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Preface

This volume is based on papers presented at the 5th Workshop on Mem-
brane Computing, WMC5, which took place in Milan, Italy, in the period
June 14–16, 2004, as a satellite event of DNA10 (10th International Workshop
on DNA-Based Computing). The first three workshops were organized in Curtea
de Argeş, Romania – they took place in August 2000 (with the proceedings pub-
lished in Lecture Notes in Computer Science, volume 2235), in August 2001
(with a selection of papers published as a special issue of Fundamenta Informat-
icae, volume 49, numbers 1–3, 2002), and in August 2002 (with the proceedings
published in Lecture Notes in Computer Science, volume 2597). The fourth work-
shop took place in Tarragona, Spain, in July 2003 (the proceedings appeared as
volume 2933 of Lecture Notes in Computer Science).

Like the previous two meetings, also WMC5 was an official workshop of the
Molecular Computing Network (MolCoNet) funded by the EU Commission in
the Fifth Framework program Information Society Technologies (project number
IST-2001-32008). The preproceedings of WMC5 were published as a MolCoNet
report, and they were available during the workshop.

This volume contains only a selection of the papers from the preproceedings.
Moreover, the selected papers were significantly modified/improved according to
the really vivid discussions that took place during the workshop – all the selected
papers were additionally refereed. The papers in the volume cover all the main
directions of research in membrane computing, ranging from topics in mathemat-
ics and theoretical computer science, to applications in biology, linguistics, and
computer graphics. Research related to the computing power and the complexity
classes, new classes of P systems, fuzzy approaches, reversibility and energy ac-
counting, and to many other topics is presented. Unlike the previous workshops,
the WMC5 scientific program included invited lectures, by leading researchers
in membrane computing, and in the general area of natural computing – almost
all of these invited talks are represented in the volume. Altogether, the volume is
a faithful illustration of the current state of research in membrane computing (a
good source of information about this fast-emerging area of natural computing
is the webpage http://psystems.disco.unimib.it).

The workshop was organized by the Computer Science Department of the
University of Milano-Bicocca, under the auspices of the European Molecular
Computing Consortium (EMCC). The program committee consisted of Gian-
carlo Mauri (Milan, Italy), Gheorghe Păun (Bucharest, Romania, and Seville,
Spain), Mario J. Pérez-Jiménez (Seville, Spain), Grzegorz Rozenberg (Leiden,
The Netherlands, and Boulder, Colorado, USA), and Arto Salomaa (Turku, Fin-
land).



VI Preface

The editors are indebted to the participants of WMC5 and in particular to
the contributors to this volume. Special thanks go to Springer for the efficient
cooperation in the timely production of this volume.

November 2004 Giancarlo Mauri
Gheorghe Păun

Mario J. Pérez-Jiménez
Grzegorz Rozenberg

Arto Salomaa
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Mario J. Pérez-Jiménez, Agust́ın Riscos-Núñez . . . . . . . . . . . . . . . . . . . . 278

Approximating Non- iscrete P Systems
Andrés Cordón-Franco, Fernando Sancho-Caparrini . . . . . . . . . . . . . . . . 287

Reducing the Size of Extended Gemmating P Systems
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λP Systems and Typed λ-Calculus

Löıc Colson1, Nataša Jonoska2,�,
and Maurice Margenstern1,��

1 LITA, EA 3097, Université de Metz, UFR MIM
Île du Saulcy, 57045 Metz, Cédex, France

{colson, margens}@sciences.univ-metz.fr
2 Department of Mathematics, University of South-Florida,

4202 E. Fowler Ave., PHY 114
Tampa, FL 33620-5700, USA

jonoska@math.usf.edu

Abstract. In this extended abstract, we recast first the implementation
of tree operations in P systems with λP systems and simulation of pure
λ-calculus as proposed in [6]. Further, we indicate a similar way to imple-
ment Gödel’s T -systems. This provides a family of P systems with each
system implementing a family of total recursive functions. The union
of the implemented functions coincides with the set of provably total
recursive functions in Peano arithmetic.

1 Introduction

P systems are now well known as a distributed parallel computing paradigm. In
these systems, multisets of symbol-objects are processed in the compartments
defined by a predetermined hierarchy of membranes. These objects evolve by
means of rewriting-like rules applied in a maximally parallel (all objects that can
evolve, do evolve) nondeterministic (the objects to be processed and the rules to
be applied are chosen in a random way) manner. For a detailed exposition on P
systems we refer the reader to the book [11].

Initially, the membrane structure of a P system was fixed such that only
the evolution of the objects was considered as essential part of the computation.
Soon after, it became clear that the active role of the membrane structure carries
a very powerful benefit as well as it is naturally occurring. The first observation
about the power of the active membranes was introduced in [10] where it was
shown that if membrane division and membrane dissolution is allowed in the
system, then NP-complete problems can be solved in polynomial time. Many
authors improved on this result by considering different variants of P systems
with active membranes (see, for example, [9, 13, 15]). However, in each of these

� Partially supported by NSF Grants CCF #0432009 and EIA#0086015, and by
NATO grant PST. CLG. 976912.

�� Partially supported by the European project MolCoNet IST-2001-32008.

G. Mauri et al. (Eds.): WMC5 2004, LNCS 3365, pp. 1–18, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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cases the evolving membrane structure is used to facilitate the computation
and the membrane structure itself is not considered an essential part of the
final product. In [3] authors define P systems that generate rectangular grids
of membranes (that are not nested) such that the objects inside membranes
represent rectangular picture languages. Labels for membranes appear from the
initial definitions but most of the time their rôle is simply to differentiate the
membranes and to locate them.

In [6], a new type of P systems was introduced where the membrane structure
(i.e., its tree structure) is an essential part of the computation and the objects
are used as facilitators. This system, called λP in [6], presented a new type of
P systems where the membranes are used in an active way such that they are
treated as objects, and the objects inside the membranes are treated as catalysts
for the reactions. The P systems with active membranes use the creation of
membranes, however λP systems go further: they not only create membranes,
but they allow membranes to be inserted into other membranes, possibly in the
innermost ones in the tree of the whole membrane structure. The main idea
for λP systems came from (a) [2] where membranes in the P system are using
different channels and as such could be considered as having different labels,
and (b) [14] where the labeling of the membranes is used to identify them, but
the structure of the whole system is of an essential importance. The membranes
in λP systems have labels (the labeling is not injective) and according to these
labels the membranes act in different ways after being subjected to the set of
general rules. Hence, the labels can be considered in some sense as “different
states” of the membrane channels such that in some cases they can be “open to
objects only”, in some cases are “open for other membranes”, and in some cases
are “closed”. The rules do not allow relabeling of the membranes, but relabeling
is intrinsically included by dissolving and then creating new membranes. The
computation in λP systems uses labeled membranes and the final configuration
is the result of the computation.

In [6], the λP systems are illustrated through a system that simulates β-
reductions in pure λ-calculus expressions. As λ-calculus has Turing-complete
power of computation, λP systems have the same equivalent computational
power. It is also shown in [6] that 3SAT and hence other NP-complete prob-
lems can be solved in polynomial time by λP systems (though in the process
of computation, there is an exponential expansion of the number of membranes
involved).

In this paper, we go one step further and one step back. The step further
is the simulation of typed λ-calculus. This amounts to inforce the rôle of the
membrane labelling. Here, labels have a complex structure as they encode types
and they control the computation in a more strong way than in [6]. By modelling
a special kind of typed λ-calculus, namely Gödel’s T system, we go one step
back: we loose Turing-complete power of computation. With this construction we
obtain functions whose computation always completes, they are total recursive
functions, and all functions needed for practical purposes are obtained.
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In fact, the set of functions computed by Gödel’s T system is the set of all
partial recursive functions which are provably total in Peano arithmetic.

This will be obtained by a hierarchy of functions. Each class of the hierarchy
is attached to a fixed recursor (see below for the definition of this notion).

Due to space considerations, this extended abstract provides only guidelines
for this implementation and details are omitted.

2 λP Systems

We refer the reader to [11, 12] for an introduction to P systems and we assume
some general knowledge for this computational model. All membranes in a λP
system have a label from a predetermined alphabet of labels Λ. The set of objects
that can appear in the membranes is denoted with O. The membrane structure
is represented as a tree with the skin being the root. If a membrane with label
α is an inner membrane of β such that there is no inner membrane of β that
contains α, then α is an immediate child of β. We write C(β) = {α1, . . . , αk} to
represent that all immediate children of β are α1, . . . , αk.

A membrane with label α is denoted with [α] and the label is denoted with
α . The circle around α is used to indicate that α is a label of a membrane vis-

ible from outside. In a membrane, the labels of all immediate inner membranes
(immediate children) are visible (detectable). All rules can use the objects cur-
rently in the membrane and have contextual dependence on the labels of the inner
membranes. Three basic types of operations with membranes (tree structure) are
performed.

(a) α → [α]in[β ], ( α → [α]out[β ])

(b) α → [α]in∗[β ], ( α → [α]out∗[β ])

(c) α → [β [α]]

The first operation takes a membrane and all its structure and includes it in
a membrane at the same level. This tree operation is performed such that if α
and β are children of ρ, i.e., α, β ∈ C(ρ), then α and all its subtree is removed
as a child from ρ and is added to C(β) as a child to β (see Figure 1 (a)).

The operation (b) takes the membrane α with all its structure and includes
this structure inside the innermost membranes of β (see Figure 1 (b)). As a tree
operation, if α and β are children of ρ, i.e., α, β ∈ C(ρ), then the operation
removes α and its subtree as a child of ρ and adds it to the leaves of β. If the
target β is not indicated, then membrane α becomes a subtree of all leaves of its
parent ρ. Both of these operations have a variation (in parenthesis) which gives
opposite operations to the trees. When the membrane α and its subtree is not
removed, it is indicated by the appearance of [α] on the right hand side of the
rule.

The third type of rules (c) surrounds the membrane α with a membrane β.
The tree structure in this case changes such that if α is a child of ρ, then after
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α [   ]β
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Fig. 1. The change of the tree structure by λP operations. The subtree that is moved
by the operation is included in a dashed box

the operation of type (c), ρ has a child β which has a child α (see Figure 1
(c)). The reverse of the process (removing β as a child from C(ρ)) is obtained
by introducing a special symbol δ in membrane β. The presence of this symbol
removes the current membrane, but does not change the rest of the structure of
that membrane. We assume that the set of objects (denoted with O) always con-
tains this symbol δ. Another special symbol that removes a membrane together
with all its substructure (i.e., removes a whole subtree in the tree structure) is
δ∗. We assume that δ∗ ∈ O.

In addition to the standard targets of objects in P systems, {in, out, stay},
we add two additional targets {in∗, out∗}. These operations are similar to the
ones for the membranes. The target in∗ denotes that the object is sent to the
innermost membranes of the substructure of the membrane where it currently
belongs, and the target out∗ indicates that the object is sent to the skin. The
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standard target in#, where # is the number of the membrane, is substituted with
in[α] where [α] is a membrane labeled α. There may be several such membranes,
and in that case the object is sent to all membranes with the indicated label.

Definition 1. A λP rule is a rule of the form X1, . . . , Xs → Y 1
tarZ1

, . . . , Y t
tarZt

where

– Xi ∈ O, or Xi = Z , for Z ∈ Λ,
– Y j ∈ O, or Y j = [Z ], or Y j = [Z [U ]], for Z,U ∈ Λ,
– tar ∈ {in, in∗, out, out∗, stay}, Zi ∈ Λ.

From now on, in order to simplify the notation, the target stay will be omit-
ted.

Definition 2. A λP system is a construct

Π = (Λ ∪ O, μ(V ), R, f),

where Λ is an alphabet of the labels of the membranes, O is the alphabet of objects,
μ is the initial tree of a membrane structure with nodes V , R is the set of λP
rules, and f : V → Λ.

Execution of the Rules. The set of rules is fixed for the whole system. The
presence of objects and labels of membranes trigger the evolution. All rules that
can be applied are applied (note that the rules may depend on the labels of
the inner membranes and as such are contextual). Objects in the membranes
are acting as catalysts, that is, the presence of an object within a context of a
given membrane label triggers all membranes with that label to take part in the
application of the rule. As is standard for P systems, all objects that take part
in the operation (i.e., are on the left hand side of the rule) and do not appear
on the right hand side of the same rule, are considered to be destroyed in the
process. A weak priority is imposed such that all rules that do not depend on the
context of membrane labels are applied first.

Computation. The λP system stops evolving when none of the rules can be ap-
plied. The result of the computation is the final membrane configuration. A for-
mal definition follows. As in the standard definition of a configuration of a P sys-
tem the membrane tree structure is indicated with square brackets (see [11, 12]).
Let μ be the initial tree representing a membrane structure of a λP system Π.
The initial configuration of Π is denoted with C0 = [SOS [Y1OY1 ] · · · [YkOYk

]]
where [S ] is the skin (i.e., the root of μ) and [Yi ] are membrane structures corre-
sponding to the subtrees of μ with roots in the set of immediate children C(S)
of the root S (i = 1, ..., k). The sets OS ,OYi

denote the set of objects in each of
the membranes. We write

Ci →R Ci+1

if by applying all λP rules from R in parallel as described above one changes
the configuration Ci into Ci+1. A computation of the λP system Π is a
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sequence: C(Π) = C0,C1, . . . such that Ci →R Ci+1 for all i. The computation
is finite if there is j such that Cj = Cj+1. In this case we say that Cj is a final
configuration. We say that the result of the λP system is the final configuration.
The result for Π is denoted with F(Π).

In the sections that follow we concentrate on specific λP systems which can
be used to simulate pure λ-calculus in parallel and further the Gödel T system.

3 Simulating Pure λ-Calculus

Pure λ-calculus was created by Alonso Church in the early 1930’s We refer
the reader to [1, 8] for an introduction and for references. We recall a very short
definition and basic properties of pure λ-calculus.

3.1 Pure λ-Calculus

This formal system consists of a countable number of symbols. Three of them,
‘λ’, ‘(’ and ‘)’ can be seen as punctuation symbols while the remaining ones are
called variables which are usually denoted by individual letters with possible
indices: a, b, x, y1, . . ., yk.

λ-terms are defined by induction, as follows:

Definition 3. (i) A variable x is a λ-term being denoted by x; x is free in this
term;

(ii) ifM is a λ-term and if x is a variable, λx M is a λ-term, and all occurrences
of x are bound in λx M ; we say that these occurrences of x are controlled
by this λ and that M is the scope of this λ; λx M is called the abstraction
of M with respect to x;

(iii) if M and N are λ-terms, then (M)N is a λ-term; this term is called the
application of M to N ; the free occurrences of x in M and N are still free
in (M)N .

This notation of λ-terms is taken from [8]. It has the property that it needs
exactly the symbols which we indicated to define the λ-terms. We note that our
definition is a variation of the traditional notation (M N) for the application
that uses an additional symbol: the blank, used as a separator in the application.

A sub-term U of a λ-term M is a λ-term which, as a word, is a factor ofM .

The notion of computation for λ-terms is defined through β-reductions. We
say that a λ-term of the form (λx M)N is a redex and that its reduction is
the termM [x := N ] which is obtained fromM by replacing all free occurrences
of x inM by N . This restriction is due to the following natural requirement: if N
contains a variable which is free before the reduction, the variable must remain
free after the reduction. We denote the reduction by (λx M)N ⇒M [x := N ].

When a λ-term contains no redex, we say that it is in normal form. The
goal of a computation is to transform a λ-term into a λ-term which is in normal
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form and, by definition, this normal form is called the result of the computation.
In order to do so, we apply successively the β-reduction until we arrive to a term
without a redex.

For a λ-term M , we denote with N(M) the normal form obtained by per-
forming β-reductions to M .

Example 1. Consider the following λ-term:

((λx λ y (x) y) a) b.

This term represents the application of λx λ y (x) y to two arguments: first a,
then b. Notice that in pure λ-calculus, λx λ y (x) y is defined as the representa-
tion of number 1, see [1, 8]. The reduction goes as follows:

((λx λ y (x) y) a) b⇒ (λ y (a) y) b⇒ (a) b

In this computation in two steps, there is no choice in the order of reduction
of the redexes. In general, this may not be the case. Assume that a is an abstract
term, e.g., λ zP . Then, we have

((λx λ y (x) y) λ z P ) b⇒ (λ y (λ z P ) y) b

and, at this point, there are two redexes at the same stage of the computation
(λy-term and λz-subterm) and so there are two possible paths for the continu-
ation of the computation.

Note that a term may have several subterms which are redexes and these
redexes, as in the above example, can be nested.

The rules of λ-calculus do not fix the choice and the computation can be
executed by any order, even in parallel if it is possible when the redexes are inde-
pendent. Fortunately, the Church-Rosser theorem (see [1] for instance) indicates
that this is not a problem. The theorem says that any path of the computation
which leads to a normal term leads to the same normal term. In this case, this
normal term is called the result of the computation. A path of computations
which leads to the result is called a terminating path.

Continuing Example 1, if we reduce the leftmost redex first, we have:

((λx λ y (x) y) λ z P ) b⇒ (λ y (λ z P ) y) b⇒ (λ z P ) b ⇒ P [z := b]

Otherwise, by reducing the λz-subterm first, we have:

((λx λ y (x) y) λ z P ) b⇒ (λ y (λ z P ) y) b⇒ (λ y P [z := y]) b
⇒ P [z := b]

as we assumed that y does not appear in P and is free in the λ-term (λ z P ) y.
This computation is very simple. For more complex terms, it may be a real

question whether the computation terminates. The theorem of Church-Rosser
says that if there are terminating paths they all lead to the same result. But
in general, a terminating path may not exist. If there is a terminating path,
by reducing the leftmost redex in a λ-term, the sequence of reductions leads to
the normal form, see for example [8]. This result is called the theorem of the
leftmost reduction strategy.
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Pure λ-calculus is computationally equivalent to the Turing machines, see
for instance [1]. The λP simulation of a general λ-term is described in the next
subsection.

3.2 The Simulation of General Terms; The System Π

When the terms contain several occurrences of the same variable, it is necessary
to rename variables in different copies of the same λ-term during the reduc-
tion. This is required since in the reduction of (λxM)N , if N contains a free
variable y, this y must be free in M [x := N ].

This is usually solved by the introduction of an equivalence relation on λ-
terms, called α-conversion [1, 8]. The variables of a λ-term are called separated
when the occurrences of a given variable are all free or all bound. The two λ-
terms U and V are said α-equivalent if there is a bijection ϕ from the set of
variables of U to the set of variables of V such that replacing each occurrence
of a variable x of U in U by ϕ(x) we obtain V . Performing such a bijection is
called renaming the variables.

Renaming of the variables during the computation is an essential feature of
pure λ -calculus, see for example [1, 8]. Representing λ-terms by binary trees
is one way to solve this. The representation is as follows:

• a variable is represented by a leaf

• the term (M)N is represented by:

()

M N

• the term λxM is represented by:

λx

M

Notice that this tree representation of a λ-term shows why λP systems are
able to simulate λ-calculus. However, the link between the λ-node and the oc-
currences of the corresponding variable further down the tree cannot be directly
implemented in λP systems without employing renaming of the variables. This
is due to the fact that objects within one membrane can only “see” the label
of the immediate children membranes and not deeper in the tree. A solution to
this problem was given in [6].

The solution consists of implementing a ‘primitive’ renaming by appending
numbers, i.e., ‘indices’ to variables which indicate when the renaming is to be
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performed. The general description of λP systems uses unary representation of
numbers by objects as a way to implement indices.

When a redex (λx M)N is reduced, we freeze the argument N in order
to prevent later substitutions of the variables. During the further steps of the
computation, the variables of N remain frozen, as long as N does not come to
the functional position inside a parenthesis. We solve this by putting a ‘freezing
membrane’ labelled by F around the term to be frozen. Then, in context of
F , to all variable-labeled membranes an object representing a “red light” r is
added. This r may increase the number of r’s that are already in the membrane.
When a freeezing F -membrane comes in a functional position, a signal, an object
representing a “green light” g is sent to all variable-labeled membranes contained
in F which erases exactly one r in these membranes and this former F -membrane
is dissolved. Accordingly, the number of r’s in a variable-labeled membrane is
exactly the number of F -membranes which contain it. This is implementation
of De Bruijn solution for automatic renaming based on integers, see [4].

It is not difficult to check that this mechanism simulates a correct renaming
and we obtain an exact simulation of the lefmost reduction strategy of a general
λ-term. As observed in [6], we can extend this λP system such that a parallel
reduction to several terms with several arguments is possible.

3.3 Representing General λ-Terms with Membranes

Alphabets for the λP System Π. Assume that XΦ is the set of variables
that appear in the λ-term Φ. The set of objects for the λP system Π is

O = {δ, δ∗} ∪ {B,S, d, d′, η, ν, σ, η′, ν′, r, g} ∪ {sx, cx |x ∈ XΦ}.

The set of membrane labels is the following:

Λ = {(), P, F} ∪ {x, λx |x ∈ XΦ}.

Initial Configurations for Π. In order to keep the same representation pat-
tern of membrane structures corresponding to all λ-terms from initial to the
final normal form, we admit both ‘red light’ r’s and/or ‘green light’ g’s in the
variable labeled membranes. This comes from the observation that in a λ-term
M the appearance of x may be bound and unbound. However, for the initial
configuration, we may assume that the λ-term which we translate has separated
variables. Accordingly, we have the following definition.

Definition 4. For each λ-term α in which the variables are separated, we define
a membrane structure μα inductively,

(i) For a variable x we have the membrane [xsx].
(ii) If M is a λ-term represented by a membrane system M[ ], then the λ-term
λxM is represented by the membrane system [λxM̄[ ]] such that M̄[ ] is ob-
tained from M[ ] by adding the object g in all membranes [x] representing a
free appearance of x in M .
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(iii) If M is represented by a membrane system M[ ] and N with a membrane
system N[ ], then the λ-term (M)N is represented by the membrane system
[( )M[ ][PN[ ]]].

The membrane structure μα that corresponds to the λ-term α with membrane
representation α[] is μα =

[
α[]

]
.

Notation. When A is a set of λ-terms, we write A[ ] for the set of membrane

representations of α[ ] for α ∈ A, and we write μA =
[
A[ ]

]
. For the λ-term α we

denote by N(α) the normal form for α obtained at the end of computation.

Rules for the λP System Π. In this paper we clarify the set of rules from
[6] by including rules 1.1 to 1.7 which assures simultaneous unfreezing of the
membranes and reduction of one “red light” in the leaf membranes. This simul-
taneous unfreezing and red light reduction was not specified in [6] and hence in
certain cases the rules in [6] do not simulate correct reduction.

The reduction of one “red’ light” when “unfreezing” is simulated with rules
8.1–8.3 which are executed with priority since they have no contextual depen-
dence from membrane labels.

Rules 1. Search for the first reduction position. Due to the protection membrane
P specified with the initial configuration, this reduction is determined to be the
leftmost. In the process of this search a freezing membrane may be found that
require unfreezing.

rule 1.1. B, ( ) → Sin [()]

(B is the beginning of the reduction; it explores the paren-
thesis becoming S: possibly substitution)

rule 1.2. B, λx → Bin [λx]

(B meets a λ-labeled membrane: go on further)
rule 1.3. B, F → δin [F ], η′in∗ [F ], B

(B meets a freezed membrane: unfreeze once by sending η′

to reduce the number of r’s (rules 81.-8.3) and go further)
rule 1.4. S, F → δin [F ], η

′
in∗ [F ], S

(S meets a freezed membrane: it destroys the F -membrane
and a signal is sent to reduce the red signals by one, S is kept to proceed further)

rule 1.5. S, λx, P → η
(begin reduction: prepare for separation of the arguments)

rule 1.6. S, x , P → B
(S meets a variable: go further with B)

rule 1.7. S, ( ), P → B
(S meets a parenthesis: go further with B)
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Rules 2. Identify the arguments and the variables for the substitution.

rule 2.1. η, P → [( ) [P ]], ν
(include each argument in an additional membrane [()])

rule 2.2. ν, λ x → [λ x]in [()], σin [()], δ, (x ∈ XΦ)
(include all functional terms into the membrane with the

arguments, destroy the current membrane, send the starting symbol σ to each
of the membranes with arguments)

rule 2.3. σ, λ x , P → d, cxin∗ [λx], [P ]in∗ [λ x], δin [λ x], (x ∈ XΦ)
(for each function in the membrane of a given argument,

prepare to destroy the current membrane, search for the current variable into all
most-inner membranes, send the argument in the innermost membranes, destroy
λx)

Rules 3. Destroy the argument.

rule 3. d, P → δ, δ∗in [P ]

(destroy the argument, destroy the current membrane [( )])

Rules 4. Stop the substitution process if it is not allowed.

rule 4.1 P , sy, cx → sy, Bout∗ , δ∗in [P ] (x, y ∈ XΦ, x �= y)
(if the right variable is not found, destroy the argument, and

send the beginning symbol B to the skin)

rule 4.2 P , r, sy, cx → sy, r, Bout∗ , δ∗in [P ] (x, y ∈ XΦ, x = y or x �= y)
(whatever the variable is, if there is a ‘red light’ signal, de-

stroy the argument, and send the beginning symbol B to the skin)

Rules 5. Perform the substitution if allowed by freezing the argument first.

rule 5.1 P sx, cx, g → [F [P ]], g (x ∈ XΦ)

(if there is a ‘green light’ and if the variable is found, create
the membrane inside which further substitutions must be freezed)

rule 5.2 F , g → δ, rin∗ [F ], d′in [F ]

(when F is present, send inside all innermost membranes
of [F ], an additional ‘red light’ in order to stop further substitution, destroy
the current variable membrane and prepare to destroy the protection of the
argument)

rule 5.3 d′, P → δin [P ]

(destroy the protection)

Priority rules.

rule 6. B, B → B
(assure one beginning symbol)
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rule 7. ν, ν → ν
(assure one substitution indicator when multiple arguments

are identified)

rule 8.1 η′, r → ν′

rule 8.2 sx, ν′ → g, sx
rule 8.3 r, g → r

(rule 8.1 kills one r; rule 8.2 generates one g, the ‘green
light’; if there are no more r’s, then the g produced by rule 8.2 remains, and the
substitution is allowed).

Denote by Π(A) the λP system of type Π that has an initial configuration
μA for a set of λ-terms A. We see that the computational power of λP systems of
type Π is equivalent to the computational power of a universal Turing machine.
We have the following.

Theorem 1. Let α be a general λ-term. Then F(Π(α)) = μN(α), i.e., the λP
system Π(α) simulates the reduction steps of the term α.

Proof. The proof follows from the construction of Π and the initial membrane
configuration μα. ��

Since λ-calculus is computationally equivalent to any universal Turing ma-
chine we have:

Corollary 1. The λP systems can simulate the computation of a universal Tur-
ing machine.

4 λP Systems and Gödel’s T-System

As indicated in the introduction, λP systems can simulate typed λ-calculus. Only
the guidelines of such an implementation are included here by first considering
typed λ-calculus and then the Gödel’s T -system.

4.1 Typed λ-Calculus

A typed λ-calculus is a system of computation which, append to λ-terms an
additional information which is called the type of the term. Types over λ-terms
are defined inductively. We are given a set of types T which obeys the following
rules: σ, τ are in T, σ → τ is also in T. Type σ → τ has to be interpreted as
the type of λ-terms which represents the functions which transforms λ-terms of
type σ into λ-terms of type τ . As we shall need the notion a bit later, we define
a subtype of τ to be such a factor σ of τ that, considered as a word, σ is also
a type.

By definition, a set of variables for each type in T is given. If x is a variable
and σ a type, we denote by x : σ the fact that x has type τ . This relation is also
denoted xσ and, in this latter case, we say that x is decorated by σ.
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Next, we inductively define the type of more complex λ-terms by induction
on their structure by using the following two rules:

– if x : σ and M : τ , then λxM : σ → τ ;
– if U : σ → τ and V : σ, then (U)V : τ .

We call typed λ-calculus any subset of pure λ-terms which can be typed
according to the above rules with types in T. A λ-term M of λ-calculus is called
typable if there is such a set T of types that it is possible to type M according
to the above rules, starting from the variables ofM , appropriately typed with T.

As the pure λ-calculus has a computational power which is equivalent to
universal Turing macine, it is undecidable to know whether the sucessive β-
reductions of a given term of the pure λ-calculus leads to a term in normal
form or not. However, it is decidable to know whether a given term of the pure
λ-calculus is or not typable. A lot of terms of pure λ-terms are known to be
not typable. As an example, (x)x cannot be typed: the type of x should satisfy
the type equation σ = σ → σ, which is impossible. As a consequence, typed
λ-calculi cannot contain fixed-points. This induces a serious restriction on the
power of computation of typed λ-calculuses. In particular, if we take the simplest
typing indicated above, the corresponding typed λ-calculus can only compute
polynomial functions, which was first shown by Turing, see [16].

Before turning to the solution which was found out by Gödel in the late fifties
of last century, let us notice that we can simulate typed λ-calculus by P systems.
It is enough to introduce typed labels subjected to observe the type axioms indi-

cated above. This means that a label λx will be replaced by label λx : σ → τ
where x : σ and τ is the type of the body of the considered λ-term. Similarly, a

label ( ) will be replaced by label ( ) : τ , where the considered parenthesis

contains a term of type α→ τ in functional position and a term of type α as the
argument. At last, a label x will be replaced by label x : σ , where σ is the
type of x. Of course, we assume that the P systems are given by correctly typed
terms. Under this assumption, as the reduction keeps invariant the type of a
redex, it is clear that this labelling remains untouched during any computation.

4.2 Gödel’s T-System

As mentioned above, Gödel provided us in the late fifties of the previous cen-
tury a typed λ-calculus able to simulate any total recursive functions which is
provable in Peano arithmetic, see [5]. Notice that this set is not the set of all
total functions, as this was first shown in [7]. Indeed, the set of parial recursive
functions which are provably total in Peano arithmetic is recursively enumer-
able while the set of total recursive functions is not. Recall that {e}, the partial
recursive function with number e, is provably total in Peano arithmetic if and
only if in this theory there is a proof of the sentence ∀x {e}(x)↓, where {e}(x)↓
means that the computation of function {e} on x terminates. And so, from this,
we easily derive the recursive enumerability of partial recursive functions which
are provably total in Peano arithmetic.
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T -system is a typed λ-calculus which is constructed as follows:

The set of types satisfies the axioms of Subsection 4.1, and it contains a type
0 which is called type of the integers.

Besides variables of all types, as usual, T -system also contains a constant
term denoted 0 of type 0, i.e., we have 0:0. Term 0 is called zero. T -system
also contains a constant term S called successor which is of type 0 → 0. We
may interpret 0 as integer zero and S as the function which associates n+1 to
integer n.

We define integers in T -system as the following terms:
– 0 is an integer;
– if N is an integer, (S)N is also an integer.

And so, the integers in T -sytems are terms 0, (S)0, (S) (S)0, and so on.
Next, for each type s ∈ T, there is a constant term Rs called recursor of

type s such that:

– Rs is of type 0→ (s→ 0→ s)→ s→ s;
– (((Rs)0)Step)Base = Base;
– (((Rs) (S)n)Step)Base = ((Step) (((Rs)n)Step)Base)n.

Indeed, Rs defines a recursion. It has three arguments: the first one is an
integer and the second is a function of two arguments and the third is a term
of type s. The first argument is called the recursion parameter. The second
argument is called the step function and the third argument is called the
base case. When the recursion parameter is 0, we get the base case. When the
recursion parameter is positive, it is then of the form (S)n for some integer n,
then we apply the step function to the previous value of the recursor and to n
which is the previous value of the recursion parameter.

It is well known that R0 defines exactly primitive recursive functions. Next,
R0→0 contains Ackermann function which is known to be non primitive re-
cursive. It is also known that the hierarchy of functions defined by the set of
functions which are defined by all Rs with s being a type of a finite subset of T

defines an infinite hierarchy. It is also known that the union of the members of
the hierarchy is the set of partial recursive functions which are provably total in
Peano arithmetic.

4.3 Implementing T-System in λP Systems

The basic idea consists in using the frame of [6] to implement P systems by using
a translation of T-system terms into pure λ-calculus.

Pure λ-calculus Translation of P system. Consider the developement of a
recursor term (((Rs) (S) (S) (S)n)Step)Base. We get:
(((Rs) (S) (S) (S)n)Step)Base
= ((Step) (((Rs) (S) (S)n)Step)Base) (S) (S)n
= ((Step) ((Step) (((Rs) (S)n)Step)Base) (S)n) (S) (S)n
= ((Step) ((Step) ((Step) (((Rs)n)Step)Base)n) (S)n) (S) (S)n
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Consider now the formation of couples in pure λ-calculus. We define <U, V >
to be the term λx ((x)U)V . It is not difficult to see that we can extract U
and V from <U, V > using the following terms which are the first and second
projection: π1 == λxλy x and π2 == λxλy y. Indeed, (<U, V >)π1 ⇒ U and
(<U, V >)π2 ⇒ V .

Consider the term cn = <(((Rs)n)Step)Base, n>. Then:
cn+1 = <(((Rs) (S)n)Step)Base, (S)n)>

= <((Step) (((Rs)n)Step)Base, n)n, (S)n)>
= <((Step) (cn)π1) (cn)π2, (S) (cn)π2>.

And so,
cn+1 = <((Step) (cn)π1) (cn)π2, (S) (cn)π2> = (L) cn.

From this, using classical arguments, we infer that
cn = ((n)L) <Base, 0>,

where n is the integer of Church corresponding to integer n. Church integers are
a way to represent non-negative integers in pure λ-calculus. They are defined by
the following induction axioms:

– λxλy y is an integer of Church, namely the representation of 0;
– if n represents n, then n+1 is represented by λxλy (x) ((n)x) y.

And so 1 = λxλy (x) y, 2 = λxλy (x) (x) y, 3 = λxλy (x) (x) (x) y, and so
forth. Notice that ((1)x) y = (x) y, ((2)x) y = (x) (x) y, ((3)x) y = (x) (x) (x) y
and so on.

As a consequence, a representation of (((Rs)n)Step)Base in pure λ-calculus
is given by: (((Rs)n)Step)Base =

(
((n)L) <Base, 0>

)
π1.

At this point, there is a problem: how to transform integers in T -system into
the corresponding integers of Church? We have to find the simplest type for
Church integers which are typable: it is not difficult to see that 0 : τ → (σ → σ)
and next: 1 : (σ → τ) → (σ → τ), 2 : (σ → σ) → (σ → σ). The simplest
solution is σ = 0 and so, by induction on n, we can see that we obtain that
n : (0 → 0) → (0 → 0). Define N == (0 → 0) → (0 → 0). The translation
requires that we have RN at our disposal. Then the translation can be performed
by: n = (((RN)n)Step)0 where Step == λxλaλb (a) ((x) a) b.

And so, to translate the recursors we need to translate the integers, which
also requires a recursor.

Implementation of T-System by P Systems. In order to break the above
circle, we perform the translation of Gödel integers directly into Church integers
by the λP system under consideration. At this point, notice that the translation
of types requires special symbols and so, as an explicit P system has only finitely
many symbols, a P system can handle only a certain type of recursors, namely
the recursors Rσ for all σ which are subtypes of a fixed type τ .

This shows that the considered implementation defines a family of P systems
which are indexed by the types of recursors and a family is attached to a type σ:
it simulates the functions which are definable by this recursor and by all the
other recursors which can be defined by the subtypes of σ.

Now we indicate the main guidelines for this implementation.
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We use the same frame as was used for λ-calculus, appending types to the
labels of membranes as we already mentioned. The input of a P system Π of
family σ where σ is a possible type for a recursor in T -system is a term V of
T -system defined by a recursor of type σ. Term V may be considered of the form
(. . . ((((Rσ)n)Step)Base)m1) . . .)mk where n, m1, . . ., mk are Gödel integers.
In the new frame, we need only to introduce a new type of membranes labelled
by both R and the indication of the type of the recursor which this membrane
implements.

An object traverses the representation of term V in Π and proceeds to the
translation of each term, according to its label. Integers are identified by their
label 0 and recursors by the label R which is introduced for this purpose. The
type part of the label of R indicates the type of the recursor which this label
represents. The order of the terms in a recursor facilitates the translation as far
as the recursion parameter is the active membrane inside the membrane which
represents the application where the recursor is involved. The object carries the
set B of possible types for resursors of the family in order to compare it with the
label of each recursor it will meet. If the label matches with a type contained in
B, the translation is performed. If not, another object stops the computation.
In order to simplify things, we may assume that V is not only a correct term
of T -system but it also does not contain a recursor of type higher than type σ
which delimits the considered family of P systems.

When the object completed the traversal, it sends back another object in
order to start the computation. This sending back mechanism follows the same
idea already implemented in [6].

When the pure λ-calculus computation stops, another translation mechanism
which converts Church integers into their representation in Gödel’s T -system
starts. As any term in T -system represents a total recursive function, we know
that the computation of the translation of V in pure λ-calculus will eventually
stop. Hence the leftmost reduction strategy which is implemented in λP systems
also garantees the termination of the computation. This backward translation is
the same as the direct translation. It is simply processed by a different object.

5 Conclusion

In Section 3 we show that λP systems have the power of Turing machines whereas
in Section 4, we implemented a fine tuning of the set of labels that allows to
restrict the scope of simulation and to obtain typed λ-calculus. This tuning is
fine enough that the power of computation is not restricted too much, i.e., we
obtain Gödel T -system.

This was done by first introducing more complex labels for the membranes,
i.e., types of the membranes. Also a new kind of membrane, “the recursor”, was
introduced which through translation mechanism transforms the representation
of a T -system term into an enconding in λP systems. After the computation
is completed, another translation mechanism transforms the result in the same
format as the input.
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With this mechanism, we have an infinite hierarchy of infinite families of
P systems representing terms whose computations always complete. Hence, a
secure computation within P systems is obtained. As is known, the recursive
functions, provably total in Peano arithmetics, contain all functions needed for
practical purposes. Thus we have a secure and powerful enough P system. This
frame may be a starting point for applications.

The first step towards an applicable implementation is developing a control
mechanism which filters the input of the λP system in order to garantee that
the input is actually a term of T -system. This part is already known to imple-
mentors of functional languages where structures much richer than T -systems
are handled.

Finally, we have given a solution for secure and powerful P systems within
framework of λP systems. We believe that other such systems may appear within
both P systems computing by objects as well as in λP systems computing by
membrane structure. We hope some of them will find their way to practical
applications.
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15. P. Sośık, Solving a PSPACE-complete problem by P systems with active mem-
branes, Brainstorming Week on Membrane Computing, Tarragona, February 5-11,
2003, in Report GRMLC 26/03, Universitat Rovira i Virgili, Tarragona, Spain,
305–312.

16. A.M. Turing, Computability and lambda-definability, Journal of Symbolic Logic,
2 (1937), 153–163.



P Automata�
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Abstract. In this paper we discuss P automata, i.e., accepting P sys-
tems, using in most cases only communication rules. We briefly describe
the most important variants of these systems and report on their impor-
tant properties, with special emphasis on their computational power and
size. We also propose some new topics and problems for future research.

1 Introduction

Membrane systems are computing devices abstracted from the functioning of the
living cells. This and similar sentences can be found in hundreds of publications
about models, results, and ideas in a recent area of molecular computing, the
theory of membrane systems or P systems. The research field has been launched
by Gheorghe Păun in 1998 [19], with the inspiration to construct a framework
which provides effective and powerful computational tools that can also be used
for studying and simulating natural processes. Since 1998, the fruitful idea has
been extensively and intensively explored, the theory of membrane systems or P
systems has proved to be a successful and promising field in the area of unconven-
tional models of computation. Several variants of the basic notion, demonstrating
the power of the framework, have been introduced and investigated; the inter-
ested reader is referred to [20, 21, 24] for basic information, and to the book [23]
for a summary of the achievements and open problems in the area. The reader
is also advised to consult the P systems web page where a lot of down-loadable
papers and important information can be found [25].

The main component of a P system is a membrane structure consisting of
membranes hierarchically embedded in the outermost skin membrane. Each
membrane encloses a region containing a multiset of objects and possibly other
membranes. Each region has an associated set of operators acting on the objects
contained by the region. These operators can be of different types, they can
modify the multisets of objects in the regions but also can provide the possi-
bility of transferring the objects from one region to another one. The first type
of these operations, where usually both the change and the communication of
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the object are allowed, are the so-called evolution rules, which can be applied in
parallel across all membranes or in a rather sequential manner. The rules to be
applied are chosen nondeterministically, that is, if an object can evolve according
to more than one evolution rule at the same time, than any of the rules can be
chosen. The second type of rules, providing only the possibility of transportation
of objects, are called communication rules.

At any moment of time, the membrane system can be described by its con-
figuration which consists of the actual membrane structure and the contents of
the regions. (We note that some of the variants of P systems allow to dynam-
ically change the membrane structure.) In this sense, membrane systems can
be considered as computing devices: starting from an initial configuration, the
system evolves by passing from one configuration to another one, thus realizing
a computation. If the system halts, that is, no rule can be applied anymore,
the computation is successful. For more details about the different variants of
these constructs the reader is referred to [23, 25]. However, we can also consider
that the sequence of configurations describes the behavior of the P system, thus
membrane systems can be investigated from systems theoretic aspects as well.

Considering the P systems briefly described above, the reader can observe
that these constructs restrict their functioning to the membranes and to the
contents of the regions: the system is not in interaction or communication with
its surrounding environment, with the outside world. However, since P systems
attempt to model living cells and the cell communicates with its biological en-
vironment, it would be reasonable to take also this aspect into account. Thus,
studying variants of P systems, where the system is in communication (in in-
teraction) with its environment can be considered as a well-motivated area of
research in membrane systems theory. Communication can be interpreted in
several manners. One possibility is the case where the environment represents
an infinite (or finite) supply of objects from which individual objects or multisets
of objects can be or must be imported by the skin membrane in the system under
the functioning of the membrane system. The reader can observe that these P
systems can be considered as automata or accepting systems (P automata or
accepting P systems), since the configuration of the membrane system changes
due to both the imported objects and the actual state of the system and its input
(the sequence of imported multisets of objects) can be distinguished as accepted
or rejected input.

Although the idea of defining accepting variants of P systems is reasonable,
the theory of P automata or accepting P systems was explicitly inspired by two
problems raised by Gheorghe Păun. The first, from [22], is the following. “What
about the possibility of considering a class of P systems, meant to compute,
where no rule for objects evolution appears, but only rules governing object
communication from a region to another one”. The second one is Problem Q32
in [23]: “What about using P systems as accepting devices?”

Motivated by these questions, the first variant of P automata was introduced
in [5], and realized a purely communicating, accepting P system. (See also [6].)
Almost at the same time, a closely related notion, the analyzing P system was
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defined in [9], formulating another concept of an accepting P system. Both sys-
tems are computationally complete, that is, as powerful as Turing machines, thus
prove that not only generating but accepting P systems are sufficiently power-
ful tools for computation. Since that time, several variants of P automata have
been introduced and studied. For more information the reader is referred to the
excellent summary in [17] and for further details to the articles referred in the
on-line bibliography [25]. Although all of these models are accepting P systems,
they differ from each other in several features: in the way of defining the accep-
tance of the input, in the way of communication with the environment, in the
types of communication rules used by the regions, in the way of functioning of
the membrane system (whether or not it has evolution rules), and whether or
not the membrane structure changes under the computation.

In the following, without the aim of completeness and with providing only
some basic formal definitions – the details can be found in the corresponding
articles – we briefly recall some models and discuss their computational power
and size properties. We also propose some new topics and problems for future
research.

2 P Automata: The Formal Concept

In order to provide the reader with sufficient formal details to understand the
concept and to follow the discussion of the models, we present the notion of
a P automaton. We give the definition in a generalized manner ([4]): most of
the variants that have been studied so far can be obtained as special cases or
(slightly) modified versions of the given notion.

We assume that the reader is familiar with formal language theory and with
the basics of membrane computing; the interested reader can find detailed infor-
mation on the theory of P systems in the monograph [23] and on the P systems
web page [25].

We first recall the notions and the notations we use. Let V be an alphabet,
let V ∗ be the set of all words over V , and let V + = V ∗ − {ε} where ε denotes
the empty word. We denote the length of a word w ∈ V ∗ by |w|, and the number
of occurrences of a symbol a ∈ V in w by |w|a. The set of natural numbers is
denoted by N.

Let U be a set – the universe – of objects. A multiset is a pair M = (V, f),
where V is an arbitrary (not necessarily finite) set of objects from U and f :
U → N is a mapping which assigns to each object its multiplicity, such that, if
a /∈ V then f(a) = 0. The support of M = (V, f) is the set supp(M) = {a ∈ V |
f(a) ≥ 1}. If supp(M) is a finite set, then M is called a finite multiset. The set
of all finite multisets over the set V is denoted by V ◦.

The number of objects in a finite multiset M = (V, f), the cardinality of M ,
is defined by card(M) = Σa∈V f(a).We say that a ∈M = (V, f) if a ∈ supp(M),
and M1 = (V1, f1) ⊆ M2 = (V2, f2) if supp(M1) ⊆ supp(M2) and for all a ∈ V1,
f1(a) ≤ f2(a). The union of two multisets is defined as (M1∪M2) = (V1∪V2, f ′)
where for all a ∈ V1 ∪ V2, f ′(a) = f1(a) + f2(a). For M2 ⊆ M1 the difference
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(M1 − M2) = (V1, f ′′) where f ′′(a) = f1(a) − f2(a) for all a ∈ V1, and the
intersection of two multisets is (M1 ∩M2) = (V1 ∩V2, f ′′′) where for a ∈ V1 ∩V2,
f ′′′(a) = min(f1(a), f2(a)), min(x, y) denoting the minimum of x, y ∈ N. We
say that M is empty, denoted by ε, if its support is empty, supp(M) = ∅.

A multiset M over the finite set of objects V can be represented as a string
w over the alphabet V with |w|a = f(a), a ∈ V , and with ε representing the
empty multiset ε.

In the following we identify the finite multiset of objectsM = (V, f) with the
word w over V representing M , thus we write w ∈ V ◦.

A P system is a structure of hierarchically embedded membranes, each having
a label and enclosing a region containing a multiset of objects and possibly other
membranes. The out-most membrane which is unique and usually labeled with
1, is called the skin membrane.

The membrane structure is denoted by a sequence of matching parentheses
where the matching pairs have the same label as the membranes they represent.
If x ∈ {[i, ]i | 1 ≤ i ≤ n}∗ is such a string of matching parentheses of length
2n, denoting a structure where membrane i contains membrane j, then x =
x1 [i x2 [j x3 ]j x4 ]i x5 for some xk ∈ {[l, ]l | 1 ≤ l ≤ n, l �= i, j}∗, 1 ≤ k ≤ 5.
If membrane i contains membrane j, and there is no other membrane, k, such
that k contains j and i contains k (x2 and x4 above are strings of matching
parentheses themselves), then we say that membrane i is the parent membrane
of j, denoted by i = parent(j), and at the same time, membrane j is one of the
child membranes of i.

The contents of a region is the multiset of objects which is contained by
the corresponding membrane excluding those objects which are contained by its
child membranes.

The evolution (the change) of the contents of the regions of a P system is
described by rules associated to the regions. Applying the rules synchronously in
each region, the system performs a computation by passing from one configura-
tion to another one. These rules can be of different types. We define here two
basic types of communication rules: the symport rules and the antiport rules.

A symport rule is of the form (x, in) or (x, out), x ∈ V ◦. If such a rule is
present in a region i, then the objects of the multiset x must enter from the
parent region or must leave to the parent region, parent(i). An antiport rule is of
the form (x, in; y, out), x, y ∈ V ◦. In this case, objects of x enter from the parent
region and at the same step, objects of y leave to the parent region. All types of
these rules might be equipped with a promoter or inhibitor multiset, denoted as
(x, in)|Z , (x, out)|Z , or (x, in; y, out)|Z , x, y ∈ V ◦, Z ∈ {z,¬z | z ∈ V ◦}, in which
case they can only be applied if region i contains the objects of multiset z, or, if
Z = ¬z, then region i must not contain the elements of z.

The rules can be applied in the maximally parallel or in the sequential manner.
When they are applied in the sequential manner, one rule is applied in each region
in each derivation step, when they are applied in the parallel manner, as many
rules are applied in each region as possible.
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The end of the computation is defined by halting. A P system halts when
no more rules can be applied in any of the regions. In the case of P automata,
however, we consider predefined accepting configurations called final states, by
associating a finite set of multisets to each region. The P automaton accepts the
input sequence when the contents of each region coincides with one element of
these previously given finite sets of multisets.

The result of the computation in a P system can also be given in several
ways, see [23] for more details. In the case of P automata, the result of the
computation is an accepted multiset sequence, the sequence of multisets entering
the skin membrane during a successful computation, that is, a computation
leading to a final state.

Now we give the formal definition of a P automaton.

Definition 1. A P automaton with n membranes is defined as

Γ = (V, μ, (w1, P1, F1), . . . , (wn, Pn, Fn)),

where n ≥ 1, μ is a membrane structure of n membranes with label 1 being
assigned to the skin membrane, and for all i, 1 ≤ i ≤ n,

– wi ∈ V ◦ is the initial contents (state) of region i, that is, it is the finite
multiset of all objects contained by region i,

– Pi is a finite set of communication rules associated to membrane i; they can
be symport rules or antiport rules, with or without promoters or inhibitors,
as above, and

– Fi ⊆ V ◦ is a finite set of finite multisets over V called the set of final states
of region i; if Fi = ∅, then all the states of membrane i are considered to be
final.

To simplify the notations, we denote symport and antiport rules with or
without promoters/inhibitors as (x, in; y, out)|Z , x, y ∈ V ◦, Z ∈ {z,¬z | z ∈ V ◦}
where we also allow x, y, z to be the empty string. If y = ε or x = ε, then
the notation above denotes the symport rule (x, in)|Z or (y, out)|Z , respectively,
and, if Z = ε, then the rules above are without promoters or inhibitors.

The n-tuple of finite multisets of objects present in the n regions of the
P automaton Γ describes a configuration of Γ ; (w1, . . . , wn) ∈ (V ◦)n is the
initial configuration.

The P automaton changes its configuration by transitions.

Definition 2. The transition mapping of a P automaton is a partial mapping
δX : V ◦× (V ◦)n → 2(V ◦)n

, with X ∈ {seq, par} for sequential or for parallel rule
application. These mappings are defined implicitly by the rules of the rule sets
Pi, 1 ≤ i ≤ n. For a configuration (u1, . . . , un),

(u′
1, . . . , u

′
n) ∈ δX(u, (u1, . . . , un))

holds, that is, while reading the input u ∈ V ◦ the automaton may enter the new
configuration (u′

1, . . . , u
′
n) ∈ (V ◦)n, if there exist rules as follows.
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– If X = seq, then for all i, 1 ≤ i ≤ n, there is a rule (xi, in; yi, out)|Zi
∈ Pi

with z ⊆ ui for Zi = z ∈ V ◦, and z ∩ ui = ε for Zi = ¬z, z ∈ V ◦, satisfying
the conditions below, or

– if X = par, then for all i, 1 ≤ i ≤ n, there is a multiset of rules Ri =
{{ri,1, . . . , ri,mi

}}, where ri,j = (xi,j , in; yi,j , out)|Zi,j
∈ Pi with z ⊆ ui for

Zi,j = z ∈ V ◦, and z ∩ ui = ε for Zi,j = ¬z, z ∈ V ◦, 1 ≤ j ≤ mi, satisfying
the conditions below, where xi, yi denote the multisets

⋃
1≤j≤mi

xi,j and⋃
1≤j≤mi

yi,j , respectively. Furthermore, there is no r ∈ Pj , for any j, 1 ≤
j ≤ n, such that the rule multisets R′

i with R′
i = Ri for i �= j and R′

j =
{{r}} ∪Rj , also satisfy the conditions.

The conditions are given as

1. x1 = u, and
2.
⋃

parent(j)=i xj ∪ yi ⊆ ui, 1 ≤ i ≤ n,

and then the new configuration is obtained by

u′
i = ui ∪ xi − yi ∪

⋃
parent(j)=i

yj −
⋃

parent(j)=i

xj , 1 ≤ i ≤ n.

We define the sequence of multisets of objects accepted by the P automaton
as an input sequence which is consumed by the skin membrane while the system
reaches a final state, a configuration where for all j with Fj �= ∅, the contents
uj ∈ V ◦ of membrane j is “final”, i.e., uj ∈ Fj .

Note that in the case of parallel rule application, the set of multisets which
may enter the system in one step is not necessarily bounded, thus, this type
of P automata may work with strings over infinite alphabets. Since we study
languages over finite alphabets, we apply a mapping to produce a finite set
of symbols from a possibly infinite set of multisets, and we assume that it is
computable by a linear space bounded Turing machine.

Definition 3. Let us extend δX to δ̄X , X ∈ {seq, par}, a function mapping
(V ◦)∗, that is, the sequences of finite multisets over V , and (V ◦)n, the configu-
rations of Γ , to new configurations. We define δ̄X as

1. δ̄X(v, (u1, . . . , un)) = δX(v, (u1, . . . , un)), v, ui ∈ V ◦, 1 ≤ i ≤ n, and
2. δ̄X((v1) . . . (vs+1), (u1, . . . , un)) =

⋃
δX(vs+1, (u′

1, . . . , u
′
n))

for all (u′
1, . . . , u

′
n) ∈ δ̄X((v1) . . . (vs), (u1, . . . , un)), vj , ui, u

′
i ∈ V ◦,

1 ≤ i ≤ n, 1 ≤ j ≤ s+ 1.

Note that we use brackets in the multiset sequence (v1) . . . (vs+1) ∈ (V ◦)∗ in
order to distinguish it from the multiset v1 ∪ . . . ∪ vs+1 ∈ V ◦.

Definition 4. Let Γ be a P automaton as above with initial configuration (w1,
. . . , wn) and let Σ be a finite alphabet. The language accepted by Γ (the language
of Γ ) with a mapping f in the sequential way of rule application, denoted by
Lseq(Γ, f), or in the maximal parallel way of rule application, Lpar(Γ, f), is
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LX(Γ, f) = {f(v1) . . . f(vs) ∈ Σ∗ |
(u1, . . . , un) ∈ δ̄X((v1) . . . (vs), (w1, . . . , wn))
with uj ∈ Fj for all j with Fj �= ∅, 1 ≤ j ≤ n, 1 ≤ s},

for X ∈ {seq, par}, and for a linear space computable mapping f : V ◦ −→
Σ ∪ {ε} with f(x) = ε if and only if x = ε.

We illustrate the notion by an example.

Example 1. Let

Γ = ({S1, S2, S3, a, b, c}, [1 [2 [3 ]3 ]2 ]1(S1, P1, {d}), (S2, P2, {S1S2}), (S3, P3, ∅),

with

P1 = {(a, in)|S1 , (a, in)|a, (b, in)|a, (b, in)|b, (c, in)|b, (c, in)|c,
(d, in)|c, (ε, in)|d},

P2 = {(S1, in)|S2 , (a, in)|S1 , (b, in)|S1 , (c, in)|S1 , (ε, in)|c},
P3 = {(ε, in)|S3 , (abc, in)|S3}.

Then, for f(x) = x, for x ∈ {a, b, c}, the P automaton accepts words of the
form anbncn, n ≥ 1, with sequential application of rules and with only symport
rules with promoters. Thus, the language accepted by Γ is a well-known non-
context-free context-sensitive language. This can be easily seen by analyzing the
sequence of transitions of Γ .

3 P Automata: Power and Size

As we mentioned in the Introduction, the first variant of P automata was in-
troduced in [5], as a purely communicating accepting P system with one-way
(top-down) communication. It is called a one-way P automaton, for short. This
variant is a P automaton with only symport rules with promoters and func-
tioning in the sequential mode. Although the model is rather restricted, these
systems are very powerful computational tools:

In [5] it was shown that any recursively enumerable language can be obtained
as a mapping of the language of a one-way P automaton, with seven membranes.

To prove the result, a well-known technique from membrane computing was
applied, the simulation of the two-counter machines by P systems. The result
was improved in [8] as follows:

One-way P automata are able to compute any recursively enumerable lan-
guage, even having only two membranes and with promoters and moved multisets
of size (of number of elements) of two.

While the above result proved to be important and interesting, the question,
what about the exact characterization of the language classes accepted by P
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automata remained open. Although the original model allowed only symport
rules with promoters to use, and in a sequential manner, it was reasonable to
extend the formalism to systems with symport and antiport rules and with or
without promoters and inhibitors. Moreover, it also appeared to be natural to
consider not only the sequential, but the maximally parallel use of communication
rules as well. (See [4] for the details.)

The answer to the previously mentioned question was given in [4], where the
classes of languages of P automata, with the above extensions of the one-way P
automaton, were characterized.

It was shown that if the rules of the P automata are applied sequentially,
then the accepted language class is strictly included in the class of languages
accepted by one-way Turing machines with a logarithmically bounded workspace,
while if the rules are applied in the maximal parallel manner, then the class of
context-sensitive languages is determined.

In the sequential case, the number of different multisets that may ever enter
the system is finite which means that there is a natural one-to-one correspon-
dence between these multisets and the symbols of a finite alphabet. This is not
necessarily so when the rules are applied in the maximal parallel way. In this
case P automata can be considered as devices accepting finite strings over an
infinite alphabet. However, the case of infinite alphabets was not studied in the
above paper, instead a mapping that maps the infinite set of different multisets
to a finite alphabet was used (mapping f , Definition 4), thus it was possible
to speak of languages accepted by P automata using the rules in the sequential
or in the maximal parallel manner, the languages being in both cases over a
finite alphabet. We note that the case of infinite alphabets would be of particular
interest for future research.

Actually, problems concerning P automata form a broad area for future re-
search. Particularly interesting research topics are the descriptional (mainly size)
complexity aspects of these constructs, especially the cases when all significant
parameters (the number of membranes in the systems, the number of rules asso-
ciated to the regions, etc.) are bounded (at the same time). Analogously, notions
for describing communication complexity of P automata would be worth devel-
oping and studying. Finding proper conditions for communication or different
types of communication rules based on quantitative properties of the contents
of the regions are also challenging problems. Probabilistic and stochastic P au-
tomata and their behaviour can also be in the focus of future interest. Since
P automata represent systems being in interaction with its environment, sys-
tem theoretic aspects of these constructs form an important part of their study.
Thus, concepts for P automata theory as tolerance, robustness, stability, equi-
librium, periodical or aperiodical state transition sequence should be developed
and investigated in the future.

In the following, without the aim of completeness, we present some important
models that have been introduced so far and briefly discuss their computational
power and size properties.
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4 Variants of P Automata

P automata or accepting P systems have raised immediate interest, several vari-
ants have been introduced, with the aim of formulating a concept which is more
proper for modelling natural processes and at the same time sufficient and suit-
able for computation. This aim is attempted to be obtained by modifying the
main ingredients and features of P automata: the way of defining acceptance, the
notion of the accepted language, the way of communication, the definition of the
communication rules or possibly evolution rules, and the way of the functioning
of the system. In the following, without the aim of completeness, we discuss some
of these models and open problems related with them.

4.1 Acceptance and Language

The first variant of P automata, the one-way P automaton used final config-
urations for determining acceptance. However, accepting computation can also
be defined by halting, thus exactly in the same way as the original concept of
defining successful computations is defined for membrane systems.

Analyzing P systems with antiport rules, introduced in [9], define acceptance
in this way. The concept of an analyzing P system with antiport rules was
published just after, almost at the same time as the one-way P automaton.
According to this idea, the membranes of the P system have antiport rules
as communication rules without any promoter or inhibitor. Starting from an
initial configuration, which is given by the membrane structure and the initial
multisets in the regions, the P system performs computation steps, by applying
its rules in a maximal parallel way. The skin membrane communicates with the
outside world, with the environment, where symbols as objects can be found. A
sequence of computation steps is successful, if and only if the system halts after
a while. Then, the analyzed string is the sequence of terminal symbols that were
taken from the environment. If more than one terminal symbol is taken from the
environment in one step, then any permutation of these symbols is considered
as a valid subword of the input string. Notice that analyzing P systems with
antiport rules are P automata where both the acceptance of the input and the
accepted language is defined in a different way from that of the generalized
notion of a P automaton given in Section 2.

As it was shown in [9], analyzing P systems with antiport rules compute any
recursively enumerable language, only in one membrane using antiport rules with
radius (1, 2) or (2, 1).

(The radius of an antiport rule (x, in; y, out) is (|x|, |y|).
Furthermore, the computational completeness of these constructs was demon-

strated also in that case, where the multiset over the set of terminal symbols is
initially put into a specified membrane together with possibly some other, non-
terminal symbols (for so-called initial analyzing P systems with antiport rules).

Another variant of P automata, with also a well-founded motivation from
systems theory, is the so-called ω-P automata [12]. This variant (with so-called
membrane channels and antiport rules) was introduced to simulate the function-
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ing of ω-Turing machines, that is, actions of Turing machines on infinite words.
To formulate the proper notion, special efforts and considerations have to be
made, since in usual P systems successful computations are defined by halting
and the failing computations are defined by non-halting (with failure symbols
with rules for allowing infinite computations). In the case of infinite words to be
analyzed, failing computations have to stop.

The authors proved that for any well-known variant of acceptance mode of
ω-Turing machines one can construct an ω-P automaton with two membranes
which simulates the computations of the corresponding ω-Turing machine.

These types of P automata are of particular interest, since assuming a P
automaton as a system being in interaction with its environment, we also should
consider communication processes (functioning) not limited in time.

According to the basic definitions, the accepted language of a P automaton
corresponds to a sequence of input multisets that is observed by an observer and
recorded as the description of the behaviour of the system. But, the behaviour
of the P automata can also be characterized in another manner: a description
or observation of the sequence of state transitions in these systems would be of
particular interest as well. What about P automata with periodical or aperiodical
behaviour, with respect to its state transitions? The reader can notice that to
answer these questions new concepts and notions should also be developed.

4.2 Communication

One of the main features of P automata is the way of communication and the
type of the used communication rules. There have been several models introduced
for investigating the role of the changes in these characteristics.

A concept developed from the original variant, from the one-way P automaton
[5] was introduced in [15], called P automaton with states, where each membrane
has a state from a given finite set, and the communication rules are of the form
(py, in)|qx, where p, q are states and x, y are multisets of symbols. The rule means
the following: for x, y �= ε, if x is contained in region i which is in state q and y is
contained in its parent region, then the objects of y must leave the parent region
and enter region i and then the state of the region i is changed for p. (The reader
can notice that these rules are modified versions of symport rules.) If x = ε, then
the region i must be empty, if y = ε, then no object is requested from the parent
region. The notion was also motivated by tissue-like P systems, and unlike the
sequential application of the rules of one-way P automata, the authors consider
a maximal mode application of rules (given for tissue P systems).

It was shown that these constructs describe the recursively enumerable sets
of vectors of natural numbers.

Improvements of the results of [15] were presented in [8], namely the au-
thors proved that the result can be extended to languages, moreover, to obtain
computational completeness it is sufficient to consider only rules of restricted
forms.

Another model, with constraints concerning the communication, and strongly
motivated by natural processes taking place in cells, is the so-called P automa-
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ton with membrane channels. (See [17, 18] for details.) In this case, the sets of
communication rules of the regions are of the following forms: 〈P ;x, out; y, in〉,
the so-called activating rules, and 〈b, out;Q〉 or 〈b, in;Q〉, the so-called prohibit-
ing rules. (P ,Q, x, and y are finite multisets of objects (symbols), and b is an
object (a symbol).) Starting from the initial configuration, the system passes
configurations by using its rules in a nondeterministic, maximally parallel man-
ner, where the activating rules and the prohibiting rules are meant the following:
Let x = x1 . . . xm and y = y1 . . . yk, where xi, yj are symbols for 1 ≤ i ≤ m,
1 ≤ j ≤ k. Then, an activating rule 〈P ;x, out; y, in〉 means that by the activator
multiset P an output channel for each symbol xi is activated, and for each yj
an input channel is activated. Then, each activated channel allows the transport
of one object xi and yj , provided that no prohibitor multiset Q is active by a
prohibiting rule, respectively. (This means that the multiset Q cannot be found
in the corresponding region.) For this model, the acceptance is defined by final
states and the accepted language is defined in the same way as for analyzing P
systems with antiport rules.

A system that uses only activating rules is called P automata with activated
membrane channels. This model is a computational complete device:

It was shown that P automata with membrane channels are able to recognize
any recursively enumerable set, in one membrane with singleton activators and
prohibitors.

A similar result was obtained about so-called initial P automata with acti-
vated membrane channels. (Roughly speaking, in the case of an initial P automa-
ton with membrane channels, the multiset to be analyzed is initially put into
the skin membrane possibly together with some other objects (symbols).)

It was shown that any recursively enumerable set of (vectors) of non-negative
integers can be accepted by an initial P automaton with activated membrane
channels, in one membrane using only singleton activators and prohibitors.

Continuing the investigations of the role of conditions associated with the
constituents of P automata, the notion of (initial) P automata with conditional
communication rules associated with the membranes was introduced and studied.
(See [17], and [10] for background information.) The rules of these constructs are
of the form (Pin, Qin;Pout, Qout; y, in;x, out), which means that the transporting
of the multiset x outside the membrane and the transporting of multiset y inside
the membrane is possible if and only if the promoting multisets Pin and Pout are
present in the respective regions, while the inhibiting multisets Qin and Qout,
respectively, cannot be found in them. The objects forming the multisets Pin

and Pout cannot be part of the multisets x and y, respectively.
As it was expected, these variants of P automata proved to be computation-

ally complete, with even one membrane and singleton promoters, inhibitors, and
singleton objects transported through the skin membrane.

The reader can observe that the above variants of P automata attempt to
find in some sense minimal conditions for communication that still provide the
computational completeness of the model but easier to handle or more econom-
ical in description. It appears that P automata with rather simple conditions
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for communication and rather bounded size properties are as powerful as Tur-
ing machines. However, the question what about accepting P systems where all
of the important size parameters are bounded (at the same time) remains open.
Analogously, an interesting problem is to formulate conditions for communica-
tions based on quantitative properties of the contents of the regions. Namely,
what about those P automata, where communication takes place if the contents
of the regions satisfy some quantitative properties, for example, the number of
objects a is more than the number of objects b in the region. Similarly, we can
introduce and study communication by request: communication does not take
place at every step of the computation, but only if some predefined conditions
for the contents of the region hold. Notice that this concept would introduce
asynchrony in the functioning of the P automata.

A common feature of the above models is that the environment is supposed to
be an infinite supply of objects. But, this assumption is in some sense artificial,
usually only a finite collection of input objects is available for a natural system.

A model corresponding to the latter concept was introduced and discussed in
[13, 14], called restricted communicating P system. In this case, the objects taken
from the environment can only be those which were present in the system at the
initialization, and later were sent out from the system. Such system consists of
an alphabet of objects V including a distinguished object o, and a membrane
structure μ with m ≥ n membranes, such that n of them are distinguished as
input membranes. Initially, the regions may contain multisets of objects, whereas
the objects o may only be put into the input membranes.

The regions of the system has special evolution rules, which are of the form
a→ aτ , or ab→ aτ1bτ2 , or ab→ aτ1bτ2ccome. Letters a, b, and c denote objects,
while τ, τ1, τ2 ∈ {here, out}∪{inj | 1 ≤ j ≤ n}. For an object being in membrane
k, outmeans that it is transported out from the region to the surrounding region,
inj means that it is transported to membrane j in, provided that j is directly
contained in membrane k. The subscript here refers to that the object must stay
in the same region. Evolution rules of the third type can be used only in the
skin membrane, with the meaning that an object c is transported in from the
environment. (Remember, that this is only possible if a c had already been sent
out from the membrane system.) Thus, the number of objects in the P system
and its environment together remains the same during the computation.

It was shown that these constructs are equivalent in computational power to
two-way multihead finite automata over bounded languages.

Moreover, it was also proved that the number of membranes in these P sys-
tems induces an infinite hierarchy according to the recognized language classes
with respect to inclusion. We should note that this type of P automata is particu-
larly interesting, since in this case the system has a bounded environment, more
precisely, its actual environment consists of those objects which are temporarily
or forever non-activated (they are sent out, are not in the membrane system).

Restricted communicating P systems or P automata with a bounded environ-
ment can be of particular interest for further study. What about those systems
where some of the objects that were sent out from the system might be lost?
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What about those P automata which have an environment consisting of a finite
number of objects that can dynamically change at any step of the functioning.
(For example, the environment is “generated” by some computational mecha-
nism at any moment of the functioning of P the system.)

An interesting research area can be the study of accepting P systems with
objects associated with so-called life-time: after some steps, the object would
disappear from the system or would never be allowed to be communicated. Sim-
ilarly, we can ask about the role of associating time factors to the conditions for
communication: the conditions may dynamically change in time.

4.3 Evolution and Communication

Although the concept of P automata was formulated to develop a concept for
purely communicating, accepting P systems, if we consider P systems as models
of evolving (dynamically changing) systems interacting with their environments,
P automata with both communication and evolution rules are of a particular
interest. Evolution-communication P automata, where both communication and
evolution rules (the latter without the possibility of the transportation of objects)
are allowed to use [1] are good examples for such models.

Important related variants of accepting P systems are the so-called catalytic
P automata or P automata with catalysts [11, 7]. Catalytic P systems were intro-
duced already in [20]; these are membrane systems with special objects called
catalysts, which are used in the evolution rules. In these systems, the evolution
rules are of the forms a → v or ca → cv, where c is a catalyst, a is an object
which is not catalyst, and v is a string from ((V \ C) × {here, out, in})∗. (V is
the set of objects and C is a proper subset of V , the set of catalysts.) In these
systems the transition between two configurations is governed by the evolution
rules, done in parallel, that is, any object which can be a subject of evolution,
must evolve according to a local rule. The transportation of the objects is re-
alized through the targets added to the evolution rules, namely, in, out, here.
Catalytic systems have been in the focus of interest since the beginning of P sys-
tems theory. For the case of P automata with catalysts particularly important
and interesting results were obtained in [7].

It has been shown that only one membrane and two catalysts are sufficient to
obtain the computational completeness.

An open field for research in the theory of P automata is the study of the
role of possible evolution and its relation to communication in the model. Are
there P automata with both types of rules more efficient than the others based
on only communication rules? What are the properties of these systems which
are different from the properties of the generic variants of P automata?

4.4 Structure and Functioning

The basic variants of P automata and the models discussed above have so-called
static membrane structure, that is, the their membrane structure does not change
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under the functioning of the system. However, this condition is rather strict, the
structure of natural systems may vary under functioning.

An interesting and well-motivated concept is introduced in [2, 3], where the
so-called active P automata is defined. In this case, unlike the previously de-
fined variants of P automata, the construct computes with the structure of the
membrane system, using operations like membrane creation, division, and disso-
lution. Briefly, in an active P automaton the accepting computation starts with
one membrane which contains the string to be accepted and some other infor-
mation. The computation follows according to the input string and during the
evolution membranes can be created or dissolved. The computation ends, when
all input symbols are consumed and also some termination condition is fulfilled.
The authors demonstrate how to apply these constructs in natural language
processing, in parsing.

As in the previous case, we would like to mention that these and similar
variants of P automata, where the membrane structure can dynamically change
under functioning is of particular interest, since it brings the concept closer to
natural systems.

Moreover, the notion of P automata would be worth introducing for con-
structs with non-standard membrane structures as tissue P systems and com-
paring the properties of these models to those of the generic variants. (For the
notion of a tissue P system, see [16].)

The previous models demonstrated that the different variants of P automata
are – almost in any case – computationally complete computational devices, and
this power can be obtained even with systems with a bounded size. Although
it is an important issue to determine the computational power of accepting P
systems, we should also pay attention to the characteristics of the way of their
functioning as well. Among these properties, determinism plays an outstanding
role. However, while it is easy to formulate a concept describing determinism,
for example, for context-free grammars, this is not the case for sophisticated
constructs with sophisticated behavior as P automata. A successful attempt has
been made in [17], where so-called k-determinism (a “weak” type of determinism)
was introduced and interpreted, based on the computation tree in P automata.
This means, by [17], that for “every run starting from an initial configuration, if
at any moment going at most k steps further for an arbitrary choice of produc-
tions to be applied, it can be decided (i.e., syntactically checked) which might
be a reasonable continuation that possibly may lead to successful acceptance.”

It was shown that for every recursively enumerable set of vectors of natural
numbers there exists a 2-deterministic initial analyzing P system with antiport
rules with radius (2, 1) or (1, 2).

The notion of k-determinism, and the notion of determinism at all, raises
several further interesting research topics for the future. Investigations in the
determinism of P automata is certainly of among the most interesting topics,
and a lot of new results in the area are expected in the future.
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5 Topics for Future Research

Investigations in the theory of P automata are expected to be continued in differ-
ent directions, as we mentioned above. Although we have made several proposals,
we summarize the ideas we find most important. Firstly, P automata can be con-
sidered as a construct attempting to build a bridge between automata theory and
membrane systems theory, thus similarities and differences between the two fields
are certainly of interest. But, as we mentioned in the Introduction, P automata
or accepting P systems are models of dynamically changing systems which are
in communication (interaction) with their environments as well. According to
this approach, the behavior of the P automaton is of special interest – with the
behavior interpreted as the set of accepted (consumed) multiset sequences, but
also can be defined as the sequence of its states following each other. The fol-
lowing question immediately arises: is there any difference between the so-called
input-driven behavior of the system, where some multiset of objects must en-
ter the system from outside at any moment of time, and between the so-called
state-driven behavior of the system, where the P automaton requests multisets
of symbols from outside at any computational step, that is, the communication
between the P automaton and its environment is driven by the current state
of the P automaton? (This question, that is, the difference between the two
interpretations of the notion of a P automaton was asked by György Vaszil.)
Continuing this line of considerations, we can ask what about those variants of
P automata, which communicate with their environment only by dynamically
emerging request, that is, not in each computation step, but if it is necessary.
This aspect would lead to studying asynchronous systems. Another possibility
is to assume communication as a tool for leading to equilibrium in the state of
the system. To do this, for example, we can pre-define some constraints that the
regions should satisfy (this would mean a balanced situation), and then we can
study which amount and which type of communication with the outside world
are necessary to satisfy these conditions. Moreover, we can study the robustness
or the tolerance of the P system, that is, how much and which kind of changes
are caused in the behavior of the system (in the sequence of its configurations)
taking different amount of multisets imported or to be imported from outside
into account. In most of the models, an infinite supply of objects is supposed to
be found in the environment. The question, what about systems with finite, but
dynamically changing (evolving) supplies of objects would also be interesting.
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on Membrane Computing, Technical Report 26/03 of the Research Group on Math-
ematical Linguistics, Rovira i Virgili University, Tarragona, Spain, 2003, 23–31.



34 E. Csuhaj-Varjú
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22. Păun, Gh.: Computing with Membranes (P Systems): Twenty six research topics.
CDMTCS Technical Report 119, Univ. of Auckland, 2000.

23. Păun, Gh.: Membrane Computing. An Introduction. Springer Verlag, Berlin-
Heidelberg, 2002.
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Abstract. In the area of P systems, applying the rules in a maximally
parallel way is one of the most common features of many models intro-
duced so far. Whereas the idea of membranes as well as many operations
and rules used in membrane systems have a concrete biological back-
ground, the universal clock assumed to control the parallel application
of rules is unrealistic, but on the other hand relevant for many interesting
theoretical results, especially when proving computational completeness
and solving computationally hard problems. Based on a quite general
definition of tissue P systems, we investigate several models of P sys-
tems and compare their computational power in the classic case (i.e.,
applying the rules in the maximally parallel mode) and in the case of
applying the rules in an asynchronous way (i.e., an arbitrary number of
rules may be applied in one derivation step) or in the sequential mode
(i.e., exactly one rule is applied in one derivation step). Moreover, we also
recall some results for (tissue) P systems working in an asynchronous or
sequential mode already in the original definition. Finally, we also raise
several questions for future research in this subarea of (tissue) P systems
working in the asynchronous mode and (tissue) P systems working in
the sequential mode.

1 Introduction

When in 1998 Gheorghe Păun in [20] introduced membrane systems (which soon
afterwards were called P systems), the way of applying the evolution rules in a
maximally parallel way was one of the intrinsic features of this new model. Al-
though biological processes in living organisms happen in parallel, they are not
synchronized by a universal clock as assumed in the original model of membrane
systems, instead many processes involve several objects in parallel, but the pro-
cesses themselves are carried out in an asynchronous way, which feature formally
can be captured by letting these processes happen in an unsynchronized or even
sequential manner.

Many variants of P systems have been investigated so far (see [21] for a
comprehensive overview as well as [23] for the actual state of research). We here
consider several of these models of P systems, and we assume the reader to be
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familiar with the original definitions and explanations given for these models, as
going into more details would go far beyond the scope of an overview article as
this one is intended to be.

Already in his first papers on P systems, the author investigated generalized
models of membrane systems with sequential application of (quite complex)
rules (generalized P systems, e.g., see [10], [11], [12]). We will not recall the
complex definitions of these systems, as they also used a kind of bounded parallel
application of rules, i.e., when applying a complex rule to several objects, the
simple rules working together in this complex rule themselves may be consumed,
whereas other simple rules become applicable afterwards. Yet the complex rules
were applied in a sequential way and in that way were already examples for
sequential P systems. Most recently, some new results on P systems working in
the sequential mode were elaborated in [7] (P systems operating in sequential
mode).

In order to show some common features of various more recent models, in
the third section we will define a general model of tissue P systems using states
for the communication channels between the cells (compare with the model
introduced in [16]) and priorities on the rules used in these channels as well
as with energy assigned to the cell membranes. On the other hand, this general
model is only meant for static membrane structures (although we could deal with
deletion of elementary membranes), not for dynamic ones (especially, we do not
consider membrane division or generation). As long as no dynamic membrane
features as membrane division and membrane generation are involved, the graph
structure representing the channels between the cells in a tissue P system is just a
generalization of the tree structure of the membranes in a classic P system, hence
many results known from literature only for classic tree structures of membranes
can be directly carried over or at least quite easily be adapted for this general
case of tissue P systems.

Based on the general model of tissue P systems defined in the third section,
we then consider several variants of P systems and tissue P systems known from
literature, redefine them in the sense of the general model, and investigate their
generative power when applying the rules in the maximally parallel mode as well
as in the sequential or asynchronous mode.

In the fourth section, we consider P systems with symbol objects and report
on some first results on asynchronous P systems already mentioned in [21] and
establish a result for P systems working in the sequential mode as well. Then we
consider the model of tissue(-like) P systems with channel states as defined in
[16] which formed the background for definition of the general model of tissue P
systems defined in the third section; we show that one-cell tissue P systems with
channel states and antiport rules working in the sequential mode (i.e., one-cell
tissue P systems with antiport rules working in the sequential mode) characterize
the Parikh sets of languages generated by matrix grammars without appearance
checking; a similar characterization of these languages was also obtained in [18]
by showing that P systems with antiport rules working in the sequential mode
characterize the sets of numbers recognized by partially blind counter automata.
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When using antiport rules transporting symbol objects between the cells and be-
tween cells and the environment, respectively, as well as maximal parallelism, we
already reach computational completeness with only one membrane (see [15]).
(Tissue) P systems with unit rules and energy assigned to (cell) membranes are
another example for (tissue) P systems working in the sequential mode (see
[14]); for obtaining computational completeness, we need a priority relation on
the rules, and these P systems can be constructed in such a way that the same
result is obtained for all three derivation modes, i.e., not only for the sequential
mode, but also for the asynchronous mode and even for the maximally parallel
mode. By (tissue) P systems with unit rules and energy assigned to (cell) mem-
branes without priorities we only obtain a characterization of the Parikh sets of
languages generated by matrix grammars without appearance checking.

In the fifth section, we deal with string objects. We first consider gemmating
P systems (see [3], [2], [1], and [6]); the rules used there specify on which end of
the current string a rule has to be applied; computational completeness can be
obtained with the corresponding model of gemmating (tissue) P systems working
in any of the three derivation modes, i.e., not only in the maximally parallel,
but as well in the asynchronous and in the sequential mode. (Tissue) P systems
with splicing rules or cutting/recombination rules by definition are working in
an asynchronous (or even sequential) way and reach computational completeness
with only one cell (again taking advantage of the fact that one can make the rules
working at the ends of the strings). Finally, we investigate the generative power
of (tissue) P systems working in the sequential mode (on strings); when using
priorities, we obtain universality, without priorities we obtain a characterization
of languages generated by matrix grammars without appearance checking.

A short summary of the models of (tissue) P systems and of the results, espe-
cially for (tissue) P systems working in the asynchronous and in the sequential
mode, exhibited in sections four and five as well as an outlook to future research
conclude the paper.

2 Prerequisites

In this section, we give some preliminary definitions, consider basic facts of reg-
ister machines, and then define a general notion for grammars, graph-controlled
grammars, and matrix grammars; moreover, we consider two normal forms for
matrix grammars working on strings.

2.1 Preliminary Definitions

The set of non-negative integers is denoted by N. An alphabet V is a finite non-
empty set of abstract symbols. Given V , the free monoid generated by V under
the operation of concatenation is denoted by V ∗; the empty string is denoted by
λ, and V ∗ − {λ} is denoted by V +. By |x| we denote the length of the string x
over V.

Let {a1, ..., an} be an arbitrary alphabet; the number of occurrences of a
symbol ai in x is denoted by |x|ai

; the Parikh vector associated with x with
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respect to a1, ..., an is
(
|x|a1

, ..., |x|an

)
. The Parikh image of a language L over

{a1, ..., an} is the set of all Parikh vectors of strings in L. For a family of languages
FL, the family of Parikh images of languages in FL is denoted by PsFL. A
(finite) multiset 〈m1, a1〉 ... 〈mn, an〉 with mi ∈ N, 1 ≤ i ≤ n, is represented as
any string x the Parikh vector of which with respect to a1, ..., an is (m1, ...,mn) .

In the following we will not distinguish between a vector (m1, ...,mn) , its
representation by a multiset 〈m1, a1〉 ... 〈mn, an〉 or its representation by a string
x with Parikh vector

(
|x|a1

, ..., |x|an

)
= (m1, ...,mn) .

For more notions as well as basic results from the theory of formal languages,
the reader is referred to [8] and [24].

2.2 Register Machines

A register machine is a construct M = (n,R, l0, lh) , where n is the number of
registers, R is a finite set of instructions injectively labelled with elements from
a given set lab (M), l0 is the initial/start label, and lh is the final label.

The instructions are of the following forms:

– l1 : (add (r) , l2, l3)
Add 1 to the contents of register r and proceed to the instruction (labelled
with) l2 or l3. (We say that we have an ADD instruction.)

– l1 : (sub (r) , l2, l3)
If register r is not empty, then subtract 1 from its contents and go to in-
struction l2, otherwise proceed to instruction l3. (We say that we have a
SUB instruction.)

– lh : halt
Stop the machine. The final label lh is only assigned to this instruction.

Without loss of generality, one can assume that in each ADD instruction
l1 : (add (r) , l2, l3) and in each SUB instruction l1 : (sub (r) , l2, l3) the labels
l1, l2, l3 are mutually distinct.

The following result already follows from the results proved in [19]:

Proposition 1. Let L ⊆ Nβ be a recursively enumerable set of (vectors of)
non-negative integers. Then L can be generated by a register machine with at
most β + 2 registers; moreover, at the beginning of a computation, all registers
are empty; the results of a halting computation appear in the first β registers.

2.3 Grammars

As we deal with various types of objects and grammars in the following, we first
introduce a general model of a grammar:

A grammar G is a construct (O,OT , P,=⇒G, w), where:

– O is the set of objects;
– OT ⊆ O is the set of terminal objects;
– P is a finite set of productions;
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– =⇒G⊆ O ×O is the derivation relation of G induced by the productions in
P ;

– w ∈ O is the axiom.

The derivation relation =⇒G is obtained as the union of all =⇒p⊆ O × O,
i.e., =⇒G:=

⋃
p∈P =⇒p, where each =⇒p is a relation that we assume at least

to be recursive. The reflexive and transitive closure of =⇒G is denoted by =⇒∗
G.

The language generated by G is the set of all terminal objects (we also assume
v ∈ OT to be decidable for every v ∈ O) derivable from the axiom, i.e.,

L (G) = {v ∈ OT | w =⇒∗
G v} .

Depending on the components of G, especially with respect to different types
of productions, we consider different types of grammars. The family of languages
generated by grammars of type X is denoted by L (X) .

String Grammars. Usually, a string grammar is defined as a construct
(N,T, P, S), where:

– N is the alphabet of non-terminal symbols;
– T is the alphabet of terminal symbols, N ∩ T = ∅;
– P is a finite set of productions of the form u→ v with u ∈ V + and v ∈ V ∗,

where V := N ∪ T ;
– S ∈ N is the start symbol.

In the general notation defined above, a string grammar now is represented
as (V ∗, T ∗, P,=⇒G, S) where the derivation relation for u → v ∈ P is defined
as usual by xuy =⇒u→v xvy for all x, y ∈ V ∗, thus yielding the well-known
derivation relation =⇒G for the string grammar G.

As special types of string grammars we consider string grammars with ar-
bitrary productions, context-free productions of the form A → v with A ∈ N
and v ∈ V ∗, and λ-free context-free productions of the form A→ v with A ∈ N
and v ∈ V +, the corresponding types of grammars denoted by ENUM, CF,
and CF−λ, thus yielding the families of languages L (ENUM), i.e., the family
of recursively enumerable languages, as well as L (CF ) and L (CF−λ) , i.e., the
families of context-free and λ-free context-free languages, respectively.

2.4 Graph-Controlled Grammars

A graph-controlled grammar GC of type X is a construct

(O,OT , P,=⇒G, w,R, Lin, Lfin),

where G = (O,OT , P,=⇒G, w) is a grammar of type X, R is a finite set of
rules r of the form (l (r) : p (l (r)) , σ (l (r)) , ϕ (l (r))), where l (r) ∈ Lab (GC),
Lab (GC) being a set of labels associated (in a one-to-one manner) with the
rules r in R, p (l (r)) ∈ P , σ (l (r)) ⊆ Lab (GC) is the success field of the rule
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r, and ϕ (l (r)) ⊆ Lab (GC) is the failure field of the rule r; Lin ⊆ Lab (GC) is
the set of initial labels, and Lfin ⊆ Lab (GC) is the set of final labels. For r =
(l(r) : p (l (r)) , σ (l (r)) , ϕ (l (r))) and v, u ∈ O we define (v, l (r)) =⇒GC

(u, k) if
and only if

– either p (l (r)) is applicable to v, v =⇒p(l(r)) u, and k ∈ σ (l (r)),
– or p (l (r)) is not applicable to v, u = v, and k ∈ ϕ (l (r)).

The language generated by GC is

L (GC) = {v ∈ OT | (w0, l0) =⇒GC
(w1, l1) . . . =⇒GC

(wk, lk) , k ≥ 1,
wj ∈ O and lj ∈ Lab (GC) for 0 ≤ j ≤ k,
w0 = w, wk = v, l0 ∈ Lin, lk ∈ Lfin} .

The graph-controlled grammar GC is said to be of type GCac; it is said to
be of type GC – to be without appearance checking (without ac) – if ϕ (l) = ∅
for all l ∈ Lab (GC) . The corresponding families of languages are denoted by
L (X−GCac) and L (X−GC), respectively.

2.5 Matrix Grammars

A matrix grammar with appearance checking (with ac for short) GM of type X
is a construct

(O,OT , P,=⇒G, w,M,F ),

where G = (O,OT , P,=⇒G, w) is a grammar of type X, M is a finite set of finite
sequences of productions (an element of M is called a matrix ), and F ⊆ P. For
a matrix mi = [mi,1, . . . ,mi,ni

] in M and v, u ∈ O we define v =⇒mi
u if and

only if there are w0, w1, . . . , wni ∈ O such that w0 = v, wni = u, and for each
j, 1 ≤ j ≤ ni,

– either wj−1 =⇒mi,j wj according to =⇒G,
– or mi,j is not applicable to wj−1 according to =⇒G, wj = wj−1, mi,j ∈ F .

The language generated by GM is

L (GM ) = {v ∈ OT | w =⇒mi1
w1 . . . =⇒mik

wk, wk = v,
wj ∈ O, mij ∈M for 1 ≤ j ≤ k, k ≥ 1

}
.

The matrix grammar GM is said to be of typeMATac; it is said to be of type
MAT – to be without appearance checking (without ac) – if F = ∅. The corre-
sponding families of languages are denoted by L (X−MATac) and L (X−MAT ),
respectively.

We should like to mention that according to the definitions given in [8], when
applying the last matrix, the derivation may already end before the sequence of
this matrix has been exhausted.



42 R. Freund

Lemma 2. For any arbitrary type X,

L (X−MAT ) ⊆ L (X−GC) and L (X−MATac) ⊆ L (X−GCac) .

Proof. Consider a matrix grammar GM = (O,OT , P,=⇒G, w,M,F ) of arbitrary
type X with

M = {[mi,1, ...,mi,ni
] | 1 ≤ i ≤ n, ni, n ≥ 1} ;

then we construct the graph-controlled grammar GC = (O,OT , P,=⇒G, w,R,
Lin, Lfin) with

Lab = {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ ni} ,
Lin = {(i, 1) | 1 ≤ i ≤ n} ,
Lfin = Lab,
R = {((i, j) : mi,j , {(i, j + 1)} , {(i, j + 1)} ◦ χ (mi,j , F )) |

1 ≤ i ≤ n, 1 ≤ j ≤ ni}
∪ {((i, ni) : mi,ni

, {(k, 1) | 1 ≤ k ≤ n} ,
{(k, 1) | 1 ≤ k ≤ n} ◦ χ (mi,ni

, F )) | 1 ≤ i ≤ n} ,

where Lab is the set of labels in GC and the notation X ◦ χ (a, Y ) for two sets
X and Y stands for X if a ∈ Y and the empty set otherwise. The matrices
of GM are simulated by suitable sequences in the graph-controlled grammar
GC ; the given construction obviously yields L (GC) = L (GM ) ; moreover, all
failure fields in GC are empty if and only if F is empty, i.e., if GM is a matrix
grammar without ac, then GC is a graph-controlled grammar without ac, too;
this observation completes the proof. ��

2.6 Normal Forms for Matrix Grammars

For matrix grammars without appearance checking of string type CF , we have
the following special normal form: GM =

(
(N ∪ T )∗

, T ∗, P,=⇒G, S,M
)

(where
N and T are the sets of terminal and non-terminal symbols, respectively, S is the
start symbol, and M is the set of matrices) is said to be in the f-binary normal
form, if N = N1 ∪ N2 ∪ {S, f}, with these three sets being mutually disjoint,
and the matrices in M are in one of the following forms:

1. [S → XA] , with X ∈ N1, A ∈ N2,
2. [X → Y,A→ x] , with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2,
3. [X → f,A→ x], with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2,
4. [f → λ] .

Moreover, there is only one matrix of type 1 and only one matrix of type 4,
which is only used in the last step of a derivation yielding a terminal result.

The following lemma is an immediate consequence of the binary normal form
established in [8] for matrix grammars of type CF (see [16]):

Lemma 3. For every matrix grammars without ac of string type CF , we can
effectively construct a matrix grammar in f-binary normal form.
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A matrix grammar GM =
(
(N ′′ ∪ T )∗

, T ∗, P,=⇒G, w,M,F
)

of string types
CF and CF−λ, respectively, is said to be in activator normal form (anf for
short) if N ′′ = N ′ × L ∪ N ∪ {H} for two disjoint sets N ′ and L with N ′ =
N ∪ T (∪{λ}) , H /∈ N is a trap symbol (i.e., H cannot evolve any more),
w ∈ N × L, F ⊆ {X → H | X ∈ N} , and every matrix in M is of one of the
following forms:

1. [(X, r)→ (Y, s)Y1...Yk] , X ∈ N, Y ∈ N ′, Y1, ..., Yk ∈ N ∪ T for 1 ≤ i ≤ k,
k ≥ 0, r, s ∈ L;

2. [X → (X, r) , (Y, r)→ Y ] , X ∈ N, Y ∈ N ′, r ∈ L;
3. [(a, r)→ a] , a ∈ T (∪{λ}) , r ∈ L;
4. [X → H, (Y, r)→ (Y, s)] , X ∈ N, Y ∈ N ′ − {X} , r, s ∈ L.

The rules of type 4 only appear in the case of a matrix grammar with ac,
i.e., if F �= ∅. Moreover, the notation (∪{λ}) indicates that we have to take the
empty string λ into account only for the case of type CF.

Lemma 4. For any matrix grammar without/with ac of type X, we can ef-
fectively construct an equivalent matrix grammar without/with ac in anf of the
same type, for any X ∈ {CF,CF−λ} .
Proof. Given any matrix grammar GM without/with ac of type X, the main
idea is to construct the corresponding graph-controlled grammar GC according
to Lemma 2 and then to simulate GC by a matrix grammar G′

M without/with
ac in anf of the same type X. The set L in GC then corresponds to the set
of labels of the control graph of GC , i.e., we keep track of the current label r
in GC by the second component in the activated symbol (X, r) . Matrices of
type 1 simulate the corresponding successful applications of productions in GC ,
whereas matrices of type 4 simulate the failure case. Matrices of type 3 are to
be used in the last step of a derivation in G′

M , and matrices of type 2 allow the
activator, i.e., the current label, to move around within the underlying string.
Following these explanations, we now construct G′

M from GM via GC :
Let GM =

(
(N ∪ T )∗

, T ∗, P,=⇒G, w,M,F
)

be a matrix grammar of string
type X, X ∈ {CF,CF−λ}, and let

GC =
(
(N ∪ T )∗

, T ∗, P,=⇒G, w,R, Lin, Lfin

)
be the corresponding graph-controlled grammar as constructed in the proof of
Lemma 2. Then we construct the equivalent matrix grammar G′

M without/with
ac of type X in anf as follows:

G′
M =

(
(N ′′ ∪ T )∗

, T ∗, P ∪ {S → S} ,=⇒G, w,M
′, F ′) ,

N ′′ = N ′ × L ∪N ∪ {H} ,
N ′ = N ∪ T (∪{λ}) ,
L = Lab ∪ {0} , 0 /∈ Lab,
w = (S, 0) ,
F ′ = {X → H | X ∈ N} ,

and M contains the following matrices:



44 R. Freund

1. [(X, r)→ (Y, s)Y1...Yk] , (r : p (r) , σ (r) , ϕ (r)) ∈ R, p (r) = X → Y Y1...Yk,
X ∈ N, Y ∈ N ′, Y1, ..., Yk ∈ N ∪T for 1 ≤ i ≤ k, k ≥ 0, r, s ∈ Lab, s ∈ σ (r) ;

2. [X → (X, r) , (Y, r)→ Y ] , X ∈ N, Y ∈ N ′, r ∈ Lab;
3. [(a, r)→ a] , a ∈ T (∪{λ}) , r ∈ Lab;
4. [X → H, (Y, r)→ (Y, s)] , (r : p (r) , σ (r) , ϕ (r)) ∈ R, p (r) = X → Y1...Yk,
X ∈ N, Y ∈ N ′ − {X} , Y1, ..., Yk ∈ N ∪ T for 1 ≤ i ≤ k, k ≥ 0, r, s ∈ Lab,
s ∈ ϕ (r) , H /∈ N is the trap symbol;

5. [(S, 0)→ (S, i)] , i ∈ Lin; using these initial matrices, we can start from an
arbitrary initial label in Lin.

Observing that Lfin = Lab we see that every terminal string derivable in
GC belongs to L (GC) and therefore the construction elaborated above yields
L (GM ) = L (GC) = L (G′

M ) . As can be immediately seen from the construction
given above and the proof of Lemma 2, the rules of type 4 only appear in the
case of the original grammar GM being a matrix grammar with ac, i.e., if F �= ∅.
Moreover, λ-rules of the form [(a, r)→ λ] indicated by the notation ∪{λ} only
occur in the case of type CF. These observations complete the proof. ��

3 A General Model of Tissue P Systems

The reader is assumed to be familiar with the main ingredients and variants of
the basic models of P systems and tissue P systems; we especially refer to [21]
and the original papers cited there. In this section we define the general model
of tissue P systems we are going to use for representing the different models of
(tissue) P systems considered in this paper.

A tissue P system (of degree m ≥ 1) with channel states, priorities on the
channel rules, and energy assigned to cell membranes is a construct

Π =
(
m,O, T,K,O∞,W,E, ch,

(
s(i,j), R(i,j), ρ(i,j)

)
(i,j)∈ch

, i0

)
,

where:

– m is the number of cells assumed to be labelled with 1, 2, . . . ,m;
– O is the alphabet of objects;
– T ⊆ O is the alphabet of terminal objects;
– K is the alphabet of states (not necessarily disjoint from O);
– O∞ consists of m + 1 sets of objects indicating those objects from O that

are present in arbitrarily many copies in the environment and the m cells;
– W consists ofm+1 strings over O−O∞ representing the initial finite multiset

of objects present in the environment and the m cells of the system;
– E ⊆ Nm are m numbers indicating the initial energy values assigned to the

cell membranes of the m cells;
– ch ⊆ {(i, j) | i, j ∈ {0, 1, 2, . . . ,m} , (i, j) �= (0, 0)} is the set of links (called

synapses in [16]; in the following, we will use the term channels) between
two cells or a cell and the environment (indicated by 0);
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– s(i,j) is the initial state of the channel (i, j) ∈ ch;
– R(i,j) is a finite set of rules, associated with the channel (i, j) ∈ ch, of the

form (s, r, s′), for some s, s′ ∈ K and r being a rule which involves objects in
the cells i and j and yields new objects in these cells and also involves and
possibly changes the energies assigned to these cells i and j; the rules also
have to obey to a priority relation ρ(i,j), i.e., a rule from R(i,j) can only be
applied if no other rule of higher priority could be applied, too;

– i0 ∈ {0, 1, 2, . . . ,m} is the output cell (0 means that the output is to be
found in the environment).

A rule of the form (s, r, s′) ∈ R(i,j) changes the state of the channel between
the cells i and j from s to s′, it can only be applied if the current state is s. In
contrast to the definition of tissue P systems with channel states in [16] where
one rule had to be used in each channel for which a rule could be used, we
here will consider the maximally parallel, the asynchronous, and the sequential
derivation mode. Moreover, the channels in this general model are directed, i.e.,
we distinguish between R(i,j) and R(j,i).

The computation starts with the configuration specified by W, E, and
(s(i,j))(i,j)∈ch. In the sequential derivation mode, only one rule in one channel
is applied in one derivation step (in each time unit); in the maximally parallel
derivation mode, as many rules as possible – which do not cause conflicts with
respect to changing states – are used in parallel in every channel; in the asyn-
chronous derivation mode, arbitrarily many rules – which do not cause conflicts
with respect to changing states – are applied in parallel in arbitrary channels.
The results of a computation are described either by the multiplicity of symbol
objects from T or by the string objects over T present in cell i0 in a halting
configuration or by the terminal strings appearing in cell i0 during an arbitrary
computation (we will usually restrict ourselves to these variants).

4 (Tissue) P Systems Working on Symbol Objects

In this section we consider several models of (tissue) P systems working on
symbol objects. We first recall some results for the original model of P systems as
introduced in [20]. Then we exhibit a result from [16] saying that one-cell tissue
P systems with channel states and antiport rules (i.e., asynchronous one-cell
tissue P systems with antiport rules) characterize the (Parikh sets of) languages
generated by matrix grammars without appearance checking. Moreover, we recall
the optimal result (with respect to the number of membranes and the weight of
the rules) for P systems with antiport rules for the case of applying rules in the
maximally parallel way (e.g., see [15]) as well as mention the result proved in [18]
showing that when applying rules in an asynchronous way, only the generative
power of partially blind counter automata can be obtained. Finally, we consider
(tissue) P systems with unit rules and energy assigned to (cell) membranes,
which work in the sequential mode; for obtaining computational completeness,
a priority relation on the rules is needed, whereas without priorities we obtain
a characterization of Parikh sets of languages generated by matrix grammars
without appearance checking.
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4.1 The Classic Model

For the classic model of P systems, we refer to the original article [20] and the
detailed explanations given in [21]. As shown in [13], P systems with catalysts (but
without priorities) are able to generate any arbitrary recursively enumerable set
of numbers with only two catalysts in only one membrane provided we impose the
condition of maximal parallelism and collect the results of halting computations.
On the other hand, one of the first results dealing with P systems working in the
asynchronous mode (see [21], Subsection 3.4.5) says that asynchronous P systems
with catalysts (but without priorities) can only generate regular sets of numbers.
The notion asynchronous means that we do not enforce maximal parallelism,
but instead allow an arbitrary number of rules to happen in parallel. Obviously,
for P systems without priorities this is equivalent with just letting them work in
the sequential mode, i.e., by just performing one rule in one derivation step; for
P systems with priorities this observation would not be true any more, because
the outcome of performing one rule might affect the applicability of another rule.

Therefore, let us consider P systems with catalysts (but without priorities)
working in the sequential mode in more detail; by the result proved in [21],
Subsection 3.4.5, these P systems can only generate regular sets of numbers. In
fact, as only one rule is carried out in one derivation step, the catalysts can simply
be omitted! Hence, what remains is a P system working in the sequential mode
with context-free rules carrying targets of the form a→ λ or a→ b1 (t1) ...bk (tk) ,
where a, b1, ..., bk are symbols and t1, ..., tk are targets of the form here (let the
symbol in the current membrane), out (move the symbol out to the surrounding
membrane), or inj (move the symbol into the inner membrane labelled by j).

Obviously, the Parikh sets of context-free languages therefore can be gen-
erated in only one membrane by such P systems (without priorities, without
catalysts) working in the sequential mode. On the other hand, also with an ar-
bitrary number of membranes only Parikh sets of context-free languages can
be generated: In the simulating context-free grammar, we use the non-terminal
symbols (a, i) with a ∈ O and i being the label of the membrane where the copy
of the object a is present. Hence, a rule a→ b1 (t1) ...bk (tk) in membrane i is sim-
ulated by the corresponding context-free production (a, i)→ (b1,m1) ... (bk,mk)
such that, for 1 ≤ l ≤ k, ml = i for tl = here, ml = j for tl = out and j being
the label of the membrane surrounding membrane i, and ml = j for tl = inj and
j being the label of the membrane j inside membrane i; a→ λ in membrane i is
simulated by (a, i)→ λ. Moreover, we also add the production (a, i)→ λ for all
symbols a such that there is no rule with a on the left-hand side in membrane
i �= i0 and (a, i0) → a for a ∈ T if there is no rule with a on the left-hand side
in the output membrane i0; non-terminal symbols (a, i0) with a /∈ T for which
there is no rule with a on the left-hand side in the output membrane i0 (which
means that the computation in the P system will not yield a result because the
symbol a cannot be eliminated any more from the output membrane) cannot be
derived any more. We leave the further details of this proof to the reader.

In the setting of this paper, we consider the following variant of tissue P
systems working in the sequential mode:
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A tissue P system (of degree m ≥ 1) working in the sequential mode is a
construct

Π =
(
m,O, T,W, ch,

(
R(i,j)

)
(i,j)∈ch

, i0

)
,

where:

– m is the number of cells assumed to be labelled with 1, 2, . . . ,m;
– O is the alphabet of objects;
– T ⊆ O is the alphabet of terminal objects;
– W consists of m strings over O representing the initial finite multiset of

objects present in the m cells of the system;
– ch ⊆ {(i, j) | i, j ∈ {1, 2, . . . ,m}} is the set of channels;
– R(i,j) is a finite set of rules, associated with the channel (i, j) ∈ ch, of the

form (a, v) with a ∈ O and v being a multiset over O; (a, v) ∈ R(i,j) removes
a copy of the symbol a from cell i and adds the multiset v to the contents
of cell j;

– i0 ∈ {1, 2, . . . ,m} is the output cell.

The computation starts with the configuration specified by W ; in each time
unit, one rule is used in one channel. The results of a computation are described
by the multiplicity of symbol objects from T present in cell i0 in a halting
configuration (yet only if no non-terminal symbol is present in i0 at that time).

Following the explanations exhibited above for P systems (without priori-
ties, without catalysts) working in the sequential mode, we can easily show the
following result:

Theorem 5. Tissue P systems working in the sequential mode characterize the
sets of Parikh vectors generated by context-free grammars (i.e., the regular sets
of vectors of non-negative integers).

Proof. Given a context-free grammar G = (N,T, P, S) (without loss of generality
we may assume G to be reduced, i.e., for each X ∈ N there exist u, v ∈ (N ∪ T )∗

and w ∈ T ∗ such that S =⇒∗
G uXv =⇒∗

G w) we immediately get L (G) = L (Π)
for the tissue P system working in the sequential mode Π with

Π =
(
1, N ∪ T, T, (S) , {(1, 1)} , R(1,1), 1

)
,

R(1,1) = {(X, v) | X → v ∈ P} .

On the other hand, let

Π =
(
m,O, T, (w1, ..., wm) , ch,

(
R(i,j)

)
(i,j)∈ch

, i0

)
be a tissue P system working in the sequential mode. Then we construct the
context-free grammar G = (N,T, P, S) with
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N = {(a, i) | a ∈ O, 1 ≤ i ≤ m} ∪ {S} ,
P = {S → h1 (w1) ...hm (wm)}
∪
{
(a, i)→ hj(v) | (a, v) ∈ R(i,j), (i, j) ∈ ch

}
∪ {(a, i)→ λ | a ∈ O, 1 ≤ i ≤ m, i �= i0,

there exist no j, v such that (a, v) ∈ R(i,j)
}

∪ {(a, i0)→ a | a ∈ T and
there exist no j, v such that (a, v) ∈ R(i0,j)

}
,

where, for 1 ≤ i ≤ m, hi : O∗ → (O × {i})∗ is the homomorphism defined by
hi (a) = (a, i) for a ∈ O. Due to the explanations already given in the first part
of this subsection, we immediately infer L (Π) = L (G). ��

At the end of this subsection, we should like to mention that a similar result
like that stated in Theorem 5 also holds true for tissue P systems working in the
asynchronous mode.

4.2 Tissue P Systems with Channel States and Antiport Rules

The background for the definition of the general model of tissue P systems
defined in the third section was the model of tissue(-like) P systems with channel
states as defined in [16]. One main difference between the two models is that there
for each set {i, j} of cell labels i, j only for one channel (i, j) or (j, i) a set of rules
was defined. We now consider our general model of tissue P systems with channel
states and antiport rules (but without energy assigned to cell membranes and
without priorities on the rules, therefore we omit specifying these ingredients E
and ρ(i,j)): A rule of the form (s, x/y, s′) ∈ R(i,j) is interpreted as an antiport
rule for the ordered pair (i, j) of cells, acting only if the channel (i, j) has the
state s; the application of the rule means moving the objects specified by x from
cell i (from the environment, if i = 0) to cell j, at the same time moving the
objects specified by y in the opposite direction, as well as changing the state of
the channel from s to s′. (The rules with one of x, y empty are, in fact, symport
rules, but we do not explicitly consider this distinction here, as it is not relevant
for what follows.) The weight of an antiport rule x/y is the maximum of the
lengths of x and y. If, at the end of a halting computation, the contents of the
final cell labelled by i0 consists only of terminal symbols, then the (vector of)
numbers represented by the copies of terminal symbols constitutes the result
of this successful computation in the tissue P system with channel states and
antiport rules.

Based on the results proved in [16] for tissue P systems with channel states
and antiport rules we now exhibit a characterization of Parikh sets of matrix
languages:

Theorem 6. Any Parikh set of a language that can be generated by a matrix
grammar without appearance checking can be generated by a tissue P system with
only one cell, only one channel state and antiport rules of weight at most two
working in the sequential mode.
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Proof. Consider a matrix grammar G = (N1 ∪ N2 ∪ {S, f}, T, S,M) in the f-
binary normal form and construct the tissue P system with channel states and
antiport rules (working in the sequential mode)

Π =
(
1, O, T, {s} , (O, ∅) , (λ,X0A0) , {(1, 0)} ,

(
s,R(1,0)

)
, 1
)
,

O = N1 ∪ {f} ∪N2 ∪ T ∪ {〈Y, αβ〉 | Y ∈ N1 ∪ {f} , α, β ∈ N2 ∪ T} ,
R(1,0) = {(s,XA/Y x, s) | (X → Y,A→ x) ∈M

X ∈ N1, Y ∈ N1 ∪ {f} , A ∈ N2, x ∈ N2 ∪ T ∪ {λ}}
∪ {(s,XA/Y 〈Y, α1α2〉 , s) , (s, 〈Y, α1α2〉 /α1α2, s) |

(X → Y,A→ α1α2) ∈M,
X ∈ N1, Y ∈ N1 ∪ {f} , A ∈ N2, α1, α2 ∈ N2 ∪ T}

∪ {(s, α/α, s) | α ∈ N1 ∪N2} ∪ {(s, f/λ, s)} ,

where (S → X0A0) is the initial matrix of M .
The state plays no rôle, the matrices of M are simulated by the antiport

rules. As long as at least one non-terminal symbol from N1 ∪N2 is present, the
computation must continue. By halting computations, Π (in cell 1) obviously
generates exactly the same set of vectors of non-negative integers as G. ��

As it is easy to see, the tissue P system with channel states and antiport
rules constructed in the preceding proof generates the same set of vectors of
non-negative integers even when working in the asynchronous mode or in the
maximally parallel way.

For tissue P systems with only one cell also the converse of the preceding
theorem holds true as was shown in [16], i.e., any Parikh set of a language
that can be generated by a one-cell tissue P system with channel states and
antiport rules working in the sequential mode can be generated by a matrix
grammar without appearance checking (we here omit the proof which could be
an adequate adaptation of the proof given in [16]).

4.3 P Systems with Antiport Rules

The preceding results have shown that with (tissue) P systems with antiport
rules and only one cell working in the sequential mode we can only get Parikh
sets of matrix languages. With imposing the condition of maximal parallelism,
we obtain full computational power. The proof of the following theorem follows
the proof given in [15]; for the representation of the P system we take a similar
model as before in the proof of Theorem 6, but we omit the state and when
applying the rules have in mind the condition of maximal parallelism:

Theorem 7. Any Parikh set of a recursively enumerable language can be gen-
erated by a P system working in the maximally parallel mode with only one cell
(membrane) and antiport rules of weight two.

Proof. For a given register machine M = (n,R, l0, lh) we consider lab (M) to be
the set of instruction labels and the alphabet U = {a1, . . . , am} (the symbol ai
is associated with register i and the contents of this register will be represented
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by the multiplicity of object ai in the P system we are going to construct); we
now construct the P system

Π =
(
1, O, T, (O, ∅) , (λ, l0) , {(1, 0)} , R(1,0), 1

)
,

O = U ∪
{
l, l′, l′′, l′′′, liv | l ∈ lab (M)

}
,

R(1,0) = {l1/l2ar, l1/l3ar | l1 : (add (r) , l2, l3) ∈ R}
∪
{
l1/l

′
1l

′′
1 , l

′
1ar/l

′′′
1 , l

′′
1/l

iv
1 , l

iv
1 l

′′′
1 /l2, l

iv
1 l

′
1/l3 |

l1 : (sub (r) , l2, l3) ∈ R} .

We start with l0 present in the system, and then we simulate M : Each add-
instruction l1 : (add (r) , l2, l3) ofM is simulated by a rule l1/l2ar or l1/l3ar inΠ,
while a subtract-instruction l1 : (sub (r) , l2, l3) ∈ R is simulated as follows. The
available object l1 is sent out, in exchange of l′1 and l′′1 . The first object checks
whether the register is non-empty, and in the affirmative case it exits the system
(together with a copy of ar) and is replaced by l′′′1 ; if no copy of ar is available,
then l′1 remains in the system and waits. The object l′′1 checks what the other
object has done, allowing it a step for acting (this is the step when the antiport
rule l′′1/l

iv
1 is used). The object liv1 will find inside either one of the objects l′1 (if

the register r was empty) or l′′′1 (if the register r was not empty), and in each
case the next object to be introduced in the system, l3 or l2, respectively, is the
correct label to be used in the program of M . Hence, halting computations in
the P system Π generate the same numbers as M . ��

In the case of P systems with antiport rules working in the sequential mode,
we obtain a characterization of the family languages generated by partially blind
counter automata (see [18]), i.e., the same characterization as by Parikh sets of
matrix languages.

4.4 (Tissue) P Systems with Unit Rules and Energy Assigned to
(Cell) Membranes

In [14], P systems with unit rules and energy assigned to (cell) membranes were
introduced as a model of P systems working in the sequential mode; adapting
the definitions given there, we get the following definition (we omit the states
and O∞, because all symbols are assumed to occur in a finite number only;
moreover, we only consider a restricted variant with cells only communicating
via the environment):

A tissue P system with unit rules and energy assigned to cells (of degree m)
is a construct

Π =
(
m,O, T,W,E, ch,

(
R(i,j), ρ(i,j)

)
(i,j)∈ch

)
,

with ch = {(0, i) , (i, 0) | 1 ≤ i ≤ m} and the rules in the sets R(i,j) being of the
form (a, b,Δe) with a, b ∈ O and |Δe| being the amount of energy that - for
Δe ≥ 0 - is added to or - for Δe < 0 - is subtracted from ei, respectively (the
energy assigned to cell i) by the application of the rule which in addition moves
an object a from the environment to cell i or from cell i to the environment
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thereby changing a to b. Observe that negative values for the energy assigned to
a cell are not allowed. We restrict ourselves to a general priority relation ρ on
the rules saying that the rules with maximal value for |Δe| have to be applied.

In contrast to other models, the output values have nothing to do with the
objects in some specific cell, but are constituted by the energy values assigned
to the cells at the end of a halting computation.

The following theorem is an immediate consequence of the corresponding
proof given in [14]:

Theorem 8. Let L ⊆ Nβ be a recursively enumerable set of vectors of non-
negative integers. Then L can be generated by a tissue P system with unit rules
and energy assigned to cells with (at most) β+2 cells (working in the sequential
mode).

Proof. Consider a register machine M = (m,P, 1, n) generating L with m regis-
ters, where m = β+2, and lab (M) being the set of instruction labels; the output
values from M are expected to be in registers 1 to β at the end of a successful
computation; moreover, without loss of generality, we may assume that at the
beginning of a computation all the registers contain zero (see Lemma 1).

We construct the tissue P system (working in the sequential mode)

Π =
(
m,O, {pn} ,W,E, ch,

(
R(i,j), ρ

)
(i,j)∈ch

)
,

O = {pj , p̃j |1 ≤ j ≤ n, j ∈ lab (M)} ,
W = (p1, λ, ..., λ) ,
E = (0, ..., 0) ,
ch = {(0, i) , (i, 0) | 1 ≤ i ≤ m} ,

R(0,i) = {(pj , p̃j , 0) | j : (add (i) , k, l) ∈ P}
∪ {(pj , p̃j , 0) | j : (sub (i) , k, l) ∈ P} ,

for 1 ≤ i ≤ m,
R(i,0) = {(p̃j , pk, 1) , (p̃j , pl, 1) | j : (add (i) , k, l) ∈ P}

∪ {(p̃j , pk,−1) , (p̃j , pl, 0) | j : (sub (i) , k, l) ∈ P} ,
for 1 ≤ i ≤ m.

The contents of register i, 1 ≤ i ≤ m, is represented by the energy value ei
of membrane i.

The sets of rules Ri depend on the instructions of P ; in more detail, the
simulation works as follows:

1. Each add-instruction j : (add (i) , k, l) ∈ P, 1 ≤ i ≤ m is simulated in two
steps by using the rules (pj , p̃j , 0) and (p̃j , pk, 1) , (p̃j , pl, 1) .

2. Each conditional subtract-instruction j : (sub (i) , k, l) ∈ P is simulated in
two steps by the rules (pj , p̃j , 0) as well as (p̃j , pk,−1) or (p̃j , pl, 0) .
The condition of priority guarantees that (p̃j , pk,−1) is applied as long as ei
has a positive value. Only if in the current configuration ei = 0, i.e., register
i is empty, the rule (p̃j , pl, 0) can be used.

It follows from the description given above that after each simulation of
an instruction each energy value ei of cell i equals the contents of register i,
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1 ≤ i ≤ m. Hence, after having simulated the halt instruction labelled by n and
halting the system by just doing nothing with the halting symbol pn anymore,
the energy values e1, . . . , em equal the output of the program P. The only object
remaining within the system is the final label pn in the environment. ��

As can be seen from the construction given in the preceding proof, the same
result can be obtained when we let the tissue P system with unit rules and
energy assigned to cells work in the asynchronous or even in the maximally
parallel mode (as there is only one object moving around in the system at any
moment).

Without priorities, we only get a characterization of Parikh sets of languages
generated by matrix grammars without ac (see the corresponding proofs in [14]).
Here we only give the corresponding proof for showing that Parikh sets of lan-
guages generated by matrix grammars without ac can be generated by a tissue
P system with unit rules and energy assigned to cells without priorities working
in the sequential mode:

Theorem 9. Let L be the Parikh set of a language generated by a matrix gram-
mar without ac (i.e., let L ∈ PsL (CF−MAT )). Then L can be generated by
a tissue P system with unit rules and energy assigned to cells without priorities
working in the sequential mode.

Proof. Let GM =
(
(N ∪ T )∗

, T ∗, P,=⇒G, w,M,F
)

be a matrix grammar with-
out ac of type CF with every matrix being of the form mi = (mi,1, . . . ,mi,ni),
1 ≤ i ≤ n, where mi,j = Ai,j → wi,j,1...wi,j,ni,j . Without loss of generality, we
may assume that ni,j ≤ 2. Then we construct a tissue P system Π with unit
rules and energy assigned to cells that simulates GM as follows:

For all elements Bi in N ∪ T we take a membrane labelled by i, 1 ≤ i ≤ m,
where m = card (N ∪ T ) and m′ = card (T ); moreover, we define a bijective
function index : {1, ...,m} → N ∪ T such that the terminal symbols have the
indices 1 to m′ and the start symbol S has the label m. Initially, every cell has
the energy value 0, i.e., ej = 0 for 1 ≤ j ≤ m.

Before starting the simulation of the matrices, we begin with p0 in the envi-
ronment and first make an additional step in order to get em = 1 as well as to
have a non-deterministic choice for mi by taking the rules (p0, p̃0, 1) ∈ R0,m as
well as (p̃0, pi,1,0, 0) ∈ Rm,0 for every i with 1 ≤ i ≤ n.

For the simulation of mi,j , 1 ≤ j ≤ ni, 1 ≤ i ≤ n, we have to take the
following rules:

1. (pi,j,0, p̃i,j,0, 0) ∈ R0,index(Ai,j) and (p̃i,j,0, αi,j ,−1) ∈ Rindex(Ai,j),0 with
– αi,j ∈ {pk,1,0|1 ≤ k ≤ n} for wi,j = λ and j = ni,
– αi,j = pi,j+1,0 for wi,j = λ and j < ni,
– αi,j = pi,j,1 otherwise.

2. (pi,j,1, p̃i,j,1, 1) ∈ R0,index(wi,j,1) and (p̃i,j,1, βi,j , 0) ∈ Rindex(wi,j,1),0 with
– βi,j ∈ {pk,1,0|1 ≤ k ≤ n} for |wi,j | = 1 and j = ni,
– βi,j = pi,j+1,0 for |wi,j | = 1 and j < ni,
– βi,j = pi,j,2 for |wi,j | = 2.
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3. (pi,j,2, p̃i,j,2, 1) ∈ R0,index(wi,j,2) and (p̃i,j,2, γi,j , 0) ∈ Rindex(wi,j,2),0 with

– γi,j ∈ {pk,1,0|1 ≤ k ≤ n} for j = ni,
– γi,j = pi,j+1,0 for j < ni.

At some moment during the simulation of a derivation in the matrix grammar
GM by Π, we non-deterministically have to guess whether the current sentential
form is already terminal (in order to be able to halt the computation in Π); for
this purpose, we take the following rules:

1. (p̃i,j,0, pf , 0) ∈ Rindex(Ai,j),0 can always be applied directly after having ap-
plied (pi,j,0, p̃i,j,0, 0) ∈ R0,index(Ai,j); it allows us to finish the computation
with the final object pf if the current sentential form is terminal (i.e., ej = 0
for m′ + 1 ≤ j ≤ m).

2. (pf , p̃f ,−1) ∈ R0,j and (p̃f ,#, 0) ∈ Rj,0 for m′ + 1 ≤ j ≤ m are used if the
current sentential form has not been terminal (which means ej �= 0 for some
j with m′ +1 ≤ j ≤ m) when introducing pf ; in that case we ensure that the
system Π does not halt by entering an infinite loop with the trap symbol #
using the following rules:
(#,#, 0) ∈ R0,m and (#,#, 0) ∈ Rm,0.

If pf cannot enter any of the cells m′ + 1 ≤ j ≤ m this means that no non-
terminal symbol occurs any more in the current sentential form of the simulated
derivation in GM , hence, it is correct to halt and thus to get the result stored in
the values of ej , 1 ≤ j ≤ m, which by construction represents the corresponding
result obtained by the simulated derivation in GM . ��

5 (Tissue) P Systems Working on String Objects

In this section we consider (tissue) P systems working on string objects. First
we investigate gemmating P systems (see [3], [2], [1], and [6]) and show that
we obtain computational completeness when working in any of the derivation
modes (i.e., in the maximally parallel mode, in the asynchronous mode, and in
the sequential mode). A similar result holds true for (tissue) P systems with
splicing or cutting/recombination rules (see [9]). Finally, we consider (tissue) P
systems working in the sequential mode (on strings); when using priorities on the
rules, we obtain universality, whereas without priorities we get a characterization
of languages generated by matrix grammars without appearance checking (see
[17]).

5.1 Gemmating P Systems

The model of gemmating P systems first was examined in [3] and is abstracted
from the way bigger substances like proteins are moved across cell membranes
by means of vesicles, i.e., some string objects can be transported in a mobile
membrane to a target membrane and then being fused with it. For more detailed
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explanations we refer to [3], [2], and [1]. We only define a restricted variant of
the general model considered there:

An (extended) gemmating P system is a construct

Π = (V, T, μ,M1, ...,Mn, D1, ..., Dn) ,

where:

– V is an alphabet,
– T ⊆ V is the terminal alphabet,
– μ = [0[1 ]1...[n ]n]0 is a membrane structure of depth 2 and degree n+ 1,
– Mi, 1 ≤ i ≤ n, are finite multisets of strings over V ,
– Di, 1 ≤ i ≤ n, are sets of pre-dynamic evolution rules associated with

membrane i, i.e., sets of mutation rules of the form a → v with a ∈ V and
v ∈ V ∗ {@j} ∪ {@j}V ∗ where @j /∈ V, 0 ≤ j ≤ n and i �= j. (Note that the
special symbol @j can only appear on either end of the string.)

Starting from an initial configuration consisting of μ and Mi, 1 ≤ i ≤ n, in
membrane i, the system proceeds from one configuration to the next one by non-
deterministically applying the rules in the sets Di, 1 ≤ i ≤ n, in a maximally
parallel way: A string can only be rewritten by one rule per step and the resulting
strings then are transported by mobile membranes to the membranes specified
by the target indications given by @j , i.e., in sum, applying the rule a → u@j

(resp., a → @ju) in membrane i, i �= j, to a string wa (resp., aw) means
removing this string from membrane i and instead adding the string wu ( uw )
in membrane j in case j ≥ 1, whereas for j = 0 this means that the string is
sent out of the system. The language generated by the (extended) gemmating P
system is considered to be the set of terminal strings that have been sent out of
the system during a halting computation.

In the general model defined above, an extended gemmating P system can
be represented as an extended gemmating tissue P system

Π =
(
m,V ∗, T ∗,W, ch,

(
R(i,j)

)
(i,j)∈ch

, 0
)
,

where we have omitted O∞, because (O∞)i = ∅, 1 ≤ i ≤ m, as well as E, because
we do not use energies assigned to the cell membranes, and we also omitted K,
s(i,j) and ρ(i,j), because we do not need states (in fact, we use only one steady
state) and we do not need priorities on the rules either.

A rule a→ u@j (resp., a→ @ju) in Di in the extended gemmating P system
now means putting the rule a→ u@ (resp., a→ @u) into R(i,j) in the gemmating
tissue P system. As results of computations in gemmating tissue P systems we
take the terminal strings appearing in the environment at any derivation step.

The main result for extended gemmating P systems proved in [6] immediately
infers the following result for extended gemmating tissue P systems:
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Proposition 10. For every recursively enumerable string language L there exists
an extended gemmating tissue P system Π with (at most) three cells such that
L (Π) = L.

In contrast to the original definition of gemmating P systems, we do not need
maximal parallelism; instead, throughout any computation, we may consider ex-
actly one string in the system, and when this string is sent out (contributing to
the generated language if and only if it consists of terminal symbols), the com-
putation halts in any case. If we start with an arbitrary number of axioms w0,
then each copy may evolve according to the rules given in the proof, and we
may take each terminal string sent out during any computation (halting or non-
halting) as the result of a successful computation in the extended gemmating
tissue P system. The derivation of different strings may happen in a completely
unsynchronized way, and we even may assume that in one derivation step of
the gemmating tissue P systems several strings are affected by (possibly differ-
ent) rules in parallel. In sum, all three derivation modes (maximally parallel,
asynchronous, sequential) yield universality.

5.2 (Tissue) P Systems with Splicing or Cutting/Recombination
Rules

P systems with splicing or cutting/recombination rules were considered in [9], see
there for detailed definitions and explanations. Expressed in the general model
used in this paper, we deal with (tissue) P systems using splicing or cutting/
recombination rules as the rules used in the channels. For obtaining computa-
tional completeness, we do not need states, energy assigned to membranes or
priorities on the rules, and moreover, only one cell is needed. The proofs given
in [9] can directly be expressed in the notions of this article, hence, we do not
repeat the extensive definitions and proofs given there and state the following
result without proof:

Proposition 11. For every recursively enumerable string language L there exists
a one-cell tissue P system with splicing or cutting/recombination rules generat-
ing L.

We should like to stress the fact that the derivation of an arbitrary number
of initial strings (the axioms are available in an unbounded number) happens
in a completely unsynchronized way; in fact, we could even assume that several
strings are affected even in a parallel manner (but without enforcing maximal
parallelism), hence, similar results are obtained for one-cell tissue P system with
splicing or cutting/recombination rules working in the sequential mode, in the
asynchronous mode, as well as in the maximally parallel mode.

5.3 (Tissue) P Systems Working in the Sequential Mode

In this subsection, we investigate the generative power of (tissue) P systems
working in the sequential mode based on the results proved for matrix grammars
without/with ac in anf. When using priorities, we obtain universality, without
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priorities we obtain a characterization of languages generated by matrix gram-
mars without appearance checking (also see [17]).

A tissue P system (of degreem ≥ 1) of string type X working in the sequential
mode with priorities is a construct

Π =
(
m,V ∗, T ∗,W, ch,

(
R(i,j), ρ(i,j)

)
(i,j)∈ch

)
,

where:

– m is the number of cells assumed to be labelled with 1, 2, . . . ,m;
– V is an alphabet; V = N ∪ T ; N is the alphabet of non-terminal symbols;
– T ⊆ V is the alphabet of terminal symbols;
– W consists of arbitrary initial finite multisets of strings over V in the m

cells;
– ch ⊆ {(i, j) | i, j ∈ {1, 2, . . . ,m}} is the set of channels;
– R(i,j) is a finite set of string productions of type X, associated with the

channel (i, j) ∈ ch, of the form (u, v) with u ∈ V ∗ and v ∈ V +; (u, v) ∈ R(i,j)
removes a copy of a string containing the substring u, replaces this substring
by v and adds a copy of the resulting string to the contents of cell j;

– ρ(i,j) is a priority relation on the rules in R(i,j), i.e., a rule from R(i,j) can only
be applied if no other rule from R(i,j) according to ρ(i,j) could be applied.

A derivation in Π works as follows: we start with the axioms from W in the
m cells. In the sequential derivation mode, exactly one string from a cell i is
taken, modified by a rule (u, v) ∈ R(i,j) observing the priority relation ρ(i,j), and
the resulting string is added in cell j. All terminal strings from T ∗ ever appearing
at any step in any membrane contribute to the language L (Π) generated in the
sequential derivation mode by Π. The family of languages generated by tissue P
systems of degree m ≥ 1 of string type X working in the sequential mode with
priorities is denoted by L (X−sPm(pri)) . If all priority relations ρ(i,j) in Π are
empty, we call it a tissue P system of degree m ≥ 1 of string type X working in
the sequential mode without priorities and denote the corresponding family of
languages by L (X−sPm).

We can also consider the systems defined above to work in the asynchronous
or in the maximally parallel derivation mode. As all the strings in the system
evolve independently from each other without influencing the behaviour of the
system (e.g., we do not use channel states that might be changed when a channel
is used) and we collect the terminal results at any stage of the derivation (i.e.,
we do not only consider halting computations), the resulting languages do not
depend on the derivation mode, i.e., all three derivation modes yield the same
language.

Theorem 12. For any X ∈ {CF,CF−λ} , L (X−MAT ) = L (X−sP3).

Proof. Let the string language L ∈ L (X−MAT ) be given by a matrix grammar
G′

M without ac in anf of type X according to Lemma 4, i.e.,
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G′
M =

(
(N ′′ ∪ T )∗

, T ∗, P ′,=⇒G, w,M
′) ,

N ′′ = N ′ × L ∪N,
N ′ = N ∪ T (∪{λ}) .

Then we construct the corresponding tissue P system Π of type X without
priorities as follows:

Π =
(
3, V ∗, T ∗,W, ch,

(
R(i,j)

)
(i,j)∈ch

)
,

W = (w, λ, λ) ,
ch = {(1, 1) , (1, 2) , (2, 1) , (2, 3) , (3, 2)} ,
V = N ′ × L ∪N ′ × L× L ∪ N̄ ′ × L× L ∪N ∪ T ;

the matrices [(X, r)→ (Y, s)Y1...Yk] and [(a, r)→ a] can be simulated
directly in the first cell, whereas for moving the activator to another
position, i.e., for simulating a matrix [X → (X, r) , (Y, r)→ Y ] , we also
need the other two cells to synchronize the change:

R(1,1) = {(X, r)→ (Y, s)Y1...Yk |
[(X, r)→ (Y, s)Y1...Yk] ∈M ′}

∪ {(a, r)→ a | [(a, r)→ a] ∈M ′} ,
R(1,2) = {X → (X, r, r) | [(X → (X, r) , (Y, r)→ Y )] ∈M ′} ,
R(2,1) = {(X, r, 0)→ (X, r) | [X → (X, r) , (Y, r)→ Y ] ∈M ′} ,
R(2,3) =

{
(Y, r)→

(
Ȳ , r, r

)
,
(
Ȳ , r, i

)
→
(
Ȳ , r, i− 1

)
|

[X → (X, r) , (Y, r)→ Y ] ∈M ′, 1 ≤ i ≤ r} ,
R(3,2) =

{
(X, r, i)→ (X, r, i− 1) ,

(
Ȳ , r, 0

)
→ Y |

[X → (X, r) , (Y, r)→ Y ] ∈M ′, 1 ≤ i ≤ r} .

The idea with the indices for synchronizing the derivation of two variables has
already been used quite often in the area of P systems; hence, we immediately
conclude L (Π) = (G′

M ).
For the inverse inclusion ⊇, i.e., for simulating a given tissue P system Π of

type X without priorities, we construct a graph-controlled grammar without ac
of the corresponding type where the node in the control graph indicates the cell
i where the underlying string currently can be found (we can restrict ourselves
to consider one string as L (X−MAT ) is closed under union) and carries one
production from Ri,j leading from cell i to cell j; whereas the edges from cell i
go to all nodes representing cell j.

Hence, given a tissue P system of type X

Π =
(
m,V ∗, T ∗, (w, λ, ..., λ) , ch,

(
R(i,j)

)
(i,j)∈ch

)
,

we construct the corresponding graph-controlled grammar GC without ac of type
X as follows: Let

R(i,j) = {pi,j,k | 1 ≤ k ≤ ni,j} for some ni,j ≥ 0

and let =⇒G be the usual derivation relation for context-free string grammars;
then
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GC = (V ∗, T ∗, P,=⇒G, w,R, Lin, Lfin) ,
P =

⋃
(i,j)∈chR(i,j),

Lab = {(i, j, k) | 1 ≤ k ≤ ni,j , (i, j) ∈ ch} ,
R = {((i, j, k) : pi,j,k, {(j, l,m) | l,m ≥ 1 and (j, l,m) ∈ Lab} , ∅) |

(i, j, k) ∈ Lab}
Lin = {(1, j, k) | (1, j, k) ∈ Lab} ,
Lfin = Lab.

Obviously, L (GC) = L (Π) .
As a technical detail, it should be mentioned that one could even take Lin =

Lab (in that way, GC becomes what is usually known from the literature as a
programmed grammar).

According to the proof of Lemma 4, from GC now a matrix grammar GM

without ac and even in anf of type X can be constructed in such a way that
L (GM ) = L (GC) = L (Π) , which observation completes the proof. ��

When using priorities, we only need two cells to characterize L (X−MATac) ,
X ∈ {CF,CF−λ} :

Theorem 13. For any X ∈ {CF,CF−λ} , L (X−MATac) = L (X−sP2 (pri)) .

Proof. For proving the inclusion L (X−MATac) ⊆ L (X−sP2 (pri)) , let us first
consider the P system Π of type X without priorities constructed for a matrix
grammar without ac of type X in anf as constructed in the proof of Theorem 12.
When using priorities, we may omit the third cell and include the rules from
R(3,2) into R(1,2) and from R(2,3) into R(2,1); moreover, for every rule X →
(X, r, r) we add α → H in R(1,2) (where H is the trap symbol) for every non-
terminal symbol α of the form (Y, s, j) and

(
Ȳ , s, j

)
as a rule of higher priority (in

ρ(1,2)). For every matrix [X → H, (Y, r)→ (Y, s)] including appearance checking
we add these two rules in R(1,2) as well as the priority

X → H > (Y, r)→ (Y, s)

to ρ(1,2). The details of this construction as well as the proof of the inverse
inclusion are rather obvious and therefore omitted. ��

As L (CF−MATac) = L (ENUM) (see [8]), we even obtain a characteriza-
tion of recursively enumerable string languages by tissue P systems with priori-
ties using context-free string productions in only two membranes:

Corollary 14. L (CF−sP2 (pri)) = L (CF−MATac) = L (ENUM) .

Observe that this result is already optimal with respect to the number of cells
for P systems of type CF with priorities being able to generate any arbitrary
recursively enumerable string language, as L (CF−sP1 (pri)) only corresponds
with the family of string languages generated by ordered grammars, which family
is strictly included in L (ENUM) , e.g., see [8].

As elaborated in [17], similar results as those exhibited in Theorems 12 and 13
for families of string languages also hold true for the corresponding families of
d-dimensional array languages.
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6 Summary and Future Research

Within the big variety of (tissue) P systems, we could only investigate a small
number for the case of applying rules not in the maximally parallel way, but
instead in a sequential or asynchronous way. A strict interpretation of the se-
quential way of applying rules says that in each step exactly one rule is applied
and the next rule can only be applied after finishing the previous step. In a more
natural sense, an asynchronous way of applying rules allows for the application
of an arbitrary number of rules in parallel, but does not enforce maximality. In
many cases, there is no real difference between strict sequential and asynchronous
application of rules, hence, the notion asynchronous P system or asynchronous
tissue P system in fact will cover a lot of models of P systems and tissue P sys-
tems, respectively, where the rules are not applied in a maximally parallel way.

The feature of applying rules in a maximally parallel way seems to be essen-
tial for obtaining universal computational power in many cases, at least when
dealing with symbol objects: P systems with catalysts are able to generate any ar-
bitrary recursively enumerable set of numbers with only two catalysts in only one
membrane (see [13]), whereas asynchronous P systems with catalysts can only
generate regular sets of numbers (see [21], subsection 3.4.5). Tissue P systems
with channel states and antiport rules with only one cell work in the sequen-
tial mode and thus only allow for a characterization of Parikh sets of languages
generated by matrix grammars without appearance checking. P systems with
antiport rules are computationally complete with only one membrane (e.g., see
[15]), and, due to the cooperative nature of these rules, asynchronous P systems
with antiport rules can generate any set of numbers which can be obtained by
partially blind counter automata (see [18]). (Tissue) P systems with unit rules
and energy assigned to (cell) membranes are another example for (tissue) P
systems working in the sequential mode (see [14]); for obtaining computational
completeness, we need a priority relation on the rules. In sum, we made the ob-
servation that for most models of (tissue) P systems working on symbol objects
considered in the literature of membrane systems so far, the feature of applying
the rules in a maximally parallel way is essential for obtaining computational
completeness or else some other powerful feature has to be used (e.g., priorities),
which somehow is not too surprising, because in most proofs to be found in lit-
erature this feature is needed for capturing the feature of appearance checking
when simulating matrix grammars or the feature of checking the contents of a
register for zero when simulating register machines.

When dealing with string objects, some small additional ingredients allow to
obtain computational completeness even with (tissue) P systems working in the
asynchronous or sequential mode: For example, extended gemmating P systems
(see [3], [2], [1], [6]) specify on which end of the current string a rule has to be
applied and in that way computational completeness even is obtained with the
corresponding model of (tissue) P systems working in the asynchronous or in the
sequential mode. (Tissue) P systems with splicing rules or cutting/recombination
rules are also working in an asynchronous or sequential way and reach computa-
tional completeness with only one cell (again taking advantage of the fact that
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one can make the rules working at the ends of the strings). (Tissue) P systems
working in the sequential mode on strings gain computational completeness when
using priorities, whereas without priorities we obtain a characterization of the
languages generated by matrix grammars without appearance checking.

Many topics remain for future research, for example, we have not investigated
the accepting variants of P systems (P automata) considered in this paper. More-
over, many other models of (tissue) P systems not considered in this article (e.g.,
one may simply consider some variants of the big variety of remaining models
of membrane systems described in the book of Gheorghe Păun, [21]) deserve to
be investigated for the case of asynchronous or sequential application of rules,
too. In addition, other new variants, already from the beginning omitting the
feature of a universal clock and relying on an asynchronous way for the applica-
tion of rules (e.g., see [4]), promise interesting new results and applications for
the future.

Finally, even more variants of derivation modes should be investigated, too:
Like in the case of grammar systems (see [5]), we may also consider the following
sequential derivation modes:

– ∗: perform an arbitrary number of steps;
– = k, ≥ k, ≤ k: perform exactly k, at least k, at most k steps, k ≥ 1;
– t: perform as many steps as possible.

These modes may either be considered as overall conditions considering ap-
plications in any membrane or cell or channel between two cells; on the other
hand, we may also restrict the application of rules according to these conditions
to only one membrane, one cell or one channel between two cells.

As overall condition, the t-mode simply yields halting computations in a (tis-
sue) P system working in the sequential mode, whereas the ∗-mode corresponds
to the sequential derivation mode.

The modes ∗, = k, ≥ k, ≤ k, t can also be considered for the parallel deriva-
tion mode, and again we may consider these conditions for the whole system or
only one membrane, one cell or one channel. The = 1-mode in the parallel case
corresponds with the sequential derivation mode. The t-mode in the parallel case
corresponds with the maximally parallel derivation mode, and the ∗-mode in the
parallel case corresponds with the asynchronous derivation mode.

All these variants of parallel and sequential derivation modes deserve thor-
ough investigations in the future.
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Abstract. Some computational aspects and behavioral patterns of P
systems are considered, emphasizing dynamical properties that turn use-
ful in characterizing the behavior of biological and biochemical systems.
A framework called state transition dynamics is outlined in which gen-
eral dynamical concepts are formulated in completely discrete terms. A
metabolic algorithm is defined which computes the evolution of P sys-
tems modeling important phenomena of biological interest once provided
with the information on the initial state and reactivity parameters, or
growing factors. Relationships existing between P systems and discrete
linear systems are investigated. Finally, exploratory considerations are
addressed about the possible use of P systems in characterizing the oscil-
latory behavior of biological regulatory networks described by metabolic
graphs.

1 Introduction

In 1998 P systems were presented as a new model of computation [14]. Before
their advent, some classes of rewriting systems had already shown the ability
of expressing specific biological phenomena [22, 9, 10]. P systems move a step
further: they have clear structural analogies with the cell, in particular they
model several features of the biological membranes (for this reason they are
often referred to as membrane systems). Moreover, the transitions happening in
these systems recall certain evolution processes that take place in a living cell.

From a formal viewpoint, P systems satisfy a result of universality even in
their basic definition [14]. In this sense they have all the computational power
needed to capture a biomolecular process—provided that we are able to arrange
it into an algorithmic procedure. In addition to this, the similarities existing
between P systems and (at least some aspects of) biological cells might suggest
that P systems are also able to represent the same process in a meaningful
way, that is, not only to compute it as any universal machine would do, but
also to provide potential insight on the biological mechanisms determining and
controlling the process via the observation of the transitions of the system.

G. Mauri et al. (Eds.): WMC5 2004, LNCS 3365, pp. 63–84, 2005.
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However, this is true only to some extent. Modeling specific biological activi-
ties inside a P system is not an easy task. A lot of alternative constructs derived
from the basic definition of P system have been proposed, sometimes capturing
crucial aspects of the biology of cells such as thickness, polarity, catalysts, in-
hibitors, promoters, carriers, porters (symport-antiport), priority, division, repli-
cation, creation, dissolution, resources, and energy [15, 17, 16, 12, 5, 1]. In other
cases, powerful paradigms were imported from other formal systems having bi-
ological implications too, such as splicing and object-structuring (in form of
strings) [15]. All these alternative constructs exhibit properties of universality,
hence by all means they represent a first, necessary attempt to get P systems
closer to the world of bio-molecules meanwhile preserving their computational
power.

Nevertheless there are some aspects, that are crucial in almost any study of
biomolecular processes, that the traditional formulations of P systems do not
develop in a sufficient way from a biological point of view.

The halting of a P system tells that a computation has terminated success-
fully, but the terminal state is not a primary object of investigation in many
biomolecular realities. Rather, we would shift the focus on the computation dur-
ing its “life”, in an aim to observe the living organism while surviving in the
environment and, possibly, to influence his life cycle when some bio-chemical
indicators tell that his physiological activity is altered (possibly harmfully). In
other words, biological systems do not compute states, but rather stable be-
havioral pattern that satisfy some “enjoyable” conditions, and life cycles are
combined and organized in very complex forms. This means that considering all
the forms of periodicity in the framework of P systems is of key importance if
we want to apply P systems to modeling biological processes [1]. Moreover, life,
in its adaptation and evolution strategies, explores behavior spaces in a range
between simple cycles and chaotic behavioral magmas where space in lost in
time and vice versa. Therefore, chaos is very important as limit border that life
try to approximate to (with the risk of falling in its destructive abyss) because
“at edge of chaos” is available the dynamical richness necessary for adaptation
and evolution [10].

Biomolecular mechanisms are the result of many individual local reactions,
each one of those being formed by processes whose extension is limited in time
and space. These processes interact with each other by means of specific commu-
nication strategies, in a way that they finally exhibit a (sometimes surprising)
overall co-ordination. In this sense, and despite this co-ordination, biomolecular
processes are by all means asynchronous.

P systems, in their classical formulation, are intended to “consume” the avail-
able resources in a maximally parallel way during the rewriting of symbols.
Holding this property, then all the symbols that are present in the system at a
given configuration become potential resources: they are consumed as many as
possible, and new symbols are produced in consequence of that action. In other
words, maximal parallelism constrains the system to consume all the available
resources during a transition. Moreover, their evolution is synchronous, i.e., a
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global clock triggers the production of new symbols inside all membranes. This
limits their versatility in modeling biological asynchronous phenomena.

In this paper we focus on some theoretical and practical issues especially
oriented to biomolecular computing. First, we consider a perspective (still in
progress for many aspects) according to which P systems are cast in a discrete
dynamical framework. In this perspective, we will characterize classical dynam-
ical concepts in terms of state transition dynamics [11].

Next, we propose to observe rewriting rules in membranes from a different
viewpoint. Membranes are intended to host “symbolic reactions”, and rules ap-
ply according to some reaction parameters and substance concentration, as it
normally happens in biochemical phenomena. We define a metabolic algorithm
for computing the evolution of (deterministic) P systems when some initial state
and some reaction parameters are given, such as reactivities or growing factors.
This algorithm is applied to known bio-chemical oscillatory phenomena, and put
in relation with differential equations.

The similarities arising between the symbolic and quantitative approach pur-
sued by P systems and differential equation systems, respectively, stimulate the
discovery of relationships existing between P systems and some widely used,
simple but powerful systems of equations expressing differential problems in the
discrete time, called discrete linear systems. Such relationships are addressed
before the conclusion, where some extra considerations are made on the pos-
sibility to reproduce the behavior of biological networks expressed in terms of
metabolic graphs: in the description of these graphs (networks) the emphasis is
on the oscillatory rather than temporal behavior, so that specific mathematical
tools based on a model description in the frequency domain are proposed.

2 State Transition Dynamics

One classic approach to discrete system modelling consists in first analyzing a
continuous phenomenon, then producing a discrete model of it according to a
given discretization method, and finally running a simulation, provided that the
discrete model respects certain stability conditions.

There are cases in which a discrete model of a continuous phenomenon gener-
ates errors, but such errors can be arbitrarily reduced or, equivalently, the preci-
sion is proportional to the granularity with which the continuous phenomenon is
reproduced by the discrete model. Sometimes the information needed to describe
a physical phenomenon is inherently discrete in a way that the resulting discrete
model reproduces the reality almost directly (think, for instance, to DNA repli-
cation). In this last case having a method that could compute the dynamics of
the system directly from its discrete representation would be a great advantage
with respect to many aspects.

The state transition dynamics formalism considers a system defined in a
discrete domain, assuming discrete values. It studies properties such as orbits
and trajectories, periodicity, eventual periodicity and divergence, fixed points,
attractors and recurrence [4, 6, 3], aimed at defining analogous concepts in the
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context of systems discrete in space and in time, with no metric or topological
structure. It is surprising that, even assuming a very weak mathematical struc-
ture, many concepts can be defined formally in such a way that interesting facts
can be deduced on the structure of attractors, on deterministic chaos, and on
its relationship with nondeterminism [11].

To give an idea of the characterization given by state transition dynamics,
here we report the most important definitions. For more details, discussions and
mathematical developments we refer to [11] where we started a general approach
to discrete systems dynamics that is under development.

Definition 1. A state transition dynamics is a pair (S, q) where S is a set of
states and q is a function from S into its power set,

q : S → P(S).

By calling quasi state any subset X of S, and extending the application of q over
quasi states, i.e.,

q(X) =
⋃

x∈X

q(x),

then we map quasi states into quasi states by means of q to form orbits, and
characterize specific trajectories along these orbits by means of the following
definitions.

Definition 2. An X-orbit is a sequence {Xi}i∈N of quasi states such that

X0 = X,
Xi ⊆ q(Xi−1) , i > 0. (1)

A X-orbit is complete when the previous inclusion is replaced by an equality.
When x is a state, we write simply x-orbit instead of {x}-orbit.

An s-trajectory is a function ξ : N→ S such that

ξ(0) = s,
ξ(i) ∈ q

(
ξ(i− 1)

)
, i > 0. (2)

By denoting with qi the composition of q repeated i times and q∗(s) =
⋃

i∈N q
i(s),

we refer as flights and blackholes to the following special trajectories:

Definition 3. An s-trajectory is an s-flight if it is an injective function on N.
An s-flight is an s-blackhole if q∗(s) ⊆ ξ(N) (where ξ is extended to sets).

When S is made of symbolic values then the relation y ∈ q(x) induced by q
between two states, x and y, is conveniently expressed using the notation typical
to rewriting systems: x→ y. Note that we can easily introduce non terminating
computations as long as q is total.

It is clear that the notion of dynamical system defined above is nondetermin-
istic, because any state can transform into a set of possible states—though, an
equivalently expressive deterministic system where states are the quasi states of
the original system can be figured out. The nondeterministic aspect is essential
for the modeling of many phenomena.

We now give a characterization of the evolution in these systems.
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Definition 4. An X-orbit is periodic if qn(X) = X for some n > 0. An orbit
is eventually periodic if qn+k(X) = qk(X) for some k, n > 0. In this case k is
called the transient and n the period.

Definition 5. An X-orbit is Ω
(
f(n)
)
-divergent with respect to a function μ :

S → N, called Ljapounov function, if μ
(
qn(X)

)
has order Ω

(
f(n)
)
. A similar

definition holds for the order of divergence O
(
f(n)
)
.

Definition 6. A state s is a fixed point if the transition relation transforms it
into itself, that is, q(s) = {s}.

Periodicity and eventual periodicity are properties with a strong computational
significance. It can be shown that, in a suitable computational framework where
every machine finds a counterpart in a corresponding state transition dynamics,
the periodicity decision problem turns out to be computationally equivalent to
the termination problem [11]:

Proposition 1 Given a computationally universal class of machines, then the
(eventual) periodicity of the related dynamical systems is not decidable.

Affine to periodicity (but weaker) is recurrence:

Definition 7. A state x is recurrent if x ∈ qn(x) for some n > 0. A state x is
eternally recurrent if ∀n > 0 : y ∈ qn(x)⇒ ∃m > 0 : x ∈ qm(y).

A system dynamics is ultimately characterized by its attractors, that in very
first approximation can be seen as quasi states in which the system must fall in
the end. First of all, we say that an orbit is included in another orbit if the former
sequence is contained in the latter sequence, and we say eventually included if
it is included in the other orbit except for a finite number of quasi states.

We call basin a set B ⊆ S such that q(x) is included in B for every state
x ∈ B. Inside a basin we possibly find an attracting set A, i.e., a subset which
eventually includes the complete x-orbit of every state x ∈ B. If A is minimal
under set inclusion, i.e., no subsets (even made of a single state) can be removed
from A otherwise causing the lost of the attracting property, then our attracting
set is an attractor.

A complete characterization of attractors requires more definitions than those
reported in this paper [11]. In particular, here we have only outlined the so-called
unavoidable attracting sets that can have three different types:

1. periodic attractors, that is, periodic orbits (fixed point attractors are a special
case);

2. eternally recurrent blackholes;
3. complex attractors, that is, a combination of the two previous cases.

Many concepts in formal language theory can be revisited in the framework of
state transition dynamics. For example, languages generated by grammars or
recognized by automata are special cases of attractors. But next issues, that
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are crucial in the development of state transition dynamics, are: i) the exten-
sion of its focus on more complex dynamical phenomena such as the forms and
degrees of chaos, intermittency, dissipation, resonance; ii) the search for dynam-
ical parameters useful in the qualitative analysis of dynamical patterns. In fact,
both cellular automata and Kauffman networks enlighten that the relationship
between the transition function and the state structure strongly determines dy-
namically relevant qualities [20, 21]. We put forward that several parameters
that are identified in those contexts, such as connectivity, channeling, majority,
input entropy, and Derrida plot, could inspire some analogues in P systems. The
approach we present in the next section will give some hints in this direction. In
fact, the metabolic viewpoint will cast P systems in the framework of dynamical
networks to which both cellular automata and Kauffman networks belong.

3 Metabolic Algorithm and Oscillatory Phenomena

Our proposed algorithm is inspired by a chemical reading of the rewriting rules.
Due to the biological implications of this type of reading, we called the algorithm
metabolic.

The re-interpretation of the rewriting rules in the light of chemical reactions is
not new: several researchers have applied rewriting systems to contexts different
from the purely abstract one, giving alternative meanings to the rules [18, 19]. In
P systems every rule can be seen as a binary relation between strings, mapping
the leftward argument into the rightward one. For instance, a rule r : AB → CD
containing symbols defined over an alphabet V states that every occurrence of
the object A ∈ V in the system, once paired with B ∈ V , can be substituted by
the pair of objects CD ∈ V ∗.

If we look at r as a chemical reaction, now the leftward objects A and B
have the role of reactants whereas those on the right are products. Following this
chemical interpretation, we propose to look at rules as descriptors of the changes
in concentration of the reactants into products. In other words, r says that a
number of objects of type A and B transforms into objects of type B and C. In
this way we deal with populations rather than single objects.

This interpretation needs the introduction of some definitions. Consider a P
system on an alphabet V = {A,B,C, . . .}, provided with a nonempty set R of
rewriting rules. Every rule r : α→ β, with α, β ∈ V ∗, is associated to a reactivity
coefficient kr whose role will be made clear in the following.

For each membraneM we give a maximum number of objects |M | that cannot
be overcome. From here we agree to define a conventional molarity unit :

μ = ν |M |,

where ν is a molarity factor (ν = 0.01 in our experiments). We denote with |X|
the number of elements of type X in M , and define the quantity

||X|| = |X|
μ

(3)
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as the number of moles of X insideM . This molar formulation for the quantities
involved in a reaction leads to the α-molar concentration, defined as the product
of the moles of every object in a string α = α1 . . . α|α|:

||α|| =
|α|∏
i=1

||αi||. (4)

It is now possible to describe an algorithm that translates the rewriting rules
into a set of equations defining the molar variation, Δ||X||, of every element X
in consequence of the application of the rules.

A rule r : α → β ∈ R acts on the leftward (i.e., reactant) and rightward
(i.e., product) objects: the leftward part of r diminishes the concentration of
the reactants, whereas the rightward part increases the concentration of the
products. Hence, the changes in the amount for an element X in M due to r are
equal to the stoichiometric coefficient:

|β|X − |α|X ,

where |γ|S indicates the number of occurrences of S contained in γ.
In chemical terms, r affects the concentration of every element appearing in it

by a similar contribution, depending on the concentration of all the reactants at
the instant of application. The term ||α|| takes this aspect into account, according
to equation (4). Thus, we can compute the effect Δr||X|| of a rule r : α→ β on
the concentration of X, as

Δr||X|| = kr ||α|| (|β|X − |α|X), (5)

where kr is the reactivity coefficient of the rule.
In general an object is involved in more than one rule. In order to compute

the overall molar variation of an objectX we have to take the contributions of all
rules into account. This is made by summing up their effects on the concentration
of X:

Δ||X|| =
∑
r∈R

Δr||X||, (6)

where R is the set of rules in our P system.
Hence, after the application of a set of rules our algorithm updates the number

of moles of an object X according to the following assignment:

||X|| := ||X||+Δ||X||. (7)

The multiplicity of X is updated accordingly:

|X| := |X|+ μΔ||X||. (8)

Let us now see a concrete example of this translation from rewriting rules to
metabolic equations. Consider the following set of rules:

r1 : AC → AB,
r2 : BC → A,
r3 : BBB → BC,

(9)
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each of them associated to a coefficient, respectively kr1, kr2, and kr3. We want
to calculate the variation in the multiplicity of every object in the system caused
by the rules.

If we apply equation (6) to each object, then we obtain the following system
of metabolic equations:

Δ||A|| = 0 · kr1||AC|| +1 · kr2||BC|| +0 · kr3||BBB||,
Δ||B|| = +1 · kr1||AC|| −1 · kr2||BC|| −2 · kr3||BBB||,
Δ||C|| = −1 · kr1||AC|| −1 · kr2||BC|| +1 · kr3||BBB||,

(10)

where kr1, kr2, and kr3 can be read as “rates” of application of r1, r2 and r3,
respectively. As we can see from (10), where all contributions (including null
ones) are represented, it is always possible to figure out an equation for every
object of the P system from the correspondent set of rewriting rules. Each of
these equations gives the molar variation of the related element as time elapses.

By applying equation (3) we can figure out the finite differentials associated
to the system (10):

Δa = +μ · kr2
μ2 · bc,

Δb = +μ · kr1
μ2 · ac −μ · kr2

μ2 · bc −2μ · kr3
μ3 · b3,

Δc = −μ · kr1
μ2 · ac −μ · kr2

μ2 · bc +μ · kr3
μ3 · b3,

(11)

in which we have denoted numbers of elements with a, b, c instead of |A|, |B|, |C|,
respectively. Note that the correspondence between rewriting rules and differen-
tial equations is not bi-directional: in general there is no unique way to translate
a system of differentials into a set of rewriting rules, whereas the other way round
holds.

We want to emphasize an important fact about the coefficients kr. In the
molar formulation of rewriting rules they are called reactivities, and their role
is to weight each rule’s action. The reactivity of a rule takes many aspects into
account: i) chemical and physical aspects of the reaction environment (pressure,
temperature, PH level, catalyst activity, . . . ), ii) reaction speed (increasing or
decreasing speed corresponds to a finer or coarser observation granularity), iii)
proper features of single reactions that should account for the following aspects:

– rule activation percentage;
– synchronization and parallelism degree;
– reactants and energy partition.

If we consider all the interconnections existing between the points introduced
in the previous list, then it is easy to understand that the tuning of reactivity
factors is very important. We think that this aspect needs further investigation,
and our future work will proceed along this line.

As previously seen, the multiplicity of X is updated according to (7) after
each system transition. Unfortunately it might happen that a rule is applied too
many times with respect to the reactant allowance, due to a wrong choice of the
reactivity coefficients. In other words, the system in principle can consume more
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reactants than those which are available at a given configuration. This violates
the Principle of Mass Conservation.

To account for this, we add in our model a set of constraints that force the
system to respect the Principle of Mass Conservation. One possible algorithm is
the following: for every object X, before calculating its molar variation Δ||X||
check if the amount |X| becomes negative; if so, then stop the computation, else
go on. Another possible work-around to a violation of the previously discussed
constraints is to decrease each of the values of the reactivity parameters by a
certain rate and, then, check again.

To clarify these ideas it is useful to calculate this set of constraints on a
concrete example. Consider a P system with the set of rules (9) previously dis-
cussed; in order not to use more reactants than those available, we add the above
constraints we to each reactant. In the example seen before these constraints be-
come:

C|A| : kr1||AC|| < |A|,
C|B| : kr2||BC||+ kr3||BBB|| < |B|,
C|C| : kr1||AC||+ kr2||BC|| < |C|,

(12)

where C|A|, C|B| and C|C|, respectively, denote the constraints on the corre-
sponding objects.

We want to stress that someone could think that the constraint on an object
X can be equivalently calculated after the updating of |X|, by simply checking
that it never assumes negative values. Once more, this is the wrong approach.
In fact, even if the balance of positive and negative contributions results in an
admissible variation, no one is able in this way to prevent that the amount of X
consumed by all the reactions (those including it among their reactants) during
a transition exceeds its real amount.

Once a constraint violation is discovered there are several ways to react. This
investigation is still in progress. There are some open questions in our model,
and our future work will try to give an answer to them. One of such questions
deals with the temporal variation of the reactivity parameters, as independent
functions in the system: we think that setting these parameters free to vary along
time would have a strong impact on the system behavior, enabling it to simulate
more complex reactions.

We would like to end this brief treatment outlining some of the results we
get by this model implemented in a simulator Psim, developed in Java with an
xml representation of membrane structure [2].

The first dynamical system we intend to model is a well known chemical
oscillator called Brusselator ; it is a simplified model of the Belousov-Zhabotinsky
reaction [13, 7, 19]. When certain reactants like sulphuric acid, malonic acid,
ferroin and bromate are combined together, in presence of a cerium catalyst,
the chemical compound obtained, after a period of inactivity, starts a series of
sudden oscillations in color ranging from red to blue. This chemical reaction
could be described by the following rewriting rules:
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X - m1 - in = Y - m1 - in = 

O
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300O
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900O

189,58
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473,95
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Fig. 1. Oscillations of Belousov-Zhabotinsky reaction model simulated by Psim with
parameters k1 = 0.9, k2 = 0.7, k3 = 0.36, k4 = 0.36, k5 = 0.1, k6 = 0.15 and μ = 1000
(|M | = 100000). Parameters could be rewritten in terms of k1 in this way: k2 = 0.78·k1,
k3 = 0.4 · k1 and k4 = 0.4 · k1

r1 : A → X,
r2 : BX → Y D,
r3 : XXY → XXX,
r4 : X → C.

(13)

It is usually made the assumption that the system described in this way inputs
continuously reactants A and B from the outside environment; for this reason, in
order to implement the reaction into our simulator, two rules have to be added
at the set of rules (13):

r5 : λ→ A,
r6 : λ→ B,

(14)

that are two generative rules which introduce some amount of objects A and B
into the system.

It turns out that the oscillating behavior of the chemical reaction is mirrored,
in the abstract system outlined by the rewriting rules, in the oscillations of the
amounts of objects X and Y . We have translated this extended set of rules into
our xml input file and fed it to the simulator: the trend of X and Y is visible
in Figure 1, where it is possible to appreciate the perfect oscillating behavior of
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the system’s limit cycle. Accordingly with the assumptions made in [18] initially
all objects have multiplicity equal to zero. Note that it is possible to relate all
reactivity coefficients to their maximum value, as in Figure 1 k1. This relationship
is emphasized in Figure 1.

The second dynamic system we intend to investigate is a very basic predator-
prey model, described, among others, in [7]. It is constituted by only two objects
evolving over time: preys X and predators Y . We make the following four sim-
plifying assumptions:

– preys grow up following a Malthusian model;
– preys’ growing rate is reduced proportionally to predators’ number;
– predators extinguish exponentially in absence of preys because they are

predators’ only sustenance;
– preys’ presence make predators’ growing rate increase proportionally to their

number.

Under these assumptions this predator-prey model could be described by
the well known Lotka-Volterra differential equations, where now x = ||X|| and
y = ||Y ||:

x′ = ax− dxy,
y′ = exy − by, (15)

extended by the initial conditions that x0 > 0 and y0 > 0.
Starting from these differential equations we have translated them into the fol-
lowing rewriting rules:

r1 : X → XX,
r2 : XY → Y Y,
r3 : Y → λ,

(16)

with the following assignments:

a = kr1; d =
kr2
μ

; b = kr3; e =
kr2
μ

where kri and μ have the usual meaning and are input parameters of our model;
in this way we get the metabolic equations:

Δ||X|| = kr1 · ||X|| − kr2 · ||XY ||
Δ||Y || = − kr2 · ||XY || − kr3 · ||Y ||

(17)

Note that again all these rules and objects could be contained into a system
with just one membrane.

We tested the system described so far starting with an initial amount of 100
preys and 20 predators. The simulation, as we can see from Figure 2, confirmed
the oscillating behavior of the number of preys and predators in the predator-
pray model described by the Lotka-Volterra system of equations.

The last model we discuss in this paragraph is that of an infective disease
that spreads through a population and that could cause infected people’s death
or permanent immunity to the infection.
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X − m1 − in = Y − m1 − in = 
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Fig. 2. Oscillations of the predator-prey model simulated by Psim with k1 = 0.01,
k2 = 0.02, k3 = 0.02 and μ = 100 (|M | = 10000)

We make the simplifying assumption that the population is closed (e.g., it
is made by a certain amount of people and where no births, immigration or
emigration are allowed). The population of this dynamical system is partitioned
into three different categories (objects of our system): healthy people C, ill people
G, and immune people K. When an healthy person meets an ill one he becomes
ill, with a probability depending on the reaction rate of the rule; an ill person has
two possibilities: he could die, and could otherwise become immune forever to
the infection. On the other hand, an healthy individual could keep his state until
he gets no contact with an ill one. This pattern is common to many contagious
phenomena, and could model also some forms of prion propagation that are the
biomolecular basis of various infectious diseases of the nervous system (as bovine
spongiform encephalopathy and Creutzfeldt-Jakob disease).

The behavior just described could be expressed with the following set of rules:

r1 : CG→ GG,
r2 : G → K,
r3 : G → λ,

(18)

in which all the symbols have the meaning previously discussed. The simulation
of such a system with our tool has outlined results in agreement with literature.
In particular, it has put into evidence the existence of a threshold of activation
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for the epidemic: on the one hand, if the initial healthy population is below a
certain amount, the epidemic does not start and so ill people decrease in number
until its complete vanishing. On the other hand, whenever the initial healthy
population is beyond that threshold the epidemic activates and the number of
ill people grows up until reaching its maximum and then drops again to zero
thus vanishing.

Due to our choice of the parameters, as indicated in Figure 3 and 4, it turns
out that the threshold we talked about is near 2570; we find accordingly two
kinds of behaviors depending of the initial amount of healthy people: in Figure
3 is depicted the case in which the epidemic doesn’t activate because of the
number of initial healthy people being 2000 and thus under the threshold. On
the other hand, in Figure 4 the initial amount of healthy people is 7000 and
the epidemic does its course reaching its maximum and then vanishing. In both
cases the initial number of ill people is fixed to 300.

C - m1 - in = G - m1 - in = 

O
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Fig. 3. Not active epidemic model simulated by Psim with k1 = 0.3, k2 = 0.1, k3 = 0.12
and μ = 3500

We end the section stressing once more the fact that all the examples dis-
cussed here, in spite of their extreme interest, are very simple from a topolog-
ical viewpoint but their study has been very useful in order to evaluate the
effectiveness of the metabolic algorithm proposed. Our work will, from now on,
concentrate on the simulation of more elaborate systems.
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C - m1 - in = G - m1 - in = 
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Fig. 4. Active epidemic model simulated by Psim with k1 = 0.3, k2 = 0.1, k3 = 0.12
and μ = 3500

4 Relationships with Linear Systems

As opposite to State Transition Dynamics, the traditional linear paradigm results
in systems that are extremely simple from a formal point of view; meanwhile a
lot of theoretical results exist about such systems that are useful in practice [8].
For these two reasons linear systems have found plenty of practical applications
in system modeling and control, even of nonlinear phenomena.

Here we want to show that P systems can represent linear systems. Although
this fact is implied by universality, nevertheless it is interesting to see how this
representation can be given. We will make use of no peculiar and/or advanced
properties to derive a linear restriction of P systems. In other words, we do not
want to define any novel or complicate kind of construct to characterize a weaker
family of P systems as those reproducing linear systems.

In its traditional formulation a discrete linear (DLI) system transforms, at a
temporal step n, an N -dimensional state vector v according to a linear (matrix)
transformation in a way that a new state will hold at the following time step.
In the meantime, an output vector is produced as a linear combination of the
actual state itself. It is well known by theory that for a stable system this output
consists of (however many) damped sinusoids.

Coherently with the classic notion of P system here we do not consider the
existence of an external input—though, this aspect is likely to be object of
future research in conjunction with formulations of P systems that are capable
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of accepting an input from the external environment [1]. Indeed, the external
input is a crucial aspect in linear systems theory, and more in general in the
modeling of real phenomena, as a factor that excites initially quiet systems and
forces their evolution along time.

Apart from the input, the core structure (and, hence, the overall behavior,
or free evolution) of a linear system depends on the structure of the transition
matrix A, sized N × N . Thus, we can completely characterize a free-evolving
linear system by the following set of equations holding at time step n:{

v(n+ 1) = Av(n),
u(n) = Cv(n), (19)

in which the upper formula expresses the state transition, whereas the lower
formula is responsible of the system output. Let v(0) be the initial state.

P systems cannot associate real numbers to symbols directly, as it happens for
linear systems. We, then, restrict our numerical domain to rational numbers in a
way that A and C can be respectively approximated by two matrices containing
only rational numbers, with the desired precision. Now we collect all the matrix
elements and, for each matrix, we compute the least common factor of such
elements, kA and kC respectively. Similarly, we compute the least common factor
kv of the initial state elements. In this way we can move to a slightly different
system: {

ṽ(n+ 1) = Ãṽ(n),
ũ(n) = C̃ṽ(n),

(20)

in which Ã = kAA, C̃ = kCC, and ṽ(0) = kvv(0). In other words we multiply
both the transition and output matrix by their respective least common factors,
in a way that the matrices resulting from this operation, Ã and C̃, respectively,
contain only signed integers. Likewise we define kv(0) as a modified initial state
made of only integer values. These three rescalings lead to a modified linear
system evolving within the domain of signed integers.

Since we are interested in studying the dynamic evolution of populations,
then we can restrict our analysis to linear systems whose state is positive or
null. The formal complications needed to account for negative values are left to
further research: at the moment Ã and C̃ are made of positive numbers, and the
modified initial state is positive as well.

Let us define a P system using symbols describing the state, x1, x2, . . . , xN ,
and z, and the output: y1, y2, . . . , yN (output symbols are defined to add clarity
to the treatment although they are not strictly necessary):

V = {x1, x2, . . . , xN , y1, y2, . . . , yN , z},
T = {y1, y2, . . . , yN} .

Let this system contain N membranes inside the skin:

μ = [skin [1 ]1 [2 ]2 . . . [N ]N ]skin .
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The inner membrane labeled with j will contain the value of the j-th element of
ṽ(n+ 1), in terms of multiplicity of objects z contained in the membrane itself.

In the beginning, the initial state is encoded in the skin membrane as the
following multiset of symbols:

wskin = xṽ1(0)
1 x

ṽ2(0)
2 . . . x

ṽN (0)
N ,

where ṽi(n) denotes the value of the i-th element of the state vector ṽ at time
step n. Any other membrane is set to be initially empty: w1 = . . . = wN = ∅.

A single-step evolution of the linear system is resolved in one transition of
the corresponding P system involving both the symbols in the skin and in every
inner membrane:

1. Every symbol xj located inside the skin is distributed, once turned into z,
into the i-th inner membrane with the multiplicity given by aij ∈ Ã, for
every i = 1, . . . , N . In the meantime the same symbol, once turned into yi,
is sent out of the system with a multiplicity given by cij ∈ C̃, again for each
i = 1, . . . , N . This happens for every component so that in the end we write

xj → za1j

in1
. . . z

aNj

inN
y

c1j

1 out . . . y
cNj

N out , j = 1, . . . , N . (21)

Thus, (21) stores symbols z accounting for the new state in the inner mem-
branes, meanwhile produces symbols y1, . . . , yN accounting for the system
output.

2. Every inner membrane sends its symbols back to the skin, once properly
renamed—say, every symbol z in the i-th membrane is sent out as xi. These
symbols form the new state and, at the end of the transition, they are ready
to take part in the next one-step evolution of the linear system.

Finally, the P system output must be converted back to the original linear
system output. This is made by clearing out, at temporal step n, the factors kA,
kC and kv from the multiplicity value of every output symbol yi, here denoted
with |yi|:

u(n) =
1

kn
AkCk

n+1
v

∣∣ |y1| |y2| . . . |yN | ∣∣T (22)

in which T denotes transposition.
Although both ṽ(n+1) and ũ(n) are linear combinations of ṽ(n), nevertheless

we must note that the computation of the output is performed by a procedure
that differs from the one used for evolving the state. In fact, the latter makes
use of membranes in which to store the new state, whereas the former sends the
result directly out of the skin hence avoiding the use of additional membranes.
Indeed, inner membranes can be even avoided in the production of the new state
provided that additional symbols, z1, . . . , zN , are added to the P system to keep
trace of it. In this case (21) is rewritten as

xj → za1j

1 . . . z
aNj

N y
c1j

1 out . . . y
cNj

N out , j = 1, . . . , N, (23)
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|z| = a31*|x1| + a32*|x2| + a33*|x3|

|z| = a21*|x1| + a22*|x2| + a23*|x3|

|z| = a11*|x1| + a12*|x2| + a13*|x3|

|x3||x2||x1|

|y1| = c11*|x1| + c12*|x2| + c13*|x3|

|y1| = c21*|x1| + c22*|x2| + c23*|x3|

|y1| = c31*|x1| + c32*|x2| + c33*|x3|

skin

3

1

2

Fig. 5. Graphic representation of the P system proposed in the example. Module op-
erators give the multiplicity of the respective surrounded symbols

meanwhile (again for each j) further rules of the type zj → xj update the state
in parallel, by transforming the (previous) new state in the actual state of the
system.

We think that the existence of inner membranes, as expressed by (21), puts
more emphasis on the system’s structural properties and paves the way for strate-
gies aimed at characterizing linearity in P systems containing multiple nested
membranes.

As an example, suppose to have

A =

∣∣∣∣∣∣
1 1/2 0
0 1 0
1 1/3 1

∣∣∣∣∣∣ C =

∣∣∣∣∣∣
1 0 0
0 1 0
1 0 1

∣∣∣∣∣∣ , v(0) =

∣∣∣∣∣∣
0
1
0

∣∣∣∣∣∣ .
First, we compute kA = 6, kC = 1 and kv = 1 in a way that

Ã =

∣∣∣∣∣∣
6 3 0
0 6 0
6 2 6

∣∣∣∣∣∣ , C̃ = C, ṽ(0) = v(0) .

Then, provided V , T , μ, wskin, w1, . . . , wN as above, the rule set is the following:

Rskin = { x1 → z6in1
z6in3
y1 out y3 out,

x2 → z3in1
z6in2
z2in3
y2 out,

x3 → z6in3
y3 out},

R1 = { z → x1 out},
R2 = { z → x2 out},
R3 = { z → x3 out} .

Figure 5 can help the reader in decoding the process.
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The absence of further elements in the construct such as, for example, pri-
orities on the rules, proves that such a construct is not universal, as it had to
be expected. Despite this, the symbols which are read out of the skin give,
at each temporal step n, the linear system solution once it is computed as
u(n) = (1/6n)

∣∣ |y1| |y2| . . . |yN | ∣∣T according to (22).

5 Conclusion and Future Research Directions

Let us callMA the metabolic algorithm. If E is a system of metabolic equations
derived from a set of rewriting rules, then MA(E, μ) is the dynamics we get
with a molarity unit μ. Let us call [E]μ the “molar normalization” of equations
E which is obtained by replacing every reactivity parameter k in E by k/μ(t−1)

where t is the degree of reactant monomial associated to k. Finally, let us call
by d(E) the differential form of equations E which is obtained by replacing in E
the Δ finite difference operator by the differential operator d/dt, and the molar
quantities by absolute quantities, that is, by putting μ = 1. If Euler is the
Euler’s approximation method for solving differential equations, the following
proposition is easily proved.

Proposition 2 MA(E, μ) = Euler(d([E]μ)).

It is very interesting that, in the case of oscillatory phenomena that we stud-
ied, especially in the Brusselator reported in [13], we get the following exper-
imental result where Runge−Kutta is a very common and reliable integration
method.

Proposition 3 MA(E, μ) = Runge−Kutta(d([E])).

This result shows the relevance of molar normalization. We plan to develop
further experimental and theoretical work for a better understanding of this
phenomenon and for improving our metabolic algorithm by means of a more
systematic and adaptive use of molar normalization. However, it is important

min  E(f)__

_

X(f)x(t)_

y(t)_

FFT
C

K
PSIM
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i

Fig. 6. Schematic of our resolution strategy of the inverse oscillating problem

.

.
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Fig. 7. The neuron-like structure of Brusselator Metabolic Graph

that this metabolic approach seems to be a basis for a reliable direct discrete
tool for computing the behavior of P systems. The next step is the extension of
this dynamic approach to more complex membrane topologies, and to situations
where reaction parameters change in time under the influence of external factors.

Now let us express the rewriting rules of Brusselator with the graph given in
Fig. 7. This formulation suggests us a new perspective in P system analysis. First,
we could extend this representation to any membrane structure by a suitable use
of labels. In this way any membrane system becomes a dynamical network, that
is a graph where at each time nodes have a state that depend on the state of
other nodes of the graph (nodes and arcs can be added and removed in time).
In other words, a membrane system is always related to a sort of “neuron-like”
membrane structure, according to Păun’s terminology. It is easy to discover that
a dynamics associated to some rewriting rules can present oscillatory phenomena
only if the relative metabolic graph has (some form) of cycles. But in general
finding parameters that ensure some kind of oscillations is not a simple task. In
the case of the Brusselator graph, the search space is a vector space of twelve
dimensions (six for initial concentrations and six for reactivities). The Inverse
Oscillation Problem can be stated in the following way: Given a metabolic graph,
find initial concentrations and reactivity parameters that ensure an oscillation of
quantities of some given types.

We are currently working on a strategy of solution of the inverse oscillation
problem1. As suggested by the name of the problem, we are mainly interested in
dynamic oscillating behaviors. The initial data typically consist in a metabolic
graph, that provides relations on the system constituents, and in a set of oscil-

1 In fact the proposed strategy deals with a simplified instance of the problem, in
which we know, even roughly, the initial concentrations and moreover we need initial
estimates of the reactivity parameters. In this way the solution of the Brusselator’s
inverse oscillation problem lies within a six-dimensional vector space rather than a
twelve one.
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lating functions, usually obtained by experiments, that we intend to reproduce.
Our goal is to define an automatic procedure that, in the same initial conditions
(mainly in terms of reactivity coefficients) realizes the desired oscillating system
behavior.

Starting from a periodic signal, in the time domain, we can describe its behav-
ior in a more compact way by analyzing its dual representation in the frequency
domain. Let y(t) be the signal to be reproduced and let us denote with x(t)
the signal obtained from the simulation. The simulated signal will depend on
the reactivity coefficients k1, . . . , kN , whose values are our subject of investi-
gation. For this reason, from now on we will denote the simulated signal x as
x(k1, . . . , kN , t), where N is the number of unknown reactivity coefficients.

Note that we have to consider a pair of signals yi, xi for each one of the
different kind of objects present in the system. Let’s denote with m the number
of different types of elements populating the system under investigation and
with n the number of discrete-time samples forming our signals. According to
the previous observation we have to deal with a couple of matrices y(t) and
x(k1, . . . , kN , t), sharing the same dimension, that is, m× n.

Our approach starts from the observation that a periodic signal (e.g., a sinu-
soidal function) is described in a compact way in the frequency domain by means
of the Fourier Transform operator (e.g. a sine in time becomes an impulse in
frequency). This translation from time to frequency domain is implemented very
efficiently, thanks to fast implementations of the Fourier Transform, known as
Fast Fourier Transform or FFT [8].

For the previously described reasons we suggest to perform a Fourier Trans-
form on our signals, y(t) and x(k1, . . . , kN , t), and this lead to their dual rep-
resentations Y (f) and X(k1, . . . , kN , f), where the symbol f reminds that Y
and X belong to the frequency domain. The target of our investigation is the
minimization of the norm:

E(f) = ||Y (f) − X(k1, . . . , kN , f)||, (24)

that is, to calculate

min
K
||Y (f) − X(f)|| = min

K
E(f), (25)

where we have defined the norm ||M || of a matrix M as the maximum value of
the norms of all rows of M .

In order to minimize the distance function E we can use several minimization
algorithms. The important thing to point out here is that the translation to the
frequency domain can be performed very efficiently by FFT algorithms, and
the minimization procedure is in general carried out in a more efficient way in
frequency rather than in the time domain; this efficiency is gained when E(f)
turns out to be an m′×n′ matrix where m′ = m and n′ < n, as it happens when
the maximum number of pure oscillatory behaviors under investigation (chosen
to be equal to n′/2 − 1) is likely to be smaller than the number n of temporal
samples included in the analysis window of every signal y1, . . . , ym.



Evolution and Oscillation in P Systems 83

Note also that, in general, the solution obtained in the frequency domain may
result in a phase-shifted time signal, but this is not limiting our point because
our interest focuses on the periodical trend of the system as a whole.

In Figure 6 our approach is depicted in a schematic way. The inputs of the
method are:

– C, the initial concentrations of all objects;
– K0, initial estimates of reactivities;
– y(t), the matrix of signals that we want to reproduce;
– the metabolic graph (not depicted in figure), necessary to describe all rela-

tionships between objects populating the system.

Starting from objects’ relationships described by the metabolic graph, and by
using K0 and C, an implementation of the metabolic algorithm provides the
simulated behavior x(t). The FFT block translates our signals y(t) and x(t) in
their frequency duals Y (f) and X(f). We perform a minimization algorithm
on Y (f) and X(f) in order to adjust the vector K0 into another one, say K1,
on which the metabolic algorithm is applied again and again until the distance
between Y (f) and X(f) falls below a certain threshold τ . If this happens at
the iteration cycle i + 1 then Ki contains the result, otherwise it’s desirable to
specify a maximum number of cycles after that the procedure terminates without
convergence.

Another research topic, related the inverse oscillation problem, is the finding
of parameters, possibly defined on the metabolic graphs of P systems, that could
have some dynamical relevance. Many of them are suggested by parameters in-
troduced for cellular automata and Kauffman networks, but a lot of experimental
work and theoretical analysis has to be developed along this direction.
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Abstract. In this paper we present a theory of computational complex-
ity in the framework of membrane computing. Polynomial complexity
classes in recognizer membrane systems and capturing the classical de-
terministic and non-deterministic modes of computation, are introduced.
In this context, a characterization of the relation P = NP is described.

1 Introduction

The necessity to define in a satisfactory way what means a definite method for
solving mathematical problems was studied by A. Turing who investigated how
such methods should be applied mechanically, and, moreover, he formalized the
task of performing such methods in terms of the operations of a machine able to
read and write symbols on a tape divided into parts called cells (simulating how
a person can solve a problem with paper and pencil manipulating symbols).

The theory of computation deals with the mechanical solvability of problems,
that is, searching solutions that can be described by a finite sequence of ele-
mentary processes or instructions. The first goal in the theory of computation is
general problem solving; that is, to develop principles and special methods that
are able to solve any problem from a certain class of questions.

A computational model tries to capture those aspects of mechanical solutions
of problems that are relevant to these solutions, including their inherent limita-
tions. In some sense, we can think that computational models design machines
according to certain necessity.

From a practical point of view, the goal of computation theory is to take
real–life problems and try to solve them through a method capable of being
simulated by a machine when we use a suitable language to communicate that
problem to the machine (a language is a system of signs used to communicate
information between different parties).

Abstract machines are formal computing devices that we use to investigate
properties of real computing devices. Computable languages are a special type
of formal languages that can be processed by abstract machines that represent
computers.
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If we have a mechanically solvable problem and we have a specific algorithm
solving it that can be implemented in a real machine, then it is very important
to know how much computational resources (time or memory) are required for
a given instance, in order to recognize the limitations of the real device.

One of the main goals of the theory of computational complexity is the study
of the efficiency of algorithms and their data structures through the analysis of
the resources required for solving problems (that is, according to their intrinsic
computational difficulty). This theory provides a classification of the abstract
problems that allows us to detect their inherent complexity from the computa-
tional solutions point of view.

Of course, such a classification demands a precise and formal definition of
the concept of abstract problem and the model to be considered.

The following parameters are used to specify a complexity class within a
general computational framework:

– First: the model of computation, D (in our case, recognizer P systems).
– Second: the mode of computation, M (in our case, non-deterministic and

parallel).
– Third: the resource, r, that we wish to bound (usually time and space).
– Finally, we must specify an upper bound of the resources, f (a total recursive

function from natural numbers to natural numbers).

Then, a complexity class is defined as the set of all languages decided by the
device D operating in modeM and such that for any input string, u, D expends
at most f(|u|) units of the resource r, to accept or reject u.

Many interesting problems of the real world are presumably intractable and
hence it is not possible to execute algorithmic solutions in an electronic computer
when we deal with instances of those problems whose size is large. The theoretical
limitations of the Turing machines in terms of computational power are also
practical limitations to the digital computers.

Natural Computing is a new computing area inspired by nature, using con-
cepts, principles and mechanisms underlying natural systems. Evolutionary Al-
gorithms use different concepts from biology. Neural Networks are inspired in
the structures of the brain and nervous system. DNA Computing is based on the
computational properties of DNA molecules and on the capacity to handle them.
Membrane Computing is inspired by the structure and functioning of living cells.

These two last models of computation provide unconventional devices with
an attractive property (computational efficiency), they are able to create an
exponential workspace in polynomial time (and, in some sense, trading space for
time).

Can some unconventional devices be used to solve presumably intractable
problems in a feasible time? The answer is affirmative at least from a theoretical
point of view.

In this paper we provide a systematic and formal framework for the design of
polynomial solutions to hard problems, and to classify them according to their
polynomial solvability by cell–like membrane systems. Complexity classes in the
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framework of membrane computing and their relationships with the problems
they contain, are the main subjects of this paper.

The paper is structured as follows. The next section is devoted to describe in
an informal way the deterministic and non-deterministic mode of computation in
a computing model. In Sections 3, 4, and 5 combinatorial optimization problems
and decision problems are introduced, and a relationship between them from a
complexity point of view is showed. The P versus NP problem is presented in
Section 6, and in Section 12 a characterization of that problem is obtained. In
Section 7 weakly and strongly NP–complete problems are studied. Sections 8
and 9 are devoted to present the general framework (recognizer membrane sys-
tems) within a theory of computational complexity developed here. Determin-
istic and non-deterministic polynomial complexity classes in membrane systems
are introduced in Sections 10 and 11. Finally, we study the P systems with the
capability to construct an exponential workspace in polynomial time, and the
polynomial complexity classes associated with them.

2 Determinism Versus Non-determinism

A model of computation is properly given when we formally define the concept
of mechanical procedure (algorithm). For that, it is necessary to syntactically
define it, and determine precisely how such procedures can be executed (the
semantic of the model).

The devices (systems or machines) modelling mechanical procedures can be
represented through configurations (containing a complete description of the
current state of the device). These configurations can evolve according to the
semantic of the model. Formally, the semantic defines the concept of transitions
from a configuration of the system to a next configuration; that is, the semantic
of the model specifies what means next configuration of a given configuration. A
configuration which has no next configuration is called a halting configuration.

A computation or execution of a device of a model is a sequence (finite or
infinite) of configurations such that each configuration (except the first) is ob-
tained from the previous one by a (step of) transition of the system. That is,
a computation starts with an initial configuration of the system, and then it
proceeds step by step, and halts when reaches a halting configuration (and then
the result is encoded in this configuration).

When we use the devices of a model of computation to solve certain kind
of problems on strings (in particular to recognize a language), it is necessary
to define what means to accept or reject a string. In this case it is possible to
consider two modes of computation in a computing model.

– The deterministic mode is characterized by the following fact: each configu-
ration has at most one next configuration. In a deterministic device, given
a current configuration, the next configuration of the system is uniquely
determined, if any.
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– The non-deterministic mode verifies the following property: each non halting
configuration hast at least a next configuration. In a non-deterministic device
several next configurations can be reached from a current configuration.

The computation of deterministic devices can be viewed as a tree with only one
branch, whereas the computation of a non-deterministic device can be viewed as
a tree having many possible branches. The root of the tree corresponds to the
beginning of the computation, and every node in the tree corresponds to a point
of the computation at which the machine has eventually multiple choices. Each
branch of this tree determines one computation of the system.

Next we define what means to accept or reject a string by a deterministic or
non-deterministic device (whose answers are only yes or no).

– A deterministic device M accepts (respectively, rejects) a string a if the
answer of M on input a is yes (respectively, no).

– A non-deterministic deviceM accepts a string a if there exists a computation
of M with input a such that the answer is yes.

Let us note the difference between the definition of acceptance by deterministic
and non-deterministic devices. An input string a is accepted by a deterministic
machine M , if the computation of M on input a halts and answers yes. A non-
deterministic machine M accepts a string a if there exists some computation of
M on input a answering yes; that is, there exists a sequence of non-deterministic
choices that answers yes. In this case, it is possible that we accept a string but
that there exists another computation with the same input that either halts and
answers no, or does not halt.

Thus, a deterministic device can (mechanically) reject a string, but this is
not the case in non-deterministic machines. How can we decide (in a mechanical
way) whether there exists a non halting computation?

Non-deterministic Turing machines are like existential quantifiers: they ac-
cept an input string if there exists an accepting path in the corresponding com-
putation tree. In some sense, we can affirm that non-deterministic devices do not
properly capture the intuitive idea underlying the concept of algorithm, because
the result of such a machine on an input (that is, the output of a computation)
is not reliable, since the answer of the device is not always the same.

non-determinism can be considered as a generalization of determinism (the
computation may branch at each configuration), and it can be viewed as a kind
of parallel computation where several “processes” can be run simultaneously.

3 Combinatorial Optimization Problems

Roughly speaking, when we deal with combinatorial optimization problems we
wish to find the best solution (according to a given criterion) among a class
of possible (candidate or feasible) solutions. That is, in this kind of problems
there can be many possible solutions, each one has associated a value (a positive
rational number), and we aim to find a solution with the optimal (minimum or
maximum) value.
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For example, a vertex cover of an undirected graph is a set of vertices such
that any edge of the graph has, at least, an endpoint in that set. Then, we may
want to find one of the smallest vertex covers among all possible vertex covers in
the input graph. This is the combinatorial optimization problem called Minimum
Vertex Cover Problem. The main ingredients in this problem are the following:
(a) the collection of all undirected graphs, (b) the finite set of all vertex covers
associated with a given undirected graph, and (c) the cardinality of each vertex
cover of a given undirected graph.

We can formalize these ideas in the following definition.

Definition 1. A combinatorial optimization problem, X, is a tuple (IX , sX , fX)
where:

– IX is a language over a finite alphabet.
– sX is a function whose domain is IX and, for each a ∈ IX , the set sX(a) is

finite.
– fX is a function (the objective function) that assigns to each instance a ∈ IX

and each ca ∈ sX(a) a positive rational number fX(a, ca).

The elements of IX are called instances of the problem X. For each instance
a ∈ IX , the elements of the finite set sX(a) are called candidate (or feasible)
solutions associated with the instance a of the problem. For each instance a ∈ IX
and each ca ∈ sX(a), the positive rational number fX(a, ca) is called solution
value for ca. The function fX provides the criterion to determine the best solution.

For example, the Minimum Vertex Cover problem is a combinatorial opti-
mization problem such that IX is the set of all undirected graphs, and for each
undirected graph G, sX(G) is the set of all vertex covers of G; that is, each
vertex cover of the graph is a candidate solution for the problem. The objective
function fX is defined as follows: for each undirected graph G and each vertex
cover C of G, fX(G,C) is the cardinality of C.

Definition 2. Let X = (IX , sX , fX) be a combinatorial optimization problem.
An optimal solution for an instance a ∈ IX is a candidate solution c ∈ sX(a)
associated with this instance such that,

– either for all c′ ∈ sX(a) we have fX(a, c) ≤ fX(a, c′) (and then we say that
c is a minimal solution for a),

– either for all c′ ∈ sX(a) we have fX(a, c) ≥ fX(a, c′) (and then we say that
c is a maximal solution for a).

A minimization (respectively, maximization) problem is a combinatorial opti-
mization problem such that each optimal solution is a minimal (respectively,
maximal) solution.

That is, an optimization problem seeks the best of all possible candidate
solutions, according to a simple cost criterion given by the objective function.
For example, the Minimum Vertex Cover problem is a minimization problem
because a minimal solution associated with an undirected graph G, provides one
of the smallest vertex covers of G.
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An approximation computational device, D, for a combinatorial optimization
problem, X, provides a candidate solution c ∈ sX(a) for each instance a ∈ IX .
If the provided solution is always optimal, then D is called an optimization
computational device for X.

For instance, an approximation machine for the Minimum Vertex Cover prob-
lem needs only find some vertex cover associated with each undirected graph,
whereas an optimization machine must always find a vertex cover with the least
cardinality associated with each undirected graph.

Having in mind that until now polynomial time optimization algorithms have
not be found for many presumably intractable problems (it is believed that this
kind of solutions can never be found), it is convenient to find an approximation
algorithm running in polynomial time and such that, for all problem instances
the candidate solution given by the algorithm is close, in a sense, to an optimal
solution.

4 Decision Problems

An important class of combinatorial optimization problems is the class of deci-
sion problems, that is, problems that require either an yes or a no answer.

Definition 3. A decision problem, X, is a pair (IX , θX) such that IX is a lan-
guage over a finite alphabet (whose elements are called instances) and θX is a
total boolean function (that is, a predicate) over IX .

Therefore, a decision problem X = (IX , θX) can be viewed as a combinatorial
optimization problem X = (IX , sX , fX) where for each instance a ∈ IX we have
the following:

– sX(a) = {θX(a)} (the only possible candidate solution associated with in-
stance a is 0 or 1, depending on the answer of the problem to a).

– fX(a, θX(a)) = 1.

Thus, each decision problem can be considered as a minimization (or maximiza-
tion) problem.

There exists a natural correspondence between languages and decision prob-
lems in the following way. Each language L, over an alphabet Σ, has a decision
problem, XL, associated with it as follows: IXL

= Σ∗, and θXL
= {(x, 1) | x ∈

L} ∪ {(x, 0) | x /∈ L}; reciprocally, given a decision problem X = (IX , θX), the
language LX over the alphabet of IX corresponding to it is defined as follows:
LX = {a ∈ IX | θX(a) = 1}.

Usually, NP-completeness has been studied in the framework of decision
problems. Many abstract problems are not decision problems, but combinatorial
optimization problems, in which some value must be optimized (minimized or
maximized). In order to apply the theory of NP-completeness to combinatorial
optimization problems, we must consider them as decision problems.

We can transform any combinatorial optimization problem into a roughly
equivalent decision problem by supplying a target/threshold value for the quan-
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tity to be optimized, and asking the question whether this value can be attained.
Next we give two examples.

1. The Minimum Vertex Cover Problem.
Optimization version: Given an undirected graph G, find the cardinality of
a minimal set of a vertex cover of G.
Decision version: Given an undirected graph G, and a positive integer k,
determine whether or not G has a vertex cover of size at most k.

2. The Common Algorithmic Problem [10].
Optimization version: given a finite set S and a family F of subsets of S,
find the cardinality of a maximal subset of S which does not include any set
belonging to F .
Decision version: given a finite set S, a family F of subsets of S, and a
positive integer k, we are asked whether there is a subset A of S such that
the cardinality of A is at least k, and which does not include any set belonging
to F .

If a combinatorial optimization problem can be quickly solved, then its decision
version can be quickly solved as well (because we only need to compare the
solution value with a threshold value). Similarly, if we can make clear that a
decision problem is hard, we also make clear that its associated combinatorial
optimization problem is hard.

For example, let A be a polynomial time algorithm for the optimization
version of the Minimum Vertex Cover problem. Then we consider the following
polynomial time algorithm for the decision version of the Minimum Vertex Cover
problem: given an undirected graph G, and a positive integer k, if k < A(G)
(here A(G) is the cardinality of a smallest vertex cover of G), then answer no;
otherwise, the answer is yes.

Reciprocally, let B be a polynomial time algorithm for the decision version
of the Minimum Vertex Cover problem. Then we consider the following polyno-
mial time algorithm for the optimization version of the Minimum Vertex Cover
problem: given an undirected graph G, repeatedly while k ≤ number of vertices
of G (starting from k = 0, and in the next step considering k + 1) we execute
the algorithm A on input (G, k), until we reach a first yes answer, and then the
result is k.

5 Solving Decision Problems

Recall that, in a natural way, each decision problems has associated a lan-
guage over a finite alphabet. Next, we define the solvability of decision problems
through the recognition of languages associated with them.

In order to specify the concept of solvability we work with an universal com-
puting model: Turing machines.

Let M be a Turing machine such that the result of any halting computation
is yes or no. Let L be a language over an alphabet Σ.

If M is a deterministic device (with Σ as working alphabet), then we say
that M recognizes or decides L whenever, for any string a over Σ, if a ∈ L, then
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the answer of M on input a is yes (that is, M accepts a), and the answer is no
otherwise (that is, M reject a).

If M is a non-deterministic Turing machine, then we say that M recognizes
or decides L if the following is true: for any string a over Σ, a ∈ L if and only if
there exists a computation of M with input a such that the answer is yes. That
is, an input string a is accepted by M if there is an accepting computation of
M on input a. But now we do not have a mechanical criterion to reject an input
string.

Recall that any deterministic Turing machine with multiple tapes can be sim-
ulated by a deterministic Turing machine with one tape with a polynomial loss
of efficiency, whereas the simulation of non-determinism through determinism
involves an exponential loss of efficiency.

In the context of computation theory, we consider a problem X to be solved
when we have a general (definite) method (described in a model of computation)
that works for any instance of the problem. From a practical point of view,
such methods only run over a finite set of instances whose sizes depend on the
available resources.

We say that a Turing machineM solves a decision problem X ifM recognizes
the language associated with X; that is, for any instance a of the problem: (1)
in the deterministic case, the machine (with input a) output yes if the answer of
the problem is yes, and the output is no otherwise; (2) in the non-deterministic
case, some computation of the machine (with input a) output yes if the answer
of the problem is yes.

Due to the fact that we represent the instances of abstract problems as strings
we can consider their size in a natural manner: the size of an instance is the length
of the string. Then, how do the resources required to execute a method increase
according to the size of the instance? This is a relevant question in computational
complexity theory.

6 The P Versus NP Problem

In order to solve an abstract problem by a computational device, problem in-
stances must be represented (encoded) in an adequate way that the device un-
derstands.

Given a problem it is possible to use different reasonable encoding schemes
to represent the instances (we do not attempt to define reasonable, however
informally we say that reasonable means [8] to codify instances in a concise
manner, without irrelevant information, and the numbers occurring in them
should be represented in binary, or any fixed base other than 1). It is easy to
prove that the input sizes that different reasonable encoding schemes determine
differ, at most, polynomially from one another.

Recall that complexity classes provide a way to group decision problems of
similar computational complexity.

P is the class of all decision problems solvable (or languages recognized) by
some deterministic Turing machine in a time bounded by a polynomial on the
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size of the input. Having in mind that all reasonable deterministic computational
models are polynomially equivalent (that is, any one of them can simulate an-
other with only a polynomial loss of efficiency), this class is the same for all
models of computation that are polynomially equivalent to the deterministic
Turing machine with one tape. Moreover, informally speaking, P corresponds
to the class of problems having a feasible algorithm that gives an answer in a
reasonable time; that is, problems that are realistically solvable on a machine
(even for large instances of the problem).

NP is the class of all decision problems solvable in a polynomial time by
non-deterministic Turing machines; that is, for every accepted input there exists
at least one accepting computation taking an amount of steps bounded by a
polynomial on the length of the input. This class is invariant for all reasonable
non-deterministic computational models because all of them are polynomially
equivalent.

Every deterministic Turing machine can be considered as a non-deterministic
one, so we have P ⊆ NP. In terms of the previously defined classes, the P versus
NP problem can be expressed as follows: is it verified the relation NP ⊆ P?
That is, the P versus NP problem is the problem of determining whether every
language recognized by some non-deterministic Turing machine in polynomial
time is also can be recognized by some deterministic Turing machine in polyno-
mial time.

The P ?= NP question is one of the outstanding open problems in theoretical
computer science. The relevance of this question is not only the inherent pleasure
of solving a mathematical problem, but in this case an answer to it would provide
information of high economical interest. On the one hand, a negative answer to
this question would confirm that the majority of current cryptographic systems are
secure from a practical point of view. On the other hand, a positive answer would
not only show the uncertainty about the secureness of these systems, but also this
kind of answer is expected to come together with a general procedure provides a
deterministic algorithm solving most of NP-complete problem in polynomial time
(furthermore, mathematics would be transformed because real computers will be
able to find a formal proof of any theorem which has a proof of reasonable length).

In the last years several computing models using powerful tools from nature
have been developed (because of this, they are known as bio-inspired models)
and several solutions in polynomial time to problems from the class NP have
been presented, making use of non-determinism and/or of an exponential amount
of space. This is the reason why a practical implementation of such models (in
biological, electronic, or other mediums) could provide a significant advance in
the resolution of NP-complete problems.

7 Strongly NP–Complete Problems

The Subset Sum problem is the following: given a finite set A, a weight function,
w : A → N, and a constant k ∈ N, determine whether or not there exists a
subset B ⊆ A such that w(B) = k.
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It is well known that Subset Sum can be solved in time O(n · k), using a
dynamic programming algorithm. Hence, that algorithm is polynomial in the
number of input items n and the magnitude of the items k. But such a algo-
rithm is not a polynomial algorithm because its time bound is not a polynomial
function on the size of the input (that is, of the order Ω(n · logk)). Then we say
that such a algorithm is pseudo-polynomial, and that the problem can be solved
in pseudo-polynomial time. Nevertheless if we represent the input in unary form
then that algorithm becomes a polynomial algorithm.

Definition 4. An algorithm that solves a problem X will be called a pseudo-
polynomial time algorithm for X if its running time would be polynomial if all
input numbers associated with each instance were expressed in unary notation.

The Knapsack and Partition problems are also NP–complete problems that can
be solved by a pseudo-polynomial time algorithm.

Often, problems which can be solved in pseudo-polynomial time are also
called weakly NP–complete problems. The existence of a pseudo-polynomial time
algorithm for a given NP–complete problem illustrate that the problem is not
so intractable after all.

Thus it is important to determine whether a problem is weakly NP–complete,
or whether it has the following stronger property.

Definition 5. A problem is said to be NP–complete in the strong sense if the
variant of it in which any instance of size n is restricted to contain integers of
size at most p(n), where p is a polynomial, remains NP–complete.

Decision Problems

NP−complete

NP−complete
Strongly

NP−complete problems (binary encoding)

NP−complete problems (unary encoding)

Conventional Model of Computation

Fig. 1. NP–Completeness and codification of instances

That is, the strongly NP–complete problems remains NP–complete even if
all numbers in the input are written in unary notation.

For example, the decision version of the Minimum Vertex Cover problem is
a strongly NP–complete problem since the numbers in the input (an undirected
graph) are bounded by a polynomial in the number of vertices (input size).
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Other strongly NP–complete problems are the following: 3–Partition, Sat,
Clique, HPP (Hamiltonian Path Problem), TSP (Travelling Salesman Problem),
and Bin Packing.

What happens if a strongly NP–complete problem can be solved by a pseudo-
polynomial time algorithm? Let X be such a problem. Then the variant Y of
it in which all input numbers of X are written in unary notation is also NP–
complete. Moreover, if A is a pseudo-polynomial time algorithm solving X, then
it is also a polynomial time algorithm that solves Y . Hence, P=NP.

Theorem 1. The following propositions are equivalent:

1. P = NP.
2. Every strongly NP–complete problem can be solved by a pseudo-polynomial

time algorithm.
3. There exists a strongly NP–complete problem that can be solved by a pseudo-

polynomial time algorithm.

Thus, to prove P=NP suffices to find a strongly NP–complete problem solv-
able in pseudo-polynomial time. Recall that the concept of solvability above
mentioned is formally associated with deterministic Turing machines.

pseudopolynomial time

in

Strongly

NP−complete

problems

STRONG

PSEUDO

NP

P

NPC

Solvable by det. TM

polynomial time

in

Solvable by det. TM

Fig. 2. Kinds of NP–complete problems

However, P systems take multisets as input and handle them through compu-
tations. Hence the inputs in P systems are provided in unary, so it is necessary
to analyze with more details when it is said that a problem is polynomial-time
solvable in the framework of membrane computing (particularly, concerning the
size of the problem instances).
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In this context we can say that polynomial solutions to NP–complete prob-
lems in the framework of membrane computing, can be considered, in a sense,
as pseudo-polynomial solutions in the classical sense.

8 Recognizer Membrane Systems

Membrane computing is a recent branch of natural computing initiated in [23].
It has been developed basically from a theoretical point of view.

Membrane systems – usually called P systems – are distributed parallel com-
puting models inspired by the structure and functioning of living cells.

Membrane systems have several syntactic ingredients: a membrane structure
consisting of a hierarchical arrangements of membranes embedded in a skin mem-
brane, and delimiting regions or compartments where multisets of objects and
sets (eventually empty) of (evolution) rules are placed.

Also, P systems have two main semantic ingredients: their inherent paral-
lelism and non-determinism. The objects inside the membranes can evolve ac-
cording to given rules in a synchronous (in the sense that a global clock is
assumed), parallel, and non-deterministic manner.

Can this parallelism and non-determinism be used to solve hard problems in
a feasible time? The answer is affirmative, but we must point out two consider-
ations. On the one hand, we have to deal with the non-determinism in such a
way that the solutions obtained from these devices are algorithmic solutions in
the classic sense; that is, the answers of the computations of the system must
be reliable. On the other hand, the drastic decrease of the execution time from
an exponential to a polynomial one is not achieved for free, but by the use of an
exponential workspace (in the form of membranes or string–objects), although
this space is created in polynomial (often linear) time.

In this paper we use membrane computing as a framework to attack the
resolution of decision problems. In order to solve this kind of problems and having
in mind the relationship between the solvability of a problem and the recognition
of the language associated with it, we consider P systems as recognizer languages
devices.

Moreover, for technical reasons we only work with devices such that all com-
putations halt, and such that the result (yes or no answer, because we deal with
recognition of strings) is collected in the environment (and in the last step of
the computation).

All these restrictions make more difficult the process of designing families of
recognizer P systems to solve decision problems.

Definition 6. A recognizer P system is a P system with external output such
that:

1. The working alphabet contains two distinguished elements yes and no.
2. All computations halt.
3. If C is a computation of the system, then either object yes or object no (but

not both) must have been released into the environment, and only in the last
step of the computation.
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In recognizer P systems, we say that a computation C is an accepting com-
putation (respectively, rejecting computation) if the object yes (respectively, no)
appears in the environment associated with the corresponding halting configura-
tion of C. Hence, these devices send to the environment an accepting or rejecting
answer, in the end of their computations.

If we want these kind of systems to properly solve decision problems and
capture the true algorithmic concept, it is necessary to require a condition of
confluence; that is, the system must always give the same answer. In order to
accept or reject a string it should be enough to read the answer of any computa-
tion of the system. In this manner, an observer outside the system can identify
the exact moment when the system halts, and know the answer.

Since P systems work in a non-deterministic manner, we need to adapt the
usual definition of acceptance in non-deterministic Turing machines.

9 Soundness and Completeness

In order to assure that a family of recognizer P systems solves a decision problem,
two main properties must to be proved: for each instance of the problem,

(a) if there exists an accepting computation of the membrane system process-
ing it, answering yes, then the problem also answer yes for that instance
(soundness);

(b) if the problem answers yes, then any computation of the system processing
that instance, answer yes (completeness).

If we demand that the family of membrane systems is sound and complete, then
it satisfies a condition of confluence: every computation of a system from the
family has the same output.

Next, we formalize these ideas in the following definition.

Definition 7. Let X = (IX , θX) be a decision problem. Let Π = (Π(w))w∈IX

be a family of recognizer membrane systems without input.

– We say that the family Π is sound with regard to X if the following is
true: for each instance of the problem w ∈ IX , if there exists an accepting
computation of Π(w), then θX(w) = 1.

– We say that the family Π is complete with regard to X if the following is
true: for each instance of the problem w ∈ IX , if θX(w) = 1, then every
computation of Π(w) is an accepting computation.

The soundness property means that if we obtain an acceptance response of the
system (associated with an instance) through some computation, then the answer
of the problem (for that instance) is yes. The completeness property means that
if we obtain an affirmative response to the problem, then any computation of
the system must be an accepting one.
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These concepts can be extended to families of recognizer P systems with input
membrane in a natural way, but in this case a P system belonging to the family
can process several instances of the problem provided that an appropriate input,
depending on the instance, is supplied to the system.

Definition 8. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N be
a family of recognizer membrane systems with input. A polynomial encoding of
X in Π is a pair (cod, s) of polynomial time computable functions over IX such
that for each instance w ∈ IX , s(w) is a natural number and cod(w) is an input
multiset of the system Π(s(w)).

Definition 9. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N be
a family of recognizer membrane systems with input. Let (cod, s) be a polynomial
encoding of X in Π.
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– We say that the family Π is sound with regard to (X, cod, s) if the following
is true: for each instance of the problem w ∈ IX , if there exists an accepting
computation of Π(s(w)) with input cod(w), then θX(w) = 1.

– We say that the family Π is complete with regard to (X, cod, s) if the following
is true: for each instance of the problem u ∈ IX , if θX(u) = 1 then every
computation of Π(s(u)) with input cod(u) is an accepting computation.

The soundness property means that if given an instance we obtain an ac-
ceptance response of the system associated with it (and individualized by the
appropriate input multiset) through some computation, then the answer of the
problem (for that instance) is yes. The completeness property means that if we
obtain an affirmative response to the problem, then any computation of the sys-
tem associated with it (and individualized by the appropriate input multiset)
must be an accepting one.

10 Polynomial Complexity Classes in Membrane
Systems

Next, we consider different complexity classes in the framework of recognizer
membrane systems.

10.1 Recognizer Membrane Systems Without Input

The first results about solvability of NP–complete problems in polynomial time
(even linear) by membrane systems were given by Gh. Păun [25], C. Zandron
et al. [43], S.N. Krishna et al. [12], and A. Obtulowicz [16] in the framework of
P systems that lack an input membrane. Thus, the constructive proofs of such
results design one system for each instance of the problem.

In this context, next we define polynomial complexity classes in recognizer
membrane systems without input. In order to solve a decision problem we need,
then, to associate with each instance of the problem a system which decides
the instance. We impose these systems to be confluent in the following sense: an
instance of the problem will have a positive answer if and only if every (or, equiv-
alently, there exists a) computation of the corresponding system is an accepting
computation.

We also demand that every computation is bounded, in execution time, by
a polynomial function. This is because we do not only want to obtain the same
answer, independently of the chosen computation, but that all the computations
consume, at most, the same amount of resources (in time).

Definition 10. Let R be a class of recognizer P systems without input mem-
brane. A decision problem X = (IX , θX) is solvable in polynomial time by a fam-
ily Π = (Π(w))w∈IX

, of P systems of type R, and we denote it by X ∈ PMC∗
R,

if the following is true:

– The family Π is polynomially uniform by Turing machines; that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(w) from the instance w ∈ IX .
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X
Π

?

Answer

problem P system
of the of the

Answer

(w)w   I  ∋

Fig. Complexity class for membrane systems without input

– The family Π is polynomially bounded; that is, there exists a polynomial
function p(n) such that for each w ∈ IX , all computations of Π(w) halt in
at most p(|w|) steps.

– The family Π is sound and complete with regard to X.

Note that in this complexity class we consider two different tasks: the first one
is the construction of the family, which we require to be done in polynomial
time (sequential time by deterministic Turing machines). The second one is the
execution of the systems of the family, in which we imposed that the total number
of steps performed by their computations are bounded by the function g (parallel
time by non-deterministic membrane systems).

As a direct consequence of working with recognizer membrane systems is the
fact that these complexity classes are closed under complement.

Moreover, the complexity classes are closed under polynomial time reduction,
in the classical sense. Recall that if X = (IX , θX) and Y = (IY , θY ) are decision
problems, then we say that X is reducible to Y in polynomial time if there exists
a polynomial time function f from IX to IY verifying the following condition:
for each w ∈ IX we have θX(w) = 1 if and only if θY (f(w) = 1.

Proposition 1. Let R be a class of recognizer P systems without input mem-
brane. Let X and Y be two decision problems such that X is reducible to Y in
polynomial time. If Y ∈ PMC∗

R, then X ∈ PMC∗
R.

The Hamiltonian Path Problem can be solved in quadratic time by a family
R of recognizer P systems without input in an uniform way (see [26]). Then
NP ⊆ PMC∗

R.

10.2 Recognizer Membrane Systems with Input

A computation of a Turing machine starts when the machine is in the initial state
and we “write” a string in the input tape of the machine. Then, the machine
starts to compute according to the transition function. In the definitions of basic
P systems that have been initially considered, there is no membrane in which
we can “introduce” input objects before allowing the system to begin to work.
However, it is easy to consider input membranes in this kind of devices.

5.
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In this section we deal with recognizer membrane systems with an input mem-
brane and we propose to solve hard problems in an uniform way in the following
sense: all instances of a decision problem that have the same size (according
to a prefixed polynomial time computable criterion) are processed by the same
system, to which an appropriate input, that depends on the specific instance, is
supplied.

Now, we formalize these ideas in the following definition.
Definition 11. Let X = (IX , θX) be a decision problem. We say that X is
solvable in polynomial time by a family of recognizer membrane systems with
input Π = (Π(n))n∈N, and we denote it by X ∈ PMCR, if the following is
true:
– The family Π is polynomially uniform by Turing machines; that is, there

exists a deterministic Turing machine that constructs in polynomial time
the system Π(n) from n ∈ N.

– There exists a polynomial encoding (cod, s) of X in Π such that:
• The family Π is polynomially bounded with regard (X, cod, s); that is,

there exists a polynomial function p(n) such that for each w ∈ IX every
computation of the system Π(s(w)) with input cod(w) is halting and,
moreover, it performs at most p(|w|) steps.
• The family Π is sound and complete with regard to (X, cod, s).

Note that in the above definition and in order to decide about an instance,
w, of a decision problem, first of all we need to compute the natural number
s(w), obtain the input multiset cod(w), and construct the system Π(s(w)). This
is properly a pre-computation stage, running in polynomial time expressed by
a number of sequential steps in the framework of the Turing machines. After
that, we execute the system Π(s(w)) with input cod(w). This is properly the
computation stage, also running in polynomial time, but now it is described by
a number of parallel steps, in the framework of membrane computing.

As mentioned above, these complexity classes are closed under complement.
Moreover, these complexity classes are closed under polynomial time reduc-

tion, in the classical sense.

Proposition 2. Let R be a class of recognizer P systems with input membrane.
Let X and Y be two decision problems such that X is reducible to Y in polynomial
time. If Y ∈ PMCR, then X ∈ PMCR.

The Satisfiability Problem can be solved in linear time by a familyR of recognizer
P systems with input (see [36]). Then NP ⊆ PMCR.

11 (Non-deterministic) Polynomial Complexity Classes
in Membrane Systems

According to the usual manner of considering acceptance by non-deterministic
Turing machines, we can consider non-deterministic complexity classes in P sys-
tems without requiring them to be confluent, that is, characterizing the accep-
tance of an input string by the existence of an accepting computation.
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Definition 12. Let R be a class of recognizer P systems without input mem-
brane. A decision problem X = (IX , θX) is non-deterministically solvable in
polynomial time by a family Π = (Π(w))w∈IX

, of P systems of type R, and we
denote it by X ∈ NPMC∗

R, if the following is true:

– The family Π is polynomially uniform by Turing machines.
– The family Π is polynomially bounded.
– The family Π is sound and complete with regard to X, in the following sense:

for each instance w ∈ IX of the problem, θX(w) = 1 if and only if there exists
an accepting computation of Π(w).

Note that in this definition, in contrast to the corresponding definition for de-
terministic complexity classes, we only demand that for each instance w with
affirmative answer there exists at least one accepting computation of the system
Π(w), instead of demanding every computation of the system to be an accepting
one.

Again, this class is closed under polynomial time reduction, but notice that
it does not have to be closed under complement.

Let us denote by T the class of recognizer transition P systems (see [23]).
In [36] we construct a family of recognizer transition P systems solving HPP
(in the directed version with two distinguished nodes) in linear time, in a non-
deterministic manner. That is, we have the following:

Proposition 3. HPP ∈ NPMC∗
T , and NP ⊆ NPMC∗

T .

In a similar way we can define non-deterministic complexity classes for rec-
ognizer membrane systems with input.

Definition 13. Let X = (IX , θX) be a decision problem. We say that X is non-
deterministically solvable in polynomial time by a family of recognizer membrane
systems with input Π = (Π(n))n∈N, and we denote it by X ∈ NPMCR, if the
following is true:

– The family Π is polynomially uniform by Turing machines.
– There exists a polynomial encoding (cod, s) of X in Π such that:
• The family Π is polynomially bounded with regard to (X, cod, s).
• The family Π is sound and complete with regard to (X, cod, s), but now in

the following sense: for each instance w ∈ IX of the problem, θX(w) = 1
if and only if there exists an accepting computation of Π(s(w)) with input
cod(w).

This class is closed under polynomial time reduction, but it does not have to be
closed under complement.

In [36] we construct a family of recognizer transition P systems solving SAT
in constant time, in a non-deterministic manner. That is, we have the following:

Proposition 4. SAT ∈ NPMCT , and NP ⊆ NPMCT .
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12 Characterizing the P �= NP Relation Through P
Systems

In this section we show how it is possible to attack the P versus NP problem
within the framework of membrane computing.

We consider deterministic Turing machines as language decision devices. That
is, the machines halt over any string on the input alphabet, with the halting
state being equal to the accepting state, in the case that the string belongs to
the decided language, and with that state equal to the rejecting state, in the
case that the string does not belong to that language.

It is possible to associate with a Turing machine a decision problem, which
will permit us to say when such a machine is simulated by a family of P systems.

Definition 14. Let TM be a Turing machine with input alphabet ΣTM . The
decision problem associated with TM is the problem XTM = (I, θ), where I =
Σ∗

TM , and for every w ∈ Σ∗
TM , θ(w) = 1 if and only if TM accepts w.

Obviously, the decision problem XTM is solvable by the Turing machine TM .

Definition 15. We say that a Turing machine TM is simulated in polynomial
time by a family of recognizer P systems if XTM ∈ PMCR.

In P systems, evolution rules, communication rules and rules involving dissolu-
tion are called basic rules. That is, by applying this kind of rules the size of the
structure of membranes does not increase. Hence, it is not possible to construct
an exponential working space in polynomial time using only basic rules in a P
system.

In Chapter 9 of [40], and following the ideas from [41], we state that every
deterministic Turing machine can be simulated in polynomial time by a family
of systems of the class R.

Proposition 5. Let TM be a deterministic Turing machine working in poly-
nomial time. Then TM can be simulated in polynomial time by a family of
recognizer P systems using only basic rules.

In [38], we proved the following result that can be considered as a reciprocal of
the above proposition.

Proposition 6. If a decision problem is solvable in polynomial time by a fam-
ily of recognizer P systems (using only basic rules), then there exists a Turing
machine solving it in polynomial time.

From the above propositions, we establish characterizations of the P �= NP
relation by means of the polynomial time unsolvability of NP–complete problems
by families of recognizer P systems.
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Theorem 2. The following conditions are equivalent:

(1) P �= NP.
(2) There exists an NP–complete decision problem unsolvable in polynomial time

by a family of of recognizer P systems using only basic rules.
(3) Each NP–complete decision problem is unsolvable in polynomial time by a

family of of recognizer P systems using only basic rules.

From the constructive proof given in [38], we can deduce the following nice result
characterizing the class P.

Proposition 7. Let T the class of recognizer transition P systems. Then P =
PMCT .

13 P Systems with Active Membranes

P systems with membrane division were introduced in [25], and in this variant
the number of membranes can increase exponentially in polynomial time.

Next, we define P systems with active membranes using 2-division for ele-
mentary membranes, with polarizations, but without cooperation and without
priorities (and without permitting the change of membrane labels by means of
any rule).

Definition 16. A P system with active membranes using 2-division for elemen-
tary membranes is a tuple Π = (Σ,H, μ,M1, . . . ,Mm, R), where:

1. m ≥ 1, is the initial degree of the system;
2. Σ is an alphabet of symbol-objects;
3. H is a finite set of labels for membranes;
4. μ is a membrane structure, of m membranes, labelled (not necessarily in a

one-to-one manner) with elements of H;
5. M1, . . . ,Mm are strings over Σ, describing the initial multisets of objects

placed in the m regions of μ;
6. R is a finite set of evolution rules, of the following forms:

(a) [ a→ ω ]αh for h ∈ H,α ∈ {+,−, 0}, a ∈ Σ, ω ∈ Σ∗: This is an object evo-
lution rule, associated with a membrane labelled with h and depending on
the polarity of that membrane, but not directly involving the membrane.

(b) a [ ]α1
h → [ b ]α2

h for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Σ: An object
from the region immediately outside a membrane labelled with h is intro-
duced in this membrane, possibly transformed into another object, and,
simultaneously, the polarity of the membrane can be changed.

(c) [ a ]α1
h → b [ ]α2

h for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Σ: An object
is sent out from membrane labelled with h to the region immediately
outside, possibly transformed into another object, and, simultaneously,
the polarity of the membrane can be changed.

(d) [ a ]αh → b for h ∈ H, α ∈ {+,−, 0}, a, b ∈ Σ: A membrane labelled with
h is dissolved in reaction with an object. The skin is never dissolved.
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(e) [ a ]α1
h → [ b ]α2

h [ c ]α3
h for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ Σ: An

elementary membrane can be divided into two membranes with the same
label, possibly transforming some objects and their polarities.

These rules are applied according to the following principles:

– All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non-
deterministic way), but any object which can evolve by one rule of any form,
must evolve.

– If a membrane is dissolved, its content (multiset and internal membranes) is
left free in the surrounding region.

– If at the same time a membrane labelled by h is divided by a rule of type
(e) and there are objects in this membrane which evolve by means of rules
of type (a), then we suppose that first the evolution rules of type (a) are
used, and then the division is produced. Of course, this process takes only
one step.

– The rules associated with membranes labelled by h are used for all copies
of this membrane. At one step, a membrane can be the subject of only one
rule of types (b)-(e).

Note that these P systems have some important properties:

– They use three electrical charges.
– The polarization of a membrane can be modified by the application of a rule.
– The label of a membrane cannot be modified by the application of a rule.
– They do not use cooperation neither priorities.

Let us denote by AM the class of recognizer P systems with active membranes
using 2-division for elementary membranes.
In this class of recognizer membrane systems:

– Some weakly NP–complete problems are solvable in polynomial time: for
example, Knapsack ([31]), Subset Sum ([30]), Partition ([9]) ∈ PMCAM.

– Some strongly NP–complete problems are solvable in polynomial time: for
example, the following problems SAT ([36]), Clique ([3]), Bin Packing ([33]),
CAP ([34]) belong to the complexity classes PMCAM.

Recall that polynomial time solutions to strongly NP–complete problems by
recognizer membrane systems, can be considered as pseudo-polynomial solutions
in the classical sense.

Having in mind that the complexity class PMCAM is closed under comple-
ment and polynomial time reductions we have the following result.

Proposition 8. NP ⊆ PMCAM, and co-NP ⊆ PMCAM.

P. Sosik in [42] provides a semi–uniform efficient solution to QBF (satisfia-
bility of quantified propositional formulas), a well known PSPACE–complete
problem, in the framework of P systems with active membranes but using 2–
division for non–elementary membranes. Hence we have the following result.
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Proposition 9. Let AM∗ be the class of recognizer P systems with active mem-
branes using 2-division for non–elementary membranes. Then, PSPACE ⊆
PMC∗

AM∗ .

This result shows that the complexity classes PMCAM and PMC∗
AM∗ are not

precise enough to describe classical complexity classes below NP. Therefore,
it is challenging to investigate weaker variants of P systems with active mem-
branes able to characterize classical complexity classes (especially, the classes
NP and PSPACE).

In [4], universality has been achieved removing the polarization of membranes
from P systems with active membranes but allowing the change of membrane
labels by means of communication rules and membrane division rules. Moreover,
in this framework it is possible to solve NP–complete problems (e.g., the SAT
problem) in linear time.

Several efficient solutions to NP–complete problems have been obtained
within the following variants of membrane systems with active membranes:

– P systems using 2–division for elementary membranes, without coopera-
tion, without priorities, without label changing, but using only two electrical
charges ([1], [39]).

– P systems using 2–division for elementary membranes, without cooperation,
without priorities, without changing of membrane labels, without polariza-
tions, but using bi–stable catalysts ([32]).

– P systems without polarizations, without cooperation, without priorities,
without label changing, without division, but using three types of membrane
rules: separation, merging, and release ([19]).

– P systems with separation rules instead of division rules, in two different
cases: in the first, using polarizations and separation rules; and in the second
one, without polarizations, without change of membrane labels but using
separation rules with change of membrane labels ([20]).

It is easy to obtain solutions to NP–complete problems through P systems
with active membranes using 2-division for elementary membranes, without po-
larizations, without priorities, without label changing possibilities, but using
cooperation (or trading cooperation by priority).

But, what happens if we consider only recognizer P systems with active mem-
branes using 2-division for elementary membranes, without polarizations, without
cooperation,withoutpriority, andwithout changingofmembrane labels?LetAM0

be the class of recognizer P systems of this kind.
What is exactly the class of decision problems solvable in polynomial time

by families of systems belonging to AM0? Is the relation P = PMCAM0 true?
Another interesting questions about the relationship between classical and

cellular complexity classes are the following ones:
Question 1: Is there a classical complexity class C, such that C = PMCAM?
Question 2: Given a classical complexity class C, determine a (minimal in a
descriptive sense) class of recognizer P systems F such that C = PMCF?
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14 Conclusions

In this paper, some polynomial complexity classes in recognizer membrane sys-
tems, without or with input, and capturing the “classical” deterministic and non-
deterministic modes of computation, have been introduced.

The complexity classes corresponding to membrane systems without input
(respectively, with input) provide the general framework to design solutions to
decision problems in a semi–uniform (respectively, uniform) way.

In this context we have proven that membrane computing offers a new way
to attack the P versus NP problem.

The convenience of characterizing classical complexity classes through these
new classes is an interesting topic in order to study the minimal ingredients
required, from membrane systems point of view, to obtain certain computational
efficiency.

Acknowledgement

The author wish to acknowledge the support of the project TIC2002-04220-C03-
01 of the Ministerio de Ciencia y Tecnoloǵıa of Spain, cofinanced by FEDER
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25. Gh. Păun, P systems with active membranes: Attacking NP–complete problems.
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75–90.
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38. M.J. Pérez–Jiménez, A. Romero–Jiménez, F. Sancho–Caparrini, The P versus NP
problem through cellular computing with membranes. Aspects of Molecular Com-
puting. Essays Dedicated to Tom Head on the Ocassion of His 70th Birthday (N.
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Abstract. LMNtal (pronounced “elemental”) is a simple language model
based on graph rewriting that uses logical variables to represent links and
membranes to represent hierarchies. The two major goals of LMNtal are
(i) to unify various computational models based on multiset rewriting
and (ii) to serve as the basis of a truly general-purpose language cover-
ing various platforms ranging from wide-area to embedded computation.
Another important contribution of the model is that it greatly facilitates
programming with dynamic data structures.

1 Introduction

This work is motivated by two “grand challenges” in computational formalisms
and programming languages. One is to have a computational model that unifies
various paradigms of computation, especially those of concurrent computation
and computation based on multiset rewriting. The other is to design and imple-
ment a programming language that covers a variety of computational platforms
which are now developing towards both wide-area computation and nanoscale
computation. As the first step towards these ends, this paper proposes a language
model LMNtal (pronounced “elemental”) whose design goals are as follows:

1. Simple — to serve as a computational model as well as the basis of a practical
programming language (hence a language model).

2. Unifying and scalable — to unify and reconcile various programming con-
cepts. For instance, LMNtal treats
(a) processes, messages, and data uniformly,
(b) dynamic process structures and dynamic data structures uniformly, and
(c) synchronous and asynchronous communication uniformly.
Also, through such uniformity and resource-consciousness implied by (a)
and (b) above, LMNtal is intended to be scalable, that is, be applicable to
computational platforms of various physical scales.

3. Easy to understand — since we often use figures to explain and understand
concurrent computation and programming with dynamic data structures,
the language is designed so that computation can be viewed as diagram
transformation.
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4. Fast — optimizing compilation techniques are an important subject of the
project, though this paper will focus on basic concepts.

We briefly describe the design background of LMNtal. The first author de-
signed Guarded Horn Clauses (GHC) [14] in mid 1980’s, a concurrent language
that made use of the power of logical variables to feature channel mobility. Vari-
ous type systems such as mode and linearity systems were later designed for GHC
[15]. A lot of implementation efforts and techniques have been accumulated over
the past two decades. Concurrent logic programming was generalized to concur-
rent constraint programming that allowed data domains other than finite trees,
and a concurrent constraint language Janus [13] chose multisets (a.k.a. bags)
as an important data domain. Another important generalization was Constraint
Handling Rules (CHR) [8] that allowed multisets of atomic formulae in clause
heads. CHR was designed as a language for defining constraint solvers, but at
the same time it is one of the most powerful multiset rewriting languages.

Given these two extensions, a natural question arises as to whether (the
multiset aspect of) the two extensions can be unified or embedded into each
other. LMNtal was designed partly as a solution to this question. The language
design was first published in [16]. It was then reviewed and revised through
intensive discussions, receiving feedback from the implementation effort that
ran in parallel. This paper reflects the latest design published in [17].

2 Overview of LMNtal and Related Work

The “four elements” of LMNtal are logical links, multisets, nested nodes, and
transformation — hence the name LMNtal. This section elaborates these four
elements, touching on related work.

1. Logical links — Structures of communicating processes can be represented
as graphs in which nodes represent processes and links represent communi-
cation channels. Likewise, dynamic data structures can be represented using
nodes and links. LMNtal treats them uniformly, that is, links represent both
one-to-one communication channels between logically neighboring processes
and logical neighborhood relations between data cells.
Two major mechanisms in concurrency formalisms are name-based commu-
nication (as in the π-calculus) and constraint-based communication using
logical, single-assignment variables (as in concurrent constraint program-
ming [15]). Of these, links of LMNtal are closer to communication using
logical variables in that (i) a message sent through a link changes the iden-
tity of the link and (ii) links are always private (i.e., third processes cannot
access them). The first point is the key difference between LMNtal and the
π-calculus. However, LMNtal links are different also from links of concur-
rent logic/constraint programming and CHR in that LMNtal has no notion
of instantiating a link variable to a value.
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LMNtal links are non-directional like chemical bonds. However, if links are
always followed in a fixed direction to reach partners, the direction could be
represented and “reconstructed” using appropriate type systems.

2. Multisets of nested nodes — There have been many diverse proposals of
computational models equipped with the notion of multisets, early examples
of which include Petri Nets and Production Systems. Concurrent processes
naturally form multisets; Gamma [2] and Chemical Abstract Machines [3]
are two typical computational models based on multiset rewriting; languages
based on Linear Logic [10] take advantage of the fact that the both sides of
a sequent are multisets; Linda’s tuple spaces are multisets of tuples.
However, not all of them feature multisets as first-class citizens; many of the
programming languages featuring multisets (e.g., Gamma, Linda, CHR) in-
corporate them in a way different from other data structures. The advantage
of having multisets as first-class citizens is that it gives us greater expressive
power such as the nesting and the mobility of multisets.
LMNtal features multiset hierarchies and encapsulation by allowing a multi-
set of nodes enclosed by a membrane to be viewed as a single node. Hierar-
chical multisets can be found in the ambient calculus [4], the P-system [12],
the bigraphical model [11], as well as in the fields of knowledge representa-
tion [6].
Hierarchization of multisets plays many important rôles, for instance in
(i) logical management of computation (e.g., user processes running under
administrative processes), (ii) physical management of computation (e.g.,
region-based memory management), and (iii) localization of computation
(i.e., reaction rules placed at a certain “place” of the hierarchy of membranes
can act only on processes at that place).

3. Transformation — LMNtal has a rewrite-rule-based syntax. There has
been a lot of work on graph grammars transformation [1], including hierar-
chical graph transformation [5], but LMNtal’s emphasis is on its design from
the programming language point of view. The key design issue has been the
proper treatment of free links in the presence of membrane structures.
Rewrite rules specify reaction between elements of a multiset, but reaction
between interlinked elements can be much more efficient (in finding partners)
than reaction between unlinked elements.

LMNtal features both channel mobility and process mobility. In other words,
it allows dynamic reconfiguration of process structures as well as the migration
of nested computation.

3 Syntax of LMNtal

3.1 Links and Names

First of all, we presuppose two syntactic categories:

– Links (or link variables), denoted by X. In the concrete syntax, links are
denoted by identifiers starting with capital letters.
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P ::= 0 (null)
| p(X1, . . . , Xm) (m ≥ 0) (atom)
| P, P (molecule)
| {P} (cell) †
| T :- T (rule)

T ::= 0 (null)
| p(X1, . . . , Xm) (m ≥ 0) (atom)
| T, T (molecule)
| {T} (cell) †
| T :- T (rule)
| @p (rule context) †
| $p[X1, . . . , Xm|A] (process context) †
| p(*X1, . . . , *Xm) (m > 0) (aggregate) †

A ::= [] (empty) †
| *X (bundle) †

Fig. 1. Syntax of LMNtal (Lines with daggers (†) are not in Flat LMNtal)

– Names (including numbers), denoted by p. In the concrete syntax, names are
denoted by identifiers different from links. The name “=” is the only reserved
name in LMNtal.

3.2 Syntax

The two major syntactic categories of LMNtal are processes and process tem-
plates. The former is the subject of the language that evolves with program
execution. The latter is used in reaction rules and can express local contexts of
processes, namely contexts within particular cells.

The syntax of LMNtal is given in Figure 1. As usual, parentheses ( ) are used
to resolve syntactic ambiguities. Commas for molecules connect tighter than the
“:-” for rules. P and T have several syntactic conditions, as will be detailed in
this section. The part of a process not included in any rule is called the non-rule
part of the process. Cells can be arbitrarily nested. The part of a cell {P} or {T}
not contained in nested cells is called the toplevel of {P} or {T}, respectively.

We can think of a subset of LMNtal, Flat LMNtal, that does not allow cell hi-
erarchies. The syntax of Flat LMNtal does not feature the lines with daggers (†).

The rest of this section explains processes, rules and process templates in
more detail.

Processes. A process P must observe the following link condition:

Link Condition: Each link in the non-rule part of P can occur at most twice.
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A link occurring only once in the non-rule part of P is called a free link of
P . Each of the other links occurring in P is called a local link of P . A closed
process is a process containing no free links.

Intuitively, 0 is an empty process; p(X1, . . . , Xm) is an atom with m ordered
links; P, P is parallel composition (or multiset union); {P} is a process enclosed
with the membrane { }; and T :- T is a rewrite rule for processes.

An atom X =Y , called a connector, connects one side of the link X and one
side of the link Y .

Note that the link condition never prevents us from composing two processes
P1 and P2. When each of P1 and P2 satisfies the link condition but the compo-
sition P1, P2 does not, there must be a link occurring twice in one and at least
once in the other. Since the former is a local link, we can always α-convert it to
a fresh link (Section 4.1) to restore the link condition. The links used in rules
are not considered in the link condition because they are understood to be local
to the rules.

Rules and Process Templates. Rules have the form T :- T , where the T ’s
are called process templates. The first and the second T are called the left-hand
side (LHS) and the right-hand side (RHS), respectively.

Process templates have three additional constructs, namely rule contexts,
process contexts, and aggregates. Contexts in LMNtal refer to the rest of the
entities in the innermost surrounding membrane. Rule contexts are to represent
multisets of rules, while process contexts are to represent multisets of cells and
atoms.

A process context consists of a name $p and an argument [X1, . . . , Xm|A].
The argument of a LHS process context specifies the set of free links that the
context must have. Xi denotes a specific link if it occurs elsewhere in the LHS
and an arbitrary free link if it does not occur in the LHS. The final component A
is called a residual. A residual of the form *V receives the bundle of zero or more
free links other than X1, . . . , Xm, and a residual [] means that there should be
no free links other than X1, . . . , Xm.

An aggregate represents a multiset of atoms with the same name, whose
multiplicity coincides with the number of links represented by the argument
bundles.

The precise semantics of all these additional contexts will be given in Sec-
tion 4.

Rules have several syntactic side conditions. Firstly, process contexts and rule
contexts in a rule must observe the following:

LHS Conditions:

1. A rule cannot occur in the LHS of a rule.
2. Aggregates cannot occur in the LHS of a rule.
3. Rule contexts and process contexts occurring in the LHS of a rule must

occur within a cell.
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Note that the first condition disallows the decomposition of rules. The third
condition means that rule contexts and process contexts deal only with local
contexts delimited by membranes.

Secondly, rules must satisfy the following occurrence conditions on links and
other syntactic constructs:

Occurrence Conditions:

1. A link and a bundle occurring in a rule must occur exactly twice in the
rule.

2. Links occurring in the argument of a process context must be pairwise
distinct.

3. Bundles occurring in the LHS of a rule must be pairwise distinct.
4. A rule context and a process context occurring in a rule must occur exactly

once in the LHS and must not occur in another rule occurring inside the
rule.

5. The toplevel of each cell occurring in the LHS of a rule may have at most
one process context and at most one rule context.

Condition 1 implies that a rule cannot have free links. Condition 2 is imposed
because the links specify the set of free links to be owned by a process matching
the process context. Condition 3 is imposed because a bundle in the LHS of a
rule is to receive, rather than compare, a set of free links of the matching process.
The “must occur once” condition in Condition 4 means that a rule context or a
process context must receive a multiset of rules or a process upon application of
the rule, and the “exactly once” condition means that they cannot be used to
compare two contexts. Note that rule contexts and process contexts may occur
more than once in the RHS of a rule. Condition 5 is to ensure that the values
received by rule contexts and process contexts are uniquely determined.

In what concerns the links occurring in a rule L :- R, those occurring only
in L are consumed links; those occurring only in R are links generated by the
rule, and those occurring once in L and once in R are inherited links.

Finally, we introduce several consistency conditions:

Consistency Conditions:

1. The residuals of the process contexts with the same name in a rule must
be either all empty ([]) or all bundles.

2. The arity m of the process contexts with the same name in a rule must
coincide.

3. The process contexts having the same bundle must have the same name.
4. For each aggregate p(*X1, . . . , *Xm) (m > 0) in a rule, there must be a

process context name $q and each *Xi must occur as the residual of a
process context with the name $q in the rule.
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For example, the rule

{exch,$a[X,Y|[]]} :- {$a[Y,X|[]]}

satisfies Consistency Conditions 1 and 2 (Conditions 3 and 4 hold vacuously)
and says that when a cell contains an atom exch and exactly two free links at
its toplevel, the two free links are crossed and the atom exch is erased.

The rule
{kill,$a[|*X]} :- killed(*X)

satisfies Consistency Conditions 3 and 4 (the other conditions hold vacuously)
and says that when a cell contains an atom kill at its toplevel, the cell is erased
and each link crossing the membrane is terminated by a unary atom killed.

The above conditions do not allow dynamic composition of rules, but do allow
(i) statically determined rules to be spawned dynamically and (ii) the set of rules
inside a cell to be copied and migrated to another cell. Thus LMNtal enables
the cell-wise compilation of the set of rules while providing certain higher-order
features.

4 Operational Semantics

We first define structural congruence (≡) and then the reduction relation (−→)
on processes.

4.1 Structural Congruence

We define the relation ≡ on processes as the minimal equivalence relation sat-
isfying the rules shown in Figure 2. Two processes related by ≡ are essentially
the same and are convertible to each other in zero steps. Here, [Y/X] is a link
substitution that replaces X with Y .

(E1)–(E3) are the characterization of molecules as multisets. (E4) allows the
renaming (α-conversion) of local names. Note that the link Y cannot occur free

(E1) 0, P ≡ P
(E2) P, Q ≡ Q, P
(E3) P, (Q, R) ≡ (P, Q), R
(E4) P ≡ P [Y/X] if X is a local link of P
(E5) P ≡ P ′ ⇒ P, Q ≡ P ′, Q
(E6) P ≡ P ′ ⇒ {P} ≡ {P ′}
(E7) X =X ≡ 0
(E8) X =Y ≡ Y =X
(E9) X =Y, P ≡ P [Y/X] if P is an atom and X occurs in P
(E10) {X =Y, P} ≡ X =Y, {P} if exactly one of X and Y is a free link of P

Fig. 2. Structural congruence on LMNtal processes
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(R1)
P −→ P ′

P, Q −→ P ′, Q
(R2)

P −→ P ′

{P} −→ {P ′} (R3)
Q ≡ P P −→ P ′ P ′ ≡ Q′

Q −→ Q′

(R4) {X =Y, P} −→ X =Y, {P} (X and Y are distinct and don’t occur in P )

(R5) X =Y, {P} −→ {X =Y, P} (X and Y occur in the non-rule part of P )

(R6) Tθ, (T :- U) −→ Uθ, (T :- U)

Fig. 3. Reduction relation on LMNtal processes

in P for the link condition on P [Y/X] to hold. (E5)–(E6) are structural rules
that make ≡ a congruence. (E7)–(E10) are concerned with connectors. (E7) says
that a self-absorbed loop is equivalent to 0, while (E8) expresses the symmetry
of =. (E9) is an absorption law of =, which says that a connector can be absorbed
by another atom (which can again be a connector). Because of the symmetry
of ≡, (E9) says that an atom can emit a connector as well. (E10) says that a
connector can be moved across a membrane boundary as long as it does not
change the number of free links of the membrane.

4.2 Reduction Relation

Computation proceeds by rewriting processes using rules collocated in the same
“place” of the nested membrane structure.

We define the reduction relation −→ on processes as the minimal relation
satisfying the rules in Figure 3. Note that the right-hand side of−→must observe
the link condition of processes.

Of the six rules, (R1)–(R3) are structural rules. (R1) says that reductions
can proceed concurrently based on local reducibility conditions. Fine-grained
concurrency of LMNtal originates from this rule. (R2) says that computation
within a cell can proceed independently of the exterior of the cell. For a cell to
evolve autonomously, it must contain its own set of rules. Computation of a cell
containing no rules will be controlled by rules outside the cell. (R3) incorporates
structural congruence into the reduction relation.

(R4) and (R5) deal with the interaction between connectors and membranes.
(R4) says that, when a connector in a cell connects two links both coming from
outside, the cell can expel the connector. (R5) says that, when a connector
connects two links both entering the same cell, the connector itself can enter
that cell.

(R6) is the key rule of LMNtal. The substitution θ is to represent what
process (or multiset of rules) has been received by each process context (or rule
context), respectively, and what multiset of atoms each aggregate represents. In
Flat LMNtal, θ becomes unnecessary and (R6) is simplified to

(R6′) T, (T :- U) −→ U, (T :- U).
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(R6′) describes the reaction between a process and a rule not separated by
membranes.

Matching between a process and the LHS of a rule under (R6′) should gener-
ally be done by α-converting the rule using (E4) and (R3). The whole resulting
process, namely U, (T :- U) and its surrounding context, should observe the link
condition, but this can always be achieved by α-converting T :- U before use so
that the local links in U won’t cause name crashes with the context.

The substitution θ in (R6) is represented as a finite set of substitution ele-
ments of the form βi/αi (meaning that αi is replaced by βi), and should satisfy
the following three conditions. In the third condition, we assume that the oc-
currences of the process context name $p in the RHS U are uniquely numbered,
and that the function v is a one-to-one mapping from link names and natural
numbers to link names.

1. The domain of θ is the set of all rule contexts, process contexts and aggre-
gates occurring in the LHS T or in the non-rule part of the RHS U .

2. For each rule context @p in T , θ must contain P/@p, where P is a sequence
of rules.

3. For each process context $p[X1, . . . , Xm|A] in T , the following (i)–(iii) hold,
where P is a process whose free links are {X1, . . . , Xm+n} (if A = [], then
n = 0; otherwise n ≥ 0), whose local links are {Z1, . . . , Z	}, and which has
no rules outside cells.

(i) If A = [], then
(a) P/$p[X1, . . . , Xm] ∈ θ
(b) For $p[Y1, . . . , Ym] with the number h in the RHS U ,

P [v(Z1, h)/Z1, . . . , v(Z	, h)/Z	, Y1/X1, . . . , Ym/Xm]
/ $p[Y1, . . . , Ym] ∈ θ

(ii) If A = *V , then
(a) P/$p[X1, . . . , Xm|*V ] ∈ θ
(b) v(V, i) = Xm+i for 1 ≤ i ≤ n
(c) For $p[Y1, . . . , Ym|*W] with the number h in the RHS U ,

P [v(Z1, h)/Z1, . . . , v(Z	, h)/Z	, Y1/X1, . . . , Ym/Xm,
v(W, 1)/Xm+1, . . . , v(W,n)/Xm+n]

/ $p[Y1, . . . , Ym|*W] ∈ θ

(d) For each q(*V1, . . . , *Vk) in the non-rule part of U such that some Vi

is V ,

( q(v(V1, 1), . . . , v(Vk, 1)), . . . , q(v(V1, n), . . . , v(Vk, n)) )
/ q(*V1, . . . , *Vk) ∈ θ

(iii) a free link of T occurring in an atom (i.e., not in process contexts) doesn’t
occur in P .
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Fig. 4. Cell copying using process contexts and aggregates

Suppose the LHS of a rule contains a process context p[X1, . . . , Xm|*V ].
When the RHS contains a process context of the same name, say $p[Y1, . . . ,
Ym|*W], a process isomorphic to the process matched by the corresponding
process context in the LHS is created. Its free links corresponding to X1, . . . , Xm

are connected to Y1, . . . , Ym, respectively, and the free links corresponding to *V
are connected to the links represented by *W .

An aggregate p(*V1, . . . , *Vm) represents as many copies of the m-ary atom
p as the number of links denoted by the bundle *Vi. Each *Vi must have the
same origin with respect to the process context name (Consistency Condition
4); in other words, the other occurrences of the *Vi’s must all appear in process
contexts with the same name. Occurrence Condition 4 implies that exactly one
of *V1, . . . , *Vm occurs in the LHS of a rule.

Let us give two examples. The LHS of the rule

kill(S), {i(S),$p[|*P]} :- killed(*P)

can reduce the process

kill(S), {i(S),a(X),b(Y,Z),c(Z,U)},

by letting $p[|*P] receive a(X),b(Y,Z),c(Z) , and the process is reduced to

killed(X), killed(Y).

In this example, the membrane is used to delimit the process structure to be
controlled, and the tag i( ) is attached to the message channel from outside the
cell. The above rule says that, when a kill message is sent through the channel,
the target cell is deleted and each free link owned by the cell is terminated by
an atom killed.

Next, consider the process

cp(S,S1,S2), {i(S),a(X),b(Y,Z),c(Z)}

and the rule

cp(S,S1,S2), {i(S),$p[|*P]} :-
{i(S1),$p[|*P1]}, {i(S2),$p[|*P2]}, cp(*P,*P1,*P2) .
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Then the process is reduced to

{i(S1),a(X1),b(Y1,Z1),c(Z1)}, {i(S2),a(X2),b(Y2,Z2),c(Z2)},
cp(X,X1,X2), cp(Y,Y1,Y2) .

In short, the cp message makes two copies of the target cell and connects the
free links of the copied cells and the original free links using ternary cp atoms
(Figure 4).

5 Program Examples

5.1 Concatenating Lists

The skeleton of a linear list can be represented, using element processes c(ons)
and a terminal process n(il), as c(A1, X1, X0), . . . , c(An, Xn, Xn−1), n(Xn).
Here, Ai is the link to the ith element and X0 is the link to the whole list
(from somebody else). This corresponds to a list formed by the constraints
X0 = c(A1, X1), . . . , Xn−1 = c(An, Xn), Xn = n in (constraint) logic programming
languages, except that the LMNtal list is a resource rather than a value. Two
lists can be concatenated using the following two rules:

append(X0,Y,Z0), c(A,X,X0) :- c(A,Z,Z0), append(X,Y,Z)
append(X0,Y,Z0), n(X0) :- Y=Z0

Figure 5 shows a graphical representation of the append program and its execu-
tion.

The above program has clear correspondence with append in GHC:

append(X0,Y,Z0) :- X0=c(A,X) | Z0=c(A,Z), append(X,Y,Z).
append(X0,Y,Z0) :- X0=n | Y=Z0.

but LMNtal has eliminated syntactic distinction between processes and data.
The above program resembles append in Interaction Nets [9]. Indeed, Lafont

writes “our rules are clearly reminiscent of clauses in logic programming, espe-
cially in the use of variables (see the example of difference-lists), and our proposal
could be related to PARLOG or GHC” [9]. LMNtal generalizes Interaction Nets
by removing the restriction to binary interaction and allowing hierarchical pro-
cesses.

5.2 Stream Merging

As in logic programming, streams can be represented as lists of messages, and
n-to-1 communication by stream merging can be programmed as follows:

{i(X0),o(Y0),$p[|*Z]}, c(A,X,X0) :-
c(A,Y,Y0), {i(X),o(Y),$p[|*Z]}

Here, the membrane { } of the left-hand side records n (≥ 1) input streams
with the name i and one output stream with the name o. The process context
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(a) Initial state

(b) Final state 1

(c) Final state 2

(d) Rewrite rules

Fig. 5. List concatenation

$p[|*Z] is to match the rest of the input streams and pass them to the RHS.
Figure 6 shows a redex to which the above rewrite rule is applicable and the
result of reduction.

5.3 Process Migration

Consider two cells that share a communication link. Suppose they run indepen-
dently using individual sets of reaction rules most of the time but sometimes
migrate processes to each other through the link. The rule for migration is given
in an upper layer.

It is the rôle of the upper layer to determine the protocol of process migra-
tion, while the cells “hook” processes to be migrated on the communication link
according to the protocol. Here we assume that the innermost cell containing
g(S,D) is to be migrated by the upper layer, where S and D are the source and
the destination sides of the communication link, respectively (Figure 7).

{$s[S0|*S], @s, {g(S0,D0),$m[|*M],@m}}, {$d[D0|*D], @d} :-
{$s[S|*S], @s}, {{s(S,D),$m[|*M],@m}, $d[D|*D], @d}
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(a)

(b)

Fig. 6. Multiway stream merging

(a) before migration

(b) after migration

Fig. 7. Process migration

When @m is non-empty, the rule acts as active process migration; otherwise
it acts as data migration. Note that the communication link between the source
and the destination processes changes after migration. This is an important
characteristic of logical links. The membrane delimiting migrated resources can
be removed at the destination site.

5.4 Cyclic Data Structures

Most declarative languages handle lists and trees elegantly but cyclic data struc-
tures awkwardly. This is not the case with LMNtal. In LMNtal, a bidirectional
circular buffer with n elements can be represented as

b(S,Xn, X0), n(A1, X0, X1), . . . , n(An, Xn−1, Xn),

where b is a header process, the Ai’s are links to the elements, and S is the link
from the client process. Operations on the buffer are sent through S as messages
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Fig. 8. Cyclic data structures

such as left, right and put (Figure 8). The reaction rules between messages
and the buffer can be defined as follows:

left(S,S0), n(A,L,C0), b(S0,C0,R) :- b(S,L,C), n(A,C,R)
right(S,S0), b(S0,L,C0), n(A,C0,R) :- n(A,L,C), b(S,C,R)

put(A,S,S0), b(S0,L,R) :- n(A,L,C), b(S,C,R)
...

Shape Types [7] are another attempt to facilitate manipulation of dynamic
data structures. Interestingly, Shape Types took a dual approach, namely they
used variables to represent graph nodes and names to represent links.

6 Concluding Remarks

We have presented a concise language model LMNtal, which has logical links,
multisets, nested nodes (membranes), and transformation as its “big four” ele-
ments. LMNtal was inspired by communication using logical variables, and its
principal goal as a concurrent programming language has been to unify pro-
cesses, messages, and data. There are many languages and computation models
that support multisets and/or graph rewriting, but LMNtal is unique in the
design of link handling in the presence of membrane hierarchies.

CHR is another multiset rewriting language that features logical variables.
While Flat LMNtal can be thought of as a linear fragment of CHR, LMNtal and
CHR have many differences in the use of logical variables, control of reactions,
intended applications, and so on. It is a challenging research topic to embed
CHR into LMNtal.

Both P systems and LMNtal feature membrane hierarchies and rewrite rules
local to membranes. One apparent difference between P systems and LMNtal is
that LMNtal features logical links as another key construct. We can think of a
fragment of LMNtal that allows only nullary atoms (atoms without links). This
fragment is somewhat close to P systems, but one important design criteria of
LMNtal has been that computation inside a cell cannot affect its environment,
that is, a cell cannot export any process by itself. Instead, a cell communicates
with its environment by spawning (within the cell) particular processes that can
be recognized and handled by the rules in the environment.
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We have released a prototype implementation in Java1. It features

– a construct for detecting inactive cells,
– built-in number types,
– the notion of type constraints for typechecking and comparison of numbers

and symbols, and
– foreign language interface,

in addition to most of the constructs described in this paper.
Many things remain to be done. The most important issue in the language

design is to equip it with useful type systems. We believe that many useful
properties, for instance, shapes formed by processes and links, the directional-
ity of links (i.e., whether links can be implemented as unidirectional pointers),
and properties about free links of cells, can be guaranteed statically using type
systems. Challenging topics in our implementation project include compact rep-
resentation of processes and links, optimizing compilation of reaction rules, and
parallel and distributed implementation. Since LMNtal is intended to unify var-
ious existing computational models, relating LMNtal to them by embedding
them into LMNtal is another important research subject. When the embeddings
are simple enough, LMNtal will be able to act as a common implementation
language of various models of computation.

Last but not least, we should accumulate applications. Some interesting ap-
plications other than ordinary concurrent computation are graph algorithms,
multi-agent systems, Web services, and programming by self-organization.
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“A.I.Cuza” University of Iaşi, Faculty of Computer Science,
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Abstract. This paper presents a natural algebraic specification for the
P systems. The specification is executable in Maude, a software sys-
tem supporting rewriting and equational logic. We define the P system
maximal parallel evolution as a specific rewriting strategy in Maude. By
extending the Maude rewriting semantics with this strategy, we provide
an operational semantics of the P systems. We present few examples of
specifying and executing simple P systems, describing how target indica-
tions, dissolving and priorities are handled. Moreover, the Maude system
allows the verification of various properties of the P systems expressed
as linear temporal logic formulas by using a model checker.

1 Introduction

Membrane computing is a branch of natural computing which studies distributed
and parallel computing models abstracted from the living cell structure and func-
tioning. Membrane computing is based on membrane systems or P systems, a
new class of computing devices introduced in [8]. The approach is based on hi-
erarchical systems: finite cell-structures consisting of membranes embedded in
a main membrane. The membranes determine regions where objects and evolu-
tion rules can be placed. The objects evolve according to the rules associated
with each region. A computation starts from an initial configuration of the sys-
tem, and terminates when no further rule can be applied. The P systems are
inspired by biological systems, but they are based on the theory of automata
and formal languages. Since their introduction, many results of universality for
the P systems were proved, and several problems were solved with the help
of formal languages. The field is very active; new properties are discovered, as
well as connections with already known concepts. It is desirable to find more
connections with the applied computer science, including implementations and
executable specifications. A sequential software simulator of membrane systems
is presented in [1], and a parallel simulator is presented in [2].

This paper presents a natural specification for P systems. Such a specifica-
tion is executable by using the sequential rewriting software tool called Maude.
Forced to execute parallel steps on a sequential machine, we give an algorith-
mic description of the “nondeterministic maximal parallel” evolution in the P
systems. Using the facilities provided by reflection, we define this specific strat-
egy of controlling the rewriting process at the meta-level. This strategy leads
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to an operational semantics of the P systems based on the rewriting semantics
of Maude. We can verify the properties of the P systems expressed as linear
temporal logic formulas by using the model checker implemented in Maude.

The paper is organized as follows. Section 2 briefly presents the P systems, as
well as the mathematical specification system called Maude. We emphasize on
the power given by reflection in Maude. Section 3 presents the specifications of
the P systems in Maude, as well as their operational semantics. Two examples
of specifications and their executions are described in Section 4. Model checking
some temporal properties of the P systems is discussed in Section 5.

2 P Systems and Maude

A detailed description of the P systems can be found in [9]. A P system consists of
several membranes that do not intersect, and a skin membrane, surrounding them
all. The membranes delimit regions, and contain multisets of objects, as well as
evolution rules. Only rules in a region delimited by a membrane act on the objects
in that region. Moreover, the rules can contain target indications, specifying the
membrane where objects are sent after applying the rule. The objects can pass
through membranes, in two directions: they can be sent out of the membrane
which delimits a region from outside, or can be sent in one of the membranes
which delimit a region from inside, precisely identified by its label. In a step, the
objects can pass only through a membrane. The membranes can be dissolved.
When such an action takes place, all the objects of the dissolved membrane
remain free in the membrane placed immediately outside, but the evolution rules
of the dissolved membranes are lost. The skin membrane is never dissolved. The
application of evolution rules is done in parallel, and it is eventually regulated
by priority relationships between rules.

We can identify a membrane structure with a tree (with skin as its root),
or a string of correctly matching parentheses, placed in a unique pair of match-
ing parentheses; each pair of matching parentheses corresponds to a membrane.
Graphically, a membrane structure is represented by a Venn diagram in which
two sets can be either disjoint, or one the subset of the other. The membranes
are labelled in a one-to-one manner. A membrane without any other membrane
inside is said to be elementary. The space outside the skin membrane is called
the outer region. More formally, a P system is a structure
Π = (O,μ,w1, . . . , wm, R1, . . . , Rm, io), where:

(i) O is an alphabet of objects;
(ii) μ is a membrane structure consisting of labelled membranes;
(iii) wi are multisets over O associated with the regions defined by μ;
(iv) Ri are finite sets of evolution rules over O associated with the membranes,

of typical form ab→ a(c, in2)(c, out);
(v) i0 is either a number between 1 and m specifying the output membrane of
Π, or it is equal to 0 indicating that the output is the outer region.

These are the general P systems; many other variants and classes were intro-
duced.
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In order to relate the P systems to Maude, we express a membrane as a
structureM = (RM , wM ), and its evolution rules as rewriting rules. We consider
the following maximal parallel application of rules: in a transition step, the rules
of each membrane are used against its resources such that no more rules can
be applied. Considering an elementary membrane M = (RM , wM ), where RM

is the finite set of evolution rules and wM is the initial multiset, a computation
step transition is defined as a rewriting rule by

x1 → y1, . . . , xn → yn ∈ RM , z is RM -irreducible
x1 . . . xnz ⇒ y1 . . . ynz

(1)

A multiset z is RM -irreducible whenever there does not exist rules in RM appli-
cable to z.

A composite membrane is a membrane with the structure provided by the
membranesM1, . . . ,Mk located inside it. It is denoted by (M1, . . . ,Mk, RM , init),
where eachMi(1 ≤ i ≤ k) is an elementary or a composite membrane. RM repre-
sents the finite set of evolution rules of M , and init is its initial configuration of
form (w, (w1, . . . , wk)), where wi is the multiset associated with the membrane
Mi. A computational step of a composite membrane is defined as a rewriting
rule by

w ⇒ w′, w1 ⇒ w′
1, . . . , wn ⇒ w′

n

(w, (w1, . . . , wk))⇒ (w′, (w′
1, . . . , w

′
k))

(2)

In this way, the objects of the membranes are the subject of local evolution
rules that evolve simultaneously. A sequence of computation steps represents
a computation. A computation is successful if this sequence is finite, namely
there is no rule applicable to the objects present in the last configuration. In a
final configuration, the result of a successful computation is the total number
of objects present in the membrane considered as the output membrane. If no
internal membrane is specified as an output, we consider the skin to be the
output membrane.

Maude is a software system developed around the Maude language. Core
Maude is the Maude interpreter implemented in C++; it provides the Maude’s
basic functionality. Full Maude is an extension written in Maude itself, allowing
combination of various Maude modules to build more complex modules. Maude
can be used for many applications with competitive performance and advantages
over the conventional code. The current Maude implementation can execute
syntactic rewriting with speeds from half a million to several million rewrites
per second, depending on the particular application and machine. It is able to
work well with multisets having millions of elements.

The Maude system is available free of charge, under the terms of the GNU
General Public License, at the Maude home page http://maude.cs.uiuc.edu.
Many useful materials are available, and Maude binaries are provided for selected
architectures and operating systems, together with installation instructions. We
have used the version 2.1 of Maude, under Linux.

Maude is essentially a mathematical language. The OBJ theory and languages
[7] have influenced the Maude design and philosophy. The basic programming
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statements are equations, membership assertions, and rules. Their rewriting se-
mantics is given by the fact that instances of the left hand side pattern are
replaced by corresponding instances of the righthand side. A Maude program
containing only equations and membership assertions is called a functional mod-
ule. The equations are used as rules (equational rewriting), and the replacement
of equals for equals is performed only from left to right. A Maude program
containing both equations and rules is called a system module. Rules are not
equations, they are local transition rules in a possibly concurrent system. Unlike
for equations, there is no assumption that all rewriting sequences will lead to the
same final result, and for some systems there may not be any final states. The
functional modules define a functional sublanguage of Maude, and the system
modules extend the purely functional semantics of equations to the concurrent
rewriting semantics of rules.

If we consider, for example, a membrane system in which we have the objects
floating in a soup (that is, a multiset of objects), then the objects can interact in
this soup, and can work locally according to specific rewriting rules. These rules
are the local transition rules of the system, and they can be applied concurrently
to different membranes of the system. The rewriting performed for membranes
is a multiset rewriting. In Maude this is specified in the equational part of the
program (system module) by declaring that the multiset union operator satisfies
the associativity and commutativity equations, and has also an identity. This
is done simply by using attributes, and this information is used to generate a
multiset matching algorithm. Further expressiveness is gained by various features
as equational pattern matching, user-definable syntax and data, generic types
and modules, support for objects, reflection.

Regarding both expressiveness and performance, we can mention the evalu-
ation strategies and use of reflection property. Evaluation strategies control the
positions in which equations can be applied, giving the user the possibility of
indicating which arguments to evaluate before simplifying a given operator with
the equations. Reflective computations allow the link between meta-level and the
object level, whenever possible. A typical meta-level computation may perform
efficiently millions of rewrites at the object level, paying a reasonable linear cost
in changing the representations from the meta-level to the object level and back,
only at the beginning and at the end of the computation.

A Maude program can be seen as a logical theory, and a Maude computation
as a logical deduction using the axioms specified in the program. The founda-
tions of Maude is given by membership equational logic and rewriting logic. A
functional module specifies a theory in membership equational logic. Mathemat-
ically, we can view such a theory as a pair (Σ,E ∪A), where Σ is the signature
and specifies the type structure, E is the collection of equations and member-
ships declared in the functional module, and A is the collection of equational
attributes (e.g., assoc, comm) declared for different operators.

Similarly, a system module specifies a rewriting theory, that is, a theory
in rewriting logic. A signature in rewriting logic is an equational theory (Σ,E),
where Σ is an equational signature and E is a set of Σ-equations and it describes
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a particular structure for the state of a system (for instance, for string rewriting
systems E consists of the associativity axiom, for multiset rewriting systems E
consists of the associativity and commutativity axioms, and for term rewriting
systems E is empty). A sentence over the signature (Σ,E) is an expression of
the form (∀X)[t]E → [t′]E , where t and t′ are Σ(X)-terms, and [t]E denotes the
equivalence class of t modulo the equations E. A sentence describes the possible
transitions from the states described by [t] to the corresponding states described
by [t′]. If X = {x1, . . . , xn}, then we denote a sentence by [t(x)]E → [t′(x)]E ,
where x is the sequence x1, . . . , xn. If E and X are understood from the context,
we simply write [t(x)] → [t′(x)] or [t] → [t′]. A rewriting specification R is a 4-
tupleR=(Σ,E,L,R) where (Σ,E) is a rewriting logic signature, L is a set whose
elements are called labels, and R is a set of labelled rewriting rules (sentences)
written as r : [t(x)]E → [t′(x)]E . The inference rules of rewriting logic allow to
deduce general (concurrent) transitions which are possible in a system satisfying
R. We say that R entails the sentence [t] → [t′] and write R � [t] → [t′] iff
[t]→ [t′] can be obtained by finite application of the following inference rules:

(1) Reflexivity. For each Σ(X) term t,

[t]→ [t]

(2) Congruence. For each operation symbol f ∈ Σ,

[t1]→ [t′1], . . . , [tn]→ [t′n]
[f(t1, . . . , tn)]→ [f(t′1, . . . , t

′
n)]

(3) Unconditional replace. For each r : [t(x)]→ [t′(x)] in R,

[u1]→ [v1], . . . , [un]→ [vn]
[t(u/x)]→ [t(v/x)]

(4) Transitivity.
[t1]→ [t2], [t2]→ [t3]

[t1]→ [t3]

The general theory of the rewriting logic allows conditional sentences and con-
ditional rewriting rules. The interested reader is invited to read, e.g., [3].

Rewriting logic is reflective, i.e. there is a (finitely presented) universal rewrit-
ing specification U such that for any (finitely presented) rewriting specification
R (including U itself), we have the following equivalence:

R � [t]→ [t′] iff U � 〈R, t〉 → 〈R, t′〉,

where R and t are terms representing R and t as data elements of U . Since U
is representable in itself, it is possible to achieve a “reflective tower” with an
arbitrary number of reflection levels:

R � [t]→ [t′] iff U � 〈R, t〉 → 〈R, t′〉 iff U � 〈U , 〈R, t〉〉 → 〈U , 〈R, t′〉〉 . . .
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This interesting and powerful concept is supported by Maude through a built-in
module called META-LEVEL. This module has sorts Term and Module such that the
representation t of a term t is of sort Term and the representation SP of a spec-
ification SP is of sort Module. There are also functions like metaReduce(SP , t)
which returns the representation of the reduced form of a term t using the equa-
tions in the module SP .

META-LEVEL module can be extended by the user to specify strategies of
controlling the rewriting process. We use META-LEVEL in order to define the
“maximal parallel rewriting” strategy. Forced to execute parallel steps on a se-
quential machine, we provide an algorithmic description (given by maxParRew)
of the rather ambiguous “nondeterministic and maximal parallel” application of
the evolution rules in a P system. For our sequential thinking, such a clarifying
and conceptual description of the P systems is helpful, and it could become a
useful framework for further investigations. Using maxParRew as a transition step
between meta-level configurations, we then provide an operational semantics of
the P systems.

3 P Systems Specifications and Semantics

A P system Π is naturally represented as a collection of Maude modules, each
membrane Mi of Π corresponding to a module denoted also by Mi.

We consider a sort Obj is for object names, and its subsort Output is for
results. Since we wish to pass the alphabet of objects as a parameter, we use a
theory OBJ defining the “type” of the parameter:

(fth OBJ is
sorts Obj Output .
subsort Output < Obj .

endfth)

In order to cope with the membrane dissolving, and the priority relationship be-
tween rules, we add new sorts, namely Dissolve and Priority that are subsorts
of the sort Ingredient. For the target indications, we consider the sort Target,
two operations for sending objects out of the membrane or in a specified mem-
brane, such that a pair composed of a multiset of object and a target represents
also an element of sort Ingredient. We add a sort Soup for the multisets of
ingredients, and a sort Config for the states of a P system. These sorts and
their operations are defined by the following functional module:

(fmod CONFIG(X :: OBJ) is
pr QID .
sorts Dissolve Priority Target Ingredient .
sorts Soup Config .
subsort Priority < Ingredient .
subsort Dissolve < Ingredient .
subsort X@Obj < Ingredient .
subsort Ingredient < Soup .
op empty : -> Soup .
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op delta : -> Dissolve .
op __ : Soup Soup -> Soup [assoc comm id: empty] .

vars P1 P2 : Priority .
vars S1 S2 : Soup .
vars I1 I2 : Ingredient .

op _<_ : Priority Priority -> Bool .
op _<_ : Soup Soup -> Bool .
ceq I1 S1 < I2 S2 = S1 < S2 if not (I1 :: Priority or I2 :: Priority) .
ceq I1 S1 < P2 S2 = S1 < P2 S2 if not (I1 :: Priority) .
ceq P1 S1 < I2 S2 = P1 S1 < S2 if not (I2 :: Priority) .

op out : -> Target .
op in : Qid -> Target .
op ‘(_‘,_‘) : X@Obj Target -> Ingredient .

op <_|_> : Qid Soup -> Config .
op <_|_;_> : Qid Soup Config -> Config .
op _‘,_ : Config Config -> Config [assoc comm] .

endfm)

The subsort relation Ingredient < Soup says that each ingredient defines a par-
ticular multiset. The operation is required to satisfy the structural laws of
associativity, commutativity, and it has an identity empty. The operation ‘,
is required to satisfy only the structural laws of associativity and commutativ-
ity. For the declaration of the operators ( , ) and , we write ‘( ‘, ‘) and

‘, , respectively, according to the syntax constraints imposed by Maude. An
expression of the form 〈M | S〉 represents a configuration corresponding to an
elementary membrane M with its multiset S, and an expression of the form
〈M | S;C1, . . . , Cn〉 represents a configuration corresponding to a composite
membrane M in state S and with the component i having the configuration Ci.

A membrane can be described by a system module of the form:

(mod M is
inc CONFIG(〈 objects-of-M〉) .
op init : -> Soup .
eq init = 〈init-soup〉 .
rl [’M] : � 1 => r 1 .
...
rl [’M] : � k => r k .

endm)

The Maude semantics of the module M is not the same with the P system se-
mantics. Therefore we must associate with M the appropriate semantics based on
the maximal parallel rewrite relation. We use the facilities provided by reflection
in Maude, defining this semantics at the meta-level in a module named COMPS.
For the elementary membranes, a computation step between configurations is
defined as:
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Fig. 1. Rewriting strategy is defined at the meta-level

S ⇒ S′

〈M | S〉 ⇒ 〈M | S′〉 (3)

where S ⇒ S′ is defined in (1). S ⇒ S′ is not the rewriting defined by M , but
they are strongly related:

S ⇒ S′ iff S +−→RM
S′ s.t. maxParCons(RM , S, S

′)

where +−→RM
is the rewriting defined by RM , and maxParCons(RM , S, S

′) repre-
sents the constraints defining the maximal parallel rewriting strategy over RM .
More precisely, we have:

1. if S = S′, then maxParCons(RM , S, S) holds iff S is RM -irreducible;
2. if S �= S′, then maxParCons(RM , S, S

′) holds iff there exists S1, S
′
1, �→ r ∈

RM such that S = � S1, S′ = r S′
1, the rule � → r has maximal priority in

RM , and maxParCons(R′
M , S1, S

′
1), where R′

M contains the rules from RM

that do not have a lower priority than the priority of the chosen rule.

Since maxParCons has the set of rules of the module M as parameter, it follows
that it can be decided only at meta-level. The transition between configurations
for composite membrane is defined as:

S ⇒ S′, C1 ⇒ C ′
1, . . . , Ck ⇒ C ′

k

〈M | S;C1, . . . , Ck〉 ⇒ 〈M | S′;C ′
1, . . . , C

′
k〉

(4)

A computation is a sequence of transitions steps C0 ⇒ C1 ⇒ C2 ⇒ . . .⇒ Cn ⇒
. . ., where C0 is the initial configuration. The result of a successful computation
is extracted from the final configuration; for instance, the result could be the
total number of objects present in the output membrane.

We present the Maude implementation of the computation for P systems.
As we have seen above, a computation step is depending on the rewriting rules
included in the Maude description of the P system, and therefore it must be
defined at the meta-level (see Figure 1).
The meta-level is needed for two main reasons:

1. to locate the set of rules corresponding to a certain membrane in the struc-
tured Maude specification of a composite P system;
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2. to describe the maximal parallel application of the located rules as a rewrit-
ing strategy.

The maximal parallel rewriting strategy corresponding to a computation step of
an elementary membrane Mi is given by

maxParRewS : RuleSet× Term→ Term

and it is defined by the following rewriting rules:

[r1] : maxParRewS(R,S)→ maxParRewS(filter(R), �→ r, S)
if (�→ r) is a rule in R applicable to S, having maximal priority

[r2] : maxParRewS(R, �→ r, S)→ rmaxParRewS(R,S1)
if S == � S1

[r3] : maxParRewS(R,S)→ S if S is R-irreducible

The first rule nondeterministically chooses from the set R an evolution rule that
verifies its condition. The filter operator removes from a rule set the rules that
have a lower priority than a given priority, in our case the one of the chosen rule.
The second rule applies the chosen evolution rule over the soup represented by
S, and applies maxParRewS over the remaining non-processed soup. The third
one is applied at the end of the strategy, and it does not modify an irreducible
soup. The first two rules above are implemented in Maude at the meta-level as
follows:

crl maxParRewS(RS, T) =>
(if (MP :: MatchPair)
then if hasMaxPriority(RS, rl X => Y [label(Q)] ., T)

then maxParRewS(filter(getPriority(Y), RS),
(rl X => Y [label(Q)] .), MP, T)

else maxParRewS(RS2, T) fi
else maxParRewS(RS2, T) fi)

if (rl X => Y [label(Q)] .) RS2 := RS /\
MP := metaXmatch(m, X, T, nil, 0, unbounded, 0) .

crl maxParRewS((rl X => Y [label(Q)] .), T) =>
(if (MP :: MatchPair)
then ’__[removePriority(Y), maxParRewS((rl X => Y [label(Q)] .),

toTerm(getContext(MP)))]
else T fi)

if MP := metaXmatch(m, X, T, nil, 0, unbounded, 0) .

crl maxParRewS(RS, R, MP, T) =>
’__[removePriority(Y), maxParRewS(RS, toTerm(getContext(MP)))]

if (rl X => Y [label(Q)] .) := R .

where := is the matching operator, and :: is the membership predicate. The
function metaXmatch(m, X, T, nil, 0, unbounded, 0), used in the condi-
tional part of the first rule, computes the first matching (if any) of X and T in
the module m, without condition (nil), and without boundary in choosing the
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depth in the term where the application of the rule takes place. In our case, the
resulting MP has the sort MatchPair iff the left hand side of the rule is a subterm
of T, therefore the rule is applicable to T, and in that case MP is a pair consisting
of the empty substitution (the lefthand side has no variables), and its context.
The function getContext(MP) extracts the context from MP. Since we are work-
ing over multisets, the subterm to be processed by maxParRewS is the context
after removing the placeholder [ ], operation done by the function toTerm. The
data structure MP help us to implement more efficiently the rules [r1] and [r2].
The function removePriority removes the priority ingredient from a soup, in
this case from the righthand side of the chosen rule, and getPriority extracts
the priority ingredient, if any. The priority ingredients help the rewriting process
to choose at any moment an evolution rule with maximal priority with respect
to a partial order < over the sort Priority. This is realized with the help of a
predicate hasMaxPriority(R, �→ r, S) which returns true iff there is no higher
priority rule than � → r in the set R which can be applied to the multiset S.
The definition of this predicate is:

hasMaxPriority(∅, �→ r, S) =true

hasMaxPriority({�′ → r′}, �→ r, S) =

⎧⎪⎨⎪⎩
false if r < r′ ∧ �′ → r′

is applicable to S
true otherwise

hasMaxPriority(R ∪ {�′ → r′}, �→ r, S) =

=

{
false if r < r′ ∧ �′ → r′ is applicable to S
hasMaxPriority(R, �→ r, S) otherwise

The corresponding operator is given by

op hasMaxPriority : RuleSet Rule Term -> Bool .

We interpret the priority in a strong sense as described in [8]: if a rule with a
higher priority is used, then no rule of a lower priority can be used, even if the two
rules do not compete for objects. We can imagine that each rule “consumes” not
only objects, but also energy: if a rule of a higher priority is used, then no energy
remains available for rules of a lower priority. In order to use this interpretation
we add the operator filter.

The computation for composite membranes is given by

maxParRew : Term→ Term

The definition of maxParRew is:

[r4] : maxParRew(〈M | S〉)→ 〈M | maxParRewS(rules(M), S)〉
[r5] : maxParRew(〈M | S;C〉)→ 〈M | maxParRewS(rules(M), S);maxParRew(C)〉
[r6] : maxParRew(C1, C2)→ maxParRew(C1),maxParRew(C2)

and its Maude implementation at the meta-level is:
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crl maxParRew(’<_|_>[X , Y]) =>
’<_|_>[X, maxParRewS(getQRls(getRls(m), X), Y)]
if sameKind(m, getType(metaReduce(m, Y)), ’Soup) .

rl maxParRew(’_‘,_[X , Y]) => ’_‘,_[maxParRew(X), maxParRew(Y)] .
rl maxParRew(’<_|_;_>[X , Y, Z]) =>

’<_|_;_>[X, maxParRewS(getQRls(getRls(m), X), Y), maxParRew(Z)] .

The function getRls(m) returns the set of rules included in a Maude module m,
and getQRls(R, X) selects the subset of rules corresponding to the submodule
identified by X. In our case, m represents the module specifying a (composite) P
system Π at meta-level, and X is the meta-level representation of a membrane
label in Π.

The invocation of maxParRew could be given by the rewriting rule
X → maxParRew(X). In order to avoid infinite rewriting of the form

X → maxParRew(X)→ maxParRew(maxParRew(X))→ · · ·

we use two auxiliary operations

rwf : Term→ Term

intermediate : Term→ Term

The corresponding definitions are:

[r7] : rwf(X)→ intermediate(maxParRew(X))
if X does not contain dissolving ingredients

[r8] : intermediate(X)→ rwf(moveToTarget(X))
if X is not intermediate

The Maude implementation is given by the rules

crl rwf(X) => intermediate(maxParRew(X))
if (not hasDissolve(X)) .

crl intermediate(X) => rwf(moveToTarget(getTerm(metaReduce(m, X))))
if (not isIntermediate(X)) .

The predicate isIntermediate verifies if a term has an intermediate form, that
is if at least one of its subterms contains the operator maxParRew or maxParRewS.
During the intermediate form, a maximal parallel step is executed. After a max-
imal parallel step and before another one, the target indications are processed,
and the condition for the rule [r7] prevents the beginning of a new rewriting step
if there are unprocessed dissolving ingredients occurred at the previous step.
The function metaReduce(m,X) returns a data structure including the normal
form of X with respect to the equations of the module m; in our case m rep-
resents the module specifying the P system at meta-level. getTerm selects the
normal form of X from the data structure returned by metaReduce. The opera-
tion moveToTarget deals with the pairs formed by objects and a target, sending
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Fig. 2. Analysis and verification can be done at meta-metalevel

the objects out of the current membrane, or in a specified membrane. An object
sent out of the skin membrane is deleted from the system.

For each δ ∈ Dissolve we add the following “dissolving” rules:

〈Mi | Si; 〈Mj | Sjδ〉, C〉 → 〈Mi | SiSj ;C〉
〈Mi | Si; 〈Mj | Sjδ;C1〉, C2〉)→ 〈Mi | SiSj ;C1, C2〉

Note that if Sj contains more δ objects, then all these objects must be removed;
this will be done by a function called clean(). We give as example the Maude
implementation of the first rule:

crl ’<_|_;_>[X, Y, ’<_|_>[U, V] ] =>
’<_|_>[X , ’__[Y, clean(toTerm(getContext(MP)))]]
if MP := metaXmatch(m, ’delta.Dissolve, V, nil, 0, unbounded, 0) /\

MP :: MatchPair .

We can use the Maude commands like rew to verify local properties con-
cerning the behavior of a P system. Sometimes we need more than that. For
instance, we have to extract the result from a configuration. This can be done
using meta-commands like getTerm, metaRewrite and metaSearch. Therefore
we need to work at the meta-metalevel (Figure 2). This will be exemplified in
the next section.

4 Examples of P System Specifications

In this section we consider two simple P systems examples, and then describe
and execute their Maude specification.

Example 1: We consider a P system generating symbols b and c with the prop-
erties that the number of c’s is double of the number of b’s, and the total number
of b’s and c’s is a multiple of 6.



138 O. Andrei, G. Ciobanu, and D. Lucanu

Π1=(O,μ,w1, w2, R1, R2, io),
O = {a, b, c},
μ = [1[2 ]2 ]1,

w1 = a2,
w2 = λ,
R1 = {a→ a(b, in2)(c, in2)2, a2 → (a, out)2},
R2 = ∅,
io = 2.

The initial configuration is:

�

�

�

�

�
�

�
	

1

2a2

a → a(b, in2)(c, in2)2

a2 → (a, out)2

The alphabet of objects is specified by

(fmod ABC is
sorts Obj Output .
subsort Output < Obj .
ops a b c : -> Obj .
mb b : Output .
mb c : Output .

endfm)

The two membership assertions mb are used to declare b and c of subsort Output.
The alphabet is passed to the generic module CONFIG using a morphism declared
as:

(view OBJ-TO-ABC from OBJ to ABC is
sort Obj to Obj .
sort Output to Output .

endv)

Each membrane is specified in Maude by an independent system module.

(mod M2 is
inc CONFIG(OBJ-TO-ABC) .

op init2 : -> Soup .
eq init2 = empty .

endm)
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(mod SKIN is
inc CONFIG(OBJ-TO-ABC) .

op init1 : -> Soup .
eq init1 = a a .
rl [’SKIN] : a => a (b, in(’M2)) (c c, in(’M2)) .
rl [’SKIN] : a a => (a, out) (a, out) .

endm)

The Maude specification of a P system is a system module importing the modules
corresponding to the component membranes, and defining the initial configura-
tion. We do not need to write the rules in the initial configuration of the system
because we can get them easily through the label of each membrane. There-
fore the initial configuration contains the objects of each membrane, together
with the label of the membrane, and the structure of the system. The module
describing Π1 is:

(mod PSYS is
inc M2 + SKIN .
op initConf : -> Config .
eq initConf = < ’SKIN | init1 ; < ’M2 | init2 > > .

endm)

We can use various Maude commands in order to make software experiments
with the P system specification. For instance, we use the command rew to see
the result of maximal parallel rewriting after a fixed number the steps:

Maude> (rew [11] rwf(getTerm(metaReduce(up(PSYS), up(PSYS, initConf)))) .)
result Term :
rwf(’<_|_;_>[’’SKIN.Qid,’__[’a.Obj,’a.Obj],’<_|_>[’’M2.Qid,’__[’b.Output,
’b.Output,’c.Output,’c.Output,’c.Output,’c.Output]]])

We should note that the number of rewriting steps in Maude is not the same with
the number of computation steps of the P systems. However the rewriting pro-
cess could be restricted by the configuration size. The function #(X) recursively
counts the number of the objects in the term X, ignoring the other ingredients.

crl rwf(X) => intermediate(maxParRew(X))
if (not hasDissolve(X)) /\

(#(X) < maxSize) .
crl rwf(X) => idle if #(X) >= maxSize .

We use the meta-level function metaSearch to help us finding all the states
of the P system that are not intermediate, states for which the system has com-
pleted a maximal parallel rewriting step; metaSearch is used at meta-metalevel.
We define the operator offRwf in a module METACOMPS in order to remove the
top operator rwf from a term. In METACOMPS, rwf has the meta-representation
’rwf[ ].
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(mod METACOMPS is
including META-LEVEL(COMPS) .
vars T T1 : Term .
op offRwf : Term -> Term .
ceq offRwf(T) = T1 if ’rwf[T1] := T .
eq offRwf(T) = T [owise] .

endm)

After application of metaSearch and offRwf, we can apply twice the command
down that takes us to the object level. The command down is used to move
between two successive levels of the reflection tower. For instance, down COMPS
: interprets the result returned by red in the module COMPS.

Maude> (down PSYS : down COMPS : red offRwf(getTerm(metaSearch(up(COMPS),
up(COMPS, rwf(getTerm(metaReduce(up(PSYS), up(PSYS, initConf))))),
’rwf[’T:Term],nil, ’+, unbounded, 4))) .)
rewrites: 61862 in 1071ms cpu (1071ms real) (57715 rewrites/second)
result Config :
< ’SKIN | empty ; < ’M2 | b b b b c c c c c c c c > >

Example 2: We consider now an example of a P system with dissolving and
priorities ingredients; it is taken from [9], page 71. This P systemΠ2 is generating
(in its halting configurations) values of the form n2 for n ≥ 1.

Π2 = (O,μ,w1, w2, w3, (R1, ρ1), (R2, ρ2), (R3, ρ3), 1),
O = {a, b, d, e, f},
μ = [1[2[3 ]3 ]2 ]1,
w1 = λ,R1 = ∅, ρ1 = ∅,
w2 = λ,R2 = {b→ d, d→ de, r1 : ff → f, r2 : f → δ}, ρ2 = {(r1, r2)},
w3 = af,R3 = {a→ ab, a→ bδ, f → ff}, ρ3 = ∅,

The initial configuration is given in Figure 3.
Since no object is free in membranes 1 and 2, the only possibility to start is

by using the rules of membrane 3 together with its free objects a and f . Using
the rules a → ab and f → ff in parallel for the available occurrences of a and
f , after n ≥ 1 steps we get n occurrences of b and 2n occurrences of f . At any
moment we can use a → bδ instead of a → ab, and consequently we get n + 1
occurrences of b and 2n+1 occurrences of f , followed by the process of dissolving
membrane 3. Region 3 disappears, its rules are lost, and its objects move to
region 2. The obtained configuration is

[1 [2 b
n+1f2n+1

, b→ d, d→ de, r1 : ff → f, r2 : f → δ, r1 > r2, ]2 ]1.

According to the priority relation, the rule ff → f is used as much as possible.
In one step bn+1 are transformed in dn+1, while the number of f occurrences is
divided by two. Then, in the next step, n+1 occurrences of e are produced, and
the number of f occurrences is divided again by two. At each step, further n+1
occurrences of e are produced. Finally, after n+ 1 steps (n steps when the rule
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ff → f is used, and one when using the rule f → δ), membrane 2 is dissolved,
its rules are removed, and its objects move to the skin region. The number of the
objects e is the square of the number of d. Consequently, Π2 generates values of
the form n2, for n ≥ 1.

�

�

�

�

�

�

�

�

�

�

�

�3

2
1

af

a → ab

a → bδ

f → ff

b → d

d → de

(ff → f) > (f → δ)

Fig. 3. The initial configuration of a P system generating n2

The alphabet of objects is specified in Maude by

(fmod OBJN2 is
sorts Obj Output .
subsort Output < Obj .
ops a b d f e : -> Obj .
mb d : Output .
mb e : Output .

endfm)

Membrane 2 contains both dissolving and priority ingredients:

(mod M2 is
inc CONFIG(OBJ-TO-OBJN2) .
ops p1 p2 : -> Priority .
eq (p1 < p2) = true .
op init2 : -> Soup .
eq init2 = empty .
rl [’M2] : b => d .
rl [’M2] : d => d e .
rl [’M2] : f f => f p2 .
rl [’M2] : f => delta p1 .

endm)



142 O. Andrei, G. Ciobanu, and D. Lucanu

The priority set ρ2 is modelled by the constants p1 and p2 together with the
equation stating the priority order. The structure of the P system Π2 is given
by:

(mod PSYS is
inc M3 + M2 + SKIN .
op initConf : -> Config .
eq initConf = < ’SKIN | init1 ; (< ’M2 | init2 ; < ’M3 | init3 > >) > .

endm)

Here we have an example showing how the dissolving rules work:

Maude> (down PSYS : down COMPS : red offRwf(getTerm(metaSearch(up(COMPS),
up(COMPS, rwf(getTerm(metaReduce(up(PSYS), up(PSYS, initConf))))),
’rwf[’T:Term],nil, ’+, unbounded, 9))) .)
rewrites: 3853155 in 102572ms cpu (102877ms real) (37565 rewrites/second)
result Config :
< ’SKIN | empty ; < ’M2 | d d e e f > >

Maude> (down PSYS : down COMPS : red offRwf(getTerm(metaSearch(up(COMPS),
up(COMPS, rwf(getTerm(metaReduce(up(PSYS), up(PSYS, initConf))))),
’rwf[’T:Term],nil, ’+, unbounded, 13))) .)
rewrites: 12585081 in 333343ms cpu (337463ms real) (37754 rewrites/second)
result Config :
< ’SKIN | d d e e e e >

For more details and a complete Maude implementation of the P systems see
http://www.info.uaic.ro/rewps.

5 Model Checking P Systems

Maude has a collection of formal tools supporting different forms of logical rea-
soning to verify program properties, including a model checker to verify temporal
properties of finite-state system modules. Therefore, once we have a Maude de-
scription of the membrane systems, we may use the Maude implementation of
Linear Temporal Logic (LTL) to verify various properties expressed in LTL [6].
The LTL model checker provides a powerful tool to detect subtle errors and to
verify some desired temporal properties.

LTL was designed for expressing the temporal ordering of events. In com-
puter science, temporal logics keep track of the systems states, changes of the
variable values, and the order in which they occur. Intuitively, the system state
is a snapshot of the system’s execution. In this snapshot, every variable has some
value. A particular execution of the system is represented by a sequence of sys-
tem states, and obviously, time progresses during the execution, but there is no
keeping track of how long the system is in any particular state. In LTL, formulas
are evaluated with respect to a particular execution and a particular state in that
execution. Time is totally ordered, usually bounded in the past and unbounded
in the future. LTL formulas allows boolean connectives and modalities together
with the operators X expressing “in the next state”, and U expressing that one
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property holds until another holds (Until). These formulas are evaluated on in-
dividual executions (computation paths). The modal path operators are ♦ and
�; ♦ expressing “at some future time”, and � expressing “at all future times”.
They are also found as the letters F and G. More information on LTL, and its
link to Maude can be found in [6].

In order to apply the model checker, the space of the reachable states of the P
system must be finite. Unfortunately, this requirement is not fulfilled by almost
all the P systems. Therefore we have to consider a finite subspace of reachable
states. An example is the subspace including the states with the size less than,
or equal to, a given maxSize. The size of a state is computed by the function
#(X) which counts the number of the objects that occur in X. In this sense, we
modify the rule for rwf:

crl rwf(X) => intermediate(maxParRew(X))
if (not hasDissolve(X)) /\

(#(X) < maxSize) .

In order to avoid deadlock situation, we add a stutter extension rule along
with a state idle that is always executable and has no effect, defined as a
constant operation of sort Term. The system reaches this state in the next step
when the size of the current state is greater than maxSize:

op idle : -> Term .
crl rwf(X) => idle if #(X) >= maxSize.
rl idle => idle .

We exemplify the use of LTL model checker by verifying three atomic propo-
sitions: isConfig, satisfied by a term iff it is not intermediate; isMultipleOf6,
satisfied by a configuration iff the number of objects b and objects c is a multiple
of 6; and isDouble, satisfied by a configuration iff the number of objects c is
double the number of the objects b in it:

(mod 2B4C-PREDS is
including COMPS .
including SATISFACTION .
subsort Term < State .
ops isConfig isMultipleOf6 isDouble : -> Prop .
var T : Term .
ceq T |= isConfig = true if not isIntermediate(T) .
ceq rwf(T) |= isMultipleOf6 = true if (#(T, ’c) + #(T, ’b)) rem 6 == 0 .
ceq rwf(T) |= isDouble = true if #(T, ’c) == 2 * #(T, ’b) .

endm)

SATISFACTION is a built-in module which includes the specifications for the
atomic linear temporal formulas and the satisfaction relation between states
and propositions. For the P systems, the states correspond to the configura-
tions and these are represented at the meta-level by terms. We define the initial
state against which we wish to check the temporal formulas �(isConfig →
isMultipleOf6) and �(isConfig→ isDouble):
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(mod PROOF is
including 2B4C-PREDS .
including MODEL-CHECKER .
including LTL-SIMPLIFIER .

op init : -> Term .
eq init = rwf(getTerm(metaReduce(m, up(PSYS, initConf)))) .

endm)

The temporal formulas are verified by using the red command:

red modelCheck(init, [](isConfig -> isMultipleOf6) ) .
red modelCheck(init, [](isConfig -> isDouble) ) .

and Maude supplies the following output:

Maude> (red modelCheck(init, [] (isConfig -> isMultipleOf6)) .)
rewrites: 34448 in 669ms cpu (774ms real) (51422 rewrites/second)
reduce in PROOF :
modelCheck(init,[](isConfig -> isMultipleOf6))

result Bool :
true

Maude> (red modelCheck(init, [] (isConfig -> isDouble)) .)
rewrites: 34429 in 576ms cpu (576ms real) (59677 rewrites/second)
reduce in PROOF :
modelCheck(init,[](isConfig -> isDouble))

result Bool :
true

6 Conclusion

The contributions of this paper consist in providing executable specifications of
the P systems, using a complex software system based on rewriting. Moreover,
it is presented for the first time the use of a software verification tool able to
automatically check properties of a P system. The approach fully exploits the
reflection property of the rewriting logic, property which allows a meta-level
implementation of the P systems operational semantics. It is also presented an
algorithmic description of the nondeterministic maximal parallel evolution rules
in the P systems.

The paper does not present the rich theoretical worlds of the P systems and
rewriting logic, respectively. It rather concentrates on fruitful bridge between
these two worlds, emphasizing the use of Maude as a complex tool able to ex-
ecute specifications of the P systems, and then to verify the desired properties
of the specified P system. Since this is the first paper describing executable
specifications for the P systems, we have used two simple examples.
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Abstract. We present an algorithm for deterministically deciding SAT
in linear time by P systems with active membranes using only two polar-
izations and rules of types (a), (c), and (e). Moreover, various restrictions
on the general form of the rules are considered: global, non-renaming, in-
dependent of the polarization, preserving it, changing it, producing two
membranes with different polarizations, having exactly one or two ob-
jects in (each membrane of) the right-hand side, thus improving results
from [1]. Several problems related to different combinations of these re-
strictions are formulated, too.

1 Introduction

Membrane systems are biologically motivated theoretical models of distributed
and parallel computing. The most interesting questions probably are complete-
ness (solving every solvable problem) and efficiency (solving a hard problem in
feasible time). We here address the latter problem, i.e., we shall give an algo-
rithm how to decide SAT in linear time using only two polarizations in P systems
with active membranes.

The question of removing the polarizations (charges +,−, 0 associated with
the membranes) from P systems with active membranes without diminishing
their computing power or their efficiency in solving computationally hard prob-
lems in a feasible time was formulated several times and was recently considered
in various contexts (with the polarizations replaced by various other features,
such as label changing – see, e.g., [2], [3]). Here, following [1], we present another
way for improving previous results: the number of polarizations can be decreased
to two, without introducing new features.

G. Mauri et al. (Eds.): WMC5 2004, LNCS 3365, pp. 146–160, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Efficiency of P Systems with Active Membranes and Two Polarizations 147

There are numerous results of solving such (mostly NP-complete) problems
as SAT, HPP, Validity, Subset-Sum, Knapsack, Vertex Cover, Clique, QBF-SAT
by P systems with active membranes with three polarizations (e.g., see [2], [3],
[4], [5], [9], [10], [12], [13], [14], [16], [17], [18], [20], [21]). The ability of the
systems to act depending on the membrane polarizations and to change them
is a powerful control feature, the use of which is not necessary if one pays the
price of changing membrane labels. Another result is solving SAT in a semi-
uniform manner, without polarizations and without changing labels, but also
using membrane dissolution and non-elementary membrane division. Here we
show that two polarizations are enough even when restricting the types of rules
to (a), (c), and (e). It remains as an open question whether polarizations can be
completely removed, and we conjecture that the answer is negative.

Moreover, we consider a few restrictions on the general form of the rules,
under which it is still possible to solve SAT. The motivations of considering these
restrictions are of three kinds: bringing the construction closer to biological cells
(making it as “realistic” as possible); building a normal form (as restrictive as
possible), for the possible future direct simulation results; and finding out which
aspects of active membranes are essential for the efficiency of P systems.

2 Prerequisites

The reader is assumed to be familiar with basic elements of formal language
theory. For an alphabet V , by V ∗ we denote the free monoid generated by V
under the operation of concatenation; the empty string is denoted by λ, and
V ∗ − {λ} is denoted by V +. By N we denote the set of positive integers, and
N0 := N ∪ {0} is the set of non-negative integers. In the following we will not
distinguish between a vector (y1, ..., yβ) ∈ Nβ

0 , its representation by a multiset
or its representation by a string with Parikh vector (y1, ..., yβ). For more notions
as well as basic results from the theory of formal languages, the reader is referred
to [6] and [19].

We also assume the reader to be familiar with the basic elements of
membrane computing, e.g., from [15] (comprehensive details can be found at
http://psystems.disco.unimib.it), in particular, with P systems with ac-
tive membranes.

For the sake of completeness, we recall the definition of P systems with ac-
tive membranes for the case when only rules of types (a) to (e) are used; in a
more general way, as in the original definition, we allow the polarizations to be
arbitrary non-negative integers.

A P system system with active membranes (of degree m ≥ 1) is a construct
of the form

Π = (O,E, μ,w1, · · · , wm, e1, · · · , em, R),

where O is the alphabet of objects, E = {0, · · · , n − 1} with n ≥ 1 is the
set of electrical charges (polarizations), μ is the membrane structure (with m
membranes, bijectively labelled with 1, 2, · · · ,m; by H we denote the set of labels
{1, 2, · · · ,m}), w1, · · · , wm are strings over O indicating the multisets of objects
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at the beginning present in the m regions of μ, e1, · · · , em are the polarizations
at the beginning assigned to the membranes 1, · · · ,m, and R is a finite set of
rules of the following forms:

(a) [ a→ v ]ih, a ∈ O, v ∈ O∗, h ∈ H, i ∈ E
(evolution rules, used in parallel in the region of membrane h, provided that
the polarization of the membrane is i);

(b) a[ ]ih → [ b ]jh, a, b ∈ O, h ∈ H, i, j ∈ E
(communication rules, sending an object into a membrane, possibly changing
the polarization of the membrane);

(c) [ a ]ih → [ ]jhb, a, b ∈ O, h ∈ H, i, j ∈ E
(communication rules, sending an object out of a membrane, possibly chang-
ing the polarization of the membrane);

(d) [ a ]ih → b, a, b ∈ O, h ∈ H, i ∈ E
(membrane dissolution rules; in reaction with an object, the membrane is
dissolved);

(e) [ a ]ih → [ b ]jh[ c ]kh, a, b, c ∈ O, h ∈ H, i, j, k ∈ E
(division rules for elementary membranes; in reaction with an object, the
membrane is divided into two membranes with the same label, possibly of
different polarizations, and the object specified in the rule is replaced in the
two new membranes by possibly new objects).

The rules of types (b), (c), (d), and (e) are considered as involving the mem-
brane, hence, we assume at most one of such a rule to be used for each membrane
in a given step; the use of rules is maximally parallel, with the rules chosen in a
non-deterministic manner.

An output is associated with a halting computation – and only with halting
computations – in the form of the objects sent into the environment during the
computation. When using a P system Π for decision problems, we also specify
an input membrane i0, where the input to be analysed is put in addition to the
axiom multiset wi0 ; in sum, we then write

Π = (O,E, μ,w1, · · · , wm, e1, · · · , em, R, i0).

3 Solving SAT in Linear Time

Throughout this section we use the following notation for instances of the SAT
problem.

We consider a propositional formula in conjunctive normal form:

β = C1 ∧ · · · ∧ Cm,

Ci = yi,1 ∨ · · · ∨ yi,li , 1 ≤ i ≤ m, where
yi,k ∈ {xj ,¬xj | 1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li,

i.e., n is the number of variables and m is the number of clauses, hence, to β
the size (n,m) is associated. For arbitrary (n,m) ∈ N2, we denote the family of
SAT problems of size (n,m) by SAT(n,m).
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3.1 Using Global Rules

As it was shown in [1], SAT(n,m) can be decided in linear time (linear with
respect to n and m, i.e., the algorithm has time complexity O (n+m)) by a
uniform family of P systems with two polarizations, only using rules of types
(a), (c), and (e). Throughout this section we will always restrict ourselves to
restricted variants of these types of rules.

We first recall the theorem from [1], giving the construction of the proof
and short explanations as well as repeating the example that illustrates the
corresponding construction.

Theorem 1. SAT(n,m) can be deterministically decided in linear time (linear
with respect to n and m) by a uniform family of P systems with active membranes
with two polarizations and global rules of types (a), (c), and (e).

Proof. An instance β of the SAT(n,m) problem as described above is encoded as
a multiset over

V (n,m) = {xi,j,j , x
′
i,j,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

The object xi,j,j (x′
i,j,j) represents the variable xj appearing in the clause Ci

without (with) negation. Thus, the input multiset is

w = {xi,j,j | xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n}
∪ {x′

i,j,j | ¬xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n},

which is placed into membrane 2 in addition to the initial symbol d0 in the P
system Π(n,m) we will construct for any given (n,m) ∈ N2:

Π(n,m) = (O(n,m), {0, 1}, [1 [2 ]2 ]1, t0, d0, 0, 0, R, 2),
O(n,m) = {xi,j,k, x

′
i,j,k | 1 ≤ i ≤ m, 0 ≤ k ≤ j ≤ n} ∪ {z, o, yes, no}

∪ {ci,j | 0 ≤ i ≤ m, 0 ≤ j ≤ n} ∪ {ci | 0 ≤ i ≤ m}
∪ {di | 0 ≤ i ≤ n+ 1} ∪ {ei | 0 ≤ i ≤ m+ 1}
∪ {th | 0 ≤ h ≤ n+ 2m+ 4};

R contains the following rules (grouped by sub-tasks; see [1] for more explana-
tions and details):

Global Control in Skin Membrane

– [ th → th+1 ]0, 0 ≤ h ≤ n+ 2m+ 2.

Generation Phase

– [ dj ]e → [ dj+1 ]0[ dj+1 ]1, e ∈ {0, 1}, 0 ≤ j < n− 1;
– [ xi,j,k → xi,j,k−1 ]e,

[ x′
i,j,k → x′

i,j,k−1 ]e, e ∈ {0, 1}, 1 ≤ i ≤ m, 1 ≤ k ≤ j ≤ n;
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– [ xi,j,0 → λ ]0,
[ xi,j,0 → ci,j ]1,
[ x′

i,j,0 → ci,j ]0,
[ x′

i,j,0 → λ ]1, 1 ≤ i ≤ m, 1 ≤ j ≤ n;
– [ ci,j → ci,j+1 ]e, e ∈ {0, 1}, 1 ≤ i ≤ m, 1 ≤ j < n;
– [ dn → dn+1z ]1,

[ dn → dn+1 ]0.

During each of the first n steps, every elementary membrane is duplicated,
in order to examine all possible truth assignments to the variables x1, · · · , xn.

In step j of the generation phase, one of the membranes resulting from the
application of the rule

[ dj ]e → [ dj+1 ]0[ dj+1 ]1

gets polarization 0, corresponding to assigning the truth value false to xj (and
in this case the clauses where ¬xj appears are satisfied), and the other membrane
gets polarization 1, corresponding to assigning the truth value true to xj (and
in this case those clauses where xj appears without negation are satisfied). Due
to the application of the rules

[ xi,j,0 → λ ]0, [ xi,j,0 → ci,j ]1, [ x′
i,j,0 → ci,j ]0, [ x′

i,j,0 → λ ]1,

only those variables “survive” which correspond to the correct truth assignment
at the moment the last index has reached the ground level 0.

After the end of this first phase of the algorithm, 2n elementary membranes
(each of them with label 2) have been produced, each of them containing dn+1
and objects ci,n for all clauses Ci that are satisfied. Every membrane with po-
larization 1 also contains an object z. This procedure described so far in total
takes n+ 1 step.

Transition Phase

– [ z ]1 → [ ]0o;
– [ dn+1 → e1 ]e, e ∈ {0, 1};
– [ ci,n → ci ]e, e ∈ {0, 1}, 1 ≤ i ≤ m.

By the application of the rule [ z ]1 → [ ]0o the polarization of the membranes
polarized by 1 is reset to zero again by passing through the surrounding mem-
brane, thereby also yielding the “garbage” symbol o within the skin membrane.
After this single step of the transition phase all the elementary membranes now
have the polarization 0 and contain e1 as well as ci for every satisfied clause Ci.

Checking Phase

– [ c1 ]0 → [ ]1o;
– [ ei → ei+1z ]0, 1 ≤ i < m;
– [ c1 → λ ]1;
– [ ci → ci−1 ]1, 2 ≤ i ≤ m;
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– [ em → em+1 ]0;
– [ em+1 ]1 → [ ]1 yes.

All clauses are satisfied if and only if all objects c1, · · · , cm are present in some
membrane, and at the end all objects ci, 1 ≤ i ≤ m, have been sent out into the
skin membrane. While checking the last clause, no object z (for resetting the
polarization of the membrane as this is done in the preceding steps) is produced
from em by applying the rule [ em → em+1 ]0, hence, em+1 will be present in a
membrane with polarization 1 thus allowing for the application of the rule

[ em+1 ]1 → [ ]1 yes

indicating that the corresponding elementary membrane represented a solution
of the given satisfiability problem. In total, this phase takes 2m steps.

Output Phase

– [ yes ]0 → [ ]1 yes;
– [ tn+2m+3 ]0 → [ ]1 no.

Every elementary membrane which after the first n+1 steps had represented
a solution of the given satisfiability problem, after n+ 1 + 1 + 2m steps has sent
a copy of yes into the skin membrane, and in the next step one of these copies
exits into the environment by using the rule

[ yes ]0 → [ ]1 yes

thus giving the positive result yes and changing the skin polarization to 1 in
order to prevent further output. If, on the other hand, the given satisfiability
problem has no solution, after n + 2m + 3 steps the polarization of the skin
membrane will still be 0, hence, the rule

[ tn+2m+3 ]0 → [ ]1 no

sends out the correct answer no. ��

The construction elaborated above is illustrated by an example, see Figure 1.

It is worth noticing that the rules are global : the same set of rules is valid for
all membranes, i.e., in the rules, the labels of the membranes can be omitted. We
also note that in this construction already elaborated in [1], the membrane divi-
sion rules do not depend on the polarization (which therefore can be omitted in
the meaning of “applicable for any membrane”), and the contents of membranes
after division is identical, but the polarizations are different. Finally, every rule
of type (c) changes the polarization (the superscript ¬ will be used to denote
this variant).

Thus, all rules used are even of the following restricted forms (where the
interpretation of the subscripts g, g1, and g2 is explained in the subsequent
subsection; the superscript ¬ indicates that the polarization is changed):
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Fig. 1. Evolution of a P system deciding whether γ = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) has
solutions

(ag) [ a→ v ]i,
(cg1) [ a ]i → [ ]¬ b,
(eg2) [ a ]→ [ b ]0[ b ]1,

where a, b ∈ O, v ∈ O∗, h ∈ H, i ∈ {0, 1} .

According to the explanations given above, we now have even proved a
stronger result than that already shown in [1].

3.2 Using Rules of a Specific “Normal Form”

In this subsection we now consider the following forms (particular cases) of the
types (a), (c), (e) of rules (where a, b, c ∈ O, h ∈ H, i ∈ {0, 1}):

(agb) [ a→ bc ]i (global split rule),
(agu) [ a→ b ]ih (rename only),
(cnp1) [ a ]h → [ ]¬h a (exit only, polarization switched),
(cgp1) [ a ]→ [ ]¬ b (global exit rule, polarization switched),
(cgny) [ yes ]0 → [ ]1 yes (a special rule for ejecting the result),
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(egp0) [ a ]→ [ b ][ c ] (global polarizationless division rule),
(egp2) [ a ]→ [ b ]0[ c ]1 (global polarization-independent division rule,

producing membranes of different polarizations).

In the subscripts of the rules, we write g if the rule is global (does not depend
on the label of the membrane), n if the rule is not-renaming (the object(s) in
(each membrane of) the right-hand side is(are) the same as the object in the
left-hand side), p if the rule does not depend on the polarization, 0 if the rule
preserves it, 1 if the rule changes it, 2 if the rule produces two membranes with
different polarizations, and b (u) if the number of the objects in (each membrane
of) the right-hand side is two (one, respectively). Finally, y is used if the rule
acts on the object yes.

The main idea of the possible restrictions is the following: to try to make rules
of types (c) and (e) independent of the polarization by remembering the needed
value in a corresponding object, and then decoding it by generating copies of z
if needed (using such an approach, the computation slows down by a constant
factor). In the same time, other restrictions are put on the general form of the
rules, leading to the following theorem:

Theorem 2. SAT(n,m) can be deterministically decided in linear time (linear
with respect to nm, i.e., the algorithm has time complexity O (nm)) by a uniform
family of P systems with active membranes with two polarizations and rules of
the forms (agb), (cnp1), (cgny), and (egp0).

Proof. An instance β of the SAT(n,m) problem as described above is encoded as
a multiset over

V (n,m) = {xi,j,j,0, x
′
i,j,j,0 | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

The object xi,j,j,0 represents the variable xj appearing in the clause Ci without
negation, and the object x′

i,j,j,0 represents the variable xj appearing in the clause
Ci with negation. Thus, the input multiset is

w = {xi,j,j,0 | xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n}
∪ {x′

i,j,j,0 | ¬xj ∈ {yi,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n},
which has to be put into membrane 2 in addition to the initial symbol d0,0 in
the P system Π(n,m) defined below:

Π(n,m) = (O(n,m), {0, 1}, [1 [2 ]2 ]1, t0, d0,0, 0, 0, R, 2),
O(n,m) = {xi,j,k,l, x

′
i,j,k,l | 1 ≤ i ≤ m, 0 ≤ k ≤ j ≤ n, 0 ≤ l ≤ 3}

∪ {z, o, yes, no}
∪ {ci,j,l | 0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ l ≤ 3}
∪ {ci,l | 0 ≤ i ≤ m, 0 ≤ l ≤ 2}
∪ {dj,l, d′j,l | 0 ≤ j ≤ n, 0 ≤ l ≤ 3}
∪ {ei,l | 0 ≤ i ≤ m+ 1, 0 ≤ l ≤ 2}
∪ {th | 0 ≤ h ≤ 2mn+ 4n+ 3m+ 4};
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Let us briefly describe the meaning of the objects: objects xi,j,k,l, x
′
i,j,k,l en-

code the instance of the problem, objects ci,j,l, ci,l represent clauses satisfied,
objects dj,l, d′j,l control the generation phase, objects ei,l control the checking
phase, objects th produce the negative answer in case no positive answer is
given. Object z is used to change the polarization of the membrane, object o is a
“garbage” object, and finally yes and no are the possible results. The subscript
l is used to switch between different states within cycles of the generation or the
checking phase.
R contains the following rules (we also give explanations for the use of these

rules):

Global Control in Skin Membrane

– [ th → th+1o ]0, 0 ≤ h ≤ 2mn+ 4n+ 3m+ 3.

The control variables th only occur in exactly one copy in the skin membrane.
As we shall see at the end of the description of the whole algorithm, after 2mn+
4n+3m+3 derivation steps in the corresponding P system Π(n,m) the answer
yes appears outside the skin membrane if the given satisfiability problem has a
solution, whereas in the case that no solution exists, one step later the answer
no appears in the environment.

The main task of the algorithm is accomplished in the generation phase
of the algorithm where for each possible truth assignment to the n variables
one elementary membrane is generated which after n + 1 steps will contain all
the information needed to decide whether it represents a solution of the given
problem or not:

Generation Phase

– [ dj,0 ]→ [ dj,1 ][ d′j,1 ], 0 ≤ j ≤ n− 1;
– [ dj,1 → dj,2o ]0,

[ d′j,1 → d′j,2z ]0, 0 ≤ j ≤ n− 1;
– [ dj,2 → dj,3o ]0,

[ d′j,2 → dj,3z ]0, 0 ≤ j ≤ n− 1;
– [ dj,3 → dj+1,0o ]e, e ∈ {0, 1}, 0 ≤ j ≤ n− 1;
– [ z ]2 → [ ]¬2 z.

There are n cycles, each taking four steps and duplicating every elementary
membrane in order to examine all possible truth assignments to the variables
x1, · · · , xn. Symbols dj,1 (d′j,1) correspond to the value false (true) of xj , re-
spectively. In the case of the value true, the membrane polarization changes
(using object z) to 1 two steps after the division, and then it is restored to 0.

– [ xi,j,k,l → xi,j,k,l+1o ]0,
[ x′

i,j,k,l → x′
i,j,k,l+1o ]0, 1 ≤ i ≤ m, 0 ≤ k ≤ j ≤ n, 0 ≤ l ≤ 2;

– [ xi,j,k,3 → xi,j,k−1,0o ]e,
[ x′

i,j,k,3 → x′
i,j,k−1,0o ]e, e ∈ {0, 1}, 1 ≤ i ≤ m, 1 < k ≤ j ≤ n;
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Fig. 2. Generation phase

– [ xi,j,1,3 → oo ]0,
[ xi,j,1,3 → ci,j,0o ]1,
[ x′

i,j,1,3 → ci,j,0o ]0,
[ x′

i,j,1,3 → oo ]1, 1 ≤ i ≤ m, 1 ≤ j ≤ n;
– [ ci,j,l → ci,j,l+1o ]0, 0 ≤ l ≤ 2,

[ ci,j,3 → ci,j+1,0o ]e, e ∈ {0, 1}, 1 ≤ i ≤ m, 1 ≤ j < n.

Now let us consider step 4j − 1 of the generation phase: Two steps after the
application of the rule

[ dj,0 ]→ [ dj,1 ][ d′j,1 ],

one of the resulting membranes carries polarization 0, corresponding to assigning
the truth value false to xj (and in this case the clauses where ¬xj appears
are satisfied), and the other membrane carries polarization 1, corresponding to
assigning the truth value true to xj (and in this case those clauses where xj
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appears without negation are satisfied). Most important for the correct answer
to the decision problem is the application of the rules

[ xi,j,1,3 → oo ]0, [ xi,j,1,3 → ci,j,0o ]1, [ x′
i,j,1,3 → ci,j,0o ]0, [ x′

i,j,1,3 → oo ]1,

which in the corresponding step of the derivation act according to the truth value
assigned to xj in the underlying elementary membrane, i.e., only those variables
“survive” which correspond to the correct truth assignment at the moment the
last index has reached the ground level 0.

After the end of this first phase of the algorithm, 2n elementary membranes
(each of them with label 2) have been produced, each of them containing dn,0
and objects ci,n,0 for all clauses Ci that are satisfied. This procedure described
so far in total takes 4n steps.

Transition Phase

– [ dn,0 → e1,0 ]0,
[ ci,n,0 → ci,0 ]0, 1 ≤ i ≤ m.

After this single step of the transition phase, all the elementary membranes
now have the polarization 0 and contain e1,0 as well as ci,0 for each satisfied
clause Ci.

Checking Phase

– [ c1,0 → zz ]0,
– [ ci,0 → ci,1o ]1,

[ ci,1 → ci,2o ]0,
[ ci,2 → ci,1o ]1,
[ ci,2 → ci−1,0o ]0, 1 < i ≤ m;

– [ ei,0 → ei,1o ]1,
[ ei,1 → ei,2o ]0,
[ ei,2 → ei,1o ]1,
[ ei,2 → ei+1,0o ]0, 1 ≤ i ≤ m.

All clauses are satisfied in some membrane labelled by 2 if and only if all
objects c1, · · · , cm are present in this membrane. In each cycle i, 1 ≤ i ≤ m,
there are ki ≤ n sub-cycles, each activated and closed again by symbols z that
were generated from a symbol c1,0 at the beginning of the cycle; going out, a
symbol z always changes the polarization. Thus, if at the beginning of some
cycle c1,0 is not present, then the objects in the corresponding membrane do not
evolve any more.

Otherwise, ki > 0 copies of c1,0 lead to 2ki steps of changing the polarization
between 0 and 1. Finally, the polarization becomes 0 and remains so, and then
the objects ei,2 and ci,2 “notice” this and the next cycle may begin. The whole
cycle takes 2ki + 3 steps.

If all clauses are satisfied, then finally the membrane will only contain object
em+1,0. In total, this phase takes at most m(2n+ 3) = 2mn+ 3m steps.
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Fig. 3. Checking phase

Output Phase

– [ em+1,0 → yes o ]0,
[ yes ]0 → [ ]1 yes;

– [ t2mn+4n+3m+4 → no o ]0,
[ no ]→ [ ]¬ no.

Every elementary membrane which after the first 4n steps had represented a
solution of the given satisfiability problem, after at most (4n)+1+(3m+2mn)+
3 = 2mn + 4n + 3m + 4 steps has sent a copy of yes into the skin membrane,
and, when the first copy of yes arrives in the skin, one copy of these copies exits
into the environment, thus giving the positive result yes and changing the skin
polarization to 1 in order to prevent further output. If, on the other hand, the
given satisfiability problem has no solution, after 2mn+ 4n+ 3m+ 4 steps the
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Fig. 4. Output phase

polarization of the skin membrane still will be 0, hence, the object no is produced
and sent out as the correct answer.

Due to the explanations given above, one can easily verify that in any case the
given algorithm will correctly decide a given satisfiability problem in n variables
and m clauses in at most 2mn+ 4n+ 3m+ 5 steps, i.e., the algorithm has time
complexity O (nm). This observation completes the proof. ��

We illustrate the construction given in Theorem 2 by an example: Figures 2,
3, and 4 show the evolution of the P system deciding whether γ = (x1 ∨ x2) ∧
(¬x1 ∨ ¬x2) has solutions.

The objects are written in boldface if the corresponding membrane has po-
larization 1. The input of the system is x1,1,1,0x1,2,2,0x

′
2,1,1,0x

′
2,2,2,0 in membrane

2, and the output of the system is yes. The computation takes 22 steps.

3.3 Remarks and Other Variants

Some definitions of decisional P systems require that the result is ejected into
the environment only in the last step of the computation. Our construction can
be easily adjusted to fulfill this property by remembering, in the objects ei,j ,
also the number l of times the number of steps the membrane had polarization
1 during the checking phase, and then “keeping them busy” for 2(mn− l) steps.
Then, all elementary membranes with positive answers will stop evolving at the
same time by sending yes into the skin, and those with negative answers will
stop evolving earlier.

In the construction given above, the time for giving a positive answer is
actually bounded by 2K + 4n+ 3m+ 4, where K is the number of occurrences
of the variables in β. Thus, if the size of the problem is given as (n,m,K), then
(adjusting the counter in the skin) the time can be made at most 2K+4n+3m+5.

On the other hand, we do not believe that the rule sending object yes into the
skin can be made independent of the polarization; otherwise, multiple answers
are given and the halting time is no longer polynomial. This can easily be avoided
for the price of using membrane dissolution (rules of type (dgp) ) and one more
membrane: a copy of the “witness” of the positive result dissolves the middle
membrane, releasing a unique object yes into the skin, otherwise object no is
ejected to the skin, as it was done in the proof of Theorem 9 in [3].

Finally, we mention alternative variants of restrictions.
Using the generation phase similar to that from the proof of Theorem 1 and

making relevant adjustments to the global control, one can quite easily replace
the rules of type (egp0) by rules of type (egp2).
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By replacing the rule [ z ]2 → [ ]¬2 z by [ z ]→ [ ]¬ o, one can remove type
(cnp1) for the price of introducing type (cgp1).

Corollary 3. For t ∈ {n, g} and k ∈ {0, 2}, SAT(n,m) can be decided in linear
time (linear with respect to nm) by a uniform family of P systems with ac-
tive membranes with two polarizations and rules of the forms (agb), (ctp1), and
(egpk).

4 Conclusions

In Theorem 2 we have given an algorithm for deciding the NP-complete decision
problem SAT(n,m) by a uniform family of P systems with active membranes in
linear time (linear with respect to nm) with only two polarizations and rules of
types (a), (c), and (e), of specific restrictive types. Various other restrictions are
summarized in Corollary 3, and the discussion is given in Subsection 3.3.

The question remains whether further or other restrictions, respectively, of
the general form of these rules are possible. For instance, can the problem be
solved using only rules of types (a), (cp0), (e) (the rules of type (c) do not depend
on the polarization and preserve it)? What about using only types (ap), (c), (e)
(the rules of type (a) do not depend on the polarization)?

Another interesting question is to study systems with rules of types (au), (b),
(c), (d), (e); such systems can only increase the number of objects via membrane
division. What is their generative power? Are they efficient?
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Abstract. We prove that two classes of communicative P systems with 3
membranes and with minimal cooperation, namely P systems with sym-
port/antiport rules of size 1 and and P systems with symport rules of size
2, are computationally complete: they generate all recursively enumer-
able sets of vectors of nonnegative integers. The result of computation is
obtained in the elementary membrane.

1 Introduction

P systems were introduced by Gheorghe Păun in [12] as distributed parallel
computing devices of biochemical inspiration. The original definition is quite
general and many different variants of P systems were proposed; we refer to
[15] for a comprehensive bibliography. One of these variants, P systems with
symport/antiport, was introduced in [11]. This variant uses one of the most im-
portant features of membrane systems: the communication. This operation is so
powerful, that it suffices by itself for a big computational power. These systems
have two types of rules: symport rules, when several objects go together from one
membrane to another, and antiport rules, when several objects from two mem-
branes are exchanged. In spite of the simple definition, using such operations we
can compute all Turing computable sets of numbers [11]. This result was several
times improved with respect to the number of used membranes and/or the size
of symport/antiport rules ([4], [6], [9], [13], [2], [8], [14]).

Rather unexpectedly, minimal symport/antiport P systems, i.e., systems
where symport rules move only one object and antiport rules move only two
objects across the same membrane in different directions, are universal. The
proof of this result may be found in [1] and the corresponding system has 9
membranes.

G. Mauri et al. (Eds.): WMC5 2004, LNCS 3365, pp. 161–177, 2005.
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This result was improved first by reducing the number of membranes to six [7],
five [2], four [5, 8], and at last G. Vaszil [14] showed that three membranes are
sufficient to generate all recursively enumerable sets of numbers (but his proof
had one disadvantage: the output membrane contains 5 additional symbols). In
this paper we give another proof of the last result which was obtained indepen-
dently. We also remark that in our proof the output membrane does not contain
superfluous symbols.

Minimally cooperative symport P systems, i.e., P systems only having sym-
port rules and only moving one or two objects, are universal with four mem-
branes [6]. In this paper we improve that result down to three membranes.

Our proofs of both results are based on a simulation of counter automata (or
register machines [10]), see also [3], which was also used in [1], [4], [7], and [2].

The question about universality of P systems with minimal symport/antiport
(symport) rules with 1 and 2 membranes is still open.

2 Basic Notions

A non-deterministic counter automaton is a 5-tupleM = (Q, q0, qf , C, P ), where

– Q is a finite set of states,
– q0 ∈ Q is the initial state,
– qf ∈ Q is the final state,
– C is a finite set of counters,
– P is a finite set of instructions of the following form:

1. (qi → ql, ck+), with qi, ql ∈ Q, qi �= qf , ck ∈ C increment instruction).
This instruction increments counter ck by 1 and changes the state of the
system from qi to ql.

2. (qi → ql, ck−), with qi, ql ∈ Q, qi �= qf , ck ∈ C decrement instruction).
If the value of counter ck is greater than zero, then this instruction
decrements it by 1 and changes the state of the system from qi to ql.
Otherwise (when the value of ck is zero) the computation is blocked in
state qi.

3. (qi → ql, ck = 0), with qi, ql ∈ Q, qi �= qf , ck ∈ C (zero test instruction).
If the value of counter ck is zero, then this instruction changes the state
of the system from qi to ql. Otherwise (the value of ck is greater than
zero) the computation is blocked in state qi.

4. Stop. This instruction stops the computation of the counter automaton
and it can be assigned only to the final state qf .

A transition of the counter automaton consists in updating/checking the
value of a counter according to an instruction of one of types above and by
changing the current state to another one. The computation starts in state q0
and with all counters equal to zero. A result of the computation of a counter au-
tomaton is the set of all values of the first counter c1 ∈ C when the computation
halts in state qf ∈ Q.
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It is known that non-deterministic counter automata generate all recursively
enumerable sets of non-negative natural numbers starting from empty counters.

A P system with symport/antiport (symport) is a construct

Π = (O,μ,w1, . . . , wk, E,R1, . . . , Rk, i0),

where:

1. O is a finite alphabet of symbols called objects,
2. μ is a membrane structure consisting of m membranes that are labelled in a

one-to-one manner by 1, 2, . . . , k.
3. wi ∈ O∗, for each 1 ≤ i ≤ k is a finite multiset (i.e., multiset where elements

are present in a finite number of copies) of objects associated with the region
i (delimited by membrane i),

4. E ⊆ O is the set of objects that appear in the environment in an infinite
number of copies,

5. Ri, for each 1 ≤ i ≤ k, is a finite set of symport/antiport rules associated
with the region i and which have the forms (x, in), (y, out), (y, out;x, in),
where x, y ∈ O∗ (for symport P systems Ri contains only rules of the forms
(x, in), (y, out)),

6. i0 is the label of an elementary membrane of μ that identifies the output
region.

A symport/antiport (symport) P system is defined as a computational device
consisting of a set of k hierarchically nested membranes that identify k distinct
regions (the membrane structure μ), where to each region i there are assigned a
multiset of objects wi and a finite set of symport/antiport (symport) rules Ri,
1 ≤ i ≤ k. A rule (x, in) ∈ Ri permits to objects specified by x to be moved
into region i from the immediately outer region. Notice that for P systems with
symport the rules in the skin membrane of the form (x, in), where x ∈ E∗,
are forbidden (they directly lead to endless computations). A rule (x, out) ∈ Ri

permits to the multiset x to be moved from region i into the outer region. A rule
(y, out;x, in) permits to multisets y and x, which are situated in region i and
the outer region of i respectively, to be exchanged. It is clear that a rule can be
applied if and only if the multisets involved by it are present in the corresponding
regions.

As usual, a computation in a symport/antiport (symport) P system is ob-
tained by applying the rules in a non-deterministic maximally parallel manner.
Specifically, in this variant, a computation is restricted to moving objects through
membranes, since symport/antiport (symport) rules do not allow the system to
modify the objects placed inside the regions. Initially, each region i contains the
corresponding finite multiset wi, whereas the environment contains only objects
from E that appear in infinitely many copies.

A computation is successful if starting from the initial configuration it reaches
a configuration where no rule can be applied. The result of a successful compu-
tation is a natural number that is obtained by counting the objects that are
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presented in region i0. Given a P system Π, the set of natural numbers com-
puted in this way by Π is denoted by N(Π). If the multiplicity of each object
is counted separately, then a vector of natural numbers is obtained, denoted by
PsΠ, see [13].

We denote by NOPm(symr, antit) (NOPm(symr)) the family of sets of nat-
ural numbers that are generated by a P system with symport/antiport (sym-
port) having at most m > 0 membranes, symport rules of size at most r ≥ 0,
and antiport rules of size at most t ≥ 0. The size of a symport rule (x, in) or
(x, out) is given by |x| , while the size of an antiport rule (y, out;x, in) is given
by max{|x|, |y|}. We denote by NRE the family of recursively enumerable sets
of natural numbers. If we replace numbers by vectors, then in the 3 notations of
this paragraph N is replaced by Ps.

3 Main Results

Theorem 1. NOP3(sym1, anti1) = NRE.

Proof. We prove this result by simulating a non-deterministic counter automaton
M = (Q, q0, qf , C, P ) which starts with empty counters. We suppose that all
instructions from P are labelled in a one-to-one manner with {1, . . . , n} = I.
Denote by I+ (I+ ⊆ I) the set of labels of increment instructions, by I− (I− ⊆ I)
the set of labels of decrement instructions, and by I=0 (I=0 ⊆ I) the set of labels
of zero test instructions.

We construct a P system Π with the membrane structure

[1 [2 [3 ]3 ]2 ]1,

and with the computations proceedings along three stages:

1. Preparation of the system for the computation.
2. The simulation of instructions of the counter automaton.
3. Terminating the computation.

We code the counter automaton as follows. At each moment (after stage
one) region 1 holds the current state of the automaton, represented by a symbol
qi ∈ Q, region 2 keeps the value of all counters, represented by the number of
occurrences of symbols ck ∈ C. We simulate the instructions of the counter au-
tomaton and we use for this simulation the symbols ck ∈ C, aj , bj , dj , ej , j ∈ I.
During the first stage we bring from the environment an arbitrary number of
symbols bj into region 3, symbols dj into region 2 and symbols ck into region 1.
We suppose that we have enough symbols in the corresponding membranes to
perform the computation. We also use the following idea: we bring from the envi-
ronment symbols ck into region 1 all time during the computation. This process
may be stopped only if all stages finish correctly. Otherwise, the computation
will never stop.

We split our proof in several parts which depend on the logical separation of
the behavior of the system. We will present rules and initial symbols for each



Communicative P Systems with Minimal Cooperation 165

part, but we remark that the system that we present is the union of all these
parts.

We construct the P system Π as follows:

Π = (O, [1 [2 [3 ]3 ]2 ]1, w1, w2, w3, E,R1, R2, R3, 3),
O = E ∪ {fj | j ∈ I} ∪ {m1 | 1 ≤ i ≤ 5}
∪ {l7, l8, g1, g2, g3, Ia, I1, I2, I3, Ic, Ob, O2, i, t,#0,#1,#2},

E = {aj , bj , dj , ej | j ∈ I} ∪ {ck | ck ∈ C}
∪ {qi | qi ∈ Q} ∪ {li | 1 ≤ i ≤ 6},

w1 = I1I2I3O2g2il7l8#1#2,

w2 = Ictm1m2#0,

w3 = IaObg1g3m3m4m5

∏
j∈I

fj ,

Ri = Ri,s ∪Ri,r ∪Ri,f ∪Ri,a, 1 ≤ i ≤ 3.

The rules are given by phases: START (stage 1), RUN (stage 2), FIN (stage 3)
and AUX.

AUX.

R1,a = {1a1 : (Ic, in), 1a2 : (I1, in)} ∪ {1a3 : (Ic, out; ck, in) | ck ∈ C}
∪ {1a4 : (I1, out; bj , in) | j ∈ I} ∪ {1a5 : (I1, out; dj , in) | j ∈ I=0}
∪ {1a6 : (#0, in), 1a7 : (#0, out)},

R2,a = {2a1 : (Ob, out), 2a2 : (Ia, in), 2a3 : (I2, in)}
∪ {2a4 : (bj , out;Ob, in) | j ∈ I−} ∪ {2a5 : (Ia, out; aj , in) | j ∈ I+}
∪ {2a6 : (I2, out; bj , in) | j ∈ I} ∪ {2a7 : (I2, out; dj , in) | j ∈ I=0},

R3,a = {3a1 : (O2, out), 3a2 : (I3, in), 3a3 : (I3, out; c1, in)}
∪ {3a4 : (x, out;O2, in) | x ∈ {I1, I2, g2, l1, l2, l3, l7}}
∪ {3a5 : (aj , out;O2, in) | j ∈ I}
∪ {3a6 : (#i, in), 3a7 : (#i, out) | 1 ≤ i ≤ 2}.

Symbols Ia, I1, I2, I3, Ic bring symbols inside some membrane and return.
Symbols O1, Ob take symbols outside some membrane and return. Symbols
#0,#1,#2 check for “invalid” computations.

START.

R1,s = {1s1 : (g3, out; q0, in)},
R2,s = {2s1 : (I2, out; #1, in), 2s2 : (t, out; I1, in), 2s3 : (I2, out; t, in)}

∪ {2s4 : (g1, out; g2, in), 2s5 : (Ic, out; g1, in), 2s6 : (g3, out; i, in)},
R3,s = {3s1 : (bj , in) | j ∈ I} ∪ {3s2 : (g1, out; I1, in), 3s3 : (g3, out; g2, in)}

∪ {3s4 : (I1, out; I2, in), 3s5 : (Ob, out; I1, in), 3s6 : (Ia, out; i, in)}.
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Symbols I1, I2 bring from environment “sufficiently many” symbols dj in region
2 and a “correct number of” symbols bj in region 3 for the computation (rules
1a4,2a3,1a2,2a6,1a5,3s1,2a7). We illustrate this process in Figure 1.

The figures in this paper describe different stages of the evolution of the P
system given in the corresponding theorem. For simplicity, we focus on explaining
a particular stage and omit the objects that do not participate in the evolution at
that time. Each rectangle represents a membrane, each variable represents a copy
of an object in a corresponding membrane (symbols outside of the rectangle are
in the environment). In each step, the symbols that will evolve (will be moved)
are written in boldface. The labels of the applied rules are written above the ⇒
symbol.

bj1dj2bj3dj4 I1I2#1 ⇒1a4,2a3 dj2bj3dj4I1 #1bj1 I2 ⇒1a2,2a6

dj2bj3dj4 I1I2#1 bj1 ⇒1a5,2a3,3s1 bj3dj4I1 #1dj2 I2 bj1 ⇒1a2,2a7

bj3dj4 I1I2#1 dj2 bj1 ⇒1a4,2a3 · · ·

Fig. 1. Bringing objects bj , dj

Notice that I2 cannot be idle, as it immediately leads to an infinite compu-
tation (rules 2s1,3a6,3a7), so dj and bj in region 1 must be moved to region 2
by I2 (rules 2a6 and 2a7).

At some point, I1 stops bringing symbols dj ,bj . I1 and I2 are removed from
their “pumping” positions, Ic is placed in region 1, where it can “pump” symbols
ck into the skin membrane, and q0 is brought into region 1 to start the simulation
of the register machine. In the meantime Ia reaches region 2 and Ob reaches
region 1. Notice that both (g1, out; I1, in) and (Ob, out; I1, in) from R3,s are
applied, in either order (Figure 2).

RUN.

R1,r = {1r1 : (qi, out; aj , in), 1r2 : (bj , out; ql, in)
| (j : qi → ql, ckγ) ∈ P, γ ∈ {+,−,= 0}}

∪ {1r3 : (dj , out; ej , in) | (j : qi → ql, ck = 0) ∈ P},
R2,r = {2r1 : (bj , out; ck, in) | (j : qi → ql, ck+) ∈ P}}

∪ {2r2 : (ck, out; aj , in) | (j : qi → ql, ck−) ∈ P}
∪ {2r3 : (dj , out; aj , in), 2r4 : (ck, out; ej , in),

2r5 : (bj , out; ej , in) | (j : qi → ql, ck = 0) ∈ P},
R3,r = {3r1 : (bj , out; aj , in) | (j : qi → ql, ck+) ∈ P}

∪ {3r2 : (bj , out; aj , in) | (j : qi → ql, ck−) ∈ P}
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ck1ck2q0 I1I2g2i tIc g1g3IaOb ⇒2s2,2a3 ck1ck2q0 tg2i I1I2Ic g1g3IaOb

⇒2s3,3s2 ck1ck2q0 I2g2i tg1Ic I1g3IaOb ⇒2a3,2s4

ck1ck2q0 g1i I2tg2Ic I1g3IaOb ⇒2s5,3s4,3s3 ck1ck2q0 Ici I1tg3g1 I2g2IaOb

⇒1a3,2s6,3s5 Icq0ck2 ck1g3 tg1iOb I1I2g2Ia ⇒1a1,1s1,2a1,3s6

g3ck2 Icck1q0Ob tg1Ia I1I2g2i ⇒ · · ·

Fig. 2. Ending of the initialization (stage 1)

∪ {3r3 : (fj , out; aj , in), 3r4 : (bj , out; fj , in)
| (j : qi → ql, ck = 0) ∈ P}.

While Ic is bringing symbols ck into the skin membrane (rules 1a1,1a3), instruc-
tions (j : qi → ql, ckγ), γ ∈ {+,−,= 0} of the register machine are simulated.

Increment instruction:

ajql qick Ia bj ⇒1r1 qiql ajck Ia bj ⇒2a5 qiql Iack aj bj ⇒2a2,3r1

qiql ck Iabj aj ⇒2r1 qiql bj Iack aj ⇒1r2 qibj ql Iack aj

Fig. 3. qi replaced by ql, ck moved into region 2

Decrement instruction:

ajql qiOb ck bj ⇒1r1 qiql ajOb ck bj ⇒2r2 qiql ckOb aj bj ⇒3r1

qiql ckOb bj aj ⇒2a4 qiql ckbj Ob aj ⇒2a1,1r2 qibj qlckOb aj

Fig. 4. qi replaced by ql, ck removed from region 2

Checking for zero. qi replaced by ql if there is no ck in region 2 (Figure 5),
otherwise ej exchanges with ck and bj remains in region 2 (Figure 6).
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ajejql qi dj fjbj ⇒1r1 ejqiql aj dj fjbj ⇒2r3 ejqiql dj aj fjbj ⇒1r3,3r3

djqiql ej fj ajbj ⇒3r4 djqiql ej bj ajfj ⇒2r5 djqiql bj ej ajfj ⇒1r2

djqibj ql ej ajfj

Fig. 5. Zero test instruction. There is no ck in region 2

ajejql qi ckdj fjbj ⇒1r1 ejqiql aj ckdj fjbj ⇒2r3 ejqiql dj ckaj fjbj ⇒1r3,3r3

djqiql ej ckfj ajbj ⇒2r4,3r4 djqiql ck ejbj ajfj

Fig. 6. Zero test instruction. There is ck in region 2

FIN.

R1,f = {1f1 : (m1, out; l1, in), 1f2 : (#1, out;m1, in), 1f3 : (m2, out; l2, in)}
∪ {1f4 : (m3, out; l3, in), 1f5 : (m4, out; l4, in), 1f6 : (l4, out; l5, in)}
∪ {1f7 : (m5, out; l6, in)},

R2,f = {2f1 : (m1, out; qf , in), 2f2 : (qf , out; l7, in), 2f3 : (m2, out; l1, in)}
∪ {2f4 : (m3, out;O2, in), 2f5 : (m4, out; I3, in), 2f6 : (I3, out; l2, in)}
∪ {2f7 : (m5, out; l8, in), 2f8 : (l8, out; Ic, in), 2f9 : (c1, out; l6, in)}
∪ {2fa : (l6, out; #2, in), 2fb : (l3, in), 2fc : (#0, out, l5, in)}
∪ {2fd : (l3, out, l5, in)},

R3,f = {3f1 : (m3, out; l7, in), 3f2 : (m4, out; l1, in), 3f3 : (m5, out; l2, in)}
∪ {3f4 : (bj , out; l3, in) | j ∈ I}.

If a successful computation of the register machine is correctly simulated, then
qf will appear in region 1. #1 is removed from region 1, and a chain reaction
is started, during which symbols li move inside the membrane structure, and
symbols mi move outside the membrane structure (Figure 7).

Now O2 will pump outside the elementary membrane any symbol which stays
there, except c1 (rules 3a1, 3a4, 3a5).m4 will exchange with I3 (rule 2f5), and
the latter will pump symbols c1 into the elementary membrane (rules 3a2, 3a3),
and eventually exchange with l2 (rule 2f6).

Object m3 comes to the environment in exchange for l3 (rule 1f4), which
goes to membrane 2 (rule 2fb), and stays there if there is no object bj in the
elementary membrane (otherwise l3 will exchange with bj by rule 3f4).m4 comes
to the environment in exchange for l4 (rule 1f5), which brings l5 in the skin. l5
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l1l1l2 qf l7O2I3#1 m1m2 m3m4 ⇒2f1 l1l1l2 m1l7O2I3#1 qfm2 m3m4 ⇒1f1,2f2

m1l1l2 l1qfO2I3#1 l7m2 m3m4 ⇒1f2,2f3,3f1 #1l1l2 m2qfO2m1I3 m3l1 l7m4

⇒1f1,1f3,2f4,3f2 #1m1m2 l2qfm3l1I3 O2m4 l7l1 .

Fig. 7. Beginning of the termination (stage 3)

then exchanges with l3 by rule 2fd. Notice that presence of bj in region 3 will
force l5 to move #0 in region 1 (rule 2fc), leading to an infinite computation
(rules 1a6, 1a7), as l3 will be situated in region 3.

Finally (after I3 returns to region 1 and l2 comes in region 2 by rule 2f6), l2
moves m5 into region 2 (rule 3f3), and the latter exchanges with l8 (rule 2f7)
and then with l6 (rule 1f7). At some point l8 moves Ic into region 2 (rule 2f8),
to finish pumping objects ck. As for l6 in membrane 1, it guarantees that no
more objects c1 remain in membrane 2 (otherwise it moves #2 in membrane 2
(rules 2f9, 2fa), leading to an infinite computation (rule 3a6, 3a7)).

If the computation halts, then the elementary membrane will only contain
objects c1, in the multiplicity of the value of the first register of the register
machine. Conversely, any computation of the register machine allows a correct
simulation (from the construction). Thus, the class of P systems with symport
and antiport of size 1 generate exactly all recursively enumerable sets of non-
negative integers. �

A “dual” class of systems OP (sym1, anty1) is the class OP (sym2) where two
objects are moved across the membrane in the same direction rather than in the
opposite ones. We now prove a similar result for the other class.

Theorem 2. NOP3(sym2) = NRE.

Proof. As in the proof of Theorem 1 we simulate a non-deterministic counter
automaton M = (Q, q0, qf , C, P ) which starts with empty counters. Again we
suppose that all instructions from P are labelled in a one-to-one manner with
{1, . . . , n} = I, and I+ (I+ ⊆ I) is the set of labels of increment instructions, I−
(I− ⊆ I) is the set of labels of decrement instructions, and I=0 (I=0 ⊆ I) is the
set of labels of zero test instructions.

We construct the P system Π2 as follows:

Π2 = (O,E, [1 [2 [3 ]3 ]2 ]1, w1, w2, w3, R1, R2, R3, 3),
O = E ∪ {dj , ej | j ∈ I} ∪ {ti | 0 ≤ i ≤ 10}
∪ {g1, g3, Ia, I1, I2, Ic, Ob,#1,#2}
∪ {qi | qi ∈ Q},

E = {aj , bj | j ∈ I} ∪ {ck | ck ∈ C} ∪ {li | 3 ≤ i ≤ 8} ∪ {g2},
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w1 = t0t1t2t3t4I1I2Ial1l2#1

∏
j∈I

ej
∏

qi∈Q

qi,

w2 = t5t6t7t8t9t10Icg3s1m2#2

∏
j∈I

dj ,

w3 = g1Obs2m1,

Ri = Ri,s ∪Ri,r ∪Ri,m ∪Ri,c ∪Ri,f ∪Ri,a, 1 ≤ i ≤ 3.

The functioning of this system may be split in three stages as it is done in
Theorem 1.

We code the counter automaton as follows. At each moment (after stage
one) the environment holds the current state of the automaton, represented by
a symbol qi ∈ Q, the membrane 2 holds the value of all counters, represented
by the number of occurrences of symbols ck ∈ C. We simulate the instructions
of the counter automaton and we use for this simulation the symbols ck ∈ C,
aj , bj , dj , ej , j ∈ I. During the first stage we bring from environment in the mem-
brane 3 an arbitrary number of symbols bj . We suppose that we have enough
symbols bj in membrane 3 to perform the computation. We also use the following
idea: we bring from environment to membrane 1 the symbols ck all time dur-
ing the computation. This process may be stopped only if all stages completed
correctly. Otherwise, the computation will never stop.

We split our proof in several parts which depend on the logical separation of
the behavior of the system. We will present rules and initial symbols for each
part, but we remark that the system that we present is the union of all these
parts.

The rules Ri are given by phases: START (stage 1); RUN (stage 2); MOVE,
CLEANUP and FIN (stage 3), and AUX.

AUX.

R1,a = {1a1 : (Ic, out), 1a2 : (I1, out)} ∪ {1a3 : (Icck, in) | ck ∈ C}
∪ {1a4 : (I1bj , in) | j ∈ I} ∪ {1a5 : (#2, in), 1a6 : (#2, out)},

R2,a = {2a1 : (Ob, in), 2a2 : (Ia, out), 2a3 : (I2, out)}
∪ {2a4 : (Obbj , out) | j ∈ I+} ∪ {2a5 : (Iaaj , in) | j ∈ I−}
∪ {2a6 : (I2bj , in) | j ∈ I},

R3,a = {3a1 : (#1, in), 3a2 : (#1, out)}
∪ {3a3 : (si, in), 3a4 : (si, out) | 1 ≤ i ≤ 2}.

Symbol I1 brings symbols bj inside membrane 1 and returns to the envi-
ronment. Symbol Ic brings symbols ck inside membrane 1 and returns to the
environment. Symbol I2 brings symbols bj inside membrane 2 and returns to
membrane 1. Symbol Ia brings symbols aj inside membrane 2 and returns to
membrane 1. Symbol Ob takes symbols bj outside membrane 2 and returns. Sym-
bols #1,#2 check for “invalid” computations. Symbols s1, s2 remember whether
the derivation step is even or odd.
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START.

R1,s = {1s1 : (g1t2, out), 1s2 : (t2g2, in), 1s3 : (g3q0, out)},
R2,s = {2s1 : (t0I2, in), 2s2 : (I2#1, in), 2s3 : (I1t1, in)}

∪ {2s4 : (g1Ic, out), 2s5 : (g2t3, in), 2s6 : (t3g3, out)},
R3,s = {3s1 : (bj , in) | j ∈ I} ∪ {3s2 : (I2t1, in), 3s3 : (I1t7, in)}

∪ {3s4 : (t7g1, out), 3s5 : (g2t10, in), 3s6 : (t10Ob, out)}.

Symbols I1, I2 bring from environment a “correct number of” symbols bj in
region 3 for the computation (rules 1a2, 1a4, 2a6, 2a3, 3s1) (see Figure 8).
Notice that I2 cannot be idle, as it immediately leads to infinite computation
(rules 2s2, 3a1, 3a2), so bj in region 1 must be moved by I2 by rule 2a6.

bj1bj2bj3 t0I1I2#1 ⇒1a2,2s1 bj1bj2bj3I1 #1 t0I2 ⇒1a4,2a3

bj1bj2 bj3I1I2#1 t0 ⇒1a2,2a6 bj1bj2I1 #1 bj3I2t0 ⇒1a4,2a3,3s1

bj1 bj2I1I2#1 t0 bj3 ⇒1a2,2a6 bj1I1 #1 bj2I2t0 bj3 ⇒· · ·

Fig. 8. Bringing objects bj

At some point, I1 stops bringing symbols bj . I1 and I2 are removed from their
“pumping” positions, Ic is placed in region 1, where it can “pump” symbols
ck into the skin membrane, and q0 is brought into the environment to start
the simulation of the register machine. In the meantime Ob reaches region 2
(Figure 9).

RUN.

R1,r = {1r1 : (qiaj , in), 1r2 : (bjql, out)
| (j : qi → ql, ckγ) ∈ P, γ ∈ {+,−,= 0}}

R2,r = {2r1 : (ajck, in) | (j : qi → ql, ck+) ∈ P}
∪ {2r2 : (bjck, out) | (j : qi → ql, ck−) ∈ P}
∪ {2r3 : (ajej , in), 2r4 : (ejck, out),

2r5 : (ejbj , out) | (j : qi → ql, ck = 0) ∈ P},
R3,r = {3r1 : (ajdj , in), 3r2 : (djbj , out)

| (j : qi → ql, ckγ) ∈ P, γ ∈ {+,−,= 0}}.

While Ic is bringing symbols ck into the skin membrane (rules 1a1, 1a3),
instructions (j : qi → ql, ckγ), γ ∈ {+,−,= 0} of the register machine are
simulated.
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g2ck1ck2ck3 I1I2bjt1t2t3q0 t7Icg3t10 g1Ob ⇒2a6,2s3

g2ck1ck2ck3 t2t3q0 I1I2bjt1t7Icg3t10 g1Ob ⇒3s3,3s2,3s1

g2ck1ck2ck3 t2t3q0 Icg3t10 I1I2bjt1t7g1Ob ⇒3s4

g2ck1ck2ck3 t2t3q0 t7g1Icg3t10 I1I2bjt1Ob ⇒2s4

g2ck1ck2ck3 g1Ict2t3q0 t7g3t10 I1I2bjt1Ob ⇒1a1,1s1

g1ck1ck2ck3Ict2g2 t3q0 t7g3t10 I1I2bjt1Ob ⇒1a3,1s2

g1ck1ck2 Icck3t2g2t3q0 t7g3t10 I1I2bjt1Ob ⇒2s5,1a1

g1ck1ck2Ic ck3t2q0 t7t3g3g2t10 I1I2bjt1Ob ⇒2s6,3s5,1a3

g1ck1 t3ck2ck3Ict2g3q0 t7 g2I1I2bjt1t10Ob ⇒1s3,1a1,3s5

g1g3ck3q0Ic t3ck2ck3t2 t7t10Ob g2I1I2bjt1 ⇒ · · ·

Fig. 9. End of the initialization (stage 1)

Increment instruction:
Decrement instruction:
Checking for zero. qi replaced by ql if there is no ck in region 2 (Figure 12),

otherwise ej comes in region 1 with ck and bj remains in region 2 (Figure 13).

MOVE.

R1,m = {1m1 : (qf l3, in), 1m2 : (m1t4, out), 1m3 : (t4l4, in)},
R2,m = {2m1 : (l3l1, in), 2m2 : (m1t6, out), 2m3 : (t6l2, in), 2m4 : (l2#2, out)},
R3,m = {3m1 : (l1c1, in), 3m2 : (l1, out), 3m3 : (l3t5, in)}

∪ {3m4 : (t5m1, out), 3m5 : (l2t8, in)} ∪ {3m6 : (l2bj , out) | j ∈ I}.

If a successful computation of the register machine is correctly simulated, then qf
will appear in region 1. A chain reaction is started, during which symbols li move
inside the membrane structure, and symbols mi move outside the membrane
structure. Notice that qf brings l3 into region 1 (rule 1m1), then l3 brings l1 into
region 2 (rule 2m1), then l1 moves objects c1 from region 2 into region 3 by
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qiaj ckql djOb bj ⇒1r1 qiajckql djOb bj ⇒2r1 qiql ajckdjOb bj ⇒3r1

qiql ckOb ajdjbj ⇒3r2 qiql djbjckOb aj ⇒2a4 bjObqiql djck aj ⇒2a1,1r2

bjql qi Obdjck aj

Fig. 10. qi replaced by ql, ck moved into region 2

qiaj Iaql djck bj ⇒1r1 qiajIaql djck bj ⇒2a5 qiql ajIadjck bj ⇒3r1,2a2

Iaqiql ck ajdjbj ⇒3r2 Iaqiql djbjck aj ⇒2r2 bjckIaqiql dj aj ⇒1r2

bjql ckIaqi dj aj

Fig. 11. qi replaced by ql, ck removed from region 2

qiaj ejql dj bj ⇒1r1 qiajejql dj bj ⇒2r3 qiql ajejdj bj ⇒3r1

qiql ej ajdjbj ⇒3r2 qiql djbjej aj ⇒2r5 bjejqiql dj aj ⇒1r2

bjql ejqi dj aj

Fig. 12. Zero test instruction. There is no ck in region 2

qiaj ejql djck bj ⇒1r1 qiajejql djck bj ⇒2r3 qiql ajejdjck bj ⇒3r1,2r4

qiqlejck ajdjbj ⇒3r2 qiqlejck djbj aj

Fig. 13. Zero test instruction. There is ck in region 2
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rules 3m1 and 3m2. Also, the system verifies that no objects bj are present in
the inner region (otherwise l2 would bring #2 in region 1 (rules 3m6, 2m4) and
it immediately leads to infinite computation (rules 1a5,1a6)) and moves l4 into
the skin membrane, as shown below (Figure 14).

l4qf l3 t4l1l2 t5t6t8c1c1 m1 ⇒1m1 l4 qf l3l1t4l2 t5t6t8c1c1 m1 ⇒2m1

l4 t4l2 l3t5t6t8l1c1c1 m1 ⇒3m1,3m3 l4 t4l2 t6t8c1 l1c1l3t5m1 ⇒3m2,3m4

l4 t4l2 t5m1t6t8l1c1 c1l3 ⇒2m2,3m1 l4 m1t4t6l2 t5t8 l1c1c1l3

⇒1m2,2m3,3m2 m1t4l4 t6l2t5t8l1 c1c1l3 ⇒1m3,3m5 m1 t4l4 t6t5l1 l2t8c1c1l3

Fig. 14. Beginning of the termination (stage 3)

CLEANUP.

R1,c = {1c1 : (l4s1, out), 1c2 : (s1l5, in), 1c3 : (m2#1, out)}
∪ {1c4 : (l5s2, out), 1c5 : (s2l7, in), 1c6 : (l6s2, in)},

R2,c = {2c1 : (l4, in), 2c2 : (l4s1, out), 2c3 : (l5t9, in)}
∪ {2c4 : (t9m2, out), 2c5 : (l5s2, out)},
∪ {2c6 : (l4x, out) | x ∈ {t5, t7, t10} ∪ {dj | j ∈ I}},

R3,c = {3c1 : (l5, in), 3c2 : (l5s2, out)}
∪ {3c3 : (l5x, out) | x ∈ {I1, I2, g2, t8, l3} ∪ {aj | j ∈ I}}.

Objects dj , j ∈ I and t5, t7, t10 are removed from region 2, and then objects
aj , j ∈ I and I1, I2, g2, t8, l3 are removed from the inner region. Notice that
l4 only “meets” s1 (and l5 only “meets” s2) after the corresponding cleanup is
completed. Really, it is easily to see that object l4 will be in region 2 after odd
steps of computation. Symbol s1 after odd steps of computation will be located
in region 3 (rules 3a3,3a4). Thus we cannot apply rule 2c2 and can apply rule
2c6 only, until all symbols t5, t7, t10 and dj , j ∈ I will be removed to region 1.
After that symbol l4 waits one step and together with symbol s1 moves to region
1 and finally to the environment (rules 2c2 and 1c1).

So l4 will be in the environment after even steps of computation and object l5
will appear in region 3 after odd steps of computation (rules 1c2, 2c3 and 3c1).
Notice that symbol s2 can appear in region 3 after even steps of computation
(rules 3a4,3a3). Thus we cannot apply rule 3c2 and can apply rule 3c3 only,
until all symbols I1, I2, g2, t8, l3 and aj , j ∈ I will be removed to region 2.
After that object l5 moves to the environment together with symbol s2 (rules
3c2,2c5,1c4) and object l6 is brought in region 1 (rule 1c6). At that moment
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in membrane 3 among symbols c1 there are only two “undesirable” symbols: t1
and l2.

FIN.

R1,f = {1f1 : (l6t1, out), 1f2 : (t1l7, in), 1f3 : (l7l2, out), 1f4 : (l2l8, in)},
R2,f = {2f1 : (l6, in), 2f2 : (l6t1, out), 2f3 : (l7, in)}

∪ {2f4 : (l7l2, out), 2f5 : (l8Ic, in)},
R3,f = {3f1 : (l6, in), 3f2 : (l6t1, out), 3f3 : (l7, in), 3f4 : (l7l2, out)}.

Objects t1 and l2 are removed from the inner region, as shown below (Figure 15),
and then l8 moves Ic from region 1 into region 2 (rule 2f5) so that the compu-
tation can halt.

l7l8 l6 t1l2 ⇒2f1 l7l8 l6 t1l2 ⇒3f1 l7l8 l6t1l2 ⇒3f2 l7l8 l6t1 l2 ⇒2f2

l7l8 l6t1 l2 ⇒1f1 l6t1l7l8 l2 ⇒1f2 l6l8 t1l7 l2 ⇒2f3 l6l8 t1 l7 l2 ⇒3f3

l6l8 t1 l7l2 ⇒3f4 l6l8 t1 l7l2 ⇒2f4 l6l8 l7l2t1 ⇒1f3 l7t8l6l8 t1 ⇒1f4

l7l6 l2l8t1

Fig. 15. End of the termination

If the computation halts, then the elementary membrane will only contain
objects c1, in the multiplicity of the value of the first register of the register
machine. Conversely, any computation of the register machine allows a correct
simulation (from the construction). Thus, the class of P systems with symport of
weight 2 generate exactly all recursively enumerable sets of nonnegative integers.

��

4 Final Remarks

Both constructions can be easily modified to show PsOP3(sym1, anti1) = PsRE
and PsOP3(sym2) = PsRE by moving all output symbols ck to the elementary
membrane, as it is done for symbol c1. In the proof of Theorem 1 we simply
change rule 3a3: (I3, out; c1, in) by rules 3a3: (I3, out; ck, in) for all ck ∈ C and
in the proof of Theorem 2 change rule 3m1: (l1c1, in) by rules 3m1: (l1ck, in) for
all ck ∈ C.

The questions what is the size of families of numbers computed by minimal
symport/antiport (symport) P systems rules with 1 and 2 membranes is still
open.
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Program Check

P systems in both theorems were checked for errors by the third author using a
modification of a program that simulates P systems, originally developed by the
first author.
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7. L. Kari, C. Martin-Vide, A. Păun, On the universality of P systems with Minimal
Symport/Antiport Rules. Aspects of Molecular Computing, LNCS 2950, Springer-
Verlag, 2004, 254–265.

8. M. Margenstern, V. Rogozhin, Y. Rogozhin, S. Verlan, About P Systems with
Minimal Symport/Antiport Rules and Four Membranes. Pre-Proceedings of Fifth
Workshop on Membrane Computing, WMC5, Milano-Bicocca, Italy, 2004, 283–294.
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Abstract. The aim of this paper is to study the power of parallel
multiset-rewriting systems with permitting or forbidding context (or P
systems with non-cooperative rules with promoters or inhibitors). The
main results obtained are those if we use promoters or inhibitors of weight
two, then the systems are computational universal.

Moreover, both constructions satisfy a special property we define: they
are ultimately confluent. This means that if the system allows at least
one halting computation, then their final configurations are reachable
from any reachable configuration. The other property both constructions
satisfy is that a system allowing at least one halting computation will
halt with probability 1.

1 Introduction

The computational model of membrane computing inspired from the function-
ing of living cells and formalized through P systems proved to be of a special
interest for the scientific community, especially when the weakest forms of coop-
eration are studied. Activating and prohibiting reactions of various substances
(molecules) present in cells is modeled in the P system framework by means
of promoters/inhibitors (acting at the level of rules) which enforce/forbid the
execution of certain rules. When no mechanism for inhibiting the massive par-
allel characteristic of a P system exists, a deterministic computation is harder
to obtain, especially when non semi-linear languages not belonging to ET0L are
studied.

Usually in computer science theory we are interested to solve problems in
a predictable time. In general, this is a reasonable request if it actually can be

G. Mauri et al. (Eds.): WMC5 2004, LNCS 3365, pp. 178–189, 2005.
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done (usually by having a deterministic or a restricted form of nondeterministic
computation). However, sometimes it may happen that we are not able to com-
pute the time complexity of the problem to solve. In this case we would like, at
least for a particular problem, to have the result in the limit (you may think of
this as a semi-algorithm: the time complexity does not count, and the system
gives the correct answer when it halts, or never halts if the correct answer does
not exist). This bring us to the scope of the current work.

We assume the reader to be familiar with the fundamentals of membrane
computing, see http://psystems.disco.unimib.it for the bibliography of the
domain. The basic model we study is the transitional P systems with pro-
moted/inhibited non-cooperative rules.

2 Deterministic and Confluent Rewriting

For a rewriting system RS, we write C ⇒ C ′ if the system allows a direct
transition from an instantaneous description C to an instantaneous description
C ′ (C ′ is then called a next instantaneous description of C). The relation ⇒∗

is a reflexive and transitive closure of ⇒. For any rewriting system, we use the
word configuration to mean any instantaneous description C, reachable from the
starting one.

Definition 1. A configuration of a rewriting system is called halting if no rules
of the system can be applied to it.

In this paper we will only talk about the rewriting systems, producing the
result at halting.

Definition 2. A rewriting system is called deterministic if for every accessible
non-halting configuration C the next configuration is unique.

Definition 3. A rewriting system is called confluent if either all the compu-
tations are non-halting, or there exists a configuration Ch, such that all the
computations halt in Ch.

Notice that if, starting at some configuration C, all the computations halt,
then there exists m ≥ 0, such that all the computations starting from C halt in
at most m steps.

We will now introduce a weaker definition of a property of systems, with
the computations “unavoidably leading” to the same result, but not necessarily
bounded by the number of steps.

Definition 4. A rewriting system is ultimately confluent if there exists such a
halting configuration Ch, that for any configuration C we have C ⇒∗ Ch.

This property implies two facts:

1. the halting configuration is unique (Ch),
2. Ch is reachable from any configuration.



180 A. Alhazov and D. Sburlan

From now on we will only consider rewriting systems producing result at
halting. Think of the graph of all reachable configurations (the arc from con-
figuration C to configuration C ′ means that C can derive C ′ in one step). The
graph may be infinite. The node is called final if it has out-degree 0.

The system is deterministic if all nodes have out-degree at most one (hence,
there is at most one final node). The system is confluent if either there are no
final nodes, or the final node is unique, and in that case the graph is finite and
does not contain cycles. The ultimately confluent system may contain cycles,
but either all nodes are non-final, or there is a final node reachable from any
configuration. See Figure 1 in Section 6 for an example of such graph.

Example: Consider a rewriting system with the initial configuration S and
rewriting rules:

S → SA
A→ λ
S → a.

Note that the system is not deterministic, and one can choose to apply the
first rule an unbounded number of times, but from any configuration it is possible
to arrive to the halting one Ch = a by erasing all symbols A and applying the
second rule (this is equally true no matter if the system is sequential, concurrent
or maximally parallel).

3 Preliminaries

We will denote by V ∗ the set of all words (finite sequences) of elements of
an alphabet (a finite set) V , we will represent the empty word by λ. In this
paper we will represent an arbitrary multiset M = {(a, na) | a ∈ V } by a word
w =

∏
a∈V a

na or its permutation, i.e., multiplicity na of some symbol a in a
multiset M can be represented by number |w|a of its occurrences in a word w.

If the alphabet is linearly ordered (V = {aj | 1 ≤ j ≤ N}), then the Parikh
vector of a word is ΨV (w) = (|w|a1 · · · |w|aN

). Then, for a language L ⊆ V ∗ and a
language family FL, Ps(L) = {ΨV (w) | w ∈ L} and PsFL = {Ps(L) | L ∈ FL}.
For instance, the family of recursively enumerable languages is denoted by RE
and the family of recursively enumerable sets of vectors of nonnegative integers
is denoted by PsRE.

3.1 Notations: P Systems

A non-coperative rule with promoters of weight at most k is a rule of the form
a → y|p, where a ∈ V , y ∈ V ∗, p ∈ V ∗, |p| ≤ k. If p = λ, we write the rule as
a→ y. The use of inhibitor p is denoted as a→ y|¬p.

Let us recall some notations related to the power of P systems. By
rαcOtPm(f) we denote the family of languages (α = L), vector sets (α = Ps) or
number sets (α = N), which are generated (c is omitted) or accepted (with inter-
nal input, c = a) by P systems with symbol-objects, restricted to satisfy property
r (omitted if none), with at most m membranes with the list of features f .
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The features considered in the paper are ncoo (with non-cooperative ob-
ject rewriting rules), pro2 (with promoters of weight at most 2) or inh2 (with
inhibitors of weight at most 2). The P systems can be restricted to be determin-
istic (r = D). We also introduce the classes of confluent (r = C) and ultimately
confluent (r = U) P systems.

In this paper we study classes: PsOP1(ncoo, pro2), UPsaOP1(ncoo, pro2),
PsOP1(ncoo, inh2) and UPsaOP1(ncoo, inh2).

3.2 Register Machines

An n-register machine is a construct M = (n, P, i, h) where:

– n is the number of registers;
– P is a set of labeled instructions of the form (j : op(r), k, l) where op(r) is

an operation on register r of M ; symbols j, k, l belong to the set of labels
associated in a one-to-one manner with instructions of P ;

– i is the initial label;
– h is the final label.

The instructions allowed by an n-register machine are:

– (e : inc(r), f, z) – add one to the contents of register r and proceed to
instruction f or to instruction z (f = z for the deterministic variant);

– (e : dec(r), f, z) – jump to register z if the register r is null; otherwise subtract
one from register r and jump to instruction labeled f .

– (h : halt) – finish the computation. This is a unique instruction with label
h.

If a register machine M = (n, P, i, h), starting from the instruction labeled i
with all registers being empty, stops by halting with value nj in every register j,
1 ≤ j ≤ k and the contents of registers k+1, · · · , n being empty, then it generates
a vector (n1, · · · , nk) ∈ N

k. Any recursively enumerable numeric vector set can
be generated by a register machine.

A register machine M = (n, P, i, h) accepts a vector (n1, · · · , nk) ∈ N
k iff,

starting from the instruction labeled i, with register j having value nj for
1 ≤ j ≤ k, and the contents of registers k + 1, · · · , n being empty, the ma-
chine stops by the halt instruction with all registers being empty. According
with Proposition 1, deterministic register machines can accept the family of all
recursively enumerable sets of numeric vectors.

Proposition 1. For any partial recursive function f : N
α → N

β there exists a
deterministic (max{α, β} + 2)–register machine M computing f in such a way
that, when starting with (n1, · · · , nα ∈ N

α in registers 1 to α, M has computed
f(n1, · · ·nalpha) = (r1, · · · rβ) if it halts in the final label h with registers 1 to β
containing r1 to rβ (and with all other registers being empty); if the final label
cannot be reached, f(n1, · · · , nα) remains undefined.
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4 Ultimately Confluent Universality

The following theorem shows the computational universality of P systems with
object rewriting context-free rules and promoters. The system we propose sim-
ulates the moves of a register machine.

Even if the simulated machine is deterministic, because in our system we
do not prevent a way to control the nondeterminism, the method used is to
reestablish a previous configuration if the computation went in the “wrong way”.

The system may not stop even if there is a halting computation and the total
number of reachable configurations is finite. This is due to the nondeterminism and
is thepricepaid toavoid theuseof cooperative (or catalytic) ruleswhichmay inhibit
the parallelism of the system. However, considering a fair computation, an endless
simulation of a finite computation has probability zero. In this way the notion of
algorithm (in the framework of total functions) makes sense because the solution
is ultimately confluent and the system will stop with probability 1 if the simulated
register machine stops.

Theorem 1. UPsaOP1(ncoo, pro2) = PsRE.

Proof. To prove this assertion we simulate a n–register machineM = (n, P, i, h).
The contents of register j is denoted in our simulation by the multiplicity of the
object aj .

Formally we define the P system Π = (O, [1]1, ei, R1, 1), where

O = {aj | 1 ≤ j ≤ n} ∪ {h, x, y, k0, k1, k2, k3, k4}
∪ {e | (e : inc(j), f) ∈ P} ∪ {e, e0, e1, e2, e3, e4 | (e : dec(j), f, z) ∈ P},

with input
∏

1≤j≤n aj
nj , and R1 is defined as follows:

For each (e : inc(j), f) ∈ P , R1 contains the rule e→ ajf .
For each (e : dec(j), f, z) ∈ P , like to produce fajn−1 in case that n ≥ 1,

or z if n = 0. To achieve this, we will add to R1 the following set of rules: R1
contains the rules given in the table below (for clarity, the rules are structured
according to the order of application and different cases that may occur).

Step & Case Rules
1ABCD e→ e0k0
2ABCD k0 → k1
2BCD e0 → e1|aj

3ABCD k1 → λ
3A e0 → z|k1

3BCD e1 → e2k2 aj → x|e1 aj → y|e1

4BCD k2 → k3
4B e2 → e4|yy

5B x→ aj |e4 y → aj |e4 k3 → λ|e4 e4 → e1
5CD k3 → k4|e2

5D e2 → e3|k3y

6CD k4 → λ
6C x→ aj |e2k4 e2 → e1k1|k4

6D x→ aj |e3 e3 → f y → λ|e3
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For a better understanding, below is the table of configurations structured
with respect to the computational steps and cases. Also, the rules that can be
applied on actual multiset are specified.

Case A Case B Case C Case D
t1 e e, amj e, amj e, amj

e→ e0k0 e→ e0k0 e→ e0k0 e→ e0k0
t2 e0, k0 e0, k0, a

m
j ,m ≥ 1 e0, k0, a

m
j ,m ≥ 1 e0, k0, amj ,m ≥ 1

k0 → k1 k0 → k1 k0 → k1 k0 → k1
e0 → e1|aj e0 → e1|aj e0 → e1|aj

t3 e0, k1 e1, k1, a
m
j ,m ≥ 1 e1, k1, a

m
j ,m ≥ 1 e1, k1, amj ,m ≥ 1

e0 → z|k1 k1 → λ k1 → λ k1 → λ
k1 → λ e1 → e2k2 e1 → e2k2 e1 → e2k2

aj → x|e1 aj → x|e1 aj → x|e1

aj → y|e1 aj → y|e1 aj → y|e1

t4 z e2, k2, x
r, yp, r ≥ 0, p ≥ 2 e2, k2, x

m e2, k2, x
m−1, y

ready for next k2 → k3 k2 → k3 k2 → k3
instruction e2 → e4|yy

t5 e4, k3, x
r, yp, r ≥ 0, p ≥ 2 e2, k3, x

m e2, k3, x
m−1, y

x→ aj |e4 k3 → k4|e2 k3 → k4|e2

y → aj |e4 e2 → e3|k3y

k3 → λ|e4

e4 → e1k1
t6 e1, k1, a

m
j ,m ≥ 1 e2, k4, x

m e3, k4, x
m−1, y

like t3 x→ aj |e2k4 k4 → λ
e2 → e1k1|k4 x→ aj |e3

k4 → λ e3 → f
y → λ|e3

t7 e1, k1, a
m
j ,m ≥ 1 am−1

j , f

like t3 ready for next
instruction

Before we start explaining the simulation of the subtraction instruction, let
us give a glance to the main idea of the algorithm. We start the computation by
checking if the register j is empty or not (i.e., we check if there exists a symbol
aj). In case is empty we can generate the label of the new instruction to be
applied, namely z, therefore we can execute a new instruction of the program
(Case A). Otherwise (there exists at least one symbol aj), in a nondeterministic
way, we produce xm−nyn from am. Now, if n �= 1, then we reestablish the
branching configuration by changing back the objects x and y to objects a (Cases
B, C ); therefore the process can start again. This process will last up to the
moment when, after splitting the objects a into objects x and y, we will have
only one object y. Then, we can continue the computation by deleting the object
y and changing back the remaining m − 1 objects x into objects a. Also, we
produce a new object (say f) which represent the label of the new instruction to
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be executed (Case D). In this way, we have correctly simulated the decrement
scheme.

We start the computation having inside the region the object i represent-
ing the initial label which indicate the first instruction to be executed and∏

1≤j≤n aj
nj representing the initial contents of registers.

More rigorously, let us see what happens during the computation step by step.
Initially it is checked if the register j is empty. This is done by first generating
objects e0 and k0 when rule e→ e0k0 is applied. In the second step, the object
e0 will be transformed into e1 iff in the region there exists at least one object a.

In case there is no object a, only rule k0 → k1 is applied. Next, object k1 will
act as a promoter for rule e0 → z|k1 and, in the same time, will be deleted by
rule k1 → λ.

If in the region there exists at least one object a, rules k0 → k1 and e0 → e1|a
are executed simultaneously in the second step of computation. Now, rule e0 →
z|k1 cannot be executed anymore because object e0 was already transformed
into e1 in the previous computational step. Therefore, if in the region exists an
object e1, we know for sure that in the region is also at least one object a. As
a consequence, in the same step, rules a → x or/and a → y are applied. Due
to nondeterminism and because of the maximally parallel mode of functioning
of the P systems, all objects a present in the region will be transformed into
objects x and/or y.

In the same time, object e1, which descends from object e, will be transformed
into e2 and k2 (object k2 represents a counter which is useful to reestablish
the branching configuration if the computation did not work “well”). Now, the
computation can split in three possible directions (the number of rules aj → y|e1

is zero, one or more). Let us consider the first case when we have inside the region
objects xm−n and yn such that m− n ≥ 0, n ≥ 2 and also objects e2 and k2.

Since n ≥ 2, the rules to be applied in the second step are k2 → k3 and
e2 → e4|yy. Next, the branching configuration is restored by the rules: x→ a|e4 ,
y → a|e4 , k3 → λ|e4 , e4 → e1. Recall that promoters can react in the same time
with the rules that they promote and also, because of the maximally parallel
manner of applying the rules, we successfully restore the branching configuration.

Let us consider the second case, when, in a similar fashion as before, we will
have after two computational steps the multiset e0, k0, am,m ≥ 1. Then, instead
of executing both rules a → x|e1 and a → y|e1 , only one of them is executed,
say a → x|e1 . Therefore, the new configuration is e2, k2, xm and the rule to be
applied is k2 → k3. Now, since there exists the object e2 (which in the previous
case is transformed in forth step because there exists two objects y) the rule
k3 → k4 is applied. Once we have the object k4 we can restore as before the
branching configuration because we know for sure that the rules a → x|e1 and
a→ y|e1 where not applied in a “proper” order.

The third case that may occur represents a successful computation. Recall
that the difference between this case and the previous ones occurs after applying
the rules a → x and a → y when we will have the objects xn−1 and y. The
computation is the same as in the third case up to the fifth step, when, in
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addition, the rule e2 → e4|k3y is applied. After this, inside the region we will
have the objects: xm−1, y, k4 and e3. The presence of the object e3 will drive the
computation in the “right” way. The rules that will be applied are as follows:
k4 → λ, x → a|e3 , e3 → f , y → λ|e3, e3 → f . In this way, starting from the
objects e, am we have successfully computed f, am−1. The object f is useful to
indicate that the subtraction instruction was successfully applied and to point
out the new instruction to be executed.

The simulation of the register machine will continue until the halting instruc-
tion is reached (if the simulated machine halts). So, the P system halts on some
input iff the simulated register machine accepts the corresponding vector.

In conclusion, we have shown that UPsaOP1(ncoo, pro2) ⊇ PsRE. By
Turing-Church thesis we have the reverse inclusion. Consequently, we have
proved that UPsaOP1(ncoo, pro2) = PsRE. �

A non-deterministic register machine can be simulated in a very similar way:
addition (e : inc(j), f1, f2) ∈ P would correspond to rules e → ajf1, e → ajf2
∈ R1. Based on the proof above, the following corollary holds.

Corollary 1. PsOP1(ncoo, pro2) = PsRE.

Moreover, the membrane contents in the halting configurations correspond to
the value of the partial recursive function computed by the simulated register
machine, together with its final label (a “witness” that the computation is fin-
ished).

In case we consider P systems with object rewriting context-free rules and
inhibitors, the following results stand.

Theorem 2. UPsaOP1(ncoo, inh2) = PsRE.

Proof. Consider a register machine M = (n, P, i, h). We define the P system

Π = (O, [1]1, w1, R1, 1), where
O = {aj , xj , yj , x

′
j , y

′
j , kj , k

′
j | 1 ≤ j ≤ n} ∪ {e | (e : add(j), f) ∈ P}

∪ {e, e0, e1, e2 | (e : sub(j), f, z) ∈ P} ∪ {c, c′},
w1 = eicγ, γ = k1 · · · kj ,

and the system receives the input multiset {(aj , nj) | 1 ≤ j ≤ n}.
R1 is defined as follows (we will use notation γj = k1 · · · kj−1kj+1 · · · kn and
γ′

j = k′
1 · · · k′

j−1k
′
j+1 · · · k′

n):

– for each register j, 1 ≤ j ≤ n, we add to R1 the rules:
k′

j → kj , kj → λ;
– for each instruction (e : add(j), f) ∈ P , we add to R1 a rule:
e→ fajcγ;

– for each instruction (e : sub(j), f, z) ∈ P , we add to R1 the rules:
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e→ e0cγc′γ′
j ,

e0 → zkj |¬aj
,

e0 → e1cγc′γ′
j |¬kj

, aj → xj |¬kj
, aj → yj |¬kj

,
e1 → e0|¬yj

, xj → aj |¬yj
,

e1 → e2cγc′γ′
j |¬kj

, xj → x′
j |¬kj

, yj → y′j |¬kj
,

e2 → fkj |¬y′
jy′

j
, x′

j → aj |¬y′
jy′

j
, y′j → λ|¬y′

jy′
j
,

e2 → e0cγj |¬kj , x′
j → aj |¬kj , y

′
j → aj |¬kj ;

– we also add to R1 the rules:
c′ → c, c→ λ, eh → γ,
aj → Aj |¬c, 1 ≤ j ≤ n.
The four cases corresponding to subtract instruction (register is zero, register

is nonzero and rule aj → yj |¬kj
is applied 0, 1, ≥ 2 times) are illustrated by the

table below. For simplicity, symbols aj′ , kj′ , k′
j′ , j′ �= j and c, c′ are skipped and

the subscript j is omitted for symbols aj , kj , xj , yj , x
′
j , y

′
j .

Simulation of register machine decrement instruction
Case A Case B Case C Case D

t1 ek eank eank eank
e→ e0k e→ e0k e→ e0k e→ e0k
k → λ k → λ k → λ k → λ

t2 e0k e0ka
n e0k, a

n e0ka
n

e0 → zk|¬a k → λ k → λ k → λ
k → λ

t3 zk e0a
n e0a

n e0a
n

ready for e0 → e1k|¬k e0 → e1k|¬k e0 → e1k|¬k

next a→ x|¬k a→ x|¬k a→ x|¬k

instruction a→ y|¬k a→ y|¬k

t4 e1kx
n e1kx

myp e1kx
n−1y

x→ a|¬y k → λ k → λ
e1 → e0|¬y

k → λ
t5 e0a

n e1x
myp e1x

n−1y
like t3 x→ x′|¬k x→ x′|¬k

y → y′|¬k y → y′|¬k

e1 → e2k|¬k e1 → e2k|¬k

t6 e2x
′my′

p
k e2x

′n−1
y′k

k → λ e2 → fk|¬y′y′

y′ → λ|¬y′y′

x′ → a|¬y′y′

k → λ
t7 e2x

′my′
p

fan−1k
x′ → a|¬k ready for
y′ → a|¬k next
e2 → e0|¬k instruction

t8 e0a
n

like t3
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This construction is somewhat similar to that of Theorem 1. The intuitive idea
behind this proof is the following: instead of using some rule a → y|p, the
“complement” q is generated (such that q is absent if and only if p is present),
and then a→ y|¬q is used.

Let us explain what happens to the objects aj . It is clear that one copy of aj
is created during the simulation of the addition instruction. To each register j
we associate a symbol kj which is always present (deleted and recreated) in the
system except the halting configuration and the following three situations that
may happen during the simulation of decrementing register j:

– The system determines that the value of register j is not zero (step t3, cases
B,C,D of the table). The rule e0 → zkj |¬aj

was not applicable at the previous
step, so aj is re-written into xj and/or yj .

– The system determines that at least one object yj was produced (step t5,
cases C,D). The rule e1 → ekj |¬yj

was not applicable at the previous step,
so objects xj and yj are primed.

– The system determines that at least two objects y′j were produced (step t7,
case C). The rule e2 → fkj |¬y′

jy′
j

was not applicable at the previous step, so
objects x′

j and y′j are re-wriiten into aj .

In the last step of the derivation, objects kj are present, but c is absent, so
objects aj are re-written to Aj (“terminal symbols” in case we are interested
in the final result) In all cases except these four, objects aj do not evolve: each
step either kj is produced from some object e, e0, e1, e2 during simulation of the
register machine instruction with label e (any addition, decrementing register j
step t1, step t2 case A, step t3, step t4 case B, step t5, step t6 case D, step t7), or
kj is produced from k′

j (decrementing register other than j, step t2 cases B,C,D,
step t4 cases C,D, step t6 case C).

As for object e representing the label of the currently simulated instruction,
in case of addition it is replaced with the label f of the next instruction, in case
of subtraction case A simulates the zero-test, changing e to f , case B represents
an attempt to subtract zero, returning to the configuration of step t3, case C
represents an attempt to subtract more than one, also returning to the config-
uration of step t3, and case D represents subtracting one, changing e to f . The
label eh of the halt instruction is erased, and the final configuration only has
objects Aj , each in the multiplicity representing the value of the corresponding
register j, at the time when the register machine halts.

In conclusion, we have shown that UPsaOP1(ncoo, inh2) ⊇ PsRE. By
Turing-Church thesis we have the reverse inclusion. Consequently, we have
proved that UPsaOP1(ncoo, inh2) = PsRE. �

A non-deterministic register machine can be simulated in a very similar way:
addition (e : inc(j), f1, f2) ∈ P would correspond to rules e → f1ajcγ, e →
f2ajcγ ∈ R1. Based on the proof above, the following corollary holds.

Corollary 2. PsOP1(ncoo, inh2) = PsRE.
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5 Concluding Remarks

We have introduced the concept of ultimately confluent rewriting systems – an
“weaker” definition of confluent systems, with the computations “unavoidably
leading” to the same result, but not necessarily bounded by the number of steps.
In this respect we stated that ultimately confluent rewriting systems are systems
whose computations have an unique halting configuration if it exists, reachable
from any configuration. We have investigated two computational models: parallel
multiset-rewriting systems with permitting context and with forbidding context;
they represents particular cases of P systems with promoters / inhibitors, were
the hierarchical tree structure of regions is reduced to one. For these models we
studied both accepting and generative cases and we proved their computational
universality by simulating register machines. In the accepting cases we proved
that the constructed systems are ultimately confluent.

define M ⊆ N iff ∀i ≥ 0 : M(ai) ≤ N(ai). Analogously, the sum of two
multisets Z =M+N is defined by Z(ai) =M(ai)+N(ai) for i ≥ 0; the difference
of two multisets Z = M \ N is defined by Z(ai) = max{0,M(ai) − N(ai)}
for i ≥ 0. Also, the operations Z = M ∩ N and Z = M ∪ N are defined as
Z = min{M(ai), N(ai)}, i ≥ 0 and Z = max{M(ai), N(ai)}, i ≥ 0, respectively.
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6 Appendix: Example

Consider a register machine G = (3, z, h, P ) (with registers a, b, c) and instruc-
tion set P
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Fig. 1. The graph of reachable configurations of a P system simulating register machine
G in the ultimately confluent way, recognizing aaaa

(z : dec(a), p, h), (p : dec(b), p′, r), (p′ : inc(c), q), (q : dec(a), q′, f),
(q′ : dec(a), p, f), (r : dec(c), r′, s), (r′ : inc(b), r), (s : inc(b), z),
(f : dec(a), f, f), (h : halt ).

accepting the number set M = {n2 | n ≥ 0}.
The idea of the machine is to repeat subtracting 2 · value(b)+1 (i.e., 1, 3, 5,

etc.) from register a, while incrementing b. Register c is used as an intermediary
for subtraction, and then b is restored from c. Below is a derivation, accepting 4:

(4, 0, 0, z)⇒ (3, 0, 0, p)⇒ (3, 0, 0, r)⇒ (3, 0, 0, s)⇒ (3, 1, 0, z)⇒ (2, 1, 0, p)⇒
(2, 0, 0, p′)⇒ (2, 0, 1, q)⇒ (1, 0, 1, q′)⇒ (0, 0, 1, p)⇒ (0, 0, 1, r)⇒ (0, 0, 0, r′)⇒

(0, 1, 0, r)⇒ (0, 2, 0, s)⇒ (0, 2, 0, z)⇒ (0, 2, 0, h).

Thus, the machine stops if and only if the input number is a perfect square,
and in that case the register b will contain the square root of the number, other
registers containing zero.

To illustrate both the concept of ultimate confluence and the universality
proof, we present Figure 1 representing the graph of configurations of the P
system simulating G, reachable from [1aaaaz]1. This graph happens to be finite,
it contains cycles and a single final node. The final node is reachable from any
node.
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Pl. Imperial Tàrraco, 1, 43005 Tarragona, Spain
and

Department of Computer Science, University of Milan-Bicocca,
Via Bicocca degli Arcimboldi 8, 20126 Milan, Italy

gbe@astor.urv.es

Abstract. The paper explores the possibility of predicting the evolution
of P systems by means of features like stability and internal relationship
between membranes. The idea of general rules governing the evolution
of the system is developed. The result can be applied to societies and
language contact, especially to sociolinguistics. In this respect, the paper
opens a new line of mathematical treatment for sociolinguistics.

1 Introduction

Membrane systems, introduced by [7], are a powerful and increasingly spread
model of computation. Their flexibility and intuitive functioning makes them
very suitable for applications, not only to computer science, but also for com-
puting real life events, like interaction between societies, or language evolution.

In the present paper, systems without external rules are considered, which
evolve because their configuration is not stable. In fact, any natural system which
is unstable evolves until it gets the stability. Elucidating which configurations are
stable is, thus, one of the aims of the paper, in order to model the computation
of a given system. Another important matter is to establish the predictability of
the evolution, that is, whether changes in systems are made in a deterministic
way or not. Evolutionary principles for membrane systems are very similar to
the ones given by Darwin for explaining biological evolution. It can be said that
dominant and stronger symbols will spread faster. Defining which locations are
dominant or which symbols are stronger will be another of the purposes of our
research.

From the linguistic point of view, languages always evolve in contact with
other languages, like membranes change their configuration in contact with other
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membranes. As we have seen in other papers ([1] and [2]), languages in societies
can be modelled by membranes and the elements involving inside them. The evo-
lution of languages is also continuous because of the instability of their systems
and the contact with other languages. In this sense, we think the rules given for
P systems can be also valid for modelling evolution of languages in contact with
other languages and different human groups, what is called, in human sciences,
sociolinguistics. Some of the most well-known linguistic phenomena caused by
social influences, like bilingualism, monolingualism, and bipart-lingualism, can
be tackled with the same methods unstable P systems are approached.

The present paper introduces the study of a membrane system in a given
state, deciding about its stability, trying to establish if it is possible to predict
the development of the computation, and applying the results to the study of
interaction between languages in societies.

In the next section, we will establish some mathematical properties of P sys-
tems, and the way the evolution is done with no specific rules for any membrane.
In Section 3, an example is introduced, whereas in Section 4 the same method
will be applied for the definition of some basic concepts of sociolinguistcs. Fi-
nally, we give in Section 5 some suggestions for future researches of linguistic
description by means of membrane systems.

2 Definitions and Basic Concepts

The basic concepts introduced in the present section describe the structure of a
P system and explain how the properties described above induce the evolution
of objects in the system. These concepts are gathered in the following topics:

– Structural features of a P system (of its membrane structure).
– Relationship between membranes.
– Spreading depth and wideness of a symbol in a system.
– Edges and paths.
– Generation and replication of symbols.
– Densities of symbols.
– Working of replication in the system.
– Stability and evolution

Structural Features

1. The degree of a system is the number of membranes of its membrane structure
μ. It is denoted by degree(μ).

2. The depth of a membraneM in a membrane structure μ, denoted by depthmu(M),
is the number of parental membranes of M , plus one.

3. The set of all membranes in the system with the same depth constitutes
a level. The level of a membrane M in a membrane structure μ, denoted by
lvμ(M), is equal to depthμ(M) − 1; this is the number of parental membranes
of M .

4. No symbol exists in level 0.
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5. The system/membrane structure depth, denoted by depth(μ), is the maximal
depth of membranes belonging to μ.

6. The system/membrane structure wideness, denoted by w(μ), is the number
of membranes M in μ such that depthμ(M) = 2.

7. The deepest level in the membrane structure is denoted by dl(μ), and it is
also the number of levels μ has.

8. degree(depth(n)) is the number of membranes in the system whose depth is
n.

9. degree(level(n)) is the number of membranes in the system which are in level
n.

Relationships Between Membranes

10. Nesting. Given two membranes M1, M2, we say that M2 is nested in M1
when it is inside M1. The outer membrane M1 is called parent membrane and
the inner membrane M2 is called nested membrane. This relation is denoted by
M2 ⊂M1. The notation ⊂M1 refers to the set of all membranes nested in M1.

11. The degree of nesting refers to the number of membranes between the nested
one and the parent one. The degree of nesting is obtained by subtracting the
depth of the parent membrane Mp from the depth of the nested membrane Mn.
That is, deg(Mn ⊂Mp) = depth(Mn) − depth(Mp).
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Fig. 1. M2 ⊂ M1 with degree 1, 2 and 3

12. Sibling. Two membranes Mn, Mm are related by sibling, if

i. they are adjacent or nested in adjacent membranes, and
ii. they have the same depth.

Sibling is denotedMn ≈Mm. In the membrane structure [0 [1 [2 ]2 ]1 [3 [4 ]4 ]3 ]0,
M1 ≈ M3 and M2 ≈ M4 (Figure 2). The notation ≈Mn refers to the set of sib-
ling membranes for Mn.

13. The degree of sibling refers to the proximity of two membranes related by
sibling. For obtaining the degree of sibling, we proceed as follows:

– Two membranes Mn ≈ Mm are sibling of degree 0 when they have the same
direct parent membrane.
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– For two sibling membranes Mn ≈ Mm, which are not of degree 0, we obtain
the degree of sibling by subtracting the depth ofMn,Mm (they are the same
by definition) from the depth of Mi, Mj , where Mi, Mj are two membranes
such that Mi ≈ Mj with degree 0, and Mn ⊂Mi, Mm ⊂Mj .

14. Command. Given two membranesMn,Mm, we say thatMn commandsMm

iff:

i. they are not nested,
ii. both are nested in a membrane Mj ,
iii. deg(Mn ⊂Mj) = 1, deg(Mm ⊂Mj) > 1.

The command is denotedMn�Mm. In the system [0 [1 [2 ]2 ]1 [3 [4 ]4 ]3 ]0 from
Figure 4, M1 � M4 and M3 � M2. The notation �Mn refers to all membranes
commanded by Mn.

15. The degree of command is the depth of the commanded membrane with
respect to the commander one. For obtaining the degree of command, we sub-
tract the depth of the commander membrane from the depth of the commanded
membrane. That is, deg(Mn � Mp) = depth(Mp) − depth(Mn).

16. A terminal nesting membrane is a membrane that does not contain any
nested membrane.
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17. A terminal commanded membrane is a membrane that cannot command
any other membrane. The skin membrane is not terminal in command even if it
cannot command.
18. A terminal sibling membrane is a membrane that does not have any sibling
membrane, except the skin membrane.
19. A terminal membrane is a membrane which is terminal with respect of
nesting, sibling, and command.

Spreading Depth and Wideness

20. The spreading wideness of an element x in a system is the number of mem-
branes in the system where the symbol x is present. We denote it by μsw(x).
When μsw(x) = degree(μ), it is said that the spreading is complete and the
symbol is present in every membrane of the system.
21. The spreading wideness in level n of a symbol x is the number of membranes
in level n where the symbol is located. If i is the total number of membranes in
level n in the system, the spreading wideness is represented by sw(x) in level n
over i. If sw(x) = i in a given level, then the spreading wideness is said to be
full in that level.
22. The spreading depth of a symbol x (denoted μsd(x)) is the level of the
deepest membrane where the symbol is placed.
23. The continued spreading depth of a symbol x is the deepest level n in the
system so that from level 1 to n we have sw(x) �= 0. It is denoted by csd(x).
24. The full spreading depth is the deepest level n of the system where a symbol
x has the property that from level 1 to n, sw(x) is full. It is denoted by fsd(x).
25. When the full spreading depth for a symbol x is depth(μ) − 1, then the
spreading is called complete. If the spreading is complete, then a copy of x is
present in every membrane of the system.

Edges and Paths

26. Edges are ways to connect two membranes in a system, considering the
relations of nesting, sibling, and command. There are three types of edges:

– Nesting edge. It links two membranes related by nesting of degree 1.
– Sibling edge. It links two membranes related by sibling of degree 0.
– Command edge. It links two membranes related by command of degree 1.
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A connection between two membranes which are not related by nesting, sibling
or command is not an edge.
27. A path is a set of connected edges. It is a graph where membranes are vertices
with or without symbol-objects.
28. Every vertex in a path has degree 2, except for two of them, called initial
and terminal, which have degree 1.
29. The most external membrane in a path which is a vertex of degree 1 is called
initial vertex. The deepest membrane in a path which is a vertex of degree 1 is
called terminal vertex.
30. If we label the vertices in a path with v1, v2, ..., vn, where v1 is the initial
vertex and vn the terminal one, then they must observe the following condition
lv(v1) ≥ lv(v2) ≥ ... ≥ lv(vn).
31. The degree of a path is the number of edges it has.
32. It may exist a path with just one edge. It is called a minimal path.
33. A path with more than one edge is called a multiple path.
34. If every edge of a multiple path belongs to the same type, then the path is
called monotonic.
35. If not every edge of a multiple path belongs to the same type, then the path
is called complex.
36. There are three types of monotonic paths:

– A nesting path is a path where every edge is a nesting one.
– A sibling path is a path where every edge is a sibling one.
– A command path is a path where every edge is a command one.

37. When the initial vertex of a monotonic path is in level 1 and the terminal
one is in a terminal membrane with level > 1, then it is called a complete path.
38. There are two types of complete paths:

– A nesting complete path is one going from a level 1 membrane to a nested
terminal membrane.

– A command complete path is one going from a level 1 membrane to a com-
mand terminal membrane.

39. A path connecting every sibling membrane of degree 0 is called a ring.

Replication and Generation

40. In linguistics, as well as in genetics, two steps are necessary for a symbol
to spread: 1) generation, 2) replication. Generation happens only once, whereas
replication can be applied an arbitrary number of times.
41. An element can be generated anywhere in the system. In this paper we do
not deal with mechanisms of generation.
42. The primary occurrence of a symbol in a system is the one which does not
exist by replication, but by generation.
43. If a system has just one copy of an element, then such a symbol is called
unitary. A unitary symbol is considered to be primary.
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44. A primary occurrence of a symbol can be calculated in a system. It is the
initial node of a spreading route.
45. When in a ring the primary occurrence cannot be calculated, this is, by
convention, the vertex (membrane) labelled with the lowest number.
46. A spreading route is a path where every membrane (vertex) has a copy of
the same symbol.
47. A spreading route must be maximal, that is, must connect as many mem-
branes as possible.
48. A replicated symbol of the system may configure several spreading routes.
49. If two spreading routes of the same symbol share at least one node, then
they are connected.
50. If a route for a replicated symbol in a system does not share any node
with the other spreading routes of the same symbol, then this is a disconnected
spreading route.
51. If no path representing a spreading route can be drawn from an element,
then it is an isolated symbol.
52. If a spreading route is a minimal path, then it is a minimal spreading route.
This is called simple replication.
53. If a spreading route is a multiple path, then it is a multiple spreading route
and the process is called multiple replication.
54. If a multiple spreading route is a monotonic path, then it is a monotonic
route and the process is called monotonic replication.
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55. If a multiple route is a complex path, then it is a complex route and the
process is called complex replication.
56. When a monotonic route is a nesting path, the route is called nesting spread-
ing route. When a nested spreading is a complete path, it is called complete
nesting spreading route.
57. When a monotonic route is a command path, the route is called command
spreading route. When a nested spreading is a complete path, it is called complete
command spreading route.
58. When a monotonic route is a sibling path, the route is called sibling spreading
route. When a nested spreading is a complete ring, it is called ring spreading
route.
59. The union of all spreading routes of a symbol forms a spreading tree. The
parental node is the primary element.

Density

60. The density of a symbol x in a membrane Mn is the number of copies this
symbol has in the membrane. It is denoted by dens(x,Mn).
61. The density of a symbol x in a level n of the system is the average of
the density of the symbol in every membrane of the level. It is denoted by
dens(x) in level n.
62. The deepest density of a symbol x is the density of this symbol in the deepest
level of the system. It is denoted by ddens(x).
63. The maximal density of a symbol x is the highest density of the symbol in
the system. It is denoted by max dens(x).
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64. The minimal density of a symbol x is the lowest density of the symbol in
the system. It is denoted by min dens(x).
65. The maximal level density of a symbol x, denoted by max ldens(x), is the
maximal density of the element in the levels of the system.
66. The minimal level density of a symbol x, denoted by min ldens(x), is the
minimal density of the element in the levels of the system.
67. Over-representation

– A symbol x is over-represented in a membrane Mn if dens(x,Mn) > 1.
– A symbol x is over-represented in a level n for a number i of membranes if:

i) sw(x) in level n over i = i, and ii) dens(x) in level n > 1.
– A symbol x is over-represented in a complete nesting path if: i) dens(x) ≥ 1

in every membrane of the path, and ii) at least in one membrane dens(x) > 1.
– A symbol x is over-represented in a complete command path if: i) dens(x) ≥

1 in every membrane of the path, and ii) at least in one membrane dens(x) >
1.

– A symbol x is over-represented in a ring, if: i) dens(x) ≥ 1 in every mem-
brane, and ii) at least in one membrane dens(x) > 1.

– A symbol x is over-represented in a spreading route if at least in one mem-
brane we have dens(x) > 1.

Working of the System

68. In every path of the computation, only one element of each membrane
can be replicated. The symbol replicated is the one with the highest density in
that membrane. Just one copy of the maximal density symbol is created by a
membrane in one step.
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69. If the highest density is shared by two or more elements, then the membrane
does not replicate any symbol.
70. The copy of a replicated symbol spreads to any membrane linked by an edge
with the membrane where the symbol is.
71. When a terminal nesting membrane is also a terminal sibling membrane,
then copies of symbols remain in the same membrane.
72. Computation proceeds in parallel.
73. Spreading goes from higher to lower levels, except for the case of rule 74.
74. Rule of saturation. When an element is present in every membrane nested
with degree 1 in a membrane Mm, then it is expanded to Mm, provided that
there is no copy of this symbol in Mm. The application of the expansion rule is
immediate and it is applied just once. It does not take a step in the computation.
75. The goal of every symbol is to reach a complete μsw, that is, to be present
in every membrane. When this happens, the system is said to be oversaturated
by this element.
76. When an element over-saturates the system and it has the higher density in
every membrane, the system stops evolving.

Stability and Evolution
77. A system is said to be stable when it is in one the following cases:

– No symbol is present in the system.
– The same symbol has the higher density in every membrane of the system.

This is the last step of over-saturation.
– No symbol in any membrane of the system has higher density than the

others. This is the situation of complete balance between elements.
78. A stable system does not evolve.
79. The situation of stability or complete balance can be reached in a system
by the following mechanisms:

– By generation. Elements are generated in a situation of complete balance.
– When the symbols of the system are two symbols x and y located in sibling

terminal membranes with no another sibling membrane, and the number of
symbols x in a membrane is equal to the number of symbols y in the other
one and vice versa. This is shown in Figure 9.
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Fig. 9. Configuration in which stability will be reached
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2.1 Predicting Oversaturation

From the main statements and definitions given above, we think it is possible to
predict which element will be the most spread after n steps, and which of the
elements will oversaturate that system. However, that prediction is an experi-
mental stochastic process made by approximation. All that can be taken as a
starting point is that there are situations that favour some elements to reach a
complete spreading before the others. They are the following:

1. Spreading goes to the more shallow levels to the deepest ones, except for the
case of saturation.

2. In general, a symbol located in the shallowest levels spreads in a easier way
than a symbol located in the deeper levels.

3. For a symbol, to be alone in a membrane assures that it can be replicated.
4. To get high densities is even more important than to be very spread. A high

density has two advantages:

– it makes easier the replication,
– it blocks the spreading of the other elements.

5. Rings are paths which help to make a double movement of expansion:

– an external expansion by saturation,
– the common inner expansion.

6. To get rings in deep nesting terminal membranes allows just one movement
by saturation, but the symbols get blocked and they cannot spread.

Keeping these considerations in mind, we establish some advantageous situ-
ations for a symbol to get the oversaturation.

1. If a symbol is located, in a given state, in every nesting terminal path, then
it will get a complete spread in one step. Recall that the application of rule
of saturation does not depend of the density and that it is immediate. By
replication, the probabilities this configuration to take place are very low,
but when it happens it is direct.

2. A ring or fsw in level 1 with over-representation gives advantage to a symbol.

From here, we will try to give a formula for calculating the spreading capacity
of a symbol x, which will be denoted by σ(x), as follows:

σ(x) =
dl(μ)−1∑

i=1

dens(x) in lev i
i

+
sw(x) in dl(μ)
degree (dl(μ))

.

Usually, the symbol with the highest σ in the state we look at the system,
will be the one to get the oversaturation.

Obviously, the formula is valid only for unstable systems.
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3 An Example

For applying the concepts we have defined and for checking the validity of the
formula we have introduced in order to predict the final state of the system –
or, better, to predict which of the elements will get first a complete spread – we
consider an example constructed randomly. It is the one shown in Figure 10.
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Fig. 10. Membrane system

Looking at the system, its main features can be described as follows.

System Features:

– degree(μ) = 14
– depth(μ) = 4
– w(μ) = 4.
– depth(M2,M4,M10,M11) = 2, so that M2 ∪M4 ∪M10 ∪M11 is the configu-

ration level 1.
– depth(M3,M5,M6,M7,M12,M14) = 3, so thatM3∪M5∪M6∪M7∪M12∪M14

are in level 2.
– depth(M8,M9,M13) = 4, so that M8 ∪M9 ∪M13 belong to level 3.
– dl(μ) = 3.
– Terminal nesting membranes: M3, M5, M6, M8, M9, M10, M13, M14.
– Terminal command membranes: M3, M7, M8, M9, M12, M13.
– Terminal sibling membranes: M3, M13.
– Terminal membranes: M3, M13
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Spreading Depth and Wideness:

1. Spreading wideness:

– μsw(a) in μ = 5
– μsw(b) in μ = 4
– μsw(c) in μ = 4
– μsw(d) in μ = 1

2. Spreading wideness in levels:

– For symbol a:
• sw(a) in level 1 over 4 = 3.
• sw(a) in level 2 over 5 = 0.
• sw(a) in level 3 over 3 = 2.

– For symbol b:
• sw(b) in level 1 over 4 = 4: Full.
• sw(b) in level 2 over 5 = 0.
• sw(b) in level 3 over 3 = 0.

– For symbol c:
• sw(c) in level 1 over 4 = 1.
• sw(c) in level 2 over 5 = 2.
• sw(c) in level 3 over 3 = 1.

– For symbol d:
• sw(d) in level 1 over 4 = 1.
• sw(d) in level 2 over 5 = 0.
• sw(d) in level 3 over 3 = 0.

3. Spreading depth:

For symbol a For symbol b For symbol c For symbol d
μsd(a) = 3 μsd(b) = 1 μsd(c) = 3 μsd(d) = 1
csd(a) = 1 csd(b) = 1 csd(c) = 3 csd(d) = 1
fsd(a) = 0 fsd(b) = 1 fsd(c) = 0 fsd(d) = 0

Nesting Complete Paths:

13 ⊂ 12 ⊂ 11; 14 ⊂ 11; 3 ⊂ 2; 9 ⊂ 7 ⊂ 4; 8 ⊂ 7 ⊂ 4; 6 ⊂ 4; 5 ⊂ 4

Rings:

2 ≈ 4 ≈ 10 ≈ 11: level 1
12 ≈ 14: level 2
5 ≈ 6 ≈ 7: level 2
8 ≈ 9: level 3
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Command Complete Paths:

2 � 5 � 8; 2 � 5 � 9; 2 � 6 � 8; 2 � 6 � 9; 2 � 14 � 13; 2 � 12
4 � 3; 4 � 14 � 13
10 � 3; 10 � 5 � 8; 10 � 5 � 9; 10 � 6 � 8; 10 � 6 � 9; 10 � 14 � 13; 10 � 12
11 � 3; 11 � 5 � 8; 11 � 5 � 9; 11 � 6 � 8; 11 � 6 � 9

Spreading Routes:

– For a:
• Route 1: a10 ≈ a11 ≈ a2 � a7 ⊃ a8 ≈ a9: multiple complex spreading

route.
• There is no tree.
• Primary occurrence: a10.

– For b:
• b2 ≈ b4 ≈ b10 ≈ b11.
• Ring in level 1.
• Over-representation.

– For c:
• Route 1: c2 ≈ c10: simple sibling spreading.
• Route 2: c2 ⊃ c3: simple nesting spreading.
• Route 3: c10 � c6: simple command spreading.
• Route 4: c10 � c12 ⊃ c13: multiple complex spreading.
• These routes are connected forming a tree: (c3 ⊂ c2) ≈ (c10(�c6, �c12 ⊃
c13)).

• Primary element is c2.
– For d: it is an isolated element.

Densities:

In membranes

– dens(a3,4,5,6,12,13,14) = 0
– dens(a2,7,8,9,10,11) = 1
– dens(b3,5,6,7,8,9,12,13,14) = 0
– dens(b2,10,11) = 1
– dens(b4) = 2
– dens(c2,4,5,7,8,9,11,12,14) = 0
– dens(c2,3,6,10,12,13) = 1
– dens(d10) = 1
– dens(dμ−10) = 0

Maximal and minimal densities

Maximal Minimal
max dens(a) = 1 min dens(a) = 0
max dens(b) = 2 min dens(b) = 0
max dens(c) = 1 min dens(c) = 0
max dens(d) = 1 min dens(d) = 0
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In levels

Level 1 Level 2 Level 3
dens(a) = 0.75 dens(a) = 0.16 dens(a) = ddens(a) = 0.6
dens(b) = 1.25 dens(b) = 0 dens(b) = ddens(b) = 0
dens(c) = 0.5 dens(c) = 0.5 dens(c) = ddens(c) = 0.3
dens(d) = 0.25 dens(d) = 0 dens(d) = ddens(d) = 0

Maximal and minimal level densities

Maximal Minimal
max ldens(a) = 0.75 min ldens(a) = 0.16
max ldens(b) = 1.75 min ldens(b) = 0
max ldens(c) = 0.5 min ldens(c) = 0.3
max ldens(d) = 0.25 min ldens(d) = 0

3.1 Development of the Computation

Before starting the computation, we try to predict the result, by appling the
formula in 2.1. We have:

σ(a) = dens(a) in level 1+ dens(a) in level 2
2 + sw(a) in level 3

degree (level(3)) = 0.75+0.08+0.375
= 1.205

σ(b) = dens(b) in level 1+ dens(b) in level 2
2 + sw(b) in level 3

degree (level(3)) = 1.25+0+0.25 = 1.5

σ(c) = dens(c) in level 1 + dens(c) in level 2
2 + sw(c) in level 3

degree (level(3)) = 0.5+0.25+0.5 =
1.25

σ(d) = dens(d) in level 1 + dens(d) in level 2
2 + sw(d) in level 3

degree (level(3)) = 0.125+0+0.25
= 0.375

Our prediction is, then, that b will get the oversaturation, that is, it is going
to be spread in the whole system while the other symbols will become probably
blocked. Nevertheless this is only the most probable scenario. We do not know if
the system is deterministic, what means that there could exist a game consisting
in trying to find a way to block b.

Step 1. In the initial configuration, symbol a only has the possibility to replicate
in the membranes nested in 4. But 8 and 9 are a closed ring. They just exchange
elements between them. However, a7 has a powerful location. It can extend to
the sibling membranes, and then, by saturation, to the higher. It starts, in this
step, going to the sibling membrane M5.

The situation of b is the best. It can just reply inM4, but it can choose where
to be replied and it will be the more represented symbol in the membranes where
it can go. Let us choose to go to M10.
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c is the symbol which can be replicated more times this step. But it is placed
in two terminal nesting and sibling membranes. They cannot send the symbol
to any other membrane. So, c13 and c3 will replicate in the same place, without
a possibility of expansion. Their replication is junk reproduction. The situation
in M6 and M12 is different, because c can be expanded to sibling membranes. If
c12 goes to M14, then, by saturation, the symbol is also extended to M11. c6 has
to go to M5 or M7 knowing that a will be probably there, but it has not other
options. Symbol d cannot reply. The configuration after the first step is shown
in Figure 11.
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Fig. 11. First step of evolution

Step 2. In Figure 11, we see that a7 has been blocked by c, so it cannot replicate.
Terminal membranesM8 andM9 keep exchanging elements. On the other hand,
a5 can be extended to a6, and, by saturation, to a4. At the same time, b can
choose again what to do, because its position with the higher density in two
membranes of level 1 allows it to move by nesting, sibling or command. In this
case, b4 can be expanded toM14 and b10 toM12, and then, by saturation, it also
goes to M11. As for c, it continues replicating at M13 and M3, and M14, M12
exchange elements. c6 is expanded to M5, and from here to M4.

The configuration resulting from the second step of the computation is shown
in Figure 12.

Step 3. At this moment, a is completely blocked, except for the ring M8 ≈M9.
c is alive in ⊂ M11, but nowhere else in the system. But b can be replicated
in three level-one membranes. If it is able to block c, it will be able to expand



206 G.B. Enguix�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

1
2

3

4

abc

ccc

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
��

�
�
�

5 6 7
8

9

aaa

aaa

ac ac

bbac

ac

�

�

�

�

10

abbcd

�

�

�

�

�

�

�

�
�
�

�
	

�� ��
11

12

13

14
abbc

ccc

cbc

cbc

Fig. 12. Second step of evolution
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Fig. 13. Third step of evolution

anywhere with no problem. For doing that, it is necessary to concentrate every
replicated symbol of b in the same membrane. Figure 13 shows the result of such
movements.
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The third step is not the last in the evolution of the system, but is the last
interesting one. c can send an element to other membranes, but even so it gets
blocked. During the following steps b will replicate and take every membrane of
the system, as it was already predicted.

4 Some Sociolinguistic Concepts

With the concepts introduced above it is possible to describe linguistic situations
in societies. The most intuitive sociolinguistic concepts that can be approached
are bilingualism or multilingualism, ambilingualism, bipart-lingualism, and lan-
guage substitution. Bilingualism refers to the situation of a society where two
languages are used. Ambilingualism refers to societies in which two languages
are equally used, with no functional distribution. Bipart-lingualism refers to the
situation in which more than one language can be heard in a small area, but
the large majority of speakers are monolingual. Finally, language substitution is
the process in which a language starts to be spoken in a community instead of
another one.

Applying the same concepts to membrane systems, some definitions are ob-
tained that explain sociolinguistics in terms of membrane terminology. They are
the following:

1. Membrane bilingualism and n-lingualism refer to the existence of two or more
symbols in the same membrane. These phenomena can be symmetrical or asym-
metrical and model bilingualism and multilingualism, respectively.

2. Membrane symmetrical bilingualism is defined as the situation of stability in
a membrane with two different symbols. Consequently, in that membrane, both
symbols have the same density. Membrane symmetrical n-lingualism, however,
includes only one of the possible configurations of stability in a membrane with
more than two symbols, the one in which every element has the same density.

3. Membrane asymmetrical bilingualism is defined as the existence of two sym-
bols with different densities in the same membrane. Membrane asymmetrical
n-lingualism is modelled by the existence of more than two symbols in a mem-
brane, with at least two different densities.

It is easy to see that symmetrical bilingualism and n-lingualism are parallel to
ambilingualism, in which languages have the same status in a territory. Theoret-
ically, the situation is stable. If no external influence occurs, the membrane will
remain with the same configuration. Asymmetrical bilingualism and n-lingualism
are related with bipart-lingualism. This kind of bilingualism is clearly non-stable,
and does not last for a long time.

The same sociolinguistic concepts that have been applied to membranes, have
to be explained with regard to the entire system as well, giving rise to the fol-
lowing definitions:
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1. A system is monolingual when it has just one symbol, bilingual when it has
two symbols, and n-lingual when it has n symbols.

2. A bilingual or n-lingual system is symmetrical when it is stable, that is, when
every membrane in the system is stable.

3. A bilingual or n-lingual system is asymmetrical when there is at least one
membrane that is not stable.

Combining the definitios that correspond to membranes and systems, it can
be deduced that there are three possible scenarios for bi- and n-lingualism in a
society or membrane system:

– It is symmetrical in a symmetrical system. In this case, the system does not
evolve and n-lingualism will be perpetuated.

– It is symmetrical in an asymmetrical system. In this case, the symmetry will
be transformed in asymmetry after a number of steps of the computation.

– It is asymmetrical. The membrane will be transformed in a monolingual
membrane, after a number of steps of the computation. This is related to
language substitution, which is defined here as the last step of bilingualism.

Therefore it can be inferred that bi- or n-lingualism is an unstable situation
most of the times. It is stable only in a symmetrical membrane in a symmetrical
system. But in the real world that situation is hypothetical and it cannot exist.
Therefore, the way from bilingualism to bipar-lingualism and from here to lin-
guistic substitution is a continuous one. Moreover, whereas bilingualism usually
evolves to language substitution, the contrary process is very unusual, since it
is quite complicate to reach the stability in a system by replication. This idea is
explained in the statement 79 of Section 2.

From the ideas explained in the paper, two important conclusions can be
extracted about social systems, thanks to the theory provided by membrane
systems: a) “social” or “linguistic” systems are unstable by definition, and b)
societies tend to be mono-lingual, mono-memetical.

Finally, it seems to be possible to predict the final state of every symbol
of the system by analyzing a given configuration of the computation. Knowing
whether the future for a word, structure, slang, or language is the spread or the
death is an important goal for sociolinguistics, that can be calculated by formal
and simple methods in the framework of membrane systems.

5 Suggestions for Future Research

The present paper is an initial attempt to describe the mechanisms of evolution
in membrane systems, mechanisms which are provided by their internal insta-
bility and structural configuration. The topic has been just introduced, and a
further treatment should be done to improve the method and formalization. The
development of the theory has as a final goal the application to sociolinguistics,
an aim that has been only pointed out in this paper. In the near future, the tools
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proposed here must be improved and applied to more realistic situations. The
interest of the future research is especially focused in the following matters:

– To investigate the mathematical properties of social and linguistic evolution.
– To apply P systems to the study of spreading of ideas, art, etc.
– To define linguistic membrane systems with fuzzy membranes, according to

the composition of societies and languages.
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Abstract. The sodium-potassium pump is a fundamental transmem-
brane protein present in all animal cells. The functioning of the pump is
described and analyzed in the formal framework of P systems, considered
here as tools for modelling a bio-cellular process. New features such as
variable membrane labelling, activation conditions for rules, membrane
bilayer and specific communication rules are defined, to the aim of pro-
viding a more appropriate description of the pump. A Sevilla carpet of
the sodium-potassium pump is given, as a starting point to identify the
pumps as the processors able to execute the rules of a high-level P sys-
tem in a maximal parallel and nondeterministic manner, activated and
controlled by steady-state concentrations. Some related topics for further
research are proposed.

1 Introduction

Cell membranes are crucial to the life of the cell. Defining the boundary of the
living cells, membranes have various functions and participate in many essential
cell activities including barrier functions, transmembrane signaling and intercel-
lular recognition. The sodium-potassium exchange pump [15] is a transmembrane
transport protein in the plasma membrane that establishes and maintains the
appropriate internal concentrations of sodium (Na+) and potassium ions (K+)
in cells. By using the energy from the hydrolysis of ATP molecules, the pump
transports three Na+ outside the cell, in exchange for two K+ that are taken
inside the cell, against their concentration gradients. This exchange is an im-
portant physiologic process and it is critical in maintaining the osmotic balance
of the cell, the resting membrane potential of most tissues, and the excitable
properties of muscle and nerve cells.
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In this paper we model the movement of ions and the conformational trans-
formations of the sodium-potassium pump in the framework of P systems, hence
using discrete mathematics instead of partial differential equations. A similar
approach was used, for instance, in [3, 4] to model the activity of mechanosen-
sitive channels in prokaryotic cells, and in [10] to describe the phenomenon of
leukocyte selective recruitment in immune system.

P systems, or membrane systems, are formal systems with roots in the theory
of formal languages. They look at the phenomena occurring inside the cell as
computing processes. Initially proposed in [17], they are inspired by the archi-
tecture of the living cells, and the way biological substances are both modified
and moved among internal organelles. In a P system, each compartment (an or-
ganelle inside the cell) can be seen as a computing unit, having its own data and
its local program (molecular substances and biochemical reactions), and all com-
partments considered as a whole (the cell) can be seen as an “unconventional”
computing device. In particular, each compartment is delimited and separated
from the rest by a membrane; the whole computing unit is formally character-
ized by a membrane structure, where membranes can be hierarchically placed
inside a unique external membrane delimiting the entire cell. All membranes are
semi-permeable barriers, which either allow some substances to move inwards
or outwards and consequently change their location in the membrane structure,
or block the movement of some other substances. The biological substances and
reactions are represented by means of objects and evolution rules. Objects are
usually symbols or strings over a given alphabet, evolution rules are given as
rewriting rules with target indications, thus describing both the transformation
and the communication of objects. Further notions on P systems, their use as
computing devices, and an updated bibliography can be found in [18] and at
http://psystems.disco.unimib.it.

The paper is structured as follows. In Section 2 we recall some basic notions
from P system area, in Section 3 we present the Post–Albers scheme for the
activity of the sodium-potassium pump with occluded states, which will be then
modelled in Section 4. We introduce new features such as variable membrane
labelling, the activation conditions for evolution rules, the notion of membrane
bilayer and new specific communication rules. In Section 5 we present a Sevilla
carpet of the sodium-potassium pump, and propose to look at a cell as a P
system having its transport carriers (pumps) as the processors able to execute
the rules in a maximal parallel and nondeterministic manner. We conclude with
some remarks and directions for future research.

2 Membrane Systems Prerequisites

A multiset (over a given alphabet V ) is a map M : V → N, where M(a) is the
multiplicity of any symbol a ∈ V in the multiset M and N is the set of natural
numbers. If the set V is finite, e.g., V = {a1, . . . , an}, then the multisetM can be
explicitly represented by the string w = (M(a1) ·a1)(M(a2) ·a2) . . . (M(an) ·an),
with M(ai) �= 0 for all i = 1, . . . , n, and by all its possible permutations.
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Some basic operations may be defined for multisets. Let M1,M2 : V → N be
two multisets. We say thatM1 is included inM2, and we denote it byM1 ⊆M2,
if M1(a) ≤ M2(a) for all a ∈ V . The inclusion is strict, M1 ⊂ M2, if M1 ⊆ M2
and M1 �= M2. The union of M1 and M2 is the multiset M1 ∪M2 : V → N
defined by (M1 ∪M2)(a) = M1(a) +M2(a) for all a ∈ V . The difference is the
multiset M1 \M2 : V → N defined by (M1 \M2)(a) = M1(a) −M2(a) for all
a ∈ V . Obviously, M1 \M2 is defined only when M2 is included in M1.

The notion of multiset is widely used in P systems to describe the objects
present in the membrane structure. We briefly recall that a membrane structure
consists of a set of membranes hierarchically embedded in a unique membrane,
called the skin membrane. The membrane structure is identified with a string
of correctly matching square parentheses, placed in a unique pair of match-
ing parentheses; each pair of matching parentheses corresponds to a membrane.
Each membrane identifies a region, delimited by it and the membranes (if any)
immediately inside it. Usually, a unique label is univocally associated to each
membrane. For instance, the string [0 [1 ]1 [2 ]2 ]0 identifies a membrane structure
consisting of three membranes; the skin membrane is labelled with the number
0, the other two membranes are placed inside the skin at the same hierarchical
level and are labelled with the numbers 1 and 2.

An object can be a symbol or a string over a specified finite alphabet V ;
multisets of objects are usually considered in order to describe the presence
of multiple copies of any given object. In the following, we will only consider
multisets of objects, and we will use their representation as strings. Objects are
modified by means of evolution rules, which are rewriting rules with an associated
target indication (tar, in short) of the form here, out, in. For multisets of objects,
a rewriting rule can have the form u → v, where u, v are string representations
of multisets over V , with the objects from v having associated targets, thus
appearing in the form (a, tar). The target indication determines the region where
the object is communicated after the application of the rule: if tar = here, then
the object remains in the same region; if tar = out, then the object exits from
the region where it was placed; if tar = in, then the object nondeterministically
enters one of the membranes immediately inside the region where the rule is
applied, if any inner region exists (otherwise the rule cannot be applied).

In Section 4 the notion of membrane structure and the modalities of com-
munication will be refined in order to give a more appropriate model for the
sodium-potassium pump.

3 Sodium-Potassium Exchange Pump

The sodium-potassium pump (briefly, Na-K pump) is a primary active transport
system driven by a cell membrane ATPase carrying sodium ions outside and
potassium ions inside the cell. Many animated representations of the pump are
available on the web, one can be found at http://arbl.cvmbs.colostate.edu/
hbooks/molecules/sodium pump.html.
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Table 1. The Post–Albers cycle with occluded states

+ 3Na+
cyt

⇀↽ E1 · ATP · 3Na+ (1)

E1 · ATP · 3Na+ ⇀↽ E1 ∼ P · (3Na+)occ + ADP (2)

E1 ∼ P · (3Na+)occ ⇀↽ E2 ∼ P · 2Na+ + Na+
ext (3)

E2 ∼ P · 2Na+ ⇀↽ E2 ∼ P + 2Na+
ext (4)

E2 ∼ P + 2K+
ext

⇀↽ E2 ∼ P · 2K+ (5)

E2 ∼ P · 2K+ ⇀↽ E2 · (2K+)occ + Pi (6)

E2 · (2K+)occ + ATP ⇀↽ E1 · ATP · 2K+ (7)

E1 · ATP · 2K+ ⇀↽ E1 · ATP + 2K+
cyt (8)

The description given in Table 1 is known as the Post-Albers cycle with oc-
cluded states. According to it, the sodium-potassium pump has essentially two
conformations, namely E1 and E2 (both may be phosphorylated or dephospho-
rylated), which correspond to the mutually exclusive states in which the pump
exposes ion binding sites alternatively on the intracellular (E1) and extracellular
(E2) sides of the membrane. Ion transport is mediated by transitions between
these conformations. During the translocation across cell membrane, there exist
conformations in which the transported ions are occluded (trapped within the
protein) before being released to the other side, and thus unable to be in contact
with the surrounding media [11].
Remark 1. In Table 1, A+B means that A and B are present together (e.g., in
a test tube). A ·B means that A and B are bound to each other noncovalently.
E2 ∼ P indicates that the phosphoryl group is covalently bound to E2. Pi is
the inorganic phosphate group (i means inorganic).⇀↽ indicates that the process
can go either way, i.e., it can proceed reversibly.

In Figure 1 we give a graphical representation of the conformations and the
functioning of the pump: Na+ ions are pictured as small squares, K+ ions as
small circle; for simplicity, neither ATP molecules nor phospates are represented.

Let us consider an initial state, following the release of K+ ions to the cytosol
(Figure 1, left middle), where the pump is in the conformation E1, and it is
associated with ATP (we describe it as E1 ·ATP in Table 1). Its cation binding
sites are empty and open to the intracellular space. In this situation, the affinity
is high for Na+ and low for K+. Consequently, three Na+ ions binds to the
intracellular cation sites; this corresponds to the first equation of Table 1 and to
the left up corner of Figure 1.

The binding of sodium catalyzes a phosphorylation of the pump by the pre-
viously bound ATP: the γ phosphate of ATP is transferred to the aspartate
residue of the pump structure. The new conformation of the pump is described
as E1 ∼ P in Table 1. During this process, Na+ ions are occluded (Figure 1, up
middle, and Table 1, equation (2)). Thereafter the pump undergoes a conforma-
tional change to the EP

2 state and loses its affinity for Na+. The Na+ ions are
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Fig. 1. The sodium–potassium pump with occluded states

subsequently released; first one Na+ ion is released during the conformational
change from EP

1 to EP
2 when the cation binding sites are oriented toward the

extracellular side (Figure 1, right up, and Table 1, equation (3)). The pump is
in the EP

2 state, and the affinity for Na+ ions is very low; the two remaining
Na+ ions are released into the extracellular medium (Figure 1, right middle,
and Table 1, equation (4)). The binding sites now have a high affinity for K+.
Two external K+ ions can bind; this corresponds to equation (5) of Table 1, and
to the right down corner of Figure 1. The binding of K+ at the outer surface
induces the dephosphorylation of the EP

2 conformation, which turns to E2. The
release of the inorganic phosphate Pi into the intracellular medium is accom-
panied by the occlusion of the K+ ions (equation (6)). De-occlusion of K+ ions
to the intracellular space is then catalyzed by ATP (equations (7) in Table 1
and Figure 1, left down corner): the pump returns to the conformation which
has high affinity for sodium ions (namely, E1) and still presents the binding with
ATP. The affinity for K+ ions reduces and they are released into the intracellular
medium (equations (8) in Table 1). The pump protein is now ready to initiate a
new cycle from the active conformation E1 ·ATP (Figure 1, left middle).

A detailed description of the overall functioning of the pump, as well as some
graphical representations, can be found in [11, 12].

Na-K pump is under the control of many regulatory mechanisms and path-
ways. For instance, the intracellular concentrations of ions determine the max-
imal activity of the pump: whenever cellular Na+ rises, the pump works more
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rapidly to expel the excess of Na+, thus lowering its concentration to a steady-
state value [14].

Regarding the relationship between the kinetic parameters of the transport
process and the efficiency of the pump, we can mention that the rate constants of
competing steps (that would decrease the efficiency) are quite small. This ensures
that the binding and the release of substrate occur at the proper point in the
cycle. For example, the reaction E1 ·ATP ⇔ E1 ∼ P + ADP of equation (2) is
slower than the reaction of equation (1). As a consequence, E1 has enough time
to bind sodium ions before undergoing the transition to E2. Similar relationships
among rate constants ensure that ions are released from the enzyme before they
come back to the side at which they were initially bound. In other words, the slow
rate constants channel the enzyme along a reaction path in which the hydrolysis
of ATP is tightly coupled to the transport process.

For further notions about Na-K pump, the interested reader can consult the
reviews [11, 12, 14, 19], or more general books [1, 16].

4 Modelling Na–K Pump with Membrane Systems

Since Na–K pump is a transmembrane protein associated with the phospholipid
bilayer of the plasma membrane, it suffices to consider a membrane structure
consisting of the skin membrane only. However, in order to formally describe the
pump with a high resemblance to its biological structure and functioning, we
have to introduce a notation for the cellular lipid bilayer. To this aim, we use
two symbols of type “|” which, placed next to the couple of square parenthe-
ses denoting a membrane, characterize a further intermediate region: the skin
membrane with bilayer will be denoted as [| |]. The skin membrane with bilayer
characterizes now three distinct spaces, precisely the extracellular environment
(in short, Env), the lipid bilayer of the membrane (Bilayer), and the cytoplasm
of the cell (Reg):

Env [Bilayer| Reg |Bilayer] Env.

In the following we will use only the semibracket notation for membranes, as
introduced in [2].

The conformations of the pump are described by means of labels attached
to the membrane, that is [|l, with l ∈ L,L = {E1 ·ATP,EP

1 , E2, E
P
2 }. We point

out that, since we want to model the functioning of the pump during its trans-
port activity, we will consider the conformation E1 only in the case the binding
of an ATP molecule (which triggers the process) has already occurred, and we
describe this situation with label E1 · ATP . The labels EP

1 , E
P
2 correspond to

the phosphorylated conformations of the pump with high affinity for sodium and
potassium ions, respectively, while E2 correspond to the dephosphorylated con-
formation with high affinity for potassium ions, as already described in Section
3. For the description of occluded states, we consider a subset Locc of L, namely
Locc = {EP

1 , E2}, where the first label denotes the occluded conformation for
sodium ions, the second the occluded conformation for potassium ions.
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The alphabet of objects is V = {Na,K,ATP,ADP,P}, where symbols natu-
rally represent the substances present in the cell and involved in the functioning
of the pump. We consider also a second alphabet, Vocc = {Na,K}, to denote
only those substances (sodium and potassium ions) which, at some time, are oc-
cluded within the pump, that is inside the bilayer region. The occlusion of these
substances is expressed by means of overlined symbols, which will be present in
a configuration if and only if the label of the membrane corresponds, at that
time, to an occluded conformation of the pump.
Note the appearance of the symbols ATP and P in both the alphabet V and
the label set L; the meaning of this aspect will be explained in the sequel.

In the initial configuration we assume that the multiset inside the region
consists of n sodium symbols, m potassium symbols and s molecules of ATP ,
that is MReg = {nNa,mK, sATP}, the multiset in the environment is MEnv =
{n′Na,m′K}, for some integers n, n′,m,m′, s ≥ 0, while MBilayer is empty.

We denote by RNa = n′
n and RK = m′

m the ratios of occurrences of sodium
and potassium ions, respectively, outside and inside the membrane. These values
are used to describe the starting time for the functioning of the pump. Indeed,
in real cells it is known that the cytoplasmic concentration of sodium is very
lower with respect to the external concentration, while the opposite holds for
potassium concentration.1 Whenever such natural conditions vary, e.g., when the
intracellular concentration of Na+ or extracellular concentration of K+ rise above
the steady-state values, the Na–K pumps in the plasma membrane try to re-
establish the right physiological conditions. Hence, we assume that the activation
of the pump is triggered by a change in the values of the ratios evaluated at the
current step. Specifically, we define two threshold conditions, RNa ≤ k1 and
RK ≥ k2 (for some fixed threshold values k1, k2 ∈ R, corresponding to the ratios
at steady-state concentrations), such that the pump will not be activated if they
are not satisfied. Otherwise, the pump starts its functioning.

In the model of the pump, a generic evolution rule has the form

MEnv [MBilayer|l MReg
C−→M ′

Env [M ′
Bilayer|l′ M ′

Reg,

where C is a (possibly null) threshold condition associated to the rule, l, l′ ∈ L
and M ′

Env,M
′
Bilayer,M

′
Reg are multisets obtained from MEnv,MBilayer,MReg

by the application of the basic operations defined in Section 2.
The modification of objects happens only for symbols ATP and, in a different

way, for Na and K. In the cell, the Na-K pump is autophosphorylated by the
hydrolysis of one molecule of ATP, which produces one molecule of ADP (re-
leased free in the cell) and one inorganic phosphate group (covalently bounded to
the pump). Hence, the transformation of the object ATP will involve the use of
membrane labels that, as said before, correspond to conformations of the pump.

1 For instance, a concentration of 145mM of sodium and 4mM of potassium can be
found outside the cell, while 12mM of sodium and 139mM of potassium can be found
inside (data taken from [16]).
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On the other side, the objects Na,K only change their status (that is, occluded
or not) during the functioning of the pump, thus we will only allow to transform
each Na (K, respectively) into its corresponding occluded symbol Na (K, re-
spectively) and viceversa on condition that, in that step, the current membrane
label belongs to Locc. Precisely, we can have the following two situations:

[x|l → [y|l′

when l ∈ L, l′ ∈ Locc and, if x ∈ {Na}+ then y ∈ {Na}+ (in this case, l′ = EP
1 ),

if x ∈ {K}+ then y ∈ {K}+ (in this case, l′ = E2), or

[x|l′ → [y|l

when l ∈ L, l′ ∈ Locc and, if x ∈ {Na}+ then y ∈ {Na}+ (in this case, l′ = EP
1 ),

if x ∈ {K}+ then y ∈ {K}+ (in this case, l′ = E2).

We also define two new types of evolution rules, which are needed only for
the communication of objects, but not for their modification.

1. A binding rule has the form

bout,within : x [|l → [x′|l′ or bin,within : [|l x→ [x′|l′

for some x, x′ ∈ V + and l, l′ ∈ L (both not necessarily distinct).
The application of a binding rule of the type bout,within (bin,within) causes
the movement of a multiset x from the environment (region) into the bilayer.

2. An unbinding rule has the form

uwithin,in : [x|l → [|l′ x′ or uwithin,out : [x|l → x′ [|l′

for some x, x′ ∈ V + and l, l′ ∈ L (both not necessarily distinct).
The application of an unbinding rule of the type uwithin,in (uwithin,out)
causes the movement of a multiset x from the bilayer into the region (envi-
ronment).

The communication of objects happens when an unbinding rule is used after
a binding rule (not necessarily in consecutive steps). For instance, if we first
use a rule of the type bout,within and then we use a rule of the type uwithin,in,
then we have the passage of some objects from the outer environment into the
internal region, while using first bin,within and then uwithin,out causes the passage
of some objects from the internal region to the outer environment. In contrast
to the usual and direct communication with target indication in P systems, here
the passage of objects happens by means of the interplay of two rules and this
corresponds to the presence of an intermediate region.

Remark 2. We stress here the fact that this kind of communication could be de-
fined in another analogous way, namely using classical evolution rules with a new
target indication of the type within, which would cause an object to pass from
the environment or from the internal region directly into the bilayer. Anyway,
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this kind of mechanism would not be enough to model the Na–K pump, since
in this case it is important to consider also the current label of the membrane
and let the rule (possibly) modify it too. Indeed, in this system the membrane
plays a fundamental role, since it represents (a part of) the cellular pump we
are modelling and not only a separator for different regions. This is in line with
the ideas expressed in [2] where rules are associated with membranes, instead of
being only defined inside the regions.

Given all the necessary definitions, the functioning of the Na–K pump with
occluded states can be now described by means of the following rules:

r1 : [ |E1·ATP 3Na
(RNa≤k1)∧(RK≥k2)−→ [3Na|E1·ATP

r2 : [3Na|E1·ATP −→ [3Na|EP
1
ADP

r3 : [3Na|EP
1
−→ Na [2Na|EP

2

r4 : [2Na|EP
2
−→ 2Na [ |EP

2

r5 : 2K [ |EP
2
−→ [2K|EP

2

r6 : [2K|EP
2
−→ [2K|E2 P

r7 : [2K|E2 ATP −→ [2K|E1·ATP

r8 : [2K|E1·ATP −→ [ |E1·ATP 2K

The application and meaning of rules is as follows. If threshold conditions
in rule r1 are both satisfied, the pump is in conformation E1 · ATP and (at
least) three Na symbols are present inside the internal region, then the pump
is activated and three sodium ions are bound to the bilayer. Note that they are
still not occluded within the bilayer, since the current membrane label is not in
the alphabet Locc.

Rule r2 corresponds to the autophosphorylation of the pump: ATP is trans-
formed into ADP with the (mute) production of one copy of the object P .
Accordingly, the conformation of the pump is changed from E1 · ATP into the
phosphorylated form EP

1 . As mentioned above, the object P now becomes part
of the membrane label, hence it undergoes a “structural modification” by passing
from being an element of the alphabet V to being a component of the membrane
labels in the set L. We believe that, instead of considering P as a free object,
it is more appropriate to use the chosen formal description (rather than using,
instead of rule r2, the couple of rules [3Na|E1·ATP −→ [3Na|E1 ADP P , and
then [3Na|E1 P −→ [3Na|EP

1
) since, actually, the phosphate directly intervene

in the structural conformation of the pump (which is formally described here by
means of membrane labels). The right-hand side of rule r2 denotes the occlusion
of sodium ions, that is possible because the membrane label is in Locc.

In the system configuration [3Na|EP
1
, rule r3 can be applied: the conformation

of the pump changes from EP
1 to EP

2 , the sodium ions becomes de-occluded and
are exposed to the extracellular side of the protein, where one of them is imme-
diately released free in the environment. This is exactly an unbinding rule of the
form uwithin,out which, applied after the binding rule r1 (of the form bin,within)
allows the communication of objects from the region to the environment. Rule
r4 describes the unbinding of the remaining two sodium ions.
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When the system configuration is [|EP
2
, no objects are present in the bilayer

and at least two copies of the object K are present in the environment, then rule
r5 can be applied: two potassium ions are bound within the bilayer and the pump
conformation remains unchanged. By releasing into the region the phosphate P
attached to the pump (expressed with the label EP

2 ), the conformation turns to
the occluded state E2 and the objectsK are transformed into their corresponding
occluded objects K (rule r6).

As reported in [11, 12], de-occlusion and successive release of K+ ions is cat-
alyzed by the binding of ATP to the pump. Hence, if at least one ATP sym-
bol is present inside the region at this current step, its binding to the pump
causes the membrane label to change from E2 to E1 · ATP , and the occluded
K symbols to pass to a non-occluded state (rule r7). Note that, similarly to
the structural modification of the symbol P , in rule r7 there is a passage of the
symbol ATP from being a component of MReg to being part of the membrane
label.

Finally, by applying the unbinding rule r8, two K symbols are released inside
the region. An activation cycle of the pump is thus finished. The pump is in
conformation E1 ·ATP , the bilayer is empty and the simulation of pump activ-
ity can start again from rule r1. The thresholds conditions must be evaluated
again according to the current multisets and subsequent activation cycles might
occur.

5 Sevilla Carpets and Pumps Systems

Sevilla carpets are introduced in [8] as a generalization of the control word
of a Chomsky grammar, in order to describe computations in a P system. A
Sevilla carpet is a table considering time on its horizontal axis, and the rules
of a P system along its vertical axis; for each rule, this table contains a certain
information at each computation step. We provide the Sevilla carpet of the Na–K
pump where, at each computation step, it is specified whether a certain rule is
used or not. We consider an initial configuration given by the following input
values: 136 Na+ ions and 10 K+ ions in the environment, together with 21 Na+

ions, 130 K+ ions and 9 ATP energy units in the cytoplasmic region. These values
correspond to the external and internal concentrations. As it was mentioned, the
Na–K pump is activated in order to re-establish the physiological steady-state
values, namely a concentration of 145mM of sodium and 4mM of potassium
outside the cell, together with 12mM of sodium and 139mM of potassium inside
(according to [16]).

We have a carpet with eight rules, and three iterations. It is easy to note
that the pump has a deterministic behaviour provided by a clear sequence of
rules, each rule being triggered by the successful execution of the previous one.
Therefore the pump follows the same sequence of rules in each iteration, exhibit-
ing a sequential behaviour. This sequential behaviour is also emphasized by the
biological experiments [13].
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Membrane Rule Iteration 1 Iteration 2 Iteration 3
1 10000000 10000000 10000000
2 01000000 01000000 01000000
3 00100000 00100000 00100000
4 00010000 00010000 00010000
5 00001000 00001000 00001000
6 00000100 00000100 00000100
7 00000010 00000010 00000010
8 00000001 00000001 00000001

Env: 136Na, 10K 139Na, 8K 142Na, 6K 145Na, 4K
Reg: 21Na,130K,9ATP 18Na,132K,8ATP 15Na,134K,7ATP 12Na,136K,6ATP

Since we are in the framework of the bio-inspired approach of the membrane
computing, and since parallelism is an important feature, it is normal to wonder
where is this parallelism when we discuss about the biological membranes. And
how this parallelism is actually activated and controlled. Considering a hierarchi-
cal organization and description of a biological cell, we can identify the various
pumps as the processors able to execute the rules of a membrane in a maximal
parallel and nondeterministic manner (see also [5]), where the activation of the
pumps is triggered by concentration gradients conditions (in Section 4 we have
defined specific threshold conditions corresponding to the ratios at steady-state
concentrations). A final result is obtained when a stable state is reached. For
the previous example, considering a certain number of Na–K pumps (say 10), as
well as other pumps of a cell, the Sevilla carpet corresponding to the high-level
computation of a general P system where pumps are seen as primitive construc-
tions is given below. Here we emphasize only the communication of Na+ and
K+ ions, as well as the consumption of ATP molecules (see the last lines of the
table).

Pumps Activation Distribution
Na-K pumps 3 activations 0010100001
Ca pumps 0 activations 000000

Glucose-Na pumps 0 activations 0000000
other pumps 0 activations 00000000000

Env 136Na, 10K 145Na, 4K
Reg 21Na, 130K, 9ATP 12Na, 136K, 6ATP

It is easy to note the parallel execution of three pumps competing in this case
for Na+ and K+ ions, as well as the nondeterministic choice of their activations
represented in the Sevilla carpet by the distribution 0010100001 saying that the
Na-K pumps 3, 5 and 10 of the given 10 pumps were activated.

We stress the fact that this is just an attempt to consider a cell as a P
system working with pumps as processors of the rules. Undoubtedly, it is far
from being a real description, since in such a case many biological factors should
be considered as well. A strong and well motivated hint for future research is
thus established.
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6 Conclusion and Future Work

In this section we briefly present some possible extensions of the model and
future investigations.

In [7], the Na–K pump was described by using the process algebra π-calculus.
In [6], the transfer mechanisms were described step by step, and software tools
of verification were also applied. This means that it would be possible to verify
properties of the described systems by using a computer program, and the use of
the verification software as a substitute for expensive lab experiments. A similar
development for P systems would be a very useful achievement.

The P system proposed in this paper presents similar features with P au-
tomata (see [9]), where the membranes are only allowed to communicate with
each other, and objects are never modified during a computation, but only ex-
changed among regions, or consumed from the environment through the skin
membrane. As a future extension of our work, the model of the sodium-potassium
pump can be translated into its corresponding P automaton (with the appro-
priate type of objects communication), and then its computational power could
be investigate. In this way, we think we could establish a deeper theoretical
link between the theory of formal languages and the (present description of a)
biological transmembrane protein.

From the biological point of view, it is known that the drug ouabain (and
other similar cardiac glycosides) is a specific inhibitor of the pump; it competes
with K+ ions for the same binding site (in conformation EP

2 ) on the extracellular
side of the pump [1]. Many animal cells swell, and often burst, when they are
treated with ouabain. The occurrence of ouabain can be modelled by adding a
new object o to the alphabet V , and by considering the rule

o [ |EP
2
−→ [o|EP

2
,

which could be (nondeterministically) chosen instead of the rule r5 given in
Section 4. The functioning of the pump would then be blocked, since no other
rule can be further applied. It would be worthwhile to study, from a biological
perspective, the consequences of pump inhibition, also due to changes in intra-
cellular pH (via the exchange system of sodium and hydrogen) or calcium (via
the exchange system of sodium and calcium), and the dynamics governing the
interactions among the pump and other proteins. Considering different behaviors
of the pump, in presence of specific chemicals, could open interesting scenarios
of research.

Finally, it would be interesting to extend P systems with some stochastic
features able to characterize the molecular interactions involving the dynamic
efficiency of the pump and other quantitative aspects (e.g., kinetics rates, energy,
pump failures). Regarding the sodium-potassium pump, the whole transport
process can have failures, and the pump can fail to transport Na+ out in exchange
for K+ that are taken in. For example, as already mentioned in Section 3, due to
the lower rate constant for the reaction E1 ·ATP ⇔ E1 ∼ P + ADP , E1 has
enough time to bind sodium before undergoing the transition to E2. However,



222 D. Besozzi and G. Ciobanu

the reaction E1 ·ATP ⇔ E1 ∼ P + ADP can work sometime before the sodium
ions bind to the pump; this occurs quite rarely compared to the usual activity
of the pump. Mainly, ATP is working faster than the sodium ions, and the
pump changes its conformation (from open inside to open outside) without the
sodium ions. This simple biological example motivates the study of stochastic
aspects related to the P system proposed here. Therefore, in order to have a
more realistic description of the pump, we could give a probabilistic model and
add some probability distributions to rules, in a similar way they were attached
to the pump actions in [7]. In this way, it could also be possible to model the
quantitative behavior of a P system.
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Abstract. We introduce in the P systems area a mechanism, inspired
from neural-cell behavior, which controls computations by inhibiting and
de-inhibiting evolution rules. We investigate the computational power of
this mechanism in both generative and accepting P systems. In partic-
ular, we prove that universality can be obtained by using one catalyst.
If we use only non-cooperative rules and one membrane, then we can
obtain at least the family of Parikh images of the languages generated
by ET0L systems. Several research proposals are also suggested.

1 Introduction

P systems represent a class of distributed/parallel computing devices whose
functioning is inspired from the behavior of living cells. Chemical compounds
are processed in a massive parallel manner inside a compartmental structure of
membranes that control the exchanges of substances between the regions they
delimit. The reactions that take place inside such a biological structure can be
formally described by multiset processing rules.

In biology it is known that many reactions in the cell are catalyzed by the
presence of associated enzymes. On the other hand, in bacteria, the enzymes
(proteins) can be activated/inactivated during the cellular process (in other
words, an inactivated enzyme is not able to catalyze the corresponding reac-
tion). For instance, in cells, there are chemical reactions promoted/inhibited by
the presence/absence of certain chemicals which are not directly implied in the
reactions. A formalization of this fact has been done in [5] where P systems with
promoters/inhibitors have been introduced and investigated.

Another possibility is to consider biological signals processed by living cells.
Signals can arise from inside the cell or from the external environment and the
correct answer to certain signals is essential for bacteria to survive in a certain
environment. P systems based on this mechanism have been investigated in [3].
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Again inspired from cell-biology, P systems with creation of evolution rules
during the computation have been investigated in [4].

Recently P systems using operations inspired by the functioning of neural
cells have been introduced and investigated in [1] and [7].

In this paper we continue the investigation of models of P systems using
features imported from neural-cells functioning. In particular we introduce the
ability for an evolution rule to inhibit or to de-inhibit, during the computation,
other rules present in the systems.

Before introducing the formal definition of the proposed mechanism let us
briefly recall the biological background of neural-cells. For more details about
neural biology we refer to the classical book [16].

The basic unit of transmission in the nervous system is a cell called neuron.
The neuron is not an homogeneous unit but is (potentially) divided in many
sub-integrative units, each one with the ability of mediating a local synaptic
output to another cell or to another part of the same cell.

Neurons are considered to have three main parts: a soma, the central part
of the cell where the genetic material is present and life functions take place;
a dendrite tree, the branches of the cell where impulses come in; an axon, the
branch of the neuron over which the impulse (or signal) is propagated.

The branches present at the end of the axons are called terminal trees. An
axon can be equipped with a structure composed by special sheaths. These
sheaths are involved in molecular and structural modifications of axons needed
to propagate impulse signals rapidly over long distance. There is a gap between
neighboring myelinated regions that is know as the node of Ranvier, which con-
tains channels for impulse generation. When the transmitting impulses reach
the node of Ranvier, they cause the change in polarization of the membrane.
The change in potential can be excitatory (moving the potential toward the
threshold) or inhibitory (moving the potential away from the threshold).

The impulse transmission through a neuron follows this path: from dendrite
to soma to axon to terminal tree to synapse. If different impulses reach at the
same time a certain node, it might happen that the combined effects of the
excitatory and inhibitory signals may cancel each other out. Once the threshold
of the membrane potential is reached, an impulse is propagated along the neuron
or to the next neuron.

It is possible to introduce this mechanism in the P systems area by using
evolution rules equipped with the ability to send excitatory/inhibitory signals.

An inhibited rule is formally written as r : ¬(u→ v), and the meaning is that
the rule cannot be applied, more precisely, u cannot evolve to v. An evolution
rule can de-inhibit an inhibited rule allowing it to be applied. To this aim, we
also consider rules of the form r : u→ v〈r1 · · · rk〉, which say that, when the rule
is applied, u evolves into v and the rules r1, · · · , rk are inhibited or de-inhibited
according to their previous states.

We introduce a class of P systems using inhibiting/de-inhibiting rules and
we explore the computational power of the class considering catalytic and non-
cooperative inhibiting/de-inhibiting rules. In particular, we prove that univer-
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sality can be obtained (in the generative and accepting cases) by using only one
catalyst. If we use only non-cooperative rules, then the systems can generate at
least the family of Parikh images of the languages generated by ET0L systems.

2 Preliminaries

We recall the main elements of formal language theory used in the paper; for
more information the reader can consult [15].

First, some basic notations. O∗ denote the set of all strings over the alphabet
O. For a ∈ O and x ∈ O∗ we denote by |x|a the number of occurrences of a in x.
Then, for O = {a1, · · · , an}, the Parikh mapping associated with O is the map-
ping on O∗ defined by ΨO(x) = (|x|a1 , · · · , |x|an

), for each x ∈ O∗. The family
of recursively enumerable languages is denoted by RE and the family of Parikh
images of recursively enumerable languages languages is denoted by PsRE (this
is the family of all recursively enumerable sets of vectors of natural numbers).
The families of languages generated by context-free and context-sensitive gram-
mars are denoted by CF and CS, respectively. The family of Parikh images of
languages generated by context-free grammars is denoted by PsCF .

The multisets over a given finite support (alphabet) are represented by strings
of symbols. The order of symbols does not matter, because the number of copies
of an object in a multiset is given by the number of occurrences of the corre-
sponding symbol in the string. Clearly, using strings is only one of many ways
to specify multisets.

2.1 Matrix Grammars

We recall here the notion of matrix grammar because we will use in the paper
the characterization of recursively enumerable languages by means of matrix
grammars with appearance checking.

Such a grammar is a construct G = (N,T, S,M, F ), where N,T are disjoint
alphabets, S ∈ N , M is a finite set of sequences of the form (A1 → x1, . . . ,
An → xn), n ≥ 1, of context-free rules over N ∪ T (with Ai ∈ N,xi ∈ (N ∪
T )∗, 1 ≤ i ≤ n), and F is a set of occurrences of rules inM (N is the nonterminal
alphabet, T is the terminal alphabet, S is the axiom, while the elements of M
are called matrices).

For w, z ∈ (N ∪ T )∗ we write w =⇒ z if there is a matrix (A1 → x1,
. . . , An → xn) in M and the strings wi ∈ (N ∪ T )∗, 1 ≤ i ≤ n + 1, such that
w = w1, z = wn+1, and, for all 1 ≤ i ≤ n, either wi = w′

iAiw
′′
i , wi+1 = w′

ixiw
′′
i ,

for some w′
i, w

′′
i ∈ (N ∪ T )∗, or wi = wi+1, Ai does not appear in wi, and the

rule Ai → xi appears in F . (The rules of a matrix are applied in order, possibly
skipping the rules in F if they cannot be applied – therefore we say that these
rules are applied in the appearance checking mode.) If the set F is empty, then
the grammar is said to be without appearance checking.

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}. The
family of languages generated by matrix grammars with appearance checking is
denoted by MATac. It is known, [6], that MATac = RE.
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A matrix grammar G = (N,T, S,M,F ) is said to be in the binary normal
form if N = N1 ∪N2 ∪ {S,#}, with these three sets mutually disjoint, and the
matrices in M are in one of the following types:

1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y,A→ x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2,
3. (X → Y,A→ #), with X,Y ∈ N1, A ∈ N2,
4. (X → λ,A→ x), with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1 (that is why one uses to write it in
the form (S → XinitAinit), in order to fix the symbols X,A present in it), and
F consists exactly of all rules A → # appearing in matrices of type 3; # is a
trap-symbol, because once introduced, it is never removed. A matrix of type 4
is used only once, in the last step of a derivation.

For each matrix grammar there is an equivalent matrix grammar in the binary
normal form. Details can be found in [6].

2.2 Register Machines

We will also use in our paper register machines that is why we shortly recall
here this notion (the reader can find more details in [9]). A register machine
runs a program consisting of labelled instructions of several simple types. Several
variants of register machines were shown to be computationally universal.

A n-register machine is a construct M = (n, P, l0, lh), where:

– n is the number of registers,
– P is a set of labeled instructions of the form li : (op(r), lj , lk), where op(r) is

an operation on register r of M , and li, lj , lk are labels from the set lab(M)
(that is the set of labels associated to the the instructions, in a one-to-one
manner),

– l0 is the label of the initial instruction, and
– lh is the label of the halting instruction.

The machine is capable of the following instructions:

(add(r), lj , lk) : Add one to the content of register r and proceed, in a non-
deterministic way, to instruction with label lj or to instruction with label lk; in
the deterministic variants usually considered in the literature we demand lj = lk.

(sub(r), lj , lk) : If register r is not empty, then subtract one from its contents
and go to instruction with label lj , otherwise proceed to instruction with label
lk.

halt : This instruction stops the machine; it can only be assigned to the final
label lh.

A deterministic n-register machine can analyze an input (n1, ..., nα) ∈ Nα,
introduced in registers 1 to α, which is accepted if and only if the register machine
finally stops by the halt instruction with all its registers being empty (this last
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requirement is not necessary). If the machine does not halt, then the analysis
was not successful.

It is known (see [9]) that deterministic register machines accept exactly the
family of Turing computable sets of vectors of natural numbers.

A non-deterministic n-register machine can be used also as a generating de-
vice, in the following way. A register machine generates a vector (n1, · · · , nα) ∈
Nα when it starts from the instruction labeled l0 with all registers being empty
and stops by halting with value nj in register j, 1 ≤ j ≤ α, and the contents of
registers α+ 1, · · · , n being empty.

In this way, register machines can generate the family of Turing computable
sets of natural numbers.

2.3 Lindenmayer Systems

An ET0L system is a construct G = (Σ,T,H,w), where the components fulfill
the following requirements: Σ is the alphabet; T ⊆ Σ is the terminal alphabet;
H is a finite set of of finite substitutions (tables) H = {h1, h2, · · · , ht} (t is the
number of tables); each hi ∈ H can be represented by a list of context-free rules
A → x, such that A ∈ Σ and x ∈ Σ∗ (this list for hi should satisfy that each
symbol of Σ appears as the left side of some rule in hi, 1 ≤ i ≤ t); w ∈ Σ∗ is
the axiom.
G defines a derivation relation ⇒ by x⇒ y iff y ∈ hi(x), for some 1 ≤ i ≤ t,

where hi is interpreted as substitution mapping.
The language generated by G is L(G) = {z ∈ T ∗ | w =⇒∗ z}.
ET0L denotes the family of languages generated by ET0L systems and

PsET0L the family of Parikh images of languages in ET0L.
The following inclusions are of interest for what follows:

CF ⊂ ET0L ⊂ CS ⊂ RE.

Moreover it is known that for each L ∈ ET0L, there exists an ET0L system
G′, with only 2 tables, such that L = L(G′) (see [15]).

We also need to present the following normal form for ET0L systems (for the
proof we refer to [2]).

Lemma 1. (Normal form)
For each L ∈ ET0L there is an extended tabled Lindenmayer system G =
(Σ,T,H,w) with 2 tables (H = {h1, h2}) generating L, such that, for each a ∈ T
if (a → α) ∈ h1 ∪ h2, then α = a. A production of the kind a → a, a ∈ T, is
called trivial.

In what follows we suppose the reader familiar with the main concepts and
results of the P systems area, as, for instance, presented in [12].



Inhibiting/De-inhibiting Rules in P Systems 229

3 Inhibiting/De-inhibiting Rules in P Systems

A P system with inhibiting/de-inhibiting rules (in short, an ID P system), of
degree m ≥ 1, is a construct

Π = (O,C,H, μ,w1, . . . , wm, R1, · · · , Rm, i0),

where:

– O is the alphabet of objects;
– C ⊆ O is the set of catalysts;
– To each rule in R = R1 ∪ R2 ∪ · · · ∪ Rm is associated an unique label; the

set of all labels is H = {r1, · · · , rk};
– μ is a membrane structure, consisting of m membranes, labeled 1, 2, · · · ,m;
– w1, . . . , wm are strings over O, describing the multisets of objects placed in

the m regions of μ at the beginning of the computation;
– Ri, 1 ≤ i ≤ m, is a finite set of developmental rules, associated with region
i. The rules in Ri are non-cooperative, rj : ¬(a→ w)〈S〉, rj : a→ w〈S〉;
catalytic, rj : ¬(ca → cw)〈S〉, rj : ca → cw〈S〉, where rj ∈ H, a ∈
O −C, w ∈ ((O −C)× TAR)∗, c ∈ C, TAR = {out, here} ∪ {inj | 1 ≤ j ≤
m}; if the target indication is not present, then it is intended to be here;
S is a string that represents a subset of H;

– i0 is the output region (0 is used to indicate the environment).

A configuration of an ID P system is described by using the m-tuple of
multisets of objects present in the m regions of the system. With each region
a finite number of objects is associated together with a finite number of rules.
The m-tuple (w1, w2, · · · , wm) describes the initial configuration of the system.
Some of the rules are initially inhibited (if the symbol ¬ is written immediately
before the rule). A transition between two configurations is governed by the
application in a non-deterministic and maximally parallel way of the rules that
are not inhibited.

When a rule rj : a→ w〈S〉 (or rj : ca→ cw〈S〉) is applied then the object a
is rewritten with the objects in w (as in standard P systems) and each rule with
label in S is de-inhibited (if it was inhibited) or inhibited (if it was de-inhibited);
if a rule is inhibited and de-inhibited in the same step, then the choice is made
in a non-deterministic way. For simplicity each symbol of S is called switch.

A sequence of configurations is called a computation. The system continues
the application of the rules in a maximally parallel way until there remain no
applicable rules in any region of the system; in this case the system has reached
an halting configuration and the computation halts.

The output of a halting computation is the vector of numbers representing the
multiplicities of objects present in the output region in the halting configuration.

If we collect all the vectors generated by Π considering any halting computa-
tion then we get the set of vectors of natural numbers generated by Π denoted
by Ps(Π).
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We use the notation

PsIDPm(α), α ∈ {ncoo} ∪ {catk | k ≥ 0},

to denote the family of sets of vectors of natural numbers generated by ID P
systems with at most m membranes, evolution rules that can be non-cooperative
(ncoo), or catalytic (catk), using at most k catalysts (as usual, ∗ indicates that
the corresponding number is not bounded).

A system Π as above can be also used in the accepting mode in the following
way. Given a vector v of natural numbers, let be x a string over the alphabet O
such that ΨO(x) = v; the occurrences of objects corresponding to the multiset
described by the string x are inserted in a specified region and the vector v is
accepted by the system Π if and only if the computation halts. We denote by
Psa(Π) the set of all vectors of natural numbers accepted by the system Π.

We use the notation

PsIDaPm(α), α ∈ {ncoo} ∪ {catk | k ≥ 0},

to denote the family of sets of vectors of natural numbers accepted by ID P
systems with at most m membranes, evolution rules that can be non-cooperative
(ncoo), or catalytic (catk), using at most k catalysts.

In what follows, for an arbitrary set of rules R ofΠ, we indicate with LabΠ(R)
the set of labels associated to the rules in R.

4 An Example

We now illustrate the working of an ID P system by using an example that shows
how powerful the simple mechanism of inhibiting/de-inhibiting rules can be.

Let us consider an ID P system of degree 1,

Π = ({A, a}, ∅, {r1, r2, r3}, [ ]1, A,R1, 1),

where:

R1 = {r1 : A→ AA, r2 : A→ AA〈r1r2r3〉, r3 : ¬(A→ a)}.

When the computation starts, the rules r1 or r2 can be applied but the rule r3
cannot be applied because it is inhibited. We use the rule r1 m− 1 times and at
step m we apply the rule r2 (together with rule r1). Then we produce 2m copies
of the object A and, at the same time, the rules r1 and r2 are inhibited and
they cannot be used anymore; moreover, the rule r3 is de-inhibited and all the
As are changed to as in the next step. Therefore we have used non-cooperative
inhibiting/de-inhibiting rules to obtain the Parikh image of {a2m | m ≥ 1} which
is not in PsCF .
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5 Using One Catalyst: Two Universality Results

In this section we prove the universality of ID P systems using catalytic rules
(with only one catalyst) and one membrane. The first universality result deals
with generative systems and is obtained by simulating matrix grammars with
appearance checking. The second universality result is about accepting systems
and it is proved by simulating deterministic register machines.

5.1 Universality for the Generative Case

Theorem 1. PsIDP1(cat1) = PsRE.

Proof. Consider a matrix grammar G = (N,T, S,M,F ) with appearance check-
ing, in the binary normal form, hence with N = N1 ∪N2 ∪{S,#} as introduced
in Section 2.1. Assume that all matrices are labeled in an injective manner
with mi, 1 ≤ i ≤ n, and each terminal matrix (X → λ,A → x) is replaced
by (X → f,A → x), where f is a new symbol. We define the set of rules
R# = {X → # | X ∈ N1 ∪N2}.

We construct the P system of degree 1,

Π = (O,C,H, μ,w1, R1, i0),where:
O = N1 ∪ T ∪N2 ∪ {p, p′, p′′, p′, p′′, c, d, d′, d′′, d′′′, f,#},
C = {c},
H = {ri | 1 ≤ i ≤ 13} ∪ {r2,i, r3,i, r8,i, r9,i, r12,i | 1 ≤ i ≤ n}
∪ {r′4, r′5, r′6} ∪ LabΠ(R#),
μ = [ ]1,
w1 = cpXinitAinit,

i0 = 0,

and the set R1 is constructed in the following way

– The simulation of a matrix of type 2, mi : (Xi → Yi, Ai → xi), with Xi ∈
N1, Yi ∈ N1, Ai ∈ N2, xi ∈ (N2 ∪T )∗, |xi| ≤ 2, is done by using the following
rules added to the set R1:

r1 : p→ p′p′′〈r2,ir3,i〉,
r2,i : ¬(Xi → Yi)〈r′5r5r2,i〉,
r3,i : ¬(cAi → cxid

′)〈r′6r6r3,i〉,
r2 : d′ → d,
r3 : d→ p〈r′5r′6〉,
r4 : p′ → p′,
r′4 : p′′ → p′′,
r5 : ¬(p′ → λ)〈r5r′5〉,
r6 : ¬(p′′ → λ)〈r6r′6〉,
r′5 : p′ → #,
r′6 : p′′ → #.
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The idea is the following one. The rule r1 chooses the matrix i to apply and this
is made by the simultaneous de-inhibition of rules r2,i and r3,i (all other rules
of other matrices remains inhibited). The execution of both r2,i and r3,i inhibits
the rules r′5 and r′6 that are used to trash the computation in the case the matrix
chosen is not correctly applied. If the matrix is applied in the correct way (both
the rules are executed), then d is changed to p and the process can be iterated
(the original configuration of inhibited / de-inhibited rules is re-established).

– The simulation of a matrix of type 3, mi : (Xi → Yi, Ai → #), with Xi, Yi ∈
N1 and Ai ∈ N2, is done by using the following rules, added to the set of
rules R1:

r7 : p→ p′〈r8,ir9,i〉,
r8,i : ¬(Xi → Yid

′′)〈r′5r5r8,ir9,i〉,
r9,i : ¬(Ai → #),
r8 : p′ → p′,
r9 : d′′ → d′′′,
r10 : d′′′ → p.

The idea of the simulation of this kind of matrix is the following one. The rule
r7 de-inhibits the rules corresponding to the matrix i to be simulated. If the first
rule is not applied, then the rule r′5 is not inhibited and then the computation
never halts (the application of the second rule is skipped without any problem
if the symbol Ai is not present).

– The simulation of a terminal matrix mi : (Xi → f,Ai → xi), with Xi ∈ N1,
Ai ∈ N2, and xi ∈ T ∗, |xi| ≤ 2, is done using the following rules (added to
the set R1):
r11 : p→ λ < u >,
r12,i : ¬(cAi → cxi)〈r12,i〉,
R11 = {¬(X → #) | X ∈ N1 ∪N2},
where u is a string representing the set LabΠ(R#) ∪ {r12,i}.

These rules are used to simulate a terminal matrix and then to halt the compu-
tation. In fact, p is deleted and the rule r12,i is executed; the rules in R11 are
de-inhibited and they guarantee that, when the computation halts, only termi-
nal objects are present.

R1 also contains the following rules:

r12 : a→ (a, out),
r13 : #→ #.

The result of the computation is collected in the environment; from the above
explanation it follows that the set of vectors generated byΠ is exactly the Parikh
image of L(G). ��
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5.2 Universality for the Accepting Case

The following theorem illustrates the computational universality (in their accept-
ing variant) of P systems with non-cooperative inhibiting/de-inhibiting rules.
The system we use in the proof simulates the computation of a deterministic
register machine. We can notice that, differently from the previous proof, the
switches are used only by non-cooperative rules.

Theorem 2. PsIDaP1(cat1) = PsRE.

Proof. In order to prove this assertion we will simulate an n–register machine
M = (n, P, l0, lh). At each time during the computation, the current content of
register r is represented by the multiplicity of the object ar.

Formally, we define the P system of degree 1, as follows

Π = (O,C,H, μ,w1, R1, i0),where:
O = {ar | 1 ≤ r ≤ n}
∪ {Air

, Sir
, S′

ir
, S′′

ir
, S′′′

ir
, Fir
, ei, e

′
i | 1 ≤ r ≤ n, 1 ≤ i ≤ lab(M)} ∪ {p, c, lh}

∪ {li | li : (add(r), lj , lj) ∈ P}
∪ {li | li : (sub(r), lj , lk) ∈ P},

C = {c},
H = {rji | 1 ≤ j ≤ 15, 1 ≤ i ≤ lab(M)},
μ = [ ]1,

w1 = cl0ak1
1 · · · aki

i · · · akn
n ,with ki ≥ 0, 1 ≤ i ≤ n,

i0 = 0,

and R1 is defined as follows:

– for each instruction li : (add(r), lj , lj) ∈ P , we add to R1 the rules:
r1i : li → Ajr

,
r2i : Ajr

→ arej ,
r3i : ej → lj ,

– for each instruction li : (sub(r), lj , lk) ∈ P , we add to R1 the rules:
r4i : li → ejSjr

,
r5i : ej → e′j ,
r6i : Sjr → S′

jr
〈r7i〉,

r7i : ¬(car → cFjr ),
r8i : S′

jr
→ S′′

jr
,

r9i : Fjr
→ λ〈r7ir12i〉,

r10i : S′′
jr
→ S′′′

jr
,

r11i : S′′′
jr
→ 〈r13i〉,

r12i : ¬(e′j → ljp)〈r12i〉,
r13i : ¬(e′j → lk)〈r13ir7i〉,
r14i : p→ λ〈r13i〉,
r15i : lh → λ.
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The constructed system works in the following way. Initially the P system
starts the computation having in its input region the objects ak1

1 , · · · , akn
n and

the label l0 of the first instruction of the register machine we want to simulate.
The vector (k1, · · · , kn) represents the vector that has to be accepted by our P
system.

The P system starts the computation by simulating the first instruction of
the register machine program. Let us suppose that the current instruction to be
executed is of type li : (add(r), lj , lj) ∈ P . Then, the rule li → Ajr

is executed.
The object Ajr

indicates that the number of objects ar has to be incremented.
This will be realized, in the following step, by the evolution ruleAjr → arej . Next
rule r3i is executed and the operation allows our P system to further simulate
the next instruction of the register machine indicated by label lj .

If a subtraction instruction li : (sub(r), lj , lk) ∈ P has to be simulated, then
the rule li → ejSjr

is executed. In the following step the object Sjr
is used to

de-inhibit rule r7i, and to produce object S′
jr

by using the rule r6i, while the
object ej evolves into e′j .

In the next step, if the number of objects ar in register r is greater than 0,
then the execution of the de-inhibited rule car → cFjr decreases the number of
objects ar by 1, and produces object Fjr

for the next step.
We have used the catalyst c in order to inhibit the parallelism (because more

copies of ar might be present in the region).
Meanwhile, the object S′

jr
evolves into S′′

jr
by using the r8i.

When the rule r9i is executed the rule r7i is inhibited and this guarantees
that r7i is applied only once; the rule r12i is de-inhibited by the execution of the
rule r9i.

The execution of the rule r12i generates the label lj of the next register
machine instruction (it is executed only once because the rule is inhibited by
itself).

In the other case (i.e., if there is no object ar in region), the rule car → cFjr

cannot be executed, therefore the object Fjr
is not produced and rule r9i cannot

be applied.
On the other hand, object S′′

jr
evolves into S′′′

jr
by the execution of rule r10i

and at the next step S′′′
jr

de-inhibits rule r13i, so e′j evolves to label lk (notice that
the object e′j still appears, because rule r12i has not been applied in the previous
steps); rule r13i must also inhibit rule r7i that has been previously de-inhibited
by rule r6i.

In the next step the rule r14i is executed and then the rule r13i is inhibited.
When the label of the next register machine instruction has been generated

the entire process can be iterated.
The simulation stops (and then the input is accepted) when label lh (which

stands for halt instruction) is generated. From the above explanation follows
that the set of vectors of natural numbers accepted by the system Π is the same
as the machine M . ��

Remark. The previous proof can be adapted to prove the universality also in the
case of the generating variant. The only things to modify in Π are the following
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ones: we add to R1 the set of rules R16 = {¬(ar → (ar, out)) | 1 ≤ r ≤ n}; we
remove ak1

1 · · · akn
n from w1 (in the generating case, at the beginning, the registers

are empty); we delete the rule r15i and we add the rule r15i : lh → λ〈u〉, where
u is a string that represents the set LabΠ({ar → (ar, out) | 1 ≤ r ≤ n}).

In this way, at the end of a successful computation (when the halt instruction
is reached) the terminals corresponding to ar, 1 ≤ r ≤ n, are sent outside.

6 Using Non-cooperative Rules and One Switch

In this section we show how ID P systems, using non-cooperative rules, are able
to generate (at least) the family of Parikh images of languages in ET0L. The
proof is made by simulating an ET0L system by using a very restricted ID P
system with at most one switch for each evolution rule.

Theorem 3. PsIDP1(ncoo) ⊇ PsET0L.

Proof. Given an extended tabled Lindenmayer system G = (Σ,T,H,w) with 2
tables (H = {h1, h2}) in the normal form described in Section 2.3 generating L,
we construct an ID P system Π generating the Parikh image of L (we remove
the trivial productions from h1 and h2). Let us denote N = Σ − T . Suppose
that N = {X1, X2, · · · , Xk}. To each rule we need to associate a label; the
labels for the productions present in h1 are l11, l

1
2, · · · , l1m′ (this means that in

h1 there are m′ productions) and the labels for the productions present in h2
are l21, l

2
2, · · · , l2m′′ (in h2 there are m′′ productions); in the continuation below

we use the productions X1 → #, X2 → #, · · · , Xk → # and their labels are
l#X1
, l#X2
, · · · , l#Xk

, respectively; we also use the productions X ′
1 → X1, X

′
2 →

X2, · · · , X ′
k → Xk and their labels are lX1 , lX2 , · · · , lXk

, respectively.
We use the morphism h defined by h(x) = x′, for each x ∈ N . We denote

N ′ = {h(x) | x ∈ N}.
We take

Π = (O,C,H, μ,w1, R1, i0),

where:
O = Σ ∪N ′ ∪ {T, T 1, T 2, T 3, T 1

1 , T
1
2 , · · · , T 1

m′ , T 2
1 , T

2
2 , · · · , T 2

m′′ ,

T 1′
, T 1′′

, T 1′′′
, S1

1 , S
1
2 , · · · , S1

m′ , TX1 , TX2 , · · · , TXk
,

T 2′
, T 2′′

, T 2′′′
, S2

1 , S
2
2 · · · , S2

m′′ , X, Tx1 , Tx2 , · · · , Txk
,#},

C = ∅,
H = {l11, l12, · · · , l1m′ , l21, l

2
2, · · · , l2m′′ , lX1 , lX2 , · · · , lXk

, l#X1
, l#X2
, · · · , l#Xk

},
μ = [ ]1,

R1 = {T 1′′ → T 1′′′
, T 1′′′ → S1

1S
1
2 · · ·S1

m′X1X2 · · ·XkX}
∪ {T 2′′ → T 2′′′

, T 2′′′ → S2
1S

2
2 · · ·S2

m′′X1X2 · · ·XkX}
∪ R0

1 ∪R1
1 ∪R2

1 ∪R3
1 ∪R4

1 ∪R5
1 ∪R6

1 ∪R7
1 ∪R1

1

∪ R2
1 ∪R3

1 ∪R4
1 ∪ S1 ∪ S2,
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where:
R0

1 = {T → T 1, T → T 2, T → T 3},
R1

1 = {T 1 → T 1
1 T

1
2 · · ·T 1

m′T 1′},
R2

1 = {T 1
1 → λ〈l11〉, T 1

2 → λ〈l12〉, · · · , T 1
m′ → λ〈l1m′〉, T 1′ → T 1′′},

R3
1 = {¬(u1 → h(v1)), ¬(u2 → h(v2)), · · · , ¬(um′ → h(vm′)) |

{u1 → v1, u2 → v2, · · · , um′ → vm′} ∈ h1},
R4

1 = {S1
1 → λ〈l11〉, S1

2 → λ〈l12〉, · · · , S1
m′ → λ〈l1m′〉},

R5
1 = {X1 → λ〈lX1〉, X2 → λ〈lX2〉, · · · , Xk → λ〈lXk

〉},
R6

1 = {X → X ′TX1TX2 · · ·TXk
, X ′ → T, TX1 → λ〈lX1〉,

TX2 → λ〈lX2〉, · · · , TXk
→ λ〈lXk

〉},
R7

1 = {¬(X ′
i → Xi) | Xi ∈ N},

R1
1 = {T 2 → T 2

1 T
2
2 · · ·T 2

m′′T 2′},
R2

1 = {T 2
1 → λ〈l21〉, T 2

2 → λ〈l22〉, · · · , T 2
m′′ → λ〈l2m′′〉, T 2′ → T 2′′},

R3
1 = {¬(u′

1 → h(v′1)), ¬(u′
2 → h(v′2)), · · · , ¬(u′

m′′ → h(vm′′))
| {u′

1 → v′1, u′
2 → v′2, · · · , u′

m′′ → v′m′′} ∈ h2},
R4

1 = {S2
1 → λ〈l21〉, · · · , S2

m′′ → λ〈l2m′′〉},
S1 = {T 3 → TX1TX2 · · ·TXk

, TX1 → λ〈l
#
X1
〉, · · · , TXk

→ λ〈l#Xk
〉},

S2 = {¬(X1 → #), ¬(X2 → #), · · · , ¬(Xk → #), #→ #},
i0 = 1.

The system Π works in the following way. In region 1 the derivations of the
ET0L system G are simulated. At the beginning of the computation, in region
1, only the objects corresponding to the axiom w of G and the object T are
present. Initially the symbol-object T is changed in T 1, or T 2 or T 3 using the
rule presents in R0

1. The application of this rule corresponds to the choice of the
table to simulate (T 1 or T 2) or to the halting of the computation (T 3).

We discuss more in details the case when T is changed in T 1 and then the
first table, h1, of G has to be simulated (the simulation of the second table, h2,
is done in a similar way).

After T has been changed to T 1 the only rule that can be applied is the one
in R1

1 that produces the objects T 1
1 T

1
2 · · ·T 1

m′T 1′
.

In the next step the rules in R2
1 are applied: the objects T 1

1 T
1
2 · · ·T 1

m′ are
deleted and at the same time the rules with labels l11, l

1
2, · · · , l1m′ present in R3

1
(that are the rules of the first table h1) are de-inhibited (initially, they are
inhibited). Moreover the object T 1′

is changed into T 1′′
.

Therefore, in the next step the rules of table h1, previously de-inhibited,
are executed in region 1. The objects corresponding to nonterminals of G are
rewritten according to the rules in h1 and then objects with primes are produced.
In the same step the object T 1′′

is rewritten into T 1′′′
.

In the next step the rule T 1′′′ → S1
1S

1
2 · · ·S1

m′X1X2 · · ·XkX is executed. The
objects produced by this rule are used to activate the rules needed to delete the
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primes from the produced nonterminals, to inhibit the rules of table h1 and to
produce again the object T needed to iterate the entire process. In fact, in the
next step, the object X is changed to X ′, the rules in R4

1 and the rules in R5
1

are executed. The rules in R4
1 are used to inhibit the rules in h1 previously de-

inhibited and used. The rules in R5
1 are used to de-inhibit the rules with labels

lX1 , lX2 , · · · , lXk
present in R7

1 and that are used to delete the primes from the
nonterminals previously produced in region 1.

In the next step, the rules present in R7
1 are applied, the primes are deleted,

and, in the same step, the object X ′ is rewritten into T and then the entire
process can be iterated.

The case when the object T is rewritten into T 2 is very similar; the difference
is that, instead of using the rules in R1

1, R
2
1, R

3
1, R

4
1 as previously described, the

rules in R1
1, R

2
1, R

3
1, R

4
1 are used in the same manner: in this way a derivation

step by using the rules in h2 can be simulated.
To halt the computation it is necessary to rewrite the object T into T 3. Once

T 3 is produced, then the rule T 3 → TX1TX2 · · ·TXk
is used and, in the next step,

the rules TX1 → λ〈l
#
X1
〉, TX2 → λ〈l

#
X2
〉, · · · , TXk

→ λ〈l#Xk
〉 present in S1 are

used. In this way the rules present in S2 are de-inhibited and they are applied
if nonterminals are still present in region 1. In this way we guarantee that the
computation halts if and only if only objects corresponding to terminals have
been produced in region 1 and the system Π generates exactly the Parikh image
of the language generated by the ET0L system G. Finally, we notice that the
system Π uses at most one switch for each evolution rule. ��

7 Concluding Remarks and Open Problems

In this paper we have considered a mechanism used to control the computation
in P systems by inhibiting/de-inhibiting the evolution rules. In general, this new
mechanism can be associated also to other kinds of rules.

Many interesting problems have been left open: for instance, it would be
useful to simulate the model proposed here by using existing P systems with
promoters/inhibitors. Moreover, boolean circuits can be investigated by using
the inhibiting/de-inhibiting rules like boolean switches ON/OFF.

On the other hand, the proposed mechanism seems very simple but enough
powerful to get universality even with very simple ingredients (one catalyst, one
membrane); we propose to use this mechanism also for other (restricted) models
of P systems like the one with active membranes and with rule creation.

Finally we believe that the proposed mechanism might be used in neural-like
P systems [14], that, like the inhibiting/de-inhibiting mechanism, are directly
inspired from the neural-cell behavior.
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(C. Mart́in-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A. Salomaa, eds.), LNCS
2933, Springer-Verlag, Berlin, 2004, 70–88.

3. I.I. Ardelean, M. Cavaliere, D. Sburlan, Computing Using Signals: From Cells to P
Systems, Second Brainstorming Week on Membrane Computing, Technical Report
01/2004, University of Seville, Seville, 2004, 60–73, and Soft Computing, in press.

4. F. Arroyo, A.V. Baranda, J. Castellanos, Gh. Păun, Membrane Computing: The
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Abstract. We introduce a class of P systems called timed P systems
where to each rule is associated an integer that represents the time
needed by the rule (reaction) to be entirely executed. The idea comes
from cell biology where chemical reactions take certain times to be ex-
ecuted. In this work we are interested in a special class of P systems,
called time-free, working always in the same way (i.e., always produc-
ing the same result) independently from the values associated to the
execution time of their rules.

Later we introduce a generalization of time-free P systems, namely
clock-free P systems, where a time of execution is associated directly to
each single application of the rules (in this case, different applications,
even of the same rule, may take a different time to be executed). Several
results are presented together with open problems and research propos-
als.

1 Introduction: Motivations

A standard feature of membrane computing is the fact that each rule is executed
in exactly one time-unit; however, this mathematical feature, in general, does not
have a counterpart in cell biology. Chemical reactions may take certain times to
be executed. In many cases, different reactions with different times of execution
are synchronized via biological signals that move across different areas present
in the cell; some considerations on this topic can be found in [1] where a class of
P systems that uses signals has been introduced. On the other hand, it is true
that in a cell, when a reaction is applied, “almost” all the chemicals that can be
subject of the reaction are transformed, in a parallel manner.

In cell biology, the execution time of a chemical reaction might be difficult to
know precisely and usually such a parameter is very sensitive to environmental
factors that might be hard to control. For instance, a certain reaction whose
execution time depends on the medium temperature will behave differently even
in the same cell region because the propagation of heat is not uniform in non-
homogeneous mediums.
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Therefore, we believe that it is extremely interesting to construct systems
that work in the way we expect, independently from the values associated to the
execution times of the rules.

For this reason we introduce here the concept of time-independent P systems.
Informally, a time-independent P system is a P system that produces always the
same result, independently from the execution times of the rules.

Starting from these considerations, we initially define and investigate a model
of P systems where to each rule r is associated a certain positive integer value
e(r) that indicates the execution time.

A P system that generates (or accepts) the same family of vectors of natural
numbers, independently from the value assigned to the execution time of each
rule r, is called time-free.

In this way, a time-free P system can be considered stable against envi-
ronmental factors that might influence the execution times of the rules. If the
execution times associated to the rules have to satisfy certain conditions, then
the system is called partially time-free (the mathematical formalization of this
kind of systems is not treated in this paper).

Later we will consider another possible model of time-independent P systems.
We will investigate P systems where each application of a rule r has associated
a certain finite positive integer value that indicates its execution time. In this
respect, we define a class of P systems, called clock-free P systems, that produces
the results independently from the times associated to the applications of the
rules.

In this paper, we carry out only a preliminary investigation of these models of
computation. Several results are presented, considering the use of cooperative or
non-cooperative rules, the absence of signal-promoters/promoters and the use of
a priority relation. Several open problems are also presented. In what follows we
suppose the reader familiar with the main concepts and results of the P systems
area. We start by directly introducing the class of systems we investigate in this
paper.

2 Time-Free P Systems: Definition

Definition 1. A P system Π of degree m ≥ 1, with signal-promoters and bi-
stable catalysts is a construct

Π = (V,C,D, μ,w1, . . . , wm, R1, . . . , Rm, R
′
1, . . . , R

′
m, i0),

where:
• V is the alphabet of Π; its elements are called objects;
• C ⊆ V is the set of bi-stable catalysts; each bi-stable catalyst c is an object

that can be in two states, c and c (if for a bi-stable catalyst c the two states are
coincident, then c is a catalyst);
• D ⊆ V is the set of signal-promoters;
• μ is a membrane structure consisting of m membranes labeled 1, 2, · · · ,m;
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• wi, 1 ≤ i ≤ m, specifies the multiset of objects present in the corresponding
region i at the beginning of a computation;
• Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over V associated with

regions 1, 2, . . . ,m of μ; there are rules of two types, non-cooperative, that are
of the form a→ v where a is an object from V \ (C ∪D) and v is a string over
{ahere, aout | a ∈ V \ (C ∪ D)} ∪ {ainj

| a ∈ V \ (C ∪ D), 1 ≤ j ≤ m}, and
catalytic rules (using bi-stable catalysts) of the forms ca → cv, ca → cv, ca →
cv and ca → cv, where a is an object from V \ (C ∪ D), v is a string over
{ahere, aout | a ∈ V \ (C ∪D)}∪ {ainj

| a ∈ V \ (C ∪D), 1 ≤ j ≤ m}, and c ∈ C;
• R′

i, 1 ≤ i ≤ m, are finite sets of signaling-rules over D associated with
regions 1, 2, . . . ,m of μ; the signaling-rules are of the form a→ v|z or ca→ cv|z,
where a is an object from V \(C∪D), v is a string over V \(C∪D), z is a string
representing a subset of {(p, here), (p, out) | p ∈ D} ∪ {(p, inj) | p ∈ D, 1 ≤ j ≤
m}, and c ∈ C;
• i0 is a number between 0 and m and specifies the output region of Π (0

represents the environment).

Given a computable mapping

e : R1 ∪ · · · ∪Rm ∪R′
1 ∪ · · · ∪R′

m −→ N,

and a system Π as defined above, it is possible to construct a timed P sys-
tem Π(e) = (V,C,D, μ,w1, . . . , wm, R1, . . . , Rm, R

′
1, . . . , R

′
m, i0, e) working in

the following way.
We suppose to have an external clock (that does not have any influence on

the system) that marks time-units of equal length, starting from time 0.
To each region of the system is associated a finite number of objects (among

them, signal-promoters and catalysts) and a finite number of evolution rules and
of signaling-rules.

At each time, in the regions of the system we have together rules in execu-
tion and rules not in execution. At each time, all the rules that can be applied
(started) in each region, must be applied.

If a rule r ∈ Ri ∪ R′
i, 1 ≤ i ≤ m, is applied, then all objects that can be

processed by the rule have to evolve by this rule.
To apply an evolution rule u → v or u → v|z in a region i means to remove

the multiset of objects identified by u from region i, and to add the objects
specified by the multiset v, into the regions specified by the target indications
associated to each object in v.

Signaling rules are evolution rules, promoted by the signal-promoters speci-
fied in the string z (signal-promoters work like standard promoters but they can
only be moved and not created, see [1]).

In the case of a signaling-rule u→ v|z, also the signal-promoters specified by
z are moved to the regions according to their target indications. In every region
the signal-promoters are present in the set sense, i.e., we cannot have more than
one copy of the same signal-promoter in one region.
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When a rule r (either evolution or signaling) is started at time j, then its
execution terminates at time j+ e(r) (the objects produced as well as the signal-
promoters moved by the rule can be used starting from the time j + e(r) + 1).

If two rules start at the same time, then possible conflicts for using the
occurrences of objects are solved assigning the occurrences in a non-deterministic
way. The rules are applied in the maximally parallel manner as usually defined
in the P systems framework.

Notice that, when a rule r is started, the occurrences of objects used by this
rule are not available for other rules during the entire execution of r.

Using signal-promoters, two situations can cause conflicts.
If (at least one of) the signal-promoters that activates a rule r is moved out

from the region where r is present before rule r is terminated, then the execution
of r cannot continue and then the entire computation is trashed.

On the other hand, if two or more signaling-rules, promoted by the same
signal-promoters but with different targets terminate their execution at the same
time, then also in this case the computation is trashed (a conflict over the desti-
nation of promoters is present). However, in the paper these conflicts will never
appear.

The computation stops when no rule can be applied in any region and there
are no rules in execution (the systems has reached a halting configuration).

The output of a halting computation is the vector of numbers representing the
multiplicities of objects present in the output region in the halting configuration.

Collecting all the vectors obtained, for any possible halting computation, we
get the set Ps(Π(e)) of vectors of natural numbers generated by the system
Π(e).

We also investigate systems using a priority relation in the strong sense (as
described in [8], Section 3.4.2).

In a timed system, a rule r1 ∈ Ri can be started if there is no rule r2 ∈ Ri,
for 1 ≤ i ≤ m, which can also be started at the same time or that is already
in execution and r2 > r1. If a rule r2 with a higher priority with respect to r1
is applied or is already in execution and it terminates at time j, then r1 can
be started only at time j + 1. Notice that, when we say that a rule can be
started, this means that there are the necessary occurrences of symbol-objects
(without considering the presence/absence of signal-promoters needed to activate
the rule).

For shortness, in what follows, a P system not using signal-promoters (i.e.,
the set D is empty) is called basic.

A P system Π = (V,C,D, μ,w1, . . . , wm, R1, . . . , Rm, R
′
1, . . . , R

′
m, i0) is time-

free if and only if every timed system in the set

{Π(e) | e : R −→ N, e computable},

where R = R1 ∪ · · · ∪ Rm ∪ R′
1 ∪ · · · ∪ R′

m, produces the same set of vectors of
natural numbers.
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We use the notation

PsPm(α, j, free, pri), α ∈ {ncoo, coo} ∪ {2catk, catk | k ≥ 0},

to denote the family of sets of vectors of natural numbers generated by time-
free P systems with at most m membranes, at most j signal-promoters, evolu-
tion rules and signaling-rules that can be non-cooperative (ncoo), or catalytic
(catk/2catk), using at most k catalysts/k bi-stable catalysts (as usual, ∗ is used
if the corresponding number of membranes, signal-promoters or catalysts/bi-
stable catalysts is not known), and priority (the parameter j is 0 if the system
is basic).

3 Time-Free P Systems: An Example

We present a simple example of a time-free P system using two membranes, one
signal-promoter, and non-cooperative rules that generates the Parikh image of
the language {a2n | n ≥ 0}. From this example, it is clear how signal-promoters
are useful to synchronize rules with different execution times.

We consider the system

Π = (V,C,D, μ,w1, w2, R1, R2, R
′
1, R

′
2, i0),

where:

V = {a, b, p};
C = ∅;
D = {p};
μ = [1 [2 ]2 ]1;
w1 = bp;
w2 = a;
R1 = ∅;
R2 = ∅;
R′

1 = {b→ b|(p,in2), b→ b|(p,out)};
R′

2 = {a→ aa|(p,out)};
i0 = 2.

The rule a→ aa|(p,out) is activated by the signal-promoter p which is present
at the beginning of the computation in region 1. The rule is applied an arbitrary
number of times in the maximally parallel way. Every time the signal-promoter
p is sent to region 1 and one of the rules present in that region is applied. If
rule b → b|(p,in2) is applied, then the process can be iterated. In case the rule
b→ b|(p,out) is applied, then the signal-promoter is sent to the environment and
the computation halts with a number of objects in the output region that is a
power of 2. It is easy to see that the system generates the set {2n | n ≥ 0}
independently from the execution times of the rules and, therefore, the system
Π is time-free.
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4 Time-Free P Systems Using Non-cooperative Rules
and Signal-Promoters

We generalize what presented in the previous section by investigating the class of
time-free P systems using non-cooperative evolution rules and signal-promoters.

Before presenting the result of this section, we recall the Indian parallel gram-
mar definition (for more details we refer the reader to [3] and [4]).

An Indian parallel grammar is a context-free grammar G = (N,T, S, P ),
where at each step of the derivation every occurrence of one letter is rewritten
using the same production. That is, the derivations are defined in the following
way: for x ∈ (N ∪ T )+, and y ∈ (N ∪ T )∗ we write x ⇒ y if and only if
x = x1Ax2A · · ·xnAxn+1, A ∈ N, xi ∈ ((N ∪ T ) \ A)∗, 1 ≤ i ≤ n + 1,
y = x1wx2w · · ·xnwxn+1, and A→ w ∈ P .

The language generated by G is L(G) = {w ∈ T ∗ | S ⇒∗ w}, where ⇒∗

denotes the reflexive and transitive closure of ⇒.
The family of languages generated by Indian parallel grammars is denoted

by IPG.
Using only non-cooperative rules, signal-promoters, and two regions it is pos-

sible to generate at least the family of Parikh images of languages in IPG (de-
noted by PsIPG), as shown by the following theorem.

Theorem 1. PsIPG ⊆ PsP2(ncoo, ∗, free).

Proof. Given an Indian parallel grammar G = (N,T, S, P ), we suppose that to
each rule r ∈ P an unique label l(r) has been associated. The set of the labels
associated to the rules in P is denoted by Lab(P ) = {r1, r2, · · · , rk}.

We construct the following P system simulating G:

Π = (V,C,D, μ,w1, w2, R1, R2, R
′
1, R

′
2, i0),

where:
V = N ∪ T ∪D ∪ {Q′, T, T ′, Z,#} ∪ {Tr | r ∈ Lab(P )};
C = ∅;
D = Lab(P ) ∪ {s′, s};
μ = [1 [2 ]2 ]1;
w1 = ZTsr1r2 · · · rk;
w2 = Ss′Q;
R1 = {Z → Z};
R2 = {#→ #};
R′

1 = {Z → λ|(s′,here), T → T ′|(s,in2)}
∪ {T → Tr|(r,in2), Tr → T |(r,here) | r ∈ Lab(P )};

R′
2 = {X → w|(r,out) | X → w ∈ P and r = l(X → w)}
∪ {X → #|(s,here) | X ∈ N} ∪ {Q′ → λ|(s′,out), Q→ Q′|(s,here)};

i0 = 2.
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The system works in the following way. In region 2 (the output region) the
rules of grammar G are simulated. In region 1 the application of one of the rules
in the set {T → Tr|(r,in2) | r ∈ Lab(P )} selects the rule of the grammar G to
be activated (and, if possible, applied) in region 2, by sending the corresponding
signal-promoter r ∈ Lab(P ). When an activated rule X → w|(r,out) is applied in
region 2, the signal-promoter r is sent back to region 1. Therefore the simulation
of another rule can be made.

To stop the computation it is necessary to halt the rule Z → Z present in
region 1. To do this, the rule T → T ′|(s,in2) must be used in region 1. When T →
T ′|(s,in2) is executed, the signal-promoter s will arrive in region 2, checking that
all symbol-objects present are terminals (by activating the rules X → #|(s,here),
X ∈ N). Moreover, the rules Q′ → λ|(s′,out), Q→ Q′|(s,here) will send to region
1 the signal-promoter s′ necessary to delete Z and then to stop the computation.
Therefore, the computation halts when Z → λ|(s′,here) is applied if and only if all
terminals have been obtained in the output region. This means that the system
Π generates exactly the Parikh image of L(G). From the description above it is
clear that the system is time-free because it generates the Parikh image L(G)
independently from the execution times of the rules. ��

5 Time-Free P Systems Using Non-cooperative Rules
and Priority

If the system is basic and, like in Section 4, only non-cooperative rules are used,
then it seems harder to synchronize the applications of the rules in the regions
of the system.

This section is dedicated to a (brief) investigation concerning basic time-free
P systems and “partially” time-free P systems using only non-cooperative rules
and priorities.

It is easy to see that, for basic time-free P systems, the following result is
true:

PsCF ⊆ PsP1(ncoo, 0, free).

In fact, given a context-free grammar G = (N,T, S, P ) we can construct the
following P system simulating G:

Π = (V,C,D, μ,w1, R1, R
′
1, i0),

where:

V = N ∪ T ;
C = ∅;
D = ∅;
μ = [1 ]1;
w1 = S;
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R1 = P ∪ {A→ A | A ∈ N};
R′

1 = ∅;
i0 = 1.

Clearly, the system Π generates exactly the Parikh image of L(G) and this
is true independently from the execution times of the rules.

It seems natural to ask what we gain if we use use a priority relation in the
strong sense as introduced earlier. This problem seems particularly interesting
because standard P systems (i.e., where the execution time of each rule is fixed as
one step) using symbol-objects, non-cooperative rules and priority in the strong
sense can generate at least the Parikh image of the languages generated by ET0L
systems (see Theorem 3.4.4 in [8]).

The following example shows that basic time-free P systems, using priority
and non-cooperative rules, can generate the Parikh image of non-semilinear lan-
guages. Notice that in this case the P system constructed is not time-free but
only “partially” time-free: this means that, because the system generates always
the same result, the time-mapping e cannot be arbitrary but it must fulfill some
conditions. We use the term “partially time-free” in an informal way and the
exact mathematical formalization of partially time-free systems is left as open
problem.

Example 1. We take the following basic partially time-free P system Π:

Π = (V,C,D, μ,w1, R1, R
′
1, i0, e),

where:

V = {A, T, T1, T2, a, T3};
C = ∅;
D = ∅;
μ = [1 ]1;
w1 = TA;
R1 = {r1 : T → T1, r′1 : T → T2, r2 : A→ A′A′, r3 : A→ a}
∪ {r4 : T1 → T ′

1, r5 : T2 → T ′
2, r6 : T ′

1 → T, r7 : T ′
2 → T3, r8 : A′ → A};

R′
1 = ∅;
i0 = 1;

r1 > {r2, r3}, r′1 > {r2, r3}, r4 > r3, r5 > r2, r3 > r7, r6 < r2;
e(r6) = e(r8), e(r2) > e(r4), e(r3) > e(r5).

The system works in the following way. At the beginning of the computation
only objects A and T are present in region 1.

Because of the priority relations r1 > {r2, r3}, r′1 > {r2, r3}, the rules that can
be applied are only r1 and r′1. The application of one of the two rules corresponds
to the choice of rule r2 or r3. In fact, if T is changed to T1 (the other choice is
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similar), then, because of priority r4 > r3, rule r2 : A → A′A′ is applied while
rule A → a is blocked. Rules r4 and r2 are executed in parallel. Because of the
time condition e(r2) > e(r4), rule r4 terminates before rule r2. When rule r4
ends, rule r6 might be applied, but, because of the priority r6 < r2, rule r6 has
to wait the end of r2 (still in execution) in order to be applied.

When r2 ends, rules r6 and r8 are applied in parallel and they terminate at
the same time (because of the time condition e(r6) = e(r8)). Therefore, T is
obtained again, all the objects A′ are changed into A and the process can be
iterated.

Hence, at the end of any halting computation, region 1 contains a number of
objects a that is a power of 2. Then the set of numbers generated by Π, using
an arbitrary mapping e that fulfills the indicated conditions, is {2n | n ∈ N}.

It seems difficult to avoid the conditions imposed on the time-mapping e and
then to make the system Π time-free. This fact suggests us the following open
problem: is it possible to generate non-semilinear sets of numbers with basic
time-free P systems using non-cooperative rules and priority?

6 Time-Free P Systems Using Catalysts and
Signal-Promoters

In Section 4 and 5 we have investigated systems (basic or not) using only non-
cooperative rules. Now we show that, using one catalyst together with signal-
promoters, is possible to synchronize the execution of the evolution rules in a
way to simulate sequential grammar devices, even if the P system considered is
time-free.

In particular, in this section we show how to simulate programmed grammars;
we recall that a context-free programmed grammar with appearance checking
(a.c.) is a construct G = (N,T, P, S), where N , T , S are the set of non-terminals,
the set of terminals, and the start symbol respectively, and P is a finite set of
rules of the form (b : A → x,E, F ), where b is a label, A → x is a context-free
rule over N ∪ T , and E,F are two sets of labels of rules of G (E is called the
success field and F the failure field of the rule). A rule (b : A→ x,E, F ) is applied
as follows: if A is present in the sentential form, then the rule is used and the
next rule to be applied is chosen from those with the label in E, otherwise, the
sentential form remains unchanged and we choose the next rule from the rules
labelled by some element of F , and try to apply it. If no failure field is given for
any of the rules, then we obtain a programmed grammar without appearance
checking.

We denote Lab(P ) = {b | (b : A→ x,E, F ) ∈ P}.
A context-free programmed grammar with a.c. can be also written in the

form G = (N,T, S,R, σ, ϕ), where N,T, S are defined as before, R is a set of
context-free rules and σ and ϕ are mappings from R to the power set of R; σ(p)
is the success field of the rule p (this means that a rule in σ(p) must be used
after successfully applying the rule p), and ϕ(p) is the failure field (this means
that a rule from ϕ(p) must be considered when p cannot be applied).
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Sometimes both definitions are joined, and this will be done also below:
we consider a context-free programmed grammar with a.c. as a construct G =
(N,T, P, S), as defined before, where each production in P is of the kind (b :
A→ x, σ(b), ϕ(b)) (σ(b) is the success field of the rule (with label) b and ϕ(b) is
the failure field of the rule (with label) b).

In the following theorem we show how a time-free P system can simulate
a programmed grammar without appearance checking by using one catalyst,
two membranes, and an unbounded number of signal-promoters. We know from
[3] that such grammars generate non-semilinear languages, hence whose Parikh
image is not in PsCF . The family of languages generated by programmed gram-
mars with λ rules and without appearance checking is denoted by PR and the
set of Parikh images of languages in PR is denoted by PsPR.

Theorem 2. PsPR ⊆ PsP2(cat1, ∗, free).
Proof. Consider the programmed grammar G = (N,T, P, S) without appearance
checking. We denote by l(S) the set of labels of rules of the form (k : S → x,
σ(k)) ∈ P. We add to P the triple (0 : U → S, σ(0)) with σ(0) = l(S), where U
is a new non-terminal. We denote by G′ the obtained grammar (N ′, T, P ′, U),
where N ′ = N ∪ {U}. Clearly, L(G) = L(G′) and each derivation in G′ starts
with the rule with label 0. We suppose Lab(P ′) = {i1, i2, · · · , ik}.

We construct the P system

Π = (V,C,D, μ,w1, w2, R1, R2, R
′
1, R

′
2, i0),

where:

V = N ′ ∪ T ∪D ∪ {Ai, Ai | i ∈ Lab(P ′)} ∪ {A−1,#, Z,B,B2, c};
C = {c};
D = {s, s′} ∪ Lab(P ′);
μ = [1 [2 ]2 ]1;
w1 = ZsA−1i1i2 · · · ik;
w2 = BUcs′;
R1 = {Z → Z} ∪ {a→ aout | a ∈ T};
R2 = {a→ aout | a ∈ T};
R′

1 = {Aj → λ|(s,in) | j ∈ Lab(P ′)}
∪ {Aj → Ai|(i,in) | i ∈ σ(j)} ∪ {A−1 → A0|(0,in)}
∪ {Ai → Ai|(i,here) | i ∈ Lab(P ′)} ∪ {Z → λ|(s′,here)};

R′
2 = {cX → cw|(i,out) | (i : X → w, σ(i)) ∈ P ′}
∪ {B → B2|(s,here), B2 → λ|(s′,out)} ∪ {X → #|(s,here) | X ∈ N};

i0 = 0.

The constructed system simulates the programmed grammar G′ in the fol-
lowing way. The rules cX → cw|(i,out), (i : X → w, σ(i)) ∈ P ′, present in region
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2 simulate the context-free rules of G′. The rules present in region 1 are used
to select the rules in region 2, following the order defined by the labels in the
success field of G′. In the initial configuration, in region 2 is present the object
U that is the axiom of G′. In region 1 is present the symbol-object Aj indicat-
ing that the last rule of G′ simulated in region 2 has been the one with label
j (at the beginning of the computation the object A−1 is present in region 1).
The object Aj is changed to Ai using one of the rules in the set Aj → Ai|(i,in),
i ∈ σ(j). When this rule is terminated the signal-promoter i is sent to region 2.
This signal-promoter activates the rule cX → cw|(i,out), (i : X → w, σ(i)) ∈ P ′;
this means that the rule of the grammar G′ with label i can be simulated in re-
gion 2. Suppose the activated rule cX → cw|(i,out) can be applied (i.e., object X
is present in region 2; the case when the rule cannot be applied will be discussed
later).

When the execution of the rule cX → cw|(i,out) is terminated, the signal-
promoter i is sent back to region 1. The presence of the signal-promoter in
region 1 activates the rule Ai → Ai; therefore, the object Ai is obtained and the
process can be iterated.

To halt the computation it is necessary to stop the evolution rule Z → Z
that runs in region 1. The only way to stop this rule is to delete the object Z by
using the rule Z → λ|(s′,here) present in region 1. Therefore, it is necessary to
introduce in region 1 the signal-promoter s′. This can be done only by using one
of the rules present in the set {Aj → λ|(s,in) | j ∈ Lab(P ′)} and then sending the
signal-promoter to region 2. This signal-promoter activates in region 2 the rules
to send s′ to region 1 (and then to delete the Z) and the rules X → #|(s,here),
X ∈ N present in region 2. Therefore, the computation will halt if and only if
all terminals are present in region 2. Then, the system Π generates exactly the
Parikh image of the language generated by grammar G′. Because in each step
a single application of a rule is started or is in execution (except for the rules
used to delete the Z in the final phase) then it is clear that the output of the
constructed system is independent from the execution times of the rules. ��

7 Universality of Time-Free P Systems

In this section, we prove the universality of time-free P systems. We show that
it is possible to get universality for the basic model by using bi-stable catalysts
and priority; on the other hand, it is also possible to get universality by using
catalysts, signal-promoters, and priority.

In Theorem 3.4.6 from [8] it is shown that by using bi-stable catalysts, targets,
and strong priority, the family of sets of numbers computed by non-synchronized
P systems is exactly the family of recursively enumerable sets of natural numbers
(non-synchronized P systems are introduced in [8], see Section 3.4.5, and they
are P systems with symbol-objects where in each region is present a rule a→ a
for each symbol a in the alphabet).

Looking to the proof of Theorem 3.4.6 in [8] we can notice that the evolution
rules of the constructed system are executed sequentially, that is, never more
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than one single application of an evolution rule running at a certain time (this
is true because of the use of the bi-stable catalysts and of the priority).

In this way the same proof works also for basic P systems, independently
from the duration of the evolution rules. Therefore:

Theorem 3. PsRE = PsP2(2cat∗, 0, free, pri).

On the other hand, as we can see in the next theorem, a basic time-free P
system with bi-stable catalysts, strong priority and a membrane structure of the
form μ = [1 [2 · · · [m ]m · · · ]2 ]1 can be simulated by a time-free P system using
only catalysts, strong priority, signal-promoters and (at most)m+1 membranes.

Theorem 4. PsRE = PsP3(cat∗, ∗, free, pri).

Proof. To prove the theorem we show how a basic time-free P system

Π1 = (V1, C1, ∅, [1 [2 · · · [m ]m · · · ]2 ]1, w1,1, w1,2, · · · , w1,m,

R1,1, R1,2, · · · , R1,m, ∅, ∅, · · · , ∅, i0),

using bi-stable catalysts, m membranes and strong priority can be simulated by
a time-free P system

Π2 = (V2, C2, D2, [0 [1 [2 · · · [m ]m · · · ]2 ]1 ]0, w2,0, w2,1, w2,2, · · · , w2,m,

R2,0, R2,1, R2,2, · · · , R2,m, R
′
2,0, R

′
2,1, R

′
2,2, · · · , R′

2,m, i0),

using catalysts, m + 1 membranes, signal-promoters, and strong priority (both
systems Π1, Π2 are written according to the notation given in Definition 1).
Without loss of generality, we suppose that each occurrence of the bi-stable
catalysts present in the regions of Π1 is named differently. We suppose that the
set of bi-stable catalysts used in Π1 is C1 = {c1, c2, · · · , ch}.

We construct the system Π2 in the following way.
Suppose j ∈ {1, 2, · · · , h}. For each rule r1,1

i〈a→w〉 : cja → cjw that is present

in R1,i we add to R′
2,i the signaling-rule r2,1

i〈a→w〉 : cja→ cjw|(pj ,out) and we add
to the set R′

2,i−1 the signaling-rules Xj → X ′′
j |(pj ,here) and X ′′

j → X ′′′
j |(pj ,in).

In a similar way, for each rule r1,2
i〈a→w〉 : cja→ cjw that is present in R1,i we

add the signaling-rule r2,2
i〈a→w〉 : cja→ cjw|(pj ,out) to R′

2,i, and to the set R′
2,i−1

the signaling-rules X ′′′
j → X ′

j |(pj ,here) and X ′
j → Xj |(pj ,in).

For each rule r1,3
i〈a→w〉 : cja→ cjw that is present in R1,i we add the signaling-

rule r2,3
i〈a→w〉 : cja → cjw|(pj ,here) to R′

2,i; for each rule r1,4
i〈a→w〉 : cja → cjw

presents in R1,i we add the rule r2,4
i〈a→w〉 : cja→ cjw|(pj ,here) to the set R′

2,i.

For each non-cooperative rule r1,0
i〈X→w〉 : X → w that is present in R1,i we

add the non-cooperative rule r2,0
i〈X→w〉 : X → w to the set R2,i.
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We take the alphabet V2 = V1 ∪ {Xi, X
′′
i , X

′
i, X

′′′
i | 1 ≤ i ≤ h} and the set of

signal-promoters as D2 = {pi, pi | 1 ≤ i ≤ h}. The set of catalysts C2 is exactly
the set C1 except the fact that objects in C2 are used as catalysts and not as
bi-stable catalysts.

We maintain the priority for the corresponding rules: if in the system Π1,
rule r1,k

i〈u′→w′〉 has priority over rule r1,k
i〈u′′→w′′〉, then in Π2, rule r2,k

i〈u′→w′〉 has

priority over the rule r2,k
i〈u′′→w′′〉, 1 ≤ i ≤ m, 0 ≤ k ≤ 4.

Finally we construct w2,l, for 0 ≤ l ≤ m, in the following way. We add to
w2,l all the objects x ∈ V1 \ C1 present in w1,l (by definition, w2,0 = λ). If
w1,l contains cj′ , for some j′ ∈ {1, 2, · · · , h}, then we add pj′ and cj′ to w2,l; if
w1,l contains cj′ for some j′ ∈ {1, 2, · · · , h}, then we add pj′ and cj′ to w2,l; if
w1,l+1 contains cj′ , for some j′ ∈ {1, 2, · · · , h}, then we add Xj′ to w2,l; if w1,l+1
contains cj′ , for some j′ ∈ {1, 2, · · · , h}, then we add X ′′′

j′ to w2,l.
The main idea of the proof is that the “change of state” of a bi-stable catalyst

present in region i ofΠ1 is simulated by an exchange of signal-promoters between
region i and the surrounding region i− 1 of Π2.

For instance (in all other cases the situation is similar), the execution of the
rule r1,1

i〈a→w〉 : cja→ cjw present in region i of Π1, for some j ∈ {1, 2, · · · , h}, is
simulated in Π2 in the following way. First, rule cja → cjw|(pj ,out) is executed
in region i; at the end of its execution the signal-promoter pj is sent out to
the surrounding region i − 1. There, both rules Xj → X ′′

j |(pj ,here) and X ′′
j →

X ′′′
j |(pj ,in) are executed sequentially and they send inside region i the signal-

promoter pj . In region i of Π2, the presence of signal-promoter pj activates now
all (and only) the rules that are catalyzed by cj in region i of Π1; in this way the
simulation of the execution of rule r1,1

i〈a→w〉 : cja→ cjw in Π has been completely
simulated (the obtained object X ′′′

j in region i − 1 stores the information that
the bi-stable catalyst cj has been switched to state cj).

The execution of rule r1,2
i〈a→w〉 : cja → cjw present in region i of Π1 is

simulated in Π2 in the following way. First the rule r2,2
i〈a→w〉 : cja→ cjw|(pj ,out)

in R′
2,i of Π2 is executed; at the end of its execution the signal-promoter pj is

sent out to the surrounding region i − 1. There, both rules X ′′′
j → X ′

j |(pj ,here)
and X ′

j → Xj |(pj ,in) are executed and the signal-promoter pj is sent to region i.
In region i of Π2, the presence of signal-promoter pj activates now all (and only)
the rules that are catalyzed by cj in region i of Π1; in this way the simulation
of the execution of rule r1,2

i〈a→w〉 : cja → cjw has been completely simulated
(the object Xj obtained in region i− 1 stores the information that the bi-stable
catalyst cj has been switched to state cj).

From the way we construct Π2 and because Π1 is time-free, then also Π2 is
time-free; moreover they generate the same set of vectors of natural numbers.
Therefore, because of Theorem 3, the statement is true. ��
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8 Clock-Free P Systems

In this section we propose a second variant of time-independent P systems,
slightly different from the previously considered time-free P systems: in this
case, the execution time is associated directly to the applications of the rules.
In particular, we consider the class of clock-free P systems producing the result
independently from the times associated to the applications of rules.

Definition 2. A clock-free P system (in short, a P c system) of degree m ≥ 1,
with catalysts and promoters is a construct

Π = (V,C, P, μ, w1, . . . , wm, R1, . . . , Rm, i0),

where:
• V is an alphabet; its elements are called objects;
• C ⊆ V is a distinguished subset of the alphabet, called the set of catalysts;
• P ⊆ V is a distinguished subset of the alphabet, called the set of promoters;
• μ is a membrane structure consisting of m membranes labeled 1, 2, . . . ,m;
• wi, 1 ≤ i ≤ m, specify the multiset of objects present in the corresponding

regions at the beginning of the computation;
• Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over V associated with

regions 1, 2, . . . ,m of μ; we have non-cooperative rules, of the form a→ v, where
a is an object from V \C and v is a string over {ahere, aout | a ∈ V \C}∪{ainj

|
a ∈ V \C, 1 ≤ j ≤ m}; catalytic rules ca→ cv, where a is an object from V \C
and v is a string over {ahere, aout | a ∈ V \ C} ∪ {ainj | a ∈ V \ C, 1 ≤ j ≤ m}
and c ∈ C; promoted rules a → v|t and ca → cv|t, with t ∈ P , c ∈ C, a is an
object from V \ C, and v is a string over {ahere, aout | a ∈ V \ C} ∪ {ainj

| a ∈
V \C, 1 ≤ j ≤ m} (when there is no ambiguity on the target, then the target inj

is simply written as in);
• i0 ∈ {0, 1, · · · ,m} specifies the output region of Π (0 indicates the environ-

ment).

The computation starts from the initial configuration. The rules by which
the objects evolve are chosen in a non-deterministic manner and applied in a
maximally parallel manner.

A promoted rule u → v|a ∈ Ri is active only in the presence of object a in
region i (notice that promoters themselves can evolve according to some rules;
see [2]).

Each application of a rule has an execution time that is an arbitrary positive
integer number. Different applications (even of the same rule) may have different
execution times. All objects produced by a rule are used (if they can be) in the
same time as soon as they appear.

The system will stop in an halting computation if and only if reaches an
halting configuration, where there is neither rule applicable in any region, nor
rules that are in execution.

The output of an halting computation is the vector of numbers representing
the multiplicities of objects present in the output region in the halting configu-
ration.
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Collecting all the vectors obtained, for any possible halting computation, we
get the set Ps(Π) of vectors of natural numbers generated by the system Π.

We use the notation:

PsP c
m(α, proR), α ∈ {ncoo, coo} ∪ {catk | k ≥ 0},

to denote the family of sets of vectors of natural numbers generated by clock-
free P systems, having at most m membranes, evolution rules that can be non-
cooperative (ncoo), cooperative (coo), or catalytic (catk), using at most k cata-
lysts, and promoters (proR) at the level of rules.

9 Clock-Free P Systems: An Example

The following example shows how a clock-free P system can generate the Parikh
image of {A2n

c | n ≥ 0}. The example anticipates the universality result given
in the next section. Notice that, in case of clock-free P systems, applications
of the same rule might have associated different execution times; therefore the
approach used in the Example presented in Section 3 cannot be used anymore.

Example 2. Let us consider the clock-free P system

Π = (V,C, P, μ, w1, R1, i0 = 1),

where:

V = {A,S, S1, S2, S1, S2, T , F , c};
C = {c};
P = {S1, S1, F, F ,A,B, T1, T1};
μ = [1 ]1;
w1 = ASc;
R1 = {S → S1, S → λ, cA→ cBBF |S1}
∪ {S1 → S2T |F , F → λ|S1 , S2 → S1|A}
∪ {cT → cT1, S2 → S1|T1 , T1 → λ}
∪ {cB → cAF |S1

, S1 → S2T |F , F → λ|S1
}

∪ {S2 → S1|B , cT → cT1, S2 → S|T1
, T1 → λ}.

Here is how the system performs the computation. Rules S → S1, S → λ
represent a selector, i.e., they decide whether the generation should stop or
continue. In the case generation should continue (S → S1 is applied) then, after
the appearance of object S1, the rule cA → cBBF |S1 is executed. It will take
an arbitrary time (but finite) up to the moment when objects B and F appear
simultaneously. In that moment, rules S1 → S2T |F , F → λ|S1 can be applied
and will be started simultaneously. We have the following situation: object F
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will be eventually deleted so it will not count in further computations; objects
S2 and T appear synchronously. After this, rule cT → cT1 is started; however we
do not know if the rule starts in the same time with rule S2 → S1|A (because we
do not know if all objects A were already rewritten). The usage of catalyst c by
rule cT → cT1 assures us that rule cA → cBBF |S1 cannot be executed before
rule cT → cT1 ends (this guarantees that no other object T is produced before
rule cT → cT1 ends).

If there still exist objects A, then object S1 is generated (by rule S2 → S1|A)
and object T1 will be eventually deleted.

Otherwise, object S1 is generated and we can start the transformation of all
the Bs into As (with a quite similar construction).

In case the process should stop, the object S is deleted (S → λ is executed),
the transformation of objects A into B is not repeated and the computation ends
having in the output region the Parikh image of {A2n

c | n ≥ 1}.
As final remark, one can observe that without the parallelism involved while

executing the rules S → S2T |F and F → λ|S1 the system presented is sequential;
therefore the constructed system is clock-free.

10 Universality of Clock-Free P Systems

Here, we present a universality result concerning clock-free P systems using
promoters at the level of rules and one catalyst. The proof is based on the
simulation of register machines.

We will give some notions regarding register machines and their computa-
tional power (see [7]).

An n-register machine is a constructM = (n,P, l0, lh) where n is the number
of registers (each register stores an arbitrary natural number); P (the program
of the machine) is a finite set of labeled instructions of the form (l1 : op(r), l2, l3)
where op(r) is an operation on the register r of M , l1, l2, l3 ∈ Lab(P) (where
Lab(P) denotes the set of labels of the instructions from P); l0 is the initial
label; lh is the final label.

The operations allowed by an n-register machine are:

• (l1 : ADD(r), l2, l3) – increment the value stored into register r and nondeter-
ministically proceed to instruction labeled l2 or to instruction labeled l3;
• (l1 : SUB(r), l2, l3) – jump to instruction labeled l3 if the register r is empty;
otherwise subtract one from the value stored into register r and jump to instruc-
tion labeled l2;
• (lh : HALT) – halts the computation (there is an unique halting instruction).

A register machine generates a vector of numbers in the following manner:
we start with all registers being empty, and the computation starts with the
instruction labelled by l0 ; if the computation reaches the instruction (lh : HALT)
(that is, it halts), then the vector generated by the computation is (j1, · · · , jn),
where jr, 1 ≤ r ≤ n is the value stored into register r. The set of all vectors of
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numbers generated in this way by M , considering any halting computation, is
denoted by Ps(M).

It is known (see [7]) that nondeterministic register machines generate the
family PsRE, of Turing computable set of vectors of natural numbers.

Now, we can state the following:

Theorem 5. PsRE = PsP c
2 (cat1, proR).

Proof. In order to prove this assertion we will simulate a n–register machine
M = (n,P, l0, lh).

Formally, we define the P system

Π = (V,C, P, [1 [2 ]2 ]1, w1 = ∅, w2, R1 = ∅, R2, i0 = 1),

where:

V = {ar, Ar, Sr | 1 ≤ r ≤ n} ∪ {E, T, F, F1, F2, c} ∪ {l, l | l ∈ Lab(P)};
C = {c};
P = {ar, Ar, Sr | 1 ≤ r ≤ n} ∪ {E, T, F1, F2, h};
w2 = cl0;

R2 is defined as follows:

– for each instruction (l1 : ADD(r), l2, l3) ∈ P, we add to R2 the rules:
l1 → l1Ar,
c→ carE|Ar ,
Ar → λ,
l1 → l2|E ,
l1 → l3|E ,
E → λ;

– for each instruction (l1 : SUB(r), l2, l3) ∈ P, we add to R2 the rules:

l1 → l1SrTF , Sr → λ,
car → cE|Sr, l1 → l2|E ,
T → λ|ar

, l1 → l3|F2 ,
T → λ|F2 , E → λ|F1 ,
F → F1, F1 → F2|T ,
F1 → λ|E , F2 → λ.

– for instruction (lh : HALT ) we add to R2 the rules:

a1 → a1out |lh ,
· · ·
ak → akout |lh ,
lh → λ.
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Before we start analyzing the work of Π, let us recall the followings. Ob-
jects l1, l2, l3 correspond to the register machine instruction labels l1, l2 and
l3 respectively; the multiplicity of object ar represents the value stored in reg-
ister r; object Ar represents the incrementation command (it corresponds to
the ADD operation in the register machine definition); object Sr represents the
subtraction command (it correspond to SUB operation in the register machine
definition).

Here is how the simulation of the register machine increment instruction
(l1 : ADD(r), l2, l3) ∈ P works.

Suppose that the current configuration of the region 2 of Π is represented by
the multiset can1

1 · · · anr
r · · · ank

k l1. Obviously, only rule l1 → l1Ar can be applied.
After a while a the systems reaches a configuration represented by the multiset
can1

1 · · · ank

k l1Ar; therefore the rules to be further applied are c → carE|Ar
and

Ar → λ. Both rules are started at the same time.
Object Ar will be deleted so we do not have to worry when this will actually

happen. After some time, objects ar and E will appear simultaneously; then, the
configuration of the region 2 of Π will be the one represented by the multiset
can1

1 · · · anr+1
r · · · ank

k l1E. Next, the rules to be executed simultaneously will be
l1 → l2|E or l1 → l3|E , and E → λ. Because we have obtained the next instruc-
tion label and moreover we deleted useless objects, we have correctly simulated
the register machine increment instruction.

Suppose that the current configuration of the system is given by the multiset
can1

1 · · · anr
r · · · ank

k l1. As it can be seen, only the rule l1 → l1SrTF can be applied.
This means that after a while we will have the multiset can1

1 · · · a
nj

j · · · a
nk

k l1SrTF

(recall that objects l1, Sr, T , and F have appeared simultaneously since they
were produced from the “same” object l1). Next, the rules ca→ cE|Sr , T → λ|ar ,
F → F1, and Sr → λ, will start their execution in the same time. However, we
do not know if the objects E and F1 will appear simultaneously. If object F1
appears before object E it cannot be rewritten by rule F1 → F2|T because object
T is missing (object T is involved in rule T → λ|ar

); only rule F1 → λ|E could
be further applied, but only after object E has appeared. If object E appears
into region, then the following rules are applied F1 → λ|E , l1 → l2|E , E → λ|F1 .

In this way, the next instruction label l2 is generated and the simulation can
continue. We do not need to know when objects F1 and E will be removed since
they cannot be involved in other rules.

Now, suppose that current configuration of the system is represented by the
multiset can1

1 · · · a
nr−1
r−1 a

nr+1
r+1 · · · ank

k l1. As above, only the rule l1 → l1SrTF can be
applied. This means that after a while we will have the multiset cl1SrTFa

n1
1 · · ·

a
nj−1
j−1 a

nj+1
j+1 · · · a

nk

k .
Next, the rules F → F1, Da → λ will start their execution simultaneously.

Once the object F1 has appeared the rule to be further applied is F1 → F2|T .
If object F2 has appeared, then the system will execute the rules T → λ|F2 ,

F2 → λ, l1 → l2|F2 .
After some time the next instruction label will be generated and the compu-

tation can continue. Finally, if object lh is generated then all the following rules



Time–Independent P Systems 257

are executed a1 → a1out
|lh , · · ·, ak → akout

|lh , lh → λ. The reason for sending
all objects ar, 1 ≤ r ≤ n, into region 1 is because we do not want to consider in
the halting configuration the catalyst c.

In conclusion, we have shown that: PsP c
2 (cat1, proR) ⊇ PsRE. By invok-

ing Turing-Church thesis we have the reverse inclusion. Consequently, we have
proved that PsP c

2 (cat1, proR) = PsRE. Notice that the same proof works also
for time-free P systems. ��

11 Concluding Remarks

We have introduced the concept of time-independent P systems that are systems
producing the same result independently from the execution time of the rules.
In this respect we have investigated two models.

First we have introduced a class of P systems called timed P systems where
to each rule is associated a time of execution according to a time-mapping e. Fur-
ther, we have introduced and investigated time-free P systems that are systems
always producing the same result independently of the time-mapping e used.

We have shown that time-free P systems using one catalyst and an unbounded
number of signal-promoters can generate the Parikh image of the languages
generated by Indian parallel grammars. Adding the ability to use priority (in
the strong sense) then time-free P systems become universal (the result has been
obtained simulating non-synchronized P systems that are known to be universal
when using bi-stable catalysts and priority, [8]).

Unfortunately, not much has been found regarding time-free P systems not
using signal-promoters (such restricted model has been called basic). We have
shown that basic (partially) time-free P systems, using only non-cooperative
rules and priority, can generate non-semilinear set of vectors of natural numbers.
The result has been obtained only by introducing certain conditions over the time
of executions of the rules (from here the name partially time-free). We do not
know if it is possible to get the same result for basic time-free P systems.

On the other hand, we think it might be useful to formalize the model of
partially time-free P systems and to investigate classes of partially time-free P
systems.

It is also possible to add other parameters to construct a P system “more
realistic”; for instance, it would be very interesting to associate to each rule a
time of delay that indicates the time to wait before a rule is started. This might
model the fact that, sometime, chemical rules are not started immediately, even
in the presence of the necessary chemicals.

The second model investigated in the paper is a generalization of the first
one in what concerns the execution time of a rule: while in the first model the
time is associated to the rule, in the second one the time is associated to each
application of a rule.

In this respect, we have considered P systems that are independent from the
time associated with the applications of the rules and we have called them as
clock-free P systems. We have shown that clock-free P systems using one catalyst
and promoters are computational universal.
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We conclude with the belief that many interesting problems and results can
be found in these lines of research.
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Abstract. We analize in this paper the possibility of simulating the
parallel architecture SIMD-MC2, also known as the two-dimensional
mesh, with P systems with dynamic communication graphs. We illus-
trate this simulation for an algorithm which computes the sum of given
integers. Next, we show how to extend the formalism to the reduction
problem.

1 Introduction

P systems are powerful computational devices, with a high degree of parallelism,
whose functioning is inspired by biological processes at the level of the cells, and
of their membranes ([6], [7]). Among these processes, communication plays an
important role (see [5]).

We have started in previous work ([2], and [3]) to analyze the possibility of
simulating (classical) parallel architectures with P systems. A parallel machine
consists of a large number of processors (each one having an arithmetic logic unit
with registers and a private memory) able to solve problems in a cooperative
way. The “cooperation” (sharing of data among processors) is accomplished via
a specific communication network which characterizes the architecture.

We have considered in [2], and [3], the case of the shuffle–exchange archi-
tecture. In the present paper we deal with a different type of architecture, the
two-dimensional mesh, in which the processors are placed in the vertices of a
2D-lattice in the plane, and communication is possible only between adjacent
processors.

In the course of this study, a new type of P systems has emerged: P systems
with dynamic communication graphs of specific types. They are in a way similar
to tissue-like P systems, the connections between elementary membranes being
described by graph structures, but they have a dynamic behavior: the underlying
graph structures change in time. Moreover, rules, which are generally associated
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to regions inside membranes, are in this new version associated to underlying
graphs. This new formalism covers both the simulation of internal processing,
modelled by symbol rewriting rules, and the communication of data, modelled
by symport/antiport rules.

The paper is organized as follows. Section 2 describes briefly the 2D-mesh
parallel architecture. In Section 3 we introduce the P systems with dynamic
communication of 2D-mesh type, the tools with which we accomplish the desired
simulation. Section 4 illustrates an application of the 2D-mesh architecture to
an algorithm for computing the sum of a set of integers, and contains a proof of
its correctness. In Section 5 we discuss several simulations of the sum algorithm
with P systems with dynamic communication of 2D-mesh type. In the next two
sections we give some indications on how to extend the formalism to solve a
general reduction problem.

2 The 2D-Mesh Architecture

Recall that a parallel machine consists of a large number of processors (each one
having an arithmetic logic unit with registers and a private memory) able to
solve problems in a cooperative way; that is, the machine is capable of executing
several instructions in the same time unit.

According to Flynn’s classification of computers (see [4]), a form of synchronous
parallelism is called SIMD (Single–Instruction–Multiple–Data). A SIMD ma-
chine consists of a set of identical processors capable of simultaneously perform-
ing the same instruction issued by a central control unit, on different sets of data,
and in a synchronous manner: each processor executing an instruction in parallel
must be allowed to finish before the execution of the next instruction starts.

Several different methods of connecting processors in a parallel computer
have been proposed. Quinn [8], quoting Ullman [9], mentions six important pro-
cessor organizations, among which the mesh network. In a mesh network the
processors are arranged into a q-dimensional lattice, and communication is al-
lowed only between neighboring nodes, hence interior nodes communicate with
2q other processors. A SIMD machine in which the processors may communi-
cate with each other via a mesh-connected network of dimension q is called in
[8] a SIMD-MCq machine.

We deal in this paper with SIMD-MC2 machines, i.e., a set of processors
working according to the SIMD paradigm, and able to communicate (share)
data among them according to a two–dimensional lattice architecture, which we
will call in the sequel the 2D-mesh architecture.

In general, in a given parallel architecture, we say that two processors are
adjacent if they are directly connected. The distance between a pair of processors
in a given architecture is the smallest length of a path between the processors.
The diameter of an architecture is defined as the largest distance between any
processors in the network. The two–dimensional mesh architecture provides a
network with a large number of communication links connected to each proces-
sor, permitting to reduce the diameter of the network.
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In general, we consider a two–dimensional mesh–connected parallel computer
as a SIMD machine consisting of n×m identical processors, P11, . . . , Pnm, placed
in the nodes of a 2D-lattice, or, equivalently, arranged in a 2D array.

Each processor has a local memory consisting of a number of registers, and
it can perform a number of operations on data stored in these registers.

The communication between processors (mainly transmission of values of
local variables) can take place only according to the 2D-lattice structure of the
underlying network. Thus the processor placed in row i and column j, is denoted
by Pi,j , (or Pij) with 1 ≤ i ≤ n and 1 ≤ j ≤ m. If Pi,j is an interior node, i.e.,
i �= 1, j �= 1, i �= n, j �= m, then Pi,j has four neighbors: Pi−1,j and, Pi+1,j on the
same column, j, and Pi,j−1, Pi,j+1 on the same row, i. The rows i = 1 and i = n
are the boundary rows, and columns j = 1 and j = m are the boundary columns.
The nodes at the intersection of a boundary row and a boundary column have
each one precisely two neighbors, and the rest of the boundary nodes have three
neighbors.

3 P Systems with Dynamic Communication Graphs of
2D-Mesh Type

The model we develop here for the simulation of the 2D-mesh architecture is
along the same general lines as the model proposed for the shuffle-exchange
networks in [2] and [3], with some differences which arise inherently from the
differences in the two parallel architectures in question.

We have a SIMD-MC2 machine, composed of n × m processors, denoted
Pij , with 1 ≤ i ≤ n, 1 ≤ j ≤ m, organized in a 2D-mesh architecture. To
each processor Pij we will associate a membrane, which we will still denote
Pij . Similarly to tissue-like P systems, we will have a collection of elementary
membranes, connected by certain graphs, at certain moments of their evolution
in time. The graphs we will consider will be sub-graphs of the total graph of the
2D-mesh network, also sub-graphs of the identity graph of the 2D-mesh network,
as we will explain in the sequel.

The contents of each processor Pij will be codified in its associated membrane
with symbol objects. The alphabet of symbols used, V , will depend on the con-
tents of the processors we are simulating (see the applications in the following
sections). If each processor has to contain say r variables with positive integer
values, they can be in principle codified with an alphabet with r letters. In the
case of the applications illustrated further, we will have to represent at most
two integer variables. Their simulation with P systems will use accordingly an
alphabet with two (or four) symbols.

Basically, we have to model:

– Patterns of specific internal processing in each processor: these will be mod-
elled by symbol rewriting rules.

– Patterns of communication between processors.

Recall that in the 2D-mesh architecture the communication between pro-
cessors takes place along edges which connect two neighboring processors. As



262 R. Ceterchi and M.J. Pérez–Jiménez

we have done in general for parallel architectures, and, in particular, for the
perfect–shuffle architecture in previous work (see [2], [3]), we will speak of the
(underlying) communication graph associated to a given architecture: the ver-
tices of the graph are the processors, and the edges (oriented or not) are the
network connections characteristic of the architecture. In the case of the 2D-
mesh, the underlying communication graph is composed of all edges between
neighboring nodes. We will call it the total graph, and we distinguish between
horizontal edges and vertical edges. We use the following notation:

Gtotal = Gh ∪Gv =
n⋃

i=1

Gi∗ ∪
m⋃

j=1

G∗j ,

where

Gi∗ = {((i, j), (i, j + 1)) | 1 ≤ j ≤ m− 1}, for all 1 ≤ i ≤ n,

G∗j = {((i, j), (i+ 1, j)) | 1 ≤ i ≤ n− 1}, for all 1 ≤ j ≤ m.

Gi∗ is the set of all horizontal edges on line i, with 1 ≤ i ≤ n, and G∗j is the
set of all vertical edges on column j, for 1 ≤ j ≤ m.

For every particular algorithm implemented on a 2D-mesh network of pro-
cessors, not all edges of the communication graph are used simultaneously for
transmitting values of local variables, as we will see in the illustrations which
follow. For this reason we will speak of the total virtual communication graph,
and of active sub-graphs of Gtotal, composed of sets of edges along which actual
communication takes place, in parallel, at certain steps of a given algorithm.

For modelling the internal processing steps, in order to have unity of notation,
we will associate the rules to the identity graph: the set of vertices is composed
of all processors/membranes, the set of edges is defined as

Id = {((i, j), (i, j)) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

If an internal processing occurs only in a subset of the processors/membranes,
then we will consider the respective active sub-graphs of Id. For instance, if inter-
nal processing occurs only for processors/membranes on line i, we will associate
it with the active sub-graph

Idi∗ = {((i, j), (i, j)) | 1 ≤ j ≤ m}.

Similarly, if an internal processing occurs only for processors/membranes on
column j, we will associate it with the active sub-graph

Id∗j = {((i, j), (i, j)) | 1 ≤ i ≤ n}.

The P systems which we consider in the sequel, for modelling the 2D-mesh
architecture, similarly to those considered in [2] and [3], depart from the classical
P systems in two respects:
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– The connections between individual membranes of a P system, μ, which
was a tree-like structure of membranes (see [6]), and which in tissue-like P
systems becomes a graph structure, is now, a sequence of graphs.

– The rules of a P system, usually associated to membranes, will now be as-
sociated to communication graphs between membranes.

(a) We simulate the internal computations performed by a subset of proces-
sors by the action of symbol or object rewriting rules, at work simulta-
neously inside the corresponding subset of membranes. We will associate
such rules to the corresponding active subsets of Id.

(b) We simulate the exchange of data performed by the processors with
communication rules (symport/antiport rules) between membranes. The
communication rules will be associated to the active sub-graphs of Gtotal.

We will consider the edges to have an orientation which gives meaning to
the in and out of the symport/antiport rules: out means travelling in the sense
of the edge’s orientation, in means travelling in the opposite sense. Thus, rules
such as (a, out), (a, in) function along an oriented edge in the same way they
would function if they were attached to the source vertex of the edge.

As in [2] and [3] (with slight modifications), we will use pairs [graph, rules]
to describe the evolution of a P system which simulates the behavior of a given
algorithm, in the 2D-mesh architecture.

For every particular architecture, its underlying network structure imposes
restrictions on the set Graphs to which the first member of a pair [graph, rules]
can belong. For the 2D-mesh architecture Graphs is either a subset of Gtotal, or
a subset of Id.

The set Rules, of all symbol/object rewriting rules which simulate internal
computations performed by the individual processors, will depend on the par-
ticular algorithm, used to solve a particular problem, within the framework of a
given architecture.

We model deterministic algorithms, each iterative step of such an algorithm
will be modelled by a finite sequence of pairs [graph, rules] (sometimes each pair
simulating the effect of “an instruction”, but not necessarily). The entire execu-
tion of such an algorithm will be modelled by a sequence of pairs [graph, rules],
denoted in the sequel by Rμ.

A P system which simulates a particular algorithm in the 2D-mesh architec-
ture will thus be a construct

Π = (V, P11, · · · , Pnm, Rμ),

where P11, · · · , Pnm are elementary membranes, V is an alphabet of symbols
used to codify the contents of the membranes, and Rμ is a finite sequence of
pairs [graph, rules], such that: (i) if graph ⊂ Id, then its rules are rewriting
rules; (ii) if graph ⊂ Gtotal, then its rules are communication rules. We will call
such a system a P system with dynamic communication of 2D-mesh type.

The P system starts in an initial configuration, with its elementary mem-
branes P11, · · · , Pnm simulating the initial configuration of the corresponding
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processors. Each application of an element [graph, rules] ∈ Rμ to a configu-
ration consists of considering the (active) graph graph and applying the rules
rules associated to it: (i) if graph ⊂ Id, the corresponding rewriting rules are
applied in the membranes which are vertices of graph; (ii) if graph ⊂ Gtotal,
the corresponding symport/antiport rules are applied along the edges of graph.
This leads to the next configuration. The final configuration is obtained after
the application of the entire sequence Rμ.

Note that the general presentation of a P system with dynamic communi-
cation graph which simulates a given (arbitrary) parallel architecture based on
communication networks (denote it by X) is the same: it specifies an alphabet
of symbols used to codify the contents of membranes, a finite set of elementary
membranes, and, finally, a finite sequence Rμ of pairs [graph, rules]. The specifics
of each architecture X impose certain particular forms for the sets Graphs to
which the first member of a pair [graph, rules] can belong, and for the pairing
[graph, rules]. Further, the specifics of each architecture, and sometimes of an
algorithm implemented on it, govern the structure of the entire sequence Rμ.

Denote by Graphs(X) the active graphs associated to the architecture X.
For X = perfect shuffle SIMD = PS-SIMD we have (see [2], [3]):

Graphs(PS-SIMD) = {Gs, Ge, GId},

and the conditions for pairs are:

1. (i) if graph = GId, then its rules are rewriting rules;
2. (ii) if graph ∈ {Gs, Ge}, i.e., graph is either of type shuffle or of type ex-

change, then its rules are communication rules.

For X = 2D-mesh SIMD = SIMD-MC2 we have:

Graphs(SIMD-MC2) = P(Gtotal) ∪ P(Id),

and the conditions for pairs are:

1. (i) if graph ⊂ Id, then its rules are rewriting rules;
2. (ii) if graph ⊂ Gtotal, then its rules are communication rules.

As for the differences in the structure of the sequence Rμ, in the case of the
perfect shuffle architecture Rμ was periodic, while in the case of the 2D-mesh
architecture it is not necessarily so, as we will see in the example illustrated in
the next section.

4 The Sum on the 2D-Mesh

We compute the sum of n integer numbers a11, a12, . . . , all, where n = l2, using
the 2D-Mesh architecture, each integer held in one processor.

We have n = l2 processors Pij (1 ≤ i, j ≤ l) that possess two local variables:
xij (initialized by aij) and tij (initialized by 0).

The following procedure computes the sum a11 + a12 + · · ·+ all.
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procedure sum2D−MESH(a11, a12, · · · , all)
begin

for all i, j where 1 ≤ i, j ≤ l do
xij ← aij; tij ← 0

endfor
for j ← l − 1 downto 1 do

for all i where 1 ≤ i ≤ l do
tij ⇐ xi(j+1)
xij ← xij + tij

endfor
endfor
for i← l − 1 downto 1 do

ti1 ⇐ xi+1,1
xi1 ← xi1 + ti1

endfor
end

where tij ⇐ xi(j+1) means that processor Pi,(j+1) links by the mesh with pro-
cessor Pij and communicates the value of variable x, and processor Pij puts it
in variable t.

In order to prove the correctness of this algorithm we reformulate in detail
what is happening in each processor throughout the execution. We denote by
xr

ij and trij the corresponding values of the local variables of processor Pij after
step r of the execution.
The above algorithm can now be reformulated in the following, more detailed,
manner:

procedure sum2D−MESH(a11, a12, · · · , all)
begin

for all i, j where 1 ≤ i, j ≤ l do
x0ij ← aij; t0ij ← 0

endfor
for j ← l − 1 downto 1 do

for all i where 1 ≤ i ≤ l do
tl−j
ij ⇐ x

l−j−1
i(j+1)

xl−j
ij ← x0ij + tl−j

ij

endfor
endfor
for i← l − 1 downto 1 do

t2l−i−1
i1 ⇐ x2l−i−2

i+1,1

x2l−i−1
i1 ← xl−1

i1 + t2l−i−1
i1

endfor
end
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Theorem 1. The formula θ(j) ≡ ∀i (1 ≤ i ≤ l −→ xl−1
ij =

l∑
s=j

ais) is an invari-

ant of the loop “for j ← l − 1 downto 1 do” of the procedure sum2D−MESH.

Proof. By descendant induction on j.

– For j = l − 1 we have, for each i such that 1 ≤ i ≤ l:

xl−1
i,l−1 = x1i,l−1 = x0i,l−1 + t1i,l−1

= x0i,l−1 + x0i,l
= ai,l−1 + ai,l

=
l∑

s=l−1

ais

– Let j > 1 and suppose that the formula θ(j) is true. Let us prove that the
formula θ(j − 1) is also true.
For each i such that 1 ≤ i ≤ l we have:

x
l−(j−1)
i,j−1 = x0i,j−1 + tl−(j−1)

i,j−1

= x0i,j−1 + xl−j
i,j

i.h.= ai,j−1 +
l∑

s=j

ais

=
l∑

s=j−1

ais

��

Theorem 2. The formula ϕ(i) ≡ x2l−i−1
i1 =

l∑
r=i

l∑
s=j

ars is an invariant of the

loop “for i← l − 1 downto 1 do” of procedure sum2D−MESH.

Proof. By descendant induction on i.

– For i = l − 1 we have:

x2l−i−1
i,1 = x2l−(l−1)−1

l−1,1 = xl−1
l−1,1 + t2l−(l−1)−1

l−1,1
= xl−1

l−1,1 + xl−1
l,l

=
l∑

s=1

al−1,s +
l∑

s=1

al,s

=
l∑

r=l−1

l∑
s=l−1

ars

– Let i > 1 and suppose that the formula ϕ(i) is true. Let us prove that the
formula ϕ(i− 1) is also true.
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For each i such that 1 ≤ i ≤ l we have:

x
2l−(i−1)−1
i−1,1 = xl−1

i−1,1 + t2l−(i−1)−1
i−1,1

= xl−1
i−1,1 + x2l−i−1

i,1

Th.1+i.h.=
l∑

s=1

ai−1,1 +
l∑

r=i

l∑
s=j

ars

=
l∑

r=i−1

l∑
s=j

ars

��

Corollary 1. At the end of the execution of procedure sum2D−MESH, the vari-
able x of processor P11 contains the value of the sum a11 + · · ·+ all.

Proof. At the end of execution the formula ϕ(1) is true; that is, it is verified
that:

x2l−1−1
11 =

l∑
r=1

l∑
s=j

ars = a11 + a12 + · · ·+ all.

Recall that x2l−1−1
11 is the content of the processor P11 at the end of the execution.

��

Let us note that the above algorithm, although formulated for a square 2D-
mesh, works in the same way on a rectangular mesh, of dimensions n×m, and
only slight changes are necessary in the proofs of the corresponding correctness
results.

The following procedure computes the sum a11 + a12 + · · ·+ anm.

procedure sum2D−MESH(a11, a12, · · · , anm)
begin

for all i, j where 1 ≤ i ≤ n,1 ≤ j ≤ m do
xij ← aij; tij ← 0

endfor
for j ← m− 1 downto 1 do

for all i where 1 ≤ i ≤ n do
tij ⇐ xi(j+1)
xij ← xij + tij

endfor
endfor
for i← n− 1 downto 1 do

ti1 ⇐ xi+1,1
xi1 ← xi1 + ti1

endfor
end

Its running time, measured in number of iterative steps, is (n− 1) + (m− 1).
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Fig. 1. The sum on a 2D-mesh

Remark: Note that, in the above procedures, the sequence
tij ⇐ xi(j+1)
xij ← xij + tij

can be replaced by
ti(j+1) ← xi(j+1)
tij ⇐ ti(j+1)
xij ← xij + tij

and the sequence
ti1 ⇐ xi+1,1
xi1 ← xi1 + ti1

by
ti+1,1 ← xi+1,1
ti1 ⇐ ti+1,1
xi1 ← xi1 + ti1.

The difference is that, instead of communicating directly the value of xi(j+1)
to the variable tij through a mesh connection between Pij and Pi(j+1), we first
copy in Pi(j+1) the value of xi(j+1) into the auxiliary variable ti(j+1), and we
use the mesh connections to transmit values of only the auxiliary corresponding
variables t. This is an important aspect for the simulations which follow.

In Figure 1 the functioning of the sum algorithm on a 3 × 3 2D-mesh is
illustrated, from the initial configuration (after initialization), through the sub-
sequent ones – each obtained after an iterative step, to the last one (after the
fourth iterative step), in which the sum is obtained in processor P11.
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5 Simulation of the Sum

We present a simulation of the sum algorithm on 2D-mesh using P systems with
dynamic communication graphs of the 2D-mesh type. Actually, as we will see,
we will have three possible simulations, depending on the input data, and the
requirements we impose on the “memory” of membranes Pij , with ij �= 11, which
can be considered auxiliary in the process of summation.

As already stated in Section 3, each processor will be simulated by a mem-
brane, and we keep the same labels for membranes as for processors.

Thus, each membrane Pij , for 1 ≤ i ≤ n, 1 ≤ j ≤ m, will have to have
distinct representations for its two internal variables, xij and tij (when both are
necessary). Let us denote by |x| the positive part of any integer x. We codify the
integer values of the local variables xij and tij , in the following manner:

– Let a and ā be the symbols to codify the integer content of the xij variable
of every membrane Pij . Symbol a is used to represent the positive units, and
ā for the negative ones. Suppose xij has integer value aij : if aij is positive,
it will be codified as aaij , if aij is negative, it will be codified as ā|aij |.

– Let b and b̄ be the symbols to codify the integer content of the tij variable of
every membrane Pij , b for positive units, and b̄ for negative ones. They are
used in the same fashion as a and ā are used to codify xij , described above.

If the data are arbitrary integers, the contents of the processors will be codified
with symbol objects over the alphabet V = {a, ā, b, b̄}. If the data are always
positive integers, the contents of the processors can be codified with symbol
objects over the smaller alphabet V = {a, b}.

Let us illustrate how addition of two integers can be performed using two
(adjacent) membranes: consider Px and Py two membranes, each containing an
integer, x, and respectively y, codified as az, for z ≥ 0 and/or as āz for z < 0,
z ∈ {x, y}. Suppose both integers are positive, thus the initial configuration is
Px : ax, and Py : ay.

Suppose moreover that we are interested in obtaining the result of the addi-
tion in Px, and that we are not interested if we loose the original initial value of
Py. Then, using an active edge (Py, Px) together with the symport rule (a, out),
i.e., the pair [(Py, Px), (a, out)] accomplishes our desired objective: precisely y
occurrences of a travel ”along” the edge, and we will have x+ y occurrences of
a in Px.

If our integers are arbitrary, i.e., we can have any of the four combinations
of initial configurations, Px : either ax or āx, Py : either ay or āy, if we are
interested in obtaining the result of the addition in Px, and we are not inter-
ested if we loose the original initial value of Py, then, we can use an active
edge (Py, Px) together with the symport rules {(a, out), (ā, out)}, i.e., the pair
[(Py, Px), {(a, out), (ā, out)}], followed by [IdPx , (aā −→ λ)]. The last internal
rewriting step taking place in Px ensures us that the addition is correctly per-
formed, positive and negative units annihilate themselves in pairs.
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If we do wish to keep however also the contents of Py, additional rewrit-
ing steps are necessary, and the use of symbols {b, b̄} becomes apparent. The
sequence

[IdPy
, {a −→ ab, ā −→ āb̄}], [(Py, Px), {(b, out), (b̄, out)}],

[Id, {b −→ a, b̄ −→ ā, aā −→ λ}],
accomplishes the task of having x+ y represented in Px and y still in Py: by the
first set, the a’s, respectively ā’s, in Py are duplicated also as b’s, respectively
b̄’s; by the second set of rules all the b’s, respectively b̄’s, get from Py into Px;
by the third set, the b’s, respectively b̄’s in Px get rewritten as a’s, respectively
ā’s, and the rule aā −→ λ ensures the proper addition of positive and negative
units, if it is necessary. The result of adding x + y is represented as ax+y or
ā|x+y| in Px; in Py we have the same content as before, since all b’s, or b̄’s have
travelled by the second rule into Px, and thus none of the rules of the third set
are applicable in Py.

Let us go back now to our system of membranes Pij , for 1 ≤ i ≤ n, 1 ≤ j ≤ m,
seen as the nodes of a (virtual) 2D-lattice of dimension n×m.

Suppose, for the sake of simplicity, that we deal only with positive integers,
and that we are only interested in obtaining the result of the addition a11 + · · ·+
anm in membrane P11, loosing the initial and intermediate values in all the other
membranes.

For our system of membranes and the problem stated above we will have:

– The initial configuration: for 1 ≤ i ≤ n, 1 ≤ j ≤ m, every membrane Pij

contains aaij , and no b’s.
– The sequence of horizontal subgraphs: For the first m− 1 iterative steps, we

will consider, at each step j = m−1, · · · , 1, the subgraphs {((i, j+1), (i, j)) |
1 ≤ i ≤ n} composed of all horizontal edges connecting column j + 1 to
column j, and we consider them oriented edges. Along each such edge, we
have to perform the addition of variables xi(j+1) and xij , and put the result in
xij . If we are not interested in preserving the values (initial or intermediate)
of every processor (with the exception of processor P11 which collects the
final result), we can simply use the rule (a, out) along each such (oriented)
edge. Along each edge ((i, j + 1), (i, j)), xi(j+1) occurrences of symbol a will
travel into membrane Pij where they will increase the number of a’s, so that
it will be precisely xi(j+1) + xij (and the codification for variable xi(j+1) in
processor Pi(j+1) is lost).

– The sequence of vertical subgraphs: For the last n − 1 iterative steps, we
will consider, at each step i = n− 1, · · · , 1, the subgraph (((i+ 1), 1), (i, 1))
composed of an oriented vertical edge connecting on column 1 line i + 1
to line i. Along each such edge, we have to perform again the addition of
variables x(i+1)1 and xi1, and put the result in xi1. Again, we can use the
rule (a, out) along each such (oriented) edge.

Note that we have used an alphabet of only one symbol, {a}, and that there
are no internal computation steps in the form of rewriting taking place in any
subset of membranes.



On 2D Mesh Networks and Their Simulation with P Systems 271

Theorem 3. Consider the P system with dynamic communication of 2D-mesh
type

Π1 = ({a}, {Pij | 1 ≤ i ≤ n, 1 ≤ j ≤ m}, Rμ1),

where Rμ1 is the following sequence of pairs [graph, rules]:

Rμ1 = {[{((i, j + 1), (i, j)) | 1 ≤ i ≤ n}, (a, out)], j = m− 1, · · · , 1,

[(((i+ 1), 1), (i, 1)), (a, out)], i = n− 1, · · · , 1}.
Then, starting from the initial configuration {Pij : aaij | 1 ≤ i ≤ n, 1 ≤ j ≤ m},
where all aij are positive integers, the application of the sequence Rμ1 will lead
to the final configuration P11 : aS, where S = a11 + · · ·+ anm, and Pij : ∅ for all
ij �= 11.

Let us consider now the case in which we have to sum arbitrary integers, and
suppose that we do not wish to keep the initial or intermediate contents of any
other membrane but P11. We will have:

– The initial configuration: for 1 ≤ i ≤ n, 1 ≤ j ≤ m, for aij ≥ 0 every
membrane Pij contains aaij , and for aij < 0 every membrane Pij contains
ā|aij |.

– The sequence of horizontal subgraphs – communication followed by internal
computations: For the first m − 1 iterative steps, we will consider, at each
step j = m − 1, · · · , 1, the subgraphs {((i, j + 1), (i, j)) | 1 ≤ i ≤ n} com-
posed of all horizontal edges connecting column j + 1 to column j, and we
consider them oriented edges. To each such edge we associate the symport
rules {(a, out), (ā, out)} which ensure that either positive or negative units,
depending on the case, travel all into membrane Pij . (The codification for
the value ai(j+1) in membrane Pi(j+1) is lost). In order to ensure proper ad-
dition of integers with different signs on column j, we will use an internal
computation step modelled as [Id∗j , aā −→ λ], where Id∗j is the subgraph
of the identity graph associated to column j.
The sequence [graph, rules] which models this stage will thus be

Rh
j = [{((i, j + 1), (i, j)) | 1 ≤ i ≤ n}, {(a, out), (ā, out)}], [Id∗j , aā −→ λ],

for j = m− 1, · · · , 1.
– The sequence of vertical subgraphs – communication followed by internal

computations: For the last n − 1 iterative steps, we consider, at each step
i = n − 1, · · · , 1, the subgraph ((i + 1, 1), (i, 1)) composed of an oriented
vertical edge connecting on column 1 line i + 1 to line i. Along each such
edge, we use the rules {(a, out), (ā, out)}. After such a communication step,
we have an internal computation step, which we model with [Idi∗, aā −→ λ],
where Idi∗ is the subgraph of the identity graph associated to line i. (We
could have used only the subgraph Idi1.)
The sequence [graph, rules] which models this stage will thus be

Rv
i = [{((i+ 1, 1), (i, 1))}, {(a, out), (ā, out)}], [Idi∗, aā −→ λ],

for i = n− 1, · · · , 1.
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Theorem 4. Consider the P system with dynamic communication of 2D-mesh
type

Π2 = ({a, ā}, {Pij | 1 ≤ i ≤ n, 1 ≤ j ≤ m}, Rμ2),

where Rμ2 is the following sequence of pairs [graph, rules]:

Rμ2 = Rh
m−1 · · ·Rh

j · · ·Rh
1 ·Rv

n−1 · · ·Rv
i · · ·Rv

1.

Then, starting from the initial configuration {Pij : aaij | 1 ≤ i ≤ n, 1 ≤ j ≤
m, aij ≥ 0}, and {Pij : ā|aij | | 1 ≤ i ≤ n, 1 ≤ j ≤ m, aij < 0}, where all aij
are arbitrary integers, the application of the sequence Rμ2 will lead to the final
configuration P11 : aS, where S = a11 + · · ·+ anm, and Pij : ∅ for all ij �= 11.

Consider now the most general case: we have to sum arbitrary integers, and
we do not wish to destroy the contents of any membrane when it links by mesh to
another membrane and transmits the value of a variable. We will use for trans-
mission only the auxiliary variables tij , codified over the set of symbols {b, b̄}.
Some more internal processing in the form of rewriting will be necessary, both
before, and after the communication step. (Note that in the previous versions,
we did not have to simulate in our membranes the auxiliary variables t.) The
simulation which follows resembles the modified version of the algorithm as in
the Remark of Section 4.

We will have:

– The initial configuration: for 1 ≤ i ≤ n, 1 ≤ j ≤ m, for aij ≥ 0 every
membrane Pij contains aaij , and for aij < 0 every membrane Pij contains
ā|aij |. There are neither b’s, nor b̄’s (the t variables are all initialized to 0).

– The sequence of horizontal subgraphs – communication and internal compu-
tations:
Consider the sequence [graph, rules]:

Rh
j = [Id∗(j+1), {a −→ ab, ā −→ āb̄}],

[{((i, j + 1), (i, j)) | 1 ≤ i ≤ n}, {(b, out), (b̄, out)}],
[Id∗j , {b −→ a, b̄ −→ ā, aā −→ λ}],

for j = m−1, · · · , 1. Each sequence Rh
j simulates the j iterative step of the

first part of the algorithm. By the first set, in column j + 1 simultaneous
rewriting take place, simulating copying the contents of variable xi(j+1) into
ti(j+1). By the second set, the b’s (respectively b̄’s) travel along the active
horizontal edges of the mesh, from column j + 1 to column j on each line
i. By the third set, another internal computation takes place, in column j,
simulating the addition of the auxiliary variable tij to aij and putting the
result in aij . (Again, the tij ’s will be zero.)
The sequence obtained by catenation

Rh = Rh
m−1 · · ·Rh

j · · ·Rh
1

simulates the sequential execution of the first m − 1 iterative steps of the
sum algorithm.
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– The sequence of vertical subgraphs – communication and internal computa-
tions:
Consider for each i = n− 1, · · · , 1, the sequence [graph, rules]:

Rv
i = [Id(i+1)1, {a −→ ab, ā −→ āb̄}],

[{((i+ 1, 1), (i, 1))}, {(b, out), (b̄, out)}],

[Idi∗, {b −→ a, b̄ −→ ā, aā −→ λ}].

It functions in a similar way to the sequences associated to the horizontal
subgraph. By catenation we obtain the sequence

Rv = Rv
n−1 · · ·Rv

i · · ·Rv
1

which simulates the last n− 1 iterative steps of the algorithm.

Theorem 5. Consider the set {aij | 1 ≤ i ≤ n, 1 ≤ j ≤ m} of arbitrary integers,
and consider the P system with dynamic communication of 2D-mesh type

Π3 = ({a, ā, b, b̄}, {Pij | 1 ≤ i ≤ n, 1 ≤ j ≤ m}, Rμ3),

where Rμ3 is the following sequence of pairs [graph, rules]:

Rμ3 = Rh ·Rv = Rh
m−1 · · ·Rh

j · · ·Rh
1 ·Rv

n−1 · · ·Rv
i · · ·Rv

1,

with Rh
j and Rv

i as defined previously.
Then, starting from the initial configuration {Pij : aaij | 1 ≤ i ≤ n, 1 ≤ j ≤

m, aij ≥ 0}, and {Pij : ā|aij | | 1 ≤ i ≤ n, 1 ≤ j ≤ m, aij < 0}, the application
of the sequence Rμ3 will lead to a final configuration in which P11 : aS, where
S = a11 + · · ·+ anm, and Pij :�= ∅ for all ij �= 11 (with the possible exception of
those containing integer 0).

We end this section with some remarks on the three versions of simulations
we have proposed. We believe that discussing them, versus the parallel algorithm
implemented on the 2D-mesh in Section 4, illustrates similarities and differences
between “communication” and “internal computations” as understood, on one
hand in parallel architectures, and on the other hand, in their simulation with
P systems.

First, let us note that the third version, in Theorem 5, can be considered
a complete simulation of the algorithm in Section 4, in the sense that each
membrane Pij , even with ij �= 11, will have, in a codified form, the same content
as processor Pij .

If we concentrate only on the result, i.e., on membrane P11 which must fi-
nally contain the sum, we note that, in the simulation with P systems, we can
almost obtain it with only “communication” rules: rewriting is necessary only in
Theorem 4, and only because the input data may contain integers with differ-
ent signs. Moreover, both “communication” and “internal computations” steps
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in the parallel architecture, were modelled with “communication-only” rules in
the P systems simulation (the case of Theorem 3). In the first two simulations,
Theorem 3 and Theorem 4, there was no need to even represent the auxiliary
variable t, a local memory essential for the functioning of the parallel algorithm.
This implies that the notion of “communication” in P systems is stronger than
the corresponding notion in classical parallel models, of course, at the cost of
“local memory loss”.

6 The Reduction on the 2D-Mesh Architecture

Let (A, ∗, 0) be a commutative monoid, i.e., A is a set, ∗ is a binary associative
and commutative operation over A, and 0 is the neutral element of ∗.

Let a0, . . . , ak−1 be elements of this set. The reduction (see [8], Section 2.3.1)
is the process of computing a0 ∗ · · · ∗ ak−1.

The 2D-mesh architecture can be used to solve the reduction problem. Let us
suppose that the total number of elements is k = (2m+ 1)× (2n+ 1). Consider
k = (2m+1)× (2n+1) processors connected by a 2D-mesh network. The nodes
of the network will be labelled by pairs (i, j) (or simply ij), with i the row index,
−m ≤ i ≤ m, and with j the column index, −n ≤ j ≤ n. The set of elements to
which we want to apply the reduction is

{a(−m)(−n), . . . , a(−m)(n), . . . , a00, . . . , am(−n), . . . , amn}.

Processor Pij , with label ij, −m ≤ i ≤ m, −n ≤ j ≤ n, possesses two local
variables: xij (initialized by aij) and tij (initialized by 0).

The following procedure computes

a(−m)(−n) ∗ · · · ∗ a(−m)(n) ∗ · · · ∗ a00 ∗ · · · ∗ am(−n) ∗ · · · ∗ amn,

and puts the result in processor P00:

procedure reduction2D−MESH(a(−m)(−n), . . . , a00, . . . , amn)
begin

for all i, j where −m ≤ i ≤ m, −n ≤ j ≤ n, do
xij ← aij; tij ← 0

endfor
for j ← n− 1 downto 0 do

for all i where −m ≤ i ≤ m do
tij ⇐ xi(j+1)
xij ← xij ∗ tij

endfor
endfor
for j ← −n+ 1 to 0 do

for all i where −m ≤ i ≤ m do
tij ⇐ xi(j−1)
xij ← xij ∗ tij
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endfor
endfor
for i← m− 1 downto 0 do

ti0 ⇐ xi+1,0
xi0 ← xi0 ∗ ti0

endfor
for i← −m+ 1 to 0 do

ti0 ⇐ xi−1,0
xi0 ← xi0 ∗ ti0

endfor
end

The second and fourth for loops are iterative steps, one responsible for per-
forming the ∗ operation on columns from n to 0, the other for performing the ∗
operation on rows from m to 0, similarly to the algorithm for sum in section 4.

However, this algorithm has some improvement over the one in section 4. The
third for loop is the “mirror image” of the second one: a sequence of iterative
steps, performing the ∗ operation on columns, this time from −n to 0. Note that
the execution of iterative step j in the second loop can be done in parallel with
the execution of iterative step −j of the third loop. Similarly, the fifth for loop
is the “mirror image” of the fourth one: a sequence of iterative steps, performing
the ∗ operation on rows, this time from −m to 0. Note that the execution of
iterative step i in the fourth loop can be done in parallel with the execution of
iterative step −i of the fifth loop.

This ensures that the running time of this algorithm, (if we apply the par-
allelism mentioned above), measured in iterative steps is (2m+ 2n)/2, i.e., this
algorithm takes

√
k/2 steps, compared with

√
k steps required by the previous

algorithm for sum. The simulation which follows makes use of this enhanced
parallelism.

7 Simulation of the Reduction

In order to simulate the algorithm for reduction presented in section 6 with P
systems with dynamic communication of 2D-mesh type, we have to work under
the following supplementary assumptions:

1. The elements aij on which the operation ∗ is performed can be codified inside
each membrane Pij over a finite alphabet, say Vx; the alphabet will be used
to codify all values of variable xij , both initial and intermediate;

2. Using the same codification, the values of local variables tij are codified
inside each membrane Pij over a finite alphabet, say Vt;

3. Vx and Vt are in bijective correspondence: to each a ∈ Vx there corresponds
a symbol a′ ∈ Vt;

4. There exists a set of symbol rewriting rules on Vx ∪ Vt, denoted r∗, which
simulates performing the operation xij ∗ tij inside each membrane Pij ; the
value of the result xij ∗ tij is codified over Vx as the new value of xij .
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Under these assumptions, the rest of the model follows the general lines of
the models for sum in Section 5. Copying the value of xij into tij is done by the
set of symbol rewriting rules {a −→ aa′ | a ∈ Vx}. Since the codifications for
x’s and t’s are the same, the effect is the desired one. Transfer of values for t’s
over the appropriate edges can be accomplished with the set of symport rules
{(a′, out) | a′ ∈ Vt}. Finally, the set r∗ will compute xij ∗ tij and put the result
in xij .

We construct now the sequences of pairs [graph, rules] which simulate the
iterative steps of the reduction algorithm. To simplify the notation we write all i
instead of −m ≤ i ≤ m.

For each j = n, . . . , 1 (the horizontal steps), we take

Rh
j = [Id∗j ∪ Id∗(−j), {a −→ aa′ | a ∈ Vx}],

[{((i, j), (i, j − 1)) | all i} ∪ {((i,−j), (i,−j + 1)) | all i}, {(a′, out) | a′ ∈ Vt}],
[Id∗(j−1) ∪ Id∗(−j+1), r∗].

For each i = m, . . . , 1 (the vertical steps on column 0), we take

Rv
i = [Idi0 ∪ Id(−i)0, {a −→ aa′ | a ∈ Vx}],

[{((i, 0), (i− 1, 0))} ∪ {((−i, 0), (−i+ 1, 0))}, {(a′, out) | a′ ∈ Vt}],
[Idi0 ∪ Id(−i)0, r∗].

Let (A, ∗, 0) be a commutative monoid, and consider the following set of
elements of A:

{a(−m)(−n), . . . , a(−m)(n), . . . , a00, . . . , am(−n), . . . , amn}.

Assume that every element of A can be codified over an alphabet Vx, and that
there exists a set of rewriting rules r∗ which simulates performing operation ∗
on two elements of A, one codified over Vx, the other over Vt, and the result of
the computation is again codified over Vx. Consider the P system with dynamic
communication of 2D-mesh type

Π∗ = (Vx ∪ Vt, {Pij | −m ≤ i ≤ m,−n ≤ j ≤ n}, Rμ∗),

where Rμ∗ is the sequence of pairs [graph, rules]:

Rμ∗ = Rh
n · · ·Rh

j · · ·Rh
1 ·Rv

m · · ·Rv
i · · ·Rv

1,

with Rh
j and Rv

i as defined previously.
Then, starting from an initial configuration in which each membrane Pij

contains a codification of the value aij over Vx, for all −m ≤ i ≤ m, −n ≤ j ≤ n,
the application of the sequence Rμ∗ will lead to a final configuration in which
P00 contains a codification of S ∈ A, where

S = a(−m)(−n) ∗ · · · ∗ a(−m)(n) ∗ · · · ∗ a00 ∗ · · · ∗ am(−n) ∗ · · · ∗ amn.
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8 Conclusions

We have analyzed in this paper the possibility of simulating the parallel archi-
tecture known as the 2D-mesh with a new version of P systems, P systems with
dynamic communication graphs.

In Section 3 a comparison is made between dynamic communication graphs of
2D-mesh type, introduced here, and dynamic communication graphs of shuffle–
exchange type, introduced in previous work. We believe this illustrates the power
of this new version of P systems as tools for formalizing other network architec-
tures as well.

We have illustrated the proposed simulation with the particular algorithm
for computing the sum of a given set of integers. Discussing several possible sim-
ulations of the sum algorithm has given us the opportunity to compare “commu-
nication” as understood in P systems, and communication in classical parallel
architectures.

We have further presented an algorithm to solve the reduction problem im-
plemented on a 2D-mesh, and discussed its simulation with P systems with
dynamic communication graphs, simulation possible under some supplementary
assumptions.
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Abstract. Usually, the evolution of a P system generates a computa-
tion tree too large to be efficiently handled with present–day computers;
moreover, different branches in this tree may differ significantly from a
computational complexity point of view, that is, for the amount of time
and storage necessary to reach a result. In this paper we propose a first
approach to outline a strategy for selecting a suitable branch, in some
sense, of the computation tree associated with a P system. To this end,
we introduce the key notion of the dependency graph of a P system.

1 Introduction

The evolution of a non-deterministic computational device usually gives rise to
a computation tree with several branches, potentially infinite. Moreover, even in
the case of finite computation trees, the amount of information is often too big
to be efficiently handled with present-day computers. This is why it is convenient
to look for good strategies for exploring such computation trees.

In this paper, we address one of these non-deterministic computational de-
vices: P systems (see [2, 3] or visit [4]). Our goal is to enrich the simulation of
the evolution of a P system with a new component, usually called strategy or
search plan, that controls the rules to be applied in each cellular step, in order
to select a branch of the computation tree with a low (if possible, minimal) cost.

The ideal situation would be to have a mapping h∗ assigning to each node n
of a computation tree a number h∗(n) which measures the minimum length of a
path from node n to a leaf (that is, to a halting configuration). Then, the strategy
would consist on selecting at each non-deterministic step of the computation a
node corresponding to the least value of h∗. However, the drawback is the high
computational cost of such a mapping.

In a more realistic situation, we look for a computable mapping being an
efficient estimation of h∗, that will be referred to as a heuristic function or
evaluation function.

The paper is organized as follows. In Section 2 we describe the P system
variant used in this paper. Section 3 introduces the key notion of the dependency
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graph of a P system. Based upon this notion, in Section 4 we present a mapping
h, which helps us to search for a short branch in the computation tree of a P
system. We also prove that this mapping is, indeed, a heuristic function. Finally,
in Section 5 we develop an illustrative example and we finish with some final
remarks.

2 P Systems with a Fixed Number of Membranes

Let us now briefly introduce the P system variant we shall work with in this
paper. We shall only use evolution and communication rules and we shall avoid
division or dissolution rules; so, the number of membranes (indeed, the whole
membrane structure) remains unchanged during the evolution of the system.

P systems will be represented as tuples Π = (Γ,H, μ,w1, . . . , wq, R), where:

– Γ is a finite alphabet (the working alphabet) whose elements are called
objects.

– H is a finite set of labels for membranes.
– μ is a tree-like membrane structure of degree q, one-to-one labelled by the

set H.
– w1, . . . , wq are multisets over Γ describing the multisets of objects initially

placed in membranes from μ.
– R is a finite set of developmental rules of the following forms:

1. [a→ v]l, where a ∈ Γ , v ∈ Γ ∗ (object evolution rules).
Internal rule: an object a can evolve to a multiset v inside a membrane
labelled by l.

2. [a]l → [ ]l b, where a, b ∈ Γ (send-out communication rules).
An object a can get out of a membrane labelled by l, possibly trans-
formed in a new object b.

3. a[ ]l → [b]l, where a, b ∈ Γ (send-in communication rules).
An object a can get into a membrane labelled by l, possibly transformed
in a new object b.

Note that cooperation is not allowed, and priority or electrical charges are
not considered either. Besides, let us observe that the rules of the system are
associated with labels (e.g., the rule [a→ v]l is associated with the label l ∈ H).

The rules are applied according to the following principles. Object evolution
rules are applied in a maximal parallel way (that is, all objects which can evolve
by such rules must do it), while communication rules are used sequentially, in
the sense that one membrane can be used by at most one rule of this type at
one step.

Concerning the interaction with the user, we shall consider that the results of
the computations are collected outside the system (note that objects can leave
the system during the evolution, provided that send-out rules are applied in the
skin membrane). In order to be able to handle this external output of the compu-
tations in a formal way, we add a new region to the membrane structure, called
environment. In this way, the information about the contents of the environment
can be included in the configurations of the system.
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3 Dependency Graphs

Roughly speaking, transitions in P systems are performed by rules in which the
occurrence of an element a0 in a membrane m0 produces the apparition of the
element a1 in a membrane m1. In a certain sense, one can consider a dependency
between the pair (a0,m0) and the pair (a1,m1). This dependency is not based
on the initial configuration but on the set of rules of the P system.

More formally, the rules in the P system model presented above can be re-
formulated as follows:

(a0,m1)→ (a1,m2)(a2,m2) . . . (an,m2)

The occurrence of the element a0 in membrane m1 triggers the rule and
produces the apparition of the multiset a1a2 . . . an into membrane m2.

Obviously, if m1 �= m2, then we have a communication rule. In this case, n
must be equal to 1 and both membranes must be adjacent (one membrane is
the father of the other one). If m1 is the father of m2, then we have a send-in
communication rule, and if the opposite holds, then we have a send-out com-
munication rule. On the other hand, if m1 = m2, then we have an evolution
rule.

The pair (a0,m1) stands for the left side of the rule and the multiset of pairs
(a1,m2)(a2,m2) . . . (an,m2) stands for the right side of the rule.

Next, we define the dependency graph of a P system based on this new rep-
resentation of the rules.

Definition 1. The dependency graph of a P system Π is a pair GΠ = (VΠ , EΠ)
such that VΠ is the set of all the pairs (z,m), where z is a symbol of the alphabet
of Π and m is a label of a membrane (or env for the environment), and EΠ is
the set of all ordered pairs (arcs) of elements of VΠ , ((z1,m1), (z2,m2)), such
that (z1,m1) is the left side of a rule and (z2,m2) belongs to the right side of
that rule.

The distance between two nodes of the dependency graph is defined as usual.

Definition 2. A path of length n from a vertex x to a vertex y in a directed
graph G = (V,E) is a finite sequence v0, v1, . . . , vn of vertices such that v0 = x,
vn = y, and (vi, vi+1) ∈ E for i = 0, . . . , n− 1. The sequence of vertices with a
single vertex is also considered a path. If there is a path γ from x to y, we say
that y is reachable from x (via γ). The distance between two vertices v1 and v2,
d(v1, v2), is the length of the shortest path from v1 to v2, or infinite, if v2 is not
reachable from v1.

We illustrate the definition of dependency graph with an example. Let us
consider the next toy P system, with alphabet Γ = {a, b, c, d, v, w, z, yes}, mem-
brane structure μ = [ [ ]e]s and set of rules:
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Rule 1: [ a→ zb ]e Rule 6: [ a ]s → [ ]s yes
Rule 2: [ a ]e → [ ]e a Rule 7: [ z ]e → [ ]e a
Rule 3: [ b ]e → [ ]e c Rule 8: z [ ]e → [ d ]e
Rule 4: [ a→ z2v ]s Rule 9: [ v → w ]s
Rule 5: [ z ]s → [ ]s z Rule 10: [w ]s → [ ]s yes

In order to construct the corresponding dependency graph, we have to con-
sider the set of regions that are determined by the membrane structure of the P
system. Since the elements can be sent out of the system (rules 5, 6 and 10), we
have to consider three regions: {e, s, env}. Then, with the new representation,
the rules can be rewritten as follows:

Rule 1: (a, e)→ (z, e)(b, e) Rule 6: (a, s)→ (yes, env)
Rule 2: (a, e)→ (a, s) Rule 7: (z, e)→ (a, s)
Rule 3: (b, e)→ (c, s) Rule 8: (z, s)→ (d, e)
Rule 4: (a, s)→ (z, s)2(v, s) Rule 9: (v, s)→ (w, s)
Rule 5: (z, s)→ (z, env) Rule 10: (w, s)→ (yes, env)

Therefore, the dependency graph of Π, GΠ = (VΠ , EΠ), is defined by the fol-
lowing sets:

VΠ =

⎧⎪⎪⎨⎪⎪⎩
(a, e), (b, e), (c, e), (d, e), (v, e), (w, e), (z, e), (yes, e),
(a, s), (b, s), (c, s), (d, s), (v, s), (w, s), (z, s), (yes, s),
(a, env), (b, env), (c, env), (d, env),
(v, env), (w, env), (z, env), (yes, env)

⎫⎪⎪⎬⎪⎪⎭ ,

EΠ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

((a, e), (z, e)), ((a, e), (b, e)), ((a, e), (a, s)),
((a, s), (z, s)), ((a, s), (v, s)), ((a, s), (yes, env)),
((b, e), (c, s)),
((z, e), (a, s)), ((z, s), (z, env)), ((z, s), (d, e)),
((v, s), (w, s)),
((w, s), (yes, env))

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

(d,e)

(c,s)

(z,env)

(z,s)

(b,e)

(v,s)
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Fig. 1. The dependency graph
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The set VΠ of vertices has 24 elements, but 13 of them are isolated: only 11
vertices occur in some arc. Figure 1 shows the connected vertices of the graph.
Note that the dependency graph only depends on the membrane structure and
on the set of rules of the P system, and not on the elements of the membranes
at the initial configuration. This example will be further studied in Section 5.

4 Heuristics

The simulation of a P system with current computers is a quite complex task. P
systems are intrinsically non-deterministic computational devices and therefore
their computation trees are difficult to store and handle with one-processor (or
a bounded number of processors) computers. A possible way to overtake this
shortcoming is to follow only one branch of the associated computation tree in
each run of the simulator. Choosing which branch must be explored is not an
easy decision, as different branches may differ significantly from a computational
complexity point of view.

In order to select the best branch of the computation tree, the ideal situation
would be to have a mapping h∗ assigning to every node a number which indicates
the minimum length of a path from this node to a leaf. Unfortunately, such a
mapping usually has a high computational cost.

In a more realistic situation, we look for a mapping h being an efficient
estimation of h∗, in the following sense:

– h assigns to each node n of a computation tree a number h(n) verifying
h(n) ≤ h∗(n); and

– the value h(n) can be calculated with a low computational cost.

Then, h(n) is a real-valued function over the nodes that, in some cases, provides
a lower bound of the number of cellular steps needed to reach a halting configu-
ration from node n. Such a mapping h will be referred to as a heuristic function
or evaluation function. The aim of this section is to present a heuristic function
h based on the notion of dependency graph of a P system.

In general, given a configuration of a non-deterministic P system, there exist
several essentially different halting configurations which can be reached. How-
ever, in this first approach to the use of heuristics, we shall only consider a
family of P system that behaves well in the following sense. Despite of the non-
determinism, every computation of a P system in the family halts (i.e., there are
no infinite branches in the computation tree) and, starting from a given initial
configuration, all computations send out to the environment the same answer,
just at the last step.

Consequently, when simulating such a P system, no matter which branch of
the associated computation tree we follow, we will get the same answer, but the
computational cost measured as the number of steps in the computation may
vary widely. Hence, it is interesting to define a heuristic function measuring, in
some sense, how far a given configuration is from a halting configuration in the
computation tree.
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In order to define such a heuristic mapping, we introduce the concept of
L-configuration of a P system. As above, we codify the information as ordered
pairs (element, membrane).

Definition 3. An L-configuration, LC, associated with a given configuration,
C, is a multiset of pairs (z,m) such that, for every object z of the alphabet and
for every membrane m, the multiplicity of z in m in the configuration C is equal
to the multiplicity of the pair (z,m) in LC.

Next we define a mapping h which helps to select a good branch in each
choice point of the computation tree associated with a P system.

Definition 4. Let Π be a P system. Let LC be an L-configuration of Π, and
z the object sent out to the environment at the end of the computation. The
heuristic function h is defined as

h(LC) = min{ d(v, (z, env)) | v ∈ LC}

where d is the distance in the dependency graph.

We finish this section with a theorem which states that the mapping h verifies
the required property.

Theorem 1. Let h∗ be a function mapping a configuration C onto the number
of steps of the shortest path in the computation tree from C to a halting con-
figuration. For each configuration C, we have h(LC) ≤ h∗(C), where LC is the
L-configuration associated with C.

Proof. The basic idea of the proof is that the transition between two adjacent
vertices in the dependency graph needs at least one evolution step of the P
system. Keeping this in mind, the proof is quite natural.

We will reason by reductio ad absurdum. Suppose that there exists a config-
uration C0 such that h∗(C0) < h(LC0) and let C∗ be a halting configuration
such that from C0 to C∗ there are h∗(C0) evolution steps. Let z be the element
sent out in the last step of the computation. Since C∗ is a halting configuration,
(z, env) belongs to the L-configuration LC∗ and

h∗(C0) < h(LC0) = min{ d(v, (z, env)) | v ∈ LC0}

In particular, for all v ∈ LC0 such that (z, env) is reachable from v, h∗(C0)
is less than the length of the shortest path from v to (z, env) in the dependency
graph. That is, the distance from any element of the L-configuration LC0 to
(z, env) is larger than the number of computation steps of the P system from
C0 to a halting configuration.

But this is impossible since, as remarked above, the transition between two
adjacent vertices in the dependency graph needs at least one computation step
of the P system. ��
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5 Example

To illustrate the definition of the heuristic function h, we consider again the
example described in Section 3. Figure 2 shows the computation tree associated
with the evolution of this P system. In the first step of the computation two new
configurations are possible. We use the function h to select one of them in order
to reach a halting configuration in the minimum number of steps.
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Fig. 2. The computation tree

The two possible configurations to proceed with are:

C1 ≡ [ [ zb ]e c]s, by applying rules 1 and 3,
C2 ≡ [ [ b ]e a]s, by applying rule 2.

The information of these configurations can be represented by their associated
L-configurations:
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LC1 = {(z, e), (b, e), (c, s)},
LC2 = {(b, e), (a, s)}.

In this example, the halting configurations are characterized by sending the
object yes to the environment; that is, a configuration is a halting one if and only
if (yes, env) is an element of its associated L-configuration. In order to decide
which branch we must follow in the computation tree, we compute h(LCi), for
i = 1, 2:

h(LC1) = min{ d(v, (yes, env)) | v ∈ LC1}
= d((z, e), (yes, env))
= 2,

h(LC2) = min{ d(v, (yes, env)) | v ∈ LC2}
= d((a, s), (yes, env))
= 1.

We have h(LC2) < h(LC1), so, according to the heuristic h, we should follow
the computation from the configuration C2 to reach a halting configuration.
Figure 2 shows the whole computation tree and it can be checked that, in the
next evolution step, a halting configuration is reached from C2 and this is the
shortest path from the initial configuration to a halting one.

If we consider the subtree dominated by the configuration C1 ≡ [ [ zb ]e c]s,
that is, if we consider C1 as initial configuration, the function h can help to
find the shortest computation. As Figure 2 shows, starting from C1 two new
configurations are possible:

C11 ≡ [ [ z ]e c2]s, by applying rule 3,
C12 ≡ [ [ b ]e ac]s, by applying rule 7.

Their associated L-configurations are:

LC11 = {(z, e), (c, s), (c, s))},
LC12 = {(b, e), (a, s), (c, s)}.

In order to decide which branch we must follow in the computation tree, we
compute h(LC1i) for i = 1, 2:

h(LC11) = min{ d(v, (yes, env)) | v ∈ LC11}
= d((z, e), (yes, env))
= 2,

h(LC12) = min{ d(v, (yes, env)) | v ∈ LC12}
= d((a, s), (yes, env))
= 1.

So, we should follow C12 to obtain the shortest computation. In fact, starting
from C12, a halting configuration is reached in the next step.
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6 Conclusions and Further Research

In this paper we have presented a first approach towards an efficient strategy for
searching in the computation tree associated with the evolution of a P system.
Our aim is to select a branch with a low computational cost, measured as the
number of steps needed to reach a halting configuration.

We propose a heuristic function h being an estimation of this computational
cost, based on the notion of dependency graph of a P system.

We have illustrated the use of this heuristic function with an example be-
longing to a special family of P systems that, in a specific sense, “behaves well”.
Nonetheless, the search plan proposed here can be generalized, in a rather natu-
ral way, to other (less restrictive) variants of P system. In particular, extending
the notion of dependency graph to P systems where the number of membranes
can vary during the evolution (e.g., P systems with active membranes) seems to
be a very promising question.

Another interesting topic is to study the transformation of configurations as
a pre-computation phase, when the system itself is built. In this framework sev-
eral important topics appear, such as the edit-distance between configurations,
normal forms, reachability, etc.
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Abstract. The main goal of this paper is to propose some geometric
approaches to the computations of non-discrete P systems. The behav-
ior of this kind of P systems is similar to that of classic systems, with
the difference that the contents of the membranes are represented by
non-discrete multisets (the multiplicities can be non-integers) and, con-
sequently, also the number of applications of a rule in a transition step
can be non-integer.

1 Introduction

Usual variants of P systems have only a finite number of options in every step
of their computations and, in consequence, an associated computation tree is
defined for them (see [5] or [6] for a formal definition of these concepts). In
this way, irrespectively whether they are non-deterministic or probabilistic P
systems [3], we obtain a discrete space (possibly infinite) of computations where
the system evolves.

Here we will work with a variant which can evolve in every step in a non-
discrete number of possibilities. For that, we will not use discrete multisets, but
an extension of them where the multiplicity of the objects can be any positive
real number.

The inspiration of this variant comes from the fact that, in vitro, we can
control neither the application of the rules nor the exact number of objects in
every membrane, but we deal with an approximate number of applications. If we
allow to work with the concentrations of the objects in the membranes instead
of the exact number of objects that are involved in the reactions, then we must
deal with a non-integer number of applications of the rules. In this way, the
multiplicity of an object will not reflect the exact number of identical copies of
it in a membrane, but its concentration in the solution (a similar idea was firstly
used in [2] in order to simulate de photosynthesis process by membrane devices).

Once we have an idea about what non-integer multiplicity can mean, and we
establish non-discrete multisets as a theoretical tool to handle this idea (Section
2), we define and formalize in Section 3 non-discrete P systems. Such systems
can contain a non-discrete multiset of objects in every membrane, and evolve by
applying a non-integer amount of times every rule (of course, always under the
assumption that there are objects enough for such an application).
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In Section 4 we define the space of extremal transitions as the set of transitions
consuming the maximal amount of objects in the usual sense of maximality (we
cannot apply more rules simultaneously), and we study some simple geometric
properties of them.

Section 5 is devoted to the study of some approximating properties on the
computations of non-discrete P systems. For that, we define some distances in
the set of multisets and transitions, and establish some bounds in the evolution
of the system.

Finally, the paper closes with some conclusions and possible future work in
the environment of non-discrete P systems.

2 Non-discrete Multisets

As it was proceeded also in [2], we can define a generalization of multisets by
using non integer multiplicities in the following way.

Definition 1. Let V be a finite alphabet. A non-discrete multiset (ND-multiset)
over V is an application, w : V → IR+. We denote by NDM(V ) the set of non-
discrete multisets over V .

In a similar way to multisets, we can define the support of an ND-multiset
(supp(w)), as well as the usual operations between them:

1. Addition: (w1 + w2)(a) = w1(a) + w2(a).
2. Subtraction: (w1 − w2)(a) = w1(a)− w2(a) (it is not an inner operation).
3. Arithmetic subtraction: (w1 � w2)(a) = max{w1(a)− w2(a), 0}.
4. External product by real numbers: (n · w)(a) = n · w(a).

and the usual relations:

1. w1 ⊆ w2 (w1 ≤ w2) ⇐⇒ ∀a ∈ V (w1(a) ≤ w2(a)) (provides a partial order
in NDM(V )).

2. w1 �= w2 ⇐⇒ ∃a ∈ V (w1(a) �= w2(a)).

Finally, 0 stands for the empty ND-multiset (∀a ∈ V (0(a) = 0)).

3 Non-discrete P Systems

Now we formalize the variant of P systems that makes use of ND-multisets. In
this variant we allow neither the use of dissolutions nor active membranes (cre-
ation, duplication, charges, etc.), but we include in it the (now) classic transition
P systems (where we can transform and move objects between adjacent mem-
branes) and the communication ones (where we only can move objects taking
into account the elements inside and immediately outside of the membrane).

In order to do that, we define the ball of a membrane as the set of membranes
adjacent with it (and itself).
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Definition 2. Let μ be a membrane structure (a directed tree). For every node
of μ, x, the ball of x in μ is the set Bμ(x) = {y ∈ μ | x → y ∨ y → x ∨ y = x}
(usually, we write B(x) instead of Bμ(x)).

In this context, a rule over a membrane structure is a pair of applications,
indicating the objects consumed and the objects created, respectively, in every
membrane. We say that a rule is associated with a membrane x, if the only
membranes affected by the application of the rule are those adjacent to x.

Definition 3. A rule over a membrane structure μ is an application r : μ →
NDM(V )×NDM(V ) (we will denote r = (r1, r2)).

We say that the rule r is associated with x ∈ μ if the following condition
holds:

∀y /∈ B(x) (r(y) = (0,0)).

Example 1.
Let us consider the membrane structure μ = [1 [2 ]2 [3 ]3 ]1, the alphabet V =
{a, b, c, d}, and the following two rules, r (transition rule) and s (communicating
rule), associated with membranes 2 and 3, respectively, written in the usual form:

r : ab→ c(d, out),
s : (ab, in; cd, out).

These rules are expressed in our system as:

r1(1) = 0, r1(2) = ab, r1(3) = 0,

r2(1) = d, r2(2) = c, r2(3) = 0,

and

s1(1) = ab, s1(2) = 0, s1(3) = cd,
s2(1) = cd, s2(2) = 0, s2(3) = ab.

(We use here the standard notation for multisets: w ∈ NDM(V ) will be repre-
sented by aw(a)bw(b)cw(c)dw(d)).

Note 1.
This representation of rules is useful not only in order to unify transition and
communicating rules, but it also allows the generalization of this kind of rules
from tree-like membrane structures to general graphs (or indeed hypergraphs,
where the set of hyperedges are not pairs, but general subsets of vertices). For
example, in a structure with 3 membranes, we can consider the following rule,
r, that is not associated with any membrane, unless we extend the concept of
membrane structure to capture more complex graphs:

r1(1) = a, r1(2) = b, r1(3) = c,
r2(1) = c, r2(2) = a, r2(3) = b.

Indeed, if dissolution is not allowed, then the relations between membranes are
determined by the rules.
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We define a non-discrete P system as a membrane structure with a set of
rules over it.

Definition 4. A non-discrete P system over an alphabet V is a pair Π = (μ,R),
where μ is a membrane structure, and R is a finite set of rules over μ.

A cell is defined by assigning an ND-multiset to every membrane of the
structure.

Definition 5. A cell for Π is an application C : μ → NDM(V ). The set of
cells for Π will be denoted by Cell(Π).

Starting from a cell, a transition is a non-discrete application of the rules in
a parallel manner. In this way, we can also see the transitions as ND-multisets
over the set of rules, where the multiplicity of every rule indicates the number
of times that the a rule is applied.

Definition 6. Let Π = (μ,R) be a non-discrete P system, and let C be a cell
for Π. A transition for C is a non-discrete multiset over R, T ∈ NDM(R),
such that for every x ∈ μ ∑

r∈R

T (r) · r1(x) ⊆ C(x).

We will denote by Tr(C) the set of transitions for C.

Now, the formalization of the application of the rules according to one selected
transition can be given.

Definition 7. Let Π be a non-discrete P system, C be a cell for Π, and T ∈
Tr(C). The cell obtained from C by the application of T is the cell C ′ = T (C),
such that for every x ∈ μ:

C ′(x) = C(x) +
∑
r∈R

T (r) · r2(x)−
∑
r∈R

T (r) · r1(x).

If we give an enumeration {x1, . . . , xj} of the nodes of μ, and an enumeration
{r1, . . . , rN} of the rules of R, then we can write a transition in the following
matricial form:

[C′
1, . . . , C

′
j ] = [C1, . . . , Cj ] + [T1, . . . , TN ] ·

⎡
⎢⎣

r1
2(x1) − r1

1(x1) . . . r1
2(xj) − r1

1(xj)
...

. . .
...

rN
2 (x1) − rN

1 (x1) . . . rN
2 (xj) − rN

1 (xj)

⎤
⎥⎦ ,

where, Ci, C
′
i, Ti stand for C(xi), C ′(xi), T (rj), respectively.

This matrix form can be briefly written as

T (C)(x) = C(x) + T · (R2 −R1)(x), ∀x ∈ μ,
and

T (C) = C + T · (R2 −R1).
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4 Extremal Transitions

The set of extremal transitions is the set of transitions consuming the maximal
amount of objects, in the following sense.

Definition 8. The set of extremal transitions for C is the set of maximal points
of Tr(C) (regarding the partial order defined in NDM(R)), that is,

ExTr(C) = {T ∈ Tr(C) :| ∀ T ′ ∈ Tr(C) (T ′ �= T → ¬(T ′ ≥ T ))}.

In other words, if we apply an extremal transition, then we cannot simulta-
neously apply further rules over the remaining objects.

As a difference with the discrete case, in the non-discrete one we obtain that
the set of transitions has good geometrical properties.

Proposition 1. Let Π be a non-discrete P system. For every cell C for Π we
obtain that its set of transitions, Tr(C), is a convex and compact set.

Proof.
Let C be a cell for Π. To see that Tr(C) is a convex set, let T, T ′ ∈ Tr(C) be
two transitions for C, and let p ∈ [0, 1]. We prove that p ·T +(1−p) ·T ′ ∈ Tr(C).
It is direct to check that, for all r ∈ R, p · T (r) + (1− p) · T (r) ∈ IR+ holds.

Let x ∈ μ. Then,∑
r∈R

(p · T (r) + (1− p) · T ′(r)) · r1(x) =

= p ·
∑
r∈R

T (r) · r1(x) + (1− p) ·
∑
r∈R

T ′(r) · r1(x) ⊆

⊆ p · C(x) + (1− p) · C(x) = C(x).

Finally, it is easy to prove that Tr(C) is compact, because it is a closed and
bounded subset of some Euclidean space IRk. ��

The previous result is not true for ExTr(C), that is, it is possible that this
set will not be convex. Of course, Extr(C) is a compact set.

Example 2.
Given the rules r : ab→ b and s : a2c→ b in a membrane, if the content of this
membrane in a configuration is a2bc, it is clear that, in the discrete case, we can
apply the rules in a maximal parallel manner in two ways: {(1, 0), (0, 1)}. But,
if we allow a non-integer number of applications of the rules, then we obtain the
following set of transitions (each of them producing different computations in
the evolution of the P system):

Ap = {(α1, α2) | α1 + 2α2 ≤ 2, α1 ≤ 1, α2 ≤ 1, α1, α2 ∈ R
+}.

In Fig. 1 the obtained sets of transitions, Tr, and extremal transitions, ExTr,
are represented.
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Extr

Tr

Fig. 1. Sets of transitions and extremal transitions

5 Geometric Aspects of Non-discrete P Systems

In this section we present some metrics in order to prove that, in case of finite
computations (but not only in these ones), we can confine ourselves to the study
of non-discrete P systems where the multiplicities and the number of applications
are rational numbers.

We can consider that all above objects (non-discrete multisets, cells, transi-
tions, sets of transitions, etc.) are subsets or applications in finite-dimensional
Euclidean spaces, so all the metrics we define here will be the usual ones.

Lemma 1. The following mappings are metrics (in the corresponding spaces):

1. dNDM(V ) : NDM(V )×NDM(V ) −→ IR+, defined by

dNDM(V )(w1, w2) = max{|w1(a)− w2(a)| | a ∈ V },

2. dC : Cell(C)× Cell(C) −→ IR+, defined by

dC(C,C ′) = max{dNDM(V )(C(x), C ′(x)) | x ∈ μ}.

We denote by dTr the restriction of dNDM(R) to Tr.

By using this metric we can define something like a continuity in the appli-
cation of the transitions. We can control the evolution of the system by taking
near transitions.

Lemma 2. Let Π be a non-discrete P system. There exist N,K > 0 (only de-
pending on Π) such that for every cell C for Π and T, T ′ ∈ Tr(C), if dTr(T, T ′) <
ε, then

dC(T (C), T ′(C)) < KN ε.
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Proof.
We take N = card(R). Because R is a finite set, there exists K > 0 such that:

∀r ∈ R ∀a ∈ V (r1(x)(a) ≤ K ∧ r2(x)(a) ≤ K).

Let x ∈ μ and a ∈ V ; we have
|T (C)(x)(a)− T ′(C)(x)(a)| = |

∑
r∈R

(T (r)− T ′(r)) · (r2(x)(a)− r1(x)(a))| ≤

≤
∑
r∈R

|T (r)− T ′(r)| · |r2(x)(a)− r1(x)(a)| < KN ε

From here we obtain dC(T (C), T ′(C)) < KN ε. ��

Moreover, we can prove something similar considering two different cells.

Lemma 3. Let Π be a non-discrete P system, C,C ′ be two cells for Π, and
T, T ′ be two transitions for C and C ′, respectively. Then

dC(T (C), T ′(C ′)) ≤ dC(C,C ′) +KN · dTr(T, T ′).

Proof.
Let x ∈ μ, and a ∈ V . We have

|T (C)(x)(a)− T ′(C ′)(x)(a)| =

= |C(x)(a) +
∑
r∈R

T (r)(r2(x)− r1(x))(a)−

−C ′(x)(a)−
∑
r∈R

T ′(r)(r2(x)− r1(x))(a)| ≤

≤ |C(x)(a)− C ′(x)(a)|+ |
∑
r∈R

(T (r)− T ′(r))(r2(x)− r1(x))(a)| ≤

≤ |C(x)(a)− C ′(x)(a)|+
∑
r∈R

|T (r)− T ′(r)| · |(r2(x)− r1(x))(a)| ≤

≤ dC(C,C ′) +KN · dTr(T, T ′) ��

We can go further and consider a metric between the sets of transitions.

Definition 9. Let Π be a non-discrete P system, C,C ′ be two cells for Π. We
define

d(Tr(C), T r(C ′)) = max{d(T, Tr(C ′)) | T ∈ Tr(C)},
where d(T, Tr(C ′)) = min{dTr(T, T ′) | T ′ ∈ Tr(C ′)}.

Proposition 2. In this context, the application Tr is continuous. That is,

∀ε > 0 ∃δ > 0 (dC(C,C ′) < δ → d(Tr(C), T r(C ′)) < ε).

Proof. This result has a very technical proof, whose main idea is to consider the
continuous dependence of the transitions on the content of the cells. ��
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The combination of the previous two results allows us to obtain a general
approximating procedure in the evolution of a non-discrete P system.

Until now, what we can do is to approximate one step (and, of course, a
finite computation) of the evolution of a non-discrete P system by another one
where the transitions verify the condition of not being “too far” form the original
ones, and obtaining a similar final cell (in content). Of course, since the set of
transitions are convex, this fact can be used in order to approximate computa-
tions by using only rational applications of rules. But, can we do the same if we
consider only extremal transitions? The answer to this question is, in general,
negative; nevertheless, if we add some (computationally usual) restrictions in
our P systems, we can give an affirmative answer.

Note 2. If we restrict:

– the rules, to be applications r : μ → NDMQ(V ) × NDMQ(V ), where
NDMQ(V ) stands for non-discrete multisets where only rational values are
considered,

– and we start from a rational cell (that is, ∀ x ∈ μ ∀ a ∈ V (C(x)(a) ∈ Q)),

then we can make approximations of extremal transitions by means of extremal
transitions where all the values are rational. That is,

∀ ε > 0 ∀ T ∈ ExTr(C) ∃ T ′ ∈ Extr(C) ∩QN (dTr(T, T ′) < ε).

Of course, the application of a rational extremal transition over a rational cell
provides a rational cell, so we can iterate this procedure along finite computations
and obtain an approximation of the computation by means of using only rational
numbers.

6 Conclusions

This work is intended as an attempt to provide a new variant of P systems where
only some approximate behaviors of the real reactions inside the cell are known.
This approach is currently used in the development of probabilistic software tools
allowing the user to work with concentrations of the reactants, not with the exact
number of each of them, trying to be nearer of the real case in laboratory.

But, also, this variant can provide new problems related with some other
topics. As an example, from the case we have studied here we can observe that
the procedure to obtain new cells by the application of the transitions have some
similarities with iterated functions, and maybe some results from this topic can
be applied here. Moreover, if we consider a probability function associated with
the space of transitions, we come into the world of iterated random functions,
where a lot of interesting results were obtained in the last years. We can also
obtain a new kind of probabilistic non-discrete P systems where the probabilistic
measure is defined over a continuous domain.
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About the relationship between these P systems and the classical ones, one
question arises: how can we simulate/approximate the functioning of these de-
vices by means of classical P systems?

Of course, of a high interest can be the study of these devices as dynamical
systems. Can they have a chaotical behavior (in the sense that two near cells
produce very different evolution, not only in content, but in the irrespective
orbits of the transitions)? If we model some parts of the cell with these P systems,
will we obtain that the life of the cell is in the edge of this chaos? The study of
complex systems and their relations with living organizations is now starting, and
maybe P systems can provide a new mathematical tool to attack and understand
this kind of problems [1].
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Abstract. We improve some results concerning the size of P systems
with gemmation of mobile membranes. We show that systems with meta-
priority relations and without (in/out) communication rules generate any
recursively enumerable language with three membranes, thus we present
an optimal result on the necessary number of membranes to obtain com-
putational completeness. In the case of gemmating P systems with only
pre-dynamical rules, we prove that four membranes are sufficient to gen-
erate any recursively enumerable language.

1 Introduction

Membrane systems, or P systems were introduced in [6] as distributed parallel
computing devices of a biochemical type. The model is inspired by the function-
ing of the living cell: it consists of a membrane structure composed of several cell-
membranes, hierarchically embedded in a membrane called the skin membrane.
The membranes delimit regions and contain objects which evolve according to
given evolution rules associated to the regions. Computations of the system are
performed by the parallel and non-deterministic evolution of the contents of the
membranes.

For a detailed introduction to the area of P systems, the interested reader is
referred to the monograph [7]. A survey and an up-to-date bibliography of the
field with an amount of additional information can be found at the web address
http://psystems.disco.unimib.it.

In this paper we consider P systems with gemmation of mobile membranes
or gemmating P systems, introduced in [3], which represent membrane systems
with a new kind of communication.

The biological background of this new model can be summarized as follows:
The cellular membranes are selectively permeable to small substances as, for
example, water and gases, but not to bigger substances as proteins. These bigger
substances are communicated among the cells by means of vesicles, encased on
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their cytosolic face by a specific protein which causes their budding from the
membrane. When the vesicle fuses with its target membrane, the carried proteins
are introduced inside it, where they can undergo different chemical reactions.
For more details see [8, 10]. This process can be modelled by so-called mobile
membranes, that is, we can consider some objects in the original membrane to
be transported by means of small membranes to a target membrane.

Gemmating P systems are with simple membrane structures, where the skin
membrane contains only elementary membranes with string objects which corre-
spond to proteins or any other structured bigger substances. These strings evolve
according to operations with biochemical motivations, namely mutation, repli-
cation and splitting. The mutation in this case corresponds to the application of
a context-free rule. Any membrane is provided with a set of classical evolution
rules, that is, rules representing the previously mentioned operations and a set
of so-called pre-dynamical rules, which are rules defining the gemmation of the
mobile membranes. There is a meta-priority relation defined between the set of
classical evolution rules and the set of pre-dynamical rules which is needed to
simulate the completion of the maturation path of an object. A pre-dynamical
rule is a particular variant of an evolution rule which also indicates the mem-
brane where the string must be communicated. After a pre-dynamical rule is
used, the modified string object is transported into the target membrane, and
from then it will evolve according to the rules of this membrane. This proce-
dure corresponds to the gemmation and the fusion of the mobile membrane. In
particular, the output of the system is due to the fusion of a mobile membrane
with the skin membrane: this process causes the release of the objects outside
the system and simulates the biological process of exocytosis.

In [2, 3] the computational power of P systems with gemmation of mobile
membranes was examined. It was shown that these systems are as powerful as
the Turing machines, in the case of extended systems (where a terminal set of
objects is distinguished) with eight membranes [2] or with nine membranes if
only pre-dynamical rules are allowed. These bounds were improved to five and
six, respectively, in [1].

We continue the study of this area and show that extended systems with
meta-priority relations but no (in/out) communication rules generate any re-
cursively enumerable language with at most three membranes. We also show
that these P systems with two membranes determine the class of context-free
languages, thus the previous result gives an optimal size bound for these vari-
ants of membrane systems to obtain computational completeness. We also prove
that gemmating P systems with only pre-dynamical rules and with four mem-
branes generate any recursively enumerable language. This latter result can also
be found in [4], obtained at the same time but independently from our one and
using another technique for proving the statement. Gemmating P systems with
only pre-dynamical rules and with two membranes determine the class of finite
languages, while having three membranes they define a language class which
properly contains the class of regular languages.
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2 Preliminaries and Definitions

We first recall the notions and the notations we use. For more on the basic
notions of formal language theory refer to [9]. Let V be an alphabet, let V ∗ be
the set of all words over V , and let V + = V ∗ − {ε}, where ε denotes the empty
word. The mirror image, or the reverse of a word x ∈ V ∗ is denoted by xR, the
set of natural numbers is denoted by N. We denote by FIN, REG, CF, and RE
the class of finite, regular, context-free, and recursively enumerable languages,
respectively. RE is the class accepted by Turing machines or generated by phrase
structure grammars.

Now we present the notion of an Extended Post Correspondence (or EPC in
short) from [5] and then define a set of context-free rewriting rules which can be
derived from any such EPC and which will be used in the proofs of the results.

Definition 1. Let Σ = {a1, . . . , an}, 1 ≤ n, be an alphabet. An Extended Post
Correspondence (an EPC) is a pair

E = ({(u1, v1), . . . , (um, vm)}, (za1 , . . . , zan
)),

where ui, vi, zaj ∈ {0, 1}∗, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The language represented by
E, denoted by L(E), is the following:

L(E) = {x1 . . . xr ∈ Σ∗ | there are i1, . . . is ∈ {1, . . . ,m}, s ≥ 1,
such that ui1 . . . uis

zx1 . . . zxr
= vi1 . . . vis

}.

It is known (see [5]) that for each recursively enumerable language L there exists
an EPC E such that L(E) = L.

Definition 2. Let E be an EPC as above, and let g, h be two mappings g, h :
{0, 1} → {A,B,C}∗ defined as g(0) = AB, h(0) = C, g(1) = A, h(1) = BC. Let
us define a set PE of rewriting rules containing the productions

S → g(ui)Sh(vRi ), 1 ≤ i ≤ m,
S → S′,
S′ → g(za)S′a, a ∈ Σ,
S′ → ε,

constructed according to the EPC E.

Let us now observe the sentential forms that these rules generate. Starting from
the symbol S, the rules of PE generate strings of the form

g(ui1 . . . uis
zx1 . . . zxr

) xr . . . x1 h((vi1 . . . vis
)R),

where if ui1 . . . uiszx1 . . . zxr = vi1 . . . vis , then x1 . . . xr ∈ L(E), as above.
Let u = ui1 . . . uis , v = vi1 . . . vis , and zw = zx1 . . . zxr , for some w =

x1 . . . xr ∈ L(E). If uzw = v, then the following properties must hold: The
string g(uzw) either starts with AB or with AA, and h(vR) either ends with BC
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or with CC. Furthermore, if g(uzw) starts with AB, then h(vR) ends with CC,
if g(uzw) starts with AA, then h(vR) ends with BC.

Based on these properties we might use the following procedure to produce
any recursively enumerable language L = L(E) for some EPC E.

Definition 3. Take an EPC E with L = L(E), and construct the rule set PE

as above. The procedure PROCE consists of the instructions as follows.
Starting with the symbol S, use the rules of PE to generate a string of the

form α = g(uzw) wR h(vR), u, zw, v as above. Execute the following instructions
on α.

1. Obtain α′ by cutting an A from the left end of α.

2. Obtain α′′ by cutting a C from the right end of α′.

3. Obtain α′′′ by cutting a B either from the left end or from the right end of
α′′.

4. If α′′′ = xr . . . x1, the reverse of w = x1 . . . xr, then w ∈ L, otherwise start
again with executing the first instruction on α′′′.

If at some point cutting the symbols from the ends of the string is not possible in
the order required by the instructions above, then we might stop the procedure
without any explicit conclusion. However, it is ensured that for each w ∈ L there
exists at least one α of the form above which leads us to the result of w ∈ L,
thus, the procedure above produces all words belonging to L(E).

Now we present the basic notions of membrane computing and then also de-
fine P systems with gemmation of mobile membranes. The interested reader may
find more detailed information on the theory of P systems in the monograph [7].

Let U be a set of of objects, called the universe. A multiset is a pair M =
(V, f), where V ⊆ U and f : U → N is a mapping which assigns to each object
from V its multiplicity, and f(a) = 0 for a /∈ V . The support of M = (V, f) is
the set supp(M) = {a ∈ V | f(a) ≥ 1}. If supp(M) is a finite set, then M is
called a finite multiset. The set of all finite multisets over the set V is denoted
by V ◦.

We say that a ∈ M = (V, f) if a ∈ supp(M), furthermore, M1 = (V1, f1) ⊆
M2 = (V2, f2) if supp(M1) ⊆ supp(M2) and for all a ∈ V1, f1(a) ≤ f2(a). The
union of two multisets is defined as (M1 ∪ M2) = (V1 ∪ V2, f ′) where for all
a ∈ V1 ∪ V2, f ′(a) = f1(a) + f2(a), the difference is defined for M2 ⊆ M1 as
(M1 − M2) = (V1, f ′′) where f ′′(a) = f1(a) − f2(a) for all a ∈ V1, and the
intersection of two multisets is (M1 ∩M2) = (V1 ∩V2, f ′′′) where for a ∈ V1 ∩V2,
f ′′′(a) = min(f1(a), f2(a)). We say thatM is empty, denoted by ε, if its support
is empty, supp(M) = ∅. When giving the elements x1, . . . , xn of a multiset M ,
we use double brackets as M = {{x1, . . . , xn}} to distinguish from the notation
used for sets.

A P system is a structure of hierarchically embedded membranes, each having
a label and enclosing a region containing a multiset of objects and possibly other
membranes. The out-most membrane is unique and it is called the skin mem-
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brane. The membrane structure is denoted by a sequence of matching paren-
theses where the matching pairs have the same label as the membranes they
represent. If x ∈ {[i, ]i | 1 ≤ i ≤ n}∗ is such a string of matching parentheses of
length 2n, denoting a structure where membrane i contains membrane j, then
x = x1 [i x2 [j x3 ]j x4 ]i x5 for some xk ∈ {[l, ]l | 1 ≤ l ≤ n, l �= i, j}∗, 1 ≤ k ≤ 5.
If membrane i contains membrane j, and there is no other membrane, k, such
that k contains j and i contains k (x2 and x4 above are strings of matching
parentheses themselves), then we say that membrane i is the parent membrane
of j, denoted by i = parent(j), and at the same time, membrane j is one of the
child membranes of i.

By the contents of a region associated to a given membrane, we mean the
multiset of objects which can be found inside the corresponding membrane but
outside of all of its child membranes. The evolution of the contents of the regions
of a P system is described by rules associated to the regions. Applying the rules
synchronously in each region, the system performs a computation by passing
from one configuration to another one.

By [2], gemmating P systems use only membrane structures of depth 2. The
skin membrane will be always labelled with the number 0, while the inner mem-
branes will be labelled with the numbers 1, . . . , n.

Gemmating P systems work with string-objects and use evolution rules which
are able to multiply the number of the strings. There are three types of rules
defined with biochemical inspiration: mutation, replication, and splitting of a
string. In this paper we use only mutation rules without in/out communication
which are context free rules of the form a → u, where a ∈ V and u ∈ V ∗, V
being the alphabet of the string objects.

With each region i = 0, 1, . . . , n we associate two distinct sets of rules:

– A set Ci of classical evolution rules, that is, a set of mutation rules of the
above form, and

– a set Di of pre-dynamical evolution rules, that is, a set of mutation rules
of the form a → u, with a ∈ V , such that given a string w1 = w′

1a (or
w1 = aw′

1) we obtain w2 = w′
1u (w2 = uw′

1, respectively), where u = u′@j

(u = @ju
′, respectively) with w′

1, u
′
1 ∈ V ∗. The letter @ is a special symbol

not in V and j ∈ {0, 1, . . . , n}, j �= i.

Pre-dynamical rules may introduce the special symbol @j only at the ends of
the string. We will always consider the set D0 as an empty set, that is no pre-
dynamical rule will ever be defined for the skin membrane. When a symbol @j

appears in some string w present in a membrane i, for j �= i, then inside the P
system two sequential and dynamical communication processes take place. We
say that a mobile membrane carries the string w from the originating membrane
i to the target membrane j.

To keep the construction closer to the functioning of real cells, we define a
meta-priority relation between the rules of set Ci and Di, for all i = 1, . . . , n,
by which all applicable classical rules in Ci must be used before any applicable
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pre-dynamical rule in Di. We remark that we do not define any priority relation
between rules in the set Ci neither between rules in the set Di.

Definition 4. An extended P system Π with gemmation of mobile membranes
of degree n+ 1, n ≥ 0, is

Π = (V, T, μ, I0, . . . , In, (C0, D0), (C1, D1), . . . , (Cn, Dn)),

where:

– V is an alphabet not containing the symbols @0,@1, . . . ,@n,

– T ⊆ V is the output (terminal) alphabet,

– μ = [0 [1 ]1 [2 ]2 . . . [n−1 ]n−1 [n ]n ]0 is a membrane structure of depth 2 and
degree n+ 1,

– Ii, 1 ≤ i ≤ n, are finite multisets over V +,

– (Ci, Di), 0 ≤ i ≤ n, are sets of classical evolution rules and sets of pre-
dynamical evolution rules, respectively. The set Ci has a meta-priority over
Di as far as the application of all of its rules is concerned. The set D0 is
empty.

An extended gemmating P system works as follows. The regions are processed
simultaneously, that is, in every step, inside each region, all the strings which
can be the subject of an evolution rule are simultaneously rewritten. The rules
to be applied can be nondeterministically chosen among all the applicable rules
in accordance with the meta-priority relation defined over the set of classical
rules and the set of pre-dynamical rules. This means that no pre-dynamical rule
d ∈ Di can be applied if there exists at least one classical rule c ∈ Ci which is
applicable. At each step of a computation a string can be rewritten by one rule
only. The strings resulting after the application of a rule can remain inside the
membrane where they are placed, or can be communicated by mobile membranes
to the regions specified by the target indications @i, 0 ≤ i ≤ n.

At any given moment, the membrane structure together with all multi-
sets of objects associated with the regions defined by the membrane structure
form the configuration of the system. However, since we do not consider split-
ting/recombination rules, the processing of each string is independent of the
other strings present in the regions. This means that instead of simultaneously
keeping track of every multiset of objects that can be found in the regions of
the system, we might consider the strings traveling through the regions of the
membrane structure independently of the contents of the region.

Definition 5. Let [ w ]i denote a string over V present in region i, 1 ≤ i ≤ n.
We say that

– [ w ]i directly derives [ w′ ]i by a classical evolution rule, denoted as [ w ]i ⇒
[ w′ ]i if w = w1aw2, w′ = w1uw2, and a→ u ∈ Ci, or
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– [ w ]i directly derives [ w′ ]j by a pre-dynamical rule, denoted as [ w ]i ⇒
[ w′ ]j if w = a1 . . . am, ak → u �∈ Ci for any k, 1 ≤ k ≤ m, and any u ∈ V ∗,
but w = w1a (or w = aw1) and w′ = w1u (w′ = uw1, respectively), for some
a→ u@j ∈ Di (a→ @ju ∈ Di, respectively).

A sequence of transitions forms a computation. A computation halts when there
is no rule which can be applied to any string in the current configuration. The
output of the P system Π (or the language of Π) is the set of strings over T
expelled from the system during a halting computation, that is, the set of strings
sent to region 0 during the computation. Non-halting computations provide no
output.

Definition 6. Let Π be an extended gemmating P system of degree n+ 1, for
n ≥ 0, as above. The language generated by Π is the set of strings

L(Π) = {w′ ∈ T ∗ | w ∈ Ii and [ w ]i ⇒∗ [ w′ ]0 during a halting
computation of Π, 1 ≤ i ≤ n},

where ⇒∗ denotes the reflexive and transitive closure of ⇒.

Let EGemPn(MPri, n(in/out)) and EGemPn(Dyn) denote the class of lan-
guages generated by extended gemmating P systems of degree n with meta-
priority but without the use of in/out communication rules, and the class of
languages generated by systems degree n with pre-dynamical rules only, respec-
tively.

3 The Size of Extended Gemmating P Systems

We first show that extended gemmating P systems with meta-priority relations
but no (in/out) communication rules generate any recursively enumerable lan-
guage with at most three membranes. Since these P systems with two membranes
determine the class of context-free languages, the obtained result gives an opti-
mal size bound for these variants of membrane systems to obtain computational
completeness.

Theorem 1. EGemP3(MPri, n(in/out)) = RE.

Proof. Our proof is based on the procedure outlined in Definition 3,. Let L ⊆
Σ∗, let E be an Extended Post Correspondence as above with LR = L(E), and
let PE be the set of rewriting rules based on the EPC E as described above.

Let Π = (V,Σ, μ, I0, I1, I2, (∅, ∅), (C1, D1), (C2, D2)) where I0 = I2 = ε, and

V = Σ ∪ {S, S′, A,B,C,C′, C ′′, C ′′′, T, T ′},
μ = [0 [1 ]1 [2 ]2 ]0,
I1 = {{S}},
C1 = PE ∪ {C → C ′, C ′′ → C ′′′, T → T},
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D1 = {A→ @2T,C
′′′ → @2},

C2 = {C ′ → C ′′, T ′ → ε, C ′′′ → C},
D2 = {B → @0, B → @1, T → @1T

′}.

This system works as follows. Starting with the start symbol S in I1, the rules
of PE and C → C ′ generate a string of the form uzwv, uz ∈ {A,B}∗, w ∈
Σ∗, v ∈ {B,C ′}∗ where if uz and v can be deleted using the instructions of the
procedure PROCE in the previous section (with cutting C ′ instead of C in step
2), then w ∈ L.

Now, using the pre-dynamical rules of D1, an A on the left end of uzwv is
changed to T , and the result is sent to region 2. Here the rules of C2 rewrite
every C ′ to C ′′. The result is sent back to region 1 by the pre-dynamical rules of
D2 and at the same time either a B is cut off the right end of the string, or the
T on the left end is changed to T ′. (If B → @0 is used, then the computation
produces no result, since the nonterminal T is still present in the string sent
out of the system.) In the first case, when T is not changed to T ′, the rules
T → T of C1 lead the computation to an infinite loop. In the second case, all
C ′′ is rewritten to C ′′′ and the result is sent back to region 2 after cutting off
a C ′′′ from the right end. Now T ′ is erased, all C ′′′ is changed to C, and the
result is sent back to region 1 by cutting off a B from the left or right end of the
string, or sent out of the system by B → @0. If the string is sent out and it is
terminal, then it is the reverse of some w ∈ LR = L(E), thus it is an element of
(LR)R = L. If it is not sent out, then the system continues in the same way by
cutting symbols off the ends of the string as long as it either enters an infinite
loop, or sends out a non-terminal string, or produces a result by sending out a
terminal word.

These steps execute instructions of the procedure PROCE described in the
previous section, so our statement is proved. �

In order to demonstrate that the above result is optimal, we note that

EGemP2(MPri, n(in/out)) = CF.

Certainly, in this case, the only membrane which is able to modify the string
is membrane 1. Furthermore, a word can be sent out to membrane 0 only if
no mutation (context-free) rule of membrane 1 can be applied to it. Then, it
is easy to see that for any context-free grammar G = (N,T, P, S), where N is
the set of nonterminals, T is the set of terminals, P is the set of productions,
and S is the start symbol, the language L(G) of G can be generated by the
extended gemmating P system Π, with meta-priority relations but no (in/out)
communication rules and with two membranes, where membrane 1 is defined by
I1 = {S}, C1 = P, and D1 = {a → @0 | a ∈ T}. If the empty word is in L(G),
then we add the rule S → @0 to D1. The fact, that no more than a context-free
language can be obtained by these systems is obvious.

Now we prove that gemmating P systems with only pre-dynamical rules and
with four membranes generate any recursively enumerable language. These vari-
ants of P systems with two membranes determine the class of finite languages,
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while having three membranes they define a language class which properly con-
tains the class of regular languages.

Theorem 2. EGemP4(Dyn) = RE.

Proof. Let L ⊆ Σ∗ where Σ = {a1, . . . , an}, let E be an Extended Post Corre-
spondence as above with LR = L(E), and let PE be the set of rewriting rules
based on the EPC E as described above. Let the rules of PE be denoted as

PE = {S → αiSβi, S → S′, S′ → γjS′aj , S
′ → ε | 1 ≤ i ≤ m, 1 ≤ j ≤ n},

where αi = g(ui), βi = h(vRi ), γj = g(zaj
) for some pair (ui, vi), 1 ≤ i ≤ m,

and zaj
, aj ∈ Σ, 1 ≤ j ≤ n, of the EPC E with mappings g, h as above.

Let Π = (V,Σ, μ, I0, I1, I2, I3, D0, D1, D2, D3), where I0 = I2 = I3 = ε,
D0 = ∅, and

V = Σ ∪ {S1, S2, S
′
1, S

′
2, S̄1, X, X̄, A,B,C, $},

μ = [0 [1 ]1 [2 ]2 [3 ]3 ]0,
I1 = {{S1γiaiS2 | 1 ≤ i ≤ n}}
∪ I ′1 where I ′1 = {{$}} if ε ∈ L, otherwise I ′1 = ε,

D1 = {S′
1 → @2S̄1X

2iS′
1αi, S

′
2 → βiS

′
2X̄

2i@3, S1 → @2S
′
1,

S1 → @2S̄1X
2m+2jS1γj , S2 → ajS2X̄

2m+2j@3,

S′
1 → @2S̄1, S

′
2 → @2, B → @2, B → @0, S

′
2 → @0

$→ @0 | 1 ≤ i ≤ m, 1 ≤ j ≤ n},
D2 = {S̄1 → @1, S2 → S′

2@3, X̄ → @3, A→ @3},
D3 = {X → @2, S1 → @1S1, S

′
1 → @1S

′
1, C → @1}.

This system works by executing the procedure PROCE described in the previous
section. First, a string of the form uzwv, uz ∈ {A,B}∗, w ∈ Σ+, v ∈ {B,C}∗
is created where if uz and v can be deleted using the instructions of PROCE ,
then w ∈ L. The empty word is treated separately, if ε ∈ L, then it is generated
by the rule $→ @0.

The work of the system starts in region 1 with words of the form S1γiaiS2, 1 ≤
i ≤ n. Let S1γaS2 denote one of these strings and let us follow its possible route
through the regions of Π. If the rule for S2 is applied first, then there is no
terminal word produced from this string, since

[ S1γaS2 ]1 ⇒ [ S1γaaiS2X̄
2m+2i ]3 ⇒ [ S1γaaiS2X̄

2m+2i ]1 ⇒

1. [ S̄1X
2m+2jS1γjγaaiS2X̄

2m+2i ]2 ⇒

(a) [ X2m+2jS1γjγaaiS2X̄
2m+2i ]1

(b) [ S̄1X
2m+2jS1γjγaaiS2X̄

2m+2i−1 ]3

2. [ S′
1γaaiS2X̄

2m+2i ]2 ⇒ [ S′
1γaaiS2X̄

2m+2i−1 ]3 ⇒
[ S′

1γaaiS2X̄
2m+2i−1 ]1 ⇒ [ S̄1xγaaiS2X̄

2m+2i−1 ]2 ⇒
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(a) [ xγaaiS2X̄
2m+2i−1 ]1

(b) [ S̄1xγaaiS2X̄
2m+2i−2 ]3 where x = ε or x = X2jS′

1αj ,

thus, one of the rules for S1 has to be applied. (Note that γ either starts with
an A or γ = ε, so no rule can be applied to the string of point 2.(a) in region 1.
even if x = ε.) Let us assume first that the rule S1 → @2S̄1X

2m+2iS1γi is used.

[ S1γaS2 ]1 ⇒ [ S̄1X
2m+2iS1γiγaS2 ]2 ⇒

1. [ S̄1X
2m+2iS1γiγaS

′
2 ]3

2. [ X2m+2iS1γiγaS2 ]1 ⇒ [ X2m+2iS1γiγaajS2X̄
2m+2j ]3 ⇒

[ X2m+2i−1S1γiγaajS2X̄
2m+2j ]2 ⇒

[ X2m+2i−1S1γiγaajS2X̄
2m+2j−1 ]3 ⇒ . . .⇒

(a) [ X2i−2jS1γiγaajS2 ]3 ⇒ [ X2i−2j−1S1γiγaajS2 ]2 ⇒
[ X2i−2j−1S1γiγaajS

′
2 ]3 ⇒ [ X2i−2j−2S1γiγaajS

′
2 ]2

(b) [ S1γiγaajS2X̄
2j−2i ]3 ⇒ [ S1γiγaajS2X̄

2j−2i ]1 ⇒

i. [ S̄1X
2m+2kS1γkγiγaajS2X̄

2j−2i ]2 ⇒

A. [ X2m+2kS1γkγiγaajS2X̄
2j−2i ]1

B. [ S̄1X
2m+2kS1γkγiγaajS2X̄

2j−2i−1 ]3

ii. [ S′
1γiγaajS2X̄

2j−2i ]2 ⇒ [ S′
1γiγaajS2X̄

2j−2i−1 ]3 ⇒
[ S′

1γiγaajS2X̄
2j−2i−1 ]1 ⇒ [ S̄1xγiγaajS2X̄

2j−2i−1 ]2 ⇒

A. [ xγiγaajS2X̄
2j−2i−1 ]1

B. [ S̄1xγiγaajS2X̄
2j−2i−2 ]3 where x = ε or x = X2kS′

1αk,

(c) [ S1γiγaajS2 ]3 ⇒ [ S1γiγaajS2 ]1 (if i = j)

The system cannot produce any terminal word from the strings of the above cases
except case 2.(c) where we have a word of the form S1γiγjajaiS2 for S′ → γiS′ai
and S′ → γjS′aj , rules of PE associated to the EPC E, 1 ≤ i, j ≤ n, ai, aj ∈
Σ. The system may continue by appending corresponding strings and terminal
symbols to the left and right ends of the sentential form in the same way as
above, producing strings of the form S1γi1 . . . γij

aij
. . . ai1S2, or it may choose

to apply the rule S1 → @2S
′
1, in which case we get

[ S1γwS2 ]1 ⇒ [ S′
1γwS2 ]2 ⇒ [ S′

1γwS
′
2 ]3 ⇒ [ S′

1γwS
′
2 ]1

where γ ∈ {A,B}∗, w ∈ Σ+.
We obtain a word of the same form if at the beginning of the work of the

system, the rule S1 → @2S
′
1 is applied on an initial sentential form S1γiaiS2 in

region 1 as

[ S1γiaiS2 ]1 ⇒ [ S′
1γiaiS2 ]2 ⇒ [ S′

1γiaiS
′
2 ]3 ⇒ [ S′

1γiaiS
′
2 ]1,

so we may continue by assuming that we have a string of the form S′
1γwS

′
2 with

γ,w as above in region 1.
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If one of the rules for S′
2 are applied, then the derivation stops without

producing a terminal word as

[ S′
1γwS

′
2 ]1 ⇒ [ S′

1γw ]2, or [ S′
1γwS

′
2 ]1 ⇒ [ S′

1γw ]0,

or as

[ S′
1γwS

′
2 ]1 ⇒ [ S′

1γwβiS
′
2X̄

2i ]3 ⇒ [ S′
1γwβiS

′
2X̄

2i ]1 ⇒ [ S̄1xγwβiS
′
2X̄

2i ]2 ⇒

1. [ xγwβiS
′
2X̄

2i ]1

2. [ S̄1xγwβiS
′
2X̄

2i−1 ]3 where x = ε, or x = X2jS′
1αj ,

thus, one of the rules for S′
1 has to be applied. (Note that either the first symbol

of γ is an A, or γ is empty, so even if x = ε, no rule can be applied to the
sentential form of point 1. in region 1.)

If the rule S′
1 → @2S̄1 is used we have the following possibilities.

[ S′
1γwS

′
2 ]1 ⇒ [ S̄1γwS

′
2 ]2 ⇒ [ γwS′

2 ]1 ⇒

1. [ γwβiS
′
2X̄

2i ]3

2. [ γw ]2 ⇒ [ γ′w ]3 where γ = Aγ′

3. [ γw ]0, so if γ = ε, then w ∈ L.

The strings of cases 1. and 2. cannot produce any terminal words, in case 3.,
if γ = ε, then w, the corresponding terminal word is correctly output by the
system.

If the rule S′
1 → @2S̄1X

2iS′
1αi is applied, we have

[ S′
1γwS

′
2 ]1 ⇒ [ S̄1X

2iS′
1αiγwS

′
2 ]2 ⇒ [ X2iS′

1αiγwS
′
2 ]1 ⇒

1. [ X2iS′
1αiγw ]0

2. [ X2iS′
1αiγw ]2

3. [ X2iS′
1αiγwβjS

′
2X̄

2j ]3 ⇒ [ X2i−1S′
1αiγwβjS

′
2X̄

2j ]2 ⇒
[ X2i−1S′

1αiγwβjS
′
2X̄

2j−1 ]3 ⇒ . . .⇒

(a) [ X2i−2jS′
1αiγwβjS

′
2 ]3 ⇒ [ X2i−2j−1S′

1αiγwβjS
′
2 ]2

(b) [ S′
1αiγwβjS

′
2X̄

2j−2i ]3 ⇒ [ S′
1αiγwβjS

′
2X̄

2j−2i ]1 ⇒
[ S̄1xαiγwβjS

′
2X̄

2j−2i ]2 ⇒

i. [ xαiγwβjS
′
2X̄

2j−2i ]1

ii. [ S̄1xαiγwβjS
′
2X̄

2j−2i−1 ]3 where x = ε, or x = X2kS′
1αk

(c) [ S′
1αiγwβjS

′
2 ]3 ⇒ [ S′

1αiγwβjS
′
2 ]1 (if i = j)

(Note that either the first symbol of αiγ is an A, or αiγ is empty, so even if x = ε,
no rule can be applied to the sentential form of point 3.(b)i. in region 1.) Thus,
the system produced a string of the form S′

1αiγwβiS
′
2 for some rule S → αiSβi,

1 ≤ i ≤ m, of PE associated to E. It may continue to add corresponding string
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pairs to the two ends of the string as above producing a string of the form
S′

1αγwβS
′
2, α, γ ∈ {A,B}∗, β ∈ {B,C}∗, w ∈ Σ+, or it may choose to apply

the rule S′
1 → @2S̄1.

[ S′
1αγwβS

′
2 ]1 ⇒ [ S̄1αγwβS

′
2 ]2 ⇒ [ αγwβS′

2 ]1 ⇒

1. [ αγwββiS
′
2X̄

2i ]3

2. [ αγwβ ]0

3. [ αγwβ ]2

No terminal string is produced in case 1. In case 2., if αγ = β = ε, then w is cor-
rectly output by the system. In case 3., the execution of the erasing instructions
of PROCE may start. First an A is erased in region 2 and the string is sent to
region 3, where a C is erased. These must have been on the left and right ends
of the string, respectively. Now a B is erased in region 1 from one of the two
ends of the string and it is either sent out of the system or the erasing process
might continue in region 2.

From these considerations we see that Π correctly simulates PROCE , thus
our statement is proved. �

Before closing the section, we add some remarks about the question of the opti-
mality of the above result. We can immediately see that gemmating P systems
with only pre-dynamical rules and two membranes determine the class of finite
languages, thus

EGemP2(Dyn) = FIN.

Certainly, any finite language L = {w1, . . . , wn}, where wi ∈ T ∗, for some al-
phabet T and 1 ≤ i ≤ n, can be obtained with a system where I1 = {S} and
D1 = {S → wi@0 | 1 ≤ i ≤ n}. The fact that membrane 1 is able to send out
only a finite number of words is obvious.

Moreover,
REG ⊂ EGemP3(Dyn).

In this case, only membrane 1 and membrane 2 are able to modify the strings they
have, by appending words to its left-end and/or to its right-end. The language
of the system is determined by the interplay of these two membranes. Now,
suppose thatG = (N,T, P, S), is a regular grammar with productions of the form
A → aB and A → a, where A,B are nonterminals and a is a terminal symbol.
Then, the gemmating P system with I1 = {S}, I2 = ∅, D1 = {A → A′@2},
and D2 = {A′ → aB@1 | A → aB ∈ P} ∪ {A′ → a@0} determines L(G),
the language of G. For the gemmating P system with I1 = {AB}, I2 = ∅,
D1 = {B → bB@2, B → b@2}, and D2 = {A → @1Aa,A → a@0}, we obtain
the language L = {anbn | n ≥ 1}, which is a linear non-regular language. It is an
open question how large computational power can be obtained with gemmating
P systems with only pre-dynamical rules and three membranes.
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4 Conclusion

In this paper we showed that extended gemmating P systems with even a min-
imal configuration, with three membranes, are as powerful as Turing machines.
Since these constructions with 2 membranes can determine only the context-free
language class, the obtained result is optimal. The result is interesting, since the
size of the distributed architectures in molecular computing usually represents
a separator between the class of regular languages and the class of recursively
enumerable languages. In addition to this statement, we also proved that gem-
mating P systems with only pre-dynamical rules and with four membranes are
computationally complete tools as well. These constructs with two membranes
determine the class of finite languages, and with three membranes they are more
powerful than the regular grammars.
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2. D. Besozzi, G. Mauri, Gh. Păun, C. Zandron. Gemmating P systems: collapsing
hierarchies. Theoretical Computer Science, 296 (2):253–267, 2003.

3. D. Besozzi, C. Zandron, G. Mauri, N. Sabadini. P systems with gemmation of mo-
bile membranes. In: A. Restivo, S. Ronchi Della Rocca, L. Roversi (eds.), Proceed-
ings of the 7th Italian Conference of Theoretical Computer Science 2001, volume
2202 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2001, 136–153.
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Abstract. We consider P systems with active membranes, but without
polarizations, yet with using membrane division and membrane gener-
ation, but as the result of a halting computation we do not take the
terminal string generated in a designated output membrane, instead we
consider the resulting tree representing the membrane structure of the
final configuration as its result. We show that each recursively enumer-
able tree language can be obtained in that way generated by P systems
with active membranes working on strings.

1 Introduction

In [11] membrane systems (then called P systems) were introduced as bio-
inspired computing devices that work in a parallel and distributed way (see
[13] for a comprehensive overview and [9] for actual developments in the area).

One main feature of membrane systems (P systems) is their membrane struc-
ture. So far, P systems have usually been considered as devices for generating
or accepting multisets of symbol objects or string objects to be found in a des-
ignated output membrane in the final configuration of a halting configuration.
In this paper we now consider the membrane structure itself as the result of
a successful computation, i.e., we obtain a set of trees being computed as the
membrane structures in the final configurations of halting computations.

P systems with active membranes were introduced (e.g., see [13]; for variants
solving NP complete problems, e.g., see [7], [10], [14]) with rules for

(a) rewriting multisets;
(b) introducing objects into membranes;
(c) sending objects out of membranes;
(d) dissolving membranes;
(e) dividing elementary membranes;
(f) dividing non-elementary membranes.

All these rules were associated with membranes not only having a specific
label, but also having assigned an electrical charge (also called polarization),

G. Mauri et al. (Eds.): WMC5 2004, LNCS 3365, pp. 309–319, 2005.
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which could be +, 0, and −. The rules of the forms (b) and (c) involving mem-
branes could change the polarization(s) of the involved membrane(s), but never
changed the label(s) of the membranes.

For generating tree languages, in this paper we use a special variant of P
systems with active membranes with rules especially including division of ele-
mentary membranes, but without changing polarizations, which in fact means
that we simply may forget the polarizations of membranes; moreover, we also
use membrane generation rules as introduced in [4]. In contrast to the original
model, where P systems with active membranes were working on symbol objects,
in this paper (as in [4]) we consider P systems with active membranes working
on string objects.

The rest of the paper is organized as follows: In the following section, we
first recall some basic definitions from the theory of formal languages, give the
definitions of deterministic register machines and then recall the most important
results concerning the (universal) computational power of these devices. In the
third section, we specify P systems with active membranes working on string ob-
jects; as we shall show as the main result of this paper, the model of P systems
we chose to use allows us to generate each recursively enumerable tree language
by interpreting the membrane structure of final configurations in halting com-
putations as tree objects. A short summary and an outlook to future research
conclude the paper.

2 Preliminaries

Before proceeding to a formal description of P systems, we first fix some basic
notations in this section. For more notions as well as basic results from the theory
of formal languages, the reader is referred to [1], [6], and [15].

For an alphabet V , by V ∗ we denote the free monoid generated by V under
the operation of concatenation; the empty string is denoted by λ, and V ∗−{λ} is
denoted by V +. Any subset of V + is called a λ-free (string) language. Moreover,
by N we denote the set of positive integers (or natural numbers). The family of
λ-free recursively enumerable languages is denoted by RE, the family of sets of
λ-free recursively enumerable languages over a one-letter alphabet by NRE (in
fact, this family corresponds to the set of recursively enumerable sets of natural
numbers PsRE, the family of Parikh sets of the languages in NRE).

A (string) grammar is a quadruple G = (VN , VT , P,A), where VN and VT

are finite sets of nonterminal and terminal symbols, and VN ∩ VT = ∅, P is a
finite set of productions α → β with α ∈ V +and β ∈ V ∗, where V = V + ∪ V ∗,
and A ∈ VN is the axiom. For x, y ∈ V ∗ we say that y is directly derivable
from x in G, denoted by x ⇒G y, if and only if for some α → β in P and
u, v ∈ V ∗ we get x = uαv and y = uβv. Denoting the reflexive and transitive
closure of the derivation relation ⇒G by ⇒∗

G, the language generated by G is
L(G) = {w ∈ V ∗

T | A ⇒∗
G w}. A production α → β is called context-free if

α ∈ VN . If G contains only context-free rules it is called a context-free grammar.
A context-free grammar is said to be in Chomsky normal form, if it contains
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only rules of the form A → BC and A → a where A,B,C ∈ VN and a ∈ VT

(a context-free grammar in Chomsky normal form usually is also assumed to be
reduced, which means that every non-terminal symbol A ∈ VN can be reached
from the start symbol S, i.e., S ⇒∗

G uAv for some u, v ∈ (VN ∪ VT )∗
, and that

from every non-terminal symbol A ∈ VN we can derive a terminal word, i.e.,
A⇒∗

G w for some w ∈ V ∗
T ).

A deterministic register machine is a construct M = (n,R, l0, lh), where n is
the number of registers, R is a finite set of instructions injectively labelled with
elements from a given set lab(M), l0 is the initial/start label, and lh is the final
label.

The instructions are of the following forms:

– l1 : (add(r), l2)
Add 1 to the contents of register r and proceed to the instruction (labelled
with) l2. (We say that we have an ADD instruction.)

– l1 : (sub(r), l2, l3)
If register r is not empty, then subtract 1 from its contents and go to in-
struction l2, otherwise proceed to instruction l3. (We say that we have a
SUB instruction.)

– lh : halt
Stop the machine. The final label lh is only assigned to this instruction.

A register machine M is said to accept a natural number n if and only if,
starting with the instruction with label l0 and with register one containing the
number n and all other registers containing the number 0, the machine stops (it
reaches the instruction lh : halt) with all registers containing the number 0.

The register machines are known to be computationally universal, equal in
power to deterministic Turing machines (e.g., see [8]): they accept exactly the
sets of natural numbers which can be accepted by Turing machines, that is,
the family PsRE. Even more specifically, register machines can accept string
languages L ⊆ T ∗ accepted by Turing machines (i.e., the family RE) in the
following way: For each w ∈ T ∗ the register machine accepts the number 2gz+1(w)

if and only if the string w is accepted by the Turing machine, where gz+1 (w) is
the numerical z-ary encoding of w at base z+ 1, z being the number of symbols
in T (e.g., see [2], [3], [5]).

Without loss of generality, in the proofs of the following section we will as-
sume that in each SUB instruction l1 : (sub(r), l2, l3) the labels l1, l2, l3 are
mutually distinct: For instance, to achieve this goal, we replace each SUB in-
struction l1 : (sub(r), l2, l3) by the instruction l1 : (sub(r), l′2, l

′′
3 ) and add the

instructions l′2 : (add(n + 1), l′′′2 ), l′′′2 : (sub(n + 1), l2, l′2), l
′′
3 : (add(n + 1), liv3 ),

liv3 : (sub(n+1), l3, l′′3 ), where n+1 is a new register (this can be the same for all
SUB instructions we start from), and all primed labels are distinct and different
from the initial labels.
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3 P Systems with Active Membranes and String Objects
as Tree Generating Devices

A P system with active membranes and string objects (for sake of simplicity, we
often will refer to such a device as a P system in the following) is a construct

Π = (V, T,H, μ,w1, . . . , wm, R),

where: m ≥ 1; V is an alphabet (the total alphabet of the system); T ⊆ V (the
terminal alphabet); H is a finite set of labels for membranes (in the following we
will always label the skin membrane by 0); μ is a membrane structure, consist-
ing of m membranes (represented by matching pairs of brackets), labelled with
elements of H; w1, . . . , wm are finite multisets of words over V (describing the
initial objects in the membranes placed in the m regions of μ); R is a finite set
of rules, of the following forms:

(sa) [A]h −→ [v]h′ , where A ∈ V, v ∈ V ∗, h, h′ ∈ H (a letter A is rewritten into
v in a membrane labelled with h thereby changing its label to h′);

(sb) A[ ]h −→ [v]h′ , where A ∈ V, v ∈ V ∗, h, h′ ∈ H (a letter A is rewritten
into v and then the resulting word is sent into a membrane labelled with h
thereby changing its label to h′),

(sc) [A]h → v[ ]h′ , where A ∈ V, v ∈ V ∗, h, h′ ∈ H (an object A is rewritten into
v and then the resulting string is sent out of the membrane labelled with h
thereby changing its label to h′),

(sd) [A]h → v, where A ∈ V, v ∈ V ∗, h ∈ H (an object A is rewritten into v at
the same time dissolving the surrounding membrane labelled with h),

(se) [A]h → [v]h′ [v′]h′′ , where A ∈ V, v, v′ ∈ V ∗, h, h′, h′′ ∈ H
(2-division rule for elementary membranes; in reaction with an object, the
membrane is divided into two membranes with, possibly, different labels;
the word containing the letter A specified in the rule is replaced in the
corresponding words in the two new membranes by possibly new substrings
v, v′; at the same time, all the objects except for the word containing the
letter A that started the membrane division are duplicated into the two new
membranes),

(sg) [A]h −→ [[v]h′′ ]h′ , where A ∈ V, v ∈ V ∗, h, h′, h′′ ∈ H (a letter A in a
membrane labelled with h, by changing its label to h′, is rewritten into v
and then the resulting word is sent into a newly generated inner membrane
labelled with h′′).

We refer to [12], [13], and [14] for a more precise definition of the way orig-
inally P systems with active membranes were supposed to work; here we only
informally describe the way of passing from one configuration of the system to
the next one. The difference between the original model and our proposed model
mainly lies in the fact that we work on strings rather than with symbols (there-
fore, the types of rules carry the additional marking s); moreover, in describing
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the membrane structure as well as the rules we only label the right-hand brackets
of the matching pairs.

The rules are applied in a maximally parallel manner, yet with the following
restrictions: The rules are applied “from bottom up”, in one step, starting with
the rules of the innermost region and, then, going up level by level until the
region of the skin membrane is reached. In each region, all strings which can
evolve using a rule of the forms (sa), (sb), (sc), (sg) can and have to evolve if
they do not change the label of the surrounding/involved membrane, yet (at
most) only one string (afterwards!) may take a rule changing the label of the
surrounding/involved membrane or dissolve it or divide it, i.e., rules of type (sa),
(sb), (sc), (sg) can be used in parallel as long as they do not change the label of
the membrane they affect. At most one rule of type (se) can be applied to one
selected string after the evolution of all other strings in the membrane region
not changing the membrane label or dissolving the membrane; if a membrane
with label h is divided by a rule of type (se), which involves a word containing
letter A, then all other words in membrane h are copied into each of the resulting
membranes.

The rules associated with a membrane labelled with h are used for all copies
of this membrane; it does not matter whether the membrane is an initial one
or it was obtained by membrane division or membrane generation. The skin
membrane can never divide (nor dissolve). By (sx0) , x ∈ {a, b, c, d, e, g} , we
denote the types of rules corresponding to (sx) , if the rules do not change the
labels of the involved membranes (i.e., in any case we have h = h′).

In this paper, as the result of a halting computation (no rule can be used
in the last configuration) we consider the tree represented by the membrane
structure of the final configuration: the skin membrane represents the root of
the tree and is always labelled by 0 (remember that the skin membrane cannot
be divided); if a membrane labelled by i is enclosed by a membrane labelled by
j, in the tree the edge from the corresponding node representing this membrane
labelled by j to the corresponding node representing this membrane labelled by
i gets the label i. In what concerns the labels of nodes, we might consider several
variants: First, we could neglect the contents of the membrane regions and thus
consider trees without node labels. Yet in the following, we shall consider trees
having labels at the nodes, too; hence, in the final configuration the contents of
each membrane region has to be a singleton a ∈ T which then is taken as the
label of the corresponding node representing this membrane (if this condition is
not fulfilled, this final configuration does not contribute to the tree language).

By L(Π) we denote the tree language generated as described above by a P
system Π. If a computation goes forever, then it does not contribute to the set
L(Π).

Now let D be a non-empty subset of {sx, sx0 | x ∈ {a, b, c, d, e, g}} . Then, by
LPT (D) we denote the family of tree languages generated by P systems with
active membranes and string objects as defined above using only rules of types
from D.
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Example 1. Consider a context-free grammar in Chomsky normal form G =
(VN , VT , P,A). Then we construct a P system

Π = (VN ∪ VT , VT , H, [ ]0 , S,R)

with the following rules in R :

– [S]0 → [a]0
for S → a ∈ P, a ∈ VT ;

– [S]0 → [[S′]1]0 , [S
′]1 → [B]1 [C]2

for S → BC ∈ P, B,C ∈ VN ;
– [A]h → [[A′]1]h , [A

′]1 → [B]1 [C]2
for h ∈ {1, 2} , A→ BC ∈ P, A,B,C ∈ VN ;

– [A]h → [a]h
for h ∈ {1, 2} , A→ a ∈ P, A ∈ VN , a ∈ VT .

As we can assume G to be reduced, termination of a computation in Π
already means that we obtain the resulting membrane structure in the final
configuration as our terminal tree result. Obviously, the trees we obtain are the
derivation trees of G.

Now let TRE denote the family of recursively enumerable tree languages over
finite alphabets of labels for nodes and edges. Then, as the main result of this
paper, we can show the following theorem:

Theorem 1. Each recursively enumerable tree language over finite alphabets of
labels for nodes and edges can be generated by a P system, more specifically,

LPT ({sb0, sc0, sd0, se0, sg0}) = TRE.

Proof (Sketch). We only sketch the proof for the inclusion

LPT ({sb0, sc0, sd0, se0, sg0}) ⊇ TRE,

i.e., given a tree language Lt (over the alphabet T for the labels of the nodes and
the alphabet {j | 1 ≤ j ≤ k} for the labels of the edges) we describe the main
ingredients of a P system

Π = (V, T,H, [ ]0 , X0, R)

such that Lt = L (Π) . Let N denote the set of non-terminal symbols in Π,
i.e., N = V − T. The skin membrane is always labelled by 0, hence H ⊇
{j | 0 ≤ j ≤ k} . The additional labels as well as non-terminal symbols will be-
come obvious from the description of the rules in R given below.

The main idea of the proof now is to generate the membrane structure cor-
responding to an arbitrary tree over T and {j | 1 ≤ j ≤ k} and in parallel to
encode the tree in a single word just by encoding the corresponding rules taken
in the P system for the generation of the membrane (=tree) structure, which can
be done in the following way: For each rule in Π relevant for the generation of
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the membrane structure we take a specific symbol (only finitely many symbols
are needed as we shall see later in the construction given below); now let all
these symbols form the set E with cardinality z, then each element from E can
be identified by a number between 1 and z. Hence, we can encode a sequence of
these rules not only by a word w, but also by the number gz+1 (w) at base z+1,
i.e., applying the next rule can be codified by multiplying the current number
by z + 1 and then adding the value for the applied rule.

For the given tree language Lt, by definition, there exists a deterministic
Turing machineMT (Lt) accepting the code c (s) of a tree s if and only if s ∈ Lt.
Obviously, from this Turing machine MT (Lt) one can construct a Turing ma-
chine M ′

T (Lt) which accepts the code w (which may be different from c (s)) of a
tree s as described above representing the generation of the membrane structure
corresponding to s if and only if s ∈ Lt. As already mentioned in the preceding
section, for the Turing machineM ′

T (Lt) there exists a register machine MR (Lt)
that for each w accepts the number 2gz+1(w) if and only if the string w is accepted
by the Turing machine M ′

T (Lt). Here and in the register machine programs de-
scribed below we take advantage of the constructions elaborated, e.g., in [2], [3],
[5], and therefore omit the annoying details of these constructions; in contrast,
we only show how (sequences of) ADD instructions and SUB instructions of a
register machine can be simulated in the P system Π.

We now start the description of the rules needed in the generation phase:

– [X0]0 →
[
[X ′

0]Ca

]
0

for a ∈ T ;

[X ′
0]Ca

→ [X ′′
0 ]Ca

[
XAE

gz+1(a)
1

]
C

for a ∈ T ;

E1 is the symbol used for representing the contents of register one of the
register machine MR (Lt) , i.e., the number of symbols E1 in the current
string corresponds with the value stored in register one in that moment
of the simulation; XAE

gz+1(a)
1 now starts the acceptance check for a tree

consisting only of the root labelled with a (the acceptance phase will be
described in more detail below).

– [X ′′
0 ]Ca

→ a for a ∈ T ;
this rule as desired yields the label a for the root represented by the skin
membrane labelled by 0.

– [X ′
0]Ca

→ [X ′′
0 ]Ca

[
XGE

gz+1(a)
1

]
h

for a ∈ T, 1 ≤ h ≤ k;
[XG]h → [aD]h [〈X ′

G, h, a, h
′〉]h′ for a ∈ T, 1 ≤ h ≤ k, 2 ≤ h′ ≤ k+1, h < h′;

At a specific level of the tree, the children of a node are generated by the
rules given above in an ordered manner (according to the number assigned
to the edges).
〈X ′

G, h, a, h
′〉 stands for a “subroutine” which simply multiplies the current

number of symbols E1 by z + 1 and adds the number that encodes the
generation of a new membrane labelled by h′ from the membrane labelled
by h (which now will get the node label a); it ends up with the control
symbol XG; in fact, as already mentioned above, this is a simple register
machine program we are not going to describe in more detail, as we will



316 R. Freund, M. Oswald, and A. Păun

show later how (sequences of) ADD instructions and SUB instructions of a
register machine can be simulated.

– [XG]k+1 → X̃A;
at some point we may end the generation phase and go to start the ac-
ceptance check; for this purpose we move the single word containing all
information and now carrying the control symbol X̃A to the skin membrane
by using the following rules:

–
[
X̃A

]
h
→ X̃A [ ]h for 1 ≤ h ≤ k;[

X̃A

]
0
→ [[XA]C ]0 ;

with XA we now start the checking phase which first from n symbols E1
computes 2n symbols E1 (which again is a simple register machine program)
and then simulates the actions of the Turing machineM ′

T (Lt) by simulating
the register machineMR (Lt) . This procedure will end up with the final con-
trol symbol Xhalt (corresponding to the final label of the register machine)
if and only if the generated membrane structure corresponds with a tree in
Lt; in the positive case, we halt after having applied the rule

– [Xhalt]C → λ,
otherwise we end up in an infinite loop.

– [XG]k+1 → X̃G;
the control symbol X̃G allows us to move the string containing all neces-
sary information to other membranes already generated and to produce new
membranes in them.

–
[
X̃G

]
h
→
〈
X̃G, h, out

〉
[ ]h ,

X̃G [ ]h →
[〈
X̃G, h, in

〉]
h

for 1 ≤ h ≤ k;

the “subroutines”
〈
X̃G, h, out

〉
and
〈
X̃G, h, in

〉
, respectively, multiply the

current number of symbols E1 by z+1 and add the number that encode these
movements (of the string carrying all information encoded in the number of
symbols E1) out of/ into a membrane labelled by h; they both end up with
the control symbol X̃G again.
The control symbol XG can only be regained to generate new children:

– X̃G [ ]h →
[
X̃ ′

G

]
h

for 1 ≤ h ≤ k;[
X̃ ′

G

]
h
→
[[〈
X̃ ′

G, h, h
′
〉]

h′

]
h

for 1 ≤ h, h′ ≤ k;

the “subroutine”
〈
X̃ ′

G, h, h
′
〉

multiplies the current number of symbols E1

by z+1 and adds the number that encodes this movement into a membrane
labelled by h and the generation of a new membrane labelled with h′ inside;
it ends up with the control symbol XG, which then allows for the generation
of other children by using the rules
[XG]h → [aD]h [〈X ′

G, h, a, h
′〉]h′ for a ∈ T, 1 ≤ h ≤ k, 2 ≤ h′ ≤ k+1, h < h′,

already listed above. In contrast to the first use of these rules for the children
of the root, the string with aD now also contains a lot of non-terminal
symbols E1. In general, for removing all non-terminal symbols from a string
carrying the control symbol D we use the following rules:
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– [D]h → [[D]D]
h

for h ∈ {j | 1 ≤ j ≤ k} ∪ {C} ,
[A]D → λ for A ∈ N ;
in that way, all non-terminal symbols (includingD) can be eliminated; ifD is
eliminated before all other non-terminal symbols have been eliminated from
the string, we are forced to enter an infinite loop according to the following
rules:

– [A]h → [[#]D]
h

for A ∈ N, h ∈ {j | 1 ≤ j ≤ k + 1} ∪ {C} ,
[#]D → #,
[#]h → [[#]D]

h
for h ∈ {j | 1 ≤ j ≤ k + 1} ∪ {C} .

The occurrence of the trap symbol # prohibits halting.
It now only remains to show how ADD instructions and SUB instructions
can be simulated:

– The ADD instruction X1 : (add (ri) , X2) incrementing register i of MR (Lt)
can be simulated by the rules
[X1]h → [[X ′

1Ei]I ]h for h ∈ {j | 1 ≤ j ≤ k + 1} ∪ {C} ,
[X ′

1]I → X2,

where the number of symbols Ei corresponds with the value stored in register
i.

– Decrementing register i ofMR (Lt) by the SUB instructionX1 : (sub (ri) , X2,
X3) is accomplished by the rules
[X1]h →

[
[X2]Ei

]
h

for h ∈ {j | 1 ≤ j ≤ k + 1} ∪ {C} ,
[Ei]Ei

→ λ,
[X2]Ei

→ #.
The rule [X2]Ei

→ # introduces the trap symbol # (which will lead to a
non-halting computation) only if decrementing is not possible, i.e., there is
no symbol Ei in the current string, otherwise we proceed correctly with the
control symbol X2.

The other case, where we assume that register i contains zero, i.e., no symbol
Ei occurs in the current string, is settled by the following rules:
[X1]h →

[
[X ′

3]E′
i

]
h

for h ∈ {j | 1 ≤ j ≤ k + 1} ∪ {C} ;

[X ′
3]E′

i
→ [X3]E′

i
[E′

i]E′
i
,

[X3]E′
i
→ X3;

the first copy now containing X3 assumes the choice was correct, whereas
the second copy of the string carrying the symbol E′

i in membrane E′
i now

checks for the occurrence of Ei; in the positive case the introduction of the
trap symbol # leads to an infinite computation, otherwise the second copy
is completely erased:
[B]E′

i
→ λ [ ]E′

i
for B ∈ N − {Ei} ,

E′
i [ ]E′

i
→ [E′

i]E′
i
,

[E′
i]E′

i
→ λ.

If the string after the application of the rule [E′
i]E′

i
→ λ is not yet empty

(which for sure is the case if at least one symbol Ei originally was present),
then the trap symbol # will be introduced.
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In total, we have shown how we can generate an arbitrary membrane struc-
ture and in parallel compute its code for the acceptance check carried out by
simulating the register machine representing the given tree language. We get a
halting computation if and only if the register machine halts, i.e., if and only if it
accepts the code of the tree represented by the generated membrane structure.
This observation completes the proof. ��

As can be seen from the construction of the proof given above, a halting
computation fulfills all conditions for interpreting the final configuration as a
tree over the node alphabet T and the edge alphabet {1, ..., k} , which provides
an even stronger result than that stated in the theorem, because the additional
condition for being able to interpret the membrane structure of the final config-
uration as a (node-labelled) tree, i.e., that the contents of each membrane region
has to be a singleton a ∈ T, need not be taken into account.

4 Summary and Future Research

We have shown that P systems can also be used for generating (representations
of) any recursively enumerating tree language by taking the tree representing the
membrane structure of the final configuration as the result of a halting computa-
tion. In this paper we took the model of P systems with active membranes (but
without using polarizations) working on string objects for obtaining this result
for tree languages. By allowing for membrane deletion we could avoid changing
labels.

Future investigations will focus on variants of P systems with active mem-
branes using other restricted types of rules, even with using polarizations or
changing labels; moreover, we shall consider various models of P systems work-
ing with symbol objects and investigate their computational power with respect
to generating or accepting tree languages.
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MCU 2001, Chişinău, 2001, LNCS 2055, Springer-Verlag, Berlin, 2001, 214–225.

6. J. Hopcroft, J. Ulmann, Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading, Mass., 1979.

7. S.N. Krishna, R. Rama, A variant of P systems with active membranes: solving
NP-complete problems. Romanian J. of Information Science and Technology, 2, 4
(1999), 357–367.

8. M.L. Minsky, Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs, New Jersey, USA, 1967.

9. The P Systems Web Page: http://psystems.disco.unimib.it/
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11. Gh. Păun, Computing with membranes. Journal of Computer and System
Sciences, 61, 1 (2000), 108–143, and TUCS Research Report 208 (1998)
(http://www.tucs.fi).
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Abstract. In this paper we address the problem of describing the com-
plexity of the evolution of a P system. This issue is is specially hard in
the case of P systems with active membranes, where the number of steps
of a computation is not sufficient to evaluate the complexity. Sevilla car-
pets were introduced in [1], and they describe the space-time complexity
of P systems. Based on them, we define some new parameters which can
be used to compare evolutions of P systems. To illustrate this, we also
include two different cellular solutions to the Subset Sum problem and
compare them via these new parameters.

1 Introduction

The evolution of a P system is a complex process where (possibly) a large number
of symbol-objects, membranes and rules are involved. In the case of P systems
with active membranes, the problem of describing the complexity of the com-
putational process becomes specially hard. In this case, elementary membranes
can divide into two new membranes and, due to the parallelism intrinsic to P
systems, an exponential number of membranes can be obtained in polynomial
time. This feature makes P systems with active membranes a powerful tool to
attack NP-complete problems and, indeed, several efficient solutions to this type
of problems have been presented (see, e.g., [4, 9, 10, 11] or [12]). These solutions
are proposed in the framework of recognizer P systems with external output, and
they present significant similarities among them. The basic idea in these designs
is the creation of an exponential number of membranes (workspace) in poly-
nomial time and the use of each membrane as an independent computational
device. All membranes evolve in parallel and the computation has a polynomial
cost in time. The process ends with a final stage (with polynomial cost) that
checks the answers of these devices and sends an output to the environment.

The complexity in time (the number of cellular steps) of these solutions is
polynomial, but it is clear that the time is not the unique variable that we
need to consider in order to evaluate the complexity of the process. Ciobanu,
Păun and Ştefănescu presented in [1] a new way to describe the complexity of
a computation in a P system. The so-called Sevilla carpet is an extension of the

G. Mauri et al. (Eds.): WMC5 2004, LNCS 3365, pp. 320–330, 2005.
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notion of Szilard language from grammars to the case when several rules are
used at the same time.

In this paper we make use of Sevilla carpets to describe the computations
of P systems that solve the Subset Sum problem. Two families of recognizer P
systems have been designed that need a polynomial time to send an output to the
environment. We present their corresponding Sevilla carpets in order to compare
them, and then some ideas to improve the design of P systems for solving other
new problems are proposed.

The paper is organized as follows. In Section 2 we first give some preliminary
notions about recognizer P systems and a polynomial complexity class on P sys-
tems is defined. Section 3 presents the Sevilla carpets and some new parameters
related with them are introduced in Section 4. Finally, we use these parameters
to compare two solutions of the Subset Sum problem.

2 Preliminaries

Roughly speaking, a P system consists of a cell-like membrane structure, in the
compartments of which one places multisets of objects which evolve according
to given rules in a synchronous non-deterministic maximally parallel manner.

Definition 1. A P system with input is a tuple (Π,Σ, iΠ), where: Π is a P
system, with working alphabet Γ , with p membranes labelled by 1, . . . , p, and
initial multisets M1, . . . ,Mp associated with them; Σ is an (input) alphabet
strictly contained in Γ ; the initial multisets are over Γ − Σ; finally, iΠ is the
label of a distinguished (input) membrane.

The computations of a P system with input a multiset m over Σ, are defined
in a natural way. The only novelty is that the initial configuration must be the
initial configuration of the system to which the input multiset m is added to the
multiset from region iΠ .

Definition 2. Let (Π,Σ, iΠ) be a P system with input. Let Γ be the working
alphabet of Π, μ the membrane structure and M1, . . . ,Mp the initial multisets
of Π. Let m be a multiset over Σ. The initial configuration of (Π,Σ, iΠ) with
input m is (μ,M1, . . . ,MiΠ

∪m, . . . ,Mp).

In the case of P systems with input and with external output, the concept
of computation is as standard in membrane computing, with a minor difference
which will be explained below. We consider that it is not possible to observe the
internal processes inside the P system and we can only know if the computation
has halted via some distinguished objects sent out of the skin. We can formalize
these ideas in the following way.

2.1 Recognizer P Systems

Recall that a decision problem X is a pair (IX , θX) such that IX is a language
over a finite alphabet (whose elements are called instances) and θX is a total
boolean function over IX .
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In order to solve decision problems we need P systems with input such that
all halting computations starting from an initial configuration with a given input
multiset (encoding an instance of the problem) produce the same output. The
systems of this type will be called recognizer P systems.

Definition 3. A recognizer P system is a P system with input, (Π,Σ, iΠ), and
with external output such that:

1. The working alphabet contains two distinguished elements YES, NO.
2. All computations halt.
3. If C is a computation of Π, then either object YES or object NO (but not

both) must have been released into the environment, and only in the last step
of the computation. We say that C is an accepting computation (respectively,
rejecting computation) if the object YES (respectively, NO) appears in the
environment associated with the corresponding halting configuration of C.

The above definitions are stated in a general way, but in this paper P systems
with active membranes will be used. We refer to [8] (see chapter 7) for a detailed
definition of evolution rules, transition steps, configurations and computations
in this model.

We denote by AM the class of all recognizer P systems with active mem-
branes.

2.2 The Computational Complexity Class PMCF

The first results about “solvability” of NP–complete problems in polynomial
time (even linear) by cellular computing systems with membranes were obtained
using variants of P systems that lack an input membrane (see e.g. [7] or [14]).
Thus, the constructive proofs of such results need to design one system for each
instance of the problem.

If we wanted to perform such a solution of some decision problem in a labo-
ratory, we will find a drawback on this approach: a system constructed to solve
a concrete instance is useless when trying to solve another instance. This short-
coming can be easily overtaken if we consider a P system with input. Then, a
system could solve different instances of the problem, provided that the corre-
sponding input multisets are introduced in the input membrane.

Instead of looking for a single system that solves a problem, we prefer de-
signing a family of P systems such that each element decides all the instances of
“equivalent size”, in certain sense.

Definition 4. Let F be a class of recognizer P systems. We say that a deci-
sion problem X = (IX , θX) is solvable in polynomial time by a family Π =
(Π(n))n∈N+ of type F , and we denote this by X ∈ PMCF , if the following is
true:

– The family Π is polynomially uniform by Turing machines; that is, there
exists a deterministic Turing machine constructing Π(n) from n ∈ N+ in
polynomial time.
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– There exists a pair (g, h) of polynomial-time computable functions g : L →⋃
n∈N+ IΠ(n) and h : L → N+ such that for every u ∈ L we have
g(u) ∈ IΠ(h(u)), and
• The family Π is polynomially bounded with regard to (g, h); that is, there

exists a polynomial function p, such that for each u ∈ IX every compu-
tation of Π(h(u)) with input g(u) is halting and, moreover, it performs
at most p(|u|) steps.

• The family Π is sound, with regard to (X, g, h); that is, for each u ∈ IX
it is verified that if there exists an accepting computation of Π(h(u)) with
input g(u), then θX(u) = 1.

• The family Π is complete, with regard to (X, g, h); that is, for each u ∈
IX it is verified that if θX(u) = 1, then every computation of Π(h(u))
with input g(u) is an accepting one.

In the above definition we have imposed every P system Π(n) to be confluent, in
the following sense: every computation with the same input produces the same
output. From the dfinition, one can easily prove that the class PMCF is closed
under polynomial–time reduction and complement.

3 Sevilla Carpets

Sevilla carpets were presented in [1] as an extension of the Szilard language,
which consists of all strings of rule labels describing correct derivations in a
given grammar (see, e.g., [5, 6] or [13]). The Szilard language is usually defined
for grammars in the Chomsky hierarchy where only a single rule is used in each
derivation step, so a derivation can be represented as the string of the labels
of the rules used in the derivation (the labelling is supposed to be one-to-one).
Sevilla carpets are a Szilard-way to describe a computation in a P system. The
main difference is that now a multiset of rules can be used in each evolution
step of a P system. In [1] a bidimensional writing is proposed to describe a
computation of a P system. The (Sevilla) carpet associated with a computation
of a P system is a table with the time on the horizontal axis and the rules
explicitly mentioned along the vertical axis; then, for each rule, in each step, a
piece of information is given. Depending on the amount of information given to
describe the evolution, Ciobanu, Păun, and Ştefănescu propose five variants for
the Sevilla carpets:

1. Specifying in each time unit for each membrane whether at least one rule
was used in its region or not.

2. Specifying in each time unit for each rule whether it was used or not.
3. Mentioning in each time unit the number of applications of each rule; this is

0 when the rule is not used and can be arbitrarily large when the rules are
dealing with arbitrarily large multisets.

4. We can also distinguish three cases: that a rule cannot be used, that a rule
can be used but it is not because of the nondeterministic choice, and that a
rule is actually used.
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5. A further possibility is to assign a cost to each rule, and to multiply the
number of times a rule is used with its cost.

They also propose two parameters (weight and surface) to study Sevilla carpets.
In this paper we popose two new parameters (height and average weight) that
will be described in the next section.

4 Parameters for the Descriptive Complexity

Many times we are not interested only in the number of cellular steps of the
computation, but also in other types of resources required to perform the com-
putation. Especially if we want to implement in silico a P system, we need to be
careful with the number of times that a rule is applied, maybe with the number
of membranes and/or the number of objects present in a given configuration.

In order to describe the complexity of the computation, the following param-
eters are proposed:

– Weight: It is defined in [1] as the sum of all the elements in the carpet,
i.e., as the total number of applications of rules along the computation. The
application of a rule has a cost and the weight measures the total cost of the
computation.

– Surface: This is the multiplication of the number of steps by the total
number of the rules used by the P system. It can be considered as the
potential size of the computation. From a computational point of view we are
not only interested in P systems which halt in a small number of steps, but
in P systems which use a small amount of resources. The surface measures
the resources used in the design of the P system. Graphically, it represents
the surface where the Sevilla carpet lies on.

– Height: This is the maximum number of applications of any rule in a step
along the computation. Graphically, it represents the highest point reached
by the Sevilla carpet.

– Average Weight: It is calculated by dividing the weight to the surface of
the Sevilla carpet. This concept provides a relation between both parameters,
and gives an indication on how the P system exploits its massive parallelism.

5 Comparing Two Solutions to the Subset Sum Problem

The Subset Sum problem is the following one: Given a finite set A, a weight
function, w : A → N, and a constant k ∈ N, determine whether or not there
exists a subset B ⊆ A such that w(B) = k.

We will use a tuple (n, (w1, . . . , wn), k) to represent an instance of the prob-
lem, where n stands for the size of A = {a1, . . . , an}, wi = w(ai), and k is the
constant given as input for the problem.

We propose here two solutions to this problem based on a brute force algo-
rithm implemented in the framework of P systems with active membranes. The
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idea of the design is better understood if we divide the solution to the problem
into several stages:

– Generation stage: for every subset of A, a membrane is generated via mem-
brane division.

– Weight calculation stage: in each membrane the weight of the associated
subset is calculated. This stage will take place in parallel with the previous
one.

– Checking stage: in each membrane it is checked whether or not the weight
of its associated subset is exactly k. This stage cannot start in a membrane
before the previous ones are over in that membrane.

– Output stage: when the previous stage has been completed in all membranes,
the system sends out the answer to the environment.

First Design

Next we present a family of recognizer P systems solving Subset Sum, according
to Definition 4. This family can be found in [9].

First, we consider a polynomial–time computable and bijective function from
N2 onto N (for example, 〈x, y〉 = ((x+y)(x+y+1)/2)+y). For each (n, k) ∈ N2

we consider the P system (Π1(〈n, k〉), Σ(n, k), i(n, k)), where the input alphabet
is Σ(n, k) = {x1, . . . , xn}, the input membrane is i(n, k) = e and Π1(〈n, k〉) =
(Γ (n, k), {e, s}, μ,Me,Ms, R) is defined as follows:
• Alphabet: Γ (n, k) = Σ(n, k) ∪ {ā0, ā, a0, a, d+, e0, . . . , en, q, q0, . . . , q2k+1,

z0, . . . , z2n+2k+2, Y es, no,No,#}.
• membrane structure: μ = [ [ ]e ]s.
• Initial multisets: Ms = z0; Me = e0āk.
• The set R of evolution rules consists of the following rules:

(a) [ei]0e → [q]−e [ei]+e , for i = 0, . . . , n.
[ei]+e → [ei+1]0e[ei+1]+e , for i = 0, . . . , n− 1.

(b) [x0 → ā0]0e; [x0 → λ]+e ; [xi → xi−1]+e , for i = 1, . . . , n.
(c) [q → q0]−e ; [ā0 → a0]−e ; [ā→ a]−e .
(d) [a0]−e → [ ]0e#; [a]0e → [ ]−e #.
(e) [q2j → q2j+1]−e , for j = 0, . . . , k.

[q2j+1 → q2j+2]0e, for j = 0, . . . , k − 1.
(f) [q2k+1]−e → [ ]0eY es; [q2k+1]0e → [ ]0e#.

[q2j+1]−e → [ ]−e #, for j = 0, . . . , k − 1.
(g) [zi → zi+1]0s, for i = 0, . . . , 2n+ 2k + 1; [z2n+2k+2 → d+no]0s.
(h) [d+]0s → [ ]+s d+; [no→ No]+s ; [Y es]+s → [ ]0sY es; [No]+s → [ ]0sNo.

Let us recall that the instance u = (n, (w1, . . . , wn), k) is processed by the P
system Π1(〈n, k〉) with input the multiset xw1

1 x
w2
2 . . . x

wn
n .

This design depends on the two constants that are given as input in the
problem: n and k. It consists on 5n+5k+18 evolution rules, and if an apropriate
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input multiset is introduced inside membrane e before starting the computation,
the system will stop and output an answer in 2n+ 2k+ 6 steps (if the answer is
No) or in 2n+ 2k + 5 steps (if the answer is Y es).

According to Definition 4 and using the above family of P systems, we can
prove that, Subset Sum ∈ PMCAM (see [9], for details).

Second Design

Next we present a new family of recognizer P systems solving Subset Sum,
inspired in the previous one. Some modifications are made following the design
presented in [3].

For each n ∈ N we consider the P system (Π2(n), Σ(n), i(n)), where the
input alphabet is Σ(n) = {x1, . . . , xn}, the input membrane is i(n) = e and
Π2(n) = (Γ (n), {e, r, s}, μ,Me,Mr,Ms, R) is defined as follows:
• Alphabet: Γ (n) = Σ(n) ∪ {ā0, ā, a0, a, c, d0, d1, d2, e0, . . . , en, g, ḡ, ĝ, h0, h1,

q, q0, q1, q2, q3, Y es,No, no, z0, . . . , z2n+1,#}.

• Membrane structure: μ = [ [ ]e ]s.
• Initial multisets: Ms = z0; Me = e0gāk; Mr = h0b.
• The set R of evolution rules consists of the following rules:

(a) [ei]0e → [q]−e [ei]+e , for i = 0, . . . , n.
[ei]+e → [ei+1]0e[ei+1]+e , for i = 0, . . . , n− 1.

(b) [x0 → ā0]0e; [x0 → λ]+e ; [xi → xi−1]+e , for i = 1, . . . , n.

(c) [q → q0]−e ; [ā0 → a0]−e ; [ā→ a]−e .
[g]−e → [ ]−e ḡ.

[en]+e → #.
[ā0 → λ]0s; [ā→ λ]0s; [g → λ]0s.
[a→ λ]+e ; [a0 → λ]+e .

(d) [a0]−e → [ ]0e#; [a]0e → [ ]−e #.

(e) [q0 → q1]−e ; [q1 → q0]0e.
[q0]0e → [ ]+e no.
[q1 → q2c]−e ; [q2 → q3]0e; [c]−e → [ ]0ek.

(f) [q3]0e → [ ]+e Y es; [q3]−e → [ ]+e no.

(g) [zi → zi+1]0s, for i = 0, . . . , 2n; [z2n+1 → d0d1]0s.
d0[ ]0r → [d0]−r ; [d1]0s → [ ]+s d1.

(det) [h0 → h1]−r , [h1 → h0]+r ,
[b]−r → [ ]+r b, ĝ[ ]+r → [ĝ]−r ,
b[ ]−r → [b]+r , [ĝ]+r → [ ]−r ĝ,
[h0]+r → [ ]+r d2, [d2]+s → [ ]−s d2.

(h) [no→ No]−s ; [Y es]−s → [ ]0sY es; [No]−s → [ ]0sNo.
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In this solution the instance u = (n, (w1, . . . , wn), k) is processed by the P system
Π2(n) with input the multiset xw1

1 x
w2
2 . . . x

wn
n .

The above design depends only on one of the constants that are given as
input in the problem: n. It is quite similar to the previous one, the difference
lies in the checking stage and the answer stage. In this case we avoid the use of
counters that require knowing the constant k.

The number of evolution rules is 5n + 41, and the number of steps of the
computation depends on the concrete instance that we need to solve, but it is
linearly bounded.

Descriptive Complexity

We present some detailed statistics about the previous designs, trying to compare
them on a more general basis than just looking the number of steps that the
computation performs. Following this scheme, we present the Sevilla carpets
associated with the computations of the two different solutions to the Subset
Sum problem working on the same instance: u = (5, (3, 5, 3, 2, 5), 9). That is,
n = 5, k = 9, and the list of weights is w1 = 3, w2 = 5, w3 = 3, w4 = 2, w5 = 5.
The input multiset is then: x31x

5
2x

3
3x

2
4x

5
5.
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Rules
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Fig. 1. Sevilla carpet for solution 1

The P system Π1(〈5, 9〉) has 88 evolution rules, and all of them are applied
with the exception of the rules: [q19]−e → [ ]0eY es, [q3]−e → [ ]−e #, [q9]−e → [ ]−e #
and [Y es]−s → [ ]0sY es. The P system Π1(5, 9) stops at step 33 and sends an
object No to the environment.

The weight of the Sevilla carpet (the total number of rule applications along
the computation) is 2179, and its height (the maximal number of times that a
rule is applied in one evolution step) is 82 and it is reached at Step 9 by the rule
[ā0 → a0]−e . The surface of the Sevilla carpet is 2904, and its average weight is
0.749656



328 M.A. Gutiérrez-Naranjo et al.
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Fig. 2. Sevilla carpet for solution 2

The P system Π2(5) has 65 evolution rules, and all of them are applied with
the exception of the rules: [q3]0e → [ ]+e Y es and [Y es]−s → [ ]0sY es. The P system
Π2(5) stops at step 38 and sends an object No to the environment.

The weight of the Sevilla carpet is 3368, and its height is 108, this height is
reached at Step 10 by the rule [ā0 → λ]0s. The surface of the Sevilla carpet is
2470, and its average weight is 1.36275

The following table shows the parameters of both solutions:

Solution 1 Solution 2
Rules 88 65
Steps 33 38
Surface 2904 2470
Weight 2179 3368
Height 82 108
Average Weight 0.749656 1.36275

If we consider the number of steps as a complexity measure to compare both
designs, then we conclude that the first solution is better than the second one
(although not asymptotically), since it needs less steps.

Moreover, concerning the weight of the Sevilla carpet, solution 1 is again
better than solution 2, because it uses less resources during the computation.
However, the fact that the average weight of solution 2 is larger than the average
weight of solution 1 can be interpreted by saying that the second design makes
a better use of the parallelism in P systems (the computation is more intense).

We would like to remark that these are not asymptotical comparisons, as we
focus only on the data corresponding to one instance. Indeed, due to the expo-
nential number of membranes created during the generation stage, we believe
that considering another instance with a greater size will stress the differences
between the design based only on n and the other one, based on both n and k.
The bound on the size of the intances that can be studied is imposed by the
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necessity to use a P systems simulator to obtain the detailed description of the
computation: number of rules, number of cellular steps, and number of times
that the rules are applied in each step. The simulator we are using (presented in
[2]) is written in Prolog, and it runs on a sequential conventional computer.

6 Final Comments and Future Work

This paper illustrates the necessity of a deeper study of parameters which de-
scribe the complexity of P systems as computational devices. In order to analyze
this complexity we use the Sevilla carpets. We also define two new parameters
which provide us with a more detailed description of the evolution of a P system.

A more detailed study of the differences between the computations of the
two solutions discussed here is to be done, in order to extract some conclusions
about the usefullness and/or the interest of these new complexity parameters
that can be used to evaluate the design of cellular solutions to problems.

In the example illustrated in the previous section, the second design solves
the same instance in 5 additional cellular steps, but the number of rules is much
lower. Can we decrease more the number of rules and keep a linear bound on
the number of steps? Is it worth it?

In the near future, we plan to carry out descriptive complexity studies of
other variants of P systems, maybe giving rise to new significant parameters. We
would like also to improve the graphical treatment of Sevilla carpets, designing
a software able to go directly from the description of the computation provided
by our P systems simulator to the picture of the carpet.
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Abstract. This paper is inspired from two directions: (1) finding out
the minimum number of membranes required for proving universality
with minimal symport/antiport, and (2) the functionality of red blood
corpuscles and how it can be translated in the membrane computing sce-
nario. We are motivated by (2) and try to solve (1) using (2). Red blood
corpuscles (RBCs) are the basic elements of all kinds of cells. RBCs are
present in all the membranes of mammals. They get replaced periodically.
They do not evolve or divide like usual cells; they are just carriers of oxy-
gen and hence are communicating agents in a cell. This being the case,
symport/antiport rules are the most suitable control structures to model
their activity. We exploit the properties of RBCs in order to impose a
natural restriction on the traces of objects; we consider a class of P sys-
tems where the objects represent RBCs and symport/antiport rules are
used for communication. We prove a universality result with two mem-
branes using symport/antiport rules of weight one, thus giving a solution
for the number of membranes required for minimal symport/antiport in
the RBC setting.

1 Introduction

In recent years, observations of cells and of their biochemical processes have
been of inspiration for the creation of theoretical computational devices. One
of the most recent attempts in this direction has been to look at the structure
of cells as a set of nested compartments delimited by membranes. Each of the
membranes are composed of chemicals and interact with the chemicals swim-
ming in the aqueous solution from the compartments. The objects (chemicals)
in the compartments can evolve, interact with other chemicals, and pass to other
membranes. Membrane systems (P systems) were introduced in [11].

One of the most elegant variants of P systems was introduced in [10] under
the name of membrane systems with symport/antiport. This variant models
the synchronized movement of chemicals present in a cell: specific groups of
objects may pass together through a membrane either in the same or in opposite
directions. The former case is referred to as symport and the latter as antiport.

G. Mauri et al. (Eds.): WMC5 2004, LNCS 3365, pp. 331–343, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



332 S.N. Krishna

There is no modification to any of the objects, communication is the only driving
power of these systems.

Various variants of symport/antiport have been considered in [1], [2], [6],
[8] and [9]. In [1] the authors show that passing at most one object per time
can generate any recursively enumerable set of numbers using nine membranes;
this was improved in [6] to six membranes, which was further improved to five
membranes in [2] and to four in [4] and [7]. The most recent improved result is
given in [12], where universality is obtained in three membranes.

In this paper, we consider P systems having symport/antiport rules moti-
vated by the movement and regeneration of red blood corpuscles (RBC) in the
membranes of mammals. We prove universality of such systems in two mem-
branes using symport/antiport rules of weight one. We give a brief overview of
RBCs and their functions and the motivation for considering them in Section
2. In Section 3, we map the functionality of RBCs in the membrane comput-
ing scenario, imposing a natural restriction on the movement of objects. We
give the formal definition of the class of systems investigated here, and prove a
universality result in Section 4.

2 Red Blood Corpuscles (RBC)

Red blood corpuscles (RBC) are the basic elements of all kinds of cells. They are
composed of a colorless stroma filled in with semi fluid hemoglobin and other
matters. The RBC (also called erythrocytes) make up 44% of the volume of
the blood. The rest of the blood are the white cells (1%) and the plasma. The
RBC are the small (7/1000 mm diameter) cells in the blood that contain the red
pigment, hemoglobin, and carry oxygen around the body.

The RBC are made in the marrow of the flat bones and the blood contains
5 million of them in each cc of blood. The RBC flow through the arteries, veins
and capillaries. After an average life of 100-120 days, during which they incur
substantial damage, RBCs are broken down and removed by the spleen. The
broken up RBCs are taken by the tissues of the body. About 25 ×1010 corpuscles
are replaced daily, a turnover rate of 2.5 million per second. Both damaged and
normal but “worn-out” erythrocytes are removed from the vascular system by
macrophages, which are found primarily in the liver, spleen, and bone marrow.
Breakdown products of hemoglobin are used in the formation of bile (bilirubin),
and iron is conserved and used in new red cell production. The production rate of
RBCs depend on environmental conditions; at high altitudes, shortage of oxygen
stimulates the body to produce more erythroprotein (EPO) that stimulates the
production of more RBC. We refer to the period of time after which new RBCs
are produced (100-120 days) replacing worn-out ones as ‘period of replacement’.
An organism dies when it is not capable of producing new RBCs within the
period of replacement.

The main functions of RBC include:

– Transport oxygen in the blood from the lungs to all the cells and tissues of
the body.
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– Assist with the transport of carbon (IV) oxide from the tissues to the lungs.
– Regulating the acid-base balance of the blood, preventing large changes in

pH.
– Assist when a blood clot is formed.

2.1 Motivation

We are mainly motivated by the following facts about RBC [13]:

(a) RBCs are carriers of oxygen from the lungs to the cells of the body and
carbon dioxide back to the lungs.

(b) The production of new RBCs occur periodically, or RBCs are replenished
(replaced) periodically.

(c) An organism dies when it is not capable of producing new RBCs.

3 RBCs in the Membrane Computing Scenario

In this section, we try to model the functionality of RBCs in the membrane
computing setting. We first discuss some terminology used in this paper. Let μ
be a membrane structure and let i be a membrane of μ.

A symport rule associated with membrane i is of the form (a, in), specifying
that the object a enters the region of membrane i coming from the surrounding
region (from the environment, in the case when i is the skin membrane), or of
the form (a, out), saying that the object a exits from membrane i. An antiport
rule associated with membrane i is of the form (a, out; b, in) and says that at the
same time a exits membrane i and b enters it.

3.1 Modelling RBCs in P Systems

In the following, we consider P systems with multisets of objects. The multisets
of objects represent RBCs. Let μ denote the membrane structure.

In view of 2.1 (a), since RBCs are agents of communication from the lungs to
all other cells and back, and do not evolve, we do not use any evolution rules for
the objects but only symport/antiport rules. We next model the way the objects
move. Since the movement of RBCs happens between the lungs and other cells
in the body, the movement of objects in our systems should also be between a
specific membrane (say l) and other membranes, where the membrane labeled l
is supposed to represent the lungs. The specific membrane l should be one that
is innermost.

In view of 2.1 (b), the objects in the P system should be replaced by new
ones periodically. This is done by assuming that the environment has arbitrarily
many copies of each object, and periodically using an antiport rule (b, out; a, in)
in the skin membrane, thereby replacing an object b by an object a. The period
of replacement (denotes how often objects are replaced) p is a finite integer in an
interval [min,max] where min and max are numbers obtained from the system
under consideration.
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We now model the movement of objects in the system based on the following
facts of RBCs:

F1 An RBC carries carbondioxide from a number of cells/tissues to the lungs,
and then carries oxygen back possibly to a number of cells/tissues, after
which it gets replaced.
Since the multisets of objects in our systems represent RBCs, their movement
should also be in concurrence to the movement of RBCs. The movement of
an object in a membrane j �= l in the initial configuration should be in the
order as given below:
1. It can pass through possibly all membranes in μ other than l once (entry

once + exit once).
2. It enters l once.
3. It exits l and can again pass through possibly all membranes other than
l in μ once (entry once + exit once).

4. It gets replaced.
F2 An RBC carries oxygen from the lungs to a number of cells/tissues, and gets

replaced.
The movement of an object in l in the initial configuration should be as
follows:
1. It leaves l, and passes through possibly all membranes in μ other than l

once (entry once + exit once).
2. It gets replaced.

Since every object is replaced periodically, and replacements happen in the
skin membrane, after a few steps of computation (when all objects in the initial
configuration are replaced), the movement of every new object will be as in F1.
Note also that the skin membrane has not been included in the restrictions F1
1,3 and F2 1 since an exit from the skin corresponds to replacement and entry
into the skin corresponds to a new object.

Consider a system of depth k ≥ 1. Let the skin membrane have j+1 children,
labeled c1, c2, . . . , cj+1. Let the specified membrane l be a descendant of cj+1.
Let ni denote the number of children each ci has, 1 ≤ i ≤ j + 1. Consider an
object in any membrane i �= l of the system in the initial configuration. The
movement of such an object should be from i to l and back to some n (n can
be the skin) before getting replaced. Similarly, the movement of an object of wl

should be toward the skin membrane, after possibly passing through all other
membranes. The minimum number of symport/antiport rules required so that
an object executes conditions F1 or F2 is clearly min = k − 1. This is so, since
an object in wl can come straight to the skin and get replaced. The maximum
number of symport/antiport rules required for satisfying F1 or F2 is

max = 2(2j + 1) + 2(k − 2)[2(n1 + . . . nj) + 2(nj+1 − 1) + 1].

To see this, consider a system of the above description, such that all of c1, . . . , cj+1
have a descendant at depth k and a new object in the skin membrane. Note that
an object in any membrane other than the skin in the initial configuration will
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not require max rules to do the same. Thus, an object can be replaced if it has
been part of at least min symport/antiport rules or if it has been part of at
most max symport/antiport rules. Thus, we say that for the above system, the
period p is a finite integer in the interval [min,max].

Before going into further details, let us examine an example. Consider the
system of depth 4,

[0 c [1 [2 [3 dc ]3 ]2 ]1 [4 [5 ]5 ]4 [6 [7 ]7 ]6 ]0

The system contains the objects c, d in membrane 3 and c in the skin. Here, l =
3. Let

R3 = {(c, out), (c, in), (d, out; b, in)},
R2 = {(c, out), (c, in), (b, in), (d, out)},
R1 = {(c, out), (c, in), (b, in), (d, out)},
R0 = {(c, out; b, in), (d, out; e, in)},
R4 = R5 = R6 = R7 = {(c, in), (c, out)}.

The applicable rules are (c, out) ∈ R3 to the object c in w3, and (c, in) ∈
R2 (or R4, R6) to the object c in the skin. Note that the rule (c, out; b, in) in
the skin is not applicable to the copy of c in the skin during the first step of
computation since it has not yet visited membrane 3. The following are steps of
a valid computation:

0. [0 c [1 [2 [3 dc ]3 ]2 ]1 [4 [5 ]5 ]4 [6 [7 ]7 ]6 ]0,
1. [0 [1 [2 c [3 d ]3 ]2 ]1 [4 c [5 ]5 ]4 [6 [7 ]7 ]6 ]0,
2. [0 [1 c [2 [3 d ]3 ]2 ]1 [4 [5 c ]5 ]4 [6 [7 ]7 ]6 ]0,
3. [0 c [1 [2 [3 d ]3 ]2 ]1 [4 c [5 ]5 ]4 [6 [7 ]7 ]6 ]0,
4. [0 b [1 [2 [3 d ]3 ]2 ]1 c [4 [5 ]5 ]4 [6 [7 ]7 ]6 ]0,
5. [0 [1 bc [2 [3 d ]3 ]2 ]1 [4 [5 ]5 ]4 [6 [7 ]7 ]6 ]0,
6. [0 [1 [2 bc [3 d ]3 ]2 ]1 [4 [5 ]5 ]4 [6 [7 ]7 ]6 ]0,
7. [0 [1 [2 d [3 bc ]3 ]2 ]1 [4 [5 ]5 ]4 [6 [7 ]7 ]6 ]0,
8. [0 [1 d [2 c [3 b ]3 ]2 ]1 [4 [5 ]5 ]4 [6 [7 ]7 ]6 ]0,
9. [0 d [1 c [2 [3 b ]3 ]2 ]1 [4 [5 ]5 ]4 [6 [7 ]7 ]6 ]0,

10. [0 ec [1 [2 [3 b ]3 ]2 ]1 [4 [5 ]5 ]4 [6 [7 ]7 ]6 ]0,
11. [0 eb [1 [2 [3 b ]3 ]2 ]1 [4 [5 ]5 ]4 [6 [7 ]7 ]6 ]0.

Here, the object c in the skin was replaced during the 11th rule which used it.
Consider a structure like [0 c [1 [2 [3 dc ]3 ]2 ]1 [4 [5 [8 ]8 ]5 ]4 [6 [7 [9 ]9 ]7 ]6 ]0
with R8 = R9 = R7 = R6 = R5 = R4 and Ri, 1 ≤ i ≤ 7 as above, and
j + 1 = 3, c3 = 1, c2 = 4, c3 = 6, l = 3, n1 = n2 = n3 = 1. If the object c of w0
had visited all of 4,5,6,7,8 and 9 before visiting membrane 3 and had visited all
of them again, it would have been replaced in the 31st rule it takes part in, i.e.,
after being part of 2(2.2 + 1) + 2.2[2(1 + 1) + 2(1− 1) + 1] = 30 rules. Also, note
from the above that the object c of w3 can be replaced during the use of the 4th
rule. Hence, the period for the above system lies in [3, 30].

In view of 2.1(c), a computation stops when objects in the system are not
replaced periodically; this amounts to saying that there are no more applicable
rules in the system after a point of time.
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With all the above concepts, we propose a type of P systems having RBC-
like objects. Since we are interested in the output of a P system, the result of a
computation consists of the number of objects present in a specified membrane
after the computation stops.

3.2 Traces of RBCs

In this section, we use the concept of traces of objects introduced in [5]. The
trace of an object in our systems is a sequence of moves the object makes in
the system before getting replaced. In other words, the trace of an object is a
string made up of the labels of the membranes the object visited before getting
replaced. For example, consider the membrane structure [1 b [2 c ]2 [3 a ]3 ]1
with w1 = {b}, w2 = {c}, w3 = {a}, E = {newa}. If there are rules (a, out; b, in)
in R3, (a, in; c, out) and (a, out) in R2, and (a, out;newa, in) in R1, then traces
of a are 31, 3121.

This idea is very useful for representing the path chosen by an object in our
systems, because an object moves along a special trajectory satisfying F1 or F2.
Consider the membrane structure [1 [5 [2 [3 ]3 ]2 [4 ]4 ]5 [6 [7 ]7 [8 ]8 ]6 ]1.
Let o be a new object in the skin and let 3 be the special membrane l. Then
some of the possible traces of o (as per F1) are 1676154523254516761, 1523251,
15452325451, 154523251, 1676861523251. Observe that the first three traces are
palindromes. If the trace of a new object is a palindrome, it means that the
object visits exactly those membranes it visited before visiting l (or replenishes
oxygen to those cells from which it carried carbon dioxide to the lungs).

Now let us consider the trace of an object in a membrane other than the skin
during the initial configuration. Let a be an object of w7. Then the possible traces
of a (as per F1) include 761523251, 7686154523251, 7686154523251686761. Let
us now consider the trace of an object in l (here 3) in the initial configuration.
3251, 3254541, 32516761, 3251676861 are some of the possible traces. All these
are in accordance with F2.

Since every object is replaced periodically by new ones, after a point of time
we need to bother about the traces of new objects only. The traces of new objects
start with the label of the skin membrane. We enforce the following rules for the
traces of objects in our systems:

(a) All traces end with the label of the skin; they contain exactly one occurrence
of the label l of the special membrane.

(b) All traces must satisfy F1 or F2.

These are called rules of traces of RBCs. Note that an object may have an
incomplete trace due to unavailability of rules. In such cases, the trace should
be a proper prefix of one of the traces satisfying (a) and (b).

3.3 Formal Definition

A P system with RBC-like objects is a construct

Π = (V, μ, w1, . . . , wm, E,R1, . . . , Rm, i0, l, k, p),
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where:

1. V is the alphabet of objects;
2. μ is the membrane structure with m membranes;
3. w1, . . . , wm are strings over V representing multisets of objects initially

present in the regions of the system;
4. E ⊆ V is the set of objects present in the environment in arbitrarily many

copies;
5. R1, . . . , Rm are finite sets of rules for regions 1, 2, . . . ,m of the form (x, out;
y, in), for x, y ∈ V ∗ with xy �= λ; if one of x, y is empty, we have a symport
rule, when both x, y are non-empty, we have an antiport rule;

6. i0 is an elementary membrane of μ (output membrane);
7. l is a specific elementary membrane; k is the depth of μ;
8. p is a finite integer (in [min,max] called period, where min and max are as

computed in Section 3.1).

Symport/antiport rules are applied as usual in a non-deterministic maxi-
mally parallel manner but obeying the rules of traces of RBC’s for each object.
A sequence of transitions between configurations constitutes a computation; a
computation is successful if it halts; i.e., if it reaches a configuration wherein no
rules can be applied to any of the available objects, following the rules of traces.

The result of a successful computation is the number of objects present in the
membrane labeled i0 in the halting configuration. A computation which never
halts has no result. The set of all numbers computed by Π is denoted by N(Π).
The family of all sets N(Π), computed by systems Π of degree at most m,
depth at most k using symport/antiport rules of weight at most q, r is denoted
by NRBCm,k(symq, antir).e

Before going into universality results, we will examine an example. Consider
the system

Π = ({B,C, a, b,m, n, o}, [1 [2[3 ]3 ]2 ]1, {a}, ∅,
{C}, {a, b, n,m, o,B}, R1, R2, R3, 3, 3, p),

with p ∈ [2, 4] and the following sets of rules:

R1 = {(C, out; b, in), (C, out;B, in), (a, out; aan, in), (n, out;m, in)}
∪ {(n, out; o, in), (m, out), (b, out)}

R2 = {(C, out), (a, in), (n, in), (b, in), (b, out), (a, out), (m, in), (m, out), (n, out)}
R3 = {(C, out), (a, in), (n, in), (m, in), (b, out), (n, out), (m, out),

(m, in; aa, out), (b, in; a, out)}.

To begin with, the rules (C, out) of R3 and (a, in) of R2 are applied. Note that
the rule (a, out; aan, in) of R1 is not applicable initially to the object a in w1.
At the end of two steps, a reaches 3 and C goes out bringing in either b or B. If
b comes in, then the computation continues. If B enters, then the system halts
with a in membrane 3. Assuming b has entered, b can enter membrane 3 pulling
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a out. Subsequently, b exits the system, and a is replaced by aan. The symbols
a, n reach membrane 3, after which n comes out to the skin. If n is replaced
by m, the computation continues, but if n is replaced by o, the system halts.
The output of a halting computation is {2n | n ≥ 0}. The traces of objects are
as follows: C : 321, b : 12321, n : 12321,m : 12321. B and o have no rules, and
so they have no traces. The trace of the objects a present in the system after
a halting configuration is 123, since there are no rules to pull a out when the
system halts. The traces of objects a in all configurations previous to the halting
configuration is 12321.

4 Universality

In the following proof of computational universality, we use the characteriza-
tion of recursively enumerable languages by means of matrix grammars with ap-
pearance checking. Such a grammar is a construct G = (N,T, S,M,F ) where
N,T are disjoint alphabets, S ∈ N , M is a finite set of sequences of the
form (A1 → x1, . . . , An → xn), n ≥ 1, of context-free rules over N ∪ T (with
Ai ∈ N,xi ∈ (N ∪ T )∗), and F is a set of occurrences of rules in M (N is the
non-terminal alphabet, T is the terminal alphabet, S is the start symbol, while
the elements of M are called matrices).

For w, z ∈ (N ∪T )∗, we write w ⇒ z if there is a matrix (A1 → x1, . . . , An →
xn) in M and the strings wi ∈ (N ∪ T )∗, 1 ≤ i ≤ n + 1, such that w = w1, z =
wn+1, and for all 1 ≤ i ≤ n, either wi = w′

iAiw
′′
i , wi+1 = w′

ixiw
′′
i , for some

w′
i, w

′′
i ∈ (N ∪ T )∗, or wi = wi+1, Ai does not appear in wi, and the rule

Ai → xi appears in F . (The rules of a matrix are applied in order, skipping the
rules in F that cannot be applied.)

The language generated by G is defined by L(G) = {w ∈ T ∗ | S ⇒∗ w}.
The family of languages of this form is denoted by MATac. It is known that
MATac = RE [3].

The following normal form theorem was given in [9].
A matrix grammar with appearance checking G = (N,T, S,M,F ) is said to

be in Z-binary normal form if N = N1 ∪ N2 ∪ {S,Z, †}, with these three sets
mutually disjoint, and the matrices in M are in one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y,A→ x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2,
3. (X → Y,A→ †), with X ∈ N1, Y ∈ N1 ∪ {Z}, A ∈ N2,
4. (Z → λ).

Moreover, there is only one matrix of type 1, F consists exactly of all rules A→ †
appearing in matrices of type 3 and if a sentential form generated by G contains
the symbol Z, then the string will be of the form Zw, w ∈ (T ∪ {†})∗.

Theorem 1. NRE = NRBCP2,2(sym1, anti1).

Proof. We only have to prove the inclusion ⊆. For that purpose, let us consider a
matrix grammar with appearance checking G = (N,T, S,M,F ) in the Z-binary
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normal form. Since we deal with the length of the strings, it is enough to consider
T = {a}. Let there be n+2 matrices inM , injectively labeledm0,m1, . . . ,mn+1,
with m0 : (S → X0A0) being the initial one; the next k matrices mi : (X →
Y,A → x), 1 ≤ i ≤ k, of type 2 without appearance checking, and the next
n − k matrices of type 3, mi : (X → Y,A → †), k + 1 ≤ i ≤ n. Finally we
have mn+1 : (Z → λ). We say X → Y,A → x ∈ mi or X → Y,A → † ∈ mi

if mi : (X → Y,A → x) or (X → Y,A → †) is a matrix in G for some i,
respectively. We construct the P system of degree 2e , depth 2, having RBC like
objects and symport/antiport rules of weight 1

Π = (V, [1 [2 ]2 ]1, w1, w2, E,R1, R2, 2, 2, p),

V = N1 ∪N2 ∪ {A′
i, X

′
j , Tj , Sj | A ∈ N2, X ∈ N1, 1 ≤ i ≤ n, k + 1 ≤ j ≤ n}

∪ {j | 1 ≤ j ≤ n},
w1 = {X0, a

′, κ} ∪ {j, A′
j , Si, Ti | 1 ≤ j ≤ n, k + 1 ≤ i ≤ n},

w2 = {A0} ∪ {X ′
i | k + 1 ≤ i ≤ n},

E = {〈αβ〉, 〈γ〉, Ci, Yj , Z, e, Lq, †, X ′
l , Tl, Sl | α ∈ {Bj , a}, β ∈ {Ci, a, e},

γ ∈ {Ci, a, e, Yj , Z}, B,C ∈ N2, X, Y, Z ∈ N1, 1 ≤ i, j,≤ n,
k + 1 ≤ l ≤ n, k + 2 ≤ q ≤ n},

p is an integer in the interval [1,2] (every object which has communicated for
one or two steps obeying the rules of traces will be replaced), and the rules as
defined below.

The work of the P system is divided into 3 phases.

(1) Simulation of matrices mi : (X → Y,A→ x)

The following rules are introduced in R1

1. {(Ai, out; 〈αβ〉, in), (Ai, out; 〈e〉, in) | α ∈ {Bj , a}, β ∈ {Cr, a, e},
A,B,C ∈ N2, for A→ BC ∈ mi, or A→ aC ∈ mi, or
A→ Ba ∈ mi, or A→ aa ∈ mi, or A→ B ∈ mi, or A→ a ∈ mi

or A→ λ ∈ mi, 0 ≤ i ≤ k, 1 ≤ j, r ≤ n, and B → x ∈ mj or
B → † ∈ mj , and C → y ∈ mr or C → † ∈ mr},

5. {(〈αβ〉, out); (〈β〉, in) | α ∈ {Bj , a}, β ∈ {Cr, a, e}, B,C ∈ N2,

1 ≤ j, r ≤ n},
7. {(B′

j , out;Bj , in) | 1 ≤ j ≤ n} ∪ {(a′, out; a, in)},
9. {(Xi, out; 〈Yj〉, in) | X → Y ∈ mi, X, Y ∈ N1,

1 ≤ i ≤ k, 1 ≤ j ≤ n, and Y → Y ′ ∈ mj , Y
′ ∈ N1}

∪{(Xi, out; 〈Z〉, in) | X,Z ∈ N1, 1 ≤ i ≤ k and X → Z ∈ mi}
11. {(j, out;B′

j , in) | 1 ≤ j ≤ n} ∪ {(κ, out; a′, in)}
13. {(〈α〉, out); (α, in) | α ∈ {a,Cr, e}, 1 ≤ r ≤ n} ∪ {(e, out)}
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14. {(j, in) | 1 ≤ j ≤ n} ∪ {(κ, in)}
16. {(〈Yj〉, out;Yj , in) | 1 ≤ j ≤ n} ∪ {(〈Z〉, out;Z, in)},

and the following rules are introduced in R2:

2. {(Xi, in;Ai, out) | X ∈ N1, A ∈ N2, 0 ≤ i ≤ k}
3. {(〈αβ〉, in) | α ∈ {Bj , a}, β ∈ {Cr, a, e}, 1 ≤ j, r ≤ n}
4. {(〈αβ〉, out); (α′, in), | α ∈ {Bj , a}, β ∈ {Cr, a, e}, 1 ≤ j, r ≤ n}
6. {(B′

j , out; j, in) | 1 ≤ j ≤ n} ∪ {(a′, out;κ, in)}
8. {(〈α〉, in;Xi, out) | α ∈ {Cr, a, e}, C ∈ N2, X ∈ N1, 0 ≤ i ≤ k,

1 ≤ r ≤ n}
10. {(Bj , in; j, out) | 1 ≤ j ≤ n} ∪ {(a, in;κ, out)}
12. {(〈α〉, out); (〈β〉, in) | α ∈ {Cr, a, e}, β ∈ {Yj , Z}, C ∈ N2, Y, Z ∈ N1,

1 ≤ r, j ≤ n}
15. {(α, in; 〈β〉, out) | α ∈ {Cr, a, e}, β ∈ {Yj , Z}, 1 ≤ r, j ≤ n}
∪{(e, out)}

In the initial configuration, the symbolX0 is in the skin and the corresponding
A0 in the special membrane l (here l=2). To start the computation, rule 2 of R2
is used which brings out A0 to the skin. This is followed by rule 1 of R1 bringing
in one of the symbols 〈BjCr〉, 〈aCr〉, 〈Cra〉, 〈aa〉 etc. as the case may be. Rules
3,4 follow next. The symbol B′

j or a′ enters membrane 2 by rule 4. Iinally,
〈BjCr〉(or 〈aCr〉, 〈Cra〉, 〈aa〉) leaves the skin using rule 5, bringing in another
symbol 〈Cr〉 or 〈a〉. Rule 6 is applied in parallel with rule 5, pushing out B′

j or
a′ from membrane 2. The symbol j which keeps track of the indices of matrices
enters membrane 2 instead. Next, rules 7 and 8 are applied in parallel, pushing
out Xi, 0 ≤ i ≤ k, from membrane 2, and obtaining the symbol Bj , 1 ≤ j ≤ n,
from the environment. The symbol Xi then gets its corresponding symbol of N1
from E in the form 〈Yj〉 and the symbol Bj enters membrane 2 respectively by
rules 9 and 10. Rules 11 and 12 follow next in parallel, getting back B′

j and
getting 〈Cr〉 out of membrane 2. Rules 13 and 14 follow in parallel, getting Cr

from E getting back j to the skin. We have now completed simulating the rule
A→ BC of mi, 0 ≤ i ≤ k. What needs to be completed now is the simulation of
X → Y . To this end, rule 15 is used, bringing out 〈Yj〉. Rule 16 now sends this
symbol out, getting Yj , to start the next round of simulation.

(2) Simulation of matrices mi : (X → Y,A→ †)

We introduce in R1 the rules:

3. {(X ′
l , out;X

′
l , in) | k + 1 ≤ l ≤ n},

5. {(Xl, out;Yq, in) | X,Y ∈ N1 and X → Y ∈ ml, k + 1 ≤ l ≤ n,
1 ≤ q ≤ n and Y → Y ′ ∈ mq, Y

′ ∈ N1}
∪{(Xl, out;Z, in) | X,Z ∈ N1 and X → Z ∈ ml, k + 1 ≤ l ≤ n},
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7. {(Tl, in;Tl, out) | k + 1 ≤ l ≤ n},
9. {(Al, out; †, in) | k + 1 ≤ l ≤ n},
10. {(Sl, in;Sl, out) | k + 1 ≤ l ≤ n},
12. {(†, in; †, out)},

and in R2 the rules:

1. {(Xl, in;X ′
l , out) | k + 1 ≤ l ≤ n},

2. {(Xl, out;Tl, in) | k + 1 ≤ l ≤ n},
4. {(X ′

l , in;Al, out) | k + 1 ≤ l ≤ n and A→ † ∈ ml},
6. {(Sl, in;Tl, out) | k + 1 ≤ l ≤ n},
8. {(X ′

l , in;Sl, out) | k + 1 ≤ l ≤ n},
11. {(†, in), (†, out)}.

The simulation of type 3 matrices is initiated by rule 1 of R2. The symbol
Xl, k + 1 ≤ l ≤ n enters membrane 2, while X ′

l comes out. This is followed by
rules 2 and 3 in parallel. Rule 3 has to be applied here for X ′

l to preserve the
rules of traces. Rules 5,6 and 4 (if applicable) follow next in parallel. Rules 7,
8 (if not rule 4 in the previous step) and 9 (if rule 4 in the previous step) are
the next set of possible rules. Assuming we applied rules 5,6 simultaneously and
then rules 7 and 8, we can successfully start another simulation. But if rules 4
and 9 were applied, the system will never halt, because rules 11 and 12 can be
applied forever, cyclically.

(3) Termination:

We introduce the rules:

3. {(Z, out;Lk+2, in)},
6. {(Li, out;Li+1, in) | k + 2 ≤ i ≤ n− 1}

in R1, and the rules:

1. {(Z, in;X ′
k+1, out)},

2. {(Z, out)},
4. {(Li, in;X ′

i, out) | k + 2 ≤ i ≤ n},
5. {(Li, out) | k + 2 ≤ i ≤ n},

in R2.
Once the symbol Z appears, we can be sure that the remaining symbols

computed are over T ∪ {†}. Assuming that there is no † present (otherwise the
computation never stops), we need to eliminate all the X ′

l , k + 1 ≤ l ≤ n, from
membrane 2, the output membrane. Rule 1 is used first getting out X ′

k+1 from
membrane 2. This is followed by rules 2 and 3, obtaining the symbol Lk+2 from
E. Rule 4 is applied to get the next symbol from membrane 2. Rules 5, 6 then
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ensure that the contents of membrane 2 at the end of a halting computation is
L(G). Observe that all objects other than a have complete traces in a halting
configuration. The traces of all new objects introduced other then a is 121 and
the trace of objects of w2 is 21. The trace of the a’s is 12. ��

Corollary 1. NFIN ⊆ NRBCP1,1(sym1, anti0) = NRBCP1,1(sym0, anti1) =
NRBCP1,1(sym1, anti1) = NRBCP2,2(sym1, anti0) = NRBCP2,2(sym0, snti1)
⊂ NRBCP2,2(sym1, anti1) = NRE.

Remark 1. The above universality result also supports the known fact that there
is no interaction between RBCs (except when agglutination occurs) [17]. Hence,
symport/antiport rules of weight one are sufficient to model their activity.
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Abstract. Energy–based P systems have been recently introduced as P
systems in which the amount of energy consumed and/or manipulated
during computations is taken into account. In this paper we consider
conservative computations performed by energy–based P systems, that
is, computations for which the amount of energy entering the system
is the same as the amount of energy leaving it. We show that conser-
vative computations naturally allow to define an NP–hard optimization
problem, here referred to as Min Storage, and a corresponding NP–
complete decision problem, ConsComp. Finally, we present a polynomial
time 2–approximation algorithm for Min Storage.

1 Preliminaries

P systems (also called membrane systems) were introduced in [16] as a new class
of distributed and parallel computing devices, inspired by the structure and
functioning of living cells. The basic model consists of a hierarchical structure
composed by several membranes, embedded into a main membrane called the
skin. Membranes divide the Euclidean space into regions, that contain some
objects (represented by symbols of an alphabet) and evolution rules. Using these
rules, the objects may evolve and/or move from a region to a neighboring one.
The rules are applied in a nondeterministic and maximally parallel way: all the
objects that may evolve are forced to evolve. A computation starts from an
initial configuration of the system and terminates when no evolution rule can be
applied. The result of a computation is the multiset of objects contained into an
output membrane or emitted from the skin of the system.

In what follows we assume the reader is already familiar with the basic no-
tions and the terminology underlying P systems. For details, and a systematic
introduction on the subject, we refer the reader to [18]. The latest information
about P systems can be found in [22].

Energy–based P systems have been introduced in [13] as P systems in which
the amount of energy manipulated and/or consumed during computations is
taken into account. A given amount of energy is associated to each object of
the system. Moreover, instances of a special symbol e are used to denote free
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energy units occurring into the regions of the system. These energy units can
be used to transform objects, using appropriate rules. The rules are defined
according to conservativeness considerations: for each rule of the system, the
amount of energy occurring on the left side is the same as the amount of energy
occurring on the right side. An object can always be transformed into another
object having the same energy. On the other hand, if the transformed object
has a different energy then the required (resp., exceeding) free energy units are
taken from (resp., released to) the region where the rule is applied. We assume
that the application of rules consumes no energy. This means, in particular,
that objects can be moved (without altering them) between the regions of the
system without energy consumption. A special case of energy–based P systems
are conservative P systems, where the amount of energy entering the system
with the input values is completely returned with the output values at the end
of the computation, and no free energy units enter or leave the system during
the computation.

Formally, an energy–based P system (of degree m ≥ 1) is a construct

Π = (A, ε, μ, e, w1, . . . , wm, R1, . . . , Rm, iin, iout),

where:

– A is an alphabet; its elements are called objects;
– ε : A → IN is a linear mapping that associates to each object a ∈ A the

value ε(a) (also denoted by εa), which can be thought of as the “energy
value of a”. If ε(a) = �, we also say that object a embeds � units of energy.
Precisely, if A = {a1, a2, . . . , ad} then for all i ∈ {1, 2, . . . , d} it holds ε(ai) =
ε(a1) + (i − 1)δ for an appropriate integer value δ > 0. Hence, the energy
values considered in the system are equispaced by the quantity δ. By adding
“dummy” symbols into the alphabet (that is, symbols which never appear in
the system during the computations), we can always assume δ = 1 without
loss of generality;

– μ is a hierarchical membrane structure consisting of m membranes. For the
sake of clarity, we will label membranes with mnemonic identifiers which
recall their function;

– e �∈ A is a special symbol that denotes one free energy unit, that is, one unit
of energy which is not embedded into any object;

– wi, for all i ∈ {1, . . . ,m}, specify the multisets (over A ∪ {e}) of objects
initially present in region i;

– Ri, for all i ∈ {1, . . . ,m}, is a finite set of evolution rules over A associated
with region i. Only rules of the following types are allowed:

aek → (b, p) , a→ (b, p)ek , e→ (e, p)

where a, b ∈ A, p ∈ {here, in(name), out} and k is a non negative integer;
– iin is an integer between 1 and m and specifies the input membrane of Π;
– iout is an integer between 0 and m and specifies the output membrane of Π.

If iout = 0, then the environment is used for the output, that is, the output
value is the multiset of objects (over A) emitted from the skin.
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A special attention is due to the definition of rules. The meaning of rule
aek → (b, p), with a, b ∈ A, p ∈ {here, in(name), out}, and k a positive integer
number, is the following: the object a, in presence of k free energy units, is
allowed to be transformed into object b. If p = here then the new object b
remains in the same region; if p = out then b leaves the current membrane.
Finally, if p = in(name) then b enters into the membrane labelled with name,
which must be a child of the current membrane in the membrane hierarchy.

The meaning of rule a → (b, p)ek, when k is a positive integer number, is
analogous. The object a is allowed to be transformed into object b by releasing
k units of free energy. As above, the new object b may optionally move one level
up or down into the membrane hierarchy. The k free energy units can now be
used by another rule to produce “more energetic” objects from “less energetic”
ones.

When k = 0 the rule aek → (b, p) is written as a→ (a, p), and simply moves
(if p �= here) the object a upward or downward into the membrane hierarchy,
without acquiring nor releasing any free energy unit. Analogously, rules e →
(e, p) simply move (if p �= here) one unit of free energy upward or downward
into the membrane hierarchy.

A further constraint is that each rule must be “conservative”, in the sense
that the amount of energy occurring on the left side of the rule must be the same
as the amount of energy which occurs on the right side.

With a little abuse of notation, when the pair (x, p), with x ∈ A ∪ {e}
and p ∈ {here, in(name), out}, appears into a rule we will write xp. Also, if
p = in(name) and no confusion arises we will usually write just the name of the
membrane. Moreover, instead of writing ek we will sometimes explicitly write k
instances of e. It is also understood that the position of ek (that is, on the left
or on the right of the symbol of A) either into the left or into the right side of a
rule is uninfluent. Finally, when the position p of an object which occurs in the
right side of a rule is “here” we will omit to write it.

Example 1. Let us assume A = {a, b, c, d}, where the objects have energy values
εa = 1, εb = 2, εc = 3 and εd = 4. Then the application of the rule be2 → (d, out)
(also written as bee → dout) transforms an instance of the object b into an
instance of the object d, provided that two free energy units are available, and
makes the new object d exit from the current membrane.

On the other hand, the application of the rule c → (a,here)e2 (also writ-
ten as c → aee) transforms an instance of the object c into an instance of the
object a and releases two free energy units into the region which contains the
rule.

Let us also note that in case of necessity (for example, during proofs) we can
safely assume that for each rule at most one instance of e cooperates with a
symbol of the alphabet. In fact, any rule of the kind a→ (b, p)ek, with a, b ∈ A
and p ∈ {here, in(name), out}, involving k instances of e, can be decomposed as
follows:
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a→ (b1,here)e
b1 → (b2,here)e

...
bk−2 → (bk−1,here)e
bk−1 → (b, p)e

by adding to the alphabet the new symbols b1, . . . , bk−1. An analogous observa-
tion holds for rules of the kind aek → (b, p).

A possible extension of the model, which is nevertheless uninfluent with re-
spect to the problems considered in this paper, is to allow the use of constructor
and destructor rules. A constructor rule is a rule of the kind ek → (a, p), where
a ∈ A, εa = k, p ∈ {here, in(name), out} and k is a positive integer. Informally,
a constructor rule for an object a ∈ A is a rule which uses εa free energy units
to build the object a. In other words, we allow transformations from “pure”
energy to system objects. Analogously, a destructor rule is a rule of the kind
a → ek, where a ∈ A and εa = k (a positive integer). Hence, a destructor rule
for an object a ∈ A is a rule which transforms the object a into εa units of free
energy.

A configuration of Π is the tuple (M1, . . . ,Mm) of multisets (over A∪{e}) of
objects contained in each region of the system. (w1, . . . , wm) is called the initial
configuration. For two configurations (M1, . . . ,Mm), (M ′

1, . . . ,M
′
m) ofΠ we write

(M1, . . . ,Mm) ⇒ (M ′
1, . . . ,M

′
m) to denote a transition from (M1, . . . ,Mm) to

(M ′
1, . . . ,M

′
m). The reflexive and transitive closure of ⇒ is denoted by ⇒∗. A

final configuration is a configuration where no rule can be applied.
A computation is a sequence of transitions between configurations ofΠ, start-

ing from the initial configuration. A computation is successful if and only if it
reaches a final configuration or, in other words, it halts. It is understood that
the multiset (over A, that is, not considering free energy units) of objects which
occur in wiin are the input values for the computation. Analogously, the multi-
set (over A) of objects occurring in the output membrane (or emitted from the
skin if iout = 0) in the final configuration is the output of the computation. A
non–halting computation produces no output.

If M denotes the set of all possible multisets over A then we can define the
function G : M → 2M ∪ {⊥} computed by Π as the (partial) function that to
each multiset M ∈ M associates the set G(M) of possible multisets which can
be produced in output by Π when givenM in input. If the computation does not
halt then G(M) = ⊥. Here we stress that, for a halting computation, only one of
the multisets inG(M) is nondeterministically produced in output. With an abuse
of notation, for any fixed computation we denote also this multiset by G(M).

Since energy is an additive quantity, it is natural to define the energy of
a multiset M , denoted by E(M), as the sum of the amounts of energy asso-
ciated to each instance of the objects which occur into M . Analogously, the
energy of a configuration C = (M1, . . . ,Mm), denoted by E(C), is the sum of the
amounts of energy associated to each multiset which occurs into the configura-
tion: E(C) =

∑m
i=1E(Mi). A conservative energy–based P system can thus be
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defined as an energy–based P system such that for every possible computation
all configurations have the same amount of energy. Moreover, in a conservative
P system it is required that the amount of energy entering the system with the
input multiset M is entirely returned with the output multiset G(M) at the
end of the computation. Let us note that conservativeness is here defined as a
mathematical notion; namely, it is not required that the entire energy used to
perform the computations is preserved or that the computing device is a physical
conservative system (an ideal but unrealistic situation). In particular, we do not
consider the energy needed to supply the computing device.

In [14] we have shown that energy–based P systems are able to simulate any
reversible circuit made of Fredkin gates. Since families {FCn}n∈IN of reversible
Fredkin circuits are able to compute any family {fn}n∈IN of boolean functions,
(families of) energy–based P systems constitute a universal model of computa-
tion. The simulating P systems considered in [14] are self–reversible, meaning
that the same system is able to perform both “forward” and “backward” compu-
tations, that is, to compute the output values corresponding to any given input
values, and vice versa. An interesting aspect of the simulations presented in [14]
is that the simulating P systems are also conservative: the amount of energy
present into the system during computations is constant. Hence it is possible
to perform universal computations using only self–reversible and conservative P
systems.

This is by no means the first time that energy is considered when dealing with
P systems. The energy balancing of processes in a cell was first investigated in
[21] and then in [5]. There the energies of all rules to be used in a given step in
a membrane are summed up; if the total amount of energies is positive [21] or
within a given range [5], then this multiset of rules can be applied if it is maximal
with this property. Energy and associations between energy and information have
also been considered in [1, 7, 8, 9].

The paper is organized as follows. In Section 2 we define conservative com-
putations for energy–based P systems. Moreover, we introduce the NP–hard
optimization problem Min Storage and its corresponding NP–complete deci-
sion version, ConsComp. In Section 3 a 2–approximation algorithm for Min
Storage is presented. Section 4 proposes conservative languages with some
directions for future research. Finally, Section 5 concludes the paper.

2 Conservative Computations

As stated above, in a conservative energy–based P system the amount of energy
entering the system with the input values is completely returned with the output
values at the end of the computation. This means, in particular, that if some free
energy units are present in the initial configuration (w1, . . . , wm) of a computa-
tion then these energy units will occur also in the final configuration. Once the
output values have been removed from the output membrane (or, alternatively,
once they have been expelled from the skin), this amount of free energy units
can be used to perform another computation.
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This situation suggests the following scenario. Assume that we have a se-
quence Sin = 〈M1,M2, . . . ,Mk〉 of multisets (over A) to be used as input
values for an energy–based P system Π. Moreover, assume that we already
know that Π will produce the multisets G(M1), . . . , G(Mk) when given in input
M1, . . . ,Mk, where G(Mi) �= ⊥ for all i ∈ {1, 2, . . . , k}. Let E(M1), . . . , E(Mk)
and E(G(M1)), . . . , E(G(Mk)) be the energies associated with the input and
output multisets, respectively, and let us consider the quantities ei = E(Mi) −
E(G(Mi)), for all i ∈ {1, 2, . . . , k}. As told above, we may assume without loss
of generality that all ei’s are integer values. We say that the computation of
the output sequence Sout = 〈G(M1), . . . , G(Mk)〉, obtained starting from Sin, is
conservative if the following condition holds:

k∑
i=1

ei =
k∑

i=1

E(Mi)−
k∑

i=1

E(G(Mi)) = 0

This condition formalizes the requirement that the total energy provided by all
input multisets of Sin is used to build all the output multisets of Sout. If no
additional energy, in the form of free energy units, is supplied during the com-
putation of Sout then this condition formalizes also the requirement that the
energy entering the system during the computation is equal to the energy leav-
ing it. Of course it may happen that ei > 0 or ei < 0 for some i ∈ {1, 2, . . . , k}.
In the former case some free energy units remain into the system after producing
G(Mi). These energy units can be used during the computation of subsequent
output multisets G(Mi+1), . . . , G(Mk). Hence the P system Π acts as an accu-
mulator of energy. Notice that in every conceivable physical realization of a P
system there is a bound on the maximum amount C of energy units (both free
and embedded into objects) which can be stored into the system. We call C the
capacity of the system.

If the output multisets G(M1), G(M2), . . . , G(Mk) of Sout are computed ex-
actly in this order then, assuming that the system Π starts with zero internal
energy, it is easily seen that st1 := e1, st2 := e1+e2, . . . , stk := e1+e2+. . .+ek
is the sequence of the amounts of energy stored into the system during the com-
putation of Sout. Notice that stk = 0 for conservative computations, so the
amount of energy stored into the system at the end of the computation is zero.

In some cases the order with which the output multisets of Sout are computed
does not matter. We can thus introduce the following problem: Given an in-
put sequence 〈M1, . . . ,Mk〉 and the corresponding output sequence 〈G(M1), . . .,
G(Mk)〉, is there a permutation π ∈ Sk (the symmetrical group of order k)
such that the computation of G(Mπ(1)), . . . , G(Mπ(k)) can be performed by an
energy–based P system having a predefined capacity C? This is a decision prob-
lem, whose formal statement follows. (Note that we do not actually need to
know the multisets M1, . . . ,Mk and G(M1), . . . , G(Mk): all we need are the val-
ues ei = E(Mi)− E(G(Mi)), for i ∈ {1, 2, . . . , k}.)

Let E = 〈e1, e2, . . . , ek〉 be a finite sequence of integer numbers. For a fixed
i ∈ {1, 2, . . . , k}, the i-th prefix sum of E is the value

∑i
j=1 ej . Let C be a positive



350 A. Leporati, C. Zandron, and G. Mauri

integer; we say that E is C–feasible if for each i ∈ {1, 2, . . . , k} the i-th prefix
sum of E is in the closed interval [0, C].

Problem 1. Name: ConsComp.

– Instance: a set E = {e1, e2, . . . , ek} of integer numbers such that e1 + e2 +
. . .+ ek = 0, and an integer number C > 0.

– Question: is there a permutation π ∈ Sk (the symmetric group of order k)
such that the sequence eπ(1), eπ(2), . . . , eπ(k) is C–feasible? ��

The fact that the resulting sequence eπ(1), eπ(2), . . . , eπ(k) is C–feasible can
be explicitly written as:

0 ≤
i∑

j=1

eπ(j) ≤ C ∀ i ∈ {1, 2, . . . , k} (1)

The ConsComp problem can be obviously solved by trying every possible
permutation π from Sk. However, this procedure requires an exponential time
with respect to k, the length of the input sequence. A natural question is whether
it is possible to give the correct answer in polynomial time. With the following
theorem we show that the ConsComp problem is NP–complete, and hence it is
very unlikely that a polynomial time algorithm exists that solves it. The proof
of this theorem was originally published in [4].

Theorem 1. ConsComp is NP–complete.

Proof. ConsComp is clearly in NP, since a permutation π ∈ Sk has linear length
and verifying whether π is a solution can be done in polynomial time. In order to
conclude that ConsComp is NP–complete, let us show a polynomial reduction
from Partition, which is a well known NP–complete problem [10, page 47].

Let A = {a1, a2, . . . , ak} be a set of positive integer numbers, and let m =∑k
i=1 ai. The set A is a positive instance of Partition if and only if there exists

a set A′ ⊆ A such that
∑

a∈A′ a = m
2 . If m is odd then A is certainly a negative

instance, and we can associate it to any negative instance of ConsComp. On
the other hand, if m is even then we build the corresponding instance (E , C)
of ConsComp by putting C = m

2 and E = {e1, e2, . . . , ek, ek+1, ek+2}, where
ei = −ai for all i ∈ {1, 2, . . . , k} and ek+1 = ek+2 = m

2 . It is immediately seen
that this construction can be performed in polynomial time.

We claim that A is a positive instance of Partition if and only if (E , C) is
a positive instance of ConsComp. In fact, let us assume that A is a positive
instance of Partition. Then there exists a set A′ ⊆ A such that

∑
a∈A′ a = m

2 ,
and the corresponding negative elements of E constitute a subset E ′ such that∑

e∈E′ e = −m
2 . We build a permutation π ∈ Sk by selecting first the element

ek+1 followed by the elements of E ′ (chosen with any order), and then ek+2
followed by the remaining elements of E . It is immediately seen that π satisfies the
inequalities stated in (1), and hence (E , C) is a positive instance of ConsComp.
Conversely, let us assume that (E , C) is a positive instance of ConsComp. Then
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there exists a permutation π ∈ Sk that satisfies the inequalities stated in (1).
Since the first chosen element cannot be negative, it must necessarily be m

2 .
Moreover, since C = m

2 , the second m
2 can be chosen if and only if the energy

stored into the system is zero, that is, if and only if there exists a set E ′ ⊆ E of
negative elements whose sum is equal to −m

2 . The opposites of these elements
constitute a set A′ ⊆ A such that

∑
a∈A′ a = m

2 , and thus we can conclude that
A is a positive instance of Partition.

The ConsComp problem naturally leads to the formulation of the following
optimization problem.

Problem 2. Name: Min Storage.

– Instance: a set E = {e1, e2, . . . , ek} of integer numbers such that e1 + e2 +
. . .+ ek = 0.

– Solution: a permutation π ∈ Sk such that
∑i

j=1 eπ(j) ≥ 0 for each i ∈
{1, 2, . . . , k}.

– Measure: max
1≤i≤k

∑i
j=1 eπ(j). ��

Informally, the output of Min Storage is the minimum value of C for which
there exists a permutation π ∈ Sk such that the sequence eπ(1), eπ(2), . . . , eπ(k)
is C–feasible. Notice that a trivial upper bound for the value of C is:

∑
i∈{1,2,...,k} : ei>0

ei =
1
2

k∑
i=1

|ei|

while a trivial lower bound is max1≤i≤k |ei|.
It is immediately seen that Min Storage is in the class NPO [2, page 27].

In fact, checking whether some given integers e1, e2, . . . , ek sum up to zero can
be trivially done in polynomial time; each feasible solution has linear length
and besides it can be verified in polynomial time whether a given permutation
π ∈ Sk is a feasible solution; finally, the measure function can be computed
in polynomial time. Since the underlying decision problem ConsComp is NP–
complete, we can immediately conclude that Min Storage is NP–hard [2, page
30]. As with the ConsComp decision problem, this means that it is very unlikely
that a polynomial time algorithm exists that gives the correct solution to every
instance of Min Storage.

If we drop the requirement e1+e2+. . .+ek = 0 in the instances of ConsComp
and Min Storage we obtain the following problems.

Problem 3. Name: ConsComp II.

– Instance: a set E = {e1, e2, . . . , ek} of integer numbers, and an integer
number C > 0.

– Question: is there a permutation π ∈ Sk such that the sequence eπ(1),
eπ(2), . . . , eπ(k) is C–feasible? ��
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Problem 4. Name: Min Storage II.

– Instance: a set E = {e1, e2, . . . , ek} of integer numbers.
– Solution: a permutation π ∈ Sk such that

∑i
j=1 eπ(j) ≥ 0 for each i ∈

{1, 2, . . . , k}.
– Measure: max

1≤i≤k

∑i
j=1 eπ(j). ��

Notice that it may happen that, for some instance E , the set of feasible solutions
of Min Storage II is empty. In such a case, we put the solution equal to 0 by
definition.

ConsComp II is obviously NP–complete, by the restriction property [10,
page 63], since it contains ConsComp as a particular case. Notice that interest-
ing instances of ConsComp II are obtained only for values e1, e2, . . . , ek taken
from the interval [−C,C] of integers. In fact, if ei �∈ [−C,C] ∩ ZZ for some
i ∈ {1, 2, . . . , k} (a situation which can be verified in linear time) then the in-
stance does not admit a solution. Since ConsComp II is the decision version of
Min Storage II, and it is NP–complete, Min Storage II is NP–hard. Also
for this problem, if the set of feasible solutions is not empty then a trivial upper
bound for the value of the optimal solution is

∑
i∈{1,2,...,k} : ei>0

ei, while a trivial

lower bound is max1≤i≤k |ei|.
We conclude this section by observing that a different interpretation of Con-

sComp II and Min Storage II can be given without reference to conservative-
ness and conservative computations. Let us consider a merchant whose business
involves k cities. When the merchant arrives to the i-th city he either buys or
sells some good. If he sells, he earns an amount ei of money; if he buys, he
spends an amount ei of money. Hence we can associate to each city a positive
integer earning ei > 0 or a “negative earning” (that is, an expense) ei < 0. The
ConsComp II problem can thus be seen as the formalization of the following
problem: Given a wallet that may contain a maximum amount C of money, is
the merchant able to make a tour of all cities (as in the TSP problem) without
going out of money or earning too much? We call this interpretation of Con-
sComp II the Traveling Merchant problem. Analogously, Min Storage II
can be seen as the formalization of the problem which asks what is the minimum
capacity of the wallet that allows the merchant to perform a tour of all cities.
An appropriate name for this interpretation of Min Storage II seems to be
Min Wallet.

3 Approximating Min Storage

Since the Min Storage problem is NP–hard, a natural question is how well
its optimal solutions can be approximated in polynomial time. Precisely, we
ask ourselves whether there exists a PTAS (Polynomial Time Approximation
Scheme) or even an FPTAS (Fully Polynomial Time Approximation Scheme)
for Min Storage.
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The fact that Partition can be thought of as a particular case of the Subset
Sum problem (indeed, a direct polynomial reduction from Subset Sum to Con-
sComp can be trivially derived from the proof of Theorem 1) could suggest that
a modification to the standard FPTAS for Subset Sum [12] could lead to an
FPTAS for Min Storage. However, differently from Subset Sum, ConsComp
is NP–complete in the strong sense (and hence Min Storage is NP–hard in
the strong sense), as it is easily proved in the following. Let us consider the
3–Partition problem [10, page 224].

Problem 5. Name: 3–Partition.

– Instance: Set A of 3m elements, a bound B ∈ ZZ+, and a size s(a) ∈ ZZ+

for each a ∈ A such that B/4 < s(a) < B/2 and such that
∑

a∈A s(a) = mB.
– Question: Can A be partitioned into m disjoint sets A1, A2, . . . , Am such

that, for 1 ≤ i ≤ m,
∑

a∈Ai
s(a) = B (note that each Ai must therefore

contain exactly three elements from A)? ��

The 3–Partition problem is NP–complete in the strong sense [10, page
224]. A simple modification to the proof of Theorem 1 allows to build an explicit
polynomial reduction from 3–Partition to ConsComp, thus proving that also
ConsComp is strongly NP–complete. As it is well known [2, page 116] this fact
prevents the existence of an FPTAS for Min Storage. Hence the next natural
question is whether there exists a PTAS for Min Storage. This possibility is
still under investigation.

Here we show that Min Storage is in the class APX of problems which ad-
mit a constant factor polynomial time approximation algorithm. Let us consider
the following algorithm.

Approx Min Storage({e1, e2, . . . , ek})
M ← max1≤i≤k |ei|
Ep = En = ∅
for i← 1 to k

do if ei ≥ 0
then Ep = Ep ∪ {ei}
else En = En ∪ {ei}

max← st← 0
while Ep �= ∅

do if st < M
then x← an element of Ep

st← st+ x
if st > max then max← st
Ep = Ep \ {x}

else x← an element of En

st← st+ x
En = En \ {x}

return max
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The algorithm works as follows. The variableM is set to max1≤i≤k |ei|, which
is a theoretical lower bound for the optimal solution. While scanning the ele-
ments of the instance in order to compute M , we can divide them into negative
(En) and non negative (Ep) elements. The elements which are equal to 0 are
uninfluent to the solution of the problem, and can be put either in En or in Ep;
in the pseudo–code above we have put them all into Ep. The variable st records
the energy which is currently stored into the system. The idea is to make this
variable assume values only from the interval [0, 2M ] (actually, from the inter-
val [0, 2M − 1]). The variable max, which contains the value returned at the
end of the computation, records the maximum of the values assumed by st into
the subinterval [M, 2M ]. Since the optimal solution cannot be less than M , this
strategy allows the algorithm to return a value which is by a factor at most 2
greater than the optimal solution.

Notice that at the end of the execution only some elements of En will not
be chosen. Since

∑k
i=1 ei = 0, these elements will lead st to 0 and they will not

affect the returned result. If we are required to build a permutation π ∈ Sk that
corresponds to the solution found by the algorithm then it suffices to store the
elements into an array as they are selected; the remaining elements from En can
be chosen in any order to fill the final portion of the array.

A direct inspection of the pseudo–code reveals that the time complexity of
the algorithm is linear with respect to k, the length of the input sequence.

Proposition 1. Approx Min Storage is a 2–approximation algorithm for
Min Storage.

Proof. We have to prove that, for any instance E of Min Storage, the algorithm
2-Approx Min Storage always returns a solution sol(E) which is at most the
double of the optimal solution opt(E):

sol(E) ≤ 2 · opt(E)
First of all we note that the value of st is always non negative. In fact, when

the execution starts the value of st is set equal to 0. In the subsequent steps
the algorithm chooses a negative element of E if and only if st ≥ M . Since the
absolute values of all negative elements are not greater than M , at the next
iteration the value of st will remain non negative.

On the other hand, the value of st is always less than 2M . In fact, the algo-
rithm chooses a positive element of E if and only if st < M . Since the chosen
element cannot be greater thanM , the resulting value of st remains less than 2M .

The value returned by Approx Min Storage is the maximum value com-
prised between M and 2M − 1 assumed by the variable st. Since opt(E) ≥ M
and sol(E) < 2M , we can conclude that sol(E) < 2M ≤ 2 · opt(E).

4 Conservative Languages

As a direction for future work we propose to study the properties of conservative
languages, which can be defined as follows. For a fixed integer C > 0, we first
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define the alphabet ΣC = ZZ ∩ [−C,C] whose 2C + 1 elements are the integers
from the interval [−C,C]. Moreover, let Σk

C be the set of strings of length k
composed by symbols taken from ΣC .

Definition 1. For any integer k ≥ 1, the language ConsC(k) is the following
set of strings:

ConsC(k) =
{
w = σ1σ2 · · ·σk ∈ Σk

C : 0 ≤
∑i

j=1 σj ≤ C

for all i ∈ {1, 2, . . . , k}, and
∑k

i=1 σi = 0
}

Moreover, we define the languages ConsC =
⋃

k≥1 ConsC(k) and Cons =⋃
C≥1 ConsC .

Depending upon the need it may be appropriate to include or not the empty
string λ in ConsC . Since the addition of zeroes in a given string w does not
change the values of its prefix sums we can immediately conclude that for all
k ≥ 1 the language ConsC(k+1) contains an isomorphic image of ConsC(k). It
is also immediate to see that the languages ConsC form the following (infinite)
hierarchy:

Cons1 ⊂ Cons2 ⊂ . . . ⊂ ConsC ⊂ . . .

In fact, for any fixed positive integer C let wC = C,−C be the string formed
by the juxtaposition of the symbols C and −C. Then clearly wC ∈ ConsC \
ConsC−1 for all integers C > 1.

Let us now consider the following problems.

Problem 6. Given a positive integer C, and σ1, σ2, . . . , σk ∈ ΣC such that
∑k

i=1 σi

= 0, can we form a word w ∈ ConsC(k) by taking each σi exactly once? ��

The formalization of this problem is ConsComp, and hence it is NP–complete
in the strong sense.

Problem 7. Given σ1, σ2, . . . , σk ∈ ΣC such that
∑k

i=1 σi = 0, what is the mini-
mum value of C such that there exists w ∈ ConsC(k), obtained by taking each
σi exactly once? ��

The formalization of this problem is Min Storage, and hence it is NP–hard
in the strong sense. A new interesting problem is the following.

Problem 8. Given a positive integer C, and σ1, σ2, . . . , σk ∈ ΣC , what is the
longest word w ∈ Σ	

C , with 0 ≤ � ≤ k, that can be formed by picking each σi at
most once, such that w ∈ ConsC? ��

Formally, this problem can be stated as follows.

Problem 9. Name: Max String Length.
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– Instance: a set {e1, e2, . . . , ek} of integer numbers, and an integer number
C > 0.

– Solution: a permutation π ∈ Sk.

– Measure: max
0≤i≤k

{
i |0 ≤

∑r
j=1 eπ(j) ≤ C for all r ∈ {1, . . . , i}, and

i∑
j=1
eπ(j)

= 0
}

. ��

It is immediate to see that Max String Length is in NPO. In fact, each
feasible solution has linear length, and the measure function can be computed
in polynomial time.

The decision version of this optimization problem asks whether, given a set
{e1, e2, . . . , ek} of integer numbers, a positive integer number C, and a non neg-
ative integer number L, there exists a permutation π ∈ Sk such that:

max
0≤i≤k

{
i | 0 ≤

r∑
j=1

eπ(j) ≤ C for all r ∈ {1, . . . , i}, and
i∑

j=1

eπ(j) = 0
}
≥ L

This decision problem, that we name String Length, is clearly NP–complete in
the strong sense. In fact, let (E = {e1, . . . , ek}, C) be an instance of ConsComp.
We build the corresponding instance of String Length by putting L = k.
Then, a solution to this last problem immediately corresponds to a solution of
ConsComp. As a consequence, we can conclude that the optimization problem
Max String Length is NP–hard in the strong sense.

As for the computational power of energy–based P systems we propose the
introduction of languages which can be generated using a bounded (fixed, log-
arithmic, polynomial, etc.) amount of energy or capacity, and the subsequent
investigation of the properties of these languages. Another possibility is to de-
fine families {Pn}n∈IN of energy–based P systems, where Pn uses n units of
energy. Then, we can define the language generated by {Pn}n∈IN as

⋃
n∈IN Ln,

where Ln is the language generated by Pn. This approach is reminiscent of cir-
cuit complexity [23]. Moreover, having defined both an input and an output
membrane, we can view energy–based P systems as devices which map multisets
into multisets, as we have done in this paper. With respect to this point of view,
instead of asking what multisets can be generated by the system we can ask
what mappings can be realized by imposing different bounds on the amount of
resources that the system is allowed to use.

5 Conclusions and Directions for Future Work

We have introduced the notion of conservative computations for energy–based
P systems, as computations in which the initial energy of the system is the same
as the energy at the end of the computation.

We have shown that conservative computations naturally allow to define Min
Storage, a new NP–hard optimization problem, and ConsComp, its associ-
ated decision problem. Being ConsComp NP–complete in the strong sense, the
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existence of an FPTAS for Min Storage is prevented. The existence of a PTAS
is still under investigation. We have also presented a 2–approximation algorithm
for Min Storage, thus proving that the problem is in the complexity class APX.

Finally, we have introduced conservative languages. As a main direction for
future work, we advocate the study of the language–theoretic and complexity–
related features of these languages.
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21. G. Păun, Y. Suzuki, H. Tanaka. P Systems with Energy Accounting. International
Journal Computer Math., Vol. 78, No. 3, 2001, pp. 343–364.

22. The P systems Web page: http://psystems.disco.unimib.it/
23. H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer–

Verlag, 1999.



General Multi-fuzzy Sets and Fuzzy
Membrane Systems

Adam Obtu�lowicz

Institute of Mathematics,
Polish Academy of Sciences,
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Abstract. We propose a certain fuzzification of membrane systems and
their evolution rules which is motivated by some practical applications,
where the strength (or weakness causing uncertainty) of an occurrence of
an object in a system is determined not only by the number of occurring
copies of that object but also by the quality of these copies.

1 Introduction

In [12], A. Syropoulos introduced the concept of a fuzzy P system, as a fuzzy
set-theoretic counterpart of P systems introduced by Gh. Păunin [9] (see also
the book [10]).

In the present paper we propose another approach to the fuzzification of
P systems, which is motivated by some practical applications in biochemistry
and medical sciences, where a strength (or weakness causing uncertainty) of an
occurrence of an object in a system is determined not only by the number of
occurring copies of that object, but also by the quality of occurring copies.

The approach is aimed to provide:

– classification of processes generated by systems with respect to evolution
rules transforming systems in the steps of processes,

– computer simulations of processes generated by the application of evolution
rules,

– analysis of evolution rules to simplify them (by idealization) for efficient
computer simulation of processes,

– all concerning improvement of simulation methods discussed in medical sci-
ences [6].

In Section 2 we describe a new interpretation of general multi-fuzzy sets,
different from that discussed in [4] and [12], which respects the strength of oc-
currence of objects in a system determined by the number and quality of oc-
curring copies of these objects. Then, in Sections 3, 4, we discuss some algebra
of general multi-fuzzy sets focusing on their sum and their various subtractions
used to describe an idea of an evolution rule of a general fuzzy membrane system
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introduced in Section 5. We show in Section 6 that general multi-fuzzy sets may
unify various approaches to the occurrence of an object in a system.

The practical applications of the proposed approach will be reported in forth-
coming papers concerning examples from biochemistry and medical sciences.

The author thanks Dr. J. Andrzej Pomyka�la for useful remarks and discussions.

2 Multisets, Fuzzy Sets, and General Multi-fuzzy Sets

In this section we recall the known concepts of multisets [2], fuzzy sets [1], [5],
and general multi-fuzzy sets [4], [12]. We also present some new and practical
interpretations of general multi-fuzzy sets.

Multisets over a set O, called sometimes Boolean multisets over a set O or
bags in [14], are functions M : O → N valued in the set N of natural numbers,
where O is a set of objects, and the value M(x) is the number of copies of an
object x ∈ O which (currently) occur in a system or its part. Thus multisets
describe resources of copies of objects of O. Characteristic functions of subsets
of O are among multisets over O. We write N

O to denote the set of multisets
over O.

The usual orderings <, ≤ on N, the usual operation + of addition (sum) of
natural numbers, and subtraction .− of natural numbers given by

m .− n =
{
m− n if m ≥ n,
0 otherwise,

induce the orderings <, ≤, and the operations of addition (sum) + and subtrac-
tion .− of multisets which are defined componentwise by

M1 < M2 [M1 ≤M2] iff M1(x) < M2(x) [M1(x) ≤M2(x)] for all x ∈ O,
(M1 +M2)(x) =M1(x) +M2(x),
(M1

.−M2)(x) =M1(x) .−M2(x),

for all x ∈ O and for all multisets M1,M2 over O. We write 0 to denote that
multiset M over O which is defined by

M(x) = 0 for all x ∈ O.

Fuzzy sets over a set O are functions f : O → [0, 1] valued in the unit interval
[0, 1] of real numbers, where O is a set of objects and the value f(x) is the degree
of membership of an object x ∈ O in f .

Characteristic functions of subsets of O are among fuzzy sets over O. The
usual orderings<, ≤ of real numbers, and infima, suprema of finite sets of natural
numbers in [0, 1] determine the orderings <, ≤ and the operations of union ∪
and intersection ∩ of fuzzy sets which are defined pointwise by

f1 < f2 [f1 ≤ f2] iff f1(x) < f2(x) [f1(x) ≤ f2(x)] for all x ∈ O,
(f1 ∪ f2)(x) = sup{f1(x), f2(x)},
(f1 ∩ f2)(x) = inf{f1(x), f2(x)},
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for all x ∈ O and for all fuzzy sets f1, f2 over O. We write [0, 1]O to denote the
set of fuzzy sets over O and we write 0 to denote that fuzzy set f over O which
is defined by f(x) = 0 for all x ∈ O.

General multi-fuzzy sets over a set O are functions M : O × N → [0, 1] or,
equivalently, functions M : O → [0, 1]N, where O is a set of objects, [0, 1] is a
unit interval of real numbers, [0, 1]N is the set of fuzzy sets of natural numbers,
and the value M(x, n) orM(x)(n) is the degree of certainty that n copies of an
object x ∈ O occur in a system or its part. Since [0, 1]N is the set of fuzzy sets,
the already defined orderings <, ≤, and operations of union and intersection of
fuzzy sets of natural numbers induce the corresponding orderings and operations
of general multi-fuzzy sets which are defined componentwise in a similar way as
in the case of multisets.

We propose another interpretation of general multi-fuzzy sets which is moti-
vated by some practical applications.

Since for a Boolean multiset M : O → N and an object x ∈ O the character-
istic function of the segment {i ∈ N |0 ≤ i < M(x)} is among the fuzzy sets of
natural numbers and elements of this segment serve for numbering M(x) copies
of x such that a natural number i with i < M(x) is identified with the i-th
copy of x, for a general multi-fuzzy setM over O and an object x ∈ O one can
treat the fuzzy setM(x) of natural numbers such thatM(x)(i) is the degree of
membership of i-th copy of x inM(x). One may claim hereM(x) to be a fuzzy
set theoretic counterpart of a Boolean segment of natural numbers (i.e., the set
{i ∈ N |0 ≤ i < n} for n ∈ N) in an obvious way.

We propose the following definition of fuzzy segments of natural numbers
to be claimed fuzzy set theoretic counterparts of Boolean segments of natural
numbers.

By a fuzzy segment of natural numbers we mean a fuzzy set f : N→ [0, 1] of
natural numbers for which the following conditions hold:

(1) m < n implies f(m) ≥ f(n) for all natural numbers m,n (comonotonicity),
(2) f(k) = 0 for some natural number k.

If f = M(x) for a general multi-fuzzy set M, then condition (1) ensures
that there is no other (preference) relation between copies of x in f than that
determined by their degree of membership in f , and conditions (1) with (2)
provide that there is only a finite number of copies of x with the degree of
membership greater than 0.

The following practical meaning can be given to the values M(x)(i) of a
general multi-fuzzy setM, where the valuesM(x) are fuzzy segments of natural
numbers. If lifetime(x) is the average time of life of an object x and ti is the
current time counted from the birth (or emergence) of i-th copy of x, one can
identifyM(x)(i) with the number

1 .− ti
lifetime(x)

which is the degree of freshness of the i-th copy of x, where subtraction .− of real
numbers greater than or equal to 0 is defined in an analogous way as already



362 A. Obtu�lowicz

defined subtraction of natural numbers. Hence the valueM(x)(i) near 0 means
that i-th copy of x tends to decay caused by aging andM(x)(i) = 0 means the
decay of the i-th copy of x. Therefore M(x) describes the current freshness of
copies of x occurring in a system, where this freshness is specified by the values
M(x)(i).

The above practical meaning of the values M(x)(i) was suggested to the
author by the discussion of fuzzy timed Petri nets in [11] and by the lecture [15].

There are other possibilities of assigning a practical meaning to the values
M(x)(i) of a general multi-fuzzy setM over O withM(x) being fuzzy segments
of natural numbers; for instance, M(x)(i) can be a relative amount of energy
carried by the i-th copy of x.

Thus, a general multi-fuzzy set M over O with values M(x) being fuzzy
segments of natural numbers can describe the strength of occurrences of objects
which is determined by the quality of currently occurring copies of objects.

In the next two sections we describe some useful properties of fuzzy segments
of natural numbers.

3 Properties of Fuzzy Segments of Natural Numbers

In this section we describe some properties of fuzzy segments of natural numbers.
One can represent fuzzy segments of natural numbers by finite multisets over

(0, 1] which are defined to be such that {α ∈ (0, 1] |M(α) > 0} is a finite set,
where (0, 1] is a left open unit interval of real numbers, i.e., (0, 1] = {x ∈ R |0 <
x ≤ 1} for R denoting the set of real numbers. Let SGM(N, [0, 1]) denote the
set of fuzzy segments of natural numbers and let FIN((0, 1],N) denote the set of
finite multisets over (0, 1]. Finite multisets over (0, 1] are more or less explicitly
discussed in [4] and [13].

A representation of fuzzy segments of natural numbers by finite multisets over
(0, 1] is provided by a mapping (−)§ : SGM(N, [0, 1])→ FIN((0, 1],N) defined in
the following way for every fuzzy segment f of natural numbers:

(f)§(α) is the number of elements of the set {i ∈ N | f(i) = α}

for all α ∈ (0, 1].

Proposition 1. The mapping (−)§ is a bijection whose inverse

(−)−§ : FIN((0, 1],N)→ SGM(N, [0, 1])

is defined in the following way for every finite multiset M over (0, 1]:

– if {α ∈ (0, 1] |M(α) > 0} is empty, then (M)−§(n) = 0 for all natural
numbers n,

– if {α ∈ (0, 1] |M(α) > 0} is nonempty, then its elements form a finite de-
creasing string α0 > . . . > αk−1 of real numbers for k equal to the number
of elements of {α ∈ (0, 1] |M(α) > 0} and one defines
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(M)−§(i) =

⎧⎪⎨⎪⎩
α0 if 0 ≤ i ≤M(α0),

αj if
j−1∑
m=0
M(αm) ≤ i <

j∑
m=0
M(αm) and 0 < j < k,

0 otherwise.

Proof. We prove that
(
(f)§)−§ = f and

(
(M)−§)§ = M in an immediate way

by using the definitions of (−)§ and (−)−§. ��

Therefore the mappings (−)§ and (−)−§ provide a representation of fuzzy
segments of natural numbers by finite multisets over (0, 1].

Thus one simply defines the sum + of fuzzy segments f, g of natural numbers
by

f + g =
(
(f)§ + (g)§)−§

,

where + standing in the right hand side of the above equation is the sum of
Boolean multisets already defined.

Lemma 1. For two finite multisets M1,M2 over (0, 1] the inequality M1 ≤M2
implies the inequality (M1)−§ ≤ (M2)−§.

Proof. We prove the lemma by induction on the number of the elements of the
set {α ∈ (0, 1] |M1(α) > 0}. ��

There are simple examples showing that (M1)−§ ≤ (M2)−§ does not imply
M1 ≤M2.

By analogy with the sum of fuzzy segments of natural numbers one defines
the subtraction .− of fuzzy segments f, g of natural numbers by

f .− g =
(
(f)§ .− (g)§)−§

,

where .− standing in the right hand side of the above equation is the subtraction
of Boolean multisets already defined.

For a fuzzy segment f of natural numbers we define

size(f) = min{i ∈ N | f(i) = 0}.

Lemma 2. For all fuzzy segments f, g of natural numbers the inequality
(f)§ ≥ (g)§ implies the following conditions:

(a) size(f .− g) = size(f)− size(g),
(b) (f .− g) + g = f .

Proof. The lemma is an immediate consequence of the definitions of + and .− of
fuzzy segments. ��

We use the following property of subtraction of fuzzy segments of natural
numbers.
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For a fuzzy segment f of natural numbers and an integer k ≥ −1 we define
a fuzzy segment f � k of natural numbers by

(f � k)(i) =

{
f(i) if 0 ≤ i ≤ k,
0 if k = −1 and i ≥ 0,
0 if i > k > −1.

Lemma 3. For all fuzzy segments f of natural numbers and all integers k ≥ −1
the following condition holds:(

f .− (f � k)
)
(i) = f(i+ k + 1) for every i ∈ N.

Proof. The lemma is an immediate consequence of the definitions of the sub-
traction of fuzzy segments and f � k. ��

Since in general f ≥ g does not imply (f)§ ≥ (g)§ for fuzzy segments f and g
of natural numbers, it remains to discuss the possibilities of defining the subtrac-
tion in such a way to respect the pointwise defined ordering ≤ of fuzzy segments
of natural numbers, so that a counterpart of Lemma 2 with (f)§ ≥ (g)§ replaced
by f ≥ g would hold. We discuss some of these possibilities in the next section.

4 Subtracting Fuzzy Segments with Respect to Their
Pointwise Defined Ordering ≤

For two fuzzy segments f, g of natural numbers with f ≥ g we say that a finite
multiset M over (0, 1] is a subtractive choice multiset with respect to f ≥ g if
the following conditions hold:

(i) M ≤ (f)§,
(ii) g ≤ (M)−§,
(iii) size

(
(M)−§) = size(g).

A subtractive choice multiset M with respect to f ≥ g > 0 represents the
chosen numbers of copies of real numbers in (0, 1] to be deleted (subtracted)
from (f)§ providing (ii) and (iii).

Thus, for two fuzzy segments f, g of natural numbers with f ≥ g and sub-
tractive choice multiset M with respect to f ≥ g we define the subtraction of
f and g determined by M to be that fuzzy segment f $M g of natural numbers
which is given by

f $M g = f .− (M)−§.

Lemma 4. For every subtractive choice multiset M with respect to f ≥ g the
following conditions hold :

(a′) size(f $M g) = size(f)− size(g),
(b′) (f $M g) + (M)−§ = f .
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Proof. The lemma is a consequence of Lemma 2 and the definition of f $M g. ��

For two fuzzy segments f, g of natural numbers with f ≥ g > 0 we define

Φf,g = {(M)−§ |M is a subtractive choice multiset with respect to f ≥ g}.

We show that Φf,g has the greatest element and the smallest element with respect
to pointwise ordering ≤ of fuzzy segments of natural numbers.

Proposition 2. Let f, g be two fuzzy segments of natural numbers with f ≥ g >
0. Then f � (size(g) − 1) is the greatest element in the set Φf,g with respect to
pointwise defined ordering of fuzzy segments of natural numbers.

Proof. Since by Lemma 1 (h)§ ≤ (h′)§ implies h ≤ h′ � (size(h)− 1) for all fuzzy
segments h and h′, we obtain by Lemma 1 and conditions (i), (iii) the following
inequality

(M)−§ ≤ f � (size(g)− 1)

for all subtractive choice multisets M with respect to f ≥ g > 0. Therefore
f � (size(g)− 1) is the greatest element in Φf,g with respect to pointwise defined
ordering ≤ of fuzzy segments of natural numbers. ��

A fuzzy segment g of natural numbers is called a threshold fuzzy segment if
the set {g(i) | i ∈ N and 0 ≤ i < size(g)} has at most one element which we call
threshold value of g.

Proposition 3. Let f, g be two fuzzy segments with f ≥ g > 0 such that g is a
threshold fuzzy segment. Then

(
f .− (f �c)

)
�
(
size(g)−1

)
is the smallest element

in Φf,g with respect to the pointwise defined ordering ≤ of fuzzy segments of
natural numbers, where

c = max
(
{j ∈ N | f .− (f � j) ≥ g} ∪ {−1}

)
.

Proof. For c = −1 we have Φf,g = {f � (size(g) − 1)}, hence the proposition is
true. For c ≥ 0 let

(
f .− (f � c)

)
�
(
size(g)− 1

)
be denoted by f∗. We show that

the negation of the inequality

(+) f∗ ≤ (M)−§

leads to a contradiction for a subtractive choice multiset M with respect to
f ≥ g > 0. Since the negation of (+) means that

f∗(j) > (M)−§(j) for some j with 0 ≤ j < size(g),

we obtain by (i) and (ii) holding for M and by comonotonicity of (M)−§ that
the following strong inequality holds∑

x∈D(j)

M(x) <
∑

x∈D(j)

(f∗)§(x)
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for D(j) =
{
x ∈ (0, 1] |x ≤ (M)−§(j) and 0 < max{M(x), (f∗)§(x)}

}
and for

some natural number j with 0 ≤ j < size(g)− 1. Hence condition (iii) does not
hold forM . Therefore the negation of the inequality (+) leads to a contradiction.
Thus f∗ is the smallest element in Φf,g with respect to pointwise defined ordering
≤ of fuzzy segments of natural numbers. ��

A generalization of Proposition 3 to arbitrary fuzzy segments f, g of natural
numbers with f ≥ g > 0 requires more considerations.

For two fuzzy segments f ≥ g > 0 of natural numbers we define:

caliber(f, g) = max
(
{j ∈ N | f .− (f � j) ≥ g} ∪ {−1}

)
,

cocaliber(f, g) = min
({
k ∈ N | g .− (g � k) > 0 and

caliber
(
f .− (f � (caliber(f, g) + k + 1)), g .− (g � k)

)
≥ 0
}

∪
{
size(g)− 1

})
.

The procedure πf,g described by the diagram below is aimed to compute the
smallest element in the set Φf,g with respect to pointwise defined ordering ≤ of
fuzzy segments of natural numbers.

πf,g start

�
x := f ;
y := g;
M := 0;

�
c := caliber(x, y);
k := cocaliber(x, y);
M :=M +

(
(x .− (x � c)) � k

)§;
��������

�������k = size(y)− 1Yes No
� �

z := (M)−§ x := x .−
(
x � (c+ k + 1)

)
;

y := y .− (y � k);
�

�

stop
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Theorem 1. For all fuzzy segments f ≥ g > 0 of natural numbers the fuzzy
segment z resulting from the procedure πf,g is the smallest element in the set
Φf,g with respect to the pointwise defined ordering of fuzzy segments of natural
numbers.

Proof. One proves the theorem by induction on the number n of elements of the
set {g(i) | i ∈ N and g(i) > 0}. For the case n = 1 the proof is analogous to the
proof of Proposition 3. ��

For two fuzzy segments f, g of natural numbers with f ≥ g we define the high
subtraction f $� g of f ≥ g and the low subtraction f $⊥ g of f ≥ g by

f $� g = f $M g for (M)−§ = f � (size(g)− 1)

and

f $⊥ g =
{
f if size(g) = 0,
f $Z g otherwise,

where (Z)−§ is the smallest element in Φf,g with respect to the pointwise defined
ordering ≤ of fuzzy segments or, equivalently, (Z)−§ is equal to the result of the
procedure πf,g.

Let M and M′ be two general multi-fuzzy sets over O whose values M(x)
and M′(x) are fuzzy segments of natural numbers and let M ≥ M′, i.e.,
M(x) ≥ M′(x) for all x ∈ O. Thus for a function δ : O → {⊥,#} one defines
the subtraction M $δM′ of M ≥ M′ to be a general multi-fuzzy set defined
componentwise by

(M $δM′)(x) =M(x) $δ(x)M′(x) for all x ∈ O.

According to the interpretation (given in Section 2) of general multi-fuzzy
sets M with values M(x) being fuzzy segments of natural numbers we explain
the subtractionM $δM′ ofM≥M′ in the following way.

If δ(x) = # and size
(
M(x)

)
> size

(
M′(x)

)
> 0, the value (M $δM′)(x) =

M(x) $�M′(x) is the result of deleting from M(x) the number size
(
M′(x)

)
of those copies of x which are of relatively high degree of membership inM(x),
meaning that their degrees M(x)(i) of membership are not smaller than
M(x)

(
size(M′(x))− 1

)
.

If δ(x) = ⊥ and size
(
M(x)

)
> size

(
M′(x)

)
> 0, the value (M $δM′)(x) =

M(x) $⊥M′(x) is the result of deleting fromM(x) the number size
(
M′(x)

)
of

those copies of x which are of relatively low degree of membership in M(x),
meaning that they form the smallest fuzzy segment z in ΦM(x),M′(x), i.e., z is
the smallest fuzzy segment such that size(z) = size(M′(x)) and z ≥M′(x).

5 General Fuzzy P Systems and Their Evolution Rules

In this section we introduce the concept of a general fuzzy membrane system
and then present some evolution rules of general fuzzy membrane systems.
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We recall according to [8] and [10] that a (Boolean) membrane system S is
given by the following data:

– a finite non-empty set BS of balls of finite diameters greater than 0 (in the
Euclidean space En for n ≥ 1) such that the frontiers of the balls contained
in BS are pairwise disjoint sets, and there exists the greatest ball b0 in BS
with respect to the inclusion relation ⊆; the balls contained in BS are called
membranes of S and BS is called the underlying set of membranes of S;

– three functions lS : BS → LS , eS : BS → {−, 0,+}, and MS : OS → NOS ,
where LS is the set of labels of S, lS is called the labelling function of S,
eS is called the electric charge function of S, and MS , called the object
distribution function of S, is a function whose values MS(m) are Boolean
multiset over OS for OS called the set of objects of S.

The value lS(m) is the label assigned to a membrane m of S, eS(m) is the
electric charge of a membrane m of S, and the value MS(m) is a Boolean
multiset M whose values M(x) are the numbers of copies of x ∈ OS contained
in the region of the membrane m of S which is the space between the frontier
of m and the frontiers of those membranes of S which are immediate subsets
of m.

A general fuzzy membrane system S is defined in an analogous way as a
Boolean membrane system except the object distribution function MS of S is
such that the values MS(m) for m ∈ BS are those general multi-fuzzy sets M
over OS whose values M(x) are fuzzy segments of natural numbers.

We consider evolution rules of general fuzzy membrane systems which are
expressions of the form

(∗) [hN → δ, ε,N ′]αh ,

where N , N ′ are general multi-fuzzy sets over a set O (or some presentations of
them) whose values N (x),N ′(x) are fuzzy segments of natural numbers (x ∈ O),
h is a label in a set L of labels, α ∈ {−, 0,+}, δ is a function defined on O and
valued in {⊥,#}, and ε ∈ [0, 1]. We assume that N ′(x)(i) = 1 for all natural
numbers i with 0 ≤ i < size

(
N ′(x)

)
and for N ′(x) > 0. The evolution rules of

the form (∗) have common features with some evolution rules in [8] and [10].
For a general fuzzy membrane system S and an evolution rule R of the

form (∗) with O = OS and L = LS we say that this rule R can be applied to a
membrane m of S if the following conditions hold:

– lS(m) = h and eS(m) = α,
– forM =MS(m) we haveM≥ N , i.e.,M(x) ≥ N (x) for all objects x of S,

where ≥ occurring in the last inequality is the pointwise defined ordering
of fuzzy segments of natural numbers.

The result of the application of R to a membrane m of S, whenever R can
be applied to m, is a general fuzzy membrane system S ′ which is the same as S
except

(∗∗) MS′(m) =
(
(MS(m) $δN )÷ ε

)
+N ′,
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where for a general multi-fuzzy set M over O and ε ∈ [0, 1] we define
(M÷ ε)(x)(i) =M(x)(i) .− ε for all objects x ∈ O and natural numbers i ∈ N.
Here ε is meant to be an average expense of time (or energy, etc.) consumed
during the application of the rule.

Other evolution rules of general fuzzy membrane systems will be discussed in
the forthcoming papers about practical applications of the approach proposed
in the present paper.

An application of an evolution rule of the form (∗) to a membrane of a general
fuzzy membrane system and the result of this application can be explained from
the point of view of practical applications in the following way.

An emergence of new high quality (fresh) copies (presented by N ′ in (∗)) in
the region of a membrane causes the deletion from this region of the old copies
forming those segments above the segments presented by N in (∗) (i.e., those
segments ≥ N (x) for objects x ∈ OS) which according to the function δ in (∗)
are relatively high or relatively low (see the explanation ofM $δM′ given in Sec-
tion 4). An emergence of new copies of objects can be understood here in two
ways such that new copies have been introduced (may be from outside) to elimi-
nate (to delete) some old copies or new copies have been generated by consuming
(deleting) some old copies. The first of the above meanings of emergence of new
copies has been suggested by [15], namely, one can treat new copies as copies
of some enzymes introduced to a system by some medicine aimed to eliminate
simultaneously the old copies of enzymes according to the general multi-fuzzy
set N and the function δ in (∗).

6 Rational Fuzzy Segments

Very often an occurrence of an object in a system is determined by some quan-
tity corresponding to some attribute of objects, like size, volume, weight, etc.,
where that quantity is measured in units and unit fractions of some scale (which
sometimes is not decimal) and expressed by a rational number. Concerning med-
ical applications, such a quantity may correspond to a dosage of some medicine
which is measured in fractions of some unit. The occurrence of objects in a sys-
tem described above can be modelled by real-valued multisets [3] (see also [7]),
where scales and fraction systems are not specified.

We show in this section that fuzzy segments themselves can be used to rep-
resent rational numbers (based on various fraction systems like binary, ternary,
and decimal fraction systems, etc.) which provides that for a general multi-fuzzy
set M with the value M(x) representing a rational number for some object x
the rational number represented byM(x) can be interpreted as a quantity cor-
responding to some attribute of x which determines an occurrence of x in a
system. Therefore, generalized multi-fuzzy sets may unify various treatments of
an occurrence of objects in a system, where an occurrence of some object is
determined by the numbers of its copies and simultaneously an occurrence of
some other object is determined by quantities corresponding to some attributes
of the object and expressed by rational numbers.
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For every rational number n ≥ 2, every non-negative rational number q =
d0 +r, with its total part d0 being a natural number and its n-ary fraction r < 1
determined by a string d1 . . . dk of natural numbers dj with 0 ≤ dj < n for
1 ≤ j ≤ k such that

q =
k∑

j=1

n−j · dj ,

can be represented in a unique way by a fuzzy segment fq defined by

fq(i) =

⎧⎨⎩
1 if 0 ≤ i < d0 and d0 > 0,
n−(m+1) if

∑m
j=0 dj ≤ i <

∑m+1
j=1 dj , dm+1 > 0, and 0 ≤ m < k,

0 otherwise.
Here for n = 2, n = 3, and n = 10, the n-ary fraction is read binary, ternary,
decimal fraction, respectively.

All fuzzy segments fq > 0 representing non-negative rational numbers q =
d0 + r with n-ary fractions r can be characterized in the following way for a
given natural number n ≥ 2.

For a fuzzy segment f we define the j-th critical point of f to be a natural
number n such that

– f(n+ 1) < f(n),
– the set {m ∈ N | f(m+ 1) < f(m) and m < n} has j − 1 elements.

For a fuzzy segment f with k > 0 critical points, we define for a natural num-
ber m with 0 < m ≤ k

Δm =

{
i1 + 1 if m = 1 and i1 is the first critical point of f ,
im − im−1 if m > 1 and im−1, im are m− 1-th and m-th critical

points of f , respectively,

and then for a natural number j with 0 < j ≤ k∫
j

f =
∑

j≤m≤k

Δm · f(im),

where im denotes the m-th critical point of f .

Theorem 2 (Characterization of Fuzzy Segments Representing Ratio-
nal Numbers). For a natural number n ≥ 2 and the set D = {n−m |m ∈ N} of
basic fractions, all fuzzy segments f > 0 representing rational numbers q = d0+r
with n-ary fractions r satisfy the following conditions:

(Q1) {f(i) | i ∈ N} ⊆ D ∪ {0, 1} ⊆ [0, 1],
(Q2) if the number of critical points of f is k ≥ 1, then for every natural num-

ber j with 1 ≤ j ≤ k if ij is the j-th critical point of f , then

f(ij) = sup{d ∈ D ∪ {1} |0 < d ≤ 1 and
∫

j

f ≥ d} and

Δj = max{m ∈ N |m > 0 and
∫

j

f ≥ f(ij) ·m}.
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If a fuzzy segment f > 0 satisfies conditions (Q1)–(Q2) for D = {n−m |m ∈ N}
with n ≥ 2, then f = fq for q =

∫
1 f .

Proof. One proves the theorem by induction on the number of critical points
of f . ��

The conditions (Q1), (Q2) give rise to the following generalization of the
representation of rational numbers by fuzzy segments.

For a set D ⊆ [0, 1] we say that a fuzzy segment is a D-segment if the con-
ditions (Q1) and (Q2) hold for f . Then we say that a D-segment represents a
number q if q =

∫
1 f . The uniqueness of representation of numbers by D-segments

is provided by the following theorem.

Theorem 3 (Uniqueness of Representation). For an arbitrary set D ⊆
[0, 1] and for all D-fuzzy segments f, g, if

∫
1 f =

∫
1 g, then f = g.

Proof. We prove the theorem by induction on n = max{size(f), size(g)}. We use
in the proof the property that if f is a D-segment, then f .− (f �k) is a D-segment
for k ≥ 0. ��

We say that a set D of basic fractions with D ⊆ [0, 1] is an additive [sub-
tractive] set if for all D-segments f, g there exists a D-segment h such that∫
1 h =

∫
1 f +

∫
1 g [
∫
1 h =

∫
1 f

.−
∫
1 g]. The sets {(n)−m |m ∈ N} (n ∈ N

with n ≥ 2) are examples of additive and subtractive sets.
By Theorem 3, for an additive and subtractive set D of basic fractions one

defines for two segments f, g their sum f ⊕ g and their subtraction f .−© g to be
the unique D-segments h and h′, respectively, such that∫

1
h =
∫

1
f +
∫

1
g and

∫
1
h′ =

∫
1
f .−
∫

1
g.

Therefore, one can generalize the evolution rules of the form (∗) in Section 5
and their interpretation to the case where δ is a function defined on the sets
OS of objects of a general fuzzy membrane system S and valued in the set
{⊥,#}∪BFS for BFS denoting the set of additive and subtractive sets of basic
fractions considered for S. Here the value δ(x) ∈ BFS means that an occurrence
of an object x in a system S is determined by a quantity corresponding to
some attribute of x and measured in the scale with basic fractions belonging
to D = δ(x); the value δ(x) ∈ {⊥,#} means that an occurrence of an object x
in S is determined by the numbers of copies of x of different quality. For δ
with values δ(x) ∈ BFS for some objects x of S, an evolution rule itself, the
application conditions of a rule, and the result of the application of a rule are
defined in an analogous way as in Section 5 except the following modifications.
For x with δ(x) ∈ BFS one imposes that:

– the general multi-fuzzy sets N ,N ′ occurring in (∗) in Section 5 should be
such that their values N (x) and N ′(x) are δ(x)-segments,
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– in the definition that a rule can be applied to a membrane m of S the
general multi-fuzzy set M =MS(m) should be such that M(x) is a δ(x)-
segment and the inequalityM(x) ≥ N (x) should mean that

∫
1 f ≥

∫
1 g for

f =M(x) and g = N (x),
– in the formula (∗∗) defining in Section 5 the result of an application of a

rule to a membrane of a system, the subtraction $δ(x) should be .−© and
+ should be meant as ⊕ for the values at x of the corresponding general
multi-fuzzy sets which occur in the formula.

Thus fuzzy segments representing (rational) numbers may unify various treat-
ments of an occurrence of objects in systems for the case of evolution rules and
their application.

References

1. H. Bandemer and S. Gottwald, Fuzzy Sets, Fuzzy Logic, Fuzzy Methods with Ap-
plications, New York 1995.

2. W.D. Blizard, The development of multiset theory, Notre Dame Journal of Formal
Logic, 30 (1989), 36–66.

3. W.D. Blizard, Real-valued multisets and fuzzy sets, Fuzzy Sets and Systems, 33
(1989), 23–37.
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Abstract. In the last time, several efforts have been made in order to
remove polarizations of membranes from P systems with active mem-
branes; the present paper is a contribution in this respect. In order to
compensate the loss of power represented by avoiding polarizations, we
use bi-stable catalysts. Polarizationless systems with active membranes
which use bi-stable catalysts are proven to be computationally complete
and able to solve efficiently NP-complete problems. In this paper we
present a solution to SAT in linear time. In order to illustrate the pre-
sented solution, we also provide a simulation with CLIPS.

1 Introduction

In membrane computing, P systems with active membranes are specially suitable
to solve efficiently NP-complete problems, because of the fact that they provide
membrane division, inspired from cell division. By using this operation, one can
create an exponential number of membranes (working space) in linear time; in
this way, we trade space for time to solve NP-complete problems (this has been
reported for SAT, VALIDITY, Subset Sum, Knapsack, etc.).

One important feature of P systems with active membranes is the polarization
of membranes; each membrane has an “electrical charge”, positive (+), negative
(−) or neutral (0). However, the electrical charges are not very realistic from a
biological point of view. Because of this, several efforts are being made in order
to remove the polarizations without losing the universality and the efficiency.

This paper goes into this direction of research: we remove the polarization of
the membranes but on the other hand we use bi-stable catalysts. This variant
of P systems with active membranes is proven to be computationally complete
and able to solve NP-complete problems like SAT in linear time.

The paper is organized as follows: Section 2 introduces bi-stable catalytic P
systems with active membranes without charges as generating devices and as
recognizer devices. In Section 3 the complexity classes for P systems are briefly
recalled. Sections 4, 5, and 6 present a cellular solution in linear time to the
SAT problem within the framework of this variant of P systems. In Section 7
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the programming language CLIPS is used to exhibit a simulation of the designed
solution in order to illustrate how it works. Conclusions are given in Section 8.

2 Bi-stable Catalytic P Systems with Active Membranes
Without Polarizations

Definition 1. A bi-stable catalytic P system with active membranes and without
polarizations is a tuple

Π = (Γ,K,H, μ,M1, . . . ,Mp, R),

where:

1. p ≥ 1 is the initial degree of the system;
2. Γ is the alphabet of symbol-objects;
3. K is a subset of Γ , K ⊆ Γ , such that if c ∈ K then c ∈ K (the elements of
K are called bi-stable catalysts);

4. H is a finite set of labels for membranes;
5. μ is a membrane structure consisting of p membranes labelled (not necessarily

in a one-to-one manner) with elements of H;
6. M1, . . . ,Mp are strings over Γ , describing the initial multisets of objects

associated with the regions of μ;
7. R is a finite set of evolution rules, of the following forms:

(a) [ a → ω ]h, for h ∈ H, a ∈ Γ − K,ω ∈ (Γ − K)∗. This is an object
evolution rule, associated with a membrane labelled with h but not directly
involving the membrane.

(b) [ ca → cω ]h, [ ca → cω ]h, [ ca → cω ]h, [ ca → cω ]h, for h ∈ H, c ∈ K
and a ∈ Γ −K,ω ∈ (Γ −K)∗ (bi-stable catalytic evolution rules). Such
a rule is an object evolution rule involving bi-stable catalysts, associated
with a membrane labelled with h but not directly involving the membrane.

(c) a [ ]h → [ b ]h, for h ∈ H, a, b ∈ Γ −K (“send in” communication rules).
An object from the region immediately outside a membrane labelled with h
is introduced in this membrane, possibly transformed into another object.

(d) [ a ]h → b [ ]h, for h ∈ H, a, b ∈ Γ − K (“send out” communication
rules). An object is sent out from membrane labelled with h to the region
immediately outside, possibly transformed into another object.

(e) [ a ]h → b, for h ∈ H, a, b ∈ Γ − K (dissolving rules). A membrane
labelled with h is dissolved in reaction with an object. The skin is never
dissolved.

(f) [ a ]h → [ b ]h [ c ]h, for h ∈ H, a, b, c ∈ Γ − K (division rules for ele-
mentary membranes). An elementary membrane can be divided into two
membranes with the same label, possibly transforming some objects.

Note that, in contrast to [2], the bi-stable catalysts are not always flip-flop-ing
from non-barred to barred versions and back, but also rules of the form ca→ cw
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and c̄a → c̄w are allowed. The case when the catalysts appear only in rules of
the form ca→ c̄w and c̄a→ cw is called restricted.

These rules are applied according to the following principles:

• All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non
deterministic way), but any object which can evolve by one rule of any form,
should evolve.
• If a membrane is dissolved, its content (multiset and internal membranes) is

left free in the surrounding region.
• If at the same time a membrane h is divided by a rule of type (e) and there

are objects in this membrane which evolve by means of rules of type (a) and
(b), then we suppose that first the evolution rules of types (a) and (b) are
used, and then the division is produced. Of course, this process takes only
one step.
• The rules associated with membranes labelled with h are used for all copies of

this membrane. At one step, a membrane labelled with h can be the subject
of only one rule of types (c)-(f).

2.1 Bi-stable Catalytic P Systems with Active Membranes
Without Polarizations, as Generating Devices

As a generating device, the result (output) of a halting configuration of a bi-
stable catalytic P system is the cardinality of the multiset associated with the
environment in the last configuration. In these P systems a non halting compu-
tation yields no output.

Definition 2. We denote by N(Π) the set of all outputs of halting computations
with respect to a bi-stable catalytic P system Π.

Theorem 1. Restricted bi-stable catalytic P systems with active membranes
without polarization, using rules of type (b) and (d), are computationally com-
plete.

Proof. Let L be a recursively enumerable language. Let G be a matrix grammar
with appearance checking such that L(G) = L. We can consider that G =
(N, {a}, S,M,F ) is given in Z-binary normal form, in the standard notation.
That is,

• N = N1 ∪N2 ∪ {S,Z, "}, with these three sets mutually disjoint.
• The matrices in M are in one of the following forms:

1. (S → XA), where X ∈ N1, A ∈ N2,
2. (X → Y,A→ x), where X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2,
3. (X → Y,A→ "), where X ∈ N1, Y ∈ N1 ∪ {Z}, A ∈ N2,
4. (Z → λ).

• F = {A→ " | ∃m ∈M(m = (X → Y,A→ ")}.
Moreover, if the special symbol Z appears in a sentential form w, then we
have w = Zw′, with w′ ∈ (T ∪ {"})∗ (that is, no nonterminal from N2 is
present).
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• The matrices in M will be ordered as follows:
m0 : (S → XinitAinit), with Xinit ∈ N1, Ainit ∈ N2,
m1 :
...
mk :

⎫⎪⎬⎪⎭ (X → α,A→ x), with x ∈ N1, α ∈ N1 ∪ {λ}, A ∈ N2,

mk+1 :
...
mn :

⎫⎪⎬⎪⎭ (X → Y,A→ ").
(X → Z,A→ ") , with X,Y ∈ N1, A ∈ N2

mn+1 : (Z → λ)

We construct the system

Π = (Γ,K, {1}, [ ]1,M1, R),

where:

• Γ = N ∪K ∪ {a, "} ∪ {X ′, X,X
′ | X ∈ N1},

• K = {ci, ci | 0 ≤ i ≤ n},
• M1 = {Xinit, Ainit, E, c0, c1, . . . , cn},
• The set R consists of the following rules:

(1.)

[ ciX → ciY ′ ]1
[ ciA→ cix ]1
[ ciE → ci" ]1
[ c0Y ′ → c0Y ]1
[ c0Y ′ → c0Y ]1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ for each mi : (X → Y,A→ x), with 1 ≤ i ≤ k .

These rules simulate the matrices mi, for i = 1, . . . , k. When we have in
the skin region a multiset containing X and there exists in M a matrix
mi : (X → Y,A→ x), the rule [ ciX → ciY ′ ]1 is applicable. In order to
simulate the second component of the grammar one of the rules [ c0Y ′ →
c0Y ]1, [ c0Y ′ → c0Y ]1 (either c0 or c0 is present, hence one of these
rules can be used) provides a step in which if there exists an object A in
the skin region, then the rule [ ciA→ cix ]1 can be applied; otherwise, if
there is no such object, the rule [ ciE → ci" ]1 produces the trap symbol
" showing that we can not apply this matrix and so this is not a correct
derivation.

(2.)

[ ciX → ciY
′
]1

[ c0Y
′ → c0Y ]1

[ c0Y
′ → c0Y ]1

[ ciA→ ci" ]1
[ ciY → ciY ]1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
for each mi : (X → Y,A→ "), with k + 1 ≤ i ≤ n
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These rules simulate the matrices mi, for i = k + 1, . . . , n. When we
have in the skin region a multiset containing X and there exists in M
a matrix mi : (X → Y,A → "), the rule [ ciX → ciY

′
]1 is applicable.

In order to simulate the second component of the grammar, one of the
rules [ c0Y

′ → c0Y ]1,[ c0Y
′ → c0Y ]1 provides a step in which if

there exists an object A in the skin region, the rule [ ciA → ci" ]1 is
applied; otherwise, if there is no such object, then the rule [ ciY → ciY ]1
completes the simulation of this matrix.

(3.)
[ a ]1 → a [ ]1, [ c0"→ c0" ]1, [ c0"→ c0" ]1,

The first of these two last rules, [a ]1 → a [ ]1, sends out to the en-
vironment the object a. In a halting configuration of the system the
multiplicity of the object a in the environment represents the length of
the word generated by G. If the computation of the system simulates a
non terminal derivation in G, then the rules [ c0"→ c0" ]1, [ c0"→ c0" ]1
produce a non halting computation.

From the above remarks it is easy to prove that the equality length(L(G)) =
N(Π) holds, where length(L(G)) is the length set of the language L(G), that is,
length(L(G)) = {|u| | u ∈ L(G)}. �

In the previous proof we do not actually use the fact that the membranes
are active (for instance, we do not use membrane division); otherwise stated, the
proof can be easily reformulated in terms of basic transition P systems, and this
makes necessary the comparison of Theorem 1 with universality results known
for such systems. First, the universality is known for systems with bi-stable
catalysts already from [5], where, however, one uses two membranes (see also
Theorem 3.4.7 from [2]; our results improves on this point, because we use only
one membrane. Then, in [1] it is proven that two catalysts are sufficient to get
universality in P systems without polarizations and without priorities, but the
systems considered in [1] contain both catalytic and non-catalytic rules.

2.2 Recognizer Bi-stable Catalytic P Systems with Active
Membranes Without Polarization

Definition 3. A P system with input is a tuple (Π,Σ, iΠ), where Π is a P
system, with working alphabet Γ , with p membranes labelled 1, . . . , p, and initial
multisets M1, . . . ,Mp associated with them, Σ is an (input) alphabet strictly
contained in Γ , the initial multisets are over Γ − Σ, and iΠ is the label of a
distinguished (input) membrane.

The computations of a P system with an input in the form of a multiset m
over Σ are defined in a natural way; they start from a configuration which is
obtained by adding the multiset m to the initial configuration of the system.

Definition 4. Let (Π,Σ, iΠ) be a P system with input. Let Γ be the working
alphabet of Π, μ the membrane structure and M1, . . . ,Mp the initial multisets
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of Π. Let m be a multiset over Σ. The initial configuration of (Π,Σ, iΠ) with
input m is (μ,M1, . . . ,MiΠ

∪m, . . .Mp).

In the case of P systems with input and with external output, the concept
of computation is introduced in a similar way as for standard P systems – see
[2] – but with a small change. We consider that it is not possible to observe the
internal processes inside the P system and we can only know if the computation
has halted via some distinguished objects sent out of the skin. We can formalize
these ideas in the following way.

Definition 5. A recognizer bi-stable catalytic P system is a P system with
input, (Π,Σ, iΠ), and with external output such that:

1. Π is a bi-stable catalytic P system.
2. The working alphabet of Π contains two distinguished objects YES, NO.
3. All its computations halt.
4. If C is a computation of Π, then either the object YES or the object NO

(but not both) is sent to the environment, and only in the last step of the
computation.

We say that C is an accepting computation (respectively, rejecting compu-
tation) if the object YES (respectively, NO) appears in the environment in the
halting configuration of C.

In what follows we will deal with recognizer bi-stable P systems with ac-
tive membranes without polarizations. Let us denote by BAM the class of this
variant of recognizer P systems.

3 The Complexity Class PMCF

The first results about “solvability” of NP–complete problems in polynomial
time (even linear) by cellular computing systems with membranes were obtained
using variants of P systems that lack an input membrane. Thus, the constructive
proofs of such results need to design one system for each instance of the problem.

This drawback can be easily avoided if we consider a P system with input.
Then, the same system could solve different instances of the problem, provided
that the corresponding input multisets are introduced in the input membrane.

Instead of looking for a single system that solves a problem, we prefer de-
signing a family of P systems such that each element decides all the instances of
“equivalent size” of the problem.

Definition 6. Let F be a class of recognizer P systems. We say that a deci-
sion problem X = (IX , θX) is solvable in polynomial time by a family Π =
(Π(n))n∈N+ , of systems from F , and we denote this by X ∈ PMCF , if the
following is true:

• The family Π is polynomially uniform by Turing machines; that is, there
exists a deterministic Turing machine constructing Π(n) from n ∈ N+ in
polynomial time.
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• There exists a pair (g, h) of polynomial-time computable functions g : L →⋃
n∈N+ IΠ(n) and h : L → N+ such that for every u ∈ L we have
g(u) ∈ IΠ(h(u)), and
− the family Π is polynomially bounded with regard to (X, g, h); that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(h(u)) with input g(u) is halting and, moreover, it per-
forms at most p(|u|) steps;

− the family Π is sound with regard to (X, g, h); that is, for each u ∈ IX , if
there exists an accepting computation of Π(h(u)) with input g(u), then
θX(u) = 1;

− the family Π is complete with regard to (X, g, h); that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(h(u)) with input g(u) is an
accepting one.

In the above definition we have imposed to every P system Π(n) to be confluent,
in the following sense: every computation with the same input produces the same
output.

The class PMCF is closed under polynomial–time reduction and comple-
ment, as proven, for instance, in [10].

4 Solving SAT in Linear Time

The SAT problem is the following one: Given a boolean formula in conjunctive
normal form (CNF), to determine whether or not it is satisfiable; that is, whether
there exits an assignment to its variables on which it evaluates true.

We will address the resolution of this problem via a brute force algorithm
within the framework of recognizer bi-stable catalytic P systems with active
membranes without charges. Our strategy will consist in:

• Generation stage: Using membrane division we generate all possible assign-
ments associated with the formula.
• Evaluation stage: In each membrane we evaluate the formula on the assign-

ment produced in that membrane.
• Checking stage: In each membrane we check wether or not the formula eval-

uates true on the assignment from that membrane.
• Output stage: Send to the environment the right answer according to the

previous stage.

Let us consider the function 〈 , 〉 defined by 〈n,m〉 = ((n+m)(n+m+1)/2)+n
for ϕ = C1∧· · ·∧Cm a propositional formula in CNF and V ar(ϕ) = {x1, . . . , xn}.
The function 〈 , 〉 is polynomial-time computable (it is primitive recursive and
bijective from N2 onto N). Also, the inverse function of 〈 , 〉 is polynomial.

The family presented here is

Π = { (Π(〈n,m〉), Σ(n,m), i(n,m)) | (n,m) ∈ N
2 }.
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For each element of the family, the input alphabet is

Σ(n,m) = {xi,j , xi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n},

the input membrane is i(n,m) = 2, and the P system

Π(〈n,m〉) = (Γ (n,m),K(n,m), {1, 2}, μ,M1,M2, R)

is defined as follows:

• Bi-stable catalysts:

K(n,m) = {tj , tj , fj , f j , si, si, ans, ans | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
• Working alphabet:

Γ (n,m) = Σ(n,m) ∪ K(n,m) ∪ {vj , pj , nj | 1 ≤ j ≤ n}
∪ {ci, ri | 1 ≤ i ≤ m} ∪ {nok | 1 ≤ k ≤ n+m+ 3}
∪ {", yes, Y ES,NO}.

• Membrane structure: μ = [1 [2 ]2 ]1 (we will say that every membrane with
label 2 is an internal membrane).

• Initial Multisets:

M1 = {no1, ans},
M2 = {v1, . . . , vn, t1, . . . , tn, f1, . . . , fn, s1, . . . , sm, c1}.

• The set R consists of the following rules:

1. [ vj ]2 → [ pj ]2 [ nj ]2, 1 ≤ j ≤ n.

The goal of these rules is to generate an internal membrane for each
assignment to the variables of the formula. The new membrane where
the object pj appears represents the assignment where xj = true and the
new membrane where the object nj appears represents the assignment
where xj = false.

2.
[ tjpj → tjpj ]2
[ tj xi j → tj ri ]2
[ tj xi j → tj " ]2

⎫⎬⎭ for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The object pj activates the catalyst tj which “erases” the objects xi,j

(these objects represent the literals ¬xj), but reacts with the objects
xi,j (these objects represent the literals xj) to produce the object ri
(this object indicates that the clause number i evaluates true on the
assignment associated with the membrane).

3.
[ f jnj → fjnj ]2
[ fj xi j → fj ri ]2
[ fj xi j → fj " ]2

⎫⎬⎭ for 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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The object nj activates the catalyst fj which “erases” the objects xi,j

(these objects represent the literals xj), but reacts with the objects xi,j

(these objects represent the literals ¬xj) to produce the object ri (this
object indicates that the clause number i evaluates true on the assign-
ment associated with the membrane).

4. [ siri → siri ]2, for 1 ≤ i ≤ m,
[ sici → sici+1 ]2, for 1 ≤ i ≤ m− 1,
[ sm cm → sm yes ]2.

The objects ci are counters which represent the number of clauses that
evaluate true on the assignment associated with the internal membrane.
So the object ci, for 1 ≤ i ≤ m− 1, reacts with the catalyst si, which is
activated by the object ri, to produce the object ci+1, and the object cm
reacts with the object rm to produce the object yes in order to show that
every clause of the formula evaluates true on the assignment associated
with the internal membrane.

5. [ yes ]2 → yes [ ]2,
[ ans yes → ansY ES ]1,
[ Y ES ]1 → Y ES [ ]1.

These rules produce and send the object Y ES to the environment.

6. [ noi → noi+1 ]1, for 1 ≤ i ≤ n+ 2m+ 3,
[ ansnon+2m+4 → ansNO ]1,
[ NO ]1 → NO [ ]1.

These rules produce and send out the object NO to the environment.
Note that the object NO appears one step later than the object Y ES
and that the catalyst ans get barred in the output stage in order to make
sure that the system sends out the right answer.

5 An Overview of the Computation

First of all we must define a suitable pair (g, h) of polynomial-time computable
functions (see Definition 6) associated with the SAT problem. Given a formula
ϕ = C1 ∧ . . . Cm in CNF such that V ar(ϕ) = {x1, . . . , xn}, we define h(ϕ) =
〈n,m〉 (recall the bijection mentioned in the previous section) and g(ϕ) = {xij |
xj ∈ Ci} ∪ {xj | ¬xj ∈ Ci}

Next we will informally describe how the recognizer bi-stable catalytic P
system Π(h(ϕ)) with input g(ϕ) works.

The computation starts with the generation and evaluation stages. These two
stages take place in parallel following the rules from group 1 to 3. The gener-
ation of membranes is controlled by the objects vj , for 1 ≤ j ≤ n. When an
object vj is present in an internal membrane the rule in 1 is applicable and
so the system produces two new membranes. In one of these two new mem-
branes the object pj appears encoding that in the assignment associated with
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the membrane we have xj = true. In the other membrane the object nj ap-
pears to show that in the assignment associated with this membrane we have
xj = false.

The evaluation stage takes place in a similar way in every internal membrane.
The object pj (respectively nj) representing that xj = true (respectively xj =
false ) in the assignment associated with the internal membrane, activates the
bi-stable catalyst tj (respectively fj). The active catalyst tj (respectively fj)
according to the rules in 2 (respectively 3) reacts with the objects xij and xij to
produce the objects " and ri. The objects ri represent that the clause Ci evaluates
true on the assignment associated with the membrane. These two stages take
place in parallel and they take n steps of division, one step to activate the
catalysts and m steps to evaluate each clause, that is, an overall of at most
n+m+ 1 steps.

The checking stage takes place according to the rules in 4. The object ri
activates the catalyst si which reacts with the object ci for 1 ≤ i ≤ m − 1 to
produce the object ci+1. The object ci represents that the clauses C1, . . . , Ci−1
for 1 ≤ i ≤ m, evaluate true on the assignment associated with the internal
membrane. So, the catalyst sm reacts with the object cm to produce the object
yes, in order to show that the whole formula evaluates true on the assignment
associated with the internal membrane. As it can be seen, the checking stage
takes one step to activate the catalysts and m steps to check that every clause
evaluates true; that is, an overall of at most m+ 1 steps.

In the output stage the rules in 4 and 5 are applied to send the correct answer
to the environment. The answer Y ES is sent out following the rules in 5; the
object yes is sent to the skin by the first rule, in the second rule the bi-stable
catalyst ans reacts with the object yes to produce the object Y ES and ans
remains barred from now on, and finally the object Y ES is sent out to the
environment. On the other hand, following the first rule in 5, the object nok
waits n + 2m + 4 and, if no object yes has been sent to the skin, the bi-stable
catalyst ans and non+2m+4 react to produce the object NO which is sent out to
the environment. Note that the object non+2m+4 appears a step later than the
object yes in order to be sure that the system sends out the right answer. Thus,
the output stage takes at most 4 steps.

6 Required Resources

The presented family of recognizer bi-stable catalytic P systems solving the
SAT is polynomially uniform by Turing machines. Note that the definition of the
family is done in a recursive manner starting from a given instance, in particular,
from the constants n and m. Furthermore, the required resources to build the
element Π(〈n,m〉) of the family are the following:

• Size of the alphabet: 2nm+ 8n+ 5m+ 9 ∈ O((max{n,m})2).
• Number of membranes: 2 ∈ Θ(1).
• |M1|+ |M2| = 3n+m+ 3 ∈ O(n+m).
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• Sum of the rules lengths: 32nm+ 27n+ 32m+ 60 ∈ O((max{n,m})2).

The number of steps in each stage in the worst case are the following:

1. Generation and evaluation stage: n+m+ 1 steps.
2. Checking stage: m+ 1 steps.
3. Output stage: 4 steps.

Therefore, the overall number of steps is n+ 2m+ 6 ∈ O(max{n,m}).
From the above discussion we deduce the following results:

Theorem 2.

1. SAT ∈ PMCBAM.
2. NP ⊆ PMCBAM, and NP ∪ co−NP ⊆ PMCBAM.

Proof. In order to prove the theorem, it suffices to make the following remarks:
the SAT problem is NP−complete, SAT ∈ PMCBAM and the class PMCBAM
is closed under polynomial-time reduction, and under complement. ��

7 A CLIPS Session with ϕ = ( x1 ∨ ¬x2 ) ∧ ( ¬x1 ∨ x2 )

In this section we illustrate how the designed family of recognizer bi-stable cat-
alytic P systems works by presenting a simulation with CLIPS for the instance
ϕ = (x1 ∨ ¬x2 ) ∧ (¬x1 ∨ x2 ).

Configuration number: 1

[environment [multiset ]]
[skin [children 3 4]

[label 1] [multiset ans , no 2]]
[membrane

[number 4] [children ] [father 1]
[label 2] [multiset v 1 , n 2 , t- 1 , t- 2 , f- 1 , f- 2 ,

s- 1 , s- 2 , c 1 ,
x 1 1 , -x 1 2 , -x 2 1 , x 2 2]]

[membrane
[number 3] [children ] [father 1]
[label 2] [multiset v 1 , p 2 , t- 1 , t- 2 , f- 1 , f- 2 ,

s- 1 , s- 2 , c 1 ,
x 1 1 , -x 1 2 , -x 2 1 , x 2 2]]

Here it can be seen how the generation stage takes place. In the presence of
the object v2 the system produces two new membranes. The membrane number
4, where the object n2 appears, indicates that in the assignment associated with
this membrane we have x2 = false. The membrane number 3, where the object
p2 appears, indicates that in the assignment associated with this membrane we
have x2 = true.
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Configuration number: 2

[environment [multiset ]]
[skin [children 5 6 7 8]

[label 1] [multiset ans , no 3]]
[membrane

[number 8] [children ] [father 1]
[label 2] [multiset n 1 , # , t- 1 , t- 2 , f- 1 , f 2 ,

s- 1 , s- 2 , c 1 ,
x 1 1 , -x 1 2 , -x 2 1 , x 2 2]]

[membrane
[number 7] [children ] [father 1]
[label 2] [multiset p 1 , # , t- 1 , t- 2 , f- 1 , f 2 ,

s- 1 , s- 2 , c 1 ,
x 1 1 , -x 1 2 , -x 2 1 , x 2 2]]

[membrane
[number 6] [children ] [father 1]
[label 2] [multiset n 1 , # , t- 1 , t 2 , f- 1 , f- 2 ,

s- 1 , s- 2 , c 1 ,
x 1 1 , -x 1 2 , -x 2 1 , x 2 2]]

[membrane
[number 5] [children ] [father 1]
[label 2] [multiset p 1 , # , t- 1 , t 2 , f- 1 , f- 2 ,

s- 1 , s- 2 , c 1 ,
x 1 1 , -x 1 2 , -x 2 1 , x 2 2]]

Configuration number: 3

[environment [multiset ]]
[skin [children 5 6 7 8]

[label 1] [multiset ans , no 4]]
[membrane

[number 5] [children ] [father 1]
[label 2] [multiset # , # , t 1 , t 2 , f- 1 , f- 2 ,

s- 1 , s- 2 , c 1 ,
x 1 1 , # , -x 2 1 , x 2 2]]

[membrane
[number 7] [children ] [father 1]
[label 2] [multiset # , # , t 1 , t- 2 , f- 1 , f 2 ,

s- 1 , s- 2 , c 1 ,
x 1 1 , r 1 , -x 2 1 , x 2 2]]

[membrane
[number 6] [children ] [father 1]
[label 2] [multiset # , # , t- 1 , t 2 , f 1 , f- 2 ,

s- 1 , s- 2 , c 1 ,
x 1 1 , -x 1 2 , -x 2 1 , r 2]]

[membrane
[number 8] [children ] [father 1]
[label 2] [multiset # , # , t- 1 , t- 2 , f 1 , f 2 ,

s- 1 , s- 2 , c 1 ,
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x 1 1 , r 1 , -x 2 1 , x 2 2]]

Configuration number: 4

[environment [multiset ]]
[skin [children 5 6 7 8]

[label 1] [multiset ans , no 5]]
[membrane

[number 7] [children ] [father 1]
[label 2] [multiset # , # , t 1 , t- 2 , f- 1 , f 2 ,

s 1 , s- 2 , c 1 , # , r 1 , -x 2 1 , #]]
[membrane

[number 5] [children ] [father 1]
[label 2] [multiset # , # , t 1 , t 2 , f- 1 , f- 2 ,

s- 1 , s- 2 , c 1 , r 1 , # , -x 2 1 , r 2]]
[membrane

[number 6] [children ] [father 1]
[label 2] [multiset # , # , t- 1 , t 2 , f 1 , f- 2 ,

s- 1 , s 2 , c 1 , # , # , -x 2 1 , #]]
[membrane

[number 8] [children ] [father 1]
[label 2] [multiset # , # , t- 1 , t- 2 , f 1 , f 2 ,

s 1 , s- 2 , c 1 , x 1 1 , # , r 2 , #]]

At the end of the generation and evaluation stage it can be seen that the as-
signment associated with the internal membranes are: {x1 = false, x2 = false}
with the membrane number 8, {x1 = false, x2 = true} with the membrane
number 6, {x1 = true, x2 = false} with the membrane number 7, and {x1 =
true, x2 = true} with the membrane number 5.

Configuration number: 5

[environment [multiset ]]
[skin [children 5 6 7 8]

[label 1] [multiset ans , no 6]]
[membrane

[number 5] [children ] [father 1]
[label 2] [multiset # , # , t 1 , t 2 , f- 1 , f- 2 ,

s 1 , s 2 , c 1 , # , # , # , #]]
[membrane

[number 7] [children ] [father 1]
[label 2] [multiset # , # , t 1 , t- 2 , f- 1 , f 2 ,

s 1 , s- 2 , c 2 , # , r 1 , # , #]]
[membrane

[number 6] [children ] [father 1]
[label 2] [multiset # , # , t- 1 , t 2 , f 1 , f- 2 ,

s- 1 , s 2 , c 1 , # , # , r 2 , #]]
[membrane

[number 8] [children ] [father 1]
[label 2] [multiset # , # , t- 1 , t- 2 , f 1 , f 2 ,

s 1 , s 2 , c 2 , # , # , # , #]]
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Configuration number: 6

[environment [multiset ]]
[skin [children 5 6 7 8]

[label 1] [multiset ans , no 7]]
[membrane

[number 7] [children ] [father 1]
[label 2] [multiset # , # , t 1 , t- 2 , f- 1 , f 2 ,

s 1 , s- 2 , c 2 , # , r 1 , # , #]]
[membrane

[number 6] [children ] [father 1]
[label 2] [multiset # , # , t- 1 , t 2 , f 1 , f- 2 ,

s- 1 , s 2 , c 1 , # , # , r 2 , #]]
[membrane

[number 5] [children ] [father 1]
[label 2] [multiset # , # , t 1 , t 2 , f- 1 , f- 2 ,

s 1 , s 2 , c 2 , # , # , # , #]]
[membrane

[number 8] [children ] [father 1]
[label 2] [multiset # , # , t- 1 , t- 2 , f 1 , f 2 ,

s 1 , s 2 , yes , # , # , # , #]]

As a result of the checking stage the object Y ES is produced and sent out
to the environment in the output stage.

Configuration number: 7

[environment [multiset ]]
[skin [children 5 6 7 8]

[label 1] [multiset yes , ans , no 8]]
[membrane

[number 7] [children ] [father 1]
[label 2] [multiset # , # , t 1 , t- 2 , f- 1 , f 2 ,

s 1 , s- 2 , c 2 , # , r 1 , # , #]]
[membrane

[number 6] [children ] [father 1]
[label 2] [multiset # , # , t- 1 , t 2 , f 1 , f- 2 ,

s- 1 , s 2 , c 1 , # , # , r 2 , #]]
[membrane

[number 5] [children ] [father 1]
[label 2] [multiset # , # , t 1 , t 2 , f- 1 , f- 2 ,

s 1 , s 2 , yes , # , # , # , #]]
[membrane

[number 8] [children ] [father 1]
[label 2] [multiset # , # , t- 1 , t- 2 , f 1 , f 2 ,

s 1 , s 2 , # , # , # , #]]

Configuration number: 8

[environment [multiset ]]
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[skin [children 5 6 7 8]
[label 1] [multiset yes , YES , ans- , no 9]]

[membrane
[number 7] [children ] [father 1]
[label 2] [multiset # , # , t 1 , t- 2 , f- 1 , f 2 ,

s 1 , s- 2 , c 2 , # , r 1 , # , #]]
[membrane

[number 6] [children ] [father 1]
[label 2] [multiset # , # , t- 1 , t 2 , f 1 , f- 2 ,

s- 1 , s 2 , c 1 , # , # , r 2 , #]]
[membrane

[number 8] [children ] [father 1]
[label 2] [multiset # , # , t- 1 , t- 2 , f 1 , f 2 ,

s 1 , s 2 , # , # , # , #]]
[membrane

[number 5] [children ] [father 1]
[label 2] [multiset # , # , t 1 , t 2 , f- 1 , f- 2 ,

s 1 , s 2 , # , # , # , #]]

Configuration number: 9

[environment [multiset YES]]
[skin [children 5 6 7 8]

[label 1] [multiset yes , ans- , no 10]]
[membrane

[number 7] [children ] [father 1]
[label 2] [multiset # , # , t 1 , t- 2 , f- 1 , f 2 ,

s 1 , s- 2 , c 2 , # , r 1 , # , #]]
[membrane

[number 6] [children ] [father 1]
[label 2] [multiset # , # , t- 1 , t 2 , f 1 , f- 2 ,

s- 1 , s 2 , c 1 , # , # , r 2 , #]]
[membrane

[number 8] [children ] [father 1]
[label 2] [multiset # , # , t- 1 , t- 2 , f 1 , f 2 ,

s 1 , s 2 , # , # , # , #]]
[membrane

[number 5] [children ] [father 1]
[label 2] [multiset # , # , t 1 , t 2 , f- 1 , f- 2 ,

s 1 , s 2 , # , # , # , #]]

The system has reached a halting configuration in the step number
9 and the element YES has been released into the environment.

8 Conclusions

In this paper we have presented a variant of P systems with active membrane
in which we have traded polarization for bi-stable catalysts. We have proven
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that this variant is computationally complete and able to solve efficiently NP-
complete problems like SAT.

Future projects are to design families of recognizer bi-stable catalytic P sys-
tems to solve numerical NP-complete problems like Knapsack and Tripartite
Matching and to study the computational power and efficiency of P systems
with active membranes without polarizations.

CLIPS has been shown to be a convenient programming language for simu-
lating P systems and it was helpful to debug the design and to understand how
the P systems from the family Π work.
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5. Gh. Păun, S. Yu, On synchronization in P systems. Fundamenta Informaticae, 38,
4 (1999), 397–410.
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Abstract. Dynamic organization of multi-agent systems can be inspired
by the way biological systems adapt to the evolution of their components.
In this paper, we investigate how multi-agent systems can be formally
modelled as well as how their configurations can be altered, thus affecting
the communication between agents. We use two different formal meth-
ods, communicating X-machines and population P systems with active
membranes, in order to model the case of flocking agents. Each method
possesses different appealing characteristics which are examined through
the modelling process.

1 Introduction

An agent is an encapsulated computing system that is situated in some environ-
ment and is capable of flexible, autonomous actions in order to meet its design
objectives [14]. The extreme complexity of agent systems is due to substan-
tial differences between the attributes of their components, high computational
power required by the processes running within these components, huge volume
of data manipulated by these processes and finally possibly extensive amount of
communication in order to achieve coordination and collaboration. The use of a
computational framework that is capable of modelling both the dynamic aspects
(i.e., the continuous change of agents’ states together with their communication)
and the static aspects (i.e., the amount of knowledge and information available),
will facilitate modelling and simulation of such complex systems.

The multi-agent paradigm can be further extended to include biology-inspired
systems. Many biological processes seem to behave like multi-agent systems,
as for example a colony of ants or bees, a flock of birds, cell tissues etc. [5].
The vast majority of computational biological models are based on an assumed,
fixed system structure that is not realistic. The concept of growth, division,
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and differentiation of individual components (agents) and the communication
between them should be addressed in order to create a complete biological system
which is based on rules that are linked to the underlying biological mechanisms
allowing a dynamic evolution.

For example, consider the case of a flock of birds. Each bird has its own
evolution rules that allow it to grow, reproduce and die over time or under other
specific circumstances; other rules define the flying behaviour of the birds. The
birds are arranged in some two- or three-dimensional space, and this layout
implies the way birds interact with each others in the local neighbourhood. The
structure of the flock, that is the arrangement of the flying birds, changes over
time, thus imposing a change in their interactions.

In the last years attempts have been made to devise biology inspired com-
putational models in the form of generative devices [19], [20], unconventional
programming paradigms [2], bio-engines solving NP hard problems [1], adequate
mechanisms to specify complex systems [11]. In this paper we have selected
two formal methods, X-machines and population P systems, in order to develop
multi-agent system models. Each of these methods possesses different appealing
characteristics which will be examined through the modelling process.

The structure of this paper is as follows: Sections 2 and 3 present the theory
regarding communicating X-machines and population P systems, respectively.
Section 4 presents the actual models developed for an artificial case of agent
flocking. Section 5 discusses some issues concerning the empirical comparison of
the two models. Finally, Section 6 concludes the paper.

2 Communicating X-Machines

The X-machines formal method [6], [10] forms the basis for a specification lan-
guage with a great potential to software engineers. It is rather intuitive while at
the same time formal descriptions of data types and functions can be written in
any known mathematical notation.

For modelling systems containing more than one agent, the X-machine com-
ponents need to be extended with new features, such as hierarchical decomposi-
tion and communication. A communicating X-machine model consists of several
X-machines that are able to exchange messages. This involves the modelling of
the participating agents and the definition of the rules of their communication.

The complete model is a communicating X-machine system Z defined as a
tuple

Z = ((Ci)i=1,...,n, CR),

where:

– Ci is the i-th communicating X-machine component, and
– CR is a relation defining the communication among the components, CR ⊆
C × C and C = {C1, . . . , Cn}. A tuple (Ci, Ck) ∈ CR denotes that the
X-machine component Ci can output a message to a corresponding input
stream of the X-machine component Ck for any i, k ∈ {1, . . . , n}, i �= k.
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A communicating X-machine component Ci is defined as a tuple [18]

Ci = (Σi,Γi, Qi,Mi,ΦCi, Fi, q0i
,m0i

),

where:

– Σi and Γi are the input and output alphabets respectively.
– Qi is the finite set of states.
– Mi is the (possibly) infinite set called memory.
– ΦCi is a set of partial functions ϕi that map an input and a memory value

to an output and a possibly different memory value, ϕi : Σi×Mi → Γi×Mi.
There are four different types of functions in ΦCi (in all of the following it
is assumed that σ ∈ Σi, γ ∈ Γi, m, m′ ∈ Mi; (σ)j means that the input
is provided by machine Cj whereas (γ)k denotes an outgoing message to
machine Ck):
• the functions that read the input from the standard input stream and

write their output to the standard output stream:
ϕi (σ,m) = (γ,m′),

• the functions that read the input from a communication input stream
and write their output to the standard output stream:

ϕi ((σ)j ,m) = (γ,m′),
• the functions that read the input from the standard input stream and

write their output to a communication output stream:
ϕi (σ,m) = ((γ)k,m

′),
• the functions that read the input from a communication input stream

and write their output to a communication output stream:
ϕi ((σ)j ,m) = ((γ)k,m

′).
– Fi is the next state partial function, Fi : Qi × ΦCi → Qi, which, given a

state and a function from the type ΦCi, determines the next state. Fi is
often described as a state transition diagram.

– q0i
and m0i

are the initial state and initial memory respectively.

Graphically, on the state transition diagram we denote the acceptance of an
input by a stream other than the standard one by a solid circle along with the
name Cj of the communicating X-machine component that sends it. Similarly,
a solid diamond with the name Ck denotes that an output is sent to the Ck

communicating X-machine component. An abstract example of a communicating
X-machine component is depicted in Fig. 1.

The above allows the definition of systems of a static configuration. However,
most multi-agent systems are highly dynamic and this requires that their struc-
ture and the communication among the agents is constantly changing. For this
to happen in a communicating X-machine model, the control has to be taken
over by another system acting on a higher level. This controlling device can be
modelled as a set of meta-rules that refer to the configuration of the system or
as a meta-X-machine that will be able to apply a number of operators which
will be affecting the structure of the communicating system [17].



392 I. Stamatopoulou, M. Gheorghe, and P. Kefalas

Fig. 1. An abstract example of a communicating X-machine with functions that receive
inputs and send their output in any possible combination of source and destination
streams

Attachment Operator
This operator is responsible for establishing the communication between an ex-
isting communicating X-machine component and a set of other existing compo-
nents. Its definition is

ATT : C × Z → Z,
where C is the set of communicating X-machine components, and Z is the set
of communicating X-machine systems. For an existing component C ∈ C and
a communicating X-machine system Z (to which C belongs to) a new commu-
nicating X-machine system Z ′ will be built that has different communication
channels. The components remain the same except that for each function ϕ of
the component machine C the streams of the other components, if any, it receives
inputs from or sends outputs to are specified. Similarly, the communicating func-
tions of the other components, with which C establishes communication, become
related to the streams of the component C so that input can be received or out-
put can be sent to it. It is this kind of relationships between the component C
and the other components that define how the whole system is to communicate
as a collection of units cooperating through streams of data.

Detachment Operator
This operator is used in order to remove communication channels between an
existing communicating X-machine component and a set of other existing com-
ponents with which it currently communicates. Its definition is

DET : C × Z → Z,

where C, Z are defined as previously. In this case all the relationships between
the component C and its streams and the other components and their streams
are broken down.
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Generation Operator
A new communicating X-machine component is created and introduced into the
system. If communication requests exist from other components, then commu-
nication channels are established. The definition of the operator is

GEN : C × Z → Z,

where C, Z are defined as previously.

Destruction Operator
This operator is used for the removal of an existing communicating X-machine
component from the system along with the channels that allow its communica-
tion with other components. The operator is written as

DES : C × Z → Z,

where C, Z are defined as previously.

Conceptually, the meta-system could be considered to play the role of the envi-
ronment to the actual communicating system. Because the meta-machine should
be able to control the reconfiguration of the communicating system through the
application of the above operators, it should possess the following information
at all times:

– The communicating system Z = ((C1, . . . , Ci, . . . , Cn), CR).
– The current system state SZ of Z. SZ is defined as a set of tuples SZ =
{sz | ∃Ci, 1 ≤ i ≤ n, sz = (qc, Mc, ϕc)i, where qc is the current state in
which Ci is in, Mc is the current memory of Ci and ϕc is the last function
that was applied in Ci}.

– Definitions of all components that exist or may be added to the system. These
definitions act as genetic codes (GC) for the system. GC is a set of tuples,
GC = {. . . (Σ ,Γ , Q,M,Φ, F,ΦR,ΦW)j , . . .} where the first six elements are
as in the definition of the X-machine and the last two are the set of functions
that may be involved in communication with other components (i.e., ΦR
includes the functions that may read from communicating streams and ΦW
the ones that may write to communicating streams).

Using the above information, the control device can generate a new component
and attach it to the communicating machine Z, through the operator GEN ,
destruct an existing component of Z and rearrange the communication of the
other components appropriately, through the operator DES, and add or remove
channels of communication between a component and a communicating machine
due to some system reconfigurations, through the operators ATT and DET .

3 Population P Systems with Active Cells

A natural generalization of the standard P system model (which is based on a hi-
erarchical arrangement of membranes) can be obtained by considering P systems
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where the structure of the system is defined as an arbitrary graph. Each node in
the graph represents a membrane, which gets assigned a multiset of objects and
a set of rules for modifying these objects and communicating them alongside the
edges of the graph [20]. These networks of communicating membranes are also
known as population P systems because, from a biological point of view, they
can be interpreted as an abstract model of bio-entities aggregated together in
a more complex bio-unit. In this respect the model also addresses the case of
various colonies of more complex organisms like ants, bees etc. These popula-
tions of individuals are usually far from being stable; mechanisms enabling new
individuals to be introduced, to update the links between them or to remove
some individuals play a fundamental role in the evolution of a biological system
as a population of interacting components. The model of population P systems
is augmented with an operation of cell division as a mechanism to introduce
new cells in the system, and with an operation of cell death as a mechanism to
remove cells from the system. As well as this, an operation of cell differentiation
is considered that allows the type of the cells to be changed by varying in this
way the sets of rules that can be used inside the cells. The above leads to a
new model, the population P system with active cells which is defined as a
construct [3]

P = (V,K, γ, α, wE, C1, C2, . . . , Cn, R),

where:

– V is a finite alphabet of symbols called objects;
– K is a finite alphabet of symbols, which define different types for the cells;
– γ = ({1, 2, . . . n}, A), with A ⊆ {{i, j} | 1 ≤ i �= j ≤ n }, is a finite undirected

graph;
– α is a finite set of bond making rules (t, x1;x2, p), with x1, x2 ∈ V ∗, and
t, p ∈ K;

– wE ∈ V ∗ is a finite multiset of objects initially assigned to the environment;
– Ci = (wi, ti), for each 1 ≤ i ≤ n, with wi ∈ V ∗ a finite multiset of objects,

and ti ∈ K the type of cell i;
– R is a finite set of rules dealing with:
• communication,
• object transformation,
• cell differentiation,
• cell division,
• cell death.

Communication rules of the form (a; b, in)t, (a; b, enter)t, (b, exit)t, for a ∈ V ∪
{λ}, b ∈ V , t ∈ K, allow moving objects between neighbouring cells or a cell and
the environment according to the cell type and the current bonds. The first rule
means that in the presence of an object a inside a cell of type t an object b can
be obtained from a neighbouring cell non-deterministically chosen. The second
rule is similar to the first excepting that the object b is not obtained from a
neighbouring cell but from the environment. Lastly, the third rule denotes that
if an object b is present, then it can be expelled out to the environment.
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Transformation rules of the form ( a → b )t, for a ∈ V , b ∈ V +, t ∈ K, have
the meaning that an object a is replaced by an object b within a cell of type t.

Cell differentiation rules of the form ( a )t → ( b )p, with a, b ∈ V , t, p ∈ K,
denote that the consumption of an object a inside of a cell of type t changes the
cell into one of type p. All existing objects remain the same apart from a which
is replaced by b.

Cell division rules of the form ( a )t → ( b )t ( c )t, with a, b, c ∈ V , t ∈ K,
mean that a cell of type t containing an object a is divided into two cells of the
same type. One of the new cells has a replaced by b while the other one replaced
by c. All other objects of the initial cell appear in both new cells.

Cell death rules of the form ( a )t → †, with a ∈ V , t ∈ K, mean that an
object a inside a cell of type t causes the removal of the cell from the system.

4 Case Study: Agent Flocking

The following example is a kind of biology-inspired multi-agent system that re-
sembles bird flocking. Consider a set of agents that move inside a two-dimensional
(for reasons of simplicity) plane. There exist three types of agents: (a) leaders,
(b) donors, and (c) incubators with the following behaviours:

Agent type Behaviours
Leader (a) flies freely when there is available space

(b) avoids other agents by turning to a different
direction

Donor (a) flies freely when there is available space
(b) avoids other agents by turning to a different
direction
(c) follows a leader
(d) signals to other agents (incubators) to reproduce

Incubator (a) flies freely when there is available space
(b) avoids other agents by turning to a different
direction
(c) follows a leader
(d) accepts signals from other agents (donors) to
reproduce

All agents know the current direction to which they move, their exact position in
the plane, and have a perception radius (a range within which they can perceive
other agents). Once a leader is sensed by donors or incubators, the leader is
followed in whatever moves it performs. Once a donor senses an incubator, they
mate and a new leader agent is generated. At the same time, the parent agents
disappear. Two consecutive instances of the multi-agent system are depicted in
Fig. 2.
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Fig. 2. Two consecutive instances of agent flocking

Modelling the system as either a communicating X-machine or a population
P system with active membranes requires the modelling of individual agents
(i.e., knowledge, states, behaviours etc.) on one hand, as well as the modelling
of the dynamic configurations of the system since the communication between
agents changes over time according to the rules of flocking. For example, the
two consecutive instances of the system configurations that correspond to Fig.
2 are shown in Fig. 3. Leader L1 communicates with I1 and D3 since I1 and D3
sense L1 within their perception radius. The same happens between D3 and I2.
In the next instance, I2 and D3 mate to produce a leader L2 which is a totally
independent new agent while I2 and D3 disappear.

Fig. 3. Two consecutive instances of the communicating system

4.1 Communicating X-Machine Model for Agent Flocking

The system consists of the component X-machines shown in Fig. 4 of types
Leader, Incubator, and Donor. In particular, it contains instances of those types
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Fig. 4. The three X-machine types used in the example of the flocking agents

(for example, one Leader L1, two Incubators I1 and I2 and three Donors D1,
D2, D3), which are connected according to the system requirements at various
time instances (in our example in Fig. 3 the system at moments T and T + 1):

Flock = ((L1, I1, I2, D1, D2, D3), {(L1, I1), (L1, D3), (D3, I2)}).
The memory of these machines consists of a tuple containing the position pos
of the agent, its direction dir and a sense radius rad. The input to all functions
is a set of percepts that consists of tuples of the form (type, direction, position)
describing the visible agents within the agent’s sense radius. The output is a
set of messages. The functions are defined in such a way that they model each
particular behaviour associated with the agents. For example:

fly(∅, (pos, dir, rad)) =
(“flying”, (pos′, dir′, rad)) where
dir′ = random(set of directions) and
pos′ = determine pos(pos, dir)

separate(percepts, (pos, dir, rad)) =
(“changing direction”, (pos′, dir′, rad)) where
dir′ = random(set of directions \ forbidden directions) and
forbidden directions = identify possible collisions(percepts, dir) and
pos′ = determine pos(pos, dir)

The communication functions of the X-machine components at moment T are
partially shown in Fig. 5. L1 sends its direction to I1 and D3, which receive it
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Fig. 5. Communication of the X-machines’ functions at instance T

and follow the leader. D3 sends a request to mate with I2, which accepts it. For
example, the functions become:

flyL1(∅, (pos, dir, rad)) =
({(Leader, dir′, pos′)}L1&D3 , (pos

′, dir′, rad)) where
dir′ = random(set of directions) and
pos′ = determine pos(pos, dir)

follow leaderD3({(Leader, dirl, posl)}L1 , (pos, dir, rad)) =
(“following leader”, (pos′, dirl, rad)) where
pos′ = determine pos(pos, dirl)

Having a particular configuration of the system, we now need to show how the
system state changes over time. For example in Fig. 3, consider the system at the
instance moment T . I2 andD3, having sent messages to one another, activate the
appropriate functions in order to reproduce. The meta-machine, by identifying
this event into the system state, applies the operators DES for both I2 and D3
in order to destroy the two components, and then the operator GEN in order
to generate a new component according to the existing genetic code.

DES (I2, F lock) = Flock′,

where:
Flock′ = ((L1, I1, D1, D2, D3), {(L1, I1), (L1, D3)}),
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Fig. 6. An instance configuration of the population P system

DES (D3, F lock
′) = Flock′′,

where:
Flock′′ = ((L1, I1, D1, D2), {(L1, I1)}),

GEN (L2, F lock
′′) = Flock′′′,

where:
Flock′′′ = ((L1, I1, D1, D2, L2), {(L1, I1)}).

4.2 A Population P System Model for Agent Flocking

In population P systems with active membranes agents can be modelled as cells
of different types while the graph represents the communication channels be-
tween them. The bond making rules can be responsible for the system reconfigu-
ration. Knowledge and attributes form objects within cells. The communication
can be achieved through messages that are also objects. The rules associated
with cells take care of transformation of objects, communication as well as dif-
ferentiation, division and death. Let us examine all the above briefly (Fig. 6).

Leaders, donors, and incubators form the three different types of cells, K =
{Leader,Donor, Incubator}.

The undirected graph is

γ = ({L1, I1, I2, D1, D2, D3}, {{I1, L1}, {L1, D3}, {D3, I2}}).

The agents are modelled as cells {CL1 , CI1 , CI2 , CD1 , CD2 , CD3}, where:

CL1 = (wL1 , Leader),
CI1 = (wI1 , Incubator),
CI2 = (wI2 , Incubator),
CD1 = (wD1 , Donor),



400 I. Stamatopoulou, M. Gheorghe, and P. Kefalas

CD2 = (wD2 , Donor),
CD3 = (wD3 , Donor)

.
All cells contain multisets of objects, which, modelling-wise, can be distin-

guished into two categories: objects that refer to knowledge and attributes (such
as the position of agents, their direction etc.) and input or output messages (such
as messages for reproduction sent by the donor etc.). For example, wL1 contains
the objects pos, dir, rad for position, direction and sense radius, respectively.
Similarly, wD1 contains the same symbols together with seed as a message to be
sent to an incubator type cell.

The set of bond making rules α, contains rules that refer to when direct
communication between cell types is achieved, which in this case is the distance
between cells that must be within the sense radius. For example a bonding rule
in α might be:

(Leader , posl ; posd radd , Donor),

when the leader in position posl is in the sense radius of the donor radd in
position posd.

The set of rules R contains various types of rules. More analytically:

– Communication rules
Those rules triggered when there is a direct communication between agents.
For example, when a donor is within the sense radius of an incubator an edge
is added due to the bonding rule and a seed is received by the incubator
through the rule:
(λ ; seed, in)Incubator
Another communication rule refers to the incoming percepts (stimuli) from
the environment that trigger the agents’ behaviours:
(λ ; stimulil, enter)Leader
Finally, a communication rule would be responsible to export a copy of the
current position and direction to the environment in order for the environ-
ment to prepare the next percepts:
(cpos cdir, exit)Donor

– Transformation rules
These rules correspond to the behaviours of an agent type, i.e., fly and
separate for the leader type cells. For example, fly is modelled by rules of
the form:
(stimuli pos dir → pos′ dir′)Leader
where pos′ and dir′ are determined according to current pos and dir and the
stimuli (percepts) received from the environment.

– Cell division rules
These rules are used to divide a cell into two others of the same type. In
our example this models agent birth; an incubator having received a seed
is divided into two cells; one that will become a leader (the child—see cell
differentiation rule below) and one that will die immediately afterwards:
(seed)Incubator → (toTransform)Incubator(toDie)Incubator
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– Cell differentiation
These rules are used by agents in order to change their type. In our example,
after having received a seed from a donor, one of the two cells into which an
incubator is divided becomes a leader:
(toTransform)Incubator → (λ)Leader

– Cell death
These rules are used to model an agent who is going to be removed from
the system. In our example, an incubator that has just given birth ceases to
exist:
(toDie)Incubator → †

According to the above model, the environment apart from containing the mul-
tiset of objects wE which represent the stimuli for each of the agents, it should
be able to process and update them, through a set of transformation rules. In
addition, there should be other transformation rules to deal with various issues
within the cell, e.g., keeping copies of objects that are going to be sent as mes-
sages to other cells or the environment, which, for the sake of simplicity, are not
described.

5 Empirical Comparison of Models

This work has been an initial attempt to model a multi-agent system with dy-
namic configurations through two different methods, namely communicating X-
machines and population P systems with active membranes. In the process of
modelling we have identified a number of issues on which an empirical compar-
ison between the two methods is based and that will be further investigated.

There are advantages to both methods, though at different modelling levels.
X-machines appear to be a natural metaphor for the modelling of the inter-
nal behaviour of agents because they can naturally describe the internal states,
transitions between them caused by stimuli and represent the data structures
which form the knowledge of an agent. However a communicating X-machine
model cannot by itself manage the required reconfiguration, which is a promi-
nent property of biology-inspired multi-agent systems. As a result, an external
device, in the form of a meta-X-machine, is necessary; this device possesses global
control over the structure of the overall system. Control is achieved through
meta-operations which change the way that components interact or function.
Population P systems, on the other hand, possess a natural trait for captur-
ing the behaviour of a community that is formed by individuals and how the
structure of such a community may change over time, although when it comes
to the modelling of an agent, population P systems are less straightforward in
representing the internal states and behaviour of each individual.

Both methods have sound theoretical foundations and act as formal specifi-
cation languages, this being the main advantage when viewing them as software
engineering techniques. Towards this end, the X-machine Description Language
(XMDL) [15] has been defined offering the ability of formally describing X-
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machine models and acting as an interchange tool for software engineers. XMDL
also serves as a common basis for the development of tools, such as the X-System
[9], that allow the syntactical check and automatic animation of the models. The
latter is of great practical importance as it checks the properties of the system
and provides an understanding of the behaviour of the system.

In addition to this practical aspect, X-machines have further techniques sup-
porting the modelling activity such as formal verification of desired system prop-
erties [8], [7] and complete testing [12], [13]. Towards practical modelling, appro-
priate XML notation in order to define population P systems is currently under
development and soon expected to be made available.

6 Conclusions and Further Work

We have attempted an empirical comparison between two formal methods, namely
population P systems and communicating X-machines, based on a case study
involving re-configurable systems. We specifically focused on biology-inspired
multi-agent systems and presented the case study of bird flocking. Each method
has its own advantages and limitations as far as the modelling of individual
agents and the dynamic re-configuration of the whole system are concerned.

High in the list of priorities comes the need for tools that allow the animation
of the created models, the lack of which is considered to be a major disadvantage
in the field of formal methods. X-System, initially implemented for the animation
of stand-alone X-machines has recently been extended so as to facilitate the
animation of communicating models as well. Animation tools also exist for P
systems [4].

Bearing in mind the above, one cannot easily choose one method instead of
the other as they offer different and complementary advantages. These might
prompt us to devise new hybrid methods that combine the features of each one.
Effort has been put into modelling a P system as a communicating X-machine
[16]. Further investigations regarding possible transformations between commu-
nicating X-machine models and population P system models would be useful in
order to support both a formal theoretical comparison as well as the modelling
activity by allowing us to take advantage of the positive traits of both methods.
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Abstract. We show that P systems with symport/antiport rules send-
ing at most one object per direction generate any recursively enumerable
set of natural numbers with three membranes. This improves the previ-
ously known best bound of four membranes.

1 Introduction

Membrane systems, or P systems were introduced in [9] as computing mod-
els inspired by the functioning of the living cell. Their main components are
membrane structures consisting of membranes hierarchically embedded in the
outermost skin membrane. Each membrane encloses a region containing a mul-
tiset of objects and possibly other membranes. Each region has an associated
set of operators working on the objects contained by the region. These operators
can be of different types, they can change the objects present in the regions or
they can provide the possibility of transferring the objects from one region to
another one. The evolution of the objects inside the membrane structure from
an initial configuration to a somehow specified end configuration corresponds to
a computation having a result which is derived from some properties of the spe-
cific end configuration. Several variants of the basic notion have been introduced
and studied proving the power of the framework – see the monograph [10] for a
summary of notions and results of the area.

One of the most interesting variants of the model was introduced in [8] called
P systems with symport/antiport. In these systems the modification of the ob-
jects present in the regions is not possible, they may only move through the
membranes from one region to another. The movement is described by commu-
nication rules called symport/antiport rules associated to the regions. A symport
rule specifies a multiset of objects that might travel through a given membrane in
a given direction, an antiport rule specifies two multisets of objects which might
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simultaneously travel through a given membrane in the opposite directions. The
result can be read as the number of objects present inside a previously specified
output membrane after the system reaches a halting configuration, that is, a
configuration when no application of any rule in any region is possible.

P systems with symport/antiport were shown to be able to generate any
recursively enumerable set of numbers already in [8]. This result was improved
from the point of view of the number of necessary membranes and the complexity
of communication rules in [5, 6, 7]. The study of minimal symport/antiport, when
the multisets in the rules contain at most one object, started in [1] where it
was shown that such systems with nine membranes generate any recursively
enumerable set of numbers. Then the number of necessary membranes were
decreased to six in [3], to five in [2], and then to four in [4].

In the present paper we continue to improve this result by showing that three
membranes are sufficient to generate any recursively enumerable set of numbers
with minimal symport/antiport.

2 Preliminaries and Definitions

We first recall the notions and the notations we use. The reader is assumed to
be familiar with the basics of formal language theory; for details see [11]. Let V
be an alphabet, let V ∗ be the set of all words over V , and let V + = V ∗ − {ε}
where ε denotes the empty word. The set of natural numbers is denoted by N,
the class of recursively enumerable sets of natural numbers is denoted by NRE.
With NkRE, for some k ∈ N, we denote the class {k + L | L ∈ NRE} where
k + L = {x+ k | x ∈ L}.

Let U be a set of objects, called the universe. A multiset is a pairM = (V, f),
where V ⊆ U and f : V → N is a mapping which assigns to each object a ∈ V
its multiplicity, and f(a) = 0 for a /∈ V . The support of M = (V, f) is the set
supp(M) = {a ∈ V | f(a) ≥ 1}. If supp(M) is a finite set, then M is called a
finite multiset. The set of all finite multisets over the set V is denoted by V ◦.

The number of objects in a finite multisetM = (V, f), the cardinality ofM, is
defined by card(M) =

∑
a∈V f(a). We say that a ∈M = (V, f) if a ∈ supp(M).

M1 = (V1, f1) ⊆ M2 = (V2, f2) if supp(M1) ⊆ supp(M2) and for all a ∈ V1,
f1(a) ≤ f2(a). The union of two multisets is defined as (M1∪M2) = (V1∪V2, f ′)
where for all a ∈ V1∪V2, f ′(a) = f1(a)+f2(a). We say thatM is empty, denoted
by ε, if its support is empty, supp(M) = ∅. In the following we enumerate the
not necessarily distinct elements a1, . . . , an of a multiset asM = {{a1, . . . , an}},
by using double brackets to distinguish from the usual set notation.

A P system is a structure of hierarchically embedded membranes, each having
a label and enclosing a region containing a multiset of objects and possibly
other membranes. The out-most membrane which is unique and usually labelled
with 1, is called the skin membrane. The membrane structure is denoted by a
sequence of matching parentheses where the matching pairs have the same label
as the membranes they represent. If x ∈ {[i, ]i | 1 ≤ i ≤ n}∗ is such a string
of matching parentheses of length 2n, denoting a structure where membrane i



406 Gy. Vaszil

contains membrane j, then x = x1 [i x2 [j x3 ]j x4 ]i x5 for some xk ∈ {[l, ]l | 1 ≤
l ≤ n, l �= i, j}∗, 1 ≤ k ≤ 5. If membrane i contains membrane j, and there is
no other membrane, k, such that k contains j and i contains k (x2 and x4 above
are strings of matching parentheses themselves), then we say that membrane i
is the parent membrane of j. A membrane m is called elementary if it contains
no membrane; in this case x = x1 [m ]m x2.

The evolution of the contents of the regions of a P system is described by
rules associated to the regions. Applying the rules synchronously in each region,
the system performs a computation by passing from one configuration to another
one. In the following we concentrate on communication rules called symport or
antiport rules.

A symport rule is of the form (x, in) or (x, out), x ∈ V ◦. If such a rule is
present in a region i, then the objects of the multiset x must enter from the
parent region or must leave to the parent region, respectively. An antiport rule
is of the form (x, in; y, out), x, y ∈ V ◦. In this case, objects of x enter from the
parent region and in the same step, objects of y leave to the parent region.

The rules are applied in the maximal parallel manner, that is, as many rules
are applied in each region as possible. The end of the computation is defined
by halting: A P system halts when no more rules can be applied in any of the
regions, the result is the number of objects in an elementary membrane labelled
as output.

Definition 1. A P system with symport/antiport of degree n ≥ 1 is a construct

Π = (V, μ,E,w1, . . . , wn, R1, . . . , Rn, out),

where:

– V is an alphabet of objects,
– μ is a membrane structure of n membranes,
– E ⊆ V is a set of objects (the ones which can be found in the environment

in an arbitrary number of copies),
– wi ∈ V ◦, 1 ≤ i ≤ n, are the initial contents of the n regions,
– Ri, 1 ≤ i ≤ n, are the sets of symport/antiport rules associated to the

regions,
– out ∈ {1, . . . , n} is the label of an elementary membrane, the output mem-

brane.

To simplify the notations we denote symport and antiport rules as (x, in; y, out),
x, y ∈ V ◦ where we also allow at most one of x, y to be the empty multiset. If
y = ε or x = ε, then the notation above denotes the symport rule (x, in) or
(y, out), respectively.

The n + 1-tuple of finite multisets of objects present in finite number of
copies in the environment and in the n regions of the P system Π describes a
configuration of Π; (ε, w1, . . . , wn) ∈ (V ◦)n+1 is the initial configuration.

Definition 2. For a configuration (u0, . . . , un), the P system may enter the new
configuration (u′

0, . . . , u
′
n), denoted as (u0, . . . , un)⇒ (u′

0, . . . , u
′
n), if there exist

rules as follows.
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For all i, 1 ≤ i ≤ n, there is a multiset of rules Pi = {{ri,1, . . . , ri,mi
}},

where ri,j = (xi,j , in; yi,j , out) ∈ Ri, satisfying the conditions below where xi, yi
denote the multisets

⋃
1≤j≤mi

xi,j and
⋃

1≤j≤mi
yi,j , respectively. Furthermore,

there is no r ∈ Rj , for any j, 1 ≤ j ≤ n, such that the rule multisets P ′
i with

P ′
i = Pi for i �= j and P ′

j = {{r}} ∪ Pj , also satisfy the conditions which are
given as

x1 = x′
1 ∪ x′′

1 with supp(x′
1) ⊆ E, x′′

1 ⊆ u0, and⋃
parent(j)=i

xj ∪ yi ⊆ ui, for 1 ≤ i ≤ n.

Then the new configuration is obtained by

u′
0 = u0 − x′′

1 ∪ y1, and

u′
i = ui ∪ xi − yi ∪

⋃
parent(j)=i

yj −
⋃

parent(j)=i

xj , for 1 ≤ i ≤ n.

The P system generates numbers as follows.

Definition 3. The set of natural numbers generated by a symport/antiport P
system as above, N(Π), is the following one:

N(Π) = {x = card(uout) | (ε, w1, . . . , wn)⇒∗ (u0, . . . , un),
where (u0, . . . , un) is a halting configuration}

and ⇒∗ denotes the reflexive and transitive closure of ⇒.

Let NOPn(symr, antis) denote the class of sets of numbers generated by sym-
port/antiport P systems of degree at most n where for all (x, in), (y, out),
(v, in; z, out) ∈ Ri, 1 ≤ i ≤ n, card(x) ≤ r, card(y) ≤ r, and card(v) ≤ s,
card(z) ≤ s.

Before we proceed, we need the notion of a counter automaton which will
be used in the proof of our result. In the context of numbers or languages over
unary alphabets, it is possible to consider counter automata without an input
tape but with an output counter. We present the definition in this form, as given
in [4]; for more details see [4] and its references.

Definition 4. A counter automaton is a construct

M = (Q,C,R, q0, f)

where Q is a set of states, C = {c0, c1, . . . , cn} is a set of counters, c0 being the
output counter, R is a set of transitions of the form (r → s,X), for two states
r, s ∈ Q, and an instruction X ∈ {i+, i−, e, (i = 0) | 0 ≤ i ≤ n}, q0 ∈ Q is the
initial state, and f ∈ Q is the final state.

If a transition (r → s,X) is an element of R, then the machine can pass from
state r to state s executing X. If X is i+ or i−, then it instructs the machine to
increase or decrease, respectively, the value of counter ci by one, if it is e, then
it instructs the machine to leave the counter values unchanged, if it is i = 0,
then the transition from r to s is only possible by having zero as the contents of
counter ci.
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Definition 5. The configuration of a counter automaton M is given by the
(n + 2)-tuple (q, c0, c1, . . . , cn) where q ∈ Q is a state, and ci ∈ N, 0 ≤ i ≤ n,
are the values stored in the counters, c0 being the value of the output counter.
The initial configuration is (q0, 0, 0, . . . , 0), a final configuration is of the form
(f, c0, c1, . . . , cn) where f is the final state of M .

Given a configuration (q, c0, c1, . . . , cn), the machine can pass to configu-
ration (q′, c′0, c

′
1, . . . , c

′
n), denoted as (q, c0, c1, . . . , cn) ⇒ (q′, c′0, c

′
1, . . . , c

′
n), if

(q → q′, X) ∈ R, and

– if X = j+, then c′j = cj + 1 and c′i = ci, 0 ≤ i ≤ n, i �= j,
– if X = j−, then c′j = cj − 1 and c′i = ci, 0 ≤ i ≤ n, i �= j,
– if X = e, then c′i = ci, 0 ≤ i ≤ n,
– if X = (j = 0), then c′i = ci, 0 ≤ i ≤ n, and cj = 0.

Let ⇒∗ denote the reflexive and transitive closure of ⇒.

A computation is a sequence of such transitions leading from the initial con-
figuration to a final configuration, and its result can be read from the output
counter.

Definition 6. The set of natural numbers generated by a counter automaton
M as above is

N(M) = {c0 ∈ N | (q0, 0, 0, . . . , 0)⇒∗ (f, c0, c1, . . . , cn), where
q0 and f are the initial and the final states, respectively}.

It is known that counter automata are able to generate any recursively enumer-
able set of numbers if they have two or more counters beside the output counter.

3 The Number of Membranes

In this section we show that P systems with minimal symport/antiport rules
generate any recursively enumerable set of numbers with elements greater then
five with three membranes. To do this, we will show how these systems simulate
the computations of counter automata.

Theorem 1. NOP3(sym1, anti1) = N5RE.

Proof. Consider the counter automatonM = (Q,C,R, q0, f) with counters C =
{c0, c1, . . . , cn} as above, c0 being the output counter, and let the transitions be
uniquely labelled by elements of the set lab(R). We construct a P system Π
generating the language L(Π) = {x+ 5 | x ∈ L(M)} as follows. Let

Π = (V, μ,E,w1, w2, w3, R1, R2, R3, 3),

where μ = [1 [2 [3 ]3 ]2 ]1, and

V = {I1, Ī1, I2, I3, I4, I5,∞1,∞2,∞3,∞4, C, f1, f
′
1, f2, f

′
2, f̄2, f3, f

′
3, f4}

∪ {t, t′ | t ∈ lab(R)} ∪ {ci, 0i | 0 ≤ i ≤ n},
E = {t, t′ | t ∈ lab(R)} ∪ {I4, f1, f2, f̄2, f3, f4} ∪ {ci | 0 ≤ i ≤ n}.
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The initial region contents are

w1 = {{I1, Ī1, I2, I3,∞1,∞2,∞3,∞4,∞4, C}},
w2 = {{∞1,∞2}} ∪ {{0i | 0 ≤ i ≤ n}}, and
w3 = {{I5, f ′

1, f
′
2, f

′
3,∞3}}.

The work of the P system can be divided into three phases:

– Initialization,
– simulation of the counter automaton, and
– termination.

In the initialization phase an arbitrary number of counter symbols ci, 0 ≤ i ≤ n,
are moved into region 1 and an arbitrary number of transition symbols t′ for
some t ∈ lab(R) are moved into region 3.

In the simulation phase Π simulates M by modifying the number of counter
symbols present in region 2 according to the counter contents of M as follows.
First Π imports a transition symbol t1 for a possible transition t1 : (q → r,X) ∈
R of M into region 1. Then this symbol travels to region 2 and then to region
3 where it remains until the termination phase, and from where the primed
version, t′1, is released to region 2 moving to region 1 where it is sent out to
the environment and at the same time an other transition symbol t2 ∈ lab(R) is
imported for an other valid transition t2 : (r → s, Y ) ofM . While these transition
symbols travel through the system to region 3 and back, the modifications on
the number of counter symbols in region 2 are realized. If X = i−, then a copy of
ci is removed from region 2 when t1 enters this region from region 1. If X = i+,
then a copy of ci is imported from region 1 to region 2 when t′1 moves from
region 2 to region 1. For X = (i = 0), through the aid of maximal parallel rule
application, the system allows the above described movement of the transition
symbols only in the case when region 2 does not contain any symbol ci.

In the termination phase, the counter symbols corresponding to the output
counter are moved to region three, then the possibly still present transition
symbols of the form t, t′ for some t ∈ lab(R) are moved from region 3 to region
2. In case of an unsuccessful simulation, Π may never stop which is ensured by
an infinite loop: A pair of ∞1 symbols are present in region 1 and 2, together
with the rule (∞1, in;∞1, out) in region 2. This loop is “destroyed” only in the
termination phase after a successful simulation allowing the computation to stop.

For the sake of easier readability we present the rules of Π in groups corre-
sponding to these phases Ri = Rini

i ∪Rsim
i ∪Rter

i , 1 ≤ i ≤ 3.
For j, 0 ≤ j ≤ n, and t ∈ lab(R),

(t′, in; I1, out), (I1, in), (I4, in; I1, out), (cj , in; Ī1, out), (Ī1, in) ∈ Rini
1 ,

(I2, in), (t′, in; I2, out), (∞3, in; I2, out), (I3, in;∞2, out) ∈ Rini
2 ,

(I3, in), (t′, in; I3, out) ∈ Rini
3 .

With the help of the initialization symbols I1, Ī1, I2, I3 ∈ w1, these rules import
an arbitrary number of transition symbols t′ with t ∈ lab(R) into region 3 and
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counter symbols ci, 0 ≤ i ≤ n, into region 1. In the first step, I1 and Ī1 are
moved out of the system, I2 and I3 are moved to region 2. Since there will be
other rules in region 1 for I3, it is necessary to make sure that it is moved to
region 2 by sending out the symbol ∞2. If ∞2 is not sent out, an infinite loop is
formed which can not be later destroyed. By applying these rules in succession,
the imported transition symbols are moved to region 3, the counter symbols
remain in region 1. If for some reason, because of the application of some other
rule, a transition symbol can not be moved to region 2 from region 1, then
∞3 is moved into region 2 instead, creating an infinite loop. Another infinite
loop involving the two ∞1 objects keeps the system working until a correct
simulation of a successful computation is finished, then it is removed, otherwise
if the simulation does not follow the right track, the system will produce no
result. These infinite loops need rules

(∞1, in;∞1, out), (∞2, in;∞2, out) ∈ Rini
2 ,

(∞3, in;∞3, out) ∈ Rini
3 .

If once in region 1, instead of a transition symbol, I4 is imported, then the
initialization phase is finished using the following rules.

(I3, out) ∈ Rini
1

(I4, in; I3, out), (I1, in; I4, out), (∞4, in; I4, out), (Ī1, in; I5, out) ∈ Rini
2

(I1, in; I5, out), (I2, in; I1, out) ∈ Rini
3

First, the symbol I3 is moved out from region 2 to region 1 and at the same time
I4 is moved from region 1 to region 2. Then I3 leaves the system, and I4 is sent
back to region 1 while moving I1 to region 2. Since there are other rules for I1
in region 1, an infinite loop is created with the ∞4 symbols if in this step I1 is
not moved to region 2. Then I1 is transferred to region 3, where it brings also I2
to region 3, and releases I5 which moves to region 1 while bringing Ī1 to region
2. The infinite loop needs the rule

(∞4, in;∞4, out) ∈ Rini
2 .

Thus, at the end of a successful initialization phase, the system ends up in a
configuration where u1, u2, u3 are the multisets contained by the three regions
as

u1 = {{ci1 , . . . , cik
| ij ∈ {0, . . . , n}, 1 ≤ j ≤ k}}

∪{{I4, I5,∞2,∞2,∞3,∞4,∞4,∞1, C}},

u2 = {{I1, Ī1,∞1, 00, 01, . . . , 0n}}, and

u3 = {{t′1, . . . , t′m | tj ∈ lab(R), 1 ≤ j ≤ m}}
∪{{I2, f ′

1, f
′
2, f

′
3,∞3}}.
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The simulation of the counter automaton is realized with the following rules.

Rsim
1 = {(t0, in; I5, out), (t2, in; t′1, out) | t0, t1, t2 ∈ lab(R) with

t0 : (q0 → q,X), t1 : (q → r, Y ), t2 : (r → s, Z) for some X,Y, Z},

Rsim
2 = {(t, in), (ci, in; t′, out) | t : (r → s, i+) ∈ R}
∪ {(t, in; ci, out), (t′, out) | t : (r → s, i−) ∈ R}
∪ {(t, in), (t′, out) | t : (r → s, e) ∈ R}
∪ {(t, in; 0i, out), (0i, in; ci, out), (0i, in; t′, out) | t : (r → s, i = 0) ∈ R},

Rsim
3 = {(t, in; t′, out) | t ∈ lab(R)}.

First I5 is sent out of the system and one transition symbol, denoting a transition
from the initial state q0 is imported, then the transition corresponding to the
symbol is simulated. This is done by moving the transition symbol to the third
region, exchanging it to its primed version, and moving the primed version back
to region 1. While the transition symbol travels through the regions, it adds or
subtracts a counter symbol to or from region 2 when necessary. If the instruction
corresponding to the simulated transition is i = 0, then the above described
movement of the transition symbol is only possible if there are no ci counter
symbols present in region 2.

If the system simulates a transition tf : (q → f,X) to the final state f , it
may enter the terminating phase. In this phase the following rules are used.

Rter
1 = {(f1, in; t′f , out), (f̄2, in; f ′

1, out), (f̄2, in; f̄2, out), (f2, in; f̄2, out),
(f3, in; f ′

2, out), (f4, in; f
′
3, out)},

Rter
2 = {(f1, in), (C, in; f ′

1, out), (f2, in; 00, out), (00, in; c0, out),
(00, in; f ′

2, out), (f3, in;C, out), (f
′
3, out), (f4, in;∞1, out)},

Rter
3 = {(f1, in; f ′

1, out), (C, in), (C, out), (c0, in;C, out), (f2, in; f
′
2, out),

(f3, in; f ′
3, out), (f4, in; rs

′out), (f4, in; rs, out), (f4, out)}.

During the terminating phase, symbols f1, f2, f3, and f4 travel through the sys-
tem, each performing a specific task. First, after a transition symbol t′f is present
in region 1, f1 is imported into the system. It moves to region 3 where f ′

1 is re-
leased which moves to region 1 bringing C to region 2. The task of C is to move
all c0 counter symbols corresponding to the output counter to region 3. This
may take several steps, so f ′

1 is exchanged with f̄2 in region 1, and f̄2 can move
in and out of the system for an arbitrary amount of time. When f̄2 is exchanged
with f2, the termination process continues. The travel of f2 is only possible if
there is no c0 present in region 2. In this case, after f ′

2 leaves the system, f3 is
imported. While f3 moves through the system it removes C from region 2, so
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no further movement of possibly newly appearing c0 will be allowed to region
3, then, when f ′

3 leaves the system, f4 is introduced. When f4 moves to region
2, it removes ∞1, thus removes the infinite loop, and then it also removes the
remaining transition symbols from region 3. When all of these symbols are out
of region 3, the system stops working, having only the counter symbols plus
five other symbols, f1, f2, f3, ∞3, and I2 in region 3, the output region, thus
producing a result x ∈ N for some (x− 5) ∈ L(M). ��

4 Conclusion

We have shown how to simulate counter automata using P systems with minimal
symport/antiport rules and three membranes, thus we have improved the previ-
ously known best result stating that four membranes are sufficient to reach this
power. The optimality of our result is still to be demonstrated, but we conjecture
that it cannot be further improved.

Acknowledgement. Thanks to Pierluigi Frisco for pointing out several faults
in a previous version of this paper.
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9. Gh. Păun. Computing with Membranes. Journal of Computer and System Sciences,
61(1):108-143, 2000.
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Fontana, Federico 63
Freund, Rudolf 36, 146, 309

Gheorghe, Marian 389
Gutiérrez-Naranjo, Miguel A. 278, 320

Ionescu, Mihai 224
Ishdorj, Tseren-Onolt 224

Jonoska, Nataša 1
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