAS func-
tion is considered distributed, if it is realized through the deployment of its collaborat-
ing LNs to two or more IEDs (see also Fig. 2, where Function XYZ is realized by four
LNs). LNs are logically connected by the concept of a Logical Connection (LC). In
software architectural terms, an LC represents the connector between LNs, i.e. it mod-
els a communication association and thus abstracts the protocol of interaction between
two LNs [4]. The abstract communications services are defined for LNs (Part 7-2)
through the envisioned types of LCs.

High voltage
device

Device

Physical System

1..n1..n

Substation Automation System

11

Logical System

11

Physical Device
(PD) or IED

Physical Connection (PC)

2

1..n

2

+connected by
1..n

Data Object (DO)

Logical Connection (LC)

0..11..n

+map to

0..11..n

+exchanged over

1..n +realized by

Function

1..n1..n

1..n

+distributed over

1..n

Logical Node (LN)

11..n

+run on

1

+hosts

1..n

1..n

1

1..n

1

1..n

2

1..n

+connect 2

Fig. 1. Conceptual model of the key terms used in the IEC 61850

The application data, which is exchanged over LCs through the defined types of
communications services, is modeled and described by the concept of a Data Object
(DO). Hence, it is the LNs that have abstract communications services specified and
contain Data Objects, which they can make available as part of a data exchange. A
Data Object defines the structure and the semantics of the exchanged data items in the
form of a well-specified, domain specific, abstract data type. The standard defines
about 30 specific types of DOs. These predefined types are generally called Common
Data Classes (CDC) and are described in Part 7-3.

For easier understanding, Fig. 2 depicts an instance diagram with a fictitious usage
of the concepts as shown in Fig. 1. Theoretically, the components of the logical sys-
tem have no predefined allocation to the components of the physical system, i.e. LNs
may be distributed in any way and thus are not bound to certain types of IEDs. Practi-

 Data Communications Standards: A Case for the UML 179

cally however, the performance-related requirements together with the limited physi-
cal resources (network bandwidth, processing power) constrain the number of feasible
mapping scenarios.

IED2

LN = Logical Node
LC = Logical Connection
PC = Physical Connection
IED = Intelligent Electronic Device

Function XYZ

IED1 IED3

LN1 PC2

PC1

LC3

LC1

LN4

LN2

LN3

High Voltage Equipment

LC4

LC2

Fig. 2. An SA function is realized by a set of collaborating LNs distributed over IEDs

4 Text-and-Table Versus a UML Model: An Example

The previous section introduced two key concepts: Logical Nodes (LNs), which con-
tain Data Objects, and Common Data Classes (CDCs), which are defined types of
Data Objects. CDCs represent substation domain specific, complex data types, which
are composed of other complex or primitive data types. Both LNs and CDCs have
abstract services defined that enable access to their data contents down to the level of
their primitive attributes. These three fundamental concepts (LNs, CDCs and ser-
vices) are specified throughout the Parts 7-4, 7-3 and 7-2 of the standard, respectively.

In this section, we illustrate with an example of one concrete LN, called XCBR,
how this LN is actually defined in the standard and how we have modelled it in the
UML. XCBR is a type of an LN that represents a circuit breaker. The latter is a high
voltage current interrupting device (think of it as a “very big” light switch). It can be
used to energize/de-energise (“switch on/off”) a high voltage line feeding a big city.

In Section 4.1, we first show how the XCBR is defined in the standard and what the
procedure is to find the relevant, normatively defined, parts of its specification. In
Section 4.2, we then show and discuss the formal UML model for this same XCBR.

4.1 Text-and-Table Definition of the Logical Node XCBR

Fig. 3 illustrates a part of the definition of the XCBR Logical Node, in the form of
tables, which are spread throughout different documents (i.e. throughout different

180 O. Preiss, T. Kostic, and C. Frei

parts) of the standard. For easier reference in the following discussion, we have added
sequence numbers (filled numbered circles) in Fig. 3 to those points that are being
emphasised.

Part
7-4

Part
7-4

Part
7-2

Part
7-3

1

3

5

7

6
4

2

8

9

Fig. 3. An excerpt of the XCBR Logical Node definition from three parts of the standard

The main table for XCBR (circle number 1) is defined in Part 7-4 and it is the place
to start. It specifies the attributes of an XCBR, i.e. their names and types, a textual
explanation, and their cardinalities (mandatory or optional in the column “M/O”3).
The first attribute of XCBR is its name, LNName. It is said to “be inherited from Logi-
cal-Node Class”, which is defined in Part 7-2 (circle 2). This “inheritance” refers to a
definition of a generic structure for any LN, including the definition of the name at-
tribute. We omit further details to not make matters more complicated. The list of
Data Objects contained in an XCBR is referred to as the “Data” section in the main
table. Individual Data Objects are listed by and distinguished through their “Attribute
Name”. The first, but empty (i.e. not named and not typed), attribute/Data Object
stands for “all Mandatory Data from Common Logical Node Class”. This informally
points to another table (3) in the same part of the standard, which defines the so-called

3 The column “T” is out of scope of this discussion.

 Data Communications Standards: A Case for the UML 181

Common Logical Node class (4), a kind of a root type LN. According to the explana-
tion in this table, one can conclude that the first empty attribute of XCBR stands for
the four mandatory Data Objects in table (4): Mode, Beh, Health and NamPlt.
The next 6 Data Objects are optional in this table, but their usage in concrete LNs is
defined in the standard as follows: “These optional data can be (a) inherited as man-
datory, (b) inherited as optional, or (c) not inherited at all.” In the case of XCBR, two
of these attributes are inherited as mandatory (Loc, OpCnt), two as optional (EE-
Health, EEName), and the remaining two are not inherited at all. This same table
(4) specifies other concepts common to all LNs, including services, which are defined
again in another document, namely in Part 7-2 of the standard (5).

Back to the main table for XCBR, we focus now on one Data Object: Pos. Pos
stands for position (“switch on or/off”). Its type is that of a DPC. The latter is one of
more than thirty CDCs defined in Part 7-3 of the standard (6). The structure of a DPC,
and of any other CDC, is somewhat different from that of LNs, but we do not enter
into those details here. Based on the example of the DPC, we only want to emphasize
some points, which apply to any CDC in general.

The attribute names of a DPC start with an initial lower case letter, in contrast to at-
tributes of LNs, which start with an upper case letter. Attributes of a DPC may be of
either composite or primitive type. Primitive types are defined again in another part of
the standard. In the example of a DPC, some of its attributes (e.g. “ctlVal”) are of
type BOOLEAN, which is again specified (7) in Part 7-2 along with other primitive
(and some composite) types.

Finally, the services applicable to a DPC are defined in still another table (9) within
the same document.

If the above description was hard to follow, we should emphasise again that the
example was not made up by us (it even represents a rather simple case) but simply
reflects how the standard is currently written and released. It goes without words that
room for interpretation and human error is ample.

Note, as an example of a human error even in the standards definition, consider the
bold frames around the definitions for the stVal and subVal attributes of DPC (8).
It has gone unnoticed that the CODED_ENUM attribute type has no explicit type defini-
tion at all. Nevertheless is it “copy-pasted” from table to table and appears in several
CDCs without any further definition as to how its semantics (intermediate-
state|off|…) is represented syntactically.

4.2 UML Model of XCBR

The above short example should have given a feeling on how difficult it may be to
grasp the high level concepts, and consequently to find ones way across the tables
spread throughout the different parts of the standard. Added to the “navigation” com-
plexity is the inconsistent nomenclature used, such as the meaning of inheritance,
class vs. type, and Data vs. Data Object vs. attribute. Note, we have shown only one
part of the definition of an XCBR Logical Node and of a DPC Common Data Class.
Several more concepts have not even been mentioned. The current “as-is” specifica-
tion is all but easy to unambiguously interpret by software engineers. But it is them
who ultimately must implement software that is compliant with the standard.

182 O. Preiss, T. Kostic, and C. Frei

Motivated by the need to understand the standard and to make it accessible to soft-
ware engineers, we have developed a UML model [5] (in the sequel: the UML model),
which formalises the data and the service model of the IEC 61850. Fig. 4 shows an
extract of the UML model. It only illustrates the UML representation of those
concepts that were discussed in the XCBR example of the previous section. We have
again added sequence numbers to ease the discussion, and we did it in such a way that
they correspond to the numbered topics from Fig. 3.

Domai nLN

Mod : INC_ModeBehaviour
/ Beh : INS_ModeBehaviour
Health : INS_HealthState
NamPlt : LPL

(from DomainLNs)

SPC
(from CDCStatusCtl)

DPL
(from CDCDescription)

INS_HealthState
(from CDCStatusInfo)

GroupX

Loc : SPS
OpCnt : INS
Pos : DPC
BlkOpn : SPC
BlkCls : SPC

0 ..1

+ChaMotEna

0 ..1

0..1

+EEName

0..1

0..1

+EE Health

0..1

BCR
(fr om CDCStatusInfo)

INS_BreakerOperatingCapabi lity
(from CDCStatusInfo)

INS_POWS wit ch ingCapabilit y
(from CDCStatusInfo)

XCBR

CBOpCap : INS_BreakerOperatingCapability

0..1

+SumSwARs

0..1

0 ..1

+MaxOpCap

0 ..1

0..1

+POWCap

0..1

Domai nLogi calNode
(from ACSI_LogicalNodes)

LogicalNode

LNName : ObjectName
LNRef : ObjectReference

GetLogicalNodeDirectory()
GetAllDataValues()

(from ACSI_LogicalNodes)

Part 7-4

Part 7-3

Part 7-2

1

2

3

4

5

86

Fig. 4. UML class model of the Logical Node XCBR

The XCBR LN is a concrete type (1) that belongs to the inheritance hierarchy hav-
ing as its root type the abstract type LogicalNode4. This root type has defined
attributes (2) and defined services (5), which are common to all LNs (as specified in
Part 7-2 of the standard). There are three basic types of LNs, but only the one relevant
for XCBR, DomainLogicalNode, is shown in Fig. 4. For brevity, we did not even
enter into this discussion in the previous section.

According to the definitions in Part 7-4, we model the Common Logical Node as a
DomainLN (4), which groups the mandatory attributes (3) common to all concrete
domain LNs. The standard defines XCBR within one of 13 groups of LNs, GroupX
(again a finesse we have not mentioned in Section 4.1). This abstract supertype
groups the attributes common to all the LNs within the group X.

In general, we model mandatory attributes, such as the Data Object Pos (6) in
GroupX, as UML class attributes. Optional attributes are modelled as containment
relationships of cardinality 0..1, where the role name is the name of the optional at-

4 Note that we use the term type not in the restricted UML sense of a <<data type>> but in

general as an object type. This permits the use of UML operations.

 Data Communications Standards: A Case for the UML 183

tribute. An example is EEHealth, defined as optional for all LNs from GroupX.
Following this convention, we can see that the XCBR defines one mandatory and three
optional attributes.

The types of LN attributes are the CDCs, in Fig. 4 either shown explicitly as class
boxes or as type definitions of class attribute names, in which case the class boxes are
omitted in the figure for brevity. As an example for the former consider the
GroupX’s optional attribute EEHealth, whose type is INS_HealthState (8).
As an example for typed class attributes, consider the previously discussed DPC type
for the mandatory attribute Pos (6) of GroupX. All CDCs, which are defined in Part
7-3 of the standard, have their own detailed class representation.

If you recall our remark on undefined enumerations in Section 4.1, we should men-
tion that the type INS_HealthState (8) is a CDC, which we introduced to cir-
cumvent this problem. We defined INS_HealthState as a specialisation of INS
(the type as defined in the standard). In this specialized version, we explicitly incorpo-
rated the definition for the particular type of enumeration type. Hence, the (8) in the
unfilled circle means that, opposed to the (8) in Fig. 3, the UML model explicitly
defines enumerated types.

In Fig. 4, we do not show the detailed class definitions of CDCs such as DPC or
INS_HealthState. Their structure is again based on inheritance and containment
constructs and as such conceptually similar to that of the discussed XCBR. The de-
tailed specifications are of course part of the full UML model [5].

5 Benefits of the UML-Based Approach

The example in the previous section has shown only a part of the definition of one
type of Logical Node. The standard defines about 90 LNs, each having in average
some 20 Data Objects. There are about 30 defined types (CDCs) of Data Objects.
Each CDC has in average 20 attributes, half of them being again of some complex,
composite type. The complex type definitions span across two more levels of con-
tainment. In addition to the LNs and their Data Objects, the standard defines a number
of other aspects of LNs, which we have not discussed at all. All this may give an idea
about the size and the complexity of the definitions in the standard. To give an intui-
tion for the size, our UML model, which captures large parts of the current data
model, consists of more than 900 classes with their respective associations.

In that context, it is easy to imagine that benefits arise in the development and the
maintenance of the standard as well as in the use of it. In particular, we would like to
stress the following points:

(1) CASE tool support: The rigorous UML model, maintained with a CASE tool,
inherently provides consistency with respect to the defined “vocabulary” (concepts
and concept relationships). Based on this, tools may then provide a wealth of features
such as pop-up menus to select available types, support propagation of changes, etc. It
is also easy to display for a specific type all the attributes (inherited or not), opera-
tions, associations and their cardinalities. This facilitates checking of the logical cor-
rectness of the type definition. The possibility to selectively display the model ele-
ments of interest on a class diagram allows one to create complex diagrams, such as

184 O. Preiss, T. Kostic, and C. Frei

the full version of what is depicted in Fig. 4, while keeping their partial display man-
ageable. CASE tools can usually provide complementary views of the model on the
same screen. For instance, UML diagrams, the model browser, and the model element
documentation may appear simultaneously. Consequently, it is easy to navigate be-
tween a UML model element in the browser and its representation in a class diagram,
while still having informal, textual annotations of the selected element. Providing the
same level of checking and comfort for the informal definitions based on text docu-
ments, even with an elaborate hyper-linking scheme, is almost impossible.

(2) Model maintenance and extensions: The formal model makes the model main-
tenance easier. It allows for consistent modifications from one version of the standard
to another. For instance, if a type name is to be changed, it is done and potentially
documented at one place within the model. This supports impact analysis and regres-
sion testing of planned modifications. Contrast this to the changes necessary at several
places in at least three documents in the standard and the subsequent activities to
assess further implications. A further argument for the UML model is the ease for
programmers to extend the model with potential private, vendor specific extensions
while preserving the compliance with the standard and its base model.

(3) Code and documentation generation: UML models can be used for code gen-
eration, which includes the direct use of inheritance relationships defined in the
model. CASE tools also usually support roundtrip engineering. Both features facilitate
the developers’ tasks. Finally, the model documentation and, if needed, the code
documentation can be automatically generated from the same model. For instance,
with the use of advanced documentation plug-ins, we were able to reproduce the text
and table look of the standard from the UML model. Moreover, other representations
can be produced automatically, such as XML (with some limitations obviously) or
RDF schemas for data serialization.

 (4) Formal data mappings or conversions to other standards: The devices and
applications, which implement the IEC 61850 specification, are not restricted to the
substation automation domain. They have to inter-operate with systems and applica-
tions in the entire electric utility environment. In that sense, they do not only commu-
nicate with each other within a substation, but also with network control centres or
even back-office applications. The UML model allows one to specify mappings to
other existing UML models in a formal way. An example of such a mapping of the
proposed UML model for the IEC 61850 was our mapping to CIM (Common Infor-
mation Model). Details can be found in [6]. CIM specifies a data model as part of an
IEC standard (IEC 61970 [7]) for electrical network control centres. Another mapping
of the data model is that to lower communication layers. For instance, the UML
model of the IEC 61850 should also facilitate a formal mapping to the MMS
(Manufacturing Messaging Specification [8]). MMS is indeed one of defined
application layer protocols defined in the IEC 61850. Hence, the standard defines
appropriate communications mappings in Part 8-1, but again in text-and-table fashion.

Note that we might have achieved a similarly rigorous specification with the use of
the SDL. SDL is a Specification and Description Language standardized as ITU (In-
ternational Telecommunication Union) Recommendation Z.100 (for a collection of
links to SDL material see [9]). However, the SDL has its strengths and emphasis
clearly on system behaviour and structure modelling but less so on data modelling.

 Data Communications Standards: A Case for the UML 185

Further, SDL is less widely used and known by software engineers and also by sub-
station domain specialists; in addition, its data part has no advantages over the UML.
Hence, suggesting SDL to a community that is currently not using specification lan-
guages for data modelling at all would significantly lower the chances of being ac-
cepted.

6 Conclusion

We have illustrated with an example how an informal “text and table” definition of a
data communications standard can be formalised using a UML-based representation.
The benefits of such a formalisation are numerous and take advantage of the power of
CASE tools. Such tools support easy navigation in the model, validation (typically,
unknown classes will be identified immediately), and consistent maintenance (which
is probably the hardest to meet with standards provided in text-and-table form). For
instance, since 2002, when we started to model early drafts the IEC 61850 standard,
we were able to identify many inconsistencies and problems. Over a hundred com-
ments were sent to the IEC 61850 authors. Some of them were incorporated “as is” in
the standard while others triggered discussions and clarifications. To give an intuition
for the importance of consistency and un-ambiguity based on anecdotal evidence, we
can mention that the first interoperability test between IEDs of different vendors was
postponed after a week because, among others, there were too many (valid) interpre-
tations that the different vendors took and implemented.

Besides validation support, software code (at least the skeleton, including the pro-
file of the methods) can be generated automatically, thereby reducing the effort of
developers and avoiding mistakes. Additionally, for those not familiar with UML
CASE tools, text documentation can be generated automatically too, and be it in a
stylish text-and-table format, if so expected by domain experts. Additional models,
such as data serialization formats, can also be produced automatically. The UML then
serves as the master model containing all definitions and comments. Further, a UML
model can be used to specify mappings to other existing UML models (e.g. defined in
related standards) in a formal way, and therefore can serve as a formal documentation
for application integration.

As mentioned above, our findings were continuously submitted to the IEC, and the
UML model was made known to IEC editors . By this, we hope that the UML model
(or parts of it) is at least non-normatively included in the upcoming releases of the
standard. In general, the consistency validation and maintenance of the standard’s
evolution would be greatly improved. We also hope that in the future, the standardisa-
tion bodies defining non-IT domain standards, such as the IEC 61850, will consider
involving software experts in the specification process right from the beginning. They
could largely support domain experts to express their domain knowledge in a more
precise way, so that the primary users of the specifications, mainly software develop-
ers, are able to correctly interpret, design and implement products compliant to the
specification.

Note that, besides some areas of telecommunication where the SDL is being used,
the IEC 61970 standard [7] is pursuing this path: the whole data model (CIM) is being
defined in UML and it is the UML model, with its annotations, that is going to be
normative.

186 O. Preiss, T. Kostic, and C. Frei

References

1. ISO/IEC 7498-1:1994: Information technology – Open Systems Interconnection – Basic
Reference Model: The Basic Model

2. IEC 61850:2003: Communication networks and systems in substations, Part 1 to Part 10,
International Electrotechnical Committee, Geneva, 2003

3. Preiss, O., Kostic, T., Frei, C., The major abstractions and models of IEC 61850, ABB
Switzerland Ltd., Corporate Research, TR ABB CH-RD 2003-26, November 2003

4. Shaw, M., DeLine, R., Zelesnik, G.: Abstractions and Implementations for Architectural
Connections, In: Proceedings of the Third International Conference on Configurable Dis-
tributed Systems, 1996

5. Kostic, T., Preiss, O.: IEC 61850 UML Model, Rational Rose model file,
IEC61850_Apr2003.mdl, v.5, ed. Daettwil: ABB Switzerland Ltd., Corporate Research,
November 2003 (contact the authors)

6. Kostic, T., Preiss, O., Frei, C.: Towards the Formal Integration of Two Upcoming Stan-
dards: IEC 61970 and IEC 61850. In Proc. of the 2003 LESCOPE Conference, Montreal,
Canada, 7-9 May, 2003, pp. 24-29

7. IEC 61970: Energy Management System Application Programming Interface (EMS-API),
draft Standard, International Electrotechnical Committee, Geneva, Oct. 2002. [Online].
Available: ftp://epriapi.kemaconsulting.com/downloads

8. ISO 9506-1 and ISO 9506-2: Industrial automation systems – Manufacturing Message
Specification; first edition, 2000-08-15

9. SDL Forum Society: Home page. Available at http://www.sdl-forum.org/

 LNCS 3297, pp. 187 – 197, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Experiences in Modeling for a Domain Specific Language

Steve Anonsen

Microsoft Corporation
sanonsen@microsoft.com

Abstract. Building models with a domain specific language enables targeting
specific platform and framework functionality. We built a domain specific lan-
guage for use in modeling applications targeting our business application
framework. Such models are used for tasks including generating C# code and
producing object-relational mappings for business objects. The paper briefly
describes the framework and its accompanying domain specific language and
then describes issues we encountered in using an unconstrained UML tool to
express our models, solutions we developed to deal with those issues and ob-
servations about the suitability of UML for application to such problems. We
found that making a general-purpose, extensible modeling language serve the
needs of a targeted domain specific language is a lot of work and is only par-
tially successful. We conclude that what is needed is a more general purpose
framework for creating domain specific languages and tools for them.

1 Introduction

Object modeling has proven its value in application development, especially when the
models are used after the design and analysis phase to implement the system and even
at application runtime in a model-driven approach.

We used such an end-to-end model-driven development strategy to construct a web
portal to extend two different Microsoft product lines: the Great Plains and Solomon
financial management solutions. These solutions automate essential business func-
tions such as financials (general ledger, receivables and payables), human resources,
distribution (for managing inventory, ordering and purchasing) and manufacturing.
They are ERP (Enterprise Resource Planning) applications for medium-sized busi-
nesses.

Given the diverse needs of businesses it is common for general applications such
as those described above to be supplemented with third party software to manage, for
example, the unique needs of an industry such as dry cleaning. A community of sev-
eral hundred ISVs provides companion products for each of the product suites.

All of these applications and companion ISV products collectively are specific ex-
amples of applications in the business application domain. We created a business
framework1 for constructing new applications in this domain or for supplementing
current business applications with portal and other functionality. The framework is

1 Called the Business Portal SDK given its use for authoring web portals. However, it is not

limited to portals—it is a general purpose framework for authoring business applications.

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

188 S. Anonsen

built on the Microsoft .NET Framework and its Common Language Runtime. Tools
for the framework are integrated into Microsoft Visual Studio.

At their heart, business applications are on-line transaction processing applications
that manage business data. In the interest of brevity this paper looks just at the busi-
ness data aspects of the applications and framework, though business applications
(and the features of the business framework) consist of much more, including user in-
terface, reporting and analysis of data, customization, business logic, business process
and business rules.

This paper focuses on issues in modeling applications for the business framework
and solutions we provided for those issues. It starts with an overview of the domain
specific modeling language (sec. 2) used to describe the structure of application data
along with the UML-based visualization of the language (sec. 3). The framework im-
plementing the semantics of this language and its supporting tools are then briefly de-
scribed (sec. 4). Finally the paper sets out the problems we encountered and the solu-
tions we developed for them (sec. 5) and concludes (sec. 6).

2 The Domain Specific Language

We developed a set of abstractions that are useful as the fundamental building blocks
for business applications, built tools for describing applications using them and built a
framework that implements their behavior. This set of abstractions and the rules con-
cerning how they relate to each other make up a small modeling language for describ-
ing business applications that run on the business framework. It is an example of a
domain specific (modeling) language, or DSL.

This business framework DSL is built to be very familiar to object modelers and
those conversant with entity-relational diagrams. Some core abstractions for describ-
ing the structure of data are entity, property, identifier and association. These abstrac-
tions are elements of models for applications targeting the business framework.

An entity is an instance of some entity type, which is a type that has a durable iden-
tity by which it may be referenced. An entity type can inherit from another entity
type. Examples include Customer, Order, Product and Warehouse.

An entity has one or more data members called properties. For example, properties
on a Customer entity include its ID, name, address and credit limit.

An entity identifier is one or more properties of an entity that together uniquely
identify an instance of that entity type. (This is analogous to a database key.) For ex-
ample, the identifier for the Customer described above could be its ID property.

An association relates two2 entities to each other and an instance of an association
is a link. An association consists of two ends, each indicating an entity type, a multi-
plicity of that type, whether the association can be navigated from that end through in-
troduction of a property, and so forth. For example, one Customer is associated to one
or more Orders and it is possible to navigate from Order to Customer, but not from
Customer to Orders.

A composition is an association that also introduces a parent/child relationship be-
tween two entities. The identity of the child need only be unique within its parent and

2 N-ary associations were not allowed because the UML tool did not support them and they

were not required for the application.

 Experiences in Modeling for a Domain Specific Language 189

removal of the parent also removes the children. For example, an Order (the parent)
has an OrderLine (the child) for each product being purchased on that order.

An association entity is an association that has properties and the other characteris-
tics of an entity. It can be viewed either as an association or an entity, depending upon
context, because it has all of the characteristics of both. For example, the Product-
Warehouse association entity associates a Product with a Warehouse and has a Quan-
tity property to track the quantity of a product at a given warehouse.

Attributes on each of these elements further describe them. For example, each ele-
ment has a name attribute and the property element has a visibility attribute with the
possible values of public, private, protected, family and family protected. It is at this
point that we see how the Microsoft .NET Framework’s Common Language Runtime
(CLR) contributes to our DSL. Since an entity is implemented with a CLR type and
an entity property is implemented with a CLR property, the DSL is shaped to fit the
CLR—the ultimate runtime environment. This was an intentional choice, as it allows
models used for design to seamlessly serve the application author at implementation
and runtime, as described later.

The business framework DSL also has well-formedness rules that define what ele-
ments can be combined and in what ways. For example, it was not legal to create an
association to a child entity in the first release of the framework.

While the above is sufficient description to support the rest of the paper, there are
many other details of the DSL that are not discussed here.

3 Specifying and Visualizing Business Framework Models

A business application targeting the business framework is described with a business
framework model—that is, a model expressed in terms of the business framework
DSL described above.

Fig. 1. Example business framework UML diagram

190 S. Anonsen

We developed a convention allowing the use of UML class diagrams for business
framework models that we implemented in Rational XDE. Figure 1 illustrates several
parts of the convention.

The DSL was expressed in UML by using the UML stereotype and tag definition
extensibility mechanisms.

Table 1. Mapping from business framework DSL to UML

DSL Element UML Visualization
Entity Class with «BusinessEntity» stereotype
Property Attribute
Identifier Attribute with «id» stereotype
Association Association
Composition Composition
Association Entity Association Class with «BusinessEntity» stereotype
Additional
Element Info

Tagged values or, in limited cases, a stereotype (such as
in the case of identifier)

At times aspects of the business framework DSL differed from UML. Properties
are a case in point. In the CLR a property is effectively two methods: a getter (called
when the property is read) and a setter (called when the property is written). A prop-
erty is read-only if it has no setter. Further, the getter and the setter each have their
own visibility3. Possible values are public, private, protected, family and family pro-
tected. UML attributes are different; they are read-write and the standard access modi-
fiers are public, private, protected and (in later versions) package. (The semantics of
these access modifiers are also slightly different between UML and the DSL, even
where their names are the same.)

Where the DSL conflicted with UML, we either reinterpreted standard UML ele-
ments or added new tag definitions to a UML profile that was built specifically for the
business framework.

A UML profile is a UML extensibility mechanism that defines additional tag defi-
nitions for standard model elements. It also defines set of stereotypes, each with a re-
lated set of tag definitions; applying the stereotype to a model element adds the re-
lated tag definitions to the model element.

In Rational XDE, applying a UML profile to a model makes those stereotypes and
tag definitions available for use in that model. Rational XDE is tightly integrated into
Microsoft Visual Studio, so when clicking on a model element in an XDE diagram all
of the tag definitions for that element appear in the Visual Studio property sheet. Thus
when a class is stereotyped, say with «BusinessEntity», the tag definitions related to
that stereotype appear in the property sheet when the class is selected on a diagram.

UML profiles have their limits. They are additive only—it is not legal to in any
way change the semantics of standard UML elements, stereotypes or tag definitions or

3 This capability was not available in C# in the Microsoft .NET Framework 1.1. It is supported

by the CLR and is added to C# in the beta of the next release of the framework.

 Experiences in Modeling for a Domain Specific Language 191

to remove4 them. That was a source of error for developers. Further, profiles do not
teach modeling tools how to deal with a stereotyped element. UML profile constraints
would mostly be a help for model validation rather than model construction (had XDE
supported them). What is needed is a mechanism that defines how a tool should proc-
ess new elements, but the UML standard does not satisfy that need.

4 The Business Framework and Tools

Application description information contained in the model is used both at design
time and at runtime. Metadata is the term we use for this application description in-
formation.

The business framework provides a set of Visual Studio-based tools that use the
metadata in business framework models to, for example, configure and direct code
generation. When an entity is selected on a diagram (i.e. a class stereotyped with
«BusinessEntity»), options are made available to generate code or map the class to a
database with an object-relational mapping tool.

A typical approach developers use to create an entity for use in an application in-
volves four tasks: (1) model entities and associations using a class diagram in XDE;
(2) generate entity code using the code generator; (3) map entities to the database us-
ing the object-relational mapping tool; (4) and build entities and deploy. The model
captures enough metadata that in many cases no coding is required—the code genera-
tor can do the work. The build and deploy task writes the metadata into a form that
the business framework runtime can easily and quickly use.

The business framework runtime consists of class libraries and a set of runtime ser-
vices that leverage metadata, including:

• Base classes for entities and other framework abstractions; uses entity meta-
data.

• An object-relational engine for reading, writing and updating entities; uses ob-
ject-relational map and entity metadata.

• The ability to save an entity query by name and execute it from a web service;
uses entity metadata.

• A user interface toolkit for building portal pages containing forms or the re-
sults of queries; uses entity and association metadata.

• A viewer for ad hoc query of entity data; uses entity metadata.
• A navigation service that indicates the entities associated to a given entity and

allows traversing to them; uses association metadata.

This metadata is also used by runtime tools. For example, creating a portal page
involves three steps that can be accomplished by an end user: (1) use the query
builder to define named queries against the entities; (2) create web parts (i.e. “page-
lets” or parts of a web page) to show the results from executing a named query; (3)
combine web parts together into a portal page or pages.

4 However, a tool can hide elements. A UML profile specifies the subset of the UML meta-

model that it extends. A tool could hide or filter UML elements not in that subset, though the
version of XDE we used did not support doing so. See also footnote 5.

192 S. Anonsen

Rather than using the runtime tools a developer can directly use the entities to write
their business applications. They might use WinForms or ASP.NET to build their user
interface or use the entities to implement a web service in the middle tier.

5 Problems Encountered and Solutions

This section describes the problems we encountered, how we addressed them and
some commentary about the root issues behind the problems.

5.1 Model to Code Synchronization

Initially, we attempted to use the capabilities of Rational XDE to generate code and
handle synchronization between model and code. However, the version of XDE we
used was too slow, did not allow sufficient control over generated code (e.g. where
code was poorly formatted we could not fix it) and it reverse-engineered implementa-
tion artifacts back into the model. We ultimately solved the problem by writing our
own code generator.

Two factors lay behind the difficulties in reverse-engineering from code to model.
First, UML as a general purpose language does not understand features of the CLR
such as properties. Second, the model and code are at two different levels of abstrac-
tion. We saw the impact of these factors when reverse engineering properties. Table 2
shows the original Order entity (left column), the code generated from that model
(center column) and the entity after reverse engineering the code back to the model
(right column).

Table 2. Effect of round-tripping an entity model using XDE

Model Before Generated Code Model After

class Order : BusinessEntity {
 private string id;
 private DateTime date;
 private decimal total;

 public string ID {
 get { return id; }
 set { id = value }
 }
 public DateTime Date {
 get { return date; }
 set { date = value }
 }
 public decimal Total {
 get { return total; }
 set { total = value }
 }
 // other code here...
}

 Experiences in Modeling for a Domain Specific Language 193

UML does not have the notion of a property as a get and set method. The XDE
generator required changing the level of abstraction of the model to be closer to the
implementation of a property.

While UML extensibility is sufficient to deal with simple extensions to its capabili-
ties, it could not deal with this level of change. One could fault XDE here, but it is
one of the more capable and extensible UML tools available. Few tools do as well as
it does with this sort of problem. Ultimately UML extensibility is not rich enough to
change the behavior of tools in any but the most simple of cases.

We did not solve the round-trip engineering problem. Our tools only did forward
code generation. This was less problematic than may seem, however, because so little
code was required to implement the system—most of it was declarative in the model.
As described in the conclusions, we are pursuing a new direction on round-trip engi-
neering that removes the synchronization problem rather than solving it.

5.2 General Purpose Nature of UML

UML is a general purpose language that does not have precise semantics in a particu-
lar runtime environment, as illustrated in the discussion on properties in the previous
section. Using UML to solve a particular problem on a particular platform requires
mapping its concepts to the concepts of the platform and using its extensibility
mechanisms to fill holes.

We created an extensive modeling style guide that described such a mapping from
UML to the business framework DSL and the .NET Framework’s Common Language
Runtime. It described the semantics of each model element in terms of the CLR and
described modeling conventions for modeling DSL concepts and CLR concepts not
present in UML, such as events, properties, enumerations, delegates and (surpris-
ingly) constructors. For example, the following is an excerpt from the guidelines for
modeling a CLR enumeration type:

Enumerations

• Model an enumeration as a class stereotyped with <<enum>>
• Suppress the operations (methods) section since enumerations cannot have methods
• Make all attributes public since all members of an enumeration are implicitly public
• System.Int32 is the default underlying type for an enum. To indicate use of a differ-

ent underlying type, derive from that numeric type.

Enumeration C# Code

A = 10
B = 20
C = 2
D = 40

«enum»
DefaultValues

// type is integer in this example
public enum DefaultValues {
 A=10,
 B=20,
 C=2,
 D=40
}

The modeling style guide also served as the starting point for a requirements speci-
fication for the XDE code generator and later the code generator we wrote.

194 S. Anonsen

Our goal was to make the modeling language fit the expectations of those who
knew UML, and we succeeded in making the conventions familiar to moderately ex-
perienced UML users. What surprised us was how much of the UML language even
experienced UML users do not know. (For example, is a multiplicity of “*” synony-
mous with “1..*” or “0..*”?)

Mapping UML to the business framework DSL and CLR uncovered a host of am-
biguities. (That was less surprising, given UML’s general purpose nature.) Designing
the mapping was a time consuming affair that involved some of the more senior peo-
ple on the team.

We only built tools and conventions for the static structure diagram, likely the best
known and most used part of the language. One of the things we did not do was de-
scribe what parts of the UML were not meaningful to the business framework. This
contributed to the problems described in the next section.

5.3 Malformed Models

Commonly developers produced models that had mistakes in them. This resulted in
errors when generating code, mapping entities or at runtime when a malformed entity
was used. Our solution was to create a model validator to ensure models were correct
before other tools were used. The model validator moved error discovery earlier in the
process, increasing productivity and reducing developer frustration.

However, the model validator was a reactive solution. If we had more control over
the Rational XDE design surface many issues could have been avoided simply by dis-
allowing certain kinds of models. Consider some of the errors developers made:

• Forgot to stereotype entities and other model elements.
• Did not mark any entity properties as its identifier.
• Created an association to a child entity (such as to the OrderLine in the above

diagram); doing so was not supported in that release of the framework.
• Used multiple inheritance; this can be hard to detect, since the two generaliza-

tion relationships can be created on two diagrams.
• Used characters that are illegal in CLR identifier names.
• Did not set business framework tagged values properly.
• Used UML features that had no meaning to the business framework DSL.

So we found ourselves wanting additional extensibility features in XDE. However,
XDE is a UML tool and some of the issues were differences between UML and the
business framework DSL. As noted above, UML profiles cannot in any way redefine
standard UML elements.

UML has features the business framework DSL does not. For example, UML sup-
ports multiple inheritance. However, the business framework DSL has features UML
does not. These differences are the heart of the problem.

The differences also created problems for application developers as they did not
always know what parts of the UML were valid for them. The tool itself should have
indicated what was usable and what was not. By design the UML does not supply
guidance for domain specific constructs either, an important capability when model-
ing for a DSL.

 Experiences in Modeling for a Domain Specific Language 195

6 Conclusions

We drew three conclusions from our experiences.

Model-Driven Development Is Effective
Model-driven development proved effective for the business application problem
space. In model-driven development the application developer describes much of their
application rather than writing code to implement it. Coding is still a part of the proc-
ess, but relatively speaking imperative code is a smaller part of the overall application
than the metadata describing the application.

The majority of the two portal projects described in the introduction were built
without imperative code. Developers indicated the behavior they needed with tagged
values and the tools and runtime did the work. They also used the same tools provided
to customers for much of the development work, again without coding.

Model to Code Synchronization Should be Avoided, Not Improved
We came to the conclusion that the core issues in model synchronization are the re-
lated issues that (1) model information is present in more than one spot and (2) devel-
oper code is intermixed with system generated code. The latter problem is simply a
manifestation of the former.

Going forward we are designing the tools and frameworks to avoid redundant
model information. In particular, most model information will not be visible in the
code. One powerful mechanism Microsoft is using for this is the partial class. Con-
sider the following C# code sample

// in framework_order.cs: framework class
public partial class Order : Entity { // generated
 // framework generated code
}
// in order.cs: developer class
public partial class Order {
 // developer written code
}

The C# compiler takes the code from these two files and integrates them together
into one class at compile time. Thus the framework can regenerate its class at any
time without affecting developer code. The same capability is available in VB.NET.
Describing this in detail will be left for another paper.

UML Is Not Suited as a Basis for a DSL
We came to question the suitability of using UML tools as the basis for building tools
for domain specific languages. Used informally and semi-formally UML is incredibly
helpful for team communication and design and we expect it to continue to play that
role for us going forward—UML is used regularly in our own designs today.

However, our scenario was to build a design tool for a DSL that describes the vo-
cabulary of a specific framework hosted on a specific runtime. Such tools require
crisp and detailed semantics to be usable, so as a result we tested the limits of the
UML metamodel and extensibility mechanisms. As it happens the UML explicitly is
not intended to solve this sort of problem, for two reasons.

196 S. Anonsen

First, UML lacks a well-defined mapping to any given framework and execution
environment. Stated differently, the UML is a general purpose language, not a DSL. If
the DSL is not completely compatible with the UML then changes in semantics are
needed. UML provides such extension capabilities through profiles.

Second, UML profiles are purely additive5. But a DSL by its very nature is likely
to change the design vocabulary to the extent that it strains or exceeds the capabilities
of the UML extensibility mechanisms. The UML specification indicates that true se-
mantic changes to its metamodel involve creating your own metamodel using MOF6
rather than using UML.

Developer tool usability is enhanced by working directly with DSL concepts rather
than requiring mental mapping from awkward UML expressions of DSL concepts to
their DSL equivalents. Such mapping is avoided only if the DSL is a superset or sub-
set of UML, which was not true of our DSL and is not true for many DSLs.

Further, UML extensibility was specifically not designed for this kind of tools ex-
tensibility. While allowing constraints in a profile, it does not dictate the constraints
language7 or provide any other mechanisms for directing a tool in processing a stereo-
typed element such as giving the developer interactive guidance when modeling.

Adapting a UML tool to be the modeling tool for a framework DSL requires a sig-
nificant amount of work:

• Map from UML to the DSL and the execution environment.
• Define a profile or profiles to handle the new features of the DSL.
• Develop code generators and other tools to implement the model.
• Implement add-ins for the selected UML tool to integrate custom tools with it.

Once done, you are still left with unneeded UML features or semantic differences that
UML extensibility (or at least the XDE implementation of it) could not erase.

Our conclusion is that UML simply is not intended to support a DSL and frame-
work. We found that shoehorning a general-purpose, extensible modeling language
into serving the needs of a targeted DSL is a lot of work and has mixed results.

We believe a more fruitful approach, and one we are now pursuing, is to formalize
the metamodel for the DSL and create a custom visualization for it (consistent with
the principles described in [2]). Diagrams then will have just features belonging to the
DSL and can be tuned to fit its vocabulary. In the case of the business framework
DSL the diagrams will look very much like UML class diagrams. But the reality is
that a the semantics of a given DSL need not and often will not match UML, even if
the notation used on diagrams is very similar or the same.

To support this approach, we see the need for (and we are producing) a more gen-
eral purpose framework for creating domain specific languages and tools for them.

5 “A fundamental constraint…is that extensions must be strictly additive to the standard UML

semantics. This means that such extensions must not conflict with or contradict the standard
semantics.”[1] However, a tool may hide those UML elements that are not extended by or
referenced in the profile. (See “applicableSubset” in [1] and “metaclassReference” in [4].)

6 “Profiles are…the ‘lightweight’ built-in extension mechanisms of UML, in contrast with the
‘heavyweight’ extensibility mechanism as defined by the MOF specification. …there are re-
strictions…to ensure that any extensions defined by a UML profile are purely additive. Such
restrictions do not apply in the MOF context where…any metamodel can be defined.”[1]

7 However, UML does provide OCL and uses it extensively in its own definition.

 Experiences in Modeling for a Domain Specific Language 197

References

[1] Extension Mechanisms Overview, §2.6.1. OMG Unified Modeling Language Specification
Version 1.5. Object Management Group, March 2003.
http://www.omg.org/cgi-bin/doc?formal/03-03-01.

[2] J. Greenfield and K. Short. Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. John Wiley and Sons, 2004. ISBN 0471202843.

[3] James Rumbaugh, Ivar Jacobson and Grady Booch. The Unified Modeling Language Ref-
erence Manual. Addison Wesley, 1999.

[4] Profiles, §18.13.5. UML 2.0 Superstructure Specification. Object Management Group,
August 2003.

[5] http://www.omg.org/cgi-bin/doc?ptc/2003-08-02.

 LNCS 3297, pp. 198 – 202, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Six Lessons Learned Using MDA

Stephen J. Mellor1 and Leon Starr2

1 Accelerated Technology, 739 N. University Blvd., Mobile, AL 36608 U.S.A
Stephen_Mellor@mentor.com

2 Model Integration, LLC, 500 Botany Court, Foster City, CA 94404 U.S.A
leon_starr@modelint.com

Abstract. The principles behind MDA have been applied over several decades
with varying degrees of automation and support. Changing technology and
standards render many “lessons learned” dependent to a considerable degree on
implementation specifics that will become less relevant as the standards and
technology grow and mature, but the process behind MDA has changed some-
what less and years of application allow some broad conclusions to be drawn
about how best to put MDA into practice. We intend to supply here some hard-
learned lessons that can be applied immediately on an MDA project.

1 Background

At one level, model-driven architecture (MDA) is a set of standards promulgated by
the Object Management Group (OMG), which at present is insufficient to build com-
plete systems. Yet MDA is also the result of years of application of technologies cen-
tered on the notion that “design” can be captured as a set of mappings, or automated
transformation rules from one language to another.

The authors have both been defining and applying that notion for over twenty
years. In so doing, we have seen many project successes and many failures too. This
paper describes key lessons learned from those experiences, which we support with
anecdotes drawn from real-time and embedded projects, though we feel confident the
lessons apply to other types of system too.

Throughout, we assume executable models of some sort. When we say “model,”
we usually mean an executable model of the application. We also use the term “ar-
chitecture” to mean the abstract organization of implementation technologies and
their use as realized by a model compiler—a compiler that compiles application mod-
els normalizing them to a single infrastructure defined by the architecture.

We conclude by making some larger observations about the place of modeling
and MDA.

1.1 Lesson 1: Maintain and Establish a Domain Chart

MDA relies on the construction of models, with their respective metamodels, and
mappings between them. We have learned that it is critical both to establish what the
models and mappings will be early on, and to revisit these choices throughout the pro-

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

 Six Lessons Learned Using MDA 199

ject. Models capture selected subject matters called domains. Bridges exist as systems
of mappings and marks between selected domains. This content can be represented
on a domain chart, a non-UML-standard sketch that depicts domains and bridges.

The key aspect of a domain chart (more accurately, the thinking behind the con-
struction of a domain chart) is the establishment of assumptions about what will be
modeled. An example is a model of a bank, which under many interpretations in-
cludes authentication and authorization. But, it is also possible to abstract out security
as a separate domain with its own model that is then reusable in other contexts.
Making this choice of abstraction clear to the team is critical to avoid endless rehash-
ing of the models. Since security is only one possible issue (to what extent should
values from the user interface be pre-validated? to what extent should credit ratings be
factored out? and so on), all too often we have seen modeling teams flounder around
making arbitrary assumptions about what should be modeled here and what else-
where. The solution is to make these assumptions explicit.

Even a bad domain chart is better than committing to one colossal tangle of model-
ing. Modelers and managers must be on the look out for any discussion about what
needs to be modeled where. They should immediately refer to, and possibly update,
the domain chart. Often, the issue seems to be a local one (Should we authenticate
the customer when a deposit is made?), but often it is more global: Should we factor
out security as a separate model? It is all too easy to address the local issue and fail to
recognize the global opportunity for reuse.

We note in passing that UML needs a domain chart to encourage an MDA process.
Presently, we misuse the package diagram, using packages to represent models and
dependencies to capture mappings between those models. Of course, “dependency” is
precisely what we do not mean, as each model is orthogonal from the others, and
mappings are explicitly not expressed as dependencies in MDA.

1.2 Lesson 2: Force Limitation of Requirements

A vague statement like “model the Navy,” guarantees that the modeling work will
never finish. Equally deadly is the all too common statement “model version 1.0, but
leave hooks in to support version 9.0,” which in practice is often functionally equiva-
lent to “model version 9.0 in the absence of any idea as to what that might be.”

There are two kinds of scope creep. “Horizontal” scope creep is exemplified by
modeling a too-large system, such as the entire Navy or version 9.0. The result of this
type is usually late delivery and lack of direction caused by lack of feedback from a
delivered system. The second type is “vertical” scope creep caused by generalizing a
new service domain, such as security in the example above, with insufficient informa-
tion. Premature generalization can lead to the construction of service domain models
that provide more functionality than required for the particular client, and often fail to
deliver the small amount of functionality that is required. Both kinds of scope creep
are bad.

This means there must be some mechanism for limiting the requirements and en-
force the limits when the modeling team begins to wander. The key word here is
“mechanism.” Ad hoc excision of superfluous requirements requires constant vigi-
lance from management and project leads, which is an undue burden on management

200 S. J. Mellor and L. Starr

and can lead to low morale when all project staff hears is the word “no.” There are
several approaches to this problem, including constant interaction with customers,
priority setting by sequence, time boxing and so on. Whichever mechanisms you
choose, it must become a part of the culture to build only what is required now.

This lesson is worth repeating and reinforcing because all too often models are
perceived as superfluous in and of themselves, not relevant to the all-important prob-
lem of generating systems.

1.3 Lesson 3: Charter an Architecture Team Early

An architecture team must be chartered to create an implementation plan soon after
model development begins. Without this plan, modelers may not see a direct path
from models to code and may eventually lose confidence in the approach. With an
active implementation plan in place, however, effort will be focused on coding related
problems rather than wringing hands in unconstructive anxiety. As compilation capa-
bilities become available, models can be executed and tested thus increasing confidence
that the approach will work. This puts pressure on the application modeling team to
produce converging models. The models become real, executable entities rather than
abstract concepts. This proves progress and is the ultimate confidence builder.

In one project, extensive requirements mandated the construction of a large model
set, which would have taken at least two years to complete with the available team.
Not perceiving a tangible path to implementation, the team became confused as to
how various design-level details would be addressed, and began to lose confidence in
the approach during the first year. This created uncertainty as to the level of detail re-
quired to complete any given set of models, which led to eventual project failure.

1.4 Lesson 4: Build—or Buy—the Architecture in Parallel

The simplest way to address the lesson above is to buy a model compiler. By compil-
ing newly constructed application models, you can also verify if the performance
properties meet the requirements. If they do not, then you should begin an effort to
determine the abstract organization of the software and its expression in a model com-
piler in parallel with the application modeling effort.

Application modeling and architecture development need not be carried out in se-
quence since you can build the model compiler without concern for the semantics of
the application. You can have one team modeling an application in one room, and
down the hall you can have an architecture team figuring out how to implement per-
sistent classes efficiently, so long as you do have a common knowledge of the struc-
ture of the modeling language.

To ensure that the model compiler is “efficient” enough, you need to compile the
application models as they are built, and check their performance against require-
ments. Consequently, two teams may operate in large measure independently, meet-
ing on occasion to ensure that the model compiler will properly translate the models,
and that the model compiler is meeting performance requirements.

1.5 Lesson 5: Order the Work Depth First

A fully breadth-first approach to modeling is risky. It can take longer to model a

 Six Lessons Learned Using MDA 201

given set of requirements than you think, especially with a team new to modeling. In-
stead, the team should first model the core features in each modeled domain and then
drive toward an engineering version of the whole system. This early implementation
may not produce a deliverable product, but it will allow the team to evaluate the mod-
eling and implementation process early on. To do this, however, the initial set of re-
quirements must be whittled down to the bare bones. Multiple cycles through the
translation and test phase may be necessary before a deliverable product system ver-
sion is available.

On the other hand, a factor contributing to disaster is premature modeling of ser-
vice domains. In one project, an initially straightforward parameter management ser-
vice domain became the misdirected focus of much effort. But complex interactions
and dependencies among parameters were application specific and could not readily
be addressed at such a generic level, certainly not without a clearer understanding of
the application. Consequently, we learned that it is preferable to model a significant
portion of the application before modeling in depth domains that provide services to
the application. This is because application details will define and constrain require-
ments on otherwise runaway abstract and generic support services.

The conclusion is that the work needs to be sequenced depth first down the do-
main, building only enough of each service domain to make an executable system.
As understanding grows, service domains can be re-factored, and the domain chart
updated. The least risky approach is to order the work depth first without attempting
to build complete service domains the first time. A variation of this theme is Lesson 4
above. Rather than attempting to build the complete, correct model compiler from
first principle, use one that’s available and iterate from it. Often, less iteration is re-
quired than you first think.

The architecture can be an exception to this rule about service domains. While the
architecture domain is in fact a service domain, a significant subset of its require-
ments may be clear prior to application development. If the chosen modeling lan-
guage for multiple client domains is rigorously defined, precise and executable, then
the requirements for model execution are already embodied in the language defini-
tion. Furthermore, there are typically many engineers well versed in the characteris-
tics of the likely implementation technologies for the given project. Consequently,
progress on the architecture domain, as stated in Lesson 4 may proceed immediately.
Other service domains, however, should follow the plan set here in Lesson 5 since
they will likely benefit from the requirements clarification resulting from sorting out
the application domain first.

1.6 Lesson 6: Manage Process Change

Model-driven code generation imposes a paradigm shift on the management, engi-
neering and technical staff. It is the process rather than the development tools that
impose this fundamental change. The engineering staff will use new cognitive and
engineering processes that require time for adjustment and assimilation. Day-to-day
management tasks also change.

In one project, automated code generation was the most significant achievement.
By compiling each domain separately, using a version control management system
and scripts for overnight batch processing, the team could build and execute nightly

202 S. J. Mellor and L. Starr

jobs for each developer. A tester could then run through an ever-increasing number of
automated regression tests. The next morning each developer and tester received a
detailed, diagnostic report on the submitted job from the previous night. The number
and rigor of the regression tests increased over time. By this stage the team had a
fully tested, executable product that could be shipped on a day's notice.

2 Observations

This paper began as a set of project histories, each laid bare to expose the elements of
success and failure. Each project history finished with a lessons learned section,
which led to some undeniable similarities, but also some differences. Drilling down
further, we noted that some lessons learned did not repeat because they had in fact
been learned and put into practice. We re-factored the paper to focus on lessons
learned.

Summarized the lessons learned in this manner, we observed that many of them re-
late strongly to the Extreme or Agile movement. These movements emphasize con-
struction of complete executable systems as soon as possible. The lessons learned
primarily focus on rapid progression from concept to implementation, rapidly filling
in the stepping stones. Indeed, our most striking example of the need to manage
process change was the construction of the daily build tools motivated by the rapid
and visible integration of models.

Perhaps then we draw these conclusions because of our emphasis on executable
models. Certainly executable models offer many advantages claimed for code by the
Extreme/Agile movements, but these lessons were learned in the context of making
modeling work in an impatient modeling environment—impatient not only for the
usual reasons of customer delivery, but also because of the need for modelers new to
the game to see encouraging and meaningful results.

Our experience indicates that one of the key impediments to MDA adoption is the
a priori assumption that model driven code cannot possibly work. Even if it does
work on some projects, it is too risky for my project. Building a deliverable system
early allays these fears. We hope that our lessons learned will help provide a prag-
matic and successful approach to MDA adoption.

 LNCS 3297, pp. 203–218, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Applying MDA and UML in the Development of a
Healthcare System

Chris Raistrick

Kennedy Carter Limited,
Hatchlands, East Clandon, Guildford, Surrey, GU4 7SJ, UK

chris.raistrick@kc.com

Abstract. The UK National Health Service (NHS) is supported by an estab-
lished and diverse set of systems. These systems are being enhanced to support
widespread storage and distribution of electronic patient records. Naturally, the
security and privacy of patient data is paramount, and a sophisticated set of ac-
cess control and registry capabilities is required to ensure that only authorised per-
sons have access to patient data. This describes how MDA and UML were used to:

 Model the new access control capabilities in the form of an executable
UML model, allowing rapid stakeholder feedback and resulting in a tested,
fully executable specification to form the basis of a procurement contract;

 Specify the capabilities of existing key components, and proposed bought-
in components, to facilitate system integration;

 Enable automated code generation onto the wide variety of platforms in
use within the NHS.

1 Introduction

The NHS Information Authority (NHSIA) provides a range of patient information
services to the NHS. This paper outlines how MDA and UML were used in the con-
text of an extension of the processing of clinical data to provide a “patient-based elec-
tronic record”.

The project set out to design and pilot parts of the infrastructure to allow demon-
stration of compliance with both the national confidentiality policy and the cryptogra-
phy strategy in respecting patient confidentiality, including consent to the sharing of
information.

The project scope included the specification of software to provide interim access
control, consent management and user registration services in a number of NHS care
providers. Requirements drawn from relevant legislation and standards documents
and from subject matter experts within the Authority were elicited and incorporated in
the UML specification. Because of the volatility of the requirements in the areas of
consent and access control, it is important that only one specification, in the form of a
platform-independent model, be maintained, and that multiple platform-specific im-
plementations are automatically generated from it. The systems with which the soft-
ware must integrate are based upon a diverse set of technologies and architectures,
and therefore the specification must be expressed in a form that is both independent
of, and facilitates mappings to, these different platforms.

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

204 C. Raistrick

Electronic records

PKI, Directory
Services,GMC,UKCC etc

Stable
interface
(xUML)

Volatile
interface

access control and
registry services

The challenge is to ensure that a number of initiatives are brought together in a
consistent and coherent way, within the focus of ‘Access Control and Registry Ser-
vices’, to be of direct and practical use to those developing Electronic Health Record
and Electronic Patient Record Systems.

The project had two main objectives.

1. To provide a stable application interface between Electronic Record Systems and
Access Control and Registry Systems independent of changing technologies and
future national procurement decisions. These systems include those provided as
part of Public Key Infrastructure (PKI) Services, online directory services and pro-
fessional registration services (e.g. those provided by the General Medical Council
(GMC) and the United Kingdom Central Council for Nursing, Midwifery and
Health Visiting (UKCC).

2. To support organisational use of access control and registry services, allowing a
variety of users to have access to healthcare records, while respecting patient con-
fidentiality, including consent to the sharing of information.

To achieve these objectives the project set about designing and building prototype
registry and access control systems to be integrated with target EHR and EPR systems
being developed concurrently. The aim was to demonstrate how compliance with
national confidentiality policy and the cryptography strategy is to be achieved and
will entail an exploration of the interfaces needed between a public key infrastructure,
related access control services, sources of user and patient identity, and electronic
record/patient information services.

1.1 Project Scope, Exclusions, and Interfaces

The specific services to be provided through the stable interface to Access Control
and Registry Services include:

 Consent management;
 Registration management and identification of organisations, and healthcare pro-

fessionals including their addresses, access mechanisms (addresses and public
keys), roles and geographic locations;

 Certification and authentication of those requiring access to patient records;
 Access management (ensuring that those who need access actually get it), and

access logging.

 Applying MDA and UML in the Development of a Healthcare System 205

1.2 Requirements Driven Modelling, with Model Driven Architecture

The project coined the phrase “Requirements Driven Modelling, with Model Driven
Architecture” [1], to reflect the adopted approach. It was regarded as essential to
establish and maintain clear links between the requirements and the emerging models.
The project set out to capitalise on prior work, such as scenario definition, and com-
ply with pre-existing standards, such as healthcare system architecture definitions.
The basic steps followed were:

1. Requirements: Establish the domains of interest, and the requirements within
those domains. The resulting Domain Model shows the domains (or components)
that will make up a typical system. It shows the dependencies between the existing
components, the third party components (e.g. certification products), and the newly
developed access control components. The domain chart is a derivation of the
“Domain model for National Confidentiality Infrastructure” held in the document
“A Portal for Controlled Access to Patient Information Services”.

2. Modelling: Use UML, the Government standard for representing software re-
quirements, to build an executable specification, or Platform-Independent Model
(PIM) for each of the new domains to be developed. This allowed developers to
highlight key issues early, particularly with regard to the technical integration with
pre-existing systems. Each domain PIM specifies the set of services provided by,
and required by each domain. Each service, or operation, is defined in terms of its
name, its parameters, contractual semantics (open/closed, blocking/non-blocking),
and a textual description of its purpose. These are used as the basis for integrating
domains to form a complete system.

3. Demonstration: Use the PIM to generate automatically a demonstrator for the
relevant stakeholders. This included the use of an existing library of scenarios, un-
der development within theNHS, addressing the roles and responsibilities of the
various actors. The scenarios were captured using executable UML for use as data
to drive the demonstrator;

4. Procurement: Use the PIM to develop indicative costs for the development, im-
plementation and operation of all aspects of the system by service/solution providers.

The requirements, modelling and demonstration process was executed in a modular
and iterative fashion. Relatively self-contained domains (see the Domain Model) were
identified and their interfaces specified. Each domain was then further developed and
tested in isolation prior to being integrated with other components to form the demon-
strator.

The following sections describe in more detail each of these phases.

2 Requirements and Domains

2.1 Requirement Driven Modelling

The requirements for access control were sourced from a wide variety of documents
and stakeholders, and it was vital that each requirement could be traced into the UML
models. To this end, the iUML modelling tool, used by the project to build and test

206 C. Raistrick

UML models, was configured using the requirements schema in Fig 1 below, repre-
sented as a UML class diagram.

Fig. 1. Requirements Schema

This allowed requirements to be categorised, arranged into parent-child hierarchies,
traced back to their source, or forward into the models, as illustrated in Fig 2 below.

To deal with requirement volatility, this scheme also captures the “audit trail” of
query-response-modify requirement-modify model, providing the historical record so
important for understanding why the UML models look the way they do.

Each requirement also went through a set of lifecycle phases, as shown in the state-
chart diagram in Fig 3 below, which is represented using the Moore formalism as
described in [3] and [5].

2.2 The Components (Domains)

It is helpful to think of an executable UML model as an attempt by an analyst to
formalise precisely the requirements expressed in ambiguous language by various
subject experts and stakeholders. Although the analyst may not initially understand all

 Applying MDA and UML in the Development of a Healthcare System 207

Trace back
from model
to requirements

Trace back
from model
to requirements

Trace forward
from requirements
to model

Trace to
Source
document

Trace forward
from requirements
to model

Trace to
Source
document

Fig. 2. Requirement Tracing

Fig. 3. Requirement state machine

208 C. Raistrick

the concepts, his questions and interaction with subject experts always expose hidden
assumptions, elicitation of missing information and general clarification. This is one
of the benefits of a model-driven approach to specification.

To formalise the conceptual content of the requirements and the behaviour they de-
fine; models were designed to lend themselves to ongoing modification. This was
achieved by a combination of generic modelling, and isolation of volatile issues in
separate domains, which nonetheless offer a stable interface to the rest of the system.
More on this later.

In order to be able to capture and control the complexity of the overall system, it
was necessary to define several inter-related domains. By minimising domain interde-
pendence we ensure that that each domain can be defined and tested independently.

Application

Pervasive Services
Existing Systems

and Infrastructure

Fig. 4. Domain Model

Although domains publish contracts for required and provided services, there is no
requirement to reconcile these contracts until the domains are integrated to form a
system under test. Thus, completely decoupled domain models were the norm, and
each one was developed and tested independently of the others, subject of course, to
the satisfaction of the requirements allocated to them. The work involved in integrat-
ing these domains was minimized by building a set of domain-level sequence dia-
grams, based upon a set of use cases. These sequence diagrams gave an early indica-
tion of the services required by and provided by each domain in the system, and pro-
vided an agenda for defining the interface offered by each domain.

 Applying MDA and UML in the Development of a Healthcare System 209

This domain model diagram in Fig 4 shows the various components (domains)
comprising the proposed solution.

The domains were grouped to aid readability, and provide a clear separation be-
tween new components (in the “Application” layer), and the existing and bought-in
components to with which the new components must integrate. “Wrapper” and “In-
terface” services were included to allow definition of a standard set of interfaces for
accessing patient data, registry services and encryption capabilities. This was in-
tended to make integration with existing components, and COTS components more
straightforward.

2.3 Modelling the New Access Control Requirements

The majority of the new requirements were modelled in the “Access Control” do-
main. To support this domain, and allow construction of a demonstrator, a “Patient
Records” domain was also built, conforming to the emerging standard architecture for
electronic patient records. The “Aaccess Control” domain is a client of the “Patient

Fig. 5. Access Control domain class diagram

210 C. Raistrick

Records” domain (and any other legacy domains containing patient data, to which the
new access control capabilities are to be added). The UML class diagrams for these
are shown in Fig 5 and Fig 6 below. It is beyond the remit of this paper to delve into
the detail of these domains, but if the class diagrams are well constructed, they should
convey the essence of the requirements without too much elaboration. One key point
to note is that the “Accessible Item” class in the “Access Control” domain is linked
`(via a “counterpart association” – see later) to the “Architectural Component” class
in the “Patient Records” domain. This approach allows the “Access Control” domain

Fig. 6. Patient Record domain class diagram

 Applying MDA and UML in the Development of a Healthcare System 211

to focus purely on controlling access to data items, without knowing anything about
the structure or content of those items. This is vital, given the range of legacy patient
record systems, and record structures with which this domain must interact.

The services provided by this domain enable the setting of permissions by all con-
cerned according to their respective roles and responsibilities and that only those duly
authorised will gain access. It allows health care roles to be defined for this purpose
for use as defaults throughout the NHS. Such general defaults are subject to modifica-
tion according to specific roles filled by an individual within an organisation.

The services provided can act as an exemplar for the NHS as a whole, and are scal-
able to satisfy emerging requirements.

2.4 Modelling the Standard Patient Record Architecture

This domain was built to support testing and demonstration of the Access Control
component. It was populated with realistic data, extracted from standard scenarios, to
allow meaningful stakeholder demonstrations.

Notice that the classes representing data to be protected are modeled as subclasses
of “Architectural Component”. This means that the client “Access Control” domain
can invoke the polymorphic operation “displayArchitecturalComponent” operation on
“Architectural Component”, and can remain unaware of the structure and content of
the patient data itself.

3 Maintaining Patient Record Architecture Independence

Although there is an emerging standard “architecture” for Patient data, there are of
course many existing systems, each of which holds patient records in a particular way.
It was therefore necessary to establish and maintain a clear separation between the
patient data to be protected and the protection rules that are to be applied to those
data. This was achieved by modelling the Patient Data in the “Patient Data” domain,
and the access control rules in a separate “Access Control” domain, in keeping with
the data-driven modelling techniques described in [2], [4] and [5].

Each of these domains has a class that represents an item of patient data. In the
case of the Access Control domain it is the “Actual Accessible Item” class, which has
associations (via the “Accessible Item” superclass) to classes that capture the access
policies, such as “Enabled Item Access” and “Denied Item Access” as shown in the
model fragment in Fig 7 below:

In the case of the Patient Records domain, there is an “Architectural Component”
class, with subclasses corresponding to the various types of patient record, as shown
in the model fragment in Fig 8 below:

The “Access Control” domain is a generic component, to be used to protect data
held in many different forms across a number of patient record systems. Therefore,
the “Access Control” domain must be unaware of the architecture of the data it is
protecting. The required mapping between “Accessible Item” and “Architectural
Component” is achieved using a “counterpart relationship”, an association that spans
classes in different domains, as illustrated in Fig 9.

212 C. Raistrick

Fig. 7. Modelling access rules in data

Fig. 8. Part of Patient Records domain class diagram

This counterpart relationship can be used at runtime to maintain an “anonymous”
link between the two counterpart classes. The figure below illustrates how:

1. Whenever a new item of patient data is created in the “Patient Records” domain:
 an object of “Architectural Component” is created;
 a “counterpart” object of “Actual Accessible Item” is created;
 a “counterpart” link (CPR2) is created between these two new objects

2. Whenever a legal access request is made on an “Actual Accessible Item” in the
“Access Control” domain:

 the counterpart relationship CPR2 is navigated to find the counterpart
“Architectural Component”;

 the polymorphic operation “displayArchitecturalComponent” is invoked, which
will in turn cause the appropriate rival method in the corresponding subclass to
be executed for the corresponding subclass object.

 Applying MDA and UML in the Development of a Healthcare System 213

The model fragment in Fig 10 below shows how this was achieved using a UML
action specification language.

Note that the access rules are not hard-wired, but are captured as data in the form
of objects, as illustrated in Fig 11 below:

Fig. 9. A counterpart association, linking classes in separate domains

Fig. 10. Bridge operations linking operations in separate domains

The “Accessible Item”
objects are linked to

counterpart “Architectural
Component” objects

CPR2

Access Control
Domain

Electronic Patient Records
Domain

myCounterpart = this -> CPR2

$USE EPREC

[] = AC2:displayArchitecturalComponent[] on myCounterpart

$ENDUSE

$USE ACCON

[newAccessibleItem] = AAI1:createActualAccessibleItem[this.architecturalComponentID, theParentAC, this.typeName, thePatientName]

$ENDUSE

link-counterpart this CPR2 newAccessibleItem

This bridge is called when a new item of patient data is created

This polymorphic operation is called to display data in the corresponding subclass object

This bridge is called when a legal item access request has been made

(Part of) Access Control Domain Class Collaboration Diagram

214 C. Raistrick

Fig. 11. Capturing access rules using data in “specification classes”

This makes the model very flexible, and easy to configure for different access rules
that come about as a result of requirements and legislation changes. Page: 214
In effect the model is itself an example of a “domain specific language”. The key
notion here is that the form of the data that has to be entered maps very easily to the
problem domain itself. In other words, the language used for configuration has been
created to match the domain.

This technique meant that the Access Control domain could be easily integrated
with any existing patient records component, if necessary by building a small wrapper
that provided this interface.

3.1 Platform Independent UML Action Language

The “Access Control” component is intended to run on a wide variety of platforms
across the UK. Platform independence was therefore critical, as it would not be fea-
sible to build and maintain multiple versions of this component for each different
platform.

UML allows construction of platform independent domain models that incorporate
a UML action language. An action language makes a crucial contribution to achieving
platform independence. Where UML modelling tools require a specific 3GL to be
incorporated in the models in order to achieve some form of executability, platform
independence is severely compromised.

The example in Fig 12 below shows a fragment of the “Access Control” domain,
and the action language for the operation “Check for Denials” on the “Actual Acces-
sible Item” class:

 Applying MDA and UML in the Development of a Healthcare System 215

Fig. 12. Part of the “Access Control” domain

explicitDenial = TRUE

myAccessibleItem = this -> R15
myPIRAccessor = theAccessingPIR -> R2

Is item explicitly denied to this PIR?
myDeniedAccess = myPIRAccessor and myAccessibleItem ->

R7.Denied_Item_Access
if myDeniedAccess = UNDEFINED then
 # PIR ok, what about Role?
 myRoleAccessor = theAccessingPIR -> R4.Role -> R2
 myDeniedAccess = myRoleAccessor and myAccessibleItem -

>R7.Denied_Item_Access
 if myDeniedAccess = UNDEFINED then
 # Role ok, what about Person?
 myPersonAccessor = theAccessingPIR -> R4.Person -> R2
 myDeniedAccess = myPersonAccessor and myAccessibleItem -

>R7.Denied_Item_Access
 if myDeniedAccess = UNDEFINED then

 # Everything OK so far - no explicit denials
 explicitDenial = FALSE
 endif
 endif

 endif

This example segment of UML action language illustrates the benefits of using a
language that operates at the level of abstraction of UML, rather than a 3GL such C++
or a 4GL such as SQL. Note that the modeller can simply state “myPersonAccessor =
theAccessingPIR -> R4.Person -> R2” to navigate a chain of associations, without
prejudice to how these associations are implemented.

216 C. Raistrick

3.2 Model Integration

3.2.1 Integrating with Diverse Existing Systems
It was necessary to deal with areas with localised differences in the processing across
the external NHS organisations, such as the code to access patient data. This is ad-
dressed by a separate wrapper domain with a superclass representing the general (po-
lymorphic) services to be provided, and subclasses encapsulating the site-specific
code to perform each of those services. This isolates the “Access Control” domain
from knowledge of the different processing schemes, and allows introduction of new
schemes without creating a ripple effect.

3.2.2 Integrating with COTS Components
There were a number of candidate technologies to be integrated, such as PKI and
Certification. These were dealt with by introducing "Interface Mapping" domains,
illustrated in Fig 13, that map from a platform independent set of services used by the
“Access Control” domain, to a platform specific set of services provided by the se-
lected product(s). Examples of these are “PKI Interface” and “Registry Interface”.
This reduces the ripple effect of introducing new products. The integration of the
automatically generated “Access Control” components onto the various target envi-
ronments would typically be achieved by building wrappers to map between the vari-
ous component interfaces.

Fig. 13. Interface domains to decouple application from specific COTS products

 Applying MDA and UML in the Development of a Healthcare System 217

4 Demonstration and Model Validation

xUML allows the interactive or batch testing of systems composed of single or multi-
ple domain models. During testing, the user interacts at the UML model level. This
allows rapid construction of stakeholder demonstrators, which can be iteratively re-
fined in response to feedback from those stakeholders. Fig 14 shows an example of a
PIM executing in a simulation environment.

It also allows development of a fully executable specification, free from the ambi-
guities that have caused problems in other similar systems, providing a strong basis
for external procurement.

Fig. 14. Executing the UML models for debugging and demonstration

Note that this form of simulation, with a relatively primitive textual user interface,
was intended to provide stakeholder feedback on the capabilities of the access control
component. The next stage is to integrate the newly engineered components into an
HTML environment so that a more user-friendly interface can be demonstrated.

5 Conclusion

The use of MDA and executable UML provides a powerful solution to the problems of:

 developing new components to be integrated with a diverse set of existing compo-
nents, where the strong emphasis on domain separation and interface specification
simplifies the integration task;

218 C. Raistrick

 porting the new components to multiple platforms, where the use of code genera-
tion from executable models makes maintaining multiple platform-specific im-
plementations feasible;

 establishing a stable and agreed set of requirements, where use of UML simula-
tors to solicit feedback from stakeholders reduces the risk of delivering a system
that does not meet user needs.

References

[1] Object Management Group - Model Driven Architecture - www.omg.org/mda
[2] S. Shlaer, S. J. Mellor. Object Oriented System Analysis: Modelling the World in Data.

Yourdon Press Computing Series. (March 1988).
[3] S. Shlaer, S. J. Mellor. Object Lifecycles: Modelling the World in States. Yourdon Press

Computing Series. (April 1991).
[4] S. J. Mellor, M. Balcer. Executable UML. A Foundation for UML. Addison-Wesley Pub

Co; 1st edition. (May 2002)
[5] C. Raistrick et al. Model Driven Architecture with Executable UML. Cambridge Univer-

sity Press. (March 2004).

 LNCS 3297, pp. 219 – 233, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Managed Architecture of Existing Code as a Practical
Transition Towards MDA

Nikolai Mansurov and Djenana Campara

Klocwork, 1 Chrysalis Way, Ottawa, Canada, K2G 6P9
mansurov@klocwork.com

Abstract. Managed Architecture is a practical, tool-assisted way of introducing
modeling into projects at the evolution phases that work with existing code and
do not have up-front models. By automatically extracting certain architecturally
significant models (called Container Models) and then refactoring them to
achieve sufficient level of abstraction, it is possible to increase the capability
level of the organization by managing the architecture of the system instead of
the code. We show that Managed Architecture can also facilitate further transi-
tion to Model-Driven Development.

1 Introduction

Current methodologies often overemphasize the importance of the initial phase of the
complete multi-release, evolutionary production of software. All phases of the com-
plete life-cycle, except the initial one, involve already existing code.

There is a vast amount of useful, deployed, operational software representing an
enormous commercial value. Usually, the source code is the main artefact that
evolves. Changes to existing code are required in order to:

 Add new functionality (65% of effort, according to [12])
 Adapt to new operating environments (18% of maintenance effort)
 Fix bugs (17%)

Changes to existing software can have different magnitude. Maintenance addresses
changes of small magnitude. Activities like adding major new features to existing sys-
tem, or modularization, go beyond regular maintenance. Changes of increasing magni-
tude are required in order to keep up with the changes in business requirements. Drastic
changes to the existing software are often referred to as modernization. Modernization
includes such activities as porting to a new platform, migration to a new technology,
migration to COTS components, or scaling an existing system in order to increase per-
formance or throughput, utilize more powerful hardware, including multiprocessor clus-
ters. Total redevelopment can be viewed as the extreme case of modernization.

Changing existing code to add a new feature can be more difficult, than designing
an equivalent feature at the initial phase, because all design decisions have to be con-
strained with existing decisions. Of course, the cost of redesigning an existing system
from scratch is often prohibitive (or at least totally unattractive to decision-makers)

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

220 N. Mansurov and D. Campara

due to the fact that the existing system has evolved to adjust to the business require-
ments, and it the only representation of them. There are some challenges, specific to
maintenance and evolution of existing software, which are not present during devel-
opment of new software:

 high-level design decisions need to be rediscovered
 impact of changes to useful features (the ripple-effect)
 higher volume of information, needed to be considered in order to understand

the existing design or the impact of a change(understanding of legacy decisions
in unfamiliar source code, also known as program comprehension)

 expertise “walks away” as key developers change jobs
 need for training new personnel
 multi-site collaborative environments, as for example maintenance is out-

sourced, or relocated between development centres within a large multinational
corporation

 change resistance due to architecture erosion (usually it is progressively more
difficult to change the system).

Maintenance and evolution of existing software (such as repair, adaptation and
program comprehension) occupies significantly bigger portion of the entire life-span
of a software system, than pure design activities (such as understanding requirements
for a feature, designing the feature and implementing the source code). According to
[13], in the early 70s for an average software project 60% of the total effort was spent
on the initial design and implementation, and 40% - on the maintenance and evolu-
tion. However, in the late 90s, this distribution has changed quite dramatically: 10%
for the initial phase, and 90% for maintenance and evolution.

Also, according to [11], starting from the 90s, more programmers are involved in
working with existing software, than in "green-field" projects (see Table 1).

Table 1. Forecasts for numbers of programmers (in millions) and distribution of activities

Year New projects Enhancements Repair Total
1990 3 (43%) 3 (43%) 1 (14%) 7
2000 4 (40%) 4.5 (45%) 1.5 (15%) 10
2010 5 (35%) 7 (50%) 2 (14%) 14

The challenges of maintenance and evolution of existing software has been largely
ignored by methodologists, tool vendors and standardization communities. There ex-
ists a significant gap in methodology and tool support between the “green-field” pro-
jects and “existing code” projects.

OMG’s Model-Driven Architecture (MDA) [10] is a new development approach
focused at complete life-cycle of software production, that can at least in the long run
mitigate the above situation. MDA emphasizes:

 Modeling using UML, MOF, etc,
 Separation of platform-independent and platform-dependent concerns,

 Managed Architecture of Existing Code as a Practical Transition Towards MDA 221

 Transformation of models (eventually – into the code),
 Paradigm shift from maintenance of the code to maintenance of the model and

the transformation specifications.

MDA addresses the program comprehension challenge, since the upfront model
created at the initial phase is used to generate the code. This shifts the emphasis
away from trying to use the code as the source of knowledge about the system. MDA
also addresses modernization challenges since new transformation rules can be used to
generate code with desired properties, for example targeting a different platform.

However, existing code can become a barrier for adoption of the new development
methodologies, including MDA. Only a fraction of real-world projects can benefit
from the new methodology and the corresponding tools. These projects have to be in
the pre-launching phase, or at the initial phase; while a larger number of projects al-
ready have existing assets and no models.

Current methodologies that emphasize formal modeling languages and advanced
tool support often do not scale up to address the challenge of existing software. Up-
front re-modeling of large existing systems is prohibitively expensive, therefore the
potential benefits of modern methodologies and tools are not attainable for program-
mers, who have to deal with existing software. At the same time, tools for mainte-
nance are usually built on an ad hoc basis, and have low adoption in industry.

In this article, we report on our experiences in introducing modeling into mainte-
nance and evolution projects. Our approach emphasizes transition from managing
software systems at the code level to managing architecture models, which in our
opinion, provides a solid methodological foundation for the maintenance and evolu-
tion activities of the complete life-cycle.

Managed Architecture is a new development approach focused on evolution of ex-
isting software assets [4,6]. It involves the following activities:

 Extracting an Architecture Model from existing code
 Refactoring of the Architecture Model
 Using the Architecture Model for impact analysis and modernization planning
 Proactive enforcement of architecture integrity

This approach addresses the program comprehension challenge by using the ar-
chitecture model to re-capture, preserve and accumulate the knowledge of the existing
code, at the level appropriate for decision-making. It eliminates or slows down archi-
tecture erosion by visualization and impact analysis.

The main point of this article is to demonstrate that Managed Architecture can also
kick-start transition into MDA, when the upfront model is not available.

The rest of the paper discusses the challenges of extracting models from existing
code; introduces particular kind of models called Container Models; shows how to
use Container Models to manage architecture of existing code, and how to leverage
these models in the transition to Model-Based Development.

2 Extracting Models from Existing Code

There are several challenges in introducing modeling into “existing code projects”
within the traditional approach to maintenance and evolution. In our opinion, the most

222 N. Mansurov and D. Campara

promising is the non-invasive approach - extracting models from existing code and
using them for the core maintenance and evolution activities.

There are several general reasons why models (and the corresponding tools) that
are considered useful for the initial phase do not scale up to evolution phases. Model-
ing plays different roles at various phases of the complete life-cycle (see Table 2).

Table 2. Models at various phases of the complete life-cycle

Initial phase Evolution phases
Model drives development of code Model represents existing code
Model is more compact than the code Model can become larger than the code
Model is refined Model is abstracted away from code

This gap is created because source code is the artefact that evolves. Therefore, the
biggest challenge is to extract models at sufficiently higher levels of abstraction than
the source code. Other challenges include the following:

 The model should be precise (so that it can be used to formally reason about the
system, and ultimately – about the source code)

 The model should have sufficient scope (so that it represents enough interesting
aspects of the source code)

 The model should be scalable (so that the level of abstraction can be adjusted)
 The model should facilitate program comprehension
 The model should allow automatic update as the code changes
 The model should allow incremental manual transformations (refactoring)
 The model should be actionable, i.e. changes in the model should be easy to

map into changes in the code

Models that are easy to extract from the source code are usually precise, model
elements being close to code concepts; but such models have insufficient level of ab-
straction. Examples of such models are flowcharts, function call graphs, and class
diagrams. A model is scalable, if its model elements can be composed, and still re-
main within the same modeling framework. For example, function call graph is scal-
able, since a composition of functions is a function; a class diagram is (at least poten-
tially) scalable, since a collection of classes can be looked at as a bigger class.
Scalability of the model is a very important factor since it is directly related to the
level of abstraction of the model. The level of abstraction of the model should be suf-
ficient for understanding the code by humans. In our experience, composition is key
to achieving this objective. However, some models are less actionable, than others.
For example, function call graphs abstract away too many details of the code, there-
fore it is difficult to map changes in this model back to code. On the other hand, class
diagrams and other structural models are more actionable.

3 Container Models

In this section we describe the modeling approach that satisfies the above require-
ments. Klocwork “Container Models” [4] are structural models that focus on compo-

 Managed Architecture of Existing Code as a Practical Transition Towards MDA 223

nents and their interfaces. Container models support unlimited hierarchies of contain-
ers that consist of sub-containers. Container models support transformation of con-
tainers (for example, moving sub-containers between containers, splitting containers,
creating larger containers, renaming containers, etc.) and preserve precision of the in-
terfaces between containers during these transformations.

An initial container model is automatically extracted from the source code. Ele-
ments of the model have associations to the source code. Then the model is manually
transformed to increase the level of abstraction and to remove any accidental depend-
encies between containers. Transformations preserve precise interfaces between con-
tainers as they become more and more architecturally significant [3,4]. Containers rep-
resent, for example, build packages, modules, subsystems and layers. At the bot tom of
the hierarchy of containers are files and classes. Below that level there are primitive
symbols for methods and class members, as well as individual procedures, variables,
macros, types, etc.. Thus Container Models capture architecture views of the existing
system (this usually involves some manual transformations of the automatically extracted
model). The resulting model can be used for architecture analysis and management.

Fig. 1. Container models explained

Dependencies between containers represent “rolled-up” relationships between in-
dividual symbols that are placed into the corresponding containers. Whenever one set

 Container Diagram

Architectural
Container A

Architectural
Container B

100 15 3

number of
relations

Architectural
Container B3

Architectural
Container B2

Architectural
Container B4

Architectural
Container B1

Architectural
Container A

25
15

50

25

3

Architectural
Container C

Aggregation
 of

Dependencies
between containers

Dependencies
between a container

and environment

224 N. Mansurov and D. Campara

of symbols (for example, procedures, classes, files, directories, etc.) is grouped into
one container and another set – into the second container, relations between individual
symbols in different containers contribute to dependencies between the two contain-
ers. As the result, container diagram shows precise interfaces of each container.

Each relation is associated with a certain location in the source code. It is possible
to navigate from any high-level container diagram directly to the source code level,
for example to look for clues as to why a certain relation exists, and what is its re-
sponsibility. Klocwork Suite uses a flowchart graphical representation for viewing
source code, independently of the programming language used [1,5]. It is also possi-
ble to investigate container interfaces and dependencies by navigating through de-
pendency links and viewing the list of all individual items of the interface, or even the
complete list of individual relations between symbols in each container.

Key operations on Klocwork Container Models are composition, decomposition,
and moving sub-components between containers. Composition takes as input several
sub-components at the same diagram, as well as the name of the new container, cre-
ates a new container at the current diagram and moves selected sub-components into
the new container. Composition creates the new level of the hierarchy and dependen-
cies between containers are recalculated. Decomposition is the opposite operation: it
takes a container as input and removes it from the model while moving all its sub-
components into the current diagram. Again, dependencies between containers are re-
calculated based on the relations between primitive symbols in containers.

Composition is an obvious way to raise the abstraction level of the model, however
composition alone does not necessarily produce meaningful components because of
various anomalies abundant in existing software. The key to meaningful architectural
models is to edit the contents of containers by moving sub-containers and even indi-
vidual symbols between containers.

Usually, we move individual symbols from one module to another. This implies a
virtual editing of files although moving only occurs in the model. Moving operation
allows eliminating dependencies between higher-level components that are induced
by accidental placements of functionality at the file level. This happens far too often,
when the physical architecture of the software is not managed properly. Moving sub-
containers between containers is also possible, and desirable for refactoring of the Ar-
chitectural Model.

Extraction of the Architecture Model from existing code is a transformation proc-
ess that starts with the initial architecture model. There is no clear boundary between
extraction of the architecture models, architecture analysis (what-if scenarios) and ar-
chitecture optimization. Usually, extraction creates larger containers, and deals with
the minor and accidental problems that prevent the understanding of the “real” archi-
tecture and therefore prevent the exposure of the “real” architecture problems due to
the overwhelming complexity of the raw data. Transformations of container models
can be defined as architecture refactoring, similar to design refactoring [16].

Extraction of a Container Model involves a large amount of program comprehen-
sion (including a mixture of domain expertise, generic software knowledge and com-
mon sense) in order to select families of symbols to compose and symbols to move to
other containers. Supplementary views can facilitate such understanding. Supplemen-
tary views allow a temporary reduction of the complexity and therefore “unfreeze”
the flow of the architecture extraction process. A supplementary view allows creating

 Managed Architecture of Existing Code as a Practical Transition Towards MDA 225

a temporary architecture view of all objects involved in a certain primary view. Usually
this provides enough insight into the architectural abstractions involved. A partial archi-
tecture view can be efficiently extracted and then applied to the more complete context.

4 Managing Architecture Instead of Code

Managed Architecture is a new development approach focused at evolution of existing
software assets [4,6]. It emphasizes:

 extracting an Architecture Model from code,
 achieving the sufficient level of abstraction by composition and Architecture

Refactoring
 proactive enforcement of architecture integrity

The objective of this methodology is to create a formal architecture model of exist-
ing software that is high-level enough to be reasoned about and to be communicated
to the development team. Therefore such model can be also used to manage the archi-
tecture of the existing software, to analyze problems with the current architecture, and
to plan and coordinate the clean-up initiatives. This approach is particularly beneficial
in a context where existing design and architectural documentation is absent, impre-
cise, or obsolete.

 Architecture Models and Architecture Refactoring can significantly improve the
software development capability of the organization. We demonstrate, that the archi-
tecture-centric tool support can help facilitate the transition from managing imple-
mentations to managing architectures [6].

What is a managed architecture? Managed Architecture is one of the advanced
levels of the so-called Architecture Capability Maturity Model (ACMM). ACMM is a
projection of the well-known SEI CMM model [18] to the domain of the software ar-
chitecture. ACMM covers a single aspect of SEI-CMM – the architecture of the exist-
ing software [6].

Level 1: Initial Architecture
Any software has a certain structure - whether it is defined or not; understood or not.
It consists of some components (maybe just a single monolith), components have
some dependencies and are delivered as configurations.

Level 2: Repeatable Architecture
Often organizations use repeatable patterns for constructing and delivering software:
some packaging rules, some use of libraries, some code reuse. Usually patterns start at
the physical level (the loadbuild). Any organization that has large software assets in-
volving variation (any embedded software falls into this category) becomes interested
in software architecture issues, to determine success of the product line – the topic that
has recently received much attention [17]. There are also some other drivers for organi-
zations to become aware of their software architectures and to start optimizing them.

Level 3: Defined Architecture
At this level, components, their interfaces and configurations are formally defined and
maintained together with the source code. Modeling tools like Rational Rose are used.

226 N. Mansurov and D. Campara

Usually, some component run-time framework is used. There are different scenarios
as to when an organization moves to this level. Some may start from the “green field”
and define their architecture before they start construction. Others do it later, when
product line concerns become pressing enough [17].

However, the fact that an organization has defined the software architecture is the
essential step to start managing the software from the architecture perspective.

Level 4: Managed Architecture
Software architecture is managed when the organization understands the up-to-date,
precise and quantifiable situation of the components, their dependencies and configu-
rations. This requires several items:

 visualization of the architecture of existing software
 feedback between the "as designed" architecture and the "as built" architecture
 metrics of existing architecture
 use of the architecture model to understand the impact of changes
 organization-wide enforcement of the architecture integrity of the software.

Level 5: Optimizing Architecture
At this level, architecture integrity of the software is enforced and improved; the on-
going architecture improvement is part of the overall development process.

Managed Architecture level relies much more heavily on the use of software tools.
The so-called modeling tools are used at Defined Architecture level in order to define,
share and maintain the model in one of the formal modeling languages, e.g. UML.
Tools that are used for Managing Architectures can be classified as Reverse Engineer-
ing or Software Quality Assurance tools. Such tools work with existing code to visu-
alize, quantify and transform architecture of the existing code.

The architecture model can be used to enforce architecture integrity of the system.
A typical architecture authority role is rather reactive: first some guidelines are for-
mulated then they are given to developers to implements, then the results are evalu-
ated. Usually, the construction cycle is the longest, so architecture faults have already
happened and it is somewhat too late and costly to fix them. Therefore we often talk
about architecture erosion - the uncontrolled degradation of the component depend-
encies over time when the architecture authority loosens his or her grip.

Tools for software architecture management shorten the cycle evaluation cycle.
However, a proactive approach to managing software architecture should integrate in-
tegrity enforcement right into the construction process. For example, certain architec-
ture rules should be checked on the fly right at the time when designer attempts to
submit an updated module into the configuration management system.

5 Why Not Use UML for Managed Architectures?

Architecture Models for Managed Architecture are not UML for the following reasons:

 scalability, the need to maintain coherent and editable hierarchy of composed
containers

 Managed Architecture of Existing Code as a Practical Transition Towards MDA 227

 the need to handle large models at the initial extraction steps
 the need to refactor the architecture model while maintaining its precision
 specific “existing code” understanding concerns, like links to the code, naviga-

tion, etc.

While some of these requirements are tool-related, others are due to the differences
in modeling vs. management concerns. Klocwork Container Models are based on
UML package and object diagrams [2]. The underlying meta-model of Klocwork con-
tainer models is significantly more complex than the meta-model for the correspond-
ing UML package and object diagrams. The additional complexity is required to sup-
port unlimited hierarchies and mapping of primitive relations between symbols onto
dependencies of containers at arbitrary levels of the hierarchy, as well as the require-
ment to keep associations to the source code [4].

On the other hand, each individual diagram in the hierarchy can be easily trans-
formed into UML, as will be explained in the next section. This is consistent with the
experience of other research groups, for example [14].

6 Jump-Starting Model-Driven Development with UML from
Managed Architectures

The industry is starting to realize that the source code itself is not the right artifact
for maintenance and evolution since it mixes platform-independent and platform
specific concerns. The Model-Driven Architecture (MDA) approach, now standard-
ized by OMG [10] promotes the shift from maintaining the source code to working
with models and transformations that can derive the source code for the selected
platform.

The key concept of MDA is the transition from maintaining the code to modeling.
MDA also advocates separation of Platform-Independent Models (PIM) and Platform-
Specific Models (PSM). The implementation code for selected platform is derived
from the PIM through PSM with the use of automated code generation.

However, existing software introduces the so-called “legacy barrier” for transition
to MDA, since it requires extraction of PIMs of existing software.

We believe that our container models that support unlimited composition, refactor-
ing and links to the source code is a practical way to create architecturally significant
models of existing software that can be gradually refined into PIMs for existing mod-
ules, and thus will allow integration of existing modules into the MDA–oriented soft-
ware development. Container models correspond well to the models used during for-
ward engineering, therefore they allow penetrating the “legacy barrier” for better
adoption of advanced software engineering methodologies in industry.

Fig 2. illustrates the architecture-centric migration towards MDA. The left part of
the figure illustrates the transformations, involved in MDA (PIM to PSM to code).
These transformations assume existence of a detailed executable model. The chal-
lenge of integrating existing software systems into the “MDA world” is that such
model usually does not exist and needs to be recovered in a cost-efficient way. In our
opinion, the “straight-forward approach” of going from the source code directly to

228 N. Mansurov and D. Campara

PIM is not feasible because of the complexity of the existing software artifacts.
Instead, we advocate the following architecture-centric approach.

Fig. 2. Transition from Architecture Models (container models) to MDA models

Firstly, perform the transition to managed architecture by extracting the container
model (CM) of existing code. As demonstrated earlier, this transition usually involves
some architecture refactoring in order to regain intellectual control over the eroded ar-
chitecture.

Secondly, refactor the model into two parts: Platform-Independent Container
Model (PICM) and Platform-Specific Container Model (PSCM).

Thirdly, generate the UML component model, corresponding to the PICM and ex-
port it into MDA tools. New development involving the existing code base can now
leverage this model. Thus an architecture-centric model of existing software can be
integrated into MDA model. Integration of the existing and newly engineered compo-
nents occurs at the code level, through managed interfaces.

Fig 3-4 illustrate a Container model (sax component of the xerces system) and the
generated UML component diagram.

This architecture-centric model is not fully MDA-enabled, of course, since it only
addressed components and their interfaces, but not their behavior. Existing components
still need to be integrated with the new components, generated by the MDA tools.

The advantage of this approach is that the integrity of the model can be enforced
using the tool support described earlier.

PIM

PSM

code

PICM

PSCM

refactor

PIM-CM

generate

CM excavate

integrate

integrate

existing code

 Managed Architecture of Existing Code as a Practical Transition Towards MDA 229

Fig. 3. Example container model (sax component of xerces system)

Fig. 4. Generated UML component diagram

UML 2.0 Component diagram

sax

dom

parsers

validatorsDOM_DocumentType DOM_Document

EntityResolver

DOMString

DOM_Element
DOM_Node

DOM_Attr

DOM_NamedNodeMap

DocumentHandler

DTDHandler

ErrorHandler

Parser SAXParseException

SAXException

230 N. Mansurov and D. Campara

7 Broader Context

We described our Managed Architecture approach and demonstrated, how it can en-
able transition to MDA. This approach is based on a number of pilot projects done by
Klocwork and its customers over the last 3 years [15]. As the MDA tools mature, we
expect to put more effort into supporting transition to MDA from Managed Architec-
tures, while currently we focus on extracting architecture models and using them for
maintenance and evolution of projects with existing code. The rest of this section dis-
cusses these activities in a larger context of standardization efforts within OMG.

7.1 Towards a Standard Meta-model for Representing Knowledge About
Existing Software

Klocwork is leading the OMG Task Force on Architecture-Driven Modernization
(ADM). A large industry of software tool vendors and service vendors exists to en-
able modernization of existing software [7,8]. There is a clear and urgent need for
standardization to enable integration and interoperability among solutions from multi-
ple vendors. Standardization will increase interoperability between different tools by
creating an open framework. This can enable a new generation of solutions to benefit
the whole industry [8].

Members of the ADM Task Force believe, that standardization of ADM models
will help industry and individual businesses by reducing the risk of undertaking soft-
ware improvement initiatives. The ability to share common information across pro-
jects that use a variety of tools and processes will lessen the time, risk and cost of
software transformations. This will in turn improve the quality of reverse engineering
and ADM tools, provide new capabilities, and extend the return-on-investment in
software development tools. ADM standards will allow users to begin modernization
projects knowing that there is interoperability between different tool vendors and that
their solutions are extensible. Standardization will ensure that end users are investing
not just in individual tools but rather into a coordinated strategy.

The first RFP of the ADM Task Force solicits proposals for a Knowledge Discov-
ery Meta-model (KDM) for exchanging information related to transformation of exist-
ing software assets. Specifically, the RFP seeks a common repository structure to rep-
resent information about existing software and its operating environment [9]. KDM
will provide the ability to document existing systems, discover reusable components
in existing software, support porting to other languages and to MDA, or enable other
potential transformations.

The meta-model will also enable information about existing software artifacts to be
exchanged among different tools and be customized for specific end-user projects.
This will enable vendors that specialize on certain languages, platforms or types of
transformations to deliver customer solutions in conjunction with other vendors.

The KDM will represent the structure of the existing software and its related arti-
facts. It is important to represent all the principal artifacts of existing software, which
in general terms can be described as the entities (the structural elements, the “things”),
their relations, and attributes [9].

The KDM meta-model is not going to be restricted to a particular implementation
language or platform. The biggest challenge is to represent behavioral programming

 Managed Architecture of Existing Code as a Practical Transition Towards MDA 231

artifacts in a language-independent (yet actionable) way. KDM will represent behav-
ioral artifacts also as entities, relations and attributes. Entities at the language level in-
clude, for example, methods, source files, classes, screen definitions, data elements,
records, tables or transactions. Relationships at the language level include, for exam-
ple, “function uses a variable”, “class inherits from another class”, or “file includes a
header”. Attributes at the language level include, for example, name, access rights,
version, source language, last scan date, or type of relationship.

The architecture aspect is key to ADM. At the architectural level there are several
kinds of structures (corresponding to the well-known architecture views):

 Physical, or build structures (for example, files, directories, import rela-
tions between files, build dependencies, etc.)

 Run-time structures (for example, processes and threads and the corre-
sponding interprocess communication channels, etc.)

 Logical structures (for example, subsystems, modules, layers, components
and their dependencies, various architecture views, etc.)

Physical structures that are related to the build process of the existing software are
often critical in ADM projects. Architectural entities include, for example, modules,
subsystems, architecture layers, components or libraries. Architectural relationships
include, for example, “file is contained in directory”, “component provides a
method”, “component uses API of another component”, etc. Architectural attributes
include, for example, component name.

Klocwork is contributing their Container Models as the basis for KDM. For the
purposes of interoperability, KDM will provide more specialized meta-classes to rep-
resent physical, run-time and logical structures. The meta-model will relate the ele-
ments to language-level structures to logical structures, run-time structures and physi-
cal structures through the mechanism of “rolled up” relations between containers,
described in section 3.

8 Conclusions

We have discussed our approach to introducing modeling into “existing code pro-
jects”. The objective of our approach is to use models to gain intellectual control over
the architecture of existing software. The short-term benefits come from gradually
improving architecture and maintenance robustness of existing software. The longer-
term benefits may come from a unified, enterprise-wide use of model-based develop-
ment “from the cradle to the grave”.

In our experience, Container Models can facilitate successful introduction of mod-
eling into “existing code projects”. In summary, Container Models:

 Represent “containers”, relations between “containers” and interfaces between
“containers”:

 each “container” has dependencies on other “containers”
 each “container” provides an API to other “containers”

232 N. Mansurov and D. Campara

 This model is scalable:

 composition of “containers” is another “container”
 The composition depends on everything that individual parts depended on
 The composition provides the union of APIs, provided by individual parts

 Model can be refactored

 Sub-containers can be moved from one container to another, model shows
how dependencies and APIs change

 This model is precise

 With respect to the contents of aggregations
 With respect to APIs

 This model is meaningful and useful

 Hierarchies of containers correspond to architecture views
 Leaf “containers” can be procedures, variables, files, etc.
 Leaf relations (APIs) are e.g. procedure-calls-procedure, etc.

 The Model is actionable: refactoring of containers and their contents can be
mapped to edits of source files

 Model can be preserved and automatically updated as changes are made to software

 Leaf containers and their relations are automatically extracted from source; the
model stores only the hierarchy of containers; relations are recalculated on-
the-fly

There are two distinct phases in our approach:

 Establishing Managed Architecture capability level
 Launch migration into MDA by generating UML models from container

models

At the first phase, Managed Architecture techniques and reverse engineering tools
are used to establish the following:

 Big picture of the system: major components and structures, relations be-
tween them

 Common context for documenting, developing and educating others about
the system as it evolves, especially the legacy components

 Common repository for all architectural and design artifacts related to exist-
ing assets

At the second phase, MDA tools are used to perform the following:

 platform-independent modeling and validation
 platform-specific modeling
 Automatic code generation
 Common context for documenting, developing and educating others about

the system as it evolves

At both phases, Managed Architecture techniques are used to enforce integrity of
architecture cohesion of the system.

 Managed Architecture of Existing Code as a Practical Transition Towards MDA 233

References

[1] N. Rajala, D. Campara, N. Mansurov, inSight Reverse Engineering CASE Tool, in Proc.
of the ICSE’99, Los Angeles, USA, 1998.

[2] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modelling Language Reference Man-
ual, Addison-Wesley, 1999

[3] N. Mansurov, A Systematic Approach to Recovering Architecture from Existing Soft-
ware, SD Expo West, San Jose, 25th April, 2002:

[4] N. Mansurov, D. Campara, Extracting High-Level Architecture From Existing Code
with Summary Models, in Proc. IASTED Conf. On Applied Informatics, Innsbruck,
Austria, 2003

[5] N. Mansurov, D. Campara, Using Message Sequence Charts to accelerate maintenance
of existing systems, in Proc. 10th SDL Forum, Copenhagen, 2001, LNCS, Springer Ver-
lag, 2001:

[6] N. Mansurov , Using Metrics to enforce quality of Managed Architectures”, in industrial
presentations proc. of int. Conf. Metrics-2002, Ottawa, Canada, 2002:

[7] OMG, Legacy Transformation Working Group Forms, Draws Number of New OMG
Members, OMG press release, July 2003

[8] OMG, Why do we need legacy transformation standards?, OMG whitepaper, 2003
[9] OMG Architecture-Driven Modernization: Knowledge Discovery Meta-model RFP,

2003.
[10] D. Frankel, et. al. OMG Model-Driven Architecture, Addison-Wesley, 2003
[11] A.van Deursen, P. Klint, C. Verhoef, Research issues in the Renovation of Legacy Sys-

tems, CWI reseaarch report P9902, April 1999
[12] I. Sommerville, Software Engineering (6th Edition), Addison-Wesley, 2000
[13] M. Lehman, Metrics and Laws of Software Evolution – The Nineties View, in Proc Met-

rics 97, Albuquerque, NM, 5-7 November 1997, pp. 20-32
[14] S. Ducasse, M. Rieger, S. Demeyer, Moose: An Extensible Language-Independent Envi-

ronment for Reengineering Object-Oriented Systems, in Proc. 2nd Int. Symposium on
Constructing Software Engineering Tools (CoSET 2000), June 2000

[15] Klocwork, http://www.klocwork.com
[16] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999
[17] P. Clements, L. Northrop, Software Product Lines: Practices and Patterns, Addison

Wesley, 2002
[18] Carnegie Mellon University Software Engineering Institute, The Capability Maturity

Model: Guidelines for Improving the Software Process, SEI Series in Software Engi-
neering, Addison Wesley, 1995

EPTUD: An Eclipse Plugin for Testing UML
Designs�

Trung Dinh-Trong1, Nilesh Kawane1, Sudipto Ghosh1, Robert France1,
and Anneliese A. Andrews2

1 Computer Science Dept., Colorado State University, Fort Collins, CO 80523
{trungdt, kawane, ghosh, france}@cs.colostate.edu

2 School of Electrical Engineering and Computer Science, Washington State
University, Pullman, WA 99164

aandrews@eecs.wsu.edu

1 Introduction

For model driven development approaches to succeed, there is a need for devel-
oping techniques for validating models. Studies show that many software faults
occur in the design phase. Hence, it is essential to find and remove faults in de-
sign models. Currently, UML design models are typically evaluated using walk-
throughs, inspections, and other informal types of design review techniques that
are largely manual and consequently, tedious, error-prone and less effective.

We present an approach to testing UML design models consisting of class
diagrams, sequence diagrams, and activity diagrams. Models under test are con-
verted into an executable form that utilizes an underlying test infrastructure.
The models are exercised with generated test inputs. We have implemented the
approach as an Eclipse plugin (EPTUD — Eclipse Plugin for Testing UML De-
signs).

2 Test Approach

We assume that the diagrams are syntactically well-formed. This check can be
done automatically by UML drawing tools. We also assume that the models
under test describe sequential behavior only. We use the following types of ac-
tions in the activity diagrams: call operation actions, calculation actions, create
and destroy object actions, create and destroy link actions, read and write link
actions, and read and write variable actions.

Information from class and sequence diagrams is used to assess test adequacy.
Information from class diagrams and activity diagrams is used to obtain the
executable form of the design model.

� This research was supported in part by National Science Foundation Award #CCR-
0203285 and an Eclipse Innovation Grant from IBM.

LNCS 3297, pp. 234–237, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

EPTUD: An Eclipse Plugin for Testing UML Designs 235

Generate test case
to satisfy the test
adequacy criteria

UML
DUT

Set of test
adequacy

criteria
Test

cases

Generate
executable
form of DUT

Add test
scaffolding

Executable
DUT

(EDUT)

Execute
the test

Testable
DUT

(TDUT)

Test
result

Fig. 1. Overview of the Approach

The activity diagram in Figure 1 summarizes the overall testing process.
Testing begins when a tester provides the UML design model under test, DUT ,
to the testing system and selects a set of test adequacy criteria [1].

A test case is a tuple consisting of three components: a prefix, P , a sequence
of system events, E, and an oracle, O. Before a test is performed, the system is
in an initial configuration containing a set of objects that can create any valid
configuration of the DUT . The prefix, P , is a sequence of system events, which
is applied to the system in the initial configuration to move it to the desired
configuration in which testing can be started. Testing is performed by applying
to the system a sequence of systems events, E =< ei : i = 1 . . . n >, where ei is
a system event. We restrict system events to be operation calls. The oracle, O,
is used to define the expected behavior of the system. In our approach, an oracle
is a sequence of tuples (oi, ei), where oi is a condition (expressed in OCL) that
the runtime configuration of the DUT must satisfy after the system event, ei, is
executed.

The DUT is converted into an executable form, EDUT , using design infor-
mation in structural (class diagrams) and dynamic (activity diagrams) views
of the design to simulate the behavior of the model. Test scaffolding is added
to the executable form to automate test execution and enable runtime failure
detection. The combination of the executable form of the design and the test
scaffolding is called the testable form, TDUT .

Testing is performed by executing the TDUT with the generated test inputs.
During test execution, the effects of system behaviors modeled by activity dia-
grams are observed in terms of changes in the configurations. The configuration
of the TDUT is updated continuously during the test. Also, after the execution
of each system event, ei, the corresponding oracle condition, oi, is checked. If a
configuration produced during the test violates any constraint described by the
class diagrams, or if any condition, oi, evaluates to false, a failures is reported.

3 Eclipse Plugin

We have developed a prototype implementation of our approach in the form of
an Eclipse plugin.

Specification of the Model Under Test: The Omondo EclipseUML plugin is
used to draw class and sequence diagrams. Operation behaviors are described as

236 T. Dinh-Trong et al.

actions using the Java-like Action Language (JAL) [2] developed by our research
group. Developers use the ecore system editor to specify operations and OCL
constraints.

Generation of the Executable and Testable Forms: UML classes, at-
tributes, and operations are transformed into Java classes, state variables and
method declarations. For each class, C, in the DUT, a collection class, SetOfC, is
generated. An instance of SetOfC maintains a collection of instances of C. The
SetOfC class is needed to take care of association-end multiplicities that are
greater than 1. The SetOfC class has methods to add (or remove) an instance
of C to (or from) the collection. Association ends are transformed into Java at-
tributes with collection class types. For more details on transforming UML class
diagrams into Java, please refer to Dinh-Trong [3].

A class named TFactory is generated from the class diagrams. This class has
public methods to create and destroy instances of every class and association in
the class diagrams.

Activity diagrams are transformed into Java method bodies using the follow-
ing rules:

1. Call actions become Java method invocations.
2. Return actions become return statements.
3. Create object actions become Java object creation statements.
4. Java condition (if . . . then . . . else . . .) and loop structures (while . . .)

are derived from activity condition and iteration structures respectively.
5. Object (or link) create and destroy actions are transformed into appropriate

invocations of the methods in TFactory.

Scaffolding is added to the EDUT to obtain the TDUT . Scaffolding includes
test drivers and code to detect test failures. Test drivers consist of Java code
to (1) create the initial configuration, (2) apply test inputs to the system, and
(3) execute tests. Failure detection involves execution of code that checks for
certain failure conditions. The following conditions are checked:

1. Uninitialized variables in conditions (such as transition guards in activity
diagrams).

2. Uninitialized parameters passed in operation calls.
3. Non-existent target object of an operation call.
4. Pre-conditions before method execution evaluate to false.
5. Post-conditions after method execution evaluate to false.
6. Object configuration produced by the execution of a system event violates

constraints imposed by a class diagram.

The first three checks are performed by code inserted in the EDUT . For
the last three checks, we use the facilities provided by the USE tool [4]. USE
is an open source tool that validates whether a configuration conforms to the
constraints described in a class diagram. USE accepts UML class diagrams in
its own format. Therefore, EPTUD transforms the DUT into USE format.

EPTUD: An Eclipse Plugin for Testing UML Designs 237

Test Execution and Failure Reporting: Testing is performed by executing
the TDUT using the generated test inputs. During test execution, the effects of
system behaviors modeled by activity diagrams are observed in terms of changes
in the configurations.

EPTUD provides USE with pre- and post-conditions specified in the OCL and
requests USE to validate them for every operation before and after its execution
respectively. Also, after the execution of every system event in the test input,
EPTUD signals USE to check the object configuration against the class diagram
constraints.

Because the tools perform a different set of failure checks, both maintain
their own copies of the configuration during test execution. When testing begins,
EPTUD signals USE to create its representation of the initial configuration.
Whenever the configuration changes, USE is informed about the modification.
The changes in the configuration include adding or removing an object or a link,
and modifying an attribute value.

The configuration of the TDUT is updated continuously during the test. If a
configuration produced during the test violates any constraint described by the
class diagrams, a failure is reported.

4 Conclusions and Future Work

We outlined a systematic approach to testing UML design models and described
an Eclipse plugin that supports the approach. We are currently adding capabili-
ties to visualize test execution through animated sequence diagrams and observe
test coverage in the different views of the DUT . Future work also includes de-
veloping techniques for test input generation.

References

1. Andrews, A., France, R., Ghosh, S., Craig, G.: Test Adequacy Criteria for UML
Design Models. Journal of Software Testing, Verification and Reliability 13 (2003)
95–127

2. Dinh-Trong, T.T., Kawane, N., Ghosh, S., France, R.B., Andrews, A.A.: A Tool-
Supported Approach to Testing UML Design Models. Technical Report CS 04-108,
Computer Science Department, Colorado State University, Fort Collins, CO 80523
(2004)

3. Dinh-Trong, T.T.: Rules For Generating Code From UML Collaboration Diagrams
and Activity Diagrams. Master’s thesis, Colorado State University, Fort Collins,
Colorado (2003)

4. Gogolla, M., Bohling, J., Richters, M.: Validation of UML and OCL models by au-
tomatic snapshot generation. In: Proceedings of the 6th Int. Conf. Unified Modeling
Language (UML’2003), Springer, Berlin, LNCS 2863 (2003) 265–279

Towards a Platform for Debugging Executed
UML-Models in Embedded Systems

Philipp Graf, Clemens Reichmann, and Klaus D. Müller-Glaser

Institut für Technik der Informationsverarbeitung, Universität Karlsruhe (TH),
Engesserstr. 5, 76131 Karlsruhe, Germany

{graf, reichmann, mueller-glaser}@itiv.uni-karlsruhe.de

Abstract. Automated transformations from model to executable code
require new appropriate model-based ways for debugging and monitoring
such models directly on an embedded target platform. We propose an
architecture that allows the definition of various debugging-scenarios and
-views independent of the actual execution-platform. This architecture is
utilized to explore new approaches for assisting the developer in finding
faults in the system he is developing.

1 Debugging in the Context of Model Based
Development

Model-based development is a natural progression in the search for higher level
design-constructs to master the challenges of ever increasing complexity of the
systems under design. A further aspect of abstracting the design process to
higher level models is omitting information that is not known at this point of
development, namely information specific to the deployment platform. Platform
specific information is to be added during a final transformation phase to a
model or directly to code. The OMG is following this idea with their Model
Driven Architecture [1], but in principle this has always been accomplished by
code-generators for various CASE-tools before.

It is a known fact that methods and tools for finding defects in software
have always followed up new design- and programming-paradigms with a certain
delay [2]. Nevertheless debugging takes up a huge amount of time, regardless
of the used design- or programming-language. Development methodologies or
higher-level constructs can reduce the number of faults, but never remove them
completely.

Debugging largely remains a task that requires assistance by the developer.
If the developer specified the system for instance using the UML and afterwards
transformed the model to executable code automatically, debugging using a com-
mon source-code debugger will not give the appropriate view on the system. For
example, a simple state-chart is typically transformed to several hundreds lines
of code. This is even more critical, as the developer is not familiar with the
automatically generated code.

LNCS 3297, pp. 238–241, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

Towards a Platform for Debugging Executed UML-Models 239

Simulation also is not always an alternative, as especially for embedded sys-
tems timing-constraints have to be met. Also such systems usually interact heav-
ily with their environment and peripheral hardware, such that writing simulators
is inefficient and error-prone in itself.

This work has to be seen in the context of a model-based approach im-
plemented in a tool called GeneralStore, where systems can be managed in a
UML-centric way, but with subsystems defined in other notations. The models
of these so-called domains can be transformed to executable code using com-
mercial generators and our own approach for UML models. The interoperability
between those system parts can be modeled using the UML and are automati-
cally transformed to actual wrapper-classes during code generation. An in-depth
explanation is given in [3] and [4].

2 Approach and Platform

We propose an approach of debugging running software using methods and views
that are appropriate to the modeling notation used. The used architecture is
shown in Fig. 1.

Fig. 1. Architecture of the platform for model-debugging

As described in [4] we allow for modeling a system building it from sub-models
using multiple notations and meta-models. However at the current stage of de-
velopment we only consider the debugging of UML models. Thus, the process
starts with the system modeled using a UML CASE-tool. Our model-repository
GeneralStore is capable of generating source code from UML Class Diagrams and
UML 1.5 Actions (see [5]) and building an executable. As we focus on embedded
systems, we generate C/C++, but generation of Java is also implemented.

The executable is run on the target platform. This can be any platform that
exposes an interface for debugging, such as the GNU Debugger (GDB) [6], a
JAVA virtual machine through JDI [7] or any interface for a hardware-supported
debugger as they are common for embedded systems. These debugging inter-
faces and their APIs are mostly proprietary and very manifold. To abstract

240 P. Graf, C. Reichmann, and K.D. Müller-Glaser

from the actual target we define a driver layer that wraps the various debugger-
implementations on source-level. Each of these drivers implements an adapter
for a set of interfaces it exposes to the layers on top. This is necessary as not all
debuggers exhibit the same set of features.

Viewing the shown architecture from top there are various so-called scenar-
ios that implement debug-features necessary to monitor and debug the system.
These scenarios transform system-state or system-trace to various diagrams that
are exposed to the user via the visualization-layer. Every scenario provides the vi-
sualization layer with a diagram model based on the UML Diagram Interchange,
so that standardized serialization of visualization data is possible.

The UML Artefact Mapping layer is responsible for mapping artefacts from
the metamodel used for modeling to artefacts (i.e. variables, lines of code,...)
on source-code level. If the transformation to code followed the MDA pattern,
we have to retransform queries using the same MDA mapping. Classical code-
generators need a different mapping. Thus, we need to provide a mapping for
every modeling domain, every type of transformation (e.g. MDA mapping, code-
generator) and every transformed artefact. Note that this mapping is neither
necessarily surjective nor injective or even a function.

The mapping itself is accomplished in two stages. The lower layer allows to
transform queries on model level to queries on source level, thus abstracting
from the used transformation. Atop this layer we provide an implementation
of a query for every considered modeling artefact (e.g. attribute, association,
state,...).

3 Prototype and Future Work

To verify the feasibility of this approach we are in the process of implementing
a JAVA prototype of this architecture. It allows to monitor instances of classes
and their relations in an executed model using UML Object Diagrams.

Fig. 2 shows the design flow for the implemented scenario. Prerequisite is
a UML class-model that is imported into GeneralStore. The model is used to
generate the runnable executable as described in [4]. This prototype is suitable
for any platform that supports the GCC-toolchain. The debuggee is executed
through GDB and stopped at a break-point defined on the class-model.

The object model is built starting from any object, usually through a static
reference. We iterate over all attributes, regenerate the target-code for the re-
quired expressions and evaluate these querying GDB. The obtained values are
remapped to the respective model data-type and added as a slot. Similarly we
iterate over all associations and build missing links and recurse into generating
linked object if required.

To allow presentation with our DI-viewer, we build diagram information from
the model using fully automated layout and routing. The diagram is presented
in Eclipse based on the Graph Editor Framework (GEF). Currently we are eval-
uating an integration with the TopModL-initiative [8], as their approach partly
addresses infrastructure our debugger could benefit from.

Towards a Platform for Debugging Executed UML-Models 241

Fig. 2. Design flow for visualizing program state with object diagrams

Future work will also focus on a more generic implementation. The visualiza-
tion layer needs additional work, with more advanced and incremental layout and
routing. Having built the platform, it will be possible to work on more scenarios
which then have to be integrated into an actual tool sufficient for debugging
models. Also cross-metamodel debugging for heterogeneously modeled systems
has to be considered an important topic.

References

1. Object Management Group (OMG): MDA Guide Version 1.0.1 (2003)
2. Lieberman, H.: Introduction to The Debugging Scandal and What to Do About It.

Communications of the ACM 40 (1997) 26–29
3. Kühl, M., Reichmann, C., Müller-Glaser, K.D.: From object-oriented modeling to

code generation for rapid prototyping of embedded electronic systems. In: Proceed-
ings of the IEEE International Workshop on Rapid System Prototyping (RSP 2002),
Darmstadt, Germany (2002) 108–114

4. Reichmann, C., Kühl, M., Graf, P., Müller-Glaser, K.D.: Generalstore - a case-
tool integration platform enabling model level coupling of heterogeneous designs
for embedded electronic systems. In: Proceedings of the 11th IEEE International
Conference on the Engineering of Computer-Based Systems, Brno, Czech Republic,
Springer (2004)

5. Object Management Group (OMG): Unified Modeling Language (UML) Specifica-
tion, Version 1.5 (2003)

6. GNU: The GNU Debugger. (http://www.gnu.org/software/gdb/)
7. Sun: Java Platform Debugger Architecture. (http://java.sun.com/products/jpda/)
8. The TopModL Initiative: TopModL Framework. (http://www.topmodl.org)

 LNCS 3297, pp. 242 – 245, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The TopModL Initiative

Pierre-Alain Muller1, Cédric Dumoulin2, Frédéric Fondement3,
and Michel Hassenforder4

1 INRIA, Rennes, France
pa.muller@uha.fr

2 LIFL, Université de Lille, France
cedric.dumoulin@lifl.fr

3 EPFL/IC/LGL, Lausanne, Switzerland
frederic.fondement@epfl.ch

4 MIPS, Université de Haute-Alsace, France
 m.hassenforder@uha.fr

Abstract. We believe that there is a very strong need for an environment to
support research and experiments on model-driven engineering. Therefore we
have launched the TopModL project, an open-source initiative, with the goal of
building a development community to provide: an executable environment for
quick and easy experimentation, a set of source files and a compilation tool
chain, and a web portal to share artifacts developed by the community. At the
time of writing we have almost completed the bootstrap phase (known as
Blackhole), which means that we can model TopModL and generate TopModL
with TopModL.

1 Introduction – About Model-Driven Engineering

At the end of the year 2000, the OMG proposed a radical move from object
composition to model transformation [1], and started to promote MDA[2] (Model-
Driven Architecture) a model-driven engineering framework to manipulate both PIMs
(Platform Independent Models) and PSMs (Platform Specific Models). The OMG
also defined a four level meta-modeling architecture, and UML was elected to play a
key role in this architecture, being both a general purpose modeling language, and (for
its core part) a language to define metamodels. While preeminent in the current days,
MDA is only a specific case, and we suggest considering model-driven engineering as
a wider research field, which includes the study of the following issues:

 What are the essential entities and operations for model-driven engineering, and
how to classify these entities and operations?

 How to separate and merge the business and platform aspects, and then how to
build transformation systems and how to translate models into executable code?

 How to maintain a model-driven application and how to migrate a legacy
application to a model-driven application, and how to integrate conventional
applications with model-driven applications?

 Which abstractions and notations should be used to support the previous points and
what kind of supporting environment should be defined?

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

 The TopModL Initiative 243

Obviously the scope of model-driven engineering is wide and a lot of work is still
ahead of us. We believe that a common research platform which would provide the
fundamental services required by model-driven engineering would significantly
contribute to the advance of research in this field. In this short paper we will focus on
the presentation of the bootstrap phase of TopModL. We first briefly state the basic
principles of model-driven engineering which shape the requirements of TopModL, and
then move to the description of the bootstrap process, including an overview of the
model transformations that we have developed to be able to reuse existing MOF-based
metadata repositories. Then we present some related work and draw final conclusions.

2 Basic Principles of Model-Driven Engineering

The fundamental model-driven engineering principles identified so far by the
TopModL initiative are:

 The fact that everything is a model. For TopModL, models are first-class entities;
everything is expressed explicitly in terms of models, including business models,
platform models, executable models, debugging models, trace models,
transformation models, process models…

 The notions of languages, models and roles. A model is expressed in a language;
this language is a model which plays the role of meta-model for the models
expressed in that language.

 The independence versus the model repository. We want to have a uniform access
to several repositories including EMF [3], MDR [4], or XDE.

 The fact that TopModL itself is model-driven. We want everything in TopModL to
be explicit and customizable, including the meta-modeling framework. For
instance TopModL does not require the M3 to be MOF, it does not even require a 4
layer meta-modeling architecture.

The basic services offered by TopModL include:

 Model (meta-model) persistence, serialization in XMI (XML Meta-data Interface)
and manipulation via JMI (Java Meta-Data) interfaces.

 Visual edition of models (meta-models) with OCL evaluation.
 Model-Driven parameterization of TopModL and textual and visual editor generation.
 Model transformation and code generation (Java, SQL).

3 Blackhole – Technical Architecture of the Bootstrap

One of the major concerns of TopModL is to make explicit the meta-modeling
framework, and not to constrain the usage of a meta-modeling language at the M3
modeling level. There are mainly two reasons for that. The first reason is that
TopModL, as a research-oriented tool, should be able to evaluate new possible meta-
modeling languages and new meta-modeling constructs. The second reason is that
there are already many different meta-modeling languages available today, and that
there will be even more in the future (MOF 1.3, MOF 1.4, MOF 2.0, EMF ECore, …),

244 P. A. Muller et al.

and so TopModL should be able to deal with all of them. As an example, the first M3
language that we want Blackhole to support is the UML 2.0 Infrastructure.

The first step is to model the meta-modeling language (the UML 2.0 Infrastructure
in our case) using UML class diagrams in a UML CASE tool such as the Community
Edition of Poseidon [5]. Then, this metamodel is exported in an XMI file as a UML
1.4 model, which can be taken as input by the MDR UML2MOF model
transformation, which promotes UML models to MOF models. However a metamodel
like the UML 2.0 Infrastructure is making an extensive use of constructs that do not
have their counterpart in MOF 1.4 (like package merge or refinement/subsetting of
association-ends). Therefore we have extended MOF 1.4 and defined MOF 1.4++
which provides support for these constructs. Then a model transformation translates
the MOF 1.4++ model back to a MOF 1.4 model, using generalizations and
redefinitions to implement the merges. Alike, association-ends are marked as derived,
and a specific implemen tation is generated. In the end, the Infrastructure metamodel
now conforms to MOF 1.4 and can be sent to a JMI generator (like MDR) to generate
the repository and associated class interfaces and implementations.

We have also developed a visual editor which connects to this repository, and we
can this way edit metamodels (which conforms to the UML Infrastructure). This
editor is currently hand-coded, but it is our intent to generate it from models, in a
similar way of what is done in Netsilon [6].

At this point, TopModL is able to edit and maintain Infrastructure models, thus it is
possible to model the Infrastructure in TopModL. The result is the Infrastructure
metamodel modeled as an Infrastructure model. Another model transformation was
developed to transform Infrastructure models to MOF 1.4++ models, so that the
Infrastructure metamodel modeled in TopModL can be automatically translated to a
MOF 1.4++ model. By reusing this MOF 1.4++ model of the Infrastructure, it is
possible to perform again the process, this time using TopModL instead of Poseidon:
TopModL is at this phase bootstrapped, i.e. TopModL is modeled and designed using
TopModL. Obviously, the bootstrapping process may be repeated for any modeling
language supposed to play the role of a meta-modeling language.

4 Related Works

There are many related works, which share a common vision with the TopModL
initiative. We summarize some of these approaches below:

 Meta CASE tools including Metaedit+ [7], Dome [8] or GME [9], provide
customizable CASE tools, however they are fairly closed in the sense that they are
either not open-source, or not themselves model-driven.

 Dedicated model-driven tools, which generate specific applications, like Netsilon
[6] for Web information systems, Accord/UML [10] for embedded distributed real-
time systems.

 OCL based tools, including KMF [11] which generates modeling tools from the
definition of modeling languages expressed as meta-models, or Octopus [12] an
Eclipse plug-in OCLE [13] or the Dresden OCL toolkit [14], which are able to
check the syntax of OCL expressions, as well as the types and correct use of model
elements like association roles and attributes.

-

 The TopModL Initiative 245

 Meta-modeling frameworks like Eclipse EMF [3], Netbeans MDR [4] or Coral
[15] which offer model persistence, model serialization and programmatic access
to models via an API, or interoperability technologies like ModelBus [16]. These
frameworks provide part of the functionalities required by TopModL.

 Open-source modeling tools, including ArgoUML [17] Pampero [18] or Fujuba
[19] which offer significant features at the M1 level, but lack customization at the
M2 level.

One of the goals of TopModL is to understand how to reuse or leverage these
related works, and to find how to integrate them as much as possible in a research
platform for model-driven engineering.

5 Conclusion

The TopModL open-source initiative has been launched with the goal of providing
tool support to the model-driven engineering research community. TopModL groups a
development community, a web portal to share the artifacts developed by the
community, a set of source files and an executable program for meta-modeling.

References

[1] J. Bezivin, “From Object Composition to Model Transformation with the MDA”, in
proceedings of TOOLS’2001. IEEE Press Tools#39, pp. 350-354 . (August 2001).

[2] Object Management Group, Inc., “MDA Guide 1.0.1”, omg/2003-06-01, June 2003.
[3] Eclipse EMF, web site http://www.eclipse.org/emf/
[4] Netbeans MDR, web site http://mdr.netbeans.org/
[5] Poseidon web site http://www.gentleware.de
[6] P.-A. Muller, P. Studer, and J. Bezivin, “Platform Independent Web Application

Modeling”, in P. Stevens et al. (Eds): UML 2003, LNCS 2863, pp. 220-233, 2003.
[7] R. Pohjonen, “Boosting Embedded Systems Development with Domain-Specific

Modeling”, in RTC Magazine, April, pp. 57-61, 2003
[8] Honeywell, 1992, “DOME Guide”, available from "www.htc.honeywell.com/dome/"
[9] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, “The Generic Modeling Environment”,

WISP'2001, Budapest, Hungary, may 24-25, 2001
[10] S. Gérard, N. S. Voros, C. Koulamas, and F. Terrier, “Efficient System Modeling of

Complex Real-Time Industrial Networks Using the ACCORD UML Methodology”,
DIPES’2000,Paderborn, Germany, 2000.

[11] Kent Metamodeling Framework, web site http://www.cs.kent.ac.uk/projects/kmf/ index. html
[12] Octopus web site http://www.klasse.nl/ocl/octopus-intro.html
[13] OCLE web site http://lci.cs.ubbcluj.ro/ocle/
[14] Dresden OCL toolkit web site http://dresden-ocl.sourceforge.net/
[15] Coral, web site http://mde.abo.fi/tools/Coral/
[16] X. Blanc, M.-P. Gervais, P. Sriplakich, “Model Bus : Towards the interoperability of

modelling tools”, MDAFA’04, Linköping, June 10-11, 2004
[17] ArgoUML web site http://argouml.tigris.org/
[18] Pons, C., Giandini, R, Pérez., G., Pesce, P., Becker, V., Longinotti,J., Cengia,J., Kutsche,

R-D., “The PAMPERO Project: Formal Tool for the Evolutionary Software Development
Process”. Home page: http://sol.info.unlp.edu.ar/eclipse. 2003

[19] Fujaba web site http://wwwcs.upb.de/cs/fujaba/index.html

 LNCS 3297, pp. 246 – 249, 2005.
© Springer-Verlag Berlin Heidelberg 2005

PAMPERO: Precise Assistant for the Modeling Process
in an Environment with Refinement Orientation

Claudia Pons1 2, Roxana Giandini1 , Gabriela Pérez1 , Pablo Pesce1,
Valeria Becker1, Jorge Longinotti1, and Javier Cengia1

1 LIFIA – Facultad de Informática, Universidad Nacional de La Plata,
Calle 50 esq. 115. CP 1900. La Plata, Buenos Aires, Argentina

2 CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)
cpons@info.unlp.edu.ar

1 Introduction

Abstraction [2] facilitates the understanding of complex systems by dealing with the
major issues before getting involved in the detail. Apart from enabling for complexity
management, the inverse of abstraction, refinement, captures the essential relationship
between specification and implementation. Refinement relationship makes it possible
to understand how each business goal relates to each system requirement and how
each requirement relates to each facet of the design and ultimately to each line of the
code. Documenting the refinement relationship between these layers allows develop-
ers to verify whether the code meets its specification or not, trace the impact of
changes in the business goals and execute test assertions written in terms of abstract
model’s vocabulary by translating them to the concrete model’s vocabulary.

Refinement has been studied in many formal notations such as Z [1] and B[4] and
in different contexts, but there is still a lack of formal definitions of refinement in
semi-formal languages, such as the UML. The standard modeling language UML [5]
provides an artifact named Abstraction (a kind of Dependency) to explicitly specify
abstraction/refinement relationship between UML model elements. In the UML meta-
model an Abstraction is a directed relationship from a client (or clients) to a supplier
(or suppliers) stating that the client (the refinement) is dependent on the supplier (the
abstraction). The Abstraction artifact has a meta attribute called mapping designated
to record the abstraction/implementation mappings, that is an explicit documentation
of how the properties of an abstract element are mapped to its refined versions, and on
the opposite direction, how concrete elements can be simplified to fit an abstract
definition. The more formal the mapping is formulated, the more traceable across
refinement steps the requirements are.

Although the Abstraction artifact allows for the explicit documentation of the ab-
straction/refinement relationship in UML models, an important amount of variations
of abstraction/refinement remains unspecified, in general hidden under other nota-
tions. For example UML artifacts such as generalization, composite association, use
case inclusion, among others, implicitly define abstraction/refinement relationship.
The starting point to enable traceability across refinement steps is to discover and
precisely capture the various forms of the abstraction/refinement relationship, in par-
ticular those forms which are hidden in the model.

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

,

 Precise Assistant for the Modeling Process in an Environment with Refinement Orientation 247

2 Tool Support

The task of documenting refinement steps needs to be assisted by tools. To experi-
ment, we created a tool integrated in the Eclipse environment [3], called PAMPERO
(Precise Assistant for the Modeling Process in an Environment with Refinement
Orientation), based on the formal definition of refinement [6] [7]. The tool can be
downloaded from http://sol.info.unlp.edu.ar/eclipse; it supports the documentation of
explicit refinements (i.e. Abstractions artifacts with their corresponding mapping
expressions) and the semi-automatic discovering and documentation of hidden re-
finements.

PAMPERO consists of four components: an editor, an abstraction/refinement
translator, an OCL evaluator, and a detective:

The Editor. The editor supports the creation of a number of UML and OCL artifacts,
including Abstractions; see figure 1. Additionally, the editor allows developers to spec-
ify the abstraction mapping attached to Abstraction artifacts, using OCL expressions.

Fig. 1. The PAMPERO tool: Edition of explicit refinement

The abstraction/refinement Translator. The translator takes an OCL expression
attached to a Class and translates it to concrete vocabularies, following the refinement
steps. The translation of expressions attached to elements other than Class, is not
supported yet.

248 C. Pons et al.

The evaluator. The evaluator takes OCL expressions and evaluates them on a given
model. Expressions might be either originally written in the model’s vocabulary or
translated by the translator from another abstraction level. The evaluator was imple-
mented following the design of the USE evaluator [8]. Figure 2 shows the evaluation
of OCL well-formedness rules on the model.

Fig. 2. The PAMPERO tool: Evaluation of OCL constraints

Movement

amount

Account
initialBalance
/ currentBalance 0..*0..*

/currentBalance=initialBalance+
movement ->collect(amount) ->sum()

Account'
initialBalance
currentBalance

Movement

amount

Account
initialBalance
/ currentBalance

0..*0..*

currentBalance=initialBalance+
movement ->collect(amount) ->sum()<<refine>>

(a) (b)

Fig. 3. Refinement hidden under decomposition: (a) Composite Association relationship. (b)
Refinement relationship derived from the Composite

The Detective. This component looks into the model to discover and reveal cases of
hidden refinement. The abstraction mappings automatically generated by the detective
are generally in an immature state and should be completed by the developer. Figure 3

 Precise Assistant for the Modeling Process in an Environment with Refinement Orientation 249

displays and example where a refinement relationship hidden under composite asso-
ciation is discovered and revealed by the tool. In the example the specification of the
derived attribute currentBalance is suggested as mapping making it possible to trans-
late OCL invariants such as (Context Account’ inv: currentBalance>0) to a refined
version such as:

Context Account inv: (initialBalance + movement->collect(amount)->sum()) > 0.

3 Conclusions

To enable traceability of requirements the presence of “undercover refinement”
should be discovered and precisely documented. When the mapping between the
abstract and the concrete models is explicitly (and formally) documented, assertions
written in the abstract model’s vocabulary can be translated, following the representa-
tion mapping, in order to analyze if they hold in the implementation. Alternatively,
instances of concrete models can be abstracted according to the abstraction mapping
so that abstract properties can be tested on them.

The contribution of this article is to clarify the abstraction/refinement relationship
in UML models, providing basis for tools supporting the refinement driven modeling
process. PAMPERO is an evidence of the feasibility of the proposal.

References

1. Derrick, J. and Boiten,E. Refinement in Z and Object-Z. Foundation and Advanced Applica-
tions. FACIT, Springer, 2001

2. Dijkstra, E.W., A Discipline of Programming. Prentice-Hall, 1976.
3. IBM, The Eclipse Project. Home Page. Copyright IBM Corp. and others, 2000-2004.

http://www.eclipse.org/.
4. Lano,K. The B Language and Method. FACIT. Springer, 1996.
5. OMG. The Unified Modeling Language Specification – Version 1.5, UML Specification,

revised by the OMG, http://www.omg.org, March 2003.
6. Pons, C., Pérez,G., Giandini, R., Kutsche, Ralf-D. Understanding Refinement and Speciali-

zation in the UML. 2nd International Workshop on MAnaging SPEcializa-
tion/Generalization Hierarchies (MASPEGHI). In IEEE ASE 2003, Canada.

7. Pons, C., Pérez., G. and Kutsche, R-D. Traceability across refinement steps in UML Model-
ing. Workshop in Software Model Engineering, 7th International Conference on the UML,
October 11, 2004, Lisbon, Portugal.

8. Richters Mark and Gogolla Martin. Validating UML Models and OCL Constraints.
Springer-Verlag, 2000. http://www.db.informatik.uni-remen.de/projects/USE.

Tools for Critical Systems Development with
UML (Tool Demo)

Jan Jürjens� and Pasha Shabalin

Software & Systems Engineering, Dep. of Informatics, TU Munich, Germany

Abstract. The high quality development of critical systems (be it de-
pendable, security-critical, real-time, or performance-critical systems) is
difficult. Many critical systems are developed, deployed, and used that
do not satisfy their criticality requirements, sometimes with spectacu-
lar failures. UML offers an opportunity for high-quality critical systems
development that is feasible in an industrial context, if tools can be pro-
vided which automatically check important criticality requirements.

We present research on developing tool-support for critical systems
development with UML. The developed tools can be used to check the
constraints associated with UML stereotypes representing criticality re-
quirements mechanically, based on XMI output of the diagrams from the
UML drawing tool in use. We also explain a framework for implementing
verification routines for the constraints associated with such stereotypes.
The goal is that advanced users of the CSDUML approach should be
able to use this framework to implement verification routines for the
constraints of self-defined stereotypes.

Introduction. This article presents tool support for the automated analysis of
UMLsec models with regard to security requirements developed at TU Munich
and available at [JSA+04]. It also describes a framework which allows inclusion
of analysis plugins for other non-functional properties, such as dependability
requirements. More details, including references to related work, can be found
in [JS04, Jür04].

Background on UMLsec. We give some background on the UML extension for se-
cure systems development called UMLsec: Recurring security requirements (such
as secrecy, integrity, and authenticity) are offered as specification elements by
the UMLsec extension. The properties are used to evaluate diagrams of various
kinds and to indicate possible vulnerabilities. One can thus verify that the stated
security requirements, if fulfilled, enforce a given security policy. One can also
ensure that the requirements are actually met by the given UML specification
of the system. UMLsec encapsulates knowledge on prudent security engineer-
ing and thereby makes it available to developers who may not be experts in
security. The extension is given in form of a UML profile using the standard

� http://www4.in.tum.de/̃ juerjens – Supported within the Verisoft Project of the
German Ministry for Education and Research.

LNCS 3297, pp. 250–253, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

Tools for Critical Systems Development with UML (Tool Demo) 251

UML Editor
(UML 1.5 / XMI 1.2 - compliant)

e.g. Poseidon 1.6

UML Model
(UML 1.5 /
XMI 1.2)

Analysis engine
MDR

JMI

Model
and

Desired
properties

Result

Text Report

Static Checker

Dynamic Checker

Analysis Suite

Modified
UML
Model

Error Analyzer

“uses"

data flow

Fig. 1. UML tools suite

UML extension mechanisms. Stereotypes are used together with tags to formu-
late security requirements and assumptions on the system environment. Con-
straints give criteria that determine whether the requirements are met by the
system design, by referring to a precise semantics mentioned below. The exten-
sion has been developed based on experiences on the model-based development
of security-critical systems in industrial projects involving German government
agencies and major banks, insurance companies, smart card and car manufac-
turers, and other companies. Note that an extension of UML to an application
domain such as security-critical systems that aims to include requirements from
that application domain as stereotypes, as opposed to just adding specific archi-
tectural primitives, can probably never be fully complete. We expect UMLsec
to be extended with additional, more specific concepts (for example, from more
specialized application domains such as mobile security).

The Framework. The architecture and basic functionality of the UMLsec anal-
ysis suite are illustrated in Fig. 1. The overall architecture is divided between
the UML drawing tool in use and the analysis suite. This way the analysis suite
can be offered as a web application, where the users use their drawing tools to
construct the UML model which is then uploaded to the analysis suite. Addi-
tionally, a locally installable version is available. The usage of the analysis suite
as illustrated in Fig. 1 proceeds as follows. The developer creates a model and
stores it in the UML 1.5/XMI 1.2 file format.1 The file is imported by the tool

1 An upgrade to UML 2.0 is in development.

252 J. Jürjens and P. Shabalin

into the internal MDR repository. The tool accesses the model through the JMI
interfaces generated by the MDR library. There are static checkers that parse the
model, verify static features, and deliver the results to the error analyzer. Var-
ious dynamic checkers translate the relevant fragments of the UML model into
the input language of several analysis engines (including model-checker and au-
tomated theorem provers). The analysis engines are spawned by the UML suite
as external processes. Their results, and possibly a counter-example in case a
problem was found, are delivered back to the error analyzer. The error analyzer
uses the information received from both the static checkers and dynamic check-
ers to produce a text report for the developer describing the problems found,
and a modified UML model, where the found errors are visualized and, as far as
possible, corrected.

There exist various analysis plugins for the UMLsec tool framework, includ-
ing:

– a tool-binding to the model-checker Spin to verify cryptographic protocols,
described in [JS04],

– a tool-binding to first-order logic automated theorem provers such as e-
Setheo and SPASS,

– a test-sequence generation for subsystems, sequence diagrams, activity dia-
grams, and statechart diagrams, and

– a checker for the static security constraints in UMLsec.

We now explain a framework for implementing verification routines for the
constraints associated with the UMLsec stereotypes. The goal is that advanced
users of the UMLsec approach should be able to use this framework to implement
verification routines for the constraints of self-defined stereotypes. In particular,
the framework includes the UMLsec tool web interface, so that new routines
are also accessible over this interface. The idea behind the framework is thus to
provide a common programming framework for the developers of different veri-
fication modules which in the following we just call tools. Thus a tool developer
should be able to concentrate on the verification logic and not be required to
become involved with the input/output interface. Different tools implementing
verification logic modules can be independently developed and integrated. At the
time of writing, there exist verification modules for most UMLsec stereotypes.
An added tool implementation needs to obey the following assumptions:

– It is given a default UML model to operate on. It may load further models
if necessary.

– The tool exposes a set of commands which it can execute.
– Every single command is not interactive. They receive parameters, execute,

and deliver feedback.
– The tool can have an internal state which is preserved between commands.
– Each time the tool is called with a UML model, it may give back a text

report and also a UML model.

These assumptions were made in order for the framework to cover as much
common functionality as possible while not becoming overly complicated. Ex-

Tools for Critical Systems Development with UML (Tool Demo) 253

Fig. 2. UML verification framework: screenshot

perience indicates that the assumptions are not too restrictive, given the ar-
chitecture in Fig. 1. The tool architecture then allows the development of the
verification logic independently of the input and output media with minimum
effort. Each tool is required to implement the ITextMode interface which exposes
tool functionality in text mode, with a string array as input and text as output.
The framework provides default wrappers for the graphical user interface (GUI)
GuiWrapper and the web mode WebWrapper. These wrappers enable use of the
tool without modifications in the GUI application which is part of the frame-
work, or through a web interface by rendering the output text on the respective
media. However, each tool may itself implement the IGuiMode and/or IWebMode
to fully exploit the functionality of the corresponding media, for example to fully
use GUI mode capabilities to display graphical information. The GUI is shown
in Fig. 2.

Future Work. We plan to extend the framework with a functionality which al-
lows advanced users to conveniently add self-defined stereotypes with tags and
constraints to the tool-support.

References

[JS04] J. Jürjens and P. Shabalin. Automated verification of UMLsec models for
security requirements. In J.-M. Jézéquel, H. Hußmann, and S. Cook, editors,
UML 2004 – The Unified Modeling Language, volume 2460 of LNCS, pages
412–425. Springer, 2004.

[JSA+04] J. Jürjens, P. Shabalin, E. Alter, A. Gilg, S. Höhn, D. Kopjev, M. Lehrhu-
ber, S. Meng, M. Schwaiger, G. Kokavecz, S. Schwarzmüller, and S. Shen.
UMLsec tool, 2004. Accessible through a webinterface via [Jür04]. Available
as open-source.

[Jür04] J. Jürjens. UMLsec webpage, 2002-04. Accessible at http://www.umlsec.org.
[Jür04] J. Jürjens. Secure Systems Development with UML. Springer, 2004.

 LNCS 3297, pp. 254 – 258, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Incremental MDD Through Generative Causal
Connectedness

T.D. Meijler

Univ. Of Groningen, Dept. Of Management and Organization,
Unit Information Systems

t.d.meijler@bdk.rug.nl

1 Introduction

In most MDA [4] and MDD implementations there is a separation between the
modeling environment and the run-time environment. As a result, applying changes to
a run-time system can be awkward. For example adding a new type to a running
system means regenerating the code of the system, recompiling and restarting the
system. This leads to downtime of the system, thus blocking the normal business.

Riehle et al [6] made the observation that in order to enable such changes without
having to stop the run-time system and thus to allow incremental model-driven
development, a direct “causal” connectedness is needed between the modeling
environment and the run-time environment, such that every change or addition can
also directly, and only locally (without disturbing other models and their run-time
instances), affect the run-time system.

[6] describes a causally connected implementation of a UML-based model driven
system. It is based on the principle of "Adaptive Object-models" (AOMs). The idea of
AOMs is that an object-oriented application can be adapted through meta-data
available at run-time. However, a problem of all AOM implementations known to us
is that they are based on interpretation. Both instance structure and behavior is
realized interpretatively [3],[7]. As a result the storage structures for instances is not
efficient, e.g., each property value will be stored in a separate object. Moreover,
programming support such as optimization, type checking and normal debugging is
lost. The approach of [6] is therefore only used to create satisfactory applications
through interactive model-driven development. The final system is still generated in a
“traditional” way, and can no longer be changed incrementally.

The contribution of this short paper is that we describe how to achieve causal
connectedness, and thus incremental model-driven development, using code
generation. Using code generation the problems mentioned above of an interpreted
realization can be circumvented, such that the causal connectedness between
modeling and run-time environment can now be a fundamental, persistent feature. We
have actually implemented this in our integrated modeling and execution
environment. Of course due to the need for code generation with respect to [6] this is
to the detriment of the possibility of interactive development.

Throughout this paper we shall use a simple example from inventory management.
In inventory systems the kind of resources for which an inventory is kept cannot be

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

 Incremental MDD Through Generative Causal Connectedness 255

defined beforehand, and changes quickly. Our example is the addition of a new kind
of resource (bicycles) for which inventory must be kept.

2 Approach

We describe our approach in two main parts. The first part is the integration between
modeling environment and run-time environment in order to achieve the causal
connectedness between the two. This is done in order to fulfill the following
prerequisites for achieving such causal connectedness:

1. In order to enable incremental changes of existing models and map these to
existing (persistent) run-time instances of these models, the relationship between
models and existing run-time instances must be maintained. Note however that
challenges and solutions how to deal with existing instances and possible
dependent models will not be treated in this paper.

2. Since the set of available models (e.g. kinds of inventory resources) is not known
beforehand and varies continuously, we have to introduce explicit knowledge in
the run-time environment about what this set is. We will refer to this as the need
for introspection.

Thus, both a link from models to instances in the run-time environment as well as a
link from the run-time environment to the available models is needed. The integration
between modeling environment and run-time environment can provide this. One
integrated information system (persistently) stores and presents models represented as
objects (so-called “reified models”) as well as run-time (application) objects. Reified
models are available for introspection from within the application. Note that the
integration between run-time environment and modeling environment is also part of
the approach described in [6].

The main question is then how to achieve integration between modeling and run-
time environment such that code generation can be applied. Answering this is the
second part and main contribution of our approach. First notice that in order to
achieve generative incremental MDD there is a third major prerequisite:

3. When generating code incrementally for just one new model it must be possible to
link-up the code of this new model to pre-existing realizations of pre-existing
models as corresponding to the relationships between this new model and the pre-
existing models, e.g., a new model specializing another model means making the
new code subclass of the corresponding superclass. Thus, the relationship between
models and their realization must be maintained in some way.

An integration between modeling environment and run-time environment taking
code generation into account is realized through the following (“zigzag”) principle:
Each modeled object at level Mi (either a run-time object or a reified model) is
defined by the model at the next level Mi+1, while technically an instance of the class
generated from that model Mi+1.

256 T.D. Meijler

Figure 1 is used to illustrate this principle for the example. New models are shown
with dashed lines. The middle column shows reified models in the form of object
diagrams. As a naming convention such reified models are called “types”. Types also
refer to their corresponding realization, as corresponding to 3) above. The mapping
between the middle column and the right column represents the generation of classes
from these types. These two columns especially illustrate our contribution. The
mapping between the left column and the middle column only shows how UML
models may be represented as types. The vertical axis represents the conceptual
classification in M0 (object), M1 (model) and M2 (meta model).

+printToCatalogue()

InventoryTypeClass

InventoryObjectClass

+Name : String
+Type : TypeClass

PropertyType

+showBike() : Bool

+Brand : String
+Color : Color
+Frame : String

BicycleClass

ObjectClass

+generate() : ClassLink
+instantiate() : ObjectClass

+Name : String
+ImplClass : ClassLink
+Lifestate : Lifestates

TypeClass

0..*

+type

1

1 0..*

Name : String = bicycleType
ImplClass : ClassLink = BicycleClasss
Lifestate : Lifestates = Approved

BicycleType : InventoryTypeClass

Name : String = Brand
Type : TypeClass = String

brandPropDef : PropertyType

Name : String = Color
Type : TypeClass = String

colorPropDef : PropertyType

Name : String = Frame
Type : TypeClass = String

framePropDef : PropertyType

Brand : String = "Gazelle"
Color : Color = Black
Frame : String = "abcXYZ"

Gazelle123 : BicycleClass

+Name : String
-ReturnType :

OperationType

1

0..*

Name : String = ShowBike
ReturnType : = Boolean

showBike : OperationType

GeneratesTo

Technically Instance_of

Implements Host M0 Objects
M1 Models Reified as Host

Objects

Host M0 Objects

Physically Instance_of

InventoryObject

+testBike() : Bool

+Brand : String
+Color : String
+Frame : String

Bicycle

Conceptual UML
Models

Reified Models/
Host Object

Representation

Host Language
Class

Implementation

Object

Brand : String = "Gazelle"
Color : String = "Black"
Frame : String = "abcXYX"

Gazelle123 : Bicycle

Object

Model

Meta-Model

Represented By

Represented By

Name : String = inventoryObjectType
ImplClass : ClassLink = InventoryObjectClass
Lifestate : Lifestates = Approved

InventoryObjectType : InventoryTypeClass

+supertype

1

+subtypes 0..*

type

instance

supertype

Implements Host M1 Objects

Fig. 1. Illustrating our approach for the Inventory example adding a bicycle type (dashed)

The zigzag principle –from the M0 level to the M1 level– is shown as follows: The
M0 object “Gazelle123” is modeled by the M1 type “BicycleType”. It is also a run-
time (application) object instance of the class “BicycleClass” which has been
generated from “BicycleType”. We thus see the integration between modeling
environment and run-time environment already at this small level.

 Incremental MDD Through Generative Causal Connectedness 257

Due to this structure incremental adaptability is enabled. The reified
“InventoryObjectType” model retains a relationship with its instances and a link to its
realization (realizing points 1 and 3 above). When for the new type “BicycleType”
code has been generated and compiled, the type is run-time available to be
instantiated and to be queried for introspection (realizing point 2 above). Users of
other types and their instances need not be bothered.

3 Other Related Work

Our approach is similar to the approach taken in the Smalltalk Virtual Machine [4]
with its metalevel architecture reifying classes as objects and its mixing between
interpretation and compilation. In our case models are reified offering further
abstraction, allowing generating to different technical platforms as usual in MDA [4].

Causal connectedness has already been realized (although not explicitly named as
such) in other areas, for example Database Management Systems [1]. In such systems
incremental changes on tables are possible and have a direct effect on the data. It is
also common use to store meta-data (a catalog or dictionary) as data, similar as what
we do with reified models.

4 Consequences and Further Work

In this paper we describe only a small part. Causal connectedness enables an explicit
representation of relationships between all meta-levels M0, M1, M2 and M3. We
focus on the link between M0 and M1 to illustrate our approach. Moreover, while
causal connectedness is meant to support full incremental adaptability, we don’t
discuss how to handle the complications of the adaptation of existing models, with
their possible existing instances and existing dependent models. Also, we don’t give a
formalized underpinning; see for that earlier work of the author [5]. We don’t discuss
the full mapping to MDA, and give only minimal details of our realization, this will
also be subject for further publications.

The following consequences of this approach are also subject of further work. The
approach integrates the modeling environment with the run-time environment, thus
promising such features as learning, and model-driven ad-hoc intervention in
executing objects. It moreover promises extensibility of the modeling environment for
new domain specific modeling constructs, based on the same incremental step from
meta-modeling in M2 to implementation classes for M1 objects.

Through class generation, we overcome the disadvantage of the interpreted
realization of Causal Connectedness on the basis of Adaptive Object Models [6]. We
believe that this technique therefore makes causal connectedness mature and a serious
candidate for realizing applications as we are actually doing. This work has been
realized in an experimental development environment for model-driven development
and execution of enterprise systems called Nucleus.

258 T.D. Meijler

References

[1] Date, C.J., An Introduction to Database Systems. Addison Wesley 2000
[2] Goldberg, A., Robson, D., Smalltalk-80: The Language and Its Implementation, Addison-

Wesley, ISBN 0-201-11371-6, 1983
[3] Johnson, R., Wolf, B. "Type Object". In Pattern Languages of Program Design 3. Addison

Wesley, 1998
[4] Kleppe, A., Warmer, J., Bast, W., MDA Explained, Addison-Wesley, ISBN 0-321-19442-X
[5] Meijler, T.D., User-level Integration of Data and Operation Resources by means of a Self-

Descriptive Data Model, Ph.D. Thesis Part II Formalization, Erasmus University
Rotterdam, 1993

[6] Riehle, D., Fraleigh S., Bucka-Lassen, D., and Omorgbe, N. 2001. “The architecture of a
UML virtual machine”. In Proceedings of OOPSLA’01. ACM Press, New York, 327–341

[7] Yoder, J.W., Balaguer, F., and Johnson, R. 2001. “Architecture and Design of Adaptive
Object-Models”. In ACM SIGPLAN Notices, 36(12), December 2001

Model-Driven Engineering of
Middleware-Mediated Distributed Systems

Raul Silaghi and Alfred Strohmeier

Software Engineering Laboratory
Swiss Federal Institute of Technology in Lausanne

CH-1015 Lausanne EPFL, Switzerland

Abstract. Existing software engineering methods tend to have a strong focus on
functional requirements, ignoring more or less non-functional concerns, such as
middleware-specific concerns, which have to be addressed sooner or later when
designing and implementing distributed systems. Following an MDA approach to
software development, the Enterprise Fondue method proposes a hierarchy of
UML profiles as a means for addressing middleware-specific concerns at differ-
ent MDA-levels of abstraction, along with model transformations to incremental-
ly refine existing design models according to the proposed profiles. Tool support
is provided through the Parallax framework, which assists developers in the En-
terprise Fondue refinement process and enables them to modularize middleware-
specific crosscutting concerns into aspect-promoting Eclipse plug-ins.

Keywords MDA, UML Profiles, Model Transformations, Middleware Concerns,
Enterprise Fondue, Parallax, Eclipse Plug-ins, AOP, AspectJ.

1 Introduction

Over the last decade, middleware has become an integral part in the development of dis-
tributed enterprise systems. Distributed technologies, such as COM/DCOM/COM+,
RMI, CCM/CORBA, Jini, EJB/J2EE, .NET, and Web Services, are commonly referred
to as middleware and have been increasingly adopted by many enterprises as the back-
bone of their IT infrastructure. Besides the object, component, or service middleware
technologies mentioned above, other types of middleware take different approaches,
such as distributed transactions, message passing, or remote procedure calls [1].

In this plethora of middleware platforms it is often hard to identify the right one for
designing and implementing a given distributed system on top of it [2]. Moreover, a
problem often encountered in software projects in general, and distributed systems in
particular, is that the development of business logic is dominated by technical details
that do not really contribute to the functionality of the software system but hinder nev-
ertheless the analysis and design of the business logic. A recognized challenge for soft-
ware engineering research is to devise notations, techniques, methods, and tools for dis-
tributed system development that systematically build and exploit the capabilities that
middleware deliver [1].

 LNCS 3297, pp. 259 – 263, 2005.
© Springer-Verlag Berlin Heidelberg 2005

{Raul.Silaghi, Alfred.Strohmeier}@epfl.ch

:

,
,

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

and easier means for developers to build, extend, and evaluate applications than work-
ing directly at the code level. The Model Driven Architecture (MDA) [3], an Object
Management Group initiative, promotes the separation of concerns between two mod-
eling dimensions: one focusing on the business functionality (resulting in Platform In-
dependent Models – PIMs), and the other one focusing on the implementation of that
functionality on a specific middleware platform (resulting in Platform Specific
Models – PSMs). While model transformations should be used to refine PIMs into
PSMs, code generators are supposed to map PSMs to concrete middleware-based im-
plementations, providing thus an elegant approach to adapt PIMs to the peculiarities of
the new middleware infrastructures that do not cease to appear.

Before going any further, referring to the “myth of absolute platform indepen-
dence” and “platform relativism” [4], and in order not to leave any doubts or to risk any
misinterpretations, we would like to make clear that, in the context of this work, we con-
sider the middleware to be our MDA platform, and not the operating system, or any-
thing else. Moreover, even though MDA is completely independent of any modeling
language, the Unified Modeling Language (UML) [5] established itself as the de-facto
standard. As a consequence, we only focus on the UML support for MDA.

For the MDA approach to software development to become a reality for distributed
enterprise systems, MDA needs to provide support for understanding, describing, and
implementing different middleware-specific concerns, such as distribution, concurren-
cy, transactions, security, etc., also referred to as pervasive services in MDA’s PIM ter-
minology [6]. However, the current UML [5] does not provide any specific or standard
support for modeling pervasive services. What it does offer, is the possibility to “ex-
tend” the UML metamodel through, and only through, profiling, which defines how
specific UML model elements are customized and extended with new semantics as if
they were instances of new “virtual” metamodel constructs. This unique position of
UML profiles makes them play a key role in MDA, since developers must know about,
or define, the metamodels of their input and output models before implementing any
model transformation.

2 Enterprise Fondue

The MDA-compliant Enterprise Fondue [7] software development method defines
MDA-oriented UML profiles that address middleware-specific concerns at different
levels of abstraction. It also promotes a systematic approach to addressing pervasive
services in an MDA-compliant manner, at different levels of abstraction, through incre-
mental refinement steps along middleware-specific concern-dimensions according to
the proposed UML profiles.

A complete example has already been carried out for the distribution concern. The
hierarchy of UML-D Profiles proposed in [8] addresses the distribution concern in an
MDA-oriented fashion at three different levels of abstraction: platform-independent
level, abstract realization level, and concrete realization level. MTL [9] model trans-
formations were proposed to refine existing design models (within the same or between

R. Silaghi and A. Strohmeier 260

To escape from the proliferation of middleware infrastructures and to avoid drown-
ing in their implementation complexities, models are proposed as a far more accessible

Relying on the PIM-level outcome of the refinement along the distribution concern-
dimension as presented in [8], we showed in [10] how concurrency induced by distri-
bution can be inferred in an automatic way, provided that a small set of JavaBeans-like
design conventions are strictly adhered to. A simple PIM-level concurrency profile was
considered in order to illustrate how the inference algorithm evolves on a concrete ex-
ample and how an initial distributed design is automatically refined along the concur-
rency concern-dimension according to the proposed concurrency profile.

3 Parallax

In order to proliferate the MDA vision and make it a reality, and at the same time to
facilitate the development of distributed middleware-mediated applications, there is an
imperative need for tool support. Unfortunately, so far there is very little in terms of
concrete tools that actually support MDA beyond traditional UML modeling and skel-
eton-class generation.

Based on the solid foundations of the MDA-oriented UML profiles defined in the
context of the Enterprise Fondue method, and in order to provide developers with inte-
grated tool support that allows them to incrementally apply these profiles for refining
their design models along middleware-specific concern-dimensions at different stages
in the development life cycle of distributed enterprise applications, we designed the
Parallax framework [11].

Implemented as an Eclipse plug-in, Parallax relies on a well-defined system of
plug-ins and on aspect-oriented support (AspectJ [12]) to address middleware crosscut-
ting concerns at different MDA-levels of abstraction. Parallax supports the MDA ap-
proach to software development by enabling developers to refine their designs along
middleware-specific concern-dimensions, and to view their enhanced designs through
a prism of middleware platforms and see how middleware concerns are actually imple-
mented at the code level [13].

4 Future Work

Both the Enterprise Fondue method and the Parallax tool support are relatively young,
and still undergoing refinement and improvement as we move along. Nevertheless, they
are both applied to case studies and tests are carried out to determine their limitations
and extensibility problems, and to adjust them accordingly.

With regard to the Enterprise Fondue method, further investigations will be carried
out to check whether other middleware-specific concerns lend themselves to such an
MDA-oriented profiling approach. Addressing concurrency (UML-C Profiles), transac-
tions (UML-T Profiles), security (UML-S Profiles), global time (UML-GT Profiles),
etc., will be intermediate steps towards an MDA-Oriented UML Profile for Middleware
Services, or more precisely Middleware-Specific Concerns (UML-MS Profiles).

Model-Driven Engineering of Middleware-Mediated Distributed Systems 261

different MDA-levels) along distribution-related concern-dimensions and in conform-
ance with the UML-D Profiles. The CORBA technology was used to illustrate how the
refinement process is applied to a concrete example.

In order to increase the modularization of middleware crosscutting concerns in the
final application as well, we will explore the possibility of generating aspects for the
targeted programming language, such as AspectJ, AspectC++, to encapsulate such con-
cerns.

References

[1] Emmerich, W.: Software Engineering and Middleware: A Roadmap. Proceedings of the Fu-
ture of Software Engineering Track, FoSE, held at the 22nd International Conference on
Software Engineering, ICSE, Limerick Ireland, June 4-11, 2000. ACM Press, 2000,
pp. 117 – 129.

[2] Zarras, A.: A Comparison Framework for Middleware Infrastructures. Journal of Object
Technology, 3(5), May-June 2004, pp. 103 – 123.

[3] Object Management Group, Inc.: Model Driven Architecture. http://www.omg.org/mda/,
November 2004.

[4] Frankel, D. S.: The MDA Marketing Message and the MDA Reality. MDA Journal, a Busi-
ness Process Trends Column, March 2004. http://www.bptrends.com/.

[5] Object Management Group, Inc.: Unified Modeling Language Superstructure Specification,
v2.0, August 2003.

[6] Miller, J.; Mukerji, J.: Model Driven Architecture (MDA). Object Management Group, Doc-
ument ormsc/2001-07-01, July 2001.

[7] Silaghi, R.; Strohmeier, A.: Integrating CBSE, SoC, MDA, and AOP in a Software Develop-
ment Method. Proceedings of the 7th IEEE International Enterprise Distributed Object Com-
puting Conference, EDOC, Brisbane, Queensland, Australia, September 16-19, 2003. IEEE
Computer Society, 2003, pp. 136 – 146. Also available as Technical Report, N° IC/2003/57,
Swiss Federal Institute of Technology in Lausanne, Switzerland, September 2003.

[8] Silaghi, R.; Fondement, F.; Strohmeier, A.: Towards an MDA-Oriented UML Profile for
Distribution. Proceedings of the 8th IEEE International Enterprise Distributed Object Com-
puting Conference, EDOC, Monterey, CA, USA, September 20-24, 2004. IEEE Computer
Society, 2004, pp. 227 – 239. Also available as Technical Report, N° IC/2004/49, Swiss
Federal Institute of Technology in Lausanne, Switzerland, May 2004.

[9] French National Institute for Research in Computer Science and Control (INRIA): Model
Transformation Language (MTL). http://modelware.inria.fr/, August 2004.

[10] Silaghi, R.; Strohmeier, A.: An MDA-Based Approach for Inferring Concurrency in Distrib-
uted Systems. Proceedings of the 4th International Workshop on scientiFic engIneering of
Distributed Java applIcations, FIDJI, Luxembourg-Kirchberg, Luxembourg, November 24-
25, 2004. Springer-Verlag, Lecture Notes in Computer Science, 2005 (to appear). Also avail-
able as Technical Report, N° IC/2004/83, Swiss Federal Institute of Technology in Lau-
sanne, Switzerland, November 2004.

[11] Software Engineering Laboratory at the Swiss Federal Institute of Technology in Lausanne:
The Parallax Project. http://parallax-lgl.epfl.ch/, November 2004.

R. Silaghi and A. Strohmeier 262

Regarding Parallax, once the extension points that we have been experimenting
with become stable, we intend to follow the Eclipse contribution circle and publish
them, so that other developers and middleware vendors may contribute and enrich Par-
allax by implementing and providing the community with new Parallax plug-ins ad-
dressing middleware-specific concerns for their favorite middleware infrastructures.

[13] Silaghi, R., Strohmeier, A.: Parallax, or Viewing Designs Through a Prism of Middleware
Platforms. Proceedings of the 38th Annual Hawaii International Conference on System Sci-
ences, HICSS, Hilton Waikoloa Village, Big Island of Hawaii, HI, USA, January 3-6, 2005,
part of the Mini-track on Adaptive and Evolvable Software Systems, AESS. IEEE Computer
Society, 2005. Also available as Technical Report, N° IC/2004/69, Swiss Federal Institute of
Technology in Lausanne, Switzerland, August 2004.

Model-Driven Engineering of Middleware-Mediated Distributed Systems 263

[12] Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm, J.; Griswold, W. G.: An Overview
of AspectJ. Proceedings of the 15th European Conference on Object-Oriented Programming,
ECOOP, Budapest, Hungary, June 18-22, 2001. LNCS Vol. 2072, Springer-Verlag, 2001,
pp. 327 – 353.

 LNCS 3297, pp. 264 – 268, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Profile Suite for Model Transformations on the
Computation Independent Level

Michał miałek

Warsaw University of Technology and Infovide S.A.,
Warsaw, Poland

smialek@iem.pw.edu.pl, http://www.iem.pw.edu.pl/~smialek/

Abstract. Transformations of models on the Computation Independent level of
the MDA framework seem to have little focus in the current research. This is
despite their great significance for ensuring traceability of business require-
ments into system design and implementation. Hence, this paper proposes a
suite of profiles that define appropriate models and transformations between
them. There is briefly described a set of well-formedness rules for the models,
and a set of mappings and rules that allow for model transformations. These
mappings and rules are presented in the context of UML 2.0 Profiles.

1 Introduction and Rationale

Modern businesses change their processes rapidly and require rapid changes of their
supporting software systems. This trend enforces the organizations to use model-
based notations to describe their businesses in order to overcome complexity. MDA
[7] with its idea of precise automatic model transformations significantly supports this
tendency [5]. Although widely used, model-based notations seem to lack in precise
and standard metamodels to define contents of individual requirement chunks. These
chunks should be written with a notation that is simple enough to be easily understood
by the users and to provide for unambiguous traceability into design models, allowing
for different views of the prospective system [3].

Therefore, while most of the current research concentrates on transformations be-
tween the design level models (PIM and PSM) [2], we shall describe transformations
on the computation independent level (CIM). In this paper we propose a set of pro-
files that define notation for individual use cases and relate them to the business do-
main model. We also complete the mapping with appropriate transformation rules [1].

2 Profiles for the Computation Independent Level

We can describe any software development effort as a composition of notation, tech-
niques and technical process [6]. UML-based methodologies use Profiles [8] to define
well-formedness rules for elements of their notation. For the computation independent
level we thus propose three profiles: Business, Functional and Domain (Fig. 2-3). In

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

 Profile Suite for Model Transformations on the Computation Independent Level 265

order for these models to maintain coherency, we will extend the area where Profiles
are used by defining transformation techniques with Transformation Profiles (Fig. 1).

Software
Development
Methodology

Notation

Techniques

Process Model Profile

Model
Transformation

Profile

Software
Development

Project

Model

Model
Transformation

«apply»

1..*

1 +target

1..*

1..*

«apply»

«apply»

1..*

1..*

1..*

1+source

Fig. 1. Model profiles and transformation profiles shown as components of a methodology

«profile»
Business Model

«metaclass»
Action

«metaclass»
Activity

«metaclass»
Object

«metaclass»
UseCase

{Every UseCase is a target of a
Dependency with a single
Activity. Such relationships are
sterotyped <<describe>>.} «stereotype»

business

«stereotype»
system

«metaclass»
Dependency

«stereotype»
describe

«stereotype»
label

{Every Action in an Activity is a
target of a Dependency with a
single <<sentence>> Object. Such
relationships are stereotyped
<<label>>.}

«stereotype»
sentence

«stereotype»
subject

«stereotype»
object

- prefix: String
- preposition: String

«stereotype»
verb

{Every <<sentence>> objects is linked with
one <<subject>> Object, one <<verb>>
Object and one or two <<object>> Objects.}

Fig. 2. Overview of the Business Model Profile

Business and Functional Model Profiles. The models are composed of UseCases
and Activities [8] (Fig. 2). We put a constraint that every UseCase is «described» with
a single Activity. Activities contain Actions (among other possible elements), that are
«labeled» with «sentences». Every sentence is an Object linked with three or four
other Objects («subject», «verb» and one or two «objects» - SVO[O] sentence). The
business profile also assigns stereotypes to Actions («system» and «business»). These
stereotypes determine Action transformation into appropriate elements of other mod-
els. We also allow for the sentences to be written textually in order to form scenarios.

266 M. miałek

«profile»
Domain Model

«metaclass»
Property

«metaclass»
Class

«metaclass»
Object

«metaclass»
Dependency

«stereotype»
denote

«stereotype»
term

- form: int
- group: String

«metaclass»
Operation

{Every Class, Property or Operation
are the targets of at least one
Dependency with a <<term>> Object.
Such relationships are stereotyped
<<denote>>.}

{required}

{required}

Fig. 3. Overview of the Domain Model Profile

Profile for the Domain Model. The domain model is basically composed of Classes
with Properties and Operations (Fig. 3) that represent notions in the problem domain.
These notions can be «denoted» with «terms». These «term» Objects allow for vari-
ous synonyms and forms of the basic notion. The synonyms can be grouped for dif-
ferent groups of users (see the attributes of the «term» stereotype).

«profile»
Business to Functional Transformation

«metaclass»
Business

Model Profile::
Action

«metaclass»
Functional

Model Profile::
UseCase

«metaclass»
Dependency

{Every <<system>> Action is
related (through two
<<transform>> Dependencies)
with a single UseCase.}

{==Business to Functional==> 1)
UseCase name is set to Action
name.}

{==Functional to Business==> 1)
Action name is set to UseCase
name.}

Fig. 4. Overview of the Business to Functional Transformation Profile

Business to Functional Transformation Profile. The transformation maps «system»
Actions to functional UseCases (Fig. 4). The transformation is straightforward and
simply synchronizes appropriate names.

Business and Functional to Domain Transformation Profile. This transformation
maps «verb» and «object» Objects to appropriate Classes, Properties or Operations
(Fig. 5). The Objects that are not yet mapped have to be mapped manually to an ele-
ment of the domain model. Their names are mapped to one of the dependent «terms».
In the case where no appropriate notion or term exists, a new element has to be added
to the domain model. Transformation in the reverse direction depends on the user

 Profile Suite for Model Transformations on the Computation Independent Level 267

group chosen. For each of the notions, the group determines the «term» that is to be
used to set the names of the dependent «verbs» or «objects» in the business model.

«profile»
Business to Domain Transformation

«metaclass»
Business

Model::Object

«metaclass»
Domain Model::

Property

«metaclass»
Dependency

{Every Object from the Business Model is a source and a
target of two Dependencies stereotyped <<transform>>.
The two dependencies are with a single Class, Property or
Operation from the Domain Model. Objects sterotyped
<<verb>> relate to Operations, Objects stereotyped
<<oject>> relate to Claases and Properties.}

{==Business to Domain==> 1) If not related, Object gets hand
related to a Class, Operation or Property. 2) If no appropriate
element exists, a new element is created. 3) Object name gets
related with an appropriate <<term>> Object. 4) If no appropriate
term exists, a new term is created based on the name.}

«metaclass»
Domain Model::

Object

{==Domain to Business==> 1) Group is hand selected.
2) Class, Property or Operation related to an Object is
selected. 3) Object name is set to <<term>> Object
name according to group selected.}

«metaclass»
Domain Model::

Operation

«metaclass»
Domain Model::

Class

Fig. 5. Overview of the Business to Domain Transformation Profile

3 Conclusions and Future Work

The presented profiles were verified in several commercial projects that include re-
engineering of business processes with underlying software systems in an IT depart-
ment of a major Polish telecom and business process and systems specification for a
large emerging economic information bureau. Application of the profiles allowed for
precise synchronization between behavioral and structural models on the CI level.
Experience showed that keeping models synchronized gave a very significant positive
shift to business-IT alignment. It could be noticed that the transformation profiles
allowed for almost instantaneous propagation of changes from the business model to
the requirement specifications of the related software systems. This was even though
all the transformations were performed by hand in a standard CASE tool.

Tool support was very desired by the analysts that had to synchronize models by
hand and the future work shall be concentrated on constructing of such a tool. The
new tool should obviously allow for automatic verification of model well-formedness
and execution of model transformations. It can be noted that the tool can be based on
the existing CASE tools (the repository metamodel is not changed by the Profile
mechanism). Sentences, terms, notions and other elements of the proposed profiles
can thus be stored in the existing repository structures. Only a plug-in is needed to
simplify and automate the manipulation of models, notably for writing SVO[O]
sentences aligned with the domain vocabulary of terms (see [4] for an example).

268 M. miałek

References

1. Bezivin, J., Gerbe, O.: Towards a Precise Definition of the OMG/MDA Framework. Proc.
16th Int. Conf. on Automated Software Engineering (2001) 273-280

2. Czarnecki, K., Hensen S.: Classification of Model Transformation Approaches. OOPSLA'03
Workshop on Generative Techniques in the Context of Model-Driven Architecture (2003)

3. Dijkman, R.M., Quartel, D.A.C., Pires, L.F., van Sinderen, M.J.: An Approach to Relate
Viewpoints and Modeling Languages. Proc. 7th Int. EDOC Conference (2003) 14-27

4. Gryczon, P., Sta czuk, P.: Obiektowy system konstrukcji scenariuszy przypadków u ycia
(Object-Oriented Use Case Scenario Construction System). MSc thesis, Warsaw University
of Technology (2002) http://www.iem.pw.edu.pl/~smialek/mgr/PGryczon_PStanczuk.pdf

5. Harmon, P.: The OMG’s Model Driven Architecture and BPM. Business Process Trends
Newsletter, vol. 2, no. 5 (2004) 1-11

6. Henderson-Sellers, B., Simons, A.J.H., Younessi, H.: The OPEN Toolbox of Techniques.
Addison-Wesley Longman (1998)

7. MDA Guide Version 1.0.1. omg/2003-06-01, OMG (2003)
8. Unified Modeling Language: Superstructure. ptc/03-08-02, OMG (2003)

 LNCS 3297, pp. 269 – 272, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The ProjectIT-RSL Language Overview

Carlos Videira1, João Leonardo Carmo2, and Alberto Rodrigues da Silva3

1 INESC-ID and Universidade Autónoma de Lisboa,
Rua de Santa Marta, nº 56, 1169-023 Lisboa, Portugal

cvideira@acm.org
2 INESC-ID and Instituto Superior Técnico,

Rua Alves Redol, nº 9 –1000-029 Lisboa, Portugal
joao_leonardo@netcabo.pt

3 INESC-ID and Instituto Superior Técnico,
Rua Alves Redol, nº 9 –1000-029 Lisboa, Portugal

alberto.silva@acm.org

Abstract. Requirements engineering is widely considered to be an essential ac-
tivity for the successful development of information systems. This paper briefly
presents a new initiative called “ProjectIT-Requirements” and describes the re-
sults achieved in the definition of a requirements specification language, called
“ProjectIT-RSL”, and the implementation of a prototype using VisualStu-
dio.NET. This is the first step of a process that will enable the automatic gen-
eration of UML models and programming code, based on the MDD approach.

1 Introduction

In the Information Systems Group of INESC-ID [http://gsi.inesc-id.pt/] we have been
developing efforts to increase the productivity of the software development process.
Recently we started a research program, called “ProjectIT”, whose goal is to develop
a complete software development workbench with support for requirements engineer-
ing, analysis and design, generative programming techniques, and project manage-
ment activities [5]. Our experience in the area of requirements engineering led us to
conclude that to achieve success, requirements must somehow be formalized, and
although previous initiatives were an important contribution [3], for a number of dif-
ferent reasons they have not been widely adopted. On the other hand, most of the
existing tools are above all requirements management tools that do not automate im-
portant tasks and reduce the work involved in the overall process. For example, they
do not promote the reuse of requirements, neither do they allow a tight integration
between requirements and other software process artefacts (such as models and code).

Within this context we started the ProjectIT-Requirements project [6], which com-
bines the benefits of formalizing the requirements specification with the need to use a
simple notation understandable by non-technical stakeholders. Our hypothesis is that
we should adopt a “controlled natural language”, a subset of natural language with
specific rules for requirements specification, with a limited vocabulary and a simpli-
fied grammar.

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

270 C. Videira, J.L. Carmo, and A.R. da Silva

2 The ProjectIT-RSL Language

After defining the overall ProjectIT-Requirements architecture [6], we developed an
initial prototype of the main deliverables of the project, upon which all the others
depend: the Requirements Language, defined by a metamodel (a brief overview is
shown in Figure 1), and by a grammar for defining the rules to map these concepts
into sentences; the Requirements Editor, which acts like a traditional editor for in-
troducing controlled requirements text; and the Requirements Compiler and Intelli-
sense features, responsible for checking the requirements definitions, introduced in
the editor, against the syntactic and semantic rules defined by language.

Primitive Types

Operation

groups

Type Property

Entity

relates with

Actor
performs operation

specializes

Fig. 1. ProjectIT-RSL metamodel

Our initial proposal for the ProjectIT-RSL language is based upon the analysis of
how requirements are most often described: normal language sentences where actors
carry out actions which imply the access to one or more entities.

– Actors are defined as active resources (e.g., an external system or an end-user)
that perform operations involving typically one or more entities.

– Entities are the static resources that are affected by the operations (e.g., a docu-
ment or the data about a client or an invoice stored in a database). Entities have
Properties that represent and describe their state.

– Operations are described by their respective workflows, which consist of a se-
quence of simpler Operations that affect Entities. This recursive definition will
end in atomic and primitive Operations (e.g., create, update or delete operations)
provided by default by our framework.

3 Prototype Development

In order to evaluate the preliminary version of the ProjectIT-RSL in a high-productive
environment we decided to take the benefits of the features provided by Visual Studio
.NET and .NET Framework [http://msdn.microsoft.com/] and so we decided to build
a prototype in this environment. The choice is quite obvious, since this development
environment provides some of the features we consider important such as intellisense
and syntax validation when writing code. Microsoft also provides the Visual Studio

 The ProjectIT-RSL Language Overview 271

Industry Partner Program [http://msdn.microsoft.com/vstudio/extend/], abbreviated
VSIP, which are a set of COM APIs that enable the integration of new features in the
Visual Studio.NET development environment, such as the possibility of adding new
languages, or creating new types of projects.

Visual Studio
Integration Package

Babel

ProjectIT -RSL Language Service and
ProjectIT -RSL VS.NET Integration Package

Proje ct IT-RSL
Compi ler

ProjectIT-RSL
XML Description File

VSIP COM
Interfaces

Babel COM
Interfaces

Direct Acces s to VSIP f or
implementing the project
in VS .N ET

Fig. 2. ProjectIT-Requirements tools architecture

These VSIP APIs are very powerful, but difficult to understand and very low-level
from the developer’s point of view (they are written in C++ and the code is difficult to
understand). Hence, we decided to use the Babel library that comes together with
VSIP, but provides a higher abstraction layer above it. For example, the intellisense
feature is handled directly by Babel and can be accessed from it. We also decided to
use implementations of Lex and Yacc (Flex [http://www.gnu.org/software/flex/] and
Bison [http://www.gnu.org/software/bison/bison.html]) to implement the Language
Checker in the Editor, and also for the compiler of the ProjectIT-RSL, based upon
syntax and semantic rules well known from programming languages. Figure 2 shows
how the different components of the architecture integrate to provide the global func-
tionality.

Fig. 3. Creating a new ProjectIT-RSL project and using the ProjectIT-RSL editor

We have already implemented a complete prototype integrated in Visual Stu-
dio.NET, which includes: (1) the possibility of creating new projects (as shown in

272 C. Videira, J.L. Carmo, and A.R. da Silva

Figure 3); (2) the ProjectIT–RSL editor (also in Figure 3), which supports full syntax
highlighting, the auto-complete feature and on-the-fly syntactic language verification,
suggesting the available correction choices; and (3) the ProjectIT-RSL compiler.

Besides detecting additional errors in the requirements written, the compiler pro-
duces a XML file currently conformant with the XIS/UML profile [4], which will be
the input to ProjectIT-MDD, the component of ProjectIT that is intended to specify,
simulate and develop information systems according with the MDD approach. In this
respect, our work has some similarities with the projects described in [1] and [2],
although we will follow a less formal approach [6].

4 Conclusions and Future Work

The results achieved with this prototype and with the current ProjectIT-RSL meta-
model confirm that our proposal is a suitable and effective approach to requirements
specification. Using a controlled natural language to help requirements description
will ease the involvement of the non-technical stakeholders in the requirements speci-
fication and management process.

The future work, besides improving ProjectIT-RSL (for example, adding support
for the specification of more complex and versatile operations and workflows), in-
cludes the integration of these features in a non-proprietary development environment
(the ProjectIT-Studio tool [4]). Simultaneously, we will research for more advanced
features, such as requirements reuse based on requirements architectures.

Although the ProjectIT-RSL is an initiative in the area of requirements specifica-
tion, the evolution of the ProjectIT-RSL language will integrate and extend the cur-
rent XIS/UML profile [4], resulting in the ProjectIT/UML profile, a common meta-
model for all ProjectIT sub-systems [5]. This profile will provide mechanisms to
support the automatic generation of UML models of the system to be developed, and
when processed by ProjectIT-MDD tools, will enable the generation of design and
code artefacts. This will be a seamless integration, supported by the capability of
ProjectIT-MDD tools to read the XML generated by ProjectIT-Requirements.

References

1. Bryant, B., et al. (2003) From Natural Language Requirements to Executable Models of
Software Components, Proc. of Monterey Workshop on Software Engineering for Embed-
ded Systems: From Requirements to Implementation, pp. 51-58, Chicago, Illinois

2. Lamsweerde, A. (2003) Goal Oriented Requirements Engineering: From System Objectives
to UML Models to Precise Software Specifications, Proc. of the 25th International Confer-
ence on Software Engineeering, IEEE Computer Society.

3. Lamsweerde, A. (2000) Formal Specification: a Roadmap, Proceedings of the conference on
The future of Software engineering, pp 147-159, Limerick, Ireland.

4. Silva, A. R., Lemos, G., Matias, T., Costa, M. (2003) The XIS Generative Programming
Techniques, Proc.of the 27th COMPSAC Conference, IEEE Computer Society.

5. Silva, A. R. (2004) O Programa de Investigação “ProjectIT”, White Paper, Relatório
INESC-ID, Grupo de Sistemas de Informação.

6. Videira, C., Silva, A. R. (2004) ProjectIT-Requirements, a Formal and User-oriented Approach
to Requirements Specification, accepted for publication in the JIISIC 2004 Conference.

 LNCS 3297, pp. 273 – 276, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A UML-Based Tool for Designing User Interfaces

Pedro F. Campos and Nuno J. Nunes

University of Madeira – Dep. of Mathematics and Engineering,
Campus Universitário da Penteada,

9000-930 Funchal – Portugal

Abstract. Existing software modeling tools are widely recognized to be hard to
use and, hence, to adopt. We believe those usability problems are related to a
legacy of formalism-centric tools that don’t promote the new challenges of
modern software development. In this short paper, we briefly describe a new
tool, under development, that tries to promote usability in modeling tools to
support collaborative development of interactive software. It focuses on usable,
real-world languages and a developer-centered design.

1 Introduction

Many different approaches have been proposed to capture the presentation aspects of
interactive systems [5]. These include sketches, content inventories, wire-frame
schematics and class stereotypes. UML class stereotypes have become a very popular
alternative to structure the presentation aspects of interactive systems. Popular object-
oriented methods extend the concept of a class to convey the important presentation
elements, those concepts are know as “views” in Ovid, “interaction contexts” in
UsageCD, “interaction spaces” in Wisdom and “boundaries” in RUP (more recently
“screens” in the new profile for web applications). For a comprehensive review of
those concepts, please refer to [7].

However, all of the aforementioned techniques still leave a considerable gap
between the inception level models of user intentions (task cases, use cases, scenarios
and other requirements level models) and the concrete user interface. The center
ellipse in Figure 1 illustrates this gap. A growing awareness of this conceptual gap
lead Constantine and colleagues to develop a new language for User Interface (UI)
specification, called Canonical Abstract Prototypes [1]. This language fills the gap
between existing inception level techniques, such as the illustrated UML-based
interaction spaces or visual content inventories, and construction level techniques
such as concrete prototypes, as Figure 1 shows.

Informal tools supporting natural input (such as sketching) also allow faster
modeling while communicating unfinished designs to clients and developers. This
encourages exploration and promotes a systematic approach to building a UI. Two
examples of this class of tools are SILK [4] and DENIM [6].

Our approach differs from others like [4, 6, 8] in the sense that we began with a
simple, easy to use drawing application and then added the necessary formalisms,
applying real-world notations (UML and Canonical Abstract Prototypes) while also

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

274 P.F. Campos and N.J. Nunes

seamlessly supporting multiple levels of abstraction (in terms of UI detail). The
following section describes the languages and the semantic model of our tool. Section
3 briefly explains some of the tool’s features and Section 4 draws some conclusions
and future lines of research.

Fig. 1. Prototyping techniques from inception to construction (adapted from [1])

2 CanonSketch: The Languages

CanonSketch’s main language is an extension to the UML for the design of
interactive systems: the Wisdom profile [7]. The Wisdom UML view is at the highest
level of abstraction: it is useful for drawing navigation and containment relationships
without concern for details of layout or spatial positioning.

The HTML concrete view is at the lowest level of abstraction: it shows a partially-
functional HTML prototype rendered in an embedded browser, thus allowing fast
testing of the UI. The intermediate view is the Canonical Abstract Prototype view.

The symbolic notation underlying Canonical Abstract Prototypes is built from two
generic, extensible universal symbols or glyphs: a generic material or container,
represented by a square box and a generic tool or action, represented by an arrow.
Materials represent content, information, data or other UI objects manipulated or
presented to the user during the course of a task. Tools represent operators,
mechanisms or controls that can be used to manipulate or transform materials [1]. By
combining these two classes of components, one can generate a third class of generic
components, called a hybrid or active material, which represents any component with
characteristics of both composing elements, such as a text entry box (a UI element
presenting information that can also be edited or entered).

Figure 2 shows a screenshot of a document being edited in CanonSketch. The left
part shows the UML view and the right view shows the corresponding, synchronized,
Canonical Abstract Prototype. We can see, for instance, that a containment
relationship between two «interaction space» classes corresponds to a Canonical
material nested inside a Canonical container. The complete, precise mapping between
the three views can be found in [2].

 A UML-Based Tool for Designing User Interfaces 275

3 CanonSketch: The Tool

All the existing approaches to model the presentation aspects of the user-interface rely
on standard modeling tools to create and manipulate modified class models. However,
modeling tools are well known to be difficult to use. This lack of usability of
modeling tools is in fact responsible for weak adoption and a decline of gross sales of
modeling tools (much less than expected and predicted from reputable sources such as
the International Data Corporation). From an initial user-centered approach to create a
new prototyping tool, we incorporated the semantics and formalisms necessary to
provide automated generation of concrete prototypes.

Fig. 2. CanonSketch’s screenshots, showing the same model at different abstraction views: the
UML view (left) and the Canonical Abstract Prototype view (right)

What makes CanonSketch a developer-centered tool, besides the languages and the
multiple, synchronized views, are its features, which include: color coding, a search
box that quickly navigates the model, a grid layout option for helping the design of
the spatial layout issues, tool palettes, a customizable toolbar, semantic checking and
XMI export that allows tool interoperability at semantic level. The search box
highlights all elements containing part of the string being typed, thus acting like a
filter. Combined with color coding, this feature can be particularly useful for things
such as quickly finding and classifying model elements (e.g. components coded as red
are subject to change, classes coded blue represent interaction spaces, etc.).

Any change in the UML or Abstract Prototype view updates the other, e.g. if the
user changes the name of an abstract component, that name is updated in the
corresponding UML element. The HTML view is generated from the Abstract
Prototype view. It is also possible to assign images or files to any kind of element.

Another aspect we recently added to the tool and has not been described yet is the
possibility of using gestures (already implemented) and rough sketches (in
development). The idea is to take advantage of natural input modalities in a flexible
way that is critical for early development stages1.

1 For more information, please refer to [2] or visit the tools’ website, which contains publica

tions, videos and screenshots: http://dme2.uma.pt/canonsketch.

276 P.F. Campos and N.J. Nunes

4 Conclusions and Future Work

This work shows that the UML semantic model can be used to support multiple levels
of detail of an interactive system. The UML had a tremendous impact in software
engineering but still remains quite far from achieving the promises of the late 90s. We
still lack widely accepted notations to support user-centered development and user-
interface design. We think that CanonSketch is a step towards that goal in bridging
HCI and Software Engineering. We are attempting to change the way modeling tools
are built and envisioned by focusing on achieving a flexible and usable tool instead of
following formalism-centered approaches.

Our preliminary evaluations with using the tool have been positive, and the
approach seems promising. However, the tool will have to be carefully evaluated and
we plan to perform an extensive usability study in order to refine the tool and
notations according to the study, add support for requirements modeling and achieve
integration with application development. Another effort is being devoted to support
real-time collaboration between several developers working on the same model. It has
been recognized that software design is a highly collaborative activity but few tools
support that cooperation. This support will be done in our tool by using Rendezvous
[9] communication technology that will allow concurrent synchronous/asynchronous
editing of models in a (hopefully) engaging and user-centered way.

References

1. Constantine, L. and Lockwood, L. A. D.: Software for use: a practical guide to the models
and methods of usage-centered design, Addison Wesley, Reading, Mass, 1999.

2. Campos, P., Nunes, N. J., CanonSketch: a User-Centered Tool for Canonical Abstract
Prototyping. In Proceedings of the EHCI/DSV-IS'2004, International Conference on
Engineering Human-Computer Interaction / International Workshop on Design,
Specification and Verification of Interactive Systems, Hamburg, Germany, 2004.

3. IBM, EMF-based UML 2.0 Metamodel Implementation: http://www.eclipse.org/uml2/.
4. Landay, J. and Myers, B.: Sketching Interfaces: Toward More Human Interface Design.

IEEE Computer, pages 56-64, March 2001.
5. Myers, B., Hudson, S. and Pausch, R.: Past, Present and Future of User Interface Software

Tools. ACM Transactions on Computer Human Interaction, 7(1): 3-28, March 2000.
6. Newman, M., Lin, J., Hong, J. I. and Landay, J. A.: Denim: an Informal Web Site Design

Tool Inspired by Observations of Practice. Human-Computer Interaction, 18(3): 259-324,
2003.

7. Nunes, N. J., Cunha, J. F.: WISDOM: Whitewater Interactive System Development with
Object Models, in Mark van Harmelen (Editor.), Object-oriented User Interface Design,
Addison-Wesley, Object Technology Series, 2001.

8. Paulo Pinheiro da Silva and Norman W. Paton: A UML-Based Design Environment for
Interactive Applications. In Proceedings of the 2nd International Workshop on User
Interfaces to Data Intensive Systems (UIDIS'01), E. Kapetanios and H. Hinterberger (Eds.),
Zurich, Switzerland, pages 60-71, IEEE Computer Society, 2001.

9. Rendezvous Zero-configuration networking. Apple Computer: http://www.apple.com.

 LNCS 3297, pp. 277 – 280, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The AGEDIS Tools for Model Based Testing

Alan Hartman and Kenneth Nagin

IBM Haifa Research Laboratory,
Haifa University, Mt. Carmel 31905,

Haifa, Israel
{hartman, nagin}@il.ibm.com

Abstract. We describe the tools and interfaces created by the AGEDIS project,
a European Commission sponsored project for the creation of a methodology
and tools for automated model driven test generation and execution for distrib-
uted systems. The project includes an integrated environment for modeling, test
generation, test execution, and other test related activities. The tools support a
UML based testing methodology that features a large degree of automation and
also includes a feedback loop integrating coverage and defect analysis tools
with the test generator and execution framework.

1 Introduction

Model based testing is still not a widely accepted industry practice despite the exis-
tence of academic and industrial case studies (see e.g. [4, 5, 8, 11]) which discuss its
advantages over traditional hand crafted testing practices. There are several reasons
for this. Robinson [13] mentions the need for cultural change in the testing commu-
nity, the lack of adequate metrics for automated testing, and the lack of appropriate
tools and training material. The AGEDIS project is an attempt to remedy both the first
and last of these obstacles to the wider adoption of model based testing. The AGEDIS
project has created a set of integrated tools for the behavioral modeling of distributed
applications, test generation, test execution, and test analysis. Moreover the AGEDIS
tools are accompanied by a set of instructional materials and samples that provide an
easy introduction to the methodology and tools used in model based testing. The case
studies [5] undertaken by the AGEDIS partners show that not all of the tools are suf-
ficiently mature for widespread adoption, but that they have all the necessary ele-
ments in place, that they are well integrated with each other, and that they provide a
coherent architecture for UML based testing with well defined interfaces. The impor-
tance of this architecture lies in that it may be used as a plug and play framework for
more or less sophisticated tools to be used as appropriate, and when more mature
tools become available. As an example, the Microsoft tools for model-based testing
come in two flavors, a light weight tool using visual modeling and straightforward
test generation algorithms [12], and a heavy weight tool using a text based modeling
language and sophisticated test generation based on model checking [10]. Either of
these tools could be plugged in to the AGEDIS testing framework and take advantage
of the features and facilities provided by the complementary tools. Similarly, other

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

278 A. Hartman and K. Nagin

modeling languages may be substituted for the AGEDIS modeling language, simply
by providing a compiler to the AGEDIS intermediate format for model execution. The
importance of the AGEDIS tools and architecture lies not so much in the quality of
one or other of the tools, but in the framework for integration of tools from different
suppliers with different requirements and strengths.

2 Architecture

Figure 1 illustrates the software components of the AGEDIS framework (represented
in the figure as rectangles), the user input artifacts (ovals), and the public interfaces
(diamonds) for the use of tool makers.

The user inputs three pieces of information describing the system under test (SUT):
a) the behavioral model of the system, b) the test execution directives which describe
the testing architecture of the SUT, and c) the test generation directives which de-
scribe the strategies to be employed in testing the SUT. Both a) and b) are entered
using a UML modeling tool equipped with the AGEDIS UML profile, whereas c) is
input via an XML editor (e.g. XML Spy).

The behavioral model of the system under test is specified by the user in a combi-
nation of UML class diagrams, state diagrams, and object diagrams. The syntax and
UML profile for this modeling language is described in [1]. The state diagrams are
annotated with the IF action language defined in [2].

The test execution directives (TED) describe the testing interface to the SUT and
give the mappings from the model’s abstractions to the concrete SUT interfaces for
control and observation. These are defined by an XML schema.

The test generation directives, describing the test strategy, are provided by the user
either as test purposes using UML state diagrams, or as default test directives for
global model coverage at varying levels of detail. These are also defined in [1].

Fig. 1. The AGEDIS architecture

User
Interface

Behavior
Model

Execution
Directives

Generation
Directives

Compiler

Analyzers

Edit/Browser

Generator

Execution
Engine

Simulator

SW Component User Input Public Interface

Execution
Trace

Abstract Test
Suite

Execution
Interface

UML
Modeler

XML
Editor

 The AGEDIS Tools for Model Based Testing 279

The three public interfaces for inter-tool communication are: a) the model execu-
tion interface, b) the abstract test suite, and c) the suite execution trace.

The model execution interface is defined in [2] and consists of the APIs used by
both the test generator, and the model simulator. It incorporates the necessary data for
simulation of the model of the SUT, including the controllable and observable fea-
tures of the SUT.

Both the abstract test suite and the suite execution trace are defined by a single
XML schema available at [3]. These two public interfaces provide all the necessary
information to describe the test stimuli, and both the expected and observed responses
by the SUT. The XML schema is a predefined abstract representation of all test suites
and execution traces in a common format.

There are a number of components that have been integrated into the AGEDIS
framework including: a) a UML modeling tool, b) a model compiler, c) a model simu-
lator, d) a test generation engine, e) a test execution engine, f) a test suite editor and
browser, g) a coverage analysis tool, h) a defect analysis tool, and i) a report genera-
tor. All of these tools are activated from a graphical user interface, which has man-
agement facilities for the various artifacts produced in the testing process.

The modeling tool (shown in Figure 1 as part of the user interface) can be any
UML modeling tool with the ability to use the AGEDIS profile. The AGEDIS system
uses a commercial UML Modeler with a convenient profile builder to produce an
XML representation of the model.

The XML file is compiled, together with the test generation directives to create a
combined representation of the model and testing directives in the IF 2.0 language.
This representation is shown in Figure 1 as the execution interface.

The model simulator provides feedback on the behavior of the model in the form of
message sequence charts describing execution scenarios. This simulator is an essential
tool to enable the user to debug the model.

The test generator creates an abstract test suite consisting of test cases which cover
the desired test generation directives. The test generator is based on the TGV engine
[9], but with additional coverage and observation capabilities derived from the
GOTCHA test generator [6].

The execution engine presents each stimulus described in the abstract test suite to
the SUT, and observes the responses, waits for callbacks, and traps any exceptions
thrown. The responses are compared with those predicted by the model, and a verdict
is reached. The execution engine writes a centralized log of the test trace in the format
defined by the test suite XML schema [3]. The execution engine also has the ability to
run multiple instances of test cases and create stress testing from the functional tests
created by the test generator. See [7] for details.

Both the test suite and execution trace can be browsed and edited by the AGEDIS
editing tool. The tool is useful for composing additional manual test cases to add to
the automatically generated test suites.

The coverage analysis and feedback tool which is integrated with AGEDIS is the
functional coverage tool FoCus [14]. This tool enables the user to define a functional
coverage model in terms of the methods and attributes of the objects in the SUT.
FoCus itself provides coverage analysis reports, and AGEDIS has fitted it with a
feedback interface, which creates test purposes for the generation of more test cases in
order to increase the functional coverage.

280 A. Hartman and K. Nagin

The defect analysis and feedback tool was created for the AGEDIS tool set. It reads
the suite execution trace and analyses the test cases which ended in failure. This was
deemed a valuable addition to a testing framework featuring a large degree of automa-
tion, since large numbers of test cases are run automatically, and the same defect may
be encountered many times in a given test suite. The defect analysis tool clusters test
cases according to the similarities between the defects observed and the steps in the
test cases immediately prior to the observation of the defect. The user can either view
the clustering report or generate a new test purpose which will direct the test genera-
tor towards producing additional test cases which will replicate the characteristic
defect of a cluster of test cases.

The report generator creates management documents describing the test cases, de-
fects, models, and other artifacts of the testing process.

References

1. AGEDIS Consortium, AGEDIS modeling language specification, http://www.agedis.de.
2. AGEDIS Consortium, Intermediate Language 2.0 with Test Directives Specification,

http://www.agedis.de.
3. AGEDIS Consortium, Test Suite Specification, http://www.agedis.de.
4. Becker P., Model based testing helps Sun Microsystems remove software defects.

Builder.com http://builder.com.com/5100-6315-1064538.html.
5. Craggs I., Sardis M., and Heuillard T., AGEDIS Case Studies: Model-based testing in in-

dustry. Proc. 1st European Conference on Model Driven Software Engineering, 106-117.
imbus AG December 2003.

6. Farchi E., Hartman A., and Pinter S. S., Using a model-based test generator to test for
standards conformance. IBM Systems Journal 41 (2002) 89-110.

7. Hartman A., Kirshin A., and Nagin K. A test execution environment running abstract tests
for distributed software Proceedings of SEA 2002 448-453.

8. Hartmann, J., Imoberdorf, C., and Meisinger, M., UML-based integration testing. Proceed-
ings of ACM Symposium on Software Testing and Analysis (2000), 60- 70.

9. Jeron, T., and Morel, P., Test Generation Derived from Model-checking, Proceedings of
CAV99, Trento Italy (Springer-Verlag LNCS 1633 1999), 108-122.

10. Microsoft Research – ASML Test tool, http://research.microsoft.com/foundations/AsmL/.
11. Offutt J. and Abdurazik A., Generating Tests from UML Specifications, Second Interna-

tional Conference on the Unified Modeling Language (UML99), 1999.
12. Robinson H., Finite state model based testing on a shoestring. Proceedings of STAR West

1999.
13. Robinson H., Obstacles and opportunities for model-based testing in an industrial software

environment. Proc. 1st European Conference on Model Driven Software Engineering,
118-127. imbus AG December 2003.

14. Ur S. FoCus Functional Coverage Tool http://www.alphaworks.ibm.com/tech/focus.

 LNCS 3297, pp. 281 – 291, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Tools Exhibits

Alberto Rodrigues da Silva

INESC-ID and Instituto Superior Técnico,
Rua Alves Redol, nº 9 – 1000-029 Lisboa, Portugal

alberto.silva@acm.org

Abstract. Live demonstrations of cutting-edge systems were an important and
exciting part of the UML2004 conference. The tool exhibits session provided
an excellent opportunity where participants analysed and viewed relevant UML
and MDA related tools in action and discussed these systems with their creators
or distributors. The tool exhibits session took place during the main conference,
from October 13 to 15, and included the following live demos: (1) "seCAKE: A
complete CASE tool with reuse support", by dTinf; (2) "Making UML dia-
grams accessible for visually impaired programmers", by FNB; (3) "TAU Gen-
eration2", by Telelogic; (4) "IBM Rational Rose XDE Products", by Sinfic; and
(5) “BridgePoint Development Suite”, by Mentor Graphics. The tool exhibit
contributions are described in this paper in the form of an extended summary.
We briefly describe the related products according the data provided by their
respective creators or distributors.

1 Introduction

In this paper we briefly describe the tools exhibits presented, from October 13 to 15,
at the UML2004 conference in Lisbon. The tool exhibits session provided an excel-
lent opportunity where participants analysed and viewed relevant UML and MDA
related tools in action and discussed these systems with their creators or distributors.

The tool exhibits session included the following live demos:

- seCAKE: A complete CASE tool with reuse support, by dTinf;
- Making UML diagrams accessible for visually impaired programmers, by FNB;
- TAU Generation2, by Telelogic;
- IBM Rational Rose XDE Products, by Sinfic; and
- BridgePoint Development Suite, by Mentor Graphics.

The tools exhibits contributions are described in the following sections in the form
of an extended summary. We describe the related tools according the data provided
by their respective creators or distributors, or in same cases we also get information
from the respective web sites. In the beginning of each section we provide contact
information of related persons and organizations.

N. Jardim Nunes et al. (Eds.): UML 2004 Satellite Activities,

282 A.R. da Silva

2 seCAKE: A Complete CASE Tool with Reuse Support (dTinf)

José M. Fuentes, Vicente García
dTinf, S.L. (Desarrollos para las Tecnologías de la Información), Madrid, Spain
{jmfuentes, vicente.garcia}@dtinf.es
http://www.dtinf.com

CAKE (Computer Aided Knowledge Environment) is a framework of tools, applica-
tions, and methodologies for identifying, classifying, retrieving, organizing, managing
and reusing knowledge. The CAKE framework has been developed to manage, organ-
ize and reuse all different kinds of “knowledge assets” generated within an organiza-
tion. The CAKE knowledge management and engineering environment, covering
vertical applications, is based on a modern knowledge representation and classifica-
tion schema called RSHP.

seCAKE is a computer-aided software engineering tool (CASE) designed for al-
lowing software engineers to develop Information Systems using the Knowledge
Management paradigm. Therefore seCAKE includes a whole set of enhancements for
managing software as knowledge.

Tool Objectives

seCAKE has the following objectives: (1) A full coverage of the Software Develop-
ment Process: unlike other CASE tools that are centered in UML, seCAKE covers
other development stages such us requirements, estimation, testing… Furthermore, a
trace system among all the project elements has been implemented. (2) Reuse support:
by automatically index and retrieve software models using the RSHP [1] repository,
seCAKE aims to open a new paradigm in software reuse. Together with the classical
domain analysis and domain engineering techniques (also covered in CAKE) the
indexing and retrieval capabilities of seCAKE enhance other classical classification
schemas such as facets [2]. (3) A deep coverage of the UML standard: this objective
is extremely important for retrieval and reuse purposes.

Main Features

The main features of the tool are the following:

- High UML semantic accuracy: in order to ease the retrieval of software models as
much as possible, seCAKE tries to be complied with the UML standard. So, unlike
many other tools, the core of the tool has been designed with the UML 1.5 meta-
model in mind. seCAKE also includes a semantic checker that shows all the devia-
tion of the current model with regards to the UML 1.5 metamodel and the UML
wellformedness rules.

- Advanced reuse system: aside of the classical domain engineering techniques that
are implemented in the CAKE tools, seCAKE includes a novel classification and re-
trieval module. This allows storing software models into the repository and querying
it. Those queries are not textual ones, but model sketches (pieces of UML diagrams,
one or more requirements…). During the query, the system will look into the reposi-

 Tools Exhibits 283

tory for those models that are close to the query. All those techniques allow an or-
ganization to enhance from an ad-hoc reuse maturity to a systematic one.

- Requirements support: including version management, trace with the rest of ele-
ments of the model (risks, function point items, UML model elements, test suites
and anomalies). Also, thanks to the NLP (Natural Language Processing) capabilities
of the tool, seCAKE allows to incorporate requirements automatically from a textual
document.

- Risk management: aside of the trace, includes the management of the activities
linked to risks, a priority model that shows the order of retirement and post-mortem
information that gives an added value to the retrieval capabilities of the tool.

- Project estimation techniques: including the function point technique, the
postarchitectural model of COCOMO II, and the POP (Predictive Object Point, de-
veloped by PriceSystems, http://www.pricesystems.com) estimation method.

- UML models comparer: that allows to easily compare the similarities and differ-
ences of two UML models.

- Code and schemas generation: including C# code generation, Java reverse and
direct engineering and XML Schema generation.

- Test cases management: including test suits and test cases support, as well as
anomalies support.

- Report generation: a project report could be generated with seCAKE. This report
includes information about risks, requirements, estimation, test cases and especially
UML.

- Solution view: that allows managing all the archives related to the project.
- Modeling templates: including the possibility of creating your own templates.
- Knowledge sharing: seCAKE will soon be deployed together with http://www.

umlmodels.org. This web site will allow every seCAKE user to share their knowl-
edge in two different senses: (1) seCAKE includes different forum threads; (2) the
indexing and retrieval capabilities of seCAKE allow sharing software projects
through the web site.

3 Making UML Diagrams Accessible for Visually Impaired
Programmers (FNB)

David Crombie, Sijo Dijkstra, George Ioannidis

FNB, Amsterdam, Netherlands
projects@fnb.nl, george.ioannidis@tzi.de
http://projects.fnb.nl/, http://www.tzi.de

Computer programming is one increasingly important area where blind and visually-
impaired people have been able widely to participate in the employment market and
in the educational sector [3]. Computer code has traditionally been text-based, and
therefore accessible to visually impaired people using assistive technology (such as
screen readers). In recent years the growth of software engineering has led to an in-
crease in the use of programming tools that use visually rich presentation methods to
facilitate development by sighted programmers. One of these tools is the Unified
Modelling Language, a language used for modeling across many fields. It reflects the

284 A.R. da Silva

dominant object-oriented programming paradigm, and is increasingly popular in edu-
cation and the workforce.

UML diagrams consist of nodes and connections between them. A great deal of in-
formation is contained in UML diagrams, much of it in graphical formats, such as the
style of arrow-heads, and this remains inaccessible in tactile format. Furthermore, the
text parts of the UML diagrams need to be converted to Braille to be understood as a
screen reader cannot read text contained within diagrams. Often when a tactile version
of larger diagrams has to be produced, the information needs to be redrawn over many
tactile drawings and thereby the connections and coherence are easily lost. This im-
poses practical limits on UML representation for blind people [4]. In addition, UML
is designed to be a co-operative modeling tool and a dynamic source of information
for a development team to annotate, amend and change as the team designs a system.
To take advantage of these features, interaction with the content is clearly necessary
and without access to these diagrams, visually impaired people are excluded. The EU
funded TeDUB project (Technical Diagram Understanding for the Blind) has been
working on access to technical diagrams via interfaces to structured information [5,6]
and has now developed a successful tool to access UML.

Technical Description and System Architecture

The TeDUB system consists of two main parts, DiagramInterpreter and Diagram-
Navigator. DiagramInterpreter (semi-) automatically analyses existing diagrams from
a number of formally defined domains and converts them into a representation that
can be used by DiagramNavigator. DiagramInterpreter’s core is the knowledge proc-
essing unit. It operates on a network of hypotheses and processes them incrementally
until a semantic description of the whole diagram is found. The image processing unit
analyses bitmap images and generates a first set of hypotheses based on the geometric
information therein. Vector graphics files, which already contain explicit information
about geometric primitives, can be used via DiagramInterpreter’s SVG (Scalable
Vector Graphics) import functionality. The Annotator allows a sighted user to interact
with the interpretation process by inserting hypotheses manually and thus improving
the quality of the interpretation as well as adding useful information not contained in
the original diagram. All domain dependent aspects of DiagramInterpreter are exter-
nalised as formalised knowledge. Therefore, the system is designed to minimise the
effort to incorporate a new type of diagram.

DiagramNavigator is the user interface component of the system and provides
blind users with an interface to navigate and annotate these diagrams. It presents the
diagram content obtained by DiagramInterpreter to the user. It also performs XSL
transformation of XMI-format UML diagrams exported from UML design tools like
Rational Rose or ArgoUML into the same TeDUB form, presented by the same user
interface. The great advantage of this latter approach is that the information contained
in the diagram is converted perfectly into the TeDUB format: the variable result of
image analysis of bitmaps is avoided.

The information of the drawing is modelled as a hierarchical tree structure of nodes
with information attached to each node. A node might be a Class in a Class diagram
or an Actor in a Use Case diagram. The nodes can be navigated either hierarchically
or as a collection of connected graphs (depending on the type of diagram), using stan-

 Tools Exhibits 285

dard application components so as to be screen-reader independent. Input is via the
keyboard or an optional tactile tablet. This is combined with a number of alternative
interfaces, such as 2D and 3D surround sound (optional) and a game force feedback
joystick. The joystick is used as a simple input and output tactile device and allows
representation of the spatial information in the diagram, such as the position of nodes
or the connections between them. Access to the information is also allowed by means
of a representation of the content as a text-only internally-hyperlinked document,
which can be navigated with the cursor keys as a standard text document. Another
approach to give access to the information is a set of functions based on task analysis
of the diagrams’ types and use that structure and represent information according to
user needs. For example, a Use Case diagram allows the presentation of all the Use
Cases separate from the diagram, useful for developers checking the required Use
Cases against implemented functions. To reflect the co-operative and modeling needs
of UML users, simple editing functions are available, including annotating, renaming
and limited editing of node information. All these components are designed to form a
cohesive whole, usable when the additional hardware is not available but consistent
when it is. The devices used are widely-available, low-cost devices rather than rela-
tively expensive special purpose devices. The system is intended to be affordable and
usable without special equipment by users with their own familiar screen reader.

Application and Demonstration

Following extensive user studies across four countries, most participants expressed a
very positive response to the system and felt it would be of significant value in educa-
tional and vocational environments. An interesting example was given by one partici-
pant, a software engineer, who had been made redundant when her department
switched to UML, as she was unable to visualize the diagrams. A system like TeDUB
would have resolved that problem. This stresses the importance of a tool to provide
access to these kinds of diagrams. Taking the suggestions from this user study into
account, the current version of the TeDUB system has significant potential to become
a truly effective UML tool for visually impaired people.

4 TAU Generation2 (Telelogic Iberica)

Niklas Lagerblad
Telelogic Iberica, Madrid, Spain
niklas.lagerblad@telelogic.com
http://www.telelogic.com

TAU Generation2 (TAU G2) [7] is a family of model-centric and role-based tools that
are among the first to implement the recently adopted UML 2.0 standard. The tool
family consists of TAU/Developer for Software Engineers, TAU/Architect for Sys-
tems Engineers, and TAU/Tester for Test Engineers. TAU G2 builds on the model
driven compilation technology perfected in TAU SDL Suite (a.k.a. TAU G1). TAU
G1 proved that real-time software development can be automated using mature speci-
fications languages such as Specification and Description Language (SDL) and Mes-
sage Sequence Chart (MSC). Given that many of the advanced language features

286 A.R. da Silva

offered by SDL and MSC were adapted and incorporated into UML 2.0, there were
compelling technical and market reasons to combine TAU G1’s model driven compi-
lation technology with UML 2.0 to produce TAU G2.

Main Features

TAU G2 provides the following features:

- Precise and unambiguous system specification – Engineers can visually specify
systems using the precise, standardized and non-proprietary language of UML 2.0.
This results in easy-to-understand, clear and unambiguous specifications.

- Specification of behavior – Whereas most system modeling tools allow only the
specification of the system’s architecture or structure, TAU G2 also allows engi-
neers to visually specify the dynamic aspects of the system's behavior.

- Automatic application generation – TAU/Developer is the only tool that supports
executable UML 2.0 models with behavioral specifications. Developers have access
to pre-defined, verifiable code patterns that ensure high quality standards. With these
capabilities, developers can automatically generate complete applications.

- Dynamic model verification – With fully controllable model simulation, engineers
can verify their work in the analysis, design, and implementation phases. As a result,
they can quickly locate and remove errors early when corrections are relatively easy
and inexpensive.

- Scalability – Large scale systems can be specified and models can be mapped to
how teams want to work, rather than having restrictions imposed by the tool. System
architecture and behavior also can be modeled and viewed at the appropriate level of
abstraction for the user.

- Integrated requirements management via Telelogic DOORS® – TAU G2 is
integrated with Telelogic DOORS, the market leading requirements management
solution.

- Automated documentation via Telelogic DocExpress® – TAU G2 is integrated
with DocExpress, which provides automatic extraction and formatting of system or
software application documentation.

- Change and configuration management via Telelogic SYNERGY™ –
SYNERGY provides change and configuration management for TAU G2 and re-
lated products.

Discussion

It’s inevitable that the software industry will eventually mature, and catch up with
other industries based on engineering and automation, such as the computer hardware
industry. At some point during this maturation process, it will become common prac-
tice for software engineers to specify their products using an architectural blueprint
language, such as UML 2.0.

During this evolution it will also become common sense for engineers to apply a
model driven development approach, such as MDA. This approach will need to be
supported by power tools, such as TAU G2, that faithfully and efficiently implement
the blueprint language, so that it can automate the mapping transformations across the
models that represent the various process phases.

 Tools Exhibits 287

What should we expect from Model Driven Architectures during the next decade?
We should expect them to evolve from conceptual architectures into technical archi-
tectures that solve complex business and technology problems.

What should we expect from MDA tools, such as TAU G2? In general, we should
expect progressively tighter integration with traditional Integrated Development Envi-
ronments (IDEs), and improved integration with requirements management and test-
ing tools. In the case of TAU G2, this means seamless integration with DOORS and
TAU/Tester. DOORS requirements can already be visualized as UML elements and
TAU/Tester test scripts are being updated to align it with the recently adopted UML
2.0 Profile for Testing.

This future model driven IDEs will allow developers to efficiently shift and down-
shift through all the abstraction gears associated with a full application lifecycle. In
these high productivity development environments, programming code will likely
devolve into a machine readable artifact that is rarely viewed by humans. Released
from the drudgery of producing and maintaining low-level implementation code,
software developers will be able to pursue more creative activities that return greater
business value, such as architecture, analysis and design.

5 IBM Rational Rose XDE Products (Sinfic)

Paulo Figueiredo
Sinfic, Lisbon, Portugal
pfigueiredo@sinfic.pt
http://www.sinfic.pt, http://www.ibm.com

The IBM Rational Rose XDE product family [8, 9] combines the rich heritage of the
award-winning IBM Rational Rose family with IBM Rational XDE, which extends
your IDE with the world's most advanced software modeling capabilities. Though
packaged and purchased together, Rose and XDE are installed separately. They can
be used in combination, with some limitations, but most users will benefit from pri-
marily using one or the other.

IBM Rational Rose XDE Developer editions offer software designers and develop-
ers a rich set of model-driven development and runtime analysis capabilities for build-
ing quality software applications. They offer complete visual design and development
environments that address the needs of organizations targeting both J2EE-based and
NET-based systems. Our solution allows users to work inside the included Eclipse
IDE, or it can be installed into the IBM WebSphere Studio Application Developer and
Integration Edition IDEs, and Microsoft Visual Studio .NET. Rational Rose is also
included to integrate with Microsoft Visual Studio and other leading Java platform
IDEs. The IBM Rational Rose XDE Developer products extend your development
environment or integrate with the one you are already using.

Rational Rose XDE Modeler enables architects and designers to practice model-
driven development with the Unified Modeling Language (UML). Such users can
produce platform independent models of software architecture, business needs, reus-
able assets, and management-level communication. Industry standard UML support
and a powerful pattern engine allow users to create a semantically rich application
architecture that meets business needs and is readily understood by the development
team. Architects and designers can use Rational Rose XDE Modeler's multi-model

288 A.R. da Silva

support to separate concerns of analysis, architecture, design and implementation.
Developers can use architectural models and patterns as the basis for implementation,
thereby accelerating the development of applications to conform to their architecture.
Further, features such as free-form modeling, Web publishing and reporting allow
users to share architecture and designs with all stakeholders, whether or not the stake-
holders use Rational Rose XDE Modeler.

Rational Rose XDE Developer also allows data architects and DBAs to create logi-
cal and physical data models for DB2, Oracle, Sybase, and SQL Server databases.
Architects can follow a top-down approach, creating a logical model of data require-
ments, transforming it into a physical database design, and then deploy that design to
a database. Or, start from an existing database and reverse engineer the schema into a
physical data model. Sophisticated "Compare and Synch" capabilities allow you to
compare a physical data model to a database, and reconcile differences. Further,
since the data modeling capabilities share the same environment as the application
modeling environment, it is easy to keep data models and application models in
synch.

No Need to Switch Between Tools for Design/Development

IBM Rational Rose XDE products extend your development environment or integrate
with the one you are already using. The developer doesn’t need to switch between the
IDE and the visual modeling tool. Purify plus it’s also integrated into websphere stu-
dio an Microsoft Visual Studio .Net, that allows use the capabilities of this perform-
ance and runtime analysis tool without leaving the IDE.

Main Features

The relevant features of the IBM Rational Rose XDE products are the following ones:
- Model-driven development with UML support
- Roundtrip engineering Java,C++, and Visual Studio languages
- Automatic or on demand model-code synchronization
- User-definable patterns and code templates
- Runtime analysis including visual execution trace
- Assisted modeling
- Multiple model support for Model-Driven Architecture
- Free-form diagramming
- Logical and physical database design
- Web publishing and reporting

6 BridgePoint Development Suite (Mentor Graphics)

Thomas Ulber
Mentor Graphics, Munchen, German
thomas_ulber@mentor.com
http://www.mentor.com

The Nucleus BridgePoint Development Suite [10] accelerates the development of
real-time, embedded, technical, and simulation systems. Nucleus BridgePoint pro-

 Tools Exhibits 289

vides the most complete and productive environment for Agile MDA (Model Driven
Architecture) [11] and the development of Executable and Translatable UML models.
It has been used to develop hundreds of the most demanding systems including flight-
critical launch vehicles, life-critical medical systems, large fault-tolerant distributed
telecom systems, highly resource-constrained consumer electronics, and large-scale
distributed discrete-event HLA simulation systems.

Project Technology founders pioneered the concepts of Executable and Translat-
able UML and have shaped the OMG standards that make UML executable. Acceler-
ated Technology continues Project Technology's leadership role by delivering the
benefits of MDA automation to development teams today.

Agile MDA – Executable and Translatable UML

Agile MDA provides a unique opportunity to accelerate the development and improve
the quality of real-time, technical, and simulation systems. OMG-compliant Executa-
ble and Translatable UML (xtUML) provides the basis for Agile MDA and its signifi-
cant benefits.

xtUML Platform Independent Models (PIMs) completely and concisely describe
what the system does and are fully testable and executable. The three orthogonal
system aspects are defined with Class Diagrams (Data), State Charts (Control) and
OMG-compliant Object Action Language (Processing). Domain Package Diagrams
provide support for effective subject-matter partitioning and system scale-up. Through
early PIM testing and defect elimination, system quality is dramatically increased, and
downstream integration, test and maintenance activities are streamlined.

xtUML PIMs are automatically translated, by customizable model compilers com-
prised of translation rules and patterns, to generate 100% complete target code. The
generated code directly reflects both the application behavior defined and tested in the
PIM, and the design and implementation specifics defined and tested in the model
compiler. Changes to the application defined by the PIM or to the software architec-
ture defined in the model compiler are automatically reflected in the system's gener-
ated code.

Benefits of effective automation and implementation of the Agile MDA process
include: accelerated development and maintenance, greatly increased system quality,
effective performance and resource optimization, streamlined platform migration, and
large-scale reuse.

Nucleus BridgePoint Development Suite

The Nucleus BridgePoint Development Suite provides complete support for Agile
MDA and the construction, debug, test, management, and translation of Executable
and Translatable UML (xtUML) PIMs. The Nucleus BridgePoint Development Suite
provides:

- Guided development of high-quality xtUML PIMs.
- Early (pre-code) execution, debug and test of xtUML PIMs.
- Customizable translation of xtUML PIMs into target-optimized 100% complete

code.

290 A.R. da Silva

- Model-level test and debug of complete or partial systems comprised of generated
and non-generated code.

- Powerful performance-tuning and system-resource optimization.
- Effective reuse of xtUML PIMs and PIM components across multiple releases,

products and product lines.
- Robust model configuration management including concurrent branches, overlap-

ping configurations, and versioned domains, subsystems, and class statecharts.
- Multi-user, heterogeneous network support.
- Multi-level subject matter partitioning for effective project scale-up and accelerated

iterative development.
- Nucleus BridgePoint Model Builder.
- Building quality into UML models that execute and translate.

7 Conclusions

The tools exhibits session, integrated in the main activities of the UML2004 confer-
ence, was a key opportunity to gather both the tools creators or distributors and inter-
ested people from the academic and industry world. It was an exceptional occasion to
see live demonstrations of cutting-edge systems.

In an overview analyse we verify that the number of features and level of complex-
ity of the most part of the shown tools is very high.

For example, the tools suite from IBM (e.g., Rational Rose XDE [8], Rational Soft-
ware Architect [9]), from Telelogic (e.g., TAU G2, Doors, Synergy) or even from
dTinf (e.g., seCAKE) support several activities of the software development process.
Predominantly, they better support the following activities: requirement engineering,
visual modelling and development. A common aspect shared by these tools is their
support for visual modelling in UML and also an emergent set of features concerning
the MDA concept.

The sophistication level of the current state presented in these tools is something
remarkable, which raises several questions, such as: What is the necessary effort to
learn how to use them productively? Is it possible and how can we tailor or custom-
ize these tools according business needs or specific projects needs (e.g., team size,
project complexity)? Is it possible to integrate these tools with others (such as IDEs or
project management tools)? How effort does this require?

In a different way, the BridgePoint Development Suite addresses the precise do-
main area of real-time, embedded, technical, and simulation systems. BridePoint
applies innovative and interesting ideas around the Agile MDA and xtUML (executa-
ble and translated UML) model concepts. Based on these concepts, BridgePoint pro-
vides a set of tools that supports the design, debug, test, animation, and translation of
xtUML platform independent models.

Finally, the TeDUB system is the result of the EU funded TeDUB (“Technical
Diagram Understanding for the Blind”) project and addresses the ability to make
UML models accessible for visually impaired people (particularly, technical people).
Definitely, TeDUB is a system for a very narrow but important group of people, and
we believe that it is still in an initial stage of development.

 Tools Exhibits 291

References

1. Lloréns, J., Morato, J., Génova, G.: RSHP: an information representation model based on
relationships. Springer Verlag in the LNCS series; Soft-Computing in Software.

2. Prieto-Díaz, R., Freeman, P.: “Classifying software for reusability”. IEEE software (Janu-
ary 1987) 6-16.

3. C. Baillie, O. K. Burmeister & J. H. Hamlyn-Harris, “Web-based Teaching: Communicat-
ing Technical Diagrams with the Vision Impaired” (available at http://opax.swin.
edu.au/~303207/OZeWAI20031.html).

4. M. Horstmann, C. Hagen, A. King, S. Dijkstra, D. Crombie, D. G. Evans, G. T. Ioannidis,
P. Blenkhorn, O. Herzog, Ch. Schlieder (2004) 'TeDUB: Automatic Interpretation and
Presentation of Technical Diagrams for Blind People', Proceedings Conference and Work-
shop on Assistive Technologies for Vision and Hearing Impairment, University of Glasgow.

5. P. Blenkhorn, D. Crombie, S. Dijkstra, G. Evans, B. Gallager, C. Hagen, M. Horstmann, G.
Ioannidis, A. King, M. Magennis, H. Petrie, A. O’Neil, C. Schlieder & J. Wood, Access to
Technical Diagrams for Blind People, AAATE, In Craddock, McCormack, Rielly & Knops
(Eds.), Assistive Technology – Shaping the Future (Proc. AAATE 2003), pp 466 – 470,
2003.

6. H. Petrie et al, “TeDUB: A System for resenting and Exploring Technical Drawings for
Blind People”, In K. Miesenberger, J. Klaus, & W. Zagler (Eds.), Computers Helping Peo-
ple with Special Needs, Proc. 8th ICCHP, Lecture Notes in Computer Science, No. 2398,
Springer, pp 537 - 539, July 2002.

7. Telelogic TAU Generation2. http://www.telelogic.com/products/tau/tg2.cfm
8. IBM Rational Software Architect. http://www-306.ibm.com/software/awdtools /archi-

tect/swarchitect/index.html
9. IBM Rational XDE Developer. http://www-306.ibm.com/software/awdtools/developer/

rosexde/
10. Mentor Graphics BridgePoint Development Suite. http://www.mentor.com/products/ em-

bedded_software/nucleus_modeling/nucleus_bridgepoint/index.cfm
11. OMG. 2003. MDA (Model Driven Architecture) Guide Version 1.0.1. www.omg.org/mda.

Author Index

Alanen, Marcus 85
Andrews, Anneliese A. 234
Anonsen, Steve 187
Astudillo, Hernán 52
Avgeriou, Paris 23

Baar, Thomas 67
Becker, Valeria 246
Bézivin, Jean 67
Bruel, Jean-Michel 62

Cabot, Jordi 85
Campara, Djenana 219
Campos, Pedro F. 273
Carmo, João Leonardo 269
Cengia, Javier 246

da Silva, Alberto Rodrigues 269, 281
Dinh-Trong, Trung 234
Di Natale, Marco 150
Dumoulin, Cédric 242

Endo, Yoichi 138

Fernandez, Eduardo B. 76
Ferrari, Alberto 150
Fondement, Frédéric 242
France, Robert B. 76, 234
Frei, Christian 175

Gardner, Tracy 67
Génova, Gonzalo 52
Georg, Geri 62
Ghosh, Sudipto 234
Giandini, Roxana 246
Giusto, Paolo 150
Gogolla, Martin 43, 67
Goulão, Miguel 85
Graf, Philipp 238
Graf, Susanne 33
Guelfi, Nicolas 23

Hähnle, Reiner 67
Hartman, Alan 277
Hasegawa, Takashi 138
Hassenforder, Michel 242

Haugen, Øystein 33
Heitmeyer, Constance 76
Hussmann, Heinrich 62, 67
Huzar, Zbigniew 1

Ingalsbe, Jeffrey A. 105

Jouenne, Eric 163
Jürjens, Jan 76, 250

Kandé, Mohamed 13
Kawane, Nilesh 234
Kienzle, Jörg 13
Kostic, Tatjana 175
Kulkarni, Vinay 118
Kuroki, Kenichiro 138
Kuzniarz, Ludwik 1

Lavagno, Luciano 150
Llorens, Juan 52
Longinotti, Jorge 246

Mansurov, Nikolai 219
Medvidovic, Nenad 23
Meijler, T.D. 254
Mellor, Stephen J. 198
Metz, Pierre 52
Mine, Masataka 138
Muller, Pierre-Alain 242
Müller-Glaser, Klaus D. 238

Nagin, Kenneth 277
Nakata, Tsuneo 138
Normand, Véronique 163
Nunes, Nuno J. 273

Ober, Ileana 33, 62

Patrascoiu, Octavian 67
Pérez, Gabriela 246
Pesce, Pablo 246
Pettit IV, Robert G. 129
Pohl, Christoph 62
Pons, Claudia 246
Preiss, Otto 175
Prieto-Dı́az, Rubén 52

294 Author Index

Raistrick, Chris 203
Reddy, Sreedhar 118
Reggio, Gianna 1
Reichmann, Clemens 238
Rumpe, Bernhard 76

Sáez, José 85
Sammut, Paul 43
Schmitt, Peter H. 67
Selic, Bran 33
Shabalin, Pasha 250
Silaghi, Raul 259
Śmia�lek, Micha�l 264
Sourrouille, Jean Louis 1

Starr, Leon 198
Stein, Dominik 13
Street, Julie A. 129
Strohmeier, Alfred 259

Videira, Carlos 269
von der Beeck, Michael 94

Warmer, Jos 67
Whittle, Jon 43, 62

Zhu, Qiang 138
Zschaler, Steffen 62

	Frontmatter
	Workshops
	Consistency Problems in UML-Based Software Development
	5th International Workshop on Aspect-Oriented Modeling
	Software Architecture Description and UML
	SVERTS -- Specification and Validation of Real-Time and Embedded Systems
	Essentials of the 3rd UML Workshop in Software Model Engineering~(WiSME'2004)
	Open Issues in Industrial Use Case Modeling
	Models for Non-functional Aspects of Component-Based Software (NfC'04)
	OCL and Model Driven Engineering
	Critical Systems Development Using Modeling Languages (CSDUML'04): Current Developments and Future Challenges (Report on the Third International Workshop)
	Doctoral Symposium

	Industry Track
	Function Net Modeling with UML-RT: Experiences from an Automotive Project at BMW Group
	Supporting the Building and Analysis of an Infrastructure Portfolio Using UML Deployment Diagrams
	Model-Driven Development of Enterprise Applications
	Lessons Learned Applying UML in the Design of Mission Critical Software
	System-on-Chip Verification Process Using UML
	SoftContract: Model-Based Design of Error-Checking Code and Property Monitors
	Tailoring IEEE 1471 for MDE Support
	Data Communications Standards: A Case for the UML
	Experiences in Modeling for a Domain Specific Language
	Six Lessons Learned Using MDA
	Applying MDA and UML in the Development of a Healthcare System
	Managed Architecture of Existing Code as a Practical Transition Towards MDA

	Posters / Demos
	EPTUD: An Eclipse Plugin for Testing UML Designs
	Towards a Platform for Debugging Executed UML-Models in Embedded Systems
	The TopModL Initiative
	PAMPERO: Precise Assistant for the Modeling Process in an Environment with Refinement Orientation
	Tools for Critical Systems Development with UML (Tool Demo)
	Incremental MDD Through Generative Causal Connectedness
	Model-Driven Engineering of Middleware-Mediated Distributed Systems
	Profile Suite for Model Transformations on the Computation Independent Level
	The ProjectIT-RSL Language Overview
	A UML-Based Tool for Designing User Interfaces
	The AGEDIS Tools for Model Based Testing

	Tool Exhibits
	Tools Exhibits

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

