

Lecture Notes in Artificial Intelligence 2605
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Dieter Hutter Werner Stephan (Eds.)

Mechanizing
Mathematical Reasoning

Essays in Honor of Jörg H. Siekmann
on the Occasion of His 60th Birthday

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Dieter Hutter
Werner Stephan
German Research Center for Artificial Intelligence (DFKI GmbH)
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany
E-mail:{hutter, stephan}@dfk.de

Library of Congress Control Number: 2005921072

CR Subject Classification (1998): I.2.3, I.2, F.4.1, D.2.4

ISSN 0302-9743
ISBN 3-540-25051-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11399056 06/3142 5 4 3 2 1 0

Preface

These essays pay tribute to Jörg H. Siekmann on his 60th birthday, which gave
reason to his friends, former and recent students, and colleagues to celebrate
his career as a scientist who has contributed to many diverse fields. These are
covered by the wide range of essays that make up this volume. The way the
scientific contributions were grouped reflects the development of Jörg’s research
interests over the many years of his professional life. Moreover, many of them
are directly influenced by his own work.

Part 1 starts with contributions on basic deduction techniques, from decision
theories, rewriting, constraint solving and unification to entire systems for auto-
mated theorem proving. When Jörg started his academic career, the area of au-
tomated reasoning and also Jörg’s early work were almost completely dominated
by these disciplines. Today, after two or more decades of substantial improve-
ments, techniques like those developed in his groups and those discussed in this
volume provide the basic machinery for application-specific, more comprehensive
support systems.

Shortly before and during his time in Saarbrücken Jörg became more and
more involved in several forward-looking and application-driven developments
that use “automated deduction inside.” Part 2 focuses on various application
scenarios like knowledge representation and retrieval, natural language process-
ing and e-learning.

As opposed to applications in education and Web technology, for example,
the use of deductive techniques in formal software development goes back to
the 1970s. Jörg was in contact with the developers of these early approaches
primarily through his collaboration with Peter Raulefs in Karlsruhe and Kaisers-
lautern. However, it was through the VSE project that he became active in this
rapidly growing research area, which became an important role for his group at
the DFKI.

Besides the more technical research issues mirrored in most of the contribu-
tions of this volume, Jörg was always concerned about the fundamental problem
of explaining human intellectual behavior by means of computer models. In
particular the study of emergent behavior and self-organization attracted him
beyond the use of agent architectures for theorem proving or, in the other direc-
tion, the application of deductive techniques for agent planning. Part 4 presents
work in the spirit of Jörg’s research group on multiagent systems.

Compiling this volume has been a great pleasure. We are grateful that ev-
eryone who we asked to contribute responded positively, expressing their desire
to honor Jörg H. Siekmann. We thank the authors for their patience during the
long period between the first ideas on preparing this volume and its later publi-
cation. Special thanks goes to Jörg for providing us with a preliminary draft of
his autobiography which illuminates various facets of his eventful life. The draft
turned out to be an invaluable source when writing the appraisal of his career.

VI Preface

Jörg has had a major impact on our lives. I, Dieter, first met him in 1979
when I was an undergraduate student at the University of Karlsruhe, obliged to
give a proseminar on Lenat’s AM system. His inspiring enthusiasm and energy
for this kind of AI system stirred my growing interest in automated theorem
proving in general and guiding such provers in particular. Not surprisingly, after
finishing my MSc thesis I registered as a PhD student of Christoph Walther and
Peter Deussen, joining the development of the inductive theorem prover INKA.
Years later, Jörg offered me a research position in Saarbrücken to incorporate
proof guiding techniques into VSE; I accepted willingly.

At the time when Jörg moved to Karlsruhe I, Werner, was working in
Wolfgang Menzel’s group, which together with Deussen’s group formed the insti-
tute of theoretical computer science. Despite countless controversial discussions
on AI-related topics and developments in the common academic context, as well
as ongoing changes in the German society of the early 1980s, we shared many
basic views and soon became friends. But also, in a more restricted sense, my
academic work was influenced by Jörg’s often more than enthusiastic way of
standing up for AI and, in particular, automated deduction. Being interested at
that time in the semantics of programming languages and logics, the discussions
with Jörg’s group sharpened my view that computer-assisted deductive systems
(together with “model based” analysis techniques) “animate” formal develop-
ment techniques thereby enabling their application in software engineering.

Since then, our work at Jörg’s research department at the DFKI has been
guided by the search for a close integration of formal methodology and deduc-
tive support, bringing together two communities that, still today, are often far
from working hand in hand. Throughout all the years, Jörg has been a constant
source of inspiration, friendship and humor. In presenting Jörg with this book
we hope that he will enjoy reading it, and since his work is by no means finished,
we hope to return the favor by reading more of the essays he has promised to
write in the coming years.

Dieter Hutter
Werner Stephan

Table of Contents

A Portrait of a Scientist: Logic, AI and Politics . 1
Dieter Hutter and Werner Stephan

Logic and Deduction

Some Reflections on Proof Transformations . 14
Peter B. Andrews

Rewrite and Decision Procedure Laboratory: Combining Rewriting,
Satisfiability Checking, and Lemma Speculation . 30

Alessandro Armando, Luca Compagna, and Silvio Ranise

SAT-Based Decision Procedures for Automated Reasoning:
A Unifying Perspective . 46

Alessandro Armando, Claudio Castellini, Enrico Giunchiglia,
Fausto Giunchiglia, and Armando Tacchella

Temporal Dynamics of Support and Attack Networks:
From Argumentation to Zoology . 59

Howard Barringer, Dov Gabbay, and John Woods

Footprints of Conditionals . 99
Christoph Beierle and Gabriele Kern-Isberner

Time for Thinking Big in AI . 120
Wolfgang Bibel

Solving First-Order Constraints over the Monadic Class 132
Dimitri Chubarov and Andrei Voronkov

From MKRP to Ωmega . 139
Manfred Kerber

Decidable Variants of Higher-Order Unification . 154
Manfred Schmidt-Schauß

Normal Natural Deduction Proofs (in Non-classical Logics) 169
Wilfried Sieg and Saverio Cittadini

History and Future of Implicit and Inductionless Induction:
Beware the Old Jade and the Zombie! . 192

Claus-Peter Wirth

VIII Table of Contents

The Flowering of Automated Reasoning . 204
Larry Wos

Applications of Logics

Description Logics as Ontology Languages for the Semantic Web 228
Franz Baader, Ian Horrocks, and Ulrike Sattler

Living Books, Automated Deduction and Other Strange Things 249
Peter Baumgartner and Ulrich Furbach

An Essay on Sabotage and Obstruction . 268
Johan van Benthem

Bridging Theorem Proving and Mathematical Knowledge Retrieval 277
Christoph Benzmüller, Andreas Meier, and Volker Sorge

Formal Description of Natural Languages:
An HPSG Grammar of Polish . 297

Leonard Bolc

Psychological Validity of Schematic Proofs . 321
Mateja Jamnik and Alan Bundy

Natural Language Proof Explanation . 342
Armin Fiedler

Why Proof Planning for Maths Education and How? 364
Erica Melis

Formal Methods and Security

Towards MultiMedia Instruction in Safe and Secure Systems 379
Bernd Krieg-Brückner

The Impact of Models in Software Development . 396
Manfred Broy

Formal Software Development in MAYA . 407
Dieter Hutter and Serge Autexier

A Unification Algorithm for Analysis of Protocols
with Blinded Signatures . 433

Deepak Kapur, Paliath Narendran, and Lida Wang

Exploiting Generic Aspects of Security Models in Formal Developments . . . 452
Heiko Mantel and Axel Schairer

Table of Contents IX

Verification Support Environment . 476
Werner Stephan, Bruno Langenstein, Andreas Nonnengart,
and Georg Rock

Agents and Planning

SAT-Based Cooperative Planning: A Proposal . 494
Marco Benedetti and Luigia Carlucci Aiello

Towards Comprehensive Computational Models
for Plan-Based Control of Autonomous Robots . 514

Michael Beetz

Agents with Exact Foreknowledge . 528
Jim Doran

Self-organisation in Holonic Multiagent Systems . 543
Klaus Fischer

Author Index . 565

A Portrait of a Scientist: Logic, AI and Politics

Dieter Hutter and Werner Stephan�

German Research Centre for Artificial Intelligence,
D-66123 Saarbrücken, Germany

1 Bückeburg Mitnehmen kann man das Vaterland
An den Sohlen und an den Füßen
Das halbe Fürstentum Bückeburg
Blieb mir an den Stiefeln kleben.
So lehmichte Wege habe ich wohl

Noch nie gesehen im Leben.

Heinrich Heine: Ein Wintermärchen, 1844

At the time Alan Turing was engaged in deciphering the code of the Enigma
in Bletchley Park and Konrad Zuse applied his patent for the first electronic
computer called “Rechenvorrichtung” in Berlin, Jörg was born into the rural
capital of the smallest Fürstentum of Germany, called Schaumburg-Lippe, a
name even well educated Germans have probably never heard of. Jörg grew up
as the oldest son of a family whose male providers had been joiners and curlers
for centuries. There has never been a question that one day he would inherit the
small family owned curler and joiners workshop.

But things turned out otherwise: Schaumburg-Lippe never became an inde-
pendent Land again and the once respectable Siekmann family of joiners, curlers
and church leaders was on the decline: mass furniture production became a highly
capital intensive, fully automated business, where a certain Swedish company set
the pace. In that process, almost all of the family-owned small and medium sized
woodworking companies vanished and the once proud Schaumburg Lippesche
Handwerkskammer dating back far into medieval times became obsolete.

But Jörg did not quite fit particularly well anyway: when he could not decide
whether he wanted to be an artist or a scientist – an idea so inconceivable that
his father threatened to cut off all his family ties – he took his juvenile poems
and drawings to a family friend who looked at his paintings and poems with a
stern expression and suggested: “Son, you better learn the trade of your fathers!”

So, Jörg became a joiner’s apprentice in the nearby village of two hundred
souls called Scheie, and after three and a half years he passed the traditional
examinations and practical tests with some distinction: being now a well recog-
nized member of the German chamber of handicraft entitled to call himself a
Tischlergeselle.

Two years in the army, a further apprenticeship as a metalworker and welder
finally qualified him to enter the Technikum Rosenheim, an engineering school
� We like to thank Jörg for freely using his “Autobiographic Notes” from which some

material and most of the personal information is drawn and quoted without explicit
indication.

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 1–13, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 Dieter Hutter and Werner Stephan

for woodwork and furniture production, which bestowed the title of grad.Ing.
Rosenheim on him. A small research and technology company hired him right
away and they invented the “R-value”, a ventilation measure, apparently still in
use today, which classifies the ventilation capacity of (wooden) windows.

Being bored with the “science” of window manufacturing, still unwilling to
accept the position as the head of his father’s company, which did not flourish
all too well anyway, he decided it was time for a fundamental change and a new
start.

University life was walled up in those days by the Abitur, the German equiv-
alent of the anglo-saxon A-levels, a watershed in the conservative Germany of
Adenauer’s days that divided those who have from those who have not. His first
marriage (of which there were several more to come) broke up and he started
again as a schoolboy in evening classes and eventually he was admitted as a stu-
dent at the Braunschweig Kolleg, a prestigious German adult education centre.
Three years later at the age of almost thirty all doors were finally open: he had
his Abitur!

But life never seemed to evolve in a straight line with Jörg; politics dominated
his life: this was the late sixties, the peak of the student revolt in Paris and
Germany. Benno Ohnesorg, his fellow student from the Braunschweig Kolleg,
was shot by a policeman during a student demonstration, Greece was controlled
by the military dictatorship of Papadopoulos and his colonels. This is a period
in Jörg’s life he wisely concealed in his curriculum vitae and application letters
to the university in a country that not only exported terms like Kindergarten
and Eigenwert into the English language, but also the word Berufsverbote.

2 Göttingen and Essex Zu Göttingen blüht die Wissenschaft,
Doch bringt sie keine Früchte.

Ich kam dort durch in stockfinstrer Nacht,
Sah nirgendwo ein Lichte.

Heinrich Heine: Der Tannhäuser, 1836

In nineteen seventy the dream of the “little joiner’s boy” became true: he enrolled
as a student in mathematics and physics at Göttingen University and he was
accepted as a member and soon elected a senior tutor of the Akademische Burse.

The introduction to mathematics by Grauert and Brieskorn, Scheibe’s lec-
tures on time and relativity and the intellectual and political debates of the
Akademische Burse were formative years. But it was logic and its introductory
courses by Patzig and others that captured his imagination: apparently there
are deeper and more eternal truths behind the appearance of everyday academic
life.

The Vordiplom in mathematics and physics, evening classes in the English
Language Lab, a few months at the Sound and Vibration research institute in
Southhampton (where they implemented one of the fastest Fourier-Transform-
ations of its time), and finally a one-year grant from the DAAD prepared for
a master course in computer science in England at Essex University. Science
and politics again: the final M.Sc. degree with distinction and the admittance

A Portrait of a Scientist: Logic, AI and Politics 3

to Oxford as a PhD student of Dana Scott but also a course he taught at the
student union on Rosa Luxemburg and Mandel’s economic theory.

In the end the public lectures on artificial intelligence by Terry Winograd,
Carl Hewitt, Roger Schank and Yorick Wilks at Essex sparked a new flame that
should now last for a lifetime: if machines can think and we can talk to them –
these were the years of Terry Winograd’s SHRDLU and Nils Nilsson’s SHAKEY
– then surely this was a much greater scientific challenge than all of mathematics
and physics taken together, and certainly on par with some of the grand problems
in logic related to the fundamental barriers of human and machine thinking.

So when Pat Hayes joined the staff of Essex University and accepted him as
his PhD student, all future plans with Oxford and Germany were abandoned.
The excitement with the new subject was fuelled by the staff at Essex: Richard
Bornat, Mike Brady, Jim Doran, Pat Hayes, Bernard Sufrin, Yorick Wilks and
a constant stream of visiting scientists from Edinburgh, Sussex and also from
America provided much of the early excitement for this new subject.

His thesis “Unification and Matching Problems” on unification theory for
combinations of associativity, commutativity and idempotency introduced the
notion of a unification hierarchy based on the cardinality of the set of most gen-
eral unifiers. With his collaboraters Mike Livesey and Peter Szabo, Jörg elab-
orated a classification of this hierarchy, which now carries his name. The early
work of Gordon Plotkin, the thesis of Gerard Huet, and his work with Peter Sz-
abo and others finally established unification theory as a subject of its own, with
annual workshops and subsections at AI, automated reasoning and mathematics
conferences.

3 Karlsruhe Eines Nachmittags ging Markgraf Karl Wilhelm im
Hardtwald auf die Jagd, um seinen Aerger zu vergessen.

Er traf einen Hirsch, verfolgte das Tier und ließ dabei
sein Gefolge weit hinter sich. Vom langen Ritt ermüdet,
setzte er sich schließlich auf einen Eichenstumpf mitten
im Wald. Bald war er eingeschlafen. Erst nach Stunden

fanden seine Jagdgenossen ihren schlafenden Herrn. Man
weckte ihn, und als er sich umschaute, gefiel ihm der
Ort so gut, dass er sagte: “In meinem Leben habe ich

noch niemals besser geschlafen als hier. An diesem Platz
möchte ich immer wohnen. ’Karls Ruhe’ soll er künftig

heißen. Und über diesem Baumstumpf will ich eine Kirche
errichten, in der ich einstens zur ewigen Ruhe gebettet werde.”

Historical saga of the foundation of Karlsruhe

In 1976 Jörg moved to Karlsruhe when AI slowly started to gain ground in
Germany. The year before, the first informal German meeting on artificial in-
telligence was organised and a year later it was accepted formally as a working
group of the GI, the German computer science society. Jörg was now an assistant
and soon an associate (Hochschulassistent) in the institute of Peter Deussen at
the computer science department in Karlsruhe.

His research area continued to be unification theory working in close collab-
oration with his friend Peter Szabo, but also and more importantly – at least
in Jörg’s values – the beginning of the automated theorem proving system with

4 Dieter Hutter and Werner Stephan

the tongue-twister name Markgraph Karl Refutation Procedure (MKRP). He
convinced Germany’s funding agencies that he could build a theorem proving
system that would not only outperform the strongest American systems by far,
but establish a new paradigm of less search and more (mathematical) knowledge
for theorem proving. He claimed that Deussen’s book “Halbgruppen und Auto-
maten” would be the first text book completely generated in natural language
by a machine – a promise that turned out to keep him busy not only for the
anticipated decade but obviously till the end of his active life.

We had the days of Carl Hewitt’s PLANNER, the declarative versus pro-
cedural debate and Pat Hayes paper “An arraignment of theorem proving or a
logician’s folly”. But the field of automated theorem proving was not particularly
influenced by these debates and still dominated by Alan Robinson’s resolution
calculus. Its few and simple inference rules entrapped many researchers to be-
lieve that developing a successful general purpose strategy for theorem proving
would be only a matter of time. Under the influence of the Essex debates and
Pat Hayes’ way of thinking, the new MKRP-system was supposed to be the first
knowledge based theorem proving system to lead out of the trap of the merely
search based approaches of the day. Bob Kowalski’s connection graph seemed
to be a good starting point for the new MKRP-system because of its imme-
diate access to available resolution steps, and soon innumerable papers about
connection-graph based theorem proving in general and all sorts of refinements
in particular poured out of Jörg’s group. The system developed well at first and
soon it exhausted the computational resources of the computing faculty. Every
Wednesday evening the faculties’ single computer (occupying more than half of
the basement of the faculties’ building) was rebooted in a single-user mode for the
sole reason of accommodating Germany’s best theorem proving system within
its four megabyte of virtual memory; and every Wednesday evening, Jörg’s group
reassembled in front of a VT100 terminal observing and soothsaying MKRP’s
behaviour on the latest examples of the deduction community.

The race was stiff with two major horses at that time: his friend Larry
Wos with his much smaller team and their parsimonious but extremely well-
engineered system OTTER versus the big elephant MKRP. Larry would call –
usually very early in the morning – mocking a German accent: “Hey can you do
zis, ve have just solved it” and then the group had a few days at most to prove a
new challenge theorem from a given set of axioms. The sooner the answer “We
have just done it as well, Sir” the better – so the day had twenty four hours
after such a phone call to analyse the new proof and adjust the settings of the
various refinement strategies such that MKRP would also find the proof1. The
next challenge’s twist was then to spot weaknesses in the opponents system,
design a hard problem whose solution relied on a special technique within the
weak spot of the competitor, solve it at leisure – and send it in reverse right over
the Atlantic waiting for their phone call.

1 You can always solve a difficult mathematical problem when another system has
already succeeded given enough time: just analyse, set the parameters right, analyse
again, add a new procedure, analyse again, etc.

A Portrait of a Scientist: Logic, AI and Politics 5

While this went on for many years, the pendulum for the first prize sometimes
swung to this side of the Atlantic and then back to the other. Both systems im-
proved considerably – but none of the promised breakthroughs was forthcoming.
Deussen’s book was still waiting to be automatically generated.

The MKRP-effort showed that indeed you can build a knowledge based theo-
rem proving system which prunes the search space by several orders of magnitude
– but the traditional search based systems performed all in all just as well. As
Larry Wos pointed out in a seminal debate at one of the CADE conferences: “We
now have the ultimate system Ψ that proves a theorem without any search: it
uses its efficient and knowledgeable supervisor OTTER to find a proof and then
proceeds by using this knowledge to guide Ψ right through the search space”.
“MKRP was unfortunately still wrapped too much in the intellectual time warp
of the sixties” as Jörg would comment on these developments later.

At that time, research in AI and on deduction in particular was not a main-
stream business in Germany. There were yearly informal meetings on AI, until
in 1981 Jörg initiated the annual German workshops on Artificial Intelligence
(GWAI) with proper proceedings published by Springer. These annual meetings
at the Hölterhoff Stiftung in Bad Honnef near Bonn stimulated the early excite-
ment about AI in Germany and much of the proud and more often than not the
over-important sense of self, called WIR-GEFÜHL in German, emanated from
these – sometimes hilarious – meetings. In March 1982, Jörg and Wolfgang Bibel
started the first German summer school on AI in Teisendorf. With more than
100 participants, it was a big success not only because Jörg became acquainted
with his later wife, but also because the lecturers succeeded in transmitting their
enthusiasm about AI to the convened young researchers always looking for a PhD
thesis.

Politically the late 70’s saw the growth of the German peace movement from
a small circle of concerned scientists and peace activists into a mass movement:
the planned deployment of Pershing missiles close to the eastern boarder and
iron curtain reduced the effective early warning time from several hours down to
a few minutes and the Soviet Union responded with the threat of an automatic
launching policy – which fortunately was never fully implemented by either side.
Several false alarms – some up to the highest threat level – were computed by
the huge American early warning system and when these facts became public,
several professors of jurisdiction and computer science, including Jörg, opened
a law case against the German government at the Federal Court in Karlsruhe:
some courageous American senators provided classified material for the German
computer society of concerned scientists FIFF, of which Jörg was one of the
founders. He made the material public, wrote several papers and a journal arti-
cle with Karl Bläsius. He must have given a few hundred public talks, television
interviews and speeches to the peace movement all over Germany and experi-
enced for the first time the difference between giving a seminar talk and being
a speaker in front of ten thousand people.

Politics would meet AI again when Peter Raulefs, Jörg and Graham Wright-
son organized the International Joint Conference on AI (IJCAI) in 1983 at Karl-

6 Dieter Hutter and Werner Stephan

sruhe: with more than two thousand participants it was the first major event of
this size in Germany and widely covered by the media – not least because the
accompanying industrial exhibition proudly displayed an empty Martin Marietta
(Pershing) booth.

4 Kaiserslautern P.T. aus Arizona
von dem Stamme der Apachen

lebte ziemlich gut in K-town, Germany.
War GI und bei der Army,

na, und Sehnsucht nach den Staaten
hatte P.T., der Apache, eigentlich nie.

Nur im Herbst, wenn Vögel schrien,
über K-town südwärts zogen,

sagte P.T. manchmal leise zu sich“Uff”.
Und dann trank er sehr viel Bourbon,

stieg in seinen alten Chrysler
und fuhr rüber nach Karlsruhe in den Puff.

P.T. P.T. Das hat dem P.T. gutgetan . . .

Franz-Josef Degenhardt: P.T. Arizona, 1968

In 1980 the department of computer science of the University in Kaiserslautern
advertised the first professorship for AI in Germany and after the usual tiresome
medival “rituals”, Jörg was offered the job and in 1983 he moved from Karlsruhe
to Kaiserslautern with his newly wedded wife and his coltish dog called Minsky.

To us, the next generation of scientists, who found AI already an established
subject when we were students, it is probably Jörg’s lecture series ’Introduction
to Artificial Intelligence’ that is most vivid in memory. By the mid eighties the
field was thriving and banging at the doors of the scientific establishment, but it
was still provocative in its general claims regarding the nature of human versus
machine thinking.

The lecture at its peak drew sometimes more than five hundred students from
all over Germany and many other European countries to Kaiserslautern, with
students occupying the floor, the windows – wherever there was additional space
– completely electrified by the subject and the atmosphere generated by this
strange and witty missionary of a futuristic technology2 with his hand-crafted
slides decorated with flowers in the style of the sixties.

Jörg appeared on television, newspapers and radio shows: the AI hype had
finally infected Germany as well and the bearded messiah with his dog Minsky
became a familiar sight3. The 1984 paper on the subject of AI and its future
invited by the OECD, has been printed and reprinted many times and was
2 The lecture of the 80’s was actually filmed and made publicly available as videotapes.

His AI-lecture today, more mature and sober now (and available on the web), uses
Stuart Russell’s textbook on AI as its base.

3 There is the funny event, when Jörg was invited for one of his well-paid AI-intros to
German industrialists, in this case called “Schock der Moderne”, and he hesitated
to go as he had to care for his dog that day. So they sent two chauffeur driven big
black Mercedes cars headed by a motorbike leading the convey to little Kaiserslautern
University: one with the back seat removed for his dog and the other one for himself.

A Portrait of a Scientist: Logic, AI and Politics 7

“probably the only paper I ever wrote that was really read by others and had
some influence”, as Jörg used to say. It was certainly read by the officials of the
GI who threatened to expel him from the German computer science society, if
he would continue to announce publicly that there was no difference in principle
between human and machine thinking4.

However, in practice Jörg was now able to observe the disturbing and most
obvious difference between human and machine thinking: In 1985 daughter Helen
was born and all along the years Jörg intensely studied and proudly reported
the progress and evolution of this young brain built on protoplasm rather than
silicon, whereas his primal scientific child, MKRP, would not at all live up to his
expectations.

On an initiative of Jörg together with Peter Deussen, Peter Raulefs, and
Wolfgang Wahlster, a new collaborative research centre of the DFG (the German
national science foundation), called Sonderforschungsbereich 314, had started in
1985. Not only was its title “Künstliche Intelligenz” (AI) still provocative, it also
violated all the rules since it was not only one of the largest SFB’s ever, but it also
spread over three universities (Karlsruhe, Kaiserslautern and Saarbrücken) who
were soon to become major centres of AI-research in Germany besides the strong
groups in Hamburg. Peter Deussen became its first chairman: KI – the German
acronym for AI – had finally entered the territory of the scientific establishment
and many of the later institutions (like the DFKI and others) can be traced back
to this research initiative.

This SFB formed the basic framework for the development of MKRP. Much
effort was spent in order to resolve the weaknesses in dealing with equational
theories. Starting already in Karlsruhe, a difference reduction approach was de-
veloped and integrated in MKRP. However, since it could not compete with the
upcoming term rewriting systems, horses were changed again and some sort of
term rewriting was integrated into MKRP. The exploration of the theoretical
properties of the connection-graph calculus attracted many researchers not only
in Jörg’s group and also caused some heated arguments about the first origins
of (sometimes incorrect) proofs. Although theorem provers based on connection-
graphs don’t exactly flourish any more, we now know that connection-graphs are
confluent and weakly complete. The cumbersome progress in developing strate-
gies for MKRP promoted the upturn (and revival) of more basic research topics
like unification theory or sorted logics in his group. By 1990 they had coded and
proved, as promised, much of Deussen’s textbook on automata theory and trans-
formed and finally translated these proofs automatically into natural language as
well – but, to anyone involved, the shortcomings were all too apparent: this was
not a mathematical assistant system by anybody’s standard and more seriously,
the research paradigm of the seventies and eighties – search based or partially
knowledge guided as in MKRP – seemingly did not permit the construction of
one either. A new paradigm had to be found!

4 He continued to do so, the motion was nonetheless cancelled – and now 20 years
later, Jörg was honoured as a fellow of the GI in honour of his contributions to the
field of AI and his work for the GI.

8 Dieter Hutter and Werner Stephan

And there is a spot in Jörg’s heart that makes it different: When the MKRP-
effort did not live up to expectations he did something unusual: he announced
publicly that they had failed5 and asked the funding agency if they were allowed
to use the rest of the money to look for alternatives6. Strangely this was granted.

Meanwhile AI had finally established itself in the German scientific commu-
nity. In the mid eighties Jörg persuaded Springer to have a new series of lecture
notes on AI in order to increase the international recognition of AI (Germany
being late by at least twenty years in comparison to England and the US with
its legendary Dartmouth Conference in 1956). It was the wise decision of Hans
Wössner of the Springer Company to integrate LNAI as a part of the larger
LNCS series. With Jörg being the general editor – now jointly with Jaime Car-
bonell – LNAI became the most widely distributed series on AI worldwide.

Within the German computer science association (Gesellschaft für Infor-
matik) AI had developed from a small working group into a well recognized
Fachbereich until – under Jörg’s chairmanship – it had more than 4000 members.
Time had come to push for more. In one of the most dramatic and impassioned
presidential management committee meetings of the GI, Jörg negotiated a new
structure for the GI: the good old society was now to rest forever upon four
pillars instead of the previous three divisions of Computer Science7: 1. Theory,
2. Software and 3. Hardware. But who was to be the number one? When the
meeting was on the brink of collapse and Jörg threatened to form an independent
AI society , the chairman of the theory division, Wilfried Brauer, suggested in a
brilliant and hilarious motion that THEORY would be willing to become num-
ber ZERO – so AI could become number one and software and hardware would
follow suit as section three and four. The menacing threat of an independent AI
society8 was off the table and later on, section number ONE became one of the
best organised and largest AI-societies worldwide.

In an unusually farsighted move the German government had commissioned
an expert advisory review in the seventies on the state of German industry (and
universities) with results that became apparent to everyone only ten or fifteen
years later. The report stipulated that while Germany’s manufacturing was still
healthy in its traditional areas such as car building, chemistry or mechanical
engineering, it was in danger of losing its competence in fields based on more
recent research such as computer science, genetic engineering, new materials to

5 “Look, Mr. President, Sir, we can get a man on the moon, but to do so, we need
n-billion dollars. And if after m years the man is not on the moon, you have to say
so: Sorry Sir, there was a certain amount of risk involved, and we have failed” – this
is his favourite story line.

6 It sounds easy, but MKRP had a certain amount of visibility, even in the German
media where “A computer-generated mathematical textbook” played the role of the
“man on the moon”. Older subjects like physics and chemistry have an established
record of honourable failure, but in computer science and AI it still appears to be
rare.

7 Actually called under the much broader name Informatics in Germany right from
its start.

8 Actually as in almost all of the other industrial nations at the time.

A Portrait of a Scientist: Logic, AI and Politics 9

replace the end of the iron age, molecular biology or the life sciences. Likewise,
the report stated, German universities – still captured within their Humboldian
values and traditions, – may still be better than their reputation, but too slow
to adapt and to open up to new subjects.

The result of these findings was the decision to found about two dozen so-
called an- Institutes, i.e. research institutions on the campus of a university but
legally separated, which could act much faster than over-bureaucratised German
universities. These should be able to build a bridge between industrial research
labs and production on the one hand and basic university research on the other.

This was a big chance for AI as well and Jörg negotiated with the Ger-
man ministry to include AI in the list of “new” subjects. Michael Richter, Jörg
and other colleagues from Kaiserslautern filed a bid for such an institute and
when they joined forces with Wolfgang Wahlster from the nearby university in
Saarbrücken, they finally won the national competition. The German Research
Centre for Artificial Intelligence, the DFKI GmbH, was born as a research com-
pany (Ltd) with almost all big firms from Germany as actual shareholders and
with funds for an initial period of ten years equivalent to about 100 million
US$. Within the next fifteen years the institute grew into one of the largest,
most innovative and in some areas internationally leading AI research labs still
situated both at Kaiserslautern and Saarbrücken with more than two hundred
researchers today.

5 A New Start: Saarbrücken “Louis, I think this is the
beginning of a wonderful friendship.”

Michael Curtiz: Casablanca, 1942

Offended by the fact that the smallest and poorest Länder of the federal repub-
lic, Saarland and Rheinland-Pfalz, had won the AI-race, some other states of
Germany opened AI- institutions of their own, and Berlin offered Jörg a chair
and the founding directorship for another AI institute. Fortunately a chair and
the accompanying AI research department within the DFKI at Saarbrücken were
vacant as well and finally Jörg moved to Saarbrücken to become one of the local
DFKI directors joining Wolfgang Wahlster, Hans Uszkoreit and Gert Smolka. He
received a joint position for the chair of AI in the computer science department
of the university and his research department at the DFKI.

The challenges of a large research institute depending on external funding
accelerated the diversification of research topics in Jörg’s groups. Starting al-
ready in Kaiserslautern, knowledge representation and description logics became
favourite research topics in one of his groups. The research had a strong the-
oretical touch and has been internationally recognized for its classification of
description logics with respect to their complexity classes. It also resulted in
one of the fastest (at that time) classifier systems called Kris. Another part of
Jörg’s group started research in multiagent systems. Its first achievement9 was
9 The system won a gold medal in the system competition at one of the MAS confer-

ences.

10 Dieter Hutter and Werner Stephan

the development of a general purpose layered architecture called INTERRAP
that combines deliberative and reactive reasoning with multiagent (i.e. social)
planning. The system is still used inside many industrial applications includ-
ing the seminal transportation domain which sparked off the work on holonic
multiagent systems. Software verification has always been a prominent applica-
tion area for automated deduction. So, when the German security agency BSI
advertised funding for the construction of a “national” tool for formal software
development, Jörg enticed us to move from Karlsruhe to Saarbrücken in order to
merge and amend the already existing theorem provers KIV and INKA to form
the kernel of an integrated Verification Support Environment (VSE). During the
following years safety and security problems became more and more a real issue
in industry and the industrial applications of VSE with its engineering problems
of verification in the large became a major part of daily business. The practical
challenges of evolutionary formal software development spawned the work on
“management of change” that turned out to be of much wider applicability.

Recently a new research lab on e-learning opened its doors for the devel-
opment of a datamining tool called DAMIT and an internationally recognized
learning environment for mathematics called ActiveMath, which was recently
honoured as the best system of its kind by the funding EU-authorities.

It is to Jörg’s credit that all these groups are now established and flourish
in his department and most importantly: they interact and plenty of interdis-
ciplinary papers have come out of it. Besides the dramatic increase of research
issues under Jörg’s responsibility it is perhaps his continuous effort to reconcile
diverging, conflicting, and more often than not inconsistent aims and values that
best characterizes his time in Saarbrücken. In particular this is true with respect
to his scientific, social, and political enthusiasm of the past. Early socio critical
reflections more than ever were confronted with the needs of the DFKI as an in-
stitution that became a global player demanding an annual budget of up to four
or five million Euros he had to raise for his department. The struggle for peace
and disarmament becomes more difficult in a situation where relevant parts of
the research budgets all over the world stem from the various departments of
defence, and, inevitably, the German armed forces suddenly can be found among
the customers of the DFKI.

The ideal self-determined life of a scientist, which Jörg possibly had in mind
when entering the academic stage, differs much from the extremely disciplined
time management necessary to fulfil DFKI’s management duties, international
obligations, and the usual professorial duties of university life. Scientific discovery
as an end in itself leads not necessarily to well engineered solutions for problems
and furthermore scientific solutions have to be transformed into products for the
actual market of technological innovations. Leading a large department at an
application driven research institution gives rise to the question of how well do
we ride on the technology wave: being too late there is the usual punishment
that someone else has received the research grant or industrial contract – but
being too early will not win any industrial contract either.

A Portrait of a Scientist: Logic, AI and Politics 11

As so often before, Jörg did not choose the straight and narrow way of resolv-
ing all these conflicts by ultimately adjusting his conception of life in this or that
direction. May be it’s his way to live with the tension of antagonistic forces that
made him view it all from a certain distance10 and is one source of his well-known
behaviour in every day discussions and private conversations11, as well as in se-
rious confrontations. They often get straight to the heart of the problem thereby
opening the way for unconventional solutions but sometimes run the risk of dam-
aging a personal relationship that has grown over many years. But knowing what
academic life is like12, it is astonishing: even now, after more than fifteen years
of very close collaboration and competition, they still work together effectively
and, in particular, the friendship between Jörg, Hans Uszkoreit and Wolfgang
Wahlster saved the DFKI more than once in a moment of existential crisis.

At the university in his basic research group, the aftermath of MKRP’s failure
dominated the discussions of the early nineties. Why did the MKRP-effort fail?
Well, it was certainly not a complete failure, but then: why did it not live up to
its expectations? After all, it was based on mainstream research assumptions of
artificial intelligence, i.e. transporting the water of knowledge based techniques
into the intellectual desert of search based automated theorem proving. In Jörg’s
opinion it is not knowledge-based AI that failed, but their own apparent lack
of radicalism. While on the bottom of MKRP there was a graph based, first
order theorem proving mechanism that was optimized for a non-informed search,
there was the plan of a superviser module incorporating the necessary domain
knowledge in mathematics and controlling effectively the logic engine. But the
distance between this general mathematical knowledge to be represented in the
supervisor and the low level of abstraction of the logic engine was just too much
and the supervisor module never went into existence. Jörg’s favourite variation
on McCarthy’s quote “Nothing can be explained to a stone” was “Nothing can
be explained to a first order theorem prover”.

A paradigm shift, as Jörg used to phrase it, was again on the agenda: instead
of investigating calculi and their search spaces, the representation of mathemati-
cal knowledge itself became the favourite research topic. Ideas were tossed around
to raise the abstraction level of the representation and to encapsulate chunks of
mathematical knowledge such that they could be chained into an abstract proof.
The idea of proof planning, developed by Alan Bundy to combine tactic-based
theorem proving with AI planning techniques, now fell on fertile soil: “knowledge
based proof planning” became the new battle cry of this research group.

When Saarbrücken applied for an interdisciplinary collaborative research cen-
tre on “Ressource-adaptive cognitive processes” (SFB-378), Jörg saw his second
chance: a new project called ΩMEGA was approved and for a funding period

10 “...seven professors and directors competing with their publication record and their
respective annual research budgets is a sight not totally unfamiliar from the baboon’s
hill in the local Kaiserslautern Zoo, where the silver back may change over night” is
his favourite quotation.

11 His so-called “Waldspaziergänge” with those who are supposed to deviate.
12 If you are unfamiliar with these mechanisms, David Lodge’s books (e.g. THINKS,

Penguin Books Ltd, 2002) provide a good source of background reading.

12 Dieter Hutter and Werner Stephan

of twelve years he had the chance to start all over again to realise his dream.
The ΩMEGA project, by now with additional funding from other sources again
one of the largest all-out efforts to build a proof assistant and mathematical
support system, is carried out at the University (and not at the DFKI with its
application driven pressure) as an independent research group. It is here where
Jörg’s heart can be found – and they still have another four years to go.

Apart from his role in building and establishing artificial intelligence in Ger-
many, Jörg has been very active in recent years in another academic / political /
institutional endeavour: Logic and AI. The community divided the field into
dozens of societies, conferences and workshops. While this specialization and
these factions are not necessarily a disadvantage, there is a lack of unity. So
upon Jörg’s initiative the International Federation for Computational Logic (IF-
CoLog) was set up with Dana Scott as the founding president. The European
Network of Excellence on Computational Logic (CoLog) provided most of the
support for this far reaching international effort to unite and establish computa-
tional logic as a subject of its own, on a par with maths, physics, chemistry and
the other academic disciplines. With Moshe Vardi now as the acting president of
IFCOLOG and FLOC as its mayor unifying event, things are now – after many
years of travelling, convincing people, getting the finances right – in good shape.

In a similar vein he joined forces recently with Dov Gabbay and his mission to
establish logic as a unifying foundational subject not just for mathematics as in
the past, but for the much grander agenda of computer science, AI, the cognitive
sciences and practical as well as jurisdictional reasoning. As chairmen of CoLoG-
Net, they started a new journal for applied logic (JAL) that encompasses and
unites for the first time the different logic factions, and they established together
with John Woods and Johan van Benthem the new red series as a mirror to the
seminal yellow series on mathematical logic by Elsevier: a new landscape of
computational logic is opening up and this may well be the new continent that
is to survive the tides of today.

But time has come for Jörg now to take stock and harvest and, with about
seventy successful PhD’s supervised, about hundred and fifty papers and books
and innumerable publications in collaboration with his research assistants, there
is plenty to chose from13.

At Jörg’s 60th birthday party at the University and DFKI – customarily
a stiff academic event with plenty of mental incense around – his former PhD
students formed a mixed choir for their self-composed song, which we do not want
to deny to the well intended reader of an intellectually demanding volume such
as this. It may be worth mentioning, that Jörg’s favourite anecdote about his
friend and greatly admired colleague Alan Bundy records an incident at the 7th
CADE at Kaiserslautern, when Alan struggled with a non-operating microphone
in his invited talk. Having received a replacement (which did not work either), he
finally grasped the microphone, switched it off and in true Frank-Sinatra-esque
style sang spontaneously: “I’ll do it my way...” – and made history. So finally
here is our version of the song to the well-known tune:

13 http://www-ags.dfki.uni-sb.de

A Portrait of a Scientist: Logic, AI and Politics 13

JÖRG’S WAY
And now, the end is near;
And so you face the final lecture.
My friend, we’ll say it clear,
We’ll state our case, it’s no conjecture.

You’ve lived a life that’s full.
Aimed at awards and ev’ry female,
But more, much more than this,
You did it your way.

Regrets you have had none;
Attacked colleagues and other ‘primates’.
Your faith, it has been born
In the sixties anarchic climate.

You planned all flow’ry slides
To put AI on every highway
But more much more than this
You did it your way.

Yes, there were proofs, I’m sure you knew
That you just took out of the blue.
But through it all, when there was doubt,
You planned them all and worked them out.
We faced it all, and we stood tall
And did it your way.

You’ve moaned, shouted and cried,
You’ve had your thrill, to show good proving.
Your trip, your magic fight,
We found it all so amusing.

To think you did all that;
And may we say – not in a shy way,
Oh No, oh no not you,
You did it your way.

For what is Jörg, what is his pride?
Funding, first talk, and his first night.
To present things, you did not know
You had your team, to run the show
Your record shows how well it goes
On your AI way.

6 Epilogue

Hopefully his energy will not fade too soon, so his plans and actual collaborations
will come to fruition in the new book series “Principia Mathematica Mechan-
ico”. It encompasses logic but also AI’s contribution to this age-old dream of
the possibility for an exact science, which came into life with Euclid’s Elements,
explicitely formulated in Leibnitz vision and Frege’s realization of the Begriffss-
chrift and finally culminated in Whitehead and Russel’s Principia Mathematica.
This series will tell the story of our century’s contribution – logic, computer
science, and AI – to this quest for a science which is built upon exact and formal
logical foundations.

Some Reflections on Proof Transformations�

Peter B. Andrews

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. Some general reflections on proof transformations lead to the
abstract concept of a quintessential proof of a theorem. A quintessential
proof embodies the essential features of many intertranslatable proofs of
the theorem. While reasonable candidates for quintessential proofs for
normal proofs have been developed, more work is needed with regard to
non-normal proofs. Work on proof transformations seems likely to lead
to important progress in understanding proofs.

1 Introduction

In this paper we shall focus more on questions and challenges than on solutions
and techniques. We will stir the intellectual stew a little, try to provide some
perspective as seasoning, and speculate on the flavor of some future developments
in this field.

2 Information Libraries and Representation Issues

Proof transformations can play an important role in enhancing the usefulness
of automated reasoning systems. Before discussing proof transformations, we
discuss some aspects of automated reasoning systems which are related to the
contexts in which proofs will be transformed.

As tools for automated deduction and other aspects of automated reasoning
develop to the point where they are useful, there will be a tremendous drive
to develop automated libraries of information which will permit one to retrieve
not only information which has been stored in the libraries, but also verifiable
consequences of that information. One can envision such libraries for mathemat-
ics, computer science, physics, chemistry, biology, genetics, medicine, engineering
disciplines, economics, and other disciplines and subdisciplines.

Consider mathematics, as an example. While automated theorem provers
may occasionally discover interesting new theorems, the major applications of
automated reasoning for mathematics will be in helping those who are learn-
ing, applying, and developing mathematics, and in refereeing papers. At present,
� This material is based upon work supported by the National Science Foundation un-

der grants CCR-9732312 and CCR-0097179. It is based on a lecture which was given
June 19, 2001 to the Workshop on Proof Transformations, Proof Presentations and
Complexity of Proofs which was held in conjunction with IJCAR-2001 (International
Joint Conference on Automated Reasoning) in Siena, Italy.

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 14–29, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Some Reflections on Proof Transformations 15

most of the work in refereeing a mathematical paper is usually devoted to check-
ing that it is actually correct, and sometimes even very knowledgeable referees
fail to spot errors. A referee should be able to rely on a computer to check that
the work in the paper is correct, and simply be concerned with the significance
of the results and the quality of the exposition in the paper. Since the major
work of searching for the right ideas has been done by the author of a paper
that is being refereed, checking the details of the proof is a far less ambitious
task than finding it in the first place, and checking such proofs seems like a very
reasonable task for the automated theorem provers of the future.

Of course, the computer will need not only adequate reasoning power, but
the ability to translate the paper into its own notation, and a library containing
all the mathematical information (definitions, theorems, proofs, examples, etc.)
which is assumed by the author of the paper.

Many other applications of automated reasoning involving mathematics will
also require libraries of mathematical information.

As we contemplate these information libraries which have deductive reasoning
capabilities built into them, we must consider the problem of representation. All
that information must be represented in some way. It would be very nice if good
standards for representing information in such libraries could be established and
agreed upon before work on developing the libraries goes very far, but we really
don’t know enough, and it’s generally impossible to get everyone involved to
agree on such things.

Serious thought should be given to designing good formats for representing
information, but we shouldn’t expect general agreement or acceptance. Unifor-
mity will come only gradually through an evolutionary process. We will simply
have to work with whatever formats have been developed for representing infor-
mation, and have procedures for transforming from one format to another.

There’s another problem associated with libraries: that of finding the infor-
mation in them that may be useful to us. We can imagine a library in which
a wealth of mathematical theorems have been stored as well-formed formulas
(wffs) of a particular logical system, but it might be very difficult to find a par-
ticular theorem in this library if we did not know exactly how it was represented.
No well defined and logically robust method of classifying theorems has yet been
developed. Mathematicians sometimes have trouble finding out whether a theo-
rem they have proved has been proved before, because there is no general index
of mathematical theorems, and it seems hard to devise a good plan for develop-
ing such an index. Current mechanisms for finding whether a theorem has been
proved before mainly rely on consulting experts.

For theorems expressed as wffs in a particular logical system, we would like
wffs to be regarded as expressing the same theorem if they can be obtained from
each other by making trivial logical changes, such as applying basic tautologies
like the contrapositive law. Of course, this notion of sameness must be transitive,
and we must take care that the notion of sameness does not become too broad
by applying trivial changes repeatedly. We need a much narrower notion of

16 Peter B. Andrews

sameness than logical equivalence, since all theorems of a formal system are
logically equivalent.

One possibility is to have a normal form for each wff, and say that two prov-
able wffs express the same theorem if and only if they have the same normal form.
A variety of proposals for normal forms for classifying theorems might be made,
and we need criteria for accepting or rejecting them, and choosing among them.

3 Proof Transformations

Now let us focus on proof transformations. Some proof transformations will
be needed simply because of differences in the ways proofs are represented in
different systems. However, even if we had universally accepted standards for
representing proofs, we would still want to transform proofs. Different styles,
formats, or representations may be most suitable or simply preferred for different
purposes or in different contexts, and the user should be able to freely choose
whatever is most congenial.

There are various types of proof transformations. We next review some of
them.

We may wish to translate a proof in one logical system into a different logical
system. These systems might differ with respect to the basic language, the rules
of inference, or both. The language might be a formal language of logic or natural
language.

One example of such a transformation is cut-elimination. We translate a proof
from a system in which there is a cut rule to the system obtained from that one
by deleting the cut rule. Obviously, the study of proof transformations goes right
back to Gentzen and Herbrand, and was an integral part of proof theory in their
era.

We may wish to adjust the level of detail of the proof, either globally or
locally. Ideally, automated systems for presenting proofs should allow the reader
of a proof to see whatever degree of detail is desired for each part of the proof.

In particular, we may wish to provide more details. We may wish to have a
system which automatically translates proofs from natural language into formal
proofs with justifications for all the logical details. A nice example of an intu-
itively elegant proof which presents significant challenges for such a system is
the proof of Euler’s Formula for Polyhedra presented in [12, pp. 236-240]. The
proof starts as follows:

“let us imagine the given simple polyhedron to be hollow, with a
surface made of thin rubber. Then if we cut out one of the faces of the
hollow polyhedron, we can deform the remaining surface until it stretches
out flat on a plane. Of course, the areas of the faces and the angles
between the edges of the polyhedron will have changed in this process.
But the network of vertices and edges in the plane will contain the same
number of vertices and edges as did the original polyhedron, while the
number of polygons will be one less than in the original polyhedron, since
one face was removed. ”

Some Reflections on Proof Transformations 17

Let g be an iterate of f , and let x be the unique fixed point of g.
g x = x.
f [g x] = f x.
g = f ◦ . . . ◦ f , so f ◦ g = g ◦ f , so
f [g x] = g [f x].
g [f x] = f x.
Thus, f x is also a fixed point of g. Since x is the unique fixed point of f ,
f x = x.
Therefore, f has a fixed point.

Fig. 1. Informal proof of THM15B.

Obviously, one of the many challenges for the translation system is to transform
the reference to “thin rubber” into appropriate topological terminology.

Alternatively, we may wish to transform a very detailed proof into a shorter,
“higher level”, proof. For example, a complete proof of THM15B which was
found by the automated theorem proving system TPS [6] is displayed in Figure 2.
THM15B says that if some iterate of a function has a unique fixed point, then
that function has a fixed point. A shorter, “higher level”, proof of this theorem,
which is easier for people to understand, is displayed in Figure 1. This proof has
the same logical content as the proof found by TPS, but it is not simply a drastic
condensation of that proof. It contains the assertion “ g = f ◦ . . . ◦ f”, which
suggests certain ideas and helps the reader to understand why f ◦ g = g ◦ f
without making an explicit reference to the inductive definition of the set of
iterates of a function. This illustrates the fact that when we transform a proof,
we may wish not only to change the level of detail in the presentation, but also
to add features which are intended to help the reader understand the proof.

Similarly, when we analyze a proof presented in natural language, we may
need to distinguish between the proof itself and “comments” which are intended
to help the reader understand the proof.

Some proof transformations may simply be used to improve the way the
proof is presented. Sometimes one can do this simply by translating a proof into
a different format and then back again.

Proof transformations may be used to change the format in which a proof
is presented. We should be able to choose between proofs presented in a tradi-
tional linear style, proofs arranged as trees, and various other formats. Radically
new proof formats may be developed. For example, we can anticipate the de-
velopment of facilities for using diagrams in mathematical proofs in ways that
involve no compromise with complete rigor. (See [8] for persuasive arguments
pertinent to this.) At present we encourage our students to use Venn diagrams
to illustrate theorems about sets, but we tell them that arguments involving
Venn diagrams are not really proofs. However, this could change. We can antic-
ipate the development of computer programs which have very precisely defined
facilities for manipulating Venn diagrams, and rigorous metatheories suporting
these programs which guarantee the soundness of the conclusions reached by us-
ing their facilities. The relevant theory for Venn diagrams is well developed [27,
60]. Similarly, there may be additional types of arguments, like diagram chasing

18 Peter B. Andrews

(1) 1 � ∃ gιι. ITERATE+ fιι g
∧∃xι. g x = x

∧∀ zι. g z = z ⊃ z = x Hyp
(2) 1,2 � ITERATE+ fιι gιι

∧∃ xι. g x = x ∧ ∀ zι. g z = z ⊃ z = x
Choose: gιι 1

(3) 1,2 � ITERATE+ fιι gιι RuleP: 2
(4) 1,2 � ∃ xι. gιι x = x ∧ ∀ zι. g z = z ⊃ z = x RuleP: 2
(5) 1,2 � ∀ po(ιι). p fιι ∧ ∀ jιι[p j ⊃ p. f ◦ j] ⊃ p gιι

EquivWffs: 3
(6) 1,2 � ∀ po(ιι). p fιι ∧ ∀ jιι[p j ⊃ p.λ xι f. j x]

⊃ p gιι EquivWffs: 5
(7) 1,2,7 � gιι xι = x ∧ ∀ zι. g z = z ⊃ z = x Choose: xι 4
(8) 1,2,7 � gιι xι = x RuleP: 7
(9) 1,2,7 � ∀ zι. gιι z = z ⊃ z = xι RuleP: 7
(10) 1,2,7 � gιι[fιι xι] = f x ⊃ f x = x UI: [fιι xι] 9
(11) 1,2 � [λ jιι. fιι[j xι] = j. f x] f

∧∀ j[[λ j. f [j x] = j. f x] j
⊃ [λ j. f [j x] = j. f x].λ x f. j x]

⊃ [λ j. f [j x] = j. f x] gιι

UI: [λ jιι. fιι[j xι] = j. f x] 6
(12) 1,2 � fιι[f xι] = f [f x]

∧∀ jιι[f [j x] = j[f x] ⊃ f [f. j x] = f. j. f x]
⊃ f [gιι x] = g. f x Lambda: 11

(13) � fιι[f xι] = f. f x Assert REFL=
(14) 14 � fιι[jιι xι] = j. f x Hyp
(15) � fιι[f. jιι xι] = f. f. j x Assert REFL=
(16) 14 � fιι[f. jιι xι] = f. j. f x Subst=: 15 14
(17) � fιι[jιι xι] = j[f x]

⊃ f [f. j x] = f. j. f x Deduct: 16
(18) � ∀ jιι. fιι[j xι] = j[f x]

⊃ f [f. j x] = f. j. f x UGen: jιι 17
(19) � fιι[f xι] = f [f x]

∧∀ jιι. f [j x] = j[f x]
⊃ f [f. j x] = f. j. f x RuleP: 13 18

(20) 1,2 � fιι[gιι xι] = g. f x MP: 19 12
(21) � gιι[fιι xι] = g. f x Assert REFL=
(22) 1,2 � gιι[fιι xι] = f. g x Subst=: 21 20
(23) 1,2,7 � gιι[fιι xι] = f x Subst=: 22 8
(24) 1,2,7 � fιι xι = x MP: 23 10
(25) 1,2,7 � ∃ yι. fιι y = y EGen: xι 24
(26) 1,2 � ∃ yι. fιι y = y RuleC: 4 25
(27) 1 � ∃ yι. fιι y = y RuleC: 1 26
(28) � ∃ gιι[ITERATE+ fιι g

∧∃ xι. g x = x ∧ ∀ zι. g z = z ⊃ z = x]
⊃ ∃ yι. f y = y Deduct: 27

(29) � ∀ fιι. ∃ gιι[ITERATE+ f g
∧∃ xι. g x = x ∧ ∀ zι. g z = z ⊃ z = x]
⊃ ∃ yι. f y = y UGen: fιι 28

Fig. 2. Formal proof of THM15B found by TPS.

Some Reflections on Proof Transformations 19

in category theory, which could be made into formal methods of proof. Of course,
we would like to be able to translate between such proofs and more traditional
logical formats.

4 Criteria for Correctness

Now let’s think about proof transformations from a general perspective. One
natural question to ask about proof transformations concerns criteria for cor-
rectness. How do we know, or decide, whether a translation of a proof is correct,
or satisfactory? Of course, different criteria may be appropriate for different
purposes.

We can take the point of view that when we translate a proof, we are just
changing the way it is presented, but the essential underlying proof should remain
the same. Thus we are asking, if we are given two concrete proofs, how do we
decide whether they are “essentially the same”, although they may differ in
superficial ways?

When we translate statements from one natural language to another, our
criterion is that we should preserve the meaning. When we translate a proof,
what is our criterion?

One criterion we might adopt is that the translated proof should at least
prove the same theorem as was proved by the original proof. Even this may
not be trivial. We might regard the theorem proved as the same even if our
representations of the theorem in the two proofs are not identical. This is closely
related to the problem of classifying theorems, since two statements express the
same theorem only if these statements of the theorem are classified together.

Another basic criterion is that a translation of a correct proof should be a
correct proof.

For certain purposes, we may be satisfied if the result of a proof translation
is a correct proof in the desired format of the same theorem. However, in some
contexts we might like to impose stronger criteria for correctness of the transla-
tion. Perhaps the proofs should use the same “methods” or “key ideas” as these
are manifested in each context. What are the “key features” of a proof which
should be preserved by any correct translation procedure?

Some possible answers include general methods, tacticals, and tactics which
can produce the proofs. Alternatively, it might be suggested that the terms with
which quantifiers are instantiated should be the same.

5 Quintessential Proofs

Imagine that we have many different proofs of the same theorem in a variety
of styles, formats, levels of detail, and formal systems, but which can all be
translated into each other in ways that satisfy whatever criteria we have for
correctness. Is there some identifiable set of features which are common to these
proofs and which characterize this set of proofs? If so, we can associate with this
set of features the abstract idea of the quintessential proof which is manifested

20 Peter B. Andrews

by all the particular proofs mentioned above. A quintessential proof contains the
essential content of the proof, which must be embodied in a particular form to
obtain a concrete proof. We may regard every proof as a particular manifestation
of the quitessential proof which underlies it.

If we can find some way of representing the features which characterize the
quintessential proof, we can say that a translation or transformation of a proof
may be regarded as correct if it preserves the features of its quintessential proof.

Ideally, one should be able to use a quintessential proof as a hub, like the
airport which an airline uses as its hub, and have all translations of a proof from
one format to another be accomplished in a uniform manner by translating from
the initial format into the quintessential proof, and then into the alternative
format. One would like to have general methods of producing proofs in many
formats from the quintessential proof so that one could automatically generate a
particular proof simply by specifying the quintessential proof and various aspects
of the presentation, such as the logical system to be used, the style, and the level
of detail for various parts of the proof. Ideally, the reader of the proof should be
able to adjust various aspects of the proof presentation while reading it, like the
user of a map program who can zoom in on a specified part of the map.

Let us consider some ideas which are relevant to the problem of representing
the quitessential features of proofs.

In [2], the idea of a plan for a proof of a theorem of classical first-order
logic was introduced. A plan was a quadruple consisting of a normalized form
of the theorem to be proved, a replication scheme describing how often various
quantifiers needed to be replicated, a mating [3] of the literals of the replicated
theorem, and the substitution for variables associated with the mating. The plan
provided all the information needed to produce various proofs of the theorem in
natural deduction style.

However, the way this information was represented in these plans did not
facilitate proving certain metatheorems, or generalize gracefully to higher-order
logic, where substitutions for variables can introduce new quantified variables
for which additional substitutions may be made. Therefore, building on ideas
in [7], Dale Miller developed [48–50] the idea of an expansion tree proof, known
more briefly as an expansion proof, which represents the same information more
elegantly and works equally well in higher-order logic. An expansion proof is a
generalization of the notion of a Herbrand expansion of a theorem of first-order
logic. It provides a very elegant, concise, and nonredundant representation of
the relationship between the theorem and a tautology which can be obtained
from it by appropriate instantiations of quantifiers, and which underlies various
proofs of the theorem. (A closely related concept is that of a dual expansion
proof, which represents in a similar way the relationship between a refutable wff
and the contradiction buried within it.)

Let’s review what an expansion proof is.
A familiar way of representing a wff of first-order logic is to regard it as a tree

(i.e., a connected graph with no cycles) growing downward from a topmost node
which is called its root. With each node of the tree is associated a propositional

Some Reflections on Proof Transformations 21

connective, quantifier, or atom, and if the node is not associated with an atom,
there are subtrees below the node which represent the scopes of the connective
or quantifier. Such a tree can be enhanced with additional structure to produce
an expansion tree for the wff.

The wff represented by a tree Q as described above is called the shallow for-
mula Sh(Q) of the tree (and of the node which is its root). With each expansion
tree Q is also associated a deep formula Dp(Q) which represents the result of
instantiating the quantifier-occurrences in Q with terms which are attached as
labels to the arcs descending from their nodes.

A node of a tree is called an expansion node if it corresponds to an essentially
existential1 quantifier, and a selection node if it corresponds to an essentially uni-
versal quantifier. (In dual expansion trees, the roles of universal and existential
quantifiers are interchanged.) Let finitely many arcs labeled with terms descend
from each expansion node, so that if the expansion node has shallow formula ∃x
B, and if t is the term labeling an arc descending from that node, then the type
of t is the same as that of x, and the node at the lower end of that arc has as
shallow formula the β-normal form of [[λx B] t], i.e., the result of instantiating
the quantifier with the term t. The term t is called an expansion term, and x is
called an expansion variable. Selection nodes satisfy a similar condition, except
that only one arc may descend from a selection node, and the term labeling
it must be a suitably chosen parameter (which is not free in Sh(Q)) called a
selected parameter.

If Q is an expansion node of an expansion tree and Q1, ... Qn are the nodes
immediately below Q, then Dp(Q) is [Dp(Q1) ∨ ... ∨ Dp(Qn)]. (In a dual ex-
pansion tree, however, Dp(Q) is [Dp(Q1) ∧ ... ∧ Dp(Qn)].) The deep formula of
a leaf of such a tree is the same as the shallow formula of that leaf.

An expansion tree is an expansion proof for its shallow formula if it satisfies
certain conditions, including the condition that there is a mating of its nodes
which establishes that its deep formula is a tautology. We refer the reader to
the cited references for the technical details, and simply give a rather trivial
example.

Consider the wff
∀xP x ⊃ P a ∧ P b (1)

We shall temporarily regard ∼, ∧, ∨, ∀ and ∃ as primitive, and write (1) as

∃x ∼ P x ∨ [P a ∧ P b] (2)

An expansion tree (indeed, an expansion proof) for (2) is shown in Figure 3. The
deep formula for this expansion tree is

[∼ P a ∨ ∼ P b] ∨ [P a ∧ P b] (3)

which is a tautology from which the wff (2) can readily be derived.
Of course, an alternative way to establish (1) is to derive a contradiction

from the wff
∀xP x ∧ [∼ P a ∨ ∼ P b] (4)

1 See [4, p. 123].

22 Peter B. Andrews

∨
����

����
∃x ∧

�
�

�

�
�

�

�
�

�

�
�

�

a b

∼ ∼ Pa Pb

Pa Pb

Fig. 3. A simple expansion tree.

which is equivalent to the negation of (1). A dual expansion tree (indeed, an
expansion refutation) for (4) is in Figure 4. Its deep formula is

[P a ∧ P b] ∧ [∼ P a ∨ ∼ P b] (5)

which is a contradiction.
Miller showed that a wff of type theory [or first-order logic] is a theorem of

elementary type theory2 [or first-order logic] if and only if it has an expansion
proof. An expansion proof of a theorem contains the essential information which
is needed to construct proofs of the theorem in a variety of styles.

It should be noted that if one simply uses the information in an expansion
proof to generate a proof in natural deduction style, it will be normal; similarly,
a sequent-style proof generated from an expansion proof will be cut-free.

If we confine our attention for the moment to normal proofs in classical first-
order logic or elementary type theory, and we use expansion proofs to represent
quintessential proofs, we have a criterion of correctness for translations of such
proofs: the translation is correct if both proofs induce the same expansion proof.

One can find in the literature on proof transformations a variety of addi-
tional ideas which are relevant to the question of how quintessential proofs can
be represented. For example, the TRAMP system [47] translates outputs from
various automated theorem provers into refutation graphs, which are then trans-
lated into natural deduction proofs at the assertion level. Ideas for representing
quintessential proofs in a variety of non-classical as well as classical logics may
be found in [55] and [57].

While every theorem of first-order or higher-order logic has a normal or cut-
free proof, certain important features in the organization of certain proofs, such
2 We use elementary type theory as a name for the logistic system obtained by deleting

the axioms of extensionality, descriptions, choice, and infinity from the system of
[10]. Thus, elementary type theory includes only axioms 1-6 of [10], and it simply
embodies the logic of propositional connectives, quantifiers, and λ-conversion in the
context of type theory. Elementary type theory is presented under the name T in [1].

Some Reflections on Proof Transformations 23

∧
����

����
∀x ∨

�
�

�

�
�

�

�
�

�

�
�

�

a b

Pa Pb ∼ ∼

Pa Pb

Fig. 4. The dual expansion tree.

as the use of lemmas, do not fit well into the context of normal proofs, and we
need a concept more general than expansion proofs to represent quintessential
non-normal proofs adequately.

We need much more investigation to clarify what are the important features
of proofs in various logical systems and styles of proof presentation, as well as
ways of representing these features.

Just as we need high level proofs in object languages, we need better ways
to describe proofs at a high level in our meta-language.

6 A Challenge: Two Formulations of Cantor’s Theorem

Here’s a challenge for high level proof translation techniques. We want to trans-
late a proof between systems which have different definitions for the same intu-
itive concept. The theorem is Cantor’s Theorem that the power set (set of all
subsets) of a set is bigger than the set. The details of the proofs depend on how
one defines “bigger”, which can be done very naturally in two different ways.
Let’s examine the precise formulations of Cantor’s Theorem and its proof which
we get with each definition.

The first definition says that a set W is bigger than a set U iff there is no
surjection from U onto W . This leads to:

The Surjective Cantor Theorem: There is no surjective function from a set
onto its power set.

Proof: Let U be a set and let W = P(U) (the power set of U). Suppose there is
a function g : U → W such that (1) g is surjective. Let (2) D = {x |x ∈ U and
x /∈ gx}. By (1) there is a j in U such that (3) gj = D. If j ∈ D, then j /∈ D by
(2, 3). If j /∈ D, then j ∈ D by (2, 3). Thus we get a contradiction in each case,
so there can be no such g.

The second definition says that a set W is bigger than a set U iff there is no
injection from W into U . This leads to:

24 Peter B. Andrews

U

P(U)

x1 x2 x3 x4 x5 x6 · · ·
T1 ∗
T2 ∗
T3 ∗
T4 ∗
...

Fig. 5. The Diagonal Argument.

The Injective Cantor Theorem: There is no injective function from the power
set of a set into the set.

Proof: Let U be a set and let W = P(U). Suppose there is a function h : W → U
such that (1) h is injective. Let (2) D = {ht | t ∈ W and ht /∈ t}. Note that (3)
D ∈ W . Now suppose that (4) hD ∈ D. Then by (2) there is a set t such that
(5) t ∈ W and (6) ht /∈ t and (7) hD = ht. Therefore (8) D = t by (1, 7), so
(9) hD /∈ D by (6, 8). This argument (4-9) shows that (10) hD /∈ D. Thus (11)
hD ∈ D by (2, 3, 10). This contradiction shows that there can be no such h.

The Surjective Cantor Theorem is a classic example for higher-order theorem
proving, and it has been automatically provable for many years [7]. On the other
hand, the Injective Cantor Theorem is much more difficult to prove automatically
by methods which have been implemented thus far, since (as discussed in [5]) it
has greater quantificational depth. Thus far a proof of it has not been generated
automatically.

Intuitively, the quintessential proof of Cantor’s Theorem is the diagonal argu-
ment associated with Figure 5. We suppose there is some sort of correspondence
between the members x1, x2, x3, · · · of the set U and the subsets T1, T2, T3, · · · of
U , and let D = {xi | xi �∈ Ti}. It is easy to see that D differs from each subset
Ti of U , but D is a subset of U , and this yields a contradiction.

Can the quintessential proof be used to generate the proofs of the Surjective
and Injective Cantor Theorems?

In the case of the Surjective Cantor Theorem, we assume there is a surjective
function g : U → P(U) such that gxi = Ti for each i, so D = {xi | xi �∈ Ti} =
{x | x �∈ gx}.

In the case of the Injective Cantor Theorem, we assume there is an injective
function h : P(U) → U such that hTi = xi for each i, so D = {xi | xi �∈ Ti} =
{ht | ht �∈ t}.

Thus, the quintessential proof shows us how to generate the key idea in each
of these proofs. Of course, we would need some good formal representation of the
quintessential diagonal argument in order to mechanize the process of producing
these proofs in this way.

Some Reflections on Proof Transformations 25

7 Modifying Proofs

Let’s consider another motivation for trying to find good ways to represent
quintessential proofs. When one is trying to prove a theorem interactively or
semi-interactively, one often finds it necessary to make changes in a proof which
is partially constructed. One may wish to change a definition or a lemma, and
make all additional changes which consequentially become necessary in a perhaps
lengthy proof. One should be able to just change the appropriate features of the
quintessential proof, and automatically regenerate the partial proof in the form
that the user is working with. Thus, quintessential proofs could play a fundamen-
tal role in modifying proofs as well as in translating them to other formats. Note
that for this application of quintessential proofs to be practical, quintessential
proofs would have to be defined for incomplete as well as for complete proofs.

8 Conclusion

Work on proof transformations is extremely important. Inevitably, there is a
linkage between learning more about transformations of proofs, learning more
about how proofs can be represented, and learning more about the essential na-
ture of proofs. It seems quite likely that work oriented toward proof translations
will lead to a deeper understanding of the essential nature of proofs. This may
generate a new flowering of proof theory. And, of course, as we come to under-
stand proofs better, we may also acquire a better understanding of how to search
for them.

References

1. Peter B. Andrews. Resolution in Type Theory. Journal of Symbolic Logic, 36:414–
432, 1971.

2. Peter B. Andrews. Transforming Matings into Natural Deduction Proofs. In
W. Bibel and R. Kowalski, editors, Proceedings of the 5th International Conference
on Automated Deduction, volume 87 of Lecture Notes in Computer Science, pages
281–292, Les Arcs, France, 1980. Springer-Verlag.

3. Peter B. Andrews. Theorem Proving via General Matings. Journal of the ACM,
28:193–214, 1981.

4. Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof. Academic Press, 1986.

5. Peter B. Andrews, Matthew Bishop, and Chad E. Brown. System Description:
TPS: A Theorem Proving System for Type Theory. In Mcallester [44], pages 164–
169.

6. Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfenning,
and Hongwei Xi. TPS: A Theorem Proving System for Classical Type Theory.
Journal of Automated Reasoning, 16:321–353, 1996.

7. Peter B. Andrews, Dale A. Miller, Eve Longini Cohen, and Frank Pfenning. Au-
tomating Higher-Order Logic. In W. W. Bledsoe and D. W. Loveland, editors,
Automated Theorem Proving: After 25 Years, Contemporary Mathematics series,
vol. 29, pages 169–192. American Mathematical Society, 1984.

26 Peter B. Andrews

8. Jon Barwise and John Etchemendy. Visual Information and Valid Reasoning.
In Walter Zimmermann and Steve Cunningham, editors, Visualization in Teach-
ing and Learning Mathematics, pages 9–24. Mathematical Association of America,
1991.

9. Daniel Chester. The Translation of Formal Proofs into English. Artificial Intelli-
gence, 7:261–278, 1976.

10. Alonzo Church. A Formulation of the Simple Theory of Types. Journal of Symbolic
Logic, 5:56–68, 1940.

11. Yann Coscoy, Gilles Kahn, and Laurent Théry. Extracting Text from Proofs. In
Mariangiola Dezani-Ciancaglini and Gordon Plotkin, editors, Typed Lambda Cal-
culi and Applications : Second International Conference on Typed Lambda Calculi
and Applications, TLCA ’95, volume 902 of Lecture Notes in Computer Science,
pages 109–123, Edinburgh, United Kingdom, 1995. Springer-Verlag.

12. Richard Courant and Herbert Robbins. What is Mathematics? Oxford University
Press, 1941.

13. B. I. Dahn, J. Gehne, T. Honigmann, and A. Wolf. Integration of Automated and
Interactive Theorem Proving in ILF. In McCune [45], pages 57–60.

14. Bernd I. Dahn and Andreas Wolf. A Calculus Supporting Structured Proofs.
Journal for Information Processing and Cybernetics (EIK), 30:261–276, 1994.

15. Bernd I. Dahn and Andreas Wolf. Natural Language Representation and Combi-
nation of Automatically Generated Proofs. In F. Baader and K. U. Schulz, editors,
Frontiers of Combining Systems: Proceedings of the 1st International Workshop,
Munich (Germany), Applied Logic, pages 175–192. Kluwer Academic Publishers,
March 1996.

16. A. Edgar and F.J. Pelletier. Natural Language Explanations of Natural Deduction
Proofs. In Proceedings of the First Pacific Rim Conference on Computational
Linguistics, pages 269–278, Vancouver, 1993.

17. Uwe Egli and Stephan Schmitt. Intuitionistic Proof Transformations and Their
Application to Constructive Program Synthesis. In Jaques Calmet and Jan Plaza,
editors, Proceedings of the International Conference on Artificial Intelligence and
Symbolic Computation (AISC-98), volume 1476 of Lecture Notes in Artificial In-
telligence, pages 132–144, Berlin, 1998. Springer-Verlag.

18. Uwe Egly and Stephan Schmitt. On Intuitionistic Proof Transformations, their
Complexity, and Application to Constructive Program Synthesis. Fundamenta
Informaticae, 39:59–83, 1999.

19. Detlef Fehrer and Helmut Horacek. Exploiting the Addressee’s Inferential Capa-
bilities in Presenting Mathematical Proofs. In Pollack [54], pages 959–964.

20. Armin Fiedler. Using a Cognitive Architecture to Plan Dialogs for the Adaptive Ex-
planation of Proofs. In Thomas Dean, editor, Proceedings of the 16th International
Joint Conference on Artificial Intelligence (IJCAI), pages 358–363, Stockholm,
SWEDEN, 1999. Morgan Kaufmann.

21. Armin Fiedler. Dialog-driven Adaptation of Explanations of Proofs. In Bernhard
Nebel, editor, Proceedings of the 17th International Joint Conference on Artificial
Intelligence (IJCAI), pages 1295–1300, Seattle, WA, 2001. Morgan Kaufmann.

22. Armin Fiedler. P.rex: An Interactive Proof Explainer. In Goré et al. [26], pages
416–420.

23. Armin Fiedler. User-Adaptive Proof Explanation. PhD thesis, Naturwissenschaft-
lich-Technische Fakultät I, Universität des Saarlandes, Saarbrücken, Germany,
2001.

24. G. Gentzen. Untersuchungen über das Logische Schließen I und II. Mathematische
Zeitschrift, 39:176–210,405–431, 1935. Translated in [25].

Some Reflections on Proof Transformations 27

25. G. Gentzen. Investigations into Logical Deductions. In M. E. Szabo, editor, The
Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland Publishing Co.,
Amsterdam, 1969.

26. Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors. Automated Reason-
ing, First International Joint Conference, IJCAR 2001, volume 2083 of Lecture
Notes in Artificial Intelligence, Siena, Italy, 2001. Springer-Verlag.

27. Eric M. Hammer. Logic and Visual Information. CSLI Publications & FoLLI,
Stanford, California, 1995.

28. Jacques Herbrand. Recherches sur la théorie de la démonstration. Travaux de la
Société des Sciences et des Lettres de Varsovie, Classe III Sciences Mathematiques
et Physiques, 33, 1930. Translated in [29].

29. Jacques Herbrand. Logical Writings. Harvard University Press, 1971. Edited by
Warren D. Goldfarb.

30. Amanda M. Holland-Minkley, Regina Barzilay, and Robert L. Constable. Ver-
balization of High-Level Formal Proofs. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence (AAAI-99) and Eleventh Innovative Applica-
tion of Artificial Intelligence Conference (IAAI-99), pages 277–284. AAAI Press,
1999.

31. Helmut Horacek. A Model for Adapting Explanations to the User’s Likely Infer-
ences. User Modeling and User-Adapted Interaction, 7:1–55, 1997.

32. Helmut Horacek. Presenting Proofs in a Human-Oriented Way. In Harald
Ganzinger, editor, Proceedings of the 16th International Conference on Automated
Deduction, volume 1632 of Lecture Notes in Artificial Intelligence, pages 142–156,
Trento, Italy, 1999. Springer-Verlag.

33. Xiaorong Huang. Proof Transformation Towards Human Reasoning Style. In
D. Metzing, editor, Proceedings of the 13th German Workshop on Artificial Intel-
ligence, Informatik-Fachberichte 216, pages 37–42. Springer-Verlag, 1989.

34. Xiaorong Huang. Reference Choices in Mathematical Proofs. In Luigia Carlucci
Aiello, editor, Proceedings of the 9th European Conference on Artificial Intelligence,
pages 720–725. Pitman Publishing, 1990.

35. Xiaorong Huang. Human Oriented Proof Presentation: A Reconstructive Approach.
PhD thesis, Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, Ger-
many, 1994.

36. Xiaorong Huang. Proverb: A System Explaining Machine-Found Proofs. In Ashwin
Ram and Kurt Eiselt, editors, Proceedings of Sixteenth Annual Conference of the
Cognitive Science Society, pages 427–432, Atlanta, USA, 1994. Lawrence Erlbaum
Associates.

37. Xiaorong Huang. Reconstructing Proofs at the Assertion Level. In Alan Bundy, edi-
tor, Proceedings of the 12th International Conference on Automated Deduction, vol-
ume 814 of Lecture Notes in Artificial Intelligence, pages 738–752, Nancy, France,
1994. Springer-Verlag.

38. Xiaorong Huang. Translating Machine-Generated Resolution Proofs into ND-
Proofs at the Assertion Level. In Norman Foo and Randy Goebel, editors, Pro-
ceedings of the Fourth Rim International Conference on Artificial Intelligence
(PRICAI-96), volume 1114 of Lecture Notes in Artificial Intelligence, pages 399–
410, Berlin, 1996. Springer-Verlag.

39. Xiaorong Huang and Armin Fiedler. Presenting Machine-Found Proofs. In McRob-
bie and Slaney [46], pages 221–225.

40. Xiaorong Huang and Armin Fiedler. Proof Verbalization as an Application of
NLG. In Pollack [54], pages 965–971.

28 Peter B. Andrews

41. Christoph Kreitz and Stephan Schmitt. A Uniform Procedure for Converting Ma-
trix Proofs into Sequent-Style Systems. Information and Computation, 162(1–
2):226–254, 2000.

42. Christoph Lingenfelder. Structuring Computer Generated Proofs. In N.S. Sridha-
ran, editor, Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, pages 378–383, Detroit, Michigan, USA, 1989. IJCAI, Morgan Kauf-
mann.

43. Christoph Lingenfelder. Transformation and Structuring of Computer Generated
Proofs. PhD thesis, University of Kaiserslautern, 1990. 115 pp.

44. David Mcallester, editor. Proceedings of the 17th International Conference on Au-
tomated Deduction, volume 1831 of Lecture Notes in Artificial Intelligence, Pitts-
burgh, PA, USA, 2000. Springer-Verlag.

45. William McCune, editor. Proceedings of the 14th International Conference on
Automated Deduction, volume 1249 of Lecture Notes in Artificial Intelligence,
Townsville, North Queensland, Australia, 1997. Springer-Verlag.

46. M.A. McRobbie and J.K. Slaney, editors. Proceedings of the 13th International
Conference on Automated Deduction, volume 1104 of Lecture Notes in Artificial
Intelligence, New Brunswick, NJ, USA, 1996. Springer-Verlag.

47. Andreas Meier. System Description: Tramp: Transformation of Machine-Found
Proofs into Natural Deduction Proofs at the Assertion Level. In Mcallester [44],
pages 460–464.

48. Dale A. Miller. Proofs in Higher-Order Logic. PhD thesis, Carnegie Mellon Uni-
versity, 1983. 81 pp.

49. Dale A. Miller. Expansion Tree Proofs and Their Conversion to Natural Deduction
Proofs. In Shostak [61], pages 375–393.

50. Dale A. Miller. A Compact Representation of Proofs. Studia Logica, 46(4):347–370,
1987.

51. Frank Pfenning. Analytic and Non-Analytic Proofs. In Shostak [61], pages 394–
413.

52. Frank Pfenning. Proof Transformations in Higher-Order Logic. PhD thesis,
Carnegie Mellon University, 1987. 156 pp.

53. William Pierce. Toward Mechanical Methods for Streamlining Proofs. In M. E.
Stickel, editor, Proceedings of the 10th International Conference on Automated
Deduction, volume 449 of Lecture Notes in Artificial Intelligence, pages 351–365,
Kaiserslautern, Germany, 1990. Springer-Verlag.

54. Martha E. Pollack, editor. Proceedings of the 15th International Joint Conference
on Artificial Intelligence (IJCAI-97), Nagoya, JAPAN, 1997. Morgan Kaufmann.

55. Stephan Schmitt. A Tableau-Like Representation Framework for Efficient Proof
Reconstruction. In Roy Dyckhoff, editor, Theorem Proving with Analytic Tableaux
and Related Methods. (TABLEAUX 2000), volume 1847 of Lecture Notes in Arti-
ficial Intelligence, pages 398–414, St Andrews, Scotland, UK, July 2000. Springer-
Verlag.

56. Stephan Schmitt and Christoph Kreitz. On Transforming Intuitionistic Matrix
Proofs into Standard-Sequent Proofs. In Peter Baumgartner, Reiner Hähnle, and
Joachim Posegga, editors, Theorem Proving with Analytic Tableaux and Related
Methods. 4th International Workshop. (TABLEAUX ’95), volume 918 of Lecture
Notes in Artificial Intelligence, pages 106–121, Schloß Rheinfels, St. Goar, Ger-
many, May 1995. Springer-Verlag.

57. Stephan Schmitt and Christoph Kreitz. Converting Non-Classical Matrix proofs
into Sequent-Style Systems. In McRobbie and Slaney [46], pages 418–432.

Some Reflections on Proof Transformations 29

58. Stephan Schmitt and Christoph Kreitz. Deleting Redundancy in Proof Recon-
struction. In Harrie de Swart, editor, Theorem Proving with Analytic Tableaux and
Related Methods. (TABLEAUX ’98), volume 1397 of Lecture Notes in Artificial In-
telligence, pages 262–276, Oisterwijk, The Netherlands, May 1998. Springer-Verlag.

59. Stephan Schmitt, Lori Lorigo, Christoph Kreitz, and Alexey Nogin. JProver: Inte-
grating Connection-based Theorem Proving into Interactive Proof Assistants. In
Goré et al. [26], pages 421–426.

60. Sun-Joo Shin. The Logical Status of Diagrams. Cambridge University Press, 1994.
61. R. E. Shostak, editor. Proceedings of the 7th International Conference on Auto-

mated Deduction, volume 170 of Lecture Notes in Computer Science, Napa, Cali-
fornia, USA, 1984. Springer-Verlag.

62. Andreas Wolf. Optimization and Translation of Tableau-Proofs into Resolution.
Journal of Information Processing and Cybernetics (EIK), 30(5-6):311–325, 1994.
Akademie Verlag Berlin.

63. Andreas Wolf. A Translation of Model Elimination Proofs into a Structured Nat-
ural Deduction. In Douglas D. Dankel II, editor, Proc. of 10th Int. Florida AI
Research Society Conference, pages 11–15, Daytona Beach, FL, USA, 1997. Florida
AI Research Society.

64. Andreas Wolf. A Step Towards a Better Understanding of Automatically Gen-
erated Model Elimination Proofs. In José Cuena, editor, Information Tech-
nologies and Knowledge Systems (IT&KNOWS’98) – Proceedings of the XV.
IFIP World Computer Congress, pages 415–428. Österreichische Computerge-
sellschaft/International Federation for Information Processing, 1998.

65. Andreas Wolf and Johann Schumann. ILF-SETHEO: Processing Model Elimina-
tion Proof for Natural Language Output. In McCune [45], pages 61–64.

Rewrite and Decision Procedure Laboratory:
Combining Rewriting, Satisfiability Checking,

and Lemma Speculation

Alessandro Armando1, Luca Compagna1, and Silvio Ranise2,�

1 DIST – Università degli Studi di Genova, Viale Causa 13 – 16145 Genova, Italia
2 LORIA & INRIA – Université Henri Poincaré-Nancy 2,

615, rue du Jardin Botanique, BP 101, 54602 Villers les Nancy Cedex, France

1 Introduction

The lack of automated support is probably the main obstacle to the application
of formal method techniques in the industrial setting. A possible solution to this
problem is to combine the expressiveness of general purpose reasoners (such as
theorem provers) with the efficiency of specialized ones (such as decision pro-
cedures). This is witnessed by the fact that many theorem provers developed
for verification purposes (such as Acl2 [11], PVS [17], Simplify [9], STeP [14],
and Tecton [10]) have integrated procedures for ubiquitous theories such as the
theory of equality, decidable fragments of arithmetics, lists, and arrays. Unfortu-
nately, designing an effective integration is far from being a trivial task and the
solutions available in the verification systems listed above are not completely
satisfactory for two main reasons. First, the schemes designed to incorporate
decision procedure in larger systems are not flexible enough to allow developers
to easily incorporate new procedures. Second, only a tiny portion of the proof
obligations arising in many practical applications falls exactly into the domain
the specialized reasoners are designed to solve. Thus, in many cases, available
decision procedures are of little help if they are not combined with mechanisms
for widening their scope.

1.1 RDL

RDL [1] is the acronym for Rewrite and Decision procedure Laboratory. It pro-
vides an extension of rewriting to a powerful simplification mechanism exploiting
satisfiability procedures for conjunctions of literals (i.e. reasoners specialized to
solve the satisfiability problems for certain theories). The interplay between the
satisfiability procedure and the other modules of RDL is parametric in the theory
in which the procedure works. As a consequence, the reasoning activity imple-
mented by the system can be easily extended by plugging-in new satisfiability

� The last author is also partially supported by Università degli Studi di Genova under
the program “Finanziamenti a progetti di singoli e/o giovani ricercatori (D.R. 226
del 25.10.2000)”.

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 30–45, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Rewrite and Decision Procedure Laboratory 31

procedures. In turn, incorporated satisfiability procedures can be extended to
handle larger classes of formulas by instantiating a generic lemma speculation
mechanism. This mechanism is parametric in the satisfiability procedure being
extended.

Our main motivation to develop RDL is to experiment with different combi-
nations of rewriting and possibly extended satisfiability procedures. The focus of
the system is on simplification of quantifier-free clauses and corresponding ap-
plications in the area of verification supported by automated theorem proving.

RDL features the following characteristics.

1. It is based on Constraint Contextual Rewriting (CCR) [2, 3]. CCR is a pow-
erful simplification mechanism in which contextual rewriting [20] is comple-
mented by a specialized reasoner, a procedure capable of establishing formula
satisfiability w.r.t. a fixed theory of interest. The key feature of CCR is that
the context of rewriting (i.e. the literals assumed true during rewriting) are
manipulated and checked for consistency by the satisfiability procedure.

2. RDL is an open system which can be modularly extended with new sat-
isfiability procedures provided these offer certain interface functionalities.
As underlying theories currently available there are the universal theory
of equality (UTE), the universal theory of linear arithmetic over integers
(ULAI), and the theory obtained as the combination of the previous two
(UTELAI).

3. RDL implements instances of a generic extension schema for decision pro-
cedures [4]. The key ingredient of such a schema is a lemma speculation
mechanism which ‘reduces’ the satisfiability problem of a given theory to
the satisfiability problem of one of its sub-theory for which a satisfiability
procedure is already available. The current version of the system provides
implementations of this schema which enable the satisfiability procedure for
ULAI to handle properties of user-defined functions as well as a fragment of
arithmetic with multiplication.

RDL is implemented in (SICStus) Prolog and it is freely available via the
Constraint Contextual Rewriting Project home page at

http://www.mrg.dist.unige.it/ccr

1.2 Related Systems

In Acl2 [11] (as in its predecessor, nqthm [6]), a sophisticated schema to in-
corporate a decision procedure for linear arithmetic in the simplification activity
is implemented. Unfortunately, the design of such a schema heavily depends on
the particular characteristics of the host system [7]. As a result, it is not easy
to incorporate new decision procedures. Both Simplify [9] and pvs [17] feature
a bunch of cooperating decision procedures, following the paradigm proposed in
[16] and in [19], respectively. In both systems, while it is easy to plug-in new
procedures, an insufficient degree of automatization is provided for some classes
of proof obligations which frequently arise in practical verification efforts such as

32 Alessandro Armando, Luca Compagna, and Silvio Ranise

some sub-theory of the theory of arithmetic with multiplication. In both systems,
the user is forced to supply appropriate lemmas encoding the properties of the
interpreted functions (e.g. multiplication). The version of STeP described in [5]
implements a rational based version of the Fourier-Motzkin method, extended
to handle multiplication by (partial) quantifier elimination and reasoning about
the sign of multiplicands. Although STeP offers a high degree of automation
for a significant sub-theory of arithmetic with multiplication, it is not flexible
enough to provide similar degrees of automation for other theories.

Plan of the Paper

In Section 2, we describe how RDL solves a typical verification condition arising
in the proof of termination of a function normalizing expressions. This serves
the twofold purpose of introducing the concept of (theorem proving) problem
solved by RDL and of giving a brief overview of the main reasoning activities
implemented in the system. In Section 3, we describe how to specify a theorem
proving problem to RDL. Then, in Section 3, we describe the reasoning activities
implemented in the system and their interplay. Finally, in Section 5, we report
an excerpt of the experimental results of the system on some typical problems
and we compare RDL with other state-of-the-art validity checkers.

2 An Example

Consider the problem of showing the termination of the function to normalize
conditional expressions in propositional logic as described in [6].

The expressions of the logic are built over propositional constants (denoted in
the following with pl(N), where N is an integer) and the ternary connective “if A
then B else C” (denoted in the following with if(A, B, C), where A, B, and C are
variables ranging over the set of expressions of propositional logic). Informally,
the function norm for normalizing conditional expressions (recursively) remove
all the if’s occurring as the first argument of another if by pushing them into
the other two arguments of the external if.

The argument in the proof of termination of norm is based on exhibiting a
measure function that decreases (according to a given well-founded ordering) at
each function’s recursive call. For example, ms (reported in [18]) is one such a
function:

ms(pl(N)) = 1
ms(if(A, B, C)) = ms(A) + ms(A) ∗ms(B) + ms(A) ∗ms(C)

where + and ∗ denote addition and multiplication over integers. It is easy to
check that ms enjoys the following property:

ms(A) > 0 (1)

for each expression A of the logic. The definition of ms and property (1) are
stated in RDL by asserting the following Prolog facts:

Rewrite and Decision Procedure Laboratory 33

fact(bm,msbase,[],ms(pl(N))=1).

fact(bm,msstep,[],ms(if(A,B,C))=ms(A)+ms(A)*ms(B)+ms(A)*ms(C)).

fact(bm,msfact,[],ms(A)>0).

where msbase, msstep, and msfact are the unique identifiers of the facts in the
system and [] indicates that the facts are unconditional.

One of the proof obligation expressing the decrease argument is

ms(if(u, if(v, y, z), if(w, y, z))) < ms(if(if(u, v, w), y, z)), (2)

where < denotes the ‘less-than’ relation over integers and u, v, w, y, and z are
expressions of the logic. In RDL we can specify the clause (in this case a unit
clause) to be checked for validity as follows:

input(bm,
[ms(if(u, if(v,y,z), if(w,y,z))) < ms(if(if(u,v,w), y, z))]).

There are still two missing ingredients to complete the specification of our prob-
lem to RDL. First, we need to provide an informal description of the problem
under consideration:

description(bm,
’Silvio Ranise’,
’Problem taken from the paper
"Proving Termination of Normalization Functions
for Conditional Expressions"

by L C Paulson.’).

Second, we need to tell RDL what satisfiability procedure to use in order to
check the validity of the formula:

expected_output(bm, aug_aff(eq_la), rpo, [true]).

where aug aff(eq la) tells RDL to use the satisfiability procedure for UTELAI
extended with lemma speculation techniques which allow to use the definition of
ms and its property as well as some properties about multiplication; rpo is the
recursive path ordering that is going to be used by the system for rewriting1.

Now, we are in the position to run the system on the specified problem by
simply typing

run(bm).

RDL’s output is reported in Figure 12. Lines 1–8 provide the user with a brief
summary of the problem that RDL is going to simplify. Line 9 gives the formula
obtained by the simplification process implemented by the system. Line 22 shows
1 To simplify the presentation, we omit the precedence over function symbols needed

to completely specify the ordering and, in the following, we assume that such a
precedence has been defined so that the rewriting steps described below are possible.

2 The original output of the system has been slightly edited in order to simplify the
discussion that follows.

34 Alessandro Armando, Luca Compagna, and Silvio Ranise

1 Problem: bm

2 Reasoning Specialist: combination of the theory of ground

3 equality and Linear Arithmetic with

4 a combination of augmentation and

5 affinization enabled.

6 Ordering: Recursive Path Ordering.

7 Input Formula: [ms(if(u,if(v,y,z),if(w,y,z)))<ms(if(if(u,v,w),y,z))]

8 Expected Formula: [true]

9 Simplified Formula: [true]

10 Status: ok!

11 Reduction:

12 cl simp:

13 [id,

14 crew>(crew>(crew>(crew>(crew>(crew>(crew>

15 (normal>

16 cxt entails true:[

17 augment affinize:

18 [crew:[

19 augment affinize,

20 cs extend]>

21 (augment affinize>augment affinize)]])))))))]

22 Time (Elapsed-Theorem Proving): 610-600 msec

Fig. 1. Sample output of RDL.

the time used by the system to perform the simplification (600 msec) and the
total time (610 msec), i.e. the time to perform simplification as well as the other
instructions such as input-output. Lines 11 to 21 describe the simplification
steps undertook by the system. First of all, RDL initializes the simplification
of the clause (2) (cl simp at 12). This consists of building up the context of
simplification and of selecting a literal to be simplified (id at 13); in this case,
the simplification context is empty and the literal being simplified is the only
literal in the clause. Then, the simplification process can start.

RDL rewrites the l.h.s. and the r.h.s. of (2) with the definition of ms (the
sequence of crew at 14) and it obtains the following literal:

ms(u) + ms(u) ∗ms(v) + ms(u) ∗ms(v) ∗ms(y)+
ms(u) ∗ms(v) ∗ms(z) + ms(u) ∗ms(w)+
ms(u) ∗ms(w) ∗ms(y) + ms(u) ∗ms(w) ∗ms(z) <
ms(u) + ms(u) ∗ms(v) + ms(u) ∗ms(w)+
ms(u) ∗ms(y) + ms(u) ∗ms(v) ∗ms(y) + ms(u) ∗ms(w) ∗ms(y)+
ms(u) ∗ms(z) + ms(u) ∗ms(v) ∗ms(z) + ms(u) ∗ms(w) ∗ms(z)

(3)

RDL then performs all the possible cancellations in (3) (normal at line 15) and
it obtains:

ms(u) ∗ms(y) + ms(u) ∗ms(z) < 0. (4)

Rewrite and Decision Procedure Laboratory 35

In order to prove the validity of (2), RDL checks the unsatisfiability of its nega-
tion (cxt entails true at line 16). To do this, it factorizes (4) to ms(u) ∗
(ms(y) + ms(z)) < 0 and then it considers the following instance of a trivial
property about the sign of multiplicands:

(ms(u) > 0 ∧ms(y) + ms(z) > 0) =⇒ ms(u) ∗ (ms(y) + ms(z)) > 0 (5)

(this is identified by augment affinize at line 17). In order to make the con-
clusion of (5) available to the system (cs extend at line 20), it is necessary to
relieve its hypotheses (crew at line 19). This is easy since RDL readily instanti-
ates (1) three times, namely to ms(u) > 0, ms(y) > 0, and to ms(z) > 0 (the
three augment affinize at lines 19–21). At this point, it is trivial to detect the
unsatisfiability of (4) and the conclusion of (5).

3 Specifying a Problem to RDL

The basic concept underlying RDL’s user interface is that of problem. Intuitively,
a problem provides a specification of the clause to be simplified as well as the sat-
isfiability procedure to be used during simplification and the facts that the user
wants to assume valid. Formally, a problem determines a (first-order) language
and a (first-order) theory. In particular, a problem specifies which predicate and
function symbols are interpreted since either they are known to the satisfiability
procedures or they are taken into account by the lemma speculation mechanism.
The specification of a problem in RDL involves a number of information that
must be specified by asserting certain facts (in Prolog parlance) to the system.

description(TagPb, Author, Descr). The first argument TagPb is the unique
label of the problem the user wishes to solve. In RDL, each problem must be
uniquely identified by a Prolog term, e.g. the Prolog constant bm in Figure 1. The
other two arguments of the predicate are Prolog strings. In particular, Author
specifies the name of the author of the problem and Descr gives an informal
description of the problem.

input(TagPb, Clause). The first argument TagPb is the unique identifier of
the problem. The second argument Clause specifies the (ground) clause to be
simplified. RDL represents clauses as Prolog lists of literals. First-order literals
are represented by ground Prolog literals.

fact(TagPb, TagFact, Conds, Concl). The first argument TagPb is the
unique label of the problem. The second argument TagFact is the unique la-
bel of the fact within the name space of the problem. The last two arguments
specify the hypotheses and the conclusion of a conditional fact. In particular,
Conds is a list of literals and Concl is a single literal. In this case, RDL rep-
resents first order literals as Prolog literals. In particular, first order variables
are represented by Prolog variables which can occur only in this position of the
specification of a problem. As an example, consider the following Prolog fact:

fact(pb,label,[g(X)>0, f(Y,c)=g(Z)],h(X,Y)=Z).

36 Alessandro Armando, Luca Compagna, and Silvio Ranise

It encodes the following formula:

∀x y z ((g(x) > 0 ∧ f(y, c) = g(z)) =⇒ h(x, y) = z),

where x, y, and z are variables (represented by the Prolog variables X, Y, and Z
respectively), c is a constant, g is a unary function symbol, f and h are binary
function symbol, = is the equality symbol, and > is an infix binary predicate.
The formula specified by fact is assumed valid during the simplification activity.

expected output(TagPb, RS, Ord, Clause). The first argument TagPb is the
unique label of the problem. The second argument RS specify the (possibly ex-
tended) satisfiability procedure to be used in order to support the simplification
activity. In the actual implementation of RDL, RS can be one of the following
Prolog term:

– eq identifies a satisfiability procedure for UTE. The implementation of this
procedure is based on the congruence closure algorithm described in [19];

– la identifies a satisfiability procedure for ULAI based on the version of
Fourier-Motzkin algorithm described in [7];

– eq la identifies a combination of the above two satisfiability procedures
based on Nelson and Oppen’s combination paradigm [16];

– aug(SatProc) (where SatProc is either eq, la, or eq la) identifies the ex-
tension of the satisfiability procedure SatProc by means of the augmentation
mechanism [2, 3], i.e. the capability of making available to the satisfiability
procedure selected instances of available lemmas (specified by fact);

– aff(SatProc) (where SatProc is either la or eq la) identifies the extension
of the satisfiability procedure SatProc by means of the affinization mecha-
nism [4], i.e. the capability of making available selected properties of multi-
plication;

– aug aff(SatProc) (where SatProc is either la or eq la) identifies a com-
bination of the two extension mechanisms outlined above [4].

We notice that each satisfiability (implicitly) declare a set of interpreted predi-
cate symbols by means of the predicate pred sym(TagPb, PredSpec). The first
argument TagPb is the unique identifier of the problem. The second argument
PredSpec is a Prolog term of the form p(, , ...,), where p is a predicate symbol
together with its arity, namely (, , ...,). For example, the predicate < is auto-
matically declared as interpreted by asserting pred sym(, <).. This is done
each time the satisfiability procedure for ULAI is used during the simplification
process, i.e. the constant la is given as the second argument of expected output.

The third argument Ord is the ordering to be used while rewriting. Two
possible ordering can be used in RDL: the Knuth-Bendix ordering [12] (identified
by the Prolog constant kbo) and the recursive-path ordering [8] (identified by
the Prolog constant rpo). For kbo, we need to specify the weight of the symbol
by means of the predicate symbol weight(TagPb, FSym, N), where TagPb is
the unique label of the problem, Fsym is a function (or predicate) symbol, and
N is a positive natural number (i.e. the weight of the symbol). Furthermore, for
both ordering we can specify a precedence relation over function (and predicate)

Rewrite and Decision Procedure Laboratory 37

symbols by means of the predicate ord gt(TagPb,F1,F2), where TagPb is the
unique label of the problem, F1 and F2 are function (or predicate) symbols s.t.
F1 is bigger than F2 in the precedence relation used to define either kbo or rpo.

Finally, the last argument Clause of expected output specifies the clause
which the user thinks RDL is going to produce as the result of the simplification
activity. This last parameter is not strictly required (it can be left unspecified
by using a Prolog variable) and it is mainly used for validating the corpus of
problems shipped with the system.

4 The Reasoning Activities of RDL

RDL features a tight integration of three reasoning activities: contextual rewrit-
ing, satisfiability checking, and lemma speculation. The sophisticated interactions
between these reasoning activities are the key ingredients of the effectiveness of
RDL’s simplification mechanism. In the following, the various functionalities
will be modeled by means of relations whereas the interplay between the various
functionalities is specified by an inductive definition by using a set of inference
rules.

4.1 Contextual Rewriting

In RDL, the rewriter implements (a variant of) contextual rewriting [20]. It
manipulates two data structures. The former is the set of literals which can be
assumed true during the rewriting activity; the conjunction of these literals is
called the (rewriting) context. The second data structure is a set of conditional
rules which are added to RDL’s database of valid facts by asserting Prolog facts
of the form

fact(pb, name, [h1, ..., hn], l=r).

where h1, ..., hn, and l=r are RDL’s representation of some first-order literals,
which are denoted in the following with h1, ..., hn, and l = r (respectively).

Now, we are in the position to give a high-level description of the rewriting
algorithm implemented in RDL. In the following, we assume that ≺ is a well-
founded ordering on ground terms which allows for a suitable mechanization in
RDL.

Without loss of generality, assume rσ ≺ lσ for a ground substitution σ.
Otherwise, swap l with r (if lσ is different from rσ). Given a literal p[lσ], RDL’s
rewriter returns p[rσ] if the following two conditions are satisfied: (i) the ground
literals h1σ, ..., hnσ, and p[rσ] are smaller than p[lσ] according to ≺; and (ii)
each hiσ (for i = 1, ..., n) can be simplified to true by recursively invoking the
activity of contextual rewriting. Checking for the entailment of an instantiated
condition can be done in three ways. The first is to recursively invoke the RDL’s
rewriter on the literal under consideration with the aim of rewriting it to true.
This informal description can be formalized by means of the following inference
rule named crew:

38 Alessandro Armando, Luca Compagna, and Silvio Ranise

C :: h1σ−−→
ccr

true · · · C :: hnσ−−→
ccr

true

C :: p[lσ]u−−→
ccr

p[rσ]u

where h1 ∧ · · · ∧ hn =⇒ l = r is one of the available (possibly conditional)
rewrite rules and C :: p−−→

ccr
p′ is a sequent which denotes the mechanization of

the one-step contextual rewriting relation, i.e. it takes a literal p in context C
and returns the literal p′.

4.2 Satisfiability Checking

In RDL, a satisfiability procedure for a given (first-order) theory Tc works on
a data structure (called constraint store) representing a conjunction of ground
literals to be assumed true during RDL’s simplification activity. The constraint
store is built by interning the literals in the rewriting context. As it will be
discussed below, the particular data structure used to implement the constraint
store depends on the theory Tc.

There are four functionalities manipulating the constraint store: cs init(C),
cs unsat(C), P :: C−−−−−→

cs extend
C′, and C :: p−−−−−→

cs normal
p′, where C and C′ are con-

straint stores, p and p′ are ground literals, and P is a set of ground literals.
The functionalities cs init and cs unsat manipulate a constraint store and

are invoked by RDL’s rewriter so to synchronize the content of the rewriting
context and of the constraint store. More precisely, cs init(C) sets C to the
“empty” constraint store and cs unsat(C) is a boolean function recognizing
a subset of unsatisfiable (in Tc) constraint stores whose unsatisfiability can be
checked by means of a computationally inexpensive (syntactic) check.

The remaining two interface functionalities (i.e. P :: C−−−−−→
cs extend

C′ and C ::

p−−−−−→
cs normal

p′) must satisfy some requirements in order to allow the “plug-and-

play” incorporation of new satisfiability procedures in the system. As said above,
the constraint store is the result of interning the literals in the rewriting context
by invoking the functionality

P :: C−−−−−→
cs extend

C′

which denotes the computation performed in order to intern the literals in the
input set P , (possibly) deriving new literals entailed by the conjunction of the
literals in P and C, and adding them to the actual state C of the procedure so
to obtain the new state C′. The last functionality

C :: p−−−−−→
cs normal

p′

provided by the satisfiability procedure computes a normal representation p′ of a
given literal p w.r.t. the theory Tc and the literals stored in the constraint store C.
In order to simplify the integration with the RDL’s rewriter, we require that (i)
the literal p′ returned by this functionality is entailed by Tc and the conjunction
of literals in C, and that (ii) p′ is smaller (according to the rewriting ordering
≺) than p.

Rewrite and Decision Procedure Laboratory 39

Example 1. The satisfiability procedure for ULAI in RDL. Consider the
first-order language consisting of the numerals ...,−2, −1, 0, 1, 2, ..., variables,
the function symbol +, the (infix) binary predicate symbols <, ≤, =, ≥, and
>, and the usual logical connectives. The intended structure of this language
(whose theory is ULAI) interprets numerals as integers3, variables range over
integers, + is interpreted as addition, <, ≤, ≥, and > are interpreted as the
usual ordering relations, and = is interpreted as the identity relation.

Let Tc be the first-order theory containing ULAI and n-ary function symbols
(other than +) interpreted as arbitrary functions from n-tuples of integers to
integers.

The Fourier-Motzkin elimination method [13] is based on the idea of elimi-
nating one variable at a time in the hope of obtaining a ‘trivially’ unsatisfiable
inequality such as, e.g., 0 ≤ −1. It can be straightforwardly adapted to obtain a
proof procedure for Tc.

Although the exponential worst-case complexity seems to discourage its us-
age for checking the unsatisfiability of conjunctions of inequalities, the Fourier-
Motzkin method can be made usable in practice (as observed e.g. in [7]) by
using the simple trick of choosing the variable to eliminate according to a given
ordering.

We assume that <, =, ≥, and > (in the language of ULAI) are preliminary
eliminated in favor of ≤ (e.g. x < 0 can be rewritten to x ≤ −1 by exploiting
the integral property of integers). The inequalities in the constraint store are put
into the following (normal) form

c1 ·m1 + · · ·+ cn ·mn ≤ c (6)

where n ≥ 0 (if n = 0, then (6) stands for 0 ≤ c), c, c1, ..., cn are relatively prime
integers (called coefficients), m1, ..., mn are (first-order) terms (called multipli-
cands) whose top-most function symbols are different from + s.t. mi+1 ≺ mi

(where ≺ is the ordering used for rewriting which is required to be total over
ground terms), and ci · mi (i = 1, ..., n) abbreviates the term mi + · · · + mi in
which mi occurs ci times.

A constraint store is a data base of inequalities of the form (6) indexed by
the key multiplicands. More precisely, each key multiplicand points to two lists
of inequalities: one contains inequalities where the coefficient of the key multi-
plicand is positive whereas the other contains inequalities where the coefficient
of the key multiplicand is negative. If we derive an inequality of the form 0 ≤ c,
where c is a negative integer, we stop the exhaustive elimination of variables and
we set a flag signaling the unsatisfiability of the constraint store. The function-
ality cs init(C) is defined so to set up the empty data base of inequalities and
cs unsat(C) returns true when the flag of the unsatisfiability of the constraint
store is true.

Let ι and ι′ be two inequalities of the form (6) both having m as their heaviest
multiplicand, k (k′) be the coefficient of m in ι (ι′, resp.), k and k′ be of opposite
3 In the following, to simplify the discussion, we will use the term ‘integer’ in place of

‘numeral’.

40 Alessandro Armando, Luca Compagna, and Silvio Ranise

sign, and elim(ι, ι′) be the normal form of the linear combination of ι and ι′ not
containing m. Now, we are in the position to describe an implementation of the
functionality P :: C−−−−−→

cs extend
C′. First of all, put the literals of P into inequalities

of the form (6) and insert them into C at appropriate positions. Then, close the
resulting data base under the operation elim so to obtain C′, i.e. C′ is that for
any ι1, ι2 in C′ we have that elim(ι1, ι2) is in C′ (if elim is defined).

Finally, we notice that it is possible to extend the Fourier-Motzkin algorithm
in order to derive equalities entailed by inequalities [13] (stored in the constraint
store). A set of entailed equalities is created as soon as an inequality of the form
0 ≤ 0 is derived; all the inequalities which contributed to create this inequality
are turned into equalities (see, e.g. [13] for more details). It is natural to exploit
these equalities to simplify the literal which is currently rewritten. This observa-
tion offers an immediate implementation of C :: p−−−−→

cs norm
p′. In fact, if we extend

the data base C of inequalities to store also the entailed equalities, we can use
them as rewrite rules since we are always capable of orienting them; the entailed
equalities are ground and the ordering ≺ is assumed to be total on ground terms.

Another example of implementation of C :: p−−−−→
cs norm

p′ is given by the alge-

braic manipulation required to perform the cancellation in (3) to derive (4) in
Section 2.

4.3 Combining Rewriting and Satisfiability Checking

Now, we are in the position to describe how the functionalities provided by the
satisfiability procedure are exploited by the rewriting activity of RDL.

A given literal can be rewritten to true in a given context if it is entailed by
the context. In turn, the check for entailment of a literal l by a conjunction of
literals C can be performed by checking the unsatisfiability of C ∧ ¬l. In RDL,
this can be easily done by invoking cs unsat on the constraint store obtained
by adding the negation of the literal being rewritten. Similarly, we can rewrite
to false a literal if its negation is entailed by the context. This kind of reasoning
can be formalized by the following two inference rules, named cxt entails true
and cxt entails false (read from left to right):

{¬p} :: C−−−−−→
cs extend

C′

C :: p−−→
ccr

true
if cs unsat(C′)

{p} :: C−−−−−→
cs extend

C′

C :: p−−→
ccr

false
if cs unsat(C′)

In RDL, there is another mechanism of rewriting realized by simply invoking
the functionality for normalization provided by the satisfiability procedure. This
can be formalized by the following inference rule, named normal:

C :: p−−−−−→
cs normal

p′

C :: p−−→
ccr

p′

We notice that the inference rules cxt entails true, cxt entails false, and
normal extends the definition of the relation C :: p−−→

ccr
p′ modeling the activity

of contextual rewriting as introduced in Section 4.1.

Rewrite and Decision Procedure Laboratory 41

4.4 Lemma Speculation

Three instances of the lemma speculation mechanism described in [4] are im-
plemented in RDL. All the instances share the goal of feeding the satisfiability
procedure with new facts about function symbols which are otherwise uninter-
preted in the theory in which the satisfiability procedure works. More precisely,
they inspect the context C and return a set of ground facts entailed by C. The
lemma speculation activity of computing a set S of ground facts given a con-
straint store C can be modeled by the following relation:

C �→ 〈C′, S〉,

where C′ is a constraint store which differs from C in the fact that some literals
are marked as already used (this is useful to avoid infinite looping by reconsid-
ering infinitely often the same literals for deriving new facts).

Augmentation. It extends the information available to the satisfiability pro-
cedure with selected instances of lemmas encoding properties of symbols the
decision procedure does not know anything about. For example, by devising a
suitable set of lemmas about multiplication, it is possible to enable a procedure
for ULAI to handle formulas whose satisfiability depends on properties of mul-
tiplication (e.g. multiplying two positive integers we obtain a positive integer).

The crucial step for the success of augmentation is the selection of suitable in-
stances of the available formulas. This is an instance of the more general problem
of choosing suitable instances of lemmas for guiding a generic prover to a suc-
cessful proof. Unfortunately, for such a problem no general satisfactory solution
does exist. In RDL, for our particular instance, we implemented the heuristics
of finding instances of the conclusions of the available conditional lemmas pro-
moting further computations (e.g. further Fourier-Motzkin elimination steps in
the case of the procedure for ULAI) when added to the current state of the
satisfiability procedure.

A further problem is the presence of extra variables in the hypotheses (w.r.t.
the conclusion) of lemmas. RDL avoids this problem by requiring that the conclu-
sion contains all the variables occurring in the lemma and that all the variables
get instantiated by matching the conclusion of the lemma against the largest
(according to ≺) literal in C.

We notice that augmentation critically depends on the shape of the available
lemmas and the algorithm implemented by the satisfiability procedure. If a suit-
able set of lemmas is defined, then augmentation dramatically widens the scope
of a satisfiability procedure. Unfortunately, devising such a suitable set is a time
consuming activity. This problem can be solved in some important special cases
such as some fragments of arithmetics with multiplication.

Affinization. In the actual version of RDL, affinization implements the ‘on-the-
fly’ generation of lemmas about multiplication over integers. We emphasize that
the user is no more required to provide suitable lemmas about properties of
multiplication since instances of some classes of properties are automatically
generated.

42 Alessandro Armando, Luca Compagna, and Silvio Ranise

To understand how affinization works, consider the non-linear inequality x ∗
y ≤ −1 (where x and y range over integers). By resorting to its geometrical
interpretation, it is easy to verify that (over integers) x ∗ y ≤ −1 is equivalent to
(x ≥ 1∧y ≤ −1)∨ (x ≤ −1∧y ≥ 1). To avoid case splitting, we observe that the
semi-planes represented by x ≥ 1 and x ≤ −1 as those represented by y ≤ −1
and y ≥ 1 are non-intersecting. This allows to derive the following four lemmas:
x ≥ 1 =⇒ y ≤ −1, x ≤ −1 =⇒ y ≥ 1, y ≥ 1 =⇒ x ≤ −1, and y ≤ −1 =⇒ x ≥ 1.
This process can be generalized to non-linear inequalities which can be put in
the form x ∗ y ≤ k (where k is an integer) by factorization [15]. The generated
(conditional) lemmas are used as for augmentation.

A Combination of Augmentation and Affinization. On the one hand affinization
can be seen as a significant improvement over augmentation since it does not re-
quire any user intervention. On the other hand it fails to apply when inequalities
cannot be transformed into a form suitable for affinization. RDL combines aug-
mentation and affinization by considering the function symbols occurring in the
constraint store C, i.e. the top-most function symbol of the largest (according
to ≺) literal in C triggers the invocation of either affinization or augmentation.

4.5 Combining Rewriting and Lemma Speculation

The main obstacle to using the facts resulting from the lemma speculation ac-
tivity is that such facts are conditional. Hence, we should preliminary relieve
their hypotheses in order to be entitled to make their conclusions available to
the satisfiability procedure. In RDL, we solve this problem by rewriting each
hypothesis to true (if possible) by invoking the rewriter. (Notice that this im-
plies that the rewriter and the satisfiability procedure are mutually recursive.)
The above reasoning activity can be formalized by the following inference rule,
named either augment, affinize, or augment affinize depending on which
lemma speculation mechanism is specified:

C′ :: g1−−→
ccr

true · · · C′ :: gn−−→
ccr

true {c1, ..., cm} :: C−−−−−→
cs extend

C′

P :: C−−−−−→
cs extend

C′ if C �→ 〈C′, S〉

where (g1 ∧ · · · ∧ gn) =⇒ (c1 ∧ · · · ∧ cm) is in S and it is ground (for n ≥ 1 and
m ≥ 1).

5 Experiments

RDL must be judged w.r.t. its effectiveness in simplifying (and possibly checking
the validity of) proof obligations arising in practical verification efforts where de-
cision procedures play a crucial role. Although standard benchmarks for theorem
provers such as TPTP can be (partially) tackled by RDL, we prefer to evaluate
RDL’s performances on proof obligations extracted from real verification efforts.
To do this, we are building a corpus of proof obligations taken from the literature

Rewrite and Decision Procedure Laboratory 43

Table 1. Experimental Results.

Problem RDL

1
f(A) = f(B) =⇒ (r(g(A,B), A) = A) �

r(g(y, z), x) = x ∨ ¬(g(x, y) = g(y, z)) ∨ ¬(y = x)
26

2
A ∗B = B ∗ A, (¬(C = 0)) =⇒ (rem(C ∗D, C) = 0) �

rem(y ∗ z, x) = 0 ∨ ¬(x ∗ y = z ∗ y) ∨ x = 0
109

3 (A > 0) =⇒ (rem(A ∗ B, A) = 0) � rem(x ∗ y, x) = 0 ∨ x ≤ 0 12

4
min(A) ≤ max(A) �
¬(k ≥ 0) ∨ ¬(l ≥ 0) ∨ ¬(l ≤ min(b)) ∨ ¬(0 < k) ∨ l < max(b) + k

12

5

(memb(A,B)) =⇒ (len(del(A, B)) < len(B)) �
¬(w ≥ 0) ∨ ¬(k ≥ 0) ∨ ¬(z ≥ 0) ∨ ¬(v ≥ 0) ∨ ¬(memb(z, b))

∨¬(w + len(b) ≤ k) ∨ w + len(del(z, b)) < k + v

17

6
(0 < A) =⇒ (B ≤ A ∗ B), 0 < ms(C) �
ms(c) + ms(d)2 + ms(b)2 < ms(c) + ms(b)2 + 2ms(d)2 ∗ms(b) + ms(d)4

72

7 A ≥ 4 =⇒ (A2 ≤ 2A) � ¬(c ≥ 4) ∨ ¬(b ≤ c2) ∨ ¬(2c < b) 14

8

(max(A,B) = A) =⇒ (min(A, B) = B), (p(C)) =⇒ (f(C) ≤ g(C)) �
¬(p(x)) ∨ ¬(z ≤ f(max(x, y))) ∨ ¬(0 < min(x, y)) ∨ ¬(x ≤ max(x, y))∨
¬(max(x, y) ≤ x) ∨ z < g(x) + y

114

9
0 < ms(C) �
ms(c) + ms(d)2 + ms(b)2 < ms(c) + ms(b)2 + 2ms(d)2 ∗ms(b) + ms(d)4

63

10 � x ≥ 0 =⇒ x2 − x + 1 �= 0 40

and from the examples available for similar systems. The problems in our corpus
are representative of various verification scenarios and are considered difficult for
current state-of-the-art verification systems.

Table 1 reports a selection of the results of our computer experiments. Prob-
lem lists the available lemmas4 (if any) and the formula to be decided. � is the
binary relation characterizing the deductive capability of RDL (we have that �
is contained in |=T , where T is the theory decided by the decision procedure
extended with the available facts). The last column records the time (expressed
in msec) used by RDL to solve a problem5.

RDL solves problems 1 and 2 with the procedure for UTE. In the former, the
procedure is used to derive equalities entailed by the context which are used as
rewrite rules and enable the use of the available lemma. The ordered rewriting
engine implemented by RDL is a key feature to successfully solve problem 2
since this form of rewriting allows to handle usually non-orientable rewrite rules
such as A ∗B = B ∗A. RDL solves problem 3 with a satisfiability procedure for
ULAI extended with augmentation. Infact, the available lemma is applied once
its instantiated condition, namely x > 0, is relieved by the decision procedure (it
is straightforward to check the inconsistency of x > 0 and the literal x ≤ 0 in the

4 Capitalized letters denote implicitly universally quantified variables.
5 Benchmarks run on a 600 MHz Pentium III running Linux. RDL is implemented in

Prolog and it was compiled using SICStus Prolog, version 3.8.

44 Alessandro Armando, Luca Compagna, and Silvio Ranise

context). RDL solves problems 4, 5, 6, and 7 with a procedure for ULAI extended
with the augmentation mechanism. In particular, the formula of problem 6 is a
non-linear formula whose validity is successfully established by RDL in a similar
way of the example in Section 2. RDL solves problem 8 with the combination of
procedures for ULAI and UTE. RDL solves problems 9 and 10 with the procedure
for ULAI, extended with both augmentation and affinization. The lemma about
multiplication (i.e. 0 < I =⇒ J ≤ I ∗ J) is supplied in problem 6 but it is not
in problem 9. Only the combination of augmentation and affinization can solve
problem 9. Finally, problem 10 shows the importance of the context in which
proof obligations are proved (since RDL does not case-split). In fact, without
x ≥ 0 augment and affinize would not be able to solve problem 10.

As a matter of fact, the online version of STeP fails to solve all of the prob-
lems reported in Table 1. However, most of them are successfully solved by the
improved version of STeP described in [5]. This version solves problems 9 and 10
by resorting to a partial method for quantifier elimination (see [5] for details).
Instead, our affinization mechanism is capable of proving the formula with sim-
pler mathematical techniques. The comparison is somewhat difficult since the
method used by STeP works over the rationals and our affinization technique
only works over integers. Simplify successfully solves problems 1 to 8 thanks to a
Nelson-Oppen combination of decision procedures and an incomplete matching
algorithm which is capable of instantiating (valid) universally quantified clauses.
However, it does not solve problems 9 and 10 since it is unable to handle non-
linear facts without user-supplied lemmas (such as 0 < I =⇒ J ≤ I ∗ J in
problem 6). Finally, SVC fails to solve all the problems involving augmentation
and affinization since it does not provide a mechanism to take into account facts
which partially interpret user-defined function symbols.

References

1. A. Armando, L. Compagna, and S. Ranise. System Description: RDL—Rewrite and
Decision procedure Laboratory. In Proc. of the International Joint Conference on
Automated Reasoning (IJCAR2001), pages 663–669. LNAI 2083, Springer-Verlag,
2001.

2. A. Armando and S. Ranise. Constraint Contextual Rewriting. In Proc. of the 2nd
Intl. Workshop on First Order Theorem Proving (FTP’98), 1998.

3. A. Armando and S. Ranise. Termination of Constraint Contextual Rewriting. In
Proc. of the 3rd Intl. W. on Frontiers of Comb. Sys.’s (FroCos’2000), volume 1794,
pages 47–61. Springer-Verlag, 2000.

4. A. Armando and S. Ranise. A Practical Extension Mechanism for Decision Pro-
cedures: the Case Study of Universal Presburger Arithmetic. Journal of Universal
Computer Science, 7(2):124–140, February 2001. Special Issue on Tools for System
Design and Verification (FM-TOOLS’2000).

5. N. S. Bjørner. Integrating Decision Procedures for Temporal Verification. PhD
thesis, Computer Science Department, Stanford University, 1998.

6. R.S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.
7. R.S. Boyer and J S. Moore. Integrating Decision Procedures into Heuristic Theorem

Provers: A Case Study of Linear Arithmetic. Machine Intelligence, 11:83–124, 1988.

Rewrite and Decision Procedure Laboratory 45

8. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Hand. of Theoretical Comp. Science, pages 243–320. 1990.

9. D. L. Detlefs, G. Nelson, and J. Saxe. Simplify: the ESC Theorem Prover. Technical
report, DEC, 1996.

10. D. Kapur, D.R. Musser, and X. Nie. An Overview of the Tecton Proof System.
Theoretical Computer Science, Vol. 133, October 1994.

11. M. Kaufmann and J S. Moore. Industrial Strength Theorem Prover for a Logic
Based on Common Lisp. IEEE Trans. Soft. Eng., 23(4):203–213, 1997.

12. D. E. Knuth and P. E. Bendix. Simple word problems in universal algebra. In
J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–297, Ox-
ford, 1970. Pergamon Press.

13. J.-L. Lassez and M.J. Maher. On Fourier’s Algorithm’s for Linear Arithmetic
Constraints. J. of Automated Reasoning, 9:373–379, 1992.

14. Z. Manna and the STeP Group. STeP: The Stanford Temporal Prover. Technical
Report CS-TR-94-1518, Stanford University, June 1994.

15. V. Maslov and W. Pugh. Simplifying Polynomial Constraints Over Integers to
Make Dependence Analysis More Precise. Technical Report CS-TR-3109.1, Dept.
of Computer Science, University of Maryland, 1994.

16. G. Nelson and D.C. Oppen. Simplification by Cooperating Decision Procedures.
Technical Report STAN-CS-78-652, Stanford Computer Science Department, April
1978.

17. S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification System. In
D. Kapur, editor, 11th International Conference on Automated Deduction (CADE),
volume 607 of LNAI, pages 748–752, Saratoga, NY, June 1992. Springer-Verlag.

18. L. C Paulson. Proving termination of normalization functions for conditional ex-
pressions. J. of Automated Reasoning, pages 63–74, 1986.

19. R.E. Shostak. Deciding Combination of Theories. J. of the ACM, 31(1):1–12, 1984.
20. H. Zhang. Contextual Rewriting in Automated Reasoning. Fundamenta Informat-

icae, 24(1/2):107–123, 1995.

SAT-BasedDecision Procedures
for Automated Reasoning: A Unifying Perspective

Alessandro Armando1, Claudio Castellini1, Enrico Giunchiglia1,
Fausto Giunchiglia2,3, and Armando Tacchella1

1 DIST, Università di Genova,
viale Causa 13, 16145 Genova – Italy

{armando,drwho,enrico,tac}@dist.unige.it
2 DICT, Università di Trento,

Povo, 38100 Trento – Italy
fausto@cs.unitn.it

3 ITC-IRST,
via Sommarive 18, 38050 Trento – Italy

Abstract. Propositional reasoning (SAT) is an essential part of many
reasoning tasks. Many problems in computer science can be compiled to
SAT and then effectively decided using state-of-the-art solvers. Alterna-
tively, if reduction to SAT is not feasible, the ideas and technology of
state-of-the-art SAT solvers can be useful in deciding the propositional
component of the reasoning task being considered. This last approach
has been used in different contexts by different authors, many times by
authors of this paper. Because of the essential role played by the SAT
solver, these decision procedures have been called “SAT-based”. SAT-
based decision procedures have been proposed for various logics, but
also in other areas such as planning. In this paper we present a unify-
ing perspective on the various SAT-based approaches to these different
reasoning tasks.

1 Introduction

Propositional reasoning (SAT) is an essential part of many reasoning tasks. Many
problems in computer science can be compiled to SAT and then effectively solved
using state-of-the-art solvers, see, e.g., [Kautz and Selman, 1992, Kautz and
Selman, 1996, Biere et al., 1999]. Alternatively, if reduction to SAT is not feasible,
the ideas and technology of state-of-the-art SAT solvers can be useful in deciding
the propositional component of the reasoning task being considered. This last
approach has been used in different contexts by different authors, many times
by authors of this paper. Because of the essential role played by the SAT solver,
it has been called “SAT-based” in [Giunchiglia and Sebastiani, 1996b]. That
paper is about decision procedures for modal logics. The same topic is dealt
with in [Giunchiglia and Sebastiani, 1996a, Giunchiglia et al., 1998, Giunchiglia
et al., 2000b]. SAT-based decision procedures for decidable fragments of first
order logic are presented in [Armando and Giunchiglia, 1989, Armando and

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 46–58, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

SAT-Based Decision Procedures for Automated Reasoning 47

Giunchiglia, 1993]. Finally, SAT-based decision procedures have been proposed
in temporal reasoning [Armando et al., 1999] and planning [Giunchiglia et al.,
2000b, Giunchiglia et al., 2001, Wolfman and Weld, 1999].

In this paper, we present a unifying perspective on the various SAT-based
approaches to the different reasoning tasks previously considered. In particular,
in Section 2 we present the common ideas of all these various works. Then
in Section 3 we show some optimizations to the basic procedures described in
Section 2. Finally, we review the cited works on SAT-based decision procedures,
presenting them in the context of the unifying framework previously introduced.
We conclude the paper in Section 5, with some final remarks.

2 SAT-Based Decision Procedures:
A Unifying Perspective

In the following, we consider an arbitrary logic characterized as a pair L = 〈L, T 〉
where

– L is the language, i.e., a set of formulae in some formal language which
includes the standard propositional connectives, i.e., the unary connective
¬, the binary connective ⊃, and the k-ary (k ≥ 0) connectives ∨,∧,≡; and

– T is a theory, i.e. a subset of the language closed under propositional rea-
soning and the additional rules specific of the logic at hand.

We also assume that the logic is consistent, i.e., that for any formula ϕ in the
language L, it is not the case that both ϕ and ¬ϕ belong to T ; and decidable in
the standard sense, see, e.g., [Dreben and Goldfarb, 1979].

In this paper we focus on the following problem:

Given a logic L = 〈L, T 〉 and a formula ϕ ∈ L, is the formula L-
consistent? That is, does ¬ϕ belong to L \ T ?

The decidability of the logic ensures that the task of deciding the L-consistency
of any given formula in L can be accomplished.

In the following, an atom of L is a formula whose main symbol is not a
propositional connective, i.e., is not in {¬,⊃,∨,∧,≡}. A literal is an atom or
the negation of an atom. An assignment μ is a finite conjunction of literals such
that it is not the case that both ψ and ¬ψ are conjuncts of μ. An assignment
μ satisfies a formula ϕ if the formula μ ⊃ ϕ can be proved by propositional
reasoning. We write μ(A) = � as an abbreviation for “A is a conjunct of μ”,
and μ(A) = ⊥ as an abbreviation for “¬A is a conjunct of μ”.

The basic idea behind the SAT-based approach to determine the L-consist-
ency of a formula ϕ is very simple and consists of the following two steps:

1. generate a (possibly partial) assignment which propositionally satisfies the
formula, and then

2. test that the generated assignment is indeed consistent w.r.t. L.

48 Alessandro Armando et al.

Given that the generation step involves propositional reasoning only, it is pos-
sible to use state-of-the-art SAT solvers for generating assignments. Because of
this, we inherit the many optimizations and heuristic strategies (improving the
average case behavior) which are implemented in current SAT solvers. Notice
that in principle any set S of assignments satisfying ϕ can be generated and
tested. However, in all the SAT-based procedures, the main focus has been on
the generation of complete and irredundant sets of assignments. A set S of as-
signments is

– complete for a formula ϕ, if ϕ is propositionally logically equivalent to the
disjunction of the assignments in S; and

– irredundant for a formula ϕ, if for any assignment μ ∈ S we have that S\{μ}
is not complete.

Completeness is required to have correct and complete SAT-based procedures.
Irredundancy is very important too, as it improves efficiency in many cases.

Several algorithms and techniques have been proposed to solve the satis-
fiability problem in propositional logic (see, e.g., [Gu et al., 1997]). Among
this variety of approaches we have chosen the Davis-Logemann-Loveland (DLL)
method [Davis et al., 1962] to develop our decision procedures. The reasons for
this choice are manyfold:

– DLL is a simple and elegant algorithm whose implemented variants proved
to be very effective in attacking hard SAT instances;

– since most state-of-the-art solvers are based on DLL, there is a lot of knowl-
edge on data structures and algorithms that we can inherit in our setting for
free;

– even if DLL is usually tuned to find a single satisfying assignment, it is rather
easy to modify it to generate a complete and irredundant set of assignments.

Examples of state-of-the-art SAT solvers based on DLL are böhm [Buro and
Buning, 1992, Böhm and Speckenmeyer, 1996], satz [Li and Anbulagan, 1997],
relsat v2.0 [Bayardo, Jr. and Schrag, 1997], sato v3.2 [Zhang, 1997], sim [Giun-
chiglia et al., 2001], and – more recently – chaff [Moskewicz et al., 2001].

A basic DLL implementation for SAT-based reasoning in outlined in Figure 1.
The conventions that we use to present the algorithms are those of [Cormen et
al., 1998], described at pages 4 and 5. In particular, variables (e.g. Γ , S, l)
are treated as pointers to the data structures representing the corresponding
entities. If a pointer does not refer to any object, we give it the special value
nil. Stacks are considered a primitive data type and are accessed with the usual
constant-time primitives Push and Pop, while the function Empty builds and
returns an empty stack. The primitive Assign(Γ , l) returns the set of clauses
Γ minus all the clauses in which literal l occurs, and with all the occurrences of
its negation, l, removed. Finally, we assume that t, f, la, lb, and hr are five
pairwise distinct constants, each one being distinct from nil. In particular, t
and f represent logical truth and falsehood, respectively.

Function DLL-Solve takes a formula ϕ as input and returns t (f) exactly
when ϕ is satisfiable (unsatisfiable, resp.). Function DLL-Solve converts ϕ into

SAT-Based Decision Procedures for Automated Reasoning 49

DLL-Solve(ϕ)
1 Γ ← CNF-Convert(ϕ)
2 S ← Empty()
3 return DLL-Solve-CNF(Γ , S)

DLL-Solve-CNF(Γ , S)
1 next ← la
2 repeat
3 case next of
4 la : next ← Look-Ahead(Γ , S)
5 hr : next ← Heuristic(Γ , S)
6 lb : next ← Look-Back(Γ , S)
7 until next ∈ {t, f}
8 return next

Look-Ahead(Γ , S)
1 for each l deduced from Γ do
2 S ← Push(S, 〈Γ, l, la〉)
3 Γ ← Assign(Γ , l)
4 if an empty clause is in Γ then
5 return lb
6 if Γ is not empty then
7 return hr
8 else
9 return Is-Consistent(S)

Is-Consistent(S)
1 μ ← Assignment-In(S)
2 if L-Consist(μ) = t then
3 return t
4 else
5 return lb

Heuristic(Γ , S)
1 Choose a literal l in Γ
2 S ← Push(S, 〈Γ, l,hr〉)
3 Γ ← Assign(Γ , l)
4 return la

Look-Back(Γ , S)
1 repeat
2 〈Γ, l, r〉 ← Pop(S)
3 until r = hr
4 if length[S] = 0 then
5 return f
6 else

7 S ← Push(S, 〈Γ, l, lb〉)
8 Γ ← Assign(Γ , l)
9 return la

Fig. 1. Implementation of the DLL method for SAT-based reasoning.

an equi-satisfiable clausal normal form Γ (line 1) using the function CNF-
Convert. We do not discuss here CNF-Convert and the issues related to
conversion in clausal normal form. More details can be found in [Giunchiglia et
al., 2000b]. Here it is sufficient to say that the conversion can be done in such
a way that |Γ | is in O(|ϕ|) where |ϕ| is the size, i.e. the number of symbols of
ϕ. Function DLL-Solve also initializes the search stack S (line 2) and then
calls DLL-Solve-CNF to determine the satisfiability of Γ . The elements of the
search stack are triples of the form 〈Γ, l, f lag〉, where Γ is a set of clauses, l a
literal, and flag ∈ {t, f, la, lb, hr}. Function Assignment-In takes as input
the search stack S and returns a conjunction of the literals stored in it, i.e.∧

〈−,l,−〉∈S l. Function DLL-Solve-CNF solves Γ by iteratively applying one of
the following steps:

Look-Ahead to deduce new truth assignments from Γ . Look-Ahead keeps
simplifying Γ (for instance, by exploiting the unit clauses in it) until an
inconsistency arises or a fix point is reached. In case of inconsistency (line 4),
the return value of Look-Ahead is lb, meaning that the main loop has to
call Look-Back. In case of a fix point, we have two possibilities: if there
are still clauses in Γ , then the return value is hr; if Γ is empty, then all the
clauses have been satisfied and the function Is-Consistent is invoked.

50 Alessandro Armando et al.

Heuristic to decide the next truth assignment and to enforce it; the decision
is taken by considering Γ and/or possibly some Γ ′ obtained from Γ by
tentatively assigning truth values to literals.

Look-Back to undo truth assignments, until a point from which the search
can continue without loosing solutions. If there is no such a point (i.e., the
search tree is complete), then Look-Back concludes that the initial formula
cannot be satisfied.

Since Γ and S are pointers, the actions Look-Ahead, Look-Back, and Heu-
ristic all update the input formula and stack of DLL-Solve-CNF in various
ways during the repeat . . .until loop (lines 2-7). Each action modifies Γ and S
and returns the next action to be taken which is stored in next (lines 4-6 in the
program). la, lb, hr, t, and f are the possible values taken by next, meaning
that the next action must be Look-Ahead, Look-Back, Heuristic, or that
of stopping the loop respectively. In the latter case, if next is assigned t then
Γ is satisfied, otherwise (i.e. if next is assigned f) Γ is unsatisfiable. When Γ
is satisfiable, the corresponding satisfying truth assignment μ can be extracted
from S. This task is accomplished in Figure 1 by Is-Consistent which extracts
μ from S (lines 1-3) and then calls the consistency test L-Consist specific for
the logic at hand. Notice that in the case of mere propositional satisfiability
Is-Consistent simply returns t.

3 Optimizations

The simple generate and test strategy implemented by the SAT-based procedure
outlined in Section 2 can be improved in several ways. Here we present two
optimizations which often lead to dramatic improvements in the performance of
the procedure.

3.1 Adding Constraints to the Input Formula

A key feature of the SAT-based procedure presented in Section 2 is that all the
consistency checks are carried on-line. An alternative is to preprocess the formula
and look for sets of literals in the input formula that are L-inconsistent1. If S is
one of such sets, the clause

∨
l∈S l can be added to the formula at hand without

affecting its L-consistency. This simple optimization can be very effective as
shown by the following example.

Let L be the quantifier-free fragment of first-order logic with equality and
let ϕ be a formula of the form

(x = y ∧ ¬y = x) ∧ . . . (1)

All the propositional assignments generated by DLL-Solve are then rejected
by L-Consist. The useless generation of many propositional assignments is
1 It is worth pointing out that this check can be carried out by any correct, even

though not necessarily complete, procedure.

SAT-Based Decision Procedures for Automated Reasoning 51

due to the failure of DLL-Solve to recognize that the truth values of x =
y and y = x are not independent. The role of the constraints added by the
proposed optimization is to rule out such assignments. For instance, by adding
the constraint

¬x = y ∨ y = x (2)

to (1) we obtain a formula which is readily found unsatisfiable by DLL-Solve.
In the context of SAT-based procedures, the idea of adding constraints has

been introduced in [Armando et al., 1999]. In that paper, all pairs of mutually
inconsistent inequalities (i.e., x− y ≤ 0 and x− y ≥ 5) are detected a priori at
a reasonable cost, and for each such pair a constraint is added. As a result, the
search is greatly reduced. The idea can be generalized to n-uples of inconsistent
inequalities, but only until the cost of the preprocessing remains sustainable.

The idea of constraints generalizes the pre-processing technique introduced
in [Giunchiglia and Sebastiani, 1996a], and since then used in all the subsequent
papers on SAT-based procedures for modal logics. In that paper, the input for-
mula is initially pre-processed by taking into account standard properties of the
propositional connectives, e.g. associativity and commutativity. Thus, for exam-
ple, the formula

�(ψ1 ∨ ψ2) ∧ ¬�(ψ2 ∨ ψ1) ∧ . . . (3)

is translated into
�(ψ1 ∨ ψ2) ∧ ¬�(ψ1 ∨ ψ2) ∧ . . .

and thus easily recognized as unsatisfiable. In the current approach, we can
detect the L-inconsistency of the set of formulae:

{�(ψ1 ∨ ψ2),¬�(ψ2 ∨ ψ1)}

and this would add the constraint

¬�(ψ1 ∨ ψ2) ∨ �(ψ2 ∨ ψ1)

to (3) thereby leaving us with a trivially inconsistent formula. As a final remark,
it is worth emphasizing that the strategy here presented is more general than
pre-processing because it allows us to rule out assignments in cases where pre-
processing is of no help. For example, consider the formula

�(ψ1 ∨ ψ2) ∧ ¬�(ψ1 ∨ ψ2 ∨ ψ3).

Using our strategy, by simple syntactic manipulations, we can build and add the
following constraint:

¬�(ψ1 ∨ ψ2) ∨ �(ψ1 ∨ ψ2 ∨ ψ3)

3.2 Introducing CBJ and Learning

Since the basic DLL algorithm of Section 2 relies on simple chronological back-
tracking, it is not infrequent for DLL to keep exploring a possibly large subtree

52 Alessandro Armando et al.

Look-Ahead(Γ , S)

1 for each l s.t. l ∧Assignment-In(S)
falsifies Γ with reason r do

2 S ← Push(S, 〈Γ, l, r〉)
3 Γ ← Assign(Γ , l)
4 if a clause r′ ∈ Γ

has become empty then
5 S ← Push(S, 〈nil,nil, r′〉)
6 return lb
7 if Γ is not empty then
8 return hr
9 else

10 r ′′ ← Is-Consistent(S)
11 if r ′′ �= nil then
12 S ← Push(S, 〈nil,nil, r′′〉)
13 return lb
14 else
15 return t

Is-Consistent(S)
1 μ ← Assignment-In(S)
2 if L-Consist(μ) = t then
3 return nil
4 else
5 return L-Extract-Reason(μ)

Heuristic(Γ , S)
1 Choose a literal l in Γ
2 S ← Push(S, 〈Γ, l,nil〉)
3 Γ ← Assign(Γ , l)
4 return la

Look-Back(Γ , S)
1 〈−,−, r〉 ← Pop(S)
2 wr ← Init-Reason(r)
3 repeat
4 〈Γ, l, r〉 ← Pop(S)
5 wr ← Update-Reason(wr, l, r)
6 until r = nil and

Is-In-Reason(l, wr)
7 if length[S] > 0 then

8 S ← Push(S, 〈Γ, l,wr〉)
9 Γ ← Assign(Γ , l)

10 return la
11 else
12 return f

Fig. 2. Modifying DLL-Solve to introduce CBJ.

whose leaves are all dead-ends. This phenomenon occurs also when the formula
is satisfiable, but some choice performed way up in the search tree is responsi-
ble for the constraints to be violated. A solution borrowed from the constraint
satisfaction literature (see, e.g., [Prosser, 1993]) is to jump back over the choices
that do not belong to the reason for the failure. Intuitively, if μ is an assignment
which falsifies the input formula ϕ, then a reason ν for μ is a subset of the liter-
als in μ such that any assignment extending ν falsifies ϕ. Reasons are initialized
as soon as an inconsistency is detected, and updated while backtracking. The
corresponding technique is widely known as (Conflict-Directed) Backjumping
(CBJ). In Figure 2 we show how to modify the functions Look-Ahead, Is-
Consistent, Heuristic, and Look-Back presented in Figure 1 to introduce
CBJ. The elements of the search stack are now triples of the form 〈Γ, l, r〉, where
Γ is a set of clauses, l a literal, and r a reason.

Looking at Figure 2 we see that each deduction carried out by Look-Ahead
is now justified by a reason (line 1). For example, if a literal l occurs in a unit
clause, then it is assigned the truth value t and the reason for such an assignment
is the set of literals that caused the clause to become unit, see, e.g., [Prosser,
1993]. Notice that Look-Ahead records the reasons of each deduction using
the search stack S (line 2), but also the reason for a propositional dead-end

SAT-Based Decision Procedures for Automated Reasoning 53

(line 5) and the possible failure of the Is-Consistent test (line 12). All such
reasons are used by the function Look-Back in order to identify the choices
performed by Heuristic that led to the dead-end in the search. Notice that the
algorithms shown in Figure 2 smoothly combine CBJ for propositional failures as
well as for failures originated by Is-Consistent. In this case, the assignment in
S propositionally satisfies Γ , so triggering propositional backjumping would lead
to incorrect results. This is why we need an additional function L-Extract-
Reason in Is-Consistent to extract the reason for the failure of μ in the
specific logic at hand. The function L-Extract-Reason has to return a subset
of the literals in the current assignment which is not L-consistent. In principle
any such a set can be returned, e.g. the set of literals in μ. However, returning
a smaller subset has the advantage of potentially enabling backjumping.

CBJ can be very effective in “shaking” the solver from regions where no
solutions can be found. However, since the reasons of the conflict are discarded
as soon as it gets mended, the solver may get repeatedly stuck in such regions.
To escape this pattern, some sort of global knowledge is needed: the reasons of
the conflicts may be turned into additional constraints (i.e., clauses) that have
to be satisfied. As long as we have a function that turns reasons into clauses, it
is quite easy to implement learning on top of DLL with CBJ. With reference to
Figure 2, it is sufficient to add an instruction that converts the working reasons
wr created inside Look-Back into additional constraints. In this way, we end
up adding all the clauses corresponding to the reasons of the discovered conflicts
and the same mistake is never repeated. On the other hand, this may cause an
exponential blow up of the size of the formula. In practice, it is necessary to
introduce some limit to the number of stored clauses, either by dropping some
of the clauses that should be learned, or by periodically removing some of the
learnt clauses. For more details on learning see, e.g., [Giunchiglia et al., 2001].

CBJ and learning have been proposed and successfully used in SAT-based
procedures for planning [Wolfman and Weld, 1999, Castellini et al., 2001]. In
particular, [Wolfman and Weld, 1999] proposes a SAT-based procedure for clas-
sical planning with resources, while [Giunchiglia, 2000, Castellini et al., 2001]
present a SAT-based procedure for conformant planning in nondeterministic do-
mains, see the respective papers for more details. It is worth mentioning that
both in [Wolfman and Weld, 1999] and in [Castellini et al., 2001] the function
L-Extract-Reason returns a minimal subset of the current assignment whose
extensions are bound to fail. By returning such a subset, the hope is to maximise
the effects of CBJ and learning.

4 SAT-Based Decision Procedures: Examples

In this Section we briefly review some specific examples of SAT-based decision
procedures for quantifier-free decidable fragments of First-Order Logic (Subsec-
tion 4.1), temporal reasoning (Subsection 4.2) and various modal logics (Subsec-
tion 4.3).

54 Alessandro Armando et al.

4.1 Quantifier and Function-Free FOL

In [Armando and Giunchiglia, 1989, Armando and Giunchiglia, 1993], a SAT-
based decision procedure for the quantifier- and function-free fragment of First-
Order Logic (FOL) is presented. The language may thus have individual con-
stants and variables as well as predicate symbols of any arity.

Let ϕ be formula in this language and let μ be an assignment returned by
DLL-Solve(ϕ). If ϕ does not contain equalities, the existence of such an assign-
ment μ is sufficient for the L-consistency of ϕ. Thus, in this case, it is sufficient
for L-Consist to return t. But if ϕ contains equalities, then L-Consist must
determine the satisfiability of μ w.r.t. the properties of equality. More in detail,
let C be the set of terms occurring in ϕ and let � be the smallest equivalence
relation over C such that if μ(c1 = c2) = � then c1 � c2. Similarly, if A is the
set of atomic subformulae occurring in ϕ then let ∼= be the smallest equivalence
relation over A such that if P (r1, . . . , rn) ∈ A, P (s1, . . . , sn) ∈ A, and ri � si for
i = 1, . . . , n, then P (r1, . . . , rn) ∼= P (s1, . . . , sn). An assignment μ is satisfiable
if and only if it is not the case that there are two terms c1, c2 ∈ C such that
μ(c1 = c2) = ⊥ and c1 � c2, or there exist atomic formulae A1, A2 ∈ A such that
μ(A1) = �, μ(A2) = ⊥, and A1

∼= A2. With reference to Figure 1, L-Consist

1. looks for the equalities c1 = c2 such that μ(c1 = c2) = �,
2. builds the data structures representing � and ∼=, and
3. detects inconsistencies by exploiting the strategy suggested above.

The above procedure can be readily generalized to a SAT-based procedure for the
quantifier-free fragment of FOL with uninterpreted function symbols by using a
standard congruence closure algorithm (see, e.g., [Nelson and Oppen, 1980]) to
perform the consistency checks.

4.2 Linear Constraints over the Reals

In [Armando et al., 1999], the logic admits the function constant “−” and the
domain of interpretation is fixed to the set of the real numbers. Formally, a
temporal constraint is a linear inequality of the form x − y ≤ r, where x and y
are variables ranging over the real numbers and r is a real constant. A disjunctive
temporal constraint is a disjunction of the form c1 ∨ · · · ∨ cn where c1, . . . , cn

are temporal constraints and n ≥ 1. A disjunctive temporal problem (DTP) is
a finite set of disjunctive temporal constraints to be intended conjunctively. A
temporal assignment is a function which maps each variable into a real number. A
temporal assignment σ satisfies an assignment μ if, for each temporal constraint
x− y ≤ r,

– if μ(x − y ≤ r) = � then it is indeed the case that σ(x) − σ(y) ≤ r,
– if μ(x − y ≤ r) = ⊥ then it is indeed the case that σ(x) − σ(y) > r.

An assignment is satisfiable iff there exists a temporal assignment satisfying it.
In the literature, the problem of determining whether an assignment is satis-
fiable or not is called a Simple Temporal Problem (STP). There are a num-
ber of procedures for checking the satisfiability of an STP, see, e.g., [Chleq,

SAT-Based Decision Procedures for Automated Reasoning 55

1995]. The SAT-based decision procedure for checking the satisfiability of DTPs,
Tsat, was implemented on top of Böhm’s SAT solver [Buro and Buning, 1992,
Böhm and Speckenmeyer, 1996]. Tsat proved to be more effective than the other
procedures presented in the literature2. One of the reasons is that the semantic
branching characteristic of DLL-Solve is superior (see also [Oddi and Cesta,
2000]) to the syntactic branching performed by tableau-based procedures pro-
posed in [Stergiou and Koubarakis, 1998]. Moreover, since in Tsat consistency
checks are performed by an optimized implementation of the simplex method,
the system can efficiently handle temporal constraints involving the “−” and
the “+” function symbols, multiplication by constants, and any finite number of
variables, whereas the procedures proposed in [Stergiou and Koubarakis, 1998]
and in [Oddi and Cesta, 2000] can only deal with the temporal constraints as
defined above. Finally, we point out that a SAT-based procedure similar to Tsat
is at the basis of the planning system described in [Wolfman and Weld, 1999],
which is implemented on top of relsat [Bayardo, Jr. and Schrag, 1997].

4.3 Modal Logics

SAT-based decision procedures for modal logics have been proposed in [Giun-
chiglia and Sebastiani, 1996a, Giunchiglia and Sebastiani, 1996b, Giunchiglia et
al., 2000b], and have been comparatively evaluated in [Giunchiglia et al., 2000a,
Giunchiglia et al., 2000b]. Moreover, in [Giunchiglia and Sebastiani, 1996a, Giun-
chiglia and Sebastiani, 1996b] the authors clearly pointed out the potentials of
the SAT-based approach.

In the modal logics considered in the above cited papers, the language is
extended by allowing denumerately many (modal) unary operators �1, . . . , �n.
Depending on the specific properties of each operator, different logics are ob-
tained, from the weakest classical modal logic E, to the normal modal logic
K [Chellas, 1980]. Decision procedures for 8 modal logics have been proposed
in [Giunchiglia et al., 2000b]. Here, for the sake of conciseness, we restrict our
attention to the modal logics E and K.

Consider an assignment μ = ∧i(∧j�
iαij) ∧ ∧i ∧j ¬�iβ′

ij ∧ γ where γ is a
propositional formula.

– In the modal logic E, μ is satisfiable if for each pair �iαij , ¬�iβ′
ik of con-

juncts in μ, the formula αij ≡ ¬β′
ik is satisfiable.

– In the modal logic K, μ is satisfiable if for each conjunct ¬�iβ′
ij in μ, the

formula ∧jαij ∧ ¬β′
ij is satisfiable.

Thus, in E and in K the problem of determining whether an assignment is
satisfiable or not boils down to the problem of determining the satisfiability of
“simpler” formulae. Simpler, because the number of modal operators gets re-
duced. Still, modal operators can be nested, as any standard connective. Thus,
2 The experimental results reported in [Armando et al., 1999] show that Tsat performs

up to 2 orders of magnitude less consistency checks than the best procedure presented
in [Stergiou and Koubarakis, 1998].

56 Alessandro Armando et al.

L-Consist(∧i�αi ∧ ∧j¬�βj ∧ γ)
1 for each conjunct �βj do
2 for each conjunct �αi do
3 if not DLL-Solve(αi ≡ ¬βj)
4 return then f
5 return t.

L-Consist(∧i�αi ∧ ∧j¬�βj ∧ γ)
1 for each conjunct �βj do
2 if not DLL-Solve(∧iαi ∧ ¬βj)
3 then return f
4 return t

Fig. 3. L-Consist for the modal logics E (left) and K (right).

in order to determine the satisfiability of these simpler formulae, L-Consist
calls the DLL-Solve procedure. As a result, we have two mutually recursive
procedures. The fact that at each call from L-Consist to DLL-Solve the num-
ber of modal operators diminishes guarantees termination of the whole process.
Definitions of the L-Consist procedure for E and K are sketched in Figure 3,
in case there is a single modality �. The extension to multiple modalities is
straightforward.

Notice that the procedures for E and K of Figure 3 are naive and suffer from
the fact that consistency checks of the same set of formulae can be repeated
many times. A way out of the problem which has been proved very effective is the
incorporation of caching mechanisms. For E, we check the consistency of pairs of
formulae, and thus caching can be accomplished using a matrix, see [Giunchiglia
et al., 2000b]. For K, we check the consistency of sets of formulae, and thus
more complex data structures, such as bit matrices, are needed [Giunchiglia and
Tacchella, 2001].

5 Conclusions

In this paper we have provided a unifying perspective of a family procedures for
automated reasoning based on the common idea of combining state-of-the-art
SAT-solvers with reasoning specialists for the theory at hand. To substantiate our
claim, we have shown that a variety of SAT-based procedures developed in the
last decade (namely decision procedures for quantifier-free decidable fragments
of First-Order Logic, for temporal reasoning, and for several modal logics) can
be readily recast in our framework.

References

[Armando and Giunchiglia, 1989] A. Armando and F. Giunchiglia. On tautology de-
cision techniques: Complexity and implementation considerations. Technical Report
8911-08, IRST, Trento, Italy, 1989.

[Armando and Giunchiglia, 1993] A. Armando and E. Giunchiglia. Embedding Com-
plex Decision Procedures inside an Interactive Theorem Prover. Annals of Mathe-
matics and Artificial Intelligence, 8(3–4):475–502, 1993.

SAT-Based Decision Procedures for Automated Reasoning 57

[Armando et al., 1999] A. Armando, C. Castellini, and E. Giunchiglia. SAT-based
procedures for temporal reasoning. In Lecture Notes in Computer Science, volume
1809, pages 97–108, 1999.

[Bayardo, Jr. and Schrag, 1997] Roberto J. Bayardo, Jr. and Robert C. Schrag. Using
CSP look-back techniques to solve real-world SAT instances. In Proceedings of the
14th National Conference on Artificial Intelligence and 9th Innovative Applications of
Artificial Intelligence Conference (AAAI-97/IAAI-97), pages 203–208, Menlo Park,
July 27–31 1997. AAAI Press.

[Biere et al., 1999] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model
checking without BDDs. In Proceedings of the Fifth International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’99),
1999.

[Böhm and Speckenmeyer, 1996] M. Böhm and E Speckenmeyer. A fast parallel SAT-
solver – efficient workload balancing. Annals of Mathematics and Artificial Intelli-
gence, 17:381–400, 1996.

[Buro and Buning, 1992] M. Buro and H. Buning. Report on a SAT competition.
Technical Report 110, University of Paderborn, Germany, November 1992.

[Castellini et al., 2001] Claudio Castellini, Enrico Giunchiglia, and Armando Tac-
chella. Improvements to sat-based conformant planning. In ECP, 2001.

[Chellas, 1980] B. F. Chellas. Modal Logic – an Introduction. Cambridge University
Press, 1980.

[Chleq, 1995] N. Chleq. Efficient algorithms for networks of quantitative temporal
constraints. In Proceedings of CONSTRAINTS–95, pages 40–45, April 1995.

[Cormen et al., 1998] Thomas H. Cormen, Charles E. Leiserson, and Ronald R. Rivest.
Introduction to Algorithms. MIT Press, 1998.

[Davis et al., 1962] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem proving. Journal of the ACM, 5(7), 1962.

[Dreben and Goldfarb, 1979] Burton Dreben and Warren D. Goldfarb. The Decision
Problem: Solvable Classes of Quantificational Formulas. Addison-Wesley Publishing
Company, Reading, MA, 1979.

[Gent et al., 2000] Ian Gent, Hans Van Maaren, and Toby Walsh, editors. SAT2000.
Highlights of Satisfiability Research in the Year 2000. IOS Press, 2000.

[Giunchiglia and Sebastiani, 1996a] F. Giunchiglia and R. Sebastiani. Building deci-
sion procedures for modal logics from propositional decision procedures - the case
study of modal K. In Proc. CADE-96, Lecture Notes in Artificial Intelligence, New
Brunswick, NJ, USA, August 1996. Springer Verlag.

[Giunchiglia and Sebastiani, 1996b] F. Giunchiglia and R. Sebastiani. A SAT-based
decision procedure for ALC. In Proc. of the 5th International Conference on Prin-
ciples of Knowledge Representation and Reasoning - KR’96, Cambridge, MA, USA,
November 1996. Also DIST-Technical Report 9607-08 and IRST-Technical Report
9601-02.

[Giunchiglia and Tacchella, 2001] Enrico Giunchiglia and Armando Tacchella. A
subset-matching size-bounded cache for testing satisfiability in modal logics. An-
nals of Mathematics and Artificial Intelligence, 33:39–67, 2001.

[Giunchiglia et al., 1998] E. Giunchiglia, F. Giunchiglia, R. Sebastiani, and A. Tac-
chella. More evaluation of decision procedures for modal logics. In Sixth International
Conference on Principles of Knowledge Representation and Reasoning (KR’98), 1998.

[Giunchiglia et al., 2000a] E. Giunchiglia, F. Giunchiglia, R. Sebastiani, and A. Tac-
chella. SAT vs. Translation Based decision procedures for modal logics: a comparative
evaluation. Journal of Applied Non Classical Logics, 10(2):145–172, 2000.

58 Alessandro Armando et al.

[Giunchiglia et al., 2000b] E. Giunchiglia, F. Giunchiglia, and A. Tacchella. SAT-
Based Decision Procedures for Classical Modal Logics. Journal of Automated Rea-
soning, 2000. To appear. Reprinted in [Gent et al., 2000].

[Giunchiglia et al., 2001] Enrico Giunchiglia, Marco Maratea, Armando Tacchella, and
Davide Zambonin. Evaluating search heuristics and optimization techniques in propo-
sitional satisfiability. In Proc. of the International Joint Conference on Automated
Reasoning (IJCAR’2001), LNAI 2083, 2001.

[Giunchiglia, 2000] Enrico Giunchiglia. Planning as satisfiability with expressive action
languages: Concurrency, constraints and nondeterminism. In Seventh International
Conference on Principles of Knowledge Representation and Reasoning (KR’00), 2000.

[Gu et al., 1997] Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah. Al-
gorithms for the satisfiability (sat) problem: A survey. Satisfiability Problem: Theory
and Applications, pages 19–153, 1997.

[Kautz and Selman, 1992] Henry Kautz and Bart Selman. Planning as satisfiability.
In Proc. ECAI-92, pages 359–363, 1992.

[Kautz and Selman, 1996] Henry Kautz and Bart Selman. Pushing the envelope: plan-
ning, propositional logic and stochastic search. In Proc. AAAI-96, pages 1194–1201,
1996.

[Li and Anbulagan, 1997] Chu Min Li and Anbulagan. Heuristics based on unit prop-
agation for satisfiability problems. In Proceedings of the 15th International Joint
Conference on Artificial Intelligence (IJCAI-97), pages 366–371, San Francisco, Au-
gust 23–29 1997. Morgan Kaufmann Publishers.

[Moskewicz et al., 2001] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lin-
tao Zhang, and Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In Pro-
ceedings of the 38th Design Automation Conference (DAC’01), June 2001.

[Nelson and Oppen, 1980] Greg Nelson and Derek C. Oppen. Fast decision procedures
based on congruence closure. Journal of the ACM, 27(2):356–364, 1980.

[Oddi and Cesta, 2000] A. Oddi and A. Cesta. Incremental forward checking for the
disjunctive temporal problem. In Proceedings of the 14th European Conference on
Artificial Intelligence (ECAI-2000), pages 108–112, Berlin, 2000.

[Prosser, 1993] Patrick Prosser. Hybrid algorithms for the constraint satisfaction prob-
lem. Computational Intelligence, 9(3):268–299, 1993.

[Stergiou and Koubarakis, 1998] Kostas Stergiou and Manolis Koubarakis. Backtrack-
ing algorithms for disjunctions of temporal constraints. In Proc. AAAI, 1998.

[Wolfman and Weld, 1999] Steven Wolfman and Daniel Weld. The LPSAT-engine &
its application to resource planning. In Proc. IJCAI-99, 1999.

[Zhang, 1997] H. Zhang. SATO: An efficient propositional prover. In William McCune,
editor, Proceedings of the 14th International Conference on Automated deduction,
volume 1249 of LNAI, pages 272–275, Berlin, July13–17 1997. Springer.

Temporal Dynamics of Support and Attack
Networks: From Argumentation to Zoology

Initial Results

Howard Barringer1, Dov Gabbay2, and John Woods3

1 School of Computer Science,
The University of Manchester,

Oxford Rd, Manchester M13 9PL, UK
2 Department of Computer Science,

King’s College London,
Strand, London WC2R 2LS, UK

3 Department of Philosophy,
University of British Columbia,

1866 Main Mall E370, Vancouver BC Canada V6T 1Z1

1 Introduction

This is the first of a new series of papers on the temporal dynamics of Support
and Attack networks. These are graphs with a basic situation described in Fig-
ure 5 below. We have nodes a1, . . . , an connected by arrows to a node b. The
nodes have some values attached to them and these values are transmitted by
the arrows, and revise the value at b. This series of papers studies the tempo-
ral dynamics of such networks. The topic, in this generality, has emerged from
our previous research into argumentation frameworks (Gabbay and Woods [14,
13, 10, 12] and Woods [21]). Our starting point is therefore a generalisation of
abstract argumentation networks.

Abstract argumentation frameworks were put forward by Dung [5] following
the realisation that in real life every argument has a counter argument and no
argument is conclusive. An argumentation network has the form (AR, Attack),
where AR is a set of arguments and Attack ⊆ AR2 is an irreflexive binary re-
lation on AR, indicating which argument attacks which arguments. We should
emphasise that our approach here is dialectical rather than normative. When
we say that every argument has a counterargument it is not our view that ev-
ery argument deserves a counter, but rather than every argument, whatever its
merits, lies open to a counter, whatever its merits. We say that no argument
is conclusive, we intend that every argument is susceptible to challenge, again
notwithstanding its presumed merits. And when we say (just below) that any
argument that attacks an argument is a refutation of it, we intend only that the
attacking argument is presented as a refutation and that the attacked argument
is, on that argument, put under challenge. Our purpose in emphasising descrip-
tive factors in Support and Attack networks is twofold. We have reservations
about the speed with which some argumentation theorists rush to normative
judgement; and, in any event, we take description to have an expository priority
over normative considerations in theoretical accounts of argumentative practice.

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 59–98, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

60 Howard Barringer, Dov Gabbay, and John Woods

Example 1. Figures 1 to 3 are three examples of such networks.

a b c

Fig. 1.

a

b

c

Fig. 2.

a

d

c

b

Fig. 3.

(a) The situation in Figure 1 is straightforward. a is not attacked by anything,
so it is in (or active) as an argument. Since it attacks b, b is out (or is a
refuted argument) and so c is in. So the net result of Figure 1 can be written
as {+a,−b, +c}.

(b) The situation in Figure 2 is a complete loop. No argument can definitely be
said to be in or out. We write this as {?a, ?b, ?c}.

(c) The situation in Figure 3 is more interesting. Here a and b attack each other;
so we have ?a, ?b. Because of that, we can also put it that ?c and ?d. However
we can observe that both a and b attack c; so no matter which of a or b are
in (i.e. whether we have {+a,−b} or {−a, +b}), we always have −c, and so
the net result could be taken to be {?a, ?b,−c, +d}. On the other hand, we
might adopt the view that a, b cancel each other, in which case the net result
would be {−a,−b, +c,−d}.

Temporal Dynamics of Support and Attack Networks 61

Since circularity, loops and mutual attacks of arguments are very common
in real life, it is obvious that much attention is required to resolving loops in
argumentation networks. Abstract argumentation networks were generalised by
Bench-Capon [4], where a colouring (representing the type of argument) was
added to the network. The colours are linearly ordered by strength. A weaker
coloured node cannot successfully attack a stronger coloured node. So a network
with colours (or with valuations) has the form (AR, Attack, V) where, as before,
Attack ⊆ AR × AR and V is a function giving, say, numbers to nodes: V :
AR �→ Numbers, and the numbers represent strength.

Thus in Figure 2 suppose V (b) = r and V (a) = V (c) = s. Clearly if r < s,
then the net outcome of the network is {+b, +c,−a}. If r > s, then the result is
{+b, +a,−c}. If r = s, we get, as before, {?a, ?b, ?c}.

Note that technically the colouring function V is an instrument for cancelling
attacks from some nodes to others. However, it is an instrument that requires re-
strictions. Not every proposed list of attacks to be cancelled can be implemented
by a function V . Consider Figure 2. Suppose that we want to cancel all attacks.
To cancel the attacks of a on b and of b on c we must have V (a) < V (b) < V (c).
By transitivity V (a) < V (c), so the attack by c on a cannot be cancelled by V .

The main rationale behind the introduction of V is not necessarily the reso-
lution of loops or cancellation of attacks, but the modelling of the intuition that
arguments can be divided into kinds, and that some kinds of arguments are more
important than others.

This paper generalises argumentation networks in several directions.

1. It allows for nodes in argumentation networks not only to attack other nodes
but also for support of other nodes. Moreover, we allow for varying strengths
of attack and support. We further generalise the model such that strengths
of attacks or support are themselves subject to attack or support. See Figure
4 for example.

2. It allows for the strengths of attack or support to be time dependent.
This enables us to model the phenomenon of ‘Let’s lie low and wait for the
argument to blow away’.

3. This paper also examines loop-resolution in argumentation networks, and
explores similarities between such loops and predator–prey models in math-
ematical biology.

The plan of the paper is as follows:
Section 2 will discuss “attack only” networks. There are three problems to

be addressed in such networks.

1. The formal definition and motivation of a variety of attack networks.
2. The modes of attack, a discussion of various option as to how to calculate

the result of attacks.
3. The resolution of attack loops, such as Figures 2 and 3.

Section 3 is devoted to various methods for the resolution of attack loops.
In the course of deciding how to handle loops, we explore formal connections of
networks with loops in networks occurring in mathematical biology. In biology

62 Howard Barringer, Dov Gabbay, and John Woods

the main emphasis is on a variety of ecology loops. The connection is simple;
argument a attacking argument b can also be understood as species a preying
on species b. Connections are also explored with the general theory of network
modalities.

Section 4 deals with networks that allow for both attack and support arrows.
We quickly ascertain the need to redefine the way in which attack and support
are (numerically) carried out, and our considerations lead us to a surprising con-
nection with the Dempster–Shafer rule and with the cross-ratio and projective
metrics in geometry.

Section 5 deals with time-dependent attack and support of arguments. Here
a connection with artificial intelligence time–action models is established, as well
as a connection with dynamical systems and general temporal logics.

2 Attack-Only Networks with Strength

We begin this section with an example motivating and explaining the idea of
strength of a node and strength of attack on a node.

Example 2. Consider the election for Governor of California and the then can-
didate, actor Arnold Schwarzenegger. Let

a = The candidate is alleged to have a certain attitude
towards women, and to have behaved towards them
accordingly.

b = The candidate will run California very well.

These arguments may have different strengths based on evidence for case a
and training and experience for case b. There is also another argument concerning
the question of to what extent can a attack b. Is a relevant at all to b and to
what degree? We represent this situation by the network in Figure 4

The node ε : (ab), where (ab) is the attacking arc from a to b, represents
the strength of the argument that a is relevant to b. It therefore can also be
attacked, since one can argue against any connection between a and b.1

Consider the situation described in Figure 5 where argument a has strength
x. It attacks argument b, which initially has strength y.

1 The model also allows several attacks to emanate from the same argument, as in the
figure below.

ε2

ε1

ba

The idea here is that there are several different kinds of arguments as to why
a is an attack upon b. This makes sense especially if a is a fact (see below). Such
networks exist in the literature as transition systems, and the different arrows from
a to b represent different actions, leading from state a to state b.

Temporal Dynamics of Support and Attack Networks 63

x : a y : b

ε(ab)

•

Fig. 4.

x : a

z : c w : d

y : b

•

•

•

•
α

ε

η β

Fig. 5.

ε is the transmission factor, weakening b in a way that takes account of x : a.
b is also attacked by d with factor β.
However, factor ε is attacked by argument c, which is itself attacked by d,

with transmission factor α.
This model has two innovations.

1. The strength of nodes and the transmission factor.
2. The idea that the transmission factor can itself be attacked.

What kind of network does Figure 5 represent? First, note that the strength
of nodes is actually a colouring of them. One might expect us to introduce a
transmission factor between colours, then in Figure 4 ε could depend only on x
and y. We choose to make ε depend on the nodes, taking into consideration that
the transmission factor depends on the nature of the argument and not just on
their strengths.

The option of attacking transmission factors enables us to delete attacks, one
by one, by attacking (lowering) their transmission factor.

Example 3 (Modes of attack). Consider a simple numerical model. Assume all
values are between 0 and 1. If a is an argument of strength x which is attacking
an argument b of strength y, and the transmission rate is ε, then we get εx as
the value transmitted. The question now is how does this value εx reduce the
value y of b to a new value y′? We have two options. The first is that the attack
reduces the value y of b in proportion, i.e. by εx. Thus the new value of b is
y(1− εx). The second option is that the new value of y is y′ = εxy. This second
option makes sense if we view the attack of a on b as a pre-emptive protective
measure, reducing a possible attack of b on a. If a is strong (x = 1) and ε = 1
then 1 − xε = 0 whereupon a destroys b. This is the previous option, being a

64 Howard Barringer, Dov Gabbay, and John Woods

genuine attack. However εxy = y when ε = 1 and x = 1; so b is not affected. But
if x is small, then y′ = εxy is small. So if b attacks a with transmission rate η,
the value of this attack would be 1− ηy′ and the attack would not be effective.
Hence the second option can be used as a pre-emptive attack.

We now address the problem of combining attacks. In Figure 5, b is also
attacked by d and this attack alone will reduce the value of b to y(1− βw). How
do we combine them?

Here too there are two options:

1. Perform the operation of reduction consecutively (and commutatively), so
that the new value of b after the joint attack is y(1− βw)(1 − εx).

2. Add the two reductions, in which case the new value for b is the value
y − yεx− yβw = y(1− εx− βw).

The advantages of option 1 are that we are assured that the new value remains
between 0 and 1 no matter how many attacks there are, and that the combination
is independent of how the attack is calculated. For example, this can give as the
new value of b the combination εx(1− βw).

Example 3 above has put forward just one mode of attack. There are many
other possible modes. Additional possibilities will be examined in Section 4, in
conjunction of models with both attack and support.

In general, we have the situation shown in Figure 6. In this case, we require
the following function: If b has value y and if x1 : a1, . . . , xn : an attack y : b with
strengths ε1, . . . , εn resp., then we need a function f such that the new value of
node b is y′ = f(y, xi, εi).

x1 : a1 xn : an. . .

ε1 εn

y : b

Fig. 6.

This situation is reminiscent of Bayesian networks, where f is the conditional
probability of b on a1, . . . , an.2

2 In Bayesian nets there are no ε1, . . . , εn. xi are the probabilities associated with the
nodes ai and f is the conditional probability of node b relative to all the ai. Thus
the probability y of b can be calculated.

Temporal Dynamics of Support and Attack Networks 65

We adopt option 1 as our mode of attack. So the new value y′ = V (b) in
Figure 6 is

y′ = y(1− ε1x1) . . . (1− εnxn)

= y
∏

i(1 − εixi).

The magnitude Δ−y which y decreases is

Δ−y = y − y′ = y(1−
∏

(1− εixi)).

Example 4. We calculate the transmission of values in Figure 5.

Step 1: The final value V of node d is w, as it is not attacked by anything. Write
V1(d) = w. Similarly V1(a) = x. We write V1 because this is the value
obtained as final at Step 1.

Step 2: The new value V2 of nodes c and b are V2(c) = z(1 − αw), V2(b) =
y(1 − βw). Of course since nodes a and d have already obtained their
final value, we can write: V2(a) = V1(a), V2(d) = V2(d) . Node a cannot
transmit because we know from the figure that ε is being attacked, and
so we need to wait for its value to change. Only when ε gets its final
value will a be able to transmit.

Step 3: The new value V3 of the transmission connection (ab) is

V3(ab) = ε(1− ηV2(c))

= ε(1− ηz(1− αw)).

Of course, V3(a) = V2(a), V3(d) = V2(d), V3(c) = V2(c), and V3(b) =
V2(b).

Step 4: Now a can transmit to node b. This gives

V4(b) = V2(b)(1− V3(ab) · x)

= y(1− βw)(1 − εx(1− ηz(1− αw))).

Of course, V4(a) = V3(a), V4(d) = V3(d), V4(c) = V3(c) and V4(ab) =
V3(ab).
Note that node b has had its value changed in bits and pieces. First, it
was changed at Step 1 and then at Step 4. This is all right for the cur-
rent way of changing values, because it is commutative and cumulative.
However, the general definition will now allow for this!

This kind of model contains the traditional one as a special case, where all
values are taken to be 1 and there are no attacks on transmissions. Let us see
what Figure 5 becomes in this case. Consider Figure 7 and note that it reduces
to Figure 8.

We can now give a definition of value propagation for acyclic networks. Cycles
will be addressed in the next section.

66 Howard Barringer, Dov Gabbay, and John Woods

1 : a 1

1

1

1

1 : c

1 : b

1 : d

Fig. 7.

d

ba

c

Fig. 8.

To give a definition we need to agree on the representation of the network.
Let’s do it for the case of Figure 5. We need a set of atomic nodes A. In the case
of Figure 5, A = {a, b, c, d}.

To represent the attack of atomic x on y, i.e. the arrow from x to y, we write
the expression x � y (called a torpedo)3. In Figure 5, we have the torpedoes
a � b, d � c and d � b.

These torpedoes represent the attacks from a to b, d to c and d to b re-
spectively. One of these attacks, namely a � b, is itself attacked by c. This is
represented by the torpedo c � (a � b).

Note that we cannot write an expression of the form (x � y) � z. This
would mean that the fact that there is an attack from x to y is in itself an attack
on z. We are not saying that such reasoning does not exist. In due course we
shall deal with it in the context of fibring networks. In other words, a whole
network can be embedded as a node and attack another node.

Figure 5 can be represented by the set of nodes and torpedoes:

T = {a, b, c, d, a � b, d � b, d � c, c � (a � b)}.

Note that this set T has the property that if x � y ∈ T , then x ∈ T and
y ∈ T . What we still need are the numbers (valuations) in the figure. This we
can represent by a function V : T → R, where R is the set of real numbers.

We are now ready for a formal definition.

3 When the arrow is an attack we call it a torpedo. When it is a support (see Section
4) we call it a booster. When it is both we call it an actor.

Temporal Dynamics of Support and Attack Networks 67

Definition 1. Let A be a set of atomic nodes.

1. Define the notion of a torpedo based on A as follows:
– a � b is a torpedo if a, b ∈ A.
– a � x is a torpedo if a ∈ A and x is a torpedo

2. Let T be a set of torpedoes and atomic nodes. We say that T is an attack
network if the following holds
– x � y ∈ T implies x ∈ T and y ∈ T .

We say that T is finitely branching (in the outgoing direction) if for every
t ∈ T {a|(a � t) ∈ T } is finite.

3. A valuation function on T is a function V : T → R.
4. An attack network with a valuation is a triple N = (A, T, V), where A is a

set of atomic nodes, T is an attack network based on A and V is a valuation
on T .

5. Let f be a functional giving for each string of real numbers of the form
(y, x1, . . . , xn, ε1, . . . , εn) a new real number y′ = f(y, x̄i, ε̄i) (where z̄i ab-
breviates z1, . . . , zn, for z = x or z = ε). Note that n is arbitrary. We
assume f to be continuous and generally nice4.
This will allow us more freedom in Definition 6 below.
For example, let f(y, x̄i, ε̄i) = y

∏n
i=1(1 − εixi). See Section 4.2 for more

options.
6. An argumentation attack model is a pair (N, f), where N and f are as above.

Definition 2. Let us look at some examples. Consider Figure 9 in which a at-
tacks b but also attacks its own attack. This is a case of a self defeating attack
of a on b.

We have T = {a, b, a � b, a � (a � b)} and

V (a) = x, V (b) = y,

V (a � b) = α and

V (a � (a � b)) = β

x : a y : b
α

β

Fig. 9.

4 By restricting f to finite sequences, we are forced to impose the condition of finitely
branching on T in Definition 4 below. However, f can be more general, for example,
we can take

f ′(y, S) = inf{f(y, x̄, ε̄) | (x̄, ε̄) ∈ S},
where S can now be an infinite set. This will allow us more freedom in Definition 6
below.

68 Howard Barringer, Dov Gabbay, and John Woods

x : a y : b
α

γ

Fig. 10.

We can compare Figure 9 with Figure 10. In Figure 10 we can interpret γ as
a feedback loop, attacking and reducing α. The weaker the argument b is the less
we want to spend effort attacking it.

Definition 3 (Cycles). Let T be an attack network. Define RT ⊆ A2 as fol-
lows:

aRT b iff a � b ∈ T or for some x ∈ A, a � (x � b) ∈ T.

Let R∗
T be the transitive closure of T . We say T is syntactically acyclic iff

there is no x ∈ A such that xR∗
T x.

If N = (A, T, V), we say N is syntactically acyclic if T is such.

Example 5. Figure 11 is cyclic while Figure 12 is acyclic and finitely branching.

Example 6. Figure 13 is cyclic syntactically, but is acyclic semantically using V .
Note that although the network is syntactically cyclic, since V (β) = 0, it is

as if b � a does not exist in T .
We shall deal with semantic acyclicity later.

a b

c

Fig. 11.

a b

c

Fig. 12.

Temporal Dynamics of Support and Attack Networks 69

x : a y : b

α

β

V (β) = 0

Fig. 13.

Definition 4 (Value propagation). Let (N, f) be a model, where N is acyclic
and finitely branching. We shall propagate the values V through the model using f.
We do this in waves.

Wave 0
An element a ∈ T is said to be syntactically free of attack if for every e ∈ A we
have (e � a) �∈ T . Let it be said that the updated elements of Wave 0 are the free
of attack elements and let the updated value V0 be V0(a) = V (a), for an updated
a of wave 0.

Wave n + 1
Assume we have defined the updated elements of waves k ≤ n and their updated
value Vk. Let b be any element and let a1, . . . , am be all, if any, elements of T
such that (ai � b) ∈ T . Assume for each i, that ai, as well as ai � b, were
updated at some earlier wave ki ≤ n and li ≤ n respectively.

Define
Vn+1(b) = f(V (b), V̄ki(ai), V̄li(ai � b)).

When the network is finite, the algorithm terminates in quadratic time5.

Example 7 (Figure 5). Let us examine the network of Figure 5 again. We are
listing the updated elements. Compare with Example 3.

Wave 0
w : d, x : a, β : d � b,

α : d � c, η : c � (a � b).

Wave 1
z(1− αw) : c

Note that the only updated element in this wave is c. b is not updated because
not all of its attackers (namely a) have been updated. In our earlier computation
we did attack b at this stage, but we cannot do that under our current definition.
We will not get a different result because our function f launches the attacks from
separate nodes independently, cumulatively and commutatively.

Wave 2
ε(1− ηz(1− αw)) : a � b.

Here a � b is being updated.
5 Consider a linear network of n nodes with the following connection structure. Label

the nodes from 1 to n. Node i attacks all nodes numbered > i. Wave 0 will have to
search n nodes. Wave i < n will have to search n− i nodes. The sum of all waves is
n(n− 1)/2.

70 Howard Barringer, Dov Gabbay, and John Woods

Wave 3
Now we can update b. We get

y(1− βw)(1 − εx(1− ηz(1− αw))) : b

Definition 5. Let (N, f) be a finite model. Propagate V using f in waves as
defined above. Let the new valuation V ′(a)a ∈ T be the updated value of a. We
call V ′ the result of the waves of attack in the network. Note that the propagation
is executed only once.

3 Handling Loops; Ecologies of Arguments

This section will discuss networks with loops. We have encountered loops in
Example 1 (b) and (c). In Figure 2 of (b), we need to resolve the loop {?a, ?b} in
order to propagate values to c. So technically all we need is some assignment of
values to a and to b, and then the algorithm of Definition 4 can be invoked. The
values we give to the loop depend on our interpretation of it. Hints for possible
interpretations can be obtained from other possible interpretations of the entire
network regarded as a mathematical entity. We shall therefore open this section
by putting forward several points of view as to the meaning of labelled networks
and their internal loops, which will then lead to ways of dealing with their loops.

To begin our discussion, consider the following Figure 14.

x : a y : b

ε(ab)

η(ba)

Fig. 14.

Let f1(y, x, ε), f2(x, y, η) be the two transmission functions. We observe the
following:

1. Figure 14 describes a syntactical loop.
2. Depending on the values x, y, ε, η and depending on the functions f1 and f2,

Figure 14 might not be a loop semantically. For example, if x : a is much
stronger than y : b or if ε = 0 then this might not be a loop.

3.1 Interpretation of Loops

There are various interpretations for the situation in Figure 14 besides our ar-
gumentation networks interpretation.

The Ecology Interpretation
The figure can be interpreted as an ecology. Species a feeds on species b and
species b feeds on species a. The functions f1 and f2 give the success rates. This
is a predator-prey situation.

Temporal Dynamics of Support and Attack Networks 71

Let Vn be the population of some species at generation n. We assume pop-
ulation growth is a discrete process taking place in cycles. Such biological ex-
amples are provided by many temperate zone arthropod populations, with one
short-lived adult generation each cycle. One possible recurrence equation is the
following

Vn+1 = Vn(1 + r(1 − Vn

K)), where r and K are constants.
K is the maximum size for the population and r is a factor measuring depe-

nence on the density of the population. The reader should compare this equation
with the equation Vb = f1(Va, x, ε) arising from Figure 14. See [17, p. 324].

This equation is called the non-linear logistic equation which has the standard
form

Un+1 = rUn(1− Un), r > 0

This equation can exhibit chaotic behaviour depending on the value r, see [18].
A slightly different pair of equations has to do with parasitic life forms. Here

we have, besides the population Nn, a parasitic population Vn. The recursive
equations look like the following:

– Vn+1 = Nn −Nn+1/F

– Nn+1 = F Nnf(Nn, Vn).

F is a factor indicating the proportion of those who escape the parasite. The
difference between this equation for Vn+1 and a direct recursion for Vn+1 is that
it is more complex. We get

– Vn+1 = Nn(1− f(Nn, Vn))
– Nn+1 = F Nnf(Nn, Vn)

See [17, pp. 338].
Let us look at another example from biology. This is a model by M. P. Hasssell

(1978) of two parasitoids (P and Q) and one host (N) model. The equations are
(see [2, p. 295])

Nt+1 = λNtf1(Pt)f2(Qt)

Pt+1 = Nt[1− f1(Pt)]

Qt+1 = Ntf1(Pt)[1− f2(Qt)]

where N, P and Q denote the host and two parasitoid species in generations t
and t + 1, λ is the finite host rate of increase and the functions f1 and f2 are
the probabilities of a host not being found by Pt or Qt parasitoids, respectively.
This model applies to two quite distinct types of interaction that are frequently
found in real systems. It applies to cases where P acts first, to be followed by
Q acting only on the survivors. Such is the case where a host population with
discrete generations is parasitized at different developmental stages. In addition,
it applies to cases where both P and Q act together on the same host stage, but
the larvae of P always out-compete those of Q should multi-parasitism occur.

72 Howard Barringer, Dov Gabbay, and John Woods

The functions f1 and f2 are:

f1(Pt) =
[
1 +

a1Pt

k1

]−k1

f2(Qt) =
[
1 +

a2Qt

k2

]−k2

where k1 and k2, a1 and a2 are constants.
To compare the biological model with the argumentation model, we put a1 =

a2 = 1, λ = 1 and k1 = k2 = −1.
This gives

f1(Pt) = 1− Pt

f2(Qt) = 1−Qt

and therefore
Nt+1 = Nt(1− Pt)(1−Qt)

Pt+1 = PtNt

Pt+1 = QtNt(1− Pt)

giving us the appropriate functions for attack and counterattack for the situation
in Figure 15:

P : a N : c

Q : b

Fig. 15.

In Figure 15, a and b attack c. c counterattacks a and b and a attacks b.
The transmission rates are 1. Since c is attacked by a and b, the new value for
c is N(1 − P)(1 − Q). Since a is counterattacked by c, the new value for a is
P N .6 Since b is counterattacked by c and attacked by a the new value for b is
QN(1− P).

To give Figure 15 some meaning, think of a, b, c as follows:

c = The US President has a strong case for re-election.
a = A deteriorating situation in Iraq (US soldiers killed) (attacks his chances).
b = Lack of success in combatting Al-Qaeda.
6 See Example 3 as to why the counterattack value is PN and not (1− P)N .

Temporal Dynamics of Support and Attack Networks 73

Clearly, if the value of c is low, less effort is required in attacking it from a and b.
This explains the counterattack loop.

a attacks b by the argument that the situation in Iraq has diverted Al Qaeda
away from US territory proper.

To sum up, we have shown a connection with biological models. In view of
this connection we would like to refer to loops as ecologies (of arguments).
Modal Interpretations
We can read the nodes as possible worlds in a Kripke model and read the values
as fuzzy truth values. ε is the fuzzy value of the accessibility of a to b (i.e. a
arrow b means a is a posible world for b (i.e. bRa holds), while x is the fuzzy
value of a being a possible world in the first place. So if Ve(ϕ) gives a fuzzy value
to the wff ϕ at world e, then Vb(�ϕ) = f(Vb(ϕ), V̄ai (ϕ), εi), where ai are all the
nodes leading with an arrow into b.

It is worth giving a formal definition. See [3] for full details.

Definition 6.
1. Let L be a propositional language with atoms {q1, q2, . . .}, a modality � and

possibly other connectives C. To fix our thoughts, say C = {⇒,¬}, where ⇒
can be thought of as the �Lukasiewicz many-valued implication (with truth val-
ues in [0,1] and 0 = true and truth table value (A ⇒ B) = max(0, value(B)−
value(A)) and ¬ is a negation (with truth table value (¬A) = 1−Value(A)).

2. A modal network model m is a family of models mq = (A, T, Vq, f), q an atom
of L, such that each mq is a finitely branching attack network model in the
sense of Definiton 1. Thus in m A, T and f are fixed and Vq varies with q We
assume that f , Vq give values in [0, 1]. We take f(y, xi, εi) = Sup

i
(εi ⇒ xi) =

Sup
i

Max(0, xi − εi).

3. For each t ∈ T and each wff ϕ we define the value V n
ϕ (t), (for n = 0, 1, 2, . . .)

as follows:
(a) V 0

q (t) = Vq(t), for atomic q, and t ∈ T .
(b) V n+1

q (t) = f(V n
q (t), V̄ n

q (ai), V̄ n
q (ai � t)), where a1, . . . , an are all the

nodes such that ai � t ∈ T .
(c) V n

A⇒B(t) = Max(0, V n
B (t)− V n

A (t)).
(d) V n

¬A(t) = 1− V n
A (t).

(e) V n
�A(t) = V n+1

A (t).7
4. We say m is stable iff for any wff A and any t ∈ T there exists an n such

that for all m ≥ n we have V n
A (t) = V n

A (t). For stable models we can let
V ∞

A (t) = Lim
i

V n
A (t).

5. We call a stable model (A, T, V ∞
A , f), a fuzzy modal model for L.

7 The reader should carefully note that we have huge scope here for defining a mul-
titude of different modalities by choosing the dependence of V n

�A(t) on the set
{V m+n

A (t), m = 0, 1, . . .}. What we here define is a K-type modality. We can also
define the hypermodality of [7] by letting:

V n
�A(t) =

⎧⎨⎩V n+1
A (t), for n odd

Max(V n+1
A (t), V n

A (t)), for n even

74 Howard Barringer, Dov Gabbay, and John Woods

Example 8 (Ordinary modal logic).

1. Let (S, R, h) be a traditional Kripke model for the language with {→,¬, �},
with S the set of possible worlds, R the accessibility relation and h the
assignment to the atoms, (i.e. for each atomic q, h(q) ⊆ S). We assume that
(S, R) is finitely branching, i.e. for each t the set St = {s|tRs} is finite. Note
that many modal logics are complete for a class of finitely branching models.

2. Let A = S, T = S ∪ {a � b|bRa}.
3. Let Vq(a � b) = 1 for all atomic q and let Vq(t) = 1 iff t ∈ h(q), for t ∈ S.
4. Let f(V (t), V̄ (ai), V̄ (ai � t)) = 1, where a1, . . . , an are all nodes such that

tRai holds, iff V̄ (ai) = 1 for all 1 ≤ i ≤ n.
5. We claim this model is stable. This can be proved by induction on the wff ϕ.
6. Note that we can get a new variety of modal logics by changing f from point

to point, or by making V n
�A(t) dependent on {V n+m

A (t) | m = 0, 1, 2 . . .} in
a variety of ways.

Feedback Interpretation
We can consider the figures as a control-feedback situation. Say node b is a
feedback for node a.

3.2 Unfolding Loops

There are various ways of treating loops.

– We can unfold them as done in, say, modal logic.
– We can let node a attack b, calculate the new value and then let b attack a,

calculate the new value and then let a attack b and so on. This we call the
parasite way of unfolding a loop.

– We can let a and b attack each other simultaneously, calculate the new values
and then let them attack again and again. This is the predator-prey way of
unfolding a loop.

Let us now turn to Figure 14 and see what are our options for dealing with
this loop.

Our first attempt at a solution is to regard (ab) and (ba) as the same channel
and read the loop as feedback loops. So a pushes εx towards b and b pushes ηy
towards a. The net result is (εx − ηy) in the direction of the positive value. So
assuming εx ≥ ηy we get that Figure 14 is essentially reduced to Figure 16.

The solution is not satisfactory. It cannot deal with cases like Figure 2 unless
we further commit the model to be a proper network flow model with various
capacities, as studied in operational research. So let us try another approach.
Assume in Figure 14 that we have x = η = ε = y.

x : a y : b

εx− ηy

Fig. 16.

Temporal Dynamics of Support and Attack Networks 75

λ : a λ : b

λ

λ

Fig. 17.

Call the common value λ. We now get Figure 17.
Let V0(a) = V0(b) = λ, the initial value, and let us transmit from a to b and

back from b to a in cycles and see what presents itself. This is the modal logic
approach.

We treat Figure 17 as equivalent to Figure 18 below:

λ λ λ λ

λ λ λ λ
e1 e2 e3

e4

Fig. 18.

In Figure 18, nodes e1, e3 . . . represent node a of Figure 17 and needs e2, e4 . . .
represent node b. So we start from V1(e1) = λ and transmit to the right getting
Vn(en), n = 2, 3,

Step 1: Transmit λ2 to e2 to get V2(e2) = λ(1− λ2) = λ− λ3.
Step 2: Transmit from e2 to e3 the value λV2(e2) and get V3(e3) = λ(1 −

λV2(e2)) = λ− λ3 + λ5.

We can continue by induction.

Lemma 1. Suppose we have a node e with V (en) = Vλ,n = λ− λ3 + λ5 − . . . +
(−1)nλ2n+1 and suppose we are transmitting to a node λ : en+1 with value λ
then we get V (en+1) = Vλ,n+1.

Proof.
V (en+1) = λ(1 − λV (en))

= λ− λ3 + λ5 · · · − λ2(−1)nλ2n+1

= λ− λ3 + λ5 . . . + (−1)n+1λ2(n+1)+1

We now observe that when n goes to infinity, we get Vλ,∞ =
λ

1 + λ2
.8

This means that Figure 17 stabilises into Figure 19. Note that the transmis-
sion rates in Figure 19 are all 0. This is because the values Vλ,∞ obtained have
already taken into account all recursive transmissions.

8 Note that if we solve the fixed point recursion equation Vλ,∞ = λ(1 − λVλ,∞), we
get Vλ,∞ = λ

1+λ2 .

76 Howard Barringer, Dov Gabbay, and John Woods

0

0

λ
1+λ2 : a λ

1+λ2 : b

Fig. 19.

Note that Figure 18 represents one way of going through the cycle of Fig-
ure 17, i.e. the fuzzy modal logic approach. Another approach is what we called
the parasite model, where we apply the transmission on Figure 17 directly, start-
ing from node a to b with V1(a) = λ, (corresponding to V1(e2)) we would get
V2(b) = λ(1 − λ2), same as V2(e2) and then transmit back to node a and get
V3(a) = V1(a)(1−λV2(b)) (corresponding to V3(e2)). So far the values agree, but
now there is a difference. Working directly on Figure 17 we transmit 1−λV3(a) to
node b whose last value is V2(b) = λ(1−λ2) and get V4(b) = λ(1−λ2)(1−λV3(a)).
While in Figure 18, the value of node e4 (which corresponds to b) is λ and so we
get in Figure 18 V4(e4) = λ(1 − λV3(e3)). So the question is, as we go through
the cycle a → b → a → b . . ., do we use the new value or follow Figure 18 and
keep the value at λ, the initial value!

Another possibility for dealing with Figure 17 is to adopt the predator-prey
model and transmit simultaneously from node a to node b and from node b to
node a, and then repeat the cycle. If V0(a) = V0(b) = V0 = λ is the initial value,
then symmetry is maintained through the cycles and for step n + 1 we get

Vn+1(a) = Vn+1(b) = Vn+1 = Vn(1 − λVn).

So we end up with a recursive equation

– V0 = λ, 0 ≤ λ ≤ 1
– Vn+1 = Vn(1 − λVn)

which for 0 ≤ λ ≤ 1 gives V∞ = 0, meaning that a and b cancel each other9.
The above considerations can be applied to other loops. The net result of

Figure 2 will be similar to that of Figure 17.
Consider Figure 20. Similar considerations using the Lemma indicate that

Figure 20 stabilises as Figure 21
We can make one more move now. To resolve Figure 2, we consider Figures

20 and 21 and let λ approach 1. Thus we get the value 1
2 . Hence the net reults

of Figure 2 is Figure 22 below.
A similar net result obtains for Figure 23 below.
Note that now we can resolve the loop in Figure 3. We get V (a) = V (b) = 1

2
and therefore V (c) = 3

4 and hence V (d) = 1
4 .

We can also deal with an argument attacking itself. It will get 1
2 .

There is still work to be done on resolving loops. We need to show the fol-
lowing.
9 The fixed point recursion equation for this case is V = V (1− λV), yielding V = 0.

Temporal Dynamics of Support and Attack Networks 77

λ : a λ : c

λ : b

λ

λ
λ

Fig. 20.

λ
1+λ2 : a λ

1+λ2 : c
0

00

λ
1+λ2 : b

Fig. 21.

1
2

: a

1
2

: b

1
2

: c

0

0

0

Fig. 22.

1. How the results we get for the loop depend on the choice of numbers we
assign to the nodes and for the transmission rates (we gave λ to all!).

2. What happens when loops can be resolved but we use our method anyway,
as in Figure 24.
In Figure 24, the net result is

{+c,−b, +a}.

What do we get if we assign λ everywhere and get Figure 25?

78 Howard Barringer, Dov Gabbay, and John Woods

a b

Fig. 23.

a b

c

Fig. 24.

λ : a

λ

λ

λ : b

λ : c

λ

Fig. 25.

Here is the calculation: We start with V0(a) = V0(b) = V0(c) = λ. Transmit
from c to b and get V1(b) = λ − λ3. Transmit from b to a and get V1(a) =
λ(1 − λV1(b)) = λ− λ3 + λ5.
Obviously if we follow the loop we get as before V∞(a) = V∞(b) = λ

1+λ2 and
the net result is {1 : c, 1

2 : a, 1
2 : b}. This is not satisfactory.

It makes more sense to try to give c value 1 transmitting at rate 1, since c is
not in a loop. This will give b value 0 and a value λ. When λ approaches 1
we get the right answer.
Perhaps we might follow the procedure of giving λ only to nodes in a loop?

3. Consider, however, the following loop in Figure 26.
d is attacked twice and is attacking once, while a is attacking twice and is
attacked once. Should we give them λ in the same way?

Example 9 (Resolving Figure 26). Let us try the fixed point approach on
Figure 26. We begin with V0(a) = V0(b) = V0(c) = V0(d) = y and with
transmission λ.

Temporal Dynamics of Support and Attack Networks 79

b

d

a

c

Fig. 26.

(a) We start propagating from node a. We get

V1(b) = V1(c) = y(1− λy).

V1(d) = y(1− λy(1− λy)2)

and therefore
V1(a) = y(1− λV1(d)).

We need a fixed point solution to V1(a) = V0(a). Hence

y(1− λV1(d)) = y.

Excluding y = 0, we get

1− λV1(d) = 1.

Hence
V1(d) = 0.

This means
y(1− λy(1 − λy)2) = 0.

Hence
λy(1− λy)2 = 1.

Let x = λy. We get x(1−x)2 = 1. This has a solution, x0 of approximate
value

x0 ≈ 1.755.

If we want 0 ≤ λ ≤ 1 then there is no way 0 ≤ y ≤ 1. Hence the only
fixed point solution is y = 0.

(b) Let us start at node d of Figure 26

V0(d) = y

V1(a) = y(1− λy)

V1(b) = V1(c) = y(1− λV1(a))

V1(d) = y(1− λV1(b))2

80 Howard Barringer, Dov Gabbay, and John Woods

and try to solve the fixed point equation:

y = y(1− λV1(b))2.

Hence if we insist on y �= 0,

1 = (1− λV1(b))2.

Hence
1− λV2(b) = ±1.

So either
i. V1(b) = 0

or
ii. V1(b) = 2λ.

For V1(b) = 0 we get, if y �= 0, that V1(a) = 1/λ.
Hence λy(1−λy) = 1. It is clear that this equation has no real solution.
Let us now try the case in which V1(b) = 2λ.
Hence

y(1− λy(1− λy)) = 2λ

y − λy2(1− λy) = 2λ

y − λy2 + λ2y3 − 2λ = 0

Does this have solutions? Remember 0 ≤ λ ≤ 1, 0 ≤ y ≤ 1.
If we choose λ = 0.133 and y = 0.275, the value of the polynomial is 0.0006.
Since we are dealing with continuous functions, we can find proper solutions.
Let us now try another way of tackling Figure 26, which can be rewirtten as
Figure 27 below, where ai represent a, bi represent b, ci represent c and di

represent d.

The neural net approach gives us an additional dimension. We can run the
cycles in the loop but also transmit to the rest of the network, and possibly
stop after so many cycles (say n = 100) and examine the values in all nodes
of other network. If the time involved in the cycles has meaning in terms of
the network itself changing in time (as modelled in Section 4 below), then
we have added a new and interesting dimension to loops in these networks.

b1

a1

c1

d1 a2

b2

c2

d2 a3 . . .

λ

λ
λ

λ

λ
λ

λλ

λ

λ

λ
λ

λ

λ

λ
λλ

λ
λ

Fig. 27.

Temporal Dynamics of Support and Attack Networks 81

In other words, we are saying that attacks take time to be executed, a loop
of the form “a attacks b and b attacks a” also takes time to unfold, and
meanwhile the network can change.
To give an example of such a loop, think of contradicting witnesses and
circumstantial evidence, one supporting a and one supporting b = ¬a. So
the loop is as in Figure 28

Δ : a Γ : ¬a

Fig. 28.

where Δ, Γ are themselves argument structures which are time dependent.
This loop certainly takes time to unfold! There may be some facts in Δ or
Λ that take time to verify or refute!

The general treatment of loops should be done in the context of neural net-
works (see [8]), not because of a conceptual connection, but because these nets
can technically reach equilibrium and resolve loops of the kind that arise there.

Note that every graph can be presented as an acyclic graph of nodes which
are themselves maximally connected cycles. So when we are dealing with cycles
we can make use of that.

4 Attack and Support Networks

This section discusses the addition of support arrows to argumentation networks.
We will see that in order to have equal attack and support cancel each other, we
need to reconsider the way we calculate the values of attacks (and supports). We
offer a new definition and establish a connection between the new definition, the
Dempster–Shafer rule, and surprisingly, the Cross-Ratio and projective metric
distance from geometry.

4.1 Discussion of Support

Consider a connection from a to b in Figure 29.
The double arrow indicates support. The simplest way to do it is to attack

(1− y) which is the distance of b from 1.10 Thus the new value of b is

1− (1− y)(1− λx) =

1− [1− λx− y + λxy]

= λx + y − λxy = y + (1 − y)λx

If we have several supports, then (1− y) shrinks to

(1− y)(1− λ1x1)(1− λ2x2) . . . (1 − λkxk)
10 This is Bernouli’s rule of combination, see [19, pp. 75–76].

82 Howard Barringer, Dov Gabbay, and John Woods

y : b
λ

x : a

Fig. 29.

and the new value y′ becomes 1 − (1 − y)
∏

i(1 − λixi). The difference y′ − y
becomes

Δ+y = 1− (1− y)
∏

i(1− λixi)− y

= (1− y)(1−
∏

i(1− λixi))

and we have
y′ = y + Δ+y.

How do we deal with both attack and support? Consider Figure 30. In this
figure x : a attacks y : b and z : c supports it. So the new value for b is

y − λxy + μz(1− y).

It is not clear what to do with several simultaneous attacks and supports.
The model must be commutative in the order of application.

Our solution is simple. b is at a distance y from 0 and distance 1 − y from
1. Let the attackers attack y to get it nearer to 0 and let the supporters attack
(1− y) to get b nearer to 1. Thus if xi : ai attack y : b with transmission λi and
zi : ci support y : b with transmission μi we get y′ as the new value at b, where

y′ = y −Δ−y + Δ+y

= y − y(1−
∏

i(1− λixi))

+(1− y)(1−
∏

i(1 − μizi))

= y
∏

i(1− λixi) + (1− y)(1−
∏

i(1 − μizi))

Note that there is something numerically wrong with our proposal. In Fig-
ure 29, if we let z = x and μ = λ, i.e. the attack and support have the same
values, then, we would have expected that they cancel each other. However, this
is not the case. The new value is y′ = y − 2λxy + λx.

This should not surprise us. The closer y is to 1, the less is the numerical
value of an attack on 1− y, and the more numerical value we get for an attack
on y. So, for example, assume y = 0.9 in value. Then a support of 50% of y will

y : b

x : a z : c

μλ

Fig. 30.

Temporal Dynamics of Support and Attack Networks 83

half the distance of y from 1, i.e. will yield Δ+ = 0.005 in numerical value, while
in comparison, a 50% attack on y will half the distance of y from 0 and will yield
Δ− = 0.45. The net result of simultaneous attack and support will yield the new
value 0.9− 0.45 + 0.05 = 0.50.

Can we remedy the situation? Perhaps we should attack by changing the
ratio r(y) of y to 1 − y, (i.e. r(y) = y/(1 − y), and then calculate the new y′

which will give the new ratio. So suppose the transmitted value (of attack or
support) is 0 ≤ θ ≤ 1.

If θ is an attack we want to reduce r(y) and so we let r′(y) = θr(y). If θ is a
support, we want to increase y, so the new ratio is r′(y) = r(y)/θ.

We now solve the equation

y′

1− y′ = r′(y)

and therefore we get

y′ =
r′(y)

1 + r′(y)
.

We must now decide on what value θ to use. Let us use the same value we used
before, as agreed in Example 3. In Figure 29, we have x : a attacking y : b with
transmission rate λ and we therefore have θ = (1− λx).

Let us calculate the values of attack and support with θ.

Case of Attack

r′(y) =
y(1− λx)

1− y

y′ =
y(1− λx)

(1 − y)(1 +
y(1− λx)

1− y
)

=
y(1− λx)

(1 − y + y − λxy)

=
y(1− λx)
(1 − λxy)

Case of Support

r′(y) =
y

(1− y)(1 − λx)
.

y′ =
y

(1− y)(1 − λx)(1 + y/(1− y)(1− λx))

y′ =
y

(1− y)(1 − λx) + y

=
y

(1− λx + yλx)

=
y

1− λx + yλx

=
y

1− λx(1 − y)

84 Howard Barringer, Dov Gabbay, and John Woods

Let us now assume as before that the attack is 50%, e.g. x = 0.5, λ = 1.

We get θ = 0.5. Assume as before y = 0.9. Hence r′(y) =
0.9
0.1

.0.6 = 4.5 and

y′ =
4.5

1 + 4.5
=

4.5
5.5

=
9
11

.

This should be compared with the previously attained value 0.45 =
9
20

.
For the support we get

r′(y) =
0.9

0.1.0.5
= 18

So
y′ =

18
1 + 18

=
18
19

This should be compared with the value 0.05 we got previously.
How do we handle simultaneous attacks and supports? We follow the same

principle as before. If θ1, . . . , θn are attacking values and θ′1, . . . , θ′m are the sup-
porting values then the new r′(y) is

r′(y) = r(y)
∏

i θi∏
i θ′i

.

It is worthwhile comparing the recursion results we obtained with the kind
of recursion one gets in mathematical biology. We use the table (Table 3.1) on
[20, p. 53].

1. Old attack formula
yn+1 = yn(1− λx)

This can be compared with exponential population growth.
2. New attack formula

yn+1 =
yn(1− λx)
1− λxyn

This can be compared with the Beverton–Hort formula in the table of [20,
p. 53].
Let us also examine what happens in case of loops. Consider Figures 17
and 18 again. We have v1(e1) = λ and the recursion equation, according to
Figure 18 is

Vn+1(en+1) =
λ(1 − λVn(en))
1− λ2Vn(en)

.

The recursion fixed point equation for this case is

V =
λ(1− λV)
1− λ2V

or

V − λ2V 2 = λ− λ2V

λ2V 2 − λ2V − V + λ = 0

V 2 − (1 + λ2)
λ2

V +
1
λ

= 0

Temporal Dynamics of Support and Attack Networks 85

Let λ approach 1, we get

V 2 − 2V + 1 = 0

and so V∞ = 1.
If we do the recursion proper, as in Figure 17, we get

Vn+1 =
Vn(1− λVn)

1− λV 2
n

The fix point equation becomes

V (1 − λV 2) = V (1− λV).

If we discard the solution v = 0, we get

1− λV 2 = 1− λV

hence
V 2 = V

and hence V = 1.

4.2 Connection with Metric Projective Geometry
and the Dempster–Shafer Rule

In the previous subsection, we agreed that in the situation of Figure 30, node a
attacks node b by attacking the ratio:

r(y) =
y

1− y

We proposed that the attack value θ be θ = 1−λx. We want in this subsection
to re-examine our decision and see whether we want to use a different attack
value. First to simplify our qualitative consideration, assume λ = 1 and μ = 1.
Second, let us focus on node c, which is supporting node b, with value z. Assume
that z is very small, almost 0. One may feel that in many real applications, a
very limited support is worse than nothing. It implies an attack on argument b,
the hidden implication is that if b were any good why isn’t c’s support of it a bit
stronger? This way of thinking would integrate the support and attack together.
So if a node supports another node with value z then it simultaneously attacks
it with value 1 − z. If z = 1, then the support is complete. If z ≈ 0 then the
support is insulting and really accomplishes an attack to the value of 1− z.

Let us look at Figure 30 again. There are two ways to look at this figure
(with λ = μ = 1). One way is that we have two nodes, x : a and z : c, the first
attacking the node y : b and the second supporting it.

The other way is that there is a single node z : c supporting the node y : b,
but simultaneously attacking it to the value 1−z, as discussed above. Figure 30,

86 Howard Barringer, Dov Gabbay, and John Woods

with x = 1−z is a representation of this new point of view through the additional
node x = (1− z) : a.

Of course it is nicer to represent this new point of view directly, and indeed,
Figure 32 represents this new point of view of support/attack mode by a double
arrow.

Let us now calculate the new value y′ of the attack and support configuration
of Figure 30. We have:

r′(y) =
y(1− x)

(1− y)(1 − z)

Hence

y =
r′(y)

1 + r′(y)

=
y(1− x)

(1 − y)(1− z) + y(1− x)

=
y(1− x)

1− y − z + y(z + 1− x)

In order to compare with a later formula, let us rename the values. Let
z2 = 1− x and let z1 = z. We get the equation (DS1) below:

(DS1) y′ =
yz2

1− y − z1 + y(z1 + z2)

This equation means that a node y : b is simultaneously supported by z1 : c
and attacked by (1 − z2) : a. Alternatively, we can say that the node is being
[Support, Attacked] by the pair [z1, z2]. If z1 ≤ z2 (i.e. z + x ≤ 1), we can say
we have a [Support, Attack] interval [z1, z2], 0 ≤ z1 ≤ z2 ≤ 1.11

We adopt this terminology in preparation for the Dempster–Shafer point of
view, yet to come. See item 3 of Example 10.

Let us now examine the case where x = 1 − z, i.e. z = 1 − x. We can view
this as a [Support, Attack] pair [z1, z2] = [z, z].12

We can view Figure 30 again and see that we are getting a situation of
support value z from node c and attack value 1− z from node a.

We have already calculated the new ratio r′(y) for node b, it is

r′(y) =
y(1− (1− z))

(1− y)(1− z)
=

yz

(1 − y)(1− z)

11 Actually the intervals involved are [0, z1], [1− z2, 1].
12 Beware some possible confusion in notation. In Figure 30, the attack of a node is with

value x = 1−z and the support is with value z. If we regard Figure 30 as representing
the [Support, Attack] double arrow of Figure 32, we write it as [z, 1−x] = [z, z] and
not as [z, x]. This is because z2 = (1− x) appears in (DS1).

Temporal Dynamics of Support and Attack Networks 87

Let us write this equation as

(∗) r′(y) =
y/(1− y)

(1− z)/z

We now calculate the new value y′, it is

(∗∗)
y′ =

r′(y)

1 + r′(y)

=
yz

(1 − y)(1− z) + yz

We thus get that a node z : c supporting a node y : b yields the new value y′ : b,
where:

(DS2)
y′ =

yz

1− y − z + 2yz

provided, of course, that y + z − 2yz �= 1.

Let us say that (∗) and (DS2) represent a combined [Support, Attack] result
of a node to a value [z, z], attacking a node with value y.

We now connect (DS2) to the Dempster–Shafer rule (see [19, 15]), and to the
Cross-Ratio and projective metric from geometry (see [1, 6]).

Example 10 (Dempster–Shafer rule). The range of values we are dealing with is
the set of all subintervals of the unit interval [0,1]. The Dempster–Shafer addition
on these intervals is defined by

[a, b]⊕ [c, d] = [
a · d + b · c− a · c

,
1− k

b · d
1− k

]

where k = a · (1 − d) + c · (1 − b), where ‘·’, ‘+’, ‘−’ are the usual arithmetical
operations. The compatibility condition required on a, b, c, d is

ϕ([a, b], [c, d]) ≡ k �= 1.

The operation ⊕ is commutative and associative. Let e = [0, 1].
The following also holds:

– [a, b]⊕ e = [a, b]
– For [a, b] �= [1, 1] we have [a, b]⊕ [0, 0] = [0, 0]
– For [a, b] �= [0, 0] we have [a, b]⊕ [1, 1] = [1, 1]
– [a, b]⊕ [c, d] = ∅ iff either [a, b] = [0, 0] and [c, d] = [1, 1] or

[a, b] = [1, 1] and [c, d] = [0, 0].

In this algebra, we understand the transmission value [a, b] as saying that the
actual transmission value lies in the interval [a, b].

88 Howard Barringer, Dov Gabbay, and John Woods

Let us make three comments:

1. Let x denote [x, x]. We get for 0 ≤ a ≤ 1 and 0 ≤ c ≤ 1 the following

a⊕ c =
[ac + ac− ac

1− a(1 − c)− c(1− a
,

ac

1− a(1− c)− c(1− a)

]

=
[ac

1− a− c + 2ac
,

ac

1− a− c + 2ac

]

=
ac

1− a− c + 2ac

provided (a + c− 2ac) �= 1.
We note immediately that (DS2) is y⊕z. This is also the propagation method
used by the MYCIN expert system. See [16].

2. Let us check for what values of a, c can we have equality, i.e. when can we
have a + c− 1 = 2ac?
Assume a ≤ c.
We claim the only solution to the equation a + c − 2ac = 1 is a = 0, c = 1
for a ≤ c and a = 1, c = 0 for the case c ≤ a. There is no solution for c = a.
To show this, let c = a + ε, 0 ≤ ε ≤ c− a.
Then assume

a + a + ε = 1 + 2a(a + ε)

2a + ε = 1 + 2a2 + 2εa

ε− 2εa = 1 + 2a2 = 2a

ε(1
2 − a) = a2 − a + 1

2

= (a− 1
2)2 − (1

2)2 + 1
2

= (a− 1
2)2 + (1

2)2

Hence
(a− 1

2)2 + ε(a− 1
2) + (1

2)2 = 0

[(a− 1
2) + ε

2]2 − (ε
2)2 + (1

2)2 = 0

(a− 1
2 + ε

2)2 = (ε
2)2 − (1

2)2

= ((ε
2 −

1
2)(ε

2 + 1
2)

Hence ε = 1 and since 0 ≤ c = a + ε ≤ 1 we must have a = 0 and c = 1.
In particular, we get that for a = c = x, x⊕x is always defined and we have

x⊕ x =
2x2

(x− 1
2)2 + (1

2)2

Temporal Dynamics of Support and Attack Networks 89

For example, we have

0⊕ 0 = 0

1⊕ 1 = 1
1
2 ⊕

1
2 = 1

3. Let us check what happens when c = d.
We get

[a, b]⊕ c =
bc

1− a(1− c)− c(1− b)

=
bc

1− a + ac− c + bc

=
bc

1− a− c + c(a + b)
The reader should compare this equation with the formula (DS1) obtained
before.

Example 11 (Cross-Ratio). Consider the interval [0, 1] and two points y and 1−z
in this interval. Let A = 0, B = 1, C = y and D = 1−z. Taking AC, CB, AD, DB
as directed intervals, we have it that AC = y, CB = 1 − y, AD = 1 − z and
DB = z.

The projective Cross-Ratio between these points, denoted traditionally by
(A, B; C, D) is calcualted as the ratio of ratios of the directed intervals.

(A, B; C, D) =
AC/CB

AD/DB
=

y/(1− y)

(1 − z)/z
=

yz

(1− y)(1− z)

Note that this is formula (∗).
Note that this measures distance. In the Cayley–Klein metric, log(AB; CD)

is used to describe the distance between points C and D. Figure 31 shows how
it is done.

C and D are inside the unit circle. The chord connecting them meets the
circle at A and B. See [1, Sections 4.10 and 11.7] and [6, Chapter 6].

Returning to Figure 30, we have

(∗) r′(y) = (0, 1; y, 1− z)

We can now define a new kind of support/attack arrow (with value z/1− z)
in a network, as displayed in Figure 32 by double arrow

We have for 0 ≤ y, z ≤ 1

(�1) r(y) =
y

1− y
(�2) r′(y) = (0, 1; y, 1− z)

(�3) y′ =
yz

1− y − z + 2yz
= y ⊕ z

(�4) Furthermore, a formula (DS1) for a combined support to value z1 and
attack to value z2, as in Figure 30 gives the result y′ = y ⊕ [z1, z2].

90 Howard Barringer, Dov Gabbay, and John Woods

•
• •

• •
B

D
C

A

Fig. 31.

provided y + z − 2yz �= 1.

z : c y : b

Fig. 32.

Equations (�2) and (�3) and (�4) open new opportunities for us.

1. Allow for values to be intervals because of the connection with Dempster–
Shafer.

2. Allow for a connection with a more general non-Euclidean metric, using
complex numbers.

3. Attack and support values need not be in [0, 1].

We shall investigate these further.

Example 12 (Cross-Ratio for intervals). This example will try to extend the no-
tion of Cross-Ratio for intervals, i.e. we look for Cross-Ratio for
(0, 1; [y1, y2], 1− z), 0 ≤ y1 ≤ y2; 0 ≤ z ≤ 1.

We saw that the situation in Figure 33 can be described as follows:

0 1
y 1− z

A C D B

Fig. 33.

Temporal Dynamics of Support and Attack Networks 91

1. r(y, z) = (0, 1; y, 1− z)

=
yz

(1− y)(1− z)

2. We also know that the Dempster–Shafer rule for the case of y⊕ z = [y, y]⊕
[z, z] gives the value

y ⊕ z =
r

1 + r
=

yz

1− y − z + 2yz

3. Our aim is to define Cross-Ratio (0, 1; [y1, y2], 1− z). We use (2): Consider

[y1, y2]⊕ z =
y2z

1− y1 − z + z(y1 + y2)

4. Define by analogy with (2):

(∗1) [y1, y2]⊕ z =
r([y1, y2], z)

1 + r([y1, y2], z)

we do not know what r∗ = r([y1, y2], z) means. However, using (∗1) and
solving for r∗ we get:

r∗ =
[y1, y2]⊕ z

1− [y1, y2]⊕ z

Fortunately, the expressions in the right-hand side are all numbers: Hence
we get

r∗ =
y2z

1− y1 − z + z(y1 + y2)(1−
y2z

1− y1 − z + z(y1 + y2)
)

=
y2z

1− y1 − z + zy1 + zy2 − y2z

=
y2z

1− y1 − z + zy1

=
y2z

(1− y1)(1− z)

=
y2

y1
·

y1z

(1 − y1)(1− z)
=

y1
r(y1, z)

y1

We therefore have

(∗2) r([y1, y2], z) =
y2

y1
r(y1, z).

92 Howard Barringer, Dov Gabbay, and John Woods

We can therefore define

(∗3) (0, 1; [y1, y2], 1− z) =def

y1

y1
(0, 1; y1, 1− z)

or more generally:

(�) (A, B; [C1, C2], D) =def

AC2

AC1

(A, B; C1, D).

Let us check whether (�) is invariant under some projective transformations.
Let us consider y2

y1
. Think of it as a cross ratio as in the figure below

0
y1

y1+y2

z
y2

y2 − 0

y1 − 0
/
(y2 −

y1 + y2

2
)

(y1 −
y1 + y2

2
)

=
y1

y1
/
y2 − y1

y1 − y2

=
−y2

y1

Thus
y2

y1

= −(0,
y1 + y2

2
, y1, y2).

This Cross Ratio uses the midpoint between y1 and y2. Midpoints E between
points A and B can be characterised as the Harmonic conjugate of the point
at infinity relative to A and B.
So any transformation of the line leaving the point at infinity fixed will also
preserve midpoints, i.e. if A goes to A′, B to B′ and E to E′ and ∞ to ∞,
then if E is the midpoint of AB then E′ is the midpoint of A′B′.

5. Since r(y, z) is commutative it stands to reason to define

r∗∗ = r([y1, y2], [z1, z2]) = def
y2

y1

·
z2

z1

r(y1, z1).

We now have a candidate definition for a Cross-Ratio for intervals.

r∗∗ =
y2

y1

z2

z1

y1z1

(1− y1)(1 − z1)

Hence

(∗3) r∗∗ =
y2z2

(1− y1)(1 − z1)

Temporal Dynamics of Support and Attack Networks 93

Let ȳ = [y1, y2], z̄ = [z1, z2]. Therefore we can define a new � using a similar
connection as (∗2):

ȳ � z̄ =
r∗∗

1 + r∗∗

=
y2z2

(1− y1)(1 − z1) + y2z2

Hence we summarise:

(∗4) ȳ � z̄ =
y2z2

1− y1 − z1 + z1y1 + z2y2

Let us compare � with ⊕
We have

ȳ ⊕ z̄ =
[y1z2 + y2z1 − y1z1

1− y1 + y1z2 − z1 + y2z1

,
y2z2

1− y1 + y1z2 − z1 + y2z1

]

=
[y1z2 + y2z1 − y1z1

1− y1 − z1 + y1z2 + y2z1

,
y2z2

1− y1 − z1 + y1z2 + y2z1

]
They are not the same, unless z1 = z2 or y1 = y2.
To see this let us ask when do we get a point interval? We equate the nu-
merators of the interval endpoint and we get

y1z2 + y2z1 − y1z1 = y2z2

hence
z1(y2 − y1) = z2(y2 − y1)

i.e. either y1 = y2 or z1 = z2 i.e. one has to be a point

Summary
We have extended the Cross Ratio to a case of one interval, and it agrees with
the Dempster–Shaver ⊕. We can also extend the Cross-Ratio to the case with
two intervals, giving it the value

r∗∗(ȳ, z̄) =
y2z2

(1− y1)(1 − z1)

but it does not agree with the Dempster–Shaver ȳ ⊕ z̄.
We note, however, that since

r∗∗(ȳ, z̄) =
y1

y1
,
z1

z1

r(y1, z1),

if we assume y1 = 1− y2, z1 = 1− z2 we get

r∗(ȳ, z̄) = r(y2, z2)r(y1z1)

We need to check what benefit this gives us!

94 Howard Barringer, Dov Gabbay, and John Woods

Example 13 (Using Dempster–Shafer for attack and support). Consider again
the basic situations depicted in Figures 30 and 32, or perhaps consider the more
fundamental situation of Figure 4. Let us focus on the following Figure 34.

α : c β : b
ε(a, b)

Fig. 34.

The new kind of arrow can stand in for attack, support or any combination
transmitted from node c to node b. Our aim in this example is to review our
options for the kind of values α, β, ε can take and the options available for the
mathematical formulas for their combination and transmission.

Our previous discussion allows for the following Dempster–Shafer option

1. ε = 1, α = [z1, z2], β = y, 0 ≤ y ≤ 1, 0 ≤ z1 ≤ z2 ≤ 1 and y′ = y ⊕ [z1, z2]
and the arrow is interpreted as [Support, Attack] connection as in formula
(DS1). We saw the connection with the Cross Ratio as well.

2. To maintain symmetry, we must also allow β to be of the form [y1, y2], 0 ≤
y1 ≤ y2 ≤ 1 and we must write a formula for the [support, attack] on β : b.
The obvious answer is to let

β′ = α⊕ β = [z1, z2]⊕ [y1, y2].

3. Another possibility is to take �, i.e. let β′′ = α�β (as in (∗4) of the previous
example) but then β′′ is a number not a proper interval.

4. Next let us ask what values can we give to ε? Again the simplest and most
general value can be ε = [u1, u2]0 ≤ u1 ≤ u2 ≤ 1. We need to say how to
combine it with α to get a value transmitted? Again in analogy with expert
systems in AI we can let the transmitted value to be α ⊕ ε. Thus the new
value β′ would be

β′ = α⊕ ε⊕ β.

5 Temporal Dynamics (in Outline)

We devote this section to briefly outline some intuitive motivation for temporal
dynamics. We assume that our model has attack arrows only. The reader should
be aware that the temporal dynamic aspect of networks is central to the subject
and will receive extensive study in our projected series of papers.

Consider the simple network of Figure 35.
In this figure t is a time parameter. So the strength and transmission param-

eters of the net from a to b depends on time t.
The value of b is y′(t) = y(t)(1 − λ(t)x(t)).

Temporal Dynamics of Support and Attack Networks 95

x(t) : a y(t) : b
λ(t)

Fig. 35.

Assume that at time t = 0 we have x(0) = 1, λ(0) = 1. In this case y′(0) = 0.
However if x(t) and λ(t) decrease quickly, while y(t) changes slowly, then at time
ε we get

y′(ε) ≈ y(0)(1− ε2 · λ̇(0)ẋ(0))

where ẋ is
dx

dt
, i.e. the speed (time derivative) of x and similarly λ̇ =

dλ

dt
.

So if we are anxious to keep argument b, we might choose to wait a little
(wait ε) for argument a and its transmission to weaken considerably.

Consider that we have
a = sex scandal

b = Governor to resign.
The chances are that public opinion will change quickly.
These time changes should be studied in the context of a time-action model.

Suppose we have action e with precondition b and postcondition c. We want to
take action e but if b is successfully attacked, we cannot do so. So we wait a bit.
Conversely, suppose that we have d attacks a. Since d attacks a, b is available
as +b and so action e can be taken. But if d is weakening with time, we may
choose to take action e immediately, while a is still ‘saving’ b by attacking a.

So a more sophisticated time–action–argument model will look at the speed
of changes and will give values for actions to be taken.

We need to say more about what actions do in the model. We need to define
the notion of a fact. We agree that syntactical facts e (as opposed to arguments),
can be identified in our model by two properties:

1. V (e) = 1
2. e is not attacked by anything.

Of course there may be some arguments that have properties 1 and 2 above, but
then for all practical purposes they are like facts.

There may be examples where it looks like some facts can be attacked by
other facts. The fact that data is available on the computer may be attacked by
the fact that a password was irretrievably lost. However, we can also look at the
attack as focussing on the transmission rate of the fact and not the fact itself. We
further accept that a node e is considered a semantical fact if V (e) = 1 and no
attack arrows with positive transmission rate go into e. In a temporal dynamics
model, these properties must hold at all times. If they hold only at some of the
time, then e is not a fact but a commonly accepted truth which may sometime
be attacked or doubted.

What do actions do? Actions create or destroy facts (see Gabbay and Woods
[11]). So if at time t an action e is fired then the result is that some facts get

96 Howard Barringer, Dov Gabbay, and John Woods

deleted from the network and some new facts are added. We can also assume
that all values V change as the result of the action.

For simplicity, let us assume that an action adds only one fact or deletes only
one fact. Since we can formally delete by attacking we will only allow adding
facts. By adding a fact we mean either a new fact or turning an existing argument
into a fact. So an action has the form e = (preconditions, post conditions), where
the precondition is a sequence of arguments ((xi : ai)) and the postcondition is
a sequence ((a → yi → bi)). This means that we add the fact a and let it attack
bi with transmission rate yi, i = 1, . . . , n. In a given network if a is not a node
then we add it as a node with value 1 and let it attack any node bi which is in
the network.

If a is already in the network, then “disconnect” all attacks on a by giving
them value 0. Give a the value 1 and let a attack all existing bi in the network. If bi

is already attacked by a with transmission rate ui, then let the new transmission
rate be max(ui, yi).

Note that e is stated independently of the network. To be activated we need
the net final value of ai to be at least xi and then the postconditions act on the
available bi.

Example 14. Consider the network of Figure 5. Consider the action e with pre-
condition ((x : a), (w : d)) and postcondition ((b → u → c), (b → y → g)). This
action can be applied to the network of Figure 5.

The result is Figure 36 below. Note that since there is no g in the network,
b → y → g is not implemented.

This is equivalent to Figure 37. The next question for us to answer in a
temporal network is the following. If action e is activated at time t, when do we
see the result? If the network operates in discrete time, then the result is at time
t+1. Otherwise we have to treat the action like an impulse in a physical system,
as when a ball hits another ball and gets it moving, and assume the result of the
action e at t manifests itself immediately at all times s such that t < s. We have
to give a reasonable definition of how the result of the action manifests itself.
A good example for initial consideration is that if a new argument e is created
by an action at time t then it shows up at all times s > t and its strength at

x : a

z : c w : d

1 : b•
0

• η • u • 0

•
α

Fig. 36.

Temporal Dynamics of Support and Attack Networks 97

x : a

z : c w : d

1 : b

• u

•
α

Fig. 37.

time s > t decays slowly as s increases, say it has the form Vs(e) =
k

1 + s− t
, k

a constant ≤ 1. Similarly we can ask for a decay of the transmission rates.

References

1. C. Adler. Modern Geometry. Second edition, McGraw Hill, 1967.
2. R. M. Anderson, B. D. Turner and L. R. Taylor, eds. Population Dynamics. Black-

well, 1979.
3. H. Barringer, D. Gabbay and J. Woods. Network modalities. In preparation (paper

260).
4. T. Bench-Capon. Persuasion in practical argument using value based argumenta-

tion framework. Journal of Logic and Computation, 13, 429–448, 2003.
5. P. M. Dung. On the acceptability of arguments and its fundamental role in non-

monotonic reasoning, logic programming and N-person games. Artificial Intelli-
gence, 77, 321–357, 1995.

6. T. Faulkner. Projective Geometry, Oliver and Boyd, 1949..
7. D. M. Gabbay. Theory of hypermodal logics, Journal of Philosophical Logic, 31,

211–243, 2002.
8. A. S. d’Avila Garcez, D. M. Gabbay and L. C. Lamb. Argumentation Neural Net-

works. In Proceedings of 11th International Conference on Neural Information Pro-
cessing (ICONIP’04), Calcutta, India, Lecture Notes in Computer Science LNCS,
Springer-Verlag, (to appear) November 2004.

9. D. Gabbay and G. Metcalfe. Cross Ratio uni-norms. In preparation.
10. D. M. Gabbay and J. Woods. Non-cooperation in dialogue logic. Synthese, 127,

161–180, 2001.
11. D. M. Gabbay and J. Woods. Ad baculum is not a fallacy. In Proceedings of the

Fourth Internatioal Conference of the International Society for the Study of Ar-
guementatin, F. H. van Eemeren,R. Grootendorst, J. A. Blair and C.A. Willard,
eds. p. 221–224, SicSat, Amsterdam, 1998.

12. D. M. Gabbay and J. Woods. More on non-cooperation in dialogue logic. Logic
Journal of the IGPL, 9, 305–324, 2001.

13. D. M. Gabbay and J. Woods. Formal approaches to practical reasoning. In Hand-
book of the Logic of Argument and Inference: The Turn Towards the Practical,
D. M. Gabbay, R. H. Johnson, H. J. Ohlbach and J. Woods, eds. pp. 449–481.
North-Holland, Amsterdam, 2002.

98 Howard Barringer, Dov Gabbay, and John Woods

14. D. M. Gabbay and J. Woods. The law of evidence and labelled deductive systems.
Phi-News, 4, 5–47, 2003.

15. P. Hajek, T Havranek, R. Jirousek. Uncertain Information Processing in Expert
Systems. CRC Press, 1992.

16. P. Hajek and J. Valdes. An analysis if MYCIN-like expert systems. Mathware and
Soft Computing, 1, 45–68, 1994.

17. S. A. Levin, ed. Studies in Mathematical Biology, Part II, Populations and Com-
munities. Mathematical Association of America, 1978.

18. J. D. Murray. Mathematical Biology, Volume 1, Springer-Verlag, 2001.
19. G. Shafer. Mathematical Theory of Evidence. Princeton University Press, 1976.
20. P. Turchin. Complex Population Dynamics. Princeton University Press, 2003.
21. J. Woods. The Death of Argument: Fallacies in Agent-Based Reasoning. Kluwer,

Dordrecht and Boston, to appear in 2004.

Footprints of Conditionals�

Christoph Beierle and Gabriele Kern-Isberner

Praktische Informatik VIII – Wissensbasierte Systeme,
Fachbereich Informatik, FernUniversität Hagen,

D-58084 Hagen, Germany
{christoph.beierle,gabriele.kern-isberner}@fernuni-hagen.de

Abstract. Probabilistic conditionals are a powerful means of represent-
ing commonsense and expert knowledge. By viewing probabilistic condi-
tionals as an institution, we obtain a formalization of probabilistic condi-
tionals as a logical system. Using the framework of institutions, we phrase
a general representation problem that is closely related to the selection of
preferred models. The problem of discovering probabilistic conditionals
from data can be seen as an instance of the inverse representation prob-
lem, thereby considering knowledge discovery as an operation inverse to
inductive knowledge representation. These concepts are illustrated using
the well-known probabilistic principle of maximum entropy for which we
sketch an approach to solve the inverse representation problem.

1 Introduction

Commonsense and expert knowledge is most generally expressed by rules, con-
necting a precondition and a conclusion by an if-then-construction. If-then-rules
are more formally denoted as conditionals, and often they occur in the form
of probabilistic conditionals. For instance, such conditionals may describe the
knowledge available to a physician when he has to make a diagnosis. Or they
may express commonsense knowledge like “Students are young with a proba-
bility of (about) 80 %” and “Singles (i.e. unmarried people) are young with a
probability of (about) 70 %”, the latter knowledge being formally expressed by
{(young|student)[0.8], (young|single)[0.7]}. The crucial point with conditionals is
that they carry generic knowledge which can be applied to different situations.
This makes them most interesting objects in Artificial Intelligence, in theoretical
as well as in practical respect (see e.g. [CFH95]).

In this paper, we address several problems and questions which usually arise
when dealing with (probabilistic) conditionals. First, how can we formalize a
general logic of probabilistic conditionals? Probabilistic conditionals are non-
classical in various respects, so how does this logic fit the frameworks of other
logics like e.g. classical logic? We show that the concept of institutions deceived
by Goguen and Burstall [GB92] as a general framework for logical systems may
also be applied to probabilistic conditionals. By answering this question in this
� The research reported here was partially supported by the DFG – Deutsche

Forschungsgemeinschaft within the Condor-project under grant BE 1700/5-1.

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 99–119, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

100 Christoph Beierle and Gabriele Kern-Isberner

way, we might remove some of the suspicions that probabilistic modelling and
reasoning is sometimes looked upon from a formal logical point of view.

Second, how to use probabilistic rule bases for modelling and inference? How
to combine knowledge expressed by conditionals so as to yield expressive answers
to queries? We propose a model-based solution to this problem here by formaliz-
ing a general representation problem within the framework of institutions: Given
a specification of a theory, select a set of models as its desired representation.
The well-known probabilistic principle of maximum entropy (ME-principle) is
easily seen to solve this representation problem for probabilistic conditionals in
a most satisfying way [Par94].

Now that a formal framework for probabilistic conditionals and their (induc-
tive) representation has been outlined, we raise the third question: Where do the
probabilistic conditionals apt to represent knowledge appropriately come from?
Actually, this question should be considered in the first place, but usually, one
tends to assume that some omniscient expert is able express his knowledge as
(probabilistic) rules. In practice, however, statistical data are often used to (at
least) support the building of knowledge bases. Statistical data may be summa-
rized as a frequency distribution which constitutes a probabilistic model for the
rules it represents. From our point of view, the important question how to extract
rules from statistical data may thus be viewed as inverting the above mentioned
representation problem, in that now a set of probabilistic conditionals (i.e. a
probabilistic specification) has to be selected, given a model. So, the task of dis-
covering rules from data can be considered as an instance of this abstract inverse
representation problem. For the inductive representation of probabilistic condi-
tionals via the ME-principle, we will sketch an approach to solve this inverse
representation problem, i.e. to compute a concise set of rules which are most
relevant with respect to the ME-method. Since entropy measures the amount of
indeterminateness which is dual to information, this approach can be considered
as aiming to find the most informative rules in data.

The formal framework we present in this paper to deal with practical prob-
lems in probabilistic reasoning is part of the even more general framework on
which the Condor project is based. Condor (Conditionals – discovery and
revison) is aimed to provide a complete theory and a computational tool for
inductively representing and revising conditional knowledge, on the one hand,
and to discover rules in data which are relevant with respect to some underlying
inductive representation method, on the other hand.

The rest of this paper is organized as follows: In Section 2, we further mo-
tivate our approach and review some of the related work in the three problem
areas this paper is concerned with. Based on the institution framework and our
formalization of probabilistic conditional logic as an institution carried out in
Section 3, we introduce the general notions of both the representation problem
and the inverse representation problem in Section 4 and illustrate them in var-
ious application areas. Section 5 gives an overview of an algorithm coping with
the inverse representation problem in the ME-framework. Section 6 gives some
conclusions and points out further work.

Footprints of Conditionals 101

2 Motivation and Related Work

2.1 Towards a Formal Logic for Probabilistic Conditionals

As a general framework for logical systems, Goguen and Burstall introduced the
notion of an institution [GB92]. An institution formalizes the informal notion
of a logical system, including syntax, semantics, and the relation of satisfaction
between them. The latter poses the major requirement for an institution: that
the satisfaction relation is consistent under the change of notation.

Institutions have been used for the general study of logics. For instance, there
are widely applicable results about building up larger theories from smaller com-
ponents. Institution morphisms support the comparison of different logics, are
used for glueing together several logics within one system, and may permit a
theorem prover for one institution to be used on theories from another one.
Additionally, institutions have also been used as a basis for specification and
development languages; in fact, institutions arose in the context of designing the
specification language Clear [BG80,GB92]. For some of the work using institu-
tions see e.g. [GT00,ST97,BV87,Tar96,GR02].

Whereas in [GB92] the examples for an institution are mostly based on clas-
sical logics, we will show here that also the logic of probabilistic conditionals
fits nicely into the institution framework. Viewing probabilistic conditionals as
an institution supports the study of structural properties of both syntax and
semantics of this logic, and it will allow us to immediately apply various gen-
eral results for institutions to our probabilistic logic, giving us for free e.g. the
presentation lemma, various closure properties, or the notions and results about
theories and their morphisms.

2.2 Modelling Based on the Principle of Maximum Entropy

Usually, probabilistic rule bases represent incomplete knowledge, in that there
are a lot of probability distributions apt to represent them. So learning, or in-
ductively representing, respectively, the rules means to take them as a set of con-
ditional constraints and to select a unique probability distribution as a “best”
model which can be used for queries and further inferences. Paris [Par94] inves-
tigates several inductive representation techniques and proves that the principle
of maximum entropy (ME-principle) yields the only method to represent incom-
plete knowledge in an unbiased way, satisfying a set of postulates describing
sound commonsense reasoning.

Therefore, the ME-principle provides a most convenient and founded method
to represent incomplete probabilistic knowledge. Unlike Bayesian networks
[CDLS99], no external (and often unjustified) independence assumptions have to
be made, and only relevant conditional dependencies are part of the knowledge
base. Bayesian networks need a lot of probabilities being specified. If one has
to model the dependencies, for instance, between two diseases, D1, D2, and two
symptoms, S1, S2, one has to quantify all probabilities P (sj |di), where sj and
di, respectively, is any one of Sj ,¬Sj and Di,¬Di, for i, j = 1, 2. But not only

102 Christoph Beierle and Gabriele Kern-Isberner

the large amount of probabilities necessary to build up Bayesian networks are a
problem. Although a physician will usually be capable to quantify P (Sj |Di) from
his expert knowledge, he will hardly be able to say something informed about
P (Sj |¬Di) – what is the probability of a symptom given that the disease is not
present? In an ME-environment, the expert has only to list whatever relevant
conditional probabilities he is aware of. Moreover, the two basic ingredients for
Bayesian networks, namely the set of conditional probabilities and the indepen-
dence assumptions, specify complete probabilistic knowledge, thereby detracting
from the flexible power of generic conditional information. ME-modelling, on
the other hand, preserves the generic nature of conditionals by minimizing the
amount of information being added.

Nevertheless, modelling ME-rule bases has to be done carefully so as to ensure
that all relevant dependencies are taken into account. This task can be difficult
and troublesome. Usually, the modelling rules are based somehow on statistical
data. To date, however, no tool is known that helps to find ME-optimal set of
rules. In [KI00], a general approach to solve the inverse representation problem
is presented which we will describe here for the ME-framework.

2.3 Searching for Structures of Knowledge

The most usual approach to discover “interesting” rules from data is to look
for rules with a significantly high (conditional) probability and a concise an-
tecedent [KIR96,AMS+96,MS98]. Basing relevance on frequencies, however, is
sometimes unsatisfactory and inadequate, in particular in complex domains like
medicine. Furthermore, the rules are considered as isolated pieces of knowledge,
no interaction between rules can be taken into account.

In order to obtain more structured information, one often searches for causal
relationships by investigating conditional independencies and thus non-inter-
activity between sets of variables [CH92,SGS93,Hec96,Bun96]. Some of these
algorithms also make use of optimization criteria which are based on entropy
[HC90,Gei92]. Although causality is undoubtedly most important for human
understanding, it seems to be too rigid a concept to represent human knowledge
in an exhaustive way. For instance, a person suffering from a flu is certainly sick
(P (sick|flu) = 1), and he often will complain about headache (P (headache|flu) =
0.9). Then we have P (headache|flu) = P (headache|flu ∧ sick), but we would
surely expect P (headache|¬flu) �= P (headache|¬flu ∧ sick)! Although the first
equality suggests a conditional independence between sick and headache, due to
the causal dependency between headache and flu, the second inequality shows
this to be (of course) false. Furthermore, a physician might also state some
conditional probability involving sick and headache, so that we obtain a complex
network of rules. Each of these rules will be considered relevant by the expert,
but none will be found when searching for conditional independencies! So, what
actually are the “structures of knowledge” by which conditional dependencies
(not independencies!) manifest themselves in data? What are the “footprints”
conditionals leave on probabilities when being learned inductively?

Footprints of Conditionals 103

3 Viewing Probabilistic Conditional Logic
as an Institution

After recalling the definition of an institution and fixing some basic notation, we
first present propositional logic in the institution framework. We then formalize
the logic of probabilistic conditionals as an institution, give some examples, and
demonstrate how well-known concepts like marginal distributions occur within
the institution context.

3.1 Preliminaries: Basic Definitions and Notations

If C is a category, |C | denotes the objects of C and /C/ its morphisms; for
both objects c ∈ |C | and morphisms ϕ ∈ /C/, we also write just c ∈ C and
ϕ ∈ C, respectively. Cop is the opposite category of C, with the direction of
all morphisms reversed. SET and CAT denote the categories of sets and of
categories, respectively. (For more information about categories, see e.g. [HS73]
or [Mac72].) The central definition of an institution [GB92] is the following (cf.
Figure 1 that visualizes the relationships within an institution):

Definition 1. An institution is a quadruple Inst = 〈Sig , Mod , Sen, |= 〉 with
a category Sig of signatures as objects, a functor Mod : Sig → CAT op yielding
the category of Σ-models for each signature Σ, a functor Sen : Sig → SET
yielding the sentences over a signature, and a |Sig |-indexed relation |=Σ ⊆
|Mod(Σ) |×Sen(Σ) such that for each signature morphism ϕ : Σ → Σ′ ∈ /Sig/,
for each m′ ∈ |Mod(Σ′) |, and for each f ∈ Sen(Σ) the following satisfaction
condition holds:

m′ |=Σ′ Sen(ϕ)(f) iff Mod(ϕ)(m′) |=Σ f

SET

CAT op

|=Sig
����������

����������

Sen

Mod

Σ

ϕ

�
Σ′

Mod(Σ) |=Σ Sen(Σ)

Mod(ϕ)

	

Mod(Σ′) Sen(Σ′)
�

Sen(ϕ)

|=Σ′

Fig. 1. Relationships within an institution Inst = 〈Sig , Mod , Sen, |= 〉 [GB92].

104 Christoph Beierle and Gabriele Kern-Isberner

For sets F, G of Σ-sentences and a Σ-model m we write m |=Σ F iff m |=Σ f
for all f ∈ F . The satisfaction relation is lifted to semantical entailment |=Σ

between sentences by defining F |=Σ G iff for all Σ-models m with m |=Σ F we
have m |=Σ G. F • = {f ∈ Sen(Σ) | F |=Σ f} is called the closure of F , and F
is closed if F = F •. The closure operator fulfils the closure lemma ϕ(F •) ⊆
ϕ(F)• and various other nice properties like ϕ(F •)• = ϕ(F)• or (F • ∪ G)• =
(F ∪G)•. A consequence of the closure lemma is that entailment is preserved
under change of notation carried out by a signature morphism, i.e. F |=Σ G
implies ϕ(F) |=ϕ(Σ) ϕ(G) (but not vice versa).

3.2 The Institution of Propositional Logic

In all circumstances, propositional logic seems to be the most basic logic. The
components of its institution InstB = 〈SigB, ModB, SenB, |=B 〉 will be defined
in the following.

Signatures: SigB is the category of propositional signatures. A propositional
signature Σ ∈ |SigB | is a set of propositional variables, Σ = {a1, a2, . . .}. A
propositional signature morphism ϕ : Σ → Σ′ ∈ /SigB/ is a function mapping
propositional variables to propositional variables.

Models: For each signature Σ ∈ SigB, ModB(Σ) contains the set of all propo-
sitional interpretations for Σ, i.e.

|ModB(Σ) | = {I | I : Σ → Bool}

where Bool = {true, false}. Due to its simple structure, the only morphisms
in ModB(Σ) are the identity morphisms. For each signature morphism ϕ :
Σ → Σ′ ∈ SigB, we define the functor ModB(ϕ) : ModB(Σ′) → ModB(Σ)
by (ModB(ϕ)(I ′))(ai) := I ′(ϕ(ai)) where I ′ ∈ ModB(Σ′) and ai ∈ Σ.

Sentences: For each signature Σ ∈ SigB, the set SenB(Σ) contains the usual
propositional formulas constructed from the propositional variables in Σ and
the logical connectives ∧ (and), ∨ (or), and ¬ (not). Additionally, the classical
(material) implication A ⇒ B is used as a syntactic variant for ¬A ∨ B. The
symbols � and ⊥ denote a tautology (like a ∨ ¬a) and a contradiction (like
a ∧ ¬a), respectively.

For each signature morphism ϕ : Σ → Σ′ ∈ SigB, the function SenB(ϕ) :
SenB(Σ) → SenB(Σ′) is defined by straightforward inductive extension on the
structure of the formulas; e.g. SenB(ϕ)(ai) = ϕ(ai) and SenB(ϕ)(A ∧ B) =
SenB(ϕ)(A) ∧ SenB(ϕ)(B). In the following, we will abbreviate SenB(ϕ)(A) by
just writing ϕ(A).

In order to simplify notations, we will often replace conjunction by juxtapo-
sition and indicate negation of a formula by barring it, i.e. AB = A ∧ B and
A = ¬A. As usual, an atom is a formula consisting of just a propositional vari-
able, a literal is a positive or a negated atom, an elementary conjunction is a
conjunction of literals, and a complete conjunction is an elementary conjunction
containing each atom either in positive or in negated form. ΩΣ denotes the set

Footprints of Conditionals 105

of all complete conjunctions over a signature Σ; if Σ is clear from the context,
we may drop the index Σ.

Note that there is an obvious bijection between |ModB(Σ) | and ΩΣ , associ-
ating with I ∈ |ModB(Σ) | the complete conjunction ωI ∈ ΩΣ in which an atom
ai ∈ Σ occurs in positive form iff I(ai) = true.

Satisfaction Relation: For any Σ ∈ |SigB |, the satisfaction relation

|=B,Σ ⊆ |ModB(Σ) | × SenB(Σ)

is defined as expected for propositional logic, e.g. I |=B,Σ ai iff I(ai) = true and
I |=B,Σ A ∧B iff I |=B,Σ A and I |=B,Σ B for ai ∈ Σ and A, B ∈ SenB(Σ).

Proposition 1. InstB = 〈SigB, ModB, SenB, |=B 〉 is an institution.

It is easy to prove this proposition since the satisfaction condition

I ′ |=B,Σ′ ϕ(A) iff ModB(ϕ)(I ′) |=B,Σ A

holds by straightforward induction on the structure of A. E.g., for a propositional
variable ai, we have I ′ |=B,Σ′ ϕ(ai) iff I ′(ϕ(ai)) = true iff (ModB(ϕ)(I ′))(ai) =
true iff ModB(ϕ)(I ′) |=B,Σ ai.

Example 1. Let Σ = {s, t, u} and Σ′ = {a, b, c} be two propositional signatures
with the atomic propositions s – being a scholar, t – being not married, u – being
single and a – being a student, b – being young, c – being unmarried. Let I ′ be the
Σ′-model with I ′(a) = true, I ′(b) = true, I ′(c) = false. Let ϕ : Σ → Σ′ ∈ SigB
be the signature morphism with ϕ(s) = a, ϕ(t) = c, ϕ(u) = c. The functor
ModB(ϕ) takes I ′ to the Σ-model I := ModB(ϕ)(I ′), yielding I(s) = I ′(a) =
true, I(t) = I ′(c) = false, I(u) = I ′(c) = false.

Note that in the example, ϕ is neither surjective nor injective. ϕ not being
surjective makes the functor ModB(ϕ) a forgetful functor – any information
about b (being young) in I ′ is forgotten in I. ϕ not being injective implies that
any two propositional variables from Σ mapped to the same element in Σ′ are
both being identified with the same proposition; thus, under the forgetful functor
ModB(ϕ), the interpretation of t (being not married) and u (being single) will
always be equivalent since ϕ(t) = ϕ(u).

3.3 The Institution of Probabilistic Conditional Logic

Based on InstB, we can now define the institution of probabilistic conditional
logic InstC = 〈SigC , ModC , SenC , |=C 〉. We will first give a very short intro-
duction to probabilistics as far as it is needed here.

Let Σ ∈ |SigB | be a propositional signature. A probability distribution (or
probability function) over Σ is a function P : SenB(Σ) → [0, 1] such that P (�) =
1, P (⊥) = 0, and P (A ∨ B) = P (A) + P (B) for any formulas A, B ∈ SenB(Σ)
with AB = ⊥. Each probability distribution P is determined uniquely by its

106 Christoph Beierle and Gabriele Kern-Isberner

values on the complete conjunctions ω ∈ ΩΣ , since P (A) =
∑

ω∈ΩΣ,ω |=B,Σ A

P (ω).

For two propositional formulas A, B ∈ SenB(Σ) with P (A) > 0, the conditional
probability of B given A is P (B|A) := P (AB)

P (A) . Any subset Σ1 ⊆ Σ gives rise
to a distribution PΣ1 : SenB(Σ1) → [0, 1] by virtue of defining PΣ1(ω1) =∑
ω∈ΩΣ,ω |=B,Σ ω1

P (ω) for all ω1 ∈ ΩΣ1 ; PΣ1 is called the marginal distribution of

P on Σ1.

Signatures: SigC is identical to the category of propositional signatures, i.e.
SigC = SigB.

Models: For each signature Σ, the objects of ModC(Σ) are probability distri-
butions over the propositional variables, i.e.

|ModC(Σ) | = {P | P is a probability distribution over Σ}

As for ModB(Σ), we assume in this paper that the only morphisms in ModC(Σ)
are the identity morphisms.

For each signature morphism ϕ : Σ → Σ′, we define a functor ModC(ϕ) :
ModC(Σ′) → ModC(Σ) by mapping each distribution P ′ over Σ′ to a distribution
ModC(ϕ)(P ′) over Σ. ModC(ϕ)(P ′) is defined by giving its value for all complete
conjunctions over Σ:

(ModC(ϕ)(P ′))(ω) := P ′(ϕ(ω)) =
∑

ω′:ω′ |=B,Σ′ ϕ(ω)

P ′(ω′)

where ω and ω′ are complete conjunctions over Σ and Σ′, respectively. We still
have to show:

Proposition 2. ModC(ϕ)(P ′) is a Σ-model.

It is straightforward to see that the equation used to define ModC(ϕ)(P ′) easily
generalizes to propositional formulas A ∈ SenB(Σ), that is to say it holds that
(ModC(ϕ)(P ′))(A) = P ′(ϕ(A)).

Another immediate consequence is the following:

Proposition 3. Let ϕ : Σ → Σ′ and P := ModC(ϕ)(P ′) as above. If ϕ is
injective, then the marginal distribution P ′

ϕ(Σ) of P ′ over ϕ(Σ) := {ϕ(x) | x ∈
Σ} ⊆ Σ′ is identical to P with variables ϕ(ai) in P ′ renamed to ai in P , i.e.
P ′

ϕ(Σ)(ω
′) = P (ϕ−1(ω′)) for all complete conjunctions ω′ over ϕ(Σ).

This proposition shows that the well-known (semantical) concept of a marginal
distribution coincides with the forgetful functor induced by an injective signature
morphism, forgetting the propositional variables not reached by a non-surjective
ϕ. If ϕ is non-injective, two propositional variables mapped to the same element
in Σ′ are identified. Therefore, any conjunction containing a negated and a non-
negated propositional variable both being identified under ϕ gets the probability
0. Thus, in the general case for non-surjective and non-injective ϕ, ModC(ϕ)(P ′)
is defined by ‘collapsing’ all propositional variables identified under ϕ and taking
the marginal distribution over the remaining variables reached by ϕ.

Footprints of Conditionals 107

Example 2. Let Σ, Σ′ and ϕ be as in Example 1. We define a Σ′-model P ′ by
assigning a probability P ′(ω′) to every complete conjunction over Σ′:

ω′ P ′(ω′) ω′ P ′(ω′) ω′ P ′(ω′) ω′ P ′(ω′)

abc 0.1950 abc 0.1758 abc 0.0408 abc 0.0519
abc 0.1528 abc 0.1378 abc 0.1081 abc 0.1378

Thus, for instance, the probability P ′(abc) of being a student, being young, and
being unmarried is 0.1950, and the probability P ′(abc) of being a student, not
being young, and being unmarried is 0.0408.

The functor ModC(ϕ) transforms P ′ into the following Σ-model P :

ω P (ω) ω P (ω) ω P (ω) ω P (ω)

stu 0.2358 stu 0.0000 stu 0.0000 stu 0.2277
stu 0.2609 stu 0.0000 stu 0.0000 stu 0.2756

For instance, the probability P (stu) of being a scholar, being not married, and
being single is 0.2358.

Sentences: For each signature Σ, the set SenC(Σ) contains probabilistic condi-
tionals (sometimes also called probabilistic rules) of the form

(B|A)[x]

where A, B ∈ SenB(Σ) are propositional formulas from InstB. x ∈ [0, 1] is a
probability value indicating the degree of certainty for the occurrence of B under
the condition A.

Note that a probabilistic fact of the form B[x] can easily be expressed as a
conditional (B|�)[x] with a tautology as trivial antecedent.

For each signature morphism ϕ : Σ → Σ′, the extension SenC(ϕ) : SenC(Σ)
→ SenC(Σ′) is defined by straightforward inductive extension on the structure
of the formulas: SenC(ϕ)((B|A)[x]) = (ϕ(B)|ϕ(A))[x].

Satisfaction Relation: The satisfaction relation |=C,Σ ⊆ |ModC(Σ) |×SenC(Σ)
is defined, for any Σ ∈ |SigC |, by

P |=C,Σ (B|A)[x] iff P (A) > 0 and P (B | A) =
P (AB)
P (A)

= x

Note that for probabilistic facts we have P |=C,Σ (B|�)[x] iff P (B) = x from the
definition of the satisfaction relation since P (�) = 1.

Proposition 4. InstC = 〈SigC , ModC , SenC , |=C 〉 is an institution.

Example 3. Let Σ, Σ′, P, P ′ and ϕ be as in Example 2. Then P ′ |=C,Σ′

(b|�)[0.6614] since the probability of being young is P ′(b) = 0.6614, and P ′ |=C,Σ′

(b|a)[0.8] since the probability of being young under the condition of being a stu-
dent is P ′(b | a) = 0.8.

108 Christoph Beierle and Gabriele Kern-Isberner

Similarly, P |=C,Σ (u|�)[0.4967] since under P , the probability of being single
is P (u) = 0.4967. This immediately implies P ′ |=C,Σ′ (c|�)[0.4967] (i.e. under P ′,
the probability of being unmarried is 0.4967) due to the satisfaction condition
since ϕ(u) = c.

In [BKI02], we extend our institutional view of probabilistic conditional logic.
In that paper, the institution InstP of probabilistic propositional logic, having
probabilistic facts of the form A[x] as sentences, is defined additionally and the
relationships between the three institutions InstB, InstP , and InstC are investi-
gated in detail. This is done by using institution morphisms [GB92,GR02] and
institution embeddings, telling us, e.g., precisely the possibilities of interpret-
ing probabilistic conditionals as probabilistic or propositional formulas and vice
versa.

4 Conditional Theories
and the Inverse Representation Problem

The general institution framework provides a rich set of results about theories as
well as about their presentations and interrelationships. After reviewing briefly
the basic concepts and results, we develop our notions of the representation
problem and the inverse representation problem based on theory presentations
and illustrate them in various application areas.

4.1 Theories and Their Presentations
The results in this subsection are taken from [GB92] and hold for any institution,
thus in particular also for the institution of probabilistic conditional logic:

A Σ-presentation is a pair 〈Σ, F 〉 with F ⊆ Sen(Σ), and a Σ-theory is a
presentation 〈Σ, F 〉 such that F is closed, i.e. F = F • (cf. Section 3.1). Given
two theories T = 〈Σ, F 〉 and T ′ = 〈Σ′, F ′〉, a theory morphism ϕ from T to T ′,
written ϕ : T → T ′, is a signature morphism ϕ : Σ → Σ′ such that ϕ(F) ⊆ F ′.
Σ-theories and their morphisms form a category. Mod(〈Σ, F 〉) denotes the full
subcategory of Mod(Σ) of all Σ-models that satisfy F . For a theory morphism
ϕ : T → T ′, the restriction and corestriction of the functor Mod(ϕ) yields a
functor Mod(ϕ) : Mod(T ′) → Mod(T).

The presentation lemma says that in order to check that a signature mor-
phism is a theory morphism, it suffices to check only the sentences of a pre-
sentation for entailment: For presentations 〈Σ, F 〉 and 〈Σ′, F ′〉, ϕ : 〈Σ, F •〉 →
〈Σ′, F ′•〉 is a theory morphism iff ϕ(F) ⊆ F ′•.

From other general properties and theorems for institutions given in [GB92],
we can also conclude e.g. that the category of probabilistic conditional logical
theories is cocomplete since SigC is cocomplete, allowing us putting theories
together from subtheories.

4.2 The Representation Problem and Preferred Models
The original motivation for institutions was the definition of the semantics of
the specification language Clear [BG80], and institutions have been used for

Footprints of Conditionals 109

various aproaches to modularized specification and programming development,
often involving the notion of an abtract data type (ADT). When trying to use
formal methods in software development, one quickly comes accross the need
for a rigorous method for specifying, refining, and implementing data types at
levels that are independent from a specific representation used in e.g. traditional
programming languages. Using institutions, a specification is a (theory) presen-
tation 〈Σ, F 〉. This certainly meets the requirement of abstractness; but what
does 〈Σ, F 〉 represent? The general institution framework provides Mod(〈Σ, F 〉)
as a semantics for 〈Σ, F 〉, but in many cases we are interested only in specific
models. This is what we call the representation problem:

Given a specification 〈Σ, F 〉, select a class of (preferred) models M ⊆
Mod(〈Σ, F 〉) as its desired representation.

In every specification approach based on logic, an answer to the representation
problem must be given. In the initial approach to ADT specifications one is in-
terested in models that are initial in the category Mod(〈Σ, F 〉); other approaches
take the terminal models, the finitely generated models, or even all models as in
so-called loose ADT specifications (cf. e.g. [BG80, EM85, ST97, BV91, Wir90,
GB92]).]

When it comes to reasoning, the answer given to the representation problem
must be taken into account. Whereas classical logical reasoning is done with
respect to all models, reasoning with respect to the models selected according to
the representation problem requires tailored inference techniques. For instance,
when reasoning with respect to equationally defined initial ADTs, induction
should be used since the initial models are finitely generated.

While for ADT specifications the selection of models M ⊆ Mod(〈Σ, F 〉) re-
quires special reasoning techniques, the selection itself is not motivated by these
reasoning techniques. On the other hand, this is indeed the case for approaches
in defeasible reasoning. Here, the motivation to focus on preferred models is
to select models which are most appropriate for yielding plausible conclusions.
The set of formulas F in a specification 〈Σ, F 〉 is taken to specify incomplete
knowledge, and basing entailment upon a relatively small set of models (the
most plausible ones) means to extend the knowledge expressed by F , so as to
derive more (tentative) conclusions than can be obtained by classical deduction.
If there is only one most plausible model, then this model completes the available
knowledge, and hence inductively represents F . Thereby, in order to get stronger
(‘better’) inference capabilities, one deliberately accepts leaving the framework
of classical logical reasoning and choosing e.g. the preferential models approach
of nonmonotonic logics (cf. [Sho87,Mak89,KLM90]) as appropriate paradigm.

In a probabilistic environment, the problem of plausible inference is even
more difficult to be dealt with, since ModC(〈Σ, R〉) typically contains a huge
number of very different distributions, all reflecting the conditional knowledge
given by R. Entailment based on all models is quite weak, e.g. it is not possible
to derive the probability of each conjunct from the probability of a conjunction.
In general, mostly intervals of possible probability values can be obtained which
are often inexpressively large.

110 Christoph Beierle and Gabriele Kern-Isberner

Example 4. Let R be a set containing two probabilistic conditionals both having
C as its conclusion, one under the condition A and the other one under the
condition B, i.e. R = {(C|A)[x], (C|B)[y]} for some given probabilities x, y ∈
(0, 1). What does this mean for the occurrence of C under the condition of both
A and B? We can show that for any probability z ∈ (0, 1) the set R is compatible
with (C|AB)[z], that is, for all (non-trivial) x, y, z ∈ (0, 1), there is a probability
distribution P such that both P |=C R and P |=C (C|AB)[z]. So, actually nothing
can be derived about the probability of (C|AB) from R.

The problem of yielding plausible inferences from a set R of probabilistic
conditionals can be solved by the principle of maximum entropy (ME-principle)
in the following way: This information-theoretical principle selects a distribution
P ∗ from ModC(〈Σ, R〉) whose entropy

H(P ∗) = −
∑
ω∈Ω

P ∗(ω) log2 P ∗(ω)

is maximal. (For some strong arguments supporting this approach see e.g. [SJ80,
PV90, Par94, RKI97, KI01b]). Similar as for initial ADT specifications (initial
objects are unique up to isomorphisms), this selects a unique model (cf. [Csi75]),
denoted by P ∗ = ME(〈Σ, R〉), as the desired representation for the specification
〈Σ, R〉 which can be used for inferences. As shown in [KI98], ME(〈Σ, R〉) can be
written in the form

ME(〈Σ, R〉)(ω) = α0

∏
1�i�n

ω|=AiBi

α1−xi

i

∏
1�i�n

ω|=AiBi

α−xi

i (1)

with the αi’s being chosen appropriately so as to satisfy all of the conditional
constraints in R.

Thus, also in the ME-approach to probabilistic logic, the preferred model
selection for a specification 〈Σ, R〉 is motivated by improved reasoning facilities.
Based on the single model ME(〈Σ, R〉) selected, the (incomplete) knowledge
given by R is completed in an information-theoretically optimal way: Maximiz-
ing entropy in ModC(〈Σ, R〉) means to permit as much indeterminateness as
possible, so that R be represented most faithfully, without external knowledge
being added.

4.3 The Inverse Representation Problem

In system and software development, one generally starts with a set of require-
ments that have to be specified, further refined, revised, implemented, etc., until
one arrives at a model that (hopefully) meets all the requirements. Using spec-
ifications along this way, various instances of the representation problem will
arise.

For probabilistic conditionals, there is also another line of development. Given
(possibly large) sets of data, statistical information can be generated from it, giv-
ing us a probability distribution and thus a model. What one is interested in the

Footprints of Conditionals 111

area of knowledge discovery in data (KDD) and data mining is to find a set of
peculiarly interesting or relevant rules that hold in the given data and may thus
be taken as a representation for it. In classical KDD tasks, sentences or rules
are often considered to be relevant if they have a certain statistical significance.
In mathematical contexts, one often seeks for a minimal set of sentences (or ax-
ioms) describing a (set of) preferred model(s). When axiomatizing the essential
properties of a concrete data type in an ADT specification, one might aim at
a set of equations that is confluent and terminating when interpreted as a set
of rewrite rules, while minimality of the set of equations is not important. A
further characterization of relevant sentences is to require syntactical simplicity:
a single-headed conditional with only one literal in its conclusion is likely to be
more interesting than a conditional containing a complex formula in its conclu-
sion. So, in general, the notion of relevance depends heavily on the corresponding
application and is – at least in KDD – often frequency-based.

From a more abstract point of view, however, the problem of discovering
relevant relationships (in data or in models) can be seen as the problem to
compute a set of formulas which represents a given model (or a given set of
models) according to some (inductive) representation method. Therefore, we
propose to call this the inverse representation problem:

Given a set of Σ-models M ⊆ Mod(〈Σ, F 〉), find a set of (relevant)
sentences F such that the specification 〈Σ, F 〉 has M as its desired rep-
resentation.

As before, M may be a singleton or an arbitrary subset of Mod(〈Σ, F 〉).
Note that by viewing knowledge discovery as an inverse representation prob-

lem, the vague notion of relevance is given a more precise meaning: relevance
here means relevance with respect to a particular representation method. It can
be sharpened by combining it with a demand for minimality, in order to find a
kind of a base for the given model (or given models, respectively), as in mathe-
matical contexts. Alternatively, one can focus on computing rules with a simple
syntax to make the discovered knowledge most expressive and clear. So, although
the inverse representation problem provides a clear formal frame for knowledge
discovering, context-dependent aspects can also be taken into regard.

Let us consider again the logic InstC of probabilistic conditionals. We can
rephrase the inverse representation problem within the ME-framework as follows:

Given a probability distribution P ∈ ModC(Σ), find a set of rules R such
that P ∈ ModC(〈Σ, R〉) and such that the entropy of P is maximal in
ModC(〈Σ, R〉), i.e. P = ME(〈Σ, R〉).

Whereas previously no tool had been known that helps one to find such an
ME-optimal set of rules, in [KI00] a general approach to solve the inverse repre-
sentation problem was presented which works for ME-representation and related
methods. In the following, an overview of this approach for the ME-framework
(see also [KI01c]) will be given.

112 Christoph Beierle and Gabriele Kern-Isberner

5 Discovery of Knowledge Structures

In this section, we briefly describe and exemplify a method which can be used
to compute a concise set of probabilistic conditionals R from a given distribu-
tion P over a signature Σ such that P = ME(〈Σ, R〉). The basic idea is to
exploit numerical relationships as manifestations of interactions of underlying
conditional knowledge. Our approach differs from usual knowledge discovery
and data mining methods in that it takes explicitly inductive representation, or
inference, respectively, into consideration. It is not based on observing condi-
tional independencies, but aims at learning relevant conditional dependencies in
a non-heuristic way. As a further novelty, our method does not compute single,
isolated rules, but yields as a result a set of rules in taking into account highly
complex interactions of rules. Since single-elementary conditionals, i.e. condition-
als whose antecedents are conjunctions of literals, and whose consequents consist
of a single literal, are often found to be particularly interesting and informative,
we focus on computing sets R containing only single-elementary conditionals in
the sequel.

To simplify notation, we will mostly omit the signature subscript Σ as well
as the C subscript, since both are clear from the context. We will consider also
structural conditionals, i.e. conditionals (B|A) with A, B ∈ SenB(Σ), without
attached probabilities. So, in order to make differences clear, we will denote sets
of probabilistic conditionals with R∗, and the corresponding sets of structural
conditionals with R, and vice versa. In particular, the ME -optimal distribution
appertaining to a set R∗ of probabilistic conditionals will be denoted by ME(R∗),
and we will say that ME(R∗) is generated by R∗.

5.1 The Footprints of Conditionals

In Section 2.3, we argued that, in particular in complex domains, basing rel-
evance of rules on frequencies is sometimes unsatisfactory and inadequate. In-
stead, we asked what the “footprints” are conditionals leave on probabilities
when being learned inductively. To answer this question, we first take a struc-
tural look on conditionals, bare of numerical values, that is, we focus on the set
R = {(B1|A1), . . . , (Bn|An)} of measure-free conditionals. Conditionals are quite
extraordinary pieces of knowledge, flexible and dynamic yet difficult to handle.
First, they are objects of a non-boolean nature, demanding for non-classical rep-
resentation techniques. Second, they are different from material implication in
classical logic, in general not describing certain knowledge but plausible conclu-
sions. An adequate way to model its non-classical uncertainty is to represent a
conditional (B|A) as a generalized indicator function on worlds ω ∈ Ω, setting

(B|A)(ω) =

⎧⎨⎩
1 : ω |= AB

0 : ω |= AB
u : ω |= A

(2)

where u stands for unknown (cf. [DeF74,Cal91]). When we consider (finite) sets of
conditionals R = {(B1|A1), . . . , (Bn|An)}, we have to modify (2) appropriately

Footprints of Conditionals 113

to identify the impact of each conditional in R on worlds ω in Ω. So to each
conditional (Bi|Ai) in R, we associate two abstract symbols a+

i , a−
i , symbolizing

a (possibly) positive effect on verifying worlds and a (possibly) negative effect
on falsifying worlds:

σi(ω) =

⎧⎨⎩
a+

i if (Bi|Ai)(ω) = 1
a−

i if (Bi|Ai)(ω) = 0
1 if (Bi|Ai)(ω) = u

(3)

a+
1 , a−

1 , . . . , a+
n , a−

n are taken as generatorsof a (free abelian) group FR = 〈a+
1 , a−

1 ,
. . . , a+

n , a−
n 〉, so that the neutral group element, 1, corresponds to the neutral

behavior of the conditionals on worlds (i.e. (Bi|Ai)(ω) = u). Since all σi(ω) are
group elements, we can form (arbitrary) products. The function σR : Ω → FR,
defined by

σR(ω) =
∏

1�i�n

σi(ω) =
∏

1�i�n
ω|=AiBi

a+
i

∏
1�i�n

ω|=AiBi

a−
i (4)

describes the all-over effect of R on ω. σR(ω) is called (a representation of) the
conditional structure of ω with respect to R.

Example 5. Let R = {(c|a), (c|b)}, where a, b, c are atoms. We associate a+
1 , a−

1

with the first conditional, (c|a), and a+
2 , a−

2 with the second one, (c|b). Since
ω = abc verifies both conditionals, we obtain σR(abc) = a+

1 a+
2 . In the same way,

e.g., σR(abc) = a−
1 a−

2 , σR(abc) = a+
1 and σR(abc) = a−

2 .

Notice the striking similarity between (4) and (1) – in (1), the abstract symbols
a+

i , a−
i of (4) have been replaced by the numerical values α1−xi

i and α−xi

i , re-
spectively (α0 is simply a normalizing factor). Therefore, the ME-distribution
ME(R∗) follows the conditional structure of worlds with respect to the condi-
tionals in R∗ and is thus most adequate to represent probabilistic conditional
knowledge. The αi’s bear the crucial conditional information, and α1−xi

i , α−xi

i

are the “footprints” left on the probabilities when ME-learning R∗ (also cf.
[KI98]).

In the following, we will make use of these ideas and prepare the theoretical
ground for the data mining techniques to be presented in the next two sections.

5.2 Conditional Indifference

To comply with the group theoretical structure of FR, we introduce the free
abelian group Ω̂ := 〈ω | ω ∈ Ω〉, generated by all ω ∈ Ω, and consisting
of all words ω̂ = ω1

r1 . . . ωm
rm with ω1, . . . , ωm ∈ Ω and integers r1, . . . rm.

We will often use fractional representations for the elements of Ω̂, that is, for
instance, we will write

ω1

ω2
instead of ω1ω−1

2 . Now σR may be extended to Ω̂ in

a straightforward manner by setting σR(ω̂) = σR(ω1)r1 . . . σR(ωm)rm , yielding
a homomorphism of groups σR : Ω̂ → FR. Similarly, we extend probability

114 Christoph Beierle and Gabriele Kern-Isberner

distributions P to homomorphisms P : Ω̂ → (R+, ·) from Ω̂ into the non-negative
real numbers by setting P (ω1

r1 . . . ωm
rm) = P (ω1)r1 · . . . ·P (ωm)rm . Having the

same conditional structure defines an equivalence relation ≡R on Ω̂: ω̂1 ≡R ω̂2

iff σR(ω̂1) = σR(ω̂2), i.e. iff ω̂1ω̂−1
2 ∈ ker σR := {ω̂ ∈ Ω̂ | σR(ω̂) = 1}. Thus, the

kernel of σR plays an important part in identifying the conditional structure of
elements ω̂ ∈ Ω̂.

Besides the explicit representation of knowledge by R, also the implicit nor-
malizing constraint P (�|�) = 1 has to be taken into account. It is easy to check
that ker σ(
|
) = Ω̂0 := {ω̂ = ω1

r1 ·. . .·ωm
rm ∈ Ω̂ |

∑m
j=1 rj = 0}. Two elements

ω̂1 = ωr1
1 . . . ωrm

m , ω̂2 = νs1
1 . . . ν

sp
p ∈ Ω̂ are equivalent modulo Ω̂0, ω̂1 ≡
 ω̂2, iff

ω̂1Ω̂0 = ω̂2Ω̂0, i.e. iff
∑

1�j�m rj =
∑

1�k�p sk. This means that ω̂1 and ω̂2 are
equivalent modulo Ω̂0 iff they both are a (cancelled) product of the same num-
ber of generators, each generator being counted with its corresponding exponent.
Therefore, we set ker0 σR := ker σR ∩ Ω̂0 = ker σR∪{(
|
)}.

Now, this formalization allows us to make clear what it means that a distribu-
tion P “follows the conditional structures” imposed by R in the next definition.
To make it a very concise one, we focus on the principal case of positive distri-
butions (for the general definition, cf. [KI01b]).

Definition 2. Suppose P is a (positive) probability distribution, and let R =
{(B1|A1), . . . , (Bn|An)} be a set of structural conditionals. P is (conditionally)
indifferent with respect to R iff P (ω̂1) = P (ω̂2), whenever ω̂1 ≡R ω̂2 and
ω̂1 ≡
 ω̂2, for all ω̂1, ω̂2 ∈ Ω̂.

If P is indifferent with respect to R, then it does not distinguish between elements
ω̂1 ≡
 ω̂2 with the same conditional structure with respect to R. Conversely,
any deviation P (ω̂) �= 1 can be explained by the conditionals in R acting on ω̂ in
a non-balanced way. Note that the notion of indifference only aims at observing
conditional structures, without making use of any probabilities associated with
the conditionals. The following proposition shows, that conditional indifference
establishes a connection between the kernels ker0 σR and ker0 P := {ω̂ ∈ Ω̂0 |
P (ω̂) = 1} which will be crucial to elaborate conditional structures:

Proposition 5. A probability distribution P is indifferent with respect to a (fi-
nite) set R of structural conditionals iff ker0 σR ⊆ ker0 P .

Any ME-distribution is indifferent with respect to its generating set of condi-
tionals:

Proposition 6. Let R∗ be a (finite) set of probabilistic conditionals with struc-
tural (i.e. measure-free) counterpart R, and let P ∗ = ME(R∗) the ME-distribu-
tion generated by R∗. Then P ∗ is indifferent with respect to R.

The proof of this proposition is straightforward by observing (1).

Example 6. We continue Example 5. Here we observe

σR

(
abc · abc

abc · abc

)
=

σR(abc) · σR(abc)
σR(abc) · σR(abc)

=
a+

1 a+
2 · 1

a+
1 · a+

2

= 1,

Footprints of Conditionals 115

that is, abc·abc
abc·abc

∈ ker0 σR. Then any ME-representation P ∗ = ME({(c|a)[x],

(c|b)[y]}) with x, y ∈ [0, 1] will fulfill P ∗
(

abc·abc
abc·abc

)
= 1, i.e. P ∗(abc)P ∗(abc) =

P ∗(abc)P ∗(abc).

5.3 An Algorithm for the Discovery of Rules

The concept of conditional structures, however, is not only an algebraic means
to judge well-behavedness with respect to conditionals [KI01a]. As group ele-
ments, they make conditional effects on worlds computable and thereby allow
us to study interactions between different conditionals in R∗. On (multis)sets of
worlds (i.e. elements of Ω̂), we may observe cancellations or accumulations of
conditional impacts which are reflected by the corresponding ME-representation
(see Example 6 above). Conversely, finding a set of rules which is able to represent
a given probability distribution P via ME-methods can be done by elaborating
numerical relationships in P , interpreting them as manifestations of underlying
conditional dependencies. The procedure to discover appropriate sets of rules is
sketched in the following and will be illustrated by an example application in
the next section (for full details of the algorithm, we refer to [KI01b]):

– Start with a set B of single-elementary rules the length of which is con-
sidered to be large enough to capture all relevant dependencies. Ideally, B
would consist of rules whose antecedents have maximal length (i.e. number
of variables -1).

– Search for numerical relationships in P by investigating which products of
probabilities match, in order to calculate ker0 P .

– Compute the corresponding conditional structures with respect to B, yield-
ing equations of group elements in FB.

– Solve these equations by forming appropriate factor groups of FB.
– Building these factor groups correspond to eliminating and joining the basic

conditionals in B to make their information more concise, in accordance with
the numerical structure of P . Actually, the antecedents of the conditionals
in B are shortened so as to comply with the numerical relationships in P .

As strange as this connection between knowledge discovery and group theory
might appear at first sight, it is obvious from an abstract and methodological
point of view: Considering knowledge discovery as an operation inverse to in-
ductive knowledge representation, the use of group theoretical means to realize
invertability is bold, but straightforward. Moreover, the joint impact of con-
ditionals and their interactions can be symbolized by products and quotients,
respectively. Their handling in a group theoretical structure allows a system-
atic disentangling of highly complex conditional interaction, thereby presenting
a completely new approach to discover “structures of knowledge”.

5.4 An Application Example

We will now illustrate the method described in the previous section by an exam-
ple. Given some positive probability distribution P ′, we will show how to calcu-

116 Christoph Beierle and Gabriele Kern-Isberner

late efficiently a set S∗ of (probabilistic) conditionals such that P ′ = ME(S∗).
P ′ is indifferent with respect to each such set S∗, so we have ker0 σS ⊆ ker0 P ′,
thereby relating numerical relationships to structural information about the rel-
evant conditionals.

Example 7. Let Σ′ = {a, b, c} be the propositional signature introduced in Ex-
ample 1, i.e. with the three propositional variables a – being a student, b – being
young, and c – being unmarried. Further, let P ′ ∈ ModC(Σ′) be the distribution
given in Example 2 which we repeat here for convenience:

ω′ P ′(ω′) ω′ P ′(ω′) ω′ P ′(ω′) ω′ P ′(ω′)

abc 0.1950 abc 0.1758 abc 0.0408 abc 0.0519
abc 0.1528 abc 0.1378 abc 0.1081 abc 0.1378

Important relationships between probabilities are revealed by

P ′(abc) = P ′(abc),
P ′(abc)
P ′(abc)

=
P ′(abc)
P ′(abc)

,
P ′(abc)
P ′(abc)

=
P ′(abc)
P ′(abc)

.

We list the twelve basic single-elementary conditionals of B which we start with:

ψa,0=(a|bc) ψb,0=(b|a c) ψc,0=(c|ab)
ψa,1=(a|bc) ψb,1=(b|ac) ψc,1=(c|ab)
ψa,2=(a|bc) ψb,2=(b|ac) ψc,2=(c|ab)
ψa,3=(a|bc) ψb,3=(b|ac) ψc,3=(c|ab)

with corresponding generators b+
v,l, b

−
v,l(v ∈ Σ, 1 � l � 3) of FB. The numerical

relationships yield the following group equations :

b−
a,2b

+
b,0b

−
c,1 = σB(abc)

= σB(abc) = b−
a,0b

−
b,0b

−
c,0

b+
a,3b

+
b,3b

+
c,3 · b−

a,2b
+
b,0b

−
c,1 = σB(abc)σB(abc)

= σB(abc)σB(abc) = b+
a,2b

+
b,2b

−
c,3 · b−

a,3b
+
b,1b

+
c,1

b+
a,1b

−
b,3b

+
c,2 · b−

a,0b
−
b,0b

−
c,0 = σB(abc)σB(abc)

= σB(abc)σB(abc) = b+
a,0b

−
b,2b

−
c,2 · b−

a,1b
−
b,1b

+
c,0

Considering these equations for each atom a, b, c separately and omitting the
{+,−}-signs, we obtain the following equivalences modulo an appropriate sub-
group of FB:

ba,0 ≡ ba,1 ≡ ba,2 ≡ ba,3, bc,0 ≡ bc,1 ≡ bc,2 ≡ bc,3, bb,0 ≡ 1, bb,3 ≡ bb,1bb,2.

Eliminating ψb,0 (due to bb,0 ≡ 1) and joining conditionals according to these
equations results in the set S = {(a|�), (c|�), (b|a), (b|c)} of structural condition-
als. Associating the proper probabilities (which are directly computable from P ′)
with these structural conditionals, we obtain

S∗ = {(a|�)[0.4635], (c|�)[0.4967], (b|a)[0.8], (b|c)[0.7]}

Footprints of Conditionals 117

as an ME-generating set for P ′, i.e. P ′ = ME(S∗). That means, that these four
probabilistic conditionals represent P ′ with respect to the ME -method. The
twelve conditionals of the set B which we started with have been modified, and
their number has been reduced considerably, so as to obtain a much more concise
set as ME -representation of P ′.

6 Conclusions and Further Work

In this paper, we choose the abstract logical concept of institutions as a theoret-
ical framework for probabilistic conditionals. We described how inductive repre-
sentation of and reasoning with conditional knowledge can be looked upon as an
instance of quite a general representation problem. Moreover, we showed that
the crucial problem of discovering relevant conditional relationships in statisti-
cal data can also be addressed in this formal framework, namely, by considering
knowledge discovery as an operation which is inverse to inductive knowledge
representation. This gave rise to phrasing the inverse representation problem. In
order to exemplify our ideas, we made use of the information-theoretical princi-
ple of maximum entropy as a most appropriate inductive representation method
in probabilistics. We briefly described an approach to compute sets of condi-
tionals from statistical data, which are optimal with respect to this principle.
Here, the notion of conditional structures proved to be most helpful to search
for the “footprints” giving evidence for conditional relationships in statistical
information. This connection between formal logical work and practical uncer-
tain reasoning is part of the Condor project and will be continued there. In
particular, we will elaborate these ideas also in ordinal frameworks.

References

[AMS+96] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast
discovery of association rules. In U.M. Fayyad, G. Piatetsky-Shapiro,
P. Smyth, and R. Uthurusamy, editors, Advances in knowledge discovery
and data mining, pages 307–328. MIT Press, Cambridge, Mass., 1996.

[BG80] R. Burstall and J. Goguen. The semantics of Clear, a specification lan-
guage. In Proceedings of the 1979 Copenhagen Winterschool on Abstract
Software Specification, volume 86 of Lecture Notes in Computer Science,
pages 292–332, Berlin, 1980. Springer-Verlag.

[BHP+92] C. Beierle, U. Hedtstück, U. Pletat, P. H. Schmitt, and J. Siekmann. An
order-sorted logic for knowledge representation systems. Artificial Intelli-
gence, 55(2–3):149–191, 1992.

[BKI02] C. Beierle and G. Kern-Isberner. Looking at probabilistic conditionals from
an institutional point of view. In Workshop Conditionals, Information, and
Inference. Hagen, 2002.

[Bun96] W. Buntine. A guide to the literature on learning probabilistic net-
works from data. IEEE Transactions on Knowledge and Data Engineering,
8(2):195–210, 1996.

118 Christoph Beierle and Gabriele Kern-Isberner

[BV87] C. Beierle and A. Voss. Viewing implementations as an institution. In D.H.
Pitt, A. Poigné, and D.E. Rydeheard, editors, Category Theory and Com-
puter Science, volume 283 of Lecture Notes in Computer Science, Berlin,
1987. Springer-Verlag.

[BV91] C. Beierle and A. Voss. Stepwise software development: Combining ax-
iomatic and algorithmic approaches in algebraic specifications. Technology
and Science of Informatics, 10(1):35–51, January 1991.

[Cal91] P.G. Calabrese. Deduction and inference using conditional logic and prob-
ability. In I.R. Goodman, M.M. Gupta, H.T. Nguyen, and G.S. Rogers,
editors, Conditional Logic in Expert Systems, pages 71–100. Elsevier, North
Holland, 1991.

[CDLS99] R.G. Cowell, A.P. Dawid, S.L. Lauritzen, and D.J. Spiegelhalter. Proba-
bilistic networks and expert systems. Springer, New York Berlin Heidelberg,
1999.

[CFH95] G. Crocco, L. Fariñas del Cerro, and A. Herzig, editors. Conditionals:
From Philosophy to Computer Science. Studies in Logic and Computation.
Oxford University Press, 1995.

[CH92] G.F. Cooper and E. Herskovits. A bayesian method for the induction of
probabilistic networks from data. Machine learning, 9:309–347, 1992.

[Csi75] I. Csiszár. I-divergence geometry of probability distributions and mini-
mization problems. Ann. Prob., 3:146–158, 1975.

[DeF74] B. DeFinetti. Theory of Probability, volume 1,2. John Wiley and Sons,
New York, 1974.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1 – Equa-
tions and Initial Semantics. EATCS Monographs on Theoretical Computer
Science. Volume 6, Springer-Verlag, Berlin, 1985.

[GB92] J. Goguen and R. Burstall. Institutions: Abstract model theory for spec-
ification and programming. Journal of the ACM, 39(1):95–146, January
1992.

[Gei92] D. Geiger. An entropy-based learning algorithm of bayesian conditional
trees. In Proceedings Eighth Conference on Uncertainty in Artificial Intel-
ligence, pages 92–97, 1992.

[GR02] J. A. Goguen and G. Rosu. Institution morphisms. In D. Sannella, editor,
Festschrift for Rod Burstall. 2002. (to appear).

[GT00] J. Goguen and W. Tracz. An implementation-oriented semantics for mod-
ule composition. In G. Leavens and M. Sitaraman, editors, Foundations of
Component-based Systems, pages 231–263. Cambridge, 2000.

[HC90] E. Herskovits and G. Cooper. Kutató: An entropy-driven system for con-
struction of probabilistic expert systems from databases. Technical Report
KSL-90-22, Knowledge Systems Laboratory, 1990.

[Hec96] D. Heckerman. Bayesian networks for knowledge discovery. In U.M.
Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Ad-
vances in knowledge discovery and data mining. MIT Press, Cambridge,
Mass., 1996.

[HS73] H. Herrlich and G. E. Strecker. Category theory. Allyn and Bacon, Boston,
1973.

[KI98] G. Kern-Isberner. Characterizing the principle of minimum cross-entropy
within a conditional-logical framework. Artificial Intelligence, 98:169–208,
1998.

Footprints of Conditionals 119

[KI00] G. Kern-Isberner. Solving the inverse representation problem. In Pro-
ceedings 14th European Conference on Artificial Intelligence, ECAI’2000,
pages 581–585, Berlin, 2000. IOS Press.

[KI01a] G. Kern-Isberner. Conditional preservation and conditional indifference.
Journal of Applied Non-Classical Logics, 11(1-2):85–106, 2001.

[KI01b] G. Kern-Isberner. Conditionals in nonmonotonic reasoning and belief re-
vision. Springer, Lecture Notes in Artificial Intelligence LNAI 2087, 2001.

[KI01c] G. Kern-Isberner. Discovering most informative rules from data. In Pro-
ceedings International Conference on Intelligent Agents, Web Technologies
and Internet Commerce, IAWTIC’2001, 2001.

[KIR96] G. Kern-Isberner and H.P. Reidmacher. Interpreting a contingency table
by rules. International Journal of Intelligent Systems, 11(6), 1996.

[KLM90] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, pref-
erential models and cumulative logics. Artificial Intelligence, 44:167–207,
1990.

[Mac72] S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag,
New York, 1972.

[Mak89] D. Makinson. General theory of cumulative inference. In M. Reinfrank
et al., editors, Non-monotonic Reasoning, pages 1–18. Springer Lecture
Notes on Artificial Intelligence 346, Berlin, 1989.

[MS98] N. Megiddo and R. Srikant. Discovering predictive association rules. In
Proceedings of the 4th International Conference on Knowledge Discovery
in Databases and Data Mining, 1998.

[Par94] J.B. Paris. The uncertain reasoner’s companion – A mathematical perspec-
tive. Cambridge University Press, 1994.

[PV90] J.B. Paris and A. Vencovská. A note on the inevitability of maximum en-
tropy. International Journal of Approximate Reasoning, 14:183–223, 1990.

[RKI97] W. Rödder and G. Kern-Isberner. Representation and extraction of infor-
mation by probabilistic logic. Information Systems, 21(8):637–652, 1997.

[SGS93] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search.
Number 81 in Lecture Notes in Statistics. Springer, New York Berlin Hei-
delberg, 1993.

[Sho87] Y. Shoham. A semantical approach to non-monotonic logics. In Proceed-
ings of the Tenth International Joint Conference on Artificial Intelligence,
IJCAI’87, 1987.

[SJ80] J.E. Shore and R.W. Johnson. Axiomatic derivation of the principle of
maximum entropy and the principle of minimum cross-entropy. IEEE
Transactions on Information Theory, IT-26:26–37, 1980.

[ST97] D. Sannella and A. Tarlecki. Essential comcepts for algebraic specification
and program development. Formal Aspects of Computing, 9:229–269, 1997.

[Tar96] A. Tarlecki. Moving between logical systems. In M. Haveraaen, O. Owe,
and O.-J. Dahl, editors, Recent Trends in Data Type Specifications, volume
1130 of Lecture Notes in Computer Science, pages 478–502, Berlin, 1996.
Springer-Verlag.

[Wir90] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 675–788. Elsevier Science
Publishers B.V., 1990.

Time for Thinking Big in AI

Wolfgang Bibel

TU Darmstadt, Computer Science, Intellectics Group,
Alexanderstr. 10, D-64283 Darmstadt, Germany

bibel@informatik.tu-darmstadt.de

1 Introduction

Today it is commonplace to talk about the revolution going on in our society,
driven by information technology. Through talking about the ongoing changes
people seem to compensate their uneasiness with the restlessness in this world.
Few of those heralding the future developments are actually looking further
ahead than perhaps five or ten years. And even fewer still are pondering about
the consequences the coming technological changes will have for society and
prepare for actions to be planned for coping with these changes.

In this paper written in honor of Jörg Siekmann’s sixtieth birthday I want
to alert the community for some of the grand tasks which for our field lie not so
far ahead on our road into the future. The main message is that our field carries
a great responsibility for attacking fundamental questions which have been on
the minds of people throughout thousands of years. Only now do we have the
methodology and technology to make real progress towards satisfactory answers.

The article starts in the next section with a brief summary of the vision be-
hind Intellectics, the field of Artificial Intelligence (AI) and Cognitive Science,
and of the fundamental scientific questions which have come under our respon-
sibility through the success of the research paradigm underlying Intellectics. In
Section 3 some of these successes are briefly described which indicate a great
maturity of the theoretical and methodological basis of the field reached during
its brief history. If after so many successes we would now become more coura-
geous and pursue grander goals than hitherto, a major technological issue is the
direction we should follow: do we need just smart ideas to build really intelli-
gent systems or will any such system be necessarily huge. In Section 4 we give
arguments for a combination of both directions.

On the basis of all these preparations we finally describe a number of chal-
lenge projects with enormous importance for mankind as a whole. Due to the
general relevance of intelligence and hence of AI-technology these projects af-
fect basically all other disciplines, in the spirit of the great intellectician Woody
Bledsoe who said: “In the end AI will be the only science”. Which does not at
all mean that our field wants to overtake all these other disciplines. Rather it
means that the Intellectics paradigm is the one which finally has emerged as the
succeeding one.

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 120–131, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Time for Thinking Big in AI 121

2 Intellectics

Scientific research today produces knowledge at an enormous scale. The volumes
of thousands of journals are filled each year with the achieved results. No single
scientist is able to oversee the resulting body of science.

However if one looks closer at this confusing variety one recognizes that
the scientific enterprise as a whole actually poses only a very few really deep
questions. All the other explorations may be seen as sidetracks from the road to
answering these basic questions.

What is matter? is one of these fundamental questions. What are the forces?
and What is space and time? are further ones. In fact these fundamental ques-
tions have still no really satisfactory answers. And because of that physicists are
continuing with their observations of nature and with their experiments. In the
pursuit of searching for these answers myriads of results have been found and
applied successfully – sometimes to the benefit of mankind. In this sense the fun-
damental questions proved to be extremely fruitful although perhaps too hard to
be ever solved completely. Besides physics other disciplines were created along
the way to account for special aspects of matter and forces, such as chemistry,
astronomy, geology and so forth. These “physical” disciplines altogether provide
insight into many phenomena in this world, but not into all.

What is life? is another fundamental question and one of those which (so
far) has stayed out of reach for any physical theory. There must be something
particular beyond matter and forces which characterizes species such as man.
Of course, a dog consists of matter which is subject to the physical forces. But
why do dogs have offspring while stones don’t? Biology is the scientific disci-
pline competent for these sorts of questions. And again there are several related
(“biological”) disciplines such as botany, zoology, physiology and so forth. They
together with the physical disciplines provide insight into even more phenomena
in this world, but again not into all.

What are the mind and the psyche? is the most prominent fundamental
question which has stayed completely out of reach for any biological and physical
theory, and the same is true for all aspects related to it. This question as well
as all those mentioned so far have occupied the thinking for thousands of years.
The oldest extensive treatments which are still accessible to us are those from
Aristoteles, Platon and others from that time. They may be regarded as the
founders of the discipline regarding itself as competent in all of these questions,
namely philosophy. In the course of time again other disciplines grew out of it,
classified together as the humanities.

The answers of the old philosophers are completely outdated today as far
as the physical and biological questions are concerned. Philosophy therefore re-
tracted its focus to the mental and psychological sphere in which Aristotle’s and
Platon’s answers are still discussed in ernest and cited along with modern pub-
lications. This shows that the progress in the pursuit of studying mind, psyche
and the phenomena related with them such as human relations, society, history
and so forth has been less spectacular to put it mildly.

122 Wolfgang Bibel

The advent of the modern computer immediately caused a revolution in the
paradigm with which these issues were attacked, now by scientists trained in
disciplines not related with philosophy and the humanities. Alan Turing, John
von Neumann, John McCarthy, Marvin Minsky, Herbert Simon, Alan Newell are
some of those who in the middle of the last century laid the foundation for the
new paradigm with which these questions are studied under a completely new
perspective. While there was literally no measurable progress in two thousand
years of research under the philosophical paradigm, the last half century has
already provided us with revolutionary insights into the functioning of mind and
psyche. On this basis it is now possible to penetrate into further domains which
to this day continue to be dominated by the old paradigms.

John McCarthy is usually mentioned as the inventor of the name for the
discipline which has been founded on this new paradigm, namely Artificial In-
telligence or AI. But that is not the full story. He prepared a proposal for the
famous Dartmouth workshop in 1956 with a title mentioning “artificial intel-
ligence” which was not meant by him as the name of such a new discipline
however. In fact later he tried to introduce Cognetics as such a name. But the
buzzword AI had already caught on and has stayed until this day.

The goals of the discipline of AI are to understand intelligence, mind and
psyche in a way so as to be able to produce these phenomena even artificially.
In other words, artificial intelligence is what this discipline wants to achieve
(among other things) and is therefore a perfect name for its goal rather than
for the discipline itself. But for strange reasons AI became the only discipline
which uses the name of its goal at the same time for its own name. Since this
is strange indeed and unique in the concert of disciplines and their names, I
proposed intellectics as its name instead of AI. As long as no better proposal is
put forward I will continue to stay with this proposal which, after two decades
of familiarity, to me still sounds perfectly.

Intellectics then is the discipline for the study of mind and psyche in biological
creatures such as man under the paradigm of intelligent information processing
which, as we said, includes the development of artificial systems with intelligent
features. Although we mentioned the key players whose ideas directly lead to
Intellectics as a discipline they were of course embedded in the context of a par-
ticular Zeitgeist which produced this shift in paradigm and could be traced in
various disciplines. Warren McCulloch, Walter Pitts, Donald Hebb and Claude
Shannon are usually mentioned as pioneers in the years before 1956. But there
are many more who would deserve to be mentioned in a comprehensive anal-
ysis of the history of Intellectics. Konrad Zuse would be among them with his
Plankalkül and his chess program, the first in history (prior to Shannon’s), the
German school of cognitive (especially Gestalt) psychologists with names such
as Otto Selz, Max Wertheimer and Karl Duncker, the physicist and physiolo-
gist Herrmann von Helmholtz, and, even further back into history, the logical
tradition from Gottfried Wilhelm Leibniz to Gottlob Frege.

In the seventies it turned out that one can earn even money with intelligent
systems, in fact a lot of money. This experience distracted the discipline some-

Time for Thinking Big in AI 123

what because from there on the public identified AI with that part of intellectics
which builds smart systems. Due to this one-sided focus the researchers with
a remaining interest in the original questions about mind, psyche and cogni-
tion reassembled under the new label of Cognitive Science which focuses on the
“non-AI” part in Intellectics. So today Intellectics may seem to consist of two
parts, namely AI and cognitive science. One could as well think of these three
as different names for the same thing, a position I prefer since a separation of
AI from Cognitive Science would certainly hurt both.

Even when one restricts the focus on the Computer Science part of AI, its
perspective has been different from, in fact complementary to, that of CS (or
Informatics). Intellecticians from the beginning thought of systems simulating
people in their mental functions (how they play games, prove theorems, under-
stand language, etc.). In other words they imagined artificial agents performing
such functions and tried to realize them on existing computers. Note the semantic
ordering in this statement: given are first the functions and then we try to model
them with current machines. Computer scientists think the other way around.
They take the functionalities of computers as granted and then think about what
other functionalities could be achieved with them, for instance functionalities for
a more comfortable human interface. This thinking is bottom-up-oriented while
that of intellecticians is top-down where man is taken to be top and machine
down.

3 The Success of the New Paradigm

Why does the mind pose such a hard problem for science? Due to research in In-
tellectics – or more specifically in cognitive psychology, computational neurology
and computer science –, we know today quite a bit about the functioning of the
brain. For instance, the processes involved in color seeing have been discovered
to an extent that they can be modeled and simulated with computers at a rather
low level of detail, namely that of individual neurons. On the basis of these and
many other insights it is clear that computational processes are heavily – if not
even exclusively – involved in the functioning of mind. That is why often the
analogy between the mind and a computer is drawn. Let us take this analogy to
illustrate the particular difficulty in understanding the mind.

Imagine aliens coming to earth and watching us using our computers. Before
they return home they take lots of notes about their observations of the func-
tional behavior of these machines and carry some machines for further studies
with them. Their goal is to understand how the machines work, without hav-
ing access to our computer science literature, manuals etc. They would be in a
similar position as we are with our own minds except that we in addition are
conscious of our own thinking. What could they do to find such an understand-
ing? Continue making observations about the functional behavior and forming
hypotheses concerning the way this behavior is generated, just like the psychol-
ogists in the case of mind. Or open the machines, observe their static structures,
trace the currencies through the chips and analyse this internal functioning of
the gates, just like the neurologists. Wouldn’t it be a formidably difficult task to

124 Wolfgang Bibel

discover this way the principles on which modern computers are based and the
details of their design? Since brains at least to some extent are computational
like computers we are faced with the same kind of problems at a far higher
quantitative level of complexity.

The nature of this problem consists in discovering the ideas behind a program
from its functional behavior and from fragmentary observations of the flow of
signals. Even for relatively simple algorithms we have not yet the right method-
ology for solving such a problem, let alone for “algorithms” involving trillions of
neurons. As a first step it is therefore reasonable to try to analyze the functional
behavior by inventing algorithms which produce it. These algorithms might be
rather different from the actual ones, but at least we would get a first idea about
their structure.

That is what we intellecticians do with our AI systems. For instance, neural
nets were invented in this vein which became extremely helpful in modeling
neural processes at a far greater detail than possible before. But basically all AI
systems may serve such a purpose. These systems give us a lot of clues about
human problem solving so that we can go on from there with our studies of
the real system, ie. the brain. There is already considerable progress in this
line of attacking the fundamental questions about mind and psyche. On the
other hand, these systems have turned out to be extremely helpful in numerous
applications in the real world. It is especially in this respect that Intellectics so
far has been particularly successful. Since it would fill many books to compile
all these successes, we can only mention a few selected ones.

Scientific disciplines often organize their research around the study of com-
pactly understandable problems. The problem of understanding the physiological
functioning of the drosophila in full detail is such a paradigmatic problem in biol-
ogy. The fly drosophila is complex enough to make this study really interesting;
on the other hand it is not that complex that with the current methodology
progress is out of reach. Intellectics has had two “drosophilas” so far. The first
one was chess. The study of playing chess lead to many interesting concepts for
modeling intelligent behavior. On the basis of these concepts and the resulting
theories eventually systems were developed which reached even the level of the
best human chess players in the world. In 1997 the worldmaster in chess, Gary
Kasparov, was beaten by such a chess machine (deep blue). No one claims from
this that now we would “understand” how the mind is able to play chess. At
the lowest level of detail there is still a huge gap between the algorithms real-
ized in deep blue and those presumably at work in Kasparov’s mind, although
they behave very similar at the highest functional level. Nevertheless the high
level success provides a starting point from which we now can proceed to lower
levels of details for a deeper understanding (and possibly better technological
performance).

The second “drosophila” of Intellectics is robocup. Once the chess problem
was “settled” the next challenge needed to take a step closer to the human
condition in toto. We humans are not just minds which solve problems like chess
but we also have a body which must be coordinated in addition to solving real

Time for Thinking Big in AI 125

problems in the world. Also we are social beings cooperating with others in
our problem solving. All these features are given in the task of soccer playing.
So in the mid-nineties the idea came up to develop artificial teams of soccer
players. The longterm goal of this second “drosophila” in AI is to beat the
worldmaster team in 2050. So leagues were set up and matches among teams
of robots held, altogether called robocup. Given the few years of research, the
progress is fascinating already now.

Mathematics is too sober to catch the interest of the public to an extent
games such as chess or soccer do. But from an intellectual point of view beating
the worldmaster in chess is far less spectacular than beating the best mathemati-
cians within their own domain. This is what happened in 1996 when the artificial
mathematicians EQP und Otter, so-called theorem provers, finally proved a con-
jecture [1] which in mathematics was open for sixty years and in vain attempted
to be settled by a number of the best human mathematicians such as Alfred
Tarski. Recall that mathematics has been called the queen of sciences and that
mathematicians are for good reasons usually kept in highest regards concerning
their intellectual capacities. And then imagine that a computer system outper-
forms some of the best mathematicians of the century by solving a problem
they could not solve for such a long time. I feel that this event is a much more
impressive achievement in our discipline than the chess event mentioned before.

Society longs for the spectacular shows such as robocup matches while the
real progress may be experienced in many far less spectacular achievements. Let
us summarize a few more of these achievements. Doug Smith with his system
KIDS synthesized a logistics algorithm – among many others – which outper-
formed all similar algorithms published by human specialists by orders of magni-
tude [2]. Unnoticed even by many computer scientists, we are entering the period
in which much of programming will be carried out by the computers themselves
rather than by software engineers. What is left to humans is the specification
of their problems in sufficient detail but without consideration of any aspects
concerning the machine which today are still encoded in programming languages
like C or Java. It is therefore a safe prediction that in the near future, “problem
engineers” will complement – and eventually substitute – software engineers.

There are tens of thousands of systems in daily use which to some extent are
based on coded knowledge of the kind we as students learn in books about any
discipline whatsoever. These knowledge-based systems are routinely integrated
in various system environments without special notice. Thirty years ago people
could not even imagine that knowledge coded in such a declarative form could
be processed algorithmically. Today KB systems provide for complex kinds of
reasoning modes, so far the exclusive domain of people. The system CYC [3] in
this way comprises general knowledge at the scale of a million knowledge facts or
rules according to the state reached this year, and can activate this huge amount
of general knowledge in various kindes of applications. The system Verbmobil
allows the spontaneous communication between a German and a Japanese in
their respective natural languages through the system’s interpretation [4].

126 Wolfgang Bibel

Vision systems are used in production lines for controlling the production
processes, but also analyze the pictures taken of entire continents, to mention two
out of hundreds of other applications. Robots are now used for rather complex
tasks far beyond the restricted production manipulations applied in the previous
generation. Spectacular uses could be experienced during recent space missions
or during the search for victims of the terrorist attack in New York after the
11th September 2001. Systems connected to communication networks are able
to trace nearly everything happening anywhere around the globe, be it a phone
call, a fax, an email message etc. and analyze the data for certain features.

One could go on and on with the technological achievements enhancing our
human cognitive capabilities. What is at least as impressive as the preformance
of these systems is the theoretical insight into the underlying mechanisms. Ob-
viously the spectacular systems performance is a function of the maturity of
the theorical basis on which it is founded. True, sometimes engineers seem to
be ahead in comparison to theoreticians. In building complex systems like those
referred to here you are quickly lost however if the gap between theory and
practice is more than marginal.

In fact we may observe the following pattern in the theory of Intellectics.
Since so many different phenomena are involved, the theory is fragmented in
many different branches. The results in each of them are applied independently
from those in others although they pertain to the common phenomenon of in-
telligent behavior. Imagine all these disparate results were combined within a
common system!

4 Big or Smart?

Huge and smart! In social life people tend to fight over dichotomies such as
efficiency-oriented vs. socially-oriented economic politics. Is huge vs. smart such
a dichotomie on the road to artificial minds? Well, like most dichotomies in
politics huge and smart are not really opposites in view of intelligent systems.
The central nervous system of humans has around a trillion of neurons, each
forming an extremely complex physical processor, and around a hundred times
as many synapses (connections). Given this unimaginable complexity one would
of course not expect that all the relevant functions of the brain could be modeled
by a single system comprising a few thousand lines of code. A truly intelligent
system will predictably be big, even huge.

The development of such huge systems will remain a challenge, perhaps for
ever. The software industry tries to make us believe that it is up to this challenge
in areas like operating systems with appropriate solutions. Sincere computer
scientists admit that the progress in this art is rather like that in the humanities.
Not accidentally so since system development requires the cooperation of many
humans hence falls in fact to some extent into the domain of the humanities. So
big is a problem and huge even more so.

How about smart? Let us consider an interesting experience in this respect.
Theorem proving is a thoroughly studied special field in Intellectics. Hundreds
of systems, so-called theorem provers have been developed, one of which we

Time for Thinking Big in AI 127

mentioned in the last section. Some of them took tens if not hundreds of man-
years of development and comprise hundreds of thousands of lines of code. Jens
Otten during one night in the year 2000 wrote a Prolog program consisting of
three Prolog clauses which more a less amounts to the logical definition of the
simplest calculus based on the connection method developed by the author [5,
6]. The surprising experience was the performance of this mini-prover, called
leanCoP: in some sense it is comparable in performance to that of those mammut
provers as careful and extensive comparisons have demonstrated [7].

leanCoP is surely a smart system in several respects. First, it is based on a
proof method which, unlike any other known method, operates on a single formal
representation of the problem description. The advantage of this locality feature
has been ignored by the community which has preferred the more intuitive (and
hence less focused) methods such as the resolution or the tableau methods as
their logical basis. The connection method is also goal-oriented rather than an
exhaustive method like resolution. The system also makes clever use of Pro-
log’s features. In combination these features make the tiny system surprisingly
efficient.

There is one more point to be noticed about leanCoP. The program forms a
precise and declarative specification of the problem, nothing more. Recall that
those supporting logic programming (like the present author) have dreamed
of logical problem specifications as programs to be immediately processed by
machines. Several fashion phases in software engineering after those dreams have
begun I still believe that eventually this will be the only reasonable approach to
system building. The logic will probably be different from the one used in Prolog,
especially to account better for the dynamic character of the problems to be
coped with in programming (cf. [8]). Also the system development environment
will have to support the programmer, or rather the specifyer, in various novel
ways unfamiliar from standard programming environments (cf. [9]). UML is a
step towards such a direction but an insufficient one in many respects. And
finally the synthesis and optimization systems which transform specifications to
efficient code will have to be improved quite a bit further, heavily involving KB
systems technology discussed in the last section.

The attractiveness of specifications in contrast to traditional programs lies
in the additivity of specifications parts. An enhancement of leanCoP for a spe-
cial handling of equality would amount to an addition of further Prolog clauses
without affecting the definition given in the three current clauses. No other pro-
gramming paradigm offers this fundamental advantage (including OO program-
ming). If one envisions huge systems as we do here this advantage will become
absolutely crucial for the success of the entire enterprise.

Another big advantage lies in the ease of maintenance. A change in the spec-
ification could be achieved simply by substituting the respective specificational
part in the problem definition which is kept along with the resulting code as
well as with all relevant synthesis information. The synthesis would therefore
not need to be re-done in its entirety upon such a change but only the respective
modifications would have to be traced down to the executive code.

128 Wolfgang Bibel

Programming by specification may lead to smarter systems. That is the lesson
which I wanted to suggest with the leanCoP experience. In contrast, standard
programming results in monster systems like Windows, huge because of lack of
appropriate organization, not so much because of its inherent functional com-
plexity which could be achieved with much smaller and smarter systems. Good
organization can only be achieved with a proper, elaborated specification avail-
able at the outset, or rather growing with the system development, and with
systematic ways to synthesize such a specification into efficient code as studied
in program synthesis.

Once we have such systematic ways to synthesize smart systems, then – and
only then – will we be able to envision the development of huge systems needed
to model the mind. In principle we know these ways already, but there is no
incentive to realize them in respective development environments. The reason is
the enormous investment needed prior to any benefits before such an approach
becomes feasible. We are talking about such investments in the coming section.

5 Challenge Projects for Intellectics

Society has always found it worthwhile to invest enormous sums in projects
related with the fundamental questions listed in Section 1. The physical ac-
celerators built for studying physical forces and the structure of matter cost
billions of dollars. The international space station (ISS) also is only secondarily
of economic interest and primarily an enterprise about answering fundamental
scientific questions. It as well costs billions of dollars.

In contrast to projects at this scale Intellectics projects were rather cheap
so far. In addition most of the latter soon payed off. For instance, the project
CYC is in the (low) hundreds of millions as is Verbmobil. Both have a great
economic perspective so that they may even produce large returns before long.
Similar returns from the huge investments in accelerators are not expectable in
the forseeable future.

Although this might sound like arguing against big physical experiments,
this would be a total misunderstanding of my point. Rather the point is that
the fundamental questions pursued by Intellectics are at least as interesting for
society as those pursued by Physics. Also we will not come closer to satisfactory
answers unless society is ready to invest in Intellectics projects at the same scale
which is billions of dollars. According to our previous experiences we might even
expect an immediate economic return for society so that the investment promises
to become profitable. In this final section I will briefly outline a few projects at
this scale and their potential benefits for society.

I first refer to what I already outlined in the last section concerning a sys-
tematic synthesis of computer systems through precise specifications. Building
a development environment of the kind envisioned there amounts to an interna-
tional project with costs at the level of billions of dollars. Its benefits are obvious
and immediate. Software production would be simplified by orders of magnitude.
System development would be possible in a fraction of time in comparison to
today’s practice. It also would lead to machine provably correct systems and

Time for Thinking Big in AI 129

thus far more reliable than current software. Maintenance would be simplified
again by orders of magnitude.

The consequences of this single project alone on other disciplines and their
applications would be enormous. Once we have the methodology to design and
realize software at such a new level of magnitude, we could envision the grand
project noted at the end of Section 3 which combines the disparate knowledge
built up in the theory of Intellectics in the last decade. With the resulting smart
and huge system grand problems could be attacked. Some of these are the fol-
lowing ones.

Following the vision and scientific work of nobel prize winner Herbert Simon,
discovery science is developing at a rapid pace [10]. Imagine if we complemented
the inventiveness of humans with the strengths of machines for handling mas-
sive data. Physicists, for instance, try to discover patterns in their scattering
experiments in accelerators which could give clues for a unified theory of the
forces. There are billions of data already available from past experiments of
this kind which no human will ever study in any detail. Machines could process
these amounts of data, discover such patterns and mechanically form theories
accounting for them. For physicists this may sound like wishful thinking. For in-
tellecticians this is already the bread and butter of their daily work for instance
in the area of data mining where knowledge patterns are extracted from massive
data. Physics is just one example. The mechanisms behind learning and theory
formation are now understood good enough to apply this knowledge by machines
to any of the natural sciences. But the first step for any of these applications
would be to put all the knowledge available for any of these disciplines in a for-
malized knowledge base which can be subjected to our inferential mechanisms.
This alone just for a single discipline amounts to a huge enterprise.

With our envisioned intelligent system also engineering of any kind would
be revolutionized, a trend which to a limited extent and with limited system
capacity is already under way. Imagine we are given an engineering problem
(like building a bridge under given constraints or controlling traffic in a city).
The knowledge about the domain under consideration is assumed to be available
in the knowledge base of the system. The problem could then be specified using
the terms of this knowledge base in the way we specify programming problems
(such as theorem proving in the case of leanCoP). With the system development
environment an engineering design could be synthesized like a program from
this specification and the knowledge base. This is because, from an abstract
point of view, the design of a program is exactly the same as the design of an
engineering solution to the posed problem. Whether the quality of the solution
is good enough for providing a solution in the real world depends solely on the
quality of the engineering knowledge stored in the knowledge base.

Let us emphasize once more the arbitrariness of the kind of engineering appli-
cations. The fundamental design methods are all very similar at the simulation
level in computers. The difference lies mostly in the relevant knowledge activated
from the knowledge base if it is rich enough to cover the respective areas and
includes area specific procedures. So whether we are thinking of drug design in

130 Wolfgang Bibel

pharmacology or of designing an optimized burocracy for handling a university
or of a strategy for improved teaching to achieve better school results or what
have you, all these fall – from the point of view of Intellectics modeling in com-
puters – under the same category of engineering problems. Engineers can hardly
believe this as they rarely reflect about their own methods on a meta-level. Their
strength consists in embodying that specialized knowledge combined with clever
solution methods. Like most experts they are however not consciously aware of
them.

As indicated with the last of these examples (teaching) Intellectics technol-
ogy would finally reach also the humanities. There is already a huge amount of
knowledge available in these disciplines because in the humanities in lack of the-
ories researchers collect a lot of episodical and statistical knowledge. Just think
of psychology or sociology. As in any knowledge base there is a great potential in
these bodies of knowledge once they become accessible for the inferential meth-
ods from Intellectics. Theories could be induced from that knowledge, possibly so
complicated ones that humans would never be able to induce them by hand due
to the shere (quantitative) complexity. Explanations could be provided on the
basis of that knowledge. Further knowledge could be deduced. Modeling could
be performed on a solid basis. In short, the available knowledge would become
activated to an extent not experienced ever before.

Particular goals of this nature consist in modeling (parts of) the body of par-
ticular human individuals on the basis of the entire knowledge available about
body physiology in general and the specific body of the individual in particular
which could provide precise explanations for symptoms exceeding the daily spec-
ulations of ordinary medical doctors by far. And the modeling could be done at
rather low costs once the overall system is available. Or think of the modeling
of the functioning of the brain in accordance with the knowledge neurologists
have accumulated over the last decades. For parts like image and sounds pro-
cessing this has already been done. The challenge is to combine these fragments
to a coherent model which might vary considerably in the level of abstraction
depending on the availability of insights. Similarly, the human psyche could be
modeled on the basis of the knowledge about the functional relationships elab-
orated in numerous psychological studies. On the basis of both these models
we could experiment about different strategies for school teaching, first in the
computer and then tested in real life, ie. enter the discipline of pedagogy with
quantified methods. Going a step higher, sociological structures like a small-size
company could be modeled, linked to the model of the human psyche mentioned
just before. This way humanities would become real sciences rather than carrying
along the odor of being chat fora.

With Intellectics technology also decision processes in economics, politics and
law could be laid on rational grounds. In individual projects the direction of such
decision support systems has already been shown. But again, individual projects
like PhD theses and one-man prototype systems are interesting for understanding
the underlying principles; however, for practical purposes we need systems build
on a much grander scale. In all applications just mentioned we know in principle

Time for Thinking Big in AI 131

how to do it. But billions of dollars are needed to realize the required programs.
Billions of dollars is little money compared to the amount of waste of money
caused every year by irrational and hence often stupid economic and political
decisions.

Some people argue that money alone will not help. The problems in such
huge projects would be so hard to cope with that not enough smart people with
the appropriate expertise would be available to carry the projects through to a
successful end. I consider such arguments narrow-minded because they ignore the
enormous expertise available in the application disciplines. As experiences with
interdisciplinary projects of this kind show, people involved get really excited
about the prospects of the resulting achievements and thus are highly motivated.
High motivation counts much more than the question whether some participant
might have attended a certain course in Computer Science or not.

Like with all scientific endeavors dangers lure around the corner of such
projects of the kind of possible misuse by villains. We must face the fact that
this menace is inherent in any technology. Already in the stone age, Kain could
use the stone to grind the corn or to murder Abel. The same will be true for
the technology envisioned here. We have to cope with this fact now as ever by
prosecuting villains in order to keep their actions as restricted as possible.

References

1. William McCune. Solution of the Robbins problem. Journal of Automated Rea-
soning, 19(3):263-276, December 1997.

2. Douglas R. Smith. KIDS - A Knowledge-Based Software Development System. In
M. R. Lowry and R. McCartney (Hg.), Automating Software Design, Kapitel 19,
S. 483-514. AAAI Press, Menlo Park, 1991.

3. R. V. Guha and Douglas B. Lenat. Cyc: a midterm report. AI Magazine, ll(3):32-
59, 1990.

4. Wolfgang Wahlster (Hg.). Verbmobil: Foundations of Speech-to-Speech Transla-
tion. Springer, Berlin, 2000.

5. W. Bibel. Matings in Matrices. Comm. ACM, 26:844-852, 1983.
6. W. Bibel. Deduction: Automated Logic. Academic Press, London, 1993.
7. Jens Otten and Wolfgang Bibel. leanCoP: Lean Connection-Based Theorem Prov-

ing. Journal of Symbolic Computation, 2001.
8. W. Bibel. Let’s plan it deductively! Artificial Intelligence, 103(1-2):183-208, 1998.
9. W. Bibel, D. Korn, C. Kreitz, F. Kurucz, J. Otten, S. Schmitt and G. Stolpmann.

A multilevel approach to program synthesis. In N. E. Fuchs (Hg.), Proceedings of
the 7th Workshop on Logic Program Synthesis and Transformation (LOPSTR-97),
Lecture Notes in Computer Science, Springer, Berlin, 1997.

10. Lindley Darden. Discovering Mechanisms: A Computational Philosophy of Science
Perspective. In Klaus P. Jantke and Ayumi Shinohara (Hg.), Discovery Science -
4th International Conference, DS 2001, Washington DC, volume 2226 of LNAI, S.
3-15, Berlin, 2001. Springer.

Solving First-Order Constraints
over the Monadic Class

Dimitri Chubarov and Andrei Voronkov

University of Manchester
{chubarov,voronkov}@cs.man.ac.uk

Abstract. First-order constraints over arbitrary theories or structures
can be formalised as the formula instantiation problem as defined in [11].
Several re- sults have been previously obtained for the formula instanti-
ation problem in the case of quantifier-free formulas of first-order logic.
In this paper we prove the first general result on formula instantiation
for quantified formulas, namely that formula instantiation is decidable
for the monadic class without equality.

1 Introduction

Given a first-order formula ∃xϕ(x) which expresses existence of elements with
particular properties, we may be interested in obtaining these elements in an
explicit form if such elements exist. Thus, we consider the formula ϕ(x) as a
constraint, and try to present a solution of this constraint in some explicit form.
If this explicit term is simply a tuple of terms t, the corresponding decision
problem is called formula instantiation, see [11, 13].

Definition 1. (Formula Instantiation, Witness) Formula instantiation is the
following decision problem: given a formula ϕ(x), does there exist a sequence of
terms t in the signature Σϕ of this formula such that ϕ(t) is valid. Every such
tuple of terms t is called a witness for ϕ(x). �

In other words, formula instantiation holds for ϕ(x) if and only if ϕ(x) has a
witness. In fact, formula instantiation is a family of problems parametrized by a
class of formulas (possible values for ϕ(x)) and a theory with respect to which
validity is defined. Naturally, we can also consider the dual problem of finding
witness terms which make ϕ(t) satisfiable.

Formula instantiation has applications in tableau-based automatic reasoning
in first-order logic. It naturally arises when one wants to close a tableau (or a
tableau branch) by an appropriate substitution. The tableau, or a tableau branch
can be considered as a formula ϕ(x). Then formula instantiation holds for the
formula ¬ϕ(x) if and only if the branch (or the whole tableau) is closed. This
search for a substitution that closes a quantifier-free tableau was formalized as
the simultaneous rigid E-unification problem in [2]. A number of results about
simultaneous rigid E-unification were proved (see [1] for an overview). The prob-
lem of formula instantiation was formulated in [11], where several results about

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 132–138, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Solving First-Order Constraints over the Monadic Class 133

Table 1. Complexity of formula instantiation for quantifier-free formulas.

Class Complexity

no equality Σp
2 -complete

equality, binary symbols undecidable

equality, one variable decidable and EXPTIME-hard

Monadic signature:

equality, general open

equality, at most one unary symbol decidable

one variable PSPACE-complete

formula instantiation for quantifier-free formulas were also proved and several
open problems related to formula instantiation were formulated.

Some of the results known so far are given in Table 1.
It is easy to see that the validity problem is a special case of formula instanti-

ation, where the formula ϕ has no free variables. Therefore, it makes sense only
to consider formula instantiation for classes with the decidable validity problem.
The decidability of the validity problem does not, however, guarantee that for-
mula instantiation is decidable. Two extreme examples of hardness of formula
instantiation are the following.

1. The validity problem for quantifier-free formulas with equality is coNP-
complete, but formula instantiation for quantifier-free formulas is undecid-
able already for formulas with two variables [9].

2. The validity problem for arbitrary ground-negative formulas with equal-
ity is Π2

p -complete [12], but formula instantiation is undecidable even for
quantifier-free ground-negative formulas with two variables [9], see also [10].

Despite a large number of results on formula instantiation for quantifier-free
formulas, no nontrivial general results are known for quantified formulas. In this
paper we will consider formula instantiation for the monadic class.

Definition 2. (Monadic Class) A monadic signature is a signature which con-
tains no function or relation symbols of arity greater than 1. The monadic class
is the class of all formulas whose signature is monadic. �

Note that formulas in the monadic class may have arbitrary quantifiers. The
decidability of the monadic class was shown in [6, 3].

The main result of this paper is the following.

Theorem 3. The formula instantiation problem for the monadic class is decid-
able. �

To prove the decidability of formula instantiation for the monadic class, for
each instance ϕ we first skolemize out all universally quantified variables in ϕ
to obtain a formula ϕ′ in an extended signature such that ϕ and ϕ′ have the
same witnesses in the signature of ϕ. We skolemize in such a way that only new

134 Dimitri Chubarov and Andrei Voronkov

constants are introduced, but no function symbols, and hence the signature of
ϕ′ remains monadic. Then we note that the truth of ϕ′ on a tuple of terms t
can be expressed using a second-order formula of the term algebra in a monadic
signature. Likewise, the existence of a witness in the original signature of ϕ can
also be expressed by such a formula. Then we use the decidability of the monadic
second-order theory of any term algebra in a monadic signature, which follows
from the decidability of the monadic second-order theory of two successors [8].

2 Skolemization of Monadic Formulas

A formula is called closed, or a sentence if it contains no free variables. We call a
literal an atomic formula or its negation. A formula is in negation normal form if
it is built from literals using the connectives ∧, ∨ and quantifiers ∀, ∃. A formula
is called prenex if it has the form QxA, where Qx is a quantifier prefix and A a
quantifier-free formula.

Our first step is to skolemize out universal quantifiers.

Lemma 4. Let ϕ(x) be a formula of a monadic signature Σ with free variables
among those in x. There exists a prenex existential formula ∃yϕ′(x, y), where
ϕ′(x, y) is quantifier-free such that (i) ϕ′(x, y) uses symbols in Σ and maybe
some new constants; (ii) for all tuples of ground terms t of the signature Σ the
formula ϕ(t) is valid if and only if ∃yϕ′(t, y) is valid.

Proof. Let ϕ be a monadic formula. Without loss of generality we assume that
ϕ is in negation normal form. Repeatedly using the distributivity laws and fol-
lowing equivalences to rewrite subformulas of ϕ:

∀x(A ∧B) ≡ ∀xA ∧ ∀xB;
∃x(A ∨B) ≡ ∃xA ∨ ∃xB;

∃x(A(x) ∧ C) ≡ ∃xA(x) ∧C;
∀x(A(x) ∨ C) ≡ ∀xA(x) ∨C;

∀xC ≡ C;
∃xC ≡ C;

where x does not occur in C, we obtain a formula ϕ′ equivalent to ϕ in which all
quantifiers occur only in subformulas of the form ∃x

∧
i Li(x) and ∀x

∨
i Li(x),

where all of the Li’s are literals in which x occurs. Using the standard skolemiza-
tion arguments, we can replace each subformula ∀x

∨
i Li(x) by

∨
i Li(c), where

c is a new constant. Finally, we can pull the remaining existential quantifiers out
to obtain the required prenex existential formula. �

This lemma implies the following result.

Lemma 5. Let ϕ be a formula of a monadic signature Σ. Using ϕ one can
effectively find a prenex existential formula ϕ′ of the same variables as ϕ such
that

Solving First-Order Constraints over the Monadic Class 135

1. the signature of ϕ′ extends the signature of ϕ by zero or more constants;
2. for every tuple of terms t of the signature Σ, t is a witness for ϕ if and only

if it is a witness for ϕ′.

3 Term Algebras

Let Δ be a finite signature with at least one constant. Denote by TΔ the set of
all ground terms of the signature Δ . The term algebra of the signature Δ is the
structure with the universe TΔ such that every ground term of Δ is interpreted
in this structure by itself, for details see, e.g., [4]. We will denote the term algebra
of Δ in the same way as its universe TΔ.

The term algebra is infinite if and only if Δ contains at least one function
symbol of positive arity. We are interested in monadic second-order theories of
term algebras defined as follows.

Extend the first-order language by adding second-order variables. Monadic
second-order formulas extend first-order formulas by adding (i) a new kind of
atomic formulas of the form Z(t), where Z is a second-order variable and t is
a term, and (ii) second-order quantifiers ∀Z and ∃Z, where Z is a second-order
variable.

Let A be a structure with a universe A. Over this structure second-order
variables are interpreted as subsets of A and an atom Z(t) is interpreted as
membership of t in Z. Monadic second-order theory of A is the set of all monadic
second-order sentences which hold in A.

Using the decidability of the monadic second-order theory of two successors
[8] it is not hard to prove the following result.

Lemma 6. The monadic second-order theory of any term algebra A in a finite
monadic signature is decidable.

Proof. (sketch). We will show how one can interpret the monadic second-order
theory of A in the monadic second-order theory of two successors.

Recall that the monadic second-order theory of two successors S2S is the
monadic second-order theory of the structure T = ({0; 1}∗, succ0, succ1) over the
set of binary words with the successor functions succ0(w) = w0 and succ1(w) =
w1. We will write x0 and x1 instead of succ0(x) and succ1(x) and X ⊆ Y instead
of ∀w(X(w) ⊃ Y (w)).

Suppose that the signature of A consists of constants c1, . . . , cn and function
symbols f1, . . . , fk. Then every ground term of the signature of A (or, equiva-
lently, every element of A) has the form fi1(. . . fim(cj)) for some i1, . . . , im, j.
Let us call the code of such a term the word 1j01im . . . 01i1 . We will show that for
every formula ϕ of the monadic second-order theory of A there exists a formula
ϕ′ of S2S which expresses the same property but on the codes of elements of A.

Consider the following formulas of S2S

contains codes(X) :=
∧

i=1...n

X(1i) ∧
∧

j=1...k

∀w(X(w) ⊃ X(w01j));

all codes(X) := contains codes(X) ∧ ∀Y (contains codes(Y) ⊃ X ⊆ Y);

136 Dimitri Chubarov and Andrei Voronkov

is code(x) := ∃Y (all codes(Y) ∧ Y (x));
codes only(X) := ∃Y (all codes(Y) ∧X ⊆ Y).

It is not hard to argue that containscodes(X) expresses that X contains all
codes, codes(X) expresses that X is the set of all codes, is code(x) expresses
that x is a code, and codes only(X) expresses that all elements of X are codes.

For every formula ϕ of the monadic second-order language of A consider the
formula ϕ′ of S2S defined as follows. Without loss of generality we assume that
the atoms in ϕ have the form x = fi(y), x = cj , or x = y, where x, y are
variables.

1. If ϕ is x = fi(y), then ϕ′ is x = y01i.
2. If ϕ is x = cj , then ϕ′ is x = 1j.
3. If ϕ is x = y, then ϕ′ is also x = y.
4. If ϕ is ϕ1 ∧ϕ2, then ϕ′ is ϕ′

1 ∧ϕ′
2, and similar for other connectives in place

of ∧.
5. If ϕ is ∀xϕ1 (respectively ∃xϕ1), where x is a first-order variable, then ϕ′ is
∀x(is code(x) ⊃ ϕ′

1) (respectively ∃x(is code(x) ∧ ϕ′
1)).

6. If ϕ is ∀Xϕ1 (respectively ∃Xϕ1), where X is a second-order variable, then
ϕ′ is ∀X(codes only(X) ⊃ ϕ′

1) (respectively ∃X(codes only(X) ∧ ϕ′
1)).

Let ν be a valuation over A, i.e., a mapping which maps second-order variables
into subsets of A and first-order variables into elements of A. Denote by ν′ the
corresponding valuation over T , that is ν′(X) for second-order X maps X into
the set of codes of terms in ν(X), and ν′(x) for first-order x maps x into the
code of ν(x). By induction on ϕ it is not hard to argue that for every valuation
ν over A we have A, ν |= ϕ if and only if T, ν′ |= ϕ′. In particular, when ϕ is a
sentence we have A |= ϕ if and only if T |= ϕ′. Since S2S is decidable [8], the
monadic second-order theory of A is decidable too. �

4 Proof of the Main Theorem

Lemma 7. For any monadic signature Σ and its extension Δ ⊇ Σ by con-
stants there exists a monadic second-order formula TERM Σ(x) of one variable
x, such that for every ground term t of Δ the formula TERM Σ(t) holds in the
weak second-order theory of term algebra of Δ if and only if t is a term of the
signature Σ.

Proof. Let U be the set of all nonconstant symbols of Σ (and hence also of Δ).
Define the formula TERM Σ as follows.

TERM Σ(x) = ∃Z

⎛⎝Z(x) ∧
∧

f∈U

∀y(Z(f(y)) ⇒ Z(y)) ∧
∧

d∈Δ−Σ

¬Z(d)

⎞⎠ .

The proof is straightforward. �

Solving First-Order Constraints over the Monadic Class 137

Evidently, this lemma can be proved for arbitrary signatures Σ and Δ .
Now we can prove the main theorem.

Proof. (of Theorem 3). We prove that Formula Instantiation is decidable for
the monadic class. Given a formula ϕ(x) in a monadic signature Σ, we have
to effectively decide whether it has a witness in the signature Σ. Let P1, . . . Pn

be all predicate symbols of Σ and x1, . . . , xm be all variables in x. Applying
Lemma 5 we obtain an existential formula ϕ′(x) of a signature Δ such that (i)
the signature of ϕ′(x) extends the signature of ϕ(x) by zero or more constants;
(ii) for every tuple of terms t of the signature Σ , t is a witness for ϕ(x) if and
only if it is a witness for ϕ′(x). Therefore, formula instantiation holds for ϕ(x)
if and only if ϕ′(x) has a witness t in the signature Σ.

Since ϕ′(t) is existential, by Herbrand’s theorem it is valid if and only if it
holds in all Herbrand interpretations of the signature Δ. But this property can
be expressed using the following monadic second-order formula of TΔ.

∀P1 . . . Pnϕ′(t).

where P1 . . . Pn are considered as second-order variables.
It follows that ϕ′(x) has a witness in the signature Σ if and only if the

following second-order formula holds in TΔ:

∃x1 . . .∃xm

(∧
i=1...m

TERM Σ(xi) ∧ ∀P1 . . .∀Pnϕ′(x)

)
.

The validity of this second-order formula can be effectively decided by Lemma 6.
�

5 Conclusion

Our proof uses the decidability of the monadic second-order theory of term
algebras in monadic signatures. The complexity of such theories is not elementary
recursive [7]. At the same time satisfiability of formulas in the monadic class
can be solved in nondeterministic exponential time [5]. So it remains an open
problem whether the complexity of formula instantiation for the monadic class
is elementary.

Another interesting open question is whether existing resolution-based de-
cision procedures can be modified to find witnesses for formula instantiation.

References

1. A. Degtyarev and A. Voronkov. Equality reasoning in sequent-based calculi. In A.
Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume I,
chapter 10, pages 609-704. Elsevier Science, 2001.

2. J.H. Gallier, S. Raatz, and W. Snyder. Theorem proving using rigid E-unification:
Equational matings. In Proc. IEEE Conference on Logic in Computer Science
(LICS), pages 338-346. IEEE Computer Society Press, 1987.

3. Yu. Gurevich. The decision problem for the logic of predicates and operations.
8:284-308, 1969.

138 Dimitri Chubarov and Andrei Voronkov

4. W. Hodges. Model theory. Cambridge University Press, 1993.
5. H. Lewis. Complexity results for classes of quantificational formulas. Journal of

Computer and System Sciences, 21:317-353, 1980.
6. M. Löb. Decidability of the monadic predicate calculus with unary function sym-

bols. Journal of Symbolic Logic, 32:563, 1967.
7. A. Meyer. Weak monadic second order theory of successor is not elementary-

recursive. In R. Parikh, editor, Logic Colloquium: Symposium on Logic Held at
Boston, volume 453 of Lecture Notes in Mathematics, pages 132-154. Springer
Verlag, 1975.

8. M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141(1):1-35, 1969.

9. M. Veanes. The undecidability of simultaneous rigid E-unification with two vari-
ables. In G. Gottlob, A. Leitsch, and D. Mundici, editors, Computational Logic
and Proof Theory. 5th Kurt Gödel Colloquium, KGC’97, volume 1289 of Lecture
Notes in Computer Science, pages 305-318, Vienna, Austria, 1997.

10. A. Voronkov. Strategies in rigid-variable methods. In M.E. Pollack, editor, Proc. of
the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI-97),
volume 1, pages 114-119, Nagoya, Japan, August 23-29 1997.

11. A. Voronkov. Herbrand’s theorem, automated reasoning and semantic tableaux.
In Proc. IEEE Conference on Logic in Computer Science (LICS), pages 252-263.
IEEE Computer Society Press, 1998.

12. A. Voronkov. The ground-negative fragment of first-order logic is Πp
2 -complete.

Journal of Symbolic Logic, 64(3):984-990, 1999.
13. A. Voronkov. Simultaneous rigid E-unification and other decision problems related

to Herbrand’s theorem. Theoretical Computer Science, 224:319-352, 1999.

From MKRP to ΩMEGA

Manfred Kerber

The University of Birmingham,
School of Computer Science,

Birmingham, B15 2TT, England
M.Kerber@cs.bham.ac.uk

http://www.cs.bham.ac.uk/~mmk

Abstract. Around 1990 the work on the first-order theorem prover
MKRP stopped after a development going on for more than a decade.
Instead a new system has been developed since then, the mathematical
assistant Ωmega. In this contribution I try to summarise some of the
discussions and decisions that led to this shift in focus and to the de-
velopment of the Ωmega system, and I attempt in retrospect to give a
tentative evaluation of some of the decisions.

1 Introduction

In the late 1980’s the MKRP-project came to an end, after a development of
more than ten years in which a couple of millions of Deutschmark were spent
(a Deutschmark is roughly half a Euro or half a US-Dollar). A new project on
a new system started, the Ωmega system1. In the preceding discussions many
decisions were taken and paradigms discussed. Now more than 10 years later it
may be worthwhile firstly to document some of the discussions – also since the
whole endeavour was a significant step in Jörg Siekmann’s work in Mechanised
Theorem Proving, and secondly to try a cautious first evaluation of some of the
decisions.

The MKRP-project started in Karlsruhe when Jörg Siekmann was a research
fellow at the University of Karlsruhe and was continued when he took up there
a professorship for artificial intelligence at the University of Kaiserslautern. In
this paper some details about MKRP and the MKRP-project are discussed, but
only insofar as they are relevant for the transition from MKRP to Ωmega. It is
not a description of the development of MKRP (neither of Ωmega), but a report
on the transition period.

In order to understand the transition let’s first take a look at the context
in which the decisions were made, then take a closer look at the MKRP system
itself and discuss shortcomings of the system in the intended applications and
means to overcome these.

1 Initially the new system was called Ω-MKRP, later only Ω or Omega and at a time
the logo Ωmega was introduced.

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 139–153, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

140 Manfred Kerber

2 The Context

Preceding the birth of Ωmega a major shift in the work of Jörg Siekmann and
his group as well as their working conditions took place. Jörg was at that time
an (associate) professor (C3) for artificial intelligence at the Computer Science
department of the University of Kaiserslautern and headed a group of around
ten active teaching and research assistants mainly financed by the German Na-
tional Science Foundation (Deutsche Forschungsgemeinschaft, DFG), mainly, in
the Sonderforschungsbereich 314 on Artificial Intelligence and European Union
Esprit projects. Only the DFG financed projects were directly related to MKRP.
In Germany, research assistants and teaching assistants typically work towards
their PhD alongside their project work, only the professor has a permanent posi-
tion. At the end of the 1980’s most researchers in Jörg Siekmann’s group were in
the final stages of their PhD theses. Some had already left the group, some were
about to leave, or looking for different activities which went beyond MKRP. To
a large degree the work in the final phase of the MKRP-project and the potential
extensions can be described by the work done by the people working on it. I will
briefly mention some of these results of people working in the core of MKRP.

MKRP was built on the so-called clause graph procedure, originally proposed
by Robert Kowalski [Kow75]. In this approach, a graph is used to store all
possible resolution steps, detect redundancies and simplification possibilities. A
difficult question is whether the procedure is actually complete and confluent,
that is, whether if one starts with an unsatisfiable clause set, from any interme-
diate state it is still possible to derive the empty clause, and – assumed a fair
strategy is employed – the empty clause will eventually be derived.

Norbert Eisinger [Eis91] studied the theoretical properties of clause graph
procedure like completeness and confluence. Already during the Karlsruhe phase,
Christoph Walther [Wal83] developed the order-sorted logic2 on which MKRP is
based. In Kaiserslautern, Manfred Schmidt-Schauß [SS89] worked on extensions
of this logic with term declarations. Hans-Jürgen Bürckert [Bür90] worked on
constraint resolution, Alexander Herold [Her87] on the combination of unification
algorithms, and Christoph Lingenfelder [Lin90] on the presentation of resolution
proof in natural deduction. Karl Hans Bläsius [Blä86] and Axel Präcklein [Prä92]
worked on different approaches to equality reasoning from human-oriented to
traditional rewrite oriented ones. Hans Jürgen Ohlbach (but also many others)
were very involved in the MKRP project or related projects. They played a crucial
rôle in the development of MKRP and of extensions to MKRP. Hans Jürgen in the
end chose a PhD topic on modal logic rather than MKRP-related issues [Ohl88].

While all these people finished their PhDs, two things crucial for the fur-
ther development happened around the same time, firstly the German Research
Centre for Artificial Intelligence (Deutsches Forschungszentrum für Künstliche
Intelligenz, DFKI) was founded in Saarbrücken and Kaiserslautern, and secondly
Jörg Siekmann was offered and accepted a full professorship (C4) in Saarbrücken,
jointly with the post of a director at the DFKI. This meant not only that a shift
2 The idea of sorts is to replace particular unary predicate symbols by sort symbols.

This has the advantage to shorten clauses and prevent meaningless unifications.

From MKRP to ΩMEGA 141

in the focus of his work was necessary, but also that senior people were needed
to head the new research areas in the DFKI.

Initially, the Ωmega-group (in addition to Jörg Siekmann himself) consisted
of Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan Ne-
smith, and Jörn Richts. While Xiaorong and Manfred had worked in the group
for a couple of years already, Xiaorong on the verbalisation of natural deduction
proofs, and Manfred on human-oriented theorem proving, the others recently
joined. Michael had just met Jörg Siekmann at a seminar of the prestigious
Studienstiftung. His special interest was to develop a logic close to the mathe-
matical representation found in mathematical practice, concretely this meant to
develop a sorted higher-order logic and its mechanisation. Erica had worked on
analogy and related questions in a general context at the Humboldt University
in Berlin; she joined the group after she met Manfred just before the fall of the
wall at a conference on analogy in East Germany. Dan came – a short while
after the others – from Peter Andrews’ group to Saarbrücken. He brought in his
tremendous experience in the implementation of the TPS system. This way TPS
strongly influenced the style of the logical core of Ωmega. Dan was to become
the main developer of the Keim implementation system, which has provided the
implementational base for Ωmega [HKK+94]. Jörn had just finished his master
thesis on MKRP and had a general interest in the new paradigm of Ωmega.

3 Paradigms of the MKRP System

As mentioned MKRP [MGR84,EO86,OS91,Prä92a] is a traditional theorem prov-
er based on resolution and paramodulation for sorted first-order logic. In prac-
tice, the MKRP-system is a traditional first-order theorem prover; in spirit, how-
ever, Jörg Siekmann had from the very start of the project in mind to build a
theorem prover following a human-oriented approach of reasoning. The original
idea was to have a so-called logic engine, that is, the graph-based resolution
engine, which is guided by a so-called “supervisor,” that is, a module which tells
the logic engine what to do next (see Fig. 1). Jörg Siekmann’s idea was that
the logic engine should be supplemented by a human-oriented component that
guides the logic engine. However, more and more effort was put into the logic
engine itself and the “supervisor” was never realised nor was there a serious at-
tempt to design it. Many people started to work on it, but switched to work on
the core system since there was concrete work to be done, which also was easier
to sell to a community that is up to now not very interested in human-oriented
theorem proving. At a time Axel Präcklein built an interactive component as an
extension to MKRP which visualised all possible resolution steps and allowed to
run MKRP in an interactive mode. Using this component, Axel Präcklein and
Manfred Kerber tried to find patterns in the clause graph which allow to select
the next resolution possibility heuristically. However, it turned out that it was
already very difficult to find proofs at all this way and virtually impossible to
detect any usable structure. Usually MKRP performed these steps much better
than humans. From this it was concluded that automating a human-oriented
selection module for resolution steps would be very difficult (it wouldn’t have
been very human-oriented anyway).

142 Manfred Kerber

Fig. 1. A bird’s eye view for the intended interplay between MKRP and the control
component the “supervisor”, taken from Jörg Siekmann’s lecture notes.

The motivation force in the MKRP project was to prove a mathematical
textbook fully using MKRP. The only ever fully proved mathematical textbook
is Edmund Landau’s “Grundlagen der Analysis” [Lan30]. This book was inter-
actively proved in the Automath system see [NGdV94] by L.S. van Benthem-
Jutting [Jut79]. It was a major attempt to prove a full mathematical textbook
and it took van Benthem-Jutting five years to do it, although Landau’s book
is very formalised with 301 theorems on 134 pages. The effort needed indicates
that Automath seems not to have been the right tool to prove textbooks. While
it is a proof checker, MKRP is an automated theorem prover. The hope was
that this would make it much easier to prove a book with MKRP. The textbook
chosen was Peter Deussen’s “Halbgruppen und Automaten” (Semi-groups and
Automata) [Deu71]. The first 5 of 17 sections were actually proved with MKRP.
As will be seen in the following, there were, however, severe problems with us-
ing MKRP for this task. When we formed plans for a new project, Ωmega, we
naturally wanted to take into account all the lessons learned from the attempt
to prove the text book. In the following the most important insights will be
summarised which strongly influenced the further development (see also [Ker92]
and [HKK+92]).

Logic. The representation of the mathematical concepts in the sorted first-
order input language of MKRP is often clumsy and unnatural, also the
representation was often ad hoc. The concepts and constructs of a typi-
cal mathematics textbook are quite rich and much better approximated
by a higher-order language, we were forced to use sophisticated encoding
techniques to translate them manually into the MKRP first-order input
language. While the availability of sorts and the built-in equality predicate
allow for a tolerably adequate translation, it is not always obvious what
the theorems proved by MKRP have to do with the textbook theorems and
hence what is actually proven. As a minimal requirement one would want
an automatic translation technique from higher-order to first-order logic to
support a user in the encoding task.

From MKRP to ΩMEGA 143

Knowledge Base. The MKRP-system, as most other automated theorem
provers, has no integrated mathematical knowledge. Each time definitions
and lemmas, which are used as preconditions for the actual theorem, must
be coded and re-input. This is not only rather boring, but is also a serious
source of error. Often (slightly) different formulations are chosen in different
contexts, with the consequence that the correctness of the whole procedure
of machine verification of textbooks is no longer assured. Moreover, the user
may insert lemmas that cannot be proven in the given context. Discipline
may be helpful, but as practice shows, automated assistance is indispens-
able. In short, a system that supports human mathematicians in proving
theorems must include a database of mathematical knowledge that can be
accessed and updated in a controlled way. This in itself is a major research
task, still not fully solved.

Structuring in Subproblems. More often than not, real mathematical
theorems are too hard to be proven automatically. This state of affairs can
be ameliorated by strengthening the deductive power of the prover in vari-
ous ways (and since then considerable progress has been made in the field,
of course). For every system, however, there exist theorems that cannot
be shown automatically. In order to be useful, the user must be given the
opportunity to guide the proof process interactively. In a classical theorem-
proving system this is almost impossible: the cycle of interaction consists
of a complete restart with a different setting of the parameters or a refor-
mulation of the clauses. The main influence the user has, consists in the
appropriate choice and formulation of the problem. The way the precondi-
tions of a theorem are selected, for instance, is of paramount importance
for the performance of the system. An additional necessary facility is one
for splitting the problem manually into subproblems, so that they can be
proved separately and then used as lemmas later in the proof of the original
theorem. Traditional theorem provers lack such support and the situation
is far from satisfactory, as all structuring decisions and all proof plans are
hand-crafted. In short, all of this requires too much care and skill from the
user, and not surprisingly there are fewer than a handful of well-known
experts who are renowned for their skill in proving difficult theorems with
the help of a machine. Since it is always possible to break down difficult
theorems into digestible subproblems, there is also the question to which
degree this procedure can be called automatic.

All these points showed us that we needed a new system which should be de-
veloped from scratch and that there was no point in attempting to extend the
existing MKRP system. However, we were also very reluctant to throw away more
than ten years of development work and dozens of person years’ work. This led to
the idea to build an open system, in which it is possible to add external systems
to solve subproblems. The first external system would be MKRP, others could
then easily follow.

144 Manfred Kerber

4 Discussions and Decisions

The principles for the Ωmega system were developed in many meetings, seminars
and discussions, a picture of one of the blackboard summaries can be found in
Fig. 2. These discussions were influenced by many people, who either came to
the group to give presentations or with whom we were in intensive discussions.
To mention just a few: Jörg Denzinger (with whom we had intensive discussions
on proof planning), Christoph Kreitz (who explained to us the details of Nuprl),
Wolfgang Reif (on the reuse of proof attempts), William Farmer (on the IMPS
system). In addition, we had numerous discussions with Dieter Hutter, Claus
Sengler, Jürgen Cleve and others, who just arrived in Saarbrücken at the same
time as we, to work on Jörg Siekmann’s verification project. Furthermore we read
many articles outside the main paradigm of the MKRP system, such as papers
on Automath [Bru80,NGdV94], Isabelle [Pau90], and proof planning [Bun88].

These discussions were about almost all aspects of a system, from the high-
level philosophy of the system to the implementation language and the data
structures employed. In the remainder of this section I want to summarise some
key questions and decisions. Let us first take a look at the philosophy of the
system. In this we took up the experience gathered in the work of proving the
first third of [Deu71].

4.1 Automated Versus Interactive

Certainly a mathematician wants to guide the process of proving mathematical
theorems. A system that puts you before an “all or nothing” approach seems
highly unsatisfactory. Ideally you want a system that is as automatic as possible
in order to support a user, but leave as much room for interaction as possible at
the same time.

Fig. 2. A Blackboard Summary of Discussions in 1991 written by Jörg Siekmann.

From MKRP to ΩMEGA 145

A quote from [HKK+94a]:

On account of this, we believe that significantly more support for proof
development can be provided by a system with the following two features:

– The system must provide a comfortable human-oriented problem-solving
environment. In particular, a human user should be able to specify the
problem to be solved in a natural way and communicate on proof search
strategies with the system at an appropriate level.

– Such a system is interesting only if it relieves the user of non-trivial
reasoning tasks and provides the foundation for a practicable increased
reasoning power. We are convinced that this requires not only task-
specific tactics but also the strong reasoning power of a general logic
engine.

As a consequence we decided to build a system that on the one hand allows
for tactical theorem proving, which allows to influence the proof search by call-
ing tactics, and on the other hand has integrated strong external components
like automated theorem provers which can be called as black boxes to solve sub-
problems (see Fig. 3). In summary we tried to find a viable compromise between
automatic and interactive theorem proving. In retrospect, the decision to follow
an automatic and interactive approach at the same time seems to have been the
right one. The full strength of this synthesis seems to be coming to the fore only
recently in work on agent-oriented theorem proving as developed by Christoph
Benzmüller and Volker Sorge [BS01] and multi initiative proof planning by An-
dreas Meier and Erica Melis [MM00].

strength:-deductive power

- restricted logic
- fixed strategies
- no interaction

- no math. knowledge

weakness:
strength:-environment

-powerful language
- automatic support
- expensive

weakness:

- FOL
- Resolution, ...
- domain indepen-

dent search strat.
& heuristics

- HOL
- Nat. Deduction
- Interactive
- Taktics &

Methods

MKRP

INTERACTION

AUTOMATION

Proof Checkers
Automated

Theorem Provers

Fig. 3. Motivation Diagram for the Ωmega system.

146 Manfred Kerber

4.2 Paradigm

Related to (but independent from) the question whether to follow an automated
or an interactive theorem proving style, was the question what the type of the
system should be, should it follow traditional machine-oriented theorem proving
or human-oriented theorem proving.

Here again, we followed the approach that we wanted to include different
paradigms. We wanted to include theorem provers like MKRP and Otter, but
wanted also to take the original idea of a human-oriented approach very seriously
(see Fig. 3). Some work on analogical theorem proving [Ker89] was done at that
time. Around the same time we understood the significance of Alan Bundy’s
approach to use planning techniques in theorem proving in the form of proof
planning [Bun88]. It was at the same time when the last proposal to reimplement
MKRP and to bring it up to the most recent developments in resolution style
theorem proving was discussed. We decided against this and started concrete
work on the Ωmega system instead. We decided to make use of fast existing
first-order theorem provers like Otter rather than to bring MKRP to speed.

The approach of proof planning looked very attractive since it allows – unlike
MKRP – to include domain-dependent reasoning knowledge in form of proof
planning methods [MS99]. Around this time we also adopted the idea that for
automation incomplete approaches can be stronger than complete ones.

The overall architecture of Ωmega as discussed then and realised later can
be seen in Fig. 4. Centred around the structure of Natural Deduction proofs,
different components and the user can manipulate partial proofs to complete a
proof, this can be done by inserting information from a knowledge base, by proof
planning, by external components, or proof transformation.

modify

add lineslookup

apply

start

check

direct

add lines
justify

call

transform call

Data

Verifier

MKRP

Proof
Transform

Methods

Tree

Proof

base

Setheo

INKA

LEO

Otter

MKRP

User

(Planner)

Fig. 4. Architecture of Ωmega.

From MKRP to ΩMEGA 147

4.3 The Logic Language – First-Order Versus Higher-Order

MKRP is a first-order theorem prover. For all theorems we tried to prove we
found a representation in first-order logic. Also there has been work by Robert
Boyer et al. [BLM+86] (later taken up by Art Quaife [Qua92]), which shows how
first-order logic can be effectively used to prove large chunks of mathematics in
some form of set theory. This is also the approach taken in Mizar [Rud92]. The
advantage is that a few axioms suffice to build up all of the relevant mathematics.
The disadvantage is that the approach seems to be far away from mathematical
practice and a human-oriented approach. When you want to represent a func-
tion in mathematics, a function symbol in logic seems to be much closer to the
informal notion than a left total and right unique relation.

The argument was strongly supported by the plan to build on existing sort
systems (like that used in MKRP) to extend it to higher-order logic, so that it
would be possible to speak about unary functions on real numbers, continuous,
and differentiable ones and so on. Here two different aspects had to be considered.
Firstly we wanted to use the language as the representation language, that is,
we wanted it to be as strong as possible (including dependent sorts, to be able
to encode structures like groups very naturally as a set G : set with an operation
+ : G×G → G, where the operation depends on G). Secondly Michael Kohlhase
wanted to (and later did in collaboration with Christoph Benzmüller) build a
theorem prover based on higher-order logic with sorts which should form the
Logic Engine for Omega, Leo [Koh94,BK98]. Since this is a very difficult task,
dependent sorts (as well as partiality as discussed in [KK96]) were not included
for the time being.

4.4 Explicit Proofs, Proof Presentation, and Interface

The importance of an adequate presentation of proofs has always played a signif-
icant rôle in the MKRP as well as the Ωmega project. This started by the work
of Christoph Lingenfelder [Lin89,Lin90,LP91] and Xiaorong Huang [Hua96] and
has been continued by Armin Fiedler since. From the work to present proofs to
humans it was a short step to arrive at the philosophical position that proofs
must be checkable [HKK+94c]. This solved a major problem of the structure of
the Ωmega system, namely, how is it possible to ensure correctness of proofs in
the presence of many – quite heterogeneous black box components – which may
contribute to a proof.

The Ωmega system went first with an Emacs interface only. In the initial
discussions we discussed already the importance of a high-level user interface,
but in the implementation we had to focus on the kernel of the system. Only
later LOUI [SHB+99] was developed to provide a graphical user interface to
Ωmega.

4.5 Knowledge Representation

The representation of mathematical knowledge was considered of great impor-
tance from the very beginning [SK93]. It was considered as a central question and

148 Manfred Kerber

attempted even in days when there were still discussions to build a so-called “su-
pervisor” for MKRP. In discussions between Norbert Eisinger, Jörg Siekmann,
and Manfred Kerber it was decided to start the work on a knowledge based
reasoning system with the representation of knowledge. It has been considered
important to represent mathematics not only as mathematical formulae, but
also to attribute to a formula a semantic status, whether it is an assumption,
a precondition, a definition, a conjecture, or a theorem. Furthermore a context
should be provided, problems can build up on each other, which makes inheri-
tance of concepts possible. A particular interest was also put in re-representation
issues [KP96], however, the question is still mainly unanswered.

4.6 External Systems

As external system to include we started with MKRP, also to justify that all the
work that went into MKRP was not in vain. This led then to the next step to
include other first-order theorem provers, which are much faster than MKRP,
like Otter [McC90]. While this approach was criticised by reviewers, since we
didn’t follow a seamless approach of user-oriented theorem proving which em-
ploys human-oriented theorem proving like proof planning throughout, it made
it possible to further extend the system later on. For instance, Leo [BK98] was
anticipated as a loosely coupled and not tightly integrated system. Computer
algebra systems followed [KKS98] as well as constraint solvers [MZM00]. This
diversified the type of systems included. A generalisation of such a flexible inte-
gration was never anticipated in the early days, but the high flexibility needed
can be viewed in retrospect as a seed which helped to generate the ideas of
Mathweb [FK99] and OMDoc [Koh01] by Michael Kohlhase and others.

4.7 Application

As intended application for the Ωmega system we took over the old project of
MKRP to prove a mathematical textbook without any discussion. In hindsight
this is too narrow a view what such a system can be used for. Although we
never explicitly excluded other potential applications, it might have been better
to positively keep other potential applications – like the recently emerging ap-
plications in education (see Erica Melis’ contribution in this volume) – in sight
at an early stage already.

4.8 Programming Language

Different programming languages were discussed when we started the Ωmega
project, to mention some, C (for efficiency), Prolog (for rapid prototyping), Lisp
(as a compromise, which stood in the tradition of the MKRP project), and ML
(viewed as a typed variant of Lisp). The decision against C or C++ was in
retrospect good, since our ideas were not clear enough when we started with
Ωmega that we could exactly specify it, Prolog may not have been flexible

From MKRP to ΩMEGA 149

enough, ML with its type system might have been the better choice and some
people favoured it when we started, but in the end tradition prevailed and we
decided for Lisp, because of the knowledge, the hardware, and the software
available. Lisp proved to be a powerful, flexible language which allowed for many
developments in the sequel, functional, object-oriented and concurrent system
development. It was a good choice (although ML might have been a better).

Ωmega was not directly implemented in Lisp (Common-Lisp to be more pre-
cise), but in the Keim environment, which was a programming environment built
on top of Lisp (in the German Focal Programme on Deduction, financed by the
Deutsche Forschungsgemeinschaft). Its philosophy is (quote from [HKK+94]):

..., those who wish to apply techniques developed by the theorem-proving
community face the choice of either learning this ‘black art’ themselves by
developing their own prover from scratch, or jury-rigging available provers
to get some kind of result.

While Keim greatly facilitated the development of Ωmega, it remained still a
‘black art’ to build and extend Ωmega. Keim turned out to be a complex system,
which is difficult to handle. Furthermore there are performance problems. In
retrospect I think these are due to the attempt to build with Keim a system
which is very general and construed to enable the implementation of a wide
range of deduction systems. The question whether to build a system as general
as possible versus to build a system as simple as possible was answered in favour
of generality. This seems to me now to have been a mistake.

5 Conclusion

Most decisions turned out to be fruitful although they might not all have been
optimal. As already mentioned an earlier focus on a different application domain
and a different approach to the programming might have been beneficial. But by
far not all developments were foreseen. In some aspects we were too optimistic
what could be achieved in ten years – for instance, we thought that it would be
much easier to formalise standard mathematics in sorted higher-order logic. In
other aspects we didn’t dare to hope for a state like the one achieved today –
for instance, we didn’t hope that the work would be applicable now already in
education.

There are developments we did not anticipate, but which were made pos-
sible by Ωmega. I want to mention agent-oriented theorem proving [BS01],
knowledge-based proof planning [MS99], Mathweb [FK99], and OMDoc [Koh01].
In my view this shows that Ωmega has been a flourishing project.

Ωmega meant a change of direction in Jörg Siekmann’s theorem proving
group, a change in area, in approach, and in paradigm. This was of course very
risky, since it meant a reduced possibility for publications for a significant amount
of time and the potential knock-on effect on funding. Fortunately referees in the
German funding organisations were very positive and supportive (I just want to
mention Wolfgang Bibel and Michael M. Richter here). I think that Ωmega has
been a scientific success and a worthwhile enterprise. Jörg Siekmann was already

150 Manfred Kerber

an established scientist who could have rested on his laurels and continued with
what he always did, when Ωmega started. He, however, actively initiated this
major change in direction, which considerably deviated from the path originally
envisaged in the MKRP project, when he was convinced that only in this way
we would come closer to making the old dream true to automate mathematics.
Leibniz had a dream, “Calculemus”, namely to mechanise mathematics (actually
he wanted to mechanise not only mathematics but all of human thought, we never
were so ambitious in the Ωmega project). There are many problems in detail
still to be solved to provide a powerful useful tool for mechanised mathematics.
In the past there have been too many promises/predictions about what will be
achieved in the near future. I don’t want to add another one, but although we
have not yet realised the dream, I feel that we are significantly closer to its
realisation.

This paper is not a survey on the Ωmega system, but just on the discussions
during the transition from MKRP to Ωmega. Many exciting developments have
taken place since then and without doubt will take place in the future. They
have to be reported somewhere else.

Acknowledgements

The transition from MKRP to Ωmega was possible since several things came
together. Not only the researchers involved were filled with great enthusiasm,
but also many undergraduate students worked with great enthusiasm on the
project.

I feel that the description which I tried to provide here is more incoherent
and subjective than I would like it to be; this is entirely my fault. That it is
not even more incoherent is due to many helpful comments by Norbert Eisinger,
Michael Kohlhase, and Erica Melis on a earlier draft. I would like to express my
thanks to them hereby.

References

[BK98] Christoph Benzmüller and Michael Kohlhase. Leo – a higher-order theo-
rem prover. In Claude Kirchner and Hélène Kirchner, eds., Proceedings of
the 15th CADE, p. 81–97, Lindau, Germany, 1998. Springer, LNAI 1421.

[Blä86] Karl Hans Bläsius. Equality Reasoning Based on Graphs. PhD thesis,
Fachbereich Informatik, Universität Kaiserslautern, Kaiserslautern, Ger-
many, 1986.

[BLM+86] Robert Boyer, Ewing Lusk, William McCune, Ross Overbeek, Mark
Stickel, and Lawrence Wos. Set theory in first-order logic: Clauses for
Gödel’s axioms. Journal of Automated Reasoning, 2:287–327, 1986.

[Bru80] Nicolaas Govert de Bruijn. A survey of the project Automath. In J.P.
Seldin and J.R. Hindley, eds., To H.B. Curry - Essays on Combinatory
Logic, Lambda Calculus and Formalism, p. 579–606. Academic Press,
London, UK, 1980.

From MKRP to ΩMEGA 151

[BS01] Christoph Benzmüller and Volker Sorge. Oants – an open approach at
combining interactive and automated theorem proving. In Manfred Ker-
ber and Michael Kohlhase, eds., Symbolic Calculation and Automated
Reasoning: The CALCULEMUS-2000 Symposium, p. 81–97, St. Andrews,
Scotland, 2001. A.K. Peters, USA.

[Bun88] Alan Bundy. The use of explicit plans to guide inductive proofs. In
Ewing Lusk and Ross Overbeek, eds., Proc. of the 9th CADE, p. 111–
120, Argonne, Illinois, USA, 1988. Springer, LNCS 310.

[Bür90] Hans-Jürgen Bürckert. Constraint Resolution – A Resolution Principle
for Clauses with Restricted Quantifiers. PhD thesis, Fachbereich Infor-
matik, Universität Kaiserslautern, Kaiserslautern, Germany, 1990.

[Deu71] Peter Deussen. Halbgruppen und Automaten, Volume 99 of Heidelberger
Taschenbücher. Springer, 1971.

[Eis91] Norbert Eisinger. Completeness, Confluence, and Related Properties of
Clause Graph Resolution. Pitman, London, UK, 1991.

[EO86] Norbert Eisinger and Hans Jürgen Ohlbach. The Markgraf Karl Refu-
tation Procedure (MKRP). In Jörg H. Siekmann, ed., Proc. of the 8th
CADE, p. 681–682, Oxford, UK, 1986. Springer.

[FK99] Andreas Franke and Michael Kohlhase. System description: MathWeb,
an agent-based communication layer for distributed automated theorem
proving. In Harald Ganzinger, ed., Automated Deduction – CADE-16,
LNAI 1632, p. 217–221. Springer, 1999.

[Her87] Alexander Herold. Combination of Unification Algorithms in Equational
Theories. PhD thesis, Fachbereich Informatik, Universität Kaiserslautern,
Kaiserslautern, Germany, 1987.

[HKK+92] Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan
Nesmith, Jörn Richts, and Jörg Siekmann. Omega-MKRP – a proof de-
velopment environment. Seki Report SR-92-22, Fachbereich Informatik,
Universität des Saarlandes, Saarbrücken, Germany, 1992.

[HKK+94] Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan
Nesmith, Jörn Richts, and Jörg Siekmann. KEIM: A toolkit for auto-
mated deduction. In Alan Bundy, ed., Automated Deduction – CADE-12,
Proceedings of the 12th International Conference on Automated Deduc-
tion, p. 807–810, Nancy, France, 1994. Springer. LNAI 814.

[HKK+94a] Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan
Nesmith, Jörn Richts, and Jörg Siekmann. Ω-MKRP: A proof develop-
ment environment. In Alan Bundy, ed., Automated Deduction – CADE-
12, Proceedings of the 12th International Conference on Automated De-
duction, p. 788–792, Nancy, France, 1994. Springer. LNAI 814.

[HKK+94c] Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Dan Nesmith, and
Jörn Richts. Guaranteeing correctness through the communication of
checkable proofs (or: Would you really trust an automated reasoning sys-
tem?). In David Basin, Fausto Giunchiglia, and Matt Kaufmann, eds.,
Proceedings of the CADE-Workshop on Metatheoretic Extensibility of Au-
tomated Reasoning Systems, p. 31–33, Nancy, France, 1994.

[Hua96] Xiaorong Huang. Human Oriented Proof Presentation: A Reconstructive
Approach. infix, St. Augustin, Germany, 1996.

[Jut79] L.S. van Benthem Jutting. Checking Landau’s “Grundlagen” in the Au-
tomath System, Volume 83 of Mathematical Centre Tracts. Mathematisch
Centrum, Amsterdam, The Netherlands, 1979.

152 Manfred Kerber

[Ker89] Manfred Kerber. Some aspects of analogy in mathematical reasoning. In
Klaus P. Jantke, ed., Analogical and Inductive Inference; International
Workshop AII ’89, p. 231–242, Reinhardsbrunn Castle, GDR, October
1989. Springer. LNAI 397.

[Ker92] Manfred Kerber. On the Representation of Mathematical Concepts and
their Translation into First Order Logic. PhD thesis, Fachbereich Infor-
matik, Universität Kaiserslautern, Kaiserslautern, Germany, 1992.

[KK96] Manfred Kerber and Michael Kohlhase. A tableau calculus for partial
functions. Collegium Logicum – Annals of the Kurt-Gödel-Society, 2:21–
49, 1996.

[KKS98] Manfred Kerber, Michael Kohlhase, and Volker Sorge. Integrating com-
puter algebra into proof planning. Journal of Automated Reasoning,
21(3):327–355, 1998.

[Koh94] Michael Kohlhase. A Mechanization of Sorted Higher-Order Logic Based
on the Resolution Principle. PhD thesis, Fachbereich Informatik, Univer-
sität des Saarlandes, Saarbrücken, Germany, 1994.

[Koh01] Michael Kohlhase. OMDoc: Towards an internet standard for the adminis-
tration, distribution and teaching of mathematical knowledge. In Euge-
nio Roanes Lozano, ed., Proceedings of Artificial Intelligence and Symbolic
Computation, AISC’2000, LNAI 1930. Springer, 2001.

[Kow75] Robert Kowalski. A proof procedure using connection graphs. JACM,
22, 1975.

[KP96] Manfred Kerber and Axel Präcklein. Using tactics to reformulate formu-
lae for resolution theorem proving. Annals of Mathematics and Artificial
Intelligence, 18(2-4):221–241, 1996.

[Lan30] Edmund Landau. Grundlagen der Analysis. Akademische Verlagsge-
sellschaft, Leipzig, Germany, chelsea publishing, 1948 Edition, 1930.

[Lin89] Christoph Lingenfelder. Structuring computer generated proofs. In N.S.
Sridharan, ed., Proc. of the 11th IJCAI, p. 378–383, Detroit, Michigan,
USA, 1989. Morgan Kaufmann, San Mateo, California, USA.

[Lin90] Christoph Lingenfelder. Transformation and Structuring of Computer
Generated Proofs. PhD thesis, Fachbereich Informatik, Universität Kai-
serslautern, Kaiserslautern, Germany, 1990.

[LP91] Christoph Lingenfelder and Axel Präcklein. Proof transformation with
built-in equality predicate. In John Mylopoulos and Ray Reiter, eds.,
Proc. of the 12th IJCAI, p. 165–170, Sydney, 1991. Morgan Kaufmann,
San Mateo, California, USA.

[McC90] William McCune. Otter 2.0. In Mark E. Stickel, ed., Proc. of the 10th
CADE, p. 663–664, Kaiserslautern, Germany, 1990. Springer, LNAI 449.

[MGR84] Karl Mark G Raph. The Markgraf Karl Refutation Procedure. Techni-
cal Report Memo-SEKI-MK-84-01, Fachbereich Informatik, Universität
Kaiserslautern, Kaiserslautern, Germany, 1984.

[MM00] Erica Melis and Andreas Meier. Proof planning with multiple strategies.
In John Lloyd et al., ed., Proc. of First International Conference on Com-
putational Logic – CL 2000, p. 644–659, Berlin, Germany, 2000. Springer,
LNAI 1861.

[MS99] Erica Melis and Jörg H. Siekmann. Knowledge-based proof planning.
Artificial Intelligence, 115(1):64–105, 1999.

From MKRP to ΩMEGA 153

[MZM00] E. Melis, J. Zimmer, and T. Müller. Integrating constraint solving into
proof planning. In Ch. Ringeissen, ed., Frontiers of Combining Systems,
Third International Workshop, FroCoS’2000, p. 32–46. Springer, LNAI
1794, 2000.

[NGdV94] Rob Nederpelt, Herman Geuvers, and Roel de Vrijer, eds. Selected Papers
on Automath, Volume 133 of Studies in Logic and the Foundations of
Mathematics. North-Holland, Amsterdam, The Netherlands, 1994.

[Ohl88] Hans Jürgen Ohlbach. A Resolution Calculus for Modal Logics. PhD the-
sis, Fachbereich Informatik, Universität Kaiserslautern, Kaiserslautern,
Germany, 1988.

[OS91] Hans Jürgen Ohlbach and Jörg H. Siekmann. The Markgraf Karl Refuta-
tion Procedure. In Jean-Louis Lassez and Gordon Plotkin, eds., Compu-
tational Logic – Essays in Honor of Alan Robinson, Chapter 2, p. 41–112.
MIT Press, Cambridge, Massachusetts, 1991.

[Pau90] Lawrence C. Paulson. Isabelle: The next 700 theorem provers. Logic and
Computer Science, p. 361–386, 1990.

[Prä92] Axel Präcklein. Integration of Rewriting, Narrowing, Compilation, and
Heuristics for Equality Reasoning in Resolution-Based Theorem Proving.
PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, 1992.

[Prä92a] Axel Präcklein, ed. The MKRP User-Manual. SEKI Working Pa-
per SWP-92-03, Fachbereich Informatik, Universität des Saarlandes,
Saarbrücken, Germany, 1992.

[Qua92] Art Quaife. Automated deduction in von Neumann-Bernays-Gödel set
theory. Journal of Automated Reasoning, 8(1):91–146, 1992.

[Rud92] Piotr Rudnicki. An overview of the Mizar project. Bastaad, Sweden,
1992.

[SHB+99] Jörg Siekmann, Stephan Hess, Christoph Benzmüller, Lassaad Cheikh-
rouhou, Armin Fielder, Helmut Horacek, Michael Kohlhase, Karsten Kon-
rad, Andreas Meier, Erica Melis, Martin Pollet, and Volker Sorge. Loui:
Lovely omega user interface. Formal Aspects of Computing, 11:326–342,
1999.

[SK93] Barbara Schütt and Manfred Kerber. A mathematical knowledge base
for proving theorems in semigroup and automata theory – Part I. SEKI
Working Paper SR-93-02, Fachbereich Informatik, Universität des Saar-
landes, Saarbrücken, Germany, 1993.

[SS89] Manfred Schmidt-Schauß. Computational Aspects of an Order-Sorted
Logic with Term Declarations. Springer, LNAI 395, 1989.

[Wal83] Christoph Walther. A many–sorted calculus based on resolution and
paramodulation. In Proc. of the 8th IJCAI, p. 882–891, Karlsruhe, Ger-
many, 1983. Morgan Kaufmann, San Mateo, California, USA.

Decidable Variants of Higher-Order Unification

Manfred Schmidt-Schauß

Johann Wolfgang Goethe-Universität,
Fachbereich Biologie und Informatik,

Institut für Informatik,
Postfach 11 19 32, D-60054 Frankfurt, Germany
Tel: (+49)69-798-28597, Fax: (+49)69-798-28919
schauss@ki.informatik.uni-frankfurt.de

www.ki.informatik.uni-frankfurt.de/

Abstract. Though higher-order unification is in general undecidable,
there are expressive and decidable variants. Several interesting special
cases and variants stem from restricting algorithms to search only unifiers
where the number of bound variables is restricted. The intention of this
paper is to summarize results in this area and to shed some light on the
connections between context unification, decidable variants of higher-
order, second order unification and string unification. Since this paper
is intended to appear in a volume in celebrating Jörg Siekmann’s 60th
birthday, we will take the opportunity to give hints on how the motivating
power of Jörg Siekmann has contributed to and put forward the research
in unification.

1 Introduction

Unification is solving equations and computing their solutions. There are appli-
cations in several areas of Computer Science: Automated Deduction, Compu-
tational Logic, Logic Programming, Functional Programming, Type Checking,
and Program Specification.

First-order unification [Rob65,Sie84,BS94,BN98] is a fundamental operation
in several areas of computer science. The generalization to higher-order unifi-
cation increases its expressiveness, its applicability and improves the level of
abstraction. This explains the interest in higher-order extensions such as higher-
order logics and higher-order deduction systems [And86,Pau94,GLM97,And01,
Pfe01], higher-order (functional) programming languages [BMS80,Tur85,Pau91,
Bar90, Bir98], higher-order logic programming languages [Mil91, HKMN95],
higher-order rewriting [Nip91,Klo92,DJ90] and higher-order unification [Hue75,
Dow01].

Jörg Siekmann’s contributions to the field of unification start early after
Robinson’s paper on resolution and first order unification [Rob65]. Influenced
also by work of Plotkin [Plo72] he worked on string unification with the inten-
tion to find efficient unification algorithms and to explore the general properties
of sets of unifiers [Sie75]. Makanin [Mak77] settled the question, and gave an

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 154–168, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Decidable Variants of Higher-Order Unification 155

algorithm, however, looking at the algorithm it turned out that this was one of
the most complex algorithms described so far for a problem in computer science.

Jörg Siekmann was also a supervisor of Peter Szabó’s thesis on unification
[Sza82], which treated unification and matching under equational theories. Here
the open question of decidability of unification in a theory of only two distributive
axioms first appeared. The driving and motivating force of Jörg shows up in
several overview papers, one of the first ones was [Sie84], a more recent one was
written together with Franz Baader, a former researcher in his group [BS94].

It is an interesting co-occurrence that the equational theory of associativity
as well as the theory of two-sided distributivity have a connection to second-
order unification, in particular to context unification. String unification is a spe-
cialization of context unification and the decidability of unification under two
distributive axioms was shown using decidability of a fragment of context unifi-
cation. Jörg Siekmann was also the supervisor of my thesis, and his motivating
power has been influencing me since.

2 First Order Unification

First order unification is solving equations of terms over a signature Σ of function
symbols and over an infinite set of variables. Every function symbol f in the
signature comes with a fixed arity ar(f). The terms without variables (ground
terms) are defined using the grammar

t ::= f(t1, . . . , tar(f))

Equations are defined between terms with variables, defined by the grammar

t ::= x | f(t1, . . . , tar(f))

An equation is written as s
.= t. Solutions, called unifiers, of a set of equations

{si
.= ti | i = 1, . . . , n} are substitutions for the variables that solve the equations.
The algorithm in [Rob65] is exponential. The algorithm described in [MM79]

is polynomial. It is well-known that there is a linear algorithm for deciding
unifiability of first order unification problems [PW78] (for further information
see the overview article [BS94]). In the case of first order unification it is possible
to efficiently compute a single most general unifier that represents all unifiers of
a given problem.

3 String Unification

First order unification is generalized into different directions. In particular, there
has been research into unifying equations given a set of equational axioms. We
confine ourselves to the equational theory of associativity. We will see that there
is a strong relationship between context unification, which is a special case of
higher-order unification, and associative unification. Associative unification is
based on a signature with one binary symbol f and infinitely many constants,
the axiom being

156 Manfred Schmidt-Schauß

f(x, f(y, z)) = f(f(x, y), z)

If there are also the axioms f(x, ε) = x, and f(ε, x) = x, where ε is a constant
meaning the empty string, then it is also called string unification.

The problem of (un-)decidability of solving associative term equations was
open for over a decade. There was some work on unification procedures that
compute complete and/or minimal sets of unifiers [Plo72, Sie75]. The problem
of decidability was then solved by Makanin [Mak77] in a seminal paper giving a
description of a rather complex algorithm. An important lemma used by Makanin
states an upper bound on the so-called exponent of periodicity of a minimal
unifier. The exponent of periodicity of a unifier is the maximal number n, such
that the repetition wn for a nontrivial word w is a subterm of some term ti

in the unifier {xi �→ ti | i = 1, . . . m}. This bound was improved to an almost
optimum by [KP96], where it is shown that the number is at most exponential,
i.e., O(2c1∗n+c2), and hence the representational size of the number is linear.

The original algorithm of Makanin was of non-elementary complexity. Re-
cently, there was a series of improvements of decision algorithms: NEXPTIME
[Gut98], and PSPACE [Pla99]. The last result was an unexpected and striking
result and could only be obtained by inventing a new algorithm, but also using
the optimal bound on the exponent of periodicity. Nevertheless, there remains
a complexity gap, since the best known lower bound is that string unification is
NP-hard.

There are associative unification problems with an infinite number of (in-
comparable) most general unifiers, for example f(x, a) .= f(a, x).

4 Higher-Order Unification

We give a short description of the foundations.
There is a grammar for types

T ::= T0 | (T → T)

where T0 �= ∅ is the set of elementary types. The symbols α, τ range over types,
and ι ranges over elementary types.

A shorter notation for types of the form τ = (α1 → (α2 . . . (αn → ι) . . .)) is
(α1 → α2 → . . . → αn → ι). The number n is called the arity of the type τ ,
denoted ar(τ), and ι is called the target type of τ .

There is a signature Σ of function symbols, where every function symbol f
has a type type(f) and an arity ar(f) := ar(type(f)).

Function symbols f of elementary type (i.e., ar(f) = 0) are called constant
symbols. We assume that Σ contains for every type τ a countably infinite set
of function symbols. For every type τ there are infinitely many variables Vτ .
Variables are denoted as x, y, z. As for function symbols, with type(x) we de-
note the type of x. The arity ar(x) of x is ar(x) := ar(type(x)). A variable of
elementary type is also called first-order variable. The order of a type is defined
as follows: ord(ι) = 1, for an elementary type ι, and ord(τ1 → . . . → τn → ι) =
max{ord(τi) | i = 1, . . . , n}.

Decidable Variants of Higher-Order Unification 157

Definition 4.1. For every type τ we define the set T ermτ of terms of type τ :

T ermτ ::= f τ | xτ | (T ermτ ′→τ T ermτ ′
) | λxτ1 .T ermτ2

where f is a function symbol of type τ , and x is a variable of type τ . The term
λxτ1 .T ermτ2 is only valid if τ1 → τ2 = τ .

The head of an application is the subterm that is in the leftmost position in
the flat representation. For example, f is the head of (f t1 . . . tn).

4.1 β and η-Reduction and Equality

The βη-rules for the simply typed lambda-calculus impose the following equa-
tions between terms:

(α) λx.t = λy.t[y/x] y is a fresh variable
(β) ((λx.t) s) = t[s/x] (the capture-free substitution)
(η) t = λxτ .(t x) if type(t) = τ → τ1 and x �∈ FV(t).

Of course we also assume that the equality =βη defined by (α), (β), (η) is an
equivalence relation and a congruence, i.e. s =βη t ⇒ C[s] =βη C[t], where C[s]
denotes the term that results from plugging s into the context C[].

Usually, the equations for (β), (η) are directed. We will employ η-expansion,
denoted as η.

(β) C[(λx.t) s] → C[t[s/x]] for all contexts C[].
(η) C[λy.(t y)] → C[t] If y �∈ FV(t). The rule is applicable for all

contexts C[].
(η) C[t] → C[λy.(t y)] if t is not an abstraction, type(t) is not an

elementary type, and t in C[t] is a maximal
application. The variable y must be a fresh
variable of appropriate type. This reduction is
valid for all contexts C[].

If a term cannot be further reduced by βη, then it is in βη-normal form, also
called η-long β-normal form.

It is well-known that the reduction relation defined by these two reductions is
strongly terminating and Church-Rosser [Wol93,Hue76,Bar84]. Hence for every
term t, there is a βη-normal form t↓βη, which is unique up to =α.

Proposition 4.2. The following equivalences hold:

s =βη t ⇔ s↓βη =α t↓βη ⇔ s↓βη =α t↓βη

4.2 A Higher-Order Unification Procedure

The first complete unification procedures were presented in [Pie73,JP76,Hue75].
We give a short account of a procedure using a non-deterministic set of rules.

158 Manfred Schmidt-Schauß

The goal is to search (type-correct) instantiations for the free variables in the
equations si

.= ti, i = 1, . . . , n, where type(si) = type(ti) for i = 1, . . . , n, such
that the equations are solved modulo =βη.

It is not hard to see that a procedure using the following rules generates a
complete set of solutions, though it may not terminate. The higher-order unifi-
cation algorithm distinguishes the equations according to the head of the η-long
forms: A term λ−→x .X −→u where X is a free variable is called flexible, a term
λ−→x .v −→u is called rigid, if v is either a function symbol or a variable in −→x .

So-called flexible-flexible equations are always solvable. For rigid-rigid and
rigid-flexible equations, the following rules can be used.

Fail
λ−→x .u

−→
t

.= λ−→x .v −→s
F ail

rigid-rigid and u �= v

Decompose
λ−→x .u

−→
t

.= λ−→x .u −→s
λ−→x .t1

.= λ−→x .s1, . . .
rigid-rigid

Imitiation
λ−→x .X

−→
t

.= λ−→x .f −→s ∈ Γ

{X �→ λ−→y .f (X1
−→y) . . . (Xk

−→y)}Γ rigid-flexible

Projection
λ−→x .X

−→
t

.= λ−→x .f −→s ∈ Γ

{X �→ λ−→y .yj (X1
−→y) . . . (Xk

−→y)}Γ rigid-flexible

If there are only flexible-flexible equations, then the system of equations is
called presolved.

4.3 Properties of Higher-Order Unification

It is well-known that higher order unification is undecidable. This was shown for
third-order unification in [Hue73]. That second order unification is undecidable
was shown later in [Gol81]. This result was sharpened in [Far91] for a restricted
signature and in [Lev98, LV00] for severe restrictions on the arity of second
order variables and on occurrences of first order and second order variables.
The monadic restriction was shown to have an undecidable unification problem,
even if types are restricted to third order, in [Nar90]. Here monadic means that
function symbols and all types are restricted to be monadic.

4.4 Higher Order Patterns

Higher order patterns are special lambda-terms, where the arguments of every
free variable are different bound variables [Mil91]. The intended application for
these higher order patterns was a logic programming language with higher order
terms. The special case of unification of higher order patterns is decidable [Mil91].
There is also work on further special cases [Pre95].

Decidable Variants of Higher-Order Unification 159

5 Bounded Second-Order Unification

Syntactic restrictions rule out certain unification problems. Instead it is possible
to allow all unification problems, however, restricting the unifiers. One such
restriction is bounded second order unification.

We describe the specialization of higher order unification to second-order
unification:

– All function symbols in the signature have a type of the form ι1 → . . . → ιn,
where ιi are elementary types.

– In unification problems, every type of a subterm is either elementary or a
function type of the form ι1 → . . . → ιn. In particular, every free variable
has elementary type (is first-order), or has type ι1 → . . . → ιn (is second-
order). This corresponds to the distinction between first-order variables and
second-order variables. The only subterms of function type are the second-
order variables.

– There are no subterms that are abstractions in the equations. Hence every
variable in the equations is a free variable.

To allow several elementary types leads to a kind of multi-sorted logic and uni-
fication with disjoint types. However, from a computational point of view, there
is only a minor difference to the simpler case where there is only one elementary
type. Hence the usual assumption is that there is exactly one elementary type ι.

It follows also that every bound variable in a unifier has type ι.
Bounded second order unification is the question whether there is a unifier

of a second order equational problem, if the set of substitutions is restricted
such that the number of bound variables in the solution is smaller than a given
constant. Note that this does not restrict the size of unifiers.

The following holds:

Theorem 5.1. Bounded second order unification is decidable [SS99,SS01a].

This result shows that from a theoretical viewpoint, an unbounded number
of bound variables in substitutions is essential for the undecidability results of
second order unification.

The decision algorithm for bounded second order unification has similarities
to the algorithm for stratified context unification (see subsection 7.1). The al-
gorithm operates on a set of equations using the unification rules with a tight
control. The goal is to non-deterministically transform the equations into pre-
solved form. Again a theorem on the exponent of periodicity is used to bound
the number of repetitions of certain rules applications.

We give a short account of the main ideas of the algorithm:
A basic notion is the surface position, which is a position in a term that is

not in an argument of a free variable. I.e. not within ti of the subterm x t1 . . . tn.
Let the relations ∼1 and >1 on the variables VS of the problem be defined

as follows:
If x . . .

.= y . . . is an equation, then x ∼1 y; If x . . .
.= f t1 . . . tn is an

equation, and y is on a surface position of some ti, then x >1 y. Let ∼ denote the

160 Manfred Schmidt-Schauß

equivalence relation generated by ∼1. Denote the equivalence class of a variable
x by [x]∼. For equivalence classes D1, D2 of VS/∼ define D1 �1 D2 if there exist
xi ∈ Di such that x1 >1 x2. Let � denote the transitive closure of �1 .

There are two cases:

1. The relation � is an irreflexive partial order on VS/∼. In this case one can
make progress by applying imitation for the variables in maximal equivalence
classes.

2. � is not an irreflexive partial order on VS/∼. Then there is a sequence
of equations which can be seen as a cycle. In this situation the idea is to
perform transformations to shorten cycles, or to perform imitations along
such a cycle, where the number of rounds can be bounded by the bound on
the exponent of periodicity.

There are good reasons for the following conjecture, where we assume that the
bound n is given in the input as a string of length n.

Conjecture 5.2. Bounded Second Order Unification is NP-complete

A possible proof of this conjecture could be based on a result of Plandowski
on context free grammars that generate exactly one word. The complexity for
detecting whether two cfg’s generate the same word is polynomial in the size of
the grammars [Pla94].

Monadic second order unification is second order unification where the signa-
ture is restricted to monadic function symbols. This problem is already treated
in [Far88, Hue75], where it is shown to be decidable by using decidability of
string unification. The conjecture above would imply that monadic second order
unification is NP-complete. Compared to string unification, this is better than
the PSPACE upper bound.

6 Bounded Higher-Order Unification

The generalization of bounded second order unification to higher order unifica-
tion is as follows. There is a given bound that enforces that the overall number
of bound variables in unifiers is restricted. This is worked out in [SSS01a], where
not only the number of occurrences of bound variables are counted, but also the
number of occurrences of lambdas in the unifier. Moreover, it is assumed that
the unifiers are in βη-normal form. Under these restrictions, unification becomes
decidable:

Theorem 6.1. Bounded Higher Order unification is decidable [SSS01a].

The algorithm is a generalization of the the algorithm for bounded second
order unification. It operates by instantiating free variables that are not in the
body of abstractions. The instantiation rules can be seen as a big-step combina-
tions of projection and imitation. The final argument is that a kind of presolved
problem is generated: all equations in it are of the form x . . .

.= y Such sys-
tems have always a trivial solution that instantiates a constant function for all
the variables in heads of equations.

This decidability result is also based on an upper bound on the exponent of
periodicity of minimal unifiers. In the case of bounded higher-order unification,

Decidable Variants of Higher-Order Unification 161

this bound is non-elementary. The proof is based on the corresponding proof for
context unification [SSS98].

7 Context Unification

If second order unification is restricted, such that second order variables are
unary, and second order variables can be instantiated only by terms with exactly
one hole, then this problem is called context unification. The following slightly
larger fragment is equivalent to context unification: If second order variables
may have any arity and if second order variables may be instantiated by lambda
terms, where every bound variable occurs at least once, but at most n times for
a given number n ≥ 1.

Context unification can be applied, if the problem in question can be formu-
lated as a second order unification problem, but there is the further constraint,
that arguments of context variables must be used exactly once in the solution.
This happens frequently in applications.
Open Question 7.1. Is context unification decidable?

It is known that context unification is NP-hard (cf. [SSS98]), and that
satisfiability of formulas in a logical theory of context unification is undecid-
able [NPR97a,Vor98].

Applications of context unification are for example in computational lin-
guistics [NPR97a, EN00], in particular as a uniform framework for semantic
underspecification of natural language [NPR97b]. The (decidable) fragment of
stratified context unification (see below) is expressive enough for applying it in
computational linguistics.

A result on the structure of minimal unifiers of context unification problems
is obtained, similar in spirit to the exponent of periodicity in string unification.
In [SSS98] it is shown that the exponent of periodicity of minimal unifiers of
context unification problems is of order O(2c0+2.14∗size(Γ)), which shows that
the representational size of this number is linear. This result is the basis for
several good upper complexity estimations.

There are a number of specializations of context unification, where an algo-
rithm for deciding unifiability is possible, i.e. which have a decidable unification
problem.

If every function symbol has arity 0 or 1, and the signature has to be used
also for the unifiers, the this case is called monadic context unification, which is
equivalent to string unification, and hence decidable. This means on the other
hand that an algorithm that solves context unification has also to solve string
unification as a special case.

If for every context variable X , all occurrences of X have the same argument
[Com98a,Com98b], then context unification becomes decidable.

Restricting the number of occurrences of each variable to at most 2 gives
the fragment of varity-2 context unification. This case is decidable, as shown by
Jordi Levy in [Lev96]1.
1 Note that the proof of decidability for the stratified case is flawed in this paper.

162 Manfred Schmidt-Schauß

Another decidable case is the (syntactic) fragment, where at most two context
variables are permitted, but the number of occurrences is arbitrary and the
number as well as the occurrences of first order variables are not restricted
[SSS00]. This result is based on a lemma that analyses the possible overlaps of
several occurrences of two contexts.

Unfortunately, the author’s joint effort together with Klaus Schulz to extend
the result to more than two variables did not lead to a (terminating) algorithm,
even for three variables.

7.1 Stratified Context Unification

The fragment of stratified context unification is defined by a syntactic restriction
on the permitted problems. In a system of context equations, let the second order
prefix of a position be the word of context variables that are on the path from
the root of a term to this occurrence. If for every variable, all its occurrences
in a unification problem have the same second order prefix, then the context
unification problem is called stratified.

The fragment of stratified context unification was used to solve the question
of decidability of the so-called “two-sided distributive unification” [Sza82,Sie84,
Sie89]. This problem was tackled in [Con92,Con93,SS92], and finally shown to be
decidable in [SS94,SS96,SS98]. The algorithm in [SS98] is based on an algorithm
to solve stratified context unification for a restricted signature containing a single
binary function symbol and arbitrarily many free constant.

Stratified context unification for arbitrary signatures was shown to be de-
cidable in [SS01b]. The algorithm consists of non-deterministic transformations
that keep the property “stratified” and finally use rules for first order unification.
Again the bound on the exponent of periodicity helps to avoid infinite repetitions
of certain transformation rules.

We give an informal account on the main ideas of the algorithm for unification
of stratified context unification problems. An important notion is that of a SO-
cycle. A set of equations X1(s1)

.= r1, . . . , Xn(sn) .= rn is called a second-order
cycle (SO-cycle), if the following holds: Xi occurs in ri−1 for i = 2, . . . , n, X1

occurs in rn, and at least one such occurrence is not at the top. The length of
an SO-cycle is the number of equations in it.

The algorithm distinguishes two cases:

1. There is no SO-cycle. Then the equations can be used to define an irreflexive
partial order on the variables. Applying imitation to a maximal equivalence
class of variables is a step that makes progress.

2. There is an SO-cycle. Then the transformations either intend to generate
a shorter SO-cycle, or the algorithm perform imitations along such a cycle,
where the number of rounds can be bounded by the bound on the exponent
of periodicity.

It is remarkable that decidability of stratified context unification also shows
satisfiability of so-called rewrite constraints, since both problems are equivalent
[NTT00]. A recent complexity estimation is that stratified context unification is
in PSPACE [SS01c].

Decidable Variants of Higher-Order Unification 163

8 Higher-Order Matching and Context Matching

8.1 Higher-Order Matching

This is the problem to decide whether in a higher-order unification problem with
closed right hand sides unifiability is decidable, where again the equality =βη is
used [Hue76].

Open Question 8.1. Is higher-order matching decidable?

For special cases there are decidability results. Second-order and third order
matching are decidable [Dow92] and NP-complete [CJ97], while fourth-order
matching is decidable [Pad00], but NEXPTIME-hard [Wie99]. For orders above
four it is still open whether higher-order matching is decidable [Dow01]. There
is a lower non-elementary bound for higher order matching [Wie99]: It is at
least as hard as βη-equality, hence at least non-elementary [Sta79]. The case of
higher-order matching, where all right hand sides are elementary constants is
decidable [Pad96]. There is a terminating procedure by Wolfram [Wol93], which
was conjectured to be complete for higher-order matching, but a proof is still
missing.

The case of higher-order matching where only αβ-equality is used, is recently
claimed to be undecidable [Loa01].

8.2 Second-Order Matching

Similar as in the case of second order unification, second order matching restricts
elementary types to one type, and there are no abstractions in the equations.

An algorithm for general second-order matching is given by Huet and Lang
[HL78]. Hirata, Yamada and Harao [HYH99] have studied the complexity land-
scape of the second-order matching problem with respect to several restrictions,
i.e. number of second-order variables, number of occurrences of variables, ground,
function-free, but not stratification.

Linear higher-order matching was shown NP-complete by de Groote [dG00],
where linear in his paper means that only solutions where all functions are linear,
i.e. contain each of their bound variable exactly once, are considered.

8.3 Context Matching

A context may be viewed as a linear second-order function with one argument,
where the binder is left implicit and the hole is the single occurrence of the bound
variable. Thus context matching is a special variant of second order matching,
where some solutions are excluded. It can be seen as a restricted form of linear
higher-order matching [dG00]. Context matching may have applications in pro-
cessing XML-documents, since there are similarities to XPath-matching [CD99].

Context matching was shown to be NP-complete in [SSS98].
A study of context matching was undertaken in [SSS01b], where it is shown

that stratified context matching is NP-complete, and also that context match-
ing is NP-complete, if every context variable has at most two occurrences. A

164 Manfred Schmidt-Schauß

specialization that is in P , in fact in O(n3) is the varity-1 context matching
problem; I.e. every variable in the problem occurs exactly once. This result may
have practical applications. It formalizes a kind of pattern search in a ground
term as follows: X(f(Y (a), Z(g(b)))) .= t is the question, whether in t there is
an occurrence of the symbol f , such that the first argument contains an a, and
the second contains a subterm g(b).

Even here an open problem remains: Determine the complexity of stratified
context matching, if the structure of the second order prefixes is linear instead
of a tree.

9 Conclusion

Second order and higher order unification have applications in several fields.
This holds even for fragments and specializations of a syntactic and/or semantic
nature.

Two main open problems remain unsolved: decidability of context unification
and of higher order matching.

It is the hope of the author that this paper contributes to the motivation
of other researchers to extend the applicability of the different forms of higher
order unifications and also to attack and perhaps settle the open questions.

References

[And86] Peter Andrews. An introduction to mathematical logic and type theory: to
truth through proof. Academic Press, 1986.

[And01] Peter Andrews. Classical type theory. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, volume 2, chap-
ter 15, pages 965–1007. North-Holland, 2001.

[Bar84] Henk P. Barendregt. The Lambda Calculus. Its Syntax and Semantics.
North-Holland, Amsterdam, New York, 1984.

[Bar90] Henk P. Barendregt. Functional programming and lambda calculus. In Jan
van Leeuwen, editor, Handbook of Theoretical Computer Science: Formal
Models and Semantics, volume B, chapter 7, pages 321–363. Elsevier, 1990.

[Bir98] Richard Bird. Introduction to Functional Programming using Haskell.
Prentice Hall, 1998.

[BMS80] R. Burstall, D. MacQueen, and D.T. Sanella. Hope: an experimental
applicative language. In Proc. LISP Conference, pages 1363–143, 1980.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998.

[BS94] Franz Baader and Jörg Siekmann. Unification theory. In D.M. Gabbay,
C.J. Hogger, and J.A. Robinson, editors, Handbook of Logic in Artifi-
cial Intelligence and Logic Programming, pages 41–125. Oxford University
Press, 1994.

[CD99] James Clark and Steve DeRose, editors. XML Path Language (XPath)
Version 1.0. W3C, 16 November 1999.
http://www.w3.org/TR/1999/REC-xpath-19991116

Decidable Variants of Higher-Order Unification 165

[CJ97] Hubert Comon and Yan Jurski. Higher-order matching and tree automata.
In Proc. of CSL 97, volume 1414 of Lecture Notes in Computer Science,
pages 157–176, 1997.

[Com98a] Hubert Comon. Completion of rewrite systems with membership con-
straints. Part I: Deduction rules. J. of Symbolic Computation, 25(4):397–
419, 1998.

[Com98b] Hubert Comon. Completion of rewrite systems with membership con-
straints. Part II: Constraint solving. J. of Symbolic Computation,
25(4):421–453, 1998.

[Con92] Evelyne Contejean. Unification under distributivity, 1992. Unification
workshop 1992, Dagstuhl, Germany.

[Con93] Evelyne Contejean. Solving ∗-problems modulo distributivity by a reduc-
tion to AC1-unification. J. of Symbolic Computation, 16:493–521, 1993.

[dG00] Philippe de Groote. Linear higher-order matching is NP-complete. In
Proceedings of the 11th Int. Conf. on Rewriting Techniques and Applica-
tions, volume 1833 of Lecture Notes in Computer Science, pages 127–140.
Springer-Verlag, 2000.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan
van Leeuwen, editor, Handbook of Theoretical Computer Science: Formal
Models and Semantics, volume B, chapter 6, pages 243–320. Elsevier, 1990.

[Dow92] Gilles Dowek. Third order matching is decidable. In Proceedings of the
7th Annual IEEE Symposium on Logic in Computer Science, pages 2–10,
1992.

[Dow01] Gilles Dowek. Higher-order unification and matching. In Alan Robinson
and Andrei Voronkov, editors, Handbook of Automated Reasoning, vol-
ume 2, chapter 16, pages 1009–1062. North-Holland, 2001.

[EN00] Katrin Erk and Joachim Niehren. Parallelism constraints. In Proceedings
of the 11th Int. Conf. on Rewriting Techniques and Applications, volume
1833 of Lecture Notes in Computer Science, pages 110–126, 2000.

[Far88] W.A. Farmer. A unification algorithm for second order monadic terms.
Annals of Pure and Applied Logic, 39:131–174, 1988.

[Far91] W.A. Farmer. Simple second-order languages for which unification is un-
decidable. J. Theoretical Computer Science, 87:173–214, 1991.

[GLM97] J. Goubault-Larrecq and I. Mackie. Proof Theory and Automated De-
duction, volume 6 of Applied Logic Series. Kluwer, may 1997. ISBN
0-7923-4593-2.

[Gol81] Warren. D. Goldfarb. The undecidability of the second-order unification
problem. Theoretical Computer Science, 13:225–230, 1981.

[Gut98] C. Gutierrez. Satisfiability of word equations with constants is in exponen-
tial space. In Proceedings FOCS’98, pages 112–119, Palo Alto, California,
1998. IEEE Computer Society Press.

[HKMN95] M. Hanus, H. Kuchen, and J.J. Moreno-Navarro. Curry: A truly functional
logic language. In Proc. ILPS’95 Workshop on Visions for the Future of
Logic Programming, pages 95–107, 1995.

[HL78] Gérard Huet and Bernard Lang. Proving and applying program transfor-
mations expressed with second-order patterns. Acta Informatica, 11:31–
55, 1978.

[Hue73] Gérard Huet. Undecidability of unification in third-order logic. Informa-
tion and Control, 22:257–267, 1973.

[Hue75] Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical
Computer Science, 1:27–57, 1975.

166 Manfred Schmidt-Schauß

[Hue76] Gérard Huet. Résolution d’équations dans des langages d’ordre 1,2,. . .ω.
Thèse de doctorat d‘etat, Université Paris VII, 1976. In French.

[HYH99] Kouichi Hirata, Keizo Yamada, and Masateru Harao. Tractable and in-
tractable second-order matching problems. In COCOON 1999, pages 432–
441, 1999.

[JP76] D. Jensen and Tomasz Pietrzykowski. Meachanizing ω-order type theory
through unification. Theoretical Computer Science, 3(2):123–171, 1976.

[Klo92] Jan Willem Klop. Term rewriting systems. In S. Abramsky, D.M. Gabbay,
and T.S.E.Maibaum, editors, Handbook of Logic in Computer Science,
volume 2, pages 2–116. Oxford University Press, 1992.

[KP96] Antoni Kościelski and Leszek Pacholski. Complexity of Makanin’s algo-
rithms. Journal of the Association for Computing Machinery, 43:670–684,
1996.

[Lev96] Jordi Levy. Linear second order unification. In Proceedings of the 7th In-
ternational Conference on Rewriting Techniques and Applications, volume
1103 of Lecture Notes in Computer Science, pages 332–346, 1996.

[Lev98] Jordi Levy. Decidable and undecidable second order unification problems.
In Proceedings of the 9th Int. Conf. on Rewriting Techniques and Appli-
cations, volume 1379 of Lecture Notes in Computer Science, pages 47–60,
1998.

[Loa01] Ralph Loader. Higher-order β matching is undecidable, 2001. draft.
[LV00] Jordi Levy and Margus Veanes. On the undecidability of second-order

unification. Information and Computation, 159:125–150, 2000.
[Mak77] G.S. Makanin. The problem of solvability of equations in a free semigroup.

Math. USSR Sbornik, 32(2):129–198, 1977.
[Mil91] Dale Miller. A logic programming language with lambda-abstraction,

function variables and simple unification. J. of Logic and Computation,
1(4):497–536, 1991.

[MM79] A. Martelli and Ugo Montanari. An efficient unification algorithm. ACM
TOPLAS, 4(2):258–282, 1979.

[Nar90] Paliath Narendran. Some remarks on second order unification. Techni-
cal report, Inst. of Programming and Logics, Department of Computer
Science, Univ. of NY at Albany, 1990.

[Nip91] Tobias Nipkow. Higher-order critical pairs. In Proc. 6th IEEE Symp.
LICS, pages 342–349, 1991.

[NPR97a] Joachim Niehren, Manfred Pinkal, and Peter Ruhrberg. On equality up-to
constraints over finite trees, context unification, and one-step rewriting.
In Proceedings of the International Conference on Automated Deduction,
volume 1249 of Lecture Notes in Computer Science, pages 34–48, 1997.

[NPR97b] Joachim Niehren, Manfred Pinkal, and Peter Ruhrberg. A uniform ap-
proach to underspecification and parallelism. In Proceedings of the 35th
Annual Meeting of the Association of Computational Linguistics (ACL),
pages 410–417, Madrid, Spain, 1997.

[NTT00] Joachim Niehren, Sophie Tison, and Ralf Treinen. On rewrite constraints
and context unification. Information Processing Letters, 74:35–40, 2000.

[Pad96] Vincent Padovani. Decidability of all minimal models. In M. Coppo and
S. Beradi, editors, Types for Proofs and Programs, volume 1158 of Lecture
Notes in Computer Science, 1996.

[Pad00] Vincent Padovani. Decidability of fourth-order matching. Mathematical
Structures in Computer Science, 10(3):361–372, 2000.

Decidable Variants of Higher-Order Unification 167

[Pau91] Lawrence C. Paulson. ML for the working programmer. Cambridge Uni-
versity Press, 1991.

[Pau94] Lawrence C. Paulson. Isabelle, volume 828 of Lecture Notes in Computer
Science. Springer-Verlag, 1994.

[Pfe01] Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, volume 2, chap-
ter 17, pages 1063–1147. North-Holland, 2001.

[Pie73] Tomasz Pietrzykowski. A complete mechanization of second-order type
theory. J. ACM, 20:333–364, 1973.

[Pla94] Wojciech Plandowski. Testing equivalence of morphisms in context-free
languages. In ESA 94, volume 855 of Lecture Notes in Computer Science,
pages 460–470, 1994.

[Pla99] Wojciech Plandowski. Satisfiability of word equations with constants is in
PSPACE. In FOCS 99, pages 495–500, 1999.

[Plo72] Gordon Plotkin. Building in equational theories. Machine Intelligence,
7:73–90, 1972.

[Pre95] Christian Prehofer. Solving Higher-order Equations: From Logic to Pro-
gramming. Ph.D. thesis, Technische Universität München, 1995. In Ger-
man.

[PW78] Michael S. Paterson and Mark N. Wegman. Linear unification. JCSS,
16(2):158–167, 1978.

[Rob65] J.Alan Robinson. A machine oriented logic based on the resolution prin-
ciple. J. of the ACM, 12(1):23–41, 1965.

[Sie75] Jörg H. Siekmann. String-unification. internal report Memo CSM-7, Essex
university, 1975.

[Sie84] Jörg H. Siekmann. Universal unification. In Proc. of 7th CADE, volume
170 of LNCS, pages 1–42, 1984.

[Sie89] Jörg H. Siekmann. Unification theory: A survey. J. Symbolic Computation,
7(3,4):207–274, 1989.

[SS92] Manfred Schmidt-Schauß. Some results for unification in distributive
equational theories. Internal Report 7/92, Fachbereich Informatik, J.W.
Goethe-Universität Frankfurt, Frankfurt, Germany, 1992.

[SS94] Manfred Schmidt-Schauß. An algorithm for distributive unification. In-
ternal Report 13/94, Fachbereich Informatik, J.W. Goethe-Universität
Frankfurt, Frankfurt, Germany, 1994.

[SS96] Manfred Schmidt-Schauß. An algorithm for distributive unification. In
Proceedings of the 7th International Conference on Rewriting Techniques
and Applications, volume 1103 of Lecture Notes in Computer Science,
pages 287–301, 1996.

[SS98] Manfred Schmidt-Schauß. A decision algorithm for distributive unifica-
tion. Theoretical Computer Science, 208:111–148, 1998.

[SS99] Manfred Schmidt-Schauß. Decidability of bounded second order unifi-
cation. Technical Report Frank-report-11, FB Informatik, J.W. Goethe-
Universität Frankfurt am Main, 1999.

[SS01a] Manfred Schmidt-Schauß. Decidability of bounded second order unifica-
tion, 2001. submitted for publication.

[SS01b] Manfred Schmidt-Schauß. A decision algorithm for stratified context unifi-
cation. Journal of Logic and Computation, 2001. accepted for publication.

[SS01c] Manfred Schmidt-Schauß. Stratified context unification is in PSPACE. In
Proceedings of CSL’01, 2001. to appear.

168 Manfred Schmidt-Schauß

[SSS98] Manfred Schmidt-Schauß and Klaus U. Schulz. On the exponent of pe-
riodicity of minimal solutions of context equations. In Proceedings of the
9th Int. Conf. on Rewriting Techniques and Applications, volume 1379 of
Lecture Notes in Computer Science, pages 61–75, 1998.

[SSS00] Manfred Schmidt-Schauß and Klaus U. Schulz. Solvability of context
equations with two context variables is decidable. Journal of Symbolic
Computation, 2000. accepted for publication.

[SSS01a] Manfred Schmidt-Schauß and Klaus U. Schulz. Decidability of bounded
higher order unification. Frank report 15, Institut für Informatik, 2001.

[SSS01b] Manfred Schmidt-Schauß and Jürgen Stuber. On the complexity of linear
and stratified context matching problems. Frank-Report 14, Fachbere-
ich Informatik, J.W. Goethe-Universität Frankfurt, Frankfurt, Germany,
2001. available at
http://www.ki.informatik.uni-frankfurt.de/papers/articles.html

[Sta79] Richard Statman. The typed λ-calculus is not elementary recursive. The-
oretical Computer Science, 9:73–81, 1979.

[Sza82] Peter Szabó. Unifikationstheorie Erster Ordnung. Ph.D. thesis, Univer-
sität Karlsruhe, 1982. In German.

[Tur85] D. A. Turner. Miranda: A non-strict functional language with polymorphic
types. In Functional Programming Languages and Computer Architecture,
number 201 in Lecture Notes in Computer Science, pages 1–16. Springer,
1985.

[Vor98] Sergei Vorobyov. ∀∃∗-equational theory of context unification is Π0
1 -hard.

In MFCS 1998, volume 1450 of Lecture Notes in Computer Science, pages
597–606. Springer-Verlag, 1998.

[Wie99] Tomasz Wierzbicki. Complexity of the higher-order matching. In Proc.
16th CADE, Lecture Notes in Computer Science, pages 82–96. Springer-
Verlag, 1999.

[Wol93] David A. Wolfram. The clausal theories of types. Number 21 in Cambridge
tracts in theoretical computer science. Cambridge University Press, 1993.

Normal Natural Deduction Proofs
(in Non-classical Logics)�

Wilfried Sieg1 and Saverio Cittadini2

1 Carnegie Mellon University, Department of Philosophy,
5000 Forbes Ave., Pittsburgh, PA 15213, USA

sieg@cmu.edu
2 Università di Siena,

Dipartimento di Matematica e Scienze Informatiche “R. Magari”,
Via del Capitano 15, I-53100 Siena, Italy��

cittadini@unisi.it

Abstract. We provide a theoretical framework that allows the direct
search for natural deduction proofs in some non-classical logics, namely,
intuitionistic sentential and predicate logic, but also in the modal logic
S4. The framework uses so-called intercalation calculi to build up broad
search spaces from which normal proofs can be extracted, if a proof exists
at all. This claim is supported by completeness proofs establishing in a
purely semantic way normal form theorems for the above logics. Logical
restrictions on the search spaces are briefly discussed in the last section
together with some heuristics for structuring a more efficient search. Our
paper is a companion piece to [15], where classical logic was treated.

1 Proof Search for ISL

Proofs and Types, the lively and informative book by Girard, Lafont and Taylor
[10], expresses a peculiar tension between the presentation of proofs in sequent
and natural deduction calculi. Nd calculi are claimed to be limited to intuition-
istic logic (p. 8), and yet we are to think of natural deductions as the “true proof
objects” (p. 39). Sequent calculi give the “prettiest illustration of the symmetries
of logic” and present “numerous analogies with natural deduction, without being
limited to the intuitionistic case” (p. 28). However, they have a serious shortcom-
ing from an algorithmic point of view: the lack of a Curry-Howard isomorphism
prevents their use “as a typed λ-calculus” (p. 28).

As far as automated theorem proving (via PROLOG or tableau methods)
is concerned, the authors of [10] argue that the sequent calculus provides the
underlying ideas: “What makes everything work is the sequent calculus with its
deep symmetries, and not particular tricks.” (p. 28) And yet, as far as proofs
are concerned, the system of sequents is not viewed as primitive: the sequent

� This paper is dedicated to Jörg Siekmann, pragmatic visionary.
�� Most of this paper was written in May 1998 while the second author was a visiting

researcher in the Deparment of Philosophy at Carnegie Mellon University.

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 169–191, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

170 Wilfried Sieg and Saverio Cittadini

calculus “sometimes inconveniently complicates situations” (p. 41), as the “rules
of the calculus are in fact more or less complex combinations of rules of natural
deduction” (p. 39). The sequent calculus is viewed as “only a system which
enables us to work on these objects [i.e., the true proof objects]” (p. 39).

There is a technically convenient and heuristically motivated framework that
allows the direct search for normal nd-proofs: the intercalation calculus. This cal-
culus was introduced in 1987 for classical sentential logic in the context of the
Carnegie Mellon Proof Tutor project; for a first description see [17]. An ap-
propriate extension to classical predicate logic was given in [14], and a much
improved (and corrected) version of this material is contained in [15]. The latter
paper exploits also a natural Skolem-Herbrand extension (joined with a general-
ized unification procedure) in order to transfer strategic considerations for proof
search from sentential to predicate logic. The heuristically motivating idea for
the intercalation calculus is straightforward: given assumptions A1, . . . , An and a
goal G to be derived from the assumptions, one tries to “close the gap” between
A1, . . . , An and G by systematically using elimination rules “from above” and
inverted introduction rules “from below”. We say that formulas are intercalated
between assumptions and conclusion. The search space of all possible direct ways
of closing the gap is generated in this way; it allows us either to extract a normal
nd-proof or to obtain a countermodel in case the inference from A1, . . . , An to
G is invalid.

This, obviously, provides a semantic argument of a normal form theorem for
nd-proofs (with a family resemblance to the dual considerations for the cut-free
sequent calculus). The intercalation framework makes it very natural to consider
restricted classes of normal nd-proofs and to investigate the effect of particular
strategies on the form of the resulting nd-proofs. (These matters have been
pursued by John Byrnes in his dissertation [3].) What is being exploited here are
not the left-right symmetries of the rules for sequents, but rather the deep logical
structure of branches in normal derivations. For classical logic that is made
possible by a suitable formulation of the negation rules; the claim that nd calculi
are limited to intuitionistic logic is, so it seems to us, quite incorrect. In any
event, our paper is to demonstrate that the basic ideas of proof search in classical
logic can be used for the treatment of non-classical logics, paradigmatically, for
intuitionistic sentential and predicate logic (in Sect. 2 and 3) and for the modal
system S4 (in Sect. 4). We remark that a uniform approach to proof search in
non-classical logics has been pursued in many ways: see for example [2], where
the authors use labelled Natural Deduction systems for various non-classical
logics which admit a Kripke-style semantics; or [1], where the authors exploit
a type-theoretical Logical Framework to encode nd-systems for various modal
logics. The beginnings of our work go back to 1991, when Cittadini investigated
intuitionistic sentential logic from this perspective in his M.S. thesis under Sieg’s
direction (see [4]); Cittadini also treated S4 in his paper [5]. A version of the
first four sections of this paper appeared in 1998 as [16].

We begin with intuitionistic sentential logic (ISL). As for notation, we follow
the conventions of [15], p. 71. The language for ISL has sentential variables,

Normal Natural Deduction Proofs (in Non-classical Logics) 171

logical connectives ∧, ∨, →, and the logical constant ⊥ for absurdity. Negation
¬ϕ is defined as usual by ϕ → ⊥. Nd-rules for ISL are the proper elimination
(E-) and introduction (I-) rules for ∧, ∨ and → given in [12]:

ϕ1 ∧ ϕ2

ϕi i = 1 or 2
ϕ1 ϕ2

ϕ1 ∧ ϕ2

ϕ1 ∨ ϕ2

[ϕ1]
...
ψ

[ϕ2]
...
ψ

ψ
ϕi

ϕ1 ∨ ϕ2 i = 1 or 2

ϕ1 ϕ1 → ϕ2

ϕ2

[ϕ1]
...

ϕ2

ϕ1 → ϕ2

plus the following “ex falso quodlibet” rule ⊥q, where ϕ is taken to be different
from ⊥:

⊥
ϕ

In [15], for classical logic, negation ¬ is a primitive connective, and two rules
⊥c and ⊥i are given for it:

[¬ψ]
...
ϕ

[¬ψ]
...
¬ϕ

ψ

and
[ψ]
...
ϕ

[ψ]
...
¬ϕ

¬ψ

These rules are considered as both E- and I-rules, but not as proper E- or I-rules.
The concepts of p-normal and normal nd-proof are defined as follows: a proof
is called p-normal, when no segment of formula occurrences in the proof is such
that the first formula in the segment is the conclusion of a proper I-rule or ⊥c

and the last formula the major premise of a proper E-rule; it is called normal,
if it is p-normal and satisfies the adjacency condition, i.e., the major premise
of a ⊥-rule is not inferred by a ⊥-rule. For the intuitionistic calculus ⊥i is a
derived rule, while ⊥c is of course not; the distinction between p-normal and
normal does not apply and, consequently, a proof is called normal if it does not
contain a segment whose first formula is the conclusion of an I-rule and whose
last formula is the major premise of a proper E-rule.

172 Wilfried Sieg and Saverio Cittadini

Paths, taken in the sense of [12], through normal proofs have this special
property: they contain a uniquely determined E-part and I-part, consisting of
segments that are major premises of proper E- and I-rules, respectively; these
two parts are separated by the minimum segment that is a premise of an I-
rule. The formulas occurring in the segments of the E-part (I-part) are strictly
positive subformulas of the formula occurring in the path’s first (last) segment;
the formula of the minimum segment is a strictly positive subformula of the
formula in the first or last segment. This implies the crucial subformula property
of normal proofs: every formula occurring in a normal proof is (the negation of)
a subformula either of the goal or of one of the assumptions. The parenthetical
addition in the last sentence is needed only for the classical calculus.

Now we give the rules for the intuitionistic sentential ic-calculus IIC0. Those
corresponding to proper E-rules and inverted proper I-rules are just as in the
classical case (cf. [15], p. 71; for the ↓-rules, we also include the local side con-
ditions of p. 74.) We recall that the rules are formulated as Post-productions,
and the symbol =⇒ has to be understood informally as follows: to answer the
question on the left side of =⇒ affirmatively, it suffices to answer the question(s)
on the right side of =⇒ affirmatively:

∧i ↓: α; β?G, ϕ1 ∧ ϕ2 ∈ αβ, ϕi �∈ αβ =⇒ α; β, ϕi?G for i = 1 or 2
∨ ↓: α; β?G, ϕ1 ∨ ϕ2 ∈ αβ, ϕ1 �∈ αβ, ϕ2 �∈ αβ =⇒ α, ϕ1; β?G and α, ϕ2; β?G
→↓: α; β?G, ϕ1 → ϕ2 ∈ αβ, ϕ2 �∈ αβ, ϕ1 �= G =⇒ α; β?ϕ1 and α; β, ϕ2?G
∧ ↑: α; β?ϕ1 ∧ ϕ2 =⇒ α; β?ϕ1 and α; β?ϕ2

∨i ↑: α; β?ϕ1 ∨ ϕ2 =⇒ α; β?ϕi for i = 1 or 2
→↑: α; β?ϕ1 → ϕ2 =⇒ α, ϕ1; β?ϕ2

Moreover, we have the following rule corresponding to “ex falso quodlibet” (with
⊥ different from G):

⊥q: α; β?G =⇒ α; β?⊥

The search tree (or ic-tree) for ISL is defined just as for classical sentential
logic (cf. [15], pp. 72–75) by using all available rules plus ⊥q, and is clearly always
finite. The assignment of Y and N to the nodes of the tree is also straightforward,
as is the definition of ic-derivation. From an ic-derivation one can construct
uniquely an nd-proof, and that proof is normal. The proof of this fact is the
same as for classical logic given in [15], pp. 76–77; the only novel case is that
of the rule ⊥q, which is trivial thanks to the corresponding rule of natural
deduction. So for ISL we easily get the Proof Extraction Theorem: for any α∗

and G∗, if the ic-tree Σ for α∗?G∗ evaluates to Y, then a normal nd-proof of G∗

from assumptions in α∗ can be found.
In case the ic-tree for α∗?G∗ evaluates to N, we want to use the tree itself

to define a semantic counterexample to the inference from α∗ to G∗. Novel
considerations have to come in now, because a semantic counterexample here
means a Kripke model M = 〈W, R, ‖− 〉 and a world u in W , such that u ‖−ϕ
for all ϕ ∈ α∗, and u �‖−G∗. A Kripke model for ISL is a triple M = 〈W, R, ‖− 〉,
where W is a non-empty set, R is a reflexive and transitive relation on W , and
‖− is a relation between elements of W and formulas such that, for any u ∈ W :

Normal Natural Deduction Proofs (in Non-classical Logics) 173

1. for any sentential variable p, if u ‖− p and uRv, then v ‖− p;
2. u �‖−⊥;
3. u ‖−ϕ1 ∧ ϕ2 iff u ‖−ϕ1 and u ‖−ϕ2;
4. u ‖−ϕ1 ∨ ϕ2 iff u ‖−ϕ1 or u ‖−ϕ2;
5. u ‖−ϕ1 → ϕ2 iff for all v such that uRv, if v ‖−ϕ1, then v ‖−ϕ2.

Remark 1. A Kripke model is completely determined by W , R, and the behavior
of ‖− on sentential variables.

Given the natural deduction calculus and Kripke semantics for ISL, the com-
pleteness theorem is standardly formulated as follows: either there is an intuition-
istic nd-proof of G from α, or there exist a Kripke model M = 〈W, R, ‖− 〉 and a
u ∈ W such that u ‖−ϕ for all ϕ ∈ α, and u �‖−G. By using our counterexample
construction, we will prove a sharpened version where “intuitionistic nd-proof”
is replaced by “normal intuitionistic nd-proof”. That allows us then to prove a
normal form theorem by purely semantic means – the topic of the next section.

2 Normal Form Theorem

Assume that the ic-tree Σ for π0 = α∗?G∗ evaluates to N, and let ' be the
natural order relation on Σ. The first step in the construction of a countermodel
consists in choosing a subtree P of Σ, and selecting both a set W of question
nodes and sets of formulas from P . The construction proceeds in stages. We
put π0 into W and construct inductively a subtree P0 of Σ, with π0 as root,
along with two sets of formulas T0 and F0. Then we select applications of the
rule →↑ in P0 and put the question nodes π1, . . . , πk thus reached into W . Now,
we repeat the first stage starting from these nodes, i.e., we construct subtrees
Pj and sets of formulas Tj and Fj (1 ≤ j ≤ k) just as we did for π0; then we
repeat the second stage and so on, as long as possible. The construction has to
terminate, since Σ is finite: the subtree P is the union of all the Pj ’s (actually,
we construct the Pj ’s and P just as sets of nodes; but we can treat them as
subtrees, by considering them ordered by the appropriate restrictions of ').

We have to be careful in this process to choose an appropriate ordering of the
rules. This makes our construction more intricate than that for classical logic:
the fact that an application of →↓ may result in losing track of the goal forces
us, in the first stage, to deal with these situations only after all other applicable
rules have been tried. Moreover, because of the truth definition for conditionals
in a Kripke model, we have to be careful in the second stage when choosing the
nodes to which we apply →↑: we choose only those nodes that have been reached
after all rules have been tried, except possibly for →↓ whose applications lead
to the aforementioned situations). The sets Tj and Fj , for πj ∈ W have good
closure properties, and these properties can be used to define a Kripke model
M on W ; M turns out to be a counterexample to the inference from α∗ to G∗.

Now, put π0 into W and construct sets P0(n) of question nodes all evaluating
to N by induction on the level n of the nodes. P0 shall be the union of the P0(n)’s.
For the base case, let P0(0) = {π0}. Assume that P0(n) has been defined, with
all nodes of P0(n) evaluating to N. Let P0(n) = {πn,1, . . . , πn,l}. For 1 ≤ i ≤ l,
we define P0(n + 1)i in the following way:

174 Wilfried Sieg and Saverio Cittadini

Case 1: ∧1 ↓ applies to πn,i of the form α; β?G with at least one formula of
the form ϕ1 ∧ ϕ2 in αβ, ϕ1 �∈ αβ. Pick the first such formula in the sequence.
Above the rule node is a branch leading to α; β, ϕ1?G which evaluates to N. Let
P0(n + 1)i = {α; β, ϕ1?G}.

Case 2: ∧2 ↓ applies to πn,i. The situation is as in case 1 with α; β, ϕ2?G in
place of α; β, ϕ1?G.

Case 3: ∨ ↓ applies to πn,i of the form α; β?G with at least one formula of
the form ϕ1 ∨ ϕ2 in αβ, ϕ1 �∈ αβ, ϕ2 �∈ αβ. Pick the first such formula in the
sequence. Above the rule node is a conjunctive branching leading to α, ϕ1; β?G
and α, ϕ2; β?G. At least one of these nodes evaluates to N. If α, ϕ1; β?G evaluates
to N, P0(n + 1)i = {α, ϕ1; β?G}; otherwise, P0(n + 1)i = {α, ϕ2; β?G}.

Case 4: →↓ applies to πn,i of the form α; β?G (with at least one formula ϕ1 → ϕ2

in αβ, where ϕ2 �∈ αβ, ϕ1 �= G) and leads to α; β, ϕ2?G and α; β?ϕ1, such that
the former evaluates to N (the second possibility, with α; β, ϕ2?G evaluating to
Y and α; β?ϕ1 to N, will be treated in case 7). Pick the first such formula in
the sequence αβ, and let P0(n + 1)i = {α; β, ϕ2?G}.

Case 5: ∧ ↑ applies to πn,i of the form α; β?ϕ1 ∧ ϕ2. Above the rule node is a
conjunctive branching leading to α; β?ϕ1 and α; β?ϕ2. At least one of these nodes
evaluates to N. If α; β?ϕ1 evaluates to N, P0(n + 1)i = {α; β?ϕ1}; otherwise,
P0(n + 1)i = {α; β?ϕ2}.

Case 6: ∨ ↑ applies to πn,i of the form α; β?ϕ1 ∨ ϕ2. Above the rule node is
a disjunctive branching leading to α; β?ϕ1 and α; β?ϕ2. Both of these nodes
evaluate to N. Let P0(n + 1)i = {α; β?ϕ1, α; β?ϕ2}.

Case 7: the previous cases do not apply to πn,i = α; β?G. Let ϕ1 → ψ1, . . .,-
ϕr → ψr be the list of all conditionals in αβ, with ψh �∈ αβ, ϕh �= G (note that r
may be 0, in which case the list is empty and we simply put P0(n+1)i = ∅). For
1 ≤ h ≤ r, above the rule node is a conjunctive branching leading to α; β, ψh?G
and α; β?ϕh. The latter has to evaluate to N, since otherwise case 4 would have
applied. Let P0(n + 1)i = {α; β?ϕ1, . . . , α; β?ϕr}.

To complete the inductive step for n + 1, define P0(n + 1) =
⋃

1≤i≤l P0(n + 1)i.
Since Σ is finite, the construction terminates, and there is a natural number m
such that for any n ≥ m we have P0(n) = ∅; with μ being the least such number,
we define P0 =

⋃
0≤n≤μ P0(n). Let T0 be the set of all formulas occurring on

the left side of the question mark in some node of P0, and F0 be the set of all
formulas occurring on the right side of the question mark in some node of P0.

For the second stage of our construction, we select those nodes π = α; β?G
of P0 to which case 7 applied and where G has the form ϕ → ψ. Then, above
the rule node is a branch leading to α, ϕ; β?ψ evaluating to N. Let π1, . . . , πk

be the nodes thus reached, and put them into W . The process can be repeated
starting from these nodes. The whole construction has to terminate, since Σ is
finite. In the end, we let P be the union of all the Pj ’s. Note that the ordering of
the cases in the inductive step is irrelevant, except for case 7, which must be the

Normal Natural Deduction Proofs (in Non-classical Logics) 175

last one (the reason for this will become clear in the proofs of Lemma 3). Note
also that the rule ⊥q is not used in the construction of P : P is used to define
sets with good closure properties for which ⊥q is not needed; ⊥q is needed to
prove the key property of the Kripke model M formulated in Lemma 4. But we
prove first that the sets Tj and Fj , for nodes πj in W ⊆ P , have good closure
properties.

Lemma 2. For any πj ∈ W , the following claims hold:
(a) ϕ1 ∧ ϕ2 ∈ Tj implies ϕ1 ∈ Tj and ϕ2 ∈ Tj

(b) ϕ1 ∨ ϕ2 ∈ Tj implies ϕ1 ∈ Tj or ϕ2 ∈ Tj

(c) ϕ1 → ϕ2 ∈ Tj implies ϕ1 ∈ Fj or ϕ2 ∈ Tj

(d) ϕ1 ∧ ϕ2 ∈ Fj implies ϕ1 ∈ Fj or ϕ2 ∈ Fj

(e) ϕ1 ∨ ϕ2 ∈ Fj implies ϕ1 ∈ Fj and ϕ2 ∈ Fj

(f) ϕ1 → ϕ2 ∈ Fj implies that there exists a πh ∈ W such that πj ' πh,
ϕ1 ∈ Th and ϕ2 ∈ Fh.

Proof. For (a)-(e), the key element is that conditionals on the left side of the
question mark, all conjunctions and all disjunctions are always dealt with during
the construction of Pj . Consider for example (a): if there is a node α; β?G in
Pj with ϕ1 ∧ ϕ2 ∈ αβ, then this formula is dealt with in cases 1 and 2, hence
ϕ1 ∈ Tj and ϕ2 ∈ Tj . Similarly, (b) follows from case 3, (c) from cases 4 and 7,
(d) from case 5, (e) from case 6. For (f), if a node α; β?ϕ1 → ϕ2 is in Pj , there
is a node πh ∈ W that has been reached by an application of →↑, such that
πj ' πh, ϕ1 ∈ Th and ϕ2 ∈ Fh. �

The following lemma shows other important features of the sets Tj and Fj ,
namely, the Tj’s and Fj ’s do not have common sentential variables, and the Tj’s
are cumulative.

Lemma 3. (i) No sentential variable belongs to Tj ∩ Fj;1

(ii) if πj , πh ∈ W and πj ' πh, then Tj ⊆ Th.

Proof. (i) Assume p ∈ Tj ∩Fj , for a sentential variable p. This means that in Pj

there are nodes ρ = α; β?G with p ∈ αβ and ρ′ = α′; β′?p. We distinguish three
cases.

Case 1: If ρ ' ρ′, then p ∈ α′β′, since no rule of IIC0 takes away a formula on
the left side of the question mark. Thus ρ′ evaluates to Y, contrary to the fact
that all nodes in P evaluate to N.

Case 2: If ρ′ ≺ ρ, then G must be different from p, since otherwise ρ would
evaluate to Y. This means, the formula on the right side of the question mark
has been modified in the construction, and since p is a sentential variable this
may have happened only through case 7 with an application of →↓. Let ρ′′ be
the node to which case 7 applied; clearly, ρ′ ' ρ′′ ' ρ. Now, the cases that add
formulas to the left side of the question mark have been dealt with before case 7,
hence they cannot apply above ρ′′, and the set of formulas on the left side of the
1 Actually, one can prove that Tj ∩ Fj = ∅.

176 Wilfried Sieg and Saverio Cittadini

question mark remains unchanged in Pj above ρ′′. This means that ρ′′ = α; β?p,
and since p ∈ αβ, it evaluates to Y, a contradiction.

Case 3: Assume that ρ and ρ′ are on different branches, and let ρ′′ be the node
at which the highest branching below ρ and ρ′ occurred; so either case 6 or case 7
applied to ρ′′. But these cases do not change the sequence of formulas on the
left side of the question mark, hence any formula that occurs on the left side of
the question mark on a branch occurs also on the left side of the question mark
on the other branch. Thus, p ∈ α′β′, and so ρ′ evaluates to Y, a contradiction2.

(ii) Let ρ = α; β?G be a node in Pj , and ϕ ∈ αβ; we show that ϕ ∈ Th. If ρ ' πh,
this is immediate since no rule of IIC0 takes away a formula on the left side of
the question mark. If ρ and πh are on different branches, let ρ′ = α′; β′?G′ be
the node at which the highest branching occurred. If it occurred through case 6
or 7 in the construction of Pj , then we see as in (i) that any formula that occurs
on the left side of the question mark on one branch occurs also on the left side of
the question mark on the other branch; hence we conclude ϕ ∈ Th. Assume then
that the branching occurred with an application of →↑ after the construction of
Pj . This means that case 7 applied to ρ′. But then we see, as in (i), that cases
1–4 cannot apply above ρ′, and therefore the set of formulas on the left side of
the question mark remains unchanged in Pj above ρ′. So ϕ ∈ α′β′, and since
ρ′ ' πh we get ϕ ∈ Th. �

Finally, we come to the definition of the Kripke countermodel: let M =
〈W,', ‖− 〉, where ' is restricted to W , and for any πj ∈ W and any senten-
tial variable p, πj ‖− p iff p ∈ Tj . This is enough to define a Kripke model,
by Remark 1; condition 1 of the definition of Kripke model holds, because of
Lemma 3(ii). The following lemma gives the key property of M.

Lemma 4. For any πj ∈ W and any formula ϕ, the following claims hold:
(1) ϕ ∈ Tj implies πj ‖−ϕ
(2) ϕ ∈ Fj implies πj �‖−ϕ.

Proof. By induction on the complexity of ϕ; we treat the case of atomic formu-
las and conditionals; the remaining cases of conjunctions and disjunctions are
routine.

Assume ϕ is a sentential variable p. Then (1) follows from the definition of
‖− , and (2) is a consequence of Lemma 3(i).

Assume ϕ = ⊥. Then (2) follows from the definition of a Kripke model. For
(1), suppose there is a node ρ = α; β?G in Pj such that ⊥ ∈ αβ. Then, when we
apply ⊥q to ρ (in the full ic-tree Σ), it leads to a node α; β?⊥ which evaluates
to Y. Hence ρ evaluates to Y, too, contradicting the fact that all nodes in P
evaluate to N. So ⊥ �∈ Tj, from which (1) follows.
2 This last case might have been proved in a simpler way by using the fact that the

cases in the construction of Pj that add formulas to the left side of the question
mark, i.e. cases 1–4, precede also case 6; but we do not want this to be a decisive
feature of our countermodel construction, since in the extension to predicate logic
we shall not have the same situation.

Normal Natural Deduction Proofs (in Non-classical Logics) 177

Assume ϕ = ϕ1 → ϕ2. Then, for (1), suppose ϕ1 → ϕ2 ∈ Tj . By Lemma 3(ii),
for any πh ∈ W with πj ' πh, ϕ1 → ϕ2 ∈ Th. By Lemma 2(c), this implies
ϕ1 ∈ Fh or ϕ2 ∈ Th. So by induction hypothesis we have πh �‖−ϕ1 or πh ‖−ϕ2,
and since this holds for any πh ∈ W with πj ' πh, by definition of ‖− we obtain
πj ‖−ϕ1 → ϕ2. For (2), assume ϕ1 → ϕ2 ∈ Fj . By Lemma 2(f), this implies
that there exists a πh ∈ W with πj ' πh such that ϕ1 ∈ Th and ϕ2 ∈ Fh. So
by induction hypothesis we have πh ‖−ϕ1 and πh �‖−ϕ2, and since πj ' πh, by
definition of ‖− we obtain πj �‖−ϕ1 → ϕ2. �

By applying Lemma 4 to the root node of Σ, we obtain the Counterexample
Extraction Theorem immediately: if the ic-tree for α?G evaluates to N, then it
is possible to define from it a counterexample to the inference from α to G, that
is, a Kripke model that verifies all the formulas of α and refutes G.

Putting the Proof Extraction Theorem and the Counterexample Extraction
Theorem together, we obtain the Completeness Theorem for IIC0 and the sharp-
ened form discussed at the end of Sect. 1 for the nd-calculus.

Theorem 5. Either the ic-tree for α?G contains an ic-derivation of α?G (from
which a normal nd-proof of G from α can be constructed) or it allows the defi-
nition of a counterexample to the intuitionistic inference from α to G.

Soundness and completeness of the ic-calculus provide us with a purely se-
mantic proof of the Normal Form Theorem for intuitionistic sentential natural
deduction3:

Theorem 6. For every nd-proof there is a normal nd-proof with the same as-
sumptions and conclusion.

Our completeness proof parallels the one for semantic tableaux given by
Fitting in [8]. In that proof, signed formulas are used: i.e., formulas preceded by
T (resp. F). These correspond in IIC0 to formulas on the left (resp. right) side of
the question mark. Roughly, the argument in Fitting’s proof goes as follows. First
one extends the notion of model to signed formulas (more precisely, to sets of
signed formulas with suitable closure properties, so-called Hintikka collections).
Now assume that the formula ϕ is not provable in the tableaux system, that
is, the set {F ϕ} is consistent. Exploiting this hypothesis, construct a Hintikka
collection that contains F ϕ, and obtain from it a model for this signed formula,
i.e. a countermodel for ϕ. Our proof does not start with a single formula, but
with a question α∗?G∗. (The approaches are equivalent. Fitting’s proof can easily
be adapted to start with a set of signed formulas T ϕ1, . . . , T ϕn, F G, with the
ϕi’s corresponding to the formulas in our α∗.) We assume that α∗?G∗ is not
“provable” in IIC0, i.e. the ic-tree for it evaluates to N, and use this hypothesis
to construct a model for the formulas in α∗ which does not verify G∗, i.e. a
countermodel for the inference from α∗ to G∗. The condition with which a leaf
node evaluates to Y in IIC0 corresponds to the condition that makes a set of
signed formulas closed; moreover, having an ic-tree evaluating to Y corresponds
to having a closed tableau.
3 Because of the finiteness of ic-trees in IIC0, the ic-calculus also provides a decision

procedure for ISL.

178 Wilfried Sieg and Saverio Cittadini

3 Extension to Predicate Logic

In this section we extend the metamathematical considerations for ISL to intu-
itionistic predicate logic (IPL), as was done for classical logic in Sect. 4 of [15].
We use the following nd-rules for the quantifiers (where writing ϕt assumes that
t is free for x in ϕx or that some bound variables in ϕx have been renamed):

(∀x)ϕx
ϕt

∀E ϕy
(∀x)ϕx

∀I

(∃x)ϕx

[ϕy]
...
ψ

ψ

∃E ϕt
(∃x)ϕx

∃I

The usual restrictions apply to ∀I (y does not have a free occurrence in any
assumption on which the derivation of ϕy depends) and to ∃E (y must not have
free occurrences in ψ or (∃x)ϕx nor in any assumption – other than ϕy – on
which the proof of the upper occurrence of ψ depends).

The ic-calculus for IPL, IIC1, has all the rules of IIC0 plus the following ones
for the quantifiers, where T (γ) denotes the finite set of terms occurring in the
formulas of γ:

∀ ↓: α; β?G, (∀x)ϕx ∈ αβ, t ∈ T (αβ, G), ϕt �∈ αβ =⇒ α; β, ϕt?G
∃ ↓: α; β?G, (∃x)ϕx ∈ αβ, there is no t such that ϕt ∈ αβ, y is new for α,

(∃x)ϕx, G =⇒ α, ϕy; β?G
∀ ↑: α; β?(∀x)ϕx, y is new for α, (∀x)φx =⇒ α; β?ϕy
∃ ↑: α; β?(∃x)ϕx, t ∈ T (αβ, (∃x)ϕx) =⇒ α; β?ϕt

In the rules ∃ ↓ and ∀ ↑ the new variable y is chosen in a canonical way (say, the
first available one in a fixed ordering of the variables).

Ic-trees are defined as in the classical case. Since in general they are not finite,
for the evaluation of nodes we use Y and N as before, but also the value U to
evaluate partial ic-trees (see [15], pp. 86–87). If the ic-tree Σ for α∗?G∗ evaluates
to Y it is possible, just as for IIC0, to extract from Σ a normal nd-proof (i.e.
a proof extraction theorem holds). In case Σ evaluates to N or U, we want to
construct from Σ a semantic counterexample to the inference from α∗ to G∗. To
this end, let us recall Kripke semantics for IPL (see e.g. [6], [9]).

Let D be a nonempty set, and L(D) be the first-order language with constant
symbols for elements in D. A Kripke model for intuitionistic predicate logic over
D is a quadrupleM = 〈W, R, δ, ‖− 〉, where W is a non-empty set, R is a reflexive
and transitive relation on W , δ is a function from W to nonempty subsets of D
satisfying the monotonicity condition (i.e. uRv implies δ(u) ⊆ δ(v)) and ‖− is a
relation between elements of W and sentences of L(D) such that 〈W, R, ‖− 〉 is a
Kripke model for ISL, and for any u ∈ W and any quantified sentence of L(D):

1. u ‖− (∃x)ϕ(x) iff u ‖−ϕ(c) for some c ∈ δ(u);
2. u ‖− (∀x)ϕ(x) iff for every v such that uRv, v ‖−ϕ(c) for every c ∈ δ(v).

Normal Natural Deduction Proofs (in Non-classical Logics) 179

Remark 7. A Kripke model for intuitionistic predicate logic over D is completely
determined by W , R, δ and the behavior of ‖− on atomic sentences of L(D).

Now let us treat the counterexample extraction. As in classical logic, the case
which requires novel considerations with respect to sentential logic is the extrac-
tion of a counterexample from an infinite ic-tree Σ evaluating to U. We treat
this case by extending the technique used in Sect. 2 for ISL. The construction
of P0 goes as that for ISL in cases 1–6. Then we have the following:
Case 7: ∀ ↓ applies to πn,i of the form α; β?G with at least one formula of
the form (∀x)ϕx in αβ and a term t ∈ T (αβ, G) such that ϕt �∈ αβ. Pick the
first such formula in the sequence αβ, and the first such term in T (αβ, G) (in
some fixed ordering of T (αβ, G)). Above the rule node is a branch leading to a
question node α; β, ϕt?G which evaluates to U. Let P0(n + 1)i = {α; β, ϕt?G}.
Case 8: the previous cases do not apply to πn,i = α; β?G. Let ϕ1 → ψ1, . . .,ϕr →
ψr be the list of all conditionals in αβ, with ψh �∈ αβ, ϕh �= G. For 1 ≤ h ≤ r,
above the rule node is a conjunctive branching leading to nodes α; β, ψh?G and
α; β?ϕh. The latter has to evaluate to U, since otherwise case 4 would have
applied. Let (∃x1)ϑ1x1, . . . , (∃xs)ϑsxs be the list of all existentials in αβ, and
yh (for 1 ≤ h ≤ s) be the first variable (in the fixed ordering) which is new for
α, (∃xh)ϑhxh, G. For 1 ≤ h ≤ s, above the rule node is a branch leading to a
question node α, ϑhyh; β?G which evaluates to U. Finally, if G = (∃x)χx, i.e. ∃ ↑
applies to πn,i, above the rule node is a disjunctive branching leading to nodes
of the form α; β?χt (one for each t ∈ T (αβ, (∃x)χx)), all evaluating to U; in this
case, let X0(n+1)i = {α; β?χt | t ∈ T (αβ, (∃x)χx), otherwise, let X0(n+1)i = ∅.
Now let P0(n + 1)i = {α; β?ϕ1, . . . , α; β?ϕr , α, ϑ1y1; β?G, . . . , α, ϑsys; β?G} ∪
X0(n + 1)i (note that r or s may be 0, in which case the corresponding list is
empty; if they are both 0, we simply put P0(n + 1)i = X0(n + 1)i).
The main reason for having such an intricate case 8 is the rule ∃ ↓. In fact,
this rule introduces new variables, so it might cause the construction to go on
indefinitely. But we want to treat the special applications of →↓ as the last case;
hence we have to reach this at some finite stage. Therefore we are forced to
treat them at the same time as the applications of ∃ ↓. The introduction of new
variables due to ∃ ↓ also forces us to apply ∃ ↑ (if it is the case) at this stage if
we want to get the appropriate closure property.

This construction is of course infinite, but we can still define P0 as the union
of all the P0(n)’s, for 0 ≤ n < ω, and T0 and F0 as in the sentential case,
and proceed with the second stage of the construction. We select those nodes
π = α; β?G of P0 to which case 8 has applied and such that →↑ or ∀ ↑ applies to
π, i.e. G has the form ϕ → ψ or (∀x)ϑx. Then, above the rule node is a branch
leading to a question node α, ϕ; β?ψ, which evaluates to U, or a branch leading
to a question node α; β?ϑy, with y new for α, (∀x)ϑx. Let π1, . . . , πk, . . . be the
nodes thus reached, and put them into W . Now the process can be repeated
starting from these nodes, with the definition of Pj , Tj and Fj , and so on. In
the end, we let P be the union of all the Pj ’s4.

4 Here, clearly, the index j has to range over countable ordinals and not just natural
numbers.

180 Wilfried Sieg and Saverio Cittadini

We obtain the following extension of Lemma 2.

Lemma 8. The closure properties (a)–(f) of Lemma 2 hold for the predicate
case. Furthermore, we have the following:

(g) (∃x)ϕx ∈ Tj implies ϕt ∈ Tj, for some t occurring in Pj;
(h) (∃x)ϕx ∈ Fj implies ϕt ∈ Fj , for every t occurring in Pj ;
(i) (∀x)ϕx ∈ Tj implies that for every πh ∈ W such that πj ' πh and every t

occurring in Pj, ϕt ∈ Th;
(j) (∀x)ϕx ∈ Fj implies that there exist a πh ∈ W such that πj ' πh and a t

occurring in Ph such that ϕt ∈ Fh.

Proof. (a)–(f) are as in the sentential case. (g) follows from case 8. For (h), case 8
gives us ϕt ∈ Fj for every t occurring in Pj up to the stage to which the case
has applied; but ∃ ↓ and ∃ ↑ are treated at the same time, and the applications
of ∃ ↓ do not change the shape of the goal, so the new terms t′ that occur in Pj

are treated in a successive case 8, and for all of them we get again ϕt′ ∈ Fj . (i)
follows from case 7, and the fact that no rule of IIC1 takes away a formula on
the left side of the question mark. For (j), if (∀x)ϕx ∈ Fj , then case 8 gives us
a new node πh ∈ W and a term y occurring in Ph such that ϕy ∈ Fh. �

Moreover, we can prove the following analogue of Lemma 3. The proof re-
quires only slight modifications, hence we omit it.

Lemma 9. (i) No atomic formula belongs to Tj ∩ Fj;5

(ii) if πj , πh ∈ W and πj ' πh, then Tj ⊆ Th.

Finally, for the definition of our countermodel, let D be the set of terms
occurring in P , and for any node πj , δ(πj) shall be the set of terms occur-
ring in Pj . The monotonicity condition holds, because of the canonical choice
of new variables for ∃ ↓ in the construction of each Pj . Let M = 〈W,', δ,
‖− 〉, where ' is restricted to W , and for any πj ∈ W and any atomic formula
ϕ of L(D), πj ‖−ϕ iff ϕ ∈ Tj (this is enough to define a Kripke model, by
Remark 7).

We then obtain the following analogue of Lemma 4. The proof is essentially
identical (induction on the complexity of ϕ, using Lemmas 8 and 9 instead of 2
and 3).

Lemma 10. For any πj ∈ W and any formula ϕ of L(D), the following hold:
(1) ϕ ∈ Tj implies πj ‖−ϕ
(2) ϕ ∈ Fj implies πj �‖−ϕ.

As in the sentential case, we obtain the Counterexample Extraction Theorem
by applying the last lemma to the root node of Σ, and again from this we get
the Completeness Theorem and the Normal Form Theorem.

4 The Modal Logic S4

We now apply the ideas underlying intercalation calculi to modal logic by giving
an appropriate ic-calculus for the modal system S4. The language contains now
5 Again, one can prove that Tj ∩ Fj = ∅.

Normal Natural Deduction Proofs (in Non-classical Logics) 181

sentential variables, logical connectives ∧, ∨, →, ¬, and the modal operator �.
The modal operator � is defined: �ϕ = ¬�¬ϕ (this is to follow Prawitz’s
notation [12], and to save work in the proof of the Counterexample Extraction
Theorem; it is not difficult to give a version where � is primitive, too).

Following [12], we use a nd-system for S4 which has all the rules of classical
sentential logic plus the following ones for �:

�ϕ
ϕ

�E
ϕ

�ϕ
�I

The I-rule for � has to satisfy certain restrictions. Prawitz gives three versions
of such restrictions and shows that the resulting systems are actually equivalent.
In the first version, the rule can be applied only if all the open assumptions
on which ϕ depends in the deduction are of the form �ψ (in Prawitz’s terms,
they are modal formulas). To define the second version, the notion of essentially
modal formula is introduced inductively as follows:

1. all modal formulas are essentially modal;
2. if ϕ1 and ϕ2 are essentially modal, then so are ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2.

The restrictions on �I are liberalized for the second version: essentially modal
formulas are allowed as ϕ’s open assumptions. Finally, in the third version, the
restrictions are further liberalized: �I can be applied to ϕ when, for each open
assumption ψ on which ϕ depends there is an essentially modal formula ϑ such
that

(i) ϑ is ψ or ϕ, or ϑ occurs on the path from ψ to ϕ,

and

(ii) all assumptions on which ϑ depends are also assumptions on which ϕ
depends.

The reason for this liberalization is that the first two versions, as Prawitz shows,
do not allow a normal form theorem. We shall discuss this issue in connection
with the Proof Extraction Theorem; but first, we introduce the S4 ic-calculus.

Here we have all the rules for the classical calculus IC0(F) (cf. [15], p. 71),
i.e. the ↓- and ↑-rules of IIC0, in particular, the following ⊥-rules:

⊥c(F): α; β?G, ϕ ∈ F(α,¬G) =⇒ α,¬G; β?ϕ and α,¬G; β?¬ϕ
⊥i(F): α; β?¬G, ϕ ∈ F(α, G) =⇒ α, G; β?ϕ and α, G; β?¬ϕ

where F(γ) is the set of all unnegated proper subformulas of formulas in γ and
the unnegated part of all negations which are subformulas of formulas in γ, and
the following rules for �:

� ↓: α; β?G, �ϕ ∈ αβ =⇒ α; β, ϕ?G
� ↑: α; β?�ϕ =⇒ (αβ)ν?ϕ

where (αβ)ν is the sequence of the modal formulas occurring in αβ. The choice
of these rules is inspired by the semantic tableaux version of S4 given by Fitting

182 Wilfried Sieg and Saverio Cittadini

in [9]. Note that in the rule � ↑ we have (αβ)ν and not αν ; βν on the left side of
the question mark. In fact, when we write α; β?G we mean that the formulas of
β have been obtained from those of α via ↓-rules, and we cannot claim in general
that formulas of βν can be obtained from formulas of αν via ↓-rules. Thus, we
take the sequence of modal formulas in αβ as assumptions of a new proof of ϕ
(clearly, if in this new proof ↓-rules are used, we find nodes of the form α′; β′?G′

once again).
The definition of the S4 ic-tree is straightforward, as are the assignment of Y

and N to the nodes of the tree and the definition of S4 ic-derivation. S4 ic-trees
are clearly finite.

Now, if we refer to Prawitz’s third version of the S4 nd-system, we can easily
obtain a proof extraction theorem: the argument, as we shall see, proceeds by
induction on the height of the ic-derivation, just as in the classical and the
intuitionistic case (again, see [15], pp. 76–77). But before doing that, we want to
describe why such an argument would not work if we refer to one of the first two
versions: this may give a better insight into the liberalization on the constraints
for �I which defines the third version.

The problem is that, in the induction step, some of the ic rules introduce
new open assumptions, and these may be neither modal nor essentially modal.
Thus, if there is an application of �I in the nd-proof we obtain by induction
hypothesis, the restrictions on �I in the considered version may be violated.
In order to obtain the result, then, the restrictions must be liberalized in such
a way that they do not refer only to the shape of the open assumptions, but
also to that of the formulas obtained from the open assumptions via ↓-rules. As
the ↓-rules correspond to the E-rules, we must allow the application of �I to a
formula ϕ when there are (essentially) modal formulas obtained via E-rules in
any path from ϕ to an open assumption: exactly what Prawitz does with his
third version! This, by the way, is not so surprising, since our central concern is
to provide a semantic proof of a normal form theorem for S4 natural deduction,
and such a theorem does not hold for the first two versions.

We have the following Proof Extraction Theorem:
Theorem 11. For any α and G, if the S4 ic-tree for α?G evaluates to Y, then
a p-normal nd-proof (in the third version of the S4 nd-system) of G from as-
sumptions in α can be found.
Proof. (sketch): By induction on the height of the ic-derivation. The treatment
of classical rules is identical to that for classical logic ([15], pp. 76–77). The ic-
rules for � are handled with the corresponding nd-rules. In the case of � ↑ the
restrictions on �I are satisfied, thanks to the restriction to (αβ)ν of the set of
formulas αβ on the left side of the question mark. Moreover, the restrictions on
�I are preserved through all induction steps. Indeed, in each case we have by
induction hypothesis, for all possible application of �I to a formula ϕ and all
open assumptions ψ on which ϕ depends, a formula ϑ satisfying the conditions
of the definition: and this ϑ is still present whichever rule we apply, even new
open assumptions are introduced. Moreover, the nd-proofs extracted from ic-
derivations are clearly p-normal, again exploiting the fact that ↓-rules are only
applied from above and ↑-rules only from below. �

Normal Natural Deduction Proofs (in Non-classical Logics) 183

Now we give an example to show how the ↓-rules combine with � ↑ so that
the S4 nd-proofs extracted from S4 ic-derivations satisfy the restrictions imposed
on �I (i.e., they are indeed S4 nd-proofs). In this example, an application of →↓
puts in β a formula of the form �ϕ, which is not present in α (the original set
of hypotheses), but is necessary to make the top node evaluate to Y after the
application of � ↑. Consider the following S4 ic-derivation for p, p → �q?��q:

p, p → �q?��q

→↓

p, p → �q; �q?��q

� ↑

�q?�q

Y

From it we can extract the following S4 nd-proof, where �q is the ϑ required
for the application of �I:

p p → �q
�q

��q

Now we turn to completeness; we start by recalling Kripke semantics for S4.
A Kripke model for S4 is a triple M = 〈W, R, ‖− 〉, where W is a non-empty
set, R is a reflexive and transitive relation on W , and ‖− is a relation between
elements of W and formulas such that, for any u ∈ W :

1. u ‖−ϕ1 ∧ ϕ2 iff u ‖−ϕ1 and u ‖−ϕ2;
2. u ‖−ϕ1 ∨ ϕ2 iff u ‖−ϕ1 or u ‖−ϕ2;
3. u ‖−ϕ1 → ϕ2 iff u ‖−ϕ1 implies u ‖−ϕ2;
4. u ‖−¬ϕ iff u �‖−ϕ;
5. u ‖−�ϕ iff for all v such that uRv, v ‖−ϕ.

Clearly, Remark 1 holds also for Kripke models of S4. As in the classical and
intuitionistic cases, we want to prove a Counterexample Extraction Theorem:
that means, in this case, that an S4 ic-tree Σ for α?G which evaluates to N can
be used to define a Kripke model for S4 M = 〈W, R, ‖− 〉 and a u ∈ W such that
u ‖−ϕ for all ϕ ∈ α, and u �‖−G.

Before proceeding with the detailed proofs we sketch the argument for the
counterexample extraction from Σ. The proof combines the technique used for
the classical case (i.e. the construction of a canonical branch) with that for the
intuitionistic case (i.e. for the construction of a Kripke model). The construction
proceeds in stages. At the first stage, we select a single branch P0 of Σ, all of
whose nodes evaluate to N (this is done by using the ⊥-rules systematically, as
in the classical case), and put the root node of Σ in a set W . The following stage

184 Wilfried Sieg and Saverio Cittadini

applies � ↑ to all nodes of P0 to which this rule is applicable, except for the
root (hence these nodes will become branching points in our subtree). Then we
put the nodes thus reached in W , and start the construction again from them.
In this way we obtain sub-branches P1, . . . , Pk, and then the process continues.
Of course, the construction has to terminate, since the whole tree is finite. The
union of all the Pj ’s will be a subtree of Σ, with W as a subset. Then each
node πj ∈ W will be the root of some Pj . Moreover, it will be possible to prove
appropriate closure properties of the Pj ’s, and then to define a Kripke model on
W with the required property of being a counterexample for α?G.

Now, assume the ic-tree Σ for α?G evaluates to N. We begin with the con-
struction of P0. Define ϕ− and ϕ+ as in the classical case (namely, ϕ− = ψ if
ϕ = ¬ψ and ϕ− = ¬ϕ otherwise; ϕ+ = ψ if ϕ = ¬¬ψ and ϕ+ = ϕ otherwise),
and enumerate F(α, G−) by 〈Hi〉i∈I , where I = {i | 1 ≤ i ≤ n}. Put the node
α?G in W .

The sequence of nodes P ∗
0 (0), . . . is defined as follows. First, let α0 = α,

λ0 = 0, G0 = H0 = G. Then, λm+1 is defined according to the following cases:

Case 1: there is a j such that λm < j ≤ n and Hj is not of the form �ϕ and
Hj �∈ αm and ¬Hj �∈ αm. Then λm+1 is the least such j.

Case 2: the previous case does not apply, but there is a j such that λm < j ≤ n
and Hj is of the form �ϕ and Hj �∈ αm and ¬Hj �∈ αm and αm?¬Hj evaluates
to N. Then λm+1 is the least such j.

Case 3: the previous cases do not apply, but there is a j such that λm < j ≤ n
and Hj is of the form �ϕ and Hj �∈ αm and ¬Hj �∈ αm and αm?¬Hj evaluates
to Y. Then λm+1 is the least such j.

Case 4: the previous cases do not apply. Then let λm+1 = 0.

Then, let Gm = ¬Hλm if αm?¬Hλm evaluates to N and Gm = Hλm otherwise,
αm+1 = αm, G−

m, P ∗
0 (2m) = αm?Gm, P ∗

0 (2m + 1) = ⊥i, Hλm+1 if Gm is a
negation, P ∗

0 (2m + 1) = ⊥c, Hλm+1 otherwise.
Let μ be the smallest m with λm+1 = 0, and define P0 to be P ∗

0 restricted
to {m | m ≤ 2μ}. Now, consider the nodes of the form α′?�ϕ in P0 (excluding
the root). These nodes appear in P0 only because of case 3, hence only after all
the formulas of F(α, G−) not of the form �ϕ have been used (this fact will be
crucial for proving the closure properties of the sets Pj). To each of these nodes,
the rule � ↑ is applicable, leading to a node of the form α′

ν?ϕ (which evaluates
to N). Call {π1, . . . , πk} the nodes thus obtained. Put each πj in W , and start
from it the construction of a branch Pj , choosing at each stage the following
node according to the cases for P0. Then, repeat the process. Finally, let P be
the union of all the Pj ’s.

Now, let W = {π0, . . . , πr}, each πj being the root of Pj . For 0 ≤ j ≤ r,
let π̄j = αμj ?Gμj be the top node of Pj , and define Aj = {ϕ | ϕ ∈ αμj , G−

μj
}.

The following lemma describes the important syntactic closure properties of the
sets Aj .

Normal Natural Deduction Proofs (in Non-classical Logics) 185

Lemma 12. For 0 ≤ j ≤ r, the following claims hold:
(i) if ϕ ∈ Aj, then ϕ− �∈ Aj;
(ii) if ϕ is a subformula of an element in Aj , then ϕ+ ∈ Aj or ϕ− ∈ Aj;
(iii) if ¬¬ϕ ∈ Aj, then ϕ ∈ Aj;
(iv) if ϕ1 ∧ ϕ2 ∈ Aj , then ϕ+

1 ∈ Aj and ϕ+
2 ∈ Aj ;

if ¬(ϕ1 ∧ ϕ2) ∈ Aj, then ϕ−
1 ∈ Aj or ϕ−

2 ∈ Aj;
(v) if ϕ1 ∨ ϕ2 ∈ Aj, then ϕ+

1 ∈ Aj or ϕ+
2 ∈ Aj;

if ¬(ϕ1 ∨ ϕ2) ∈ Aj, then ϕ−
1 ∈ Aj and ϕ−

2 ∈ Aj;
(vi) if ϕ1 → ϕ2 ∈ Aj , then ϕ−

1 ∈ Aj or ϕ+
2 ∈ Aj;

if ¬(ϕ1 → ϕ2) ∈ Aj, then ϕ+
1 ∈ Aj and ϕ−

2 ∈ Aj;
(vii) if �ϕ ∈ Aj, then for each i with πj ' πi it holds that ϕ+ ∈ Ai;

if ¬�ϕ ∈ Aj , then there is an i with πj ' πi and ϕ− ∈ Ai.

Proof. (i)-(vi) are proved exactly as in the Closure Lemma for the classical case
([15], pp. 80–82; indeed, the rules of IC0 are all available here).

To prove the first part of (vii), observe that if �ϕ ∈ Aj , then �ϕ must
appear on the left side of the question mark below any node of Pj to which
� ↑ is applied, that is, before any new node is put in W . This is because of the
ordering of the cases: indeed, having �ϕ on the left side means that this formula
has been dealt with in case 2, and new nodes are put in W only when case 3
has applied. Moreover, formulas of the form �ϕ are never taken away from the
left side of the question mark. From these two facts it follows immediately that
for each i such that πj ' πi it holds �ϕ ∈ Ai. But now it is not possible that
ϕ− ∈ Ai: in fact, an application of � ↓ would make π̄j evaluate to Y, while all
the nodes in Pj evaluate to N. Therefore, by (ii), ϕ+ ∈ Ai.

For the second part of (vii), observe that if ¬�ϕ ∈ Aj , then �ϕ has been
dealt with in case 3. Thus a new node πi = α′?ϕ has been put in W , and since
the rule applied to πi is either ⊥i or ⊥c, ϕ− appears on the left side of the
question mark in Pi, whence ϕ− ∈ Ai. �

Now consider M = 〈W,', ‖− 〉, where for any sentential variable p and any
πj ∈ W we set πj ‖− p iff p ∈ Aj .

Lemma 13. For any πj ∈ W and any formula ϕ, if ϕ ∈ Aj, then πj ‖−ϕ.

Proof. Straightforward induction on the complexity of ϕ, using the closure prop-
erties of Lemma 12. �

By applying Lemma 13 to the root node π0 of the tree, we conclude that
π0 ‖−ϕ, for each ϕ ∈ α, G−, that is, π0 verifies all formulas in α and falsifies G.
Thus we have a semantic counterexample for the inference from α to G, and so
the Counterexample Extraction Theorem is proved.

Again, this implies the Completeness Theorem for the S4 ic-calculus and,
since the nd-proofs obtained from ic-derivations are p-normal, the p-Normal
Form Theorem for the version of the S4 nd-system considered. Moreover, the
finiteness of S4 ic-trees yields another proof of the Finite Model Property for this
logic (namely, if a formula is not provable in S4, then it is falsified in some finite
Kripke model for S4), and a decision procedure for it.

186 Wilfried Sieg and Saverio Cittadini

To obtain a normal form theorem, restrictions on the set F of contradictory
pairs available for the ⊥-rules can be introduced, as for the classical case (see
[15], pp. 83–84). With these restrictions, nd-proofs obtained from ic-derivations
are normal, and we are still able to prove the Counterexample Extraction The-
orem: however, now not only the ⊥-rules and the �-rules are involved in the
counterexample construction, but possibly all the other rules. We can obtain
a sharpened completeness theorem and a normal form theorem (for the third
version of Prawitz’s system!), in the following form:

Theorem 14. Either the S4 ic-tree for α?G contains an S4 ic-derivation of α?G
(and hence allows to construct a normal S4 nd-proof of G from α) or it allows
the definition of a counterexample to the inference from α to G.

Theorem 15. For every S4 nd-proof there is a normal S4 nd-proof with the
same assumptions and conclusion.

5 Heuristics for Search

In this last section we discuss very briefly strategic issues for proof search in in-
tuitionistic sentential as well as predicate logic. Logical restricions on the search
space and appropriate heuristics are needed in order to obtain an efficient pro-
cedure. As a first step in our discussion we review the coarse structure of proof
search in classical predicate logic.

The search for an answer, i.e., an ic-derivation, to the question α; β?G in-
volves three distinct components: (i) use of ↓-rules, (ii) use of ↑-rules, (iii) use of
⊥-rules (with a limited set of contradictory pairs of formulas). It is step (i) that
is central and that is taken in a goal-directed way. If the question:

(*) Is G a strictly positive subformula of a formula in αβ?

has an affirmative answer, this step provides sequences of ↓-rule applications
that extract strictly positive occurrences of G in elements of αβ. The connecting
formula sequences consist of the major premisses of the ↓-rules and require in
general answers to new questions, namely, those raised in the minor premisses
of the rule applications.

The Skolem-Herbrand expansion was introduced in [15], in order to obtain an
appropriate generalization of this extraction strategy. It will be described below.
Here we just emphasize that the goal-directedness of applications of the ↓-rules
(including the quantifier rules) is obtained by generalizing the question (*) to

(**) Is G unifiable with a strictly positive canonical subformula of a formula
in αβ?

A subformula is considered to be canonical, if quantifiers are instantiated by
terms that match the ↓-quantifier rules of the Skolem-Herbrand expansion, i.e.,
those terms would be used by the extracting ↓-rules. Having indicated the point
of the Skolem-Herbrand expansion, let us describe it in reasoned detail.

We assume that the language for the intercalation calculus has just the set
X = {x, x0, x1, . . .} as its set of variables. Then the language of the Skolem-
Herbrand expansion has in addition a set Y = {y, y0, y1, . . .} of bound variables,

Normal Natural Deduction Proofs (in Non-classical Logics) 187

a set Z = {z, z0, z1, . . .} of parameters, and a set F = {f, f0, f1, . . .} of function
symbols. (X , Y and Z are all disjoint, and F contains infinitely many function
symbols for each arity n, n a natural number.) If γ is a sequence of formulas, by
F V (γ) we mean (a sequence of all) the parameters from the set Z which occur as
terms in the elements of γ. The calculus is obtained by replacing the quantifier
rules with the following ones:

∀ ↓: α; β?G, (∀x)ϕx ∈ αβ =⇒ α; β, ϕz?G for some new z
∃ ↓: α; β?G, (∃x)ϕx ∈ αβ, z̄ = F V (α, (∃x)ϕx, G) =⇒ α, ϕf(z̄); β?G for some

new f
∀ ↑: α; β?(∀x)ϕx, z̄ = F V (α, (∀x)ϕx) =⇒ α; β?ϕf(z̄) for some new f
∃ ↑: α; β?(∃x)ϕx =⇒ α; β?ϕz for some new z

Correctness for the Skolem-Herbrand expansion in the classical case is proved
in [15], Sect. 6, using an appropriate notion of unification: a derivation in the
intercalation calculus for α?G exists if and only if a derivation in the Skolem-
Herbrand expansion for α?G exists. Thus, the expansion can be considered “as
a convenient technical tool for automated proof search” ([15], p. 95). A techni-
cal tool that is, as we pointed out, of critical importance for generalizing the
(sentential) extraction strategy, i.e., the goal-directed use of elimination rules.

Although we do not go into the details, our claim is that the same approach
can be pursued for the intuitionistic case. This may look surprising, in view
of the considerations of Shankar in [13]. In fact, Shankar claims that “the im-
permutability of certain pairs of inferences in LJ makes it incorrect to directly
use Herbrandization for proof search” (here LJ stands for intuitionistic predi-
cate sequent calculus, and “Herbrandization” stands, roughly, for what we have
called “Skolem-Herbrand expansion”). Shankar’s remark is quite correct for the
calculus he proposes. So let us see, why it does not apply to the intuitionistic
intercalation calculus and its Skolem-Herbrand expansion.

Shankar notes that, when using “Herbrandization” for LJ, unwanted unifi-
cations may arise, and result in “proving” statements that are not intuitionisti-
cally valid. (See his example on pp. 527–528, i.e., the formula (∀x)(ϕx ∨ ψ) →
ψ∨(∀x)ϕx – which is classically, but not intuitionistically provable.) Of course, if
one attempts to translate such flawed proofs into the sequent calculus, one does
not obtain valid sequent proofs (typically, the restrictions on the quantifier rules
are violated). In classical logic one can manage to get valid proofs by permuting
the applications of certain rules; but these permutations may be disallowed in
the intuitionistic case.

The Skolem-Herbrand expansion of the intercalation calculus has an impor-
tant different feature, however: the introduction of new function symbols in the
rules ∃ ↓ and ∀ ↑. The effect of these new function symbols is, indeed, to exclude
unwanted unifications. It is easy to check, for example, that the flawed proof of
the formula (∀x)(ϕx ∨ ψ) → ψ ∨ (∀x)ϕx described in [13] cannot arise in the
Skolem-Herbrand expansion of the intuitionistic intercalation calculus.

Complications that arise for proof search in intuitionistic logic are also dis-
cussed in Wallen’s book [20]. In Chap. 1, §4, Wallen points to three kinds of
“redundancies” in the search space of the intuitionistic sequent calculus, namely

188 Wilfried Sieg and Saverio Cittadini

to the non-permutability of some inferences (we discussed that already), to no-
tational redundancy (the same piece of information can occur repeatedly in the
search space), and to irrelevance (some of the information may be useless for
finding a proof). The last two problems clearly affect also the proof search via
the ic-calculus, as the full ic-tree may contain the same piece of information on
many of its branches, and “irrelevant” premisses, for example, can become a
problem for the efficiency of the search algorithm. An algorithm can deal with
notational redundancy, at least partially, by storing information in order to avoid
answering the same question more than once: that can be done both for positive
answers (“a proof has been found”) and negative answers (“all proof attempts
failed”). The problem of irrelevance can be addressed by exploiting strong syn-
tactic connections between assumptions and goal: that is more intricate in in-
tuionistic than in classical logic, and is reflected already at the sentential level.
One may recall that, in terms of computational complexity, the set of classi-
cally provable sentential formulas is in Co-NP, while the set of intuitionistically
provable sentential formulas is PSPACE-complete [18]. Let us illustrate some of
these complications.

As a first example, we consider a remark of Dyckhoff [7]. In examining the
intuitionistic sentential sequent calculus, Dyckhoff notes that the rule for condi-
tional introduction on the left gives rise to the problem of detecting loops, and
writes: “We could, following standard practice, use a stack to detect looping –
but the looping tests are expensive, and complicate the task of extending the
technique to the first-order case” ([7], p. 796). Such a remark applies to the
intercalation calculus even more strongly, a looping is the condition for closing
a branch of an intercalation tree with N: the detection of loopings cannot be
avoided. This means that we really have to find good search heuristics, if we
want to improve the efficiency of the algorithm.

So let us turn to the case of classical sentential logic and the strategic consid-
erations underlying the implementation of an algorithm based on the ic-calculus
(in the Carnegie Mellon Proof Tutor)6. When faced with a question α; β?G, this
algorithm can form three different kinds of strategies: extraction strategies (if G
is a positive subformula of some formula in αβ), inversion strategies (if G is not
atomic), indirect strategies. Then the strategies are ranked: the first two, when
available, are preferred to the third one, with the exception of the cases when the
goal is an atom, a negation or a disjunction (this is heuristically motivated, by
the fact that in many common problems the indirect rules must indeed be used
to prove an atom, negation or disjunction). So we ask, how these considerations
have to be modified for the intuitionistic case (i.e. where the differences with the
classical case actually lie). The extraction and inversion strategies can be formed
here as well, and the treatment is exactly the same as in the classical case, except
for atoms and disjunctions (recall that we consider ¬ a defined connective). As
the indirect strategy is not available, the necessary changes concern essentially
⊥ and ∨.

6 Complementary considerations underly the algorithm MAMBA in Tennant’s book
[19], pp. 136–140.

Normal Natural Deduction Proofs (in Non-classical Logics) 189

For ⊥ the situation is quite simple, since the only rule we have for it is ⊥q.
This rule has nothing to do with the shape of the goal (provided it is not ⊥),
and is needed to make sure that anything can be proved from an inconsistent set
of assumptions. It is clear that a strategy based on this rule should be tried only
as a last resort, that is, if all other strategies have failed. This could be the case,
for instance, if the goal G is an atom and is not a positive subformula of one of
the assumptions: in fact, in this case we can use neither the extraction nor the
inversion strategy, and thus our only hope to get G is finding an inconsistency
in the assumptions.

The issue about disjunction is more complex. Yet, in some particular situa-
tions, the features of intuitionistic logic can help. This is the case when the goal
G is a disjunction ϕ∨ψ, and all assumptions are Harrop formulas (i.e. formulas
which do not contain disjunctions as strictly positive subformulas). In fact, it
follows from a theorem of Harrop [11] that in such a case G is an intuitionistic
consequence of the assumptions if and only if at least one among ϕ and ψ is.
This means that, in such a situation, one has to pursue the inversion strategy
(even if the goal is a disjunction!) before trying something else.

What if there are non-Harrop formulas among the assumptions? In that
case, the presence of disjunctions among the assumptions (or the possibility of
extracting them) allows the use of the rule ∨ ↓. Now this rule can play, in some
sense, the part of the indirect rules in the classical case: it may make sense to
try it before other strategies, if the goal is a disjunction. This is due to the fact
that many common problems actually need to use of ∨ ↓ to prove a disjunction
(think of the the commutative law for ∨, i.e. ϕ ∨ ψ; ?ψ ∨ ϕ). Yet one has to be
careful: while it seems not to be too expensive to use the indirect strategy in
the classical case (one just has to examine a few contradictory pairs), here the
amount of computation may become difficult to deal with, especially if several
disjunctions are present. The situation is complicated further by the fact that,
in certain cases, the ∨ ↓-strategy would be preferrable even if the goal is a not
a disjunction (think of (ϕ ∧ ψ) ∨ (ϕ ∧ ψ); ?ϕ ∧ ψ).

These examples suggest that we have to include, in our heuristics, looking
for connections between the goal and disjunction(s) we have in the assumptions
(say, check whether one of the two is a positive subformula of the other, whether
they have sentential variables or even a disjunct in common). This, though, is
not enough. In fact, there are cases in which ∨ ↓ is needed even if the shape
of the goal has nothing to do with that of the disjunction in the assumptions:
for instance, ϕ ∨ ψ, ϕ → χ, ψ → χ; ?χ. Similarly, one may consider questions
like ϕ1 ∨ ψ1, ϕ2 ∨ ψ2, ϕ1 → χ, ψ1 → χ; ?χ: here, clearly, the first disjunction
is helpful for proving the goal, while the second is not. These examples show
the ∨ ↓-strategy and the extraction strategy have to be somehow combined:
while forming extraction strategies for the goal, one should also check whether
the open questions met have some relationship with a disjunction that occurs
as a positive subformula of one of the assumptions, in order to use ∨ ↓ at the
appropriate time.

190 Wilfried Sieg and Saverio Cittadini

Summing up this sketch of heuristic considerations, we can conclude that
forming strategies in the intuitionistic (sentential) case is almost straightforward:
one can form the extraction strategies (when the goal is a positive subformula of
one of the assumptions), the inversion strategies (if the goal is not an atom) and
the ∨ ↓-strategies (if there are non-Harrop formulas among the assumptions),
leaving the ⊥q-strategies as a last resort. But complications arise for a good
ranking of the strategies, when non-Harrop assumptions occur. (These compli-
cations provide a heuristic explanation of the higher computational complexity
of the set of intuitionistically provable sentential formulas.) Finally, the Skolem-
Herbrand expansion is our tool to extend strategies (particularly, the extraction
strategies) to the case of predicate logic.

References

1. A. Avron, F. Honsell, M. Miculan, and C. Paravano. Encoding Modal Logics in
Logical Frameworks. Studia Logica, 60(1):161–208, 1998.

2. D. Basin, S. Matthews, and L. Viganò. Natural Deduction for Non-Classical Logics.
Studia Logica, 60(1):119–160, 1998.

3. J. Byrnes. Proof Search and Normal Forms for Natural Deductions. PhD thesis,
Carnegie Mellon University, 1999.

4. S. Cittadini. Intercalation calculus for intuitionistic propositional logic. Technical
Report PHIL-29, Philosophy, Methodology, and Logic, Carnegie Mellon University,
1992.

5. S. Cittadini. Deduzione Naturale e Ricerca Automatica di Dimostrazioni in
varie logiche: il Calcolo delle Intercalazioni. In C. Cellucci, M. C. Di Maio, and
G. Roncaglia, editors, Atti del Congresso Logica e filosofia della scienza: problemi
e prospettive, Lucca, 7–10 gennaio 1993, pages 583–591, Pisa, 1994. Edizioni ETS.

6. D. van Dalen. Logic and Structure. Springer-Verlag, Berlin-Heidelberg-New York,
second edition, 1989.

7. R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. The Journal
of Symbolic Logic, 57(3):795–807, 1992.

8. M. Fitting. Intuitionistic Logic Model Theory and Forcing. North-Holland Pub-
lishing Company, Amsterdam-London, 1969.

9. M. Fitting. Proof Methods for Modal and Intuitionistic Logic. D. Reidel Publishing
Company, Dordrecht/Boston/Lancaster, 1983.

10. J. Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University
Press, Cambridge, 1989.

11. R. Harrop. Concerning formulas of the types A → B ∨ C, A → (Ex)B(x) in
intuitionistic formal systems. The Journal of Symbolic Logic, 25(1):27–32, 1960.

12. D. Prawitz. Natural Deduction: A Proof-Theoretical Study. Almqvist & Wiskell,
Stockholm, 1965.

13. N. Shankar. Proof search in the intuitionistic sequent calculus. In D. Kapur, editor,
Automated Deduction: CADE-11, vol. 607 of LNCS, pages 522–536, Berlin, 1992.
Springer-Verlag.

14. W. Sieg. Mechanisms and Search: Aspects of Proof Theory. AILA Preprint 19,
Associazione Italiana di Logica e sue Applicazioni, Padova, 1992.

15. W. Sieg and J. Byrnes. Normal Natural Deduction Proofs (in classical logic).
Studia Logica, 60(1):67–106, 1998.

Normal Natural Deduction Proofs (in Non-classical Logics) 191

16. W. Sieg and S. Cittadini. Normal Natural Deduction Proofs (in non-classical
logics). Rapporto Matematico n. 351, Dipartimento di Matematica, Università di
Siena, 1998.

17. W. Sieg and R. Scheines. Searching for proofs (in sentential logic). In
L. Burkholder, editor, Philosophy and the Computer, pages 137–159. Westview
Press, Boulder, San Francisco, Oxford, 1992.

18. R. Statman. Intuitionistic propositional logic is polynomial-space complete. The-
oretical Computer Science, 9(1):67–72, 1979.

19. N. Tennant. Autologic. Edinburgh University Press, Edinburgh, 1992.
20. L. A. Wallen. Automated Proof Search in Non-Classical Logics. MIT Press, Cam-

bridge, Mass., 1990.

History and Future
of Implicit and Inductionless Induction:

Beware the Old Jade and the Zombie!

Claus-Peter Wirth

Dept. of Computer Science, Universität des Saarlandes,
D–66123 Saarbrücken, Germany

cp@ags.uni-sb.de

Abstract. In this survey on implicit induction I recollect some memo-
ries on the history of implicit induction as it is relevant for future research
on computer-assisted theorem proving, esp. memories that significantly
differ from the presentation in a recent handbook article on “induction-
less induction”. Moreover, the important references excluded there are
provided here. In order to clear the fog a little, there is a short intro-
duction to inductive theorem proving and a discussion of connotations
of implicit induction like “descente infinie”, “inductionless induction”,
“proof by consistency”, implicit induction orderings (term orderings),
and refutational completeness.

1 What Is Inductive Theorem Proving (ITP)?

Inductive reasoning can be seen as extending deductive reasoning in that infinite
deductive proofs may be represented in a finite cyclic form, as suggested in the
following example, where Γ (x0, y) is a proposition over the natural numbers,
where ‘s’ denotes the successor function (x �→ x+1), and where the formulas
below each line (sub-goals) imply the formula (goal) above: An infinite deductive
proof of Γ (x0, y)

Γ (x0, y)
Γ (0, y) Γ (s(x1), y)

... Γ (s(0), y) Γ (s(s(x2)), y)
... Γ (s(s(0)), y)

. . .
...

. . .
. . .

(using xi = 0 ∨ ∃xi+1. xi = s(xi+1)) should be captured in something like

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 192–203, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

History and Future of Implicit and Inductionless Induction 193

Γ (x0, y)
Γ (0, y) Γ (s(x1), y)

... Δ ⇒ Γ (s(x1), y) Π ⇒ Γ (s(x1), y)
...

...
Δ′ ∨ Γ (x1, s) Π ′ ∨ Γ (x1, t) Π ′′

(back to top) (back to top)
...

using Δ ∨ Π. This kind of cyclic argument – namely inferring Γ (x1, s) and
Γ (x1, t) from Γ (x0, y) – is sound if for each (ground) instantiation of the
theorem (here: Γ (sm(0), sn(0))) the deductive proof terminates. This can be
guaranteed by requiring that each cycle in the proof (graph) terminate, i.e. its
preconditions (usually called induction hypotheses – here: Γ (x1, s) and Γ (x1, t))
be smaller than the “induction” conclusion (here: Γ (x0, y) or Γ (s(x1), y)) w.r.t.
some wellfounded ordering, called induction ordering (here e.g. the usual order-
ing on the natural numbers applied to the first argument of Γ). Thus, while the
property of being an inductive theorem depends only on the specification (i.e. a
language and a set of axioms) and the choice of a specific notion of inductive
validity, cf. [74], an inductive proof of an inductive theorem also depends on an
additional parameter, namely some induction ordering which must be chosen
appropriately during the proof.

2 Explicit Versus Implicit Induction

Although there is no generally accepted characterization of the two paradigms
of explicit and implicit induction in the research community, in [67], which is a
comprehensive survey on explicit induction, the following is said:

Research on automated induction these days is based on two competing
paradigms: Implicit induction (also termed inductive completion, induc-
tionless induction, or, less confusingly, proof by consistency) evolved from
the Knuth–Bendix Completion Procedure The other research
paradigm . . . is called explicit induction and resembles the more familiar
idea of induction theorem proving using induction axioms.

In accordance with this view, one reason to call the latter paradigm “explicit”
is that in the underlying inference systems every cyclic argument must be made
explicit in a single inference step applying a so-called induction rule. Besides
generating induction base formulas, this step joins induction hypotheses and
conclusions in induction step formulas and explicitly guarantees the termina-
tion of their cycles by a sub-proof or -mechanism for the wellfoundedness of
the induction ordering resulting from the step formulas. In the explicit induc-
tion proof corresponding to the example induction proof of Section 1 the in-
duction base formula is Γ (0, y) and the induction step formulas are Δ ⇒
(Γ (x1, s) ⇒ Γ (s(x1), y)) and Π ⇒ (Γ (x1, t) ⇒ Γ (s(x1), y)). The explicit
induction proof then has the following form:

194 Claus-Peter Wirth

Γ (x0, y)
Γ (0, y) Δ ⇒ (Γ (x1, s) ⇒ Γ (s(x1), y)) Π ⇒ (Γ (x1, t) ⇒ Γ (s(x1), y))

...
...

...

Note that the first inference in this proof is an application of an induction axiom
in the sense of [67].

As the example induction proof of Section 1 illustrates, the cyclic arguments
and their termination in implicit induction proofs need not be confined to sin-
gle inference steps, as is in explicit induction. Therefore, the induction axioms
corresponding to the cyclic arguments in a finite implicit induction proof can
only be determined by analyzing the whole proof, whereas in the case of explicit
induction each applied induction axiom is given by a single application of the
induction rule.

The phrase “more familiar idea” attributed to explicit induction in the above
quotation requires some remarks. Implicit induction in the style of descente in-
finie was already known to the ancient Greeks and – as will be explained below –
is the standard method of mathematical induction since Pierre Fermat (1607?–
1665) rediscovered the method and named it descente infinie (ou indéfinie).
Nevertheless more familiar is the idea of explicit induction to computer scien-
tists who – inspired by J. Alan Robinson’s resolution method of the year 1963
– wanted to solve all problems of logical inference via reduction to machine-
oriented inference systems. Instead of implementing mathematical ITP, they
decided to reduce it via the induction rule (cf. above) in the following fashion:
Apply the induction rule backwards; then do purely deductive reasoning; if this
fails, repeat the process! The so called “waterfall” of [15] refines this process into
a fascinating heuristic and the ITP system Nqthm [15, 16] shows that in this
case the reduction approach was quite successful – so successful actually that it
is hard to understand why implicit induction was able to gain ground again, as
we will see in the next section.

3 1988 – Start of Practical Interest in Implicit Induction

Cf. e.g. [62, 19] for historical surveys on implicit induction, which, however, have
to be taken with a grain of salt. After several papers on implicit induction in
purely equational theories already in the year 1980, [32, 36, 47, 51], there was a
sequence of papers on technical improvements, [37, 23, 30, 44], which was topped
by Leo Bachmair’s paper [6] in the year 1988. Up to 1987 the papers on im-
plicit induction had a theoretical nature, but some of them were very inspiring,
[38] being my favorite.

Bachmair’s paper [6] is the first one that gave good reason for a hope to
develop the method into practical usefulness. And – in 1990 – there was real
hope, cf. [34, p. 1]:

This approach has some very attractive and promising characteristics
compared to classical approaches for explicit inductive theorem proving
based on induction schemas, which will be pointed out later on.

History and Future of Implicit and Inductionless Induction 195

As a consequence, in the end of the 1980s and the first half of the 1990s several
researchers tried to clearly understand what “implicit induction” means from a
practical point of view and whether it would be useful for practical ITP.

4 1996 – End of Most Interest in Implicit Induction

During the Induction Workshop on the 13th Int. Conf. on Automated Deduction,
New Brunswick (NJ), 1996, there was an agreement on better not to use the term
“implicit induction” in the future, for the following two reasons, which will be
discussed in the next two subsections.

1. Different researchers understand this term differently.
2. The notion has lost its potential relevance for the practice of ITP.

4.1 What Is Implicit Induction?

While it is generally accepted that [6] is implicit and [15] is explicit, we report
the following different views on what it is that makes induction implicit:

Descente Infinie. In explicit induction there is something like an “induction
rule” (cf. Section 2) whose addition turns a deductive inference system into
an inductive inference system without further changes on the deductive
part. Concerning the concept of induction hypothesis, the explicit induction
“hides” several (applications of) induction hypotheses in a single inference
step. To the contrary, in descente infinie, the inference system “knows” what
an induction hypothesis is, i.e. it includes inference rules that provide or ap-
ply induction hypotheses, given that certain ordering conditions resulting
from these applications can be met by an induction ordering.
Note that descente infinie is important for human-oriented ITP because
this is the style in which working mathematicians do induction since Pierre
Fermat (1607?–1665) rediscovered and named the method which was already
known to the ancient Greeks. The working mathematician applies it in the
following fashion.

He starts with the conjecture and simplifies it by case analysis. When
he realizes that the current goal becomes similar to an instance of the
conjecture, he applies the instantiated conjecture just like a lemma,
but keeps in mind that he has actually applied an induction hypo-
thesis. Finally, he searches for some wellfounded ordering in which
all the instances of the conjecture he has applied as an induction
hypothesis are smaller than the original conjecture itself.

This view on the notion of “implicit induction” (i.e. descente infinie) was
the one of the majority on the Induction Workshop in 1996.
The name descente infinie for this aspect of implicit induction was coined
later in [71] after suggestions and complaints on the occurrence of “implicit
induction” in the title of [70]. Researchers introduced to descente infinie
by [57] (entitled “Lazy Generation of Induction Hypotheses”) sometimes
speak of “lazy induction” instead of descente infinie.

196 Claus-Peter Wirth

Inductionless Induction/Proof byConsistency. “Inductionless Induction”
means that no induction can be observed explicitly. E.g. some Knuth–
Bendix [35] or superposition calculus [25] completion procedure produces
a huge number of irrelevant inferences under which the ones relevant for
induction can hardly be made explicit in an automatic way. “Inductionless
induction” has shown to be practically useless, mainly due to too many su-
perfluous inferences, typically infinite runs, and too restrictive admissibility
conditions. The approach in [25] is an interesting theoretical possibility but
definitely useless for practical purposes. Roughly speaking, the conceptual
flaw in “inductionless induction” seems to be that, instead of finding a suffi-
cient set of reasonable inferences, the research follows the paradigm of ruling
out as many irrelevant inferences as possible. A proof attempt is successful
when the prover has drawn all necessary inferences and stops without having
detected an inconsistency (empty clause).
Christoph Walther (cf. [67]) prefers to use the name “proof by consistency”
instead of the contradictio in eo ipso “inductionless induction”, which, how-
ever, is used again in the year 2001 in the title of [19]. Indeed, “proof by
consistency” seems to be a better name for this aspect of implicit induction
than “inductionless induction” because the former highlights on the fact that
– roughly speaking – the derivation of the empty clause (or inconsistency)
means disproof, not proof. E.g., in the case of the toy example proofs in
[20] the number of irrelevant inferences is cut down to zero (unless they are
hidden in the omitted parts of the proofs) and it is quite obvious where the
induction takes place, so that “proof by consistency” is still appropriate, but
“inductionless induction” is not.
While the opinion that the “inductionless induction” aspect (i.e. no induction
explicitly observable) is the crucial one for “implicit induction” is now shared
by several researchers who had worked on implicit induction in the past, at
the Induction Workshop in 1996, only a minority held this opinion. Note
that this view on the notion of implicit induction is held by Martin Protzen
and places his important work [57] (which is implicit induction in the sense
of descente infinie) on the side of explicit induction, where the practically
useful ITP systems use to dwell, such as the powerful up-to-date systems
Inka [3] and Acl2 [41].
The name “proof by consistency” was coined in [39], which is the forerunner
of the earlier published improved version [38]. The name “inductionless in-
duction” was coined already before [48] (to which it is erroneously attributed
in [19, 62]), namely in [47] in the year 1980, when also the title of [32] included
a similar phrase.

Implicit Induction Ordering. This means that there is no explicit induc-
tion ordering in the signature and the model. Instead of such semantical
orderings, the induction is performed on syntactical term orderings that are
not part of the logic language. The semantical orderings (cf. Definition 13.7
of [69]) cannot depend on the syntactical term structure of a weight w but
only on the value of w under the evaluation function. In [69] we have rig-
orously investigated the price one has to pay for the possibility to have

History and Future of Implicit and Inductionless Induction 197

induction orderings also depending on the syntax of weights. For powerful
concrete inference systems this price turned out to be surprisingly high. Be-
sides this, after improving the ordering information in descente infinie by
our introduction of explicit weights (cf. [72]) the former necessity of sophis-
ticated induction orderings that exploit the term structure (cf. e.g. [6, 64])
does not seem to exist anymore.
This view on the notion of “implicit induction” (i.e. no explicit induction
ordering in the language) is held by a minority, e.g. by Peter Padawitz. Note
that his view places his ITP system Expander, [54, 55], on the explicit side,
where the practically useful ITP systems use to dwell. Note that Expander
is also explicit in the sense that it does not perform “inductionless induc-
tion”. Expander is, however, implicit in the sense that it realizes descente
infinie, and – to my knowledge – it is the only integration of descente in-
finie into a framework of refutational resolution (or – more precisely – inverse
method, [49]) where – roughly speaking – the empty clause (or inconsistency)
means proof, not disproof.
Moreover, this view on the notion of “implicit induction” (i.e. implicit induc-
tion ordering) is also the view found in [19], which, however, concentrates
on “inductionless induction”.

It does not seem to be completely superfluous to note that “refutational com-
pleteness” in itself cannot be crucial for implicitness of induction, simply because
it is not a very important property:

– For practical purposes, it is not important that the invalidity of a theorem
would be detected sometime (= refutational completeness), but that it is
detected efficiently, cf. [56].

– In theoretical terms, refutational completeness used to be trivial for the very
restricted logics in the scope of implicit induction.

Nevertheless, since Leo Bachmair’s important paper [6] various authors in the
field of implicit induction emphasized refutational completeness as if it were a
major asset. So let us have a final look at it:

In general, for all significant notions of inductive validity, the set of induc-
tively valid theorems is not enumerable, cf. [31, 52, 50]. Therefore, refutational
completeness is an optimal theoretical quality of inference systems for ITP.
In practice, however, refutational completeness by itself does not help in re-
futing invalid conjectures or in finding finite proofs for inductively valid for-
mulas. Only theoreticians completely detached from reality can consider non-
terminating proof attempts in refutationally complete inference systems to be
successful proofs.

4.2 End of the Schism

In 1996, the theoretical aspects of “inductionless induction” were clearly under-
stood by the experts. Moreover, the severe limitations of “inductionless induc-
tion” were admitted by all researchers in the field, at least by those who attended

198 Claus-Peter Wirth

the Induction Workshop. There was the general opinion that “inductionless in-
duction” was dead .

The practitioners in automated theorem proving were also not too inter-
ested in the remaining aspects of implicit induction, i.e. “descente infinie” and
“implicit induction orderings”. My main interest, however, was and still is to con-
vince the community of the practical importance of “descente infinie”, cf. [71].

All participants agreed that the general challenge would be the development
of practically more useful ITP systems where the separation of implicit vs. ex-
plicit would not play a splitting role because (contrary to “inductionless induc-
tion”) “descente infinie” goes together well with the standard ideas of explicit
induction. The general opinion was – roughly speaking – the following.

To succeed in proving an inductive theorem in finite time, implicit in-
ductive theorem provers have to solve the same problems as explicit in-
ductive theorem provers, namely to find a finite cyclic representation for
an infinite deductive proof as well as an induction ordering guaranteeing
the termination of its cycles.

Thus, the hatchet between the tribe of explicit ITP and the (rather small) tribe
of implicit ITP was buried at the Induction Workshop in 1996, at least between
the attendees.

5 The Aftermath

Since the year 1996 there was only a small number of publications on implicit
induction. The following seems to be a complete list of the research papers:
“Inductionless induction” is only found in [20]. Besides this, descente infinie is
treated in [10, 61, 69, 70, 45, 71, 65, 2]. Implicit induction orderings are found only
in [10, 69, 20, 65, 2].

Recently, in the Handbook of Automated Reasoning [60], Hubert Comon
published an article [19] on “inductionless induction” that gave a very biased
account on the history of “implicit induction”. It seems to me that Hubert Comon
neglects the more practice-oriented research on implicit induction because this
would invalidate his resurrection of “inductionless induction” in [20] as of merely
theoretical interest. I think this to be very problematic because this was already
misleading in the past (cf. [62], where [20] is mistaken to be “the cutting edge”,
[63]) and probably will further mislead newcomers who take the handbook [60]
for a complete high-quality reference for entering a research area. Therefore,
I would like to give the advice:

Do not to fumble around with the zombie of “inductionless induction”!
The experts in implicit induction have spent a lot of time with it, mostly
to bury it.

Less problematic than the biased handbook article [19] is the technical re-
port [20], although it does not represent a significant practical progress as
compared to [25]. It is more of theoretical interest. Moreover, sentences like
“The method of proofs by consistency has lost part of its popularity since it

History and Future of Implicit and Inductionless Induction 199

was developed in the early 80s.” are misleading because the method was never
popular, not even among researchers in ITP, not in the 1980s, not even in the
the early 1990s.

6 Conclusion

While there was reason to hope to develop “inductionless induction” into prac-
tical applicability in 1988, it is a theoretician’s game for more than half a
decade now. Also “implicit induction orderings” do not seem to be useful in
practice.

The remaining aspect of implicit induction, however, “descente infinie”, is
going to play an important role in the practice of ITP when mathematical as-
sistant systems are applied to proof problems that are beyond the scope of the
recursion analysis and the eager hypothesis generation of explicit ITP.

7 A Word to the Wise

In communications on previous versions of this paper I was surprised that the
confusion on the meaning of implicitness of induction is just as total today as it
was in 1996; only the confidence in the justifiedness of the respective personal
views seems to have increased with the time gone by.

A sinner myself, cf. [70], regarding future research, I therefore propose to
finally bury the phrases “implicit induction” and “inductionless induction”.

The notions of “descente infinie”, “proof by consistency”, and “implicit in-
duction ordering” are the relays that can take us further than the old jade
“implicit induction” and the zombie of “inductionless induction”.

Caveat

This article depends on my personal possibly erroneous (but careful and hon-
est) judgments and memories gathered over a dozen years of work on this very
complex subject.

References

The following list contains publications on implicit induction with a special em-
phasis on those that should have been but are not cited in [19]. Additionally, it
contains some outstanding or important papers on other kinds and aspects of
induction and theorem proving.

[1] H. Ait-Kaci, M. Nivat (eds.) (1989). Resolution of Equations in Algebraic Struc-
tures. Academic Press.

[2] Alessandro Armando, Michaël Rusinowitch, Sorin Stratulat (2002). Incorporating
Decision Procedures in Implicit Induction. J. Symbolic Computation 34, pp. 241–
258, Academic Press.

200 Claus-Peter Wirth

[3] Serge Autexier, Dieter Hutter, Heiko Mantel, Axel Schairer (1999). Inka 5.0 – A
Logical Voyager. 16th CADE1999, LNAI 1632, pp. 207–211, Springer.

[4] Jürgen Avenhaus, Klaus Madlener (1995). Theorem Proving in Hierarchi-
cal Clausal Specifications. SEKI-Report SR–95–14 (SFB), Univ. Kaisers-
lautern. http://www-madlener.informatik.uni-kl.de/seki/1995/Avenhaus.

SR-95-14.ps.gz (March 07, 2002).

[5] Matthias Baaz, Uwe Egly, Christian G. Fermüller (1997). Lean Induction Princi-
ples for Tableaus. 6th TABLEAU 1997, LNAI 1227, pp. 62–75, Springer.

[6] Leo Bachmair (1988). Proof By Consistency in Equational Theories. 3rd IEEE
symposium on Logic In Computer Sci., pp. 228–233, IEEE Press.

[7] Leo Bachmair (1991). Proof By Consistency. Birkhauser, Boston.
[8] Klaus Becker (1993). Proving Ground Confluence and Inductive Validity in

Constructor-Based Equational Specifications. TAPSOFT 1993, LNCS 668, pp. 46–
60, Springer.

[9] Klaus Becker (1994). Rewrite Operationalization of Clausal Specifications with
Predefined Structures. Ph.D. thesis, FB Informatik, Univ. Kaiserslautern.

[10] Klaus Becker (1996). How to Prove Ground Confluence. SEKI-Report SR–96–02,
Univ. Kaiserslautern.

[11] Rudolf Berghammer (1993). On the Characterization of the Integers: The Hidden
Function Problem Revisited. Acta Cybernetica 11, pp. 85–96, Szeged.

[12] Eddy Bevers, Johan Lewi (1990). Proof by Consistency in Conditional Equational
Theories. Report CW 102, rev. July 1990. Dept. Comp. Sci., K. U. Leuven. Short
version in: 2nd CTRS 1990, LNCS 516, pp. 194–205, Springer.

[13] Adel Bouhoula, Michaël Rusinowitch (1995). Implicit Induction in Conditional
Theories. J. Automated Reasoning 14, pp. 189–235, Kluwer.

[14] Adel Bouhoula, Emmanuël Kounalis, Michaël Rusinowitch (1992). Automated
Mathematical Induction. Technical Report 1636, INRIA.

[15] Robert S. Boyer, J Strother Moore (1979). A Computational Logic. Academic
Press.

[16] Robert S. Boyer, J Strother Moore (1988). A Computational Logic Handbook.
Academic Press.

[17] Robert S. Boyer, J Strother Moore (1989). The Addition of Bounded Quantifica-
tion and Partial Functions to A Computational Logic and Its Theorem Prover.
In: Manfred Broy (ed.), Constructive Methods in Computing Science, NATO ASI
Series, Vol. F 55, pp. 95–145, Springer.

[18] Alan Bundy (1988). The Use of Explicit Proof Plans to Guide Inductive Proofs.
9th CADE1988, LNAI310, pp. 111–120, Springer.

[19] Hubert Comon (2001). Inductionless induction. In: [60], Vol. I, pp. 913–970.
[20] Hubert Comon, Robert Nieuwenhuis (1998). Induction = I-Axiomatization +

First-order Consistency. Technical Report, ENS Cachan.
[21] Ulrich Fraus (1993). A Calculus for Conditional Inductive Theorem Proving.

3rd CTRS 1992, LNCS656, pp. 357–362, Springer.
[22] Ulrich Fraus (1994). Mechanizing Inductive Theorem Proving in Conditional The-

ories. Ph.D. thesis, Univ. Passau.
[23] Laurent Fribourg (1986). A Strong Restriction of the Inductive Completion Pro-

cedure. 13th ICALP1986, LNCS226, pp. 105–116, Springer. Also in: J. Symbolic
Computation 8, pp. 253–276, Academic Press, 1989.

[24] Dov M. Gabbay, C. J. Hogger, J. Alan Robinson (eds.) (1993 ff.). Handbook of
Logic in Artificial Intelligence and Logic Programming. Clarendon Press.

History and Future of Implicit and Inductionless Induction 201

[25] Harald Ganzinger, Jürgen Stuber (1992). Inductive Theorem Proving by Consis-
tency for First-Order Clauses. In: Informatik-Festschrift zum 60. Geburtstag von
Günter Hotz. pp. 441–462. Teubner Verlag, Stuttgart. Also in: 3rd CTRS 1992,
LNCS656, pp. 226–241, Springer, 1993.

[26] Gerhard Gentzen (1938). Die gegenwärtige Lage in der mathematischen Grund-
lagenforschung – Neue Fassung des Widerspruchsfreiheitsbeweises für die reine
Zahlentheorie. Forschungen zur Logik und zur Grundlegung der exakten Wis-
senschaften, Folge 4, Leipzig.

[27] Gerhard Gentzen (1943). Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen
der transfiniten Induktion in der reinen Zahlentheorie. Mathematische Annalen
119, pp. 140–161.

[28] Alfons Geser (1995). A Principle of Non-Wellfounded Induction. In: Tiziana
Margaria (ed.). Kolloquium Programmiersprachen und Grundlagen der Program-
mierung, MIP–9519, pp. 117–124, Univ. Passau.

[29] Martin Giese (1998). Integriertes automatisches und interaktives Beweisen: die
Kalkülebene. Master’s thesis, Univ. Karlsruhe.
http://i11www.ira.uka.de/~giese/da.ps.gz(May 09, 2000).

[30] Richard Göbel (1985). Completion of Globally Finite Term Rewriting Systems for
Inductive Proofs. 9th German Workshop on AI, IFB118, Springer.

[31] Kurt Gödel (1931). Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I. Monatshefte für Mathematik und Physik 38, pp. 173–
198.

[32] Joseph Goguen (1980). How to Prove Algebraic Inductive Hypotheses Without
Induction. 5th CADE1980, LNCS87, pp. 356–373, Springer.

[33] Bernhard Gramlich (1989). Inductive Theorem Proving Using Refined Unfailing
Completion Techniques. SEKI-Report SR–89–14 (SFB), Univ. Kaiserslautern.
Short version in: 9th ECAI 1990, pp. 314–319, Pitman Publ..

[34] Bernhard Gramlich (1990). Completion Based Inductive Theorem Proving: A Case
Study in Verifying Sorting Algorithms. SEKI-Report SR–90–04, Univ. Kaisers-
lautern.

[35] Bernhard Gramlich, Wolfgang Lindner (1991). A Guide to Unicom, an Inductive
Theorem Prover Based on Rewriting and Completion Techniques. SEKI-Report
SR-91–17 (SFB) Univ. Kaiserslautern.
http://agent.informatik.uni-kl.de/seki/1991/Lindner.SR-91-17.ps.gz

(May 09, 2000).
[36] Gérard Huet, Jean-Marie Hullot (1980). Proofs by Induction in Equational The-

ories with Constructors. 21st FOCS1980, pp. 96–107. Also in: J. Computer and
System Sci. 25, pp. 239–266, Academic Press, 1982.

[37] Jean-Pierre Jouannaud, Emmanuël Kounalis (1986). Automatic Proofs by Induc-
tion in Equational Theories Without Constructors. 1st IEEE symposium on Logic
In Computer Sci., pp. 358–366, IEEE Press. Also in: Information and Computa-
tion 82, pp. 1–33, Academic Press, 1989.

[38] Deepak Kapur, David R. Musser (1986). Inductive Reasoning with Incomplete
Specifications. 1st IEEE symposium on Logic In Computer Sci., pp. 367–377,
IEEE Press.

[39] Deepak Kapur, David R. Musser (1987). Proof by Consistency. Artificial Intelli-
gence 31, pp. 125–157.

[40] Deepak Kapur, Hantao Zhang (1989). An Overview of Rewrite Rule Labora-
tory (Rrl). 3rd RTA1989, LNCS355, pp. 559–563, Springer.

202 Claus-Peter Wirth

[41] Matt Kaufmann, Panagiotis Manolios, J Strother Moore (2000). Computer-Aided
Reasoning: An Approach. Kluwer.

[42] Emmanuël Kounalis, Michaël Rusinowitch (1990). Mechanizing Inductive Reason-
ing. 8th AAAI 1990, pp. 240–245, MIT Press.

[43] Georg Kreisel (1965). Mathematical Logic. In: T. L. Saaty (ed.). Lectures on
Modern Mathematics, Vol. III, pp. 95–195, John Wiley & Sons, New York.

[44] Wolfgang Küchlin (1987). Inductive Completion by Ground Proof Transformation.
Colloquium on Resolution of Equations in Algebraic Structures (CREAS). Also
in: [1], Vol. 2, pp. 211–244.

[45] Ulrich Kühler (2000). A Tactic-Based Inductive Theorem Prover for Data Types
with Partial Operations. Ph.D. thesis, Infix, Sankt Augustin.

[46] Ulrich Kühler, Claus-Peter Wirth (1996). Conditional Equational Specifications
of Data Types with Partial Operations for Inductive Theorem Proving. SEKI-
Report SR–96–11, Univ. Kaiserslautern. Short version in: 8th RTA 1997, LNCS
1232, pp. 38–52, Springer.
http://ags.uni-sb.de/~cp/p/rta97/welcome.html (Aug. 05, 2001).

[47] D. S. Lankford (1980). Some Remarks on Inductionless Induction. Memo MTP-
11, Math. Dept., Louisiana Tech. Univ., Ruston.

[48] D. S. Lankford (1981). A Simple Explanation of Inductionless Induction. Memo
MTP-14, Math. Dept., Louisiana Tech. Univ., Ruston.

[49] Vladimir A. Lifschitz (1989). What Is the Inverse Method?. J. Automated Rea-
soning 5, pp. 1–23, Kluwer.

[50] David B. MacQueen, Donald T. Sannella (1985). Completeness of Proof Systems
for Equational Specifications. IEEE Transactions on Software Engineering 11,
pp. 454–461, IEEE Press.

[51] David R. Musser (1980). On Proving Inductive Properties of Abstract Data Types.
7th POPL 1980, pp. 154–162, ACM Press.

[52] Cyrus F. Nourani (1994). Types, Induction, and Incompleteness. Bull. EATCS
53, pp. 226–247.

[53] Peter Padawitz (1990). Horn Logic and Rewriting for Functional and Logic Pro-
gram Design. MIP–9002, Univ. Passau.

[54] Peter Padawitz (1996). Inductive Theorem Proving for Design Specifications. J.
Symbolic Computation 21, pp. 41–99, Academic Press.

[55] Peter Padawitz (1998). Expander. A System for Testing and Verifying Functional
Logic Programs.
http://LS5.cs.uni-dortmund.de/~peter/ExpaTex.ps.gz (Sept. 14, 1999).

[56] Martin Protzen (1992). Disproving Conjectures. 11th CADE1992, LNAI607,
pp. 340–354, Springer.

[57] Martin Protzen (1994). Lazy Generation of Induction Hypotheses.
12th CADE1994, LNAI 814, pp. 42–56, Springer. Long version in: [58].

[58] Martin Protzen (1995). Lazy Generation of Induction Hypotheses and Patching
Faulty Conjectures. Ph.D. thesis, Infix, Sankt Augustin.

[59] Uday S. Reddy (1990). Term Rewriting Induction. 10th CADE1990, LNAI449,
pp. 162–177, Springer.

[60] J. Alan Robinson, Andrei Voronkov (eds.) (2001). Handbook of Automated Rea-
soning. Elsevier.

[61] Christof Sprenger (1996). Über die Beweissteuerung des induktiven Theorembe-
weisers QuodLibet mit Taktiken. Master’s thesis, FB Informatik, Univ. Kai-
serslautern.

History and Future of Implicit and Inductionless Induction 203

[62] Graham Steel (1999). Inductionless Induction (aka Implicit Induction or Proof by
Consistency): A Literature Survey.
http://www.dai.ed.ac.uk/homes/grahams/papers/lit-survey.ps.gz

(Apr. 28, 2002).
[63] Graham Steel, Alan Bundy, Ewen Denney (2002). Using Implicit Induction to

Guide a Parallel Search for Inconsistency.
http://www.dai.ed.ac.uk/homes/grahams/papers/abstract.pdf

(Apr. 28, 2002).
[64] Joachim Steinbach (1995). Simplification Orderings – History of Results. Funda-

menta Informaticae 24, pp. 47–87.
[65] Sorin Stratulat (2001). A General Framework to Build Contextual Cover Set In-

duction Provers. J. Symbolic Computation 32, pp. 403–445, Academic Press.
[66] Christoph Walther (1992). Computing Induction Axioms. 3rd LPAR1992,

LNAI624, pp. 381–392, Springer.
[67] Christoph Walther (1994). Mathematical Induction. In: [24], Vol. 2, pp. 127–228.
[68] Claus-Peter Wirth (1991). Inductive Theorem Proving in Theories Specified by

Positive/Negative-Conditional Equations. Master’s thesis, FB Informatik, Univ.
Kaiserslautern. Abstract in: 1st Workshop on Construction of Computational Log-
ics, Val d’Ajol (France), 1992, Rapport Interne CRIN 93–R–023, p. 38, Villers-
les-Nancy, 1993.

[69] Claus-Peter Wirth (1997). Positive/Negative-Conditional Equations: A Construc-
tor-Based Framework for Specification and Inductive Theorem Proving. Ph.D.
thesis, Verlag Dr. Kovač, Hamburg.

[70] Claus-Peter Wirth (1999). Full First-Order Free Variable Sequents and Tableaus
in Implicit Induction. 8th TABLEAU1999, LNAI 1617, pp. 293–307, Springer.
http://ags.uni-sb.de/~cp/p/tab99/welcome.html (Aug. 05, 2001).

[71] Claus-Peter Wirth (2000). Descente Infinie + Deduction. Report 737/2000, FB
Informatik, Univ. Dortmund. Extd. version, Feb. 1, 2003
http://ags.uni-sb.de/~cp/p/tab99/new.html (Feb. 01, 2003).

[72] Claus-Peter Wirth, Klaus Becker (1995). Abstract Notions and Inference Systems
for Proofs by Mathematical Induction. 4th CTRS1994, LNCS 968, pp. 353–373,
Springer.
http://ags.uni-sb.de/~cp/p/ctrs94/welcome.html (Aug. 05, 2001).

[73] Claus-Peter Wirth, Bernhard Gramlich (1994). A Constructor-Based Approach
for Positive/Negative-Conditional Equational Specifications. J. Symbolic Com-
putation 17, pp. 51–90, Academic Press.
http://ags.uni-sb.de/~cp/p/jsc94/welcome.html (Aug. 05, 2001).

[74] Claus-Peter Wirth, Bernhard Gramlich (1994). On Notions of Inductive Valid-
ity for First-Order Equational Clauses. 12th CADE1994, LNAI 814, pp. 162–176,
Springer
http://ags.uni-sb.de/~cp/p/cade94/welcome.html (Aug. 05, 2001).

[75] Claus-Peter Wirth, Ulrich Kühler (1995). Inductive Theorem Proving in Theo-
ries Specified by Positive/Negative-Conditional Equations. SEKI-Report SR–95–
15 (SFB), Univ. Kaiserslautern
http://ags.uni-sb.de/~cp/p/sr9515/welcome.html (Aug. 05, 2001).

[76] Hantao Zhang, Deepak Kapur, Mukkai S. Krishnamoorthy (1988). A Mechaniz-
able Induction Principle for Equational Specifications. 9th CADE1988, LNAI310,
pp. 162–181, Springer.

The Flowering of Automated Reasoning�

Larry Wos

Mathematics and Computer Science Division,
Argonne National Laboratory,

Argonne, IL 60439-4801
wos@mcs.anl.gov

Abstract. This article celebrates with obvious joy the role automated
reasoning now plays for mathematics and logic. Simultaneously, this ar-
ticle evidences the realization of a dream thought impossible just four
decades ago by almost all. But there were believers, including Joerg Siek-
mann to whom this article is dedicated in honor of his sixtieth birthday.
Indeed, today (in the year 2001) a researcher can enlist the aid of an
automated reasoning program often with the reward of a new proof or a
better proof in some significant aspect. The contributions to mathematics
and logic made with an automated reasoning assistant are many, diverse,
often significant, and of the type Hilbert would indeed have found most
pleasurable. The proofs discovered by W. McCune’s OTTER (as well
as other programs) are Hilbert-style axiomatic. Further, some of them
address Hilbert’s twenty-fourth problem (recently unearthed by Rudiger
Thiele), which focuses on the completion of simpler proofs. In that re-
gard, as well as others, I offer challenges and open questions, frequently
providing appropriate clauses to provide a beginning.

1 From Minuscule to Monumental

The style of this article is narrative, interweaving elements of history with devel-
opments in automated reasoning that presage a stirring and rewarding future.
Here one meets a new generation of researchers in the field and learns of in-
carnations of Hilbert’s recently discovered (by Rudiger Thiele) twenty-fourth
problem. By presenting diverse results from a wide spectrum focusing on math-
ematics and logic, the explicit intent is to interest new researchers, as well as
the experienced, in experimentation and application. To further that objective,
this article includes very short stories, featuring research nuggets, methodologies,
and strategies to extend, modify, and experiment with. The number of topics
covered and the length of this paper pay tribute to the long, long career of Joerg
Siekmann. Although this article in no way comes close to being a thorough sur-
vey, it does offer some startling successes that would almost certainly have been
out of reach were it not for the reliance on an automated reasoning program.

� This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research,
U.S. Department of Energy, under Contract W-31-109-Eng-38.

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 204–227, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Flowering of Automated Reasoning 205

I choose to mark the birth of the field now known to many as automated
reasoning with J. A. Robinson’s introduction of binary resolution. Of course,
earlier work on geometry and logic in the context of proving theorems was indeed
important, but the era of concern here begins with Robinson’s contribution. The
inference rule binary resolution beautifully generalizes both modus ponens and
syllogism. I prefer (because of questions of effective encoding) the definition of
binary resolution that focuses on a single literal in each of two premisses and,
therefore, prefer the inclusion of the inference rule factoring as well.

The cited rule of reasoning is strongly connected with a particular language.
Indeed, a simply brilliant stroke was the choice of the clause language for rep-
resenting questions and problems to the type of reasoning program that would
evolve. Although on the surface one might find this language quite poor in com-
parison with natural language, its poverty actually facilitates the formulation of
effective means for conclusion drawing and, perhaps of greater importance, fa-
cilitates the formulation of powerful strategies to control the reasoning. Without
strategy, it seems to me, what I discuss shortly as successes would most likely
not have occurred.

Almost at the beginning, when the Argonne paradigm (with its heavy em-
phasis on the use of strategy and on experimentation) was in its infancy, a key
test problem was a five-clause example, the Davis-Putnam problem. Finding a
proof for this inconsistent set of clauses by a computer program in negligible
time marked an achievement but – especially in retrospect – a minuscule one
that in no way foretold what was to come.

A bit more significant was our success with a classroom exercise in group
theory. The theorem (actually too strong a classification) asks for a proof of
commutativity for groups of exponent 2 (those in which the square of x is the
identity e). Its proof was completed in less than 3 CPU-seconds on what today
would be called a very, very slow machine. What did count was the first instance
of what would become the Argonne paradigm. In that paradigm, the use of strat-
egy is indispensable, clause retention plays a key role, and experimentation is
most heavily emphasized, where the targets are actual results from mathemat-
ics and logic as opposed to syntactic problems. When the question is open, far
better. Regarding the retention of newly deduced information, sometimes the
sought-after proof is discovered after the keeping of more than 1,000,000 clauses
and the generation of tens of millions. As for the occasionally-voiced objection
that an unaided master would not proceed in such a manner, note that the past
few years have witnessed the discovery of proofs that had eluded experts for
decades; see Section 4.

This section has, till now, focused on the minuscule; next in order is the mon-
umental, a classification virtually demanding some justification and explanation
before evidence is presented. In both mathematics and logic, at the simplest
level, advances in the context of proof can be partitioned into first proofs and
improved proofs. A beautiful example of the first class was the establishment by
an automated reasoning program that every Robbins algebra is a Boolean alge-
bra [McCune1997]. A charming example of the second class was the discovery

206 Larry Wos

(by a different automated reasoning program) of a proof focusing on Meredith’s
21-letter formula for two-valued sentential (or propositional) calculus [Mered-
ith1953], the following expressed in clause notation.

P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))).

The proof of concern shows that this formula is a single axiom, but, more impor-
tant, the proof consists of 38 applications of condensed detachment in contrast
to the (in effect) 41-step proof of Meredith himself. I shall return to these two
examples, as well as others, when I present in Section 4 evidence that “monu-
mental” is well deserved.

Of a different nature, and perhaps more significant, is that element focusing
on the source of the implied question or that on the expert who has shown inter-
est in such a question. No less a person than Alfred Tarski devoted energy to the
Robbins algebra question, offering it in a book [Henkin1971], having his students
attempt to answer it, and posing it repeatedly to researchers. Regarding Mered-
ith, he clearly was concerned with proof length, and he was a master at such
simplification, in part attested to by his publishing (with Prior) an abridgment
of a result of Lukasiewicz. But I can offer (to many) a far more persuasive view,
justification, and explanation for employing the term “monumental” – indeed,
Hilbert himself enters the picture.

In his 1900 Paris talk, Hilbert offered twenty-three problems that have had
and continue to have a profound effect on mathematics. This greatest mathemati-
cian of the twentieth century also had a dramatic effect on logic. His emphasis on
axiomatic proofs is but one example. The type of program I prefer (of which OT-
TER is the finest example in my view) produces Hilbert-style axiomatic proofs.
But far more gold was yielded by that most powerful mind.

Only recently, because of the scholarship of Rudiger Thiele, has the world
learned that in fact a twenty-fourth problem was offered by Hilbert (in one of his
notebooks) [Thiele2001]. As Hilbert himself said, the problem was not included
in the famous Paris talk because he had not as yet adequately formulated it. The
problem focuses on the finding of simpler proofs. As he notes, mathematicians
should simplify mathematics, not complicate it. But what makes a proof simpler,
and in which specific ways is one proof simpler than another?

Ceteris paribus, for the most obvious case, proof P is simpler than proof Q
if P is strictly shorter than Q. A second case focuses on formula (or equation)
complexity, where the formula complexity (equation complexity) of a proof is k if
and only if one of its deduced steps consists of k symbols and all other deduced
steps consist of k or fewer. A proof P is simpler than a proof Q, all things being
equal, if the formula (equation) complexity of P is strictly less than that of Q.
Where the size (gleaned from a conversation with D. Ulrich) of a proof equals
the total number of symbols in its deduced steps, P is simpler than Q when P
has strictly smaller size. A fourth and subtler case concerns lemma presence in
a proof. The proof P is simpler than the proof Q when P avoids the use of some
powerful lemma L whereas Q relies on the use of L. Finally, among the other
cases, I find interesting that concerning the type of term present. In particular,
for example, P is simpler than Q when P avoids the use of double-negation terms

The Flowering of Automated Reasoning 207

whereas Q relies on such. A double-negation term t is a term of the form n(n(s))
for some term s, where the function n denotes negation (as occurs, for example,
in two-valued sentential calculus).

Based on the preceding, the reader may have formulated a most natural
conjecture concerning what is about to be written:

– Automated reasoning programs can and do answer open questions by pro-
ducing a first proof and answers others by discovering simpler proofs.

With the evidence to be presented in Section 4, many – or perhaps many,
many – will join me in the attribution of monumental to the field of automated
reasoning. Before such a presentation, in order is the nature of a marvelous dream
and some details concerning the journey culminating in reaching that dream.

2 An Impossible Dream

In 1963 at Argonne National Laboratory, I began my study of what was then
called mechanical theorem proving, a rather distasteful name for theorem proving
certainly was not attacked mechanically. I was not fresh from graduate school,
having been at the laboratory for six years. As for background, in 1954 I received
my masters from the University of Chicago and in 1957 my Ph.D. from the
University of Illinois (in group theory, under R. Baer). So I was well schooled in
mathematics. Perhaps because of that schooling, I would (I am almost certain)
have conjectured in 1960 that an attempt to find proofs with a computer seemed
totally out of reach. Indeed, my few years of computing would most likely have
enabled me to conclude that no way existed to communicate concepts such as
commutativity, associativity, group, ring, and the like. And, even if such was
possible, how would a program set about to search for and then find a proof?
One lesson to be learned: Do not attempt to estimate the power of the mind,
especially that of a researcher.

The lesser of two dreams – which had to be realized if the second and im-
possible dream was to be pursued – was to provide the means for a computer
program to accept the assignment of searching for a proof. The second and im-
possible dream was to rely on such means, embellish them, extend them, and
then make significant contributions to mathematics and to logic. Indeed, could a
computer emulate so well the mind of a researcher that new results would come
into existence? Could the knowledge, experience, and intuition of a master be
encoded? And how would a program recognize, among its drawn conclusions,
those that would merit accolades?

To answer these questions, and others that merited answering, I embarked
on an exciting journey – one that continues today. The stage will then be set for
presenting the promised evidence.

3 A Lengthy Journey of Almost Four Decades

I shall in the main confine my treatment – from there (the early 1960s) to here
(late 2001) – to items featuring the Argonne extended group of researchers. Of

208 Larry Wos

course, the work of others counts substantially. For example, one merely glances
at the Boyer-Moore incredible success with program verification to experience
amazement. A successor to the original program is now being used by the chip
manufacturer AMD. Many deep theorems have been proved by students and by
researchers with reliance on one of the incarnations of the Boyer-Moore effort.
But I am sketching only a fraction of an almost-four-decade journey, not a full
history.

For reasons not to be covered here, the 1960s witnessed relatively little exper-
imentation; few reasoning programs existed. That paucity, according to me, hin-
dered the needed advances. In contrast, from the beginning, Argonne emphasized
experiments, featuring theorems taken from the literature. At first, and for many
years, the group focused on finding proofs of known results. The explanation that
was given – and I think a reasonable one – was that, if our program could not
find proofs of theorems already proven, then how could we expect to answer open
questions. Yes, I think it accurate to say that we were pursuing the impossible
dream of eventually making important contributions, adding new knowledge in
the form of new proofs. Nevertheless, I would have predicted, and in effect did
so, that my lifetime would see little or no such successes. How wrong I was!

A more than casual observer, examining the evidence of the early and mid-
1960s, would also have made the prediction that little or nothing would ever come
of the effort devoted to eventually proving significant theorems. For example,
although we at Argonne were somewhat gratified when our program proved
that groups of exponent 2 are commutative, the theorem is very easy to prove
and lacks much depth. When we turned to ring theory and found that, for the
program to prove that minus x times minus y equals xy, we were forced to
include two lemmas concerning the product of 0 and x, we were not filled with
optimism. Our observer would have most likely scoffed with justification at the
weakness of our automated search for proofs. For a third bit of negative evidence,
for the program to complete a proof that the square root of 2 is irrational, we
were again forced to include a crucial lemma. Given this sampling of data, who
would have predicted eventual success?

Sure, we had not yet automated any form of equality-oriented reasoning
(paramodulation was our choice eventually), nor had demodulation been formu-
lated. Equality was simply treated as just another relation, no different than
the relation of containment, subset, or the like. Yes, hyperresolution had been
formulated, but the program was still forced to rely on appropriate clauses to
capture equality substitution and other properties. The three theorems just cited
yield far more readily to treating equality as built in, as “understood”. The set
of support strategy – which had been formulated to conquer the exponent-2
theorem and which is still considered today to be the most powerful restriction
strategy – was useful but not sufficient to crush the other two theorems. The
unsatisfying study of the cited theorem from ring theory produced nothing of
consequence. In contrast, the study of the number theory problem did lead to
the formulation and introduction of demodulation; however, the power offered

The Flowering of Automated Reasoning 209

by a reasoning program was still indeed inadequate. So why did we press on;
what made us believe the far distant future was more than promising?

I never asked others in the Argonne group that included (before 1980) George
Robinson, Dan Carson, Lee Shalla, Ross Overbeek, Ewing Lusk, Robert Veroff,
Brian Smith, Steve Winker. Therefore, I can speak only for myself, and then not
with certainty. Clearly, strategy fascinated me. The improved power offered by
my introduction of the unit preference strategy and the set of support strategy
was indeed gratifying. I was often heard to say from the 1960s throughout the
1980s that new strategies were needed, and I expressed puzzlement at the lack
of intense research devoted to their formulation – not that I myself was making
many contributions in this context.

Also, at least for me, there was the excellent companionship of fine minds,
sharing the belief in experimentation. The almost exclusive emphasis was on
proving theorems from mathematics and logic, the exception being the work
of Smith and Veroff, which was primarily concerned with program verification.
Finally, and perhaps accurately, we accepted the nature of basic research, un-
derstood that the main objectives would be difficult to reach and possibly years
away.

The value and importance of Overbeek’s joining the group in the early 1970s
cannot be overestimated. He was, and still is, a master at systems design, one
of the best in the entire world of computing. He brought with him his program
for proving theorems, followed by many later and improved versions. By then
the field had survived being called “automatic theorem proving”, which it cer-
tainly was not, and had more accurately become known as “automated theorem
proving”. The mid-1970s witnessed the publication of a paper devoted to exper-
iments in theorem proving (in part coauthored by John McCharen, a member
of the extended group for but a short time). But even then (in my view) far,
far too little experimentation was featured throughout the world of automated
theorem proving.

With Overbeek as the motivating force, in the late 1970s our journey be-
came most hazardous: We ventured into the dangerous and often unrewarding
domain of open questions. As far as I know, with the exception of SAM’s lemma
proved in the mid-1960s, the field had provided nothing new to mathematics
and to logic. We at Argonne were about to change that aspect to a small extent.
Indeed, we first answered a set of small open questions from ternary Boolean
algebra [Winker1978]. Prompted by that minor achievement and motivated by
a conversation I had with I. J. Kaplansky in which I requested a reasonable
target, we then answered a far more interesting question concerning involutions,
antiautomorphisms, and semigroups [Winker1981]. Winker played the key role
in both achievements.

Next, the logician John Kalman (expert in equivalential calculus) visited
Argonne, bringing with him seven open questions concerning the status of certain
formulas in the context of being single axioms for the cited area of logic. Winker
and I answered six of the seven questions, with the status of the formula XCB
even at this time (2001) still uncertain. Around the time Winker and I were

210 Larry Wos

collaborating (1980), I had introduced the term “automated reasoning”, in part
because of our study of conjectures, program verification, puzzle solving, and, of
course, theorem proving. History shows that the term has lived on and gained
rather wide acceptance.

In the early and mid-1980s, a vigorous debate rose concerning the value of
clause retention. The Argonne paradigm insisted on retaining ever-growing sets
of conclusions in the form of clauses. Various other paradigms did not share our
enthusiasm for this aspect. We still maintain that such retention is crucial if a
program is to provide substantial assistance in answering deep questions and
solving hard problems.

The early 1980s marked yet another significant development: William Mc-
Cune joined the group. He has proved to be a master of systems design – his
program OTTER is (in my view) currently the most versatile and powerful rea-
soning program in existence. His monumental success (with his program EQP)
in answering the Robbins algebra question (that had remained open for more
than six decades) [McCune1997] and his monograph on open questions answered
(with his colleague R. Padmanabhan) [McCune1996] attest to the vital role he
has played and continues to play in automated reasoning. He and I (in the
late 1980s) answered open questions in combinatory logic posed by R. Smullyan
[Wos1993;McCune1987]. Roughly at the same time, Lusk with his colleague Mc-
Fadden answered some tough questions concerning semigroup order [Lusk1987].
All of the questions we have cited and all we will cite were attacked with indis-
pensable assistance from one of our reasoning programs. Their diversity provides
strong evidence that the field was and is moving forward with increasing speed.

These varied and, in some cases, impressive successes in no way silenced the
skeptics. Indeed, in a 1992 article published in the New York Times, mathe-
maticians from various fields expressed a negative view of automated reasoning.
Some asserted that, among the flaws, one could not learn from proofs produced
through automated means. Of course, such is clearly not the case. For a first
example, OTTER has discovered proofs of significant theorems that avoid the
reliance on thought-to-be-indispensable lemmas. For a second example, OTTER
has found proofs in which so-called double-negation terms are absent, terms of
the form n(n(t)) for some term t. A glance at the literature strongly suggests
that logicians were unaware of such proofs and, further, may have believed such
was not possible in many of the cases in which OTTER has succeeded. More
generally, Michael Beeson has proved that, for certain axiom systems in certain
areas of logic, one is guaranteed the existence of such double-negation free proofs
when the theorem is free of double negation. A study of the proofs that avoid
various lemmas or that avoid various classes of term can indeed be instructive
and can teach much to both the student and the experienced researcher.

With the new millennium, the journey continues. New members have joined
the extended Argonne group, among whom are Branden Fitelson, Kenneth Har-
ris, and Zachary Ernst. Although not in the field, each alone as well as together
have found the field of automated reasoning most engrossing and the use of OT-
TER so intriguing. Mathematicians are now assisted by a reasoning program,
and chip designers have theorem-proving groups.

The Flowering of Automated Reasoning 211

4 Recent Successes

Far more detail, including proofs and input files, relevant to the material of this
section will be found in the planned book entitled Automated Reasoning and the
Discovery of Missing and Elegant Proofs.

Still surprising to me, (from what it appears) not all researchers in auto-
mated reasoning consider applications the most important aspect. Although I
clearly emphasize the proving of theorems in mathematics and in logic, I sus-
pect that, from the viewpoint of science in general, program verification is the
most important application. A close second is circuit and chip validation and
design. However, as programs are continually enhanced to offer more and more
power with the evidence of proving deeper and deeper theorems, the two cited
applications will benefit. This section offers evidence of significant advances and
is the pinnacle of this article in its demonstration of the power and value of
today’s automated reasoning program. In the main, I focus on successes that
have occurred since McCune conquered the Robbins algebra problem and also
answered numerous open questions discussed in his monograph. Challenges and
open questions are offered in this section.

In both mathematics and logic, much energy has been devoted to finding ax-
iom systems with appealing characteristics such as independence and smallness
in number. Regarding the latter, often the limiting case has been reached, the
discovery of a single axiom. In group theory, for example, McCune contributed
(among others) the following single axiom [McCune1993], where the functions f
and g respectively denote product and inverse.

f(x,g(f(y,f(f(f(z,g(z)),g(f(u,y))),x)))) = u.

Kunen then offered the following single axiom, an improvement in that its vari-
able richness is three rather than four [Kunen1992].

f(g(f(y,g(y))),f(f(g(y),z),g(f(g(f(y,x)),z)))) = x.

Ideally, one might prefer a single axiom in which product, inverse, and the iden-
tity e were present, but such cannot be done, as proved by Tarski. However,
researchers are offered an interesting open question. Does there exist a single
axiom whose variable richness is three and whose length is equal to the McCune
offering (shorter than that of Kunen)?

Lattice theory also admits single axioms. Until very recently, the shortest
known (as far as I can determine) had length 79 with variable richness six,
where “v” denotes union and “^” denotes intersection.

(((x ^ y) v (y ^ (x v y))) ^ z) v (((x ^ (((u ^ y) v
(y ^ v)) v y)) v (((y ^ (((u v (y v v)) ^ (w v y)) ^ y)) v
(v6 ^ (y v (((u v (y v v)) ^ (w v y)) ^ y)))) ^ (x v (((u ^ y) v
(y ^ v)) v y)))) ^ (((x ^ y) v (y ^ (x v y))) v z)) = y.

McCune and Veroff, with our colleague R. Padmanabhan, laid the groundwork
for seeking a far shorter single axiom. McCune has succeeded, finding the fol-
lowing 29-symbol axiom of variable richness eight.

212 Larry Wos

(((y v x)^x) v (((z^ (x v x)) v (u^x))^x1))^
(w v ((v6 v x)^ (x v v7))) = x.

Immediately three open questions arise. First, does there exist a shorter single
axiom? Second, does there exist a single axiom with less variable richness than
eight whose length is, say, less than or equal to forty? Third, in the spirit of
Hilbert’s twenty-fourth problem focusing on proof simplification, does there exist
for the McCune axiom a proof of length strictly less than 59?

The last question merits a bit more detail. In particular, I have a preference
for proofs relying solely on forward reasoning, the denial being used to complete
the proof. Such proofs have the appealing property of explicitly deducing the
goal or goals of the theorem, or generalizations of such. I also prefer proofs in
which demodulation is not present. To me (as well as other mathematicians with
whom I have spoken) its absence often facilitates more insight into the nature
of the proof. In contrast, a Knuth-Bendix bidirectional proof is usually easier to
complete, sometimes far easier. Therefore, if one has the objective of producing
a forward-reasoning demodulation-free proof, one might be wise to first seek
a Knuth-Bendix bidirectional proof and then embark on some form of proof
translation. The process of proof translation is often rather difficult, presenting
various obstacles.

I have found with OTTER’s assistance a 59-step proof of the type I prefer.
That proof has variable richness nine, which leads to yet another challenge. Can
one find a proof for the given single axiom for lattice theory such that the proof
has variable richness that does not exceed eight?

Next in order is Boolean algebra, a field that is studied in terms of various
operators. Among the studies is that focusing on disjunction coupled with nega-
tion and that focusing on the Sheffer stroke. Regarding the latter, S. Wolfram
suggested as candidate axiom systems a pair of equations and twenty-five equa-
tions to be considered separately [Veroff2001b]. Robert Veroff, with an intense
effort relying on his use of his ingenious methodology called sketches, showed
that the pair is indeed a 2-basis, an axiom system for Boolean algebra when pre-
sented in terms of the Sheffer stroke. Still using OTTER, he then showed that,
if commutativity was coupled with any of the twenty-five candidates, an axiom
system resulted. McCune then showed that commutativity could be proved de-
pendent for two of the twenty-five, yielding two different single axioms. McCune
then proved that their mirror images are also single axioms. But the study did
not stop there.

Indeed, two of the newer members of the extended Argonne group, Branden
Fitelson and Kenneth Harris, showed that no shorter single axiom in terms
of the Sheffer stroke existed, shorter than length 15, the length of the cited
single axioms [McCune2001]. Further, with the contribution of a summer student
Andrew Feist, members of the group showed with models that seven of the
twenty-five are too weak. Summarizing, open questions remain, each regarding
the possible axiomatic status of sixteen of the twenty-five. Of those proved to
be single axioms, where the function f denotes the Sheffer stroke, my favorite is
the following.

The Flowering of Automated Reasoning 213

f(f(f(x,f(y,x)),x),f(y,f(z,x))) = y.

But Boolean algebra had additional treasure to mine.
In particular, McCune conducted a lengthy study of this algebra in terms

of disjunction and negation. His effort was rewarded, and mathematics was en-
riched. He found various 22-symbol axioms, including the following, where +
denotes or and ~ denotes not.

~(~(~(x+y)+z)+~(x+~(~z+~(z+u)))) = z.

Two open questions merit study. Does there exist a shorter single axiom than
length 22 of this type? Does there exist a forward-reasoning, demodulation-free
proof shorter than length 57 for the McCune axiom? The reader’s conclusion is
correct: I have such a 57-step step proof.

The preceding citations are generally placed under the province of mathemat-
ics rather than under logic. Consistent with my earlier and frequent references to
mathematics and logic, the time has come for the latter to take center stage. Al-
though not required, to provide more diverse evidence of the advances that have
occurred, I shall feature theorems in which equality plays no role, in contrast to
the preceding.

The researchers that played the main role in what is to be presented now
are the newest generation, the newer members of the extended Argonne group.
The first of these, Fitelson, entered the picture through an e-mail to me, asking
my view of a rather intricate input file he had produced to prove a theorem of
Lukasiewicz concerning the dependence of an axiom of Frege [Lukasiewicz1970].
Fitelson’s (and OTTER’s) proof were markedly different from that of
Lukasiewicz. He had become interested in automated reasoning, so he informed
me, because of reading my book entitled The Automation of Reasoning: An Ex-
perimenter’s Notebook and OTTER Tutorial. I was so impressed by the nature
of his included input file that I contacted him by phone, and we have conducted
research together almost continually the past three years.

For a splendid example of the interworkings of our group, Veroff, learning
of Fitelson’s new 8-step proof of the cited Lukasiewicz theorem, made an im-
portant contribution. Specifically, Veroff showed that, quite likely, no shorter
proof could be found and that there are a number of 8-step proofs, including the
original Lukasiewicz proof [Veroff2001a]. The inference rule used is condensed
detachment, encoded with a single clause of three literals and the use of hyper-
resolution. Veroff formulated a new use of linked inference rules to produce the
cited result concerning different proofs and the likelihood that the shortest had
been found.

Shortly thereafter, Fitelson answered an open question posed by Epstein.
Quite different from the search for a single axiom, the question focused on possi-
ble axiom dependence among the following six axioms for two-valued sentential
(or propositional) calculus, asking which (if any) of the six axioms is dependent
on the remaining [Epstein1995]. The functions a, i, and n denote, respectively,
conjunction, implication, and negation.

214 Larry Wos

P(i(i(x,y),i(i(y,z),i(x,z)))).
P(i(A(x,y),x)).
P(i(x,i(y,A(x,y)))).
P(i(x,i(y,x))).
P(i(n(x),i(x,y))).
P(i(i(x,y),i(i(n(x),y),y))).

To give the reader (unaided or aided by some reasoning program) time to attack
the at-one-time-open Epstein question uninfluenced by its answer, I shall delay
presentation of the facts for a short while.

Early in our collaboration, Fitelson provided proofs, obtained with OTTER,
of the two halves of an associativity relation that holds in infinite-valued senten-
tial calculus [Fitelson2001]. As far as I know, these proofs marked an advance
for logic in that each was the first such relying solely on condensed detachment
for drawing conclusions. From the viewpoint of automated reasoning, the pair
of proofs illustrates the value of strategy. Specifically, when Fitelson was able
to obtain one of the two proofs but unable to obtain the other even after many
CPU-hours, he turned to the use of the resonance strategy. In particular, he
used the proof steps of the new proof (of one half of the relation) to direct the
program’s attack on finding the proof of the other half – and OTTER quickly
succeeded. When equality is not involved (as is the case in the typical axiomatic
treatment of infinite-valued sentential calculus), proofs based solely on condensed
detachment are preferred. From Hilbert’s writings, one might surmise he would
indeed have recommended that proofs remain within the theory. In an important
sense, such proofs are simpler than those in which the author instead relies on
the use of equality-oriented reasoning.

With this vignette completed, it is time now for the answer to the open
question offered by Epstein as to which (if any) of the given six axioms are
dependent on the remaining.

The fourth axiom is dependent, and I now have a 10-step proof solely in terms
of condensed detachment of its dependency. Does there exist a shorter proof rely-
ing solely on condensed detachment? As for the other five axioms, they form (as
Fitelson showed with automated model generation) an independent set, which
answers another of Epstein’s questions. For a challenge, one might attempt to
prove that the independent five-axiom set indeed axiomatizes two-valued senten-
tial calculus by deriving from that set some previously known axiomatization. I
have a 12-step proof that derives the following Lukasiewicz three-axiom system;
a shorter proof in that context might exist.

% Lukasiewicz 1 2 3.
P(i(i(x,y),i(i(y,z),i(x,z)))).
P(i(i(n(x),x),x)).
P(i(x,i(n(x),y))).

The proof has added interest in the context of simpler proofs (which is relevant
to the Hilbert twenty-fourth problem, but not regarding proof length). Indeed,
although nine of the twelve steps rely on the presence of the function n for

The Flowering of Automated Reasoning 215

negation, the proof is free of double-negation terms, terms of the form n(n(t))
for any term t. I shall later return to that aspect of proof simplification in part
because of the Hilbert problem, in part because of the emphasis on evidence of
field advancement, and in part to illustrate what can be done with an automated
reasoning program in the context of term avoidance and also the context of
lemma avoidance.

Having found condensed-detachment proofs for an associativity law, Fitel-
son turned his attention to the far more difficult task of finding a condensed-
detachment proof of a distributivity law in infinite-valued sentential calculus. He
enlisted the collaboration of his long-term colleague Kenneth Harris, who is now
yet another member of the extended Argonne group. Based on the literature
and their collective insight, they decided that their likelihood of success would
be increased if they began their attack by relying on equality-oriented reason-
ing. Therefore, rather than using condensed detachment and hyperresolution,
Fitelson and Harris turned to paramodulation. After substantial effort in part
by hand and in part by program, they had their proof in terms of equality. How-
ever, much work remained before the desired condensed-detachment proof would
appear, for their proof relied on heavy use of demodulation and on bidirectional
reasoning.

The presence of demodulation and steps that assert that s does not equal
t for terms s and t and that result from reasoning backward from the denial
each presented a rather severe obstacle. Fortunately, the group contains a mas-
ter at proof conversion, Robert Veroff. He took the Fitelson-Harris proof and
applied his methodologies to their proof, using his extended version of OTTER,
and produced a forward-reasoning, demodulation-free proof relying solely on
paramodulation. But the goal had not yet been reached, clearly.

McCune supplied the next key piece to the puzzle: He provided an algorithm
to convert the paramodulation proof to a condensed-detachment proof. And the
game was essentially won [Harris2001]. What remained was my role, which was
to apply various methodologies to simplify the resulting proof in the context of
length and term structure. In particular, regarding the latter, the final proof is
free of double-negation terms, resulting from a move not often endorsed by all
the members of the group. Indeed, our group can trace much of its success to the
ability to disagree sharply about various aspects of the field and still perform as
a well-integrated team. Such disagreements have in fact played a key role in the
contributions in the areas of inference rule, strategy, implementation, and the
like for which we have been credited.

Possibly because of McCune’s success in finding single axioms for Boolean
algebra in terms of disjunction and negation, Fitelson with Harris made a similar
study for the implicational fragment of infinite-valued sentential calculus. Har-
ris produced the following 69-symbol single axiom (not counting the predicate
symbol).

P(i(i(i(x,i(y,x)),i(i(i(i(i(i(i(i(i(z,u),i(i(v,z),i(v,u))),
i(i(w,i(v6,w)),v7)),v7),i(i(i(i(v8,v9),v9),
i(i(v9,v8),v8)),v10)),v10),i(i(i(i(v11,v12),i(v12,v11)),
i(v12,v11)),v13)),v13),i(i(v14,i(v15,v14)),v16))),v16)).

216 Larry Wos

Immediately two open questions come to mind. Is there a shorter single axiom?
Is there a single axiom in strictly fewer than seventeen variables? Given my 15-
step proof that uses the Harris axiom to derive the standard four-axiom system
for the implicational fragment, one wonders if a shorter proof in that context
exists.

% the four-axiom system.
P(i(x,i(y,x))).
P(i(i(x,y),i(i(y,z),i(x,z)))).
P(i(i(i(x,y),y),i(i(y,x),x))).
P(i(i(i(x,y),i(y,x)),i(y,x))).

Some months before this success, Fitelson and Harris had found new single
axioms for two-valued sentential calculus in terms of the Sheffer stroke, among
which is the following.

P((D(D(x,D(y,z)),D(D(x,D(y,z)),D(D(u,z),D(D(z,u),D(x,u))))))).

One might enjoy accepting the challenge of proving that the given formula is in
fact a single axiom by deriving Nicod’s single axiom, the following negated.

-P(D(D(a,D(b,c)),D(D(e,D(e,e)),D(D(f,b),D(D(a,f),D(a,f)))))) |
$ANS(NICOD).

They proved that no shorter single axiom in terms of the Sheffer stroke exists.
The Fitelson-Harris studies naturally included attempts to prove that no

shorter single axiom existed for various areas of logic, such as propositional
logic. That area is axiomatized by the following single formula of Meredith.

P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))).

Meredith’s finding of this single axiom answered a question posed by Lukasiewicz
when he offered in the mid-1930s his 23-letter single axiom for propositional cal-
culus. Specifically, Lukasiewicz noted that three years had been devoted to find-
ing the 23-letter formula, and he would leave it to others to find, if such existed,
a shorter single axiom [Lukasiewicz1970]. Whether an axiom with strictly fewer
than 21 letters (the length of the Meredith axiom) exists for this area of logic is
still open. Fitelson and Harris have made substantial progress on this problem,
but the work is not complete.

However, in their efforts, they found most valuable the addition of another
colleague, Zachary Ernst, who is now yet one more member of the Argonne
extended group. Ernst took to the type of problem under discussion beautifully.
He also became enthralled with the use of OTTER. One of the areas Fitelson,
Harris, and Ernst attacked was C5, the implicational fragment of S5. The logic
known as S5 is a modal logic, in part formulated to capture more closely the
widely accepted notion of implication, in contrast to that typically featured in
other areas of logic. Meredith and others had found axiom systems for C5, among
which is the following Meredith single axiom.

P(i(i(i(i(i(x,x),y),z),i(u,v)),i(i(v,y),i(w,i(u,y))))).

The Flowering of Automated Reasoning 217

Ernst, through diligence, thoroughness, and brilliance, found six additional sin-
gle axioms [Ernst2001b], among which is the following that exhibits a most
interesting property.

P(i(i(i(i(x,y),z),i(i(u,u),y)),i(i(y,v),i(w,i(x,v))))).

The reader might enjoy comparing the two axioms with the objective of identi-
fying the property I am about to discuss.

Before stating explicitly what that property is, I shall set the stage by quickly
touching on the resonance strategy introduced in the early 1990s. My formulation
of that strategy can be traced directly to Dana Scott’s offering 68 theses (theo-
rems of Lukasiewicz) for consideration by OTTER. A resonator is a formula or
equation whose variables are treated as indistinguishable; its functional pattern
is what matters. The researcher assigns a value to each included resonator. The
program’s reasoning is then directed accordingly, assigning the corresponding
priority to any formula or equation that matches a resonator. Low assigned val-
ues give high priority to matching conclusions. The Nicod and Fitelson single
axioms for propositional calculus in terms of the Sheffer stroke are in the same
equivalence class, that class defined by taking either and treating it as a res-
onator. And the stage is set for answering the posed question concerning the
two given single axioms (Meredith’s and Ernst’s) for C5.

The cited Ernst formula is the fourth of six new single axioms he found. The
first three as well as that of Meredith all are in the same resonator-equivalence
class. The fourth is not; its functional pattern differs from that of Meredith –
indeed most gratifying!

But, where the size of a basis (axiom system) is measured in terms of the
total number of symbols present, the Meredith 1-basis and each of the Ernst
1-bases have size 21, no difference. Naturally, one wonders about the existence
of a smaller-sized basis, when no restriction is placed on the number of elements
(axioms) in the basis. Ernst examined that question with the assistance of OT-
TER and produced a startling result. A basis of size less than 21 (the size of,
for example, the Meredith basis) does exist, the following.

P(i(i(x,y),i(i(i(i(y,z),w),z),i(x,z)))).
P(i(x,x)).

This basis has size 18 (not counting predicate symbol occurrences). And, ensur-
ing that no loose ends remained, the trio of Ernst, Fitelson, and Harris finished
the game well, proving that no smaller in size (total symbol count) basis for C5
can exist. They then turned their attention to C4.

Apparently Meredith made a serious attempt to find a single axiom for C4 to
no avail. Clearly, the problem was extremely difficult, if indeed such an axiom did
exist. But, as it turned out, Ernst, Fitelson, and Harris conquered the problem
[Ernst2001b], finding this elusive single axiom, the following.

P(i(i(x,i(i(y,i(z,z)),i(x,u))),i(i(u,v),i(w,i(x,v))))).

To prove that the given formula suffices, one might accept the challenge of at-
tempting to deduce from it the following two-axiom system for C4.

218 Larry Wos

P(i(i(x,i(y,z)),i(i(x,y),i(u,i(x,z))))).
P(i(x,i(y,y))).

The shortest proof I have found at this point has length 33. Their success leads
naturally to an intriguing open question. Does there exist another single axiom
for C4, or have my colleagues found the only such?

Inspired by the C4 success, Ernst turned to another area of logic, conducting
an intense study of the implicational fragment of Dunn’s classical relevance logic
RM , which is called RM →. Meyer and Parks provided the following impressive
and independent basis for RM →.

P(i(i(x,y),i(i(y,z),i(x,z)))). % suffixing
P(i(x,i(i(x,y),y))). % assertion
P(i(i(x,i(x,y)),i(x,y))). % contraction
% Following is Parke’s axiom -- GOAL
P(i(i(i(i(i(x,y),y),x),z),i(i(i(i(i(y,x),x),y),z),z))).

The system RM → is equivalent to the implicational fragment of Sobocinski’s
three-valued logic S. Perhaps a more satisfying basis exists, possibly of the same
cardinality, of smaller size. In particular, perhaps the fourth and most complex
axiom could be replaced by a less complex axiom.

The Ernst study did just that, yielding the following four-axiom system.

P(i(i(x,y),i(i(y,z),i(x,z)))). % suffixing
P(i(x,i(i(x,y),y))). % assertion
P(i(i(x,i(x,y)),i(x,y))). % contraction
P(i(i(i(i(i(x,y),z),i(y,x)),z),z)).

He and OTTER found a replacement for the 21-symbol axiom, namely, an axiom
of complexity thirteen. His research yielded even more, a second 4-basis, where
the last given formula is replaced by the following.

P(i(i(i(x,i(i(i(y,x),z),y)),z),z)).

Quite interesting, the two 13-symbol axioms are not in the same resonator-
equivalence class. But the story is not yet complete.

Indeed, Fitelson, with his continual curiosity concerning axiom dependence,
considered the two new Ernst bases for RM →. And the world of logic was
treated to a marvelous result: Fitelson showed that the axiom of contraction is
dependent on the remaining three basis elements, for each of the Ernst bases
[Ernst2001a]. Ernst, Fitelson, and Harris presented to logic a 3-basis of size 31
to replace the well-known 4-basis of size 48.

Immediately, two open questions offer themselves. Does there exist a basis
of smaller size than 31? Does there exist a basis of two or fewer members? If
the reader enjoys challenges regarding proof length, I note that I have in hand
a 38-step proof that relies on the first Ernst basis and deduces the contraction
axiom and the Parks axiom. For the second Ernst basis, I have found a 37-step
proof.

The Flowering of Automated Reasoning 219

At this point, I now turn to results directly pertinent to the Hilbert twenty-
fourth problem, various types of proof simplification. In the context of proof
length, Meredith and Prior were clearly interested [Meredith1963]. Indeed, they
published an “abridgement” of a proof of Lukasiewicz, for the Lukasiewicz short-
est single axiom for the implicational fragment f two-valued logic. The Meredith-
Prior proof has length 33 (applications of condensed detachment), and the
Lukasiewicz proof has length 34. One might, before reading any further, en-
joy the challenge of using as hypothesis the following 13-symbol Lukasiewicz
formula and attempting to deduce the Tarski-Bernays system.

% following is shortest single axiom
% for the implicational fragment
P(i(i(i(x,y),z),i(i(z,x),i(u,x)))).
-P(i(p,i(q,p))) | -P(i(i(i(p,q),p),p)) |
-P(i(i(p,q),i(i(q,r),i(p,r)))) |
$ANS(TARSKI_BERNAYS).

Because Fitelson had witnessed a number of successes on my part in proof
refinement with regard to length (some of which I report here), he brought the
Meredith-Prior result to my attention. He posed for me the problem of finding
a further abridgment. As one justifiably would predict, I thought the chances
small in view of the mastery of logic evident in Meredith’s and Prior’s works.
Notwithstanding, the problem was most intriguing, and I had OTTER for a
companion and a powerful assistant.

The sought-after proof of length 32 or less did indeed prove elusive. The use
of the resonance strategy, of Veroff’s hints strategy, of a methodology that blocks
steps of a given proof one at a time – none of these won the game. However,
by using as resonators the Meredith-Prior proof and the Lukasiewicz proof and
various methodologies, OTTER did complete another 33-step proof. That proof
contained as a subproof a 30-step proof of the third member of the cited Tarski-
Bernays system. And an idea was born, a possible new strategy, one that would
be called cramming.

Intuitively, in the first incarnation, the object of the strategy is to reduce
the length of the proof of a target conjunction by focusing on the proof of one
member and attempting to “cram” as many of its steps into the needed remaining
proofs. In the case of the target three-axiom Tarski-Bernays system, the plan
(if successful) was to focus on the 30-step proof of the third member and cram
so many of its steps into the desired proofs of the other two members that only
two additional formulas would be needed. For this to occur, there must exist
two pairs of clauses among the thirty such that condensed detachment applied
to the pairs yields, respectively, the first and second members of the three-axiom
system – highly unlikely, but possible. Fortunately, OTTER offers just what
is needed to examine all pairs, including pairs in which the two elements are
identical. In particular, with the command set(sos queue), the program conducts
a breadth-first search. Therefore, one merely places the (in this case) thirty
clauses that prove the third member of the Tarski-Bernays system in the initial
set of support. One additional move must be made to attempt to prevent the

220 Larry Wos

program from retaining unwanted conclusions, conclusions other than the first
and second members of the three-axiom system. The move consists of placing
their correspondents in a hints list and assigning a very small maximum on the
complexity of newly retained conclusions.

If the preceding had failed, clearly with almost certainty this episode would
not be included here. Indeed, the story as expected ends with success, with
the completion of a 32-step proof that is an abridgment of the Meredith-Prior
abridgment. Especially for the thorough historian who enjoys the vagaries of sci-
ence, I note that later experiments yielded different 30-step proofs of the third
member, none of which permitted completion of the desired 32-step proof. Be-
cause of the charm of this result and its significance to both automated reasoning
and logic, an open question is virtually demanded. Does there exist a proof that
uses the Lukasiewicz shortest single axiom as hypothesis and that has as target
the Tarski-Bernays system with strictly fewer than thirty-two applications of
condensed detachment?

But reduction in proof length is just one refinement reflecting Hilbert’s intest
in simpler proofs. Quite different is that concerning variable richness, where the
variable richness of a proof is k if and only if one of its deduced steps relies
on exactly k distinct variables and all other deduced steps rely on k or fewer.
If one has in hand a proof of variable richness, say, k and wishes a refinement
of that proof whose richness is strictly less than k, OTTER offers precisely
what is needed. One can include assign(max distinct vars,j), and the program
will retain a newly deduced conclusion only if it relies on j or fewer distinct
variables. Deepak Kapur conducted an investigation with the objective of finding
a proof for Meredith’s single axiom for two-valued logic that completes with the
deduction of the cited Lukasiewicz three-axiom system such that its variable
richness is six. Meredith’s proof has richness seven, containing two deduced steps
out of forty-one in which seven distinct variables are present. Kapur in fact
succeeded in this context of proof refinement, producing with OTTER a 63-
step proof of richness six. In answer to an anticipated question, I now have
in hand a 49-step proof of variable richness six, only one of whose steps has
that richness. As for answers to the next probable series of questions, no proof
exists with richness strictly less than five, which can be seen by noting that the
first condensed detachment step has that richness and is the result of applying
condensed detachment to two copies of the Meredith single axiom. Yes, there does
exist a proof of variable richness five, and I have in hand (because of OTTER)
one of length 68.

Of still a different nature is proof refinement with respect to term structure.
For example, all things being equal, a second proof is simpler than the first when
the second avoids the use of double-negation terms, whereas the first relies on
them heavily. Meredith’s (in effect) 41-step proof for his single axiom for two-
valued logic includes seventeen steps relying on double negation. If a researcher
wishes to avoid such terms or to avoid some other class, OTTER again comes
to the rescue through the use of demodulation or weighting. For example, by
including the demodulator of the form (n(n(x)) = junk) with others to propagate

The Flowering of Automated Reasoning 221

the corresponding rewrite, double-negation terms can be avoided among retained
clauses. I have in hand many, many proofs that the literature suggests require the
use of double negation but that avoid it entirely. In fact, almost never did I fail to
find such a proof for the theorem under consideration. I was thus curious about
the conditions that guaranteed the existence of a double-negation-free proof.

D. Ulrich beautifully refined my concern by asking whether there existed
an axiom system for two-valued logic such that, whenever the theorem to be
proved was free of double negation, a proof could be found that was also free
of double negation. Thus began a collaboration that first included the newest
member of the extended Argonne automated reasoning group, Michael Beeson;
later Veroff joined in the collaboration. Beeson answered the Ulrich question
(which astounded me) by providing most of the details for a proof showing that
the cited three-axiom system of Lukasiewicz has the desired property. Veroff
and I supplied proofs of some needed lemmas, through (of course) OTTER’s
cooperation. Perhaps more astounding, Beeson (with some assistance by Veroff
and me) then proved the corresponding theorem for infinite-valued sentential
calculus with the following axiom system.

P(i(x,i(y,x))).
P(i(i(x,y),i(i(y,z),i(x,z)))).
P(i(i(i(x,y),y),i(i(y,x),x))).
P(i(i(n(x),n(y)),i(y,x))).

One might quickly conjecture that proof simplification in one aspect comes
at the expense of simplification in another. For example, the removal of double-
negation terms most likely results in a rather longer proof than that in hand.
Similarly, the avoidance of thought-to-be-indispensable lemmas, a nice refine-
ment, quite likely lengthens the resulting proof. I can report with satisfaction
and with some amount of awe that, often, such is not the case. For but one ex-
ample, infinite-valued sentential calculus takes center stage, with the preceding
four axioms in focus. A fifth axiom (the following) once thought necessary but
later proved by that master Meredith dependent was the target.

P(i(i(i(x,y),i(y,x)),i(y,x))).

Before OTTER and I attacked the problem, the literature offered a 37-step
proof, one that relied upon double negation. Further, a review of the literature
suggested that the following three lemmas might be indispensable.

P(i(i(i(x,y),i(z,y)),i(i(y,x),i(z,x)))).
P(i(i(x,y),i(n(y),n(x)))).
P(i(i(i(x,y),i(x,z)),i(i(y,x),i(y,z)))).

After years of study, frequently interrupted by other investigations, I finally have
in hand a 30-step proof, free of double negation, and avoiding the use of all three
cited lemmas. I know of no shorter proof than that of length 30, regardless of
its other properties. In other words – and this example is by no means isolated
– a refinement in one aspect does not necessitate a cost in one or more other
aspects.

222 Larry Wos

The student, the experienced researcher, the simply curious – each might
wonder why such proofs were missing from the literature and, apparently in
many cases, perhaps out of reach of the unaided. Perhaps today’s powerful and
fast computers are essentially the answer. In my view (shared by others), such is
indeed not the case. Rather, the answer lies in the use of strategy and methodol-
ogy that permits and even encourages the program to search in the vast space of
conclusions where no one had searched before. Indeed, some of the approaches
that have led to many of the cited successes (and others not presented here)
could be classed as counterintuitive.

5 Highlights and Perspective

This article is written in honor of Joerg Siekmann’s sixtieth birthday; Joerg and
I have known each other for decades. To put all in perspective, I sample a bit
of history (at one end of the spectrum), and (at the other) I focus on recent
significant contributions to mathematics and to logic that resulted directly from
the use of an automated reasoning program. The results would have been out
of reach, so it appears, were it not for the introduction of various strategies and
methodologies that depend on them. Heavy experimentation was the key as well
as the ability to retain hundreds of thousands of new conclusions.

The article is intended to stimulate a wide audience, including those not pri-
marily concerned with automated reasoning. Perhaps not obvious, that audience
includes those mainly interested in circuit design and validation and those inter-
ested in program synthesis and verification. Indeed, for a small hint as to why
such may be the case, I note that the reduction in the length of a constructive
proof typically corresponds to a reduction in the complexity of the object being
constructed, a circuit or a bit of computer code, for example. Proof simplification
in the context of length, as well as in other contexts such as variable richness, are
directly pertinent to the newly discovered Hilbert’s twenty-fourth problem. To
add to the possible usefulness of this article, I include open questions, challenges,
some detail concerning strategy, some concerning methodology, and more.

I mark the birth of the current incarnation of automated reasoning with J.
A. Robinson’s introduction of binary resolution. In its beginning, the field could
boast only of conquering the minuscule. However – and I say this in part directly
to Joerg, who clearly shared with me and others the dream of automation – here
in the year 2001, automated reasoning in the Olympics of science merits a gold
medal for its achievements. They are many, and they are diverse.

At one end of the spectrum is the use of reasoning programs by chip manu-
facturers that include Intel and AMD; Robert Boyer and J Moore pioneered this
important subfield of program verification. At the other end of the spectrum –
but of equal significance in the long run – reasoning programs are making impor-
tant contributions to both mathematics and logic. For a taste of the fecundity of
the field, one need only turn to the Web site of Johan Belinfante, finding there
hundreds and hundreds of proofs for theorems from set theory [Belinfante2001],
proofs essentially out of reach but a decade ago. In that regard, for the researcher
seeking a deep problem on which to work, (as suggested by Boyer) one might

The Flowering of Automated Reasoning 223

seek a small set of axioms, say, sixty or fewer, that captures most of the set-
theoretic reasoning needed for mathematics and logic outside set theory. For a
taste of the breadth of automated reasoning’s successes, one need only sample
the material in this article or browse among the following highlights.

5.1 Axiom Systems with Various Properties

In both mathematics and logic, fine minds have devoted substantial research to
the discovery (if such exists) of single axioms. In that context, automated rea-
soning programs (specifically McCune’s OTTER) have proved to be a powerful
reasoning assistant, and sometimes even a colleague, as the following highlights
from the work of the Argonne extended group indicate.

– Boolean algebra, in terms of the Sheffer stroke (Veroff, McCune, Fitelson,
Harris, Feist)
• from 25 candidate equations (supplied by Wolfram), proof that 2 are

single axioms, and then proved that their mirror images are also
• proof that 7 of the 25 are too weak to be single axioms
• proof that there exists no shorter axiom than length 15

– Boolean algebra, in terms of disjunction and negation (McCune)
• discovery of ten 22-symbol single axioms

– Lattice theory (McCune)
• discovery of a 29-symbol single axiom for lattices: far more attractive

than the 40,000,000-symbol single axiom found algorithmically

In the preceding successes, equality is featured. As the experienced experimenter
knows, equality presents various problems because of its nature. Paramodulation,
for example, is a term-oriented inference rule in contrast to, say, hyperresolution,
which is a literal-oriented rule. In logic, condensed detachment also is literal
oriented, and its study therefore involves fewer obstacles than when equality is
dominant. Nevertheless, problems in which condensed detachment is the sole
rule of inference are most challenging. The following examples highlight some of
our recent achievements.

– C5 (Ernst, Fitelson, Harris)
• six new single axioms, three in the same resonator-equivalence class as

Meredith’s single axiom
• shortest possible 2-basis
• proof that no single axiom shorter than 21 symbols exists
• proof that a basis with 18 symbols exists, the shortest possible

– C4 (Ernst, Fitelson, and Harris)
• first single axiom
• proof that a single axiom with 21 symbols exists, the shortest possible
• proof that a 20-symbol 2-basis exists, the shortest possible

– RM→ (Ernst, Fitelson, Harris)
• smaller 4-basis than that of Meyer and Parks
• 3-basis of size 31 (replacing 4-basis of size 48 of Meyer and Parks)

– Propositional logic, in terms of the Sheffer stroke (Fitelson and Harris)
• new single axioms all of length 23, and no shorter exists

224 Larry Wos

5.2 Proofs with Various Properties

Of an apparently different cast from the pursuit of axiom systems with various
properties is the pursuit of proofs with various properties. I say “apparent”
because size of basis (among other properties) and cardinality of basis have
their obvious counterparts in proof, namely, the total number of symbols in the
deduced steps of a proof and the precise number of such steps. For the past
decade, I have devoted much research to such proof properties and to proof
refinement (in the spirit of Hilbert’s twenty-fourth problem). Here I highlight a
few of my successes.

– Proof length
• first proof (length 200) and shortest proof (length 50) deducing

Lukasiewicz’s three-axiom system from his 23-letter formula
• 38-step proof, improving on Meredith’s 41-step proof of his single axiom

for two-valued logic
• 30-step proof of the dependence of one of Lukasiewicz’s five axioms for

infinite-valued sentential calculus
– Term and lemma avoidance

• cited shortest known proof (length 30) of axiom dependence in infinite-
valued sentential calculus (1) avoids three seemingly crucial lemmas and
(2) avoids double-negation terms

Intrigued by my success with the avoidance of double negation terms, M. Bee-
son (with assistance from Veroff and me) proved a charming metatheorem for
two-valued sentential calculus: If the theorem T to be proved is free of dou-
ble negation, then there must exist a proof P of T in which double negation
is totally absent that relies on condensed detachment alone and that uses as
hypotheses the Lukasiewicz three-axiom system. Beeson (with assistance from
Veroff and from me) also showed that the independent four-axiom system for
infinite-valued sentential calculus presented earlier in this article has the corre-
sponding property to that of the Lukasiewicz three-axiom system.

All of these successes are directly related to Hilbert’s twenty-fourth problem
(as discovered by R. Thiele in his examination of Hilbert’s files). The focus of
that newly discovered problem is simpler proofs – whether of proof length or
size, of term avoidance, of formula complexity, or of variable richness. Imagine
my delight when I learned that my decade-long fascination with proof simplifi-
cation had been a subject of considerable interest also to one of the masters of
mathematics!

5.3 Techniques for Refining Proofs

The key to proof simplification is not, as some might suppose, the CPU speed of
today’s computer; rather, it is the availability of powerful strategies and effective
methodologies. The past few years of my research have resulted in several new
approaches that often aid in proof refinement – particularly with respect to proof
length (applications of condensed detachment). The approaches also are effective
where equality is the sole or dominant relation, and they are effective often in

The Flowering of Automated Reasoning 225

finding a first proof or settling a conjecture. These approaches include blocking
proof steps one at a time (through demodulation or weighting), directing the
program’s reasoning with the McCune’s ratio strategy (which blends breadth
first with choosing the initiator of an inference rule application by conclusion
complexity), and cramming the steps of a proof of one member of a conjunction
into the needed proofs of the other members.

Interesting – and indeed counterintuitive – is the fact that a reduction in
proof length may result from the study of proof refinement in some other as-
pect, such as lemma avoidance or term avoidance. The avoidance of thought-
to-be-indispensable lemmas, when successful, is a sometimes overlooked aspect
of proof simplification, as is the avoidance of some class of term. For example,
the cited proof of axiom dependence in infinite-valued sentential calculus (the
one that avoids the use of three lemmas and double-negation terms) possesses
one additional remarkable property: It has length 30 (applications of condensed
detachment), the shortest proof I know of.

Is the reduction in length the result of the successful refinements in the two
other aspects? I strongly suspect so. Indeed, were it not for instructing OTTER
to avoid the so-called key three lemmas and avoid double-negation terms (each
through the use of demodulation), I believe that the 30-step proof may have lay
hidden forever. Its discovery (so it appears) was because of forcing the program
to explore within the space of conclusions where it would ordinarily not spend
the majority of its time. That part of the space would typically not be explored
by the unaided master, I believe, because of its counterintuitive nature, avoiding
key lemmas and avoiding double negation. I suspect that the density of proofs of
interest is greater in the restricted space of conclusions than in the entire space
of conclusions.

For a glimpse of what I think is the case, one might imagine spending one’s
research life in algebras in which associativity is present and then being asked
to (intuitively) study a nonassociative algebra. One’s experiences would almost
certainly interfere with sought-after proofs. Put a slightly different way, one of
the marvelous features of using a program such as OTTER is the capability to
explore where no researcher has gone before.

5.4 Evolution and Revolution

The field has come a long way. Even its name has evolved, from mechanical
theorem proving to automatic theorem proving to automated theorem proving
and, most accurately today, to automated reasoning. At first, some satisfaction
was drawn from finding proofs for essentially syntactic examples; now research
is often rewarded with a significant contribution to mathematics, logic, or some
other discipline. For but one example of the latter, McCune’s work on ortho-
lattices [McCune1998] has served physicists well. He was asked to find a small
ortholattice in which the following equation fails, where v denotes join, ^ denotes
meet, and ′ denotes complement.

((x v y’) ^ (((x ^ y) v (x’ ^ y)) v (x’ ^ y’))) =
((x ^ y) v (x’ ^ y’))

226 Larry Wos

MACE (a model generation program of McCune) found a size-12 example. This
example was very useful to Pavicic and Megill [Pavicic1999]. More generally,
the Argonne paradigm that emphasizes the use of strategy, conclusion reten-
tion, reliance on the clause language, and vast amounts of experimentation is
triumphing.

I think one can say with certainty that Hilbert would have found great plea-
sure in the successes of our field, not the least of which are those concerning
proof simplification. Hilbert’s recently discovered twenty-fourth problem may
stimulate experimentation and research, within and without automated reason-
ing. More open questions are needed, more proofs to refine, more challenges to
address. I for one would enjoy receiving such, preferably from mathematics or
logic.

Joerg, the field is winning and, perhaps even more important, the second
derivative of progress is positive. As for the future, the field will never lose sight
of the goal, that of proving ever deeper theorems and contributing to design and
verification in other disciplines. Finally, researchers have access to programs that
often function as automated reasoning colleagues.

References

[Belinfante2001] Belinfante, J., Computer Assisted Proofs in Set Theory, Web site
http://www.math.gatech.edu/ belinfan/research/autoreas/index.html, 2001.

[Epstein1995] Epstein, R., Propositional Logics: The Semantical Foundations of Logic,
Oxford University Press, Oxford, 1995.

[Ernst2001a] Ernst, Z., “A Concise Axiomatization of RM→”, Bulletin of the Section
of Logic, to appear.

[Ernst2001b] Ernst, Z., Fitelson, B., Harris, K., and Wos, L., “Shortest Axiomati-
zations of Implicational S4 and S5”, Preprint ANL/MCS-P919-1201, December
2001.

[Fitelson2001] Fitelson, B., and Wos, L. “ Missing Proofs Found”, J. Automated Rea-
soning 27, no. 2 (August 2001) 201–225.

[Harris2001] Harris, K., and Fitelson, B. “Distributivity in L-Aleph-0 and other Sen-
tential Logics”, J. Automated Reasoning 27 (2001) 141–156.

[Henkin1971] Henkin, L., Monk, J. D., and Tarski, A., Cylindric Algebras I, North-
Holland, Amsterdam, 1971.

[Kunen1992] Kunen, K., “Single Axioms for Groups”, J. Automated Reasoning 9, no.
3 (December 1992) 291–308.

[Lukasiewicz1970] Lukasiewicz, J., Selected Works, edited by L. Borowski, North Hol-
land, Amsterdam, 1970.

[Lusk1987] Lusk, E., and McFadden, R., “Using Automated Reasoning Tools: A Study
of the Semigroup F2B2”, Semigroup Forum 36, no. 1 (1987) 75–88.

[McCune1987] McCune, W., and Wos, L., “A Case Study in Automated Theorem
Proving: Finding Sages in Combinatory Logic”, J. Automated Reasoning 3, no. 1
(February 1987) 91–108.

[McCune1993] McCune, W., “Single Axioms for Groups and Abelian Groups with
Various Operations”, J. Automated Reasoning 10, no. 1 (1993) 1–13.

[McCune1996] McCune, M., and Padmanabhan, R., Automated Deduction in Equa-
tional Logic and Cubic Curves, Lectures Notes in Computer Science 1095,
Springer-Verlag, New York, 1996.

The Flowering of Automated Reasoning 227

[McCune1997] McCune, W., “Solution of the Robbins Problem”, J. Automated Rea-
soning 19, no. 3 (1997) 263–276.

[McCune1998] McCune, W., “Automatic Proofs and Counterexamples for Some Or-
tholattice Identities”, Information Processing Letters 65 (1998) 285–291.

[McCune2001] McCune, W., Veroff, R., Fitelson, B., Harris, K., Feist, A., and Wos, L.,
“Short Single Axioms for Boolean Algebra”, J. Automated Reasoning (accepted
for publication).

[Meredith1953] Meredith, C. A., “Single Axioms for the Systems 〈C,N〉, 〈C,O〉, and
〈A,N〉 of the Two-Valued Propositional Calculus”, J. Computing Systems 1, no.
3 (1953), 155–164.

[Meredith1963] Meredith, C. A., and Prior, A., “Notes on the Axiomatics of the Propo-
sitional Calculus”, Notre Dame J. Formal Logic 4, no. 3 (1963) 171–187.

[Pavicic1999] Pavicic, M., and Megill, N., “Non-Orthomodular Models for Both Stan-
dard Quantum Logic and Standard Classical Logic: Repercussions for Quantum
Computers”, Helv. Phys. Acta 72, no. 3 (1999) 189–210.

[Thiele2001] Thiele, R., and Wos, L., “Hilbert’s Twenty-Fourth Problem”, Preprint
ANL/MCS-P899-0801, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, IL, 2001.

[Veroff2001a] Veroff, R., “Finding Shortest Proofs: An Application of Linked Inference
Rules”, J. Automated Reasoning 27, no. 2 (August 2001) 123–139.

[Veroff2001b] Veroff., “Solving Open Questions and Other Challenge Problems Using
Proof Sketches”, J. Automated Reasoning 27, no. 2 (August 2001) 157–174.

[Winker1978] Winker, S., and Wos, L., “Automated Generation of Models and Coun-
terexamples and Its Application to Open Questions in Ternary Boolean Alge-
bra”, in Proceedings of the Eighth International Symposium on Multiple-Valued
Logic, Rosemont, Illinois, IEEE and ACM, May 1978, pp. 251–256; reprinted in
[Wos2000, pp. 286–297].

[Winker1981] Winker, S., Wos, L., and Lusk, E., “Semigroups, Antiautomorphisms,
and Involutions: A Computer Solution to an Open Problem, I” Mathematics of
Computation 37, no. 156 (October 1981) 533–545 (October 1981); reprinted in
[Wos2000, pp. 315–329].

[Wos1993] Wos, L., “The Kernel Strategy and Its Use for the Study of Combinatory
Logic”, J. Automated Reasoning 10, no. 3 (1993) 287–343; reprinted in [Wos2000,
pp. 1221–1287].

[Wos1999] Wos, L., and Pieper, G. W., A Fascinating Country in the World of Com-
puting: Your Guide to Automated Reasoning, World Scientific, Singapore, 1999.

[Wos2000] Wos, L., and Pieper, G. W., Collected Works of Larry Wos, 2 vols., World
Scientific, 2000.

Description Logics as Ontology Languages
for the Semantic Web

Franz Baader1, Ian Horrocks2, and Ulrike Sattler1

1 Theoretical Computer Science, RWTH Aachen, Germany
{baader,sattler}@cs.rwth-aachen.de

2 Department of Computer Science, University of Manchester, UK
horrocks@cs.man.ac.uk

Abstract. The vision of a Semantic Web has recently drawn consider-
able attention, both from academia and industry. Description logics are
often named as one of the tools that can support the Semantic Web and
thus help to make this vision reality.
In this paper, we describe what description logics are and what they can
do for the Semantic Web. Descriptions logics are very useful for defining,
integrating, and maintaining ontologies, which provide the Semantic Web
with a common understanding of the basic semantic concepts used to
annotate Web pages. We also argue that, without the last decade of basic
research in this area, description logics could not play such an important
rôle in this domain.

1 Introduction

The goal of this introduction is to sketch, on an informal level, what the Se-
mantic Web is, why it needs ontologies, and where description logics come into
play. Regarding the last point, we will first give a brief introduction to descrip-
tion logics, and then argue why they are well-suited as ontology languages. The
remainder of this paper will then put some flesh on this skeleton by providing
more technical details.

The Semantic Web and Ontologies

For many people, the World Wide Web has become an indispensable means of
providing and searching for information. Searching the Web in its current form
is, however, often an infuriating experience since today’s search engines usually
provide a huge number of answers, many of which are completely irrelevant,
whereas some of the more interesting answers are not found. One of the rea-
sons for this unsatisfactory state of affairs is that existing Web resources are
usually only human understandable: the mark-up (HTML) only provides ren-
dering information for textual and graphical information intended for human
consumption.

The Semantic Web [15] aims for machine-understandable Web resources,
whose information can then be shared and processed both by automated tools,
such as search engines, and by human users. In the following we will refer to con-
sumers of Web resources, whether automated tools or human users, as agents.

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 228–248, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Description Logics as Ontology Languages for the Semantic Web 229

This sharing of information between different agents requires semantic mark-up,
i.e., an annotation of the Web page with information on its content that is un-
derstood by the agents searching the Web. Such an annotation will be given in
some standardized, expressive language (which, e.g., provides Boolean operators
and some form of quantification) and make use of certain terms (like “Human”,
“Plant”, etc.). To make sure that different agents have a common understanding
of these terms, one needs ontologies in which these terms are described, and
which thus establish a joint terminology between the agents. Basically, an ontol-
ogy [44, 43] is a collection of definitions of concepts and the shared understanding
comes from the fact that all the agents interpret the concepts w.r.t. the same
ontology.

The use of ontologies in this context requires a well-designed, well-defined,
and Web-compatible ontology language with supporting reasoning tools. The
syntax of this language should be both intuitive to human users and compatible
with existing Web standards (such as XML, RDF, and RDFS). Its semantics
should be formally specified since otherwise it could not provide a shared un-
derstanding. Finally, its expressive power should be adequate, i.e., the language
should be expressive enough for defining the relevant concepts in enough detail,
but not too expressive to make reasoning infeasible.

Reasoning is important to ensure the quality of an ontology. It can be em-
ployed in different development phases. During ontology design, it can be used
to test whether concepts are non-contradictory and to derive implied relations.
In particular, one usually wants to compute the concept hierarchy. Information
on which concept is a specialization of another and which concepts are synonyms
can be used in the design phase to test whether the concept definitions in the
ontology have the intended consequences or not. Moreover, this information is
also useful when searching Web pages annotated with such concepts. Since it
is not reasonable to assume that there will be a single ontology for the whole
Web, interoperability and integration of different ontologies is also an important
issue. Integration can, for example, be supported by asserting inter-ontology
relationships and testing for consistency and computing the integrated concept
hierarchy. Finally, reasoning may also be used when the ontology is deployed, i.e.,
when a Web page is already annotated with its concepts. One can, for example,
determine the consistency of facts stated in the annotation with the ontology or
infer instance relationships. However, in the deployment phase, the requirements
on the efficiency of reasoning are much more stringent than in the design and
integration phases.

Before arguing why description logics are good candidates for such an on-
tology language, we provide a brief introduction to and history of description
logics.

Description Logics

Description logics (DLs) [7, 24] are a family of knowledge representation lan-
guages that can be used to represent the knowledge of an application domain in
a structured and formally well-understood way. The name description logics is

230 Franz Baader, Ian Horrocks, and Ulrike Sattler

motivated by the fact that, on the one hand, the important notions of the do-
main are described by concept descriptions, i.e., expressions that are built from
atomic concepts (unary predicates) and atomic roles (binary predicates) using
the concept and role constructors provided by the particular DL. On the other
hand, DLs differ from their predecessors, such as semantic networks and frames,
in that they are equipped with a formal, logic-based semantics.

In this introduction, we only illustrate some typical constructors by an ex-
ample. Formal definitions are given in Section 2. Assume that we want to define
the concept of “A man that is married to a doctor and has at least five children,
all of whom are professors.” This concept can be described with the following
concept description:

Human � ¬Female � ∃married.Doctor � (≥ 5 hasChild) � ∀hasChild.Professor

This description employs the Boolean constructors conjunction (�), which is
interpreted as set intersection, and negation (¬), which is interpreted as set
complement, as well as the existential restriction constructor (∃R.C), the value
restriction constructor (∀R.C), and the number restriction constructor (≥n R).
An individual, say Bob, belongs to ∃married.Doctor iff there exists an individual
that is married to Bob (i.e., is related to Bob via the married role) and is a doctor
(i.e., belongs to the concept Doctor). Similarly, Bob belongs to (≥ 5 hasChild) iff
he has at least five children, and he belongs to ∀hasChild.Professor iff all his
children (i.e., all individuals related to Bob via the hasChild role) are professors.

In addition to this description formalism, DLs are usually equipped with a
terminological and an assertional formalism. In its simplest form, terminological
axioms can be used to introduce names (abbreviations) for complex descriptions.
For example, we could introduce the abbreviation HappyMan for the concept
description from above. More expressive terminological formalisms allow the
statement of constraints such as

∃hasChild.Human (Human,

which says that only humans can have human children. The assertional formal-
ism can be used to state properties of individuals. For example, the assertions

HappyMan(BOB), hasChild(BOB, MARY)

state that Bob belongs to the concept HappyMan and that Mary is one of his
children.

Description logic systems provide their users with various inference capabil-
ities that deduce implicit knowledge from the explicitly represented knowledge.
The subsumption algorithm determines subconcept-superconcept relationships:
C is subsumed by D iff all instances of C are necessarily instances of D, i.e.,
the first description is always interpreted as a subset of the second description.
For example, given the definition of HappyMan from above, HappyMan is sub-
sumed by ∃hasChild.Professor – since instances of HappyMan have at least five
children, all of whom are professors, they also have a child that is a professor.

Description Logics as Ontology Languages for the Semantic Web 231

The instance algorithm determines instance relationships: the individual i is an
instance of the concept description C iff i is always interpreted as an element of
C. For example, given the assertions from above and the definition of HappyMan,
MARY is an instance of Professor. The consistency algorithm determines whether
a knowledge base (consisting of a set of assertions and a set of terminological
axioms) is non-contradictory. For example, if we add ¬Professor(MARY) to the
two assertions from above, then the knowledge base containing these assertions
together with the definition of HappyMan from above is inconsistent.

In order to ensure a reasonable and predictable behavior of a DL system,
these inference problems should at least be decidable for the DL employed by
the system, and preferably of low complexity. Consequently, the expressive power
of the DL in question must be restricted in an appropriate way. If the imposed
restrictions are too severe, however, then the important notions of the application
domain can no longer be expressed. Investigating this trade-off between the
expressivity of DLs and the complexity of their inference problems has been one
of the most important issues in DL research. Roughly, the research related to
this issue can be classified into the following four phases.

Phase 1 (1980–1990) was mainly concerned with implementation of systems,
such as Klone, K-Rep, Back, and Loom [19, 61, 70, 60]. These systems em-
ployed so-called structural subsumption algorithms, which first normalize the
concept descriptions, and then recursively compare the syntactic structure of the
normalized descriptions [62]. These algorithms are usually very efficient (poly-
nomial), but they have the disadvantage that they are complete only for very
inexpressive DLs, i.e., for more expressive DLs they cannot detect all the existing
subsumption/instance relationships. At the end of this phase, early formal inves-
tigations into the complexity of reasoning in DLs showed that most DLs do not
have polynomial-time inference problems [18, 63]. As a reaction, the implemen-
tors of the Classic system (the first industrial-strength DL system) carefully
restricted the expressive power of their DL [69, 17].

Phase 2 (1990–1995) started with the introduction of a new algorithmic para-
digm into DLs, so-called tableau-based algorithms [75, 32, 48]. They work on
propositionally closed DLs (i.e., DLs with full Boolean operators) and are com-
plete also for expressive DLs. To decide the consistency of a knowledge base, a
tableau-based algorithm tries to construct a model of it by breaking down the
concepts in the knowledge base, thus inferring new constraints on the elements
of this model. The algorithm either stops because all attempts to build a model
failed with obvious contradictions, or it stops with a “canonical” model. Since
in propositionally closed DLs subsumption and satisfiability can be reduced to
consistency, a consistency algorithm can solve all inference problems mentioned
above. The first systems employing such algorithms (Kris and Crack) demon-
strated that optimized implementations of these algorithms lead to an acceptable
behavior of the system, though the worst-case complexity of the corresponding
inference problem is no longer in polynomial time [6, 20]. This phase also saw a
thorough analysis of the complexity of reasoning in various DLs [32–34]. Another
important observation was that DLs are very closely related to modal logics [73].

232 Franz Baader, Ian Horrocks, and Ulrike Sattler

Phase 3 (1995–2000) is characterized by the development of inference procedures
for very expressive DLs, either based on the tableau-approach [56, 57] or on a
translation into modal logics [29, 30, 28, 31]. Highly optimized systems (FaCT,
Race, and Dlp [55, 45, 68]) showed that tableau-based algorithm for expres-
sive DLs lead to a good practical behavior of the system even on (some) large
knowledge bases. In this phase, the relationship to modal logics [29, 74] and to
decidable fragments of first-order logic was also studied in more detail [16, 66, 42,
40, 41], and applications in databases (like schema reasoning, query optimization,
and DB integration) were investigated [21, 22, 25, 26].

We are now at the beginning of Phase 4, where industrial strength DL systems
employing very expressive DLs and tableau-based algorithms are being devel-
oped, with applications like the Semantic Web or knowledge representation and
integration in bio-informatics in mind.

Description Logics as Ontology Languages

As already mentioned above, high quality ontologies are crucial for the Semantic
Web, and their construction, integration, and evolution greatly depends on the
availability of a well-defined semantics and powerful reasoning tools. Since DLs
provide for both, they should be ideal candidates for ontology languages. That
much was already clear ten years ago, but at that time, there was a fundamental
mismatch between the expressive power and the efficiency of reasoning that
DL systems provided, and the expressivity and the large knowledge bases that
ontologists needed [35]. Through the basic research in DLs of the last 10–15
years that we have summarized above, this gap between the needs of ontologist
and the systems that DL researchers provide has finally become narrow enough
to build stable bridges.

Regarding an ontology language for the Semantic Web, there is a joint US/EU
initiative for a W3C ontology standard, for historical reasons called DAML+OIL
[52, 27]. This language has a syntax based on RDF Schema (and thus is Web
compatible), and it is based on common ontological primitives from Frame Lan-
guages (which supports human understandability). Its semantics can be defined
by a translation into the expressive DL SHIQ [54]1, and the developers have
tried to find a good compromise between expressiveness and the complexity of
reasoning. Although reasoning in SHIQ is decidable, it has a rather high worst-
case complexity (ExpTime). Nevertheless, there is a highly optimized SHIQ
reasoner (FaCT) available, which behaves quite well in practice.

Let us point out some of the features of SHIQ that make this DL expressive
enough to be used as an ontology language. Firstly, SHIQ provides number
restrictions that are more expressive than the ones introduced above (and em-
ployed be earlier DL systems). With the qualified number restrictions available
in SHIQ, as well as being able to say that a person has at most two children
(without mentioning the properties of these children):

(≤ 2 hasChild),
1 To be exact, the translation is into an extension of SHIQ.

Description Logics as Ontology Languages for the Semantic Web 233

one can also specify that there is at most one son and at most one daughter:

(≤ 1 hasChild.¬Female) � (≤ 1 hasChild.Female)

Secondly, SHIQ allows the formulation of complex terminological axioms like
“humans have human parents”:

Human (∃hasParent.Human.

Thirdly, SHIQ also allows for inverse roles, transitive roles, and subroles. For
example, in addition to hasChild one can also use its inverse hasParent, one
can specify that hasAncestor is transitive, and that hasParent is a subrole of
hasAncestor.

It has been argued in the DL and the ontology community that these features
play a central role when describing properties of aggregated objects and when
building ontologies [72, 76, 37]. The actual use of DLs providing these features
as the underlying logical formalism of the web ontology languages OIL and
DAML+OIL [36, 52] substantiates this claim [76].

2 The Expressive Description Logic SHIQ
In contrast to most of the DLs considered in the literature, which concentrate
on constructors for defining concepts, the DL SHIQ [53] also allows for rather
expressive roles. Of course, these roles can then be used in the definition of
concepts. We start with the definition of SHIQ-roles, and then continue with
the definition of SHIQ-concepts.

Definition 1 (Syntax and semantics of SHIQ-roles). Let R be a set of
role names, which is partitioned into a set R+ of transitive roles and a set RP of
normal roles. The set of all SHIQ-roles is R∪ {r− | r ∈ R}, where r− is called
the inverse of the role r. A role inclusion axiom is of the form r (s, where r, s
are SHIQ-roles. A role hierarchy is a finite set of role inclusion axioms.

An interpretation I = (ΔI , ·I) consists of a set ΔI , called the domain of I,
and a function ·I that maps every role to a subset of ΔI ×ΔI such that, for all
p ∈ R and r ∈ R+,

〈x, y〉 ∈ pI iff 〈y, x〉 ∈ (p−)I ,

if 〈x, y〉 ∈ rI and 〈y, z〉 ∈ rI then 〈x, z〉 ∈ rI .

An interpretation I satisfies a role hierarchy R iff rI ⊆ sI for each r (s ∈ R;
such an interpretation is called a model of R.

The unrestricted use of these roles in all of the concept constructors of SHIQ
(to be defined below) would lead to an undecidable DL [53]. Therefore, we must
first define an appropriate subset of all SHIQ-roles. This requires some more
notation.

234 Franz Baader, Ian Horrocks, and Ulrike Sattler

1. The inverse relation on binary relations is symmetric, i.e., the inverse of r−

is again r. To avoid writing role expressions such as r−−, r−−−, etc., we
define a function Inv, which returns the inverse of a role:

Inv(r) :=

{
r− if r is a role name,

s if r = s− for a role name s.

2. Since set inclusion is transitive and an inclusion relation between two roles
transfers to their inverses, a given role hierarchy R implies additional inclu-
sion relationships. To account for this fact, we define (* R as the reflexive-
transitive closure of

(R := R∪ {Inv(r) (Inv(s) | r (s ∈ R}.

We use r ≡R s as an abbreviation for r (* Rs and s (* Rr. In this case, every
model of R interprets these roles as the same binary relation.

3. Obviously, a binary relation is transitive iff its inverse is transitive. Thus, if
r ≡R s and r or Inv(r) is transitive, then any model of R interprets s as a
transitive binary relation. To account for such implied transitive roles, we
define the following function Trans:

Trans(s,R) :=

{
true if r ∈ R+ or Inv(r) ∈ R+ for some r with r ≡R s

false otherwise.

4. A role r is called simple w.r.t. R iff Trans(s,R) = false for all s (* Rr.

Definition 2 (Syntax and semantics of SHIQ-concepts). Let NC be a set
of concept names. The set of SHIQ-concepts is the smallest set such that

1. every concept name A ∈ NC is a SHIQ-concept,
2. if C and D are SHIQ-concepts and r is a SHIQ-role, then C �D, C D,
¬C, ∀r.C, and ∃r.C are SHIQ-concepts,

3. if C is a SHIQ-concept, r is a simple SHIQ-role, and n ∈ N, then (�
n r.C) and (� n r.C) are SHIQ-concepts.

The interpretation function ·I of an interpretation I = (ΔI , ·I) maps, addition-
ally, every concept to a subset of ΔI such that

(C �D)I = CI ∩DI , (C D)I = CI ∪DI , ¬CI = ΔI \ CI ,

(∃r.C)I = {x ∈ ΔI | There is some y ∈ ΔI with 〈x, y〉 ∈ rI and y ∈ CI},
(∀r.C)I = {x ∈ ΔI | For all y ∈ ΔI , if 〈x, y〉 ∈ rI , then y ∈ CI},

(� n r.C)I = {x ∈ ΔI | �rI(x, C) � n},
(� n r.C)I = {x ∈ ΔI | �rI(x, C) � n},

where �M denotes the cardinality of the set M , and rI(x, C) := {y | 〈x, y〉 ∈
rI and y ∈ CI}. If x ∈ CI, then we say that x is an instance of C in I, and if
〈x, y〉 ∈ rI , then y is called an r-successor of x in I.

Description Logics as Ontology Languages for the Semantic Web 235

Concepts can be used to describe the relevant notions of an application do-
main. The terminology (TBox) introduces abbreviations (names) for complex
concepts. In SHIQ, the TBox allows one to state also more complex constraints.

Definition 3. A general concept inclusion (GCI) is of the form C (D, where
C, D are SHIQ-concepts. A finite set of GCIs is called a TBox. An interpre-
tation I is a model of a TBox T iff it satisfies all GCIs in T , i.e., CI ⊆ DI

holds for each C (D ∈ T .

A concept definition is of the form A ≡ C, where A is a concept name. It can
be seen as an abbreviation for the two GCIs A (C and C (A.

Inference problems are defined w.r.t. a TBox and a role hierarchy.

Definition 4. The concept C is called satisfiable with respect to the role hier-
archy R and the TBox T iff there is a model I of R and T with CI �= ∅. Such
an interpretation is called a model of C w.r.t. R and T . The concept D sub-
sumes the concept C w.r.t. 〈R, T 〉 (written C (〈R,T 〉 D) iff CI ⊆ DI holds for
all models I of R and T . Two concepts C, D are equivalent w.r.t. R (written
C ≡〈R,T 〉 D) iff they subsume each other.

By definition, equivalence can be reduced to subsumption. In addition, subsump-
tion can be reduced to satisfiability since C (〈R,T 〉 D iff C �¬D is unsatisfiable
w.r.t.R and T . Before sketching how to solve the satisfiability problem in SHIQ,
we try to give an intuition on how SHIQ can be used to define ontologies.

3 Describing Ontologies in SHIQ
In general, an ontology can be formalised in a TBox as follows. Firstly, we restrict
the possible worlds by introducing restrictions on the allowed interpretations. For
example, to express that, in our world, we want to consider humans, which are
either muggles or sorcerers, we can use the GCIs

Human (Muggle Sorcerer and Muggle (¬Sorcerer.

Next, to express that humans have exactly two parents and that all parents and
children of humans are human, we can use the following GCI:

Human (∀hasParent.Human � (� 2 hasParent.�) � (� 2 hasParent.�) �
∀hasParent−.Human,

where � is an abbreviation for the top concept A ¬A.
In addition, we consider the transitive role hasAncestor, and the role inclusion

hasParent (hasAncestor.

The next GCI expresses that humans having an ancestor that is a sorcerer
are themselves sorcerers:

Human � ∃hasAncestor.Sorcerer (Sorcerer.

236 Franz Baader, Ian Horrocks, and Ulrike Sattler

Secondly, we can define the relevant notions of our application domain using
concept definitions. Recall that the concept definition A ≡ C stands for the two
GCIs A (C and C (A. A concept name is called defined if it occurs on the
left-hand side of a definition, and primitive otherwise.

We want our concept definitions to have definitional impact, i.e., the inter-
pretation of the primitive concept and role names should uniquely determine
the interpretation of the defined concept names. For this, the set of concept
definitions together with the additional GCIs must satisfy three conditions:

1. There are no multiple definitions, i.e., each defined concept name must occur
at most once as a left-hand side of a concept definition.

2. There are no cyclic definitions, i.e., no cyclic dependencies between the de-
fined names in the set of concept definitions2.

3. The defined names do not occur in any of the additional GCIs.

In contrast to concept definitions, the GCIs in SHIQ may well have cyclic
dependencies between concept names. An example are the above GCIs describing
humans.

As a simple example of a set of concept definitions satisfying the restrictions
from above, we define the concepts grandparent and parent3:

Parent ≡ Human � ∃hasParent−.�,

Grandparent ≡ ∃hasParent−.Parent,

The TBox consisting of the above concept definitions and GCIs, together with
the fact that hasAncestor is a transitive superrole of hasParent, implies the fol-
lowing subsumption relationship:

Grandparent � Sorcerer (∃hasParent−.∃hasParent−.Sorcerer,

i.e., grandparents that are sorcerers have a grandchild that is a sorcerer. Though
this conclusion may sound reasonable given the assumptions, it requires quite
some reasoning to obtain it. In particular, one must use the fact that hasAncestor
(and thus also hasAncestor−) is transitive, that hasParent− is the inverse of
hasParent, and that we have a GCI that says that children of humans are again
humans.

To sum up, a SHIQ-TBox can, on the one hand, axiomatize the basic no-
tions of an application domain (the primitive concepts) by GCIs, transitivity
statements, and role inclusions, in the sense that these statements restrict the
possible interpretations of the basic notions. On the other hand, more complex
notions (the defined concepts) can be introduced by concept definitions. Given
an interpretation of the basic notions, the concept definitions uniquely determine
the interpretation of the defined notions.
2 In order to give cyclic definitions definitional impact, one would need to use fixpoint

semantics for them [64, 2].
3 In addition to the role hasParent, which relates children to their parents, we use the

concept Parent, which describes all humans having children.

Description Logics as Ontology Languages for the Semantic Web 237

The taxonomy of such a TBox is then given by the subsumption hierarchy
of the defined concepts. It can be computed using a subsumption algorithm for
SHIQ (see Section 5 below). The knowledge engineer can test whether the TBox
captures her intuition by checking the satisfiability of the defined concepts (since
it does not make sense to give a complex definition for the empty concept), and by
checking whether their place in the taxonomy corresponds to their intuitive place.
The expressive power of SHIQ together with the fact that one can “verify” the
TBox in the sense mentioned above is the main reason for SHIQ being well-
suited as an ontology language [72, 37, 76].

4 SHIQ and DAML+OIL

As already discussed, DAML+OIL is a semantic web ontology language whose
semantics can be defined via a translation into an expressive DL. This is not a
coincidence – it was a design goal. The mapping allows DAML+OIL to exploit
formal results from DL research (e.g., regarding the decidability and complexity
of key inference problems) and use implemented DL reasoners (e.g., FaCT [50]
and Racer [46]) in order to provide reasoning services for DAML+OIL applica-
tions.

DAML+OIL uses a syntax that is based on RDF (the Resource Description
Framework), and thus suitable for the Semantic Web. The underlying model
for RDF is a labelled directed graph where nodes are either resources or liter-
als (currently literals are just strings, but it is planed to extend the language
to support type data values, e.g., “integer 5”). The graph is defined by a set
of triples, statements of the form 〈Subject, Property, Object〉, where Subject is a
resource, Property is the edge label and Object is either a resource or a literal.

Everything describable by RDF is a resource; a resource may be named by a
URI, but some resources (we will call them anonymous resources) may not be so
named. A resource may be an entire Web page (identified by its URL), a part of a
Web page (identified by its URL and an anchor), but also an object not accessible
through the Web. A property is an attribute or relation used to describe a
resource, and is also named by a URI. In practice, triples are written using a
standard XML serialisation of RDF triples (see http://www.w3.org/RDF/ for
more details).

A DAML+OIL ontology can be seen to correspond to a DL TBox together
with a role hierarchy, describing the domain in terms of classes (corresponding to
concepts) and properties (corresponding to roles). An ontology consists of a set of
axioms that assert, e.g., subsumption relationships between classes or properties.
Asserting that an individual resource (a pair of resources) is an instance of a
DAML+OIL class (property) is left to RDF, a task for which it is well suited.

As in a standard DLs, DAML+OIL classes may be names or expressions
built up from simpler classes and properties using a variety of constructors. The
set of constructors supported by DAML+OIL, along with the equivalent DL
abstract syntax, is summarised in Figure 14. The full XML serialisation of the
4 In fact, there are a few additional constructors provided as “syntactic sugar”, but

all are trivially reducible to the ones described in Figure 1.

238 Franz Baader, Ian Horrocks, and Ulrike Sattler

RDF syntax is not shown as it is rather verbose, e.g., Human �Male would be
written as

<daml:Class>
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Human"/>
<daml:Class rdf:about="#Male"/>

</daml:intersectionOf>
</daml:Class>

while (� 2 hasChild.Lawyer) would be written as

<daml:Restriction daml:minCardinalityQ="2">
<daml:onProperty rdf:resource="#hasChild"/>
<daml:hasClassQ rdf:resource="#Lawyer"/>

</daml:Restriction>

Prefixes such as daml: specify XML namespaces for resources, while
rdf:parseType="daml:collection" is a DAML+OIL extension to RDF that
provides a “shorthand” notation for lisp style lists defined using triples with the
properties first and rest (it can be eliminated, but with a consequent increase
in verbosity). E.g., the first example above consists of the triples 〈r1, daml :
intersectionOf, r2〉, 〈r2, daml:first, Human〉, 〈r2, rdfs:type, Class〉, 〈r2, daml:rest, r3〉,
etc., where ri is an anonymous resource, Human stands for a URI naming the re-
source “Human”, and daml : intersectionOf, daml : first, daml : rest and rdfs : type
stand for URIs naming the properties in question.

Constructor DL Syntax Example

intersectionOf C1 � . . . � Cn Human �Male
unionOf C1 � . . . � Cn Doctor � Lawyer
complementOf ¬C ¬Male
oneOf {x1 . . . xn} {john, mary}
toClass ∀P.C ∀hasChild.Doctor
hasClass ∃r.C ∃hasChild.Lawyer
hasValue ∃r.{x} ∃citizenOf.{USA}
minCardinalityQ (� n r.C) (� 2 hasChild.Lawyer)
maxCardinalityQ (� n r.C) (� 1 hasChild.Male)
inverseOf r− hasChild−

Fig. 1. DAML+OIL constructors.

An important feature of DAML+OIL is that, besides “abstract” classes
defined by the ontology, one can also use XML Schema datatypes (e.g., so
called primitive datatypes such as string, decimal or float, as well as more
complex derived datatypes such as integer sub-ranges) in hasClass, hasValue,
and cardinality. E.g., the class Adult could be asserted to be equivalent to
Person � ∃age.over17, where over17 is an XML Schema datatype based on dec-
imal, but with the added restriction that values must be at least 18. Using a
combination of XML Schema and RDF this could be written as:

Description Logics as Ontology Languages for the Semantic Web 239

<xsd:simpleType name="over17">
<xsd:restriction base="xsd:positiveInteger">
<xsd:minInclusive value="18"/>
</xsd:restriction>

</xsd:simpleType>

<daml:Class rdf:ID="Adult">
<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Person"/>
<daml:Restriction>
<daml:onProperty rdf:resource="#age"/>
<daml:hasClass rdf:resource="#over17"/>

</daml:Restriction>
</daml:intersectionOf>

</daml:Class>

As already mentioned, a DAML+OIL ontology consists of a set of axioms.
Figure 2 summarises the axioms supported by DAML+OIL. These axioms make
it possible to assert subsumption or equivalence with respect to classes or proper-
ties, the disjointness of classes, the equivalence or non-equivalence of individuals
(resources), and various properties of properties. DAML+OIL also allows prop-
erties of properties (i.e., DL roles) to be asserted. In particular, it is possible to
assert that a property is unique (i.e., functional), unambiguous (i.e., its inverse
is functional) or transitive.

Axiom DL Syntax Example

subClassOf C1 � C2 Human � Animal � Biped
sameClassAs C1 ≡ C2 Man ≡ Human �Male
subPropertyOf P1 � P2 hasDaughter � hasChild
samePropertyAs P1 ≡ P2 cost ≡ price
disjointWith C1 � ¬C2 Male � ¬Female
sameIndividualAs {x1} ≡ {x2} {President Bush} ≡ {G W Bush}
differentIndividualFrom {x1} � ¬{x2} {john} � ¬{peter}
transitiveProperty P ∈ R+ hasAncestor+ ∈ R+

uniqueProperty � � (� 1 P.�) � � (� 1 hasMother.�)
unambiguousProperty � � (� 1 P−.�) � � (� 1 isMotherOf−.�)

Fig. 2. DAML+OIL axioms.

This shows that, except for individuals and datatypes, the constructors and
axioms of DAML+OIL can be translated into SHIQ. In fact, DAML+OIL is
equivalent to the extension of SHIQ with nominals (i.e., individuals) and a
simple form of so-called concrete domains [5]. This extension will be discussed
in Section 6.

240 Franz Baader, Ian Horrocks, and Ulrike Sattler

5 Reasoning in SHIQ

Reasoning in SHIQ means deciding satisfiability and subsumption of SHIQ-
concepts w.r.t. TBoxes (i.e., sets of general concept inclusions) and role hier-
archies. As shown in Section 2, subsumption can be reduced (in linear time)
to satisfiability. In addition, since SHIQ allows for both subroles and transitive
roles, TBoxes can be internalized, i.e., satisfiability w.r.t. a TBox and a role hier-
archy can be reduced to satisfiability w.r.t. the empty TBox and a role hierarchy.
In principle, this is achieved by introducing a (new) transitive superrole u of all
roles occurring in the TBox T and the concept C0 to be tested for satisfiability.
Then we extend C0 to the concept

Ĉ0 := C0 � �
C�D∈T

(¬C D) � ∀u.(¬C D).

We can then show that Ĉ0 is satisfiable w.r.t. the extended role hierarchy iff
the original concept C0 is satisfiable w.r.t. the TBox T and the original role
hierarchy [1, 73, 3, 53].

Consequently, it is sufficient to design an algorithm that can decide satisfiabil-
ity of SHIQ-concepts w.r.t. role hierarchies and transitive roles. This problem is
known to be ExpTime-complete [77]. In fact, ExpTime-hardness can be shown
by an easy adaptation of the ExpTime-hardness proof for satisfiability in propo-
sitional dynamic logic [38]. Using automata-based techniques, Tobies [77] shows
that satisfiability of SHIQ-concepts w.r.t. role hierarchies is indeed decidable
within exponential time.

In the remainder of this section, we sketch a tableau-based decision procedure
for this problem. This procedure, which is described in more detail in [53], runs
in worst case nondeterministic double exponential time. However, according to
the current state of the art, this procedures is more practical than the ExpTime
automata-based procedure in [77]. In fact, it is the basis for the highly optimised
implementation of the DL system FaCT [51].

When started with a SHIQ-concept C0, a role hierarchy R, and information
on which roles are transitive, this algorithm tries to construct a model of C0

w.r.t. R. Since SHIQ has a so-called tree model property, we can assume that
this model has the form of an infinite tree. If we want to obtain a decision
procedure, we can only construct a finite tree representing the infinite one (if a
(tree) model exists at all). This can be done such that the finite representation
can be unravelled into an infinite tree model I of C0 w.r.t. R. In the finite tree
representing this model, a node x corresponds to an individual π(x) ∈ ΔI , and
we label each node with the set of concepts L(x) that π(x) is supposed to be an
instance of. Similary, edges represent role-successor relationships, and an edge
between x and y is labelled with the roles supposed to connect x and y. The
algorithm either stops with a finite representation of a tree model, or with a
clash, i.e., an obvious inconsistency, such as {C,¬C} ⊆ L(x). It answers “C0 is
satisfiable w.r.t. R” in the former case, and “C0 is unsatisfiable w.r.t. R” in the
latter.

Description Logics as Ontology Languages for the Semantic Web 241

The algorithm is initialised with the tree consisting of a single node x labelled
with L(x) = {C0}. Then it applies so-called completion rules, which break down
the concepts in the node labels syntactically, thus inferring new constraints for
the given node, and then extend the tree according to these constraints. For
example, if C1 �C2 ∈ L(x), then the �-rule adds both C1 and C2 to L(x). The
≥-rule generates n new r-successor nodes y1, . . . , yn of x with L(yi) = {C} if
(� n r.C) ∈ L(x) and x does not yet have n distinct r-successors with C in
their label. In addition, it asserts that these new successors must remain distinct
(i.e., cannot be identified in later steps of the algorithm). Other rules are more
complicated, and a complete description of this algorithm goes beyond the scope
of this paper. However, we would like to point out two issues that make reasoning
in SHIQ considerably harder than in less expressive DLs.

First, qualified number restriction are harder to handle than the unqualified
ones used in most early DL systems. Let us illustrate this by an example. Assume
that the algorithm has generated a node x with (� 1 hasChild.�) ∈ L(x), and
that this node has two hasChild-successors y1, y2 (i.e., two edges labeled with
hasChild leading to the nodes y1, y2). In order to satisfy the number restriction
(� 1 hasChild.�) for x, the algorithm identifies node y1 with node y2 (unless
these nodes were asserted to be distinct, in which case we have a clash). Now
assume that we still have a node x with two hasChild-successors y1, y2, but the
label of x contains a qualified number restriction like (� 2 hasChild.Parent). The
naive idea [78] would be to check the labels of y1 and y2 whether they contain
Parent, and identify y1 and y2 only if both contain this concept. However, this
is not correct since, in the model I constructed from the tree, π(yi) may well
belong to ParentI even if this concept does not belong to the label of x. The first
correct algorithm that can handle qualified number restrictions was proposed
in [49]. The main idea is to introduce a so-called choose-rule. In our example,
this rule would (nondeterministically) choose whether yi is supposed to belong
to Parent or ¬Parent, and correspondingly extend its label. Together with the
choose rule, the above naive identification rule is in fact correct.

Second, in the presence of transitive roles, guaranteeing termination of the
algorithm is a non-trivial task [47, 71]. If ∀r.C ∈ L(x) for a transitive role r, then
not only must we add C to the label of any r-successor y of x, but also ∀r.C.
This ensures that, even over an “r-chain”

x
r→ y

r→ y1
r→ y2

r→ . . .
r→ yn

we get indeed C ∈ L(yn). This is necessary since, in the model constructed from
the tree generated by the algorithm, have

(π(x), π(y)), (π(y), π(y1)), . . . , (π(yn−1), π(yn)) ∈ rI ,

and thus the transitivity of rI requires that also (π(x), π(yn)) ∈ rI , and thus the
value restriction on x applies to yn as well. Propagating ∀r.C over r-edges makes
sure that this is taken care of. However, it also might lead to nontermination.
For example, consider the concept ∃r.A � ∀r.∃r.A where r is a transitive role.
It is easy to see that the algorithm then generates an infinite chain of nodes

242 Franz Baader, Ian Horrocks, and Ulrike Sattler

with label {A, ∀r.∃r.A, ∃r.A}. To prevent this looping and ensure termination,
we use a cycle-detection mechanism called blocking: if the labels of a node x
and one of its ancestors coincide, we “block” the application of rules to x. The
blocking condition must be formulated such that, whenever blocking occurs, we
can “unravel” the blocked (finite) path into an infinite path in the model to
be constructed. In description logics, blocking was first employed in [8] in the
context of an algorithm that can handle GCIs, and was the improved on in [4, 23,
9]. In SHIQ, the blocking condition is rather complicated since the combination
of transitive and inverse roles r− with number restrictions requires a rather
advanced form of unravelling [53]. In fact, this combination of constructors is
responsible for the fact that, unlike most DLs considered in the literature, SHIQ
does not have the finite model property, i.e., there are satisfiable SHIQ-concepts
that are only satisfiable in infinite interpretations.

6 Extensions and Variants of SHIQ
As mentioned in Section 4, the ontology language DAML+OIL is a syntactic
variant of SHIQ extended with nominals (i.e., concepts {x1} representing a
singleton set consisting of one individual) and concrete datatypes (like a con-
cept representing all integers between 4 and 17). In this section, we discuss the
consequences of these extensions on the reasoning problems in SHIQ.

Concrete datatypes, as available in DAML+OIL, are a very restricted form
of so-called concrete domains [5]. For example, using the concrete domain of
all nonnegative integers equipped with the < predicate, a (functional) role age
relating (abstract) individuals to their (concrete) age, and a (functional) subrole
father of hasParent, the following axiom states that children are younger than
their fathers:

Animal ((age < father ◦ age).

Extending expressive DLs with concrete domains may easily lead to undecidabil-
ity [10, 59]. However, DAML+OIL provides only a very limited form of concrete
domains. In particular, the concrete domain must not allow for predicates of
arity greater than 1 (like < in our example), and the predicate restrictions must
not contain role chains (like father ◦ age in our example). In [67], decidability of
SHIQ extended with a slightly more general type of concrete domains is shown.

Concerning nominals, things become a bit more complicated. Firstly, it can
be shown that SHIQ extended with nominals is a fragment of C2, the two-
variable fragment of first order logic with counting quantifiers [39, 65, 77]. Thus,
satisfiability and subsumption are decidable in NExpTime. This is optimal since
the problem is also NExpTime-hard [77]. Roughly speaking, the combination of
GCIs (or transitive roles and role hierarchies), inverse roles, and number restric-
tions with nominals is responsible for this leap in complexity (from ExpTime
for SHIQ to NExpTime). To the best of our knowledge, no “practicable” de-
cision procedure for SHIQ with nominals has been described until now. With
“practicable” we mean an algorithm that can be implemented with reasonable
effort and can be optimized such that it behaves well in practice (which is the
case for the algorithm for SHIQ implemented in FaCT).

Description Logics as Ontology Languages for the Semantic Web 243

7 Conclusion

The emphasis in DL research on a formal, logic-based semantics and a thorough
investigation of the basic reasoning problems, together with the availability of
highly optimized systems for very expressive DLs, makes this family of knowl-
edge representation formalisms an ideal starting point for defining ontology lan-
guages for the Semantic Web. The reasoning services required to support the
construction, integration, and evolution of high quality ontologies are provided
by state-of-the-art DL systems for very expressive languages.

To be used in practice, these languages will, however, also need DL-based
tools that further support knowledge acquisition (i.e., building ontologies), main-
tenance (i.e., evolution of ontologies), and integration and inter-operation of on-
tologies. First steps in this direction have already been taken. For example, OilEd
[14] is a tool that supports the development of OIL5 and DAML+OIL ontologies,
and ICom is a tool that supports the design and integration of entity-relationship
and UML diagrams. On a more fundamental level, so-called non-standard infer-
ences that support building and maintaining knowledge bases (like computing
least common subsumers, unification, and matching) are now an important topic
of DL research [12, 13, 11, 58]. All these efforts aim at supporting users that are
not DL-experts in building and maintaining DL knowledge bases.

References

1. F. Baader. Augmenting concept languages by transitive closure of roles: An alter-
native to terminological cycles. In Proc. of the 12th Int. Joint Conf. on Artificial
Intelligence (IJCAI-91), 1991.

2. F. Baader. Using automata theory for characterizing the semantics of termino-
logical cycles. Annals of Mathematics and Artificial Intelligence, 18(2–4):175–219,
1996.

3. F. Baader, H.-J. Bürckert, B. Nebel, W. Nutt, and G. Smolka. On the expressivity
of feature logics with negation, functional uncertainty, and sort equations. Journal
of Logic, Language and Information, 2:1–18, 1993.

4. F. Baader, H.-J. Bürkert, B. Hollunder, W. Nutt, and J. H. Siekmann. Concept
logics. In John W. Lloyd, editor, Computational Logics, Symposium Proceedings,
pages 177–201. Springer-Verlag, 1990.

5. F. Baader and P. Hanschke. A schema for integrating concrete domains into con-
cept languages. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence
(IJCAI-91), pages 452–457, Sydney, 1991.

6. F. Baader and B. Hollunder. A terminological knowledge representation system
with complete inference algorithm. In Proc. of the Workshop on Processing Declar-
ative Knowledge, PDK-91, volume 567 of Lecture Notes In Artificial Intelligence,
pages 67–86. Springer-Verlag, 1991.

7. F. Baader and U. Sattler. An overview of tableau algorithms for description logics.
Studia Logica, 2001. To appear. An abridged version appeared in Tableaux 2000,
volume 1847 of LNAI, 2000. Springer-Verlag.

5 OIL is a fragment of DAML+OIL.

244 Franz Baader, Ian Horrocks, and Ulrike Sattler

8. F. Baader. Augmenting concept languages by transitive closure of roles: An alter-
native to terminological cycles. In Proc. of the 12th Int. Joint Conf. on Artificial
Intelligence (IJCAI-91), 1991.

9. F. Baader, M. Buchheit, and B. Hollunder. Cardinality restrictions on concepts.
Artificial Intelligence Journal, 88(1–2):195–213, 1996.

10. F. Baader and P. Hanschke. Extensions of concept languages for a mechanical
engineering application. In Proc. of the 16th German AI-Conference, GWAI-92,
volume 671 of Lecture Notes in Computer Science, pages 132–143, Bonn, Germany,
1992. Springer-Verlag.

11. F. Baader, R. Küsters, A. Borgida, and D. L. McGuinness. Matching in description
logics. Journal of Logic and Computation, 9(3):411–447, 1999.

12. F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers in
description logics with existential restrictions. In Proc. of the 16th Int. Joint Conf.
on Artificial Intelligence (IJCAI-99), pages 96–101, 1999.

13. F. Baader and P. Narendran. Unification of concepts terms in description logics.
J. of Symbolic Computation, 31(3):277–305, 2001.

14. S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a reason-able ontology
editor for the semantic web. In Proc. of the 2001 Description Logic Workshop
(DL 2001), pages 1–9. CEUR
(http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/),
2001.

15. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic Web. Scientific American,
284(5):34–43, 2001.

16. A. Borgida. On the relative expressive power of Description Logics and Predicate
Calculus. To appear in Artificial Intelligence, 1996.

17. R. J. Brachman. “reducing” CLASSIC to practice: Knowledge representation meets
reality. In Proc. of the 3rd Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR-92), pages 247–258. Morgan Kaufmann, Los Altos, 1992.

18. R. J. Brachman and H. J. Levesque. The tractability of subsumption in frame-
based description languages. In Proc. of the 4th Nat. Conf. on Artificial Intelligence
(AAAI-84), pages 34–37, 1984.

19. R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge
representation system. Cognitive Science, 9(2):171–216, 1985.

20. P. Bresciani, E. Franconi, and S. Tessaris. Implementing and testing expressive
description logics: Preliminary report. In Proc. of the 1995 Description Logic
Workshop (DL’95), pages 131–139, 1995.

21. M. Buchheit, F. M. Donini, W. Nutt, and A. Schaerf. Terminological systems
revisited: Terminology = schema + views. In Proc. of the 12th Nat. Conf. on
Artificial Intelligence (AAAI-94), pages 199–204, Seattle (USA), 1994.

22. M. Buchheit, F. M. Donini, W. Nutt, and A. Schaerf. A refined architecture for
terminological systems: Terminology = schema + views. Artificial Intelligence
Journal, 99(2):209–260, 1998.

23. M. Buchheit, F. M. Donini, and A. Schaerf. Decidable reasoning in terminologi-
cal knowledge representation systems. Journal of Artificial Intelligence Research,
1:109–138, 1993.

24. D. Calvanese, G. De Giacomo, M. Lenzerini, and D. Nardi. Reasoning in expres-
sive description logics. In A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning. Elsevier Science Publishers (North-Holland), Amsterdam,
1999.

Description Logics as Ontology Languages for the Semantic Web 245

25. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query con-
tainment under constraints. In Proc. of the Seventeenth ACM SIGACT SIGMOD
Sym. on Principles of Database Systems (PODS-98), pages 149–158, 1998.

26. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Description
logic framework for information integration. In Proc. of the 6th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR-98), pages 2–13, 1998.

27. DAML language home page (http://www.daml.org/language/).
28. G. De Giacomo. Decidability of Class-Based Knowledge Representation For-

malisms. PhD thesis, Dipartimento di Informatica e Sistemistica, Università di
Roma “La Sapienza”, 1995.

29. G. De Giacomo and M. Lenzerini. Boosting the correspondence between description
logics and propositional dynamic logics. In Proc. of the 12th Nat. Conf. on Artificial
Intelligence (AAAI-94), pages 205–212. AAAI Press/The MIT Press, 1994.

30. G. De Giacomo and M. Lenzerini. Concept language with number restrictions and
fixpoints, and its relationship with μ-calculus. In Proc. of the 11th European Conf.
on Artificial Intelligence (ECAI-94), pages 411–415, 1994.

31. G. De Giacomo and M. Lenzerini. TBox and ABox reasoning in expressive descrip-
tion logics. In Luigia C. Aiello, John Doyle, and Stuart C. Shapiro, editors, Proc.
of the 5th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR-96), pages 316–327. Morgan Kaufmann, Los Altos, 1996.

32. F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. In Proc. of the 2nd Int. Conf. on the Principles of Knowledge Repre-
sentation and Reasoning (KR-91), Boston, MA, USA, 1991.

33. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. Tractable concept languages.
In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI-91), pages
458–463, Sydney, 1991.

34. F. M. Donini, B. Hollunder, M. Lenzerini, A. M. Spaccamela, D. Nardi, and W.
Nutt. The complexity of existential quantification in concept languages. Artificial
Intelligence Journal, 2–3:309–327, 1992.

35. J. Doyle and R. S. Patil. Two theses of knowledge representation: Language restric-
tions, taxonomic classification, and the utility of representation services. Artificial
Intelligence Journal, 48:261–297, 1991.

36. D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F. Patel-Schneider.
OIL: An ontology infrastructure for the semantic web. IEEE Intelligent Systems,
16(2):38–45, 2001.

37. D. Fensel, F. van Harmelen, M. Klein, H. Akkermans, J. Broekstra, C. Fluit,
J. van der Meer, H.-P. Schnurr, R. Studer, J. Hughes, U. Krohn, J. Davies, R. En-
gels, B. Bremdal, F. Ygge, T. Lau, B. Novotny, U. Reimer, and I. Horrocks. On-
To-Knowledge: Ontology-based tools for knowledge management. In Proceedings
of the eBusiness and eWork 2000 (eBeW’00) Conference, 2000.

38. M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and System Science, 18:194–211, 1979.

39. E. Grädel, M. Otto, and E. Rosen. Two-variable logic with counting is decidable.
In Proc. of the 12th Ann. IEEE Symp. on Logic in Computer Science (LICS-97),
1997. Available via http://speedy.informatik.rwth-aachen.de/WWW/papers.html.

40. E. Grädel. Guarded fragments of first-order logic: A perspective for new description
logics? In Proc. of the 1998 Description Logic Workshop (DL’98). CEUR Electronic
Workshop Proceedings, http://ceur-ws.org/Vol-11/, 1998.

41. E. Grädel. On the restraining power of guards. Journal of Symbolic Logic, 64:1719–
1742, 1999.

246 Franz Baader, Ian Horrocks, and Ulrike Sattler

42. E. Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for
two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

43. T. R. Gruber. Towards Principles for the Design of Ontologies Used for Knowl-
edge Sharing. In N. Guarino and R. Poli, editors, Formal Ontology in Conceptual
Analysis and Knowledge Representation, Deventer, The Netherlands, 1993. Kluwer
Academic Publishers.

44. N. Guarino. Formal ontology, conceptual analysis and knowledge representation.
Int. Journal of Human-Computer Studies, 43(5/6):625–640, 1995.

45. V. Haarslev and R. Möller. RACE system description. In P. Lambrix, A. Borgida,
M. Lenzerini, R. Möller, and P. Patel-Schneider, editors, Proceedings of the Inter-
national Workshop on Description Logics, Linköping, Sweden, 1999. CEUR.

46. V. Haarslev and R. Möller. RACER system description. In Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR-01), volume 2083 of Lecture Notes
In Artificial Intelligence. Springer-Verlag, 2001.

47. J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal
logic of knowledge and belief. Artificial Intelligence, 54:319–379, 1992.

48. B. Hollunder, W. Nutt, and M. Schmidt-Schauss. Subsumption algorithms for
concept description languages. In ECAI-90, Pitman Publishing, London, 1990.

49. B. Hollunder and F. Baader. Qualifying number restrictions in concept languages.
In Proc. of the 2nd Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR-91), pages 335–346, 1991.

50. I. Horrocks. The FaCT system. In Harrie de Swart, editor, Proc. of the
Int. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX-98), volume 1397 of Lecture Notes In Artificial Intelligence, pages
307–312. Springer-Verlag, 1998.

51. I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In Proc. of
the 6th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR-98), 1998.

52. I. Horrocks and P. Patel-Schneider. The generation of DAML+OIL. In Proc. of
the 2001 Description Logic Workshop (DL 2001), pages 30–35. CEUR
(http://ceur-ws.org/), volume 49, 2001.

53. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proc. of the
6th Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99),
number 1705 in Lecture Notes In Artificial Intelligence, pages 161–180. Springer-
Verlag, 1999.

54. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the descrip-
tion logic shiq. In D. MacAllester, editor, Proc. of the 17th Conf. on Automated
Deduction (CADE-17), number 1831 in Lecture Notes in Computer Science, Ger-
many, 2000. Springer-Verlag.

55. I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of
the 6th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR-98), pages 636–647, 1998.

56. I. Horrocks and U. Sattler. A description logic with transitive and inverse roles
and role hierarchies. Journal of Logic and Computation, 9(3):385–410, 1999.

57. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In Harald Ganzinger, David McAllester, and Andrei Voronkov, editors,
Proc. of the 6th Int. Conf. on Logic for Programming and Automated Reasoning
(LPAR’99), number 1705 in Lecture Notes In Artificial Intelligence, pages 161–180.
Springer-Verlag, 1999.

Description Logics as Ontology Languages for the Semantic Web 247

58. R. Küsters. Non-Standard Inferences in Description Logics, volume 2100 of Lecture
Notes In Artificial Intelligence. Springer-Verlag, 2001.

59. C. Lutz. NExpTime-complete description logics with concrete domains. In R. Goré,
A. Leitsch, and T. Nipkow, editors, Proc. of the Int. Joint Conf. on Automated
Reasoning (IJCAR-01), number 2083 in Lecture Notes In Artificial Intelligence,
pages 45–60. Springer-Verlag, 2001.

60. R. MacGregor. The evolving technology of classification-based knowledge repre-
sentation systems. In John F. Sowa, editor, Principles of Semantic Networks, pages
385–400. Morgan Kaufmann, Los Altos, 1991.

61. E. Mays, R. Dionne, and R. Weida. K-REP system overview. SIGART Bulletin,
2(3), 1991.

62. B. Nebel. Reasoning and Revision in Hybrid Representation Systems. Lecture
Notes In Artificial Intelligence. Springer-Verlag, 1990.

63. B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelligence
Journal, 43:235–249, 1990.

64. B. Nebel. Terminological cycles: Semantics and computational properties. In
John F. Sowa, editor, Principles of Semantic Networks, pages 331–361. Morgan
Kaufmann, Los Altos, 1991.

65. L. Pacholski, W. Szwast, and L. Tendera. Complexity of two-variable logic with
counting. In Proc. of the 12th Ann. IEEE Symp. on Logic in Computer Science
(LICS-97), 1997.

66. L. Pacholski, W. Szwast, and L. Tendera. Complexity of two-variable logic with
counting. In Proc. of the 12th Ann. IEEE Symp. on Logic in Computer Science
(LICS-97), pages 318–327. IEEE Computer Society Press, 1997.

67. J. Z. Pan. Web ontology reasoning in the SHOQ(D) description logic. In Proceed-
ings of the Workshop on Methods for Modalities 2001 (M4M-2001), Amsterdam,
2001. ILLC.

68. P. F. Patel-Schneider. DLP. In Proc. of the 1999 Description Logic Workshop
(DL’99), pages 9–13. CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-22/, 1999.

69. P. F. Patel-Schneider, D. L. McGuiness, R. J. Brachman, L. A. Resnick, and A.
Borgida. The CLASSIC knowledge representation system: Guiding principles and
implementation rational. SIGART Bulletin, 2(3):108–113, 1991.

70. C. Peltason. The BACK system – an overview. SIGART Bulletin, 2(3):114–119,
1991.

71. U. Sattler. A concept language extended with different kinds of transitive roles.
In G. Görz and S. Hölldobler, editors, 20. Deutsche Jahrestagung für Künstliche
Intelligenz, volume 1137 of Lecture Notes In Artificial Intelligence. Springer-Verlag,
1996.

72. U. Sattler. Description logics for the representation of aggregated objects. In
W.Horn, editor, Proceedings of the 14th European Conference on Artificial Intelli-
gence. IOS Press, Amsterdam, 2000.

73. K. Schild. A correspondence theory for terminological logics: Preliminary report.
In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI-91), pages
466–471, Sydney, 1991.

74. K. Schild. Querying Knowledge and Data Bases by a Universal Description Logic
with Recursion. PhD thesis, Universität des Saarlandes, Germany, 1995.

75. M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with comple-
ments. Artificial Intelligence Journal, 48(1):1–26, 1991.

248 Franz Baader, Ian Horrocks, and Ulrike Sattler

76. R. Stevens, I. Horrocks, C. Goble, and S. Bechhofer. Building a reason-able bioin-
formatics ontology using OIL. In Proceedings of the IJCAI-2001 Workshop on
Ontologies and Information Sharing, pages 81–90, 2001.

77. S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen, 2001. electronically available at
http://www.bth.rwth-aachen.de/ediss/ediss.html.

78. W. van der Hoek and M. De Rijke. Counting objects. Journal of Logic and
Computation, 5(3):325–345, 1995.

Living Books, Automated Deduction
and Other Strange Things�

Peter Baumgartner and Ulrich Furbach

Institut für Informatik
Universität Koblenz-Landau, Koblenz, Germany

{peter,uli}@uni-koblenz.de

Abstract. This work is about a “real-world” application of automated
deduction. The application is the management of documents (such as
mathematical textbooks) as they occur in a readily available tool. These
documents are “living”, in the sense, that they can be modified and
extended by the reader, who can interact via Living Books with external
systems.

A particular task is to assemble a new document from such units in a
selective way, based on the user’s current interest and knowledge.
It is argued that this task can be naturally expressed through logic,
and that automated deduction technology can be exploited for solving
it. More precisely, we rely on first-order clausal logic with some default
negation principle, and we propose a model computation theorem prover
as a suitable deduction mechanism.

1 Introduction

In this paper we describe an approach for the development of personalized in-
teractive electronic publications1. Personalized electronic books have been de-
scribed elsewhere (e.g. in [3]). The term “Living Book” is chosen to express the
additional feature of interaction. This is meant not just as a means of combining
a text with some additional software-tools in order to enable the user to inter-
actively experiment in the domain of the book. Moreover we understand Living
Books as electronic books which can be modified by the user. To this end the
user can introduce examples, she can decide which systems, such as theorem
provers, are to be applied to the examples. Finally, the result of the interaction
is included within the book. Thus each user gets an individual version of her
book, which is maintained by the central book-server.

Automated deduction plays a role in two aspect within this approach: an
automated reasoning system, based on model generation for first order predicate
logic, is used as a reasoning machinery to compute and to compose those parts of

� This work is supported by an EU grant TRIAL-SOLUTION and by a BMBF grant
In2Math.

1 This work is an extended version of [3]; the concept of Living Book, i.e. the interaction
with external systems is new in this version.

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 249–267, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

250 Peter Baumgartner and Ulrich Furbach

the electronic book which meets the query resp. the specification of the user. We
discuss the application of a model generation theorem prover, based on hyper
tableau, for this task and we finally motivate and discuss the extension of this
classical first oder prover by non-monotonic reasoning.

In addition to this meta-level usage, automated deduction is a kind of object,
since the book we are developing as a Living Book is on logics and automated
deduction. For this, various deduction systems and tools are used as interaction
facilities in order to produce an interactive personalized electronic book.

The concept of Living Book is already used in our university education for
computer science students. A discussion of some experiences is included below.

2 Living Book

In this section we introduce the concept of Living Book. Since this is based on the
concept of Slicing Book, which was developed as a technology for personalized
intelligent books, we briefly recall Slicing Book in the following. In the subsequent
subsection we discuss the extension towards living books.

2.1 Slicing Book Technology

Slicing Information Technology (SIT) is a tool for the management of per-
sonalized docu-ments. With SIT, a document, say, a book on logics for com-
puter scientists, is separated once as a preparatory step into a number of small
units, such as definitions, theorems, proofs, and so on. The purpose of the sliced
book then is to enable authors, teachers and students to produce personalized
teaching or learning materials based on a selective assembly of units. Once a
reader is entering the portal of the book in the web, she can login with her
account and gets the entry page of the book; this is depicted in Figure 1 for
http://www.slicing.de/en/sbooks.php of [10].

The reader can browse through the TOC and specify which parts of the book
she wants to read.

Besides of this, she can search the document by taking into account the meta-
data which is stored together with the slices of the document. These meta-data
contains the type of a slice (e.g. theorem, definition, example and others) or
relations which enable the systems to deduce all the material necessary for the
understanding of the units presented until now. Such a search is specified in
Figure 3.

The reader also can choose to include all material which uses the slices marked
until then, e.g. to understand how and where a certain property is used in the rest
of the chapter or the entire book. She furthermore can store information, which
parts of the book she do not want to get presented anymore, because she knows it
very well. All such reasoning and computations are only possible, because besides
the LATEX sources of the units there is also a lot of meta-data stored on the server.
This includes besides a glossary and keywords also information about relations
of a unit to other units. Hence, we have not only the text of the book, we have
an entire knowledge base about the material, which can be used by the reader.

Living Books, Automated Deduction and Other Strange Things 251

Fig. 1. SIT Reader – Login Page.

Fig. 2. Browsing the TOC.

Finally the reader can choose to get a print version of all the results of his
query. This is produced by the system by putting together all LATEX parts of
the specified slices, processing the entire code and presenting it through a PDF-
reader plug-in of the web browser.

Since SIT is applied in the “real world”, this knowledge base together with
its reasoning mechanism has to be robust, reliable and of course efficient. SIT is
applied until know to several mathematics text book, which are explored com-
mercially by the Springer Verlag. Furthermore, SIT is the technical basis of the

252 Peter Baumgartner and Ulrich Furbach

Fig. 3. Searching the document.

Fig. 4. Displaying the Document.

TRIAL-SOLUTION project. This aims to develop a technology for the genera-
tion of personalized teaching materials – notably in the field of mathematics –
from existing documents (cf. www.trial-solution.de for more details).

Current work on SIT within the TRIAL-SOLUTION context is concerned
with techniques to extend the capabilities by handling knowledge coming from
various sources. In our previous example from Figure 1, e.g. it could be the case
that the reader decides that she wants to get examples related to the material she

Living Books, Automated Deduction and Other Strange Things 253

is studying, however from another book, that she knows to be much more of the
introductory kind. By this, she could have a much better chance to understand
the material. This approach is motivated by the imagination of a reader standing
in front of a shelf of books in a library and searching the material she needs
for her work: she is using different sources for her search, like books, table of
contents, catalogues or book reviews. In our case of SIT, these sources include
(i) different sliced books, (ii) a knowledge base of meta data on content (e.g.
by keywords), didactic features and interoperability interfacing, (iii) the user
profile, including e.g. information about units known to her, and (iv) thesauri
that help to categorize and connect knowledge across different books.

All these sources are to be taken into account when generating a personalized
document. So far, no language was available to us to formulate in a “nice”
way (convenient, friendly to change and adapt to new needs, efficient, ...) the
computation of the personalized documents. Our approach based on logic was
heavily motivated to come to a solution here.

2.2 Living Book

On the basis of the Slicing Book Technology we are currently developing the
concept of Living Books. Living Books are books in Slicing Book Technology
which additionally have the property to allow interaction by the user, which may
result in a modification of the book. The user can store the interaction together
with its results in her version of the personalized book. This is exemplified by a
book on logics for computer science([10]), where various deduction systems are
usable via interaction.

As described in the previous section the reader is querying a specific part of
her book. Figure 5 shows a part on the computation of the resolution closure for
propositional clauses. The book is presented in a PDF-format, in so called screen-
mode. In this mode the right hand side of each screen gives some navigation and
interaction buttons. In this screen-shot we see some clauses which are the result
of a previous interaction, where we previously transformed a specific formula
into its clause normal form. In this screen the reader can modify this clause
set. In our example she decided to add some new clauses in order to turn the
depicted current set of clauses into a unsatisfiable one. Figure 6 shows the result
of inserting two additional clauses ¬c and ¬b into the input window. Note, that
these clauses are now part of the PDF-version of the book. They will remain
there even after exiting from the session; if the user is login in again, she can
find it again, unless she does not delete or modify them by other interactions.

As a next step the user decides to apply the resolution closure to the current
set of clauses as it is depicted in Figure 6. For this she has to click the cor-
responding button (which is outside the the scope of this screen); this has the
effect, that the clause set is transmitted to a resolution system, which is running
on the book-server, which computes all the resolvents of this clause set. The
result of this computation is than included in the current personalized LATEX
file, which then is process by PDF-Latex with the result depicted in Figure 7.

254 Peter Baumgartner and Ulrich Furbach

Fig. 5. Interaction in Living Book.

Fig. 6. Adding new clauses to the book.

Until now we included various different systems into Living Book to interact
with them. Figure 8 shows the result of a truth-table generation and furthermore,
in the navigation part of the frame various systems are listed as buttons for their
invocation:

Living Books, Automated Deduction and Other Strange Things 255

Fig. 7. Adding the result of an external system.

– CNF-Transformation.
– Resolution: a naive resolution prover.
– Tableau: an analytic tableau prover.

Note this is work in progress and other systems will be included. For instance,
we will include the well-known Otter resolution prover, so that students can
compare the naive resolution algorithm as presented in class with an optimized
version.

One point to emphasize is, that we offer a unique input syntax for all systems
already included and to be included in the future. So, a user does not have to
learn the individual syntax of the systems offered.

3 The Reasoning Mechanism

In our approach for handling the personalization of Living Books, the document
to be generated is computed by a model generating theorem prover. In Figure 9
the entire knowledge representation and reasoning task is depicted. On the left
hand side we see several books, which can be used as sources for the query
given by the user on the right hand side of the picture. Besides the various
books, the system takes into account a number of different knowledge sources:
keywords, an ontology giving relations between the keywords and terms and
dependencies between units with respect of a refers and requires relation. All this

256 Peter Baumgartner and Ulrich Furbach

Fig. 8. Truth-table generation.

ServerBooks Client

Fig. 9. The reasoning part of SBT.

knowledgeis given as meta-data of the books and can be used by the deduction
system together with additional data about the user to answer the query.

The computation is triggered by marking some unit U as a “selected unit”.
The back-ground theory is essentially a specification of units to be included into
the generated document. Such a specification is from now on called a query,
and the task to generate the document from the query and the selected unit is
referred to as solving the query.

Living Books, Automated Deduction and Other Strange Things 257

Here is a sample query:

(i) For each keyword K attached to the selected unit U , include in the gen-
erated document some unit D that is categorized as a definition of K; in
case there is more than such unit, prefer one from book A to one from
book B.

(ii) Include all the units that have at least one keyword in common with the
keywords of U and that are of explanatory type (examples, figures, etc).

(iii) Include all the units that are required by U .
(iv) Include U.

In our experiments we use sliced versions of two mathematics text books.
Here are two sample units, one from each book:

Ident: 0/1/2/1
Text: \item Mengentheoretische

Grundbegriffe ...

Book: Wolter/Dahn
Type: Merksatz

Refers: 0/1/0/2, 0/1/0/3, ...

Requires:
Keys: set, set intersection,

set equality, ...

Ident: 1/1/1/1/0
Text: \definition{

\textbf{Definition}:
Eine \textbf{Menge} ...

Book: Gellrich/Gellrich
Type: Definition

Refers:
Requires:

Keys: set

The Ident field contains a unique name of the unit in the form of a Unix file sys-
tem sub path, matching the hierarchically organization of the units according to
the books sectioning structure. The Text field contains the unit’s text. The Book
field contains the name of the book’s authors. The Type field denotes the class
the unit belongs to. The Refers and Requires fields contain dependencies from
other units. The Keys field contains a set of keywords describing the contents of
the unit.

Now suppose that the unit with Ident 0/1/2/1 is selected, and that the query
from above is to be solved. Some aspects in a logical formalization of this task
are straightforward, like the representation of the units and the representation
of the selected unit identifier as a fact (as in selected unit(0/1/2/1)). The full
formalization of the query proper is too long to be included here2. In order to
motivate the whole approach, highlighting some parts of it might be helpful,
though. Each of the following four parts demonstrates a different aspect of the
formalization3. In the field of knowledge representation it is common practice
to identify a clause with the set of its ground instances. Reasoning mechanisms
often suppose that these sets are finite, so that essentially propositional logic
results. Such a restriction should not be made in our case. Consider the following
clauses:

wolter_dahn_unit(0 / _). equal(X, X).

gellrich_gellrich_unit(1 / _).

2 It consists of 18 clauses.
3 Written in a Prolog-style notation.

258 Peter Baumgartner and Ulrich Furbach

The first two facts test if a given unit identifier denotes a unit from the respec-
tive book. Due to the /-function symbol (and probably others) the Herbrand-
Base is infinite. Certainly it is sufficient to take the set of ground instances of
these facts up to a certain depth imposed by the books. However, having thus
exponentially many facts this option is not really a viable one.

Observe that range restriction (cf.[16]) does not apply to facts. The work-
around, which is taken by some calculi, to enumerate the Herbrand-Base during
proof search does not look too prospective either. In our system full first order
predicate logic specification are used.

3.1 Non-classical Negation

Another feature of our reasoning mechanism is that of non-classical negation.
Consider the following clauses:

computed_unit(UnitId) :- multiple_def(Key) :-

candidate_def(UnitId,Key), candidate_def(UnitId1,Key),

not multiple_def(Key). candidate_def(UnitId2,Key),

not equal(UnitId1,UnitId2).

The computed unit relation shall contain those units (named by unit identi-
fiers UnitId) that go into the generated document. According to the left clause,
this applies to any candidate definition unit for some keyword Key (derived by
some other other clauses not described here), provided there is not more than
one such candidate definition of Key. The second clause states the definition of
the multiple def-relation.

What is the intended semantics of not? Classical semantics is not appropriate,
as it allows, for instance, arbitrary different terms to hold in the equal-relation.
The correct intention, however, of equal is to mean syntactical equality. Likewise,
classical semantics allows for counter-intuitive interpretations of multiple def.

We define a special case of the supported model semantics4 as the intended
meaning of our programs, and solving the query means to compute such a model
for the given program. This point is worth emphasizing: we are thus not working
in a classical theorem-proving (i.e. refutational) setting; solving the query is, to
our intuition, more naturally expressed as a model-generation task.

Fortunately, model computation for stratified programs is much easier than
for non-stratified programs, both conceptually and in a complexity-theoretic
sense. There is little dispute about the intended meaning of stratified programs,
at least for normal programs (i.e. programs without disjunctions in the head),
and the two major semantics coincide, which are the stable model semantics [11]
and the well-founded model semantics [24]. For propositional stratified normal
programs, a polynomial time decision procedure for the model existence problem
exists, which does not exist for the stable model semantics for non-stratified
4 A model I of a (stratified and ground) clause set M is a supported model of M iff

for every A ∈ i there is a clause A∨A1 ∨ . . . Ak ← B1 ∧ . . .∧Bm∧ � Bm+1 ∧ . . .∧Bn

in M such that M |= B1 ∧ . . . ∧Bm∧ � Bm+1 ∧ . . . ∧Bn

Living Books, Automated Deduction and Other Strange Things 259

normal programs. Being confronted with large sets of data (stemming from tens
of thousands of units) was the main motivation to strive for a tractable semantics.

As mentioned above, we do not restrict ourselves to normal programs. In-
stead, we found it convenient to allow disjunctions in the head of clauses in
order to express degrees of freedom for the assembly of the final documents.
Also for the disjunctive case (i.e. non-normal programs), stable model semantics
and well-founded model semantics have been defined (see e.g. [6]). Both seman-
tics agree to assign a minimal model semantics to disjunction. For instance, the
program

A ∨B ←

admits two minimal models, which are {A} and {B}. An equivalent character-
ization of minimal models is to insist that for each atom true in the intended
model, there is a head of a true clause where only this atom is true. For our
task, however, this preferred exclusive reading of disjunctions seems not neces-
sarily appropriate. When assembling documents, redundancies (i.e. non-minimal
models) should not be prohibited unless explicitly stated. In order not having to
restrict to the minimal model semantics, we find the possible model semantics to
be appropriate [20]. With it, the above program admits all the obvious models
{A}, {B} and {A, B}. If the inclusive reading is to be avoided, one would have
to add the integrity constraint

← A ∧B .

Unfortunately, the possible model semantics is costly to implement. At the cur-
rent state of our developments, our calculus is sound wrt. the possible model
semantics (i.e. any computed model is a possible model) but complete only in a
weak sense (if a possible model exists at all, some possible model will be com-
puted). In our current setting, solving the query means to compute any model of
the program, so the lack of completeness is not really harmful. However, future
experiments will have to show if this approach is really feasible.

3.2 The Calculus

One of the big challenges in both classical logic and nonmonotonic logics is to
design calculi and efficient procedures to compute models for first-order speci-
fications. Some attempts have been made for classical first-order logic, thereby
specializing on decidable cases of first-order logic and/or clever attempts to dis-
cover loops in derivations of standard calculi (see e.g. [9, 18, 2, 23]).

In the field of logic programming, a common viewpoint is to identify a pro-
gram with the set of all its ground instances and to apply propositional methods
then. Notable exceptions are described [5, 8, 12, 7]. Of course, the “grounding”
approach is feasible only in restricted cases, when reasoning can be guaranteedly
restricted to a finite subset of the possibly infinite set of ground instances. Even
the best systems following this approach, like the S-models system [17], quite
often arrive at their limits when confronted with real data.

260 Peter Baumgartner and Ulrich Furbach

In our application we are confronted with data sets coming from tens of
thousands of units. Due to this mass, grounding of the programs before the
computation starts seems not to be a viable option. Therefore, our calculus di-
rectly computes models, starting from the given program, and without grounding
it beforehand. In order to make this work for the case of programs with default
negation, a novel technique for the representation of and reasoning with non-
ground representations of interpretations is developed.

The calculus developed here is obtained by combining features of two cal-
culi readily developed – hyper tableaux [4] and FDPLL [2] – and some further
adaptations for default negation reasoning. These two calculi were developed for
classical first-order reasoning, and the new calculus can be seen to bring in “little
monotonicity” to hyper tableaux.

The calculus is called hyper tableau because it combines two characteristics:
the idea of clustering certain basic inference rules into a single one, as it is used
in hyper-resolution [19], and the overall calculus as it was developed for clause
normal form tableau (see [15]). Instead of defining the hyper tableau calculus
formally we will illustrate it with the following example.

Consider the following set of clauses, where clauses are given in implication
form, such that B1∨ . . .∨Bm ← A1∧ . . .∧An stands for the clause B1∨ . . .∨Bm∨
¬A1∨ . . .∨¬An.

A ← A (1)
B∨C ← A (2)
A∨C ← C (3)

← A∧B (4)

In order to construct a hyper tableau for this clause set, we start with the
empty tableau ε, which is given in the left part of Figure 10. We will discuss this
derivation from left to right: If we consider clause (1), which we can understand
as “in any model A has to hold”, hence we extend our single (empty) branch of
the tableau ε by the new leaf A. We arrive at a tableau with a branch which
contains the (possibly) partial model A. Obviously clause (2) does not hold in
this model, because (2) is stating “if in a model A holds, than B or C has to hold
as well”. Let’s repair this, by extending our tableau by these two possibilities;
we extend it by the disjunction B∨C, which is expressed in the tableau by a
new branching. The left branch {A, B} of this new tableau, again is a (possibly)
partial model, but now we observe that there is a contradiction to clause (4),
which is stating that A and B cannot be true together in any model; hence we
know that this branch does not correspond to a partial model – we mark it as
closed with an asterisk. The right branch of the tableau, however, although it
could be further extended, is a model of the entire clause set (1)–(4).

We demonstrated the calculus only in the propositional case, but it can be
extended to a complete and correct calculus for full first order clausal logic, and
there are various improvements of its basic variant as introduced in [4].

Hyper tableau calculi are tableau calculi in the tradition of SATCHMO [16].
In essence, interpretations as candidates for models of the given clause set are

Living Books, Automated Deduction and Other Strange Things 261

ε

A A

B C

A

B C

A

B C
∗ ∗

∅�|=(1) {A}�|=(2) {A,B}�|=(4) {A,C}|={(1)−(4)}

Fig. 10. A sample hyper tableau derivation.

generated one after another, and the search stops as soon as a model is found,
or each candidate is provably not a model (refutation). A distinguishing feature
of the hyper tableau calculi [4, 1] to SATCHMO and related procedures is the
representation of interpretations at the first-order level. For instance, given the
very simple clause set consisting of the single clause

equal(X, X) ←

the calculus stops after one step with the model described by the set {equal
(X, X)}, which stands for the model that assigns true to each ground instance
of equal(X, X).

The hyper tableau calculi developed so far do not allow for default negation.
In the present work we therefore extend the calculus correspondingly. At the
heart is a modified representation of interpretations. The central idea is to re-
place atoms – which stand for the set of all their ground instances – by pairs
A− {E1, . . . , En}, where A is an atom as before, and E is a set of atoms (“Ex-
ceptions”) that describes which ground instances of A are excluded from being
true by virtue of A. For instance, if the clause

different(X, Y) ← notequal(X, Y)

is added, then the search stops with the set

{equal(X, X)− {}, different(X, Y)− {different(X, X)}} .

It represents the model where all instances of equal(X, X) are true, and all
instances of different(X, Y) are true, except the reflexive ones. There are several
non-monotonic variants (e.g. for minimal model reasoning or for abduction) and
for modal logics.

To see how we use the calculus in the context of SBT, we take an excerpt from
the knowledge base, and use it to demonstrate the working of the hyper tableau
calculus modified for nonmonotonic reasoning. Figure 11 depicts this excerpt;
it is from the “user model”, and its purpose is to find out by means of the
known unit inferred relation whether the user knows some unit in question. The
clauses in the knowledge base in Figure 11 are stratified, i.e. they are organized
in a hierarchical way. On the base layer, e.g., clause (2) is expressing the fact that
the current user does not know the unit 1/2/1 from the analysis-book. Clause (1)

262 Peter Baumgartner and Ulrich Furbach

is a good example demonstrating the representational advantage of our system
over other systems that require grounding of the clauses before computation
(this is discussed in Section 3.2): in clause (1), ALL is a universally quantified
variable, i.e., intentionally, all subunits of analysis/1/2 are declared to be known.
It is the purpose of clause (6) to resolve the apparent inconsistency behind the
just given explanation of clauses (1) and (2) (cf. below).

Clauses (4) and (5) are expressing knowledge about the meta data relations
“known unit” and “unknown unit”. Clause (6) says that Book/Unit is con-
tained in the knows unit inf-relation (the relation we are interested in), if it
is “known” (by means of the known unit(Book/Unit) declaration) and this cir-
cumstance is not overridden by a an explicit “unknown”-declaration of the same
unit (by means of not unknown unit(Book/Unit)}). By the use of the default nega-
tion technique we realize that “unknown”-declarations should be stronger than
“known”-declarations. We think that this is appropriate modeling, as “unknown”
units are never withhold from the user.

Now, the calculus derives from the clauses in Figure 11 in three steps the
hyper tableau in Figure 12.

The topmost three lines stem from the clauses (1), (3) and (2), respectively.
By combining clauses (1), (3) and (4) we conclude that the unit analysis/1/0/4

should be ”known”. This is realized by the hyper tableau derivation in the
fourth line. The concluding line in the derivation is obtained by clauses (1),
(2) and (6). It says that in the known unit inf-relation are all subunits of
analysis/1/2 – more technically: all ground instances of analysis/1/2/ ALL –
except for the unit analysis/1/2/1 (the technique of representing models this

%% User knowledge:

known unit(analysis/1/2/ ALL). (1)

unknown unit(analysis/1/2/1). (2)

%% Book metadata:

refers(analysis/1/2/3, analysis/1/0/4). (3)

%% ‘‘known unit’’ transitive closure:

known unit(Book B/Unit B) :- (4)

known unit(Book A/Unit A),

refers(Book A/Unit A, Book B/Unit B).

%% ‘‘unknown unit’’ transitive closure

unknown unit(Book B/Unit B) :- (5)

unknown unit(Book A/Unit A),

refers(Book A/Unit A, Book B/Unit B).

%% Derived:

known unit inf(Book/Unit) :- (6)

known unit(Book/Unit),

not unknown unit(Book/Unit).

Fig. 11. Excerpt from the knowledge base.

Living Books, Automated Deduction and Other Strange Things 263

known unit(analysis/1/2/ ALL)
refers(analysis/1/2/3, analysis/1/0/4)

unknown unit(analysis/1/2/1)

known unit(analysis/1/0/4)

known unit inf(analysis/1/2/ ALL)
- { known unit inf(analysis/1/2/1) }

Fig. 12. Hyper tableau derivation from the clauses in Figure 11.

way is described above). Observe that the mentioned, apparent contradiction
between what clauses (1) and (2) say is eliminated as explained.

3.3 Other Approaches

In the previous sections a non-monotonic extension of first-order theorem prov-
ing was advocated as an appropriate formalism to model the task at hand.
Undoubtedly, there are other candidate formalisms that seem well-suited, too.
In the following we comment on these.

Prolog. Certainly, one could write a Prolog program to solve a query. When doing
so, it seems natural to rely on the findall built-in to compute the extension of
the computed unit predicate, i.e. the solution to a query. Essentially, this means
to enumerate and collect all solutions of the goal computed unit(U) by means of
the Prolog built-in backtracking mechanism. In order to make this work, some
precautions have to be taken. In particular explicit loop checks would have to be
programmed in order to let findall terminate. Because otherwise, for instance,
alone the presence of a transitivity clause causes findall not to terminate.

XSB-Prolog. One of the few programming languages that works top-down (as
Prolog) and that has built-in loop checking capabilities (as bottom-up model
generation procedures) is XSB-Prolog [22]. XSB-Prolog supports query answer-
ing wrt. the well-founded semantics for normal logic programs [24]. At the heart
of XSB-Prolog is the so-called tabling device that stores solutions (instantia-
tions) of goals as soon as computed. Based on tabling, it is even possible to
compute extensions of predicates (such as computed unit) and return them to
the user.

The only problem with XSB-Prolog for our application is the restriction to
normal programs, i.e. disjunctions in the head of program clauses are not allowed.
Certainly, this problem could be circumvented by explicitly coding disjunctions
in the program, but possibly at the cost of far less intuitive solution. Descrip-
tion Logics. Description logics (DL) are a formalism for the representation of
hierarchically structured knowledge about individuals and classes of individuals.
Nowadays, numerous descendants of the original ALC formalism and calculus

264 Peter Baumgartner and Ulrich Furbach

[21], e.g. with greatly enhanced expressive power exist, and efficient respective
systems to reason about DL specifications have been developed [14].

We can see that a good deal of the information represented by our first-order
specifications, could be accessible to a DL formalization. The concrete units
would form the so-called assertional part (A-Box), and general “is-a” or “has-a”
knowledge would form the terminological part (T-Box). The T-Box would con-
tain, for instance, the knowledge that a unit with type “example” is-a “explana-
tory unit”, and also that a unit with type “figure” is-a “explanatory unit”.
Also, transitive relations like “requires” should be accessible to DL formalisms
containing transitive roles.

At the current state of our work, however, it is not yet clear to us if and how
the nonmonotonic features that we found useful would map to a DL formalism.
Certainly, much more work has to be spent here. Presumably, one would arrive at
a combined DL and logic programming approach. This is left here as future work.

4 Application of Living Book

The concept of Living Books is developed in a project, called In2Math, which is
carried out by a consortium consisting of several German universities, a publisher
and several companies (http://www.uni-koblenz.de/ag-ki/PROJECTS/in2math/).
The goal is to provide material as it is described in the previous sections, to be
used in different scenarios of University teaching and learning.

There are several different books under development: three books in the area
of mathematics, where computer algebra systems are used for interaction and
a course on logics for computer science, where various theorem provers and
formulae manipulation systems are accessible from the system.

In the rest of this section we will shortly discuss, how Living Books can be
used for teaching. Until know, we identified three different kinds of applications:

Class Room Teaching: For the course “Logics for Computer Scientists” we cur-
rently have 80 students, which are attending the lectures. For this the second
author uses wireless LAN access to the book server and by overhead projection
he is presenting the material on the screen. For this the server can provide a
slides-version of the book, where larger fonts and a partition of the material
into slides is done automatically. The advantage of this setting is, that during
lecturing, the interactive systems can be used exactly at those points, where it
was considered meaningful by the author of the book. There is no need for the
lecturer to switch applications on the screen – he just interacts with the Liv-
ing Book. The students, while listening to the lecture, have access to exactly
the same material, by using their laptops and Internet access via wireless LAN.
They can take notes directly by inserting their remarks and extension into the
book, which of course, are stored in the personalized way on the server. The
student can work on these notes again, if she is accessing the book later on from
elsewhere.

It should be mentioned, that besides these services provided by the technol-
ogy, there is a big challenge for the lecturer: different phases of a lecture have

Living Books, Automated Deduction and Other Strange Things 265

to be mixed, such that it results to a meaningful and efficient teaching meth-
ods. Our experience is, that there should be intervals during the lecture, where
spontaneously the blackboard is used for discussing questions or examples. Such
discussions should be alternated with interactions via the Living Book.

Group Work: Besides the class room teaching we organized small groups of up
to dozen students to work together on exercises with the help of a tutor. These
groups are using laptops and the Living Book concept to work on a set of given
exercises. For this, as well as for the overall organization of the courses we us
an e-learning system, by which the students can access the exercises and the
living book. In order to provide a laptop for each student, we have laptop-pools,
which can be booked for those class room exercises by the tutor. A feature which
is missing in our concept until now is that of collaborative learning. It would
be very appropriate, if a group of students could work together on the solution
of a single exercise by decomposing the task and by solving the various parts
independently on their systems and then combining things together via the web.

Individual Learning: Of course, this is the classical application of e-learning
concepts. The student has access to the material from everywhere and can work
with living books individually from her home. This can be done online via the
server, or by using a print version of the material, which is providing by the
server in a pdf-format of the specified parts of the material.

5 Conclusion

This work is not yet finished. Open ends concern all parts described previously.
For the reasoning part, we have to concider some design decisions and prac-

tical experience with real data on a large scale. Concerning design decisions, for
instance, it is not quite clear what semantics suits our application best. It is
clear that a supportedness principle is needed, but there is some room left for
further strengthenings. Further experiments (i.e. the formulation of queries) will
guide us here.

The calculus and its implementation are developed far enough, so that mean-
ingful experiments are possible. The implementation is carried out in Eclipse
Prolog. For faster access to base relations, i.e. the currently computed model
candidate, the discrimination tree indexing package from the ACID term index-
ing library [13] is coupled. Without indexing, even our moderately sized exper-
iments seem not to be doable. With indexing, the response time for a typical
query applied to a full book with about 4000 units takes less than five seconds,
which seems almost acceptable.

Another serious topic is how to design the interface between the reasoning
system and the user, i.e. the reader of the document. The user cannot be expected
to be acquainted with logic programming or any other formal language (typically,
this is what students should learn by reading the sliced books). Our system
therefore offers a predefined set of queries for some typical learning scenarios,
like “I want material to prepare for a written exam”, which are parametrized

266 Peter Baumgartner and Ulrich Furbach

by a topic of interest and a user-model (our user model consists of declarations
what units are known/unknown to the student).

For Living Books, we have to extend the use of interactions; we have to add
additional interactions and we have to use additional external systems to be
combined with our books. For this we are experimenting with web interfaces
to combine remote systems which are developed and maintained elsewhere. The
teaching methods for applications of Living Books in university educations are
only in an experimental stage until now; we need much more experiments and
formative evaluations.

References

1. Peter Baumgartner. Hyper Tableaux – The Next Generation. In Harry de Swaart,
editor, Automated Reasoning with Analytic Tableaux and Related Methods, vol-
ume 1397 of Lecture Notes in Artificial Intelligence, pages 60–76. Springer, 1998.

2. Peter Baumgartner. FDPLL – A First-Order Davis-Putnam-Logeman-Loveland
Procedure. In David McAllester, editor, CADE-17 – The 17th International Con-
ference on Auto-mated Deduction, volume 1831 of Lecture Notes in Artificial In-
telligence, pages 200–219. Springer, 2000.

3. Peter Baumgartner and Ulrich Furbach. Automated Deduction Techniques for the
Management of Personalized Documents. Annals of Mathematics and Artificial In-
telligence – Special Issue on Mathematical Knowledge Management, Kluwer Aca-
demic Publishers, 2002. Accepted for Publication.

4. Peter Baumgartner, Ulrich Furbach, and Ilkka Niemelä. Hyper Tableaux. In Proc.
JELIA 96, number 1126 in Lecture Notes in Artificial Intelligence. European Work-
shop on Logic in AI, Springer, 1996.

5. Sven-Erik Bornscheuer. Rational models of normal logic programs. In Steffen
Hölldobler Günther Görz, editor, KI-96: Advances in Artificial Intelligence, vol-
ume 1137 of Lecture Notes in Artificial Intelligence, pages 1–4. Springer Verlag,
Berlin, Heidelberg, New-York, 1996.

6. Jürgen Dix, Ulrich Furbach, and Ilkka Niemelä. Nonmonotonic Reasoning: Towards
Efficient Calculi and Implementations. In Andrei Voronkov and Alan Robinson,
editors, Handbook of Automated Reasoning, pages 1121–1234. Elsevier-Science-
Press, 2001.

7. Jürgen Dix and Frieder Stolzenburg. A framework to incorporate non-monotonic
reasoning into constraint logic programming. Journal of Logic Programming, 37(1-
3):47–76, 1998. Special Issue on Constraint Logic Programming. Guest editors:
Kim Marriott and Peter J. Stuckey.

8. Thomas Eiter, James Lu, and V. S. Subrahmanian. Computing Non-Ground Rep-
resentations of Stable Models. In Jürgen Dix, Ulrich Furbach, and Anil Nerode,
editors, Proceedings of the 4th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR-97), number 1265 in Lecture Notes in
Computer Science, pages 198–217. Springer-Verlag, 1997.

9. Christian Fermüller and Alexander Leitsch. Hyperresolution and automated model
building. Journal of Logic and Computation, 6(2):173–230, 1996.

10. Ulrich Furbach. Logic for computer scientists. To appear as Living Book.

Living Books, Automated Deduction and Other Strange Things 267

11. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic pro-
gramming. In Robert Kowalski and Kenneth Bowen, editors, Proceedings of the
5th International Conference on Logic Programming, Seattle, pages 1070–1080,
1988.

12. Georg Gottlob, Sherry Marcus, Anil Nerode, Gernot Salzer, and V. S. Subrahma-
nian. A non-ground realization of the stable and well-founded semantics. Theoret-
ical Computer Science, 166(1-2):221–262, 1996.

13. P. Graf. ACID User Manual – version 1.0. Technical Report MPI-I-94-DRAFT,
Max-Planck- Institut, Saarbrücken, Germany, June 1994.

14. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expressive de-
scription logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

15. Reinhold Letz. Clausal Tableaux. In Wolfgang Bibel and Peter H. Schmitt, editors,
Automated Deduction. A Basis for Applications. Kluwer Academic Publishers,
1998.

16. Rainer Manthey and François Bry. SATCHMO: a theorem prover implemented
in Prolog. In Ewing Lusk and Ross Overbeek, editors, Proceedings of the 9 th
Conference on Automated Deduction, Argonne, Illinois, May 1988, volume 310 of
Lecture Notes in Computer Science, pages 415–434. Springer, 1988.

17. Ilkka Niemelä and Patrik Simons. Efficient implementation of the well-founded and
stable model semantics. In Proceedings of the Joint International Conference and
Symposium on Logic Programming, Bonn, Germany, 1996. The MITPress.

18. N. Peltier. Pruning the search space and extracting more models in tableaux. Logic
Journal of the IGPL, 7(2):217–251, 1999.

19. J. A. Robinson. Automated deduction with hyperresolution. Internat. J. Comput.
Math., 1:227–234, 1965.

20. C. Sakama. Possible Model Semantics for Disjunctive Databases. In W. Kim, J.-
M. Nicholas, and S. Nishio, editors, Proceedings First International Conference on
Deductive and Object-Oriented Databases (DOOD-89), pages 337–351. Elsevier
Science Publishers B.V. (North–Holland) Amsterdam, 1990.

21. Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with
complements. Artificial Intelligence, 48(1):1–26, 1991.

22. K. Sagonas, T. Swift, and D. S. Warren. An abstract machine for computing the
well-founded semantics. Journal of Logic Programming, 2000. To Appear.

23. Frieder Stolzenburg. Loop-detection in hyper-tableaux by powerful model genera-
tion. Journal of Universal Computer Science, 5(3):135–155, 1999. Special Issue on
Integration of Deduction Systems. Guest editors: Reiner Hähnle, Wolfram Menzel,
Peter H. Schmitt and Wolfgang Reif. Springer, Berlin, Heidelberg, New York.

24. Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded seman-
tics for general logic programs. Journal of the ACM, 38:620–650, 1991.

An Essay on Sabotage and Obstruction

Johan van Benthem

ILLC Amsterdam & CSLI Stanford

To Jörg Siekmann on the occasion of his 60th Birthday

Abstract. This is a light ‘divertissement’ about the problems of modern
transportation, and the beckoning pleasures of meeting with Jörg.

Getting Nowhere

Traveling between Saarbrücken and Amsterdam is easy, as Jörg well knows. A
convenient network of connections exists between these two capitals of logic and
computation. In the phantasy world of this essay, the network is as pictured be-
low. But what if the transportation system breaks down, and a malevolent demon
starts canceling connections, anywhere in the network? Of course, a veteran AI
researcher adapts, and changes to the next optimal plan. But what if, at every
stage of his trip, the demon first takes out one connection? From Saarbrücken
to Amsterdam, Jörg still has a winning strategy. The Demon’s opening move
may block Brussel or Koblenz, but then Jörg goes to Luxemburg in the first
round, and gets to Amsterdam in the next. The Demon may also cut a connec-
tion between Amsterdam and some city in the middle – but Jörg can then go
to at least one place offering him still two intact roads. My own Dutch situation
is less rosy, however. This time, Demon has the winning strategy. It starts by
cutting a link between Saarbrücken and Luxemburg. If I now go to any city in
the middle, Demon always has time in the next rounds to cut my beckoning link
to Saarbrücken. Oh, that fair city on the Saar, and yet so inaccessible!

Amsterdam

Luxemburg

Brussel

Koblenz

Saarbrücken

plane........

...............

...............
.......................

train��
��

�
�

�

�
�

�
�

taxi�
�

This story may sound like a bad fairy tale – but users of the Dutch Railway
System NS will recognize the prevalent situation since one year. Connections
disappear in malevolent patterns, and what used to be simple travel has become
a game of high complexity. This essay reflects the thoughts of a traveling logician
stuck at strange stations. . .

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 268–276, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Essay on Sabotage and Obstruction 269

From Algorithms to Obstruction Games

The preceding example is the well-known task of Graph Reachability ‘sabotaged’.
More generally, any algorithmic task over graphs can be turned into a two-
player game, with one player ‘Runner’ trying to do the original job, and another
player ‘Blocker’ taking out edges at each stage. Different schedulings and winning
conditions are possible. For instance, consider a game which sabotages Traveling
Salesman. An undirected graph is given, and Runner must complete a circuit.
This time, Blocker lets him start in each round, and then takes out a link. Players
must move as long as they can: the game stops the first time a player cannot
move. Runner wins if the end situation contains a completed circuit; otherwise,
Blocker wins. Which player has a winning strategy in the following game, which
starts with Runner at the black dot?

�

�

�

�

�
�

�
�

�
��

1

3

2

4

It may take a moment: but then you will see that Blocker has the winning
strategy, first cutting one upper link. (Complex games of this sort are a nice
pastime for winter evenings.) But, why this implicit trust that one of the two
players must have a winning strategy – i.e., that the game is determined? Recall
Zermelo’s Theorem from the dawn of game theory. It says that each finite two-
player zero-sum game is determined. Of course, the great German set theorist
was thinking about Chess when he proved his result – as the Reichsbahn was
still running according to schedule in his days – but the mathematics applies
equally well to our modern transport plight. The reason is that the sabotage
games still satisfy Zermelo’s three conditions.

One can see this as a game transformation. The original algorithmic task is
a graph game with just one player, where that player must perform a sequence
of moves creating a path with some desired property (‘ending in a specified
location’, ‘forming a circuit’, etc.). Now we get a new game, whose local states are
subtrees of the original game tree, with a current position for Runner indicated,
whose moves are of two kinds. Runner can follow an edge from his current
position in the given graph, but Blocker can choose a new graph missing one edge.
For instance, the Traveling Salesman game has the given diagram as an initial
node. We display one opening move for Runner, followed by one for Blocker:

�

�

�

�

�
�

�
�

�
��

1

3

2

4

�

�

�

�

�
�

�
�

�
��

1

3

2

4

270 Johan van Benthem

This blow up of the original search space to a game tree involves an expo-
nential factor – though Blocker’s moves also simplify the game as the graph gets
simpler.

Complexity Bounds and Model Checking

Intuitively, solving my travel problems, if possible, against sabotage seems more
complex than the old task itself. Graph Reachability is in P, Traveling Salesman
is NP-complete. We will not determine the exact complexity of their sabotaged
versions, but some quick general observations can be made. First, note that
both problems amount to model-checking with first-order formulas. Given any
finite graph G, they state the existence of a sequence of points satisfying some
first-order definable condition, i.e., both check an existential formula of the form:

∃x1 . . .∃xk α(x1, . . . , xk) with α quantifier-free

where k is of the order of the size of G. More conveniently, think of the graph as
a domain of edges, and let the existential quantifiers run over these. What is the
effect of Blocker’s activities? At each stage, one edge is removed arbitrarily. The
result of this progressive impoverishment is that Runner has a winning strategy
if and only if the following first-order formula over edges is true in the graph G:

∃x1∀y1∃x2 �= y1 ∀y2∃x3 �= y1, y2 . . . α′(x1, . . . , xk)

where α′ is the old condition suitably adapted in terms of endpoints of edges.
The length of this second formula is still linear in the size of the graph, but we
have quantifier interchanges now. Thus, an upper bound for the complexity is
that of uniform model checking of first-order formulas over finite models, which
takes polynomial space in the size of the model plus that of the formula.

Fact. Solving a sabotage game takes at most PSPACE in the graph size.

Probably, one cannot do better in general. Here is one lower bound. Consider
the PSPACE-complete problem of Quantified Boolean Formulas. This is akin
to a sabotaged Reachability task. Consider this special case:

∀p1∃p2∀p3 α(p1, p2, p3) with α some propositional formula

Now look at a graph with 3 nodes, and edges distributed as follows:

� � � �� ����
� ���� thin edges : label false

thick edges : label true

Here is a sabotage game over this graph. Blocker starts each round by taking
away an edge, after which Runner chooses an edge to cross. The game ends when
Runner can no longer move – and such a situation is counted as a win for Blocker
iff it is an end point and the formula α(p1, p2, p3) evaluated according to the
labels true or false of the successive edges chosen by Runner is false. Now, let
us analyze the strategic situation in this game. Blocker must let Runner move

An Essay on Sabotage and Obstruction 271

three times: otherwise he loses. But by taking away links, he can force the truth
value at the first step, and then at the third – or perhaps just at the third. For
Runner to succesfully counter all possible actions by Blocker requires the truth
of the following formulas:

∀p1∃p2∀p3 α(p1, p2, p3)
∀p1∀p3∃p2 α(p1, p2, p3)
∀p3∃p1∃p2 α(p1, p2, p3)
∃p1∃p2∀p3 α(p1, p2, p3)
∃p1∃p2∃p3 α(p1, p2, p3)

But the second to fifth formulas are implied by the first. Thus, Runner has a
winning strategy in this game iff the first quantified Boolean formula is true.
I suspect that the general situation with k propositional variables yields to a
similar construction, which suggests that

Sabotaged graph tasks can be PSPACE-hard games.

Admittedly, the preceding example is contrived – and its trick does not work
for the above sabotaged Reachability or Traveling Salesman. On the other hand,
John Bell pointed at the related (though more involved) game ‘Roadblock’ in
David Harel’s beautiful book Algorithmics, which takes even essentially EXP-
TIME. The general complexity behaviour of sabotage still eludes me.

Modal Logics over Changing Models

Instead of solving our complexity problem, we will look at it from another angle.
Solving, say, a standard reachability problem amounts to evaluating a modal
formula with a number of disjunctions of the form ♦ . . . ♦ p , where p holds in
the goal states. Uniform model checking for modal formulas on a finite model
is known to be in P-time – measured in the size of the model and the length
of the formula. But the above sabotaged versions involve changing the model
as we proceed. Here is a way of viewing this, thinking of models where arrows
are treated as objects. Introduce a cross-model modality referring to submodels
from which objects have been removed:

M, s |= ♦-φ iff there is a world w �= s with M− {w}, s |= φ

Now the language has both an ‘internal modality’ ♦ and an ‘external modality’
♦- , which can be combined. E.g., the fact that universal modal formulas are
preserved under submodels shows in valid principles like �p → �- �p. Actually,
despite the modal notation, this language lacks some typical modal features.

For instance,

the formula ♦-� ⊥ is not invariant for bisimulations.

This formula holds in an irreflexive 2-cycle, but it fails in the bisimilar model
consisting of a single reflexive point. Nevertheless, the formulas of this language
are still translateable into an obvious first-order language, using the same trick
as above. E.g., ♦-� ⊥ says that ∃y �= x ¬∃z �= y : Rxz.

272 Johan van Benthem

The blow-up in this translation is only polynomial, and hence model checking
in the new language can be performed in PSPACE, the complexity of uniform
model checking for first-order formulas. But is this upper bound also a lower
one? After all, the model shrinks when we make a jump via the operator ♦- . The
same open question of complexity now returns:

What is the complexity of uniform model checking for the ♦, ♦- language?

Another obvious open questions concerns the complete logic of these operators.
Logics like this axiomatize a bit of the meta-theory of modal evaluation plus
some natural model operations. One could also add modalities for passing to
arbitrary submodels (on finite models, this is the Kleene iteration of ♦-), and other
model constructions have been considered as well. E.g., in modern update logics
for communication, a public announcement A! of an assertion A restricts the
current model to only those worlds where A holds. Evaluation of further modal
statements about agents’ knowledge and ignorance then moves to a definable
submodel, driven by mixed assertions such as �A!Kiφ. And there are still further
examples in the literature. The above is just a start. New questions of model
checking and completeness emerge in all such systems.

Disturbing a Game in General

Time for some free association! We turned an algorithm into a game by intro-
ducing a disturbing player modeling the action of a hostile environment. But we
can also disturb any game itself. One simple variant is as follows. Consider a
game tree, with one player for convenience – and at the start of each round, let
Blocker prune one game move from the tree. The effects of this local disturbance
are not so dramatic. One can still compute winning positions for Runner in the
original game tree, in the same inductive fashion as with Zermelo’s algorithm
for finding the winning player in finite game trees. The key observation is this:

Fact. At any game node, Runner has a winning strategy against Blocker iff
he has winning strategies in the subtrees for at least two of his moves.

From right to left, this is obvious, as Blocker can only affect at most one of those
subtrees in the first round, leaving Runner free to go to the other one. From left
to right, if there was at most one such subtree, then Blocker can cut the move
to that, and force Runner to choose a move to a losing position. The resulting
inductive algorithm for computing winning positions is about as simple as that
of Zermelo. But, our sabotaged graph tasks are not like this! Blocker removed an
edge from the graph, which cuts travel options for Runner at many stages in the
original search space. This is a global action, which amounts to pruning a whole
set of moves simultaneously from a game tree. The effects of this are not as easy
to compute inductively – again reflecting the essentially greater complexity of
the new game.

An Essay on Sabotage and Obstruction 273

Social Life and Coalition Logic

Sabotaging players also make sense in n-person games, whether removing single
moves or whole sets of them. The corresponding game transformation produces
an (n+1)-person game, and the above issue of winning or losing generalizes to
coalitional powers of groups of players, including Blocker. Here is an example:

����

����

����

����

�
�

�
�

�
�

�
�

B

1

B 2

win1

win1 win2 win1 win2

Working upward, inductively, one can compute forcing coalitions for any
proposition p. At bottom nodes satisfying p, these are the empty set of players
∅ and its supersets. At end nodes not satisfying p, no forcing coalition exists for
p. At higher nodes which are turns for player j , the rule is this:

Take all p-forcing coalitions that occur at daughters and add j to them.

To simplify the calculation, supersets may be suppressed here – as these represent
weaker derived powers of groups. For the above game tree, with p the predicate
win1, the minimal p-forcing coalitions would be:

����

����

����

����

�
�

�
�

�
�

�
�

{B}

{B,1}, {1, 2}

{B} {2}

∅

∅ – ∅ –

But the logic of sabotage supports more refined new notions, such as Blocker’s
being able to determine the outcome of the game – in the sense of being able
to make either player 1 or player 2 win. Also, players can make a pact with the
Devil, and oppose their old antagonists more effectively. Modern modal game
logics describe these complex statements of powers for individuals and coalitions
in a general way. With our earlier games on graphs G , such statements still
translate into first-order properties of G – and the earlier observation about
model checking still applies.

274 Johan van Benthem

Thus, after the game transformation, many interesting aspects of sabotage
become matters of coalitional game theory – and with graph games, even of
standard first-order logic.

Receptions, Circulation, and Pacts with the Devil

This mathematical calculus is closer to real life than you might think. Directors
of institutes like Jörg need the skill of circulation at receptions. Suppose there
are 5 positions, with your starting point at the black dot, and mine at the grey
one. At each round, we have to shift position: you move first, and I follow. One
important skill among academics of high standing is “meet” versus “avoid”. Here
is a picture of an initial situation plus the situation after one possible round:

�

�

�

�

�

�

�

�

Analysing the strategic situation, one easily finds the following three ‘powers’:

(a) You can force us to meet,
(b) I can force us to meet,

and therefore, none of us can force ‘avoidance’ – but still:
(c) You and I together can force us to avoid each other,

most easily by cycling back and forth at two disjoint links.

More spectacular avoidance strategies for one player against another occur
around cycles, much like sequences of running around obstacles in action movies.
Now introduce a Blocker who can take away links, say a manipulative host. The
new power structure will depend on the scheduling. Consider first a rule where
Blocker starts each round, then you, then me. Then it is easy to see that

Blocker can force us to meet, but also force avoidance.

He forces a meet by cutting links to decrease our room of manoevre, but still in
one connected component. He forces us to avoid each other by imprisoning us
inside disjoint components. Pacts with the devil make no sense here, as Blocker
controls all relevant outcomes anyway. With a rule: “First you, then me, then
Blocker”, you retain your earlier power to force a meet, Blocker can force the
same, and I have no significant powers. A pact with the devil does make sense
at the following reception:

An Essay on Sabotage and Obstruction 275

�

�

�

�

Neither you nor I alone have the power to force a meet here, or force avoid-
ance. But the coalition {you, me} can force a meet, and it can also force avoidance
– by both going to our nearest end-points: Blocker must then cut us off in the
middle. Also, in a pact with Blocker, each of us can force a meet, or avoidance.

These outcomes show that the above general Meet and Avoid strategies for
Blocker alone have their limitations. Still, it is easy to see that they will always
work if he has empty moves, allowing him to wait until we have made our com-
pulsory moves. Another aspect of social algorithmics is potential redesign. Once
powers for meeting and avoiding have been computed for a reception scheme, a
host might want to design simpler – perhaps cheaper – social events with the
same effect. Moreover, these are not mere formal phantasies. When the German
president von Weiszäcker visited Groningen University in the early 1980s, we
professors at his gala reception were all given a mathematical circulation dia-
gram with exact choreographic instructions on how to move from table to table.
I guess the much greater professionalism at our modern Dutch universities also
includes instructions on what to say. . .

The Meaning of Sabotage

Any algorithmic task can be ‘sabotaged’ to create real-life versions in a hostile
environment. This can be done by turning it into a game, which can be studied
by known techniques. Thus, in Clausewitz’ immortal phrasing, game theory is
“algorithmics pursued by other means”. But there are also other perspectives
on these phenomena. In particular, the logical model-checking angle suggests a
study of evaluation of first-order logic on structures which change under evalua-
tion. E.g., an object might become unavailable once drawn from the domain, or
a fact might change when inspected (think of measurement in quantum mechan-
ics). This would be like adding aspects of sabotage to logical evaluation games.
Finally, in the realities of modern transport, sabotage comes in a more global and
statistical fashion. Thus, we might also assume that Blocker is a blind opponent
cutting links with equal probability. This will generally improve the situation
for Runner, and one can use a Zermelo algorithm to compute his expected game
values, indicating the degree of deterioration from Runner’s prospects in the ini-
tial task. E.g., with a random Blocker, here is a piece of the game tree for the
second reception, whose schedule was ‘You, Me, Blocker ’:

276 Johan van Benthem

�

�

�

�

Blocker

�

�

�

�

1/4

→avoid
�

�

�

�

1/4

→avoid

�

�
1/4

→meet
�

�

�
1/4

You

You can force a meeting with
probability 1/2 by playing left

�

�

�

Me
�

�

�

→meet

You can force avoidance with
probability 2/3 by playing right

�

�

�

1/3
1/3

1/3

avoid avoid meet

Blocker

This is more like known tasks in Graph Theory, where random graph problems
may involve removal of nodes and edges. By contrast, our opponents in this essay
are maximally malevolent. More positively, canceled connections may come alive
again in the course of our trip when we add a third player ‘Deblocker’. Lots of
further complications to investigate! But then, the field is still young.

Even so, one deeper question remains. Why does the Dutch railway system
behave in its current erratic mode? Instead of thinking negatively about failure
and doom here, we can also think positively about the intentions of our political
leaders who govern it. For many centuries, the average member of our nation has
muddled through life in P-like, or at best NP-like patterns of behaviour. But
now, in the new millennium, the authorities have decided that we have reached a
new plateau of intelligence. The Dutch are ripe for PSPACE tasks, and we are
given a challenging chance to practice these. Similar encouraging experiences are
reported from the British Isles. This represents a new stage in human evolution,
and I am sure we will see many similar phenomena all across Europe soon!

Acknowledgment

Peter van Emde Boas and Hanno Hildmann provided indispensable support.

Postscript

In the few months between the first posting of this essay and publication, Christof
Löding and Philipp Rohde (RWTH Aachen) have answered the main complexity
question. Through an ingenious construction, sabotaged Graph Reachability and
Traveling Salesman both turn out PSPACE-hard on finite graphs.

Bridging Theorem Proving
and Mathematical Knowledge Retrieval

Christoph Benzmüller1, Andreas Meier1, and Volker Sorge2

1 FR 6.2 Informatik, Universität des Saarlandes,
Saarbrücken, Germany

{chris,ameier}@ags.uni-sb.de
2 School of Computer Science,
University of Birmingham, UK

V.Sorge@cs.bham.ac.uk

Abstract. Accessing knowledge of a single knowledge source with dif-
ferent client applications often requires the help of mediator systems as
middleware components. In the domain of theorem proving large efforts
have been made to formalize knowledge for mathematics and verification
issues, and to structure it in databases. But these databases are either
specialized for a single client, or if the knowledge is stored in a general
database, the services this database can provide are usually limited and
hard to adjust for a particular theorem prover. Only recently there have
been initiatives to flexibly connect existing theorem proving systems into
networked environments that contain large knowledge bases. An inter-
mediate layer containing both, search and proving functionality can be
used to mediate between the two.
In this paper we motivate the need and discuss the requirements for
mediators between mathematical knowledge bases and theorem proving
systems. We also present an attempt at a concurrent mediator between
a knowledge base and a proof planning system.

1 Introduction

When sharing knowledge of one database amongst several clients or when ac-
cessing several databases by one client it is often necessary to use mediators as
middleware components to tailor the provided knowledge to the particular needs
of an application. By assigning sharable functionalities into mediator services the
high costs of adapting both knowledge servers and requesting client applications
to their mutual needs can be avoided. While this insight has become common
ground in the development of large client-server systems, only recently a similar
phenomenon can be observed in the area of theorem proving.

For being effective tools theorem provers need to be provided with a fair
amount of knowledge. In particular interactive theorem provers require large
libraries of formalized mathematics or knowledge for verification issues. Building
these libraries is a time consuming and tedious activity. In large parts it is also
duplicated effort, since many problems require similar theories of basic concepts

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 277–296, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

278 Christoph Benzmüller, Andreas Meier, and Volker Sorge

and therefore most systems require the formalization of roughly equivalent basic
knowledge. Recent initiatives try to minimize the knowledge engineering effort
by sharing knowledge between different systems. This can be done directly or via
distributed networks in which broad knowledge bases of mathematical theories
are jointly developed and employed.

The integration of a shared database with one particular client theorem
prover can naturally not be as close as in an exclusive connection, where the
knowledge base is tailored explicitly for the needs of the particular theorem
prover. While the database can provide mainly syntax-based retrieval proce-
dures like regular expression search or simple matchings and unifications, it usu-
ally cannot deal with requests that need a semantic search possibly depending
on the particular nature and proof context of the requesting client. For instance,
it should be possible to retrieve from the database all facts – theorems, lem-
mas, definitions – containing a certain concept. However, it is unlikely that the
database can be queried for a theorem inferring a particular goal in question,
since this query also depends on questions such as: What is the logic and con-
sequence relation of the requesting system? What kind of unification is suitable
for the request? etc.

One solution to bridge the gap between theorem provers and knowledge base
is to inject an intermediate layer of mediator systems whose task is (1) to trans-
mit suitable queries to a knowledge base and (2) to adequately process the re-
ceived data for the needs of a requesting prover. In this paper we shall examine
the situation how knowledge is currently handled and processed in state-of-the-
art theorem proving systems. We shall further motivate the need for mediators
between mathematical knowledge bases and theorem proving systems and dis-
cuss the particular requirements for this kind of middleware components. Finally,
we present a first prototype implementation of a concurrent mediator between
a knowledge base and a proof planning system.

2 Mediating Mathematical Knowledge

The notion of a mediator was first introduced by Wiederhold [36] in the context
of general information systems. Mediators are motivated by the emerging gap
between the information requested by an application and the information avail-
able in distributed information sources: “Knowing that information exists, and is
accessible creates expectations by end-users. Finding that it is not available in a
useful form or that it cannot be combined with other data creates confusion and
frustration.” Wiederhold distinguishes three layers: the layer of databases and
information sources, the layer of independent applications, and between them
the layer of mediators where a mediator is a “software module that exploits en-
coded knowledge about some sets or subsets of data to create information for
a higher layer of applications”. Mediators thus make applications independent
of the particular information sources. Generally they comprise heterogeneous
functionalities such as transformation and subsetting from information sources,
methods to access and merge data from multiple information sources, compu-
tations that support abstraction and generalization over underlying data, and

Bridging Theorem Proving and Mathematical Knowledge Retrieval 279

methods to deal with uncertainty and missing data because of incomplete or
mismatched sources.

Two concrete mediator approaches are Tsimmis [30] and Komet [12]. In
Tsimmis so-called wrappers first convert data from each information source into
a common model; they also provide a common query language for information
extraction. A mediator now combines, integrates, or refines data from the wrap-
pers, providing applications with a “cleaner view”. The Mediator Specification
Language (MSL) is used to specify mediators declaratively. Similar to Tsimmis,
Komet is a shell for developing dedicated mediators by means of a declarative
language. Employing an annotated logic for the latter it is capable of performing
various types of reasoning.

The mentioned approaches address the general problem of information re-
trieval in distributed information sources. We will now shed some light on math-
ematical knowledge retrieval in current theorem proving or reasoning systems.

2.1 Current Systems

Traditional Automated Theorem Prover. The first automated theorem
proving systems were mainly designed as stand-alone systems not connected
to a database of mathematical knowledge such as theorems, lemmas, and def-
initions. Many modern systems such as Otter [25], Spass [35], Protein [4],
Setheo [24], Vampire [31], Bliksem [28], and Waldmeister [20] still follow
this tradition. In order to prove hard mathematical theorems T with these sys-
tems assumptions A1, . . . , An and probably some lemmas L1, . . . , Lm have to be
carefully chosen by the user in advance. Thus, the problem processed by the
prover is: A1 ∧ . . .∧An ∧L1 ∧ . . .∧Lm ⇒ T . Dynamic retrieval of further math-
ematical facts during proof search is not addressed in the traditional theorem
proving context.

An automated theorem prover that supports dynamic knowledge retrieval is
Tps [1], which is based on higher order mating search. Its dual instantiation
mechanism [8] dynamically requests definitions from Tps’s own library and ex-
pands them stepwise during proof search. Hence, the Tps user does not have
to decide in advance which definitions to expand (and which occurrences of a
definition to expand) since this is done by the system at runtime.

An independent library for traditional automated theorem provers is the
Tptp [33] library for first order problems. Tptp provides a common basis of
problems for the development and testing of automated theorem provers. Prob-
lems can be stored in a structured way with respect to their mathematical
domain and standard mathematical axiomatizations (e.g., equality axioms for
group theory etc.) are provided. New problems can inherit knowledge along the
existing structures. With the tptp2x utility the Tptp provides also some medi-
ator functionalities. The tptp2x utility converts Tptp problems from the Tptp
format to formats used by existing automated theorem provers (e.g., the Otter
format). However, dynamic retrieval of knowledge from Tptp during a proof
attempt has not been addressed yet in traditional automated theorem proving.

280 Christoph Benzmüller, Andreas Meier, and Volker Sorge

Interactive Theorem Prover. Interactive theorem proving environments for
mathematics or program verification usually closely integrate proof development
and proof manipulation facilities with a proof and knowledge maintenance sys-
tem in the background. They often provide elaborate mechanisms to maintain,
manipulate, and access highly structured knowledge. The knowledge is usually
encapsulated in mathematical theories consisting of definitions, axioms, lemmas,
and theorems and can be hierarchically arranged with the help of inheritance
mechanisms. For instance, a theory of state machines may be based on a theory
for integer arithmetic and lists. Additionally proofs and further domain depen-
dent knowledge such as specialized tactics or proof methods may be maintained.

Existing interactive theorem proving environments for mathematics and ver-
ification differ concerning how close the knowledge base is integrated. For in-
stance, in the latest Nuprl release, Nuprl LPE [32] (logical programming en-
vironment), the library is the central module. It contains definitions, theorems,
inference rules, meta-level code (e.g., tactics), and structure objects that can be
used to provide a modular structure for the library’s contents. A collection of in-
dependent, cooperating processes are centered around this library. They include
inference engines, user interfaces, rewrite engines, and translators.

While some other systems, like Pvs [29], follow a similar approach, there
are also systems in which the mathematical library has a less central function
and which realize a more loose integration of proof development and knowledge
maintenance. In Ωmega [5] the mathematical library originally also was inter-
woven with other parts of the system. In a recent reorganization of the system
it became an independent module.

Cooperating Reasoning Systems. In recent years many experiments to inte-
grate reasoning systems have been carried out. For such cooperations the sharing
and exchanging of mathematical knowledge is crucial.

One approach to make two systems cooperate is to transform the theory
libraries in the format of the one system into the format of the other system.
Then knowledge of the former system can be used in the latter system. For
instance, [21, 16] describe the cooperation of Nuprl and Hol [19]. Proofs are
developed in Nuprl employing Hol libraries and a connection between Nuprl’s
and some of Hol’s packages for adding constants, axioms, and theorems. Crucial
for this cooperation is the import of Hol theories into Nuprl such that the
Nuprl user gains full access to them. The main problem is the translation of
concepts in the logic of the one system into the logic of the other system.

Other approaches of cooperating systems do not transform concepts at the
theory level but do transform proofs. For instance, [9] describes the interface
between Hol and the proof planner Clam [10] which is a system specialized
on induction. Clam is treated as a black box to which Hol passes goals to be
proved automatically. The approach avoids the modification of Clam in order
to suit the classical higher order logic used in Hol. Instead, correspondences be-
tween mathematical knowledge and structures in both systems are established
and exploited. That is, both systems maintain their own database of definitions,
lemmas, induction rules, wave rules, etc. and corresponding concepts are identi-

Bridging Theorem Proving and Mathematical Knowledge Retrieval 281

fied by their names. When Clam returns a proof plan to Hol then the mapping
of the names is used to guide the construction of a corresponding proof in Hol.
A similar approach is also used in the interface between Ωmega and Tps [6].

Currently, there are no approaches of cooperating systems that rely on a
jointly developed, shared mathematical database. However, the described coop-
erations of Nuprl and Hol as well as Hol and Clam demonstrate that recent
approaches strive in this direction. In neither approaches is the knowledge trans-
lation done by independent mediators in the sense of Wiederhold, but instead
encoded in one or the other system. However, there are already independent me-
diators for translating proofs from more machine oriented calculi of automated
theorem provers into the more human oriented formalisms of interactive reason-
ing systems. A system specialized on this type of transformation is Tramp [26],
which translates the output of several automated theorem provers (e.g., Otter,
Spass, Waldmeister) for first order logic with equality into natural deduction
proofs at the assertion level.

General Mathematical Databases. There have also been approaches for
universal mathematical knowledge bases that are not connected to a particular
system but that want to offer the infrastructure for a repository of formalized
mathematics. Most notable is probably the Mizar library [34], which is being
assembled for more then two decades now. It contains more than 2 thousand
definitions of mathematical concepts and about 20 thousand theorems. The re-
trieval of these facts is mainly text-based and thus of rather limited use for a
concrete client theorem prover. Therefore, a suitable postprocessing of Mizar’s
data is always necessary to actually apply the collected knowledge.

Around 1994, the “Qed Manifesto” [2] was put forward, which advocates
building up a mathematical knowledge base as a kind of “human genome project”
for the deduction community. Unfortunately, the vision has failed to catch on in
spite of a wave of initial interest.

Only recently the mathematical library MBase [18] emerged as a spin-off
of the Ωmega system. The outsourcing of Ωmega’s database and its separa-
tion from the inference mechanisms of the system inspired the development of a
mathematical library that wants to serve as a distributed repository of mathe-
matical knowledge for other client systems as well. Thus, MBase is independent
of a particular deduction system or a particular logic. Although MBase aims
at providing elaborate, partially semantic-based retrieval facilities, it its current
state of development – the first working prototype has been released just recently
– it is difficult to assess whether this will be general enough to suit all the needs
of a requesting client.

Networks of Mathematical Systems. As the number of differently spe-
cialized reasoning systems is growing, the idea of cooperation between those
reasoners catches more and more on. This in turn has led to the development
of several networks that provide the necessary infrastructure to easily connect
different reasoning systems as distributed mathematical services. Examples of
system networks are Prosper [15], LogicBroker [3], and MathWeb [17].

282 Christoph Benzmüller, Andreas Meier, and Volker Sorge

The latter currently provides 22 mathematical services such as theorem provers,
Computer Algebra Systems, model generators, and also the prototype of the
MBase database.

It is predictable that in the future more and more systems will cooperate
and exchange mathematical knowledge via networks of mathematical services.
Reasoning systems will request knowledge fractions from shared databases and
probably add new or modify existing knowledge chunks. Hence mediating math-
ematical knowledge will become an increasingly important topic.

2.2 Mediating Requests for Applicable Assertions

In the rest of the paper we focus on the more concrete problem of mediating the
retrieval of applicable assertions. Assertion is a collective name for definitions,
theorems, and lemmas which we assume to be stored in a database. As part of
the mathematical theory assertions can be crucial information for the success of
a proof attempt of a theorem prover. For instance, the application of a suitable
assertion can dramatically ease and shorten the proof construction.

However, the search for applicable assertions is a non-trivial task. A database
may contain thousands of assertions, how can then the retrieval of applicable as-
sertions be efficiently realized? Somehow we have to filter and structure the
applicable assertions. Thereby, the potential filtering and structuring criteria
range from simple syntactic information to complex semantical properties. As
an example consider the proof goal |(f(x) + a)− (g(x) + a)| ≤ ε. The first infor-
mation we can use to filter assertions is the syntactic information of the occuring
defined symbols |.|, +,−, <. The symbols can be employed to identify assertions
containing at least one of these symbols where the most promising assertions
could be those who contain several of the defined symbols. Similarly, we can use
the information on the mathematical domains the investigated subgoal belongs
to. Thus in our case we would collect the assertions that belong to the domains
real or ordered fields. A stronger (i.e., more restricting) but more costly filter
criterion is to find all assertions which unify with the concrete proof goal. In
a higher order context or in case we are interested in theory unification (e.g.,
associativity, commutativity, and distributivity of ’+’), however, we then quickly
face undecidable filter criteria. Even more complex would be to identify all as-
sertions from that a goal is deducible with respect to further facts given in the
current proof.

Since filter and structuring criteria can become very complex and even un-
decidable the question is where those criteria should be applied? There are two
“extreme” scenarios:

In the Theorem Prover: The theorem prover requests once or even in each
proof step a set of potentially applicable assertions from the knowledge bases
using requests that are rely on mainly simple syntactical criteria. It then
structures the received, probably very heterogeneous data and analyses it-
self within its main theorem proving loop whether the candidate assertions
are indeed applicable. The applicable ones are then integrated as additional
hypotheses to be considered for the subproblem in the proof search.

Bridging Theorem Proving and Mathematical Knowledge Retrieval 283

In the Knowledge Base: The knowledge bases completely handle the search
for actually applicable assertions with respect to a proof context received
from a requesting theorem prover. Then they pass only the applicable as-
sertions to the theorem prover. A task that nevertheless remains for the
theorem prover is to structure and merge (e.g., remove duplicates) the as-
sertions received this way from different knowledge bases.

We argue that these two extreme scenarios are not suitable in a network of
heterogeneous reasoning systems and mathematical knowledge sources. The in-
terleaving of assertion filtering and structuring with the main theorem proving
loop in the first scenario is a rather ineligible option for both automatic and
interactive theorem proving. For non-trivial mathematical problems the sets of
potentially applicable assertions easily become very large. Consequently the ap-
plicability checks can dramatically slow down the theorem proving process. In
case of undecidable filter criterions the theorem prover would even have to de-
cide when to interrupt the filtering process. The second scenario, in which the
database does the main filtering and structuring, presupposes practically infea-
sible, complex, and logic and context sensitive search facilities in the knowledge
bases. That is, a knowledge base would have to support the different logics and
consequence relations of all requesting theorem provers. Another problem for
the knowledge bases is that numerous, simultaneous requests from different the-
orem provers could greatly reduce the performance of the knowledge base if too
complex or even undecidable filter criteria are employed.

Although the “extreme” scenarios would probably not exist in their pure
form, they demonstrate that both theorem provers and knowledge bases should
be kept free of the respective other’s task. In particular, to avoid adjusting
the theorem prover to the abilities of the database or, conversely, tuning the
knowledge retrieval for the needs of a particular theorem prover, we suggest
an intermediate layer of mediators to interface between theorem provers and
knowledge bases.

2.3 Requirements of a Mediator

Figure 1 depicts a mediator between a theorem prover and a database. Foremost,
the mediator acts as an interface and performs translation tasks. Therefore, the
theorem prover needs no knowledge about how to access the database; it only
has to pass queries to the mediator. The mediator creates then suitable requests
for the database. Moreover, the theorem prover does not have to accept the
data from the database in its actual formalism, rather the mediator can pass
data to the theorem prover in a suitable formalism. The interface functionality
on the one hand enables a database to serve several different client theorem
provers. On the other hand a single theorem prover can also easily access several
databases: The theorem prover has still to communicate via only one mediator,
which passes the requests of the mediator to the different databases in their
respective formalisms and returns the data of different databases to the theorem
prover in a unique formalism.

284 Christoph Benzmüller, Andreas Meier, and Volker Sorge

Theorem Prover: needs structured and adjusted data

syntactic filtering of dataDatabase:

heterogenous

data
’syntactic’ requests

uniform, adjusted
data

’semantic’ requests

Mediator: semantic filtering of data
collecting of data

structuring and unifying of data

Fig. 1. A mediator between theorem prover client and mathematical knowledge base.

Apart from the simple translation functionality, the mediator should also
combine data retrieval mechanisms with theorem proving functionality based
on the requirements of a requesting client. The mediator processes the data re-
trieved from the databases and provides elaborate filtering functionalities that
are adjusted to the particular needs of this theorem prover. Concretely it pro-
cesses the received data to identify portions that are suitable with respect to the
current proof context of the theorem prover. Therefore, information about the
logical context of the theorem prover is part of the request. The mediator can
then choose more appropriate semantic filters with respect to this information.
Additionally, the mediator can also combine heterogeneous subprocesses such
as structuring of the retrieved data, merging of data retrieved from multiple
databases (i.e, removal of duplications), support of abstraction and generaliza-
tion, dealing with inconsistent data, etc.

Note, that the picture in Fig. 1 gives a rather high-level view on the con-
nections between mediator, theorem prover, and database. It is reasonable to
have all three as separated processes, i.e., to enable the theorem prover to pro-
ceed with proof search without having to wait for the mediator to terminate
its search for applicable assertions. However, the boundaries between theorem
prover functionalities, mediator functionalities, and database functionalities in
concrete applications may not be as clear as in this picture. In general it is the
job of the mediator to apply elaborate filters as well as to structure and unify the
data. However, concrete theorem provers or databases may already offer some
if these functionalities (e.g., it is planned to implement a unification algorithm
with associativity and commutativity in MBase). In such a case the mediator
should know this and employ such facilities.

In our concrete scenario the mediator should request assertions from the
database and pass only applicable ones to the theorem prover. To check for the

Bridging Theorem Proving and Mathematical Knowledge Retrieval 285

applicability of theorems various algorithms can be employed, for instance, first-
and higher-order matching, first- and higher-order unification, restricted forms
of unification or matching such as higher-order pattern matching, theory unifi-
cation or matching where the considered theory depends on the incoming prob-
lem, other domain or theory specific algorithms and filters consisting of simple
deductive processes adjusted to the requesting theorem provers. The mediator
should have all these algorithms at its disposal; however, for concrete requests
it should be parameterizable. That is, information of the concrete algorithms it
should employ are part of a request of the theorem prover. Since some of the
algorithms are very complex or even undecidable the mediator should be able to
employ them concurrently. Then assertions whose applicability can be quickly
determined with simple, deterministic algorithms are not blocked by assertions
whose applicability test requires non-trivial computations or deductions. This
enables also an any-time character of the mediator; that is, the more time the
mediator has to compute a response the more and probably even better suited
assertions it can suggest.

In order to meet these requirements we propose a distributed, concurrent
architecture for the mediator. In the next section we shall present a first attempt
at such a mediator in a proof planning scenario.

3 An Example Architecture and Application

In this section we present the concrete implementation of a mediator between
a theorem prover and a mathematical database and its application in a proof
planning environment. We shall firstly introduce the particularities of assertion
applications in proof planning before we explain the adaption of the Ω-Ants [7]
suggestion mechanism to a distributed, concurrent mediator system and its con-
crete application to an example from finite algebra.

3.1 Motivation: Assertion Retrieval

Huang has identified the assertion level as a well defined abstraction level for
natural deduction proofs [22, 23]. Proofs at assertion level are composed of the
direct application of assertions, like theorems, axioms, and definitions.

To clarify the notion of assertion application we pick one of Huang’s examples
as given in [23]. An assertion application is for instance the application of the
SubsetP roperty

∀S1 ∀S2 S1 ⊂ S2 ≡ ∀x x ∈ S1 ⇒ x ∈ S2

in the following way:

a ∈ U U ⊂ F
a ∈ F

Assertion(SubsetP roperty)

The direct application of the assertion is thus an abbreviation for a more detailed
reasoning process on the calculus level; that is, the explicit derivation of the goal

286 Christoph Benzmüller, Andreas Meier, and Volker Sorge

a ∈ F from the two premises by appropriately instantiating and splitting the
SubsetP roperty assertion.

In the Ωmega system assertions are applied using a specialized Assertion
tactic. Its purpose is to derive a goal from a set of premises with respect to a
theorem or axiom. It thus enables the more abstract reasoning at the assertion
level with respect to given assumptions. We can depict the assertion tactic as a
general inference rule in the following way

P rems
Goal

Assertion(Ass)

where P rems is a list of premises, Goal is the conclusion and Ass is the assertion
that is applied.

3.2 Assertion Application in Proof Planning

Proof planning [11] considers mathematical theorem proving as planning prob-
lem where an initial partial plan is composed of the proof assumptions and the
theorem as open goal. A proof plan is then constructed with the help of abstract
planning steps, called methods, that are essentially partial specifications of tac-
tics known from tactical theorem proving. In order to ensure correctness, proof
plans have to be executed to generate a sound calculus level proof. The proof
planner generally follows a depth first or iterated deepening search strategy,
which can be guided by certain heuristics implemented in control rules. Meth-
ods are tested sequentially and if possible they are immediately applied. In case
the proof attempt gets stuck the planner backtracks.

Traditionally in proof planning assertions are applied using a generic method
which essentially corresponds to the proof rule displayed in the preceding section.
The number and types of assertions considered is usually heuristically limited by
a control rule. The method is applicable if one of the considered assertions is ap-
plicable to the given goal. In particular, assertions usually are applied backwards
in proof planning. That is, to close a goal the planner searches for an assertion
whose application to a set of premises deduces the goal; then the premises are
inserted as new subgoals. This requires that each assertion in question or at
least some part of it is matched with the current goal, which is usually done
sequentially, i.e., one by one. Assertions can be applied in different ways. For
instance, the assertion A ⇒ B can be applied backwards to reduce a goal that
matches with B to the new subgoal A or it can be applied backwards to reduce
a goal that matches with ¬A to a new subgoal ¬B when applied with respect
to its contrapositum. Thus, in order to be as complete as possible the asser-
tion method in Ωmega checks all possible directions in which assertions can be
applied where each check of a direction comprises a matching of the goal with
some parts of the assertion. Naturally, in order to keep method and thus asser-
tion application feasible, matching has to be restricted. For instance, the generic
method is equipped with a first order matching algorithm, only. However, there
can exist other, additional methods to apply theorems that are better tailored
to the needs of a specific set of assertions and hence can use more complicated,

Bridging Theorem Proving and Mathematical Knowledge Retrieval 287

albeit decisive algorithms for determining applicability. Apart from the decid-
ability problems and the lack of support for more complicated matching schemes
it is also quite infeasible to check applicability of a large number of assertions
in each step of the proof planning process: As discussed already in Sec. 2.2 the
applicability checks dramatically slow down the proof planning process.

A second drawback of the direct integration of assertion application into the
main proof planning process is the lack of flexibility to adjust the assertion ap-
plication to the state of the knowledge available. Usually, the proof planner has
heuristical information on what assertions it should consider when proof plan-
ning in a certain domain. This information is generally directly linked with the
knowledge base containing the assertions. Thus, the control unit of the proof
planner itself requests certain assertions regardless of the current state of the
knowledge base. While some of the requested assertions might not even be con-
tained in the knowledge base, there might be other more suitable ones that are,
however, not requested. Moreover, the extension of these heuristics is rather
cumbersome and again knowledge base dependent.

Therefore, an ideal support for the overall proof planning process is to have
a flexible mediator that adjusts itself both to the requirements of the proof
planner and the current state of the knowledge base. Moreover, the mediator
should free the proof planner from the encumbering task of constantly checking
the applicability of assertions in each single step.

3.3 Using Ω-ANTS as a Mediator

As a mediator between the proof planner and the knowledge base we employ the
hierarchical blackboard architecture Ω-Ants [7] which supports both distribu-
tion and concurrency.

Ω-Ants was originally conceived to support interactive theorem proving in
Ωmega. It provides the user with information about which inference steps are
applicable in the actual proof situation. In the Ω-Ants context, all inference
rules such as calculus rules, tactics, or planning methods are uniformly regarded
as sets of premises, conclusions, and additional parameters

P rems
Cons

I(P arams).

The elements of these three sets generally have some dependencies amongst
each other. To apply an inference rule at least some of its arguments have to be
instantiated by elements of the given proof context, where the arguments that
are actually instantiated determine the direction in which the inference rule is
applied. The task of the Ω-Ants architecture is now to determine the possible
applications of inference rules by computing instantiations for their arguments.

The architecture consists of two layers of blackboards: The lower layer of the
architecture consists of a set of rule blackboards, one for each inference rule. We
view the knowledge sources of these blackboards as society of agents (i.e., we
have one society for each inference rule) since they are realized in independent,
concurrent processes. Their task is to search the current partial proof for partial

288 Christoph Benzmüller, Andreas Meier, and Volker Sorge

Proof

Selector

and/or

User

Suggestions

Interactive

Rule 2

Rule 1

Rule 3

Rule 4

Rule 4

Rule 3

Rule 1

Partial

* *

**

Fig. 2. The original Ω-Ants architecture.

argument instantiations for the inference rule. They communicate via their rule
blackboard and can cooperate by adding further specification to a partial ar-
gument instantiation other agents have already placed on the blackboard. Each
rule blackboard is monitored by one agent that reports the heuristically prefered
partial argument instantiation to the suggestion blackboard, which comprises the
upper layer of the architecture. This blackboard accumulates a set of inference
rules that are applicable in the current proof state and which are subsequently
passed to the user.

A graphical representation of Ω-Ants architecture is given in Fig. 2. Agents
are displayed by circles, agent societies are grouped in elliptic frames, and black-
boards are displayed by boxes. In the figure the architecture is rotated; that is,
the lower layer with rule blackboards and their respective agent societies are on
the right hand side whereas the upper layer with the suggestion blackboard is
on the left hand side.

We adapt Ω-Ants to concurrently retrieve applicable assertions during proof
planning by distributing the applicability checks for sets of assertions to several
agents. Like in the original Ω-Ants architecture we want to compute, now in
particular argument instantiations for applicable assertions. Instead of a layer
of rule blackboards we provide for this a layer of assertion blackboards. Again
with each blackboard of this layer an agent society is associated. Moreover, with
each assertion blackboard a cluster of assertions is associated, which consists of
related assertions applicable to subgoals that share a certain property. The agent
society of an assertion blackboard is responsible to check the applicability of the
assertions belonging to its cluster. Thus the agents search both the current par-
tial proof and the associated assertion cluster. As in the original Ω-Ants system
they cooperate via the blackboards by exchanging partial argument instanti-
ations for assertion applications. Also similar to the original Ω-Ants system
complete argument instantiations are passed to the upper layer and then to the
proof planner.

Bridging Theorem Proving and Mathematical Knowledge Retrieval 289

find premises

find goal

match

retrieve

match

retrieve

Theorems

Axioms

Lem
m

ata

Definitions

Suggestions

* *

Proof

Planner

Assertion 1

Closed

Assoc

Partial Proof
Assertion 2

Assertion 3

Knowledge Base

Fig. 3. The use of Ω-Ants as a mediator.

Figure 3 shows the adapted architecture. It differs essentially from the orig-
inal architecture in the point that each agent society on the lower level has one
cluster of assertions associated. These clusters are depicted below the respective
agent societies and the single assertions are represented as diamonds.

Each agent society consists of three types of agents: one filter agent, one
or several retrieval agents, and one premise agent. During the proof planning
process, first the filter agents look-up the current partial proof and search for
open subgoals that could be suitable for their respective assertion cluster. If the
filter agent succeeds for a subgoal it places a partial argument instantiation on
its blackboard containing the subgoal as only element. For such entries on the
blackboard the retrieval agents become active, look-up the associated assertion
cluster, and attempt to find actually applicable assertions, which is usually done
with some matching algorithm that is part of the specification of the retrieval
agent. If retrieval agents are successful they suggest the matching assertions as
applicable and add the theorems to the partial argument instantiations. This
triggers the premise agent, which examines each suggested assertion if its ap-
plication will lead to new open subgoals. In this case the premise agent tries
to identify whether the proof context already contains presuppositions that can
justify the premises of the assertion. Complete argument instantiations are then
passed as suggestions to the proof planner. Each individual suggestion contains
information on the investigated subgoal, an identified applicable assertion, and
presuppositions justifying the premises of the assertion.

Filter agent and retrieval agents enable a separation of simple and difficult
tests. The filter agent usually performs only simple checks, for instance, whether
a goal contains a certain concept such that the assertions in the cluster deal with
this concept. The retrieval agents employ more expensive applicability checks
such as first order matching, higher order matching, or even full higher order
theorem proving. This separation of pre-selection of goals by the filter agent and
the main check by the retrieval agents prevents the application of complicated

290 Christoph Benzmüller, Andreas Meier, and Volker Sorge

matchings and unifications to check the applicability of assertions to goals which
obviously will fail. Moreover, a society can have more then one retrieval agent,
which can employ different algorithms and are possibly considering different
subsets of assertions. This is sketched in Fig. 3 by the two subclusters that
comprise the upper assertion cluster. Different retrieval agents allow for further
separation of simpler and more complicated checks. Since all agents are separate
processes simple checks are not blocked by complicated checks that get stocked.

The retrieval agents comprise a further functionality, they establish the in-
terface to the database and form the associated clusters of assertions dynam-
ically at runtime. Technically, this is realized as follows: Each retrieval agent
is equipped with specifications about the type of assertions it can process. At
runtime the retrieval agent sends a request to the knowledge base to receive a
set of assertions that comply with the specification. This request can be adapted
to the format and abilities of the respective contacted database. Furthermore,
selecting the assertions via specifications enables a more refined selection of as-
sertions and makes this selection independent of explicit references to assertions
or a particular database. The database queries are periodically repeated so when
new assertions become available they are automatically fitted into the existing
clusters.

The adapted Ω-Ants architecture as mediator combines both theorem prov-
ing and database functionality. On the one hand the filter and premise agents
search in the given partial proof on the theorem prover side. On the other hand
the retrieval agents request assertions from the knowledge base and model ad-
vanced, theorem prover dependent retrieval functionality. However, while the
formation of theorem clusters is already a dynamic process the agents them-
selves have to be explicitly specified.

3.4 A Concrete Application

The example we present is taken from a case study on the proofs of properties
of residue classes. In this case study we apply Ωmega’s proof planner to classify
residue class sets over the integers together with given binary operations in terms
of their basic algebraic properties. The case study is described in detail in [27].
We concentrate here on how Ω-Ants determines the applicability of assertions
in this context. We consider the first step in the proof of the theorem

Conc. 	 Closed(ZZ5, λx λy (x∗̄y)+̄3̄5).
It states that the given residue class set ZZ5 is closed with respect to the operation
λx λy (x∗̄y)+̄3̄5. Here ZZ5 is the set of all congruence classes modulo 5, i.e.,
{0̄5, 1̄5, 2̄5, 3̄5, 4̄5}. ∗̄ and +̄ are the multiplication and addition on residue classes.

Among the theorems we have for the domain of residue classes there are some
that are concerned with statements on the closure property. In particular, we
have the following six theorems:

ClosedConst : ∀n:ZZ ∀c:ZZn Closed(ZZn, λx λy c)
ClosedF V : ∀n:ZZ Closed(ZZn, λx λy x)
ClosedSV : ∀n:ZZ Closed(ZZn, λx λy y)

Bridging Theorem Proving and Mathematical Knowledge Retrieval 291

ClComp+̄ : ∀n:ZZ ∀op1 ∀op2 (Closed(ZZn, op1) ∧Closed(ZZn, op2))⇒
Closed(ZZn, λx λy (x op1 y)+̄(x op2 y))

ClComp−̄ : ∀n:ZZ ∀op1 ∀op2 (Closed(ZZn, op1) ∧Closed(ZZn, op2))⇒
Closed(ZZn, λx λy (x op1 y)−̄(x op2 y))

ClComp∗̄ : ∀n:ZZ ∀op1 ∀op2 (Closed(ZZn, op1) ∧Closed(ZZn, op2))⇒
Closed(ZZn, λx λy (x op1 y)∗̄(x op2 y))

The theorems ClosedConst, ClosedF V , and ClosedSV talk about residue
class sets with simple operations whereas ClComp+̄, ClComp−̄, and ClComp∗̄
are concerned with combinations of complex operations. The difference between
the groups of theorems is that the applicability of the former can be checked with
slightly adapted first order matching whereas for the latter we need higher order
matching. For example, when applying the theorem ClComp+̄ to our problem
at hand the required instantiations are op1 ← λx λy x∗̄y and op2 ← λx λy 3̄5,
which cannot be found by first order matching. However, since we are concerned
only with a distinct set of binary operations and their combinations, we can
keep things decidable by using a special, decidable algorithm, which matches the
statements of the theorems ClComp+̄, ClComp−̄, and ClComp∗̄ with nested
operations on congruence classes.

In Ω-Ants we have the agent society as depicted in Figure 4 for the cluster
comprising the theorems given above. The filter agent F searches for possible
conclusions that contain an occurrence of the Closed predicate. F writes respec-
tive suggestions of goals to the blackboard. We then have two retrieval agents,
R1 and R2, that try to match the theorems. R1 tries to match the theorems
ClosedConst, ClosedF V , and ClosedSV to the formulas suggested by F us-
ing first order matching. R2 uses the special algorithm instead of matching the
theorems ClComp+̄, ClComp−̄, and ClComp∗̄ conventionally. R1 and R2 have
additional acquisition predicates specifying that the agents can acquire theorems
whose conclusions have Closed as the outermost predicate. R1 furthermore re-
quires that the theorem conclusion contains a simple, constant operation while
R2 expects a complex operation. The acquisition predicate serves to retrieve
appropriate theorems from the knowledge base initially and dynamically at run-
time if new theorems are added. R1 and R2 place new extended suggestions on
the blackboard for each applicable theorem they detect. The last agent is the

F = { Goal: Goal contains the Closed predicate}

R1 = { Thm: Conclusion matches Goal with first order matching}{
Acquisition: Conclusion contains Closed as outermost

predicate and a constant operation

}
R2 = { Thm: Conclusion matches Goal with special algorithm}{

Acquisition: Conclusion contains Closed as outermost
predicate and a binary operation

}
P = { Prem: The nodes matching the premises of Thm}

Fig. 4. Agent society for the Closed theorem cluster.

292 Christoph Benzmüller, Andreas Meier, and Volker Sorge

premise agent P, which has an algorithm to extract the necessary premises from
a theorem suggested by R1 or R2, if there are any. For instance, if the ClComp+̄
theorem has been successfully matched the agent would extract the succedent
of the implication (i.e., Closed(ZZn, op1)∧Closed(ZZn, op2)) as well as the single
conjuncts comprising the succedent. The agent P then tries to find appropriate
lines in the current proof containing these premises.

For our concrete example theorem the information that accumulates on the
command blackboard for the Closed theorem cluster is as follows:

Closed Closed

(Goal:Conc)

Closed

(Goal:Conc)
(Goal:Conc, Thm:ClComp+̄)

First F detects an occurrence of the Closed predicate in the given goal Conc
and adds an entry suggesting it as instantiation for Goal to the blackboard.
With this entry, R1 and R2 start matching their respective theorems to Conc.
R2 is successful with the ClComp+̄ theorem and adds the matched theorem as
suggestion. Then P starts its search; for our example it is looking for premises
of the form Closed(ZZ5, λx λy 3̄5) and Closed(ZZ5, λx λy x∗̄y).

4 Outlook

This paper discussed the possible role of mediators between theorem provers
and mathematical knowledge bases. Mediators should provide all kinds of func-
tionalities that neither can be provided by general, shared databases nor should
be integrated in the main proving process of client theorem provers. As a first
attempt at a concrete mediator system we have presented an adaptation of the
Ω-Ants blackboard architecture to retrieve applicable assertions for Ωmega’s
proof planner. The architecture combines both theorem proving and database
functionality. Moreover, it enables concurrent computations and supports any-
time character in the way that applicable assertions are immediatly reported
to the theorem prover before all computations are finished. However, the ar-
chitecture is only partly parametrizable and flexible. In particular, agents have
to be specified and arranged explictly. The developer of the Ω-Ants mediator
has to specify which matching and unification algorithms are applied via agents
to which assertions (that are collected also via the agents). That is, the agents
can not arrange flexibly to new societies. Thus the Ω-Ants mediator can not
process new assertions that do not fit into the existing societies. One way to
overcome this, is to develop more general specifications how to identify applica-
ble assertions and to parameterize these, for instance, with respect to a given
mathematical theory.

Related to our assertion retrieval scenario is the work of Dahn et al. [14]. They
apply the Ilf system [13] to equip the Computer Algebra System Mathematica
[37] with the possibility to retrieve theorems from a part of the mathematical
library of Mizar. The approach is motivated by the observation that an ordinary

Bridging Theorem Proving and Mathematical Knowledge Retrieval 293

search for text strings is an unsatisfactoring retrieval approach since the theorem
might be stated slightly different in the database (e.g., different variable names)
or it might merely be inferable from other theorems and simple properties. Dahn
et al. therefore employ Ilf as a mediator that performs a semantical search for
suitable theorems supported by the first order provers connected to it. For this,
first a set of candidate theorems is selected based on the signature of the request
using conventional database techniques. The candidates are then extended by
some auxiliary axioms and several provers are started competetively to prove
that the requested theorem follows from the extended set. If a proof is found it
is inspected to determine the library theorems actually used in it.

While the work has a different direction with respect to the actual use of the
retrieved mathematical knowledge it nevertheless complys with our desiderata
for mediator systems. The motivation is to remedy the shortcomings of current
mathematical knowledge bases and the standard database retrieval is indeed
enhanced using more elaborate, in particular theorem proving, techniques.

Apart from the context of theorem proving, mediators can also be used to
make mathematical knowledge available to a wide range of other applications
such as Computer Algebra Systems, tutor systems, electronic publishing, web
browsers, or even human mathematicians. Mathematical knowledge management
and its application is a field that is just emerging and we believe that the design
and implementation of mediator systems will play an important role in this field.

Acknowledgements

We would like to thank Thomas Hillenbrand and Andrew Adams who provided
us with insights into the working of some of the cited systems.

References

1. Peter B. Andrews, Matthew Bishop, and Chad E. Brown. TPS: A theorem proving
system for type theory. In D. McAllester, editor, Proceedings of the 17th Interna-
tional Conference on Automated Deduction, number 1831 in LNAI, pages 164–169,
Pittsburgh, 2000. Springer.

2. Anonymous. The qed manifesto. In A. Bundy, editor, Proceedings of the 12th
International Conference on Automated Deduction, number 814 in LNAI, pages
238–251, Nancy, 1994. Springer.

3. Alessandro Armando and Daniele Zini. Towards interoperable mechanized reason-
ing systems: the logic broker architecture. In A. Poggi, editor, Proceedings of the
AI*IA-TABOO Joint Workshop ‘From Objects to Agents: Evolutionary Trends of
Software Systems’, Parma, Italy, 2000.

4. P. Baumgartner and U. Furbach. PROTEIN: A prover with a theory extension
interface. In A. Bundy, editor, Proceedings of the 12th International Conference on
Automated Deduction, number 814 in LNAI, pages 769–773, Nancy, 1994. Springer.

5. C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,
M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siekmann,
and V. Sorge. ΩMega: Towards a Mathematical Assistant. In W. McCune, editor,
Proceedings of the 14th International Conference on Automated Deduction, volume
1249 of LNAI, pages 252–255. Springer, 1997.

294 Christoph Benzmüller, Andreas Meier, and Volker Sorge

6. Christoph Benzmüller, Matthew Bishop, and Volker Sorge. Integrating tps and
Ωmega. Journal of Universal Computer Science, 5(3):188–207, March 1999. Spe-
cial issue on Integration of Deduction System.

7. Christoph Benzmüller and Volker Sorge. Critical Agents Supporting Interactive
Theorem Proving. In P. Barahona and J. J. Alferes, editors, Progress in Artifi-
cial Intelligence, Proc. of the 9th Portuguese Conference on Artificial Intelligence
(EPIA-99), volume 1695 of LNAI, pages 208–221, Évora, Portugal, 21–24, Septem-
ber 1999. Springer.

8. Matthew Bishop and Peter Andrews. Selectively instantiating definitions. In
C. Kirchner and H. Kirchner, editors, Proceedings of the 15th International Con-
ference on Automated Deduction, volume 1421 of LNAI, pages 365–380. Springer,
1999.

9. Richard Boulton, Konrad Slind, Alan Bundy, and Mike Gordon. An interface
between CLAM and HOL. In J. Grundy and M. Newey, editors, Proceedings of
the 11th International Conference on Theorem Proving in Higher Order Logics,
number 1479 in LNCS, pages 87–104, Canberra, 1998. Springer.

10. A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments with proof
plans for induction. Journal of Automated Reasoning, 7:303–324, 1991.

11. Alan Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In Ewing L. Lusk
and Ross A. Overbeek, editors, Proceedings of the 9th International Conference on
Automated Deduction (CADE–9), volume 310 of LNCS, pages 111–120, Argonne,
Illinois, USA, 1988. Springer Verlag, Berlin, Germany.

12. J. Calmet, S. Jekutsch, P. Kullmann, and J. Schü. KOMET: A system for the
integration of heterogenous information sources. In Proceedings of the 10th Inter-
national Symposium on Methodologies for Intelligent Systems (ISMIS), 1997.

13. B. I. Dahn, J. Gehne, Th. Honigmann, and A. Wolf. Integration of automated and
interactive theorem proving in ilf. In W. McCune, editor, Proceedings of the 14th
International Conference on Automated Deduction, volume 1249 of LNAI, pages
57–60. Springer, 1997.

14. Ingo Dahn, Andreas Haida, Thomas Honigmann, and Christoph Wernhard. Using
mathematica and automated theorem provers to access a mathematical library. In
Proceedings of the CADE-15 Workshop on Integration of Deductive Systems, 1998.

15. Louise A. Dennis, Graham Collins, Michael Norrish, Richard Boulton, Konrad
Slind, Graham Robinson, Mike Gordon, and Tom Melham. The prosper toolkit.
In Proceedings of the Sixth International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS-2000, LNCS, Berlin, Germany,
2000. Springer Verlag.

16. Amy Felty and Douglas Howe. Hybrid interactive theorem proving using Nuprl
and HOL. In W. McCune, editor, Proceedings of the 14th International Conference
on Automated Deduction, number 1249 in LNAI, pages 351–365, Townsville, 1997.
Springer.

17. A. Franke and M. Kohlhase. MATHWEB, an agentbased communication layer for
distributed automated theorem proving. In Harald Ganzinger, editor, Proceedings
of the 16th International Conference on Automated Deduction, volume 1631 of
LNAI, pages 217–221, Trento, 1999. Springer.

18. A. Franke and M. Kohlhase. MBase: representing mathematical knowledge in a
relational data base. In D. McAllester, editor, Proceedings of the 17th Interna-
tional Conference on Automated Deduction, volume 1831 of LNAI, pages 455–459,
Pittsburgh, 2000. Springer.

19. Mike J. C. Gordon and Tom F. Melham. Introduction to HOL. Cambridge Uni-
versity Press, Cambridge, United Kingdom, 1993.

Bridging Theorem Proving and Mathematical Knowledge Retrieval 295

20. Thomas Hillenbrand, Andreas Jaeger, and Bernd Loechner. WALDMEISTER:
Improvements in performance and ease of use. In H. Ganzinger, editor, Proceedings
of the 16th International Conference on Automated Deduction, number 1632 in
LNAI, pages 232–236, Trento, 1999. Springer.

21. Douglas J. Howe. Importing mathematics from HOL in Nuprl. In J. von Wright,
J.Grundy, and J. Harrison, editors, Proceedings of Theorem Proving in Higher
Order Logics, number 1125 in LNCS, pages 267–282. Springer, 1996.

22. X. Huang. Human Oriented Proof Presentation: A Reconstructive Approach. PhD
thesis, Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, Germany,
1994.

23. X. Huang. Reconstructing Proofs at the Assertion Level. In A. Bundy, editor,
Proceedings of the 12th International Conference on Automated Deduction, number
814 in LNAI, pages 738–752, Nancy, 1994. Springer.

24. R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A high performance
theorem prover. Journal of Automated Reasoning, 8(2):183–212, 1992.

25. William McCune. OTTER 2.0. In M. Stickel, editor, Proceedings of the 10th
International Conference on Automated Deduction, number 449 in LNAI, pages
663–664, Kaiserslautern, 1990. Springer.

26. Andreas Meier. TRAMP: Transformation of Machine-Found Proofs into Natural
Deduction Proofs at the Assertion Level. In D. McAllester, editor, Proceedings of
the 17th International Conference on Automated Deduction, volume 1831 of LNAI,
pages 460–464, Pittsburgh, USA, 2000. Springer, Germany.

27. Andreas Meier, Martin Pollet, and Volker Sorge. Classifying Isomorphic Residue
Classes. In R. Moreno-Diaz, B. Buchberger, and J.-L. Freire, editors, A Selection of
Papers from the 8th International Workshop on Computer Aided Systems Theory
(EuroCAST 2001), volume 2178 of LNCS, pages 494 – 508, Las Palmas, Spain,
2001. Springer.

28. H. De Nivelle. Bliksem 1.10 User Manual. MPI Saarbruecken, 1999.
29. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In

D. Kapur, editor, Proceedings of the 11th International Conference on Automated
Deduction, number 607 in LNAI, pages 748–752, Saratoga Springs, 1992. Springer.

30. Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. Medmaker: A mediation
system based on declarative specifications. In Proceedings of the 12th International
Conference on Data Engineering, pages 132–141. IEEE Computer Society, 1996.

31. Alexandre Riazanov and Andrei Voronkov. VAMPIRE. In H. Ganzinger, editor,
Proceedings of the 16th International Conference on Automated Deduction, number
1632 in LNAI, pages 292–296, Trento, 1999. Springer.

32. S.Allen, R. Constable, R. Eaton, C. Kreitz, and L. Lorigo. The nuprl open logical
environment. In D. McAllester, editor, Proceedings of the 17th International Con-
ference on Automated Deduction, volume 1831 of LNAI, pages 170–176, Pittsburgh,
2000. Springer.

33. Geoff Sutcliffe, Christian Suttner, and Theodor Yemenis. The TPTP problem
library. In A. Bundy, editor, Proceedings of the 12th International Conference on
Automated Deduction, number 814 in LNAI, pages 252–266, Nancy, 1994. Springer.

34. Andrzej Trybulec and Howard Blair. Computer Assisted Reasoning with MIZAR.
In Aravind Joshi, editor, Proceedings of the 9th International Joint Conference on
Artificial Intelligence (IJCAI), pages 26–28, Los Angeles, CA, USA, August 18–23
1985. Morgan Kaufmann, San Mateo, CA, USA.

296 Christoph Benzmüller, Andreas Meier, and Volker Sorge

35. Christoph Weidenbach, Bijan Afshordel, Uwe Brahm, Christian Cohrs, Engel
Thorsten, Enno Keen, Christian Theobalt, and Dalibor Topic. SPASS version
1.0.0. In H. Ganzinger, editor, Proceedings of the 16th International Conference
on Automated Deduction, number 1632 in LNAI, pages 378–382, Trento, 1999.
Springer.

36. Gio Wiederhold. Mediators in the architecture of future information systems. IEEE
Computer, 25(3):38–49, 1992.

37. Stephen Wolfram. The Mathematica Book. Cambridge University Press, fourth
edition edition, 1999.

Formal Description of Natural Languages:
An HPSG Grammar of Polish

Leonard Bolc

Institute of Computer Science,
Polish Academy of Sciences, Warsaw

1 Introduction

In this paper we present a Head-driven Phrase Structure Grammar (HPSG)
grammar of Polish – the result of one of the few attempts (e.g., [Szp86], [Świ92])
to build formal and computationally tractable grammars of Polish. The choice of
the formalism used was motivated by several promising features of the formalism
which we will present shortly.

The research concerning HPSG description of Polish started in 1994, when
members of the Linguistic Engineering Group of Institute of Computer Science,
Warsaw, have undertaken research aimed at the description of the large subset of
Polish syntax in the terms of this formalism. At the beginning of the work sepa-
rate syntactic issues were worked up and some theories based on the fundamental
HPSG theory described in [PS94] were formulated. The need of the coherent the-
ory of Polish syntax which can become a foundation of the implementation of
a relatively large Polish grammar led to further work aimed at integration of
all subtheories. The effect of these efforts is the book “Formalny opis j ↪ezyka
polskiego. Teoria i implementacja” (Formal description of Polish. Theory and
implementation.) by Adam Przepiórkowski, Anna Kupść, Ma�lgorzata Marciniak
and Agnieszka Mykowiecka. This paper is a short presentation of the results of
the efforts to describe Polish within HPSG formalism included in that book.

HPSG was developed as a comprehensive linguistic formalism for work on
syntax, morphology and semantics, as well as phonology and pragmatics. It is a
monostratal theory of language: there are no derivations transforming one gram-
matical structure into another. Any grammatical structure is well-formed if it
simultaneously satisfies all constraints that the grammar imposes. Further, all
constraints are local, limited to one structure at a time. HPSG puts emphasis
on explicitness and precision, its linguistic analyses are couched in a mathemat-
ical formalism with well-defined syntax and model-theoretic semantics. Because
of this explicitness and formality, HPSG has become one of the most popular
linguistic formalisms in computational linguistic applications and this is one of
the most important reasons why we have chosen it in our work.

HPSG is a linguistic formalism, i.e., a set of formal tools for formalising
linguistic analyses of various phenomena, but it is also a linguistic theory, i.e.,
a collection of analyses of various phenomena described using this formalism. In
this work we accept the main ideas of the formalism but at the same time we

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 297–320, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

298 Leonard Bolc

introduce some changes in the theory itself and in ways of representing particular
aspects of the linguistic constructs.

HPSG grammars consist of a signature and a theory proper. The theory is
a set of constraints that all objects in the model must simultaneously satisfy.
The signature defines what types of objects there are (e.g., verbs, nouns, cases,
genders) and what features they may have (e.g., verbs have person but not case,
nouns have case, genders are atomic objects, i.e., do not have any features). In
particular all linguistic expressions are represented by objects of the type sign
having two subtypes: phrase and word.

The next part of any HPSG theory is a set of constraints. The most famous
HPSG constraint is the Head Feature Principle, a version of which is given in (1).

(1) phrase →
[
synsem|local|cat|head 1

head-dtr|synsem|local|cat|head 1

]
Head Feature Principle is an implicational constraint: every object that is

characterised by the left-hand side of ‘→’ must also be characterised by the
right-hand side. In this particular case, every object of type phrase must be such
that the value of its synsem|local|cat|head attribute is also the value of the
synsem|local|cat|head attribute of its head daughter. The tag ‘ 1 ’ is just a
variable used for indicating equality between paths.

We will not introduce here the HPSG theory itself, the reader is referred
to [PS94]. We will focus on presenting new elements of the theory and their
interpretation.

2 Modifications of the Standard Theory

2.1 “Flat” Phrase Structure

According to the generally accepted assumption, in HPSG (and in other gen-
erative formalisms) the head element (e.g., verb powiedzia�l ’told’) takes first
its complements (e.g., noun Annie ’Ann’ and prepositional phrase o koncercie
’about the concert’) forming almost saturated phrase, e.g., verb phrase powiedzia�l
Annie o koncercie ’told Ann about the concert’. Then this phrase takes the sub-
ject and forms a saturated phrase, i.e., a structure with empty valence lists subj
and comps, e.g., a clause Tomek powiedzia�l Annie o koncercie (see (2) below).

(2) subj-phrase

�����

�����

Tomek
Tom

comps-phrase

�����

�����

powiedzia�l
told

Annie
Ann

comps-phrase
�� ��
o

about
koncercie

the concert

Formal Description of Natural Languages: An HPSG Grammar of Polish 299

Arguments for two stages’ phrase construction, that is separate realisation of
subject and complements, are not sufficiently convincing for Polish. There is no
place here for a detailed discussion of the subject (such a discussion can be found
in [PKMM01]), so we present only examples (3) showing that in Polish there are
no order rules supporting the distinction between the subject and complements.
Sentences in which the subject is realised ‘closer’ to a verb than its complement
are quite frequent in Polish.

(3) a. Pwiedzia�l Tomek Annie o koncercie.
b. O koncercie powiedzia�l Annie Tomek.
c. Annie Tomek powiedzia�l o koncercie.

Consequently, we assume that all arguments of a head are syntactically re-
alized at the same level of phrase structure. As a result, phrase structures are
flat, as in (4) below, and there is no need for the distinction between types
subj-phrase and comps-phrase.

(4) phrase

��������

�
��

�
��

��������

Tomek
Tom

powiedzia�l
told

Annie
Ann

phrase
�� ��
o

about
koncercie

the concert

The next assumption made by us about the construction of phrases is the
constraint imposed on the types of phrase elements. It states that the head
element of the phrase should be a word (not a phrase) while the elements of the
nonhd-dtrs list should be phrases (not words). This assumption is formalised
in the hierarchy of the sign type below, (5).

(5)
[
sign

phon list(orth)
synsem synsem

]

����
����

word
[
phrase

hd-dtr word
nonhd-dtrs list(phrase)

]

The above assumption allows for eliminating redundant parses which differ
only in treating a particular input element as a word or as a (one word) phrase.
At the same time, it imposes the simultaneous realisation of all the arguments.
For example, the only parse tree for the sentence Tomek powiedzia�l Annie o
koncercie will be the that given in (6).

300 Leonard Bolc

(6)
[
phrase

phon 〈Tomek powiedzia�l Annie o koncercie〉

]

������������

�
�

�
�

�
�

�
�

������������

nonhd-dtr[
phrase

phon 〈Tomek〉

]
hd-dtr[

word

phon 〈Tomek〉

]

hd-dtr[
word

phon 〈powiedzia�l〉

] nonhd-dtr[
phrase

phon 〈Annie〉

]
hd-dtr[

word

phon 〈Annie〉

]

nonhd-dtr[
phrase

phon 〈o koncercie〉

]
����

����

hd-dtr[
word

phon 〈o〉

] nonhd-dtr[
phrase

phon 〈koncercie〉

]
hd-dtr[

word

phon 〈koncercie〉

]
The changes just introduced allow for the simpler formulation of the Valence

Principle. As all head’s arguments have to be satisfied simultaneously, the value
of the phrases’ valence attribute has to be an empty list. Thus, it turns out
that for phrases this attribute is not necessary at all. So, we introduce it only
for objects of the type word (to do so, we must change the place of introducing
this attribute to the highest level within the word structure). Since we proposed
not to distinguish subjects and complements at the phrase structure level, the
division of a valence list into subj and comps attributes is no longer necessary
– the valence attribute simply has a list of synsems as its value:

(7)
[
word

valence list(synsem)

]
The above changes make it possible to express the Valence Principle in the

following way:

(8) Valence Principle

phrase →
[
hd-dtr|val 1

nonhd-dtrs 2

]
∧ synsems-signs(1, 2).

(9) synsems-signs(<>,<>).

synsems-signs(< 1| 2>,< 1′ | 2′ >)
∀⇐=

1′ =

[
sign

synsem 1

]
∧ synsems-signs(2, 2′).

In particular, the Valence Principle requires that the head element has the
valence attribute, so it automatically excludes phrases as head elements.

Formal Description of Natural Languages: An HPSG Grammar of Polish 301

2.2 The Correspondence Between ARG-ST and VALENCE

In this subsection we will describe the relation between valence and arg-st
attributes. First, although we think that the distinction between subjects and
complements plays no role in describing the structure of sentences, it is important
for describing some language phenomena, such as agreement, case assignment or
binding theory. Since these phenomena are accounted for with the help of the
arg-st attribute, we re-introduce the subject/complements distinction at the
level of arg-st list and posit that values of this argument be structures of the
following arg-st type:

(10)
[
arg-st

subj list(synsem)
args list(synsem)

]

The next change concerning argument structure description concerns defin-
ing the arg-st attribute within the head structure. Consequently, the arg-st
attribute is now defined not only for words but also for phrases (a detailed
discussion concerning this problem may be found in [Prz01]).

(11)
⎡⎢⎢⎢⎣
category

head

⎡⎢⎣headarg-st

[
arg-st

subj list(synsem)
args list(synsem)

]⎤⎥⎦
⎤⎥⎥⎥⎦

Attributes arg-st (subj and args) and valence include similar but not
necessarily the same elements. On the valence list we put those elements from
the arg-st|subj and arg-st|comps lists which are realised in the local syn-
tactic tree, while on the arg-st lists all predicate arguments, even those not
syntactically realised, are present. These non realised arguments can be of three
following kinds:

– dummy subject of personal verb forms (pro),
– subject of non personal verb forms (e.g., inifinitive ogolić si ↪e in (12) or

participle myśl ↪ac w (13)).
(12) Kaza�l Tomkowi si ↪e ogolić. He told Tom to shave himself.
(13) Jad�la myśl ↪ac o swojej przysz�lości. She ate thinking about her future.

– arguments of verbs located ‘lower’ in the syntactic tree realised ‘higher’ in the
syntactic structure, e.g., a complement of the verb zaprosić in (14) realised
‘higher’ as a interrogative pronoun or a subject realised in (15) as a relative
pronoun który. Such non-locally realised arguments are called gaps.
(14) Kogo

Who
chcia�leś,
you wanted

żebym
that

zaprosi�l
me invited

?

‘Who did you want me to invite?’
(15) . . . facet,

. . . guy
który
who

chcia�lam,
I wanted

żeby
that

przyszed�l.
came

‘. . . a guy whom I wanted to come’

302 Leonard Bolc

To allow for nonlocal arguments we introduce (after [MS97], [Sag97] and
[BMS01]) two subtypes of the synsem type: canonical-synsem (canon-ss), rep-
resenting arguments which are locally realised, and noncanonical-synsem (non-
canon-ss), representing non-realised arguments.

(16) synsem

��� ���

canon-ss noncanon-ss

We require that values of the synsem attribute be of the canon-synsem type,
see (17). This will cause all valence elements to have their synsem values of
the type canon-synsem, so objects of the noncanon-synsem can appear only on
the arg-st lists.

(17)
[
sign

phon list(orth)
synsem canon-ss

]

A revised version of Argument Structure Principle is given below1:

(19) Argument Structure Principle

word →

⎡⎢⎣synsem|local|cat|head|arg-st

[
arg-st

subj 1

args 2

]
valence 3

⎤⎥⎦
∧ 1 ⊕ 2 = 3 © list(noncanon-ss).

In the following section we will introduce the notion of raising elements. The
distinction between raised and non-raised elements make the actual synsem hi-
erarchy a little more complicated (see (20)), but the formulation of the Argument
Structure Principle remains unchanged.

2.3 Noncanonical Arguments

In this section, we will present non-canonical arguments in more detail and we
will introduce further refinements of the synsem hierarchy, given in (20). We
will not present here the detailed discussion on their distribution, which can be
found in [PKMM01].

1 “⊕” is an abbreviation for the append relation; “©” is an infix notation of the
shuffle relation [Rea92], i.e., shuffle(1 , 2 , 3)≡ 1 © 2 = 3 . The shuffle relation
is defined as follows:

(18) shuffle(<>,<>,<>).

shuffle(< 1 | 2 >, 3 ,< 1 | 4 >)
∀⇐= shuffle(2 , 3 , 4).

shuffle(2 ,< 1 | 3 >,< 1 | 4 >)
∀⇐= shuffle(2 , 3 , 4).

Formal Description of Natural Languages: An HPSG Grammar of Polish 303

(20) synsem

noncanon-ss non-raised

raised gap pro canon-ss

Raised Arguments. We assume that some arguments may be ‘raised’ higher
in the syntactic hierarchy instead of being realised locally; i.e. they are realised
as syntactic arguments of the higher verb. An example of such a construction is
an infinitival phrase. In the sentence below, arguments of the infinitive verb dać
‘give’ can be realised locally or they can be raised and realised as arguments of
the verb chcia�l ‘wanted’.

(21) Janek chcia�l dać Marysi kwiaty.
‘John wanted to give Mary flowers.’

Partial motivation for introducing argument raising comes form the phe-
nomenon of Genitive of Negation. If the higher verb (i.e., chcia�l) is negated,
the argument kwiaty should occur in genitive, not in accusative; compare (22)
with (21).

(22) Janek nie chcia�l dać Marysi kwiatów.

In order to maintain local case assignment principles, we are forced to assume
that, in (21), kwiaty is in some sense the argument of the verb chia�l. On the
other hand, Genitive of Negation is to some extent optional. In some cases, such
arguments may stay in the accusative case (cf. [Prz99,Prz00]). Consequently, we
assume that argument raising is optional, i.e., examples like (21) have several
parses differing in the placement of infinitival’s arguments.

Lexical entries do not specify which arguments are of the canon-ss type, i.e.,
which arguments are realised locally. However, they have to represent the fact
that those arguments which are not realised locally have to be raised to a higher
level. To represent objects which can be raised, we introduce the raised – non-
raised distinction within the synsem type. All raised objects are of noncanon-ss
subtype while non-raised arguments are divided into canon-ss , pro and gap
subtypes, (20).

The adequate lexical entry for the verb chcia�l is given below. The raise-
local function is responsible for raising local structures only. Subjects of in-
finitives are never locally realised, so their subj value is of the noncanon-ss
type.

304 Leonard Bolc

(23)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

word

phon 〈chcia�l〉

ss|l|c|h|arg-st

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

arg-st

subj 〈

⎡⎣synsem

l|c|h
[
noun

case nom

]⎤⎦〉
args 〈

⎡⎢⎢⎢⎣
synsem

l|c|h

⎡⎢⎣inf

arg-st

[
arg-st

subj 〈noncanon-ss〉
args list(canon-ss)© 2 list(raised)

]⎤⎥⎦〉⊕ 2′

⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∧ raise-local(2, 2′).

(24) raise-local(<>,<>).

raise-local(<

[
synsem

local 1

]
| 2>,<

[
synsem

local 1

]
| 3>)

∀⇐= raise-local(2, 3).

If we assume that the dative complement of dać is realised locally, while the
accusative complement is not, we will achieve the structure given in (25).

(25) phrase

������������

�
�

�
�

�
�

�
�

������������

nonhd-dtr

Janek

hd-dtr

chcia�l

nonhd-dtr

phrase

��� ���

hd-dtr

dać

nonhd-dtr

Marysi

nonhd-dtr

kwiaty

Pro. The other kind of non-canonical argument is a dummy subject, pro. In (26),
the subject is not realised on the surface, so it can be present only in the arg-
st|subj list, not in the valence list. Dummy subjects are represented by a
special subtype of the noncanon-ss type – pro2.

(26) a. Da�l Marysi kwiaty.

b.
⎡⎢⎢⎢⎢⎢⎣
word

phon 〈da�l〉

synsem|local|cat|head|arg-st

[
arg-st

subj 〈 1 pro〉
args 〈 2 NP[dat], 3 NP[acc]〉

]
valence 〈 2 , 3 〉

⎤⎥⎥⎥⎥⎥⎦
2 We give up here the traditional (in the generative literature) distinction between

PRO and pro and represent both kinds of empty elements as pro.

Formal Description of Natural Languages: An HPSG Grammar of Polish 305

It is not always true, that a non realised subject is represented by the pro
element. There exist arguments that infinitival subjects in sentences like (27)
should not be represented as pro but should be treated as being raised. Such an
analysis reflects number and gender agreement between Janek – the subject of
the higher verb and the adjective mi�ly.

(27) Janek chcia�l być mi�ly.
John wanted to be nice.

2.4 Types of Phrases

We assume two phrase types: valence-phrase and fill-phrase (named val-ph nad
fill-ph respectively). The complete hierarchy of sign is presented below:

(28)
⎡⎢⎣signroot boolean
phon list(orth)
synsem canon-ss

⎤⎥⎦
������

������

[
word

valence list(synsem)

][
phrase

hd-dtr sign
nonhd-dtrs list(phrase)

]
�� ��

fill-ph val-ph

Valence-Phrase. The basic phrase schema described in 2.1 represents phrases
which consist of a head element (a word) and its dependents. This schema can be
used to build not only clauses but also phrases with non-verbal head elements,
e.g., nominal or prepositional phrases. It is also used for representing phrases
with markers (complementizers), which are analysed as heads. To allow for this,
we introduce a marker subtype of type head .

We call all phrases constructed according to this basic schema valence-phrase
(val-ph) and limit the scope of the Valence Principle to this type of phrases only:

(29) Valence Principle

valence-phrase →
[
hd-dtr|val 1

nonhd-dtrs 2

]
∧ synsems-signs(1, 2).

A phrase of type val-ph is always most deeply nested, because its head ele-
ment should have the valence attribute, so it should be a word. For example,
in the phrase in (30), a val-ph phrase has to occur inside a fill-ph phrase.

306 Leonard Bolc

(30) a. Mówi�leś, że [kogo Maria zaprosi�la]?
b. fill-ph

����

����

nonhd-dtr

kogo

hd-dtr

val-ph

��� ���

nonhd-dtr

Maria

hd-dtr

zaprosi�la

Filler-Phrase. Traditionally, filler-phrases are used to represent structures
within which some locally non-realised elements are finally realised. For example
in the phrases below, the elements kto, co, komu, którego, komu are realised
nonlocally.

(31) [Kto co komu] [da�l]?
(32) . . . facet, [któremu] [chcia�laś, żebym da�l t ↪e ksi ↪ażk ↪e].

The analysis of non-local dependencies follows [BMS01] and it is based on
the idea of passing information about non-realised arguments via the nonlocal
structure. Non-realised elements are locally represented by the special object of
the type gap, which is the last subtype of noncanon-ss that we define here. This
type introduces a nonempty value of the slash attribute within the nonlocal
structure, (33).

(33) gap →
[
local 1

nonloc|slash 〈 1 〉

]
For example in the case of da�l, (31), the nonlocal|slash value is as follows:

(34) da�l :

⎡⎢⎢⎣
nonlocal

slash 〈

⎡⎣local
c|h

[
noun

case nom

]⎤⎦,
⎡⎣local
c|h

[
noun

case acc

]⎤⎦,
⎡⎣local
c|h

[
noun

case dat

]⎤⎦〉
⎤⎥⎥⎦

We impose the following constraint on the fill-ph type3:

(35)
fill-ph →

⎡⎢⎣
synsem|nonloc|slash 〈〉

hd-dtr

[
val-ph

ss|nonloc|slash 1 nelist

]
nonhd-dtrs 1′

⎤⎥⎦∧ locals-signs(1, 1′).

locals-signs(<>,<>).

locals-signs(< 1| 2>,< 1′ | 2′ >)
∀⇐=

1′ =

[
sign

synsem|local 1

]
∧ locals-signs(2, 2′).

3 We require the slash value to be nonempty in order to exclude trivial fill-ph phrases
with no non-locally realised elements.

Formal Description of Natural Languages: An HPSG Grammar of Polish 307

2.5 Lexicon

Although it is possible to construct a more sophisticated lexicon structure taking
advantage of HPSG type hierarchies, we adopt the simplest solution and define
the lexicon as a set of lexical entries. A slight modification of the standard ap-
proach consists in introducing a difference between lexical entries (of type entry)
and syntactic words (of type word). The Lexicon Principle is thus formulated as
follows:

(36) Lexicon Principle

entry → HS1 ∨ HS2 ∨. . .∨ HSn

Objects of type entry introduce attributes phon (with values of type
list(orth)), cont (with values of type content) and head (with values of type
head).

(37)
⎡⎢⎣entry

phon list(orth)
head head
cont content

⎤⎥⎦
In the simplest cases, objects of type word may take their attribute values

directly from the entry structure which will be now a part of the word structure.

2.6 Modifiers

In HPSG, modifiers (adjuncts) are normally represented via the attribute mod of
type head , whose value is a (at most one element) list of objects of type synsem.
We divide this synsem information into syntactic and semantic parts. Thus, the
attribute mod has values of type mod , which has two attributes: syn of type
head and sem of type content :

(38)
[
mod

syn head
sem content

]
(39)

⎡⎢⎢⎢⎣
head

mod list(mod)

arg-st

[
arg-st

subj list(synsem)
args list(synsem)

]
⎤⎥⎥⎥⎦

Since, in Polish, we do not observe any clear syntactic differences between
complements and modifiers, we adopt here the solution known in HPSG as
“adjuncts-as-complements” (see [BMS01], [Prz99]). The idea consists in plac-
ing modifiers together with arguments on the arg-st|args list.

Taking the description of a word from a lexicon, beside taking the appropriate
word’s arguments form the entry structure, we add to the arg-st|args list a
list of (4 in (41)). Moreover, according to the modifiers type the value of the
attribute cont can also be changed., (see “f (3 , 4)” in (41)).

308 Leonard Bolc

Since the only part of the head value of the entry structure which can be
changed is inside the arg-st attribute, we divide head structure into arg-st
attribute and morsyn attribute containing all remaining head attributes:

(40)
⎡⎢⎣
head

arg-st arg-st

morsyn

[
morsyn

mod list(mod)

]
⎤⎥⎦

Applying all the modifications just introduced, we can formulate the con-
straint describing the relation between entry and synsem|local structures in
the following way:

(41)

word →

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

phon 1

ss|loc

⎡⎢⎢⎢⎢⎢⎣
cat|head

⎡⎢⎢⎢⎣
head

morsyn 6

arg-st

⎡⎣arg-stsubj 5

args 2⊕ 4 list(
[
mod 〈

[
syn 6

]
〉
]
)

⎤⎦
⎤⎥⎥⎥⎦

cont f (3 , 4)

⎤⎥⎥⎥⎥⎥⎦

entry

⎡⎢⎢⎢⎢⎢⎢⎢⎣

entry

phon 1

head

⎡⎢⎣
head

morsyn 6

arg-st

[
subj 5

args 2

]
⎤⎥⎦

cont 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
3 Selected Phenomena of Polish

3.1 Agreement

One of the main grammatical issue in Polish is agreement4. We concentrate
on two main types of agreement: adjective–noun agreement and subject–verb
agreement.

The adjective must agree with the noun in number, gender, and case, see
(42). The same type of agreement takes place between the possessive pronoun
and the noun (43), as well as between the numeral and the noun (44).

(42) a. pi ↪eknej
prettysg,fem,gen

dziewczynie
girlsg,fem,gen

b. *pi ↪eknemu
prettysg,masc,gen

dziewczynie
girlsg,fem,gen

(43) moj ↪a
mysg,fem,inst

matk ↪a
mothersg,fem,inst

4 The problem of agreement for Polish is discussed within the HPSG setup also in
[Czu95] and [CP95].

Formal Description of Natural Languages: An HPSG Grammar of Polish 309

(44) dwóch
twofem,loc

dziewczynach
girlspl,fem,loc

The nominative subject agrees with the verb in person, number and gender,
(45)

(45) a. Matka
mothersg,fem,nom

przysz�la.
came3rd,sg,fem

b. *Matka
mothersg,fem,nom

przyszed�l.
came3rd,sg,masc

The above examples show the common type of agreement in Polish. There
are also untypical agreement where, e.g., semantic gender is not the same as the
syntactic gender, and the verb agrees with the semantic gender of the noun, see
(46).

(46) Jego
Hisfem,nom

wspania�lomyślna
magnanimoussg,fem,nom

wysokość
highnesssg,fem,nom

przyszed�l.
came3rd,sg,masc

‘His magnanimous highness came.’

To cope with the problem of different syntactic and semantic gender of such
nouns, the index structure (semantic gender, number and person) of the subject
agrees with the syntactic gender, number and person (structure agr) of the verb,
while the NP-internal agreement uses only syntactic attributes:

(47) Jego wspania�lomyślna wysokość przyszed�l.[
agr

gender 1

case 2

] [
agr

gender 1 fem
case 2 nom

] [
agr

gender 3

person 4

]
[
index

gender 3 masc
person 4 3rd

]
(48) presents the hierarchy of Polish gender elaborated to account for different

types of agreement adjective–noun and numeral–noun agreement.

(48)
[
gender

num num

]
masc-neut non-masc-hum

masc m23neut

m12

[
m23

num main

]
[
m1

num yes

]
m2 m3 neut

[
fem

num main

]

310 Leonard Bolc

3.2 Case Assignment

The hierarchy of Polish cases5 is given in (49). Cases are divided into structural
and lexical types. The value of structural case is established not only by the
subcategorisation rules but also by the environment, lexical cases are determined
independently.

(49) case

str lex

null voc nom acc gen dat ins loc

sgen lgen

The most famous case phenomena in Polish is the Genitive of Negation
(GoN), i.e., the shift of a direct object’s case from accusative in a non-negated
clause to genitive in the negated clause, see (50).

(50) a. Pisz ↪e
write1st,sg

listy.
lettersacc

‘I am writing letters’
b. Nie

NM
pisz ↪e
write1st,sg

listów
lettersgen

/
/

*listy
lettersacc

‘I am not writing letters’

This phenomenon is nonlocal: in the case of the long distance Genitive of
Negation, an argument of a lower verb may occur in the genitive when a higher
verb is negated, see (51).

(51) Nie
NM

chcia�lem
want1st,sg

pisać
writeinf

listów
lettersgen

/
/

*listy.
lettersacc

‘I didn’t want write letters’

Interesting case assignment phenomena also include complex case patterns
in numeral phrases, see (52)

(52) a. Pi ↪eć
fivenom?/acc?

kobiet
womengen,pl

przysz�lo.
came3rd,sg,neut

‘Five women came.’
b. Rozmawiam

talk1st,sg

z pi ↪ecioma
with

kobietami / *kobiet.
fiveins womenins/∗gen

‘I am talking with five women.’
5 The problem of case assignment is widely discussed in [Prz99].

Formal Description of Natural Languages: An HPSG Grammar of Polish 311

Case patterns in predicative constructions in Polish are also interesting. In
simple cases, predicative adjectives agree with predicated elements, see (53). But
the predicative adjective can sometimes occur in the instrumental case, see (54).

(53) On
henom

jest
is

mi�ly.
nicenom

‘He is nice.’

(54) Pami ↪etam
remember1st,sg

go
himacc

mi�lego
niceacc

/
/

mi�lym.
niceins

‘I remember him as nice.’

3.3 Binding Theory

The next problem addressed in the grammar is the binding theory for Polish6. It
is not the whole theory but only Principles A and B formulated for pronominals
and reflexive anaphors (possessive and non-possessive).

Anaphor binding in Polish can be roughly characterised as subject oriented
and clause-bound. The distribution of personal pronouns in these sentences is
complementary to that of anaphors, i.e., pronouns have to be disjoint with the
subject, while coindexation with another non-subject argument of a verb or a
clause external NP is correct, see (55)

(55) a. Jani

John
opowiada�l
told

Piotrowij
Peter

o
about

sobiei/∗j/nim∗i/j .
self/him

‘John told Peter about himself/him.’
b. Jani

John
powiedzia�l,
told

żeby
COMP

Piotrj

Peter
opowiedzia�l
told

o
about

sobie∗i/j/nim∗i/j .
self/him

‘John told Peter to tell about himself/him.’

The theory accounts for such important phenomena as medium distance bind-
ing in the case of control verbs, see (56). The possessive anaphor swoje has two
possible antecedents: the sentential subject, Jan, or clause-internal one, Piotrowi.
On the other hand, the possessive pronoun jego may not be bound by any of
these elements.

(56) Jani

John
kaza�l
ordered

Piotrowij
Peter

przynieść
bringinf

swojei/j/
self’s

jego∗i/∗j

his
dokumenty.
documents

‘John ordered Peter to bring his documents .’

We also analyse binding within noun phrases that can have subject (57) and
attributive adjective phrases (58).

(57) wiara
faith

Mariii
Mary’s

w
in

siebiei/
self

ni ↪a∗i

her
‘Mary’s faith in her (ability)’

6 An HPSG theory of binding in Polish is presented in [Mar99,Mar01].

312 Leonard Bolc

(58) Jani

John
zatelefonowa�l
phoned

do
to

Piotraj

Peter
napadni ↪etego
robbed

w
in

swoim∗i/j/
self’s

jegoi/∗j

his
domu.
house

‘John phoned Peter robbed in his house.’

A virtual subject is necessary to interpret the differences of binding in im-
personal constructions, see (59).

(59) a. Kupiono
bought

sobie/
self/

im
them

lekarstwa.
medicines

‘They bought medicines for themselves/ them.’
b.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

word

phon 〈kupiono〉

ss|loc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

local

cat|head|arg-st

[
arg-st

subj 〈proj〉
args 〈NPk, NP: proni〉

]

cont

⎡⎢⎣buying

buyer j
bought k
beneficiary i

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Theory of binding is defined on the arg-st structure. The most important

relation, corresponding to local o-command relation (for English) [PS94, ch.6],
is the relation of local subject-command, henceforth local s-command (see defi-
nition (61)). To formulate this relation, it is convenient to introduce a class of
transparent phrases whose boundaries can be crossed in the process of binding.

(60) A synsem object X is transparent if X is a PP, VP[inf] or an NP without
subject.

The definition of local s-command is given in (61):

(61) Let Y and Z be synsem objects. Then Y locally s-commands Z in case
either:
i. exists a arg-st structure for which Y belongs to its

subj, and Z belongs to the list of its args; or
ii. Y locally s-commands a transparent X and Z belongs

to the arg-st structure of X

The local o-binding and local o-freeness relations (for English) are substituted
by local s-binding and local s-freeness, respectively, see definition (62).

(62) Y locally s-binds Z just in case Y and Z are coindexed and Y locally
s-commands Z. If Z is not locally s-bound, then it is said to be locally
s-free.

The Principles A and B for Polish are formulated as in (63)

(63) Principle A. A reflexive anaphor must be locally s-bound.
Principle B. A pronoun must be locally s-free with the exception of

possessive pronouns in first and second person and when
possessive pronoun is bound by explicit subject of NP.

Formal Description of Natural Languages: An HPSG Grammar of Polish 313

3.4 Relative Clauses

Polish relative clauses can be illustrated by the examples given in (64).

(64) a. tennom,sg,masc,
one

komudat,sg,masc

whom
zazdrościciepl

youpl envy
dat

‘someone you envy’
b. ch�lopaknom,sg,masc,

a boy
[któregoacc,sg,masc

whose
siostrze]dat,sg,fem

sister
zazdrościcie dat

youpl envy

‘a boy whose sister I envy’
c. piórosg,neut,

a pen
co
that

niminstr,sg,neut

with what
/*()
/()

pisa�lam
I wrote

instr

‘a pen I wrote with’
d. Anna

Ann
tańczy�la,
danced

czemu
whatdat

Pawe�l
Paul

przygl ↪ada�l si ↪e
looked at

uważnie.
carefully

‘Paul looked carefully at Ann dancing’
e. ten/()

this/()
kto
whonom

sieje
sows

wiatr,
a wind

zbiera
he picks

burz ↪e
a storm

‘he who sows the wind shall reap the whirlwind’

The analysis of relative clauses presented here is based on the approach of
[Sag97], which relies on multiple inheritance of constraints imposed on elements
of phrase types hierarchy. However, we assume here only the phrase type hierar-
chy given in (28) while the clausality hierarchy is replaced by the clausality
attribute introduced for phrases . The possible values of this attribute are the
subtypes of type clausality and are given in (65).

(65) clausality

����
����

clause

�������

�������

core-cl

����
����

imp-cl decl-cl inter-cl

rel-cl

���
���

noun-mod-rel
�� ��

wh-rel mark-rel

cl-mod-rel

non-clause
�� ��

free-rel . . .

Clauses and non-clauses are distinguished on the basis of the type of the
head element – for type clause, the value of the morsyn attribute should be
personal, -no/-to, si ↪e, infinitival or marker. Relative clauses are divided into
free-relatives , which are a subtype of non-clauses, and relative clauses (proper),
which are a subtype of clauses. The clausality hierarchy distinguishes relative
clauses from core clauses on the basis of the mod attribute which is not empty
for rel-cl . Relative clauses are then divided into those modifying noun phrases
and those modifying clauses. Finally, noun modifying relatives are divided into

314 Leonard Bolc

those starting with relative pronouns, those starting with the relative marker
and the reduced relatives.

To account for non-local dependencies, we accept and extend the idea pre-
sented in [BMS01]. Information which is to be used non-locally is, as usual,
grouped within the synsem|nonlocal structure, (66). Here, apart from the
slash and the rel attributes we define the res attribute whose value is intro-
duced by resumptive pronouns7.

(66)

⎡⎢⎢⎢⎣
synsem

local local

nonlocal

[
slash list(local)
rel 1 list(index)
res 2 list(index)

]
⎤⎥⎥⎥⎦∧ max-one(1, 2).8

Phrases of the type val-ph inherit their nonlocal value from their head-
daughters, while fill-ph phrases are places for binding nonlocal dependencies.

For a word, its slash value is obtained by gathering the slash values from
all its dependents (if it has any), while the res and rel values, apart from
being gathered from all word’s dependents, can also be specified within a lexicon
description (inside the entry structure). The way of computing the appropriate
values are encoded in the Nonlocal Lexical Amalgamation Principle.

Polish relative pronouns can be divided into nominal relative pronouns: który
‘who/what’, jaki ‘which’, kto ‘who’ and co ‘what’ and adverbial relative pro-
nouns, e.g., gdzie ‘when’, kiedy ‘where’, sk ↪ad ‘where from’. In general, the use of
the Polish relative pronouns is quite similar to other languages (e.g., Bulgarian,
English). However, there are some specific features which have to be noted. One
such idiosyncrasy is the use of different nominal relative pronouns (który vs. kto)
in relation to different types of nominal phrases. Clauses beginning with który
can modify noun phrases headed by common nouns, proper nouns, personal and
demonstrative pronouns, (67a), while the relative pronouns kto ‘who’ and co
‘what’ can modify indefinite and negative pronouns, (67b).

(67) a. pies
a dog

/
/

Jan
John

/
/

on
he

/
/

tamten
that

który
KTóRY

/
/

*kto
*who

biegnie
runs

b. coś/nic
something/nothing

czemu/*któremu
what/*KTóRY

si ↪e
self

przygl ↪adasz
you look at

something/nothing you look at

To give a complete analysis of Polish relative clauses beginning with pro-
nouns, one has to deal with the following problems: ensuring the gender and
number agreement between the modified noun and the pronoun, assigning the

7 To make the formalization easier, we use lists instead of sets of values. In case of rel
and res this change is purely theoretical, as for Polish these attributes can have at
most one element set (or list) as their value.

8 Relation max-one represents the fact that, in Polish clauses, only one relative word
or one resumptive pronoun can occur, so lists rel and res can have in sum only one
element.

Formal Description of Natural Languages: An HPSG Grammar of Polish 315

correct case value to the nominal pronoun, ensuring that relative pronouns occur
in he appropriate context. All these relations are represented by the appropratte
constrains on the wh-rel type and lexical entries of relative pronouns.

The second type of noun modifying relative clauses are those begining with
the relative marker co, (64c). In this clauses the modified object is repeated
by a resumptive pronoun (unless it fulfils the role of a subject). Resumptive
pronouns are all personal pronouns except their nominative and strong forms
(if they exist). They have have two alternative lexicon entries – one with the
empty res value and second with one element on the res list identified with the
index value. In subject co-relatives there is no resumptive pronoun in a subject
position. To account for this fact, we assume that pro objects, which represent
dummy subjects can be also interpreted as resumptive pronouns.

Since relative clauses beginning with the marker co and the relative pronoun
który modify different noun phrases that these beginning with the relative pro-
nouns kto and co we divide index into two subtypes: inst-index , which will be
assigned to all nouns which can be modified by który, and noninst-index which
is appropriate for indefinite and negative pronouns and relative pronouns kto
and co.

As we analyse relative caluses as modifiers, we have to accept non-empty mod
value of verbal phrases. However, we would like to exclude sitations in which “an
ordinary ” clause (e.g., Jan śpi ‘John sleeps’) is a modifier. Our solutions consists
in changing the scope of the Head Feature Principle for the fill-ph phrases to all
head attributes besides mod.

All constraints imposed on the types representing Polish relative clauses are
given in [PKMM01], some previous work on the subject can be found in [Myk00].

3.5 Negation

There are several problems which are connected with the issue of negation in
Polish9. Several words called n-words can appear only in the sentence where the
environment is negated, it means that the verb is negated (68), or adjective has
negative meaning (69) or that there is a negative preposition in the sentence
(70). The examples of n-words are nikt nobody, nigdy never, żaden (none).

(68) Nikt
nobody

*(nie)
NM

da�l
gave

Marysi
Mary

ksi ↪ażki.
book

‘Nobody gave Mary a book.’

(69) Westchn ↪a�l
sight

*(nie)zauważalnie
NM-noticably

dla
for

nikogo.
nobody

‘He sight without being noticed by anybody.’

(70) Zacz ↪a�l
started

bez
without

żadnych
none

wst ↪epów.
introductions

‘He started straight away.’
9 There are following papers connected with this subject: [PK97b,PK97a,PK99].

316 Leonard Bolc

We can say that n-words in Polish are sensitive for negation. This feature is
represented by attribute neg-sens which indicates that a word needs negative
environment or does not need. In (71) is given the description of the n-word nikt
(nobody).

(71)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

entry

phon 〈nikt〉

head

⎡⎢⎢⎣morsyn

[
n-noun

case nom

]
arg-st

[
subj 〈〉
comps 〈〉

]
⎤⎥⎥⎦

cont

⎡⎢⎢⎢⎣
ppro

index

[
per 3rd
num sg
gend m1

]
restr {}

⎤⎥⎥⎥⎦
neg-sens +

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
To represent negative environment we use the attribute polarity. For ex-

ample in (72) there is represented semantics of the following events: lubi (like)
and nie lubi (does not like).

(72) a.
lubi:

[
psoa

nucl like
polarity +

]
b.

nie lubi:

[
psoa

nucl like
polarity −

]

The negative concord principle is defined in the book in order to attain the
correspondance between an n-words and its environment.

3.6 Coordination

Coordinated structures are widespread in natural languages but their formal
analysis presents many problems. It is possible to coordinate not only phrases
of the same categories, but also different categories can be conjoined as well.
Although it is often assumed that coordination may apply only to constituents,
coordination of non-constituents or partial constituents (phrases which share
arguments) is not uncommon in natural languages. In the book10, we restrict
ourselves only to constituent coordination. For this reason, we base our analysis
on the HPSG account of constituent coordination presented in [Par92]. The anal-
ysis captures coordination of partial (unsaturated) constituents as well, see (73).

(73) Jan
John

przeczyta�l
read

i
and

zrecenzowa�l
reviewed

artyku�l.
paper

10 This problem is also discussed in [KMMP00,KMM00].

Formal Description of Natural Languages: An HPSG Grammar of Polish 317

We deal with coordination of unlike categories but only in the case of (verbal)
modifiers, see (74), where the adverb szybko is coordinated with the preposition
phrase bez zastanowienia.

(74) Odpowiada�l
answered-he

szybko
quickly

i
and

bez
without

zastanowienia.
thinking

Following [Par92], we treat conjunction as a functional head of the coordi-
nated phrase and coordinated elements as complements. In the book there are
discussed several types of conjunctions: ‘monosegmental’ conjunctions, e.g., i
‘and’, lub ‘or’, etc, we consider also discontinuous conjunctions, such as zarówno
. . . jak też ‘both . . . and’, nie tylko. . . lecz również ‘not only. . . but also’.

Let us see the lexical entry for zarówno. . . jak też ‘both. . . and’, (75).

(75)
⎡⎢⎣entry

phon 〈zarówno, jak i〉
head|conj conj
neg-sens −

⎤⎥⎦
In the (76) there is the example of anaysies of the phrase zarówno Ania jak

też Adam ‘both Ania and Adam’

(76)
[
phrase

phon 〈zarówno, Ania, jak i, Adam〉

]

���������

���������

[
phon 〈Ania〉
ss 1 canon-ss

][
word

phon 〈zarówno, jak i〉
arg-st|args 〈 1 , 2 〉

][
phon 〈Adam〉
ss 2 canon-ss

]

The correct order of conjuncts and the conjunction is obtained via a general
constrained which adds the first phonological ‘segment’ of the conjunction to the
phonology of the first conjunct while the second phonological ‘segment’ of the
conjunction precedes the second conjunct.

In languages with a rich morphological system agreement patterns in co-
ordinated structures is quite complex. In the book, we present some aspects of
agreement in Polish coordinated NPs and what kind of restriction are undertaken
in the grammar. We assume that coordinated phrase must agree with verbs in
plural number, see (77), so we are not able to analyse correct sentence (78).

(77) Przyszli
camepl,3rd

Jan
John

i
and

Maria.
Mary

‘John and Mary came.’

(78) Przyszed�l
camesg,masc,3rd

Jan
John

i
and

Maria.
Mary

‘John and Mary came.’

318 Leonard Bolc

There are also defined relations gender (79) and min which assign respec-
tively the proper gender and person of the verb connected with coordinated
phrase.

(79) gender(masc-hum, gender, masc-hum).
gender(gender, masc-hum, masc-hum).
gender(non-masc-hum, non-masc-hum, non-masc-hum).

This relation are necessary to analyse following sentences:

(80) Ch�lopiec
boymasc

i
and

dziewczynka
girlfem

biegali
runmasc−hum

po
in

parku.
park

‘A boy and a girl were running in the park.’

(81) Ja
I1st

i
and

ty
you2nd

przyszlísmy
came1st-we

/ *przyszlíscie.
came2nd-you

‘I and you came.’

The approach presented in the book captures only several types of coordi-
nated phrases but it allows us to apply general HPSG grammatical principles
both to coordination and to other types of phrases.

4 Conclusion

In this paper, we have presented a range of phenomena typical for Polish and
indicated ways of analysing those phenomena within HPSG. We have also pre-
sented modifications of the standard [PS87,PS94] HPSG theory useful or nec-
essary to formulate a straightforward account of Polish syntax. The diversity
of the phenomena accounted for, involving both textually frequent phenomena
(negation, relative clauses, simple case assignment) and textualy untypical phe-
nomena (idiosyncratic patterns of case assignment, special cases of binding and
agreement), lead to the conclusion that Head-driven Phrase Structure Grammar
is a formalism well-suited for analysing morphologically-rich “free word-order”
languages such as Polish.

The account alluded to above, fully described in [PKMM01] and references
therein, has been partially implemented in ALE [CP01]. The implementation
varies from the theoretical analysis in many respects due to the underlying dif-
ferences between ALE and HPSG. In particular, two versions of the grammar
have been implemented: a version close to the linguistic theory which, however,
led to a much less efficient implementation, and a more efficient version tak-
ing into account various non-HPSG mechanisms offered by ALE. We intend to
extend the work reported here by constructing an HPSG-based parser of Pol-
ish going well beyond the empirical boundaries of the current HPSG grammar
presented above.

Formal Description of Natural Languages: An HPSG Grammar of Polish 319

References

[BMS01] Gosse Bouma, Robert Malouf, and Ivan A. Sag. Satisfying constraints
on extraction and adjunction. Natural Language and Linguistic Theory,
19(1):1–65, 2001.

[BP99] Robert D. Borsley and Adam Przepiórkowski, editors. Slavic in Head-
Driven Phrase Structure Grammar. CSLI Publications, Stanford, CA,
1999.

[BP00] Piotr Bański and Adam Przepiórkowski, editors. Proceedings of the First
Generative Linguistics in Poland Conference, Warsaw, 2000. Institute of
Computer Science, Polish Academy of Sciences.

[CP95] Krzysztof Czuba and Adam Przepiórkowski. Agreement and case assign-
ment in Polish: An attempt at a unified account. Technical Report 783,
Institute of Computer Science, Polish Academy of Sciences, 1995.

[CP01] Bob Carpenter and Gerald Penn. The Attribute Logic Engine (Version
3.2.1). User’s Guide. Carnegie Mellon University, Pittsburgh, December
2001.

[Czu95] Krzysztof Czuba. Zastosowanie dziedziczenia do analizy wybranych as-
pektów j ↪ezyka polskiego. Master’s thesis, Uniwersytet Warszawski, War-
saw, 1995.

[KMM00] Anna Kupść, Ma�lgorzata Marciniak, and Agnieszka Mykowiecka. Con-
stituent coordination in Polish: An attempt at an HPSG account. In Bański
and Przepiórkowski [BP00], pages 104–115.

[KMMP00] Anna Kupść, Ma�lgorzata Marciniak, Agnieszka Mykowiecka, and Adam
Przepiórkowski. Sk�ladniowe konstrukcje wspó�lrz ↪edne w j ↪ezyku polskim:
Próba opisu w HPSG. Technical Report 914, Institute of Computer Sci-
ence, Polish Academy of Sciences, 2000.

[Mar99] Ma�lgorzata Marciniak. Toward a binding theory for Polish. In Borsley
and Przepiórkowski [BP99], pages 125–147.

[Mar01] Ma�lgorzata Marciniak. Algorytmy implementacyjne syntaktycznych regu�l
koreferencji zaimków dla j ↪ezyka polskiego w terminach HPSG. Ph. D. dis-
sertation, Polish Academy of Sciences, 2001.

[MS97] Philip H. Miller and Ivan A. Sag. French clitic movement without clitics
or movement. Natural Language and Linguistic Theory, 15:573–639, 1997.

[Myk00] Agnieszka Mykowiecka. Polish relative pronouns: An HPSG approach. In
Bański and Przepiórkowski [BP00], pages 124–134.

[Par92] Maike Paritong. Constituent coordination in HPSG. Technical Report
CLAUS 24, Universität des Saarlandes, Saarbrücken, 1992.

[PK97a] Adam Przepiórkowski and Anna Kupść. Negative concord in Polish. Tech-
nical Report 828, Institute of Computer Science, Polish Academy of Sci-
ences, 1997.

[PK97b] Adam Przepiórkowski and Anna Kupść. Verbal negation and complex
predicate formation in Polish. In Ralph C. Blight and Michelle J. Moosally,
editors, Proceedings of the 1997 Texas Linguistics Society Conference on
the Syntax and Semantics of Predication, volume 38 of Texas Linguistic
Forum, pages 247–261, Austin, TX, 1997.

[PK99] Adam Przepiórkowski and Anna Kupść. Eventuality negation and negative
concord in Polish and Italian. In Borsley and Przepiórkowski [BP99], pages
211–246.

320 Leonard Bolc

[PKMM01] Adam Przepiórkowski, Anna Kupść, Ma�lgorzata Marciniak, and Agnieszka
Mykowiecka. Formalny opis j ↪ezyka polskiego: Teoria i implementacja. A-
kademicka Oficyna Wydawnicza, 2001. In progress.

[Prz99] Adam Przepiórkowski. Case Assignment and the Complement-Adjunct
Dichotomy: A Non-Configurational Constraint-Based Approach. Ph. D.
dissertation, Universität Tübingen, Germany, 1999.

[Prz00] Adam Przepiórkowski. Long distance genitive of negation in Polish. To
appear, Journal of Slavic linguistics, 2000.

[Prz01] Adam Przepiórkowski. arg-st on phrases headed by semantically vacuous
words: Evidence from Polish. In Dan Flickinger and Andreas Kathol,
editors, Proceedings of the 7th International Conference on Head-Driven
Phrase Structure Grammar, pages 267–284. CSLI Publications, Stanford,
CA, 2001.

[PS87] Carl Pollard and Ivan A. Sag. Information-Based Syntax and Semantics,
Volume 1: Fundamentals. Number 13 in CSLI Lecture Notes. CSLI Pub-
lications, Stanford, CA, 1987.

[PS94] Carl Pollard and Ivan A. Sag. Head-driven Phrase Structure Grammar.
Chicago University Press / CSLI Publications, Chicago, IL, 1994.

[Rea92] Mike Reape. A Formal Theory of Word Order: A Case Study in West
Germanic. Ph. D. dissertation, University of Edinburgh, 1992.

[Sag97] Ivan A. Sag. English relative clause constructions. Journal of Linguistics,
33(2):431–483, 1997.

[Świ92] Marek Świdziński. Gramatyka Formalna J ↪ezyka Polskiego, volume 349 of
Rozprawy Uniwersytetu Warszawskiego. Wydawnictwa Uniwersytetu War-
szawskiego, Warsaw, 1992.

[Szp86] Stanis�law Szpakowicz. Formalny opis sk�ladniowy zdań polskich. Wydaw-
nictwa Uniwersytetu Warszawskiego, Warsaw, 1986.

Psychological Validity of Schematic Proofs

Mateja Jamnik1 and Alan Bundy2

1 University of Cambridge Computer Laboratory,
J.J. Thomson Avenue, Cambridge, CB3 0FD, England, UK

Mateja.Jamnik@cl.cam.ac.uk

http://www.cl.cam.ac.uk/~mj201
2 Centre for Intelligent Systems and their Applications, Division of Informatics,
University of Edinburgh, 80 South Bridge, Edinburgh, EH1 1HN, Scotland, UK

A.Bundy@ed.ac.uk

http://www.dai.ed.ac.uk/homes/bundy/

Abstract. Schematic proofs are functions which can produce a proof of
a proposition for each value of their parameters. A schematic proof can
be constructed by abstracting a general pattern of proof from several ex-
amples of a family of proofs. In this paper we examine several interesting
aspects of the use of schematic proofs in mathematics. Furthermore, we
pose several conjectures about the psychological validity of the use of
schematic proofs in mathematics. These conjectures need testing, hence
we propose an empirical study which would either support or refute our
conjectures. Ultimately, we suggest that schematic proofs are worthy of
a closer and more detailed study and investigation.

1 Introduction

In this paper we study and address several questions about the nature of math-
ematical proofs. How can a well chosen example often convey the idea of a proof
better than the proof itself? How is it possible for proofs to be erroneous, and for
such faulty “proofs” to persist for decades? Why are the proofs of some interme-
diate results less intuitive than the original theorem? We suggest that studying
schematic proofs might provide some answers to such questions.

Schematic proofs have been used and studied in various branches of mathe-
matics. Their use has been successfully mechanised in automated mathematical
reasoning [1, 2]. We hypothesise that humans often use procedures similar to the
construction of schematic proofs. The aim of this paper is to motivate cognitive
scientists and cognitive psychologists that schematic proofs are an interesting
concept in mathematics and that they are worthy of a closer investigation from
a psychological point of view. Such an investigation would shed some light on the
nature of human mathematical thought. We examine some interesting aspects
of schematic proofs and postulate a number of conjectures about the psycho-
logical validity of schematic proofs. We have anecdotal evidence to support our
intuitions, however, we have not conducted any systematic experiments. Hence,
in §7, we propose an experimental investigation and we suggest some of the
questions that such an investigation could attempt to answer.

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 321–341, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

322 Mateja Jamnik and Alan Bundy

Schematic proofs are functions, i.e., programs, which output a proof for each
value of their parameters, i.e., inputs. That is, they are a way of capturing a
family of proofs1. For example, consider a trivial theorem, let us call it multiple
addition, which says that to get a value of an x in (. . . ((x+a1)+a2)+· · ·+an) = y
one has to subtract all the ai from y. So, more formally, the theorem can be
expressed as ((. . . ((x+a1)+a2)+ · · ·+an) = y)⇒ (x = (. . . ((y−an)−an−1)−
· · · − a2) − a1). The schematic proof for this theorem is the following informal
program (where we assume that we have definitions of proof, apply, etc.):

proof (n) = apply (U + V = W ⇒ U = W − V) n times

which rewrites n times, terms in the theorem of the form U + V = W to terms
of the form U = W − V . A schematic output of this program gives a proof of
the multiple addition theorem (bold blocks represent program execution steps,
i.e., applications of rewrite rules on the theorem):

(((. . . ((x + a1) + a2) + · · ·) + an−2) + an−1) + an = y''(apply (U + V = W ⇒ U = W − V)

((. . . ((x + a1) + a2) + · · ·) + an−2) + an−1 = y − an''(apply (U + V = W ⇒ U = W − V)

(. . . ((x + a1) + a2) + · · ·) + an−2 = (y − an)− an−1

...
x = (. . . ((y − an)− an−1)− · · · − a2)− a1

A procedure that can be used to construct schematic proofs is to prove some
special cases of a proposition, extract a pattern from these proofs, and abstract
this pattern into a general schematic proof. We give examples of proofs for special
cases for the above theorem where n = 2 and n = 3. When the schematic proof is
given an input 2, then the program is instantiated to proof (2) = apply (U +V =
W ⇒ U = W − V) 2 times . The output of this program is:

(x + a1) + a2 = b''(apply (U + V = W ⇒ U = W − V)

x + a1 = b− a2''(apply (U + V = W ⇒ U = W − V)

x = (b− a2)− a1

Similarly, when the schematic proof is given an input 3, then the program is
instantiated to proof (3) = apply (U + V = W ⇒ U = W − V) 3 times . The
output of this program is:

1 Schematic proofs are often used as an alternative to mathematical induction (see §2).

Psychological Validity of Schematic Proofs 323

((x + a1) + a2) + a3 = b''(apply (U + V = W ⇒ U = W − V)

(x + a1) + a2 = b− a3''(apply (U + V = W ⇒ U = W − V)

x + a1 = (b− a3)− a2''(apply (U + V = W ⇒ U = W − V)

x = ((b− a3)− a2)− a1

Finally, the schematic proof needs to be shown to be correct, i.e., that proof (n)
outputs a proof of the theorem for case n. This is discussed in §2. In §3 we give
more examples of the use of schematic proofs in mathematics.

There are three particular aspects of schematic proofs that we investigate in
some detail. First, we examine how schematic proofs can be constructed from ex-
amples of proofs. The mathematical foundation for the construction of schematic
proofs provides a justification for the step from examples to general proofs to
theorem-hood. So, in §4, our first conjecture is that:

Schematic proofs explain how examples can be used for constructing gen-
eral proofs.

Second, we examine how schematic proofs have been used in the past to rep-
resent claimed proofs of theorems. However, upon closer examination, it turned
out in some cases that what was thought to be a proof, was actually faulty
and not a proof at all. We argue that this may be due to the omission of the
verification of the schematic proof. Hence, in §5, our second conjecture is that:

Schematic proofs account for some erroneous proofs in mathematics.

We give some historical examples which support our conjecture.
Finally, schematic proofs of some theorems can be very different from their

standard non-schematic inductive counterparts. They often seem to be more
easily understood than inductive proofs. A number of examples are given to
support our claim. Therefore, in §6, our third and final conjecture is that:

Schematic proofs are more intuitive than inductive proofs.

1.1 Technical Terminology

Here we give some definitions of technical terms used in this paper that might
prove useful. Notice that in the literature, the terms induction, abstraction and
generalisation are often used interchangeably for the same concept. We have
three different notions for these terms, and hence define them here precisely.

A Recursive Function is a function whose definition appeals to itself without
an infinite regression. For example, Hex is a recursive function which for each
input natural number n gives the nth hexagonal number:

324 Mateja Jamnik and Alan Bundy

Hex(0) = 0
Hex(1) = 1

Hex(n + 1) = Hex(n) + 6× n

The Successor Function is a function that adds one to its argument. For
example, s(s(0)) = s(1) = 2.

Instantiation is a process of replacing a variable with some value. Instantiation
of a function is a process of assigning values to the arguments of the function
and evaluating the function for these values. For example, instantiating the
above function Hex for 3 gives Hex(3) = Hex(2 + 1) = Hex(2) + (6× 2) =
(Hex(1) + (6× 1)) + 12 = 1 + 6 + 12 = 19.

Abstraction is a process of extracting a general argument from its examples.
In this paper it refers to constructing a schematic proof from example proofs.
For example, the process of constructing proof (n) for the multiple addition
theorem given above from the examples of its proof for n = 2 and n = 3 is
referred to as abstraction.
Another meaning of abstraction in this paper is to refer to an abstraction de-
vice, such as ellipsis (i.e., the “. . .” notation), to represent general diagrams.
Abstraction is sometimes referred to as inductive inference, or “philosophical
induction”, or generalisation.

Generalisation replaces a formula by a more general one. For example, con-
stants, functions or predicates can be replaced by variables (e.g., x + 3 = y
is generalised to x+a = y where a constant 3 is replaced by a variable a), or
universally quantified variables are decoupled (e.g., ∀x.(x+x)+x = x+(x+x)
is generalised to ∀x∀y∀z.(x + y) + z = x + (y + z)).

Object-Level Statement is a well-formed term, proof or inference step of the
logic in use (cf. meta-level statement). For example, the proof of multiple
addition theorem given above in §1 is an object-level statement.

Meta-level Statement is a statement about an object-level statement, in some
logical theory (cf. object-level statement). For example, a claim that the
proof of multiple addition theorem given above in §1, is a correct proof of this
theorem, is a meta-level statement about the proof of the multiple addition
theorem.

Mathematical Induction or standard induction is a rule of inference in some
logical theory which is used to prove the statement that some proposition
P (n) is true for all values of n > n0, where n0 is some base value. This
rule of inference makes an assertion about object-level statements (cf. meta-
induction). For example, in Peano arthmetic, the rule of induction is:

P (0) P (n)→ P (s(n))
∀n.P (n)

Meta-induction is a rule of inference in some logical theory which is used to
prove the meta-statement that some proposition MP (n) about the object-
level statement P (m) is true for all values of n > n0, where n0 is some base
value. This rule of inference makes an assertion about proofs rather than

Psychological Validity of Schematic Proofs 325

object-level statements (cf. mathematical induction). For example, in Peano
arithmetic, the rule of meta-induction is (where proof is a recursive function,
and “:” stands for “is a proof of”):

proof (0) : P (0) proof (n) : P (n)→ proof (s(n)) : P (s(n))
∀n.proof (n) : P (n)

Schematic is an adjective that refers to some general way of describing a class
of objects. We use this adjective when describing a program that generates
a proof for all instances of some corresponding theorem. We refer to these
programs as schematic proofs. A formal definition of a schematic proof is
given in §2 in Definition 3.

2 Schematic Proofs

Our interest in schematic proofs comes from the perspective of automated rea-
soning, where the aim is to implement a system which constructs schematic
proofs. The automation of proof extraction requires some suitable mechanism to
capture a general proof. Schematic proofs provide such a mechanism. General
schematic proofs can be constructed from a sequence of instances. A mathemat-
ical basis which justifies the step from specific examples to a general schematic
proof is the constructive ω-rule [1]. ω is the name given to the infinite set
{0, 1, 2, 3, . . .}, or equivalently, using the successor function s (see §1.1), the
set {0, s(0), s(s(0)), s(s(s(0))), . . .}. Typically, a schematic proof is formalised
as a recursive program. This recursive program allows us to conclude a general
schematic proof for the universally quantified theorem. In this section, we for-
mally define what a schematic proof is, and what is the mathematical basis for
its formalisation.

The mathematical basis for extraction of schematic proofs is the constructive
ω-rule. This rule is a version of the ω-rule [3]:

Definition 1 (ω-Rule).
The ω-rule allows inference of the sentence ∀x. P (x) from an infinite sequence
P (n) for n ∈ ω of sentences

P (0), P (1), P (2), . . .

∀n.P (n)

Using the ω-rule, an infinite number of premisses needs to be proved in order to
conclude a universal statement. This makes the ω-rule unusable for automation.
Hence, we consider the constructive version of this rule [1]:

Definition 2 (Constructive ω-Rule).
The constructive ω-rule allows inference of the sentence ∀x. P (x) from an infinite
sequence P (n) for n ∈ ω of sentences

P (0), P (1), P (2), . . .

∀n.P (n)

such that each premiss P (n) is proved uniformly (from parameter n).

326 Mateja Jamnik and Alan Bundy

Note that the ω-rule and the constructive ω-rule are stronger alternatives for
mathematical induction.

The uniformity criterion is taken to be the provision of a computable pro-
cedure describing the proof of P (n), e.g., proof (n). The requirement for a com-
putable procedure is equivalent to the notion that the proofs for all premisses
are captured in a recursive function. We refer to such a recursive function as a
schematic proof.

Definition 3 (Schematic Proof).
A schematic proof is a recursive function2, e.g., proofP (n)3, which outputs a
proof of some proposition P (n) given some n as input.

Suppose the recursive function, proof, is a schematic proof. The function
proof takes one argument, namely a parameter n. In general, this function can
be defined to take any number of arguments. By instantiation, i.e., by assigning
a particular value to n and passing it as an argument to the function proof, and
by application of this instantiated function to the theorem, proof P (n) gener-
ates a proof for a particular premiss P (n). More precisely, proof P (n) describes
the inference steps (i.e., rules) made in proofs for each P (n). Now, proof (n) is
schematic in n, because we may apply some rule R a function of n (or a constant)
number of times. That is, the number of times that a rule R is applied in the
proof might depend on the parameter n. This recursive definition of a proof is
used as a basis for implementation of the schematic proofs [2, 1].

From a practical point of view, the constructive ω-rule and schematic proofs
eliminate the need for an infinite number of proofs, or in other words, they enable
us to specify an infinite number of proofs in a finite way. Moreover, they provide
a technique which enables an automation of search for proofs of universally
quantified theorems from instances of proofs.

We now show how schematic proofs of universally quantified theorems can
be found using several heuristics.

2.1 Finding a Schematic Proof

A schematic proof can be constructed by considering individual examples of
proofs for instances of a theorem, and then extracting a general pattern from
these instances. The idea is that in order to extract a general structure common
to all instances of a proof, the particular examples of proofs of a theorem which
are considered, need to be general representatives of all instances, and not special
cases. These are normally taken to be some intermediate values, e.g., 5 and 6,
or 7 and 9, rather than the initial values, e.g., 0 and 1, since the proofs for
initial values of a parameter n are almost always special cases. Therefore, we
use such intermediate values, e.g., P (7) and P (9) and correspondingly proof (7)
and proof (9), to extract the pattern, which we hope is general. A structure

2 Technical terminology is explained in §1.1
3 Note that we omit the use of subscript P in proof P (n) where it is clear which theorem

proof proves.

Psychological Validity of Schematic Proofs 327

which is common to the considered examples is extracted by an abstraction.
The result is the construction of a general schematic proof. If the instances
for the intermediate values that were considered are not representative of all
instances, so that the abstraction was carried out on incomplete information,
then the constructed recursive function proof could be wrong. Therefore, the
function proof needs to be verified as correct. This involves reasoning about the
proof (using meta-level reasoning), and showing that proof indeed generates a
correct proof of each P (n).

The following procedure summarises the essence of using the constructive
ω-rule in schematic proofs:

1. Prove a few particular cases (e.g., P (7), P (9), ... and thereby discover
proof (7), proof (9), ...).

2. Abstract proof (n) from these proofs (e.g., from proof (7), proof (9), ...).
3. Verify that proof (n) proves P (n) by meta-induction4 on n.

The general pattern is abstracted from the individual proof instances by
learning induction or abstraction. By meta-induction we mean that we introduce
a theory Meta such that for all n the base case of the meta-induction is:

Meta 	 proof (0) : P (0)

and the step case is:

Meta 	 proof (n) : P (n) −→ proof (n + 1) : P (n + 1)

By meta-induction we need to show in the meta-theory that given a proposition
P (n), proof(n) indeed proves it, i.e., it gives a correct proof with P (n) as its
conclusion, and axioms of some object logic as its premisses. This ensures that
the constructed general schematic proof is indeed a correct proof for all instances
of a proposition.

3 Application of Schematic Proofs

To illustrate the use of the constructive ω-rule in schematic proofs, we give
here five examples of schematic proofs for the following theorems: an arith-
metic schematic proof of associativity of addition implemented by Baker [1], a
schematic proof of rotate-length theorem, two diagrammatic schematic proofs,
the first of the theorem regarding the sum of odd naturals implemented by Jam-
nik et al [2], and the second regarding the sum of hexagonal numbers presented
by Penrose [4], and a faulty schematic proof of Euler’s theorem presented by
Lakatos in [5].
4 The meta-induction is often much simpler than the mathematical induction that is

alternative to the schematic proof. For example, whereas generalisation is required
in some object-level inductive proofs, no generalisation is required in the meta-
induction at the verification stage of the corresponding schematic proof. See §4 and §6
for more discussion and some examples.

328 Mateja Jamnik and Alan Bundy

3.1 Associativity of Addition

Consider a theorem about the associativity of addition, stated as

(x + y) + z = x + (y + z)

Baker studied schematic proofs of such theorems in [1]. The recursive definition
of “+” is given as follows:

0 + Y = Y (1)
s(X) + Y = s(X + Y) (2)

We also need a reflexive law ∀n. n = n.
The constructive ω-rule is used on x in the statement of the associativity

of addition. We write any instance of x as sn(0). By sn(0) is meant the n-th
numeral, i.e., the term formed by applying the successor function to 0 n times.
Next, the axioms are used as rewrite rules from left to right, and substitution
is carried out in the ω-proof, under the appropriate instantiation of variables.
Hence, the following encoding:

∀n.(sn(0) + y) + z = sn(0) + (y + z)
∀x. (x + y) + z = x + (y + z)

where n is the parameter, represents any instance of the constructive ω-rule in
our example (note the use of ellipsis):

(0 + y) + z = 0 + (y + z), (s(0) + y) + z = s(0) + (y + z),

(s(s(0)) + y) + z = s(s(0)) + (y + z), . . .

∀x. (x + y) + z = x + (y + z)

We construct a schematic proof in terms of this parameter, where n in the
antecedent captures the infinity of premisses actually present, one for each value
of n. This removes the need to present an infinite number of proofs. The aim is
to reduce both sides of the equation to the same term. The schematic proof of
this theorem is the following program:

proof(n) = Apply rule (2) n times on each side of equality,
Apply rule (1) once on each side of equality,
Apply rule (2) n times on left side of equality,
Apply Reflexive Law

Running this program on the associativity theorem proves it. For example:

Psychological Validity of Schematic Proofs 329

(sn(0) + y) + z = sn(0) + (y + z)''(Apply rule (2) n times on each side

...
sn(0 + y) + z = sn(0 + (y + z))''(Apply rule (1) on each side

sn(y) + z = sn(y + z)''(Apply rule (2) n times on left

...
sn(y + z) = sn(y + z)''(Apply Reflexive Law

true

Note that the number of proof steps depends on n, which is the instance of x
we are considering. We see that the proof is schematic in n – certain steps are
carried out a number of times depending on n.

3.2 Rotate-Length Theorem

The rotate-length theorem is about rotating a list its length number of times,
and can be stated as:

rotate(length(l), l) = l

where length(l) gives the length of a list l, and rotate(x, l) takes the first x
elements of a list l and puts them at its end (e.g., rotate(3, [a, b, c, d, e]) =
[d, e, a, b, c]), and can be defined as:

rotate(0, l) = l

rotate(x, []) = []
rotate(n + 1, l :: ls) = rotate(n, ls@[l])

Note that :: is infix cons (it takes an element and a list and puts the element
at the front of the list, e.g., 1 :: [2, 3, 4] = [1, 2, 3, 4]) and @ is infix append
(it takes two lists and puts them together, e.g., [1, 2, 3]@[4, 5] = [1, 2, 3, 4, 5]).
Consider a schematic proof of this theorem. First we give an example proof for
some instance of a theorem. An example proof for the instance of a list of any
five elements l = [a, b, c, d, e], i.e., length(l) = 5 goes as follows. Let the list l
consist of five elements. We take the first element of the list and put it to the
back of the list. Now, we do the same for the remaining four elements.

330 Mateja Jamnik and Alan Bundy

rotate(length([a, b, c, d, e]), [a, b, c, d, e]) =
rotate(5, [a, b, c, d, e]) =
rotate(4, [b, c, d, e, a]) =
rotate(3, [c, d, e, a, b]) =
rotate(2, [d, e, a, b, c]) =
rotate(1, [e, a, b, c, d]) = [a, b, c, d, e]

It is very easy to see that this process gives us back the original list. Moreover,
it is clear that if we follow the same procedure, i.e., schematic proof, for a list of
any length, we always get back the original list. Hence, the number of inference
steps in the proof depends on n, so a proof is schematic in n:

rotate(length([a1, a2, a3, . . . , an]), [a1, a2, a3, . . . , an]) =
rotate(n, [a1, a2, a3, . . . , an]) =

rotate(n− 1, [a2, a3, . . . , an, a1]) =
rotate(n− 2, [a3, . . . , an, a1, a2]) =

...
rotate(1, [an, a1, a2, a3, . . .]) = [a1, a2, a3, . . . , an]

3.3 Sum of Odd Natural Numbers

We now consider a theorem about the sum of odd naturals and its schematic
proof as studied by Jamnik et al in [2] and [6]. Jamnik et al studied the no-
tion of diagrammatic proofs and formalisation of diagrammatic reasoning. A
diagrammatic proof is captured by a schematic proof that is constructed from
examples of graphical manipulations of instances of a theorem. This diagram-
matic schematic proof has to be checked for correctness. A diagrammatic proof
consists of diagrammatic inference steps, rather than logical inference rules. Di-
agrammatic inference steps are the geometric operations applied to a diagram.
The operations on diagrams produce new diagrams. Chains of diagrammatic in-
ference rules, specified by the schematic proof, form the diagrammatic proof of
a theorem. In Jamnik et al’s formalisation of diagrammatic reasoning, diagrams
are used as an abstract representation of natural numbers, and are represented
as collections of dots. Some examples of diagrams are a square, a triangle, an
ell (two adjacent sides of a square). Some examples of geometric operations are
lcut (split an ell from a square), remove row, remove column.

We demonstrate here a diagrammatic proof of the theorem about the sum of
odd natural numbers. The theorem can be stated as

n2 = 1 + 3 + 5 + · · ·+ (2n− 1)

We consider an instance of the theorem 42 = 1 + 3 +5 + 7 and its diagrammatic
proof where n = 4. Let us choose that n2 is represented by a square of magnitude
n, (2n − 1) is represented as an ell whose two sides are both n long, i.e., odd
natural numbers are represented by ells, and a natural number 1 is represented
as a dot. The proof of this instance of the theorem consists of cutting a square
4 times into ells.

Psychological Validity of Schematic Proofs 331

4 x LCUT

Notice, that a similar procedure holds for a square of any size, i.e., for any
instance of the theorem. Therefore, these steps are sufficient to transform a
square of magnitude n representing the LHS of the theorem to n ells of increasing
magnitudes representing the RHS of the theorem.

Note that the number of proof steps (i.e., diagrammatic inference steps)
depends on n – for a square of size n the proof consists of n lcuts. Hence the
proof is schematic in n. Here is a definition of this schematic proof:

proof (n + 1) = apply lcut, then proof (n)
proof (0) = empty

3.4 Sum of Hexagonal Numbers

Let us now examine a theorem about the sum of hexagonal numbers and its
(diagrammatic) schematic proof as presented by Penrose in [4]. We repeat here
the formal recursive definition of hexagonal numbers from §1.1:

Hex(0) = 0
Hex(1) = 1

Hex(n + 1) = Hex(n) + 6× n

Informally, hexagonal numbers could be presented as hexagons where the hexag-
onal number is the number of dots in a hexagon:

1 7 19

The theorem is stated as follows:

n3 = Hex(1) + Hex(2) + · · ·+ Hex(n)

Let n3 be represented by a cube of magnitude n and Hex(n) by an nth hexagon.
The instance of the proof that we consider here is for n = 3. The diagrammatic
proof of the sum of hexagonal numbers consists of breaking a cube into a series
of half-shells. A half-shell consists of three adjacent faces of a cube.

332 Mateja Jamnik and Alan Bundy

If each half-shell is projected onto a plane, that is, if we look at the top-right-back
corner of each half-shell down the main diagonal of the cube from far enough,
then a hexagon can be seen. So the cube is then presented as the sum of all
half-shells, i.e., hexagonal numbers.

Again, notice that the general proof holds for any instance n. That is, these steps
are sufficient to transform a cube of magnitude n representing the LHS of the
theorem to n increasing hexagons representing the RHS of the theorem. Note
that the number of diagrammatic inference steps depends on the value of n, so
the proof is schematic in n.

3.5 Euler’s Theorem

Let us consider a famous example of an erroneous schematic “proof”, namely,
the history of Euler’s theorem [5]. Euler’s theorem states that for any polyhedron
V − E + F = 2 holds, where V is the number of vertices, E is the number of
edges, and F is the number of faces. Lakatos5 initially gives a proof, historically
due to Cauchy, of the theorem, which is a uniform method for proving instances
of Euler’s theorem. Thus, the method is a schematic proof. However parts of
the method are not explicitly stated, but seem very convincing when applied

5 The proof of Euler’s theorem is also discussed in [7, pages 47-48].

Psychological Validity of Schematic Proofs 333

to simple polyhedra. Here is a summary of the proof method taken from [5,
pages 7-8]6.

(a) (b) (c)

(d) (e) (f)

Take any polyhedron (note that in our case, we take a cube, but the result is
the same for any polyhedron). Imagine that it is hollow, and that its faces are
made out of rubber (see (a) of the diagram above). Now, remove one face from
the polyhedron, and stretch the rest of the polyhedron onto the plane (see (b)
of the diagram). Note that since we have taken one face off, our formula should
be V −E + F = 1. Note also that the relations between the vertices, edges and
faces are preserved in this way. Triangulate all of the faces of this plane network
(i.e., we are adding the same number of edges and faces to the network, so the
formula remains the same – see (c) of the diagram). Now, start removing the
boundary edges (see (d) of the diagram). This will have the effect of removing
an edge and a face from the network at the same time, or two edges, one vertex
and one face, so our formula is still preserved. We continue removing edges in
appropriate order (see (e)), thus preserving the formula, until we are left with
one triangle only. Clearly, for this triangle V − E + F = 1 holds, since there
are three vertices, three edges and one face. Here is an informal diagrammatic
schematic proof:

1. remove one face from any given polyhedron,
2. stretch the rest of the polyhedron onto the plane,
3. triangulate all of the faces that are not triangles already,
4. remove the boundary edges one after another, until you are left with a single

triangle.

However, this schematic “proof” is faulty, and we will discuss the reasons for
this in §5.

6 The diagram demonstrating the proof of Euler’s theorem is also taken from [5,
page 8].

334 Mateja Jamnik and Alan Bundy

4 Learning from Examples

Schematic proofs and the constructive ω-rule explain why one or more examples
can represent a general proof. Therefore, our first conjecture is that schematic
proofs explain the use of examples for construction of proofs. Furthermore, we
propose that reasoning with concrete cases, i.e., instances or examples, is often
more easily understood than reasoning with abstract notions.

As described in §2, the constructive ω-rule enables us to capture infinitary
concepts in a finite way. It enables us to use schematic proofs in order to prove
universal statements. The constructive ω-rule gives us a mathematical basis
which justifies how and why the examples or instances of problems can be used
in order to conclude a general statement, in our case a general proof of a univer-
sally quantified theorem. We describe two systems which use schematic proofs,
and hence reason with instances of theorems in order to prove universally quan-
tified theorems, namely Baker’s system CORE which reasons about theorems of
arithmetic [1], and Jamnik’s system Diamond which formalises diagrammatic
reasoning [2].

Baker used schematic proofs in order to prove theorems of arithmetic, espe-
cially the ones which could not be proved by automated systems without the use
of generalisation (for definition, see §1.1). One of Baker’s example theorems is
a special version of the theorem about associativity of addition. In §3.1 we gave
a general version of this theorem. Baker’s special version of the theorem can be
stated as:

(x + x) + x = x + (x + x)

The CORE system automatically proves this theorem by enumerating instances
of a proof, then constructing a general schematic proof, and finally, verifying
that the schematic proof is correct. Instances of the theorem can be encoded as:

(sn(0) + sn(0)) + sn(0) = sn(0) + (sn(0) + sn(0))

for each parameter n. The schematic proof of this theorem is identical to the
one in §3.1. In a theorem prover that cannot construct schematic proofs, this
theorem would normally be proved by mathematical induction. But induction
in this case is blocked, as P (s(n)) cannot be given in terms of P (n) (for more
details see [1]). Hence, generalisation to full associativity (x+y)+z = x+(y+z)
is necessary. Rather than using generalisation, as in other automated reasoning
systems, CORE was able to prove this theorem using concrete instances of a
theorem and its proof.

Jamnik uses schematic proofs for diagrammatic proofs of theorems of natural
number arithmetic, like the theorem about the sum of odd natural numbers given
in §3.3. To devise a general diagrammatic proof of this theorem, one would need
to use abstract diagrams, i.e., diagrams of a general size. Therefore, diagrams
would have to be represented using abstraction devices, such as ellipsis. Ab-
straction devices in diagrams are problematic as they are inherently ambiguous.
The pattern on either end of the ellipsis needs to be induced by the system. For
instance, it is ambiguous whether an abstract collection of rows or columns of
dots with ellipsis, like this:

Psychological Validity of Schematic Proofs 335

. . .

. . .

. . .

. . .

. . .
. . .
. . .

.
.

is a square or a rectangle, or if it is of odd or even magnitude. The problem
becomes more acute when dealing with more complex structures. To recognise
the pattern that the ellipsis represents, the system needs to carry out some
sort of pattern recognition technique which deduces the most likely pattern and
stores it in an exact internal representation. This guessed pattern might still
be wrong. Because of the ambiguity of ellipsis it is difficult to keep track of it
during manipulations of diagrams. Schematic proofs are a good way of avoiding
this problem, as they allow us to use concrete instances of a theorem and its
proof, and yet prove a general theorem. A procedure to construct a schematic
proof in Diamond and CORE is to first prove instances of a theorem, e.g., a
diagram, then construct a schematic proof, and finally prove that this schematic
proof is correct. Using instances of a theorem enables us to use concrete diagrams
in order to extract formal general proofs.

Besides the ability to extract general proofs from examples, it also appears
that reasoning with examples seems easier for humans to understand than rea-
soning with abstract notions. The usual way in logic to prove Baker’s theorem
by a mechanised provers is to use mathematical induction and a generalisation,
which is difficult to find for both, a human and an artificial mathematician –
a mechanised mathematical reasoning system. Furthermore, another way of di-
agrammatically proving Jamnik’s theorem is to reason with abstract diagrams
which contain problematic ellipses. Using schematic proofs and instances of the-
orems seems an easier way to prove these theorems, and seems to convey better
why the theorems hold.

5 Erroneous Proofs

A generally accepted definition of a proof of a theorem in mathematical logic is
the one given by Hilbert. Here is a translation of a quote from Hilbert’s article [8].

“Let me still explain briefly just how a mathematical proof is formal-
ized. As I said, certain formulas, which serve as building blocks for the
formal edifice of mathematics, are called axioms. A mathematical proof
is an array that must be given as such to our perceptual intuition; it
consists of inferences according to the schema

S S→ T
T

where each of the premisses, that is, the formulas S and S → T in the
array, either is an axiom or results from an axiom by substitution, or else

336 Mateja Jamnik and Alan Bundy

coincides with the end formula of a previous inference or results from it
by substitution. A formula is said to be provable if it is the end formula
of a proof.” [9, pages 381-382]

What Hilbert is talking about is sometimes referred to as Hilbert’s Pro-
gramme and is about the axiomatisation of mathematical systems. The defini-
tion of a proof in such a system can be summarised as follows. A proof of a
theorem is a sequence of inference steps which are valid in some logical theory
that has a complete axiomatisation, and which reduces a theorem that also be-
longs to this logical theory to a set of axioms, i.e., known true facts of the same
logical theory.

However, this definition is questionable as it implies that the only explana-
tion for errors in proofs is that they must be syntactic ones. Namely, Hilbert’s
argument suggests that all proofs boil down to a mechanical exercise of decom-
posing a theorem into a set of axioms of the theory to which they all belong. We
suggest that syntactic errors could be automatically detected during this decom-
position, and so erroneous proofs would not survive for years. In mathematics,
people do not always formalise all axioms and inferences, yet their justifications
for the truthfulness of theorems are generally accepted as correct proofs of theo-
rems. For instance, consider Euclid’s proofs of theorems of geometry long before
a complete axiomatisation of geometry was given by Hilbert [10].

Mathematical proofs of theorems sometimes turn out to be faulty. The history
of mathematics has taught us that there are plenty of faulty proofs of theorems
which were for a long time considered to be correct, but later it turned out that
the “proofs” were not proofs at all, that is, they were incorrect. Amongst famous
examples is Cauchy’s proof of the conjecture which says that the limit of any
convergent series of continuous functions is itself continuous. Cauchy’s “proof”
persisted for almost forty years until the faulty conjecture was modified [5].
Another example is the 4-colour conjecture which had faulty proofs [11]. An
interesting discussion of this conjecture and its “proofs” is given in [12], and
a correct proof of this theorem can be found in [13]. If Hilbert’s definition of a
proof was an accurate description of mathematical practice, then these erroneous
“proofs” would not arise – any fault in the “proof” would be detected quickly
as syntactic error. So what is going on, why do erroneous “proofs” persist?

Clearly, in mathematics in general Hilbert’s definition of a proof holds only
for a small part of mathematics, namely conjectures in logical theories which
have complete axiomatisations. However, not all mathematical conjectures are
part of known axiomatised logical theories.

Let us consider the famous example of an erroneous proof of Euler’s theorem,
given in §3.5. Analysing this proof, Lakatos [5] presents a number of counter
examples in which the method of proof, i.e., the schematic proof, fails. It turns
out that the initial theorem does not hold for all polyhedra. For example, it does
not hold for hollow polyhedra, e.g., a solid cube with a cubical hole inside it,
since V − E + F = 4. Note that the schematic proof fails at step 2.

Psychological Validity of Schematic Proofs 337

The reader is referred to [5] for a number of counter examples of this theorem.
One of the problems with Cauchy’s schematic proof is that the definition of a
polyhedron is not clearly stated. Therefore, a refinement of a theorem is needed.
Lakatos’s suggestion for this is to define a polyhedron as a surface and not as a
solid. Lakatos proceeds to discuss other counter examples to Cauchy’s schematic
proof, and finally refines the definition of a polyhedron in a way that Euler’s the-
orem does hold. It turns out that the theorems holds for all simple 7 [5, page 34]
polyhedra whose faces are simply connected 8 [5, page 85].

Cauchy used a procedure for construction of schematic proofs in order to
convince us of his “proof” of Euler’s theorem. However, he did not carry out the
last step of the procedure for extraction of schematic proofs, namely, he did not
verify that the schematic proof is indeed correct9. We argue that if he did use
the complete procedure, then the fallacy of the procedure would be detected at
the verification stage. Note that this would require a constructive definition of a
polyhedron.

It seems plausible that humans use some sort of schematic procedure to find
general proofs of theorems. In particular, humans often use examples of proofs
for certain instances and then abstract them into a general schematic proof. If
not all the cases are covered by the examples, then the schematic proof might
be incorrect, as in the case of the proof of Euler’s theorem mentioned above. If a
counter example is encountered, then the method needs to be revised to exclude
such cases. It seems that humans sometimes omit this step all together. Human
machinery for extracting a general schematic argument is usually convincing

7 Simple polyhedra are ones which can be stretched onto the plane, i.e., those that are
topologically equivalent to a sphere.

8 A surface S is defined to be connected if any pair of its points can be joined by a
continuous curve lying entirely within the surface. Further, a surface is said to be
simply connected if any closed curve C on the surface divides the surface into two
distinct regions, each of which is internally connected in the sense just described,
and such that any continuous curve which joins a point in one of those regions to a
point in the other must cross the closed curve C.

9 A modern formal proof of Euler’s theorem was devised only much later and is accord-
ing to Lakatos [5, page 118] due to Poincaré [14]. It works by representing polyhedra
as sets of vertices, edges and faces together with incidence matrices to say which
vertices are in each edge and which edges are in each face. A restricted class of
polyhedra is then turned into a formulae of vector algebra and a calculation in this
algebra gives the value 2 for V −E + F . The proof is not intuitively clear, and it is
not easy to see why the theorem holds and why this formal proof is correct.

338 Mateja Jamnik and Alan Bundy

enough to reassure them that the schematic argument is correct, e.g., consider
the “proof” of Euler’s theorem. Humans are happy with intuitive understandings
of definitions and steps in the proof – as long as they do not encounter a counter
example, their general pattern of reasoning in the proof is acceptable. Lakatos
refers to such mathematical proofs as “thought experiments”. It is only recently,
in the 20th century, that thought experiments were replaced by logical proofs.

In an automated reasoning system, formality is of crucial importance. The
correctness of the induced schematic argument has to be formally shown. This
confirms that a schematic proof is indeed a correct formal proof of a theorem. If
all proofs of theorems that people find followed rules of some formal logic, then
there would be no explanation for how erroneous proofs could arise. The errors
would always be detected as syntactical errors, provided that the rules used to
prove the theorem are correct.

So, our second conjecture is that human mathematicians often use a proce-
dure similar to the construction of schematic proofs in order to find proofs of
theorems, but they often omit the verification step which ensures that the proof is
correct. We propose further, that omitting the verification step of such procedure
accounts for numerous examples of faulty “proofs”. For instance, if one has not
considered all the representative examples, then the schematic proof may not
prove all cases of the theorem. A counter example may be found.

6 Intuitiveness of Schematic Proofs

Here, we extend the point in §4 that reasoning with examples or instances
of a problem is easier than reasoning with abstract notions. We propose that
schematic proofs seem to correspond better to human intuitive proofs. It appears
easier to see why the theorem holds by looking at the instances of a theorem
and its proof and then constructing a schematic proof, than considering a logi-
cal proof. As evidence, we give four examples of theorems from §3, where their
schematic proofs are easier to understand than formal logical proofs: Baker’s
proof of associativity of addition from §3.1, Jamnik’s diagrammatic proof of the
sum of odd naturals from §3.3, Penrose’s sum of hexagonal numbers from §3.4,
and rotate-length theorem from §3.2.

We now consider further the rotate-length theorem. The informal schematic
proof of this theorem is very easy to understand and to generalise to all cases of
any list.

In contrast to a schematic proof of the rotate-length theorem, this theorem
is not easy to prove by a conventional (non-diagrammatic) theorem prover. The
inductive proof of the rotate-length theorem usually requires generalisation: e.g.,
rotate(length(l), l@k) = k@l, where @ is the list append function as defined
in §3.2. It is harder to see that this theorem is correct. Schematic proofs avoid
such generalisations. Baker used schematic proofs to exploit this fact for theo-
rems of arithmetic [1].

We propose that the schematic proof given in §3.2 is a common way that
people think about the proof of this theorem. Anecdotal evidence from humans
suggests that schematic proofs are psychologically plausible. This supports our
conjecture that schematic proofs correspond better to human intuitive proofs.

Psychological Validity of Schematic Proofs 339

7 A Proposed Study

In this paper we proposed a number of conjectures about schematic proofs.

1. Schematic proofs explain the use of examples for inducing formal proofs.
2. Schematic proofs account for erroneous proofs.
3. Schematic proofs are more intuitive than standard inductive proofs.

These conjectures are not yet supported by an empirical study, but by our
intuition and some suggestive examples. Hence, we propose an experimental
study which could support or refute our intuitions. The study would look at
some or all of the aspects of schematic proofs addressed in the previous sections.
In particular, it would attempt to answer the following questions:

1. Do humans prefer to reason with concrete rather than general cases of a
problem? Do humans use a procedure similar to the construction of schematic
proofs when solving problems? If so, in what way do they use it and when?

2. Are there other examples which support the conjecture that incomplete
schematic proofs account for some erroneous proofs?

3. Is reasoning with examples easier than reasoning with abstract notions? Are
schematic proofs more easily understood than formal inductive proofs? If so,
why do they appeal to humans more than formal inductive proofs?

The study proposed here would explore human intuitive reasoning in a novel
way. We think that humans find schematic proofs easier to understand and more
compelling than their logical counterparts. This is also part of the reason why
humans might find diagrammatic proofs more intuitive than standard inductive
proofs. We have only anecdotal evidence to support our belief. However, a com-
parative psychological validity experimental study could be carried out to answer
some of the questions posed above and to provide some empirical evidence for
or against our claims.

The proposed study could take the following form. An experiment could be
carried out on a class of students with a certain level of mathematical knowledge
(probably final year of secondary school level – the students should be equipped
with the notion of mathematical induction). The class should be sufficiently
large that the results are statistically significant. The students would be given
examples of inductive theorems and non-theorems, and asked if they think the
theorem is true or not. If they think it is true, the students would be asked to
give an argument why they think it is true. Some of the non-theorems could be
those which hold for the majority of cases, but are not true for some special and
non-obvious cases. The students would also be asked to provide details of their
problem solving process, i.e., the arguments that helped them reach a proof of
a theorem or a conclusion that the theorems does not hold.

The data collected from the students would be analysed. Here are a few
aspects that could be addressed in the analysis:

340 Mateja Jamnik and Alan Bundy

– classification of problem solving strategies using some existing techniques,
– analysis of whether the arguments used in the proof are inductive, schematic

(using something like the constructive ω-rule), or some other type,
– analysis of the responses for non-theorems which are true for most cases, but

not true for some more obscure special cases:
• If the students realise that the conjecture is a non-theorem, how did they

discover this (especially in the case of a schematic argument)?
• If the students do not realise that the conjecture is a non-theorem, what

are the arguments that falsely reassure them that the conjecture is a
theorem and that it is true?

Another test that the students could be given consists of theorems and non-
theorems, and their proofs and faulty “proofs” respectively. Each (non-) theorem
could be accompanied with, say, three different (faulty) proofs each following a
different strategy, e.g., inductive, schematic or other. In the case of non-theorems,
the inductive argument would contain some syntactic errors and the schematic
argument would not be verified for correctness. The students would be asked to
choose the proof that is most convincing and that they think they understand
best, and to elaborate on the reasons for their choice.

The questions which should be studied in more detail before the experiment
is conducted include how much mathematical knowledge and knowledge of logic
should the students have. Should they be trained in mathematical induction,
constructive ω-rule, and other problem solving techniques? The danger is that
people who have some training in mathematics, but not in logic would solve
problems differently from those trained in logic, or those with little knowledge
of mathematics and logic. Hence, the results would say less about the nature of
proofs than about the abilities of individual students. A possibility is to separate
subjects into two or more groups according to their level of training, and study
the data according to these groups.

Here, we gave some preliminary suggestions for the design of the proposed
experimental study. However, these ideas should be investigated in much greater
detail before an experiment is conducted.

8 Conclusion

In this paper we posed several conjectures about the use of schematic proofs in
mathematics. These conjectures make claims about the psychological validity of
schematic proofs. First, we suggested that humans often use examples in order
to conclude a general mathematical statement. Second, we conjectured that in-
complete schematic proofs account for some erroneous proofs. Our suggestion
is that looking at faulty proofs that have survived for years might give us use-
ful insights into human reasoning. Finally, we conjectured that often schematic
proofs are more intuitive than their inductive counterparts. These three con-
jectures are only supported by anecdotal evidence, so there is a clear need for
a scientific experimental study which would test them. The motivation for this
work is to investigate the nature of human mathematical thought and the notion

Psychological Validity of Schematic Proofs 341

of mathematical proof. Schematic proofs provide a good case study for such an
investigation. Hence, our aim was to demonstrate that schematic proofs are wor-
thy of a further study by cognitive scientists, and to propose the sort of questions
that such an experiment could aim to answer. We hope that we provided enough
evidence and motivation that the study of psychological validity of schematic
proofs will be seen as a profitable scientific investigation, and will ultimately
lead to further research and useful results.

References

1. Baker, S., Ireland, A., Smaill, A.: On the use of the constructive omega rule
within automated deduction. In Voronkov, A., ed.: International Conference on
Logic Programming and Automated Reasoning – LPAR-92. Number 624 in Lecture
Notes in Artificial Intelligence, Berlin, Germany, Springer Verlag (1992) 214–225

2. Jamnik, M., Bundy, A., Green, I.: On automating diagrammatic proofs of arith-
metic arguments. Journal of Logic, Language and Information 8 (1999) 297–321

3. Sundholm, B.: A Survey of the Omega Rule. PhD thesis, University of Oxford,
Oxford, UK (1983)

4. Penrose, R.: Mathematical intelligence. In Khalfa, J., ed.: What is Intelligence?,
Cambridge, UK, The Darwin College Lectures, Cambridge University Press (1994)
107–136

5. Lakatos, I.: Proofs and Refutations: The Logic of Mathematical Discovery. Cam-
bridge University Press, Cambridge, UK (1976)

6. Jamnik, M.: Mathematical Reasoning with Diagrams: From Intuition to Automa-
tion. CSLI Press, Stanford, CA (2001)

7. Gamow, G.: One two three ... infinity: Facts & Speculations of Science. Dover
Publications, New York (1988)

8. Hilbert, D.: Über das Unendliche. Mathematische Annalen 95 (1926) 161–190
9. Van Heijenoort, J., ed.: From Frege to Gödel – A Source Book in Mathematical

Logic, 1879-1931. Havard University Press, Harvard, MA (1967)
10. Hilbert, D.: Grundlagen der Geometrie. Teubner, Stuttgart, Germany (1899)

English translation ’Foundations of Geometry’ published in 1902 by Open Court,
Chicago.

11. Kempe, A.: On the geographical problem of the four colours. American Journal
of Mathematics 2 (1879) 193–200

12. Mackenzie, D.: Mechanizing Proof. MIT Press, Boston, MA (2001)
13. Appel, K., Haken, W.: Every planar map is four colorable. Bulletin of the American

Mathematical Society 82 (1976) 711–712
14. Poincaré, H.: Complément à l’analysis situs. Rendiconti del Circolo Matematico

di Palermo 13 (1899) 285–343

Natural Language Proof Explanation

Armin Fiedler

FR Informatik, Universität des Saarlandes,
Postfach 15 11 50, D-66041 Saarbrücken, Germany

afiedler@cs.uni-sb.de

Abstract. State-of-the-art proof presentation systems suffer from sev-
eral deficiencies. First, they simply present the proofs without motivating
why the proof is done as it is done. Second, they neglect the issue of user
modeling and thus forgo the ability to adapt the presentation to the spe-
cific user. Finally, they do not allow the user to interact with the system
to ask questions about the proof.

As a first step to overcome these deficiencies, we developed a computa-
tional model of user-adaptive proof explanation, which is implemented
in a generic, user-adaptive proof explanation system, called P.rex (for
proof explainer). To do so, we used techniques from three different fields,
namely from computational logic to represent proofs ensuring the cor-
rectness; from cognitive science to model the users mathematical knowl-
edge and skills; and from natural language processing to plan the expla-
nation of the proofs and to react to the user’s interactions.

1 Introduction

Today, automated theorem provers are becoming increasingly important in prac-
tical industrial applications and increasingly useful in mathematical education.
For many applications, it is important that a deduction system communicates
its proofs reasonably well to the human user. To this end, proof presentation
systems have been developed.

However, state-of-the-art proof presentation systems suffer from several defi-
ciencies. First, they simply present the proofs, at best in a textbook-like format,
without motivating why the proof is done as it is done. Second, they neglect
the issue of user modeling and thus forgo the ability to adapt the presentation
to the specific user, both with respect to the level of abstraction chosen for the
presentation and with respect to steps that are trivial or easily inferable by the
particular user and, therefore, should be omitted. Finally, they do not allow the
user to interact with the system. He can neither inform the system that he has
not understood some part of the proof, nor ask for a different explanation. Sim-
ilarly, he cannot ask follow-up questions or questions about the background of
the proof.

As a first step to overcome these deficiencies, we developed a computational
model of user-adaptive proof explanation, which is implemented in a generic,
user-adaptive proof explanation system, called P.rex (for proof explainer). The

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 342–363, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Natural Language Proof Explanation 343

demands we make on the system are the following: The system should adapt to
the user with respect to the level of abstraction at which the proof is presented.
Moreover, the system should allow the user to intervene if he is not satisfied with
an explanation and to ask follow-up or background questions. The metaphor we
have in mind is a human mathematician who teaches a proof to a student or else
explains a proof to a colleague.

In our approach, we combine techniques from three different fields, namely
cognitive science, computational logic and natural language processing, as we
shall discuss in the following.

Modern natural language generation systems take into account the intended
audience’s knowledge in the generation of explanations (see e.g. [7, 39, 42]). Most
of them adapt to the addressee by choosing between different discourse strategies.
Since proofs are inherently rich in inferences, the explanation of proofs must also
consider which inferences the audience can make [44, 19, 20]. However, because
of the constraints of the human memory, inferences are not chainable without
costs. Explicit representation of the addressee’s cognitive states proves to be
useful in choosing the information to convey [43].

In cognitive science various theories of human cognition have been described
by means of a cognitive architecture, that is, the fixed structure that realizes the
cognitive apparatus. One of these theories is ACT-R [1], a cognitive architecture
that separates declarative and procedural knowledge into a declarative memory
and a production rule base, respectively. A goal stack allows ACT-R to fulfill a
task by dividing it into subtasks, which can be fulfilled independently.

ACT-R combines the abilities for user modeling and planning in a uniform
framework and is therefore particularly well suited as a basis for a user-adaptive
dialog planner. Using ACT-R, we model a teacher who explains mathematical
proofs to his student. In particular, we model the teacher’s assumptions about
the students cognitive states during the explanation (which establish the user
model) and the teacher’s knowledge of the mathematical theories and the way
to explain the proof of a theorem in these theories (which is used to plan the
explanation). The assumptions about the user’s cognitive states are employed to
choose the level of abstraction at which a proof is presented.

An important prerequisite that enables P.rex to choose among different levels
of abstraction is the simultaneous representation of a proof at several levels of
abstraction. This representation, which also serves as the interface between theo-
rem provers and P.rex , is realized in Twega, an implementation of an extension
of the logical framework LF [17] that corresponds to the calculus of construc-
tions [9]. Both are very powerful typed lambda calculi that allow us to represent
other logical calculi, and thus give us the possibility to represent the calculus of
the theorem provers that are to be connected to P.rex . The input proof to be
explained as well as relevant information from the mathematical theories that
relate to the proof are encoded in Twega and then used by P.rex . In particular,
using an expansion mechanism that defines for any derivation step a subproof at
the lower level of abstraction, Twega allows us to represent a proof at several
levels of abstraction simultaneously.

344 Armin Fiedler

Successful communication via a natural language generation system presup-
poses that the content to be conveyed is appropriately structured to ensure a
coherent semantic organization. For an explanation system, it is also important
to accept user feedback and follow-up questions. To be able to clarify misun-
derstood explanations, the system needs to represent the different parts of the
explanation as well as the relations between them.

An appropriate discourse theory that allows for these representations was for-
mulated by Mann and Thompson [30]. This theory, called Rhetorical Structure
Theory (RST), states that the relations that hold between segments of normal
English text can be represented by a finite set of relations. Based on RST, Hovy
[21] described discourse as the nesting of discourse segments. According to his
discourse theory, each segment essentially contains the communicative goal the
speaker wants to fulfill with this segment and either one to several discourse
segments with intersegment discourse relations or the semantic material to be
communicated. Adapting Hovy’s discourse segments, we define discourse struc-
ture trees as a representation of discourses for P.rex . The discourse structure
trees are built by plan operators, which are defined in terms of ACT-R produc-
tion rules.

This paper is organized as follows: First, in Section 2 we shall review relevant
research in proof presentation and formulate requirements for proof explanation.
Next, in Section 3, we shall give an overview of the architecture of P.rex . Section 4
is devoted to ACT-R, the theory of human cognition that serves as a basis for
the dialog planner of P.rex . The dialog planner itself is the subject of Section 5.
We shall define discourse structure trees to represent the discourse and plan
operators to construct them. In particular, we shall show how the system uses
special plan operators to adapt its explanations to the user. Moreover, we shall
discuss the system’s reaction to a user’s interactions. This will be illustrated by
some examples in Section 6.

2 Proof Presentation

While the field of automated theorem proving matured in the last four decades,
it became more and more apparent that the systems had to output proofs that
can be more easily understood by mathematicians. To provide the proofs in
the internal, machine-oriented formalisms of the theorem provers is by far not
sufficient. Thus, proof presentation systems had to be designed that presented
proofs in natural language at an appropriate level of abstraction.

The problem of obtaining a natural language proof from a machine-found
proof can be divided into two subproblems: First, the machine-found proof is
transformed into a human-oriented calculus, which is much better suited for
presentation. Second, the transformed proof is verbalized in natural language.
In the following, we shall examine both stages in some more detail.

2.1 Proof Transformation

Already in the thirties, Gentzen devised a human-oriented calculus that aimed
to reflect the way mathematicians reason, the natural deduction (ND) calculus

Natural Language Proof Explanation 345

[16]. However, most automated theorem provers are based on machine-oriented
formalisms, such as resolution or matings. As a consequence, proofs encoded in
such formalisms are not suited for a direct verbalization, because their lines of
reasoning are often unnatural and obscure. To remedy this problem, researchers
developed algorithms to transform proofs in machine-oriented calculi into ND
proofs [2, 27, 35, 40, 29].

Initially, the idea was that the transformation into an ND proof is sufficient
for the subsequent verbalization. But the results of the transformations into
the ND calculus turned out to be far from satisfactory. The reason is that the
obtained ND proofs are very large and too involved in comparison to the original
proof. Moreover, in the ND calculus, an inference step merely consists of the
syntactic manipulation of a quantifier or a connective. Huang [23] realized that
in human-written proofs, in contrast, an inference step is often described in terms
of the application of a definition, axiom, lemma or theorem, which he collectively
calls assertions. Based on this observation, he defined an abstraction of ND
proofs, called the assertion level, where a proof step may be justified either by
an ND inference rule or by the application of an assertion, and gave an algorithm
to abstract an ND proof to an assertion level proof [23]. Based on Huang’s ideas,
Meier described an algorithm to transform refutation graphs (a data structure
that represents resolution proofs) directly into assertion level proofs [33]. The
assertion level proves to be much better suited for a subsequent verbalization of
the proofs than a traditional calculus. However, the assertion level sometimes
includes steps that include implicit applications of modus tollens, which prove
to be difficult to comprehend for human beings. Therefore, Horacek introduced
the partial assertion level, where these applications are made explicit [20].

Since traditional search-based automated theorem provers find only proofs for
theorems that are usually considered easy by mathematicians, theorem provers
based on human-oriented approaches such as planning have been developed [5,
3]. The key idea here is that proof techniques as used by mathematicians are
encoded into plan operators, which are used by the proof planner to find a proof
plan. Because a proof plan is an abstract representation of a proof, it provides
a level that is better suited for presentation, such that proof transformation
becomes obsolete for proof planners.

2.2 Proof Verbalization

Now, let us turn our attention to approaches to verbalize proofs. One of the
earliest proof presentation systems was EXPOUND [8]. It translated the formal
proofs directly into English. Even though sophisticated techniques were devel-
oped to plan the paragraphs and sentences that made up the written proof, the
system verbalized every single step of the formal proof in a template driven way,
such that even small proofs are too detailed and still not easy to follow.

Proofs were also used as test input for early versions of MUMBLE [32], a
natural language generation (NLG) system that adopted more advanced gener-
ation techniques. However, its main concern was not proof presentation, but to
show the feasibility of its two-staged architecture for the generation of natural
language.

346 Armin Fiedler

Whereas the previously mentioned systems focused on problems in natural
language generation and used formal proofs only as well-defined input for the
generation process, research in the field of automated theorem proving addressed
the readability of proofs as well. The following systems were developed in the field
of automated theorem proving with the aim to obtain human-readable proofs.

The χ-proof system [14] was one of the first theorem provers that was de-
signed with a natural language output component. The system showed every
step of the derivation by using predefined templates with English words, but
left the formulae in their logical form. The same is true for the pseudo-natural
language presentation components of Coq [10] and the proof system Theorema
[4]. The latter additionally allows the user to hide or unhide proof parts that he
considers too detailed or not detailed enough, respectively.

Natural Language Explainer [12] was devised as a back end for the natural
deduction theorem prover THINKER. Employing several isolated strategies, it
was the first system to acknowledge the need for higher levels of abstraction
when explaining proofs. Another presentation system that uses templates with
canned sentence chunks to verbalize proofs is ILF [11]. It has been connected to
several automated theorem provers, whose output proofs are presented in natural
language at the logic level of the machine-oriented formalism of the respective
prover.

PROVERB [22, 24] can be seen as the first serious attempt to build a generic,
comprehensive NLG system that produces adequate argumentative texts from
machine-found proofs. It takes as input ND proofs, which are first abstracted
to the assertion level before any subsequent processing starts. PROVERB con-
sists of a text planner, which chooses the information to be conveyed, a sentence
planner, which plans the internal structure of the sentences, and the linguistic
realizer TAG-GEN [26], which produces the output text. The system uses pre-
sentation knowledge and linguistic knowledge to plan the proof texts, which are
output in a textbook-like format.

Another recently developed NLG system that is used as a back end for a
theorem prover is the presentation component of Nuprl [18]. The system consists
of a pipeline of two components. It employs a content planner that selects the
information to be included in the output text and decides how to refer to the
information in the given context. The text plan is then passed on to the surface
realizer FUF [13], which chooses the words and outputs the actual sentences.

To sum up, to remedy the problem that many theorem provers return proofs
in their internal, machine-oriented formalisms, which are very hard to under-
stand, more and more human-oriented interfaces for theorem provers have been
developed. But these interfaces are mostly used in the theorem proving commu-
nity, that is, by people who usually have an insight in the provers’ formalisms.
The systems present proofs mostly at a very low level of abstraction and none
of the systems adapts its output to the user or can handle follow-up questions.
Whereas this might be tolerable for the developers of the theorem provers, it is
certainly not acceptable for mathematicians or mathematics students who want
to work with theorem provers.

Natural Language Proof Explanation 347

2.3 Requirements for the Explanation of Proofs

When designing a proof explanation system, we may study a mathematics teacher
and examine how he explains proofs to his students.

In education, human teachers use natural language for the presentation and
explanation. Mathematics teachers often experience that students are demoti-
vated by an overload of formulae. Hence, it can be expected that a proof expla-
nation system, in particular if used by novices, is much more accepted if it also
communicates derivations and, to some extend, formulae in natural language.

Many concepts and ideas are much easier to understand when they are de-
picted graphically; the inclusion of graphs and diagrams in addition to natu-
ral language is standard routine in mathematics communication. The computer
allows us to go beyond these traditional ways of presentation and to include
parameterized animations as well, which, for example, display how a diagram
changes when parameters are varied. That is, a multi-modal user interface would
be desirable.

The major advantage of a teacher in comparison to a textbook is that the
students can interact with the teacher during the lesson. For example, they
can ask the teacher when they do not understand a derivation. These forms of
interaction should be supported by an intelligent explanation system as well.

To communicate a proof, the teacher has to present individual proof steps
choosing a degree of explicitness. Usually, he does not mention all proof steps
explicitly by giving the premises, the conclusion and the inference method. Often,
he only hints implicitly at some proof steps (e.g., by giving only the inference
method) when the hint is assumed to suffice for the student to reconstruct the
proof step. Other proof steps are completely omitted when they are obvious or
easy to infer.

However, a presentation that consists of a mere enumeration of proof steps is
often unnatural and tedious to follow. Therefore, teachers add many explanatory
comments, which motivate a step or explain the structure of a subproof, for
example, by stressing that a case analysis follows.

Both decisions whether a proof step is only hinted at or omitted, and whether
an explanatory comment is given are usually made relative to the context. For
example, if a premise A of a proof step with conclusion B is used immediately
after it was derived, the teacher only hints at it by saying: “Therefore, B holds.”
But if the premise A was derived a while ago he explicitly mentions it by saying:
“Since A, we obtain B.” A similar argument holds for explanatory comments.
For example, if it is obvious that there is a case analysis it is not explicitly
introduced, but the cases are presented right away.

The level of abstraction at which the proof is presented plays a major role.
For example, the author of a textbook has an idea of his intended audience
and adapts his presentation to that audience. Likewise, a teacher takes into
account the abilities of his students when he decides at which level of abstraction
he presents a derivation. To choose between different levels of abstraction, an
intelligent proof explanation system needs a user model, which records the facts
and inference methods the user knows.

348 Armin Fiedler

Finally, a proof explanation system should also account for different presen-
tation strategies with respect to the purpose of the session. For example, different
strategies are needed when mere mathematical facts are to be conveyed in con-
trast to when mathematical skills are to be taught. In the former case, a proof
can be presented in textbook style where the essential proof steps are shown.
In the latter case, the presentation should be structured differently to convey
also control knowledge, which explains why the various proof steps are taken as
opposed to just show that they are taken [28]. These two strategies reflect the
difference in the difficulty of checking the correctness of a proof versus finding a
proof.

P.rex is the first attempt to build an interactive, user-adaptive proof expla-
nation system. Except for multi-modality, we shall address all the requirements
formulated in this paper. Although graphs and diagrams play an important role
when included in a presentation, they occur only in certain mathematical the-
ories and even in these theories, they do not occur very often. Therefore, we
decided for the moment to neglect the generation of graphs and diagrams in our
system.

3 The Architecture of P.rex

P.rex is a generic proof explanation system that can be connected to different
theorem provers. Except for multi-modality, it fulfills all requirements given in
Section 2.3. In this section, we shall give an overview of the architecture of P.rex ,
which is displayed in Figure 1.

As the interface between theorem provers and P.rex , we defined the for-
mal language Twega, the implementation of an extension of the logical frame-
work LF [17] that corresponds to the calculus of constructions [9]. Both are
very powerful calculi from type theory that allow us to represent other logi-
cal calculi and, thus, to represent the proofs of most currently implemented
theorem provers. Hence, Twega ensures that P.rex can be connected to these
theorem provers. The type-theoretic foundations of Twega guarantee that only
those proofs can be represented that are correct with respect to the calculus
of the corresponding prover. The calculus of the prover, the input proof to be
explained, as well as relevant information from the mathematical theories that
relate to the proof are represented in Twega for further use by P.rex . An expan-
sion mechanism that defines for any derivation step a subproof at the lower level
of abstraction allows Twega to represent a proof at several levels of abstraction
simultaneously.

The central component of P.rex is the dialog planner. It chooses the content
and determines the order of the information to be conveyed, and organizes the
pieces of information in a rhetorical structure, called discourse structure. The
discourse structure also specifies the large-scale segmentation of the discourse
into paragraphs.

The dialog planner is implemented in ACT-R, a production system that aims
to model the human cognitive apparatus [1]. ACT-R separates declarative and
procedural knowledge into a declarative memory and a production rule base,

Natural Language Proof Explanation 349

Theorem
Prover

User

rexP.

Production
Rules

Declarative
Memory

ModelsProof

Surface Realizer

Sentence Planner

User Interface

Dialog Planner
User

Theories
math.

Analyzer

Fig. 1. The Architecture of P.rex .

respectively. A goal stack allows ACT-R to fulfill a task by dividing it into
subtasks, which can be fulfilled independently. We shall review ACT-R briefly
in Section 4.

The plan operators of the dialog planner organize the discourse structure.
They are defined in terms of ACT-R productions. A discourse history is repre-
sented in the declarative memory by storing conveyed information. Moreover,
presumed declarative and procedural knowledge of the user is encoded in the
declarative memory and the production rule base, respectively. This establishes
that the dialog planner is modeling the user.

In order to explain a particular proof, the dialog planner first assumes the
user’s cognitive state by updating its declarative and procedural memories. This
is done by looking up the user’s presumed knowledge in the user model, which
was recorded during a previous session. An individual model for each user per-
sists between the sessions. It is stored in the database of user models. Each user
model contains assumptions about the knowledge of the user that is relevant to
the proof explanation. In particular, it makes assumptions about which mathe-
matical theories the user knows and which definitions, proofs, inference methods
and mathematical facts he knows.

After updating the declarative and procedural memories, the dialog planner
sets the global goal to show the proof. ACT-R tries to fulfill this goal by succes-
sively applying productions that decompose or fulfill goals. Thereby, the dialog
planner not only produces a dialog plan, but also traces the user’s cognitive
states in the course of the explanation. This allows the system both to always
choose an explanation adapted to the user, and to react to the user’s interac-
tions in a flexible way: The dialog planner interprets an interaction in terms of
applications of productions. Then it plans an appropriate response. Section 5 is
devoted to the dialog planner.

350 Armin Fiedler

The dialog plan produced by the dialog planner is passed on to the sentence
planner. We adapted and extended PROVERB ’s micro-planner [15, 24] to use
it in P.rex to plan the internal structure of the sentences. The sentence planner
aggregates domain concepts when possible and maps them into a linguistic struc-
ture. The linguistic structure specifies the lexical items and referring expressions
that realize the domain concepts as well as the small-scale segmentation, that
is, the scope of the phrases and sentences.

The linguistic structure is then realized by the syntactic generator TAG-GEN
[26], which ensures the correct morphology of the surface words. Note that dialog
planner, sentence planner and surface realizer are organized in a pipeline.

The utterances that are produced by P.rex are presented to the user via a
user interface that allows the user to enter remarks, requests and questions. An
analyzer receives the user’s interactions, analyzes them and passes them on to
the dialog planner. Since natural language understanding is beyond the scope of
this work, we use a simplistic analyzer that understands a small set of predefined
interactions.

4 ACT-R: A Cognitive Architecture

In cognitive science several approaches are used to describe the functionality
of the cognitive apparatus, for example, production systems, mental models or
distributed neural representations. Production systems that model human cog-
nition are called cognitive architectures. In this section we describe the cognitive
architecture ACT-R [1], which is well suited for user adaptive explanation gener-
ation because of its conflict resolution mechanism. Further examples for cognitive
architectures are SOAR [38] and EPIC [34].

ACT-R has two types of knowledge bases, or memories, to store permanent
knowledge in: declarative and procedural representations of knowledge are ex-
plicitly separated into the declarative memory and the procedural production
rule base, but are intimately connected.

Procedural knowledge is represented in production rules (or simply: produc-
tions) whose conditions and actions are defined in terms of declarative structures.
A production can only apply if its conditions are satisfied by the knowledge cur-
rently available in the declarative memory. An item in the declarative memory
is annotated with an activation that influences its retrieval. The application of a
production modifies the declarative memory, or it results in an observable event.
The set of applicable productions is called the conflict set. A conflict resolution
heuristic derived from a rational analysis of human cognition determines which
production in the conflict set will eventually be applied.

In order to allow for a goal-oriented behavior of the system, ACT-R manages
goals in a goal stack. The current goal is that on the top of the stack. Only
productions that match the current goal are applicable.

4.1 Declarative Knowledge

Declarative knowledge is represented in terms of chunks in the declarative mem-
ory. Below is an example for a chunk encoding the fact that F ⊆ G, where

Natural Language Proof Explanation 351

subset-fact is a concept and F and G are contextual chunks associated to
factFsubsetG.

factFsubsetG

isa subset-fact

set1 F

set2 G

Chunks are annotated with continuous activations that influence their re-
trieval. The activation Ai of a chunk Ci consists of its base-level activation Bi and
the weighted activations of contextual chunks. In Bi, which is defined such that
it decreases logarithmically when Ci is not used, ACT-R models the forgetting
of declarative knowledge. Note that the definition of the activation establishes
a spreading activation to adjacent chunks, but not further; multi-link-spread is
not supported.

The constraint on the capacity of the human working memory is approached
by defining a retrieval threshold τ , where only those chunks Ci can be matched
whose activation Ai is higher than τ . Chunks with an activation less than τ are
considered as forgotten.

New declarative knowledge is acquired when a new chunk is stored in the
declarative memory, as is always the case when a goal is popped from the goal
stack. The application of a production may also cause a new chunk to be stored
if required by the production’s action part.

4.2 Procedural Knowledge

The operational knowledge of ACT-R is formalized in terms of productions.
Productions generally consist of a condition part and an action part, and can
be applied if the condition part is fulfilled. In ACT-R both parts are defined
in terms of chunk patterns. The condition is fulfilled if its first chunk pattern
matches the current goal and the remaining chunk patterns match chunks in the
declarative memory. An example for a production is

IF the current goal is to show that x ∈ S2 and it is known that x ∈ S1 and S1 ⊆ S2

THEN conclude that x ∈ S2 by the definition of ⊆

Similar to the base-level activation of chunks, the strength of a production is
defined such that it decreases logarithmically when the production is not used.
The time spent to match a production with a chunk depends on the activation
of the chunk1. It is defined such that it is negative exponential to the sum
of the activation of the chunk and the strength of the production. Hence, the
higher the activation of the chunk and the strength of the production, the faster
the production matches the chunk. Since the activation must be greater than
the retrieval threshold τ , τ constrains the time maximally available to match a
production with a chunk.
1 In this context, time does not mean the CPU time needed to calculate the match,

but the time a human would need for the match according to the cognitive model.

352 Armin Fiedler

The conflict resolution heuristic starts from assumptions on the probability P
that the application of the current production leads to the goal and on the costs C
of achieving that goal by this means. Moreover G is the time maximally available
to fulfill the goal. The net utility E of the application of a production is defined as

E = P G− C. (1)

We do not go into detail on how P , G and C are calculated. For the purposes
of this paper, it is sufficient to note that G only depends on the goal, but not
on the production.

To sum up, in ACT-R the choice of a production to apply is as follows:

1. The conflict set is determined by testing the match of the productions with
the current goal.

2. The production p with the highest utility is chosen.
3. The actual instantiation of p is determined via the activations of the corre-

sponding chunks. If no instantiation is possible (because of τ), p is removed
from the conflict set and the algorithm resumes in step 2, otherwise the
instantiation of p is applied.

ACT-R also provides a learning mechanism, called production compilation,
which allows for the learning of new productions.

5 Dialog Planning

In the community of NLG, there is a broad consensus that it is appropriate
to generate natural language in three major steps [41, 6]. First, a text planner
determines what to say, that is, content and order of the information to be
conveyed. Then, a sentence planner determines how to say it, that is, it plans
the scope and the internal structure of the sentences. Finally, a linguistic realizer
produces the surface text. In this classification, the dialog planner is a text
planner for managing dialogs.

The dialog planner of P.rex plans the dialog by building a representation
of the structure of the discourse that includes speech acts as well as relations
among them. The discourse structure is represented in the declarative memory.
The plan operators are defined as productions.

5.1 Discourse Structure

Drawing on Rhetorical Structure Theory (RST) [30], Hovy argues in favor of a
single tree to represent a discourse [21]. He considers a discourse as a structured
collection of clauses, which are grouped into segments by their semantic relat-
edness. The discourse structure is expressed by the nesting of segments within
each other according to specific relationships (i.e., RST relations). According to
his discourse theory, each segment essentially contains the communicative goal
the speaker wants to fulfill with this segment and either one to several discourse
segments with intersegment discourse relations or the semantic material to be
communicated.

Natural Language Proof Explanation 353

Similarly to Hovy’s approach, we describe a discourse by a discourse structure
tree, where each node corresponds to a segment of the discourse. The speech acts,
which correspond to minimal discourse segments, are represented in the leaves.
We achieve a linearization of the speech acts by traversing the discourse structure
tree depth-first from left to right. Explicit representation of the discourse pur-
pose allows for presentations using different styles. Moreover, discourse structure
trees also account for restricted types of dialogs as well, namely certain types
of interruptions and clarification dialogs. This is a necessary prerequisite for the
system to represent user interactions and to appropriately react to them.

5.2 Speech Acts

Speech acts are the primitive actions planned by the dialog planner. They rep-
resent frozen rhetorical relations between exchangeable semantic entities. The
semantic entities are represented as arguments to the rhetorical relation in the
speech act. Each speech act can always be realized by a single sentence. We use
speech acts in P.rex not only to represent utterances that are produced by the
system, but also to represent utterances from the user in the discourse.

We distinguish two major classes of speech acts. First, mathematical commu-
nicative acts (MCAs) are employed to convey mathematical concepts or deriva-
tions. MCAs suffice for those parts of the discourse, where the initiative is taken
by the system. Second, interpersonal communicative acts (ICAs) serve the dia-
log, where both the system and the user alternately take over the active role.

Mathematical Communicative Acts. Mathematical communicative acts
(MCAs) are speech acts that convey mathematical concepts or derivations. Our
class of MCAs was originally derived from PROVERB ’s PCAs [22], but has been
substantially reorganized and extended. We distinguish two classes of MCAs:

– Derivational MCAs convey steps of the derivation, which are logically neces-
sary. Failing to produce a derivational MCA makes the presentation logically
incorrect. The following is an example for a derivational MCA given with a
possible verbalization:

(Derive :Reasons (a ∈ F ∨ a ∈ G) :Conclusion a ∈ F ∪G

:Method ∪-Lemma)
“Since a ∈ F or a ∈ G, a ∈ F ∪G by the ∪-Lemma.”

– Explanatory MCAs comment on the steps of a derivation or give information
about the structure of a derivation. This information is logically unnecessary,
that is, omission leaves the derivation logically correct. However, inclusion
of explanatory MCAs makes it much easier for the addressee to understand
the derivations, since these comments keep him oriented. For example, an
MCA of type Case introduces a case in a case analysis:

(Case :Number 1 :Hypothesis a ∈ F)
“Case 1: Let a ∈ F .”

354 Armin Fiedler

Interpersonal Communicative Acts. MCAs, which only convey informa-
tion to the dialog partner without prompting any interaction, suffice to present
mathematical facts and derivations in a monolog. To allow for dialogs we also
need interpersonal communicative acts (ICAs), which are employed for mixed-
initiative, interpersonal communication. In our taxonomization we distinguish
four classes of ICAs: questions, requests, acknowledgments and notifications.
Note that the user never enters speech acts directly into the system. Instead,
the user’s utterances are interpreted by the analyzer and mapped into the cor-
responding speech acts.

ICAs are especially important to allow for clarification dialogs. If the system
failed to successfully communicate a derivation, it starts a clarification dialog to
detect the reason for the failure. Then, it can re-plan the previously failed part
of the presentation and double-check that the user understood the derivation.
We shall come back to this issue in Section 5.4.

5.3 Plan Operators

Operational knowledge concerning the presentation is encoded as productions.
Each production either fulfills the current goal directly or splits it into subgoals.
Let us assume that the following nodes are in the current proof:

Label Antecedent Succedent Justification
P1 Δ1 � ϕ1 J1

...
Pn Δn � ϕn Jn

C Γ � ψ R(P1, . . . , Pn)

An example for a production is:

(P1) IF the current goal is to show Γ � ψ
and R is the most abstract known rule justifying the current goal
and Δ1 � ϕ1, . . . , Δn � ϕn are known

THEN produce MCA
(Derive :Reasons (ϕ1, . . . , ϕn) :Conclusion ψ :Method R)

insert it in the discourse structure tree
and pop the current goal

By producing the MCA the current goal is fulfilled and can be popped from
the goal stack. An example for a production decomposing the current goal into
several subgoals is:

(P2) IF the current goal is to show Γ � ψ
and R is the most abstract known rule justifying the current goal
and Φ = {ϕi|Δi � ϕi is unknown for 1 ≤ i ≤ n} �= ∅

THEN for each ϕi ∈ Φ, push the goal to show Δi � ϕi

Note that the conditions of (P1) and (P2) only differ in the knowledge of the
premises ϕi for rule R. (P2) introduces the subgoals to prove the unknown
premises in Φ. As soon as those are derived, (P1) can apply and derive the
conclusion. Hence, (P1) and (P2) in principle suffice to plan the presentation

Natural Language Proof Explanation 355

of a proof starting from the conclusion and traversing the proof tree towards
its hypotheses. However, certain proof situations call for a special treatment.
Assume that the following nodes are in the current proof:

Label Antecedent Succedent Justification
P0 Γ � ϕ1 ∨ ϕ2 J0

H1 H1 � ϕ1 HYP
P1 Γ, H1 � ψ J1

H2 H2 � ϕ2 HYP
P2 Γ, H2 � ψ J2

C Γ � ψ CASE(P0, P1, P2)

A specific production managing such a case analysis is the following:

(P3) IF the current goal is to show Γ � ψ
and CASE is the most abstract known rule justifying the current goal
and Γ � ϕ1 ∨ ϕ2 is known
and Γ, H1 � ψ and Γ, H2 � ψ are unknown

THEN push the goals to show Γ, H1 � ψ and Γ, H2 � ψ
and produce MCA
(Case-Analysis :Goal ψ :Cases (ϕ1, ϕ2))

and insert it in the discourse structure tree

This production introduces new subgoals and motivates them by producing the
MCA.

Since more specific rules treat common communicative standards used in
mathematical presentations, they are assigned lower costs, that is, C(P3) < C(P2)

(cf. Equation 1 in Section 4.2).
Moreover, it is supposed that each user knows all natural deduction (ND)

rules, since ND rules are the least abstract possible logical rules in proofs. Hence,
for each production p that is defined such that its goal is justified by an ND rule
in the proof, the probability Pp that the application of p leads to the goal to
explain that proof step equals one. Therefore, since CASE is such an ND rule,
P(P3) = 1.

Note that the productions ensure that only those inference rules are selected
for the explanation that are known to the user.

5.4 User Interaction

The ability for user interaction is an important feature of explanation systems.
Moore and Swartout presented a context-sensitive explanation facility for expert
systems that, on the one hand, allows the user to ask follow-up questions and,
on the other hand, actively seeks feedback from the user to determine whether
the explanations are satisfactory [37]. Mooney and colleagues emphasized that
the user must be able to interrupt the explanation system at any time [36].

In P.rex , the user can interact with the system at any time. When the system
is idle – for example, after starting it or after completion of an explanation – it
waits for the user to tell it the next task. During an explanation, P.rex checks

356 Armin Fiedler

after each production cycle if the user wishes to interrupt the current explana-
tion. Each interaction is analyzed by the analyzer and passed on to the dialog
planner as a speech act, which is included in the current discourse structure tree.

We allow for three types of user interaction in P.rex : A command tells the
system to fulfill a certain task, such as explaining a proof. An interruption inter-
rupts the system to inform it that an explanation is not satisfactory or that the
user wants to insert a different task. In clarification dialogs, finally, the user is
prompted to give answers to questions that P.rex asks when it cannot identify
a unique task to fulfill. In this paper, we shall concentrate on interruptions.

Interruptions. The user can interrupt P.rex anytime to enter a new command
or to complain about the current explanation. The following speech acts are
examples for messages that can be used to interrupt the system:

(too-detailed :Conclusion C)
The explanation of the step leading to C is too detailed, that is, the step
should be explained at a more abstract level.

(too-difficult :Conclusion C)
The explanation of the step leading to C is too difficult, that is, the step
should be explained in more detail.

The Reaction to too-detailed. When the user complains that the derivation
of a conclusion C was too detailed, the dialog planner checks if there is a higher
level of abstraction on which C can be shown. If so, the corresponding higher level
inference rule is marked as known, so that it is available for future explanations.
Then, the explanation of the derivation of C is re-planned. Otherwise, the dialog
planner informs the user, that there is no higher level available for presentation.
This reaction of the system is encoded in the following two productions:

(P4) IF the user message is
(too-detailed :Conclusion C)

and the inference rule R was used to justify C
and there is an inference rule R′ justifying C that is more abstract than R

THEN mark R′ as known by the user
and push the goal to show C

(P5) IF the user message is
(too-detailed :Conclusion C)

and the inference rule R was used to justify C
and there is no inference rule R′ justifying C that is more abstract than R

THEN produce ICA
(Most-abstract-available :Rule R)

and insert it in the discourse structure tree

An example dialog where the user complained that the original explanation
of a proof was too detailed shall be given in Example 1 in Section 6.

Natural Language Proof Explanation 357

The Reaction to too-difficult. When the user complains that the deriva-
tion of a conclusion C was too difficult, the dialog planner enters a clarification
dialog to find out which part of the explanation failed to remedy this failure.
The control of the behavior of the dialog planner is displayed in Figure 2. Note
that every arrow in the figure corresponds to a production such that we cannot
give the productions here due to space restrictions.

Fig. 2. The reaction of the dialog planner if a step S was too difficult.

To elucidate the diagram in Figure 2, an example dialog where the user
complained that the original explanation of a proof was too difficult shall be
given in Example 2 in the following section.

6 Example Dialogs

Let us examine more closely how P.rex plans the discourse with the help of two
example dialogs. In both dialogs, P.rex explains the proof given in Figure 3. Note
that this proof consists of two similarly proved parts with L3 and L7 as roots,
respectively.

358 Armin Fiedler

Label Antecedent Succedent Justification
L0 � a ∈ U ∨ a ∈ V J0

H1 H1 � a ∈ U HYP
L1 H1 � a ∈ U ∪ V Def∪(H1)
H2 H2 � a ∈ V HYP
L2 H2 � a ∈ U ∪ V Def∪(H2)
L3 � a ∈ U ∪ V ∪-Lemma(L0)

CASE(L0, L1, L2)
L4 � a ∈ F ∨ a ∈ G J4

H5 H5 � a ∈ F HYP
L5 H5 � a ∈ F ∪G Def∪(H5)
H6 H6 � a ∈ G HYP
L6 H6 � a ∈ F ∪G Def∪(H6)
L7 � a ∈ F ∪G ∪-Lemma(L4)

CASE(L4, L5, L6)

Fig. 3. A proof to be explained by P.rex .

Example 1. Let us consider the following situation:

– The current goal is to show the fact in L3. The next goal on the stack is to
show the fact in L7.

– The rules HYP, CASE, and Def∪ are known, the rule ∪-Lemma is unknown.
– The facts in L0 and L4 are known, the facts in H1, L1, H2, L2, H5, L5, H6,

and L6 are unknown.

Since CASE is the most abstract known rule justifying the current goal,
both decomposing productions (P2) and (P3) are applicable. Recall that the
conflict resolution mechanism chooses the production with the highest utility E
(cf. Equation 1 in Section 4.2). Since P(P3) = 1 and Pp ≤ 1 for all productions p,
P(P3) ≥ P(P2). Since the application of (P2) or (P3) would serve the same goal,
G(P3) = G(P2). Since (P3) is more specific than (P2), C(P3) < C(P2). Thus

E(P3) = P(P3)G(P3) − C(P3) > P(P2)G(P2) − C(P2) = E(P2)

Therefore, the dialog planner chooses (P3) for the explanation, thus producing
the MCA

(Case-Analysis :Goal a ∈ U ∪ V :Cases (a ∈ U, a ∈ V))

which can be realized as “To prove a ∈ U ∪ V let us consider the cases that
a ∈ U and a ∈ V ,” and then explains both cases.

Suppose now that the user interrupts the system throwing in that the presen-
tation is too detailed. Then, the analyzer passes the speech act (too-detailed
:Conclusion a ∈ U ∪ V) to the dialog planner. Since the inference rule ∪-
Lemma, which is more abstract than CASE, also justifies the conclusion, pro-
duction (P4) applies. Hence, the inference rule ∪-Lemma is marked as known
and the goal to show the fact in L3 is again pushed onto the goal stack. Then,
(P1) is the only applicable production. Since ∪-Lemma is more abstract than
CASE and both are known, it is chosen to instantiate (P1). Hence, the dialog
planner produces the MCA

Natural Language Proof Explanation 359

(Derive :Reasons (a ∈ U ∨ a ∈ V) :Conclusion a ∈ U ∪ V
:Method ∪-Lemma)

which can be verbalized as “Since a ∈ U or a ∈ V , a ∈ U ∪V by the ∪-Lemma.”
Since ∪-Lemma is now marked as known by the user, it can also be used for

presentation in subsequent situations, for example, when L7 is to be shown. The
whole dialog takes place as follows:

P.rex : In order to prove that a ∈ U ∪V let us consider the following cases.
Case 1: Let a ∈ U . Then a ∈ U ∪ V by the definition of ∪.
Case 2: Let a ∈ V . That implies that a ∈ U ∪ V by the definition of ∪.

User: This derivation is too detailed.
P.rex : Since a ∈ U or a ∈ V , a ∈ U ∪ V by the ∪-Lemma. Since a ∈ F or

a ∈ G, a ∈ F ∪G by the ∪-Lemma.

To elucidate the behavior of the dialog planner as depicted in Figure 2, let
us examine the following example:

Example 2. We now consider the following situation:

– The current goal is to show the fact in L3. The next goal on the stack is to
show the fact in L7.

– the rules HYP, CASE, Def∪, and ∪-Lemma are known,
– The facts in L0 and L4 are known, the facts in H1, L1, H2, L2, H5, L5, H6,

and L6 are unknown.

This time, the only applicable production is (P1). Since ∪-Lemma is more
abstract than CASE and both are known, it is chosen to instantiate (P1). Hence,
the dialog planner produces the MCA

(Derive :Reasons (a ∈ U ∨ a ∈ V) :Conclusion a ∈ U ∪ V
:Method ∪-Lemma)

which can be verbalized as “Since a ∈ U or a ∈ V , a ∈ U ∪V by the ∪-Lemma.”
Suppose now that the user points to this utterance and interrupts P.rex

throwing in that this step was too difficult. The analyzer translates the user’s
interaction to the speech act (too-difficult :Conclusion a ∈ U ∪ V). Now,
the dialog planner enters the clarification dialog as displayed in Figure 2. Since
all premises were explicitly mentioned, the system does not reverbalize the step,
but asks whether all premises are understood, what the user affirms. Hence, the
system checks whether there is a lower level of abstraction, at which the step can
be presented. Since this is the case, P.rex replans the explanation of the step by
marking the inference rule ∪-Lemma as unknown and pushing the goal to show
the fact in L3 onto the goal stack. Now, (P1) is not applicable, since ∪-Lemma
is unknown, but (P2) and (P3) are applicable. Hence, the system proceeds as
in the beginning of Example 1 and verbalizes the case analysis. Since ∪-Lemma
is unknown, it is not used in subsequent situations either. Therefore, L7 is also
explained by a case analysis. The whole dialog takes place as follows:

360 Armin Fiedler

P.rex : Since a ∈ U or a ∈ V , a ∈ U ∪ V by the ∪-Lemma.
User: This step is too difficult.
P.rex : Do you understand the premises?
User: Yes.
P.rex : In order to prove that a ∈ U ∪V let us consider the following cases.

Case 1: Let a ∈ U . That leads to a ∈ U ∪ V by the definition of ∪.
Case 2: Let a ∈ V . Then a ∈ U ∪ V by the definition of ∪.
Do you understand this step?

User: Yes.
P.rex : In order to prove that a ∈ F ∪G let us consider the following cases.

Case 1: Let a ∈ F . Therefore a ∈ F ∪G by the definition of ∪.
Case 2: Let a ∈ G. Then a ∈ F ∪G by the definition of ∪.

7 Conclusion

We reviewed research in proof presentation and presented the proof explanation
system P.rex . Based on assumptions about the addressee’s knowledge (e.g., which
facts does he know, which definitions, lemmas, etc.), the dialog planner of P.rex
chooses a degree of abstraction for each proof step to be explained. In reaction to
the user’s interactions, it enters clarification dialogs to revise its user model and
to adapt the explanation. The architecture of the dialog planner can also be used
to adapt content selection and explicitness reactively to the audience’s needs.
The rationale behind the architecture should prove to be useful for explanation
systems in general.

However, in the current experimental stage, only a small set of user inter-
actions is allowed. More elaborate interactions that call for more complex reac-
tions are desirable. Therefore, empirical studies of teacher-student interactions in
mathematics classes are necessary. Moreover, powerful natural language analysis
and multi-modal generation is desirable.

P.rex is implemented in Allegro Common Lisp with CLOS and has been
tested on dozens of input proofs. The implementation (currently Version 1.0)
can be accessed via the P.rex homepage at http://www.ags.uni-sb.de/~prex.

Acknowledgments

Part of this project was funded by the Graduiertenkolleg Kognitionswissenschaft
(doctoral program in cognitive Science) at Saarland University. I thank C. P.
Wirth who read an earlier version of this work.

References

1. John R. Anderson and Christian Lebiere. The Atomic Components of Thought.
Lawrence Erlbaum, 1998.

2. Peter B. Andrews. Transforming matings into natural deduction proofs. In Proceed-
ings of the 5th International Conference on Automated Deduction, pages 281–292.
Springer Verlag, 1980.

Natural Language Proof Explanation 361

3. C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,
M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siekmann,
and V. Sorge. Ωmega: Towards a mathematical assistant. In McCune [31], pages
252–255.

4. Bruno Buchberger. Natural language proofs in nested cells representation. In
J. Siekmann, F. Pfenning, and X. Huang, editors, Proceedings of the First Interna-
tional Workshop on Proof Transformation and Presentation, pages 15–16, Schloss
Dagstuhl, Germany, 1997.

5. A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam System. In
Mark Stickel, editor, Proceedings of the 10th Conference on Automated Deduction,
number 449 in LNCS, pages 647–648, Kaiserslautern, Germany, 1990. Springer
Verlag.

6. Lynne Cahill, Christy Doran, Roger Evans, Chris Mellish, Daniel Paiva, Mike
Reape, Donia Scott, and Neil Tipper. In search of a reference architecture for
NLG systems. In Proceedings of the 7th European Workshop on Natural Language
Generation, pages 77–85, Toulouse, France, 1999.

7. Alison Cawsey. Generating explanatory discourse. In Robert Dale, Chris Mel-
lish, and Michael Zock, editors, Current Research in Natural Language Generation,
number 4 in Cognitive Science Series, pages 75–101. Academic Press, San Diego,
CA, 1990.

8. Daniel Chester. The translation of formal proofs into English. AI, 7:178–216, 1976.
9. Thierry Coquand and Gérard Huet. The Calculus of Constructions. Information

and Computation, 76(2/3):95–120, 1988.
10. Yann Coscoy, Gilles Kahn, and Laurent Théry. Extracting text from proofs. In

Mariangiola Dezani-Ciancaglini and Gordon Plotkin, editors, Typed Lambda Cal-
culi and Applications, number 902 in LNCS, pages 109–123. Springer Verlag, 1995.

11. B. I. Dahn, J. Gehne, Th. Honigmann, and A. Wolf. Integration of automated and
interactive theorem proving in ILF. In McCune [31], pages 57–60.

12. Andrew Edgar and Francis Jeffry Pelletier. Natural language explanation of natural
deduction proofs. In Proceedings of the 1st Conference of the Pacific Association for
Computational Linguistics, Vancouver, Canada, 1993. Centre for Systems Science,
Simon Fraser University.

13. Michael Elhadad and Jacques Robin. Controlling content realization with func-
tional unification grammars. In Robert Dale, Eduard Hovy, Dietmar Rösner, and
Oliviero Stock, editors, Aspects of Automated Natural Language Generation, num-
ber 587 in LNAI, pages 89–104. Springer Verlag, 1992.

14. Amy Felty and Dale Miller. Proof explanation and revision. Technical Report
MC-CIS-88-17, University of Pennsylvania, Philadelphia, PA, 1988.

15. Armin Fiedler. Mikroplanungstechniken zur Präsentation mathematischer Beweise.
Master’s thesis, Computer Science Department, Universität des Saarlandes, Saar-
brücken, Germany, 1996.

16. Gerhard Gentzen. Untersuchungen über das logische Schließen I & II. Mathema-
tische Zeitschrift, 39:176–210, 572–595, 1935.

17. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the Association for Computing Machinery, 40(1):143–184, 1993.

18. Amanda M. Holland-Minkley, Regina Barzilay, and Robert L. Constable. Ver-
balization of high-level formal proofs. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence (AAAI-99) and Eleventh Innovative Applica-
tion of Artificial Intelligence Conference (IAAI-99), pages 277–284. AAAI Press,
1999.

362 Armin Fiedler

19. Helmut Horacek. A model for adapting explanations to the user’s likely inferences.
User Modeling and User-Adapted Interaction, 7:1–55, 1997.

20. Helmut Horacek. Presenting proofs in a human-oriented way. In Harald Ganzinger,
editor, Proceedings of the 16th Conference on Automated Deduction, number 1632
in LNAI, pages 142–156. Springer Verlag, 1999.

21. Eduard H. Hovy. Automated discourse generation using discourse structure rela-
tions. Artificial Intelligence, 63:341–385, 1993.

22. Xiaorong Huang. Human Oriented Proof Presentation: A Reconstructive Approach.
PhD thesis, Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, Ger-
many, 1994.

23. Xiaorong Huang. Reconstructing proofs at the assertion level. In Alan Bundy,
editor, Proceedings of the 12th Conference on Automated Deduction, number 814
in LNAI, pages 738–752, Nancy, France, 1994. Springer Verlag.

24. Xiaorong Huang and Armin Fiedler. Proof verbalization as an application of NLG.
In Martha E. Pollack, editor, Proceedings of the 15th International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 965–970, Nagoya, Japan, 1997.
Morgan Kaufmann.

25. INLG. Proceedings of the 7th International Workshop on Natural Language Gen-
eration, Kennebunkport, ME, 1994.

26. Anne Kilger and Wolfgang Finkler. Incremental generation for real–time applica-
tions. Research Report RR-95-11, DFKI, Saarbrücken, Germany, July 1995.

27. Peter Kursawe. Transformation eines Resolutionsbeweises: Der erste Schritt auf
dem Weg zum natürlichen Schließen. Master’s thesis, Fakultät für Informatik,
Universität Karlsruhe, Karlsruhe, Germany, 1982.

28. Uri Leron. Structuring mathematical proofs. The American Mathematical Monthly,
90:174–185, 1983.

29. Christoph Lingenfelder. Transformation and Structuring of Computer Generated
Proofs. PhD thesis, Universität Kaiserslautern, Kaiserslautern, Germany, 1990.

30. William C. Mann and Sandra A. Thompson. Rhetorical structure theory: A theory
of text organization. ISI Reprint Series ISI/RS-87-190, Univerisity of Southern
California, Information Science Institute, Marina del Rey, CA, 1987.

31. William McCune, editor. Proceedings of the 14th Conference on Automated De-
duction, number 1249 in LNAI, Townsville, Australia, 1997. Springer Verlag.

32. David D. McDonald. Natural language generation as a computational problem.
In Michael Brady and Robert C. Berwick, editors, Computational Models of Dis-
course. The M. I. T. Press, Cambridge, Massachusetts/London, 1984.

33. Andreas Meier. System description: Tramp: Transformation of machine-found
proofs into ND-proofs at the assertion level. In David McAllester, editor, Au-
tomated Deduction – CADE-17, number 1831 in LNAI, pages 460–464. Springer
Verlag, 2000.

34. D. E. Meyer and D. E. Kieras. EPIC: A computational theory of executive cognitive
processes and multiple-task performance: Part 1. Basic mechanisms. Psychological
Review, 104:3–65, 1997.

35. Dale Miller. Expansion tree proofs and their conversion to natural deduction
proofs. In R. E. Shostak, editor, Proceedings of the 7th International Conference
on Automated Deduction, number 170 in LNCS, pages 375–303. Springer Verlag,
1984.

36. David J. Mooney, Sandra Carberry, and Kathleen McCoy. Capturing high-level
structure of naturally occurring, extended explanations using bottom-up strategies.
Computational Intelligence, 7:334–356, 1991.

Natural Language Proof Explanation 363

37. Johanna D. Moore and William R. Swartout. A reactive approach to explanation:
Taking the user’s feedback into account. In Cécile L. Paris, William R. Swartout,
and William C. Mann, editors, Natural Language Generation in Artificial Intelli-
gence, pages 3–48, Boston, MA, USA, 1991. Kluwer.

38. A. Newell. Unified Theories of Cognition. Havard University Press, Cambridge,
MA, 1990.

39. Cécile Paris. The role of the user’s domain knowledge in generation. Computational
Intelligence, 7:71–93, 1991.

40. F. Pfenning. Proof Transformations in Higher-Order Logic. PhD thesis, Carnegie-
Mellon University, Pittsburgh, PA, 1987.

41. Ehud Reiter. Has a consensus NL generation architecture appeared, and is it
psycholinguistically plausible? In INLG [25], pages 163–170.

42. Wolfgang Wahlster, Elisabeth André, Wolfgang Finkler, Hans-Jürgen Profitlich,
and Thomas Rist. Plan-based integration of natural language and graphics gener-
ation. Artificial Intelligence, 63:387–427, 1993.

43. Marilyn A. Walker and Owen Rambow. The role of cognitive modeling in achieving
communicative intentions. In INLG [25], pages 171–180.

44. Ingrid Zukerman and R. McConachy. Generating concise discourse that addresses
a user’s inferences. In Ruzena Bajcsy, editor, Proceedings of the 13th International
Joint Conference on Artificial Intelligence (IJCAI), pages 1202–1207, Chambery,
France, 1993. Morgan Kaufmann, San Mateo, CA.

Why Proof Planning
for Maths Education and How?

Erica Melis

DFKI Saarbrücken, 66123 Saarbrücken, Germany
melis@dfki.de

http://www.ags.uni-sb.de/~melis

1 Introduction

Artificial Intelligence techniques have massively been applied for Intelligent Tu-
tor systems (ITS), e.g., user modeling, error diagnosis, user adaptation, knowl-
edge representation, and dialog techniques. In this paper, I will argue in favor
of the application of another AI-technique in ITS, namely of proof planning, a
methodology from automated theorem proving.

The attempt to employ proof planning for educational purposes is not self-
evident. It requires an understanding of what mathematics education needs and
what proof planning offers.

When I tried to convince teachers or mathematics professors of using proof
planning for teaching and, in particular, of using our proof planner Ωmega,
then most of them were very sceptical to begin with. Only slowly, when they
had seen several examples, they finally could understand the general advantages
and agree that using proof planning can be a goal for supporting learning in a
constructivist direction1. What are the main reasons for the skepsis? First of
all, handling current proof planners is not made at all for students who learn
mathematics or even for teachers used to mathematical argumentation and this
heavily inhibits the usability and discourages an actual usage. In particular, the
user interface and the support for interactive theorem proving by feedback and
other functionalities is still insufficient.

Secondly, to learn a proof planning language to handle yet another system
requires an additional effort for teachers and for students.

Third and maybe most importantly, many teachers and even mathematicians
are not used to think about teaching mathematical proofs and problem solving
in a non-traditional way. They themselves have learned mathematics tradition-
ally, by listening lectures, following a sequential description of proof steps in
textbooks, and finally somehow constructing the representation of knowledge in
their minds from many examples implicitly containing structures, methods, and
heuristics used in the proof processes. Although modern didactical and cognitive
theories and empirical evidences show that (deep) learning is little supported by
the traditional style of teaching, good examples for a modern teaching of theorem
1 ‘constructivist’ used in the epistemological sense of constructing knowledge in a user’s

mind [27] rather than the logical meaning of the word.

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 364–378, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Why Proof Planning for Maths Education and How? 365

proving are rare. Geometrical proof is an exception because building hypotheses
and visual clues are supported by dynamic geometry systems such as Geolog [13]
and Cinderella [29].

Fourth, many mathematics professors do not believe that learning heureka
steps can be supported by a system.

Given these heavyweight opinions, it takes a lot to convince teachers of the
benefits a proof planning approach can have for learning. However, my experience
shows that teachers and maths professors can be convinced by good examples
from different mathematical areas that show how learning can be supported
at points, where the teachers experienced bottlenecks for understanding and
transfer of mathematical proofs in their courses. Once convinced, they even
accept the additional effort. This has been similar for other mathematical tools
such as calculators and computer algebra systems (CASs) for which one has
to learn an input language. These systems are widely accepted by now even in
schools.

Since good examples are crucial for convincing the potential users, this paper
will not only discuss the benefits of the proof planning methodology for learning
mathematics but also illustrated them with examples, in particular some I have
been using successfully in my ‘conviction activities’.

A warning before we go into medias res: although I shall advocate a support
that makes explicit the heuristics and the common structure of a class of proofs,
I do not want to replace beautiful singular heureka ideas and creative acts in
mathematical problem solving and proving that we love so much and that create
some of the beauty of mathematics that I admire personally. In the opposite,
this paper investigates why common methods, structures, meta-level knowledge,
and heuristics uncovered by the proof planning methodology can support the
learning of standard textbook mathematics. In addition, I shall argue how an
interactive system can improve the fun, motivation, self-responsibility, and self-
guidance of learners – pedagogic goals that are generally pursued by any kind
of advanced learning.

For Jörg I want to re-phrase and summarize: Machines can think mathemat-
ically, at least together with humans and therefore, AI-machines can support
meat-machines in learning mathematics. And, in order to have a real impact,
this requires an interdisciplinary effort from AI, Cognitive Science, and empirical
pedagogy. Therefore, this article has an interdisciplinary flavor.

2 Why Is Improvement Necessary in the First Place?

To start with, let me reflect upon the current situation in mathematics teaching
and upon the ways for improvement and new directions suggested by advanced
educationalists and cognitive scientists. Subsequently, I will show why proof plan-
ning can contribute to some of the ingredients of a more appropriate learning and
teaching; provide examples for how proof planning can be beneficial for learning
mathematics; and finally discuss which improvements are necessary in order to
make proof planning a methodology that real students and teachers will be able
to use beneficially.

366 Erica Melis

During the last decades, the mathematics pedagogy community recognized
that students learn mathematics more effectively, if the traditional rote learning
of formulas and procedures is supplemented with the possibility to explore a
broad range of problems and problem situations [32, 18]. In particular, the in-
ternational comparative study of mathematics teaching, TIMSS [4]2, has shown
that teaching with an orientation towards active problem solving and an en-
couragement to find different solutions yields better learning results in the sense
that the acquired knowledge is more readily available and applicable especially
in new contexts. Moreover, several investigations show that a reflection about
the problem solving activities and methods yields a meaningful learning [11, 2]
that a training of meta-cognitive skills is a basis for meaningful and for lifelong
learning [1].

There are at least four avenues to an improved mathematics learning: (1)
the active construction of knowledge in the learner’s mind, combined with a (2)
systematic and structured teaching of heuristic and systematic knowledge for
problem solving steps and processes, (3) the support of meta-cognitive reasoning,
and (4) the appropriately structured presentation of problem solutions. The
application of proof planning and its augmentation by a meta-cognitive cycle
has the potential to contribute to all four ways of improvement as I shall show
in the remainder of this article.

3 Active Learning

Active learning, as opposed to pure instruction, is one of the educational conclu-
sions of the constructivist learning paradigm that goes back to Piaget [27] and
Vygotsky [36]. The construction of knowledge in a student’s mind requires to
learn in a context, to be able to make mistakes and to learn from erroneous proof
attempts, and to deeply understand the involved objects and their relationships.
Moreover, the student has to experience “proving” as a process in which she
engages during learning and “proof” as a (mere) product.

How can the learner’s active participation be supported? As in other sciences,
cognitive tools can provide a supporting machinery. The term cognitive tool was
coined in [16] and denotes instruments explicitly supporting or representing cog-
nitive processes and thus extending the limits of the human cognitive capacities,
e.g., the working memory. When applied to learning, such tools can help, e.g., to
remember, to practice, to hypothesize, to solve a problem. In particular, when
2 The same seems to apply for the recent OECD study, PISA 2000, which looked at

mathematical literacy of students measured in terms of student’s capacity to

– recognize and interprete mathematical problems in everyday life
– translate these problems into a mathematical context
– use mathematical knowledge and procedures to solve problems
– interprete the results in terms of the original problem
– reflect on the applied methods and
– formulate and communicate the outcomes.

Why Proof Planning for Maths Education and How? 367

learning is difficult because it is too complex or because several things have to
be done at the same time, these tools can help considerably. This is well-known
for simulation tools [15], dynamic geometry systems, CASs, visualization by an-
imations, and for tools that can impose a structure on a reasoning process [37,
34].

Let me summarize why proof planners and the integrated Computer Algebra
Systems can support active learning of theorem proving and problem solving.
They help the learner

– to explore a problem interactively and directly experience the result of a
tentatively applied method or theorem. This is similar to what is possible
in programming, where debugging is a most significant source of learning.
The proof planner can check the correctness of the student’s problem solving
steps. It can help with feedback on where it is promising to explore and
where dead ends are reached in a proof attempt;

– to focus on a particular subtask or skill in solving a problem. For example,
the user of the system should not fail to calculate the limit of a function just
because she cannot factorize polynomials but a CAS can perform this task.
Similarly, the user should not fail to find the overall proof just because she
cannot prove a minor subgoal;

– by presenting heuristics used, e.g. for intelligent backtracking, by explicating
methods (see section 4), and also by providing an intelligently designed pre-
selection and ordering of methods.

– to keep an overview of the proof attempt, e.g., list the not yet proved con-
jectures, present the resulting partial proof multi-modally.

4 Learning by Interactive Proof Planning

After the short answer on why, I want to explain how proof planning can help
in learning.

A mere check of correctness could be performed by traditional automated
theorem provers (ATPs), such as OTTER. However, there is more to proof plan-
ning which provides information that is essential for learning and for performing
a mathematical proof: a sense of direction in searching for a proof plan, the
theory-reasoning that helps to find instantiations for mathematical objects, and
the use of mathematical methods which represent mathematical steps whose
abstraction-level is usually different from the logical steps applied by an ATP.

An analysis of traditional textbook proofs gives rise to appreciate the infor-
mation produced in proof planning. In such an analysis [17] Leron observed that
the linear mathematical proofs occurring in most (text)books are just a mini-
mal or even sub-minimal ‘code’ for transmitting mathematical knowledge that
mature mathematicians are able to decode which is, however, missing important
information, e.g. the proof idea. He found in his classes that many students are
simply unable to decode those proofs and, therefore, their actions are reduced
to meaningless manipulation of the ‘code’.

368 Erica Melis

The additional information that proof planning offers consists of methods and
their explanation at different levels of abstraction, mathematical search heuris-
tics, and the systematic construction of mathematical objects. This information
is rarely taught and exercised in college-level mathematics, currently. We believe
that teaching mathematical methods and proof know-how and know-when has
to be introduced into mathematics teaching as an augmentation of the tradi-
tional teaching of axioms, theorems, and procedures. Indeed, first experiments
suggest that instruction materials based on the description of proof planning
methods yield a better subsequent problem solving performance than traditional
(textbook-like) instruction material [23].

The idea to use proof planning in an educational context was also a reason for
developing the Barnacle system [20], an extension of the proof planner CLAM .
It extended CLAM mainly by an interface that is more accessible and tried to
convey the rippling heuristic for proofs by mathematical induction.

4.1 Method Knowledge

In his foreword to how to solve it [28] Ian Stewart writes: n order to be able
to select the relevant information, and make use of it, mathematicians spend a
great deal of their time acquiring both, a broad background and a repertoire of
more specific tricks.

In our research for proof planning, we tried to acquire those general as well as
specific methods for a restricted area of mathematics [22]. Aside from such gen-
eral ‘background methods’ as Case-Split, UnwrapHyp, and TellCS we designed
the ComplexEstimate method whose idea is a modification and generalization
of the limit heuristic in [5], as well as other estimation methods implicitly used
in many proofs in calculus.

A simple variant of ComplexEstimate was used in the instruction material
of the empirical research reported in [23] and mentioned above. An explanation
of this method goes as follows:
ComplexEstimate proves the estimation of a complicated term |b| by represent-
ing b as a linear combination k ∗ aσ + l 3 of a term a whose estimation is already
known and by reducing the goal |b| < ε to simpler subgoals that contain M –
a positive real number whose existence is postulated by ComplexEstimate. The
subgoals are

1. |k| ≤M,
2. |a| < ε/(2 ∗M),
3. |l| < ε/2.

The rationale behind the reduction to the subgoals is contained in the proof
schema of ComplexEstimate in which the subgoals, the Triangle Inequality, and
monotony properties are employed to prove |b| < ε.

For instance, in planning LIM+, at some point the goal
|f(x) + g(x)− (l1 + l2)| < ε is reduced by ComplexEstimate to
3 where σ is a substitution.

Why Proof Planning for Maths Education and How? 369

(1) |1| ≤M,
(2) |f(x)− l1| < ε/(2∗M),
(3) |g(x)− l2| < ε/2.

ComplexEstimate is not necessarily to be used in its full generality. It would
make sense to vary the explanation (and maybe even the instantiation of the
method in the actual proof process), if the coefficients k or l have the trivial
values k = 1 or l = 0 because this makes the explanation easier to follow.

By making this method explicit the student can be supported in understand-
ing the rationale behind the otherwise correct but senseless manipulation of
the term b and in generalizing simple proofs that are special cases with k = 1
or l = 0 which might be solvable without knowing a systematic procedure. If
equipped with this ‘trick’ and its rationale, it is easier for students to find proofs
themselves as we have shown empirically [23].

4.2 Heuristic Knowledge

An analysis of Polya’s famous heuristics for mathematical problem solving [28]
shows that these heuristics are guidelines and very general strategies rather than
rules. Dependent on the concrete situation, they have to be expanded to a set of
concrete operations if possible [31]. Moreover, they comprise at least two levels
of heuristics: problem solving (search) heuristics and meta-cognitive heuristics.
In §6.1 we discuss how meta-cognitive heuristics can be used to support students
in the future.

For problem solving Polya suggests to try the following complex heuristics
(strategies):

– reformulate the problem
– find a special case to work on first; introduce an auxiliary variable or an

auxiliary problem
– decompose the problem into subproblems

Some general problem solving heuristics such as ‘decompose into subgoals’,
‘re-represent goal’, ‘look for a common proof structure’ are inherent in proof
planning and methods already. Other proof heuristics are (or can be) represented
by control rules in Ωmegas proof planner. Control rules have been used for all
kinds of search control in Ωmega [21]. More recent ideas for guiding the search by
control rules are due to Andreas Meier. They include, e.g., the instantiations of
variables, and backtracking control. The backtracking control employs heuristic
knowledge on when search branches are likely to fail and can enforce backtracking
even if there are still applicable methods. It also can suggest, where to backtraqck
to.

In this following, some more concrete search heuristics from proof planning
that can be beneficially employed for learning, are discussed. In particular, rip-
pling [14, 8] and the introduction of a case split.

Rippling is a search heuristic for systematic difference reduction. In the proof
planner CLAM it is performed based on an annotated logic calculus that handles

370 Erica Melis

annotated terms and uses annotated matching4. More specifically, a skeleton-
annotation indicates the commonalities between the induction hypothesis and
the induction conclusion (the ‘skeleton’) and a context-annotation indicates the
difference between the induction hypothesis and the induction conclusion (the
‘context’). Rippling is essentially a difference-reducing rewriting technique that
preserves the skeleton, i.e., the commonalities. Such a difference reduction works
in particular for equational proofs and proofs by mathematical induction. An
attempt to teach rippling to students has been made by Helen Lowe [19].

Another typical mathematical heuristic that is captured in control rules in
the proof planner Ωmega suggests the introduction of a case split. It analyzes the
overall proof attempt rather than a local search heuristic. It heuristically suggests
a repair the proof attempt by introducing a case split. For the introduction of a
case split, lets have a look at the proof of the following theorem5.

Theorem 1. A convergent sequence of real numbers is bounded.

We zoom into the proof process, where – under the assumption n > k1 – the
inequality |xn − lim| < e1 has been employed to prove the boundedness, i.e.,
|xn| ≤ B for 2 · |lim| ≤ B.
In this situation, n > k1 has still to be proved or, if this is difficult or impossible
as here, a heuristic says that a case split (n > k1∨¬n > k1) has to be introduced
and the subproof obtained so far under the condition n > k1 provides the proof
branch for the first case n > k1. A student can learn this heuristic, if she is
informed by the proof planner.

The second branch resulting from the case split requires to prove |xn| ≤ B
under the assumption ¬n > k1. Since k1 is a natural number, the new assumption
can be split into the cases n = 1 . . . n = k1. The proof can then be completed
with further restricting |x1| ≤ B, . . . |xk1| ≤ B in addition to 2 · |lim| ≤ B, which
finally yields B = max(|x1|, . . . |xk1|, 2 · |lim|).

4.3 Support for Constructing Mathematical Objects

Many mathematical proofs require the construction of mathematical objects.
For instance, in order to prove that a function f(x) converges to l, if x converges
to a, for each arbitrarily small positive real number ε a positive real number δ
has to be constructed that meets certain requirements; or in order to show that
there are infinitely many prime numbers, the proof by contradiction assumes
that there exist only finitely many prime numbers whose biggest one is p, and
for the contradiction a prime number is constructed which is bigger than p.

Typically, such a construction is a difficult part of the proof. Students may
lack a proper technique or support to determine an object satisfying all the
– maybe many and maybe somewhat hidden – requirements [17]. Traditional
teaching does not provide support for this task. It just delivers correct instances

4 Rippling can also be represented by control rules as shown in an unpublished
BlueNote [25].

5 Theorem 3.2.2 in [3].

Why Proof Planning for Maths Education and How? 371

out-of-the-blue rather than providing techniques for systematically constructing
the objects. For a real understanding of a proof and meaningful learning it is
essential to watch and understand which constraints for an object occur in the
proof process and are collected in a store, and then to understand the search for
an object that satisfies all the collected constraints.

ATPs use unification as a technique for constructing objects satisfying equal-
ity requirements, that is, domain-independent constraints. In addition, proof
planning can integrate constraint solving for constructing objects with certain
domain-specific constraints. By readably displaying the constraint store, the
proof planner informs the student of the restrictions of an object and can sup-
port the creative act of constructing an object, as shown with the systematic
restriction of B in the example of §4.2.

The following example6 contains information about proof steps, meta-reason-
ing, and the constraint store (single entries of the constraint store are indicated
by a box surrounding them).

Note that a computational presentation of the example would be more con-
vincing since the process character of theorem proving can be presented and
illustrated by introducing parts of the non-linear proof at different ends and hier-
archical levels of the proof and can be accompanied by explanations of the meth-
ods, alternative search branches, and information about the constraint store. A
computational presentation could offer useful features by a hierarchical and hy-
pertext presentation, by a separate window that displays the constraint store,
etc. The presented sequence of steps is not necessarily the sequence of their final
appearance in a top-down proof. Only in the end, this can yield a final proof
presentation (hiding some information again, if desired). The paper form of this
article, however, prevents such a presentation of the proof process.

4.4 Example

Theorem 2. If f : I �→ IR has a derivative at c ∈ I, then f is continuous at c.

1. By expanding the definitions, the proof assumption can be re-stated (forward
application) as
∀ε1(ε1 > 0→ ∃δ1(δ1 > 0∧∀x1(|x1−c| < δ1 → x1 �= c → | f(x1)−f(c)

x1−c
−f ′(c)| < ε1))),

2. the goal can be re-stated (backward application) as
∀ε(ε > 0→ ∃δ(δ > 0 ∧ ∀x(|x − c| < δ → |f(x)− f(c)| < ε))).

3. The goal is reduced to |f(x)− f(c)| < ε yielding the assumptions |x− c| < δ

and ε > 0 .
4. The subformula | f(x1)−f(c)

x1−c − f ′(c)| < ε1 is extracted from the assumption
which leaves |x1 − c| < δ1 and the ‘not so important’ condition x1 �= c as
subgoals.

5. The subgoal |x1 − c| < δ1 is proved by the assumption |x − c| < δ and this
sends x = x1 and δ ≤ δ1 to the constraint store.

6 Theorem 6.1.2 in [3].

372 Erica Melis

6. ComplexEstimate reduces the goal |f(x)−f(c)| < ε to the following subgoals
for which the existence of a positive real number M is assumed
(a) |x− c| ≤ M

(b) | f(x)−f(c)
x−c − f ′(c)| < ε

2·M
(c) |(x − c) · f ′(c)| < ε

2 .
The first subgoal can be proved by assuming δ ≤ M , the second can be

proved by assuming ε1 ≤ ε
2·M , the third can be proved by a case split on

f ′(c) = 0 ∨ f ′(c) �= 0 and assuming δ ≤ ε
2·|f ′(c)| in the second case.

7. So far, the condition x �= c is not proved. Now it can be discovered by the
user or by the proof planner that x �= c does not hold generally, hence cannot
be proved. As in the example of §4.2, the meta-reasoning of the proof planner
can suggest to introduce a Case-Split (x �= c∨x = c) into the proof attempt
and to take the subproof obtained so far – which needed x �= c – as the proof
branch for the first case.

8. The second branch assuming x = c has to be tackled separately. Its subproof
is simple because in this case 0 = |f(x)− f(c)| < ε holds.

5 Structured Presentation

For learning of mathematical proofs, Leron and others [17, 9] have shown that
the traditional sequential presentation of proofs which has been used in most
textbooks and courses is inappropriate for a real understanding and for learning
proof skills. The more appropriate, structured (and multi-modal) presentation
with more relevant information yields longer proofs because it makes explicit
the complexity inherent in the proof anyway. For learning, however, it is useful
to explicate the proof ideas, proof methods, and other information as empirical
research and experience has shown.

In [24] we have shown how to construct a hierarchically structured proof
presentation from a schematic verbalization of proof planning methods. An ad-
ditional information dimension is delivered by the contraint solving in proof
planning:

The construction of objects belongs to the information that is relevant and
that can be made explicit in a hierarchical proof plan presentation. The construc-
tions of objects is a frequent and often a tricky part of proofs. There are two
ways of presenting such proofs: the ‘classical’ that simply defines the solution’s
object and shows that this object satisfies the constraints (typically introduced
by “let..” or similar phrases) and a presentation that uses the collected con-
straints to search for an object (verbally this can be introduced by a phrase such
as “suppose, we had already found a solution-object, what would it look like?”).
The second presentation may not be as concise and ‘elegant’ as the first one,
but it contains additional information that is important for meaningful learning
that enables students to prove theorems on their own later on. In a multi-modal
presentation, the display of the constraint store that contains the constraints on
solution-objects can provide the relevant information.

Why Proof Planning for Maths Education and How? 373

6 Future Work: Polya and Friends

Although the user can already browse a partial proof plan during her proof
attempt, the heuristic reasoning that can guide the proof attempt is not yet
presented, even though it is essential for learning. This information will be com-
municated to the learner in a user-adaptive way.

In addition, we believe that a mixed-initiative system7 is more appropriate
what an average student can handle properly while concentrating on the math-
ematics rather than on handling the system. The following lists some of the
features that will be targeted for a re-design of Loui for a truly interactive and
mixed-initiative use of proof planning.

– The input should be as similar to mathematical language as possible.
– The user has to be able to easily and in an intuitive way choose, backtrack,

and tentatively try the application of a strategy (including backtracking
etc.), a method, and of parameters etc.

– The user should easily be able to investigate the success or failure of a method
and get feedback about repair opportunities.

– Different levels of detail of a proof plan should be inspectable.
– In the presentation of proof attempts, parts such as formulas, terms, and

methods have to carry semantics8.
– A proof verbalization needs to show the structure of the proof and the goal

structure
– To support a user, highlighting of proof steps in focus (or hiding those not in

focus) is needed in order to avoid cognitive overload by too high a complexity.

Moreover, the language for communicating with the user should approximate
the commonly used mathematical (not so much logical) language. This way,
the additional effort that is necessary to learn the language is not in vain but
produces one of the skills belonging to the repertoire of mathematical work
anyway. Examples of systems that use such languages are Mizar, ISETL [10],
and a preliminary attempt by Schmidt [30].

In addition to the discussed changes of the current proof planner and its
GUI, we shall augment the actual proof planning with radically new facilities
described next.

6.1 Polya: Support of Meta-cognition

The actual theorem proving process is merely one part of the problem solving
process in which exploration and producing conjectures plays a crucial role [7,
33]. This does not only apply for learning but also for the mathematician’s work
as, e.g., described by Buchberger’s creativity spiral and in [6] that identifies the
following activities in mathematical theorem proving
7 See [12, 35] for an introduction to mixed-initiative (planning) systems.
8 Carry semantics in the sense, that behind the presentation the semantics is repre-

sented and can be used for manipulations such as drag’n drop, for making it an
assumption, etc.

374 Erica Melis

– production of a conjecture (exploration of the problem situation)
– formulation of the statement according to conventions
– identification of appropriate arguments and link to the existing theory, ex-

ploration of (limits of) validity of the conjecture
– discovery or selection of proof methods and mathematical objects
– organization of the arguments into a coherent proof that is acceptable to

current mathematical standards (for the communication of the proof).
Polya suggests a student to proceed with problem solving in a larger context

that involves the phases of:
1. understanding the problem,
2. devising a plan for a solution,
3. executing (and debugging) the plan,
4. analyzing the success or failure of the plan.

In an explorative environment an additional start phase would comprise the
invention of an hypothesis. For guidance, Polya suggests to ask the following
questions
– what is known and what is unknown?
– do you remember a similar problem?
– find the connection between the known and the unknown
– carry out the plan and check each step
– is there an alternative way to solve the problem?
– examine the solution, can you use the result or the method for another

problem?
Polya’s heuristics for problem solving caught attention in the early years of

AI and their implementation was targeted. In 1981, Allen Newell summarized
why these attempts were not successful. He explained that Polya’s heuristics are
too general and each represents a whole class of heuristics [26]. Consequently,
for an automated problem solving system it may be too difficult even today to
realize such a heuristic guidance.

However, Polya’s heuristics for meta-reasoning can be used for supporting
interactive learning. Such a support for the student’s meta-cognition is desirable
because cognitive research [32] has indicated that a large part of what comprises
competent problem solving behavior consists of the ability to guide, monitor,
reflect, and assess the own problem solving process. It also indicates that students
are poor at this, partly because these abilities and the introspection into the
reasoning are rarely trained or discussed in traditional teaching.

A meta-level cycle as depicted in Figure 1 can help students who do not
have those meta-cognitive skills yet. We plan to implement such a supportive
cycle in a Polya module. This module for supporting meta-cognitive activities
will in some sense be similar to ThinkerTools [37], a tool for inquiry learning
in experimental sciences. ThinkerTools provides the cycle: question, hypothe-
size, investigate, analyze, model, and evaluate. Of course, we expect quite a few
changes that are mostly relevant for the mathematical problem solving as op-
posed to physics or biology experiments. Moreover, our meta-cognitive support
will, be user-adaptive in the sense, that the student will be supported depending
on her own abilities and needs.

Why Proof Planning for Maths Education and How? 375

investigate

plan

execute plan

/ analyze plan

question

evaluate solution

debug plan

understand problem / hypothesize

Fig. 1. The meta-level cycle.

6.2 Proof Planning by Programming

A use of proof planning as a cognitive tool that is geared towards constructive
learning could be based on ‘programming’ of proof planning methods and proofs
by students. For experience in this direction we refer to the work of the mathe-
maticians Dubinsky and Leron who replace pure lecture by constructive, inter-
active methods involving programming and cooperative learning. They report
an radically increased amount of meaningful learning for average students [18].

Different from other mathematical textbooks, their algebra course [10] is
based on the constructivist belief that, before students can make sense of any
presentation of abstract mathematics, they need to engage in mental activities
which construct the base for future verbal explanations. Notions such as Co-sets
and quotient groups become more meaningful to the students when definitions,
examples, proofs etc. are closely related to activities than just presented in a
lecture. Their course requires to actively do things (mainly programming) and to
discuss them with the fellow students. It asks students to formulate a conjecture,
test it, and try to give an explanation. This includes an exploration with a
computer until the understanding of a topic is satisfying, as opposed to the
traditionally practiced attitude to avoid mistakes and immediately correct faulty
solutions.

In order to achieve this goal with proof planning, a relatively simple pro-
gramming language for methods has to be designed that is close to mathematical
language that students have to learn anyway.

376 Erica Melis

7 Conclusion

We recognized proof planning as a methodology that is useful for a successful
learning of mathematical proof. Therefore, we want to use a proof planner as a
user-adaptive cognitive tool for learning mathematical problem solving, in par-
ticular mathematical theorem proving. The first step towards this goal has been
the integration of the currently proof planner of the Ωmega system into the
web-based learning environment ActiveMath http://www.activemath.org
for working through example proofs and for interactive proof exercises. In addi-
tion to this proof tool, the learner can benefit from other facilities of Active-
Math such as an ontological overview of a mathematical area (concept map), a
user-adaptive choice of examples and exercises, suggestion mechanisms, etc.

We described which support already exists and how the proof planner and
its GUI will be modified and enhanced in order to ease its use and to support
all phases of mathematical problem solving/proving as they occur in learning
and in mathematicians’ work. This ‘future work’ description deals with some
of the essential objectives of the Mippa project and invites other researchers to
collaborate for these objectives.

References

1. Gutachten zur Vorbereitung des Programms “Steigerung der Effizienz des
mathematischen-naturwissenschaftlichen Unterrichts. Bund-Länder-Kommission,
1997. Materialien zur Bildungsplanung und zur Forschungsförderung.

2. V. Aleven, K.R. Koedinger, and K. Cross. Tutoring answer explanation fosters
learning with understanding. In S.P. Lajoie and M. Vivet, editors, Artificial Intel-
ligence in Education, pages 199–206. IOS Press, 1999.

3. R.G. Bartle and D.R. Sherbert. Introduction to Real Analysis. John Wiley& Sons,
New York, 1982.

4. J. Baumert, R. Lehmann, M. Lehrke, B. Schmitz, M. Clausen, I. Hosenfeld,
O. Köller, and J. Neubrand. Mathematisch-naturwissenschaftlicher Unterricht im
internationalen Vergleich. Leske und Budrich, 1997.

5. W.W. Bledsoe, R.S. Boyer, and W.H. Henneman. Computer proofs of limit theo-
rems. Artificial Intelligence, 3(1):27–60, 1972.

6. P. Boero. Argumentation and mathematical proof: A complex, productive, un-
avoidable relationship in mathematics and mathematics education. Proof Newslet-
ter, 1999.

7. P. Boero, R. Garutti, and M.A. Mariotti. Some dynamic mental processes under-
lying producing and proving conjectures. In Proceedings of PME-XX, volume 2,
pages 121–128, 1996.

8. A. Bundy, F. van Harmelen, A. Ireland, and A. Smaill. Extensions to the rippling-
out tactic for guiding inductive proofs. In M.E. Stickel, editor, Proceedings of
the 10th International Conference on Automated Deduction, volume 449 of Lecture
Notes in Artificial Intelligence. Springer, 1990.

9. R. Catrambone and K.J. Holyoak. Learning subgoals and methods for solving
probability problems. Memory and Cognition, 18(6):593–603, 1990.

10. E. Dubinsky and U. Leron. Learning Abstract Algebra with ISETL. Springer-
Verlag, 1993.

Why Proof Planning for Maths Education and How? 377

11. M.T.H. Chi et al. Self-explanation: How students study and use examples in
learning to solve problems. Cognitive Science, 15:145–182, 1989.

12. G. Ferguson, J. Allen, and B. Miller. Trains-95: Towards a mixed-initiative plan-
ning assistant. In B. Drabble, editor, Third Conference on Artificial Intelligence
Planning Systems (AIPS-96), pages 70–77, 1996.

13. G. Holland. Geolog-Win. Dümmler, 1996.
14. D. Hutter. Guiding inductive proofs. In M.E. Stickel, editor, Proceedings of 10th

International Conference on Automated Deduction, volume 449 of Lecture Notes
in Artificial Intelligence. Springer, 1990.

15. W:R: Joolingen and T. Jong. Design and implementation of simulation-based
discovery environments: the SMISLE solution. Journal of ARtificial Intelligence
and Education, 7:253–277, 1996.

16. S. Lajoie and S. Derry, editors. Computers as Cognitive Tools. Erlbaum, Hillsdale,
NJ, 1993.

17. U. Leron. Heuristic presentations: the role of structuring. For the Learning of
Mathematics, 5(3):7–13, 1985.

18. U. Leron and E. Dubinsky. An abstract algebra story. American Mathematical
Monthly, 102(3):227–242, March 1995.

19. H. Lowe, A. Bundy, and D. McLean. The use of proof planning for co-operative
theorem proving. Research Paper 745, Department of AI, 1995.

20. H. Lowe and D. Duncan. Xbarnacle: Making theorem provers more accessible.
In W. McCune, editor, Proceedings of the Fourteenth Conference on Automated
Deduction (CADE-14), volume 1249 of Lecture Notes in Artificial Intelligence,
pages 404–408. Springer, 1997.

21. E. Melis. AI-techniques in proof planning. In European Conference on Artificial
Intelligence, pages 494–498, Brighton, 1998. Kluwer.

22. E. Melis. The “limit” domain. In R. Simmons, M. Veloso, and S. Smith, editors,
Proceedings of the Fourth International Conference on Artificial Intelligence in
Planning Systems, pages 199–206, 1998.

23. E. Melis, Ch. Glasmacher, C. Ullrich, and P. Gerjets. Automated proof planning
for instructional design. In Annual Conference of the Cognitive Science Society,
pages 633–638, 2001.

24. E. Melis and U. Leron. A proof presentation suitable for teaching proofs. In S.P.
Lajoie and M. Vivet, editors, 9th International Conference on Artificial Intelligence
in Education, pages 483–490, Le Mans, 1999. IOS Press.

25. Erica Melis and Julian Richardson. Separation of control and logic in rippling and
unwraphyp, 1998.

26. A. Newell. The Heuristic of George Polya and its Relation to Artificial Intelli-
gence. Technical Report CMU-CS-81-133, Carnegie-Mellon-University, Dept. of
Computer Science, Pittsburgh, Pennsylvania, U.S.A., 1981.

27. J. Piaget. Equilibration of Cognitive Structures. Viking, New York, 1977.
28. G. Polya. How to Solve it. Princeton University Press, Princeton, 1945.
29. J. Richter-Gebert and U.H. Kortenkamp. The Interacitive Geometry Software

Cinderella. Springer-Verlag, 1999.
30. P. Schmidt. Preparing oral examinations of mathematical domains with the help

of a knowledge-based dialogue system. In Proceedings of Ed-Media, 2001.
31. A.H. Schoenfeld. Mathematical Problem Solving. Academic Press, New York, 1985.
32. A.H. Schoenfeld. Learning to Think Mathematically: Problem Solving, Metacog-

nition, and Sense Making in Mathematics, chapter 15. McMillan Publ.Company,
New York, 1992.

378 Erica Melis

33. M. Simon. Beyond inductive and deductive reasoning: The search for a sense of
knowing. Educational Studies in Mathematics, 30:197–210, 1996.

34. D. Suthers, A. Weiner, J. Connely, and M. Paolucci. Belvedere: Engaging students
in critical discussion of science and public policy issues. In 7th World Conference
on Artificial Intelligence in Education, AIED-95, pages 266–273, 1995.

35. Manuela M. Veloso. Towards mixed-initiative rationale-supported planning. In
A. Tate, editor, Advanced Planning Technology, pages 277–282. AAAI Press, May
1996.

36. L. Vygotsky. Thought and Language. MIT press, Cambridge, MA, 1986. originally
published 1962.

37. B.Y. White and J.R. Frederiksen. Inquiry, Modeling, and Metacognition: Making
Science Accessible to all Students. Lawrence Erlbaum, 1998.

Towards MultiMedia Instruction
in Safe and Secure Systems

Bernd Krieg-Brückner

Bremen Institute of Safe and Secure Systems, Universität Bremen,
Postfach 330440, D-28334 Bremen
bkb@Informatik.Uni-Bremen.DE

Abstract. The aim of the MMiSS project is the construction of a multi-
media Internet-based adaptive educational system. Its content will ini-
tially cover a whole curriculum in the area of Safe and Secure Systems.
Traditional teaching materials (slides, handouts, annotated course mate-
rial, assignments and so on) are to be converted into a new hypermedia
format, integrated with tool interactions for formally developing cor-
rect software; they will be suitable for learning on campus and distance
learning, as well as interactive, supervised, or co-operative self-study.
Coherence and consistency are especially emphasised, through extensive
semantic linking of teaching elements, and through a process model bor-
rowed from the theory of formal software development, enlarging the
knowledge base with the help of version and configuration management,
to ensure “sustainable development”, i.e. continuous long-term usability
of the contents.

1 Aims

The aim of the MMiSS project (MultiMedia instruction in Safe and Secure Sys-
tems), which is supported by the German Ministry for Research and Education,
bmb+f, in its programme “New Media in Education” from 2001 to 2003, is to
set up a multimedia Internet-based adaptive educational system, covering the
area of Safe and Secure Systems. Thanks to a consistent integration of hyper-
media course materials and formal programming tools, teaching in this area will
attain a level hitherto impossible in this form. The system will be as suitable for
learning on campus and for distance-learning with its associated management of
assignments, as it is for interactive, supervised, or co-operative self-study.

The system is to be introduced step by step, over the duration of the project,
into the normal teaching activities of the project partners: Universität Bremen
(Krieg-Brückner, Eckert [now at Darmstadt], Gogolla, Kreowski, Lüth, Peleska,
Roggenbach, Schlingloff [now at HU Berlin], Schröder, Shi et al.), FernUniver-
sität (Distance-University) Hagen (Poetzsch-Heffter, Kraemer et al.), Univer-
sität Freiburg (Basin, Wolff et al.), Ludwig-Maximilians-Universität München
(Wirsing, Kroeger, Merz et al.), and Universität des Saarlandes (Hutter, Melis,
Siekmann, Stephan et al.). However, as the “Open-Source” model is to be used
and teaching materials and tools are to be made freely available, a much greater

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 379–395, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

380 Bernd Krieg-Brückner

national and international take-up is to be expected. To assist this, a MMiSS
Forum is to be founded with German, international, and industrial members,
to evaluate the emerging curriculum and assist its development and distribu-
tion. The Advisory Board shall advise the project from a scientific as well as an
industrial perspective, with a view to future applications.

The area of “Safe and Secure Systems” has in the last few years become
increasingly important. Software is increasingly used to control safety-critical
embedded systems, in aeroplanes, spaceships, trains and cars, and electronic
trading over the Internet, with its associated security risks, is rapidly expanding;
all this requires qualitatively and quantitatively better training. To go with the
planned deployment at universities, a number of well-known German companies
have already expressed, through the various industrial contacts of the project
partners, an interest in measures for further in-house training.

At the core of the system is the hypermedial adaptation of a series of classes
or lectures on the development of Safe and Secure Systems. The lecturers should
be able to store various sorts of course material, such as overheads, commentary,
bibliographies, books, lecture notes, exercises, animations and so on, and retrieve
them again for use in teaching. The system provides a formal framework for the
integration of teaching materials based on a semantic structure (ontology) and
enables fast directed access to individual teaching elements. An initial collection
of teaching materials is already available and should be further hypermedially
developed as part of the project. It covers the use of formal methods in the
development of (provably) correct software. Highlights include data modelling
using algebraic specifications; modelling of distributed reactive systems; handling
of real-time with discrete events; and the development of hybrid systems with
continuous technical processes, so-called safety-critical systems. The curriculum
also covers informal aspects of modelling, and introduces into the management
of complex developments and security .

The system will also contain a meta-database, containing methodological,
ontological and paedagogical knowledge about the contents. The teaching mate-
rials should, where possible, be available in several different variants. It should
be left to the teachers, or the students, to choose between variants, according to
the educational or application context. For example reactive systems could be
modelled with either process algebras or Petri-nets.

An important educational aspect is to teach about the possibilities and limits
of formal tools. Tools for formal software development should be integrated in
the system, to illustrate and intensify the contents to be taught. Thus students
doing assignments can use the system to test their own solutions, while gathering
experience with non-trivial formal tools. The integration of didactic aspects with
formal methods constitutes a new quality of teaching. It will become possible,
for the first time in formal methods, both to present a variety of formal tools as
a subject for teaching, and to use them as a new medium. Thus an algorithm
can for example be simultaneously developed, visualised, and verified.

The goal of applying the new system in as many universities and companies
as possible, and the fact that the area of Safe and Secure Systems will continue

Towards MultiMedia Instruction in Safe and Secure Systems 381

to develop in future, requires the highest level of flexibility, extensibility and
reusability of the content. It should be possible to incrementally extend or adapt
content and meta-data, to suit the teacher’s individual requirements, and to keep
them up-to-date.

As the individual parts of the curriculum rely on each other, there is a net-
work of semantic dependencies, which the system should be able to administer;
thus it must at the least handle version- and configuration-management. The on-
tology additionally allows better support for orientation and navigation within
the content. It should also form the basis for adaptation to the user, for example
by learning from exercises which concepts the students have understood, and
adapting future assignments accordingly.

The formalisation of semantic dependencies means that the system can help
maintain the consistency of the content. Definitions must be coordinated to suit
each other; the removal or adaptation of part of the material may force the re-
moval or adaptation of all dependent concepts. In formal software development,
a similar problem has to be solved: there are also semantic dependencies be-
tween different parts of a development, for example between specification and
implementation. Some of the project partners have already developed techniques
for the administration of such dependencies as things change, and implemented
them in development tools. Here we perceive an important synergy between ex-
pertise in formal software development – and support tools – and the demands
of long-term sustainable administration of consistent multimedia materials in an
efficient and productive educational system.

2 Sustainable Development of the Content

The problem of “sustainable development”, i.e. how to continuously develop and
maintain multimedia educational content, is to a large extent unsolved:

To help realise complex systems, tools are needed to support the de-
velopment process from initial design to maintenance. ... Tools are also
becoming ever more important, to co-ordinate team-work and guaran-
tee consistency during development and beyond. The existing tools have
substantial deficiencies. Support is especially lacking for the early stages
of development, as is a suitable methodological framework. ... The com-
mercially available systems ... offer a wide range of possibilities, though
the ... results are hardly understandable or maintainable. ... Generation
and reuse of previously developed components in a new project is as
good as not supported. A further grave problem is the deficient or in-
adequate support of quality control during development. ... This leads
later to maintenance problems, as with current software systems. ... The
story is similar with the development of educational systems, for which
the development methods and tools in use today correspond to the state
of the art 20 or 30 years ago. [35]

In the MMiSS project, the elimination of these deficiencies is a priority.

382 Bernd Krieg-Brückner

In teaching practice there is a series of specific problems in the area of formal
methods, for example:

– the adequate communication of abstract mathematical concepts;
– the communication of course material which has a complex structure, is often

presented in a non-uniform way, and develops dynamically;
– the integration of practical aspects, such as process models [15] and tools.

Teaching Material for Safe and Secure Systems. The area of Formal Meth-
ods, the basis for the content to be developed during the project, is established
in academia and on the threshold of coming into the industrial mainstream. It
is differentiated into a variety of competing alternatives and orthogonal, poten-
tially complementary approaches. Like many mathematical theories, the different
methods have a complex internal structure. Due partly to the rapid development
of the last 15 years, there also remains a certain lack of uniformity in the pre-
sentation of the theoretical foundations, with corresponding consequences for
teaching. For the content, the project will address standardisation as a priority
in the short term, work out approaches for integration, and devise principles for
the comparison and presentation of alternatives. We will now sketch previous
work of the project partners in this direction, reflected in the comprehensive
teaching material that is already available.

Several project members were involved in the bmb+f project KORSO (“Cor-
rect Software” [11]), which laid the foundations for this co-operation; of these,
several have been working for many years on Algebraic Specification [10, 12, 4] in
a rather closed-knit international community, funded for many years by the EU
as ESPRIT WG COMPASS [22] and migrating eventually into the IFIP WG
1.3 (Foundations of System Specification) The Common Framework Initiative
for Algebraic Specification and Development (CoFI) [27, 13] of IFIP WG 1.3,
which originated from COMPASS, aimed at the development of an internation-
ally standardised family of specification languages [2, 14, 34, 28]. CASL, the core
language of this family, shall be a standard in the project for all teaching con-
tent concerned with mathematical foundations, algebraic specification and data
modelling; it is well-supported by tools [26, 25], and its development methodol-
ogy receives increased attention [30–32]; its link to the functional programming
language Haskell as a target is well under way [34].

Work at Ludwig-Maximilians-Universität München and at Universität Bre-
men will be important for integrating the content with which we are concerned
here into the whole subject of software development. This work aims to build
bridges between Formal Methods, and those informal methods and languages
which are in practice now a de facto standard, such as UML and Java. Tech-
niques for specification and verification of object-oriented programs have been
developed at FernUniversität Hagen.

The situation is less unified in the area of the formal treatment of concurrent
reactive distributive systems, up to and including (hard) realtime and hybrid
systems. One possibility is the hierarchy of languages established at Univer-
sität Bremen, which stretches from the widely-used language CSP [18, 33, 37]
via Timed-CSP [24] and HybridCSP [1] to hybrid automata and the duration

Towards MultiMedia Instruction in Safe and Secure Systems 383

calculus, to be combined with Casl [29]. The foundations of temporal logic
have been analysed at Ludwig-Maximilians-Universität München and used there
and at Universität Bremen in the teaching of model-checking. At Universität
Freiburg, it was demonstrated how decidable monadic second-order logics can
be used to model and to reason about such systems (e.g. [8]). Within courses on
“Software Techniques”, “Testing” and “Proofs and Modelling”, a wide range of
content on the subject of “Integrating Formal Methods into the Software Design
Process” (cf. e.g. [9]) has been created.

The proof system INKA, the VSE-method and its derivatives [5–7], devel-
oped at Universität des Saarlandes (DFKI), combine development methods for
abstract datatypes with temporal logic. Educationally, VSE has principally been
used in industrial seminars. During the adaption of content in this area, the aim
is to further work out existing approaches for integration, and to delimit and
classify alternative methods as they apply to particular applications.

Coherent and Consistent Teaching Materials. One problem with the de-
velopment of a national curriculum on “Safe and Secure Systems” is the wide
variety of different and partly competing approaches. Here a unifying approach,
at an international level, presents itself, via the specification language CASL.
The proposed system may be instrumental in spreading such standardising ap-
proaches, and, via New Media education, create an new identity in the field.
In an analogous way, the restriction, at first, to a few established and well-
supported languages and tools for reactive and hybrid systems should lead to
coherence in the curriculum. Initial experience from industrial training has been
very promising. Up to now the preparation of content has been done locally
from the specialised viewpoint of individual teachers; the comprehensive consis-
tent integration of content will overcome this, and so contribute to a uniform
understanding of the whole area throughout Germany, and, as a perspective,
beyond.

Semantic Linking of the Content. Many beginners find the subject matter
very complicated at first, because of the many dependencies between the vari-
ous fundamental formalisms. It is tiresome and time-consuming to communicate
conceptual dependencies and conceptual analogies to students. The proposed
system can play a decisive role, by providing a hierarchy of concepts (an on-
tology) throughout the whole material, making the complexity manageable for
students as well as teachers.

The author of content will be able to assemble teaching units from a struc-
tured system of individual modules and elements, by using the structural and
semantic relations explicit in the representation, such as pre-conditions, cross-
references, related units and alternatives. Thus content can be prepared by dif-
ferent people with different goals and requirements, but together and as part of
the same repository, possibly in different variants and views.

Students will also be able to side-step a prescribed order of presentation for
course content, navigate by themselves and make use of related materials as their
own needs dictate. Rapid access to semantically related concepts and theories
will significantly help users in forming an overall picture.

384 Bernd Krieg-Brückner

It is expected that this project will influence other areas, such as Mathematics
or other areas in Computing Science, in the short run, and so lead to a persistent
improvement in the teaching methodology of interrelated theories.

Reusability and Extensibility. One major problem with the preparation
of teaching materials of any kind is that the adaptations necessary for each
teacher and each year make reuse of older material almost impossible. It is
often necessary to completely restructure a course to integrate new developments
and results into hand-outs and overheads. Thus a major goal of the proposed
system is to guarantee users the highest degree of flexibility, extensibility and
reusability of the materials stored within it. It should be easy for teachers to
combine different materials, even from different authors, into a whole, and for
students to use alternative material. The planned mechanisms to support this,
such as version and configuration-management, consistency-preservation, and a
tool-supported development methodology, will also be available for other similar
systems, and are expected to substantially improve the long-term development
of coherent and consistent teaching content in the New Media.

Extensible Knowledge-Base. The speed at which knowledge develops is a
special problem in the areas of Computing Science and Safe and Secure Sys-
tems. It is imperative to be able to continuously extend and modify the stored
knowledge. This leads to consistency problems, in particular for multimedia pre-
sentations. For example, it must be clearly specified whether a cross-reference
(hyperlink) refers to the newest version (whatever it is), or to some specific older
version; these could be lost or outdated because of modifications to the refer-
enced content. This is especially important in the context of Formal Methods:
a referenced definition must fit into the application context which may not nec-
essarily be compatible. For example, the name of the term defined by the other
author may be different, or, worse, the other author may use the same name for
an entity that has a subtly different semantics. The system to be constructed
shall solve this by keeping track of semantically different entities, independently
of their apparent name in a specific context, and by storing additional meta-
data in the knowledge-base. Semantics and functionality of knowledge are to be
separated from representation.

There is also the problem of granularity. An element in the content may
be an entire lecture, a particular topic, a overhead (or something structurally
equivalent to it) on a subtopic, or indeed a single definition or theorem. This
problem is to be solved by structuring the teaching materials into a semantically-
based hierarchy, reached via, and defined in their granularity by, the ontology.

Semantic Relations in the Development Graph. Figure 1 shows, as an
example of the structure, a section of a document containing mathematical def-
initions, theorems and proofs (with connecting texts); a similar situation arises
with overhead transparencies for lectures. Texts, on the other hand, contain
embedded formal components (theorems, formulas, proof-scripts) which can of
themselves be processed by corresponding systems. A textual nesting (the “is

Towards MultiMedia Instruction in Safe and Secure Systems 385

is refinement of

Section Paragraph

Definition

Theorem

Proof

is contained in

proves

Theory

Formula

Proof Script

lives in

proves

Theory

Proof Script

is conservative extension of

proves

Proof Script

Formula

Fig. 1. Document Structure and Development Graph.

contained in” relation) yields at first a tree structure. This is extended by se-
mantic relations, defined explictly by the user or implicitly by the system. For
formal components this structure is evident; a formula representing a theorem
to be proved lives in a theory; a proof-script that proves this theorem within
a proof-system is subordinate to this theorem, or in general to a relation con-
taining a proof obligation (proves). In the course of development, alternatives
arise, for example an alternative proof in the example; this, like earlier versions,
must be preserved so that it is possible to return to it. Thus there is in general
a Development Graph containing one or more formal development graphs as
subgraphs.

Development Methodology. Semantic approaches from software engineering
and, in particular, Formal Methods, can cure the hitherto unsolved problem of
how to develop sustainable multimedia teaching content. Here the development
methodology of (stepwise) refinement is already known (compare with “is re-
finement of” in Figure 1); this could for example be applied to working out the
materials with more precision or in more detail. The important point is that a
reference to this activity of refinement is preserved. Another concept borrowed
from Formal Methods is the so-called conservative extension, which preserves
the original content so that a reference to the extended version remains valid for
the original meaning. An example of this is a theory whose axioms are kept, but
which is extended by further properties derived as theorems (compare with “is
conservative extension of” in Figure 1). This concept has a well defined verifiable
semantics, which naturally cannot be guaranteed for textual, or other multime-
dia, content. Thus consistency must be preserved through discipline among the
developers, rather than formal proofs. In any case we can, as a semantic re-
lation, distinguish conservative extension from a real change: the latter forces
all dependent content to be reworked (this can be automatically recognised and
communicated to the authors), while a conservative extension does not do.

386 Bernd Krieg-Brückner

Version and Configuration Management. An important dimension for De-
velopment Graphs is that of versions and their administration. Filtered views
(realised by the graph-visualisation system daVinci [17, 16]) should help the
user. Usually only the current version is of interest and all earlier ones are
not shown; however, an option should make alternatives to a version visible. It
should be possible to select between variants, such as the language used (for ex-
ample “British English” or “German”), the formalism (for example “CASL” or
“CSP”), or the level of detail (for example “Lecture Notes”, i.e. overheads aug-
mented by comments and explanations, suitable for study after presentation in
class), and so on. The notion of a consistent configuration is important here; all
objects related to a particular selected object should belong to the same version,
or at least to a semantically compatible one. The document actually displayed (a
subgraph) should in a well-defined sense be complete; thus when for example the
formalism“CASL” is chosen as a variant, examples should generally be available
in the formalism“CASL”, and similarly when a particular level of detail is cho-
sen. It is then possible to freeze a configuration as a publicly-accessible edition.
All these functions, especially verifying consistency and completeness, should be
supported by the system.

Scenarios and Roles. The knowledge-base is to be read, enriched or extended
by different groups of people, according to the educational context. As sketched
above, we recommend a semantics-driven process model for the development
of multimedia educational content in which the different scenarios and rôles of
those involved are differentiated:

– The author provides the initial groundwork (such as overheads), supplements
it as required with animations or tool demonstrations, reacts to feedback
from students and teachers, adds commentary, and expands it to create
hypermedially-related teaching material, such as lecture notes or courses
for distance learning (whether tutored or not).

– The teacher uses the teaching material stored in the knowledge base for
teaching on campus, adapts it to his or her specific requirements (by selection
or extension), and stores it back in the system.

– The tutor also uses the existing material, but in a different teaching situation;
s/he compiles explanatory commentary, answers questions, puts frequently
asked questions and answers together, sets and corrects assignments, and so
on.

– The student uses the (prepared) teaching materials for a review after class;
for self-study of the fundamentals or of additional background material; for
assignments; and so on. The system helps to navigate or leads through the
materials. It also contains (meta) information to support the selection of
material according to the student’s progress.

– The system developer extends the underlying system, incorporating existing
and recently developed tools, especially for Safe and Secure Systems, into
the development system.

– The tool developer works on particular tools, particularly for authoring.

Towards MultiMedia Instruction in Safe and Secure Systems 387

– The administrator manages the system and cares especially for version and
configuration management both of the content and the system itself. S/he
moderates editions and arranges their distribution, including ones for par-
ticular user groups (such as authors, teachers, students attending particular
courses); creates user groups and manages them; supports the distribution
and installation of system versions.

2.1 A MultiMedia Platform for Educational Content

To support didactically worthwhile multimedia training that is genuinely inter-
active and cognitively adequate, powerful support systems must be developed,
particularly in formal areas (Mathematics, Formal Methods); they should be
adaptable to the user. Up to now, there are few such systems; the Springer-
Verlag’s interactive textbooks represent the first steps in this direction. These
textbooks all belong to the first generation, which has no KI-methods such as
user-modelling and diagnosis, learning, knowledge-representation, distributed ar-
chitecture (multiple agents), and which makes little use of results from Cognitive
Psychology or the theory of Education (cf. also the recent efforts of ActiveMath
[23] at Universität des Saarlandes).

The ability to structure theories hierarchically, compare alternative ap-
proaches, combine complementary approaches usefully, and abstract away differ-
ences in presentation is, sometimes with difficulty, to be found among experts,
but hardly among students. Currently, teaching of formal methods is predomi-
nantly characterised by being based on (or restricted to) the “local theory envi-
ronment”. Methodologically, classical methods such as lectures (with little or no
interaction) and exercise sessions predominate. A comprehensive inter-relation of
content is therefore impossible without co-operation and system support during
creation. It is often a problem just to combine two, in principle complementary,
but in detail differently constructed, textbooks. There is no support for recombi-
nation and further development of content, a particular problem given the rapid
development of the subject area.

Structure of the Support System. The support system should have an open
architecture and accommodate various user models. This requires, in the simplest
case, a coarse static classification by user category or rôle in the learning process,
such as Diploma or Master’s student, student still learning the basics, (external)
student in further training, or industrial user; such a classification should be
universally introduced. It is also intended to take advantage of the opportunities
available for educational systems which dynamically adapt to the progress of the
user. Thus the proposed system is divided into components, which are presented
to the user in a view depending on the scenario:
– The authoring system contains various tools for the preparation, semantic

linking and extension of content.
– The teaching system serves primarily to support teaching on campus, but is

also suitable for tutored distance-learning.
– The learning system contains materials for students and supports various

learning situations.

388 Bernd Krieg-Brückner

– The development system for Safe and Secure Systems permits the integrated
use of tools for demonstrations and exercises.

– The assignment system manages assignments; solutions to exercises are dis-
patched for correction, the corrections administrated, and the corrected so-
lutions returned to the students.

A detailed architecture will be designed on the basis of the process model and
the methodology, which in turn serve as basis for the implementation of the sys-
tem. In particular the architecture will specify the individual components and
how they communicate. It will also be necessary to consider how development
tools fit into the system, the various supporting formats for encoding overheads
or assignments, as well as the technical representations of ontological and paed-
agogical knowledge.

Knowledge-Base. All the content should be stored in the knowledge-base,
which will administer the above-mentioned Development Graph with various
views, including version and configuration management. Content is to be stored
in its primary format, as well as possibly in automatically derived formats (for
example texts should be stored in the LaTeX, XML and OMDoc [19, 20] formats),
if possible distributed. In particular, the content developed during the project
should be made available on special archive servers, while students are to have
personal knowledge-bases, in which examples can be explored, annotations made,
or exercises solved before being sent to a tutor. The personal knowledge-base can
also serve as a local copy (or cache) for the students, making them less dependent
on their local network.

Standards. Standards are decisive for the technical coupling, but also for se-
mantic integration. Therefore current standardisation attempts in Mathematics
and Formal Methods should be adhered to.

The educational content, the description of the meta-structures and the inter-
nal communication of the software systems are to be based on the new Internet
standard XML. Embedded structuring elements are to be tagged with the special
formalism used, such as CASL for the integration of structured algebraic spec-
ifications, or input formats for the formal software systems and visualisation
components involved in the project; this way, these elements can be analysed
by appropriate tools. Formal content should be adapted to the XML dialect
OMDoc (OpenMath Documents [19, 20]), which is an extension of the Open-
Math standards. OMDoc allows materials to be presented in a series of formats,
such as LaTeX, DVI and PostScript for printed documentation, HTML for in-
teractive books or browsable presentations, or MathML for special handling of
mathematical formulae.

3 Learning Environment and Communicative Elements

For each rôle (among others authors, teachers and students) the system appears
as an individual environment. In the following we will consider the learning
environment and its elements in more detail. The learning environment supports
the students in various situations:

Towards MultiMedia Instruction in Safe and Secure Systems 389

– selecting (or generating) learning materials from the knowledge base;
– studying the course material interactively;
– communicating with tutors and other students;
– perfoming exercises, practicing and experimenting;
– administrating assignments; evaluating progress.

Tutored and Co-operative Learning, Assignments. Experience at Fer-
nUniversität (Distance-University) Hagen shows that the New Media are very
good at supporting tutored and co-operative learning. This new way of learning
has not yet been generally accepted in the other universities, except in isolated
experiments. This will change through the continual availability and extensibility
of the system to be constructed by the MMiSS project; its extensive deployment
should bring about a new quality of learning.

Modern communication technology permits asynchronous and documented
discussion of questions, problems and solutions within structured content-specific
discussion-forums (similar to newsgroups) which should be integrated with the
course material. In particular such forums can be used for efficient tutoring. It
is also possible to realise different levels of visibility (for example, visible for a
whole group and its tutors, or only for a particular subgroup); this is known to
increase the students’ willingness for co-operation.

In tutored learning, a tutor is available on the net to answer questions about
the content, the use of the system and its tools, or assignments – either syn-
chronously (“talk”) or asynchronously (via electronic mail). Co-operative learn-
ing usually implies a group of students who co-operate in studying a large
amount of content (for example a major course) together. A number of learning
situations, described by different metaphors, should be supported, for example

– newspaper stand : latest information from the teaching staff is distributed
– café: a few participants meet in unmoderated synchronous conversation
– market place: many communicate asynchronously, for example all partici-

pants in a course.

The organisation of assignments poses additional problems. Exercises and sample
solutions must be handed out (perhaps for quite different areas and levels of
expertise of groups of participants in a course); it is also necessary to administer
the forwarding of solutions to the tutors, returning the corrected exercises, and
so on. At FernUniversität Hagen, Six’s team have developed a tool to address
these problems, WebAssign which has already been used in a large number of
courses with occasionally more than a thousand students each. This system will
be integrated into the current project.

The added value of this new form of education is that it raises the quality of
learning and makes tutoring more efficient and effective, particularly in a sub-
ject area with as many students as Computing Science. Experience at Universität
Bremen has also shown that alternative forums for interaction and communica-
tion improve the students’ willingness for and enjoyment of co-operation and
help them express themselves; optional anonymity can be useful here. Thus new
chances for learning arise and the students are motivated by their own sense of

390 Bernd Krieg-Brückner

success. Women-only learning scenarios (for example a women-only café) be-
come possible. Another advantage of having support for tutored or co-operative
learning is that there is very good feedback about student progress, and criti-
cism about the materials can easily be forwarded to the tutors and authors; this
clearly assists quality-control. The suitability of such approaches to the area of
Safe and Secure Systems and Formal Methods becomes even more plausible as
the objects of study (specifications, proofs) are per se of a written nature.

Adaptive Learning Environment. Since the system to be constructed should
be available to a large user community, we can expect a variety of different ap-
plication scenarios: on campus learning, self-study, tutored distance-learning,
preparation and subsequent assessments of industrial projects, and so on. The
educational environment should therefore contain an adaptive user-modelling
component, and be oriented to universally understood metaphors when guiding
the user; this will significantly increase user acceptance. The learning environ-
ment should be able to generate a personalised document from the knowledge-
base, covering a special subject-area and configured according to a particular
personal profile, with a variety of interaction possibilities. Document generation
is to be based on the ontology and dependencies between the terms and the con-
cepts and methods to be learnt. By this personalisation, the learning materials,
examples, assignments and the way in which the knowledge is presented can be
adapted to the student’s state of knowledge and requirements. This adaptability
entails on one hand a more individualised support, on the other a flexible re-use
of teaching materials.

The foundation for the user-adaptive generation of learning elements is a
general, partly semantic (and thereby reusable) knowledge representation. To
adapt to the profile, goals and the context of the user, such meta-data are ac-
quired in a user model and can be updated for use in a pedagogical presentation
planner. The user model will contain, for example, the user’s status as a student
or industrial trainee, the level of detail the user requires, or whether the user is
preparing for an examination.

Interactive Learning. For the study of a content package, the learning envi-
ronment provides the technical content in an adequate multimedia presentation,
for example texts, graphics, pictures, animations, simulations, audio- and video-
sequences, and semantic hyperlinks between them. A navigational aid leads the
students through the content, based on the onotology. Little exercises provide
self-tests to check the progress.

Within the learning environment, the presentation of the material can be
closely interrelated with other functionality; for example the assignments can be
referenced directly from the teaching content. This also applies to the embedding
of software-development tools. The learning environment also offers direct access
to the course-specific communication and evaluation mechanisms.

Support for Assignments and Practical Work. The learning environment
will include an assignment component; this will integrate and simplify embed-
dings of software-development tools specific to the course. It will authenticate

Towards MultiMedia Instruction in Safe and Secure Systems 391

students, administrate their solutions and keep track of course marks. Various
types of exercises shall be supported:
– multiple choice; exercises with textual or graphical answers;
– creation/modification of specifications, proofs or programs with tool support;
– solution of exercises by dialog with an interactive system.

Evaluation. The learning environment offers, on all those levels we have con-
sidered, the possibility of including support for its evaluation in the content. As
part of the presentation, students can answer questions on the course and add
commentary. It will also be possible to analyse all the students’ responses to an
exercise. Points of view publicly put forward as part of communication between
students or with the tutors are also potentially useful material for evaluation.
The learning environment will provide technical support for managing this data.

4 Embedding of Tools for Safe and Secure Software

The integration of existing formal software development tools shall make teach-
ing more flexible and dynamic. Various interaction levels should be possible,
such as “movie-demos” of tools; replays of developments in the tool; completion
and extension of developments using the tool; independent working on exercises;
working on a project as a team.

Use of Software-Development Tools in Teaching. An important part of
training is the familiarisation with computerised tools for developing Safe and
Secure Systems. Tools and their methodical use in practical scenarios have, so
far, only been integrated into courses in an isolated way, at the moment mostly in
the form of complementary tutored exercise sessions. A complete integration into
the curriculum has yet to happen, not least because of the general restriction of
teaching content to locally-available tools, and the difficulty of providing general
methodical integration into the content while avoiding too much detail only of
interest in the special case.

As well as educating people in the use of tools, we are also concerned with
the methodical improvement of teaching from the point of view of educational
theory; an increased use of animations, visualisation and active experimentation
can considerably reduce the difficulty of grasping abstract concepts. The user can
be aided in make knowledge explicit through an experimental and explorative
approach to problem-solving. As is known from Cognitive Psychology, this is an
important basis for learning.

As well as integrating tools into teaching content, we should also consider
the integration of different tools, and the re-use of developments (represented in
a common language) in another (tool-) context; without this coherent teaching
is not possible. The project partners have developed (and continue to develop)
numerous tools, and demonstrated these in practical applications, up to and
including co-operation in large commercial software projects. Above all two ap-
proaches that have been developed are relevant. The bmb+f-supported develop-
ment of UniForM (Universal development environment for Formal Methods [21])
at Universität Bremen supports the close interaction and integration of tools.

392 Bernd Krieg-Brückner

The MathWeb architecture and the OMDoc format [19, 20], both developed at
Universität des Saarlandes, support the loose coupling of tools and the common
representation of formal development. Both partners cooperate in developing
support for development graphs, their visualisation and administration [7].

Integrated Development Tools. Several formal development tools must be
integrated in the learning system, if knowledge of how to use them is to be ade-
quately communicated. This entails consistency problems not just between the
tools, but also with the other content. The system must hence be configurable,
and support input and output in the most popular formats on the basis of new
standards.

The tool support for Formal Methods includes editing, syntactic and static
semantic analysis and visualisation of specifications, their animation, interactive
proof-development, fully-automated decisions procedures and test-procedures.
In addition to systems which address one or other of these tasks, there are also
development tools which integrate several sub-systems and so provide general
support for formal development. The existing tools differ in their functionality
and their fundamental formal approach.

This potential should be exploited in teaching, by complementing the passive
absorption of teaching content with active explorative components. We see here
the beginnings of a new, decisive approach to improving teaching. Up to now, it
is too often the case that what is taught is only of limited applicability, and only
limited understanding can actually be said to have been attained. For Formal
Methods in particular, current quantitatively and qualitatively limited methods
doing assignments (proofs cannot really be worked out) provide no solution.

Because the whole subject area should be covered here, and we aim to be
able to adapt to individual special needs and further tool development, the
semantically consistent integration of tools and their technical coupling is of
high importance; for application-oriented training it is indispensable.

5 Outlook

The project has made good progress during its first year. Many lectures have
been converted to the initial LATEX-oriented input format, with good quality
output as overhead transparencies in PDF-format. This material is now awaiting
further coordination and refinement, as well as semantic interlinking using devel-
opment graphs in the repository. The Development Manager, and other editing
and authoring tools, are well under way towards completion.

Acknowledgement

We are grateful to the members of the Advisory Board, V. Lotz (Siemens AG,
München), H. Reichel (TU Dresden), W. Reisig (HU Berlin), D.T. Sannella
(University of Edinburgh), and M. Ullmann (BSI [Federal Institute for Security
in Information Technology], Bonn), for their advice, and to G. Russel for his
help with the manuscript.

Towards MultiMedia Instruction in Safe and Secure Systems 393

References

1. Peter Amthor. Structural Decomposition of Hybrid Systems – Test Automation for
Hybrid Reactive Systems. PhD thesis. Universität Bremen, 1999. Monographs of
the Bremen Institute of Safe Systems 13. Shaker.

2. Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd Krieg-Brückner, Peter
D. Mosses, Donald Sannella and Andrzej Tarlecki. Casl: The Common Algebraic
Specification Language. Theoretical Computer Science, to appear 2003.

3. Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd Krieg-Brückner, Peter
D. Mosses, Donald Sannella and Andrzej Tarlecki. (eds.). Casl– the CoFI Alge-
braic Specification Language: Tutorial Introduction, Language Summary, Formal
Definition, Basic Data Types. (submitted).

4. Egidio Astesiano, Hans-Jörg Kreowski, and Bernd Krieg-Brückner (eds.). Algebraic
Foundations of System Specification. IFIP State-of-the-Art Reports, Springer 2000.

5. Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer. INKA 5.0: a
logic voyager. Proc. 16th Intl. Conference on Automated Deduction, Trento. LNAI
volume 1632, pages 207–211. Springer, 1999. (see also www.dfki.de/vse/.)

6. Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer. Towards an Evo-
lutionary Formal Software Development Using Casl. In Christine Choppy, Didier
Bert, and Peter Mosses (eds.): Recent Developments in Algebraic Development
Techniques, 14th International Workshop, WADT’99, Chateau de Bonas, France.
LNCS volume 1827, pages 73–88. Springer, 2000.

7. Serge Autexier and Till Mossakowski. Integrating HOLCASL into the development
graph manager MAYA. In: A. Armando (ed.). Frontiers of Combining Systems, 4th
International Workshop. LNCS volume 2309, pages 2–17. Springer, 2002.

8. David A. Basin and N. Klarlund. Automata based symbolic reasoning in hardware
verification. Formal Methods in Systems Design, 13(3):255–288, November 1998.

9. David A. Basin and Bernd Krieg-Brückner. Formalization of the Development
Process. In [4]. 521–562.

10. Michel Bidoit, Hans-Jörg Kreowski, Pierre Lescanne, Fernando Orejas, and Donald
Sannella (eds.). Algebraic System Specification and Development: A Survey and
Annotated Bibliography, LNCS volume 501. Springer 1991.

11. Manfred Broy and Stefan Jähnichen (eds.). KORSO: Methods, Languages, and
Tools for the Construction of Correct Software – Final Report, LNCS volume 1009.
Springer, 1995.

12. Maura Cerioli, Martin Gogolla, Hélène Kirchner, Bernd Krieg-Brückner, Zhenyu
Qian, and Markus Wolf (eds.). Algebraic System Specification and Development:
Survey and Annotated Bibliography. 2nd edition, 1997. Monographs of the Bremen
Institute of Safe Systems 3. ISBN 3-8265-4067-0. Aachen: Shaker, 1998.

13. CoFI. The Common Framework Initiative for algebraic specification and develop-
ment, electronic archives. Notes and Documents accessible at http://www.cofi.info.

14. CoFI Language Design Task Group. Casl – The CoFI Algebraic Specification
Language – Summary. in [13].

15. Carla Freericks. Open-Source Standards on Software Process: A Practical Applica-
tion. In K. Jakobs (ed.). IEEE Communications Magazine, Vol. 39, No. 4 (2001)
116–123. See also www.tzi.de/gdpa/

16. Michael Fröhlich. Inkrementelles Graphlayout im Visualisierungssystem daVinci.
Dissertation. Monographs of the Bremen Institute of Safe Systems 6. ISBN 3-8265-
4069-7. Shaker, 1998.

394 Bernd Krieg-Brückner

17. Michael Fröhlich and Mattias Werner. The interactive Graph-Visualization System
daVinci – A User Interface for Applications. Informatik Bericht Nr. 5/94 (1994).
Universität Bremen. Up-to-date documentation: www.tzi.de/ daVinci.

18. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International
Series in Computer Science, 1985.

19. Manfred Kohlhase. OMDoc: Towards an OpenMath representation of mathemat-
ical documents. SEKI Report SR-00-02, Fachbereich Informatik, Universität des
Saarlandes, 2000. www.mathweb.org/ilo/omdoc/

20. Manfred Kohlhase. OMDoc: Towards an Internat Standard for the Administration,
Distribution and Teaching of Mathematical Knowledge. Proc. Artificial Intelligence
and Symbolic Computation. LNAI. Springer, 2000.

21. Bernd Krieg-Brückner, Jan Peleska, Ernst-Rüdiger Olderog, and Alexander Baer.
The UniForM Workbench, a Universal Development Environment for Formal
Methods. In: J. M. Wing, J. Woodcock, and J. Davies (eds.): FM’99, Formal
Methods. Proceedings, Vol. II. LNCS Volume 1709, pages 1186-1205. Springer,
1999.

22. Bernd Krieg-Brückner. Seven Years of COMPASS. In 11th Workshop on Speci-
fication of Abstract Data Types, Joint with the 8th COMPASS Workshop, Oslo,
LNCS volume 1130, pages 1–13. Springer, 1996.

23. Erica Melis, Eric Andres, Georgi Goguadse, Paul Libbrecht, Martin Pollet, and
Cartsen Ulrich. ActiveMath: System description. In Johanna D. Moore, Carol Red-
field, and W. Lewis Johnson (eds.): Artificial Intelligence in Education. IOS Press
(2001) 580–582.

24. Oliver Meyer. Structural Decomposition of Timed CSP and its Application in Real-
Time Testing. PhD thesis. Universität Bremen, 2001. (To appear in Monographs
of the Bremen Institute of Safe Systems. Logos Verlag.)

25. Till Mossakowski. Casl: From Semantics to Tools. In S. Graf and M. Schwartzbach
(eds.) Tools and Alogorithms for the Construction and Analysis of Systems, Pro-
ceedings TACAS 2000. LNCS volume 1785, pages 93–108. Springer, 2000.

26. Till Mossakowski, Kolyang, and Bernd Krieg-Brückner. Static semantic analysis
and theorem proving for Casl. In 12th Workshop on Algebraic Development Tech-
niques, Tarquinia, LNCS volume 1376, pages 333–348. Springer, 1998. (For the
Bremen CoFI Tools see http://www.tzi.de/cofi.)

27. Peter D. Mosses. CoFI: The Common Framework Initiative for Algebraic Spec-
ification and Development. In TAPSOFT ’97: Theory and Practice of Software
Development, LNCS volume 1214, pages 115–137. Springer, 1997.

28. Horst Reichel, Till Mossakowski, Markus Roggenbach, and Lutz Schröder. Co-
CASL – Proof support for co-algebraic specification. In Recent Trends in Alge-
braic Development Techniques, 16th International Workshop, WADT’02, LNCS.
Springer (accepted for presentation).

29. Markus Roggenbach. CSP-CASL – A new Integration of Process Algebra and Al-
gebraic Specification. In Recent Trends in Algebraic Development Techniques, 16th
International Workshop, WADT’02, LNCS. Springer (accepted for presentation).

30. Markus Roggenbach and Till Mossakowski. What is a good Casl specification? In
Recent Trends in Algebraic Development Techniques, 16th International Workshop,
WADT’02, LNCS. Springer (accepted for presentation).

31. Markus Roggenbach and Lutz Schröder. Towards Trustworthy Specifications I:
Consistency Checks. In M. Cerioli and G. Reggio (eds.). Recent Trends in Algebraic
Development Techniques, 15th International Workshop, WADT’01, Genova, LNCS
volume 2267. Springer. 305-327.

Towards MultiMedia Instruction in Safe and Secure Systems 395

32. Markus Roggenbach and Lutz Schröder. Towards Trustworthy Specifications II:
Testing by Proof. In Recent Trends in Algebraic Development Techniques, 16th
International Workshop, WADT’02, LNCS. Springer (accepted for presentation).

33. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Interna-
tional Series in Computer Science, 1998.

34. Lutz Schröder and Till Mossakowski. HasCASL: Towards integrated specification
and development of Haskell programs. In Proc. AMAST 2002, LNCS. Springer (to
appear).

35. Forschergruppe SofTecNRW. Studie über Softwaretechnische Anforderungen an
multimediale Lehr- und Lernsysteme. Sept. 1999. See also: www.uvm-nw.de, [36].

36. G. Engels, U. Kelter, R. Depke, and K. Mehner. Unterstützende Angebote der Soft-
warebegleitgruppe. E. E. Doberkat et al. (eds.). Multimedia in der wirtschaftswis-
senschaftlichen Lehre – Erfahrungsbericht. LIT Verlag, Münster (2000) 27–56.

37. Haykal Tej and Burkhart Wolf. A Corrected Failure-Divergence Model for CSP
in Isabelle/HOL. In Proc. FME 97 – Industrial Applications and Strengthened
Foundations of Formal Methods. LNCS, volume 1313. Springer (1997) 318-337.

The Impact of Models in Software Development

Manfred Broy

Institut für Informatik, Technische Universität München,
D-80290 München Germany

broy@in.tum.de

http://wwwbroy.informatik.tu-muenchen.de

Abstract. Software construction is essentially a modeling task. The
most important decisions in software development are decisions that deal
with modeling. The better, the more adequate and more powerful the
available modeling paradigms are the easier the program development
task is and the better its results are. In the following we describe the
role of models in program development and show how closely the is-
sue of modeling is related to the so-called formal methods in program
development. We give a number of arguments the usage of mathemati-
cal models in software construction and back them up by some detailed
examples.

1 Motivation

Software development is still one of the most complex and powerful tasks in
engineering. Just by formulating the right programs we obtain engineering ar-
tifacts that can control systems, calculate results, communicated messages and
illustrate and animate all kinds of information. Since programs are – implicitly
or explicitly – based on models and since well-chosen models are the best way
to understand software, modeling is a crucial step in software construction.

In all disciplines models play a prominent role. In physics, mathematics has
provided lots of models. The same holds for many engineering disciplines. Econ-
omy works with models; biology works more and more with models, chemistry
works with models. Constructing models is at the heart of science.

In Informatics modeling is even more crucial. Developing software is more
or less nothing than developing the right models finally represented in the right
notation such that they can be executed on computing machinery.

2 On the Nature of Software Development

Still we have the ongoing discussion what the essence of software development
really is. Is it an engineering task? Is it an art, a science, a handicraft or just a
simple profession? Of course, there are many views onto program development,
more scientific ones or more pragmatic ones. We study and discuss two extreme
views in the following:

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 396–406, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Impact of Models in Software Development 397

– Academic view: Software development always means the construction of a
formal/mathematical/logical model – therefore it is a formal activity. Soft-
ware is a mathematical object, formally specifiable and verifiable.

– Pragmatic view: Software development is an art and a craft; it proceeds
by esoteric lore, by stepwise improvement, by trial and error. It has to be
changed and redesigned as well as tested over and over again. It is unreliable
and had to predict.

Thus, software is an artifact, complex, unreliable and unpredictable.
Off course, both views are extreme and therefore hardly fully correct. But

both views contain valuable insights into the nature of software development. We
claim that we have to integrate both views to obtain a real discipline of software
engineering. Only if we manage to have a compromise between that both views
in a smart way, software development can be improved into a scientifically well
founded engineering discipline.

2.1 “Formal Methods” and “Software Engineering”

The scientific community has invested lots of time and effort into so called formal
methods. In formal methods the idea is that the task of software development
including specification, its incremental design, its implementation and its veri-
fication can be done completely within a logical and mathematical theory. This
is a striking idea, full of interesting scientific issues and insights. However, prac-
titioners often consider formal methods inadequate, too expensive, too difficult,
and “not at all practical”.

On the other side the state of the art in pragmatic and practical software
development is still far from being satisfactory. Practical software development
is often considered being “ad hoc”, “immature”, uncontrollable, and “not an
engineering discipline”.

Therefore a very interesting question is how we can find a good compromise
between the rigorous scientific approach to programming and the pragmatic
practical approach. One idea of course is the use of well-chosen, sufficiently
formal models. Programming means in any case using explicitly or implicitly
models. We claim that it is important to identify the used model very explicitly
and that this is of great practical advantage since finally formal methods provide
a rich tool kit of methods.

2.2 Modeling in Software Engineering

Systematic development of distributed interactive software systems needs basic
system models. Description techniques are to provide specific views and abstrac-
tions of systems such as:

– the data view,
– the interface view,
– the architecture view,
– the distribution view,

398 Manfred Broy

– the process view,
– the interaction view,
– the deployment view,
– the state transition view.

All these views have to be captured by carefully chosen models. The devel-
opment of systems concentrates on working out these views that lead step by
step to an implementation.

2.3 Software Development as Modeling Tasks

Software development can be seen as a sequence of modeling tasks. From the
very beginning, when analyzing and understanding a problem domain we start
to work towards finding the right models. This goes on and on when we analyze
the use cases and their specifications, the software architecture, the modulariza-
tion of the system and its implementation. Software development includes the
modeling and description of various aspects, such as:

– application domains, their data structures, laws, and processes,
– software requirements, based on data models, functions, and processes,
– software architectures, their structure and principles,
– software components, their roles, interfaces, states, and behaviors,
– programs and modules, their internal structure, their runs and their imple-

mentation,
– test cases, their generality and usefulness.

If models are so important in software and systems engineering, a central
question of course is, what is a model in software engineering?

1. An annotated graph or diagram?
2. A collection of class names, attributes, and method names?

In engineering, a model is always given by a collection of formulas, diagrams,
and tables as well as text expressed in some notation with a well-understood
mathematical theory! In analogy, software engineering needs mathematical mod-
eling theories of digital systems – algebra, logic, model theory! Logic provides a
unifying frame for that!

3 The Role of Diagrams

Practical software engineers often prefer the use of diagrams to textual notation
using formulas and programming languages. The reason is quite obvious. They
assume that diagrams are more telling, easier to understand and better to grasp.
Whether this holds actually true leads into a long, controversial discussion.

Nevertheless in some applications certainly diagrams are helpful. However,
on the long run diagrams are only helpful if they are based on a proper theory
of understanding. Well-chosen models can provide such an understanding.

The Impact of Models in Software Development 399

3.1 Practice Today: Diagrams

In practice, today we find many diagrammatic methods for modeling and spec-
ification (SA, SADT, SSADM, SDL, OMT, UML, ROOM, ..., see [22, 12, 3, 19,
20, 23]) in software and systems engineering. Especially UML has gained much
attention. The idea of universal modeling languages is a great one – but a closer
look shows, however, how ad hoc most of these “methods” especially as found
in UML are. At best, they reflect essential engineering insights in engineering
software applications. Never have practical diagrammatic modeling been justi-
fied on the basis of a comprehensive mathematical foundation. In contrast, only
after the languages where published scientists work had to define and explain
the ad hoc constructs of modeling language post mortem.

3.2 Limitations of Diagrams

By a look at the state of the art today we see that a lot of diagrams are used with-
out a proper theory and without a good support of understanding. To underline
this remark we mention three bad examples (see also [24]):

– UML and its statecharts dialect with its endless discussions about its seman-
tics.

– ehavior specification of interfaces of classes and components in object ori-
ented modeling techniques in the presence of callbacks.

– Concurrency and co-operation: Most of the practical methods especially in
object orientation seem to live in the good old days of sequential program-
ming and do not properly address the needs of highly distributed, mobile,
asynchronously co-operating software systems.

We need proper theories and methodological insights (see [21]) to overcome these
shortcomings.

3.3 From Logic to UML Back to Logic

It is a disaster for academic informatics that it did not manage to design a mod-
eling language that is used as widely as UML. The vision however, remains – an
academic, scientific view on modeling! How can we achieve that? We start from
foundations: A tractable scientific basis, understanding, and theory for model-
ing, specifying, and refining in programs, software and system. On that basis we
identify powerful models supporting levels of abstractions, multi-view modeling,
domain modeling. This leads to comprehensive description techniques based on
these foundations. Thus we gain a family of justified engineering methods based
on these foundations and finally a flexible process model combining these meth-
ods.

All this is the necessary prerequisite for a comprehensive tool support in
software development including validation, consistency checks, verification, and
code generation by algorithms and methods justified by the theories. Finally we
arrive at modeling and its theory as an integral part of software construction as
an engineering discipline.

400 Manfred Broy

4 An Example: MSC Semantics

In this section we treat as an example of diagrams and the corresponding theory
the example of message sequence charts (see [14–16,18, 17, 1, 2, 5, 6, 8–10, 13]).
We very shortly discuss issues of message sequence charts for a comprehensive
understanding of the issues we prefer to comprehensive paper by [5].

4.1 What Is an MSC

A message sequence chart (MSC) is first of all an example of an interaction
and communication trace of a system. Using sets of message sequence charts
naively in that sense may help to get a first understanding of the requirements
of a system. But it will never lead to a useful and comprehensive requirements
specification for a complex system. The reason is obvious. Giving a bunch of
example traces can never specify a system in a sense that expresses what the
system must do and what a system must not. A set of traces only gives some
ideas what a system might do.

However, if we replace simple messages by variables and carefully distinguish
between input and output according to the idea that input gives a certain context
for a trace. Then the message sequence chart fixes a reaction in that context.
Therefore the message sequence charts can be seen just as a set of equations as
we will point out in more detail in the following.

4.2 The Role of MSCs in the Development Process

A message sequence chart is just a diagram of a form as it is shown in figure 1.
The diagrams specify the communication sequences between the components of
system architectures. Figure 1 shows a system architecture and figure 2 shows
the interpretation of a message sequence charts.

Control

UNLD

LCKD

LM RM

lmr
rmr

msc crash

crs
clup

crup

Control

LCKD

UNLD

LM RM

lmr

rmr

msc unlocking

unlck

lup

rup

Control

UNLD

LCKD

LM RM

lmr

rmr

msc locking

lck

ldn

rdn

Fig. 1. An Example of a Message Sequence Chart.

The Impact of Models in Software Development 401

message
arrow

state marker

component
axis

Control

UNLD

LCKD

LM RM

lmr
rmr

msc locking

lck
ldn

rdn

Fig. 2. A Message Sequence Chart with its Constituents.

The methodologically interesting question is what the role of message se-
quence charts is in the development process. In fact, we see many methodologi-
cal roles which can only be covered by message sequence charts provided we can
give a proper semantics to message sequence charts.

Our ambitious goal is a seamless, methodologically founded integration of
MSCs into the development process for distributed, reactive systems.

In the connection of the methodological use of message sequence charts and
its theoretical foundations we have to deal with a number of difficult questions
in connection with message sequence charts: first of all, it is always important
to understand to which properties of a system message sequence charts refer to.
This can only be explained if we have a clear understanding of a system model.
In the following we give a simple system model and show how message sequence
charts can be understood as equations in term of the system model.

We are in particular interested in the following questions:

– What is the formal meaning of
• a single MSC?
• a set of MSCs?

– for the individual components of a system?
– How can several MSCs be combined?
– What properties do MSCs specify?
– What is the methodological role of MSCs?
– Can MSCs serve as a precise and comprehensive specification method?

The system class that we consider are distributed, reactive systems. First we
have to select a model for such systems before we can fix the meaning of MSCs.

We use the Focus model (see [7]). There a system consists of

– named components (with local state)
– named channels

driven by global, discrete clock over which the components communicate via
data streams.

402 Manfred Broy

Analysis

Specification

Design

Implementation

Control

UNLD

LCKD

LM RM

lmr
rmr

msc crash

crs
clup

crup

Control

LCKD

UNLD

LM RM

lmr

rmr

msc unlocking

unlck

lup

rup

Control

UNLD

LCKD

LM RM

lmr

rmr

msc locking

lck

ldn

rdn

S1

S4

S2

S3

UNLD LCKD

?lmr/!rdn

?lck/!ldn ?rmr

?rmr ?unlck/!lup

?lmr/!rup

Fig. 3. The Role of MSCs in the Development Progress.

lc

clLM Control R
M

cr

rc

kc
component

channel channel
name

component
name

Fig. 4. The System Model.

The basic model is based on timed streams. This leads to a semantic model
for black-box-behavior.

On each channel that connects two components there flows a stream of mes-
sages in a time frame as shown in Fig. 5.

4.3 MSC Semantics for Deterministic Systems – An Example

To show how easy it is to give a powerful meaning to MSCs we look at a simple
example.

The two MSCs in Fig. 6 are translated into the following equations:

fTR(〈a : m〉) = 〈b : ready〉
fTR(〈a : m〉̂ 〈c : Y〉̂ x) = 〈b : ready〉̂ 〈d : Y〉̂ 〈b : m〉̂ fTR(x)
fTR(〈a : m〉̂ 〈c : N〉̂ x) = 〈b : ready〉̂ 〈d : N〉̂ fTR(x)

This translation is based on the understanding that for every thread incoming
arrows denote input and outgoing arrows denote output. Here we assume the
component is deterministic in the sense that it reacts to every input pattern by a
uniquely defined output pattern. For this case we assume that after each pattern

The Impact of Models in Software Development 403

E

e
q

q
e

Q

t t+1 t+2 t+3

<a,d,a,b
>

‹›
>

content of channel
qe at time t

infinite channel
history

Message set:

M = {a, b, c, ...}

Fig. 5. Streams as Models of the Interaction between Components.

msc success

Sender TR Receiver

d:Y

c:Y

a:m

b:ready

b:m

msc failure

Sender TR Receiver

d:N

c:N

a:m

b:ready

Fig. 6. Two MSCs.

of behaviour the components are in their initial state again. If the behaviour is
more specific, states can be introduced explicitly, too (see [5]).

We get a seamless support of the development process as outlined in figure 7
to support software development.

As our simple example above shows, being able to give a theory for message
sequence charts in terms of an appropriate system model we can get a very con-
cise interpretation of message sequence charts. This goes up to a point where
message sequence charts can just be seen as a graphic representation of logical
equations. This provides a major step in the understanding diagrams and soft-
ware development and gives the basis also for very comprehensive tool support
along the lines of AutoFocus.

4.4 Property Specification with MSCs

In the end we can use message sequence charts now as a precise description
of logical properties of system represented by diagrams. So message sequence
charts can be seen as a means of formal specifications of systems. This leads
to a helpful compromise and finally to an amalgamation of pragmatic graphical
techniques and formal models. It shows that a proper theoretical foundation of
a diagrammatic method leads to a much better, better supported programming
methodology that combines the advantages of formal methods and practical
approaches to software development (see also [11]).

404 Manfred Broy

msc l3
msc l2

msc l1
msc crash

msc unlocking
msc

locking

Capturing/Composition of Scenarios

msc crash
msc unlocking

msc

locking

Systematic Refinement

Transformation into Component Behavior

S
e
m

a
n
tic

In
te

g
ra

tio
n

Fig. 7. MSCs in Software Development.

TRSender Receiver
a

d

b

c

msc success

Sender TR Receiver

d:Y

c:Y

a:m

b:ready

b:m

msc failure

Sender TR Receiver

d:N

c:N

a:m

b:ready

Fig. 8. System Architecture and MSCs.

5 Summary and Outlook

Software development is a difficult and complex engineering task. It would be
very surprising if such a task could be carried out properly without a proper the-
oretical framework. It would at the same time being quite surprising if a purely
scientifically theoretical framework would be the right approach for the practical
engineer. The result has to be a compromise as we have shown between formal
techniques and theory on one side and intuitive notations based on diagrams.
Work is needed along those lines including experiments and feedback from prac-
tical applications. But as already our example shows a lot is to be gained that
way.

The Impact of Models in Software Development 405

Theory and practical understanding are the key to mature software devel-
opment. To achieve that we need a much deeper and more intensive interaction
between researchers working on the foundations, the designers of practical engi-
neering methods and tools, the programmers and engineers in charge of practical
solutions, and application experts modeling application domains.

Successful work does not only require the interaction between these types of
people – it also needs hybrid people that have a deep understanding in all three
of these areas.

Acknowledgements

It is a pleasure to thank Ingolf Krüger and Radu Grosu for stimulating discus-
sions and helpful remarks on draft versions of the manuscript.

References

1. R. Alur, G.J. Holzmann, D. Peled: An Analyzer for Message Sequence Charts.
Software – Concepts and Tools 17 (1996), 70-77

2. H. Ben-Abdallah and S. Leue: Syntactic analysis of Message Sequence Chart speci-
fications. Tech Report 96-12, Department of Electrical and Computer Engineering,
University of Waterloo, 1996.

3. G. Booch: Object Oriented Design with Applications. Benjamin Cummings, Red-
wood City, CA, 1991

4. M. Broy: Towards a formal foundation of the specification and description language
SDL. Formal Aspects of Computing 3, 1991, 21-57

5. M. Broy: The Essence of Message Sequence Charts. Keynote Speech. In: Proceed-
ings of the International Symposium on Multimedia Software Engineering, 11-13
December 2000, IEEE Computer Society 2000, 42-47

6. M. Broy, C. Hofmann, I. Krüger, M Schmidt: A Graphical Description Technique
for Communication in Software Architectures. Technische Universität München,
Institut für Informatik, TUM-I9705, Februar 1997
URL: http://www4.informatik.tu-muenchen.de/reports/TUM-I9705, 1997. Also
in: Joint 1997 Asia Pacific Software Engineering Conference and International
Computer Science Conference (APSEC’97/ICSC’97)

7. M. Broy, K. Stølen: Specification and Development of Interactive Systems: FOCUS
Focus on Streams, Interfaces, and Refinement. Springer 2001

8. J.M.H. Cobben, A. Engels, S. Mauw, M.A. Reniers: Formal Semantics of Message
Sequence Charts. Eindhoven University of Technology, Departement of Computing
Science, Technical Report CSR 97/19

9. W. Damm, D. Harel: Breathing Life into Message Sequence Charts. Weismann
Insitute Tech. Report CS98-09, April 1998, revised July 1998, to appear in:
FMOODS’99, IFIP TC6/WG6.1 Third International Conference on, Formal Meth-
ods for Open Object-Based Distributed Systems, Florence, Italy, February 15-18,
1999

10. P. Graubmann, E. Rudolph, J. Grabowski. Towards a Petri Net based semantics
definition for message sequence charts. In O. Faergemand and A. Sarma, editors,
Proceedings of the 6th SDL Forum, SDL’93: Using Objects, October 1993

406 Manfred Broy

11. G. J. Holzmann, D. A. Peled, M. H. Redberg: Design Tools for Requirements
Engineering. Bell Labs Technical Journal, Winter 1997, 86-95

12. I. Jacobsen: Object-Oriented Software Engineering. Addison-Wesley, ACM Press
1992

13. I. Krüger, R. Grosu, P. Scholz, M. Broy: From MSCs to statecharts. In: Proceedings
of DIPES’98, Kluwer, 1999

14. ITU-T (previously CCITT) (March 1993) Criteria for the Use and Applicability of
Formal Description Techniques. Recommendation Z. 120, Message Sequence Chart
(MSC), 35pgs.

15. ITU-T. Recommendation Z.120, Annex B: Algebraic Semantics of Message Se-
quence Charts. ITU-Telecommunication Standardization Sector, Geneva, Switzer-
land, 1995.

16. P.B. Ladkin, S. Leue. Interpreting Message Sequence Charts. Technical Report TR
101, Department of Computing Science, University of Stirling, 1993.

17. P.B. Ladkin, S. Leue. Interpreting Message Flow Graphs. Formal Aspects of Com-
puting, 7(5): 473-509, 1995.

18. S. Mauw, M.A. Reniers. An algebraic semantics of basic message sequence charts.
The Computer Journal, 37(4): 269-277, 1994.

19. B. Selic, G. Gullekson. P.T. Ward: Real-time Objectoriented Modeling. Wiley, New
York 1994

20. J. Rumbaugh: Object-Oriented Modeling and Design. Prentice Hall, Englewood
Cliffs: New Jersey 1991

21. B. Rumpe: Formale Methodik des Entwurfs verteilter objektorientierter Systeme.
Ph.D. Thesis Technische Universität München, Fakultät für Informatik 1996. Pub-
lished by Herbert Utz Verlag

22. Specification and Description Language (SDL), Recommendation Z.100. Technical
report, CCITT, 1988

23. G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modeling Language for Object-
Oriented Development, Version 1.0, RATIONAL Software Cupertino

24. P. Zave, M. Jackson: Four dark corners of requirements engineering. ACM Trans-
actions on Software Engineering and Methodology, January 1997

Formal Software Development in MAYA

Dieter Hutter and Serge Autexier�

German Research Center for Artificial Intelligence,
Stuhlsatzenhausweg 3, D-66123 Saarbruecken, Germany

{autexier,hutter}@dfki.de

Abstract. The formal development of industrial-size software is an error-
prone and therefore an evolutionary process. Verifying formal specifica-
tions usually reveals hidden errors causing the change of parts of the
specification. Also adding new functionality will result in changes of
the specification which always endangers the verification work already
done. In this paper we describe the system Maya which maintains for-
mal developments. The Maya-system supports an evolutionary formal
development since it allows users to specify and verify developments in a
structured manner, incorporates a uniform mechanism for verification in-
the-large to exploit the structure of the specification, and maintains the
verification work already done when changing the specification. Maya
relies on development graphs as a uniform representation of structured
specifications, which enables the use of various (structured) specification
languages to formalize the software development. Moreover, Maya al-
lows the integration of different theorem provers to deal with the actual
proof obligations arising from the specification, i.e. to perform verifica-
tion in-the-small.

1 Introduction

Formal methods are used in the software development process to increase the
security and safety of software. The software systems as well as their requirement
specifications are formalized in a textual manner in some specification language
like Casl [4] or Vse-Sl [7]. The specification languages provide constructs to
structure the textual specifications to ease the reuse of components. Exploiting
this structure, e.g. by identifying shared components in the system specification
and the requirement specification, can result in a drastic reduction of the proof
obligations, and hence of the development time which again reduces the overall
project costs.

Creating the arising proof obligations in a naive way by postulating all parts
of the security requirements as theorems of the system design would result in
umpteen redundant proof obligations relating to common datastructures. Ex-
ploiting the given (graph-) structure of specifications allows one to reveal this
redundancy. In [2] we proposed the use of development graphs to represent de-
fined and postulated properties of formal specifications in a logical way. We
� This work was supported by the German Ministry for Education and Technology

(BMBF).

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 407–432, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

408 Dieter Hutter and Serge Autexier

will introduce a calculus DG to verify postulated properties. The calculus rules
decompose conjectures between specifications into conjectures between parts of
the specification and check whether some of those are already subsumed by the
specification structure. We denote this activity by verification in-the-large. Those
conjectures that can neither be further decomposed nor subsumed give rise to
the proof obligations that must actually be tackled by some theorem prover,
which is denoted by verification in-the-small.

However, the logical formalization of software systems is error-prone. Since
even the verification of small-sized industrial developments requires several per-
son months, specification errors revealed in late verification phases pose an in-
calculable risk for the overall project costs. An evolutionary formal development
approach is absolutely indispensable. In all applications so far development steps
turned out to be flawed and errors had to be corrected. The search for formally
correct software and the corresponding proofs is more like a formal reflection of
partial developments rather than just a way to assure and prove more or less
evident facts. Revealed flaws give rise to changes of the specification and to the
need for an update of all the proof work done before. Loosing this work would be
an incalculable risk of the overall project costs for large verification tasks that
arise in practice. Hence, we introduce a management of change based on the no-
tion of development graphs to incrementally adjust existing proofs to a changed
specification, while preserving as much information about proven conjectures as
possible.

We start with a general overview of how Maya supports the formal devel-
opment of software in Sect. 2. In Sect. 3 we introduce the formal notion of
development graphs that underly the Maya system. Sect. 4 describes the gen-
eral methodology to define translation of an input specification given in some
specification language L into development graph. The methodology is illustrated
by providing the definition of the translation of Casl-specifications into devel-
opment graphs. Sect. 5 is concerned with the computation of differences between
specifications and how to update their logical representation inside the develop-
ment graph. Sect. 6 presents the management of change for both, verification
in-the-large and verification in-the-small, while we discuss its implementation in
Maya and related work in Sects. 7 and 8.

2 General Overview

A user interacts with the Maya-system via a formal specification language. Such
a formal specification gives rise to a logical modeling of the specification and the
proof obligations arising from commitments made inside the specification. Ex-
amples of such commitments are that theories satisfy specific properties specified
inside so-called security models or that basic specifications imply specific prop-
erties, so-called theorems. Translating the textual specification into a structured
logic representation, which we call a development graph, proof obligations are
denoted either as so-called theorem links between theories, indication that both
theories are related to each other wrt. a specific property or as so-called theorems
representing lemmata inside a particular theory. The problem of establishing

Formal Software Development in MAYA 409

properties between theories is dealt with inside the Maya-system utilizing the
overall structure of the graph until we end up with elementary proof obligations
which are tackled by external theorem provers.

The user performs changes of her specification always on the textual repre-
sentation, which gives rise to the problem of tracking the changes in the textual
specification to arising changes in the corresponding logical representation and
last not least also in changes or adaptation of the proofs. Changed textual spec-
ifications are translated into their logical counterpart. The analysis which parts
of the specification have changed is done on the logical level. The result of the
analysis is an operational description of how to adjust the existing development
graph such that it fits the changed specification. The adjustment of the proof
work is based on the operation description incorporating precompiled knowledge
how individual operations will affect the validity of proofs.

3 Development Graphs

In order to define development graphs we start with a short recapitulation of
the basics of logics as they are given, for instance, in [11]. Thereby the notion of
a logic is based on the notions of an institution and an entailment system.

An institution I = (Sign, Sen, Mod, |=) consists of a category of signatures
Sign, two functors Sen and Mod giving respectively the set of valid sentences
Sen(Σ) and the models Mod(Σ) for some signature, and a satisfaction relation
|=Σ⊆ Mod(Σ) × Sen(Σ) for each signature Σ. An entailment system E =
(Sign, Sen,) consists of a category Sign of signatures, a functor Sen:Sign−→
Set giving the set of sentences over a given signature, and entailment relations
	Σ⊆ |Sen(Σ)| × Sen(Σ) with the following properties:

1. Reflexivity: for any ϕ ∈ Sen(Σ), {ϕ} 	Σ ϕ,
2. Monotonicity: if Γ 	Σ ϕ and Γ ′ ⊇ Γ then Γ ′ 	Σ ϕ,
3. Transitivity: if Γ 	Σ ϕi, for i ∈ I, and Γ ∪ {ϕi | i ∈ I} 	Σ ψ, then Γ 	Σ ψ,
4. 	-Translation: if Γ 	Σ ϕ, then for any σ: Σ−→Σ′ in Sign, σ[Γ] 	Σ′ σ(ϕ).

A logic is then defined as a 5-tuple LOG = (Sign, Sen, Mod,	, |=) such
that: (1) (Sign, Sen, Mod, |=) is an institution (denoted by inst(LOG)), (2)
(Sign, Sen,) is an entailment system (denoted by ent(LOG)), and (3) the
following soundness condition is satisfied: for any Σ ∈ |Sign|, Γ ⊆ Sen(Σ) and
ϕ ∈ Sen(Σ), Γ 	Σ ϕ implies Γ |=Σ ϕ. Throughout the rest of the paper, we
will work with an arbitrary but fixed logic LOG = (Sign, Sen, Mod,	, |=).

Structured specifications are represented on a logical basis as development
graphs. The nodes of such a graph represent individual theories. Definition links
are used to specify theory inclusions (with respect to some morphism) between
different theories. The axiomatic specification of a single theory is distributed
to the subgraph of the corresponding node since the definition of the theory of
a node depends on the local axioms attached to the node combined with the
axioms or theories of the nodes imported by definition links.

In order to formulate proof obligations denoting properties between different
theories (verification in-the-large) we introduce so-called theorem links. These

410 Dieter Hutter and Serge Autexier

links are similar in appearance to definition links but do not influence the theories
denoted by the nodes. Formally we define

Definition 1. A development graph S is a directed graph 〈N , Ψ〉, where

– N is a finite set of nodes. Each node N ∈ N is a pair (ΣN
l , ΦN

l) consisting
of a local signature ΣN

l and a set of local axioms ΦN
l ⊂ Sen(ΣN) of N .

– Ψ = ΨD�ΨT is a finite set of directed links between elements of N consisting
of an acyclic1 set ΨD of definition links and a set ΨT of theorem links.
Each link from a node M to a node N in Ψ is either global (denoted M σ N)
or local (denoted M σ N) and is annotated with a signature morphism
σ : ΣM → ΣN .

For all N ∈ N the signature ΣN of N is given by:

ΣN = ΣN
l ∪ {σ(f)|f ∈ ΣM , M σ N ∈ ΨD} ∪ {σ(f)|f ∈ ΣM

l , M σ N ∈ ΨD}

For the implementation, we represent a signature morphism σ by a set of
finite pairs (fin, fout) with σ(f) = g if there is a pair (f, g) ∈ σ and σ(f) = f
otherwise.

The proof theoretical semantics of a development graph is given by the fol-
lowing definition:

Definition 2. Let S = 〈N , Ψ〉 be a development graph and Δ ⊆ Ψ , Δ acyclic.
Let N ∈ N , then the theory ThΔ(N) of N relative to Δ is defined by

ThΔ(N) =

[
ΦN

l ∪
⋃

K
σ

N∈Δ

σ(ThΔ(K)) ∪
⋃

K
σ

N∈Δ

σ(ΦK
l)

]�ΣN

where [Γ]�ΣN denotes the closure of Γ under the entailment relation 	ΣN . The
theory Th(N) of N is defined as ThΨD (N).

Fig. 1 presents a development graph for lists List and stacks Stack over arbi-
trary elements and their respective instantiations to lists NatList and stacks

Fig. 1. Structured Specifications of NatList.

1 A set of links is acyclic iff the graph denoted by these links is acyclic.

Formal Software Development in MAYA 411

NatStack over natural numbers. While we included the local signatures of the
nodes in the figure we have omitted the local axioms because of shortage of
space. The theories of generic lists List and generic stacks Stack are defined
with the help of a theory Elem, indicated by the global definition links from
Elem to List and Stack, and local axioms in List and Stack specifying that
List and Stack are freely generated. The global theorem link between Stack
and List represents the proof obligation, that Stack can be implemented by
List.

The theories of lists and stacks of natural numbers, NatList and NatStack,
are instantiations of generic lists and stacks with natural numbers Nat. Thus,
both NatList and NatStack import Nat via a global definition link and the
local axioms of List and Stack respectively via local definition links. The global
theorem links between List and NatList, and Stack and NatStack denote
the proof obligations that NatList and NatStack are respective instances of
List and Nat. The global theorem link between Elem and Nat denotes the
proof obligation that the actual parameter Nat satisfies the requirements of the
formal parameter Elem. The proof obligation that NatStack can be imple-
mented by NatList is represented by a global theorem link from NatStack to
NatList.

This toy example illustrates how the important concepts from structured
specifications are represented with development graphs. In practice the system
and requirement specifications and hence the resulting development graph are
much larger. A development graph of a typical size is sketched in Fig. 2.

Fig. 2. Example of development graphs for real software engineering problems.

412 Dieter Hutter and Serge Autexier

4 Translating Specifications into Development Graphs

In formal software development, specification languages like Casl [4] or VSE-
SL [7] are used to describe a system and its requirements as well as proof
obligations arising from the requirement that the system must satisfy these re-
quirements. The notion of development graph from Sect. 3 provides a uniform
representation of general structured formal developments. The representation is
independent of any specification language, which eases the use of different speci-
fication languages as input format. To use a specification language L as input for
Maya we must define a mapping from L-specifications into the representation
language of development graphs. Roughly speaking, such a translation of some
L-specification S works as follows:

– it maps basic (unstructured) parts of the specification, like the specification
of simple abstract datatypes, into a collection of (local) axioms within some
theory node,

– it translates the structuring operations of the specification language L into
the notion of definition links, and

– it reformulates proof obligations given in the specification either into theorem
links connecting corresponding theories or into conjectures considered as
lemmata of a specific theory in the development graph.

Obviously, the definition of such a translation entails the requirement to prove
the adequacy of the translation of L-specifications into the notion of development
graphs.

In the following we illustrate the translation of specifications into develop-
ment graphs by giving the rigorous definition of the mapping of Casl-specifica-
tions into development graphs.

4.1 Translation of CASL into Development Graphs

For the translation of CASL into development graphs we restrict ourselves to
a subset of the Casl-language, namely Casl-specifications without the struc-
turing operations hiding and freeness (cf. [4]) and without architectural speci-
fications. We use the CATS-parser [12] to parse the specifications, which also
provides encoding of the logical parts of specifications from the Casl-logic into
different target logics. Since the logic underlying the actual implementation of
development graphs in Maya is many-sorted higher-order logic, we use second-
order logic without subsorting as the target logic. Furthermore, the CATS-parser
performs a static analysis of the specifications.

Basic specifications constitute the nucleus of Casl-specifications. Consisting
of a (local) signature and a set of axioms, basic specifications are translated
into the higher-order logic with the help of the CATS-parser which provides
second-order logic encodings. Structured specifications are used to combine basic
specifications with the help of structuring operations, like for example extension
(then), union (and), or to actualize parameterized specifications.

A Casl-specification itself consists of a list of specification parts which are
either named specifications, named views, or fitting views, which are constructed

Formal Software Development in MAYA 413

with the help of structured specifications. We will describe these constructs in
more details lateron.

To translate a Casl-specification, we define a top-level translation function
τCASL that iterates over the specification parts and that iteratively constructs
the corresponding development graph. The major difficulty of this translation
is the encoding of the so-called linear visibility constraint, which is implicitly
given by the Casl-semantics: the semantics of a specification part depends on its
global environment which depends on previously parsed specification parts. Thus
besides a list of Casl-specifications, τCASL requires the global environment as
an additional argument that provides information about translated specifications
and views before parsing the actual list of Casl-specifications.

τCASL returns the actualized development graph enlarged by nodes and links
corresponding to the parsed specification list and provides the new global en-
vironment. Inside this translation information we accumulate for instance the
information how named specifications or named views have been translated.
Lateron we make use of this information to perform actualizations. Formally, we
define τCASL by recursion as follows:

τCASL(〈〉,S,P) := (S,P)
τCASL(〈spec-part, restlist〉,S,P) := τCASL(restlist,S′,P ′)

with (S′,P ′) := τpart (spec-part,S,P)

τpart is the corresponding translation function for the individual specification
parts. It takes as arguments a structured specification spec-part, a development
graph S, and a translation information P . It provides a pair (S′,P ′) where S′ is
a new development graph that includes the subgraph resulting of the translation
of the structured specifications and P ′ is the updated translation information.

Since Casl specification parts are constructed with the help of structured
specifications, we will introduce a third translation function τ to translate struc-
tured specifications into development graphs. τ takes as argument the specifica-
tion Spec, the development graph S and translation information P . It returns a
triple (I ′,S′, O′) with S′ being the development graph updated with the trans-
lated Spec. The linear visibility constraints for structured Casl-specifications
defines how specification parts are visible when parsing the next specification.
Translating this requirement in terms of development graphs, the development
graphs of previous specifications have to be imported to the graph of the spec-
ification part under consideration. Therefore τ returns also a set I ′ of nodes
denoting the import interface to the global environment and a node O′ which
corresponds to the exported global environment.

4.2 Named Specifications

A named specification in Casl is of the form

spec SN [SP1] . . . [SPn] given SP ′
1, . . . , SP ′

m = SP end

where SN is the name of the specification, SP1, . . . , SPn are the parameter
specifications, SP ′

1, . . . , SP ′
m specifications that are visible inside the parameter

414 Dieter Hutter and Serge Autexier

specifications, and SP is the body of the named specification. For the definition
of the translation, we use the translation function τ for specification bodies.
This function takes three arguments: (1) the Casl-specification body to trans-
late, (2) the actual development graph, (3) the actual translation information.
This function returns a triple 〈I,S, O〉, containing the new development graph
S, the theory nodes I which import the visible environment of the argument
specification body, and the theory node O which exports the new visible envi-
ronment.

In order to satisfy the visibility rules from Casl the translation is done
according to the following steps

1. The union of the “given” specifications SP ′
1, . . . , SP ′

m is translated:

〈I0,S0, O0〉 := τ(SP ′
1 and . . . and SP ′

m,S,P)

2. Parameter specifications SPi are translated for all i, 1 ≤ i ≤ n by:

〈Ii,Si, Oi〉 := τ(SPi,Si−1,P)

and new definition links are inserted to import the output theory node O0

into all elements of all Ii with 1 ≤ i ≤ n: Let Sn be 〈N , ΨD � ΨT 〉 then

Sn+1 := 〈N , (ΨD ∪ {O0
λ N | N ∈ Ii ∧ 1 ≤ i ≤ n}) � ΨT 〉

3. Next, the body SP of the named specification is translated by:

〈In+2,Sn+2, On+2〉 := τ(SP,Sn+1,P)

and new definition links are added to import the parameters O1, . . . , On

into each element N of In+2 obtain by translating the body. Let Sn+2 be
〈N ′, Ψ ′

D � Ψ ′
T 〉 then

〈Iname,Sname, Oname〉 :=
〈I0, 〈N ′, (Ψ ′

D ∪ {Oi
λ N | N ∈ In+2 ∧ 1 ≤ i ≤ n}) � Ψ ′

T 〉, On+2〉

As translation information we store that the Casl-specification of name SN has
the top-level output node Oname, and add the information about the translation
of the parameter specifications (〈Ii, Oi〉) with 1 ≤ i ≤ n as well the output node
O0 of the given part. This is used for the translation of instantiations of SN .

The final result of the translation of the named specification definition is then

τpart (spec SN [SP1] . . . [SPn] given SP ′
1, . . . , SP ′

m = SP end,S,P)
:= 〈Sname,P ∪ [SN, Oname, (〈I1, O1〉, . . . , 〈In, On〉), O0]〉

4.3 Views

A named view in Casl is of the general form

view V N [SP1] . . . [SPn] given SP1, . . . , SPm : SP to SP ′ = SM end. (1)

Formal Software Development in MAYA 415

[SP1] . . . [SPn] given SP1, . . . , SPm : SP represents a specification similar to
the definition of named specifications. The view constitutes the proof obligation
that the models of this specification can be mapped to models of SP ′ using the
signature morphism given by SM .

To translate a named view we translate a dummy named specification

spec SN [SP1] . . . [SPn] given SP1, . . . , SPm = SP

which results as described in the previous paragraph in

〈Sname,P ∪ [SN, Oname, (〈I1, O1〉, . . . , 〈In, On〉), O0]〉.

Next we translate the structured specification SP ′ by

〈I′,S′, O′〉 := τ(SP ′,Sname,P)

and add a global theorem link from Oname to O′ with the morphism SM . The
final result of τpart on (1) consists of this new development graph and the pa-
rameter information for the named view. Let S′ = 〈N ′, Ψ ′

D � Ψ ′
T 〉 then

τpart (view V N . . . end,S,P) :=
〈 〈N ′, Ψ ′

D � (Ψ ′
T ∪ {Oname

SM O′})〉,
P ∪ {[V N, (Oname, O′), (〈I1, O1〉, . . . , 〈〈In, On〉), O0]}〉

4.4 Structured Specifications

We now define τ for basic specifications and each of the structuring operations
in Casl.

Basic Specifications. A basic specification is a pair (Σ, Φ) of a signature Σ and
a set of second-order logic axioms Φ. We create a new node in the development
N with local signature ΣN

l := Σ and local axioms ΦN
l := Φ and add it to

the development graph. The node N is both the node where the actual visible
environment shall be imported into as well as the node that contains the visible
environment “after” parsing the basic specification.

τ((Σ, Φ), 〈N , ΨD � ΨT 〉,P) := 〈{N}, 〈N ∪ {N}, ΨD � ΨT 〉, N〉

Translations. A translation is of the form SP with SM , where SP is a struc-
tured specification and SM a symbol morphism. Let

〈I′,S′, O′〉 := τ(SP,S,P)

with S′ = 〈N ′, Ψ ′
D � Ψ ′

T 〉 and let N be a new node in N ′ with empty local
signature and axioms. We add this new node to the new development graph and
import the top-level node O′ from SP into N via a global definition link with
morphism SM .

τ(SP with SM,S,P) := 〈I′, 〈N ′ ∪ {N}, (Ψ ′
D ∪ {O′SM N}) � Ψ ′

T 〉, N〉

416 Dieter Hutter and Serge Autexier

Extensions. There are two kinds of extensions in Casl, namely SP then SP ′

and SP then %implies SP ′. The first is a regular extension of SP by SP ′,
while the second denotes a conservative extension, i.e. it is in fact a conjecture
that all axioms in SP ′ are theorems in the theory of SP .

– Regular Extensions are translated as follows. Let

〈I ′,S′, O′〉 := τ(SP,S,P)
〈I ′′, 〈N ′′, Ψ ′′

D � Ψ ′′
T 〉, O′′〉 := τ(SP ′,S′,P)

then

τ(SP then SP ′,S,P) := 〈I′, 〈N ′′, (Ψ ′′
D ∪ {O′ λ I ′′ | I ′′ ∈ I′′}) � Ψ ′′

T 〉, O′′〉

– Conservative Extensions: The Casl-semantics requires from a conservative
extension SP then %implies SP ′ that SP ′ is a basic specification without
local signature. Thus, let

〈I, 〈N ′, Ψ ′
D � Ψ ′

T 〉, O〉 := τ(SP, 〈N , ΨD � ΨT 〉,P) and
〈{N}, 〈N ′ ∪ {N}, Ψ ′

D � Ψ ′
T 〉, N〉 := τ(SP ′, 〈N ′, Ψ ′

D � Ψ ′
T 〉,P)

Then the translation of this conservative extension consists of adding the
local axioms of N as local lemmata to O and returning 〈N ′, Ψ ′

D � Ψ ′
T 〉.

τ(SP then %implies SP ′, 〈N , ΨD � ΨT 〉,P) := 〈I, 〈N ′, Ψ ′
D � Ψ ′

T 〉, O〉

where O is the updated O.

Union. A union of specifications in Casl is of the form SP and SP ′. Let

〈I, 〈N ′, Ψ ′
D � Ψ ′

T 〉, O〉 := τ(SP, 〈N , ΨD � ΨT 〉,P) and
〈I′, 〈N ′′, Ψ ′′

D � Ψ ′′
T 〉, O′〉 := τ(SP ′, 〈N ′, Ψ ′

D � Ψ ′
T 〉,P)

In order to represent the union of the specifications, we add a new empty theory
node N to N ′′ and import both O and O′ into N via global definition links.

τ(SP and SP ′, 〈N , ΨD � ΨT 〉,P) :=
〈I ∪ I′, 〈N ′′ ∪ {N}, (Ψ ′′

D ∪ {O λ N, O′ λ N}) � Ψ ′′
T 〉, N〉

The theory nodes to import the global environment is the union of both I and
I ′, while the visible environment “after” the union is the global signature of the
new node N .

Closed Specifications. They are of the form closed{SP}. The semantics is
that the global environment is not visible inside SP , but shall still be visible
“after” closed{SP} together with the environment generated from SP . Thus,
the translation of the closed specification consists in creating a new empty node
N , import the environment from SP into N via a global definition link, and
returning N has both the import and output node for the global environment.
Thus, if 〈I, 〈N ′, Ψ ′

D � Ψ ′
T 〉, O〉 := τ(SP, 〈N , ΨD � ΨT 〉,P), then

τ(closed{SP}, 〈N , ΨD � ΨT 〉,P) := 〈N, 〈N ′ ∪ {N}, (Ψ ′
D ∪ {O λ N}) � Ψ ′

T 〉, N〉

Formal Software Development in MAYA 417

Actualization. An actualization in Casl is of the general form

SN [SP1 fit SM1] . . . [SPn fit SMn].

Its semantics is that, the formal parameter of the formerly declared named spec-
ification SN are instantiated with the SPi and the “given”-specifications of
SN is imported into the actual parameters SPi. This is only sound if the ac-
tual parameter fit the formal parameter theories modulo the morphisms SMi.
A parameter information for SN is [SN, O, (〈I′1, O′

1〉, . . . , 〈I ′n, O′
n〉), OI], where

O is the top-level theory for SN , 〈I′i, O′
i〉 the information about input and out-

put theories of the parameter theories, and OI the top-level theory node that is
imported into the parameters. Given this parameter information for the named
specification SN, let

〈N0, Ψ0
D � Ψ0

T 〉 := 〈N , ΨD � ΨT 〉
τ(SPi, 〈Ni−1, Ψ i−1

D � Ψ i−1
T 〉,P) := 〈Ii, 〈Ni, Ψ i

D � Ψ i
T 〉, Oi〉

for all 1 ≤ i ≤ n

Then we import the “given” environment theory OI into each theory in Ii, for
all 1 ≤ i ≤ n:

〈Nn, (Ψn
D ∪ {OI

λ I | I ∈
n⋃

i=1

Ii}) � Ψn
T 〉

We further encode the soundness condition required by fit by introducing global
theorem links from each O′

i to Oi with morphism SMi:

〈Nn, (Ψn
D ∪ {OI

λ I | I ∈
n⋃

i=1

Ii}) � (Ψn
T ∪ {O′

i
SMiOi | 1 ≤ i ≤ n})〉

Finally, we create the node NI to encode the instantiated theory: This node
imports globally the top-level node N for SN , as well as the top-level nodes Oi

of the actual parameter theories.

〈Nn∪{NI}, (Ψn
D ∪ {OI

λ I | I ∈
⋃n

i=1 Ii} ∪ {NSM NI , O1
λ NI , ..., On

λ NI})
�(Ψn

T ∪ {O′
i
SMiOi | 1 ≤ i ≤ n})

〉

where SM :=
⋃n

i=1 SMi.
This completes the definition of the translation of structured specification.

4.5 Fitting Views

A fitting view is of the form V N [SP1] . . . [SPn], where V N is the name of a
view. The translation of this fitting view is analogously to the translation of an
actualization of a named specification, except that an additional global theorem
link from the actualized theory to the top-level theory node obtained for the
target SP of the view SN is inserted.

418 Dieter Hutter and Serge Autexier

5 Difference Analysis and Basic Operations

Due to its evolutionary nature, (formal) software development can be seen as a
chain of specifications Spec1, Spec2, . . . which corresponds to a chain of devel-
opment graphs DG1, DG2, . . . such that DGi is the logical representation of the
specification Speci. Working on the verification side we try to verify the various
proof obligations within a particular development graph, say DGi. Changing the
specification to Speci+1 and compiling it into its logical representation DGi+1,
we loose all information about previous proof work, which is stored in DGi, at
first. Hence, the idea is to incrementally adjust DGi and its annotated proofs
until the resulting development graph DGi+1 denotes a logical representation of
Speci+1. Two problems have to be solved to implement this approach:

First, we need a set of operations which allow us to modify development
graphs in such a way that as much proof work as possible can be reused from
the previous development graph. We call these operations, that manipulate in-
dividual links, theories or axioms, basic operations.

Second, we have to compute the differences between two specifications Speci

and Speci+1 and translate these differences into a sequence of basic operations
to be performed on the development graph DGi in order to obtain DGi+1.

5.1 Basic Operations

To allow for a reuse of proof work, basic operations have to be as granular as
possible. Since development graphs consists of nodes and links, basic operations
allow one to modify single nodes or links. In principle each of these individual
objects can be inserted, deleted or modified. As nodes are composed of a local
signature and local axioms, the modification of nodes is done by insertion, dele-
tion or modification of signature entries or local axioms. Formally the set of basic
operations consists of the following functions that take, between others, a devel-
opment graph S = 〈N , ΨD � ΨT 〉 as argument and return a new development
graph S′:

Nodes: insnode(N,S) inserts a new (isolated) node N to N , and delnode(N,S)
removes a node N from N and deletes also all links in ΨD and ΨT connected
to N .

Links: ins(N, M, σ, T ype,S) inserts a link to Ψ as a global/local definition/the-
orem link depending on the value of T ype. del(L,S) removes the link L from
ΨD � ΨT , and ch(L, σ,S) replaces the morphism of the link L by σ.2

Local Signature: inssig(f, N,S) inserts the symbol f into the local signature
of N , where f can be either a sort, a constant, or a function. delsig(f, N,S)
removes the symbol f from the local signature of N .

Local Axioms: insax(N, Ax,S) inserts the local axiom Ax into the node N ,
delax(f, N,S) deletes the local axiom Ax from the node N . chax(N, Ax, Ax′,
S) replaces the local axiom Ax by the new local axiom Ax′ in the node N .

2 There are no operations to change the source or target node of a link. In this case
the old link must be deleted and a new link is inserted.

Formal Software Development in MAYA 419

For each basic operation the manner how it affects the development graph
is known. This knowledge is exploited by the proof transformation techniques,
that adapt the proofs of old global proof obligations to the new global proof
obligations. We will describe these techniques in the Sect. 6.

Starting with a legal development graph, the application of basic operations
may result in inconsistent intermediate states. A typical example is the insertion
of a new function symbol into the source node of a link. Then in general, the
morphism attached to the link has to be adjusted to cope with the new symbol.
Therefore we allow for intermediate inconsistent states of the development graph
and delay the update of the proof work until we reach a consistent state which
is indicated by calling a special update-function initiating a consistency check
and a propagation of the proof work done so far.

5.2 Computing Differences

When computing differences between specifications, the question arises how to
define the granularity up to which differences are determined between the old
and the new development graph. Note that along a scale of granularity levels
for difference analysis the worst granularity level is the one only stating that the
whole global proof obligation changed, in which case the proof transformation
consists of redoing the whole proof, whereby any information about established
conjectures are lost.

The overall aim is to enable the preservation of as many validated conjectures
during the transformation of the old proof to the new development graph. The
recorded information establishing the validity of a conjecture consists of proofs
for those conjectures. However, not every theorem prover returns a proof object.
In that case, we must assume that any axiom available at prove time might have
been used during the proof. Thus, the information about a proof contains at
least a set of axioms. If any of those is deleted or changed, the proof gets invalid.
The implication is that we have to determine the difference between the old and
new development graph at least on the level of axioms.

The axioms are build from the available signature symbols, like sorts, con-
stants and functions. In order to maintain a sound development graph, we must
also be able to determine the differences between signatures. As presented in
Sect. 3, the signature of some node is defined from the local signature defined
on that node and the signatures of the nodes imported via definition links, after
application of the morphism attached to those links.

To determine the differences of signatures and axioms between two devel-
opment graphs requires first to define an equivalence relation between graphs
that identifies nodes and links. This problem has no optimal solution and hence
we rely on some heuristics checking their equivalence. In principle two nodes are
equivalent if their local signature and axioms are equal as well as their respective
incoming definition links. However, this equivalence relation is to strict for our
purpose, since if we added or deleted an axiom to some node, its old and new ver-
sion are not identified. Thus, instead of performing an equality check, we perform
a similarity check on nodes, that is based on the number of shared local signature

420 Dieter Hutter and Serge Autexier

symbols as well as the similarity of the incoming definition links. Applying that
similarity check results in an equivalence relation associating nodes and links of
the old to nodes and links in the new development graph.

The equivalence relation is the basis to determine the differences between
both graphs. From it we determine (1) which nodes have been deleted or added,
(2) which local signature symbols and axioms have been deleted or added to
some node, and (3) how the morphisms of links have changed.

5.3 Heuristic Determination of Similarities

In this Section we describe the heuristic implemented in Maya which is used
to compute the similarities between two versions of development graphs. The
conducted experiments showed that it is sufficiently reliable for our needs. The
similarity is expressed by a mapping among theory nodes and links. Formally,
given two development graphs 〈N , ΨD � ΨT 〉 and 〈N ′, Ψ ′

D � Ψ ′
T 〉, the mapping

is a triple (�→N , �→D, �→T), such that �→N : N ↪→ N ′, �→D: ΨD ↪→ Ψ ′
D, and

�→T : ΨT ↪→ Ψ ′
T are partial functions.

The heuristic to construct such a mapping works as follows. We start with
partial functions �→N , �→D, and �→T that have an empty domain. Then, for each
node N inN we determine the “most similar node” inN ′ that is not in the image
of �→N . If there is such a node N ′, we extend �→N by setting �→N (N) := N ′;
otherwise N has no similar theory in N ′. Finally, for each link in ΨD (resp. ΨT)
we determine the “most similar link” in Ψ ′

D (resp. Ψ ′
T), and extend �→D (resp.

�→T) accordingly, if such a link exists.
The whole heuristic is based on the notion of similarities of two nodes and

links. These two notions are defined by mutually recursion and make use of
already established mappings between old and new theory nodes and links.
The similarity of nodes and links is some value from [0..1] and is denoted by
Similarity(N, N ′) for nodes and Similarity(l, l′) for links. The values are esti-
mated as follows:

– Similarity of Nodes. Let N ∈ N and N ′ ∈ N ′ be two nodes and (�→N , �→D,
�→T) the actual mapping.
• If �→N (N) = N ′, then Similarity(N, N ′) := 1.
• If both N and N ′ have a defined name, like for example if they are both

the top-level theory nodes obtained for some named Casl-specification,
then if those names are equal, then Similarity(N, N ′) := 1, otherwise
Similarity(N, N ′) := 0.

• If none of them has a defined name, then we take the average of on the
one hand the similarity between the local sorts in ΣN

l and ΣN ′
l , and

on the other hand the similarity between the sets of incoming definition
links into N and those for N ′.

• Otherwise, Similarity(N, N ′) := 0.
– Similarity of Links. We illustrate the computation for definition links, i.e.

links from ΨD and Ψ ′
D. The computation is analogously for theorem links.

Let l ∈ ΨD and l′ ∈ Ψ ′
D be two definition links and (�→N , �→D, �→T) the

actual mapping.

Formal Software Development in MAYA 421

• If one is a global link while the other is not, then Similarity(l, l′) := 0.
• Otherwise, if they have the same morphism, then we set the similarities

of the two links to be the average of the similarity between the source
nodes and the similarity of the target nodes.

• If they don’t have the same morphism, then the similarity is 0.

6 Maintaining Proof Work

The development graph represents a justification-based truth maintenance sys-
tem for structured specifications. Based on underlying theorem provers it pro-
vides justifications for proof obligations (encoded as theorem links) and is able
to remember and adjust derivations which were computed previously. There are
two different types of justifications corresponding to the verification in-the-large
and to the verification in-the-small which both have to be updated each time the
graph is changed. In the following we describe this propagation of proof work
for the verification in-the-large and the verification in-the-small separately.

6.1 The DG-Calculus

The theory of a node N depends on theories of all nodes connected to N via
(global) definition links. Local definition links hide the theories of underlying
subnodes. The next definition specifies possible paths to include the theory or
the local axioms of the source node to the theory of the target node.

Definition 3. Let Ψ be a set of links.

– Ψ contains a global path N1 Ψ
σ Nk from N1 to Nk via a morphism σ if

there is either a sequence of links N1
σ1 N2, N2

σ1 N3 . . . Nk−1,
σk−1

Nk in Ψ
with σ = σ1 ◦ . . . ◦ σk−1 or N1 = Nk and σ is the identity function.

– Ψ contains a local path N1 Ψ
σ Nk from N1 to Nk via a morphism σ

if there is a sequence of links N1
σ1 N2, N2

σ1 N3 . . . Nk−1,
σk−1

Nk in Ψ with
σ = σ1 ◦ . . . ◦ σk−1.

Given a development graph 〈N , ΨD � ΨT 〉, the definition links ΨD are used
to specify the semantics, i.e. theory, of the individual nodes. ΨT constitutes the
proof obligations inside the graph. In the following we define when a development
graph satisfies these proof obligations:

Definition 4. Let S = 〈N , Ψ〉 be a development graph and Δ ⊆ Ψ be acyclic. Δ
satisfies a link M σ N ∈ Ψ (or M σ N ∈ Ψ resp.) iff σ(ThΔ(M)) ⊆ ThΔ(N)
(or σ(ΦM

l) ⊆ ThΔ(N) resp.). Δ satisfies a set Γ of links if it satisfies all
elements in Γ .

A development graph S = 〈N , ΨD � ΨT 〉 is verified iff ΨD satisfies ΨT .

A global definition link includes the theory of the source node into the theory
of the target node while a local definition link includes only the local axioms of
the source node. Due to the 	-translation property of the underlying entailment
relation, any global definition link starting at the target node of such a link will

422 Dieter Hutter and Serge Autexier

export this imported theory or axioms in turn to other theories. Theorem links
which are satisfied by the definition links can be treated in the same manner as
definition links:

Lemma 1. Let S = 〈N , ΨD � ΨT 〉 be a development graph and let ΨD satisfy a
set of links Δ. Then the following holds:

1. N ΨD�Δ
σ M implies σ(Th(N)) ⊂ Th(M) and

2. N ΨD�Δ
σ M implies σ(ΦN

l) ⊂ Th(M)

Proof. We sketch the proof for global paths which is done by induction on the
length of the path:

Base Case: If the path is empty, then σ is the identity and N = M . Thus
σ(Th(N)) ⊂ Th(M) holds trivially.
Step Case: As an induction hypothesis we assume that if N ΨD�Δ

σ′
K then

σ′(Th(N)) ⊂ Th(K). Let K σ′′
M ∈ ΨD �Δ. Thus, σ′′(Th(K)) ⊂ Th(M) (Def. 2

or Def. 4 resp.) and therefore σ′′(σ′(Th(N))) ⊂ Th(M). ��

In order to verify a development graph we introduce a calculus DG operating
on links to perform a so-called verification in-the-large and providing a local
decomposition rule to establish elementary relations between theories by usual
theorem proving, which we call verification in-the-small.

Definition 5 (Calculus DG). The calculus DG is a sequent-style calculus. Se-
quents are of the form Γ 	 Δ, where Γ, Δ are sets of links. A sequent Γ 	 Δ
holds iff Γ satisfies Δ. The sequent calculus rules of DG are:

Axiom (AX):
Γ 	 ∅

Global Decomposition (GD):

Γ 	 N σ M,
⋃

K
ρ

N∈Γ

{Kσ◦ρ
M},

⋃
K

ρ
N∈Γ

{Kσ◦ρ
M}, Δ

Γ 	 N σ M, Δ

Local Decomposition (LD):

Γ 	 Δ

Γ 	 N σ M, Δ
if for all φ ∈ ΦN

l : σ(φ) ∈ ThΓ (M)

Global subsumption (GS): Local subsumption (LS):
Γ 	 Δ

Γ 	 N σ M, Δ
if N Γ∪Δ

σ M
Γ 	 Δ

Γ 	 N σ M, Δ
if N Γ∪Δ

σ M

Theorem 1. Let S = 〈N , ΨD�ΨT 〉 be a development graph and Δ ⊆ ΨT . Then,
ΨD 	 Δ is derivable in the deduction system DG iff ΨD satisfies Δ.

Proof (of Theorem 1).

Soundness: We induce on the length n of the deduction:

Formal Software Development in MAYA 423

Base Case: let n = 1. Thus, Δ = ∅ and S satisfies Δ trivially.
Step Case: let n > 1 and ΨD 	 Δ′ be the immediate predecessor of ΨD 	 Δ. As
induction hypothesis we assume that S satisfies Δ′. We do a case split according
to the applicable rules:

GD: Hence N σ M ∈ Δ′, K
σ◦ρ

M ∈ Δ′ for all K
ρ

N ∈ ΨD and K
σ◦ρ

M ∈ Δ′

for all K
ρ

N ∈ ΨD. Since S satisfies Δ′, we know that σ(ΦN
l) ⊆ Th(M),

σ(ρ(Th(K))) ⊆ Th(M) for all K
ρ

N ∈ ΨD and σ(ρ(ΦK
l)) ⊆ Th(M) for

all K
ρ

N ∈ ΨD . Thus, from the 	-translation property of the underlying
entailment relation we get[

σ(ΦN
l)∪

⋃
K

ρ
N∈ΨD

σ(ρ(T h(K)))∪
⋃

K
ρ

N∈ΨD
σ(ρ(ΦK

l))
]�

ΣN ⊆ Th(M).

Hence, σ(
[
ΦN

l ∪
⋃

K
ρ

N∈ΨD
ρ(T h(K))∪

⋃
K

ρ
N∈ΨD

ρ(ΦK
l)
]�

ΣM) ⊆ Th(M)
holds due to the 	-translation property, i.e. σ(Th(N)) ⊆ Th(M) and thus
ΨD satisfies N σ M .

LD: σ(φ) ∈ Th(M) for all φ ∈ ΦN
l implies that ΨD satisfies N σ M and thus S

satisfies Δ.
GS: Since N ΨD∪Δ′σ M holds and S satisfies Δ′ we know that σ(Th(N)) ⊂

Th(M) holds, i.e. S satisfies N σ M .
LS: Since N Ψ∪Δ′σ M and S satisfies Δ′ we know that σ(ΦN

l) ⊂ Th(M)
holds, i.e. S satisfies N σ M .

Completeness: Suppose, ΨD satisfies Δ. Since the development graph S =
〈N , ΨD �ΨT 〉 is acyclic with respect to ΨD we define the depth of a node N ∈ N
as the length of the longest path of links in ΨD from some leaf node in N to N .
We induce on the multiset depths(Δ) of depths of the source nodes in Δ.

Base Case: If depths(Δ) = ∅ then Δ = ∅ and ΨD 	 ∅ holds by rule AX.
Induction Step: Let depths(Δ) �= ∅. As an induction hypothesis suppose the
conjecture holds for all Δ′ which are smaller than Δ with respect to the multiset-
ordering on depths.

– Let N σ M ∈ Δ with depth(N) = max(depths(Δ)). Since ΨD satisfies Δ−
{N σ M}, applying the induction hypothesis yields Ψ 	 Δ− {N σ M}. As
ΨD satisfies N σ M , we know that σ(ΦN

l) ⊂ Th(M) holds and apply rule
LD to deduce finally ΨD 	 Δ.

– Let N σ M ∈ Δ with depth(N) = max(depths(Δ)). For all links K
ρ

N ∈
ΨD σ(ρ(Th(K))) ⊂ Th(M) holds. Analogously for all links K

ρ
N ∈ ΨD

holds σ(ρ(ΦK
l)) ⊂ Th(M). Thus, S satisfies both

⋃
K

ρ
N∈ΨD

{Kσ◦ρ
M} and⋃

K
ρ

N∈ΨD
{Kσ◦ρ

M}. Applying the induction hypothesis yields ΨD 	 (Δ−
{N σ M})∪

⋃
K

ρ
N∈ΨD

{Kσ◦ρ
M}∪

⋃
K

ρ
N∈ΨD

{Kσ◦ρ
M}. Since S satisfies

also N σ M we use the argumentation of the first case to deduce ΨD 	
(Δ−{N σ M})∪{N σ M}∪

⋃
K

ρ
N∈ΨD

{Kσ◦ρ
M}∪

⋃
K

ρ
N∈ΨD

{Kσ◦ρ
M}

and apply rule GD to derive ΨD 	 Δ. ��

The DG-calculus is based on an oracle to check if σ(φ) ∈ ThΨD(M) holds. In
general ThΨD(M) is an infinite set of formulas and we need a finite axiomatiza-

424 Dieter Hutter and Serge Autexier

tion for it. It is well-known that structured specifications excluding hiding3 are
flatable. The following lemma describes the finite axiomatization of the theory
of a node:

Lemma 2. Let S = 〈N , Ψ〉 be a development graph and let the axiomatization
of some node N ∈ N relative to some Δ ⊆ Ψ , Δ acyclic, be defined by

ΦN
Δ = ΦN

l ∪
⋃

K
σ

N∈Δ

σ(ΦK
Δ) ∪

⋃
K

σ
N∈Δ

σ(ΦK
l)

Then, ThΔ(N) =
[
ΦN

Δ

]�ΣN holds for all N ∈ N .

Proof. Directly from Def. 2 and the 	-translation property of the underlying
entailment relation. ��

To verify the proof obligations on local theorem links, which we call verifica-
tion in-the-small, we make use of standard theorem provers like Isabelle [17]
or Inka 5.0 [1]. The reader is referred to [3] for a description how development
graph and theorem provers are technically connected.

6.2 Verification In-the-large

Verification in-the-large is concerned with the reduction of the overall problem
of verifying an development graph S to the problem of proving as few as pos-
sible proof obligations denoted by local theorem links. Verification-in-the-large
is done with the help of the DG-calculus. Obviously, applying global and local
subsumption rules as often as possible will reduce the number of arising proof
obligations in-the-small. To support the maintenance of the proofs in-the-large,
MAYA provides explicit proof objects for the DG-calculus. Theorem links are
annotated with explicit proof objects, which are instances of the DG-calculus
rules. Each DG-calculus rule reduces the proof of a theorem link to the problem
of proving a set of other theorem links. Thus, the proof object of a theorem link
is distributed through the development graph and only the first inference step,
the so-called local proof object, is stored at the theorem link while the remaining
part always coincides with proof objects of other theorem links.

Definition 6. Let ψ = N σ M then

– prψ := GD(ψ0, 〈ψ′
1, . . . , ψ′

n〉, 〈ψ′′
1 , . . . , ψ′′

m〉) is a local proof object. prψ

is locally valid iff ψ0 = N σ M , {ψ′
1, . . . , ψ′

n} =
⋃

K
ρ

N∈Γ

{Kσ◦ρ
M} and

{ψ′′
1 , . . . , ψ′′

m} =
⋃

K
ρ

N∈Γ

{ψσ◦ρ
M}

– prψ := GS(ψ1, . . . , ψn) is a local proof object. prψ is locally valid iff ψ1, ..., ψn

constitutes a relation N σ M .

3 See [14] for an extension of development graphs by hiding which translates proof
obligations in theories based on hiding to proof obligations in theories without hiding.

Formal Software Development in MAYA 425

Let ψ = N σ M then
– prψ := LS(ψ1, . . . , ψn) is a local proof object. prψ is locally valid iff ψ1, ..., ψn

constitutes a relation N σ M .
– prψ := LD(σ, (Ax1, Φ1), . . . , (Axk, Φk)) is a proof object where each Φi is ei-

ther an atom NoProof, ProofExists or a set of triples (τ, K, Ω) with Ω ⊂ ΦK
l .

prψ is locally valid iff for all (Axi, Φi) with 1 ≤ i ≤ n, (
⋃

(τ,K,Ω)∈Φi
τ(Ω)) 	

σ(Axi) and for all triple (τ, K, Ω) ∈ Φi K τ M holds.

Ψ(prψ) is defined as the set of all links occurring in the proof object prψ of ψ.
Ψ∗(prψ) denotes the transitive closure of Ψ(prψ) and is defined by Ψ∗(prψ) =
Ψ(prψ) ∪

⋃
ψ′∈Ψ(prψ) Ψ∗(prψ′).

Lemma 3. Let S = 〈N , ΨD � ΨT 〉 be a development graph. If there are locally
valid proof objects prψ with ψ �∈ Ψ∗(prψ) for all ψ ∈ ΨT then ΨD satisfies ΨT .

Proof. Since ψ �∈ Ψ∗(prψ) holds for all ψ ∈ ΨT there is a partial ordering < on
ΨT with ψ′ < ψ iff ψ′ ∈ Ψ∗(prψ). We can extend such a partial ordering to a
total ordering � on ΦT . It is an easy inductive argument that we can construct
a DG-calculus proof in the following way: we start with the problem of proving
ΨD 	 ΨT and apply the proof rule attached to the maximal element of ΨT wrt.�.
Since the proof object is locally valid the rule is applicable and we have reduced
the problem to a problem of proving ΨD 	 ΨT \ {ψ}. Iterating this approach by
choosing always the maximal element of the set of remaining theorem links we
end up in the trivial case of proving ΨD 	 ∅.

Verification in-the-large is concerned with the problem of creating and main-
taining local proof objects of the types GD, GS and LS such that each of these
local proof objects is locally valid and such that the proof object of a link ψ
does not depend on itself, i.e. ψ �∈ Ψ∗(prψ). The problem of maintaining LD-
proof objects is discussed in section 6.3. We call a development graph verified
in-the-large if and only if all GD, GS, LS-proof objects are locally valid and do
not contain cycles (i.e. ψ �∈ Ψ∗(prψ)).

Starting with an empty development, which is trivially verified, the graph is
manipulated by using basic operations like for instance the insertion, deletion,
or change of links or axioms. After a sequence of basic operations (updating the
development graph according to the change of specification made by the user)
the proof objects are adapted to the needs of the actual graph. Hence, each
subsequent development graph is verified reusing the old proof objects annotated
in the former development graph.

To describe the update-process, assume now that we manipulated a verified
development graph with the help of a sequence of basic operations. To establish
the validity of the resulting development graph we perform the following steps:

Checking GD-Proof Objects: In the first phase, existing GD-proof objects are
updated to be locally valid proof objects. Starting at the top-level theories (like
List in our example), we traverse the graph according to the depth of the the-
ories. Reasons for an invalidated GD-proof object prψ = GD(ψ0, 〈ψ′

1, . . . , ψ′
n〉,

〈ψ′′
1 , . . . , ψ′′

m〉) are the change of the morphism of some link or the insertion or

426 Dieter Hutter and Serge Autexier

deletion of definition links targeting at the source of the theorem link. In the first
case we replace an inappropriate link by a link with an appropriate morphism.
Either such a link already exists (e.g. as a definition link) or it is created and
added to ΨT while it inherits the (invalid) proof object of the replaced link (this
proof object will be fixed in the ongoing procedure). In case of insertion or re-
moval of definition links, both link lists 〈ψ′

1, . . . , ψ′
n〉 and 〈ψ′′

1 , . . . , ψ′′
m〉 in prψ are

updated accordingly. This, again, might result in the creation of new theorem
links, which are again added to ΨT , or the deletion of theorem links from ΨT if
they have been once created using the GD-rule and are of no use anymore (i.e.
they do not occur in any proof object anymore).

Checking GS- and LS-Proof Objects: In the second phase, proof objects con-
cerned with subsumption rules are checked for validity. For each of these proof
objects prψ = GS(ψ1, . . . , ψn) we prove whether all links ψi do still exist and
whether the morphism of the denoted path still coincides with the morphism
of the theorem link ψ. If any of these conditions fails then the proof object is
removed; otherwise the proof object prψ is still locally valid.

Establish New Proof Object: In the third phase local proof objects are generated
for theorem links which do not possess any proof object. Either these links have
been newly created or their proof objects have been removed in an earlier stage
of the procedure. Given a theorem link ψ, firstly we search for an application
of the GS- or LS-rule. Thus, we search for a path starting at the source of ψ
and ending at the target of ψ which coincides with ψ also in its morphism. In
order to obtain an acyclic proof object, each link ψ′ in the path has to satisfy
the property ψ �∈ Ψ∗(prψ′). In practice we restrict this search for a path inside
a graph in the following way: First, we do not search for paths in which a
node is visited twice (although in general, running through a circle may result
in a different overall morphism of the path). Second, proving a theorem link
K

σ◦ρ
M which was created while verifying a theorem link N σ M in presence of

a definition link K
ρ

N , we do not consider paths starting with this definition
link. If we would find such a path then we could strip off the definition link to
obtain a path for N σ M (but this was already checked during the verification
of this link!). If we cannot find a suitable path to establish a GS- or LS-proof
object, a GD-proof object for ψ is generated. This may cause the generation of
new theorem links to be added to ΨT if no suitable links are already available in
the graph.

To illustrate our approach, consider our example in Fig. 3. As we have started
with the empty development graph there are no GD, GS or LS-proof objects to
be updated and we continue with phase three:

Descending the graph according to the depth of the theories, we first es-
tablish a new proof object for the global theorem link from List to NatList.
The GS-rule is not applicable since there is no corresponding global path from
List to NatList. Hence, the GD-rule is applied which results in a proof ob-
ject GD(ψ0, 〈ψelem〉, 〈〉). ψ0 is the local definition link from List to NatList
while ψelem is a newly generated theorem link from Elem to NatList (corre-
sponding to the import of Elem in List). Similarly, we obtain a local proof

Formal Software Development in MAYA 427

Fig. 3. Management of change for NatList.

object GD(ψ′
0, 〈ψ′

nat〉, 〈ψ′
stack〉) for the global theorem link ψ′ from NatStack

to NatList. ψ′
0 is a newly generated local theorem link parallel to ψ′, ψ′

nat is the
global definition link from Nat to NatList. ψ′

stack is a newly generated local
theorem link from Stack to NatList. Using the LS-rule ψ′

stack is proven by the
path of (global) theorem links from Stack over List to NatList. Since Nat-
Stack has no local axioms, ψ′

nat is trivially proven using the LD-rule. Applying
the GD-rule to the global theorem link from Stack to NatStack introduces a
global theorem link from Elem to NatStack which is proven using the GS-rule
by the path of global links from Elem over Nat to NatStack. At the end we
are left with open proofs for the local theorem links from Stack to List and
from Elem to Nat which are tackled by the verification in-the-small.

Suppose now, we change the graph structure by the insertion of a new the-
ory Rel introducing a new symbol R and imported by Elem. Therefore all
morphisms of the links from Elem, List and Stack to Nat, NatList and
NatStack will be changed in order to incorporate an appropriate mapping
of R. In the first phase of the revision process the GD-proof objects of the cor-
responding global theorem links are adjusted to incorporate the mapping of R.
Additionally, the proof object of the global theorem link from Elem to Nat is
changed to GD(ψ′

0, 〈ψREL〉, 〈〉) where ψREL denotes a global theorem link from
Rel to Nat (corresponding to the new definition link from Rel to Elem). In
the second phase nothing has to be done since all GS- and LS-proof objects
are still valid although the mapping have changed. In the third phase the new
theorem link ψREL is proven with the help of the GD-rule which introduces a
local theorem link from Rel to Nat denoting the proof obligations arising from
the local axioms in Rel to be proven in Nat.

6.3 Verification In-the-small

Applying the local decomposition (LD-)rule gives rise to proof obligations that
each local axiom of the source node mapped by the attached morphism of the
link is a theorem of the target theory. To tackle these proof obligations, the
system has to compute the axiomatization of the theory (ref. lemma 2) and to
apply the morphism of the theorem link to the axioms of the source theory.
Since the computation of the axiomatization is expensive the system caches the
computed axiomatization of the target node. The axiomatization is annotated by

428 Dieter Hutter and Serge Autexier

the information about the origin, applied morphisms and used paths of mapped
axioms. Once the axiomatization of a different node is needed to tackle another
proof obligation, the path information attached to the cached axiomatization is
used to incrementally compute the axiomatization of the new node by comparing
the needs with the annotated information. Thus, we obtain a set of axioms to
be removed from the cached axiomatization and a set of axioms to be inserted
to the cached axiomatization to obtain the axiomatization of the new node.

Suppose ψ = N σ M is a local theorem link with an attached local proof
object LD(σ, (Ax1, Φ1), . . . , (Axk, Φk)). Each axiom Axi of N is related to the
proof description Φi. Φi is either an atom NoProof indicating that this proof
obligation has not been proven yet, or an atom ProofExists indicating that
some theorem prover has proven the problem but did not return an explicit proof
object or at least the set of used axiom, or the set of axioms used to prove σ(Axi)
inside the theory of M . In this case Φi breaks down the used axioms according
to their origins and the morphism with the help of which they are imported to
the target theory.

Changing either the axioms of N , the morphism σ or the subgraph of M may
render the proof object prψ invalid. In the following we discuss the repair of the
proof object prψ for these three cases:
Change in N : The change of source axioms results in corresponding changes
of the proof obligations. Insertion of a new axiom Axk+1 will result in a new
entry (Axk+1, NoProof), where NoProof indicates that σ(Axk+1) is still to be
proven by some theorem prover. Deletion of some Axi will result in the removal
of the corresponding pair (Axi, Φi). Change of a source axiom Axi to Ax′

i causes
an invalidation of Φi. If the system provides explicit proof objects (instead of
the set of used axioms) the system supports the theorem prover by additionally
providing Axi and the old proof for σ(Axi) when proving σ(Ax′

i) to allow for a
reuse of the old proof.
Change in Morphism σ: Changing the morphism σ attached to the theorem
link to σ′ may result in a change of some proof obligations depending how the
change of the morphism affects the mapping of local axioms of the source theory.
If σ(Axi) = σ′(Axi) we can reuse the old proof otherwise the proof information
is invalidated but stored for a later reuse when tackling the proof obligation
σ′(Axi) by some theorem prover.
Change in M : Since the theory of M depends on its subgraph, every change
in this subgraph may affect the theory of M . We distinguish two different ap-
proaches depending whether Φi is ProofExists or description of used axioms.

1. In the latter case we know about all used axioms (and their origins). The
proof is still valid if all used axioms are still part of the theory of M . Instead
of computing the changes in the axiomatization of M we check for all triples
(τ, K, Ω) whether τ(Ω) is still imported to M from K via a morphism τ ′

with τ ′(Ω) = τ(Ω).
2. If there is no explicit proof object, we assume that all axioms accessible at

the time of the proof have been used for the proof. Thus a proof is invalid
if some axiom of a node inside the subgraph of M has been changed or

Formal Software Development in MAYA 429

deleted, or some definition link has been changed or deleted and there is no
alternative path with the same morphism. This check is restricted to objects
which have existed at the time when the proof was done. Hence each object
(links, nodes, axioms, etc.) contains timestamps of its creation, its deletion,
or its change. For example, changing a morphism does not affect the validity
of a proof if all signature entries which are affected by these changes were
introduced after the computation of the proof.

Consider our running example and suppose we had already proven some
axioms of Stack mapped as theorems to List when we inserted the theory
Rel. As Rel only adds new axioms to the theory of List, all proofs of the
axioms are still valid. This holds although the morphism τ of the local theorem
link from Stack to List has changed to τ ′ in order to incorporate the mapping
of the new relation R. In case the local proof object provides the list of used
axioms we can easily check that τ(Axi) = τ ′(Axi) holds for all 1 ≤ i ≤ n.
Otherwise, the morphisms τ and τ ′ are compared which results in the fact that
the only differences between both morphisms concern the mapping of the relation
R which has been introduced after doing the proofs of any Axi. Thus, changing
τ to τ ′ will not affect the proofs of any Axi done before the insertion of the
theory Rel.

7 Implementation

The development graph as well as the techniques for their maintenance are imple-
mented in the Maya system (cf. [9]). Currently the fixed logic underlying the de-
velopment graph is higher-order logic. The uniform representation of structured
theories in the development graph supports evolutionary formal software devel-
opment with respect to arbitrary specification languages, provided there exists
an adequate mapping from the specification language into development graphs.
Currently Maya integrates parsers for the specification languages Casl (cf. [1])
and VSE-SL (cf. [7]). With respect to the verification in-the-small, Maya sup-
ports the use of arbitrary theorem provers for higher-order logic. To this end a
generic interface to propagate the changes of theories to the theorem provers has
been implemented. Currently, the HOL-Casl instance of Isabelle/HOL (cf. [3])
and the InKa 5.0 theorem prover (cf. [1]) are integrated into Maya via this in-
terface. The Lisp sources of Maya can be obtained from the Maya-webpage [9].

8 Related Work

The KIV system [18] incorporates a development graph similar to the one pre-
sented in this paper. However, instead of having basic structuring mechanism like
our global and local links, the KIV structure mechanisms are heavy tailored to
the structuring constructs of their specification languages. Although this allows
for a more adequate representation of global proof obligations, it lacks the abil-
ity to easily integrate support for further specification languages. With respect
to the verification in-the-large, it also supports the maintenance of established
proof obligations when changing the specification, but lacks a mechanism for

430 Dieter Hutter and Serge Autexier

redundancy checking and elimination. This is due to the absence of decompo-
sition of proof obligations between graphs into proof obligations between the
respective subgraphs. With respect to the verification in-the-small, when the
specification is changed, the effects on the axioms usable by the theorem prover
cannot be determined in an as granular manner as in the Maya system. Finally,
the tight integration of the KIV development graph with the built-in theorem
prover hampers the use of further theorem provers.

The SpecWare system [10] is a formal software design environment. It fol-
lows the paradigm of top-down formal software development using refinement,
modularization, and parameterization. The whole design and refinement pro-
cess is explicitly represented in some kind of development graph and the arising
proof obligations are proven using theorem provers. However, like for the KIV
system, the basic structuring mechanisms are tailored to the specification lan-
guage, which hampers the use of other specification languages. Finally, it lacks
the support for redundancy checking and elimination, as well as the maintenance
of established proof obligations.

The Little Theories approach [8] provides a subset of the theory structuring
mechanism of development graphs, i.e. global definition links and proven global
theorem links. It is more general than development graph, because each theory
(node) can have its own logic, whereas for the current implementation of de-
velopment graphs presented in this paper, the whole graph is with respect to a
single logic. The extension of development graphs to deal with different logics
has been achieved in theory in [14]. However, little theories lack on the one hand
the ability to represent intermediate states of the development, i.e. a state where
there still exist yet unproven postulated global theorem links. On the other hand,
there are no mechanisms that exploit the graph structure to reduce the amount
of proof obligations and to deal with non-monotonic changes of the theories.

9 Conclusion

For the development of industrial-size software systems, the preservation of the
structure of specifications is essential not only for the specification of the systems,
but also for their verification. Indeed, the structure can be exploited in order to
reduce the amount of proof obligations and to support efficiently the revision of
specifications, which usually arises in practice.

We presented the implementation of a system for verification in-the-large
about structured specifications. It enables to formally find and eliminate redun-
dant proof obligations. Furthermore, it incorporates strategies to transform a
proof for some former specification to some new specification, while preserving
as many established conjectures as possible.

The theorem proving mechanisms for verification in-the-large are the kernel
of the Maya system [9]. Around that kernel are build on the one hand a uniform
interface for parsers of arbitrary specification languages4, and on the other hand
4 Provided there is an adequate translation of the logic and the structuring constructs

of the specification language into the development graph structure.

Formal Software Development in MAYA 431

a uniform interface to use theorem provers for verification in-the-small. These
functionalities enable Maya to bridge the gap between parsers for specification
languages and state of the art automated or interactive theorem provers, and
deals with all aspects of evolutionary formal software development based on
structured specifications.

Future work will consist of extending the verification in-the-large mechanisms
to support development graphs with hiding [14] as well as heterogenous devel-
opment graphs [13]. Further work will also be concerned with the generation of
proof-objects for completed developments from Maya’s internal “in-the-large”
proof representation and the annotated “in-the-small” proofs. This proof object
shall be used to proof check a completed development, which formally certifies
a completed formal software development.

References

1. S. Autexier, D. Hutter, H. Mantel, A. Schairer. System description: InKa 5.0 – a
logic voyager. In H. Ganzinger (Ed.): 16th International Conference on Automated
Deduction, Springer, LNAI 1632, 1999.

2. S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Towards an evolutionary formal
software-development using CASL. In C. Choppy and D. Bert, editors, Proceedings
Workshop on Algebraic Development Techniques, WADT-99. Springer, LNCS 1827,
2000.

3. S. Autexier, T. Mossakowski. Integrating HOL-Casl into the Development Graph
Manager Maya. In A. Armando (Ed.) Frontiers of Combining Systems (Fro-
CoS’02), Santa Margherita Ligure, Italy, Springer LNAI, April, 2002.

4. CoFI Language Design Task Group. The common algebraic specification language
(Casl) – summary, 1998. Version 1.0 and additional Note S-9 on Semantics,
available from http://www.brics.dk/Projects/CoFI.

5. M. Cerioli, J. Meseguer. May I borrow your logic? Theoretical Computer Science,
173(2):311-347, 1997.

6. D. Hutter. Management of change in verification systems. In Proceedings 15th
IEEE International Conference on Automated Software Engineering, ASE-2000,
pages 23–34. IEEE Computer Society, 2000.

7. D. Hutter et al.: Verification Support Environment (VSE), Journal of High In-
tegrity Systems, Vol. 1, 1996.

8. W. M. Farmer. An infrastructure for intertheory reasoning, In: D. McAllester, ed.,
Automated Deduction – CADE-17, LNCS, 1831:115-131, 2000.

9. Maya-webpage: http://www.dfki.de/˜inka/maya.html.

10. J. McDonald, J. Anton. SPECWARE – Producing Software Correct by Construc-
tion. Kestrel Institute Technical Report KES.U.01.3., March 2001.

11. J. Meseguer. General logics, In Logic Colloquium 87, pages 275–329, North Holland,
1989.

12. T. Mossakowski: CASL: From Semantics to Tools. In S. Graf (Ed.) TACAS 2000,
LNCS volume 1785, pages 93-108. Springer, 2000.

13. T. Mossakowski. Heterogeneous development graphs and heterogeneous borrow-
ing. In M. Nielsen (Ed.) Proceedings of Foundations of Software Science and
Computation Structures (FOSSACS02), Grenoble, France, Springer LNCS, 2002.

432 Dieter Hutter and Serge Autexier

14. T. Mossakowski, S. Autexier, and D. Hutter: Extending Development Graphs With
Hiding. In H. Hußmann (Ed.), Proceedings of Fundamental Approaches to Software
Engineering (FASE 2001), Italy. LNCS 2029, 269–283. Springer, 2001.

15. S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. The development graph
manager MAYA. In Proceedings 9th International Conference on Algebraic Method-
ology And Software Technology, AMAST2002. Springer-Verlag, 2002.

16. D. Hutter and A. Schairer. Proof transformations for evolutionary formal software
development. In Proceedings 9th International Conference on Algebraic Methodol-
ogy And Software Technology, AMAST2002. Springer-Verlag, 2002.

17. L. C. Paulson. Isabelle – A Generic Theorem Prover. LNCS 828. Springer, 1994.
18. W. Reif: The KIV-approach to Software Verification, In KORSO: Methods, Lan-

guages, and Tools for the Construction of Correct Software – Final Report, LNCS
1009, 339-368. Springer, 1995.

A Unification Algorithm for Analysis
of Protocols with Blinded Signatures

Deepak Kapur1,�, Paliath Narendran2,��, and Lida Wang2,���

1 Department of Computer Science, University of New Mexico,
Albuquerque, NM 87131, USA

kapur@cs.unm.edu
2 Department of Computer Science, SUNY at Albany,

Albany, NY 12222, USA
{dran,lidawang}@cs.albany.edu

Abstract. Analysis of authentication cryptographic protocols, particu-
larly finding flaws in them and determining a sequence of actions that
an intruder can take to gain access to the information which a given
protocol purports not to reveal, has recently received considerable atten-
tion. One effective way of detecting flaws is to hypothesize an insecure
state and determine whether it is possible to get to that state by a le-
gal sequence of actions permitted by the protocol from some legal initial
state which captures the knowledge of the principals and the assump-
tions made about an intruder’s behavior. Relations among encryption
and decryption functions as well as properties of number theoretic func-
tions used in encryption and decryption can be specified as rewrite rules.
This, for example, is the approach used by the NRL Protocol Analyzer,
which uses narrowing to reason about such properties of cryptographic
and number-theoretic functions.
Following [15], a related approach is proposed here in which equation
solving modulo most of these properties of cryptographic and number-
theoretic functions is done by developing new unification algorithms
for such theories. A new unification algorithm for an equational theory
needed to reason about protocols that use the Diffie-Hellman algorithm
is developed. In this theory, multiplication forms an abelian group; ex-
ponentiation function distributes over multiplication, and exponents can
commute. This theory is useful for analyzing protocols which use blinded
signatures. It is proved that the unification problem over this equational
theory can be reduced to the unification problem modulo the theory of
abelian groups with commuting homomorphisms with an additional con-
straint. Baader’s unification algorithm for the theory of abelian groups
with commuting homomorphisms, which reduces the unification problem
to solving equations over the polynomial ring over the integers with the

� Research supported in part by the NSF grant nos. CCR-0098114 and CDA-9503064,
the ONR grant no. N00014-01-1-0429, and a grant from the Computer Science Re-
search Institute at Sandia National Labs.

�� Research supported in part by NSF grant no. CCR-0098095 and ONR grant no.
N00014-01-1-0430.

��� Research supported in part by NSF grant no. CCR-0098095.

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 433–451, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

434 Deepak Kapur, Paliath Narendran, and Lida Wang

commuting homomorphisms serving as indeterminates, is generalized to
give a unification algorithm over the theory of abelian groups with com-
muting homomorphism with a linear constraint.
It is also shown that the unification problem over a (simple) extension
of the equational theory considered here (which is also an extension of
the equational theory considered in [15]) is undecidable.

1 Introduction

Search techniques for exploring the vast state space possibly generated by a given
authentication cryptographic protocol have turned out to be an effective way to
determine possible flaws in protocols. A typical state is the knowledge possessed
by each of the principals interested in communicating among each other in a
secure fashion, time clock often needed for generating nonces and/or timestamps,
and most importantly, an intruder who can read, alter and delete traffic, send
messages of its own, pretend to be any of the principals and who may have help
from the principals, etc. Actions taken by principals and an intruder(s) lead to
state changes. At the same time, certain relations between various cryptographic
functions as well as properties of number theoretic functions used for public
encryption and decryption must be honored by the states. For instance in a
symmetric key system, it is common to introduce a rule saying that, if a principal
knows a message M encrypted with a key K, and also knows the key K, then
it can learn message M . In a public key based cryptosystem, encryption and
decryption can be expressed in terms of two functions symbols e and d that obey
the following identities: e(Kpu, d(Kpr, M))→ M and d(Kpr, e(Kpu, M))→ M
where Kpu, Kpr are respectively the public and private keys for a principal.

A technical report by Clark and Jacob [7] is a comprehensive survey of au-
thentication protocols. That report reviews numerous protocols proposed in the
literature; its annotated bibliography also discusses various attacks on some of
these protocols and how they have been fixed. The report briefly mentions var-
ious approaches for establishing correctness of authentication protocols. An in-
terested reader should consult [7] for details. Below, we discuss a state-based
approach for analyzing possible attacks on an authentication protocol; see [7, 14,
13] for more details.

A typical scenario for analyzing a protocol is to hypothesize an insecure state
in which the protocol is compromised possibly by an intruder knowing some in-
formation that the protocol professes not to reveal, and to work backwards to
determine whether this state is reachable, by a sequence of actions of the princi-
pals and the intruder, from a given legal state. This, for example, is the approach
used by the NRL Protocol Analyzer (NPA) [14], a software tool for cryptographic
protocol analysis implemented in Prolog. NPA exploits the backtracking facil-
ity in Prolog in combination with equational unification for exploring the state
space. It makes use of narrowing, a general purpose technique for equation solv-
ing, to identify states which are equivalent because of properties of encryption,
decryption functions as well as properties of number theoretic functions used in
authentication, encryption and decryption. For instance, most public key based

A Unification Algorithm for Analysis of Protocols with Blinded Signatures 435

cryptosystems use multiplication, exponentiation, and modulus operations on
numbers. Relations are specified by terminating rewrite rules. In certain cases,
NPA is even able to rule out the reachability of such insecure states.

(Narrowing is a general purpose technique for equation solving with respect
to a given rewrite system; it thus requires that every property be oriented into
a terminating rewrite rule. See [9], for instance.)

Although narrowing works well for certain properties relating encryption
and decryption, unfortunately there are a number of other properties of crypto-
graphic operations which cannot be handled. Certain relations, such as associa-
tivity and commutativity properties of arithmetic operations +, ∗, etc, cannot
be oriented into terminating rewrite rules. Furthermore, narrowing is a general
purpose method, whereas special purpose unification algorithms for certain the-
ories capturing relations among cryptographic functions could perhaps be more
efficient.

An approach for integrating unification algorithms for equational theories
axiomatizing properties of cryptosystems including encryption, decryption and
primitive number theoretic functions implementing them, is outlined in a recent
paper by Meadows and Narendran [15]. The basic idea is to use a unification
algorithm for an equational theory in place of narrowing using rewrite rules in
the equational theory. A unification algorithm for an equational theory found
useful in analyzing group Diffie-Hellman protocols was proposed in the paper and
the complexity of the unifiability check for this equational theory was shown to
be NP-complete.

This paper builds on [15]. The equational theory under consideration is as-
sumed to be weaker than the theory considered in [15] with respect to the
properties of the exponentiation function on numbers. in particular, the axiom
xyz

, = xy·z relating exponentiation with multiplication is dropped. However, the
exponents are assumed to commute, i.e., xyz

= xzy

holds1. This theory is useful
in cryptographic techniques such as Chaum’s blinded signature [6], popular in
anonymous electronic cash schemes, which also make direct use of properties
such as distributivity of modular exponentiation over modular multiplication
(i.e., (x · y)z = (xz) · (yz)).

It is proved in this paper that the above distributivity axiom cannot be added
to the theory considered in [15] without making the unification problem on the
extended theory undecidable. The undecidability proof of the unification problem
over the equational theory of Cartesian Closed Categories (CCC) considered in
[16] can be adapted to be applicable for this theory.

A decision procedure for the unification problem for the equational theory
of abelian group for multiplication along with the distributivity axiom and the
exponent commutativity axiom (and the properties of the unit 1) is also given.
In this sense, the theory considered in this paper and the theory considered in
[15] are two proper subsets with decidable unification problems of an equational
theory with an undecidable unification problem.

1 It is easy to see that this property follows from the axiom xyz

= xy·z because of
commutativity of ·.

436 Deepak Kapur, Paliath Narendran, and Lida Wang

The remainder of this paper is organized as follows. Section 2 is based on
[15], providing a brief review of the Diffie-Hellman and group Diffie-Hellman
algorithms, and discussing axioms relating number-theoretic properties of mul-
tiplication and exponentiation used. It is included for the sake of completeness;
for details, an interested reader may consult [15].

Section 3 shows the undecidability of the equational theory considered in
[15] along with the distributivity axiom of exponentiation over multiplication.
The proof is essentially based on the undecidability proof given in [16] where
Hilbert’s tenth problem over natural numbers is shown to be an instance of the
unification problem over the equational theory of cartesian closed categories.
The main difference is that in the case below, it is possible to simulate negative
numbers as well. Consequently, Hilbert’s tenth problem over integers is reduced
to this unification problem.

Section 4 develops the necessary background to relate the unification prob-
lem over the equational theory of blinded signatures to the unification problem
over the equational theory of abelian groups with n commuting homomorphisms,
called AGnHC by Baader [2], with an additional condition, called a linear con-
straint.

Section 5 shows how Baader’s algorithm for the unification problem over
AGnHC can be generalized so as to satisfy a linear constraint (which is similar
to a linear constant restriction discussed in [1]). A new way of defining admissible
term orderings is introduced, which is used to compute a Gröbner basis of a
polynomial ideal.

Section 6 concludes with some remarks on complexity of the algorithm and
outlines some areas for further research.

2 Protocols Based on Diffie-Hellman Algorithm

This section is borrowed from [15] where the motivation for this approach is
outlined.

The Diffie-Hellman algorithm in its most basic form allows two principals
to securely exchange a secret key without having any shared secret beforehand.
Consider a prime number P and a generator x of the multiplicative group of ZP .
Principal A generates a secret value NA, and B generates a secret value NB. The
protocol then runs as follows:

1. A → B : xNA mod P
B then computes (xNA)NB .

2. B → A : xNB mod P
A then computes (xNB)NA , which is the same as (xNB)NA , implying that
the shared key is the same among the principals A and B.

In order to secure the above protocol against active eavesdroppers, it is nec-
essary to include some form of authentication, usually provided by public-key
signatures. Thus an equational theory that could be used to reason about Diffie-
Hellman would need to take into account the relationship between exponentia-
tion and ·, the commutativity of ·, and possibly identities obeyed by the signature
algorithms used.

A Unification Algorithm for Analysis of Protocols with Blinded Signatures 437

Interaction between exponentiation and · is captured by the distributivity
axiom: (x · y)z = (xz) · (yz).

2.1 Some Equational Theories for Diffie-Hellman
and Group Diffie-Hellman

Equational theories under consideration consist of the axioms of abelian groups
(A, C, U and Inv below), denoted by AG, along with (some) axioms for expo-
nentiation. In contrast to the equational theory considered in [15], the axiom,
(xy)z = xy·z, used in [15] is excluded; instead, axioms (Exp2, Exp3, Exp4) are
used. The relationship between exp and · is captured by axiom Exp3.

Consider the following axioms for · and exponentiation (denoted by xy):

x · (y · z) = (x · y) · z (A)
x · y = y · x (C)
x · 1 = x (U)

x · x−1 = 1 (Inv)
x1 = x (Exp1)
1x = 1 (Exp2)

(x · y)z = (xz) · (yz) (Exp3)

xyz

= xzy

(Exp4)
(xy)z = xy·z (Exp5)

The first four axioms characterize abelian groups; this theory is denoted by
AG. The remaining axioms are about exponentiation as well as interactions
between exponentiation and · (particularly, axioms (Exp4) and (Exp5)).

As stated earlier, [15] gave a unification algorithm for the equational theory
consisting of AG and axioms (Exp1, Exp2, Exp5); it was proved that the unifi-
ability check is NP-complete. It is easy to see that (Exp4) follows from AG +
(Exp5).

It is shown in the next section that the unifiability check for AG and axioms
(Exp1, Exp2, Exp3) and (Exp5) is undecidable. The rest of the paper focuses
on the decidability of the unifiability check for AG plus axioms {Exp1, Exp2,
Exp3, Exp4}.

3 Undecidability of Unifiability Check
for the Theory of AG and Exponentiation

Consider the equational theory E consisting of AG and axioms (Exp1, Exp2,
Exp3 and Exp5). This theory has the following convergent rewrite system modulo
associativity and commutativity (also called AC-convergent).

438 Deepak Kapur, Paliath Narendran, and Lida Wang

(x−1)−1 → x

1−1 → 1
x · 1 → x

x · x−1 → 1
x · (x−1 · y)→ y

(x · y)−1 → x−1 · y−1

1z → 1
z1 → z

(x−1)y → (xy)−1

(x · y)z → (xz) · (yz)
(xy)z → x(y·z)

It is easy to see that the normal form of a term using the above rewrite rules is
either 1 or of the form t1 · t2 · . . . · tn, where each ti is x, x−1, xei , or (xei)−1 for
some variable or constant x, where ei is a term in normal form wrt the above
AC-convergent rewrite system that is different from 1. In what follows, a term of
the form bi where i is a positive integer, is an abbreviation of b× b× . . .× b︸ ︷︷ ︸

i

. If i

is a negative integer then bi is an abbreviation of b−1 × b−1 × . . .× b−1︸ ︷︷ ︸
(−i)

. (b0 = 1.)

Lemma 1. Let t1, . . . , tn be terms in normal form modulo the above AC-con-
vergent system, such that none of the ti’s has · as the outermost symbol. If s
is the normal form of t = t1 · . . . · tn, then s is either 1 or s can be written as
s1 · . . . · sk where {s1, . . . , sk} ⊆ {t1, . . . , tn} (in the multiset sense).

Proof: If t is already in normal form, then the lemma holds. If for each i (1 ≤
i ≤ n) ti = 1, then s is 1. Otherwise since ti (1 ≤ i ≤ n) is in normal form and
none of the tis has · as the outermost symbol, the only possible reduction rules
that can apply to t are:

x · 1 → x

x · x−1 → 1
x · (x−1 · y)→ y

Each time any of these these rules is applied, some ti will be gotten rid of. By
induction on the number of reduction steps, we can complete the proof. �

Lemma 2. For all i, the E-unification problem

x · ay =? xb · abi

is solvable iff y ← bm for some integer m.

Proof: The “if” part is straightforward. It is clear that for every n ≥ i, {y ←
bn, x ← abn−1 ∗ abn−2 ∗ · · · ∗ abi+1 ∗ abi} is indeed a solution. We prove the “only

A Unification Algorithm for Analysis of Protocols with Blinded Signatures 439

if” part by contradiction. Suppose the claim is not true, i.e., there is a solution
with a y that is not of the form bj where j is an integer.

Let S = { x | x is in normal form and there are y and i such that
ay · x =E xb · abi

, i is an integer, y is not of the form bj

where j is an integer }
Let x be the smallest term in the above set. Since x is in normal form, it

must be that xb.abi

.i(ay) reduces to x. Now two cases have to be considered:

(i) abi

is a part (factor) of x, i.e., x =E abi · z for some z. Then

ay · abi · z =E zb · abi+1 · abi

Canceling on both sides, we find that z ∈ S and z is smaller than x.
(ii) the normal form of xb contains i(abi

). Since x is in normal form, x must
contain i(abi−1

), i.e., x =E i(abi−1
).z. Then

ay · i(abi−1
) · z =E zb

Again, z is smaller than x, which is a contradiction. �

Lemma 3. Let b and c be free constants and j be an integer. Then the E-uni-
fication problem

xc ∗ abj

=? xb ∗ au

z ∗ au =? zc ∗ a

is unifiable iff u ← cj. (In other words, xc ∗ abj

=? xb ∗ ack

is unifiable if and
only if j = k.)

Proof: By Lemma 2, the second equation is unifiable iff u ← ck where k is an
integer. Suppose the equation xc ∗ abj

=? xb ∗ ack

is solvable. Replace b with
c everywhere in the equation. Since b and c are free constants, it must be that
yc ∗ acj

=E yc ∗ ack

where y is x with b replaced everywhere with c. Now the
cancellation properties can be applied to get the result. �

Lemma 4. Let b and c be free constants and j and k be integers. Then E-uni-
fication problem

xck

∗ abj

=? xb ∗ au

z ∗ au =? zc ∗ a

is unifiable iff u ← cj∗k.

Proof: By Lemma 2, the second equation is unifiable iff u ← cn where n is an
integer. Suppose the equation xck ∗ abj

=? xb ∗ acn

is solvable. Replace b with
ck everywhere in the equation. Since b and c are free constants, it must be that
yck ∗ acj∗k

=E yck ∗ acn

where y is x with b replaced everywhere with ck. Now
the cancellation properties can be applied to get the result. �

Lemma 4 shows that multiplication of two integers can be simulated. Consider,
for instance, the equation z = x ∗ y. If x = bi and y = bj, then we can force z
to be bij in the following way:

440 Deepak Kapur, Paliath Narendran, and Lida Wang

(i) Copy x to x′ changing b’s to c’s; i.e., x′ = ci. This can be done using
equations as given in the statement of Lemma 4.

(ii) Multiply x′ and y to get z′ = cij .
(iii) Copy z′ to z changing c’s to b’s.

Thus the equations we get are

w1 ∗ ax′
=? w1

c ∗ a

w2
c ∗ ax =? w2

b ∗ ax′

w3
x′
∗ ay =? w3

b ∗ az′

w4 ∗ az′
=? w4

c ∗ a

w5
c ∗ az =? w5

b ∗ az′

Simulating addition is easy, since if x = bi and y = bj, then (ax)y = abi+j

.
Now we are ready to prove the undecidability of the equational theory E by

a reduction from Hilbert’s tenth problem.

Theorem 1. The unifiability check for the equational theory E is undecidable.

Proof: Given a system of diophantine equations, construct a unification problem
modulo E as outlined above. �

4 Unification over Equational Theory
of Blinded Signatures

In this section, we consider a proper subset of the above equational theory. In
particular, the axiom (Exp5) is replaced by a weaker axiom (Exp4). Let E0 consist
of AG and axioms (Exp1, Exp2, Exp3, Exp4) denoted by Exp. The theory E0

− Exp4, denoted by E0’, has the following AC-convergent rewrite system.

(x−1)−1 → x

1−1 → 1
x · 1 → x

x · x−1 → 1
(x · y)−1 → x−1 · y−1

1z → 1
z1 → z

(x−1)y → (xy)−1

(x · y)z → (xz) · (yz)

Exp4 cannot be oriented into a terminating rewrite rule.
In the next sections, we show that the equational unification problem for E0 is

equivalent to the unification problem modulo the theory of abelian groups with
n commuting homomorphisms, denoted by AGnHC, but with an additional

A Unification Algorithm for Analysis of Protocols with Blinded Signatures 441

constraint. The theory AGnHC is a monoidal theory; further, it is shown in
[17, 3] that AGnHC is unitary with respect to unification without constants
and it is also unitary with respect to unification with constants2. In Section 5
of [2], Baader showed that the unification problem of AGnHC reduces to solving
linear equations over the polynomial ring Z[h1, . . . , hn], where h1, . . . , hn are
the commuting homomorphisms of AGnHC, treated as indeterminates in the
polynomial ring. We generalize Baader’s algorithm by adding an additional key
step to ensure that a given linear constraint is satisfied by the unifier, so as to
apply it to the equational unification problem for E0. This is discussed in this
section and the next section.

4.1 Unification over E0 as a Combination of Theories

Consider a set S0 of equations whose unifiability needs to be checked wrt E0.
Assuming S0 is unifiable, given any unifier θ of S0, θ may substitute 1 for certain
variables in S0; also many variables in S0 may get identical substitutions. Given
that there are only finitely many variables in S0, there are only finitely many
such partial unifiers for S0 in which some of the variables in S0 get either 1
or another variable as a substitution. After applying such a partial unifier on
S0, simplifying the result by the rewrite rules of the associated AC-convergent
system, and deleting trivial equations (i.e., equations which are in the equational
theory of E0), we get a set S1 of equations. If S1 is empty, then the above
partial unifier is a unifier of S0. If S1 is not empty, then the following steps are
applied. We will assume that the equations in S1 have been normalized using
the AC-convergent rewrite system for E ′0 (= E0 − Exp4) discussed above. Thus,
a unifier of S1 cannot substitute for any variable x, a normalized term t properly
containing x (occur-check).

Any unification problem S1 over E0 can be simplified using variable abstrac-
tion (by introducing new symbols) to a simple E0-unification problem, say S2;
this is defined precisely below.

Definition 1. An E0-unification problem S over Σ is called an AG-unification
problem if each equation in S is of the form x =? t, where x is a variable and t
is a term over the signature of AG such that t �=AG 1.

Definition 2. An E0-unification problem S on Σ is called an exponent E0-
unification problem if every equation in S is of the form x =? yz where x and y
are variables and z is a variable or a free constant. Also if z is a variable, z is
called an exponent variable, otherwise it is called an exponent constant.

Definition 3. An E0-unification problem S on Σ is called a simple E0-uni-
fication problem if S = S1

⋃
S2 where S1 is an AG-unification problem and

S2 is an exponent E0-unification problem.

Let V ar(S) denote the set of all variables in S.

2 A theory is unitary if a minimal complete set of unifiers always exists and its cardi-
nality is at most one.

442 Deepak Kapur, Paliath Narendran, and Lida Wang

It is easy to see that using abstraction, any E0-unification problem can
be transformed into a simple E0-unification problem. For example, consider
S1 = {w =? (x(yu·v)−1·zu′·v′

)−1}. Using abstractions, the above equation in S1 is
transformed to S2:

{1. w =? z−1
1 , 2. z1 =? xz2 , 3. z2 =? z−1

3 · z4, 4. z3 =? yz5 ,

5. z5 =? u · v, 6. z4 =? zz6 , 7. z6 =? u′ · v′},

where z1, z2, z3, z4, z5, z6 are new variables introduced to abstract alien subterms
in S1.

4.2 Relating AG + EXP to AGnHC

Given a simple E0-unification problem S2 on Σ = {·, −1, 1, xy}, for each equa-
tion of the form x = yβ in S2, we transform it into x = hβ(y), where hβ is
a homomorphism corresponding to the symbol β. Let H(S2) denote the set
of all homomorphisms introduced in this way. Let Σ′ = {·, −1, 1}

⋃
H(S2),

E ′ = AG
⋃
{h1(h2(u)) = h2(h1(u)), h(u1 ·u2) = h(u1) ·h(u2)} for all h, h1, h2 ∈

H(S2). We call the transformed E ′-unification problem on Σ′ as an h-image of S2.
For the above example, its h-image T2 is:

{1. w =? z−1
1 , 2. z1 =? hz2(x), 3. z2 =? z−1

3 · z4, 4. z3 =? hz5(y),

5. z5 =? u · v, 6. z4 =? hz6(z), 7. z6 =? u′ · v′}.

The requirement that a normalized unifier for S2 wrt E0 satisfy the occur-
check for every variable x translates to a related requirement in E ′. A normalized
unifier of the h-image T2 of S2 wrt AGnHC should satisfy (i) the occur-check for
every variable x, and in addition, (ii) the substitution for x must not properly
include hx, the homomorphism introduced for x when x appears as an exponent.

In order to show the equivalence of the unifiability check over E0 with the
unifiability check over AGnHC, it is necessary to place restrictions on unifiers
considered for E0 given that we have considered a priori equivalent substitu-
tions for variables as well as 1 as the substitution for variables. This is done by
solving the unifiability problem of T2 wrt AGnHC subject to linear constraints
(including) x hx for every homomorphism hx ∈ H(S2), i.e., a unifier θ of T2

should satisfy the condition that for every x ∈ V ar(T2), θ(x) does not contain
any occurrence of hx.

Definition 4. Given a simple E0-unification problem S and its h-image T mod-
ulo AGnHC, a linear constraint is a total order over V ar(T) ∪ H(S) such
that x C hx for all exponent variables x in S.

Definition 5. A substitution β whose domain is V ar(T) is said to satisfy a
linear constraint C if and only if the following holds: for every x ∈ V ar(T),
β(x) does not contain any of the function symbols below x in C. In other words,
if x C hy, then β(x) does not contain any occurrence of hy.

A Unification Algorithm for Analysis of Protocols with Blinded Signatures 443

Definition 6. A unifier θ for a unification problem S is said to be a discrimi-
nating unifier if and only if the following hold for all variables in V ar(S):

1. θ(u) �=E 1 for all u.
2. θ(v) =E θ(w) iff v = w.

The following two theorems relate the unification problem S2 over E0 to its
h-image T2 over AGnHC.

Theorem 2. If a simple E0-unification problem S2 has a discriminating uni-
fier, then its h-image T2 which is a E ′-unification problem on Σ′ is unifiable.
Furthermore, there is a linear constraint C that the unifier satisfies.

Proof: Let θ be a discriminating unifier of a simple E0-unification problem S2.
Consider all the exponent equations in S2:

{ xu1 =? xv1
xw1

...
...

xui =? xvi
xwi

...
...

xuk
=? xvk

xwk }
The unifier θ includes {xui ← tui , xvi ← tvi , xwi ← twi(1 ≤ i ≤ k)}. Thus,
tui =E0 tvi

twi (1 ≤ i ≤ k).
For each twi , we introduce a homomorphism htwi

. Let H′′(S) denote the
set of homomorphisms introduced for all twi . Let Σ′′ = {·,−1 }

⋃
H′′(S). Let

E ′′ = AG
⋃
{htwi

(htwj
(u)) = htwj

(htwi
(u)), htwi

(u1 · u2) = htwi
(u1) · htwi

(u2)}
for all i (1 ≤ i ≤ k). We also define a recursive function rep as follows:

rep(a) = a where a is a constant in Σ.
rep(A · B) = rep(A)·rep(B) where A, B are terms on Σ.
rep(Ax) = hx(rep(A)) where x, A are terms on Σ.

It is easy to see that the function rep removes all occurrences of the exponent
operator from terms over Σ. Since θ is a discriminating unifier for S2, for each
twi , twj (i �= j), we have twi �=E0 twj . Also it is easy to show that s =E0 t if and
only if rep(s) =E′ rep(t) for any terms s, t over Σ. Therefore we should have:

rep(tui) =E′′ rep(tvi
twi) =E′′ htwi

(rep(tvi)) (1 ≤ i ≤ k) ——(1).

Now for each htwi
(1 ≤ i ≤ k), we introduce the homomorphism hxwi

which is
the same homomorphism we introduced for xwi in the h-image T2 of S2. We also
define function rep′ as:

rep′(a) = a where a is a constant on Σ′.
rep′(A ·B) = rep′(A)·rep′(B) where A, B are terms on Σ′.
rep′(htwi

(A)) = hxwi
(rep′(A)) where A is a term on Σ.

Obviously rep′ maps all htwi
(1 ≤ i ≤ k) to the corresponding hxwi

. So from (1)
and the definition of E ′,

rep′(rep(tui)) =E′ hxwi
(rep′(rep(tvi))).

444 Deepak Kapur, Paliath Narendran, and Lida Wang

That means T2 is solvable and a unifier β for T2 can be constructed as follows:
β(x) ← rep′(rep(θ(x))) for every x ∈ V ar(S).

A linear constraint that β satisfies is constructed by comparing θ(xi) for
variables in V ar(T2) using a simplification AC term ordering that is total on
ground terms (e.g. [12])3. �

Theorem 3. Given a simple E0-unification problem S2 on Σ and its h-image
T2 which is a E ′-unification problem on Σ′, if T2 has a solution which satisfies
a linear constraint, then S2 is solvable.

Proof: Consider in S2, all exponent equations

{ xu1 =? xv1
xw1

...
...

xui =? xvi
xwi

...
...

xuk
=? xvk

xwk }.

The h-image T2 for S2 includes:

{ xu1 =? hxw1
(xv1)

...
...

xui =? hxwi
(xvi)

...
...

xuk
=? hxwk

(xvk
)}.

Let β be a ground unifier of T2 which satisfies a linear constraint C. From C,
we can get a subconstraint C′ on variables in V ar(T2). Assume without loss of
generality that C′ = xn · · · xi · · · x1. Now we will use induction on C′

to form θ.
Let us first consider the first variable xn in C′. Since xn is the first variable,

and β(xn) should not contain any item below xn in C, it must be that β(xn) is
composed of constants, and we define θ(xn) = β(xn).

Assume that we have already constructed all θ(xj′) (j ≤ j′ ≤ n). For variable
xj−1, the following cases arise:

3 Given a total AC-simplification ordering on ground terms >, add a new constant,
say ⊥, smaller than every other symbol. Now order the terms in the set

{θ(x1), ..., θ(xn),⊥θ(x1), ...,⊥θ(xn)}

using >. All these terms will be distinct because we are considering a discriminating
unifier. Note also that any term that contains θ(xi) as an exponent is > ⊥θ(xi).
Replacing the θ(xi)’s by the (corresponding) xi and replacing the ⊥θ(xi)’s by the
corresponding hxi , we get a linear chain. Reversing the order gives C.

A Unification Algorithm for Analysis of Protocols with Blinded Signatures 445

1. β(xj−1) is composed of constants. In this case, we define θ(xj−1) = β(xj−1).
2. β(xj−1) is composed of constants and some hxwi

(1 ≤ i ≤ k) where each
hxwi

 xj−1. Since xwi hxwi
, we have xwi hxwi

 xj−1. By the induc-
tion hypothesis, we already know all these θ(xwi). Therefore, we can define
θ(xj−1) = repp(β(xj−1)) where the function repp is defined as:

repp(a) = a where a is a constant on Σ′.
repp(A ·B) = repp(A)·repp(B) where A, B are terms on Σ′.
repp(hxwi

(A)) = repp(A)θ(xwi
) where A is a term on Σ′.

It can be shown that θ is a solution for S2. Consider each exponent equation
in T2: xui =? hxwi

(xvi). Since β(xui) =E′ hxwi
(β(xvi)), we have θ(xui) =E0

(θ(xvi))
θ(xwi

) by our definition of θ. �

In the next section, we show how Baader’s algorithm for unifiability check for
AGnHC can be generalized to work with a linear constraint. This generalization
is then used to solve the unifiability check over E ’, and hence E0.

5 Unification over AGnHC with a Linear Constraint

In [2], Baader showed that the unifiers of a unification problem wrt AGnHC,
where h1, . . . , hk are the commuting homomorphisms, correspond to the solu-
tions of (nonhomogeneous) linear equations over the polynomial ring Z[h1, ..., hk]
with h1, . . . , hk as indeterminates in the polynomial ring. Let NHE =

{p11X1 + · · ·+ p1nXn = p1,
...

...
pm1X1 + · · ·+ pmnXn = pm}

be a set of linear equations where p11, · · · , p1n, · · · , pm1, · · · , pmn, p1, · · · , pm are
in Z[h1, ..., hk].

Baader [2] gave an algorithm for solving such nonhomogeneous linear equa-
tions by first computing a syzygy basis for homogeneous linear equations over
Z[h1, ..., hk] using an algorithm for computing a weak Gröbner basis of a poly-
nomial ideal and then computing a particular solution4.

Let SB denote a syzygy basis

{(q11, · · · , q1n), . . . , (qw1, · · · , qwn)}

for the set HE of the homogeneous equations

{p11X1 + · · ·+ p1nXn = 0,
...

...
pm1X1 + · · ·+ pmnXn = 0}.

4 See Baader [2] for a definition of a weak Gröbner basis as well as syzygy basis.

446 Deepak Kapur, Paliath Narendran, and Lida Wang

Let π = (q1, . . . , qn) be a particular solution for the above set of nonhomoge-
neous equations obtained, for instance, using Baader’s algorithm. From the par-
ticular solution, a most general unifier for the unification problem wrt AGnHC
is computed (as stated above, AGnHC is unitary for unification without as well
as with constants [17, 3]). The algorithm is nontrivial; we will not discuss the
details here because of space limitations, but suggest the reader to refer to [2]
for details.

Proposition 1. π′ = (q′1, . . . , q′n) is equivalent to π with respect to SB and
hence, is also a particular solution iff there exist multipliers b1, · · · , bw such that
qi − q′i = b1q1i + · · ·+ bwqwi for each 1 ≤ i ≤ n.

Definition 7. A linear constraint C on an extended alphabet Σ′ = {Y0, . . . , Yl,
a1, . . . , al}, which includes X1, . . . , Xn, h1 . . . , hk, is written as:

Yl C al C . . . C a2 C Y1 C a1 C Y0,

where {X1, . . . , Xn} ⊆ {Y0, . . . , Yl} and {h1, . . . , hk} ⊆ {a1, . . . , al}.

In the above, upper case symbols are used for variables, and lower case sym-
bols are used for constants. Extra symbols are introduced for technical reasons
so that between every two variables, there is a constant in the ordering.

Definition 8. A solution β for the above set of nonhomogeneous linear equa-
tions satisfies a linear constraint C if and only if for every Y ∈ {Y0, . . . , Yl},
β(Y) does not contain any of the symbols below Y in C. In other words, if
Y C aj then β(Y) does not contain any occurrence of aj.

Note that among variables, Yl is the most constrained, since it cannot contain
any of a1, . . . , al. On the other hand, from the point of view of constants, a1 is
the most constrained since it cannot appear in any variable other than Y0.

5.1 Solutions Satisfying a Linear Constraint

The following claim follows from the fact that any solution of NHE can be
obtained from the particular solution π and a linear combination of the syzygy
basis.

Claim: If there is a solution β of the set NHE of nonhomogeneous linear equa-
tions satisfying a linear constraint C, then there is a particular solution equiva-
lent to π as constructed above satisfying C.

The goal, thus, is to find among all particular solutions of the above set NHE
of nonhomogeneous equations, a solution that satisfies the linear constraint C.
As stated in the above proposition, from a solution π′ = (q′1, . . . , q′n) of NHE, it
is possible to obtain another solution using the syzygy basis SB of the set HE of
homogeneous equations, since SB defines an equivalence relation on solutions. In
order to search for a particular solution that is equivalent to π and also satisfies
C, an admissible ordering t on terms (and polynomials) induced by C is defined
in such a way that solutions satisfying C are minimal in this ordering.

A Unification Algorithm for Analysis of Protocols with Blinded Signatures 447

Let τ1, . . . , τn be new indeterminates. Consider the following set MSB of
polynomials in Z[h1, . . . , hk, τ1, . . . , τn], constructed from SB:

{q11τ1 + . . . + q1nτn, . . . , qw1τ1 + . . . + qwnτn}.

In addition, we include in MSB, additional polynomials {τiτj | 1 ≤ i, j ≤ n}
so that after simplification using these rules, every polynomial under consid-
eration is linear in the τi’s. Thus we only have to consider terms of the form
hd1

1 . . . hdk

k τj , where d1, . . . dk are nonnegative integers. Below we define an admis-
sible ordering t on such linear terms (in τi’s) in Z[h1, . . . , hk, τ1, . . . , τn] induced
by C. This term ordering t is then extended to the simplified polynomials in
Z[h1, . . . , hk, τ1, . . . , τn] which are linear in the τi’s, in the usual way [5, 10].

The ordering t is used to to construct a strong Gröbner basis GMSB for the
set MSB of polynomials [10]. The polynomial πp = q1τ1+. . . qnτn corresponding
to the particular solution π is then normalized using the Gröbner basis GMSB.
Since the equivalence relation induced by MSB preserves solutions of NHE,
the canonical (normal) form of πp wrt GMSB also corresponds to a particular
solution. If this particular solution satisfies C (i.e., all terms are good in the
sense defined below), then we get from the canonical form of πp, a unifier for
the unification problem wrt AGnHC satisfying C. If the canonical form of πp

does not satisfy C, then the unification problem wrt AGnHC does not have a
solution satisfying C, since no polynomial in the equivalence class of πp satisfies
C (as every polynomial in the equivalence class of πp is bigger than or equal to
the normal form of πp wrt t whereas a polynomial corresponding to a solution
satisfying C must be smaller wrt t).

In the following subsection, such an admissible ordering t induced by a
linear constraint C is defined on terms in Z[h1, . . . , hk, τ1, . . . , τn] which are
linear in the τi’s (i.e., whose degree in {τ1, . . . , τn} is 1).

5.2 A New Way of Defining an Admissible Ordering on Terms

It is well-known that to construct a Gröbner basis of a polynomial ideal, a total
admissible term ordering is needed. An admissible ordering must satisfy two
properties:

1. For any term t �= 1, t t 1, and
2. for any terms s, t, u, if s t t, then u s t u t.

Two commonly used admissible orderings in the Gröbner basis literature are
the total degree ordering and the pure lexicographic ordering induced by a total
ordering on indeterminates. Below we define an admissible ordering in a radically
different way.

Consider any two terms s, t in Z[h1, . . . , hk, τ1, . . . , τn] which are linear in
{τ1, . . . , τn}. Define s t t iff nf(s) >′ nf(t), where the function nf stands for
the normal form with respect to the reduction rules defined below in order to
capture the linear constraint C. After defining nf and >′, we show that t is
admissible.

448 Deepak Kapur, Paliath Narendran, and Lida Wang

The term nf(s) of a term s is over the extended alphabet Σ1 = {a1, . . . , al,
v1 . . . , vl, a′

1, . . . , a′
l, t0, t1, . . . , tl}, where a′

i is a copy of ai distinguishing it from
ai, vj ’s are introduced to represent badness in a term (there is one for every aj),
and tj ’s are introduced to stand for Yj ’s. Recall that {h1, . . . , hk} ⊆ {a1, . . . , al}
and {X1, . . . , Xn} ⊆ {Y0, . . . , Yl}; thus, corresponding to every Xi, there is a
Yj = Xi; similarly, corresponding to each τi, there is a tj = τi, i.e., {τ1, . . . , τn} ⊆
{t0, . . . , tl}.

Below, legal term, good term, and bad term are defined on Σ1 based on
whether the term satisfies the linear constraint C.

Definition 9. A term s = a1
d1a2

d2 ...al
dlτi is called a legal term (only such

terms appear in the polynomials in the basis MSB and in the computation of a
Gröbner basis from MSB because of rules τiτj → 0).

A legal term s = a1
d1a2

d2 ...al
dlτi is called a good term if for each 1 ≤ j ≤ l,

aj C Xi in C, i.e., s satisfies the linear constraint C with respect to Xi.
A legal term s = a1

d1a2
d2 ...al

dlτi is called a bad term if there exists a 1 ≤
j ≤ l such that it is not the case that aj C Xi in C, i.e., s does not satisfy the
linear constraint C with respect to Xi.

(A legal term that is not good, is bad.)

To capture the restrictions imposed by the linear constraint C on terms, we
define the reduction rules on legal terms as:

ai tj → ai
′ tj if ai C Yj .

ai tj → ai
′ vitj if ai � C Yj .

So the normal form of a legal term a1
d1a2

d2 ...al
dlτi with respect to the above

rules is either

(i) (a1
′)d1(a2

′)d2 ...(al
′)dlτi, or

(ii) (a1
′)d1(a2

′)d2 ...(al
′)dlvj1

dj1 ...vju
dju ...vjk

djk τi,

where for each 1 ≤ u ≤ k, it is not the case that aju C Yi.
Let nf(t) denote the normal form of a term t by the above rules.
To compare the normal forms of s and t using the above reduction rules, we

define the following lexicographic ordering >′ on symbols in Σ1:

a1 >′ . . . >′ al >′ v1 >′ . . . >′ vl >′ tl >′ . . . >′ t1

>′ t0 >′ a′
1 >′ . . . >′ a′

l

This ordering is extended in a natural way to terms over Σ1.
By the above reduction rules, the normal form of a bad term is greater than

the normal form of a good term because only the normal form of a bad term has
some vj ’s which are greater than all a′

i’s and ti’s.
Below, we sketch a proof that the ordering t on legal terms in Z[h1, · · · , hl,

t1, . . . , tn], defined as

s t t iff nf(s) >′ nf(t)

is admissible.

A Unification Algorithm for Analysis of Protocols with Blinded Signatures 449

For any s �= 1, it is easy to see that s t 1.
The following lemma ensures that if s t t, then for any u, u s t u t, by

proving that nf(s) >′ nf(t) iff nf(u s) >′ nf(u t).

Lemma 5. Let Σ1, >′, and nf be as defined above. Then nf(s) >′ nf(t) iff
nf(us) >′ nf(ut) for all legal terms s, t, us and ut.

Proof-Sketch: (i) If nf(s) >′ nf(t) then nf(u s) >′ nf(u t): To prove this,
it is enough to prove that for any symbol ap in Σ1, nf(ap s) >′ nf(ap t) if
nf(s) >′ nf(t).

The key idea is this: since nf(s) >′ nf(t), multiplying by ap on both sides
could contribute either a′

p or a′
p vp to the normal forms. The only hard case is

when nf(s) contains ti and nf(t) contains tj such that Yj C Yi (i.e., Yj is ‘more
constrained’ than Yi) and in addition, ap C Yi and ap � C Yj . Multiplying both
sides by ap will contribute a′

p to nf(ap s) and a′
p vp to nf(ap t). But since

nf(s) >′ nf(t) there must be some aq in s such that aq � C Yi and the power
of aq in s is larger than the power of aq in t. Thus nf(s) includes vq whose
power in s is larger than its power in nf(t). But since ap C Yi, vq >′ vp. Thus
nf(ap s) >′ nf(ap t) (since the presence of vq will “lexicographically nullify” the
effect of including vp).

(ii) If nf(u s) >′ nf(u t), then nf(s) >′ nf(t): This part is easier and similar.
(Observe that >′ is a total ordering on terms.) �

For a detailed proof, please refer to [11].

6 Conclusion

We have presented a unification algorithm for analyzing cryptographic protocols
using modular exponentiation and multiplication. This algorithm along with a
related algorithm in [15] addresses theories, similar to theories arising in many
cryptographic protocols including the RSA cryptosystem [19], one of the most
popular public-key cryptosystems.

While the check for unifiability over the theory discussed in [15] is NP-
complete, the check for unifiability for the theory discussed in this paper is
likely to be worse; it can be easily shown to be EXPSPACE-hard. Unification
algorithms for these theories are exponential in complexity (the algorithm in this
paper is double-exponential given that the Gröbner basis algorithm used for solv-
ing syzygies is doubly-exponential). An interesting challenge is thus to identify
special cases arising in cryptographic protocol analysis for which these unifica-
tion algorithms are more efficient. As observed in [15], Pereira and Quisquater’s
algorithm [18] for analyzing the cliques protocol is not precisely a unification
algorithm but it appears to be closely related, and it is possible that their ap-
proach could be applied to developing an efficient unification algorithm. Pereira
and Quisquater were able to discover several security problems by solving a set
of linear equations.

Also, it still remains to be seen in practice whether the integration of these
unification algorithms into a software tool such as NRL Protocol Analyzer works
more effectively than an approach based on narrowing implemented in it. (In the

450 Deepak Kapur, Paliath Narendran, and Lida Wang

presence of associativity and commutativity (AC) properties of certain opera-
tions, it is unclear how simple narrowing is helpful unless an AC-unification
algorithm is integrated into narrowing.)

As observed in [15], it will be necessary not only to develop algorithms for
particular theories relevant to cryptographic protocol analysis, but to be able
to combine them at will. Most protocols make use of several different forms of
encryption, depending on the needs of the application.

References

1. F. Baader and K.U. Schultz. Unification in the Union of Disjoint Equational
Theories: Combining Decision Procedures. Proc. 11th Conference on Automated
Deduction (CADE-11), Saratoga Springs, NY, Springer LNAI 607, 1992, 50–65.

2. F. Baader. Unification in Commutative Theories, Hilbert’s Basis Theorem, and
Gröbner Bases. J. ACM, 40 (3), 1993, 477–503.

3. F. Baader and W. Nutt. Adding Homomorphisms to Commutative/Monoidal The-
ories, or: How Algebra Can Help in Equational Unification. Proc. 4th Interna-
tional Conference on Rewriting Techniques and Applications, RTA 91, Springer
LNCS 488, 1991, 124–135.

4. F. Baader and W. Snyder. Unification Theory. In: J.A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning. Elsevier Science Publishers, 2001.

5. B. Buchberger. Gröbner Bases: An Algorithmic Method in Polynomial Ideal The-
ory. In Multidimensional Systems Theory (N.K. Bose, ed.), Reichel, Dordrecht,
1985, 184–229.

6. D. Chaum. Security without Identification: Transaction Systems to Make Big
Brother Obsolete. CACM 28 (10), 1985, 1030–1044.

7. J. Clark and J. Jacob. A Survey of Authentication Protocol Literature: Version
1.0. Unpublished Technical Report, Department of Computer Science, University
of York, UK, Nov. 1997. Available at the URL:
www-users.cs.york.ac.uk/~jac/papers/drareviewps.ps

8. M. Davis. Computability and Unsolvability. Dover Publications, 1982.
9. J.-M. Hullot. Canonical forms and unification. In Proc. of the 5th conference on

Automated Deduction (CADE-5), Lecture Notes in Computer Science 87, 318–334.
10. A. Kandri-Rody and D. Kapur. Computing the Gröbner Basis of a Polynomial

Ideal over Integers. Proc. Third MACSYMA Users’ Conference, Schenectady, NY,
July 1984, 436–451.

11. D. Kapur, P. Narendran, and L. Wang. A Unification Algorithm for Analysis of
Protocols with Blinded Signatures. Technical Report, Department of Computer
Science, University at Albany–SUNY, Albany, NY. Also: Technical Report, De-
partment of Computer Science, University of New Mexico, Albuquerque, NM. July
2002.

12. D. Kapur and G. Sivakumar. A Total, Ground Path Ordering for Proving Termi-
nation of AC-Rewrite Systems. Proc. Rewriting Techniques and Applications, 8th
International Conference, RTA-97, Sitges, Spain (ed. Comon, H.), Springer LNCS
1231, June 1997, 142-156.

13. C. Meadows. Formal Verification of Cryptographic Protcols: A Survey. Proc.
AsiaCrypt 96, 1996.

14. C. Meadows. The NRL Protocol Analyzer: An Overview. J. Logic Programming,
26(2), 1996, 113–131.

A Unification Algorithm for Analysis of Protocols with Blinded Signatures 451

15. C. Meadows and P. Narendran. A Unification Algorithm for the Group Diffie-
Hellman Protocol. Presented at the Workshop on Issues in the Theory of Security
(WITS 2002), Portland, Oregon, Jan 2002.

16. P. Narendran, F. Pfenning, and R. Statman. On the Unification Problem for
Cartesian Closed Categories. Journal of Symbolic Logic, 62 (2), June 97, 636–647.

17. W. Nutt. Unification in Monoidal Theories. Proc. 10th International Conference
on Automated Deduction (CADE-10), Kaiserslautern, West Germany, Springer
LNCS 449, July 1990.

18. O. Pereira and J.-J. Quisquater. A Security Analysis of the Cliques Protocols
Suites. Proc. 14th IEEE Computer Security Foundations Workshop, June 2001,
73–81.

19. R.L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signa-
tures and Public Key Cryptosystems. CACM, 21 (2), 1978, 120–126.

Exploiting Generic Aspects
of Security Models in Formal Developments�

Heiko Mantel and Axel Schairer

German Research Center for Artificial Intelligence (DFKI),
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany

{mantel,schairer}@dfki.de

Abstract. The construction of security models from scratch is a diffi-
cult, time consuming, and expensive task. In this article, we demonstrate
how to exploit generic concepts, in particular the concept of secure in-
formation flow, to simplify the construction of security models. Require-
ments concerned with confidentiality or integrity can often be expressed
nicely as restrictions on the allowed flow of information. For a verification
of these restrictions, it is necessary to explicate formally what informa-
tion flow means. Various information flow properties have been suggested
for this purpose and we employ MAKS, the “Modular Assembly Kit for
Security” [Man00a], for a unified perspective on these properties. How
to exploit the generic security models based on secure information flow
in practice is described in the context of the VSE system [AHL+00].

1 Introduction

The security of information systems has become a vital issue. To date, appli-
cations in, e.g., electronic commerce or electronic communication demand that
IT-systems are trustworthy. Future applications, in particular in the area of elec-
tronic government, including e-voting, let us expect that security will become an
even more important topic in the future. The main difficulty in the construction
of secure systems is that these systems must operate correctly even if they are
used in hostile environments. However, difficulties arise not only from possible
malicious attacks but also from the complexity of these systems. For example, it
must be taken into account that the widespread interconnection of information
systems, in particular, by the Internet, allows various forms of communication.
Due to this complexity, the application of formal methods in the construction of
these systems appears to be most appropriate in order to ensure security. Using
formal methods, the desired security policy for a given system can be specified in
precise mathematical terms by a formal security model. Benefits of constructing
a formal security model include that ambiguities in the description of security
requirements are avoided, that the consistency of these requirements can be ver-
ified, and that it can be proved that a system satisfies its security requirements.

� This work has been partly supported by the German Research Foundation (DFG)
and the German Federal Ministry of Education and Research (BMBF).

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 452–475, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Exploiting Generic Aspects of Security Models in Formal Developments 453

Moreover, formal security model are mandatory for evaluations according to
criteria like ITSEC or CC [ITS91,CC99] (level E4/EAL5 or higher).

Since formal security models closely depend on the particular application it
might appear natural to construct these models from scratch for every applica-
tion. However, constructing formal security models from scratch is a difficult,
time consuming, and expensive task. Fortunately, certain aspects of security
models are independent of the particular application. This makes it possible
to construct generic security models, i.e. schemas for security models in which
some application-specific parts are left unspecified. Usually, a security model con-
sists of three components: a system specification that specifies how the system
behaves, a specification of security properties that capture the security require-
ments, and a proof that establishes a satisfaction relation between these two
specifications. Generic aspects can be exploited in each of these components.

Historically, early generic security models [Lam71,BL76,Bib77] have evolved
from corresponding concepts for security in the pre-IT world of documents and
safes. However, these models were found to have certain deficiencies when used
in the context of IT-systems [Lam73,McL85]. These observations have led to the
development of alternative approaches that are preferable for the specification
of security requirements, in particular, the noninterference approach [GM82].
In this approach, confidentiality or integrity requirements are specified as re-
strictions on the allowed flow of information. The noninterference approach has
subsequently been elaborated in order to better deal with nondeterminism, in-
transitive information flow, and compositional system development. This has led
to a large collection of security properties based on the idea of secure information
flow (e.g. [Sut86,McC87,JT88,GN88,O’H90,McL94a,FG95,Ros95,ZL97]). This is
the class of security properties on which we focus in this article. For a unified
perspective on these properties, we employ MAKS, the “Modular Assembly Kit
for Security” [Man00a]. MAKS is a framework for the uniform representation of
information flow properties that already has been employed for the comparison of
information flow properties, for handling intransitive information flow [Man01a],
and for the derivation of verification techniques [Man00b] as well as of techniques
for stepwise system development [Man01b,Man02]. However, in this article we
employ MAKS for a different purpose, i.e. to simplify the construction of generic
security models in practice. For this purpose, we integrate the basic concepts of
MAKS into an existing general-purpose tool for formal methods, the “Verifica-
tion Support Environment 2” (abbreviated by VSE) [AHL+00]. Conceptually,
the result of our integration can be viewed as a library of VSE specifications
that simplifies the construction of formal security models. We also describe pro-
cedures that can be used to translate the application-specific parts of a security
model from well known general specification formalisms into the VSE specifica-
tion language. Hence, our integration into VSE goes beyond a mere library in
the sense that we also set up an infrastructure for a simple use of this library.

This article is structured as follows. In Sect. 2, the historical development
of security models for IT-systems is reviewed from early concepts to the con-
cept of secure information flow. The basic concepts of MAKS are recalled in

454 Heiko Mantel and Axel Schairer

Sect. 3. In Sect. 4, it is described how to automatically translate system speci-
fications based on pre- and postconditions into event-based specifications in the
VSE specification language. How the modular representation of information flow
properties in MAKS can be supported in the VSE system is described in Sect. 5.
This modular representation also allows one to construct large parts of proofs
of information flow properties in a generic way such that they can be used for
different applications as described in Sect. 6. We conclude in Sect. 7.

2 Generic Security Models

2.1 Security Concepts from the World of Documents and Safes

Early approaches to specify security requirements have been based on concepts
that were originally developed for security in the pre-IT world of documents and
safes. Organizational and military security requirements usually involved the
protection of valuable objects like, e.g., classified documents, from unauthorized
accesses or modifications by human beings. Abstractly, security requirements of
this kind can be formalized as relations between subjects, objects, and access
rights where a subject s (e.g. a person) has a particular access right a (e.g. the
authorization for modifications) for a given object o (e.g. a document) if the
access relation holds for the triple (s, a, o). The access relation can be viewed
as an access matrix, i.e. a matrix in which rows and columns are, respectively,
associated with subjects and objects and the entries consist of sets of access
rights. A subject is authorized for a particular access to an object if and only if
the respective access right is listed in the corresponding entry of the matrix.

Since the basic concepts of access control have obvious counterparts in the
world of documents and safes, access control models are quite easy to understand.
However, transferring concepts from the world of documents and safes into the
world of IT-systems is only possible to a limited extent. Access control has some
serious shortcomings when being used to model security requirements for IT-
systems. Let us briefly review some of these well-known shortcomings.

Determining all relevant subjects and objects in an IT-system is not as simple
as it might seem at first sight. Experience has shown that this is an error prone
task. E.g., the program counter is an object that is easily forgotten [McL94b].
However, objects that are not considered by the access control might lead to so
called covert channels [Lam73], i.e. undesired communication channels that can
be exploited by malicious programs like computer viruses or Trojan horses. More-
over, concrete accesses have to be mapped correctly to abstract access rights.
However, in an IT-system, subjects access objects in many different and, some-
times, quite subtle ways. Therefore, determining a correct mapping is some-
times nontrivial [McL90]. Furthermore, it is common practice to permit certain
so called trusted processes that need not obey the rules of the access control.
Hence, these processes must be trusted. However, verifying the trustworthiness
of these processes is outside the scope of access control. Finally, access rights are
not static. Rather, in many cases, access rights change dynamically over time.
However, a security-preserving management of these changes is error prone. A

Exploiting Generic Aspects of Security Models in Formal Developments 455

famous example for this kind of problem is McLean’s system Z [McL85,McL87]
that pointed to a shortcoming of the well known Bell/LaPadula model [BL76].

These (and other) shortcomings of access control models have been the mo-
tivation for the development of security models that are based on the idea of
secure information flow rather than on access control.

2.2 The Idea of Noninterference

Modeling security requirements as abstract restrictions on the allowed flow of
information is a very elegant approach. In order to verify that a system complies
with restrictions of this kind, it is necessary to formally define what information
flow means. Various information flow properties have been proposed for this
purpose. The information flow properties on which we focus in this article can all
be regarded as descendants of Goguen and Meseguer’s noninterference [GM82].
Intuitively, a group of processes is noninterfering with another group if the
actions of the first group have no effect on the observations of the second group.
Information flow properties can be used to model confidentiality requirements
according to the following observation:

If a group of processes is noninterfering with another group then the first
group cannot reveal any secrets to the second group.

Although information flow properties are more popular for modeling confidential-
ity requirements, they can also be used to model integrity requirements because:

If a group of processes is noninterfering with another group then the
integrity of the second group cannot be corrupted by the first.

The intuitive idea of noninterference is quite appealing. However, the original for-
mal definition of noninterference had two shortcomings: first, the system model
underlying this definition is inadequate for nondeterministic systems and, sec-
ond, noninterference is too restrictive wrt. intransitive information flow. To cope
with nondeterminism is necessary when, e.g., investigating distributed systems
or systems with random events and to cope with intransitive information flow is
necessary for common features of secure systems like, e.g., information filters or
explicit downgrading. Therefore, the two shortcomings of the original definition
were quite severe and much research has aimed at overcoming them without
dropping the appealing intuitive idea that underlies noninterference.

2.3 State of the Art in Research on Information Flow Properties

Starting with Sutherland’s nondeducibility [Sut86], numerous information flow
properties have been proposed that can be regarded as descendants of noninter-
ference but that are more suitable for nondeterministic systems than noninter-
ference (e.g. [McC87,JT88,GN88,WJ90,O’H90,McL94a,FG95,Ros95,ZL97]). In
order to simplify their application, most of these information flow properties are
based on possibilistic system models that describe systems in terms of their pos-
sible executions without considering the probabilities of these executions (in con-
trast to more complex probabilistic models). Variants of noninterference that are

456 Heiko Mantel and Axel Schairer

suitable for dealing with intransitive information flow have been suggested in
[HY87,Rus92,Pin95,RG99] for deterministic systems and in [Man01a] for nonde-
terministic systems1. The verification of information flow properties also has re-
ceived considerable attention. Usually, a technique called unwinding is employed
in the verification of these properties. Unwinding of noninterference was first sug-
gested in [GM84] and subsequently has been refined as well as extended to other
information flow properties [HY87,Rya91,Rus92,Mil94,Pin95,Zak96,Man00b].
Another important research topic has been the preservation of information flow
properties under stepwise development, i.e. under composition and refinement.
The known compositionality results constitute one of the main strengths of this
approach [McC87,JT88,Rya91,McL94a,FG95,RW95,ZL98,Jür00,Sch01,Man02].
For many information flow properties it is known whether they, in general, are
preserved under compositions or not. For some of the properties that are not
preserved in general, it is known how composition can be restricted in order to
preserve these properties. In contrast to this, most information flow properties
that are adequate for nondeterministic systems are not preserved under trace
refinement [Jac89,Rya91,McL92]. This observation is often referred to as the re-
finement paradox. However, technically, it is an immediate consequence of the
fact that information flow properties are properties of sets of traces [McL94b].
A solution to circumvent the refinement paradox is to admit only restricted
forms of trace refinement by refinement operators [Man01b]. Information flow
properties are generic concepts for modeling confidentiality and integrity re-
quirements. However, to date, the application of information flow properties has
mostly focused on specifying and verifying security requirements of operating
systems [SRS+00] and on protocol verification [FGG97,FGM00].

Several comparisons of possibilistic information flow properties have been
performed in order to better understand these properties and their relation to
each other [McL94a,FG95,ZL97,RS99,Man00a]. Some of these comparisons have
been simplified by the use of frameworks for the uniform representation of in-
formation flow properties.

3 Modular Assembly Kit for Secure Information Flow

In this article, we employ one of these frameworks, the “Modular Assembly
Kit for Security” (abbreviated by MAKS), that has been previously proposed
by one of the authors in [Man00a] and subsequently extended by verification
techniques [Man00b], concepts for intransitive information flow [Man01a], and
foundations for the stepwise development of secure systems [Man01b,Man02].

In MAKS, an information flow property is represented by two elements: a
flow policy and a security predicate. The purpose of the flow policy is to define
the application-specific restrictions on the allowed flow of information. Thereby,
confidentiality and integrity requirements can be expressed. The security predi-
cate gives these restrictions a precise formal semantics. A specialty of MAKS is
that security predicates are represented in a modular way, i.e. as the conjunction
1 The approach in [RG99] can cope with some but only very limited nondeterminism.

Exploiting Generic Aspects of Security Models in Formal Developments 457

specification

system

domain assignment

information flow property
proof

satisfies

event systems

from BSPs
assembled

flow policy
security predicate

Fig. 1. Structure of a security model based on MAKS.

of basic security predicates (abbreviated by BSPs). An information flow prop-
erty can be connected to a given system specification by means of a domain
assignment. For the specification of systems, MAKS assumes a trace-based sys-
tem model, i.e. event systems [JT88], that can be regarded as a descendant
of Hoare’s trace-semantics for the process algebra CSP [Hoa85]. The resulting
structure of a security model based on MAKS is summarized in Fig. 1.

3.1 System Specifications

The behavior of a system can often be adequately specified by the set of its
possible execution sequences. We follow this trace-based approach throughout
this article. A trace is a sequence of events that models one possible execution.
An event is an atomic action like, e.g., sending or receiving a message. For
a given system, we distinguish between input, output, and internal events. The
underlying intuition is that input events are controlled by the environment while
output and internal events are controlled by the system. When a system is
capable to prevent occurrences of input events, then this can be regarded as
a signal to the environment. To avoid this kind of communication, input totality
is often assumed, i.e. that a system cannot prevent occurrences of input events.
Since input totality is quite restrictive, we refrain from making this restriction
a general assumption in this article.

The system model that we employ is that of event systems [JT88]. An event
system ES is a quadruple (E, I, O, Tr) where E is a set of events, I, O ⊆ E,
respectively, are the sets of input and output events, and Tr ⊆ E∗ is the set of
possible traces, i.e. a set of finite sequences over E. Each trace τ ∈ Tr models
a possible behavior of ES. The set Tr must be closed under prefixes, i.e. any
prefix of a trace in Tr must also be contained in Tr. Event systems allow for
the specification of nondeterministic systems where nondeterminism is reflected
by the choice between different events. Event systems constitute a possibilistic
system model that abstracts from probabilities.

3.2 Security Properties

Security requirements can be expressed as restrictions on the allowed flow of
information within a system. To express confidentiality or integrity by such re-
strictions is the key idea of information flow control. In MAKS, the specification
of an information flow property consists of a flow policy and a security predicate.

A flow policy FP is a tuple (D, �V , �N , ��) that specifies restrictions on
the information flow within a system where D defines a set of security domains,

458 Heiko Mantel and Axel Schairer

the relations �V , �N , ��⊆ D×D must form a disjoint partition of D×D, and
�V must be reflexive. Typical security domains denote, e.g., groups of users,
collections of files, or memory sections. The noninterference relation �� specifies
where information flow between domains is forbidden. E.g., D1 �� D2 expresses
that information must not flow from D1 to D2. The interference relation �V

specifies that activities of certain domains are directly visible for others. E.g.,
D1 �V D2 expresses that activities of D1 are visible for D2. Finally, the relation
�N specifies between which domains information flow is not restricted. E.g.,
D1 �N D2 expresses that we do not care if information about D1 is deducible
for D2. However, activities of D1 must not be visible for D2 (in contrast to �V).
Note that for any two domains either D1 ��D2, D1 �V D2, or D1 �N D2 holds
because �V , �N , ��⊆ D×D is a disjoint partition of D×D. If �V is a transitive
relation then FP is called transitive and, otherwise, intransitive. In this article,
we will only consider transitive flow policies.

A domain assignment is a function dom : E → D that assigns domains to
events. Thereby, a domain assignment links an information flow property to a
system specification. We often leave dom implicit and denote the set of all events
that are associated with a given domain D also by D, the name of the security
domain. We also use that name in lower case, possibly with indices or primes,
e.g., d, d1, . . ., to denote events with that domain.

Flow policies can be depicted as graphs where each node corresponds to
a security domain. The relations �V , �N , and �� are, respectively, depicted
as solid, dashed, and crossed arrows. For the sake of readability, the reflexive
subrelation of �V is usually omitted. This graphical representation is illustrated
in Fig. 2 for the flow policies FPLH and FPLHI. FPLH consists of two domains H
(high-level events) and L (low-level events). According to FPLH, occurrences of
low-level events may be visible for the high-level domain (L �V H). Occurrences
of high-level events must not be visible to L and, moreover, no information
about such occurrences must be deducible for L (H �� L). The flow policy FPLHI

results from FPLH by splitting the high-level domain into two domains HI (high-
level input events) and H\HI (high-level internal and output events). The main
difference to FPLH is the dashed arrow from H\HI to L. While occurrences of
high-level inputs must not be deducible for the low-level (HI �� L), we do not
care if information about occurrences of other high-level events is deducible for
the low-level (H\HI �N L).

The view VD = (V, N, C) for a domain D ∈ D in FP under dom is a disjoint
partition of E that is defined by V = {e ∈ E | dom(e) �V D}, N = {e ∈ E |
dom(e) �N D}, and C = {e ∈E | dom(e) �� D}. Consequently, V contains all
events that are visible for D, C contains all events confidential for D, and N
contains all events neither visible nor confidential for D. The views of all domains
in FPLH and FPLHI are depicted in Fig. 2. Among these, only the views of the
low-level domain L are interesting because they give rise to nontrivial proof
obligations. We abbreviate the view of L in FPLH and FPLHI by, respectively,
VLH

L (L visible, H confidential) and VLHI
L (L visible, H ∩ I confidential).

Exploiting Generic Aspects of Security Models in Formal Developments 459

FPLH

L

H
D VLH

D

H (E, ∅, ∅)
L (L, ∅,H) = VLH

L

FPLHI

HI

L

H\HI D VLHI
D

HI (E, ∅, ∅)
H\HI (E, ∅, ∅)

L (L,H\HI,HI) = VLHI
L

Fig. 2. The flow policies FPLH and FPLHI and the views of all domains.

3.3 Basic Security Predicates

Recall that an information flow property is defined by a flow policy FP and a
security predicate SP. We say that an event system satisfies an information flow
property (FP, SP) wrt. a domain assignment dom if SP holds for the view V
(denoted by SPV(Tr)) of every domain in FP under dom. In MAKS, security
predicates are composed by conjunction from one or more BSPs , i.e. SPV(Tr)
holds if BSPV(Tr) holds for every BSP from which SP is composed.

BSPs are closure properties on sets of possible traces. Intuitively, a BSP
expresses that there are sufficiently many possible traces such that an adversary
cannot deduce confidential information of a particular kind (depending on the
respective BSP). Various BSPs have been developed, however, for the purposes
of this article, we focus only on three of these BSPs , i.e. BSD, BSI, and BSIA
(cf. Fig. 3) and refer the interested reader to [Man00a,Man01a,Man02] for a
larger collection of BSPs .

For example, BSDV(Tr) (abbreviates Backwards Strict Deletion) demands
that for every possible trace β.〈c〉.α with c ∈ C and α|C = 〈〉 there is another
possible trace β.α′ where α′ may differ from α only in N -events2. Note that
β.α′ results from β.〈c〉.α by deleting the last confidential event c (hence the
term “deletion” in the name of the BSP) and possibly adapting N -events in α
(but not in β – hence the term “backwards strict”). The requirement BSDV(Tr)
can be read as: the occurrence of a confidential event must not add possible
V-observations. Thus, the security guarantee provided by BSD is: adversaries
cannot deduce from any V-observation that a confidential event c has occurred.

BSIV(Tr) (Backwards Strict Insertion) demands that for every confidential
event c ∈ C and every possible trace β.α with α|C = 〈〉 there is another possible
trace β.〈c〉.α′ where α′ may differ from α only in N -events. Note that β.〈c〉.α′

results from β.α by inserting c (hence the term “insertion” in the name of
the BSP) and possibly adapting N -events in α. The requirement BSIV(Tr) can
be read as: the occurrence of a confidential event must not remove possible V-
observations. Thus, the security guarantee provided by BSI is: adversaries cannot
deduce from any V-observation that a confidential event c has not occurred.

The definition of BSIAρ
V(Tr) (BackwardsStrict Insertion ofAdmissible events)

differs from the definition of BSIV(Tr) only in that the additional assumption

2 The projection α|X of α to X ⊆ E results from α by deleting all events not in X.

460 Heiko Mantel and Axel Schairer

BSDV(Tr) ≡ ∀α, β ∈ E∗. ∀c ∈ C.
((β.〈c〉.α ∈ Tr ∧ α|C = 〈〉)

=⇒ ∃α′ ∈ E∗. (β.α′ ∈ Tr ∧ α′|V = α|V ∧ α′|C = 〈〉))

BSIV(Tr) ≡ ∀α, β ∈ E∗. ∀c ∈ C.
((β.α ∈ Tr ∧ α|C = 〈〉)

=⇒ ∃α′ ∈ E∗. (β.〈c〉.α′ ∈ Tr ∧ α′|V = α|V ∧ α′|C = 〈〉))

BSIAρ
V(Tr) ≡ ∀α, β ∈ E∗. ∀c ∈ C.

((β.α ∈ Tr ∧ α|C = 〈〉 ∧Admρ
V(Tr, β, c))

=⇒ ∃α′ ∈ E∗. (β.〈c〉.α′ ∈ Tr ∧ α′|V = α|V ∧ α′|C = 〈〉))

Fig. 3. Formal definitions of three basic security predicates.

Admρ
V(Tr, β, c) is made (cf. Fig. 3) that is defined by Admρ

V(Tr, β, c) := ∃γ ∈
E∗.(γ.〈c〉 ∈ Tr ∧ γ|ρ(V) = β|ρ(V)) where ρ is a function from views in E to
subsets of E. I.e. Admρ

V(Tr, β, c) expresses that there is some trace γ that has
the same projection for the events in ρ(V) as β and after that c is enabled. The
motivation behind assuming ρ-admissibility in the definition of BSIA is to avoid
a restriction to systems that behave chaotically in the set of confidential events:
if BSIV(Tr) holds then all confidential events must be enabled at any point
of time. Hence, BSI can only be fulfilled by a system that behaves chaotically
in the set C of confidential events, obviously a quite restrictive requirement.
The security guarantee provided by BSIAρ is: adversaries cannot deduce from
any V-observation that a ρ-admissible confidential event c has not occurred.
Consequently, the guarantee provided by BSIAρ is slightly weaker than the one
provided by BSI.

3.4 Representing Known Security Properties

MAKS is expressive enough to represent the most important (possibilistic) infor-
mation flow properties that have been suggested for trace-based system models
over the last 20 years. The information flow properties that have been represented
in MAKS include generalized noninterference [McC87], forward correctability
[JT88], nondeducibility on outputs [GN88], noninference [O’H90,McL94a], gen-
eralized noninference [McL94a], separability [McL94a], and the perfect security
property [ZL97]. For a detailed description on how to represent these properties
in MAKS, we refer the interested reader to [Man00a,Man02]. Here, we illustrate
the representation of information flow properties in MAKS with two examples:

For example, generalized noninterference [McC87] can be specified in MAKS
by choosing FPLHI as flow policy (cf. Fig. 2) and the conjunction of BSD and BSI
as security predicate. Separability [McL94a,ZL97] can be represented in MAKS
by choosing FPLH as flow policy and the conjunction of BSD and BSIAρC as
security predicate (where ρC(V) = C for any view V = (V, N, C)).

The modular representation of known information flow properties in MAKS
reduces reasoning about complex information flow properties to reasoning about
simpler BSPs and also provides a uniform perspective on the represented proper-

Exploiting Generic Aspects of Security Models in Formal Developments 461

BSDVLH
L

(Tr) ∧ BSIVLH
L

(Tr)

separability forward correctability

nondeducibility on outputs

perfect security property

noninference generalized noninterference

generalized noninference

Fig. 4. Ordering of Existing Security Properties by Implication.

Specification
Development
Graph

Theorem
Prover

VSE

Spec
VSE−SL

Translation
ProgramUser Input

Fig. 5. Integration into VSE (architecture).

ties. Since the various information flow properties differ only in subtle technical
details that are not immediately obvious from the original definitions of these
properties, the representation in MAKS has simplified the comparison of these
properties. Among other insights, this has led to a taxonomy of known informa-
tion flow properties and to new information flow properties. Figure 4 illustrates
the ordering of information flow properties by implication that was derived based
on MAKS [Man02]. The top node is a novel information flow property.

4 Event-Based Specifications in VSE

In order to exploit generic security models in practice, tool support for formal
modeling and verification is needed. We use the general specification and verifi-
cation tool Verification Support Environment (VSE) [AHL+00]. Since VSE is a
general-purpose tool, it does not directly support specification and verification
of event systems and information flow properties as they are assumed by MAKS.
We mitigate this by providing a library of generic specifications and by translat-
ing application-specific system and property descriptions into a form that can
be used directly in VSE, cf. Fig. 5. This way, we are able to depend on all the
support for formal modeling and verification that VSE offers while retaining the
concepts of MAKS.

VSE’s specification language, VSE-SL, supports axiomatic specifications of
abstract datatypes, refinement of abstract datatypes using an imperative, Pascal-
like programming language, and specification of concurrent reactive systems us-
ing temporal logic. In order to handle large specifications, specifications can be
structured, their structure being represented in a development graph. Nodes in

462 Heiko Mantel and Axel Schairer

a development graph represent parts of the specification, e.g. theories. Links
between nodes in the graph represent either definitorial relationships, e.g. exten-
sions of one theory by another one, or postulated relationships, e.g. one theory
satisfying another one. For postulated relationships, proof obligations are gen-
erated mechanically. Tool support for verifying these proof obligations formally
is provided by VSE, i.e. the verification component includes a theorem prover.
The relationship between specification, proof obligations, and proofs is kept book
of by VSE’s correctness management, which takes care that, e.g., lemmata are
verified before a proof using the lemma is considered complete.

We formalize systems and information flow properties in VSE using VSE’s
abstract datatypes. Rather than specifying the set of possible traces of an event
system directly in the form described in Sect. 3, we use an indirect approach:
we specify a state machine, i.e. a state-event system, that generates the possible
traces.

A state-event system SES is a tuple (S, s0, E, I, O, T) where S is a set of
states, s0 ∈ S is the initial state, E is a set of events, I, O ⊆ E are the sets of
input and output events, respectively, and T ⊆ S×E×S is a transition relation.
For each s ∈ S and e ∈ E there must be at most one s′ ∈ S with (s, e, s′) ∈ T ,
i.e. T is the graph of a (partial) function of type S × E ↪→ S. For multi-event
transitions we use the notation s

τ=⇒T s′ where τ ∈ E∗ is a finite sequence of

events. The relation τ=⇒T is defined by s
〈〉

=⇒T s′ iff s = s′ and s
〈e〉.τ
=⇒T s′ iff there

is an s′′ ∈ S such that (s, e, s′′) ∈ T and s′′
τ=⇒T s′. If the transition relation T

is obvious from the context then we omit it as index and just write s
τ=⇒ s′. We

say that a state s ∈ S is reachable for the state-event system SES iff s0
τ=⇒ s for

some τ ∈ E∗, denoted by reachable(s). A sequence of events τ ∈ E∗ is enabled
in a state s ∈ S, denoted by enabled(s, τ), iff there exists a state s′ ∈ S such
that s

τ=⇒ s′ holds.
A sequence τ ∈ E∗ of events is a possible trace of a state-event system SES

if it is enabled in the initial state, i.e. if there is a state s ∈ S for which s0
τ=⇒ s

holds. The set of all traces that are possible for SES is denoted by TrSES. We
omit the index and simply write Tr if the state-event system is obvious from
the context. Consequently, every state-event system SES = (S, s0, E, I, O, T)
induces an event system ESSES = (E, I, O, TrSES).

State-event systems are specified as abstract datatypes in VSE. Specifying a
given state-event system in VSE-SL, VSE’s specification language, involves the
specification of several concepts. In particular these include the concrete set of
states S, set of events E, sets of input and output events I and O, respectively,
initial state s0, and transition relation T . Other concepts that need to be specified
include event sequences, τ=⇒, reachable, enabled, and TrSES. In principle, all these
could be specified by the user in VSE-SL directly. However, in order to make life
easier for the user, we support a more convenient syntax for state-event systems.
A translation program is provided to translate from this syntax into VSE-SL,
cf. Fig. 5. The benefit of this approach is that the user can concentrate on the
domain-specific aspects, e.g. the transition relation, without having to bother
with our encoding of state-event systems into VSE-SL.

Exploiting Generic Aspects of Security Models in Formal Developments 463

The behavior of a given system is modeled by the transition relation T of
the state-event system. In the next section we introduce a convenient notation
for specifying a transition relation. This syntax is supported by the translation
procedure.

4.1 Pre/Postcondition-Statements

Pre/postcondition-statements (abbreviated by PP-statements) can be used to
specify the transition relation of a state-event system. PP-statements presume
a specific notion of state, i.e. that a state is a mapping from state variables to
values. Given a set E of events and a set VAR = {var1, . . . , varn} of n distinct
variables, a PP-statement Stat restricts the possible transitions for some event
ei ∈ E based on the notation

ei affects varj1 , . . . , varjk

Pre : P (var1, . . . , varn)
Post : Q(var1, . . . , varn, var′1, . . . , var′n)

(1)

where 1 ≤ jl ≤ n (1 ≤ l ≤ k). The affects slot specifies that an occurrence
of ei may only affect the value of state variables in varj1 , . . . , varjk

. The values
of all other state variables remain unchanged when ei occurs. The precondition
slot of the PP-statement specifies that ei is only enabled in states for which
the condition P is satisfied. P must be a first-order logic formula that contains
no primed state variables and the postcondition Q must be a first-order logic
formula that may contain primed as well as unprimed state variables. Using
primed variables other than varj1 , . . . , varjk

in Q is not ruled out but should be
avoided for reasons that will be explained later.

The semantics of PP-statements is given by a translation into higher-order
formulas. The above PP-statement Stat translates into the following formula
where the free variables s, e, s′ are implicitly universally quantified:

(s, e, s′) ∈ TStat ⇐⇒ [e=ei ⇒ (∀var /∈ {varj1 , . . . , varjk
}. s(var) = s′(var)

∧ P (s(var1), . . . , s(varn))
∧Q(s(var1), . . . , s(varn), s′(var1), . . . , s′(varn))]

Hence, each PP-statement Stat in a specification specifies a respective transition
relation TStat ⊆ S×E×S. According to the above formula, a transition (s, ei, s′)
complies with TStat if and only if all frame axioms hold for s, s′ (values of vari-
ables not in varj1 , . . . , varjk

remain unchanged), the precondition P holds for s,
and the postcondition Q holds for s, s′. For all events besides ei, TStat permits
arbitrary transitions, i.e. ∀e ∈ E. ∀s, s′ ∈ S. (e �= ei =⇒ (s, e, s′) ∈ TStat). Note
that using primed state variables other than varj1 , . . . , varjk

in the postcondition
Q may lead to a contradiction with the frame axioms. This is the reason why all
primed variables that occur in Q should be listed in the affects slot.

The pre-/postcondition-specification (abbreviated by PP-specification in the
following) of a transition relation consists of a set Spec of PP-statements. In
practice, a PP-specification usually contains exactly one PP-statement for every

464 Heiko Mantel and Axel Schairer

event in E.3 The semantics of a PP-specification Spec is given by the following
translation into a higher-order formula:

(s, e, s′) ∈ TSpec ⇐⇒
∧

Stat∈Spec
(s, e, s′) ∈ TStat

I.e. a transition (s, e, s′) complies with the transition relation TSpec specified by
a PP-specification Spec if and only if it complies with each transition relation
TStat specified by some PP-statement Stat in Spec.

Remark 1. For notational convenience, we permit the use of place holders in
PP-statements. A parametric PP-statement for a list x1, . . . , xm of (typed) place
holders has the following form:

ei(x1, . . . , xm) affects varj1 , . . . , varjk

Pre : Px1,...,xm(var1, . . . , varn)
Post : Qx1,...,xm(var1, . . . , varn, var′1, . . . , var′n) .

As usual, parametric PP-statements denote the set of all grounded PP-statements
that are (type correct) instantiations of these parametric statements.

Example 1. In Fig. 6, a syntactic specification with parametric PP-statements
is illustrated. The state-event system denoted by this specification models a
random generator that can output any sequence of natural numbers (events
out(n)) before it terminates (event term). Possible traces of this system have the
form 〈out(n1) . . . out(nm)〉.〈term〉 or 〈out(n1) . . . out(nm)〉 (respectively models
that the sequence n1.nm has been output and that the system has or has not
terminated). The dash in the affects slot of the PP-statement for out indicates
the empty list of state variables, i.e. occurrences of out do not affect any state
variables. �

4.2 Translation into VSE-SL

Our approach provides a translation of user input from a convenient, special
purpose language into VSE’s general specification language. The user input to
the translation program includes the system specification, a description of the
system’s postulated security property, and auxiliary information for the verifica-
tion. This is visualized in Fig. 7, where the high-level structure of the resulting
specification is shown as a development graph, i.e. VSE’s representation of struc-
tured specifications. In this section, we are only concerned with the translation of
the system specification, i.e. the subgraph labeled “system” in the figure. Other
aspects will be described later: Section 5 deals with the postulated security prop-
erty, while the verification is described in Sect. 6.
3 If there are multiple PP-statement for some event e ∈ E then these PP-statements

can be merged by (1) conjoining the preconditions by conjunction, (2) conjoining
the postconditions by conjunction, and (3) intersecting the lists in the affects-slots.
In order to avoid chaotic behavior, a PP-specification should contain at least one
PP-statement for each event e ∈ E because, otherwise, this event would be always
enabled and could lead to arbitrary successor states.

Exploiting Generic Aspects of Security Models in Formal Developments 465

S = {(state) !→ (s) | s ∈ {r, t}} , running/terminated

s0 = (state) !→ (r)

E = {out(n) | n ∈ N} ∪ {term}
I = ∅
O = {out(n) | n ∈ N}
T ⊆ S × E × S

term affects state

Pre : state = r
Post : state = t

out(n) affects —
Pre : state = r
Post : True

Fig. 6. Specification of the random generator by pre- and postconditions.

The essential concepts of a state-event system are specified in a structured
way, cf. the right hand side of Fig. 8. The state space S is specified in theory
State, the set of events E in Event, initial state s0 and transition relation T in
TransInit, and the set of input and output events I and O in theory InOut.
The theory StateEventSystem collects together the other specifications and
represents the state-event system as a whole.

The state space S is modeled in VSE-SL as a freely generated datatype state
in theory State, i.e.

TYPE state = FREELY GENERATED BY mk state(var1 : T1, . . . , varm : Tm)

where varj : Tj is a selector of type Tj. For a given state s: state, varj(s)
denotes the value of the j-th variable in s. Since we have to quantify over states
and VSE does not support higher-order quantification, we use this notation
rather than the functional notation s(varj) that we used in Sect. 4.1. However,
the two approaches are equivalent.

The definition of state depends on the user input. The sequence of typed
state variables var1 : T1, . . . , varm : Tm is given by the user. This presupposes
that the types Ti (1 ≤ i ≤ n), which are application specific, have been specified
by the user. Their definitions are imported by the theory State. To this effect,
a set of application-specific theory names is given in the translation input, and
these theories are imported by the relevant theories generated by the translation,
cf. the lower right part of Fig 8.

The set of events E is also modeled as a freely generated datatype event in
Event. Its definition includes a constructor for each event, i.e.

TYPE event = FREELY GENERATED BY · · · | ei(sel1 : T ′
1, . . . , selm : T ′

m) | · · ·
for a parametric event ei(x1 : T ′

1, . . . , xm : T ′
m), where the names selj of the

selectors are constructed from the name ei of the event and the names of the
place holders, i.e. xj , to avoid name conflicts when the same place holder is used
in several events. The set of events is extracted from the PP-statements in the
user input.

466 Heiko Mantel and Axel Schairer

information
flow system

. . .

. . .

generic

BSP Library

Domain specific theories

generated

User input

− BSP/preord spec

− State spec
− Initial State spec
− PP spec
− Policy spec

Translation

Development Graph

Fig. 7. Generation of the development graph for the overall specification.

EventState

PP Spec

Initial State
Spec

Domain specific
theory names

State Spec

Trans
Init

InOut

System
StateEvent

Domain specific theories

Fig. 8. Application-specific input and output for generating the system specification.

The transition relation T is modeled as a relation T in TransInit. T is defined
in terms of the relations pre and post by the following equivalence:

ALL s1, e, s2: T(s1, e, s2) <-> (pre(s1, e) AND post(s1, e, s2))

where the first-order formula T(s1,e,s2) corresponds to (s1,e,s2)∈T in Sect. 4.1.
For each PP-statement

ei(x1 : T ′
1, . . . , xm : T ′

m) affects varj1 , . . . , varjk

Pre : Px1,...,xn(var1, . . . , varn)
Post : Qx1,...,xn(var1, . . . , varn, var′1, . . . , var′n) .

in the user input, one axiom for each of pre and post, respectively, is added to
TransInit as follows:

Exploiting Generic Aspects of Security Models in Formal Developments 467

pre(s1, ei(x1, . . . , xm)) <-> P̃

post(s1, ei(x1, . . . , xm), s2) <-> Q̃ AND U

P̃ and Q̃ are generated from Px1,...,xn and Qx1,...,xn by substituting vari(s1) for
vari and vari(s2) for var′i. U is a conjunction of frame axioms varl(s1) = varl(s2)
for each l �∈ {j1, . . . , jk}, i.e. for each state variable that is not listed in the
affects slot of the PP-statement. The translation checks that there is exactly
one PP-statement for each parametric event ei(x1, . . . , xm).

The initial state s0 is modeled as a predicate initialstate(s) <-> R̃,
where R̃ is generated from a formula R that is part of the user input by substi-
tuting vari(s) for vari. Note that our definition of state-event systems in Sect. 3.1
requires there to be at most one initial state, and at most one successor state for
any given state and event. These properties are not checked here but are verified
as part of the verification process, cf. Sect. 6.2.

The sets of input events I and output events O are formalized by predicates
input and output, respectively, in InOut. For each input event ei(x1, . . . , xm),
axioms input(ei(x1, . . . , xm)) and NOT output(ei(x1, . . . , xm)) are added to
InOut, and similar for output and internal events. Whether an event ei is an
input, output, or internal event is specified in the user input as an annotation
to the PP-statement for ei.

Remark 2. The translation of PP-statements into first-order axioms preserves
the semantics of the transition relation given in Sect. 4.1. Recall that there is
a one-to-one correspondence between states as assumed in Sect. 4.1 and states
as defined in this section. Assuming that s1 and s2 correspond to s1 and s2,
respectively, (s1, e, s2) ∈ T holds iff T(s1, e, s2) holds. The proof of this fact is
outside the scope of this paper, however. It depends on the fact that there is
exactly one parametric PP-statement per parametric event.

This concludes the description of the details of the translation of system
descriptions into VSE-SL. The translation from a compact user input reduces
the effort needed to formulate the system specification. It also makes changing
the system specification easier: changing, e.g., an event description necessitates
consistent changes to event, pre, post, input, and output, which is taken care
of by the translation procedure (rather than by the user).

5 Assembling Security Properties in VSE

We will now describe how security properties are formalized in VSE and how they
are related to the system model. Like the system specification, the specification of
the security property is generated from user input by the translation procedure.

In MAKS, a security property consists of a flow policy and a security predi-
cate and is linked to the system by a domain assignment dom. In VSE, a flow pol-
icy (D, �V , �N , ��) is formalized as a datatype domain that represents D and
predicates interferesV, interferesN, and noninterferes that model �V ,
�N , and ��, respectively. The definition for domain is constructed from the set
of domains given by the user input. The relations interferesV, interferesN,

468 Heiko Mantel and Axel Schairer

and noninterferes are specified explicitly as part of the user input to the trans-
lation and the specification is integrated into the generated VSE development
graph4. Restrictions on the relations forming the flow policy are verified as part
of verifying the information flow property, cf. Sect. 6.2.

The domain assignment function dom is modeled by a function dom that
maps events to domains. In a system description, each parametric PP-statement
for events e(x1, . . . , xm) is annotated with the domain D to which e-events are
mapped. From this annotation an axiom dom(e(x1, . . . , xm)) = D is generated.

A security predicate in MAKS is a conjunction of BSPs , i.e. a system needs
to satisfy each BSP in order to satisfy the overall security predicate. Specific
BSPs from MAKS are predefined in VSE, cf. Fig. 7. The conjunction of BSPs
of a postulated security predicate for a given system is represented in VSE by a
set of postulated links to the effect that the state-event system representing the
system satisfies all BSPs in its security predicate.

As an example for the formalization of a BSP in VSE, we consider the spec-
ification of BSD as defined in Sect. 3.3.

VARS D: domain
AXIOMS all D: BSDof(D)

I.e. BSD has to hold for the view of every domain D. For the view VD = (V, N, C)
of domain D, BSDof is specified as5

BSDof(D) <->
ALL alpha, beta, e:

Cof(D, e)
AND Tr(append(extend(beta, e), alpha))
AND projCof(D, alpha) = empty

-> EX alphaprime:
Tr(append(beta, alphaprime))

AND projVof(D, alphaprime) = projVof(D, alpha)
AND projCof(D, alphaprime) = empty

The specification of BSD , and of BSPs in general, is parametric in the event
system and the flow policy. I.e. the specification of BSD above is a generic spec-
ification and, e.g., Tr and interferesV (used in the specification of projVof)
are parameters. In this way, generic specifications of BSPs can be collected and
can be instantiated for particular applications.

The benefit is that the specification of the flow property is generated me-
chanically from the user input. BSPs are predefined and need not be specified
by users. Users only have to specify the flow policy and which BSPs they want
to use as conjuncts in the security predicate.
4 For the special case of a finite enumeration of domains, the translation program

accepts a very compact description of noninterferes and a subset of interferesV.
It then extends interferesV to the reflexive, transitive closure of the given sub-
set, and defines interferesN such that the three relations form a disjoint union of
domain × domain.

5 Cof(D, e) holds if e ∈ C, projCof(D, α) formalizes α|C , and projVof(D, α) formal-
izes α|V .

Exploiting Generic Aspects of Security Models in Formal Developments 469

6 Verifying Secure Information Flow

Defining information flow properties in terms of whole traces improves the un-
derstandability of these properties. However, for proving them it would be better
to have a more local formulation in terms of single events. This is the idea of
unwinding. Information flow properties are reformulated by local conditions, so
called unwinding conditions, and an unwinding theorem ensures that a proof of
the unwinding conditions implies that the global definition is valid.

In this section, we present unwinding conditions that are appropriate for
verifying BSPs and explain how to integrate unwinding into VSE.

6.1 Modular Unwinding with MAKS

Recall that an information flow property (FP, SP) is satisfied for a given state-
event system SES = (S, s0, E, I, O, T) if SPV(TrSES) holds for the view V of every
domain in FP under the given domain assignment dom. Security predicates are
assembled from more primitive BSPs by conjunction. Consequently, SPV(TrSES)
holds if and only if BSPV(TrSES) holds for each BSP from which SP is assembled.
I.e. based on the modular representation in MAKS, the task to prove a complex
information flow property can be reduced to proving simpler BSPs .

Verifying BSPs by unwinding involves two subtasks. Firstly, for each view
an unwinding relation must be constructed, i.e. a binary relation � : S × S be-
tween states that must have certain properties6. Secondly, unwinding conditions
that involve the chosen unwinding relation must be verified. Which unwinding
conditions have to be verified depends on the particular BSP . For example,
the unwinding conditions for BSD are lrfV(T, �) and oscV(T, �). For a view
V = (V, N, C), these conditions are defined as follows (also cf. Fig. 9):

lrfV(T, �) : ∀s, s′ ∈ S. ∀c ∈ C.
((reachable(s) ∧ (s, c, s′) ∈ T) =⇒ s′ � s)

oscV(T, �) : ∀s1, s′1, s′2 ∈ S. ∀e ∈ V ∪N.
[(reachable(s1) ∧ reachable(s′1) ∧ s′1 � s1 ∧ (s′1, e, s′2) ∈ T)
⇒ ∃s2∈S. ∃δ∈E∗. (δ|C =〈〉 ∧ δ|V =〈e〉|V ∧ s1

δ=⇒T s2 ∧ s′2�s2)]

Roughly, the unwinding condition osc demands that if s′1 � s1 holds, then every
event e ∈ V ∪ N that is enabled in s′1 must also be enabled in s1. Moreover,
the resulting states s′2 and s2 must also be related by �. These properties can
be extended to sequences of events by an inductive argument. Consequently,
s′1 � s1 can be read as: every V-observation that is possible in s′1 is also possible
in s1. The unwinding condition osc is not specific to BSD. Rather, the purpose
of osc is to ensure that a sensible unwinding relation has been chosen. The other

6 Traditionally, only equivalence relations have been employed for unwinding. How-
ever, a restriction to equivalence relations is not only unnecessary but is quite re-
strictive. Rather, pre-orders, i.e. relations that are reflexive and transitive but not
necessarily symmetric, can be used as unwinding relations [Man00b].

470 Heiko Mantel and Axel Schairer

lrfV(T, �): oscV(T, �):

s s′
c

�

s′1 s′2

s1 s2

e

δ

� �

where c ∈ C, e ∈ V ∪N , and δ ∈ (N ∪ V) with δ|V = 〈e〉|V

Fig. 9. Unwinding conditions for BSD .

unwinding condition, i.e. lrf, however, is specific to BSD. lrf demands that the
state s′ after the occurrence of some confidential event c must be related to the
state before this event has occurred, i.e. s′ �s. From our above understanding of
�, we obtain that all observations possible in s′ (after c has occurred) must also
be possible in s (before c has occurred). This is precisely what the definition of
BSD demands. For a formal justification of this statement, i.e. the corresponding
unwinding theorem, as well as for unwinding results for other BSPs , we refer
the interested reader to [Man00b].

6.2 Verification in VSE

In VSE, the concepts of modular unwinding are formalized as follows. The un-
winding relations �D for all views VD (D ∈ D) are modeled together as one
predicate preord such that preord(D, s1, s2) formalizes s1 �D s2. Unwinding
conditions for a BSP are formalized by axioms corresponding to the unwinding
conditions.

As an example, the specification of the unwinding conditions for BSD read7

/* lrf */
Cof(D, c) and reachable(s) and T(s, c, sprime)

-> preord(D, sprime, s)

/* osc */
NOT(Cof(D, e))

AND reachable(s1)
AND reachable(s1prime)
AND preord(D, s1prime, s1)
AND T(s1prime, e, s2prime)

-> EX s2, delta:
projCof(D, delta) = empty)

AND projVof(D, delta) = projVof(D, extend(empty, e))
AND Tstar(s1, delta, s2)
AND preord(D, s2prime, s2)

7 Tstar(s1, γ, s2) formalizes s1
γ

=⇒ s2.

Exploiting Generic Aspects of Security Models in Formal Developments 471

The specification of unwinding conditions is parametric in the event system, flow
policy, and unwinding relation. Therefore, parameterized unwinding conditions
can be predefined and instantiated for specific applications. A parameterized
unwinding condition is associated with a parameterized BSP such that an in-
stantiation of the unwinding conditions for a given system (subject to side con-
ditions, see below) implies that the system satisfies the BSP . The association is
due to the respective unwinding theorem from [Man00b]. This has the benefit
that, for a given system, users only need to prove that the system satisfies the
local unwinding relations and side conditions, rather than the global BSPs.

In order to verify that a system model satisfies a BSP , the local conditions
to be proven consist of the following non-trivial proof obligations:

1. The unwinding conditions are satisfied.
2. The following side conditions are satisfied:

(a) There is exactly one initial state, i.e. exactly one state s for which
initialstate(s) holds.

(b) The transition relation trans is the graph of a partial function.
(c) interferesV, interferesN, and noninterferes form a disjoint parti-

tion of domain× domain, and interferesV is reflexive and transitive.
(d) For all D ∈ domain, preord(D, ,) is a pre-order.

The collection of unwinding conditions and the translation process are set up
such that these proof obligations are generated and managed by VSE’s general-
purpose development graph facility and correctness management. The benefit
of this is that the user need not be concerned with whether all necessary proof
obligations have been considered but can rely on VSE’s correctness management
to take care of this.

When a system’s postulated security predicate consists of more than one
BSP , there is a verification task including the proof obligations given above for
each of the BSPs used. The modular structure of the security predicate leads
to a modular structure of the verification tasks. This structure is exploited to
share proof effort between the verification tasks for different BSPs . In particular,
the side conditions 2a, 2b, and 2c need only be proved once because they are
identical for all verification tasks.

If the same pre-order preord is used for the verification of more than one
BSP , then proof obligation 2d also needs to be proved only once. In this case a
proof for osc can also be shared between all the BSPs using the same preord,
because all BSPs have the unwinding condition osc in common. Using VSE’s
generic support for lemmata and its correctness management, structuring the
verification problems this way and factoring out common proofs is possible with-
out further effort.

7 Conclusions and Future Directions

In this article, we have described how generic aspects of security models can
be exploited in formal developments. The class of security properties that we
considered, information flow properties, evolved from noninterference [GM82].

472 Heiko Mantel and Axel Schairer

This class of properties can be used to formalize security requirements that are
concerned with confidentiality and integrity in a very elegant way. For a uniform
perspective on the various information flow properties, we employed MAKS, the
modular assembly kit for security properties [Man00a].

For our purposes, MAKS has turned out to be a very suitable basis. In
particular, the uniform, modular representation of information flow properties
in MAKS has simplified our work. This modular structure of information flow
properties is also reflected in the generated VSE specifications. In particular,
it leads to a collection of BSP specifications together with specifications of the
corresponding unwinding conditions. Since BSPs and unwinding conditions are
parametric, a library of them can be specified. Instantiations of these speci-
fications can be used without any need to explicitely specify them for every
application.

In order to provide tool support for using our approach in practice, we have
employed an existing, general verification tool, VSE [AHL+00]. Since VSE is a
general-purpose tool, it did not support the basic concepts of MAKS directly. For
this reason, we encoded these concepts as abstract data types in VSE-SL. The
benefit of this approach is that the advantages of MAKS are combined with the
powerful features of VSE, including the structuring of large scale specifications,
the management of these specifications, and the theorem proving component.

Rather than enforcing that users must specify the application-specific parts
of their particular security model using our encoding in VSE-SL, we offer no-
tations that are more convenient for this purpose. The translation of the user
input into VSE-SL is performed by an automatic translation procedure that we
have implemented. Using this translation, users can focus on the domain-specific
aspects of their application without having to worry about technicalities of the
encoding. In a case study [MSK+01], we have made very positive experiences
with our approach. In particular, the size of the specification that had to be
typed in explicitely was reduced by an order of magnitude (in lines of specifi-
cation). Given this positive experience with our prototypical implementation of
the translation procedure, the described approach deserves further attention.

One valuable direction for future work would be the integration of other fea-
tures of MAKS into VSE like, for example, principles for compositional system
design [Man02], principles for stepwise refinement [Man01b], and techniques for
dealing with intransitive information flow [Man01a]. Another possibility would
be the integration of MAKS into other tools like, for example, MAYA [AHMS02]
and INKA [AHMS99]. It would also be desirable to further improve the proto-
typical implementation of the translation procedure.

References

[AHL+00] S. Autexier, D. Hutter, B. Langenstein, H. Mantel, G. Rock, A. Schairer,
W. Stephan, R. Vogt, and A. Wolpers. VSE: Formal Methods Meet Indus-
trial Needs. Special Issue on Mechanized Theorem Proving for Technology
Transfer of the STTT-Springer International Journal on Software Tools
for Technology Transfer, 3(1):66–77, 2000.

Exploiting Generic Aspects of Security Models in Formal Developments 473

[AHMS99] S. Autexier, D. Hutter, H. Mantel, and A. Schairer. System Description:
INKA 5.0 – A Logic Voyager. In Proceedings of 16th International Con-
ference on Automated Deduction, CADE–16, LNAI 1632, pages 207–211,
1999.

[AHMS02] S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. The Develop-
ment Graph Manager MAYA. To appear in Proceedings of the 9th Inter-
national Conference on Algebraic Methodology And Software Technology,
AMAST’2002, LNCS, 2002.

[Bib77] K. J. Biba. Integrity Considerations for Secure Computer Systems. Tech-
nical Report MTR-3153, MITRE, 1977.

[BL76] D. E. Bell and L. LaPadula. Secure Computer Systems: Unified Exposition
and Multics Interpretation. Technical Report MTR-2997, MITRE, March
1976.

[CC99] Common Criteria Project Sponsoring Organisations. Common Criteria
for Information Technology Security Evaluation (CC) Version 2.1, 1999.
Also appeared as ISO/IEC 15408: IT – Security techniques – Evaluation
criteria for IT security.

[FG95] R. Focardi and R. Gorrieri. A Classification of Security Properties for
Process Algebras. Journal of Computer Security, 3(1):5–33, 1995.

[FGG97] R. Focardi, A. Ghelli, and R. Gorrieri. Using Non Interference for the
Analysis of Security Protocols. In Proceedings of DIMACS Workshop on
Design and Formal Verification of Security Protocols, 1997.

[FGM00] R. Focardi, R. Gorrieri, and F. Martinelli. Non Interference for the Anal-
ysis of Cryptographic Protocols. In 27th International Colloquium on Au-
tomata, Languages and Programming (ICALP’00), LNCS 1853, 2000.

[GM82] J. A. Goguen and J. Meseguer. Security Policies and Security Models. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 11–20,
1982.

[GM84] J. A. Goguen and J. Meseguer. Inference Control and Unwinding. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 75–
86, 1984.

[GN88] J. D. Guttman and M. E. Nadel. “What Needs Securing?”. In Proceedings
of the IEEE Computer Security Foundations Workshop, pages 34–57, 1988.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[HY87] J. T. Haigh and W. D. Young. Extending the Noninterference Version of

MLS for SAT. IEEE Transactions on Software Engineering, SE-13(2):141–
150, 1987.

[ITS91] Office for Official Publications of the European Communities. Information
Technology Security Evaluation Criteria (ITSEC), 1991.

[Jac89] J. Jacob. On the Derivation of Secure Components. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 242–247, 1989.

[JT88] D. M. Johnson and F. J. Thayer. Security and the Composition of Ma-
chines. In Proceedings of the Computer Security Foundations Workshop,
pages 72–89, 1988.

[Jür00] J. Jürjens. Secure Information Flow for Concurrent Processes. In Pro-
ceedings of the International Conference on Concurrency Theory, Concur
2000, LNCS 1877, pages 395–409, 2000.

[Lam71] B. W. Lampson. Protection. In Proceedings of 5th Princeton Conference
on Information Sciences and Systems, page 437, 1971.

[Lam73] B. W. Lampson. A Note on the Confinement Problem. Communications
of the ACS, 16(10):613–615, 1973.

474 Heiko Mantel and Axel Schairer

[Man00a] H. Mantel. Possibilistic Definitions of Security – An Assembly Kit. In
Proceedings of the IEEE Computer Security Foundations Workshop, pages
185–199, 2000.

[Man00b] H. Mantel. Unwinding Possibilistic Security Properties. In Proceedings of
the European Symposium on Research in Computer Security (ESORICS),
LNCS 1895, pages 238–254, 2000.

[Man01a] H. Mantel. Information Flow Control and Applications – Bridging a Gap.
In Proceedings of FME 2001: Formal Methods for Increasing Software Pro-
ductivity, LNCS 2021, pages 153–172, 2001.

[Man01b] H. Mantel. Preserving Information Flow Properties under Refinement. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 78–91,
2001.

[Man02] H. Mantel. On the Composition of Secure Systems. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 88–101, 2002.

[McC87] D. McCullough. Specifications for Multi-Level Security and a Hook-Up
Property. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 161–166, 1987.

[McL85] J. D. McLean. A Comment on the ”Basic Security Theorem” of Bell and
LaPadula. Information Processing Letters, 20:67–70, 1985.

[McL87] J. D. McLean. Reasoning about Security Models. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 123–131, 1987.

[McL90] J. D. McLean. The Specification and Modeling of Computer Security.
IEEE Computer, 23(1):9–16, 1990.

[McL92] J. D. McLean. Proving Noninterference and Functional Correctness using
Traces. Journal of Computer Security, 1(1):37–57, 1992.

[McL94a] J. D. McLean. A General Theory of Composition for Trace Sets Closed
under Selective Interleaving Functions. In Proceedings of the IEEE Sym-
posium on Research in Security and Privacy, pages 79–93, 1994.

[McL94b] J. D. McLean. Security Models. In John Marciniak, editor, Encyclopedia
of Software Engineering. John Wiley & Sons, Inc., 1994.

[Mil94] J. K. Millen. Unwinding Forward Correctability. In Proceedings of the
Computer Security Foundations Workshop, pages 2–10, 1994.

[MSK+01] H. Mantel, A. Schairer, M. Kabatnik, M. Kreutzer, and A. Zugenmaier.
Using Information Flow Control to Evaluate Access Protection of Location
Information in Mobile Communication Networks. Technical Report 159,
CS Department, University of Freiburg, 2001.

[O’H90] C. O’Halloran. A Calculus of Information Flow. In Proceedings of the Eu-
ropean Symposium on Research in Computer Security (ESORICS), pages
147–159, 1990.

[Pin95] S. Pinsky. Absorbing Covers and Intransitive Non-Interference. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, pages 102–113,
1995.

[RG99] A. W. Roscoe and M. H. Goldsmith. What is intransitive noninterfer-
ence? In Proceedings of the 12th IEEE Computer Security Foundations
Workshop, pages 228–238, 1999.

[Ros95] A. W. Roscoe. CSP and Determinism in Security Modelling. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 114–127, 1995.

[RS99] P. Y. A. Ryan and S. A. Schneider. Process Algebra and Non-interference.
In Proceedings of the 12th IEEE Computer Security Foundations Work-
shop, pages 214–227, 1999.

Exploiting Generic Aspects of Security Models in Formal Developments 475

[Rus92] J. Rushby. Noninterference, Transitivity, and Channel-Control Security
Policies. Technical Report CSL-92-02, SRI International, 1992.

[RW95] A. W. Roscoe and L. Wulf. Composing and Decomposing Systems under
Security Properties. In Proceedings of the 8th IEEE Computer Security
Foundations Workshop, pages 9–15, 1995.

[Rya91] P. Y. A. Ryan. A CSP Formulation of Non-Interference and Unwinding.
Cipher, pages 19–30, Winter 1991.

[Sch01] S. Schneider. May Testing, Non-interference, and Compositionality. Tech-
nical Report CSD-TR-00-02, Royal Holloway, University of London, 2001.

[SRS+00] G. Schellhorn, W. Reif, A. Schairer, P. Karger, V. Austel, and D. Toll.
Verification of a Formal Security Model for Multiapplicative Smart Cards.
In European Symposium on Research in Computer Security (ESORICS),
LNCS 1895, pages 17–36, 2000.

[Sut86] D. Sutherland. A Model of Information. In 9th National Computer Security
Conference, 1986.

[WJ90] J. T. Wittbold and D. M. Johnson. Information Flow in Nondeterministic
Systems. In Proceedings of the IEEE Symposium on Research in Security
and Privacy, pages 144–161,1990.

[Zak96] A. Zakinthinos. On the Composition of Security Properties. PhD thesis,
Graduate Department of Electrical and Computer Engineering, University
of Toronto, 1996.

[ZL97] A. Zakinthinos and E. S. Lee. A General Theory of Security Properties.
In Proceedings of the IEEE Symposium on Security and Privacy, pages
94–102, 1997.

[ZL98] A. Zakinthinos and E. S. Lee. Composing Secure Systems that have Emer-
gent Properties. In Proceedings of the 11th IEEE Computer Security Foun-
dations Workshop, pages 117–122, 1998.

Verification Support Environment

Werner Stephan, Bruno Langenstein, Andreas Nonnengart, and Georg Rock

German Research Centre for Artificial Intelligence,
Stuhlsatzenhausweg 3,

66123 Saarbrücken, Germany
{stephan,langenstein,nonnenga,rock}@dfki.de

Abstract. Formal software development turns out to become one of
the key issues in software engineering. Today an enormous variety of
methods and tools exist that serve as an aid for the software engineer
to formally specify and verify large-scaled systems. This paper reviews
some of the most important general notions in formal software engineer-
ing and, in particular, gives an overview on VSE (Verification Support
Environment), a tool that supports both hierarchical specification and
formal verification.

1 Introduction

This paper is about the Verification System Environment, the basic ideas that
guided its early development, its current status and recent activities, lessons
learnt from its application in industrial case studies and projects, and, based on
these, directions for its future development.

In 1990 the German Information Security Agency (BSI) issued a call for ten-
der for an industrial strength tool to support software developments compliant
with the high assurance levels of the German “Green Book” which was a precur-
sor of the European and international IT security criteria, ITSEC and Common
Criteria (CC), respectively.

The VSE consortium reacted with a bid basically proposing to combine case-
technology with formal methodology and theorem proving support. Accordingly,
the consortium included a case-tool manufacturer GPP1 and academic partners,
as there are the University of Karlsruhe2 providing the KIV tool (and method-
ology) [9], the University of Saarland3 providing the INKA tool [18] and the
University of Ulm4 providing experience in formal specification languages. Since
VSE was intended for industrial use, already the first development phase in-
cluded two large case studies supplied by Dornier. The IT division of this com-
pany was also in charge with the project management.

In 1994, when the first version of the VSE tool was completed, formal meth-
ods were still questioned by influential people while their advocates lacked a
1 Gesellschaft für Prozessrechner-Programmierung.
2 M. Heisel, W. Menzel, W. Reif, W. Stephan.
3 D. Hutter, J.H. Siekmann.
4 E. Canver, W.F. von Henke.

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 476–493, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Verification Support Environment 477

clear perspective on their use in industry with respect to security and safety. In
the following three years VSE was used in a broad though somewhat arbitrarily
chosen spectrum of industrial applications in a rather ad hoc way more or less
outside the actual development processes.

Nevertheless, the tool showed its ability to cover (horizontally) the critical
aspects of a large variety of systems and also (vertically) the various development
stages from abstract solutions to efficient implementations. It turned out that
the time experts needed to carry out interactive proofs showed the feasibility
to integrate formal development into real development processes. And also, the
detection of serious errors by failed proofs promised a pay-off in terms of costs.

In a second phase from 1996 up to 1999 the VSE methodology (see Section 3)
was extended and a number of technical improvements suggested by the early
applications were built into the system. This was done by a consortium consisting
of IST5, an offspring of GPP, the University of Ulm6, and DFKI7 as the main
contractor.

Since 1999 VSE is maintained and further developed by DFKI. Starting with
an information filter for the German armed forces, VSE was used on the formal
parts in a number of commercial projects, most of them being developments
according to ITSEC or CC. The actual tool development is accompanied by
research on domain specific modelling techniques and the integration of formal
into conventional software engineering.

Altogether, the significance of formal methods has drastically changed in the
last decade. For hardware systems the use of formal methods is widely agreed
and on the software side a market perspective for highly dependable systems de-
veloped with the help of formal methods has become visible. In particular, more
than ten years after the first quality criteria were issued and the development of
VSE was initiated, there is an emerging market for high assurance IT systems
and – as a consequence of this – a demand for tools that are compliant with the
requirements of these levels.

Although formally developed software still forms a niche market, the question
Should formal methods be used? has shifted to How should formal methods be
used?

2 Formal Development

In contrast to the early seventies of the last century we are today confronted with
an enormous variety of formal approaches and tools. To obtain a classification
of systems that allows us to compare VSE with other approaches we first take a
look at the software engineering process in general.

5 Innovative Software Technologie.
6 M. Balser, W. Reif.
7 S. Autexier, D. Hutter, B. Langenstein, H. Mantel, G. Rock, A. Schairer, J.H. Siek-

mann, W. Stephan, A. Wolpers.

478 Werner Stephan et al.

Project Planning

Specification (Requirements)

R
e
f
i
n
e
m
e
n
t

Design (Architecture)

Implementation (Code)

Distributed Scenario

Application (single)

Operating System

Hardware

A
b
s
t
r
a
c
t
i
o
n

Fig. 1. Development Phases and Layers.

2.1 Software Engineering

The development of real world systems8 is often conceived as a deliverable ori-
ented process. Deliverables or artefacts include reports, design documents, re-
views, and, finally, code. The result of development activities are made visible
by new artefacts taking documented results of earlier stages as input.

Independently of how these activities are organised according to a particular
process model, see for example [31] for a comparison of such models, for the
purpose of this discussion we may roughly consider the phases shown in Figure 1.

Most software projects are not developed from scratch but utilise components
that are combined and extended by new functionalities. Nevertheless, many dif-
ferent layers as depicted in Figure 1 are relevant and have to be considered in
the development process. Even when the architecture is not explicitly structured
into several layers services provided by a system at the top level will depend on
lower level functionalities.

Application specific aspects determine the relevant views on a system. Each
such view may require specific engineering techniques for describing and analys-
ing technical solutions and their (desired) properties. Typically, aspects, some of
which are collected in Figure 2, relate to certain layers in the general architecture
and are considered in certain phases of the development process.

2.2 Formal Development Techniques

To control the engineering process artefacts have to be subject to review proce-
dures that accompany the development. For executable artefacts quality assur-
ance is usually obtained by testing. For the earlier phases conventional software
engineering uses audits and inspections. Maybe it is due to the intangible na-
ture of these procedures that conventional engineering techniques often do not
distinguish between two basic kinds of artefacts or relations, namely those that
are definitional and those that are postulated. As opposed to being definitional a
postulated artefact or relation may or may not hold (or be satisfied) although for
informal description techniques there is very often no way to obtain an answer
that is commonly agreed upon. The question whether certain postulated rela-
tions or requirements actually hold is different from checking syntactic properties
of artefacts as it is done in ordinary case tools.
8 As opposed to the programming exercises that prevail in academic education.

Verification Support Environment 479

Realtime
Behaviour

Communication
Protocols

Scheduling

Cryptographic
Protocols

Data and
Algorithms

Object
Oriented

Information
Flow

User
Interface

Fig. 2. Aspects.

A formal methodology provides description techniques for (certain) artefacts
occurring in software engineering processes. Since these are underpinned by a
mathematical semantics, the validity of postulated properties (requirements) and
relationships can – at least in principle – be established rationally. In that sense
formal methods add scientific rigour to the development process of software (or
hardware).

2.3 Types of Systems

The first and perhaps most important question to be asked about tools for formal
software development is concerned with the methodology they support: What
kinds of artefacts and relations between these can be treated formally?

The current situation is characterised by the dichotonomy between

– highly specialised systems that are tailored for particular aspects (related to
certain development phases and system layers), and

– (more) comprehensive systems that cover large parts of the overall develop-
ment in a coherent way.

Typically the “small” systems are strong in the sense that they provide a
fully automatic analysis of properties9. They are set up on problem specific
representations that often are close(r) to conventional engineering practise. If
doubts remain that formal software development will be dominated by loose
collections of these “lightweight” domain specific tools, this is due to two main
shortcomings, instability and fragmentation. This technology is often used in a
way that a single critical part of a development is (manually) selected, isolated,
and adapted. Even small changes in representation or size may lead to problems
that are outside the scope of the tool or no longer tractable. Moreover, a rigorous
9 This is often called a push-botton technology.

480 Werner Stephan et al.

formal development of complex software systems requires an integrated analysis
of various critical aspects and the coherent coverage of several architectural
layers and subsequent development phases. Examples of domain specific tools
are HyTech [12], UPPAAL [7], SMV [24] or KRONOS [33].

“Large” systems that support this kind of comprehensive formal development
are usually based on a fairly general specification language and use interactive
theorem proving to establish desired properties of formal models and verify cor-
respondence relations between different design stages. Representations used in
this context cannot be entirely free of some “mathematical” or “logical” over-
head and interactive proof generation is and will remain (more) time consuming.
Examples for methods and tools of this kind are Z [32], B [3], VDM [19], and
VSE [16].

At the other end of the spectrum we find purely logical formalisms and generic
problem solving techniques with no (or very few) features that are specific for
software engineering. Systems of this kind range from SAT-provers, like [23], to
interactive proof environments for Higher Order Logic, like [25] and [26].

Expressive logical systems like the ones mentioned above – while hardly con-
sidered as per se supporting a methodology – have been used in two ways:
– to “embed” formal approaches into software engineering as particular logical

theories and
– to formalise individual systems in an ad hoc way.

As opposed to approaches where modelling techniques might change with
each application, there exist systems (like VSE) that support a fixed methodology
which is uniformly used for all developments. Such a fixed methodology gives rise
to a specific tool support and, although somewhat restrictive, yields comparable
results.

2.4 Tool Support

Methodological concepts are often discussed using highly abstracted and simpli-
fied examples. To use them for real world developments tool support is needed.

While it has been advocated in the past that (formal) modelling alone gives
enough benefit, today there is a general agreement that the main advantage of
formal techniques lies in the possibility to actually turn postulates into guar-
anteed properties of software systems. Verification techniques, therefore, have
become the key issue in tool support.

General systems for interactive proof generation, model checking, and auto-
mated theorem proving have to be augmented by techniques that are specific
for the underlying method or even for particular application areas. Improving
efficiency, in particular the degree of automation in interactive theorem proving,
the ease of use, and the integration of verification techniques into case technology
for formal developments will turn academic developments into a new engineering
discipline.

Case technology starts with front ends for editing, visualising developments.
Textual representations, although still sometimes preferred by professional devel-
opers, are complemented by graphical representations of various kinds. Typically

Verification Support Environment 481

the well formedness of specifications is guaranteed by parsing and subsequent
type checking.

In many cases the specification language cannot be used directly as an in-
put to verification mechanisms. After having parsed and typechecked the input
internal structures representing developments have to be transformed into their
axiomatic counterparts or representations of models.

Experimental systems are often used (and evaluated) following the cycle:

1. develop solution on paper,
2. type it into the system (and translate if necessary to prover),
3. try to prove some theorems (possibly using prefabricated paper proofs),
4. in case of problems start again.

Production systems for real world applications have to manage

– incremental extensions of partial developments,
– verification, including interactive proof discovery, and
– local changes (corrections, revisions) to already existing parts

all being done inside an integrated system by possibly several people.
To that end developments and their internal representations have to be struc-

tured into units that can be worked on locally and that are connected by well
defined relationships to rule the flow of information and to be exploited by a
management of change.

3 Methodology

A formal methodology first of all manifests itself by basic description techniques
for certain elements of software engineering, like for example

– data structures,
– sequential algorithms (programs),
– states and state transitions, and
– concurrent processes

and augments them by operations for structuring specifications. Typically struc-
ture building operations include composition and refinement.

The VSE method provides an integrated specification language for abstract
data types and concurrent state transition systems. In both cases VSE provides
operations for combining specifications giving rise to the horizontal structure
of developments. Modelling techniques offered by VSE are general enough to
support various styles of specifications and have been used to model a broad
spectrum of (types of) systems. They consider different levels of abstraction
where notions of refinement that preserve established properties allow the user
to transform abstract, possibly non-constructive (requirements) specifications
into executable code.

482 Werner Stephan et al.

3.1 Abstract Data Types

Many design steps are concerned with data structures and operations to trans-
form them. In the abstract data types approach [21, 5], data objects are viewed
as resulting from the nested application of certain operations, a (concrete) data
type being given by a collection of domains (carriers) and (total) functions on
these domains. To abstract from particular realisations, one separates syntax
from semantics and considers classes of algebras (or models) A which are inter-
pretations of a fixed collection Σ of function symbols f as functions fA on the
carriers of A. In VSE classes of algebras are restricted by axioms of a first-order
language over Σ [17].

The approach to functional modelling realised in VSE basically can be used
in two principal ways. To model the state space of state transition systems data
type specifications are imported (to state-based specifications) to describe the
domains of state-depended variables and to provide the basic functions for the
definition of so-called actions. However, functional modelling can also be used
to describe system models of their own, for example by (inductively) defining
event traces for cryptographic protocols. Just recently a method for combining
independent specific “views” on a system has been developed.

In VSE there are two ways of structuring data type specifications: the actu-
alisation of generic specifications and the import of specifications. Using import,
enrichment and (disjoint) union can be modelled. Generic specifications provide
an additional parameter part to describe the formal parameter including axioms.
Upon actualisation of a generic theory proof obligations are generated for these
axioms. Figure 3 gives an example for a parameterised specification. The para-
meter theory Elems contains the definition for a type element. So list data can
be instantiated to form lists of elements of any kind. Furthermore, list data
is used in the theory list where additional functions (append) and predicates
(ELEM) are defined.

VSE implements an elaborated theory of data type refinements [28]. Oper-
ations of an (abstract) export algebra are implemented by abstract imperative
programs that use operations from some (more concrete) imported algebra. The
axioms of the export specification give rise to proof obligations that are assertions
about the implementing programs. Properties of the import specifications are
used in the course of verifying the assertions in a variant of Dynamic Logic [11].

In general, two models A1 and A2 of Ax will not necessarily be isomorphic,
that is, they differ not only in the concrete representation of data objects. This
allows for a really abstract style of specification where one describes what a
function does but not how this is realized. A well known example is encoding
and decoding. On the abstract level it might suffice to know that dec(enc(v)) = v
leaving open a wide range of implementations for later refinements.

Consistency of this type of specifications can be shown by refinements that
end up with data types where the meaning of symbols is essentially fixed (defi-
nitions). Classes of algebras are restricted by requiring that certain carriers are
generated by constructors from some Σ′ ⊂ Σ which means that for each element
a of the corresponding carrier A, there is a term τ over Σ′ that denotes a. In par-

Verification Support Environment 483

ticular, we consider freely generated structures where each element a ∈ A has a
unique representation in Σ′. Generated clauses bring about induction principles
that are used if inductive theorems or lemmata have to be proven. The axiomatic
counterpart of these clauses is generated by the system, when the deduction unit
belonging to the specification is generated.

The constructive definition of functions and relations that follows certain
schemes supported by VSE (in syntax and proof theory) preserves the consis-
tency of the corresponding basic types (and their extensions). This approach to
data types is close to so-called model based approaches like VDM [19] and Z [32],
the only difference being that the actual (mathematical) representation of data
objects is left open by considering isomorphic algebras.

Figure 3 shows the parametrised specification of lists as a basic data type
and the enrichment of these lists by additional functions and predicates with
their axiomatisation as a theory.

THEORY elems

PURPOSE "type element with default constant"

TYPES element

FUNCTIONS default : element

THEORYEND

BASIC list_data

PARAMS elems

USING NATURAL

list = nil WITH nilp |

cons(first : element, rest : list) WITH consp

VARS x, y, z : list

SIZE FUNCTION length : list -> NAT

BASICEND

THEORY list

PURPOSE "concatenation of lists and element-predicate"

PARAMS elems

USING list_data[element, default]

FUNCTIONS append : list, list -> list

PREDICATES _ ELEM _ : element, list

VARS x, y, z : list;

a : element

AXIOMS

FOR append :

append(nil, x) = x;

append(cons(a, x), y) = cons(a, append(x, y))

FOR ELEM :

a ELEM x <-> (EX y, z : x = append(y, cons(a, z)))

THEORYEND

Fig. 3. Freely Generated Data Types.

484 Werner Stephan et al.

3.2 State Based Systems

In many applications it is most appropriate to describe a system in terms of

– a state space,
– a transition relation, and
– communications with the outside world (environment, other components).

Temporal Logic, as for example described in [22], is a formalism to rea-
son about finite and infinite sequences of (global) states, sometimes called be-
haviours. The concurrent execution of components is modelled by interleaving.
The global state space is divided into the local state spaces of components and
partitions shared between certain components for communication. Temporal for-
mulae are used to specify systems ϕsys as well as their properties ϕprop. To estab-
lish behavioural properties one has to show ϕsys → ϕprop while ϕsys1 → ϕsys2

expresses the fact that sys1 is a refinement of sys2.
The basic state-based specification technique used in VSE is based on Lam-

port’s Temporal Logic of Actions [1, 20, 2], which restricts the form of temporal
specifications to an abstract form of automata. The VSE realisation of Temporal
Logic emphasises modularity with respect to

– the logical representation of complex systems,
– interactive proof generation, and
– the management of developments.

Based on the formalism of Temporal Logic, VSE supports a general notion
state transition systems that allows the user to model various special instances
of this general paradigm.

Elementary Specifications. A state is given by the content of the so-called
flexible (state dependent) variables. An elementary specification names a finite
set of flexible variables that are relevant for the local behaviour of a component
(or a family of similar components). The possible values these variables can
take are specified by abstract data types using the techniques described above.
A subset of these variables is used for communication with the component’s
environment. In addition to the theory of compositional development presented
in [2], which covers the composition of systems using input and output variables,
shared variables are supported by VSE.

State transitions caused by the component’s environment, which might not
yet be formally specified, are taken into account by steps (actions of the form
(x1 = x′

1 ∧ . . . ∧ xn = x′
n)) that allow for arbitrary changes except that certain

variables, given by the so-called stuttering index, are left untouched. Leaving
open certain steps is also exploited for the refinement of systems.

The basic form of elementary specifications, also discussed in [2], then is
∃∃x1, . . . , xn.(Init ∧ � [SYS-STEPS]v̄ ∧ F AIR), where

– SYS-STEPS are the actions (steps) made by the system,
– v̄ is the stuttering index, which contains flexible variables of the system,
– Init is a predicate which holds initially,

Verification Support Environment 485

– x1, . . . , xn are the internal variables (hiding), and
– F AIR stands for the fairness requirements of the system.

In addition to the normal form, the user can specify an elementary specifi-
cation using a pseudo programming language which will be translated in subse-
quent steps into the normal form given above.

Structuring of Specifications. VSE provides two operators to structure state-
based specifications: combine and include. We focus on the combine-operator
which models the concurrent execution of two components given by the specifi-
cations S1 and S2.

Communication between components is by input-output variables or by
shared variables. Concurrency is modelled by considering all possible interleav-
ings of actions of the components involved. Thus, a behaviour s̄ is a behaviour of
the combined system if and only if it is an interleaved behaviour of both S1 and
S2. Since in the local specifications we have already taken into account transi-
tions caused by the outside world, specifications of the form S1∧S2 are basically
what we need. However, in the presence of shared variables interleaving can no
longer be defined uniformly, i.e. without considering the particular actions of
the system. In VSE, see [30, 16], it is made explicit for each step which compo-
nent is active. To this end, a special predicate activespec is available. By using
activespec it becomes possible to distinguish steps of a component from steps
of the environment. Let A1, . . . , An be the elementary actions of a component
given by S. The action formula SYS-STEPS is of the form

((A1 ∨ . . . ∨An) ∧ activeS) ∨ (¬activeS ∧ x̄ = x̄′ ∧ ō = ō′) ,

where x̄ and ō are the internal and output variables of S. The second disjunct
claims that environment steps do not affect the variables “owned” by S. For
VSE-SL specifications in canonical form, the system builds this formula from
the list of actions automatically.

Given two elementary systems S1 and S2 as above the combined system is
given by a formula of the form

S1 ∧ S2 ∧ � (¬activeS1 ∨ ¬activeS2) .

In addition, the specification of the combined system contains a (formal)
mapping of the interfaces of the components.

Assumption Guarantee Specifications. A complex system needs not to be
specified as a single monolytic block, but as a collection of independent com-
ponents. The verification process supports the modular specification style as it
allows the user to prove properties local to components using assumptions about
the environment of the component.

To this end specifications of concurrent systems are not flattened. Instead,
the component specifications and the specification of the combination are kept
as separate units referring to the logical representations discussed above.

486 Werner Stephan et al.

To prove theorems local to (deduction) units associated with single com-
ponents requires in almost all cases assumptions about the behaviour of the
environment. In VSE there are two ways to handle assumptions. They can be
marked and pruned upon completion of the combined system following rules
that are enforced by the management system discussed below. On a logical basis
one can express by a formula of the form

(System Guarantee) unless ¬ (Assumption about Environment)

that a certain guarantee holds “as long as” some assumption is satisfied by the
environment. Results of this kind can be combined with a general (derived) rule
of VSE’s temporal logic to yield a desired property of the overall system. This
rule is located in the “combined node”, the unit corresponding to the combined
system. It has to be used to prune mutual depended assumptions. The “circu-
larity rule”10 is of the form:

(((activeS1 → P1) unless ¬(¬activeS1 → P̃2)) ∧ (1)
((activeS2 → S2) unless ¬(¬activeS2 → P̃1)) ∧ (2)
� ((activeS1 → P1)→ (¬activeS2 → P̃1)) ∧ (3)
� ((activeS2 → P2)→ (¬activeS1 → P̃2))) (4)
→
� ((¬activeS1 → P̃2)∧ � ((¬activeS2 → P̃1)). (5)

P1 and P2 represent the guarantees of the given systems S1 and S2, and P̃1

and P̃2 denote the assumptions S1 and S2 make about the environment.
With the assumptions (that are discharged in the combined system) and with

(1) and (2) we immediately obtain � (activeS1 → P1) and � (activeS2 → P2)
local to the lemma bases of S1 and S2, respectively.

4 Deductive Support

An interactive theorem prover serves as the deductive unit that has been imple-
mented in VSE-II. VSE-II specifications written in VSE-SL (VSE Specification
Language) are automatically translated into logic formalism and proof obliga-
tions are automatically generated.

There are two kinds of proof obligations that have to be checked, namely
those that arise from the properties the system under consideration has to fulfill
and those that represent the claim that a system is in fact a refinement of
another given system. In order to tackle these proof obligations there is a need
for a structured deduction that decomposes large proof obligations into simpler
tasks and synthesises an overall proof from the derived partial solutions. Such
a structured deduction not only simplifies the speculation of lemmata but also
enables the user to utilise methods that are somewhat polished to solve the
specific problems that arise.
10 This is the special case for two components.

Verification Support Environment 487

Moreover, for specialised logics as, for instance, Dynamic Logic [10] for al-
gorithmic program constructs or TLA [20] for reactive and concurrent systems,
there exist appropriate proof strategies especially tailored for formal specifica-
tions and proof problems arising thereof.

In VSE-II the knowledge how specific proof situations are to be tackled is en-
coded in a bundle of individual tactics. The accumulation of various such tactics
imposes an emerging functionality which is able to prove complex theorems in a
goal directed way. All these tactics operate on a common representation of the
actual proof state that is reflected in a proof tree annotated by additional tacti-
cal knowledge. This proof tree is visible to the user and thus allows him to give
strategic advice following the direct manipulation paradigm. Tactics may prune
or refine this proof tree and represent the algorithmic part of the proof search.
In VSE-II proof decisions can be withdrawn by chronological backtracking as
well as by pruning arbitrary branches of the proof tree. The approach combines
a high degree of automation with an elaborate interactive proof engineering en-
vironment.

In addition to tactics that provide a more general frame to tackle certain
proof situations, the VSE-II system also knows about certain heuristics. Usu-
ally such heuristics are rather global and handle specification independent proof
situations. The need for specification/theory dependent heuristics did arise dur-
ing the VALIKRYPT (Verification and Validation of Cryptographic Protocols)
project while applying the Paulson approach [27] for the verification of protocols.
These theory dependent heuristics extend the global heuristics by the possibility
to speak directly about the elements of user defined theories, as for example
functions or predicates. This makes possible a very high degree of automation
in specialised areas as, for example, in the protocol verification field.

Often the attempt to prove a lemma or a proof obligation fails and errors thus
detected in the specification or implementation have to be corrected. In VSE-II
an elaborate correctness management supervises the application of corrections
and invalidates only those proofs which really are affected by the modifications.

4.1 Architecture

The general picture of the methodology VSE-II is based on can be found in
Figure 4. As a tool for formal software development VSE-II consists of

– a basic system for editing and type checking specifications and implementa-
tions written in the specification language VSE-SL.

– a facility to display the development structure,
– a theorem prover for treating the proof obligations arising from development

steps,
– a central database to store all aspects of the development, including proofs,

and
– an automatic management of dependencies between development steps.

Compared to VSE-I [14, 15], which was based on a simple, non-compositional
approach for state based systems, VSE-II [16, 17] is extended by comprehensive

488 Werner Stephan et al.

methods that are especially tailored for distributed and concurrent systems [29].
Also, it has an even more efficient and uniform proof support which utilises
the implicit structure of the arising proof obligations. The basic logic formalism
used in VSE-II is close to TLA (Temporal Logic of Actions) [20], where a refined
correctness management allows for an evolutionary software development.

VSE-II is based on a methodology to use the structure of a given specifica-
tion (e.g. parameterisation, actualisation, enrichment, or modules) to distribute
the deductive reasoning into local theories [30]. Each theory is considered as
an encapsulated unit, with its own local signature and axioms. Relations be-
tween different theories, as they are given by the model-theoretic structure of
the specification, are represented by different links between theories. Each the-
ory maintains its own set of consequences or lemmata obtained by using local
axioms and other formulae included from linked theories.

This method of a structured specification and verification is reflected in the
central data structure of a development graph (see Figure 5), the nodes of which
correspond to the units mentioned above. It also provides a graphical interface for
the system under development. Different types of specifications are displayed as
different types of nodes, e.g. abstract data types as hexagons, while the relations
between the nodes are displayed as links in the development graph.

The development graph shown in Figure 5 represents parts of the consistency
proof of a trusted digital signature device.

4.2 Structured Deduction

Structuring specifications as described above supports readability and makes it
easier to edit specifications by allowing the user to use local notions. However,

Deduction

code generation

refinement refinement

Specification

deduction unit

safety/security req.

satisfies

system specification

deduction units

proof obligations

theorem
prover

Fig. 4. VSE-II Methodology.

Verification Support Environment 489

Fig. 5. Development Graph of Consistency Proof of a Digital Signature Device.

the system exploits structure beyond this purely syntactical level. Components
of a combined system can be viewed as systems in their own right where certain
parts can be observed from outside while most of the inner structure, including
the flow of control and local program variables are hidden.

In particular, this allows the user to prove properties of a combined system
in a modular way. This means that local lemma bases can be attached to com-
ponents where local proofs are conducted and stored. Exchange of information
between lemma bases is on demand. This approach has two main advantages:
First, the given structure of the specification is used to reduce the search space as
large parts of the overall system are not visible and, second, the revision process
is supported by storing the proofs local to certain lemma bases, thus making the
export and import of information (between lemma bases) explicit.

Management of Assumptions and Lemmata. As mentioned above, lemma
bases are associated with each specification (elementary or combined). A lemma
base consists of a set of formulas together with (optionally) proofs, where each
such formula is marked as axiom, assumption, proof obligation, or auxiliary.
While working on a proof, all lemmata of sub-specifications may be used.

The lemma bases are organised into levels. The local specification of a com-
ponent forms the lowest level (marked as axiom). In a proof on level i, all lemmas
from levels < i can be used, and lemmas from level i can be used if no circular

490 Werner Stephan et al.

Used: 1
Discharged: 2

Used: 1
Discharged: 2Lemma: PROD => CHAN

Lemma: CHAN => PROD
proof oblig: A-CHAN
proof oblig: A-PROD

proof oblig: HIS-IN-1
proof oblig: HIS-IN-2
proof oblig: SIG1

Level 0
Discharged: -

Used: -
Discharged: 1

Used: 1

Used: 2
Discharged: -

Level 2

Assumption: A-PROD

Producer

Level 0
Axiom: Producer

Level 1

Lemma: HIS-IN-2

Lemma: PROD
Lemma: HIS-IN-1

Lemma: SIG1

Assumption: HIS-IN-1
Assumption: HIS-IN-2
Assumption: SIG1
Lemma: CHAN

Level 2

Lemma: OK-CHAN

Assumption: A-CHAN

Level 0
Axiom: Channel

Channel

Level 1

Level 1:

Used: -
Discharged: -

Level 2:

Fig. 6. Example lemma base.

dependency is caused on level i. This is sufficient to organise the reasoning pro-
cess for a single specification. To discharge assumptions of a combined system,
without the need for a circularity check involving all combined systems, an ad-
ditional mechanism is necessary.

For each level of the lemma base of a combine node and for each component,
the highest level from which lemmas were imported is recorded. Likewise, the
smallest level on which assumptions are discharged is recorded, too. If for each
level the first number is smaller than the second, the use of lemmas and assump-
tions does not lead to circular reasoning. When an assumption is discharged, it
is added to the combine node as a proof obligation.

The lemma bases for the safety part of the proofs from the previous section
are shown in Figure 6 (the consumer is omitted).

Note that “exporting” CHAN-OK to level 0 in the combine-node would lead
to a cycle, so we need a new level 1 on which CHAN-OK can be used without
jeopardising non-circularity.

5 The Future of VSE

Many of the systems supporting the formal development of software operate with
interactive theorem provers as for example VSE[14, 13, 16] or the B-Tool [3, 6, 8].
Experiences show that most of the problems arising in the verification of a system
require induction. This fact indicates that theorems or properties required for
industrial sized system specifications cannot be proved fully automatically in
general.

Verification Support Environment 491

Nevertheless, automatic methods have shown their applicability in many case
studies. These technologies try to compute all the states the specified system
can reach from a given initial state with the help of some fixpoint computation.
Whenever this succeeds – i. e. this computation terminates – they can answer
questions concerning single or all of the possibly reachable states. This tech-
nology is called model checking. Usually, model checking strategies are limited
to finite state problems and in this case are guaranteed to terminate. In Hy-
brid Systems, which are in general not finite state, the fix-point computation
is no longer guaranteed to terminate. Nevertheless, it is always worth a try.
For problems where the procedure does not succeed, techniques like abstraction,
as for example presented in [4], have to be applied. This, however, requires an
interactive proof system to show the correctness of the abstraction.

Although most of today’s tools supporting the verification of large scaled
systems favour either theorem proving or model checking, the two methodologies
do not exclude each other at all. It thus seems reasonable to integrate them in
a single formal specification and verification tool, and that in a way such that
results of the interactive side can be used on the automatic side and vice versa.

Such an integration (or cooperation) is planned to become one of the next ex-
tensions of VSE-II. However, rather than inventing new logics, calculi or method-
ologies it is intended to utilise tools that are commonly available. A first promis-
ing result in this direction has already been found in the integration of Hybrid
Automata11 model checking and VSE-II. Verification tools for Hybrid Automata
are usually based on infinite-state model checking. The integration into VSE-II
is such that suitable sub-problems that are to be proved with VSE-II get trans-
formed into Hybrid System verification problems that can be model checked. If
successful, the resulting solution can be fed back into VSE-II. Hence, lengthy and
somewhat boring parts of the proof can be delegated to an automatic procedure.

The integration of various decision systems is also planned for the near future.
As an example consider linear arithmetics. Currently, (natural) numbers belong
to the basic data types within VSE-II. However, they are represented by their
constructors 0 and succ. Although sufficient in principle, there are some obvious
caveats when dealing with larger numbers or even simple arithmetic calculations.
Therefore, additional modules are to be integrated that allow the user to solve
satisfiability problems of linear arithmetic constraints automatically, e. g. with
the help of Fourier’s elimination of number variables.

But this is just a starting point for integrating even further decision proce-
dures. Today, a large amount of decision procedures is known for various abstract
data types, most of them based on Nelson/Oppen’s or Shostak’s work. The inte-
gration of these more general methods will further reduce the software engineer’s
effort in verifying large scaled systems. And so, the software engineer is rather
concerned with the creative work of the overall verification process and gets
relieved of comparatively uninteresting technical details.

11 Hybrid Automata are especially useful for the specification and verification of real-
time systems.

492 Werner Stephan et al.

References

1. Mart́ın Abadi and Leslie Lamport. The Existence of Refinement Mappings. The-
oretical Computer Science, 82(2):253–284, May 1991.

2. Mart́ın Abadi and Leslie Lamport. Conjoining specifications. ACM Transactions
on Programming Languages and Systems, 17(3):507–534, May 1995.

3. J-R. Abrial. The B tool. In G. Goos and J. Hartmanis, editors, VDM – The
Way Ahead. Proc. 2nd VDM-Europe Symposium, volume 328 of Lecture Notes in
Computer Science, pages 86–87. VDM-Europe, Springer-Verlag, 1988.

4. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3–34, 1995.

5. Egidio Astesiano, Hans-Jörg Kreowski, and Bernd Krieg-Brückner, editors. Alge-
braic foundations of systems specification. IFIP state-of-the-art reports. Springer,
Berlin, 1999.

6. B Core UK Ltd. B-Tool manual, 1994.
7. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, W. Yi, and C. Weise. New

generation of uppaal. In International Workshop on Software Tools for Technology
Transfer, Aalborg, Denmark, 1998.

8. D. Bert. B’98: Recent advances in the development and use of the b method, April
1998.

9. Rainer Drexler, Wolfgang Reif, Gerhard Schellhorn, Kurt Stenzel, Werner Stephan,
and Andreas Wolpers. The KIV system: A tool for formal program development.
volume 665 of Lecture notes in computer science, Berlin, 1993. Springer.

10. R. Goldblatt. Axiomising the logic of computer programming. volume 130 of
LNCS. Springer Verlag, Berlin, 1982.

11. David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, 2000.
12. T. A. Henzinger and P.-H. Ho. HyTech: The cornell hybrid technology tool. In

P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors, Hybrid Systems II, pages
265–293. Springer Verlag, Lecture Notes in Computer Science, vol. 999, 1995.

13. D. Hutter, B. Langenstein, C. Sengler, J. Siekmann, W. Stephan, , and A. Wolpers.
Verification support environment (vse). In Journal of High Integrity Systems, 1995.

14. Dieter Hutter, Bruno Langenstein, Claus Sengler, Jörg H. Siekmann, Werner
Stephan, and Andreas Wolpers. Deduction in the Verification Support Environ-
ment (VSE). In Marie-Claude Gaudel and James Woodcock, editors, Proceedings
Formal Methods Europe 1996: Industrial Benefits and Advances in Formal Meth-
ods. SPRINGER, 1996.

15. Dieter Hutter, Bruno Langenstein, Claus Sengler, Jörg H. Siekmann, Werner
Stephan, and Andreas Wolpers. Verification support environment (vse). High
Integrity Systems, 1(6):523–530, 1996.

16. Dieter Hutter, Heiko Mantel, Georg Rock, Werner Stephan, Andreas Wolpers,
Michael Balser, Wolfgang Reif, Gerhard Schellhorn, and Kurt Stenzel. VSE:
Controlling the Complexity in Formal Software Development. In D. Hutter,
W. Stephan, P. Traverso, and M. Ullmann, editors, Proceedings Current Trends
in Applied Formal Methods, FM-Trends 98, pages 351–358, Boppard, Germany,
1999. Springer-Verlag, LNCS 1641.

17. Dieter Hutter, Georg Rock, Jörg H. Siekmann, Werner Stephan, and Roland Vogt.
Formal Software Development in the Verification Support Environment (VSE).
In Bill Manaris Jim Etheredge, editor, FLAIRS-2000: Proceedings of the Thir-
teenth International Florida Artificial Intelligence Research Society Conference,
pages 367–376. AAAI-Press, 2000.

Verification Support Environment 493

18. Dieter Hutter and Claus Sengler. INKA: The Next Generation. In Proceedings of
the 13th International Conference on Automated Deduction, volume 1104 of Lecture
Notes in Computer Science, New Brunswick, N.Y., 1996. Springer.

19. C.B. Jones. Systematic Software Development Using VDM. Prentice Hall, 2nd
edition, 1990.

20. Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3), 1994.

21. Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf. Specification of Abstract
Data Types. Teubner, Chichester;New York;Brisbane, 1996.

22. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer Verlag, New York, 1992.

23. W. McCune. Mace 2.0 reference manual and guide. Technical Memo ANL/MCS-
TM-249, Argonne National Laboratory, June 2001.

24. K. McMillan. The smv model checker.
http://www-cad.eecs.berkeley.edu/∼kenmcmil/smv/.

25. Sam Owre, John M. Rushby, and Natarajan Shankar. Pvs: a prototype verification
system. In Deepak Kapur, editor, Proceedings of the CADE-11, volume 607 of
LNAI, pages 748–752. Springer, 1992.

26. Lawrence C. Paulson. ISABELLE, A Generic Theorem Prover, volume 828 of
LLNCS. Springer Verlag, 1994.

27. Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6:85–128, 1998.

28. W. Reif. Correctness of generic modules. In Nerode and Taitslin, editors, Sympo-
sium on Logical Foundations of Computer Science, volume 620 of LNCS. Springer,
1992.

29. Georg Rock, Werner Stephan, and Andreas Wolpers. Tool support for the
compositional development of distributed systems. In Tagungsband 7. GI/ITG-
Fachgespräch Formale Beschreibungstechniken für verteilte Systeme, number 315
in GMD Studien. GMD, 1997.

30. Georg Rock, Werner Stephan, and Andreas Wolpers. Modular Reasoning about
Structured TLA Specifications. In R. Berghammer and Y. Lakhnech, editors,
Tool Support for System Specification, Development and Verification, Advances in
Computing Science, pages 217–229. Springer, WienNewYork, 1999.

31. Ian Sommerville. Software Engineering. International Computer Sciences Series.
Addison-Wesley, Harlow, UK, 5th edition, 1995.

32. J. M. Spivey. The Z Notation: A Reference Manual. Series in Computer Science.
Prentice Hall International, 2nd edition, 1992.

33. S. Yovine. Kronos: A verification tool for real-time systems. In Software Tools for
Technology Transfer, volume 1, pages 123–133, 1997.

SAT-Based Cooperative Planning: A Proposal

Marco Benedetti and Luigia Carlucci Aiello

Dipartimento di Informatica e Sistemistica,
Università di Roma “La Sapienza”, Italy
{benedetti,aiello}@dis.uniroma1.it

Abstract. We present a work-in-progress on distributed planning,
which relies on the “planning as satisfiability” paradigm. It allows for
multi-agent cooperative planning by joining SAT-based planning and a
particular approach to distributed propositional satisfiability. Each agent
is thus enabled to plan on its own and communicate with other agents
during the planning process, in such a way that synchronized and pos-
sibly cooperative plans come out as a result. We discuss in some details
both piers of our construction: SAT-based planning techniques and dis-
tributed approaches to satisfiability. Then, we propose how to join them
by presenting a working example.

1 Introduction

Planning is a research area in artificial intelligence aiming at the construction
of algorithms – called planners – that enable an agent (a robot or a “softbot”)
to synthesize a course of actions that will achieve its goals. Planning has been
studied since the early days of AI; recently the interest has been renewed and
results abound, with proposals of systems capable to deal with real life applica-
tions. We cannot go into many details here, neither illustrate the vast literature
in the field; a comprehensive presentation of the state of the art can be found –
for instance – in the survey paper by Weld [23].

Much research has recently been done in multi-agent systems and in robot
teams, i.e., scenarios where several software or embodied systems cooperate at
the solution of a given goal. In this case, planning becomes “cooperative plan-
ning”.

Cooperative planning has various meanings in the current AI literature. All
of them are geared around the idea that each agent – participating in the coop-
erative achievement of a common goal – has to take into account, in its planning
activity, that other agents are present. Both the presence and the actions of the
various agents affect the scenario. In other words, things not only change be-
cause of the effects of the actions of an individual agent, but also because of the
effects of the actions of its companions. In some cases, planners take also into
account the possibility of exogenous actions; of course, in a multi-agent scenario,
actions of the companion agents are not to be considered exogenous. This view
is exemplified – for instance – in [12].

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 494–513, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

SAT-Based Cooperative Planning: A Proposal 495

A distinction between “cooperative distributed planning” (CDP) and “nego-
tiated distributed planning” (NDP) is made by desJardins et al. in [11]. In their
words:

Because it places the problem of forming a competent (sometimes even
optimal) plan as the ultimate objective, CDP is typically carried out by
agents that have been endowed with shared obectives and representa-
tions by a single designer or team of designers. Although in some cases
the purpose of the agents is to form a central plan, more generally the
purpose is that the distributed parts of the developing plan will jointly
execute in a coherent and effective manner. Thus, in CDP, agents typ-
ically exchange information about their plans, which they iteratively
refine and revise until they fit together well.

In NDP instead, each agent engaged in the planning activity negotiates with
the others, with the goal not to form a good collective plan, but to form an
individual plan that, when executed in the global context, meets the agent’s
own local objectives.

Although CDP involves coomunication and coooperation during the planning
activity, the solutions proposed in the literature share a common feature: each
agent in the team acts, in some sense, in isolation. It receives (from some central
authority) a (sub)goal to tackle, and formulates its own plan to solve its own
(sub)goal. Communication and coordination with the other agents in the team
has the only purpose of avoiding conflicts at execution time.

As a prototipical architecture that exemplifies the above view about coop-
erative planning, we refer to the three level architecture proposed by Botelho
and Alami in [6]. They propose three distinct levels for: [1] mission decomposi-
tion1, [2] task allocation, and [3] task achievement. Level 1 is not distributed.
The distribution happens at level 2, where the task allocation is done (by some
centralized intelligence) to the various agents in the team. At level 3, each agent
carries on its part of the share, to achieve the common goal.

Botelho and Alami in [6] say:

Mission decomposition is a purely deliberative task. It is at this level
that there are less needs of context dependent information. It can be
done in a central way. It is essentially a one thread process.
Of course it can benefit from several CPUs but this is a distribution
of computing load, which is different in nature from problems calling
for cooperative decision-making based on independent goals, on various
robot capabilities and contexts.

Hence they resort to a central high level planner, and exploit coordination and
cooperation only at level 3, where cooperation essentially consists in opportunis-
tic action reallocation, and detection and suppression of redundancy.

Conversely, our idea is that, in order to fully exploit the presence of several
agents in the scenario, hence to reach a true cooperation, agents should cooperate
1 In the robotic literature high level goals are more often called “missions,” and “mis-

sion planning” consists in the decomposition of a mission into tasks.

496 Marco Benedetti and Luigia Carlucci Aiello

also in the plan formation activity, i.e., at level 1 of the above hierarchy. If
cooperation means working together to reach a common goal, cooperation should
start at the planning level, i.e., working together to jointly build a common plan
for a common goal. We believe that there are several advantages in this, the
increase of efficiency achieved by distributing the computing load among several
CPUs being only one of them, certainly not the most prominent one.

A remarkable advantage comes from the fact that agents have generally to
plan with an incomplete knowledge of the world and of others’ goals. This may
result in an advantage, rather than in an additional problem as it is generally
believed to be. Different agents in fact may have different viewpoints on the
world, which they may share, thus enriching the overall knowledge, while stay-
ing able to only reason on what they care about. We may call this phenomenon
“collective knowledge for collective planning”. In addition, we may also face sit-
uations where each single agent – if left alone – has not enough information to
solve a problem, but, by sharing individual viewpoints and/or conclusions, the
team of agents can come to a solution. This phenomenon is very well exemplified
by the three wisemen problem (proposed long ago by John McCarthy), which
for many years has been a sort of benchmark for knowledge representation for-
malisms (see, e.g. the solution proposed in [7, 8]). So, inter agent communication
during the plan formation phase has many advantages, as the variuos agents can
synchronize their planning efforts. In addition, they can communicate both the
failures and successes of their attempts to other agents, hence saving them from
going through the same reasoning. This aspect is very interesting: not only an
agent can learn by its own experience, but it can also learn “by being told”.
In the plausible case of agents aware of their capabilities, a further advantage
stems from the fact that each agent may bid for working on the part of the plan
relative to the parts of the world he knows better, or where he can work better.

After several efforts to develop specialized planning languages, in the as-
sumption that logic was not a suitable language for representing and solving
planning problems, mainly for complexity reasons, the recent years have seen
several proposals where logic is used to represent planning problems. Then, ei-
ther deduction or model checking are used as the tool for plan generation. A
noteworthy proposal, made by Kautz and Selman in [16], views plan generation
as a SATisfiability problem in proposiational logic. Many proposals have followed
the original one, with variations on the theme, that have brought the efficiency
of SAT based planners to face industrial applications.

The work we present here aims at making it feasible a real distributed plan-
ning process, which can in principle exploit some of the advantages of distributed
planning we just pointed out. Our proposal is to distribute plan generation by
distributing the underlying SAT-solving procedure. To this end however, we
cannot rely on a distribution strategy for SAT whose only aim is to increase ef-
ficiency. Conversely, we need a distribution strategy that on the one side reflects
the goal/subgoal distribution that occurs in the initial phase, when each agent
selects which part of the plan to work on, and on the other side allows for an
effective communication of partial results, during plan generation.

SAT-Based Cooperative Planning: A Proposal 497

1.1 Organization of the Paper

We first illustrate the SAT problem, and shortly introduce the major techniques
to attack it (see Section 2). We then briefly present motivations and techniques to
distribute and/or parallelize the task of solving a SAT instance (see Section 3).
In Section 4 we move to a short description of the planning problem in AI,
mainly to introduce the relevant nomenclature. Section 5 is then devoted to
illustrate planning as a satisfiability problem. Section 6 contains a description of
how to distribute SAT in a way suitable for planning applications. Cooperative
distributed planning is proposed in Section 7 with the help of a working example.
Section 8 is devoted to a many-sided discussion concerning what is still to be
worked out in our proposal and which directions we are about to follow. Few
concluding remarks close the paper (see Section 9).

2 SAT

The SAT problem (SAT, for short) consists of deciding whether a propositional
formula has (at least) one satisfying assignment (equivalently, it is the problem of
deciding whether a model for a propositional theory exists). In case models exist,
the formula is said to be satisfiable, while it is unsatisfiable (or contradictory or
inconsistent) in the opposite case. So, SAT is a decision problem, i.e.: a function
from the set of all possible propositional formulas to the set {sat, unsat}. For
satisfiable formulas, it is often useful to obtain a particular model (truth assign-
ment to the variables in the formula) and not only to know that one exists. In
this case a search problem is to be solved.

SAT is one of the most prominent problems in logic, computer science and
artificial intelligence, and it is of both theoretical and practical interest. From
a theoretical point of view, the time and space complexity of SAT have been
investigated in details for the general case and for particular sub-classes of the
problem. From the practical point of view, new or refined algorithms to face
SAT are continuously proposed in the literature.

SAT belongs to the class of NP-complete problems (any other NP-complete
problem is reducible to SAT in polynomial time [9]) whose algorithmic solutions
are currently believed to have exponential worst case [21]. Actually, it was the
prototypical NP-complete problem and it was also the first problem whose NP-
completeness was proved [9, 20]. So, there is no polynomial time algorithm which
solves SAT, provided P �= NP : for every satisfiability algorithm there exist
classes of formulas which require superpolynomial run time. A strictly related
problem is the one of deciding unsatisfiability, called UNSAT (UNSAT is in the
class coNP). What researchers do within the boundaries of these theoretical
limitations is to look for algorithms with good average performance (possibly
only good on some specific sub-classes of propositional formulas).

Despite being a very old problem in logic and artificial intelligence, SAT
has attracted an increasing interest in the last decade. This is witnessed by
the growing number of SAT-related papers recently published in journals and
conference proceedings, as well as by the many proposals of new algorithms for
SAT or refined variants of known ones. Web sites entirely devoted to SAT also

498 Marco Benedetti and Luigia Carlucci Aiello

appeared recently [14, 3]. They collect algorithms, instances, papers and even
propose online comparisons among different algorithms on several benchmarks.

This new spread of algorithms and proposals for SAT is mainly due to a
practical interest in solving real world problems with SAT-encoding techniques.

Two main classes of algorithms for SAT exist: complete algorithms (also
called deterministic or systematic), are those claiming that a formula is (un)satis-
fiable if and only if it is (un)satisfiable; incomplete algorithms (also called local or
randomized or stochastic), are those performing incomplete search: if a model is
not found after some specific resource limits have been exceeded, these algorithms
terminate failing to prove both satisfiability and unsatisfiability. Even though
incomplete algorithms have been sometimes employed in SAT based planning,
we here devote our attention to complete algorithms only.

Complete algorithms perform an exhaustive search in some state space. Two
subclasses of these algorithms are to be considered, depending on the aim of the
search.

Direct model search algorithms are those explicitly searching the space of
possible partial truth assignment, so they aim at finding a model. The DPLL
algorithm [10] (and subsequent variants) is a well known example falling in
this category.

Refutation procedures are those aiming at proving unsatisfiability. In case
a complete refutation procedure fails to prove inconsistency, the formula is
guaranteed to be satisfiable, and in some cases a model can be extracted as
well. These methods are based on resolution.

Direct model search algorithms gained the widest popularity in the SAT com-
munity, even though some features of refutation-based approaches still deserve
great attention. For certain classes of applications – not by chance the one we
propose below is among these – algorithms that work by resolution are best
suited.

3 Distributing SAT

Distributing satisfiability means to consider more than one process (or agent,
within the agent-oriented perspective we adopt) and give each one a share of a
SAT problem. The question is why and how that distribution should be done.

Propositional satisfiability is a particular case of automated deduction, a
field where parallel theorem proving strategies have been investigated in the
literature. An excellent survey on this subject is [5], and we here refer to the
principles and taxonomy reported there.

A first important concept is the one of parallelism at the search level, i.e.: the
use of multiple deductive processes that work at the same problem in parallel.
This strategy is adopted – for example – when the search space for the problem
of finding a satisfying assignment is decomposed (see for example [4]). As an
example, given a formula F , one arbitrarily chooses a variable x occurring in F ,
then solves separately and in parallel the SAT problem on F with x assigned to

SAT-Based Cooperative Planning: A Proposal 499

true, and the one on F with x assigned to false. The search space is thus parti-
tioned into two not overlapping regions and no communication is needed among
processes, other than the eventual “my portion does (not) contain a solution”.

The set of agents involved in one such distributed algorithm, can contain
either homogeneous or heterogeneous entities, depending on whether or not each
agent is provided with exactly the same inference system. In addition to this, a
peer agents scheme can be adopted as opposite to a master-slave implementation:
in the former case, each agent plays the same role as the others, and has no special
task with respect to the SAT problem under consideration; in the latter case,
a hierarchy among agents does exist, and some of them have special roles with
respect to coordination, distribution and decision.

Distributed search generally aims at speeding-up the process of finding a
solution. However, not only could one desire to speed up search, but he also
could aim at producing a particular application, as in our case.

Many approaches to distributed satisfiability aiming at speeding up the
search exist in the literature. Just to cite a few: PSATO [24], which is a distributed-
search master-slave implementation of the Davis-Putnam algorithm; Parallel
MODOC [22], a parallel version of a model-elimination based algorithm which ex-
ploits autarkies; Parallel Satz [15], relying on a master/slave model for com-
munications and on a dynamic preemptive workload balancing by work stealing.

4 Planning

We here limit ourselves to present the definition of a planning problem and to
give enough background on the approach we take.

A planning problem is a representation, in some formal language, of the fol-
lowing three aspects:

1. a description of the initial state of the world;
2. a description of the goal state the agent has to reach;
3. a description of the possible actions that can be performed by the agent.

This is often called domain theory or action theory.

The solution of the problem (if one exists) is a plan, i.e., a sequence of ac-
tions that, when executed in any world satisfying the initial state description,
will achieve the goal. A more general solution to a planning problem is a set
of partially ordered actions. When this representation is used, not all couples
of actions are ordered (as it happens in a sequence of actions), but only those
actually requiring to be serialized in some particular order to maintain the cor-
rectness of the plan. Consequently, a direct acyclic graph of actions is a well
suited representation for the solution of a planning problem.

In addition to the description of a planning problem, a planner has to be
provided with a background theory, i.e., a formal description of general known
properties of the world.

The planning problem naturally extends to a multi-agent framework. In
this case, the basic formalization steps given above are still valid, but several
choices are possible on whether or not agents explicitly cooperate, on the way of

500 Marco Benedetti and Luigia Carlucci Aiello

representing plans of other agents, on whether or not the planning phase itself
is distributed, on the time instants and the reasons why agents communicate to
synchronize their courses of action, and so on. Whichever the case, a multi-agent
plan is still a partially ordered set of actions, but additional mechanisms to have
the agents cooperating in producing and executing it are needed.

To conclude this brief introduction, it is worth saying that in classical plan-
ning problems, a number of simplifying assumptions are made (our proposal is
a classical one, as it maintains many of these limitations). Some of them are ab-
solutely not trivial to be removed: atomic time (or, equivalently, instantaneous
duration of action execution), no exogenous events, deterministic action effects,
etc., and are presently topics of active research. Last but not least, the problem
of distributing the planning activity in multi-agent domains, despite absent in
classical planning, is very relevant to applications and theoretically quite inter-
esting: it is exactly the kind of problem we address in what follows, by opening
the perspective of a SAT-based distributed mechanism.

5 Planning in SAT

A SAT-encoding technique is a well-known procedure in three steps: (1) a way
to encode a problem from a domain of interest into a propositional formula is
defined; if the original problem is a decision problem, the encoding is made in
such a way that the corresponding SAT decision problem answers the original
question; in general, for search problems that require to extract a particular
solution (and not just a SAT/UNSAT answer), the encoding is made in such a
way that a simple procedure exists which generates a solution to the original
problem, provided a model for the encoded formula is given; (2) the formula is
solved (and a model is possibly extracted for satisfiable formulas); (3) the answer
to the encoded SAT problem is used to answer the original problem, possibly by
means of a procedure which constructs a solution for the original problem given
a model for the formula.

As an example of encoding technique, we consider the planning problem [17,
18, 13, 19] (see Figure 1). In this case a compiler takes as input a planning prob-
lem (which consists of the action descriptions and the initial and goal state)
guesses a solution length (number of actions in the solution plan) and produces

Solver Decoder

Initial State

Goal State

Domain theory

Plan length

Compiler

Longer plan lengthLonger plan length

CNFCNF modelmodel planplan

Symbol tableSymbol table

UNSAT!

Fig. 1. Planning as satisfiability.

SAT-Based Cooperative Planning: A Proposal 501

Action axisAction axis

Fluent axisFluent axis

Goal

state

Goal

state

Fluents

ad step 1

Fluents

ad step 1

Fluents

ad step 2

Fluents

ad step 2

Initial

state

Initial

state

Actions

at step 1

Actions

at step 1

Actions

at step 2

Actions

at step 2

Actions

at step 3

Actions

at step 3

00 22 44 6633 5511

Fig. 2. Time encoding.

a propositional formula and a symbol table as output. The propositional formula
encodes all possible plans of the considered length in such a way that a solution
of that length exists if and only if the formula is satisfiable. The symbol table is
used to record correspondences between propositional variables and the planning
instance. If a model for the formula is found, a decoder translates that model
into a plan by using the symbol table. If the formula is found to be unsatisfiable,
the compiler generates a new encoding reflecting a longer plan length.

Several different ways for compiling planning instances into SAT instances
exist. We here briefly present a simple version of the compiler in Figure 1, with
the aim of just giving the necessary tools to further proceed in the exposition.

A first question is how to represent time. This is usually done by means of
non-negative integer values. Values for state fluents are given only in even time
instant, while actions only occur at odd time instants. According to this repre-
sentation, the truth value of the fluent P after i steps is denoted by P2i(x1, x2, ...,
xn), while an action A executed at step i is denoted by A2i+1(x1, x2, . . . , xn). In
Figure 2 this kind of time encoding is represented for a 3-steps plan.

An important point is that terms such as P2i(x1, x2, . . . , xn) and A2i+1(x1, x2,
. . . , xn) are encoded as single propositional variables. For example, P2i(x1, x2,
. . . , xn) might become variable x123. The correspondence between x123 and
P2i(x1, x2, . . . , xn) is exactly what is recorded in the symbol table of Figure 1.
When a model for the encoded formula is extracted, the truth value of the fluent
P at time 2i on arguments 〈x1, x2, ..., xn〉 is known to be – via the symbol table
– the truth value of the variable x123.

In the same way, if action A2i+1(x1, x2, ..., xn) has been encoded – say – into
variable x98 and if (and only if) the satisfying assignment assigns true to x98, the
action A has to be executed at step i with arguments 〈x1, x2, ..., xn〉, according
to the resulting plan.

The way initial and goal states are represented immediately follows from the
choice for time encoding.

Initial State. It is written as a set of unit clauses {P j
0 (x)} asserting that some

facts are true at time 0. These facts represent the initial situation of the
world.

Goal State. It is written as a set of unit clauses {P j
2n+2(x)} representing facts

which have to be true in the final state of a n-step plan.

502 Marco Benedetti and Luigia Carlucci Aiello

Apart from initial and goal states, the core of the SAT encoded instance is rep-
resented by the domain theory. There are several ways to perform this encoding.
Here we present a very simple technique.

Action Definition. It is encoded by means of a set of clauses joining action
occurrences at time 2i +1 with their effects at time 2i +2, and their precon-
ditions at time 2i. In particular, for each odd time instant, for each action
A in the domain, and for each ground version of A (a ground version being
an instance of the action with fully instantiated arguments), a set of bi-
nary clauses is introduced, meaning that action A2i+1(x) performed at step
i needs preconditions {P j

2i(yj)} and has effects {Ej
2i+2(zj)}:

A2i+1(x)→ P 1
2i(y1), P 2

2i(y2), ..., P n
2i(yn), E1

2i+2(z1), E2
2i+2(z2), ..., Em

2i+2(zm)

Frame Axioms. They are used to specify which fluents are not affected by
moving from an even time instant to the following one. In particular, for
each fluent P j and for each even time instant 2i, a n-ary clause

P j
2i(y) ∧ ¬P j

2i+2(y)→ A1j
2i+1(x) ∨A2j

2i+1(x) ∨ ... ∨Amj
2i+1(x)

encodes (all the) reasons for P to possibly become false. Contrapositively,
each such clause represents the set {Akj} of actions whose non-occurrence
at time 2i + 1 guarantees that P j

2i(y)→ P j
2i+2(y).

Conflict Exclusion Clauses. According to the adopted representation, more
than an action can simultaneously occur in each odd time instant. This
feature allows for flexible encoding of plans, but must be carefully managed.
In fact, it is necessary to explicitly ensure that all the linearized versions of
the resulting plan are executable. Linearizability is threatened when a couple
of actions exists, in the same time instant, such that one’s preconditions
are inconsistent with the other’s effects. Action definition and frame axioms
alone do not generally suffice to avoid such conflicts, but they can be excluded
by adding a binary clause ¬P j

2i(x) ∨ ¬P k
2i(x) for each couple of conflicting

clauses in each odd time instant.

We exemplify the above mechanism on the classic blocks world with fluents
on2i(x, y) (block x is on block y at step i), and free2i(x) (that no block is situ-
ated upon block x at step i). The action schemata we adopt are move2i+1(x, y)
to represent the action of moving block x onto block y at step i and
moveOnT able2i+1(x) with similar meaning when block x is moved onto the
table. Constants used to represent objects in the domain are table and a distinct
lowercase roman letter for each block.

Let us consider the planning instance in Figure 3. To encode the domain
theory into a propositional representation of all the plans of length n on this
instance, the following clauses have to be included:

– Action definition clauses; for all x, y ∈ {a, b, c, d}, x �= y, z ∈ {a, b, c, d, table},
and i ∈ {0, 1, ..., n− 1}, six clauses are written: move2i+1(x, y) → free2i(x),
free2i(y), on2i(x,z),¬free2i+2(y), free2i+2(z), on2i+2(x,y). In a similarway,

SAT-Based Cooperative Planning: A Proposal 503

Initial state

b

c

a d c

a

d

b

Goal state

Fig. 3. A sample planning instance in the blocks world.

the four clauses moveOnT able2i+1(x) → free2i(x), on2i(x, z), free2i+2(z),
on2i+2(x, table) are introduced with respect to each fully instantiated action
of type moveOnT able in each odd time instant.

– Frame axioms (one for each fluent); in particular, for all x, y, z ∈ {a, b, c, d}
and for all i ∈ {0, 1, ..., n− 1}, the following clauses are written:

on2i(x, y) ∧ ¬on2i+2(x, y) → move2i+1(x, z) ∨moveOnT able2i+1(x)
free2i(x) ∧ ¬free2i+2(x) → move2i+1(a, x) ∨ ... ∨move2i+1(d, x)

– Conflict exclusion clauses are written to avoid that the same block is moved
twice at one single time instant. Action definition clauses do not suffice
to ensure that the same block is not moved to two different locations at
one time, as nowhere does that axiomatization specify that the position of a
block is a function, not a general relation. Thus, we have to enforce that each
block can have at most one underlying block at every time step, and this is
done by avoiding at each action step two actions moving the same block. In
particular: ¬move2i+1(x, y)∨¬move2i+1(x, z) for all x, y, z ∈ {a, b, c, d} and
for all i ∈ {0, 1, ..., n− 1}. Analogous clauses have to be written for avoiding
the same block to be on the table and not on the table at the same time.

The resulting propositional formula encodes both the domain theory and the
planning instance in such a way that a plan of length n exists if and only if
the formula is satisfiable. In particular, the mechanism presented in Figure 1
first constructs the encoding with n = 1 and checks that it is unsatisfiable (no
plan of length 1 achieves the goals), then it generates the encoding with n = 2
and this comes out to be satisfiable. Figure 4 shows all (and only) the variable
assigned to true in this models. They are organized in a graphical representation
according to their meaning as extracted from the symbol table. This way, a plan
that reaches the original goals has been implicitly synthesized.

6 Distributing SAT for Cooperative Planning

We now introduce a new way of distributing the satisfiability problem (see also [1]
and [2]). The distributed search principle is widely applied in our approach, and
the way the search space is divided is quite unusual. In fact, we mix distributed
search with a particular kind of multi-search, i.e. we let each process tackle a
simplification of the overall SAT problem, with the constraint that by joining
the solution of every simplified sub-problem we get a solution for the original
SAT problem (either a model for the entire formula or the assurance that such
a model does not exist).

504 Marco Benedetti and Luigia Carlucci Aiello

on4(a,c)
on4(b,d)
on4(c,table)
on4(d,table)
free4(a)
free4(b)

on4(a,c)
on4(b,d)
on4(c,table)
on4(d,table)
free4(a)
free4(b)

on2(a,table)
on2(b,table)
on2(c,table)
on2(d,table)
free2(a)
free2(b)
free2(c)
free2(d)

on2(a,table)
on2(b,table)
on2(c,table)
on2(d,table)
free2(a)
free2(b)
free2(c)
free2(d)

on0(c,b)
on0(a,table)
on0(b,table)
on0(d,table)
free0(a)
free0(c)
free0(d)

on0(c,b)
on0(a,table)
on0(b,table)
on0(d,table)
free0(a)
free0(c)
free0(d)

moveOnTable1(c)moveOnTable1(c)

Action axis

Fluent axis

Action axis

Fluent axis
00 22 443311

move3(a,c)
move3(b,d)

move3(a,c)
move3(b,d)

b

c

a db

c

a d
bc a dbc a d

c

a

d

b

c

a

d

b

Fig. 4. A SAT-based solution to the sample planning instance.

Let us consider in what follows (with no loss of generality) that only two
agents exist and work together. The key idea is to consider a CNF formula F as
the conjunct of two formulas F1 and F2 in such a way that F = F1 ∧ F2. The
agent A1 is assigned the SAT problem on F1 and F2 is assigned to A2. These
two sub-problems are simpler than the original one, but without communication
between A1 and A2 we are not guaranteed that the composition of the sub-
solutions is consistent. We here present a mechanism to handle and solve this
problem.

We consider homogeneous agents, in the sense that each agent is provided
with exactly the same inference system. Moreover, we use a peer agents scheme
(every agent plays the same role as the others, and has no special task with
respect to the SAT problem under consideration).

The distribution of the instance is based on a partition of propositional vari-
ables between shared variables and private variables. There are two opposite per-
spectives to introduce such an approach. From one perspective, we can imagine
that a parent CNF formula F is decomposed by distributing clauses into several
CNF sub-formulas F1,F2, ...,Fn, in such a way that F = ∪i=1,..,nFi (this decom-
position may happen to be a partition of the parent formula, even though this
is not supposed to be true in what follows). The set V S

i,j = V ar(Fi)∩V ar(Fj) is
the set of variables shared by Fi and Fj (the set of variables appearing in both
Fi and Fj). Thus, the set of shared variables of Fi is V S

i = ∪j �=iV
S
i,j and the set

of its private variables is var(Fi) \ V S
i .

From another perspective, we may start from a set of formulas F1,F2, ...,Fn

(each one with its own distinct variables: V ar(Fi) ∩ V ar(Fj) = ∅ for all i �= j)
and then define an equivalence relation var= defined on the set ∪i=1,...,nV ar(Fi),
in such a way that Fi " v

var= w ∈ Fj implies i �= j. In this case, the set of shared
variables of Fi is V S

i = {v|∃w.v
var= w} and the set of its private variables is still

var(Fi) \ V S
i .

SAT-Based Cooperative Planning: A Proposal 505

Whichever the way of distinguishing shared variables from private ones, the
meaning of the distinction is the same, and is related to the satisfiability of
∪i=1,..,nFi: a shared variable must have the same truth value in all sub-formulas
sharing it.

As an example, let us consider the basic case of two formulas F1 and F2 in
CNF which share some propositional variables (according to the former nota-
tion of the two introduced above). We denote the set of shared variables with
V S = V ar(F1) ∩ V ar(F2). Variables in V ar(F1) \ V S are private to F1, those
in V ar(F2) \ V S are private to F2.

The satisfiability of F = F1 ∪ F2 depends on the satisfiability of F1 and
F2 in the following way: whenever F is satisfiable, F1 and F2 are satisfiable as
well. Conversely, the satisfiablity of F1 and F2 on its own does not ensure that
a model for F exists.

To ensure the satisfiability of F (provided F1 and F2 are satisfiable) it is
necessary that the projection on the shared variables of the set of models of F1

has at least one element in common with the projection on the shared variables
of the set of models of F2.

As an example, let us consider the following two formulas:

F1 = {{A,¬c}, {¬B,¬c, d}, {c,¬d}, {B, c, d}, {¬A, b}}
F2 = {{A, B, e}, {¬B, e}, {¬e, A, f}, {¬f, A}}

Both of them are satisfiable, and it is:

M(F1) = {{A,¬B, c, d}, {A,¬B, c,¬d}, {¬A, B,¬c,¬d}}
M(F2) = {{A, B, e, f}, {A, B, e,¬f}, {A,¬B, e, f},

{A,¬B, e,¬f}, {A,¬B,¬e, f}, {A,¬B,¬e,¬f}}

By projecting these models onto the set of shared variables V S = V AR(F1) ∩
V AR(F2) = {A, B} we getM(F1) ↓V S = {{A,¬B}, {¬A, B}} andM(F2) ↓V S

= {{A, B}, {A,¬B}}. So, the intersection of the projections is not empty, and
we are ensured that F = F1 ∪ F2 is satisfiable as well. In fact, it has eight
different models, each of which assigns true to A, and false to B.

We can state this result more precisely.

Proposition. Given two formulas F1 and F2 such that V S = V ar(F1)∩V ar(F2)
is not empty, the formula F = F1 ∪ F2 is satisfiable iff
M(F1) ↓V S ∩M(F2) ↓V S �= ∅.

We just linked up the satisfiability of F = F1 ∪ F2 to that of F1 and F2. A
closely related subject is how to solve the SAT problem for F = F1 ∪ F2 by
dealing with F1 and F2 separately. In fact, if the SAT problems on F1 and the
one on F2 were independently solved by two agents A1 and A2, we could observe
two possible outcomes with respect to F = F1 ∪ F2: (1) if either A1 or A2 (or
both of them) find their formula to be unsatisfiable, we are guaranteed that F
is unsatisfiable as well; (2) if A1 obtains a model m1 ∈ M(F1) and A2 does the
same and obtains m2 ∈ M(F2), there are three possible sub-cases: (2a) m1 and

506 Marco Benedetti and Luigia Carlucci Aiello

m2 assign the same truth value to the variables in V S ; (2b) m1 and m2 do not
assign the same truth value to the variables in V S and no other couple 〈m′

1, m′
2〉

(with m′
1 ∈ M(F1) and m′

2 ∈ M(F2)) does; (2c) m1 and m2 are not consistent
on V S , but some consistent couple 〈m′

1, m′
2〉 does exist.

We would like to avoid situations (2b) and (2c) as they are uninformative
with respect to the satisfiability of F = F1∪F2. In fact, neither A1 nor A2 have
enough information to distinguish between (2b) and (2c), but these situations
are quite different, as F is unsatisfiable in (2b) and satisfiable in (2c).

We can solve this problem by allowing A1 and A2 to communicate during the
search for a solution. The key idea is that whenever A1 (1)discovers or (2)decides
something regarding a shared variable, or a set of shared variables, it has to
communicate that piece of information to A2, and vice-versa. We first illustrate
with an example what discovering information on shared variables means. Then,
we address the topic of shared decision.

Given F1 = {{A,¬c}, {c, B, f}, {¬f}}, we have no clause in F1 which con-
tains only shared variables. So, none of the three clauses in F1 makes any sense
with respect to A2. However, we can derive {{A,¬c}, {c, B}} and then {A, B}
by means of two steps of resolution among clauses in F1. Now we have a clause
that contains only shared variables (we call it shared clause), and is derived us-
ing only F1. It is a sharable and meaningful information: every model of F1 and
every model of F2 have to contain either A or B assigned to true in order for
F1 ∪ F2 to be satisfiable. This is not informative for A1 itself, as F1 → A ∨ B,
but it could be informative for F2. So, A1 communicates the clause {A, B} to
A2. Equivalently, A2 sends shared clauses he discovers to A1.

When we look at the channel between the two agents, we see several shared
clauses transferred in both ways. If we collect all those shared clauses, we obtain
a growing CNF formula FS

(i) (where i is the number of collected clauses) con-
taining only shared variables, that is: a shared formula. For every i, it is both
M(F1) ↓V S ⊆ M(FS

(i)) and M(F2) ↓V S ⊆ M(FS
(i)), so that (M(F1) ↓V S) ∩

(M(F2) ↓ V S) = M(F) ↓V S ⊆ M(FS
(i)). The greater the number of shared

clauses discovered (the i index), the fewer the models inM(FS
(i)) not inM(F)|V S .

So, M(FS
(i)) approximates M(F) ↓ V S as i increases (incidentally, this implies

that the need for communication decreases as the search goes on, as agents
accumulate knowledge about externally-generated constraints on the common
variables).

The shared formula thus shrinks the set of possible models from the set
containing all the possible partial assignments on the shared variables, towards
the actual set of allowed models M(F)|V S .

Even if the SAT problem consists of finding just one satisfying assignment (if
it exists), each agent would like to know the entire projection of allowed models
on the shared variables (model enumeration, a much more complex problem) to
distinguish private models which are consistent with external constraints from
those that are not. Unfortunately, this information is not localized as each agent
sharing variables has to contribute to find out such a set. The solution is to
avoid model enumeration on shared variables by considering the current FS

(i)

SAT-Based Cooperative Planning: A Proposal 507

as a well suited approximation of M(F) ↓ V S . As soon as an agent discovers
models in FS

(i) not in M(F) ↓ V S he shrinks the set of allowed common models
by producing (and sending) a new shared clause. The other agent has to adapt
to the new information, possibly backtracking on some private choices.

The shared formula is a kind of “negative” information: in the search for
a model of F it is surely useless to consider any partial assignment which is
inconsistent with FS

(i). Many complete algorithms for satisfiability work incre-
mentally, in so as they handle growing partial assignment and try to construct
a model step by step. When a shared variable is involved in one such partial
assignment, a kind of “positive” communication takes place between A1 and A2.
Let us suppose A1 decides to assign true to a shared variable V S

i . A1 should
communicate this decision to A2 and A2 should hold it in due consideration,
as it is wasted time for A2 to work with the opposite hypothesis (V S

i assigned
to false). This is a “positive” kind of communication aimed at synchronizing
working hypotheses on the shared variables used by the two agents. This way,
the truth value assigned to V S

i is a shared working hypothesis.

7 Distributed Planning as a Distributed SAT Problem

An interesting solution to the distributed planning problem can be obtained
by joining distributed satisfiability and SAT-based planning. Simply stated, the
problem is that of cooperating during the development of a plan which involves
several agents. Each agent has its goals – generally not inconsistent with others’
goals. These agents are supposed to live and act in a shared environment, so they
are forced to synchronize their operations, and to possibly cooperate to reach
shared goals or subgoals. The interesting question is whether or not an early
cooperation mechanism can be introduced which allows for the production of
implicitly synchronized plans, i.e.: each agent plans on its own, but communicates
with other agents in such a way that mutually consistent plans are ensured as a
result.

The advantages of this approach are manifold. The need for synchronized
courses of actions in a multi-agent environment is met by construction, provided
each agent adopts a suitable distributed planning scheme. Each agent only wor-
ries about its own goals, and coordination is obtained as a consequence of the
planning process itself. Cooperation also comes out as a side effect of the plan-
ning effort. The quantity and roles of agents involved in a cooperative plan need
not to be fixed in the domain theory, and a flexible approach can be adopted
when dealing with new agents and/or new goals. Furthermore, a distribution of
the computational effort underlying the planning task is implicitly achieved.

As an example, let us reconsider the toy planning instance of the previous
section, and let us suppose that two agents act in this domain as represented
in Figure 5. By looking at the portion of the world one agent is interest in,
she is able to produce a SAT encoding of its planning instance, according to its
private goal and to the domain theory which is supposed to be known to all the
participants. We can suppose that the encoding given in the previous section

508 Marco Benedetti and Luigia Carlucci Aiello

b

c

a d

Initial state

b

c

a db

c

a d

Initial state

Goal state 2Goal state 2Goal state 1Goal state 1

c

a

c

a

Agent 1

d

b

d

b

Agent 2

Fig. 5. Two agents thinking of their goals.

is used, so that each agent comes out with a propositional formula and with a
symbol table recording correspondences between the planning instance and its
propositional variables.

This first step – i.e. the generation of a SAT-encoding of the private planning
problem – can be performed by each agent in isolation. Thereafter, the actual
solution extraction process begins. Here it is where we want cooperation to take
place, in order to ensure consistency (and possibly cooperation) among different
individual plans.

To this end, our approach to distributed satisfiability presented in the pre-
vious section can be suitably exploited. The key idea is to consider the encoded
instances of the two agents as two subsets F1 and F2 of a larger planning prob-
lem encoded as F = F1 ∪ F2. Shared variables are those appearing in both
formulas. The distributed satisfiability algorithm previously sketched is then
run as represented in Figure 6. Each agent is able to build a compilation of its
own planning instance, given the domain theory, the goal to be reached, and (the
portion of) the initial situation she is interested in. During this encoding process,
shared variables are identified as those variables related to the same (potential)
event of fact in the knowledge base of both agents. Then, the distributed solv-
ing procedure is started. It consists of finding a satisfying assignment for both
propositional encodings, that is consistent on shared variables. As all potential
facts or events involving both agents are encoded by means of shared variables,
the solution plan, if any, is such that no two contradictory plans ever come out.
Finally, the decoding phase can be performed by each agent in isolation, thus
embodying the shared model of the formula into a private but collaborative plan.

For the distributed planning instance presented in Figure 5, a solution is
eventually extracted by each agent. The truth assignments to shared variables
involve both agents (both partial models), while the truth values of private
variables define private portions of the plan and facts only relevant to the agent
owning such variables. Figure 7 shows the two partially overlapping plans the
agents A1 and A2 obtain as a result of their cooperative planning effort.

SAT-Based Cooperative Planning: A Proposal 509

A
2

A
1

Initial State

Domain theory

Plan length

Compiler
2

Compiler
1

Compiler
2

Compiler
1

Longer plan
length

F
2 Solver

2

Solver
1

F
1

F
2

F
2 Solver

2

Solver
1

Solver
2

Solver
1

F
1

F
1

model
Decoder

2

Decoder
1

model

modelmodel
Decoder

2

Decoder
1

Decoder
2

Decoder
1

modelmodel

plan
2

plan
1

plan
2

plan
2

plan
1

plan
1

Symbol table

Symbol table

Symbol tableSymbol table

Symbol tableSymbol table
Goal state1

Goal state2

VS,CS,FS

Fig. 6. Two agents cooperatively planning.

on0(d,table)
free0(d)

on0(d,table)
free0(d)

on0(c,b)
free0(c)

on0(c,b)
free0(c)

on0(a,table)
free0(a)

on0(a,table)
free0(a)

on0(d,table)
free0(d)

on0(d,table)
free0(d)

on0(c,b)
free0(c)

on0(c,b)
free0(c)

on0(a,table)
free0(a)

on0(a,table)
free0(a)

on2(d,table)
free2(d)

on2(d,table)
free2(d)

on2(b,table)
on2(c,table)
free2(b)
free2(c)

on2(b,table)
on2(c,table)
free2(b)
free2(c)

on2(a,table)
free2(a)

on2(a,table)
free2(a)

on2(d,table)
free2(d)

on2(d,table)
free2(d)

on2(b,table)
on2(c,table)
free2(b)
free2(c)

on2(b,table)
on2(c,table)
free2(b)
free2(c)

on2(a,table)
free2(a)

on2(a,table)
free2(a)

on4(a,c)
on4(c,table)
free4(a)

on4(a,c)
on4(c,table)
free4(a)

on4(b,d)
on4(d,table)
free4(b)

on4(b,d)
on4(d,table)
free4(b)

on4(a,c)
on4(c,table)
free4(a)

on4(a,c)
on4(c,table)
free4(a)

on4(b,d)
on4(d,table)
free4(b)

on4(b,d)
on4(d,table)
free4(b)

moveOnTable1(c)moveOnTable1(c)moveOnTable1(c)moveOnTable1(c)

move3(b,d)move3(b,d)

move3(a,c)move3(a,c)

move3(b,d)move3(b,d)move3(b,d)move3(b,d)

move3(a,c)move3(a,c)move3(a,c)move3(a,c)

A
1

A
1

A
2

A
2

0
Actions
Fluents

2 431

0 Actions
Fluents

2 431

0
Actions
Fluents

2 431
0

Actions
Fluents

2 431
Actions
Fluents
Actions
Fluents

2 431

0 Actions
Fluents

2 431
0 Actions

Fluents

2 431 Actions
Fluents

2 431 Actions
Fluents

2 431 Actions
Fluents

2 431

Fig. 7. Two partially overlapping plans.

The global plan obtained by merging these partially overlapping sub-plans
is a plan achieving both goals: the models for the two sub-formulas (encoding
the sub-problem of A1 and that of A2) are consistent on shared variables by
construction, so that the entire assignment is a model for the global formula
encoding the whole planning instance. As the global formula encodes the domain
theory, the initial state and the conjunction of the goals of the two agents, a
model of this formula maps to a plan which achieves both goals. In the sample
plan of Figure 7 shared actions and facts are represented within dark-colored
containers. The shared facts at time zero (the initial situation) are on0(c, b)
and free0(c). Conversely, the facts on0(a, table) and free0(a) are private to A1,
while on0(d, table) and free0(d) are private to A2. Four shared facts at time 2
are represented, while the final situation is made up of no shared facts. The only

510 Marco Benedetti and Luigia Carlucci Aiello

shared action in the plan is that of moving block c onto the table at time 1.
The variable represented in Figure 7 are those which are true in the satisfying
assignment extracted. In addition to these shared variables, a number of further
shared variables exist which are not represented in the figure; in particular, all
those assigned to false. For example, the variable moveOnT able1(b) is shared,
but both agents agree on assigning false to it. Consequently, that action does
not belong to the final plan and is not shown in Figure 7.

It still remains to decide which agent performs which action. For private
actions, the problem is easily solved by assigning the execution of that action
to the agent owning the encoding variable. Shared actions (action encoded by
shared variables, hence representing cooperative portions of the plan) can be
scheduled on-line during the execution phase, by assigning them to one of the
owning agents, on the basis of any reasonable criterion. A different – and less
preferable – approach arises in case the same action (at the same time step)
is encoded by several different variables, one for each participant. In this case,
the scheduling of actions is implicitly performed during the planning phase, and
conflict exclusion clauses ensure that each action is performed by exactly one
agent.

8 Discussion and Future Work

A number of issues need to be considered with respect to our proposal of a
framework for distributed planning. All of them deserve further attention. We
here briefly consider these topics in turn.

Shared Variables: The problem of selecting shared variables is a sensible one.
From a syntactical point of view, the “sharedness” can be immediately de-
tected by using a unique name assumption: two variables associated with the
same fluent or action in the symbol tables of different agents, define a shared
variable among those agents. For example, the fluent instance on2(b, table)
has to be associated with the same shared variable in the encoding of every
instance somewhere talking of the block b on the table at time 2: this vari-
able represents a shared fact, and each individual plan has to agree with the
other plans concerning whether or not the block b is on the table at time
2. The same holds for shared actions (i.e.: the same action instance taken
at the same time in different plans). So, agents can easily agree on which
variables are shared and which ones are not, once the initial situation for
each agent is given.

The Initial Situation: In the simple encoding we presented in Section 5, the
initial situation, together with the domain theory, determines which variables
come out from the encoding, and consequently which ones are shared. The
key point here is that the initial situation should be partitioned into portions,
each one containing (all the) facts relevant to one single agent. Relevant facts
are those talking about things one necessarily has to know in order to reach
his goal. The partitioning has been empirically done in Figure 5, where the
underlying rule is that an agent only knows the subset of stacks containing
blocks involved in his private goal. More general rules are necessary here, to

SAT-Based Cooperative Planning: A Proposal 511

extend the partitioning of the initial situation to other domains and other
kinds of encodings. In addition to this, the ways and means of deciding
private goals have to be studied. Several different solutions are possible here,
also depending on the target application, ranging from a central mechanism
to optimize task allocation to a distributed goal selection system.

Soundness: We would obtain soundness and completeness of the approach for
free in case the conjunction of the encodings were equal to the encoding of
the conjunction. But this is not the case in general. For example, when the
planning instance considered in Figure 5 is tackled as a whole, the variable
oni(a, d) for some i is surely generated, whereas it is not taken into account
when a distributed solution is attempted, as in Figure 7. The reason why
this variable (among others) is omitted, is that it relates objects of the world
which are separated both in the initial state (w.r.t. stacks of blocks), and
in the final one (w.r.t. goal decomposition). So, one may think of these
variables as being forcefully assigned to false. It remains to be proved that
variables and clauses kept out of the encoding do not affect soundness and
completeness of the planning mechanism.

Effectiveness and Efficiency: Here we are mainly concerned with the con-
struction of a really effective solution for distributed planning. On one hand,
it is clear that two planning instances which do not interact at all (no shared
variables, in our framework), can be solved in isolation more effectively than
it is possible by considering the problem as a whole (think of two separate
blocks worlds, and two planning problems in these two worlds; the joint prob-
lem obtained by conjoining the initial and final situations is still a planning
problem in an enlarged blocks world, but it is harder to solve, as modularity
is lost). On the other hand, it is also clear that when agents have heavily
interacting goals and plans, the number of shared variables increases. The
larger the number of shared variables with respect to non-shared ones, the
greater the amount of time (and memory) spent in managing messages dur-
ing the solving procedure. This trade-off needs to be analyzed, and it moves
our attention towards the initial phase when goals are distributed among
agents. Even if this topic is out of the scope of a distributed planner, it
heavily impacts on the effectiveness of the approach.

Implementation: We are working on a prototype implementation of our dis-
tributed planner. Needless to say, a working implementation is the starting
point for a thorough investigation of the real potentiality of our approach.
Things work right in a few domain we are considering, and many of the
questions that are still open can only find an “on the field” answer.

9 Conclusions

In the current AI literature, in multi agent systems, cooperative planning essen-
tially means that each agent – participating in the cooperative achievement of
a common goal – has to take into account, in its planning activity, that other
agents are part of the scenario. In the paper we put forth a somewhat stronger
view of cooperative planning, i.e. agents not only take into account that other

512 Marco Benedetti and Luigia Carlucci Aiello

agents may affect the scenario with their actions, and that they may share the
workload of executing plans to achieve common goals, but they can distribute
among themselves the workload of generating plans, with the advantages coming
from information sharing.

We are working on a framework for distributed planning, which relies on
the “planning as satisfiability” paradigm, and allows for multi-agent coopera-
tive planning. We aim at obtaining this by joining SAT-based planning with a
particular approach to distributed propositional satisfiability.

The advantage of the proposed framework is in that each agent is enabled to
plan on its own, and communicate with other agents during the planning process,
in such a way that synchronized and possibly cooperative plans are ensured as
a result.

We illustrated our elements of novelty over previous approaches, which either
were built on ad-hoc distributed planning mechanisms (not fully exploiting the
powerful techniques developed within the “single-planning-agent” framework),
or did not actually distribute the planning effort in a significant way. Conversely,
we are trying to develop a solution which get all these benefits with no loss of
generality w.r.t. other known and well established planning techniques for single-
agent domains. Much is left to do in this direction, but the key ideas reported
in this paper will strongly drive the research.

By abstracting from the planning domain, further interesting applications of
our proposal loom on the horizon: whenever (1) a SAT-compilation technique
is available to solve problems from a certain domain of interest and (2) the
domain itself is well suited for applying a multi-agent solution, then a team of
cooperative agents can tackle the considered problem in a distributed way by
means of a SAT-based distributed approach.

Acknowledgements

We acknowledge the support of MIUR, the Italian Ministry of Research (Project
Moses) and ASI (the Italian Space Agency), that made the research reported in
this paper possible.

We dedicate this paper to Joerg Siekmann, a friend and a colleague, whose
research has been a source of inspiration in many occasions.

References

1. M. Benedetti. A New Way of Distributing Satisfiability. In H. R. Arabnia, editor,
Proceedings of the International Conference on Artificial Intelligence (IC-AI 2001),
volume 1, pages 295–300. CSREA, 2001.

2. M. Benedetti. Bridging Refutation and Search in Propositional Satisfiability. PhD
Thesis, Dipartimento di Informatica e Sistemistica, Università degli Studi di Roma
“La Sapienza”, 2001.

3. D. L. Berre. Sat live! page: a dynamic collection of links on sat-related research.
http://www.satlive.org, 2000.

SAT-Based Cooperative Planning: A Proposal 513

4. M. Bohm and E. Speckenmeyer. A fast parallel SAT-solver – efficient workload
balancing. Technical Report 94-159, University of Cologne, 1994.

5. M. P. Bonacina. A taxonomy of parallel strategies fo deduction. Technical Report
May 1999, Department of Computer Science, University of Iowa, 1999.

6. S. Botelho and R. Alami. Multi-robot Cooperative Plan Enhancement. pages
100–110, 1999.

7. L. Carlucci Aiello, D. Nardi, and M. Schaerf. Reasoning about Knowledge and
Ignorance. In Proceedings of the International Conference on Fifth Generation
Computer Systems 1988 (FGCS-88), pages 618–627. ICOT Press, 1988.

8. L. Carlucci Aiello, D. Nardi, and M. Schaerf. Reasoning about Reasoning in a
Meta-Level Architecture. International Journal of Applied Intelligence, 1:55–67,
1991.

9. S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the
3rd Annual ACM Symposium on the Theory of Computing, pages 151–158, 1971.

10. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Journal of the ACM, 5:394–397, 1962.

11. M. desJardins, E. Durfee, C. L. J. Ortiz, and M. Wolverton. A Survey of Research
in Distributed, Continual Planning. 20(4):13–22, 1999.

12. E. H. Durfee. Planning in Distributed Artificial Intelligence. In G. O’Hare and
N. Jennings, editors, Foundations of Distributed Artificial Intelligence, pages 231–
245. Wiley & Sons, 1996.

13. M. Ernst, T. Millstein, and D. Weld. Automatic SAT-compilation of planning
problems. In Proceedings of the 15th International Joint Conference on Artificial
Intelligence, pages 1169–1177, 1997.

14. H. Hoos and T. Stützle. Satlib – the satisfiability library.
http://www.informatik.tu-darmstadt.de/AI/SATLIB, 1998.

15. B. Jurkowiak, C. M. Li, and G. Utard. Parallelizing Satz Using Dynamic Workload
Balancing. In Proceedings of Workshop on Theory and Applications of Satisfiability
Testing (SAT’2001), volume 9 of Electronic Notes in Discrete Mathematics, pages
205–211. Elsevier Science, 2001.

16. H. Kautz and B. Selman. Planning as Satisfiability. pages 359–363, 1992.
17. H. Kautz and B. Selman. Planning as satisfiability. In Proceedings of the 10th

European Conference on Artificial Intelligence, pages 359–363, 1992.
18. H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic,

and stichastic search. In Proceedings of the 12th European Conference on Artificial
Intelligence, pages 1194–1201, 1996.

19. H. Kautz and B. Selman. Blackbox: A new approach to the application of theorem
proving to problem solving. In AIPS98 Workshop on Planning and Combinatorial
Search, pages 58–60, 1998.

20. L. Levin. Universal Sequential Search Problems. Problems of Information Trasmis-
sion, 9:265–266, 1973.

21. D. J. M. R. Garey. Computers and Intractability: A Guide to the Theory of NP-
completeness. W. H. Freeman and Company, 1979.

22. F. Okushi. Parallel cooperative propositional theorem proving. Artificial Intelli-
gence, 26:59–85, 1999.

23. D. S. Weld. Recent Advances in AI Planning. 20(Summer 1999):93–123, 1999.
24. H. Zhang, M. P. Bonacina, and J. Hsiang. Psato: a distributed propositional prover

and its application to quasigroup. Journal of Symbolic Computation, 21:543–560,
1996.

Towards Comprehensive Computational Models
for Plan-Based Control of Autonomous Robots

Michael Beetz

Munich University of Technology,
Department of Computer Science IX,

Orleanstr. 34,
D-81667 Munich, Germany

Abstract. In this paper we present an overview of recent developments in the
plan-based control of autonomous robots. We identify computational principles
that enable autonomous robots to accomplish complex, diverse, and dynamically
changing tasks in challenging environments. These principles include plan-based
high-level control, probabilistic reasoning, plan transformation, and context and
resource-adaptive reasoning. We will argue that the development of comprehen-
sive and integrated computational models of plan-based control requires us to
consider different aspects of plan-based control – plan representation, reasoning,
execution, and learning – together and not in isolation. This integrated approach
enables us to exploit synergies between the different aspects and thereby come
up with simpler and more powerful computational models.
In the second part of the paper we describe Structured Reactive Controllers
(SRCs), our own approach to the development of a comprehensive computational
model for the plan-based control of robotic agents. We show how the principles,
described in the first part of the paper, are incorporated into the SRCs and sum-
marize results of several long-term experiments that demonstrate the practicality
of SRCs.

1 Introduction

In recent years, autonomous robots, including XAVIER, MARTHA [AFH+98], RHINO

[BCF+00,BAB+01], MINERVA, and REMOTE AGENT, have shown impressive per-
formance in longterm demonstrations. In NASA’s Deep Space program, for example,
an autonomous spacecraft controller, called the Remote Agent [MNPW98], has au-
tonomously performed a scientific experiment in space. At Carnegie Mellon University
XAVIER [SGH+97], another autonomous mobile robot, has navigated through an office
environment for more than a year, allowing people to issue navigation commands and
monitor their execution via the Internet. In 1998, MINERVA [TBB+00] acted for thir-
teen days as a museum tourguide in the Smithsonian Museum, and led several thousand
people through an exhibition.

These autonomous robots have in common that they perform plan-based control in
order to achieve better problem-solving competence. In the plan-based approach robots
generate control actions by maintaining and executing a plan that is effective and has
a high expected utility with respect to the robots’ current goals and beliefs. Plans are

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 514–527, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards Comprehensive Computational Models for Plan-Based Control 515

robot control programs that a robot cannot only execute but also reason about and ma-
nipulate [McD92a]. Thus a plan-based controller is able to manage and adapt the robot’s
intended course of action – the plan – while executing it and can thereby better achieve
complex and changing tasks. The plans used for autonomous robot control are often
reactive plans, that is they specify how the robots are to respond in terms of low-level
control actions to continually arriving sensory data in order to accomplish their objec-
tives. The use of plans enables these robots to flexibly interleave complex and interact-
ing tasks, exploit opportunities, quickly plan their courses of action, and, if necessary,
revise their intended activities.

Fig. 1. Plan-based control of robotic agents. The
control program specifies how the robot is to re-
spond to sensory input to accomplish its task.
The plan is the part of the control program that
the robot explicitly reasons about and manipu-
lates.

To be reliable and efficient, au-
tonomous robots must flexibly inter-
leave their tasks and quickly adapt their
courses of action to changing circum-
stances. Recomputing the best possible
course of action whenever some aspect
of the robot’s situation changes is not
feasible but can often be made so if the
robots’ controllers explicitly manage the
robots’ beliefs and current goals and re-
vise their plans accordingly. The use of
plans helps to mitigate this situation in at
least two ways. First, it decouples com-
putationally intensive control decisions
from the time pressure that dominates the
feedback loops. Precomputed control de-
cisions need to be reconsidered only if
the conditions that justify the decisons
change. Second, plans can be used to fo-
cus the search for appropriate control de-
cisions. The can neglect control decisions
that are incompatible with its intended
plan of action.

In the remainder of this paper we proceed as follows. In the first part, we describe
principles and building blocks of computational models for plan-based control. In the
second part, we will then outline our initial steps towards such a comprehensive com-
putational model that contains the building blocks introduced in the first part.

2 Principles of Plan-Based Control

Plans in plan-based control have two roles. They are both executable prescriptions that
can be interpreted by the robot to accomplish its jobs and syntactic objects that can
be synthesized and revised by the robot to meet the robot’s criterion of utility. Besides
having means for representing plans, plan-based controllers must also be equipped with
tools that enable planning processes to (1) project what might happen when a robot
controller gets executed and return the result as an execution scenario; (2) infer what

516 Michael Beetz

might be wrong with a robot controller given an execution scenario; and (3) perform
complex revisions on robot controllers.

Let us now consider some of the key issues in the plan-based control of robotic
agents: dynamic system perspective, probabilistic reasoning, symbol grounding, and
context and resource-adaptive reasoning.

Dynamic System Perspective. Since flexibility and responsiveness to changing situa-
tions are important characteristics of the robot behavior, we use dynamic systems as the
primary abstract model for programming the operation of the integrated plan-based con-
troller (see figure 2). In this model, the state of the world evolves through the interaction
of two processes: the controlling process – the robot’s control system – and the con-
trolled process, which comprises events in the environment, physical movements of the
robot and sensing operations. For complex dynamic systems, it is often useful to further

"rational agent"
Controller

Belief
State

Plan

State
Estimators

and
Monitors

Controlled Process

Controlling Process

Fig. 2. Block diagram of our dynamic system model
for autonomous robot control. Processes are depicted
as boxes and interactions as arcs.

decompose the controlled process
into an environment and a sensing
process. The environment process
changes the world state and the sens-
ing process maps the world state into
the sensor data received by the robot.
This suggests making a similar de-
composition of the controlling pro-
cess into state estimation and action
generation processes. State estima-
tion processes compute the robot’s
beliefs about the state of the con-
trolled system. Auxiliary monitor-
ing processes signal system states
for which the controlling process is
waiting. An action generation pro-
cess specifies the control signals sup-
plied to the controlled process as
a response to the estimated system
state.

The main consequence of this model is that robot action plans must control concur-
rent and continuous processes both flexibly and reliably.

Probabilistic Reasoning. Probabilistic reasoning is a key technique employed in the
control of autonomous robots. Probabilistic reasoning is employed in a number of dif-
ferent ways.

First, plan generation and revision methods compute plans that have a probability of
achieving a given goal with a probability higher than a specified threshold or they com-
pute plans with the best expected cost benefit trade-off [BDH98,KHW95,DHW94]. To
employ such probabilistic planning techniques actions are represented through prob-
abilistic effect models and the planning techniques consider probability distributions
over world states rather than the states themselves. The advantage of these techniques
is that they can properly handle the uncertainty caused by incomplete knowledge and
inaccurate and unreliable sensors and the uncertainty resulting from non-deterministic

Towards Comprehensive Computational Models for Plan-Based Control 517

action effects. The main problem associated with these techniques are the computational
cost associated with the application of these techniques.

The second area in plan-based control where probabilistic reasoning techniques are
heavily used is the interpretation of sensor data acquired by the robots’ sensors [Thr00].
The plan-based high-level control of robotic agents is founded on abstract perceptions
of the current state of objects, the robot, and its environment. In order to derive such
abstract perceptions from local and inaccurate sensors robustly, plan-based controllers
often employ probabilistic state estimation techniques [SB01]. The state estimators
maintain the probability densities for the states of objects over time. Whenever state
information is requested by the planning component, they provide the most likely state
of the objects.

The probability density of an object’s state conditioned on the sensor measurements
received so far contains all the information which is available about the object. Based
on this density, one is not only able to determine the most likely state of the object, but
one can also derive even more meaningful statistics like the variance and entropy of the
current estimate. In this way, the high-level system is able to reason about the reliability
of an estimate.

A third application field of probabilistic reasoning is learning. Probabilistic reason-
ing techniques enable robots to learn symbolic actions, probabilistic action models, and
competent action selection strategies from experience.

Symbol Grounding. One of the key difficulties in the application of plan-based control
techniques to object manipulation tasks is the symbol grounding or anchoring prob-
lem. In most plan representations constants used in the instantiations of plan steps de-
note objects in the world. This is a crude oversimplification because robots often do
not have direct physical access to the objects themselves. Rather the control systems
must use object descriptions that are computed from sensor data in order to manipulate
objects. The use of object descriptions rather than objects to instantiate manipulation
actions yields problems such as ambiguous, inaccurate, and invalid object descriptions.
Powerful computational models of plan-based control must therefore have much more
expressive representational means to make these problems transparent to the planning
techniques. Several researchers [Fir89,McD90,CS00] have developed techniques to in-
corporate object descriptions into plan-based control.

Plan Transformation. Another key issue in the plan-based control of robots, in partic-
ular for those robots that are to act in dynamic and complex environments, is the fast
formation and adaptation of plans. A very common idea for achieving fast plan forma-
tion is the idea of a plan library, a collection of canned plans for achieving standard
tasks in standard situations [McD92b]. However, such plans cannot be assumed to ex-
ecute optimally. In a situation where an unexpected opportunity presents itself during
the execution of the robot’s tasks, for example, a canned plan will have trouble testing
for the subtle consequences that might be implied by an alteration to its current plan.
The decision criteria to take or ignore such opportunities must typically be hardwired
into the canned plans when the plan library is built.

An alternative is to equip a robot with self-adapting plans, which carry out plans
with the constraint that, whenever a specific belief of the robot changes, a runtime
plan adaptation process is triggered. Upon being triggered, the adaptors decide whether

518 Michael Beetz

plan revisions are necessary and, if so, perform them. Plan adaptation processes are
specified explicitly, modularly, and transparently and are implemented using declarative
plan transformation rules.

Context and Resource-Adaptive Operation. To make its control decisions in a timely
manner the plan-based controller applies various resource-adaptive inference methods
[Zil96]. These enable the controller to trade off accuracy and the risk of making wrong
decisions against the computational resources consumed to arrive at those decisions.
Moreover, the results of the resource-adaptive reasoning are employed to adapt the ex-
ecution modes of the process in response to the robot’s context [BACM98].

3 Building Blocks of Plan-Based Control

The building blocks of plan-based control are the representation of plans, the execution
of plans, various forms of automatic learning, and reasoning about plans, including plan
generation and transformation, and teleological, causal, and temporal reasoning.

But before we dive in and discuss the building blocks of modern plan-based control
models let us first get an intuition of how traditional robot planning techniques function.

Representation

Reasoning

Learning Execution

Fig. 3. The main components of plan-
based control are plan representation,
execution, learning, and reasoning and
their interactions.

Most of these techniques are based on the
problem-space hypothesis [New90]: they assume
problems can be adequately stated using a state
space and a set of discrete and atomic actions that
transform states to successor states. A solution is
an action sequence that transforms any situation
satisfying a given initial state description into an-
other state that satisfies the given goal. Plan gen-
eration is the key inferential task in this problem-
solving paradigm.

As a consequence, representational means are
primarily designed to simplify plan generation
from first principles. Problem space plans are typ-
ically used in layered architectures [BFG+97],
which run planning and execution at different lev-
els of abstraction and time scales. In these ap-
proaches planning processes use models that are
too abstract for predicting all consequences of
the decisions they make and planning processes
cannot exploit the control structures provided by
the lower layer. Therefore they lack appropriate
means for specifying flexible and reliable behav-
ior and plans can only provide guidelines for task
achievement.

Contrary to the plan space approach, plan-based control of robotic agents takes
the stand that there is a number of inference tasks necessary for the control of an au-
tonomous robot that are equally important. These inference tasks include ones that en-
able the competent execution of given plans, ones that allow for learning plans and

Towards Comprehensive Computational Models for Plan-Based Control 519

other aspects of plan-based control, and various reasoning tasks, which comprise the
generation and assessment of alternative plans, monitoring the execution of a plan, and
failure recovery.

These different inference tasks are performed on a common data structure: the plan.
Consequently, the key design issues of plan-based control techniques are representa-
tional and inferential adequacy and inferential and acquisitional efficiency as key crite-
ria for designing domain knowledge representations [RK91]. Transferring these notions
to plan-based control, we consider the representational adequacy of plan representa-
tions to be their ability to specify the necessary control patterns and the intentions of
the robots. Inferential adequacy is the ability to infer information necessary for dy-
namically managing, adjusting, and adapting the intended plan during its execution.
Inferential efficiency is concerned with the time resources that are required for plan
management. Finally, acquisitional efficiency systems is the degree to which they sup-
port the acquisition of new plan schemata and planning knowledge.

To perform the necessary reasoning tasks the plan management mechanisms must
be equipped with inference techniques to infer the purpose of subplans, find subplans
with a particular purpose, automatically generate a plan that can achieve some goal,
determine flaws in the behavior that is caused by subplans, and estimate how good
the behavior caused by a subplan is with respect to the robot’s utility model. Pollack
and Horty [PH99] stress the point that maintaining an appropriate and working plan
requires the robot to perform various kinds of plan management operations including
plan generation, plan elaboration, commitment management, environment monitoring,
model- and diagnosis-based plan repair, and plan failure prediction.

It does not suffice that plan management mechanisms can merely perform these
inference techniques but they have to perform them fast. The generation of effective
goal-directed behavior in settings where the robots lack perfect knowledge about the
environment and the outcomes of actions and environments are complex and dynamic,
requires robots to maintain appropriate plans during their activity. They cannot afford
to entirely replan their intended course of action every time their beliefs change.

To specify competent problem-solving behavior the plans that are reasoned about
and manipulated must have the expressiveness of reactive plan languages. In addition
to being capable of producing flexible and reliable behavior, the syntactic structure of
plans should mirror the control patterns that cause the robot’s behavior – they should
be realistic models of how the robot achieves its intentions. Plans cannot abstract away
from the fact that they generate concurrent, event-driven control processes without the
robot losing the capability to predict and forestall many kinds of plan execution fail-
ures. A representationally adequate plan representation for robotic agents must also
support the control and proper use of the robot’s different mechanisms for perception,
deliberation, action, and communication. The full exploitation of the robot’s different
mechanisms requires mechanism-specific control patterns. Control patterns that allow
for effective image processing differ from those needed for flexible communication,
which in turn differ from those that enable reliable and fast navigation. To fully exploit
the robot’s different mechanisms, their control must be transparently and explicitly rep-
resented as part of the robot’s plans. The explicit representation of mechanism control

520 Michael Beetz

enables the robot to apply the same kinds of planning and learning techniques to all
mechanisms and their interaction.

The defining characteristic of plan-based control is that these issues are considered
together: plan representation and the different inference tasks are not studied in isolation
but in conjunction with the other inference tasks. The advantage of this approach is that
we can exploit synergies between the different aspects of plan-based control.

Plan management capabilities simplify the plan execution problem because pro-
grammers do not have to design plans that deal with all contingencies. Rather plans
can be automatically adapted at execution time when the particular circumstances un-
der which the plan has to work are known. Plan execution mechanisms can also employ
reasoning mechanisms in order to get a broader coverage of problem-solving situations.
The REMOTE AGENT, for example, employs propositional reasoning to derive the most
appropriate actions to achieve the respective immediate goals [WN97,NW97]. On the
other side, competent plan execution capabilities free the plan management mechanism
from reasoning through all details. Reasoning techniques such as diagnostic and tele-
ological reasoning are employed in transformational learning techniques in order to
perform better informed learning decisions and thereby speed up the learning process
[BB00]. Skill learning mechanisms have also been applied to the problem of learning
effective plan revision methods [Sus77]. There is also a strong interaction between the
learning and execution mechanisms in plan-based control. Learning mechanisms are
used to adapt execution plans in order to increase their performance . Competent exe-
cution mechanisms enable the learning mechanisms to focus on strategical aspects of
problem-solving tasks.

4 Structured Reactive Controllers:
A Computational Model of Plan-Based Control

After having described the general components of computational models of plan-based
control I want to give you now a brief overview of our own approach to the development
of such integrated computational models. The robot controllers that realize this compu-
tational model are called Structured Reactive Controllers (SRCs) [Bee01]. Structured
Reactive Controllers are self-adapting plans that specify concurrent reactive behavior.
They revise themselves during the execution of specified user commands in order to ex-
ploit opportunities and avoid predictable problems. They are also capable of experience-
based learning.

Structured Reactive Controllers use a very expressive plan language, called RPL

[McD91], and a number of software tools for predicting the effects of executing plans,
for teleological and causal reasoning about plans, for revising plans during their execu-
tion, and for automatically learning routine plans.

Given a set of jobs, an SRC concurrently executes the default routines for each in-
dividual job. These routine activities are general and flexible and work well in standard
situations. They can cope well with partly unknown and changing environments, run
concurrently, handle interrupts, and control robots without assistance over extended pe-
riods. For standard situations, the execution of these routine activities causes the robot
to exhibit an appropriate behaviour while achieving its purpose. While it executes rou-

Towards Comprehensive Computational Models for Plan-Based Control 521

STRUCTURED REACTIVE CONTROLLER

STRUCTURED REACTIVE PLAN

PRIMARY ACTIVITIES

POLICIES
 LOCALIZE-ACTIVELY

DELIVER FAX TO WOLFRAM

DELIVER MAIL TO MICHAEL

PROCESS
MODULES

LOCALIZE

TRACK

GRAB-IMAGE

NAVIGATE

NR-OF-
NAV-GOALS

FLUENTS

POS-
CERTAINTY

ROBOT-Y

NAVIGATION-
ACTIVE?

ROBOT-X

ACTIVATE/
DEACTIVATE

CPU

RPL
RUNTIME SYSTEM

PLAN
LIBRARY

INTER-
PRETER

Fig. 4. Components of a structured reactive controller. The structured reactive plan specifies how
the robot responds to changes of its fluents, registers that are asynchronously set by the sensing
processes. The interpretation of the structured reactive plan results in the activation, parameter-
ization, and deactivation of process modules that execute and monitor the physical continuous
control processes.

tine activities, the SRC also tries to determine whether its routines might interfere with
each other and monitors robot operation for non-standard situations. If one is found, it
will try to anticipate behaviour flaws by predicting how its routine activities might work
in these non-standard situations. If necessary, it revises its routines to make them robust
for this kind of situation. Finally, it integrates the proposed revisions into the activities
it is pursuing.

Transformational Planning of Concurrent Reactive Plans. Consider the following plan
adaptor, which illustrates the planning techniques employed by SRCs.

With plan adaptor Whenever the robot detects an open door
that was assumed to be closed

if this situation is an opportunity
then it changes its course of action

to make use of the opportunity

Concurrent reactive plan

The plan adaptor is triggered by a change of its belief about an door being open
or closed. Upon being triggered the adaptor decides whether a change in the intended
course of activity is suitable and if so performs it. The process of plan adaptation is
realized through transformational planning [McD92b,Bee00].

Transformational planning is implemented as a search in plan space. A node in the
space is a proposed plan; the initial node is the default plan created using the plan li-
brary. A step in the space requires three phases. First, a plan adaptor projects a plan to

522 Michael Beetz

generate sample execution scenarios for it. Then, in the criticism phase, a plan adap-
tor examines these execution scenarios to estimate how good the plan is and to predict
possible plan failures. It diagnoses the projected plan failures by classifying them in a
taxonomy of failure models. The failure models serve as indices into a set of transfor-
mation rules that are applied in the third phase, revision, to produce new versions of the
plan that are, we hope, improvements.

Prediction in Structured Reactive Controllers. Temporal projection, the process of pre-
dicting what will happen when a robot executes its plan, is essential for many robots to
successfully plan courses of action. To be able to project their plans, robots must have
causal models that represent the effects of their actions. These causal models should
be sufficiently realistic to predict the behavior generated by modern autonomous robot
controllers accurately enough to foresee a significant range of real execution problems.
This can be achieved if action models reflect the facts that physical robot actions cause
continuous change; that controllers are reactive systems; that the robot is executing mul-
tiple physical and sensing actions; and that the robot is uncertain about the effects of its
actions and the state of the environment.

The problem of using such realistic action models is obvious. Nontrivial concurrent
plans for controlling robots reliably are very complex. There are usually several control
processes active. Many more are dormant, waiting for conditions that trigger their exe-
cution. The branching factors for possible future states – not to mention the distribution
of execution scenarios that they might generate – are immense. The accurate computa-
tion of this probability distribution is prohibitively expensive in terms of computational
resources.

Learning Symbolic Robot Plans. We have already stressed the importance of represent-
ing the plans that the robot has committed to execute explicitly as a means of economi-
cally using the limited computational resources for flexible task execution and effective
action planning. However, this raises the question of how such plans can be obtained.
Many autonomous mobile robots consider navigation as a Markov decision problem.
They model the navigation behavior as a finite state automaton in which navigation ac-
tions cause stochastic state transitions. The robot is rewarded for reaching its destination
quickly and reliably. A solution for such problems is a mapping from states to actions
that maximises the accumulated reward. Such state-action mappings are inappropri-
ate for teleological and diagnostic reasoning, which are necessary to adapt quickly to
changing circumstances and quickly respond to exceptional situations.

We have therefore developed XFRMLEARN [BB00], a learning component that
builds up explicit symbolic navigation plans automatically. Given a navigation task,
XFRMLEARN learns to structure continuous navigation behaviour and represents the
learned structure as compact and transparent plans. The structured plans are obtained
by starting with monolithic default plans that are optimized for average performance
and adding subplans to improve the navigation performance for the given task.

XFRMLEARN’s learning algorithm works as follows. XFRMLEARN starts with a
default plan that transforms a navigation problem into an MDP problem and passes
the MDP problem to RHINO’s navigation system. After RHINO’s path planner has de-
termined the navigation policy the navigation system activates the collision avoidance
module for the execution of the resulting policy. XFRMLEARN records the resulting

Towards Comprehensive Computational Models for Plan-Based Control 523

(a) (b)

(c) (d)

Fig. 5. The figure visualizes a summary of a learning session: A behaviour trace of the default
plan (a); behavior stretches where the robot moves conspiciously slowly (b); the added subplans
in the learned navigation plan (c); and a behaviour trace of the learned plan, which is on average
29% faster than the default plan (d).

navigation behaviour and looks for stretches of behaviour that could be possibly im-
proved. XFRMLEARN then tries to explain the improvable behaviour stretches using
causal knowledge and its knowledge about the environment. These explanations are
then used to index promising plan revision methods that introduce and modify subplans.
The revisions are subsequently tested in a series of experiments to decide whether they
are likely to improve the navigation behaviour. Successful subplans are incorporated
into the symbolic plan. An learning session is shown in figure 5.

Using this algorithm can autonomously learn compact and well-structured symbolic
navigation plans by using MDP navigation policies as default plans and repeatedly in-
serting subplans into the plans that significantly improve the navigation performance.
The plans learned by XFRMLEARN support action planning and opportunistic task ex-
ecution by providing plan-based controllers with subplans such as traverse a particu-
lar narrow passage or an open area. More specifically, navigation plans (1) can gener-
ate qualitative events from continuous behaviour, such as entering a narrow passage;
(2) support online adaptation of the navigation behaviour (drive more carefully while
traversing a particular narrow passage) [Bee99], and (3) allow for compact and realistic
symbolic predictions of continuous, sensor-driven behaviour [BG00].

5 Long-Term Demonstrations

This section describes several experiments (figure 6) that evaluate the reliability and
flexibility of the RHINO system and the possible performance gains that it can achieve.

524 Michael Beetz

(a) (b) (c)

Fig. 6. The mobile robots MINERVA (a) and the RWI B21 robot RHINO (c) that are used in the
experiments.

The flexibility and reliability of runtime plan management and plan transformation
has been extensively tested in a museum tourguide application. The robot’s purpose was
to guide people through a museum, explaining the exhibits to be seen along the robot’s
route. MINERVA (figure 6(a)) operated in the “Smithsonian Museum” in Washington
for a period of thirteen days [TBB+99]. It employed an SRC as its high-level controller.
During its period of operation, it was in service for more than 94 hours, completed 620
tours, showed 2668 exhibits, and travelled over a distance of more than 44 kilometers.
The SRC directed MINERVA’s course of action in a feedback loop that was carried out
more than three times a second. MINERVA used plan adaptors for the installment of
new commands, the deletion of completed plans, and for tour scheduling. MINERVA

made about 3200 execution time plan transformations while performing its tourguide
job. MINERVA’s plan-based controller differs from RHINO’s only with respect to its
top-level plans in plan library and some of the plan adaptors that are used.

In another experiment we have evaluated the capabilities of plan-based controllers
to perform predictive plan management. This experiment has shown that predictive plan
transformation can improve the performance by outperforming controllers without pre-
dictive capabilities in situations which require foresight while at the same time retaining
their performance in situations that require no foresight. Figure 7 pictures an execution
trace for a sample problem-solving scenario.

6 Conclusions

Our longterm research goal is to understand and build autonomous robot controllers that
can carry out daily jobs in offices and factories with a reliability and efficiency compara-
ble to people. We believe that many behavior patterns, such as exploiting opportunities,
making appropriate assumptions, and acting reliably while making assumptions, that
make everyday activity efficient and reliable require plan-based control and the specifi-
cation of concurrent, reactive plans.

In this paper we have presented an overview of recent developments in the area
of plan-based control of autonomous robots. Computational principles including plan-
based high-level control, probabilistic reasoning, symbol anchoring, plan transforma-

Towards Comprehensive Computational Models for Plan-Based Control 525

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Execution trace for a delivery tour. RHINO receives two commands 7(a). Upon receiving
the two commands the SRC puts plans for the commands into the plan, computes an appropriate
schedule, and installs it. It also adds a control process that monitors that the rooms it must enter
are open. The order of the delivery steps are that RHINO starts with picking up the book (Fig. 7(b))
and delivering it in A-113. After RHINO has left room A-111, it notices that room A-113 is closed
(Fig. 7(c)). Because RHINO cannot complete the delivery of the book the SRC revises the plan by
transforming the completion of the delivery into an opportunity. RHINO receives a third command
which is integrated into the current schedule (Fig. 7(d)). As it passes room A-113 on its way to A-
119 it notices that the door is now open and takes the opportunity to complete the first command
(Fig. 7(d)). After that it completes the remaining steps as planned (Fig. 7(e-f)).

526 Michael Beetz

tion, and context and resource-adaptive reasoning are incorporated in a number of state-
of-the-art systems.

We believe that a necessary step towards more powerful plan-based robot controllers
is the development of comprehensive and integrated computational models that address
issues plan representation, reasoning, execution, and learning at the same time. A key
component of such a computation model is the design of the plan representation lan-
guage such that it allows for flexible and reliable behavior specifications, computation-
ally feasible inference, stability in the case of runtime plan revisions, and automatic
learning of symbolic plans for robot control.

Comprehensive computational models will enable us to tackle new application ar-
eas, such as the plan-based control of robot soccer teams, and longterm application
challenges, for example, the robotic assistance of elderly people and the plan-based
control of robotic rescue teams after disasters such as earthquakes.

References

[AFH+98] R. Alami, S. Fleury, M. Herb, F. Ingrand, and F. Robert. Multi robot cooperation
in the Martha project. IEEE Robotics and Automation Magazine, 5(1), 1998.

[BAB+01] M. Beetz, T. Arbuckle, M. Bennewitz, W. Burgard, A. Cremers, D. Fox,
H. Grosskreutz, D. Hähnel, and D. Schulz. Integrated plan-based control of
autonomous service robots in human environments. IEEE Intelligent Systems,
16(5):56–65, 2001.

[BACM98] M. Beetz, T. Arbuckle, A. Cremers, and M. Mann. Transparent, flexible, and
resource-adaptive image processing for autonomous service robots. In H. Prade,
editor, Procs. of the 13th European Conference on Artificial Intelligence (ECAI-
98), pages 632–636, 1998.

[BB00] M. Beetz and T. Belker. Environment and task adaptation for robotic agents. In
W. Horn, editor, Procs. of the 14th European Conference on Artificial Intelligence
(ECAI-2000), 2000.

[BCF+00] W. Burgard, A.B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun. Experiences with an interactive museum tour-guide robot.
Artificial Intelligence, 114(1-2), 2000.

[BDH98] C. Boutilier, T. Dean, and S. Hanks. Decision theoretic planning: Structural as-
sumptions and computational leverage. Journal of AI research, 1998.

[Bee99] M. Beetz. Structured reactive controllers – a computational model of everyday
activity. In O. Etzioni, J. Müller, and J. Bradshaw, editors, Proceedings of the Third
International Conference on Autonomous Agents, pages 228–235, 1999.

[Bee00] M. Beetz. Concurrent Reactive Plans: Anticipating and Forestalling Execution
Failures, volume LNAI 1772 of Lecture Notes in Artificial Intelligence. Springer
Publishers, 2000.

[Bee01] M. Beetz. Structured Reactive Controllers. Journal of Autonomous Agents and
Multi-Agent Systems, 4:25–55, March/June 2001.

[BFG+97] P. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D. Miller, and M. Slack. Experiences
with an architecture for intelligent, reactive agents. Journal of Experimental and
Theoretical Artificial Intelligence, 9(1), 1997.

[BG00] M. Beetz and H. Grosskreutz. Probabilistic hybrid action models for predicting
concurrent percept-driven robot behavior. In Proceedings of the Fifth International
Conference on AI Planning Systems, Breckenridge, CO, 2000. AAAI Press.

Towards Comprehensive Computational Models for Plan-Based Control 527

[CS00] S. Coradeschi and A. Saffiotti. Anchoring symbols to sensor data: preliminary
report. In Proc. of the 17th AAAI Conf., pages 129–135, Menlo Park, CA, 2000.
AAAI Press.

[DHW94] D. Draper, S. Hanks, and D. Weld. Probabilistic planning with information gather-
ing and contingent execution. In K. Hammond, editor, Proc. 2nd. Int. Conf. on AI
Planning Systems. Morgan Kaufmann, 1994.

[Fir89] J. Firby. Adaptive Execution in Complex Dynamic Worlds. Technical report 672,
Yale University, Department of Computer Science, 1989.

[KHW95] N. Kushmerick, S. Hanks, and D. Weld. An algorithm for probabilistic planning.
Artificial Intelligence, 76:239–286, 1995.

[McD90] D. McDermott. Planning reactive behavior: A progress report. In K. Sycara, editor,
Innovative Approaches to Planning, Scheduling and Control, pages 450–458, San
Mateo, CA, 1990. Kaufmann.

[McD91] D. McDermott. A reactive plan language. Research Report YALEU/DCS/RR-864,
Yale University, 1991.

[McD92a] D. McDermott. Robot planning. AI Magazine, 13(2):55–79, 1992.
[McD92b] D. McDermott. Transformational planning of reactive behavior. Research Report

YALEU/DCS/RR-941, Yale University, 1992.
[MNPW98] N. Muscettola, P. Nayak, B. Pell, and B. Williams. Remote agent: to go boldly

where no AI system has gone before. Artificial Intelligence, 103(1–2):5–47, 1998.
[New90] A. Newell. Unified Theories of Cognition. Harvard University Press, Cambridge,

Massachusetts, 1990.
[NW97] P. Nayak and B. Williams. Fast context switching in real-time propositional reason-

ing. In Proceedings of the 14th National Conference on Artificial Intelligence and
9th Innovative Applications of Artificial Intelligence Conference (AAAI-97/IAAI-
97), pages 50–56, Menlo Park, 1997. AAAI Press.

[PH99] M. Pollack and J. Horty. There’s more to life than making plans: Plan management
in dynamic, multi-agent environments. AI Magazine, 20(4):71–84, 1999.

[RK91] E. Rich and K. Knight. Artificial Intelligence. McGraw Hill, New York, 1991.
[SB01] D. Schulz and W. Burgard. Probabilistic state estimation of dynamic objects with a

moving mobile robot. Robotics and Autonomous Systems, 34(2-3):107–115, 2001.
[SGH+97] R. Simmons, R. Goodwin, K. Haigh, S. Koenig, J. O’Sullivan, and M. Veloso.

Xavier: Experience with a layered robot architecture. ACM magazine Intelligence,
1997.

[Sus77] G. Sussman. A Computer Model of Skill Acquisition, volume 1 of Aritficial Intelli-
gence Series. American Elsevier, New York, NY, 1977.

[TBB+99] S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert, D. Fox,
D. Haehnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. Minerva: A sec-
ond generation mobile tour-guide robot. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA’99), 1999.

[TBB+00] S. Thrun, M. Beetz, M. Bennewitz, A.B. Cremers, F. Dellaert, D. Fox, D. Hähnel,
C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. Probabilistic algorithms and the
interactive museum tour-guide robot minerva. International Journal of Robotics
Research, 2000. to appear.

[Thr00] S. Thrun. Probabilistic algorithms in robotics. AI Magazine, 21(4):93–109, 2000.
[WN97] B. Williams and P. Nayak. A reactive planner for a model-based executive. In

Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI-97), pages 1178–1185, San Francisco, 1997. Morgan Kaufmann Publishers.

[Zil96] S. Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine,
17(3):73–83, 1996.

Agents with Exact Foreknowledge�

Jim Doran

Department of Computer Science,
University of Essex, Colchester, UK, CO4 3SQ

doraj@essex.ac.uk

Abstract. Computational experiments are reported involving the con-
cept of foreknowledge, an agent’s direct, unmediated and accurate, but
possibly incomplete, awareness of its future including states and events
involving the agent itself. Foreknowledge is used here as a conceptual tool
with which to explore certain issues around time and rationality. We first
explain how foreknowledge in this sense may be given to the agents in an
agent society on a computer. The generation of a world history is viewed
as a process of solving a constraint satisfaction problem. Then we seek
to understand the circumstances in which foreknowledge may be either
beneficial or detrimental to a society of rational agents. A special case is
when agents have foreknowledge of their own “deaths”. An experimental
interpretation of this special case has been implemented, and results are
presented and discussed. Finally, the work reported is briefly discussed
in the context of current theories of time.

1 Introduction

This paper is about societies of agents located in a (simulated) physical environ-
ment or artificial world, created within a digital computer. Typically the agents
within the societies act, move, perceive locally and have (reactive or deliberative)
processes of cognition. There may also be some form of inter-agent communi-
cation. Interest commonly lies in the interaction between the agents and their
environment, in processes of inter-agent co-operation and competition, and in
macro-level emergent behaviour and its dependence upon micro-level properties.

Artificial societies in artificial worlds will be used to address certain questions
that arise from a consideration of foreknowledge, taken to mean an agent’s un-
mediated and fully accurate (if incomplete) awareness of future states or events.
An agent with foreknowledge may be reliably aware of (some of) its own future
actions and decisions, even thought these are yet to be chosen. Foreknowledge is
more than and different in nature from prediction, which relies on knowledge only
of the past, although foreknowledge and prediction may deliver identical results
in particular circumstances, for example, if the predictive process is sound and
has sufficient information available to it, and if the world is indeed predictable.
� Part of the content of this article was presented at the International Conference on

Computer Simulation and the Social Sciences held in Cortona (Italy) in September
1997 [1].

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 528–542, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Agents with Exact Foreknowledge 529

We address foreknowledge not as something for which there is any compelling
scientific evidence in reality1, but as a conceptual tool with which to explore
certain issues around time and rationality.

Specifically we shall ask:

– Is it possible for agents in an artificial world to have foreknowledge?
– Can agents with foreknowledge in an artificial world have choice?
– Is foreknowledge beneficial or detrimental to an artificial society of (rational)

agents?

These questions are posed in the realm of artificial worlds on a computer
but touch upon major and much debated philosophical issues. The use of the
concept of foreknowledge to provoke interesting questions in the theory of time
is unusual but not unprecedented (see, for example, [4]).

1.1 Views of Time

Foreknowledge as defined here is intimately bound up with notions of time. The
most common technical view taken of time (e.g. [10]) is that of “block time”
or a “space-time manifold of events”. This corresponds to a complete history
irrespective of any particular generating process. From this perspective time
does not “flow” or “pass”, but is integrated with space in a fixed space-time
structure itself outside any time. This concept has, of course, proved extremely
powerful at the heart of the general theory of relativity. It contrasts with the
more intuitive and “man in the street” view of time in which a transient “now”
separates an experienced and unchangeable “past” from an un-experienced and
malleable “future”, and in which future inexorably becomes present, and present
past [6].

Another model of time is often deployed within artificial intelligence research.
If histories are non-deterministic, then we might naturally take as our focus of
study not a single history, but a set of such histories represented as a struc-
ture branching from the “past” into the “future” (cf. [13]). Sometimes the non-
deterministic branching of histories is taken to reflect agents’ choice (see, for
example, [7]), although this last idea seems to give an inappropriately privileged
status to agents. Development of these various notions of time is often by way
of precise sets of axioms that capture the elements of time (typically moments,
intervals or events) and the relationships between them (see, for example, [5]).

1.2 World Histories and the Agents Within Them

A particular trajectory of an artificial world generated, for example, by a par-
ticular “execution” of a testbed on a computer, may be called an artificial world
history (sometimes called a chronicle). Such a history may be formalised as a
fixed sequence of world states, each represented by a set of assertions that specify

1 But, of course, belief in some kind of foreknowledge has always been widespread in
non-scientific thought.

530 Jim Doran

its contents. A formal approach to the generation of such histories, using a version
of temporal logic, has been followed in, for example, Concurrent Metatem [3].

In world histories agents are definable and recognisable as localised combina-
tions of world state properties that persist along all or part of the state sequence
and which conform to standard notions of an agent. Notice that in this formula-
tion the agents are an integral part of the world history, not external to it. That
part of a world state that corresponds to a particular agent will be, in effect, a
“snapshot” of the agent’s physical and cognitive processes (compare [13]).

The detailed definition of an agent may, of course, take a variety of forms
and may or may not exclude, for example, agents that overlap or have physically
separated parts. In general deliberative agents will function in terms of beliefs,
desires and intentions, with all the well-known complexities that follow. A ra-
tional agent will act having due regard to its goals and to what it knows and
believes about the world. One particular type of rational agent uses predictive
planning, that is, it predicts alternative futures, selects a future which it judges
attainable and compatible with its goals and tries to bring that particular future
about – striking a balance between conflicting objectives as may be appropriate.

1.3 Agents with Choice in an Artificial World

At this point we may pose the preliminary question: can agents in an artificial
world have choice? At first sight the answer might seem straightforwardly to
be “no” since a digital computer is a deterministic machine. But we answer
on the contrary, “yes”, provided that the meaning of “choice” is that agents
generate representations of alternative courses of action, and exhibit processes
that select and act upon one of them. The key observation is that although these
internal agent processes are part of the world history and are therefore themselves
determined, nevertheless they are still recognisably processes of choice. If the
world history is conceptually not fully deterministic (so that a particular history
is appropriately regarded as a single branch of a history tree) this need not alter
our conclusion.

2 World Histories as Solutions to CSPs

For reasons that will shortly become clear, the generation of artificial world his-
tories, embodying artificial societies, may insightfully be viewed as a process of
finding solutions to a constraint satisfaction problem [12]. The problem vari-
ables and their domains define the possible sequence of world states and the
problem constraints specify the allowable structures (including agents’ cognitive
structures) within world states, and specify also the allowable changes from one
world state to the next. It is natural to call these constraints world constraints.
Some further constraints are in the nature of boundary conditions, for example,
specifying the content of the first or the last state in the sequence. As we add
extra world constraints, for example as we specify a certain more restricted type
of agent locomotion or of agent cognitive processing, then so the range of solu-
tions, that is, of possible alternative histories, is reduced. Ultimately if the set

Agents with Exact Foreknowledge 531

of world constraints is sufficiently restrictive then no world histories consistent
with the constraints may be possible. The situation will be clarified by a simple
example.

2.1 An Example – The Gladiators Scenario

Consider the following very simple artificial society, in which “gladiators” “fight”
and “die” on a large but finite square grid.

The gladiators have attributes but no internal structure, and are initially located
arbitrarily in cells of the grid.

Repeatedly they move arbitrarily, independently and in synchrony into adjacent
cells (horizontally, vertically or diagonally adjacent).

The available amount of time, equivalent to the number of moves each gladiator
may make, is finite.

Whenever two (or more) gladiators arrive in the same square, then they both
(or all) “fight and die” and cease moving.

What histories are possible for this society? Clearly there are a very large, but
finite, number of combinations of paths and collisions that the gladiators may
follow. If the gladiators are further restricted to move only into a horizontally
or vertical adjacent grid cell, then the number of possible histories is clearly
reduced.

In the Appendix a precise instance of this scenario is precisely formulated as a
constraint satisfaction problem, and a possible history for the gladiators is found
using standard techniques. We shall consider a more complex and interesting
version of the scenario shortly.

3 Agents with Foreknowledge

As stated earlier, foreknowledge is the direct acquisition by an agent of knowledge
of future facts or events. It is analogous to a form of perception. Foreknowledge
may well be incomplete but by definition is never in error. For foreknowledge to
be possible at all there is, seemingly, a key requirement. The relevant aspects of
the future must, in some way, exist “at the same time as” the present – though it
is apparent that we are now using some notion of meta-time. That in turn means
that the world history in question cannot merely be generated sequentially from
early to late. This is why it is appropriate to regard a world history from a CSP
standpoint.

The first question we posed at the outset of this discussion was this: Is
it possible for agents in an artificial world to have foreknowledge? It is. All
that is required is that additional constraints be imposed on the world histories
which enforce that agents, to some desired degree, either act in accordance with
aspects of the future (in the case of reactive agents) or have and appropriately
use internal representations that do indeed reflect the future (in the case of
deliberative agents). In the following section the former of these two alternatives

532 Jim Doran

Action
Present Future Event

Representation
Intenal

Fig. 1. The inter-relationship between a future event, an agent’s present internal repre-
sentation of it, and an action performed by the agent in the light of that representation.
The direction of the arrows indicates (a type of) causality.

is illustrated by reference again to the Gladiators Scenario. The latter alternative,
in which an agent’s action is decided by reference to internal representations, is
illustrated in Figure 1.

3.1 Gladiators with Foreknowledge

Consider again the Gladiators Scenario. Suppose that the gladiators must begin
to “salute”2 some fixed period of time before they die. How can this possibly be
achieved? They require foreknowledge of their deaths if they are to start saluting
at the correct time!

The formulation of the Gladiators Scenario given in the Appendix includes
constraints (6 & 8) that impose just this foreknowledge. It is perhaps worthy
of special note that these foreknowledge constraints act at a distance in time.
A solution to the scenario, obtained using a general CSP solution algorithm, is
also given in the Appendix.

The reader should note that the order in which the variables are labelled as
this CSP formulation of the full Gladiators Scenario is solved, that is, the order
in which the variables are assigned values consistent with the constraints, does
not, indeed cannot, correspond to the temporal order of the world states which
the variables express. This observation is significant because it contradicts our
natural assumption that an artificial history is generated from past to future.

3.2 Rational Agents with Foreknowledge and Choice

Our second question was: Can agents with foreknowledge in an artificial world
have choice? As we have interpreted the question, the answer is clearly “yes”.
All that foreknowledge does is to constrain a rational agent’s predictions of the
future to incorporate what is foreknown to occur. It does not negate the process
of choice itself. In human terms, if I know that at 3 p.m. tomorrow I shall be
drinking a cup of coffee in my office in Colchester, that still permits choice of
2 Ave Caesar! Morituri te salutant!

Agents with Exact Foreknowledge 533

action before and after the fixed event. But what, it will be asked, If I choose to
defy my foreknowledge – if, for example, I immediately head for the airport and
a plane to Beijing? The answer is clear. Firstly, I am being irrational – the whole
point about foreknowledge is that I know what is going to happen. It is certain.
Secondly, somehow or other I shall still end up drinking coffee in my office at
3pm tomorrow. Foreknowledge guarantees that. However, in the extreme case
that the extent of the foreknowledge is total, the agent then has no choice simply
because it can rationally consider no future other than the one that it knows
actually occurs.

4 Foreknowledge and Evolutionary Advantage

The preceding “gladiators” example was very simple. In particular, the agents
had no cognitive structure. We now describe a somewhat more complex scenario
involving agents with foreknowledge, which enables us to address a restricted
form of our final question: Is foreknowledge beneficial or detrimental to an ar-
tificial society of (rational) agents? It is easy to accept that foreknowledge is
beneficial in some circumstances at least to the individual involved. It seems
beneficial that an agent can, for example, identify the location of buried “trea-
sure” that would otherwise not be detectable, by foreknowledge of the actual
excavation of the treasure in a particular location. On the other hand, it is
equally plausible that foreknowledge is the enemy of action and therefore of
achievement. What is the point of action, if all is foreknown and therefore pre-
determined? In particular, it is intuitively plausible that foreknowledge of one’s
own death may (rationally) lead to selfish inactivity, to the detriment of society
as a whole3. It is therefore interesting, and potentially informative, to try to
examine more closely the social impact of foreknowledge by agents of their own
deaths.

4.1 SCENARIO-3F

The software testbed SCENARIO-3F (a development of SCENARIO-3 [2]) has
been written in the programming language C. It supports in simulation:

– a two dimensional spatial environment
– mobile agents, immobile resources and immobile hazards
– spatially limited agent perception of their surroundings
– agent internal representations of resources and hazards, with adjustable mem-

ory limitation and forgetting
– agents competitively moving towards and harvesting resources for energy
– hazards killing agents, and agents destroying hazards
– agent death by starvation or by ageing
– (asexual) reproduction amongst agents with offspring variation

3 There is, for example, a well-known Irish folk tale to this effect [9].

534 Jim Doran

Most movements and events are partly indeterminate. For example, when an
agent attempts to move to a particular locality, or to kill a hazard, there are
chance factors that may intervene and bring about an “unintended” outcome or
movement.

Of course, words such as “harvesting”, “killing” and “energy” are used here to
aid intuitive understanding. They denote relatively simple events and quantities
within the testbed. For example, “harvesting” is said to occur when an agent
located at a resource reduces the “energy” level of the resource to zero, and
increments its own internal energy store by a corresponding amount. Energy is
used by an agent (reducing its energy store) it moves around in the testbed.
“Killing” of an agent by a hazard occurs when an agent moves close to a hazard
and, by chance, is killed by it. The “dead” agent is then deleted from the world.
An agent “maintains a representation” of another entity (a hazard or a resource
or even another agent) when it holds information (not necessarily accurately)
about the entity.

The passing of time is simulated within the testbed as a sequence of “times”,
within each of which events at different locations (e.g. the movements of agents)
take place simultaneously.

Many important SCENARIO-3F system parameters are under the control of
the experimenter. These include the perceptual range of the agents, their rate
of movement, the range at which hazards are dangerous, the range over which
agents can communicate one with another, and their memory capacity. On the
other hand, many potentially complex sequences of sub-events, for example those
that in principle could mediate each particular instance of agent reproduction,
are bypassed by an appeal to simulated chance.

4.2 Foreknowledge and Rationality in SCENARIO-3F

At the heart of the SCENARIO-3F formulation is that the “death” of a particular
agent as the result of an attack by a particular hazard may be foreknown by the
agent concerned and therefore that the rational behaviour of an agent may be
made to depend upon when and how it will die. Just how far in advance of the
event such knowledge is available to an agent is determined by the parameter
fspan that varies from one agent to another.

Agents in SCENARIO-3F have the individual (and entirely selfish) goals of
staying alive (by avoiding hazards) and of trying to acquire energy by harvesting
resources. At any particular moment an agent has a choice between attempting
to harvest some resource or attacking and trying to kill some hazard. Either
choice may be the rational one on a particular occasion. But agents that know
when they are to die are assumed never to choose to attack hazards, for it is only
rational to expend time and energy to attack hazards when they pose a threat
that can possibly be varied. A foreknown death is fixed and unavoidable, so that
the hazards in the world then become irrelevant. This is where foreknowledge
has its effect in this scenario.

Agents with Exact Foreknowledge 535

4.3 Implementation of Foreknowledge in SCENARIO-3F

In principle the SCENARIO-3F scenario could be formulated and solved explic-
itly as a constraint satisfaction problem as was the Gladiators Scenario. However,
this is too complex to be tractable. An ad hoc process has therefore been imple-
mented within the SCENARIO-3F testbed which may be viewed as a crude but
effective constraint satisfaction algorithm tailored to this particular problem.

If an agent is to be killed by a hazard at a certain time, both the agent
and the hazard must be protected until that time. This requirement includes,
for example, ensuring that the agent does not starve. In order to achieve this a
“core-history” of foreseeable events is generated in advance of the full history.
There is then a process, called intervention, whereby the inherent uncertainty
in the events that occur (e.g. the chance component in agent movements and
deaths) is exploited to ensure that the constraints imposed by foreknowledge
are met. The effect of intervention is that the only histories that satisfy the
requirements of foreknowledge are generated. As a full history is generated, the
total number of specific interventions required is counted yielding an intervention
score for that particular history.

A consequence of intervention is that the probabilities that are part of the
specification of the history generation process (e.g. that when an agent moves at
random, each direction of movement is to have the same chance of being chosen)
are modified. This “distortion” is acceptable because our focus is strictly on the
properties of the set of all those histories that satisfy the relevant foreknowledge
constraints, rather than with the properties of some arbitrary history generation
process.

4.4 The Experimental Objective

As stated, the aim in using the SCENARIO-3F testbed is to explore the impact
of foreknowledge of “death” in a society of agents. Do agents with foreknowledge
of their own deaths have an evolutionary advantage over those without it? Or are
they at a disadvantage? The natural way to seek to answer these questions is to
conduct systematic experiments in which a mixed population of agents, equipped
with varying degrees of foreknowledge of their deaths, are allowed to compete for
the available resources, and to reproduce through many generations, so that their
differing survival abilities may be directly observed and measured. Of course, we
expect the effectiveness and survival of agents to depend both upon the degree
of foreknowledge which they possess and also upon the particular characteristics
of the environment in which they exist.

4.5 A Problem of Measurement

There is a problem that at first sight seems paradoxical. How can we measure the
impact on agent survival of foreknowledge when agent survival is predetermined,
as it seemingly must be if agents are to foreknow their death?

536 Jim Doran

The way out of this dilemma is a little intricate. First of all we simplify by
identifying long-term agent effectiveness with individual life expectancy. We then
ask not “What is the life expectancy of agents with and without foreknowledge?”
but rather “How frequently do histories with particular type of relationship be-
tween agent life expectancy and degree of foreknowledge (of death) appear within
the set of all consistent histories?” We ask this question because we may reason-
ably conjecture that there will be significant differences in the frequencies with
which histories with particular characteristics occur in the entire set of consistent
histories, reflecting the impact of those characteristics on the probability with
which a history with them will actually occur. Note that the set of all possible
consistent histories may be taken to be well defined and finite (if very large).

Unfortunately there seems to be no straightforward way to draw a random
sample from the set of all possible consistent histories. However, a measure of
the frequency with which a certain type of history will occur is the amount of
intervention needed to obtain examples of it. Thus we may proceed by record-
ing the intervention score needed to achieve consistent histories with particular
combinations of foreknowledge and agent life expectancy.

4.6 Experiments and Results

It has proved possible to demonstrate coherent use of foreknowledge in a Sce-
nario-3F agent society involving tens of agents and hazards existing over hun-
dreds of cycles. However, as with all experiments with artificial societies, many
system parameters influence the detailed behaviour of the system.

A series of experiments has been conducted to explore the relationship be-
tween agent foreknowledge and agent life span, using the following experimental

Table 1. The more important SCENARIO-3F parameter settings used in the experi-
ments described in the text

environment size 100 x 100
number of resources 50
initial number of hazards 50
initial number of agents 25
maximum number of agents 25
number of times in the history 200
agent age limit 50
initial population mean for fspan 20
fspan drift 3
probability agent predestined to die 0.5

At each time:
reproduction probability 0.2
probability agent attacks hazard 0.1
probability hazard kills agent 0.3
probability move goes astray 0.1

Agents with Exact Foreknowledge 537

design and parameter settings. Three populations of agents reproducing through
time were studied, each with an agent’s value of fspan (the parameter that deter-
mines how far ahead an agent can see its death) randomly “drifting” from parent
to offspring. Of the three populations, one had an imposed positive relationship
between the parameter fspan and its actual life span, so that the greater fspan,
the greater the life span, one had no relationship, and one had an imposed neg-
ative relationship (the greater fspan, the smaller the life span). For each of these
three populations five histories were generated differing only in (pseudo-)random
decisions. Important parameter settings are listed in Table 1.

The results, presented in Table 2, indicate that a relatively high level of
intervention is needed, given the assumptions made, to construct world histories
in which agents who have foreknowledge of their deaths well in advance come
to predominate. The implication is that for these particular parameter settings
foreknowledge is an evolutionary liability.

The interpretation of these results is that the more foreknowledge the agents
have of their deaths, the more hazards survive on average until the end of the
history (because more foreknowledge implies fewer attacks by agents on hazards)
and this is “bad” for the population as a whole. Of course, this outcome depends
strongly, not only on the notion of rational behaviour embodied in an agent, but
also on the parameters of the created world, notably the degree of threat posed
by a typical hazard. If hazards are not very dangerous at all, then relatively little
intervention is needed to protect agents against them, and hence world histories
in which most agents have foreknowledge and therefore do not attack hazards
(and thus it is unnecessary to protect hazards against agents!) need relatively
little intervention to create and are correspondingly relatively well represented
in the set of all world histories. The results presented in Table 3 illustrate this
point.

Table 2. The results of the SCENARIO-3F experiments. Each column shows means
over five histories of an evolving agent population with a specific relationship, imposed
between fspan, extent of agent foreknowledge, and agent life span (an * indicates that
one history out of five was excluded from the mean calculations because one popula-
tion became extinct). The histories differ only in the pseudo-random number stream.
The first row indicates the degree of foreknowledge that the population ends with,
the second the number of hazards surviving at the end of the history, and the third
the amount of intervention required for that history. The greater the intervention the
less, intuitively, is the probability of that history occurring by chance. Thus we see
foreknowledge tending to reduce life expectancy.

positive
relationship*

no
relationship

negative
relationship*

final mean over
population of fspan
parameter

18.2 9.1 1.8

number of hazards
finally surviving

50.0 24.8 14.5

total intervention score 18034 14218 9979

538 Jim Doran

Table 3. Intervention scores showing the effect of reducing the threat posed by haz-
ards from a probability of 0.3 (figures reproduced from Table 1) to a probability of
0.01 (mean of three histories in each cell). The much lower intervention scores for a
probability of 0.01 reflect the much-reduced need for intervention to preserve agents
from premature death. The degree of foreknowledge available to agents, and hence the
frequency with which they attack hazards, is now not significant.

probability hazard
kills agent

positive
relationship

no
relationship

negative
relationship

0.3 18034 14218 9979

0.01 256 239 267

We can now offer the beginnings of an answer to the third question that we
posed at the outset: Is foreknowledge beneficial or detrimental to an artificial
society of (rational) agents? This little set of results suggests that our question
is coherent, but that its answer depends greatly upon the detailed properties of
the agent society and of its environment.

5 Discussion

The experiments reported here have something in common with the thought
experiments found widely in the literature of the philosophy of time. In these,
certain ideas and assumptions are adopted and their consequences explored in
detail, and in consequence new questions are provoked. Highly relevant examples
appear in [11, chapter 4], and in [8].

Postulating that agents have foreknowledge seems to require that the future
co-exists, in some sense, with the present. This requirement leads naturally to
the consideration of block-time and to regarding world histories as entities that
may be created, manipulated and destroyed as wholes. This in turn leads to a
notion of what may be called meta-time4: the time within which a history exists
and changes and which is quite distinct from the time which is one dimension
of the history. However, foreknowledge with its associated constraints, rules out
generation of a block-time world history systematically from past to future as
our subjective experience suggests. This is why constraint satisfaction problem
solving in which a world history is created by a process that exists unambigu-
ously in meta-time seems as relevant as, for example, temporal logics in the AI
tradition e.g. [3, 5].

It is a testament to the wide range of phenomena that can be captured and
studied within an artificial society on a computer that it is even possible to
explore the evolutionary advantage or otherwise of foreknowledge. The limited
amount of experimentation reported here suggests, unfortunately, that there are
no simple generalisations to be had. Furthermore, there are complex issues, for
example around the concept of probability in a world history that is created
other than in the “past to future” way we find intuitive. Is the probability of an
4 Meta-time, in this sense, is an old notion, going back at least as far as Boethius.

Agents with Exact Foreknowledge 539

event how likely it is to occur as an outcome of a present event (think of tossing
a coin)? Or is it rather a matter of how frequently that event follows certain
specified conditions when observed over an entire world history? In the former
perspective there is a notion of a non-deterministic generative process that is
building the history, in the latter there is not.

Finally, we should note a difficulty with foreknowledge, related to the previous
remark that concerns the somewhat elusive idea of causality. It is a common-
place that at the heart of foreknowledge is reverse causality (and causality at a
distance). A cause at one time (e.g. the death of an agent) has an effect at an
earlier time (the formation within that agent of an appropriate representation
of, or belief, about the death). But it seems a strange and arbitrary restriction
to envisage backward causation whose effect is only upon agent cognition. This
seems to require a dualist view of the world, and to be decidedly anthropocentric.
We suggest that foreknowledge is a flawed concept, not because there is little
compelling evidence for it in reality, but because it gives a very special status
(a locus of reverse causality) to just one type of complexity in world histories,
those that we are prepared to label “agents”.

6 Conclusions

The work reported here has demonstrated that:

• it is possible to implement without incoherence a simple form of agent fore-
knowledge in artificial societies in artificial worlds

• foreknowledge naturally leads to a view of space-time based upon constraint
satisfaction problem solving

• it is possible, if technically complex, to explore on a computer the exact cir-
cumstances in which foreknowledge does or does not confer evolutionary ad-
vantage upon a society of agents.

We do not suggest that the investigation reported here has practical signifi-
cance. We have deployed foreknowledge merely as a means to explore certain the-
oretical issues around time and rationality. Yet it is surely a tantalizing thought
that if humanity has ever had a capacity for some degree of foreknowledge, there
might have been good reason for it to be evolved away!

References

1. Doran, J.: Foreknowledge in Artificial Societies. In: Conte, R., Hegselmann, R.,
Terna, P. (eds.): Simulating Social Phenomena. LNEMS 456. Springer-Verlag,
Berlin (1997) 457-469

2. Doran, J. E.: Simulating Collective Misbelief. Journal of Artificial Societies and
Social Simulation, Vol. 1(1) <http://www.soc.surrey.ac.uk/JASSS/1/1/3.html>
(1998)

3. Fisher, M.: A Survey of Concurrent METATEM: the Language and its Appli-
cations. In: Gabbay, D. M., Ohlbach, H. J. (eds.): Temporal Logic. LNAI 827,
Springer-Verlag, Berlin (1994) 480-505

540 Jim Doran

4. Horwich, P.: Closed Causal Chains. In: Savitt(1995)
5. Knight, B., Ma, J.: Time Representation: a Taxonomy of Temporal Models. Arti-

ficial Intelligence Review 7 (6) (1994) 401-419
6. Le Poidevin, R., MacBeath, M. (eds.): The Philosophy of Time. Oxford Readings

in Philosophy. Oxford University Press, Oxford (1993)
7. McDermott, D. V.: A Temporal Logic for Reasoning about Processes and Plans.

Cog. Sci. 6: (1982) 101-155
8. Newton-Smith, W. H.: The Structure of Time. Routledge and Kegan Paul, London

(1980)
9. O’Sullivan, S. (ed. & trans.): Folktales of Ireland. University of Chicago Press,

Chicago (1966)
10. Savitt, S. F. (ed.): Time’s Arrows Today. Cambridge University Press, Cambridge,

England (1995)
11. Schlesinger, G. N.: Aspects of Time. Hackett Publishing Company, Indianapolis

(1980)
12. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1993)
13. Wooldridge, M.: Time, Knowledge and Choice (preliminary report) In: Wooldridge,

M., Muller, J., Tambe, M. (eds.): Intelligent Agents II: Agent Theories, Architec-
tures, and Languages. LNAI 1037. Springer-Verlag, Berlin (1996)

Appendix

A Formulation of the Gladiators Scenario

The following is a formulation of the Gladiators Scenario as a constraint satis-
faction problem.

INDICES
i and j index gladiators (just 3 here)
p and q are the coordinates of a gladiator in the grid
k indexes world states --- therefore, in effect, time
a indicates whether or not a gladiator is alive
s indicates whether or not a gladiator is saluting

where
1 <= i,j <= 3
0 <= k <= 99

VARIABLES

G[i,k].p
G[i,k].q
G[i,k].a
G[i,k].s

Thus there are 1200 variables in all.

Agents with Exact Foreknowledge 541

DOMAINS

The variables G[i,k].p and G[i,k].q can take any
integer in [-100, 100]

The variables G[i,k].a and G[i,k].s can take only
the values t or f

CONSTRAINTS

The following sets of constraints apply where the above
specified ranges for indices make them well defined. A
constraint in the form IF A THEN B declares to be invalid
any set of variable value assignments which satisfies A
but not B. Any set of variable value assignments which
does not satisfy A does satisfy the constraint.

The constraints specify the allowable movements of the
gladiators, the persistence of their properties, and the
circumstances in which they die and salute. In particular,
constraints 6 and 8 express the gladiators’ foreknowledge.

1. IF (G[i,k].p = G[j,k].p)
AND (G[i,k].q = G[j,k].q)
THEN G[i,k].a = f AND G[j,k].a = f (i =/= j)

2. IF G[i,k].a = t THEN G[i,k].p = G[i,k+1].p +- 1 AND
G[i,k].q = G[i,k+1].q +- 1

{where +- means either + or - is allowable}
3. IF G[i,k].a = f THEN G[i,k].p = G[i,k+1].p AND

G[i,k].q = G[i,k+1].q
4. IF G[i,k].a = f THEN G[i,k+1].a = f
5. IF G[i,k].s = t THEN G[i,k+1].s = t
6. IF G[i,k+3].a = f THEN G[i,k].s = t
7. IF G[i,k].a = t AND NOT ((G[i,k+1].p = G[j,k+1].p)

AND (G[i,k+1].q = G[j,k+1].q))
THEN G[i,k+1].a = t

8. IF G[i,k].s = f AND NOT G[i,k+4].a = f
THEN G[i,k+1].s = f

BOUNDARY CONDITION

G[1,0].s = G[2,0].s = G[3,0].s = f

542 Jim Doran

A Solution to the Gladiators Scenario

In principle the Gladiators Scenario as formulated above may be solved by any
CSP algorithm. The following simple solution was obtained (with the kind as-
sistance of James Borrett) using an AC-lookahead algorithm [12, p. 133].

Gladiator 1 Gladiator 2 Gladiator 3
(p q a s) (p q a s) (p q a s)

World State 0 -99, -99, t, f -99, -97, t, f -97, -99, t, f
World State 1 -100, -100, t, t -100, -98, t, t -98, -100, t, t
World State 2 -99, -99, t, t -99, -97, t, t -97, -99, t, t
World State 3 -100, -100, t, t -100, -98, t, t -98, -100, t, t
World State 4 -99, -99, f, t -99, -99, f, t -99, -99, f, t

with thereafter all three gladiators immobile, dead and forever saluting.

Self-organisation in Holonic Multiagent Systems

Klaus Fischer

DFKI GmbH,
Stuhlsatzenhausweg 3,
D–66123 Saarbrücken

Klaus.Fischer@dfki.de

http://www.dfki.de/~kuf

Abstract. With the ever growing usage of the world-wide ICT net-
works, agent technologies and multiagent systems (MAS) are attracting
more and more attention. Multiagent systems are designed to be open
systems. Therefore, agent technologies aim at the design of agents that
perform well in environments that are not necessarily well-structured
and benevolent. Looking at the problem solving capacity of MAS, emer-
gent system behaviour is one of the most interesting phenomena one
can investigate. However, there is more to MAS design than the interac-
tion between a number of agents. For an effective system behaviour we
need structure and organisation. To specify the organisation of a MAS
at design time turns out to be a difficult task. If the structure of the
MAS needs to adapt to changes in the environment it can turn out to
virtually impractical. This paper presents basic concepts of a theory for
holonic multiagent systems with the aim to define the building blocks
of a theory that can explain organisation and dynamic reorganisation in
MAS. In doing so it tries to contribute to solving the well-known micro-
macro gap in MAS theories. The applicability of the basic concepts are
illustrated with three application scenarios: flexible manufacturing, order
dispatching in haulage companies, and train coupling and sharing.

1 Introduction

The increasing importance of the world-wide telecommunication and computer
networks, especially the Internet and the World Wide Web (WWW) is one of
the reasons why agent technologies have attracted so much attention in the past
few years. Although in many of todays applications individual agents are trying
to fulfil a task on behalf of a single user, these agents are doing so in a multiagent
context. It is obvious that the problem solving capabilities of multiagent systems
(MAS), which have been developed since research on MAS began in the late 70s,
will become more and more important. However, the implementation of MAS for
interesting real-world application scenarios tend to be very complex. The basic
approach to tackling this complexity is to base problem solving on emerging
bottom-up behaviour. This is achieved by giving the agents specific abilities
which leads to emergent problem solving behaviours when the agents interact
with each other. Although this approach works well in many cases, the solutions
tend to be sub-optimal.

D. Hutter, W. Stephan (Eds.): Mechanizing Mathematical Reasoning, LNAI 2605, pp. 543–563, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

544 Klaus Fischer

With his Watchmaker’s parable Simon demonstrated that a hierarchy offers
another useful paradigm for tackling complexity [18]. The hierarchical solution to
a problem is built up from modules which form stable sub-solutions, allowing one
to construct a complex system out of less complex components. Control in such
a hierarchy can be designed in a centralised or a decentralised way. The decen-
tralised model offers robustness and agility with respect to uncertainties in task
execution. The major advantages of the introduction of centralised planning and
control instances are predictability, opportunities for performance optimisation,
and an easier migration path from current to distributed systems [4].

To design and implement systems that include both hierarchical organisa-
tional structures as well as decentralised control the concepts of fractal and
holonic design were proposed [21, 7]. The word holon [14] is derived from the
Greek holos (whole) and the suffix on, which means particle or part. A holon is
a natural or artificial structure that is stable, coherent, and consists of several
holons as substructures. No natural structure is either whole or part in an abso-
lute sense. A holon is a complex whole that consists of substructures as well as
it is a part of a larger entity. In both approaches, in fractal as well as holonic
design, we have the ideas of recursively nested self-similar structures which dy-
namically adapt themselves to achieve the design goals of the system. We adopt
the notion of holonic multiagent systems to transfer these ideas to MAS design.
In a holonic MAS autonomous agents group together to form holons. However,
in doing so they do not loose their autonomy completely. The agents can leave
a holon again and act autonomously or rearrange themselves as new holons. Ac-
cording to this view a holonic agent consists of sub-agents, which can separate
and rearrange themselves and which may themselves be holons.

The paper starts with a general formalism to describe MAS in Section 2,
introduces the architecture InteRRaP for the specification of individual agents
in Section 3, and gives a formal specification of holonic MAS in Section 4. The
usefulness of the proposed concepts is then demonstrated by three application
scenarios: (1) flexible manufacturing, (2) order dispatching in haulage companies,
and (3) train coupling and sharing. These application scenarios differ in the sense
that in (1) holons are formed dynamically because agents with different abilities
have to work together to achieve a common goal. In (2) the abilities of the agents
partly overlap. Finally, in (3) all agents have the same abilities.

2 Abstract Specification of Multiagent Systems

As it is the case with any software system, when designing a system, we can
distinguish the static specification of the system and its runtime instance. While
in present days concepts and theories for the static specification of software
systems is reasonably well-understood, concepts and theories for the specification
and analysis of the dynamic behaviour of a software system are by for not that
sophisticated. This is especially true if we look at MAS, in which self-organisation
is an important aspects. This makes MAS different form software systems that
are designed according to a more traditional development paradigm.

To allow self-organisation in a MAS, we assume that some infrastructure
which supports the agents in the process of self-organisation is available. The

Self-organisation in Holonic Multiagent Systems 545

ASprot ASt

ADS ADSt

A1 A2

A3 A4

A5 A6

A1,t
1

A2,t
1 A5,t

1 A5,t
2

A3,t
1

Fig. 1. Static specification ASprot of the solution for a problem and dynamic execution
ASt.

FIPA1 initiative tries to establish standards for such infrastructure and for MAS
in general in an open environment. This paper takes a more abstract point of
view, which assumes that there is an agent directory service (ADS) which allows
the agents to find out how they can contact other agents that are available in the
MAS. This means that we require that the ADS provides at minimum a white
pages service, e.g. agents can ask about addresses of other agents. Other services
like yellow pages, i.e. the information on services offered by specific agents, might
be also provided by the ADS. However, this and possibly other general services
might also be introduced by other specialised agents of the MAS.

To describe a concrete MAS for a given application domain, a set of proto-
typical agents is specified. This static description of the MAS is given by the
prototype agent system ASprot := (ASprot, ADS), where

Aprot is the set {A1, . . . An}, n ∈ N of prototypical agents, instances of which
can dynamically be introduced in the system. These agents are the po-
tentially available problem solvers. Several instances of a specific proto-
typical agent can be created.

ADS is a specialised prototypical agent providing an agent directory service.

With modern concepts like component-based software development this view
to a MAS might already look out-dated. We cannot really assume that the
prototypical descriptions of the agent types are self-contained, they are rather
created from a set of components. However, conceptually we can still assume
that there is a finite set of agent types available, instances of which can be
dynamically introduced into the MAS that actually executes (i.e. works on a
specific problem) in a given application domain.
1 See http://www.fipa.org/

546 Klaus Fischer

The process of problem solving starts with the initial agent system

ASinit = (Ainit, ADSinit) where

Ainit = (A1
1, . . . , A1

k1
, . . . An

1 , . . . , An
kn

), k1, . . . kn ∈ N and

∀i, j ∈ N : Ai
j ∈ Ainit : Ai � Ai

j ∧Ai ∈ Aprot.

A � A′ denotes that A′ is an instance of the prototypical agent A which means
that A′ inherits its behaviour and initial knowledge from A but gets also some
additional knowledge like for example its unique identification which can be used
as an address to communicate with A′.

Please note that the fact that ADSinit is explicitly introduced dose not nec-
essarily mean that the MAS is is closed in the sense that the system engineer
is in control of all parts of the system. We can assume that ADSinit represents
some ADS, which is already available and which has the state of ADSinit at the
point in time when the first agent of the part of the system that is under the
control of the system engineer is started. Along the same line of reasoning we can
assume that some of the agents in Ainit were also not designed by the software
engineer but represent agents that are avaliable in the open environment. Let
us without loss of generality assume that Aopen = {A1

1, . . . A1
k1

, . . . Am
1 , . . . Am

kl
}

for some 1 ≤ m < n represents the set of these agents. The specifications for
the corresponding prototypical agents A1, . . . Am is likely to be not complete in
the sense that the system engineer who designs Aprot only needs to have the
information about A1, . . . Am which is actually needed for the rest of the agents
in Aprot to use services that are offered by the former set of agents.

From ASinit the dynamic MAS ASt evolves

ASt = (At, ADSt) where

At = (A1,t
1 , . . . , A1,t

l1
, . . . An,t

1 , . . . , An,t
ln

), l1, . . . , ln ∈ N and

∀i, j ∈ N : Ai,t
j ∈ At : Ai 	 Ai,t

j ∧Ai ∈ Aprot.

	 denotes � ◦
∗ which means that we have Ai � Ai
j where Ai

j ∈ Ainit

and Ai
j
∗ Ai,t

j where
 denotes the transformation of Ai
j by a single step of

computation.
The computation goes on while the agents send messages to each other.

New agents may be introduced and some of the active agents might be killed.
Each of the agent has a unique identification, i.e. address, which can be used in
messages, thus allows any desired organisation of the MAS to be achieved. All
agents automatically know the the identification of the ADS agent. An agent
can make its own identification accessible to all of the other agents by registering
at the ADS agent. In the example of Fig. 1 the system started with ASinit =
((A1

1, A5
1), ADSinit). A1

1 creates A2
1 and A5

1 and A5
2 creates A3

1. At time t, A1
1

told A5
1 the identification of A2

1 and A5
1 told A2

1 its own identification. A5
1 got the

identification of A3
1 because A3

1 registered its identification at the ADS agent
and A5

1 extracted this information from the ADS agent.

Self-organisation in Holonic Multiagent Systems 547

3 The Specification of Individual Agents

In agent-oriented computing the key definitional problem relates to the term
agent. There is still an ongoing debate, and little consensus, about exactly what
constitutes agenthood. However, an increasing number of researchers and indus-
try practitioners find the following characterisation useful:

An agent is an encapsulated computational system that is situated in
some environment, and that is capable of flexible, autonomous action in
that environment in order to meet its design objectives [24].

In this definition flexible requires the agent to exhibit pro-active, reactive,
and social behaviour. We can therefore define the key properties of agenthood
as [23, 25]:

Autonomy: agents are clearly identifiable problem solving entities – with well-
defined boundaries and interfaces – which have control both over their in-
ternal state and over their own behaviour

Reactivity: agents are situated (embedded) in a particular environment, i.e.
they receive inputs related to the state of their environment through sensors.
They then respond in a timely fashion, and act on the environment through
effectors to satisfy their design objectives.

Pro-activeness: agents do not simply act in response to their environment,
they are designed to fulfil a specific purpose, i.e. they have particular ob-
jectives (goals) to achieve. Agents are therefore able to exhibit goal-directed
behaviour by taking the initiative and opportunistically adopting new goals.

Social Ability: agents are able to cooperate with humans and other agents in
order to achieve their design objectives.

If we compare this definition with an object-oriented (OO) approach to the
design of software systems it is safe to assume that almost all more recent im-
plementations of MAS will be based on some OO programming environment
like for example Java or C++. If we look at a single threaded OO program,
autonomy in the sense defined above is clearly a property that we can ascribe to
such a program (see Fig. 2 top left). If we put such a program into the context
of a concurrent OO environment, e.g. CORBA [17], all objects in this environ-
ment are able to interact with each other and therefore display a limited form
of social abilities (see Fig. 2 top right). However, if all of the objects are sin-
gle threaded, we face a problem. Once an object starts to work on a request
from an other object it is not able to react to further request of the same or
other objects and therefore lacks the property of being reactive. To introduce
reactiveness, each object needs the ability to at least do two activities concur-
rently: work on requests from other objects and react to further requests (see
Fig. 2 bottom left). There are several ways to technically achieve this. Languages
for concurrent OO programming introduced solutions for this at an early stage
[26]. Still if we have objects that are able to act on two concurrent activities
we need yet another thread of activity to introduce pro-activeness. The three
activities (being reactive, pro-active, and interacting) can be directly deduced

548 Klaus Fischer

Fig. 2. Agent Architectures Introduce Structure into Concurrent Object-Oriented Soft-
ware Design.

form the definition above. However, every interaction with another agent/object
can give reason to introduce a new concurrent activity (see Fig. 2 bottom right).
How the scheduling between these activities is actually implemented (one thread
that concurrently works on all these activities or a true mutli-threaded compu-
tational model) is not that important. The important point to note is that on
an abstract level agents are by definition multi-threaded objects that run in
a concurrent OO environment. Unfortunately, concurrency is a computational
construct that introduces complexity. To control concurrency in an individual
agent we need structures that are well-understood, like it was the case in struc-
tured and OO programming. For agent-oriented programming these structures
are agent architectures. A number of agent architectures have been suggested
in MAS literature (for an overview see Chapter 1 in [22]). Our approach to the
design of individual agents is the agent architecture InteRRaP (see Figure 3).

The main idea of InteRRaP [16] is to define an agent by a set of functional
layers, linked by a communication-based control structure and a shared hierar-
chical knowledge base: (1) the co-operative planning layer (CPL); (2) the local
planning layer (LPL); and (3) the behaviour-based layer (BBL).

The CPL contains mechanisms for devising joint plans and has access to pro-
tocols, a joint plan library, and knowledge about communication strategies. The
LPL contains a planning mechanism, which is able to devise local single-agent
plans. The plans are non-linear data structures the nodes of which can be either
new sub-plans, executable patterns of behaviour, or primitive actions. Thus, the
plan-based layer may activate patterns of behaviour in order to achieve certain
goals. The BBL implements the basic behaviour of the agent using behavioural
scripts called patterns of behaviour. The BBL is closely linked to the world in-

Self-organisation in Holonic Multiagent Systems 549

Fig. 3. The Agent Architecture InteRRaP.

terface, and thus, to the actions and changes in the world. Patterns of behaviour
can be activated both by the plan-based layer (top-down activation) and by
external trigger conditions (bottom-up activation).

Corresponding to the control layers of the agent, the agent’s knowledge base
consists also of three layers. The lowest layer, which belongs to the BBL, contains
facts representing the world model of the agent. Layer two, which corresponds
with the LPL, represents the mental model, which contains local goals and local
plans. Finally, layer three on the CPL specifies the social model, which contains
knowledge of and strategies for co-operation, e.g. beliefs about other agents’
goals. The basic idea is that information is passed only from lower layers of the
knowledge base to higher layers. For example, the plan-based layer can access
information about the world model, whereas the BBL does not have access to
planning or co-operation information.

4 The Multiagent System Level

From the very beginning of MAS research MAS were introduced as a new prob-
lem solving paradigm [2]. Rather than explicitly specifying at design time how
a specific problem will be solved, the general idea in this thread of research is
to achieve problem solving by the interaction of the individual agents in the
agent society. The solutions to the given problem emerges from this interaction.
Looking at nature, an ant hive is the most intuitive example to explain emergent
problem solving behaviour (see Figure 4). It is not possible to explain the overall
behaviour of an ant hive by looking at an individual ant, nor does the removal
of even a significant part of the hive necessarily influence the overall behaviour.
Though some parts of the hive seem to be more important than others. Although

550 Klaus Fischer

Fig. 4. Competing Problem Solving Paradigms.

interesting results have been presented using this approach to problem solving,
emergent problem solving behaviour has also been criticised to provide inefficient
or even undesirable results.

Divide and conquer (see Figure 4) is widely accepted problem solving para-
digm of general computer science. Here a centralised problem solving entity takes
a task, separates it into sub-tasks and distributes these sub-tasks to decentralised
problem solvers. The problem solvers produce solutions for the sub-problems
and send these solutions back to the centralised problem solving entity which
integrates the solutions for the sub-problems into an overall solution for the
original task. This approach to problem solving is much more structured than
the pure emergent problem solving behaviour. The contract net protocol [20]
which is a widely-accepted problem solving model in distributed AI research uses
the divide and conquer model. The centralised problem solving entity, called the
manager for the task, separates the overall task into sub-tasks. The manager uses
a bidding procedure, first price sealed bid auction, to find the most appropriate
decentralised problem solver for each of the sub-problems. The integration of the
solution to the sub-problems, which are provided by the decentralised problem
solvers, into an overall solution is again done by the manager. This procedure
can be recursively nested, i.e. the decentralised problem solvers can again use
the contract net model to find a set of further problem solvers who are able to
solve the given sub-task.

In the contract net protocol as it was just described the concrete assignment
of sub-tasks to problem solving entities is an emergent property. By allowing in-
dividual agents to find out on their own which part of the task they would like to
work on and bid for this part of the task, the separation of the task into subtasks
becomes an emergent phenomenon. In this model the manager announces the
complete task to the problem solving agents. These agents evaluate the task and
send back bids for parts of the task they would like to work on. The model works

Self-organisation in Holonic Multiagent Systems 551

best if the tasks can be separated in virtually any desired set of sub-tasks and
these sub-tasks are uniform with respect to the problem solving abilities that
are required for producing a solution. However, although we definitively have
to assume a common understanding of dividing the overall tasks into sub-tasks
among the problem solving agents, we can find a whole spectrum of problem
solving models where the situation in which at one extreme the manager does
the complete job of dividing the task into sub-tasks and at the other extreme the
devision of the tasks into sub-tasks is done completely by the agents bidding for
the task. The first case corresponds to a top-down approach to problem solving
which can be very efficient but sometimes difficult to install in the first place and
possibly even more difficult to adapt to a changing environment. The latter case
corresponds to a bottom-up approach to problem solving which is flexible and
provides the ability to adapt to changes. However, it also introduces complexity
up to the degree of combinatorial explosion.

4.1 Holonic Multiagent Systems

As already discussed in Section 1 the concepts of fractal and holonic system de-
sign were proposed [21, 7] to combine both hierarchical organisational structures
in a top-down manner as well as decentralised control, which takes the bottom-
up perspective. Although it would be possible to organise the holonic structures
in a completely decentralised manner, for efficiency reasons it is more effective
to use an individual agent to represent a holon. In some cases it is possible to
select one of the already present agents as the representative of the holon by
using an election procedure. In other cases a new agent is explicitly introduced
to represent the holon just for its lifetime. In both cases the representative agent
has to have the ability to represent the shared intentions of the holon and to
negotiate about these intentions with the agents in the holon’s environment as
well as with the agents internal to the holon.

When we pick up again the formal description of MAS of Section 2, we can
at any given point in time identify holonic structures in the dynamic MAS ASt.
A holon H behaves in its environment like any of the agents in At. However,
when we take a closer look it might turn out that H is built up by a set of holons
itself. Let atomic : H → B be a function that tells us whether a given holon H
is built up of other holons or whether H ∈ At. For the set of holons H we then
have:

∀H ∈ H :

{
atomic(H) : H ∈ At

¬atomic(H) : ∀hi ∈ H ⇒ hi ∈ H
(1)

Like any agent a holon has a unique identification so that it is possible to
communicate with the holon by just sending messages to its address.

As it was already discussed in [14] we assume that the reason for the agents
to form a holonic structure is that the agents which make up the holon have to
co-operatively solve a set of tasks. This means that in our MAS the modelling
of holonic agents is realised by commitments (see e.g. [19]) of the sub-agents
to cooperate and work towards a common goal to execute a set of tasks in a

552 Klaus Fischer

corporate way. Because of this common interest the entities form shared goals
and shared intentions [13, 6]. We use the term shared because we do not want
to go into the details of the discussion whether joint knowledge can or cannot
be achieved in a MAS [9]. We assume that shared means that the agents are
aware of the fact that other agents are involved and that these agents maintain
knowledge, belief, goals, and intentions about the goals and intentions that are
believed to be shared. More formally we can say that all sub-holons hi, i ∈ N of
a holon h commit themselves to co-operatively execute action a where each of
the hi performs action ai and we assume that at any point in time t∧

hi∈h

succeeded(ai, t) → succeeded(a, t) (2)

holds. To execute action a is a shared intention of the sub-holons hi of h. Because
of (2) we have∧

hi∈h

achieved(intent(execute(ai), t)) → achieved(intent(execute(a), t)) (3)

What makes things difficult to further describe the holonic structures is that
the tasks which have to be executed by the agents get known in the system
some time before the point at which the execution starts. This implies that
the agents have to make commitments on participating in a holon at a point
in time at which the execution of the task lies in the future. This means that
we can distinguish between the period in which the agents negotiate about in
which holon they want to participate and the actual execution of the tasks.
However, this distinction does not have any influence on the actual structure
of the holon, since the holonic structure is formed when the commitments for
the shared intentions are made. For the settings in this paper a new holon is
formed as soon at least two agents commit themselves to co-operatively perform
an action. The holonic structure remains at least until either the joint action is
performed or the commitment to do the joint action is retracted.

To make things even more complicate, we can assume that costs are involved
with the execution of tasks. On the other hand agents get some benefit for
executing tasks. To give the agents an incentive to actually work on tasks we
assume that they try to optimise their local situation with respect to a local
performance profile, which depends on the set of tasks the agent is committed
to and the sequence in time in which the tasks are executed. The agents can try
to continously optimise their local situation by committing or de-committing to
tasks and by changing the plan for the execution of the tasks, e.g. by negotiating
about the deadline until the task has to be finished. Figure 5 gives an example of
the situation that we face. In this example we have two agents and we see how a
change in parameter X influences the local performance profile of agent 1 as well
as the overall performance that is displayed in the global performance profile.
In the given example the change in the parameter X increases the performance
of both agents. From agent 2 point of view performance stays at the point of
the local maximum but agent 2’s performance is nevertheless increased by the
change of the parameter X in agent 1.

Self-organisation in Holonic Multiagent Systems 553

Fig. 5. Global and local performance profiles.

In how far the global performance profile is explicitly represented in an agent
with a more centralised problem solving perspective depends on the concrete
MAS model for a specific scenario in an application domain. In the next section
we will see different models for decentralised and more centralised decision mak-
ing. We can further classify different scenarios by investigating in how far agents
accept changes in their local performance by proposals of other agents. At one
extreme we can have a totally cooperative setting in which all agents accept any
proposal as long as the performance of the whole agent society is increased. At
the other extreme we can have a totally competitive setting in which any agent
would never accept a proposal if the proposal effects the agent’s local perfor-
mance in a negative way. However, even in the latter setting there is a chance
of increasing the overall system performance of the agent society by negotiation
(cf. [10]).

5 Applications

In this section we illustrate the formation of holonic structures and shared in-
tentions in three application scenarios: (1) flexible manufacturing, (2) order dis-
patching in haulage companies, and (3) train coupling and sharing. These ap-
plication scenarios differ in the sense that in (1) holons are formed dynamically
because agents with different abilities have to work together to achieve a com-
mon goal. In (2) the abilities of the agents partly overlap. Finally, in (3) all
agents have the same abilities.

554 Klaus Fischer

auto-
nomous
systems

machines

flexible cells

shop floor

enterprise

PPS

SFC

AS

FCC

AS AS

FCC

Fig. 6. Planning and control layers in a flexible manufacturing system.

5.1 Flexible Manufacturing Systems

There are already well-established layers of abstraction in the control of a flexi-
ble manufacturing system (FMS) (see Fig. 6): production planning and control
(PPC), shop floor control (SFC), flexible cell control (FCC), autonomous system
control, and machine control. Each of these layers has a clearly defined scope of
competence. In Fig. 6 we can see holons on each of the five layers: at the lowest
layer, the physical body of an autonomous system (i.e. an autonomous robot or
a machine tool) together with its controlling agent. On the layer of the flexible
cells we have the flexible cell control system together with the holons that are
formed by the physical systems that belong to the flexible cell. On the SFC layer
we have the agent that represents the SFC for a specific production unit together
with all the holons that belong to it. Finally, on the enterprise layer we have all
the holons that are present at a specific site of the company. We can even go
further and represent holons of companies with several sites. However, in this
paper we do not want to further elaborate on this. Most of the holonic structures
which were just described are quite stable. However, especially on the layer of
the flexible cells it is very important to have efficient mechanisms to dynamically
form new holons. In describing this situation we have the conceptual problem
that autonomous systems such as mobile robots might interact with flexible cells.
To have a more uniform view we assume that pure autonomous systems such as
mobile robots and autonomous (guided) vehicles are represented as holons on
the FCC layer, too. For the rest of this section we refer to all these systems as
flexible cell holons (FCH).

The SFC system passes tasks to the lower FCC layer as soon as it is de-
termined by the production plan that a task can be executed because all of
the preceding steps in the working plan have been successfully completed. From

Self-organisation in Holonic Multiagent Systems 555

these tasks the FCHs on the lower layers derive their shared and local intentions.
The SFC system does not care whether it is possible for a group of FCHs to exe-
cute this task immediately or if they are currently engaged in the execution of a
task. The SFC system just inserts the task into a list which is accessible to all of
the FCHs and the FCHs decide by themselves when it will actually be executed.
By executing a specific task, several FCHs have to co-operate. Each FCH has to
play a part to solve a specific task. No FCH may believe that it is the only one
that wants to play a certain part for a specific task. Therefore, the FCHs must
co-ordinate their intentions to play parts in different tasks. The main problem to
be solved is to find a consistent group of FCHs which together are able to solve
a specific task. We call such a group a complete holon for a task. Only tasks for
which a complete holon is formed can actually be executed.

The FCHs can be separated into three groups: R mobile manipulation sys-
tems (mobile robots), T transport systems, and C flexible cells such as machining
centres that might have locally fixed robots. In some settings even the workpieces
which are to be processed are able to move autonomously, for example when they
are installed on a transportation device. In these settings it is reasonable to con-
trol these workpieces by FCHs. We therefore introduce the set of workpieces W .

Mobile manipulation systems are able to work flexibly on the given tasks.
Each time a mobile manipulation system finishes the execution of a task it can
start working on any task it is able to regardless of its current configuration. Lo-
cally fixed robots, machining centres, and flexible cells are much more restricted
in their ability to choose tasks to be executed than FCHs in R∪T because FCHs
in C have a fixed location. An FCH f in C depends on FCHs of R∪ T if all the
devices needed for a specific task are not already present within f . We therefore
introduce the precedence relations W ≺ C ≺ T ≺ R. T ≺ R means that a mem-
ber of R may only join a holon for a specific task if all of the members of set
T have already joined the holon for this specific task. The precedence relation
≺ is transitive which means that, for example, W ≺ R is valid too. The idea
behind this definition is that the FCHs which are able to execute tasks flexibly
may react to the decisions of FCHs which lack this flexibility in task execution.

To find a complete holon, the FCHs examine the list of tasks, which are
announced by the SFC system, and try to reserve the task they would like to
execute next for themselves. When an FCH is able to reserve a task successfully
for itself, this FCH becomes the representative of the holon for this task. The
representative r of a holon for a task t has responsibility to complete the holon
for this task. r does this by sending messages to the other FCHs which ask these
FCHs to join the holon for task t. A conflict occurs if two representatives send
each other messages in which each of them asks the other one to join its own
holon. It is possible to describe conflict resolution protocols for this situation
which guarantee liveness and fairness of the system.

5.2 TELETRUCK

Order dispatching in haulage companies is a complex task. For a system which
solves this problem in the real world it is not enough to compute routes for a fleet
of trucks for a given set of customer orders. A system supporting the real-world

556 Klaus Fischer

Integration

Datex-P

GPS
Inmarsat-C
Modoacom
C-Net
D-Net

Shipping
Company

Vehicle
Tracking

Optimi-
sation

SQL
DB

Chip
Card

Card
Reader

Fig. 7. The online fleet scheduling system TeleTruck.

setting has to cope with an online scheduling problem, in which at any point in
time new orders can arrive and in which the system is able to react to problems
in the execution of the computed plans. The TeleTruck system (see Fig. 7)
implements an online dispatching systems using telecommunication technologies
(e.g., satellite or mobile phone communication and global positioning). [11, 12]
demonstrated that a MAS approach to model an online dispatching system is
feasible and can compete with operation research approaches with respect to
quality of the provided solution. However, in these scientific settings the trans-
portation is done by self-contained entities. In practice we see that truck drivers,
trucks, and (semi-)trailers are autonomous entities with their own objectives.
Only an appropriate group of these entities can all together perform the trans-
portation task. For this reason a holonic approach had to be used to model the
agent society of TeleTruck[5].

For each of the physical components (trucks, truck tractors, chassis, and
(semi-)trailers) of the forwarding company as well as for each of its drivers there is
an agent, which administrates the resources the component or the driver supplies.
These agents have their own plans, goals, and communication facilities in order
to provide their resources for the transportation plans according to their role in
the society. The agents have to form appropriate holons (further on referred to
as ‘vehicle holons’ (VH))in order to execute the orders at hand.

Building a new VH is not just about collecting the needed resources. The
components that merge to a VH have to complement each other and match the
requirements of the transportation task. For each component an incompatibility
list is represented that specifies the incompatibilities to other components, prop-
erties of components or orders. These constraints represent technical and legal
restrictions and demands for VHs.

The main things that need to be agreed between agents participating in a
VH are to go to a specific place at a specific point in time and to load and unload
goods. From these activities shared intentions for the agents participating in the

Self-organisation in Holonic Multiagent Systems 557

VH can be derived. An new agent representing a Plan’n’Execute Units (PnEUs)
for the VH is explicitly introduced to maintain the shared intentions of the VH.
The PnEU coordinates the formation of the VH representing the transportation
entity and plans the vehicle’s routes, loading stops, and driving times. The PnEU
represents the VH to the outside environment and is authorised to reconfigure it.
A PnEU is equipped with planning, coordination, and communication abilities,
but does not have its own resources. Each VH that has at least one task to
do is headed by such a PnEU. Additionally, there is always exactly one idle
PnEU with an empty plan that coordinates the formation of a new VH from
idle components if needed.

For the assignment of the orders to the VHs a bidding procedure is used [8].
The dispatch officer in the shipping company interacts with a dispatch agent.
The dispatch agent announces the newly incoming orders, specified by the dis-
patch officer, to the PnEUs via an extended contract net protocol (ECNP) [11].
The PnEUs request resources from their components and decide whether the
resources are sufficient to fulfil the task or not. If they are sufficient, the PnEU
computes a plan, calculates its costs, and bids for the task. If the resources sup-
plied by the components that are already member of the VH are not sufficient –
which is trivially the case for the idle PnEU – the task together with the list of
missing resources and a set of constraints that the order or the other members of
the VH induce is announced to those agents which could supply such resources.
These agents calculate which of their resources they can actually supply, and,
if necessary, again announce the task and the still missing resources. This is
iterated until all the needed resources are collected. The task of collecting the
needed resources is not totally left to the PnEU because the components have
local knowledge about how they can be combined, e.g. if a driver always drives
the same truck it is local knowledge of the components and not of the PnEU.

Thus the ECNP is used on the one hand by the dispatch agent to allocate
tasks to the existing VHs and on the other hand by the free PnEU which, itself,
uses the protocol to form a new VH. Using the ECNP the dispatch agent initiates
the allocation of a transportation order to one or more VHs. The semantics of
the announcement is the invitation of the VHs to bid for and execute a task.
Fig. 8 shows a dispatch agent announcing a new transportation task to two VHs
and the idle PnEU. The complete VH on the left hand side cannot incorporate
any further components. Hence, the head requests for the necessary resources
from its components and, if these resources are sufficient, calculates the costs for
the execution of the task. The second VH could integrate one further component.
However, its head first tries to plan for the task using only the resources of the
components, the VH already has incorporated. If the resources are not sufficient,
the head tries to collect the missing resources by performing an ECNP with
idle components that supply such resources. The idle PnEU, which has not
yet any resources on its own, first of all performs an ENCP with those idle
components that offer loading space; in the example a truck and a trailer. The
trailer supplies loading space and chassis, therefore, it needs a motor supplying
component. Hence, it announces the task to the truck. The truck which received

558 Klaus Fischer

Fig. 8. Holonic Planning in TeleTruck.

two different announcements for the same task – one by the trailer and one by
the PnEU directly – can bid in both protocols since it can be sure that only one
of the protocols will be successful. Therefore, the truck agent looks for a driver,
computes the costs for the two different announcements, and gives a bid both to
the PnEU and to the trailer. Obviously, the costs for executing the task with a
vehicle that consists of a driver and a truck are less than the costs of executing the
same task with the same truck and driver and, in addition, a trailer. Therefore,
the idle PnEU will pass the bid of the truck to the dispatch agent. If the task is
granted to the idle PnEU, the PnEU merges with the components to a VH and
a new PnEU will be created for further bidding cycles. Whenever the plan of a
VH is finished the components separate and the PnEU terminates.

Because the tour plans that are computed in the ECNP procedure are sub-
optimal [11, 12], the simulated trading procedure [1] is used to improve the sub-
optimal initial solution stepwise towards globally optimal plans [12]. Simulated
trading is a randomised algorithm that realises a market mechanism where the
vehicles optimise their plans by successively selling and buying tasks. Trading is
done in several rounds. Each round consists of a number of decision cycles. In
each cycle the truck agents submit one offer to sell or buy a task. At the end of
each round the dispatch agent tries to match the sell and buy offers of the trucks
such that the costs of the global solution decrease. This implements a kind of
hill-climbing algorithm. Like in the case of simulated annealing, a derivation that
decreases from round to round can be specified such that in early rounds the
dispatch agent is willing to accept a worsening of the global solution which is
helpful to leave local maxima in the solution space. Nevertheless, maxima that
are left are saved, such that, when the algorithm terminates before a better so-
lution is found, the best solution hitherto is returned. Hence, simulated trading
is an interruptible anytime algorithm.

In order to allow the optimisation not only of the plans but also of the
combination of components we extended the simulated trading procedure. It
might be the case that a good route plan is not efficient because the allocation of
resources to the plan is bad, e.g. a big truck is not full while a smaller truck could

Self-organisation in Holonic Multiagent Systems 559

need some extra capacity to improve its own plan. We divided a trading round
into three phases. The first phase consists of order trading cycles as explained
above; in the middle phase the VHs can submit offers to exchange components.
The third phase is, like the first phase, an order trading phase. After the third
phase is finished the dispatch agent matches the sell, buy and the component
exchange offers.

This application scenario is a perfect instance of the model for local and
global optimisation as it was discussed in Section 4. Please note that the lo-
cal performance profiles in the VHs (i.e. the local cost functions) are used for
optimisation as well as a reorganisation of the whole agent society, by switch-
ing components among VHs. The ECNP and the simulated trading procedure
produce a balance between decentralised and centralised optimisation.

5.3 Train Coupling and Sharing

In this application scenario we have a set of train modules that are able to
drive on their own on a railway network. However, if all the train modules drive
separately, the capacity utilisation of the railway network is not acceptable. The
idea is that the module trains join together and jointly drive some distance (train
coupling and sharing (TCS) [15], see Fig. 9). The overall goal is to reduce the cost
for a given set of transportation tasks in a railway network. Each task is specified
as a tuple consisting of the origin and the destination node, the earliest possible
departure time and the latest allowed arrival time. As in the TeleTruck system
not all of the tasks are announced to the system at the same time. New tasks
can come in at any point in time.

We assume that a set of transportation tasks is given, which have to be
served by the train modules, and that each task can be served by an individual
module, i.e. there is no need to hook two or more modules together to serve an
individual task. Likewise, we also assume that a module cannot serve more than
one task at a time. All tasks occurring in the system are transportation requests

A

C

D

B

Fig. 9. Routing of Trains in the TCS System.

560 Klaus Fischer

in a railway network, which is represented as a graph consisting of several nodes
connected via so-called location routes.

Whenever a module serves a transportation task, it computes the path from
the origin to the destination node with a shortest path algorithm. The module
then rents the intermediate location routes for a certain time window from the
net manager. The time window for each location route is uniquely determined
by the earliest departure time and the latest arrival time of the transportation
task. When a location route is allocated by a certain module, the route is blocked
for other modules during this time interval. In order to reduce route blocking,
however, two or more modules can decide to share a particular location route.

Route sharing means, that two or more modules hook together at the be-
ginning of a location route (or of a sequence of consecutive routes) and split up
afterwards. Route sharing has two advantages: firstly, it increases the average
utilisation of location routes because it enables more than one module to use a
location route at the same time. Secondly, the cost for renting a location route
are reduced for an individual module by distributing the full cost among the
participating modules.

We have two natural candidates for becoming the agents in the TCS scenario:
the individual modules and the unions (see Fig. 6 and Fig. 7) that emerge when
two or more modules decide to share a location route. However, each additional
abstraction increases the complexity of the resulting implementation and there-
fore, we have decided to model the unions as the agents in our system. A single
module is encapsulated in a (so-called degenerated) union and thus we avoid
the additional complexity in the system design. The advantage of applying this
scheme is that we do not have to distinguish modules and unions; every active
entity in the system is a union.

The main reason for the unions to form shared intentions is that they need
to share location routes to reduce cost. This peer matching is again achieved
by negotiation processes between the agents in the agent society. As in the
TeleTruck system the contract-net protocol [8] is used whenever a new task is
announced to the system. New tasks are incrementally integrated in the existing
schedule which guarantees, that always a solution for the problem (as far as it
is known to the system) exists. Note that we assume that there is a sufficient
number of modules, i.e. degenerated units, available to execute all tasks. The
contract-net protocol is executed whenever a new (degenerated) union has com-

Fig. 10. Train modules group together in
unions.

Fig. 11. Even unions can group and form
recursively nested holons.

Self-organisation in Holonic Multiagent Systems 561

puted its local plan. The union then initiates the contract-net protocol as the
manager and offers the plan to the other currently active unions. These unions
check if they contain one or more modules that are a potential sharing peers
and if this is the case, they offer a sharing commitment to the new union. The
new union collects these offers and selects the one that has the largest cost sav-
ing potential. It then transfers the module to the winning union and ceases to
exist because it does not contain other modules. If no union offers a sharing
commitment, the new union remains active as degenerated union. However, as
in the TeleTruck system, this solution may be (and usually is) not optimal.
In order to improve the quality of the existing solution, the simulated trading
[1] procedure is run on the set of tasks (or the respective modules) currently
known to the system. Unfortunately, executing the simulated trading protocol is
a computationally expensive operation and so it is executed only periodically –
either after a fixed number of new tasks has been added to the existing solution
or explicitly triggered by a user request.

6 Conclusion

The paper presented a general framework to describe self-organisation in holonic
MAS. At the first glance there is nothing special about a holon because it behaves
to the outside world as any other agent. Most important, one can communicate
with a holon by just sending a message to a single address. The concept becomes
interesting only when we realise that holons represent a whole group of agents.
Compared with an object-oriented programming approach there is no compa-
rable programming construct that would support the design of such systems.
We therefore have to further clarify from a theoretical and practical point of
view how the formation of holons should take place. In our experience the main
reason for agents to form a holon is that they share intentions about how to
achieve specific goals. The paper clarifies how the concept of shared intentions
can be specified from a theoretical point of view and gives application scenarios
in which the process of establishing shared intentions in holonic MAS is illus-
trated. The application scenarios differ in the sense that in the first one (flexible
manufacturing) agents form holons because they have different abilities and can
only as a group achieve the task at hand. In the second example (order dispatch-
ing in haulage companies) the agents forming a holon have partly overlapping
abilities. The last example (train coupling and sharing) demonstrates that even
in a setting where we have agents with identical abilities holonic structures can
be beneficial.

References

1. A. Bachem, W. Hochstättler, and M. Malich. Simulated Trading: A New Approach
For Solving Vehicle Routing Problems. Technical Report 92.125, Mathematisches
Institut der Universität zu Köln, Dezember 1992.

2. A. Bond and L. Gasser, editors. An Analysis of Problems and Research in DAI.
In Bond and Gasser [3], 1988.

562 Klaus Fischer

3. A. Bond and L. Gasser, editors. Readings in Distributed Artificial Intelligence.
Morgan Kaufmann, Los Angeles, CA, 1988.

4. Luc Bongaerts, László Monostori, Duncan Mc Farlane, and Botond Kádár. Hi-
erarchy in distributed shop floor control. In IMS-EUROPE 1998, the First Open
Workshop of Esprit Working group on IMS, Lausanne, 1998.

5. H.-J. Bürckert, K. Fischer, and G. Vierke. Transportation scheduling with holonic
mas – the teletruck approach. In Proceedings of the Third International Conference
on Practical Applications of Intelligent Agents and Multiagents (PAAM’98), 1998.

6. L. Cavedon and G. Tidhar. A logical framework for modelling multi-agent sys-
tems and joint attitudes. Technical Report Tech. Rep. 66, Australian Artificial
Intelligence Institute, 1995.

7. J. Christensen. Holonic manufacturing systems – initial architecture and standard
directions. In Proc. of the 1st European Conference on Holonic Manufacturing
Systems, Hannover, December 1994.

8. R. Davis and R. G. Smith. Negotiation as a metaphor for distributed problem
solving. Artificial Intelligence, 20:63 – 109, 1983.

9. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge.
MIT Press, Cambridge, Massachusetts – London, England, 1995.

10. K. Fischer and J. P. Müller. A decision-theoretic model for cooperative trans-
portation scheduling. In W. van de Velde and J. W. Perram, editors, Agents
Breaking Away – Proceedings of the 7th European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World (MAAMAW’96), volume 1038 of LNAI,
pages 177–189. Springer-Verlag, 1996.

11. K. Fischer, J. P. Müller, and M. Pischel. A model for cooperative transporta-
tion scheduling. In Proceedings of the 1st International Conference on Multiagent
Systems (ICMAS’95), pages 109–116, San Francisco, June 1995.

12. K. Fischer, J. P. Müller, and M. Pischel. Cooperative transportation scheduling:
an application domain for DAI. Journal of Applied Artificial Intelligence. Special
issue on Intelligent Agents, 10(1):1–33, 1996.

13. D. Kinny, M. Ljungberg, A. S. Rao, E. Sonenberg, G. Tidhar, and E. Werner.
Planned team activity. In C. Castelfranchi and E. Werner, editors, Artificial So-
cial Systems – Selected Papers from the Fourth European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, MAAMAW-92 (LNAI Volume 830),
pages 226–256. Springer-Verlag: Heidelberg, Germany, 1992.

14. A. Koestler. The Ghost in the Machine. Arkana Books, 1989.
15. J. Lind, K. Fischer, J. Böcker, and B. Zierkler. Transportation scheduling and

simulation in a railroad scenario: A multi-agent approach. In Proc. of the 4th int.
Conf. on The Practical Application of Intelligent Agents and Multi-Agent Tech-
nology, pages 325–344, London, UK, 1999. The Practical Application Company
Ltd.

16. J. P. Müller. The Design of Intelligent Agents : A Layered Approach, volume 1177
of Lecture Notes in AI. Springer, 1996.

17. J. Siegel, editor. CORBA Fundamentals and Programming. John Wiley and Sons,
1996.

18. H. A. Simon. The Sciences of the Artificial. MIT Press, 6 edition, 1990.
19. M. P. Singh. Commitments among autonomous agents in information-rich envi-

ronments. In Proceedings of the 8th European Workshop on Modelling Autonomous
Agents in a Multi-Agent World (MAAMAW), 1997.

20. R.G. Smith. The contract net protocol: High-level communication and control in
a distributed problem solver. In IEEE Transaction on Computers, number 12 in
C-29, pages 1104–1113, 1980.

Self-organisation in Holonic Multiagent Systems 563

21. Hans-Jürgen Warnecke. Aufbruch zum fraktalen Unternehmen – Praxisbeispiele für
neues Denken und Handeln. Springer-Verlag, 1995.

22. G. Weiss. Multiagent Systems: A Modern Approach to Distributed Artificial Intel-
ligence. MIT – Press, 1999.

23. M. J. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice.
Knowledge Engineering Review, 10(2):115–152, 1995.

24. Michael Wooldridge. Agent-based software engineering. IEEE Proceedings on
Software Engineering, 144(1):26–37, February 1997.

25. Michael Wooldridge. Intelligent agents. In Weiss [22], pages 27–87.
26. A. Yonezawa, editor. ABCL – An Object-Oriented Concurrent System. The MIT

Press: Cambridge, MA, 1990.

Author Index

Aiello, Luigia Carlucci 494
Andrews, Peter B. 14
Armando, Alessandro 30, 46
Autexier, Serge 407

Baader, Franz 228
Barringer, Howard 59
Baumgartner, Peter 249
Beetz, Michael 514
Beierle, Christoph 99
Benedetti, Marco 494
Benzmüller, Christoph 277
Bibel, Wolfgang 120
Bolc, Leonard 297
Broy, Manfred 396
Bundy, Alan 321

Castellini, Claudio 46
Chubarov, Dimitri 132
Cittadini, Saverio 169
Compagna, Luca 30

Doran, Jim 528

Fiedler, Armin 342
Fischer, Klaus 543
Furbach, Ulrich 249

Gabbay, Dov 59
Giunchiglia, Enrico 46
Giunchiglia, Fausto 46

Horrocks, Ian 228
Hutter, Dieter 1, 407

Jamnik, Mateja 321

Kapur, Deepak 433
Kerber, Manfred 139
Kern-Isberner, Gabriele 99
Krieg-Brückner, Bernd 379

Langenstein, Bruno 476

Mantel, Heiko 452
Meier, Andreas 277
Melis, Erica 364

Narendran, Paliath 433
Nonnengart, Andreas 476

Ranise, Silvio 30
Rock, Georg 476

Sattler, Ulrike 228
Schairer, Axel 452
Schmidt-Schauß, Manfred 154
Sieg, Wilfried 169
Sorge, Volker 277
Stephan, Werner 1, 476

Tacchella, Armando 46

van Benthem, Johan 268
Voronkov, Andrei 132

Wang, Lida 433
Wirth, Claus-Peter 192
Woods, John 59
Wos, Larry 204

	Frontmatter
	A Portrait of a Scientist: Logic, AI and Politics
	Logic and Deduction
	Some Reflections on Proof Transformations
	$<$Emphasis FontCategory={\textquotedbl}SansSerif{\textquotedbl} Type={\textquotedbl}Bold{\textquotedbl}$>$R$<$/Emphasis$>$ewrite and $<$Emphasis FontCategory={\textquotedbl}SansSerif{\textquotedbl} Type={\textquotedbl}Bold{\textquotedbl}$>$D$<$/Emphasis$>$ecision Procedure $<$Emphasis FontCategory={\textquotedbl}SansSerif{\textquotedbl} Type={\textquotedbl}Bold{\textquotedbl}$>$L$<$/Emphasis$>$aboratory: Combining Rewriting, Satisfiability Checking, and Lemma Speculation
	SAT-Based Decision Procedures for Automated Reasoning: A Unifying Perspective
	Temporal Dynamics of Support and Attack Networks: From Argumentation to Zoology
	Footprints of Conditionals
	Time for Thinking Big in AI
	Solving First-Order Constraints over the Monadic Class
	From MKRP to Ω{\sc MEGA}
	Decidable Variants of Higher-Order Unification
	Normal Natural Deduction Proofs (in Non-classical Logics)
	History and Future of Implicit and Inductionless Induction: Beware the Old Jade and the Zombie!
	The Flowering of Automated Reasoning

	Applications of Logics
	Description Logics as Ontology Languages for the Semantic Web
	Living Books, Automated Deduction and Other Strange Things
	An Essay on Sabotage and Obstruction
	Bridging Theorem Proving and Mathematical Knowledge Retrieval
	Formal Description of Natural Languages: An HPSG Grammar of Polish
	Psychological Validity of Schematic Proofs
	Natural Language Proof Explanation
	Why Proof Planning for Maths Education and How?

	Formal Methods and Security
	Towards MultiMedia Instruction in Safe and Secure Systems
	The Impact of Models in Software Development
	Formal Software Development in MAYA
	A Unification Algorithm for Analysis of Protocols with Blinded Signatures
	Exploiting Generic Aspects of Security Models in Formal Developments
	Verification Support Environment

	Agents and Planning
	SAT-Based Cooperative Planning: A Proposal
	Towards Comprehensive Computational Models for Plan-Based Control of Autonomous Robots
	Agents with Exact Foreknowledge
	Self-organisation in Holonic Multiagent Systems

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

