

Lecture Notes in Computer Science 3389
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Peter Van Roy (Ed.)

Multiparadigm
Programming
in Mozart/Oz

Second International Conference, MOZ 2004
Charleroi, Belgium, October 7-8, 2004
Revised Selected and Invited Papers

13

Volume Editor

Peter Van Roy
Université catholique de Louvain
Department of Computing Science and Engineering
Place Sainte Barbe, 2, B-1348 Louvain-la-Neuve, Belgium
E-mail: pvr@info.ucl.ac.be

Library of Congress Control Number: 2005921638

CR Subject Classification (1998): D.3, F.3, D.2, D.1, D.4

ISSN 0302-9743
ISBN 3-540-25079-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11398158 06/3142 5 4 3 2 1 0

Foreword

To many readers, Mozart/Oz represents a new addition to the pantheon of pro-
gramming systems. One way of evaluating a newcomer is through the eyes of the
classics, for example Kernighan and Pike’s “The Practice of Programming,” a
book that concludes with six “lasting concepts”: simplicity and clarity, generality,
evolution, interfaces, automation, and notation. Kernighan and Pike concentrate
on using standard languages such as C and Java to implement these concepts,
but it is instructive to see how a multiparadigm language such as Oz changes
the outlook.

Oz’s concurrency model yields simplicity and clarity (because Oz makes it
easier to express complex programs with many interacting components), gen-
erality, and better interfaces (because the dataflow model automatically makes
interfaces more lightweight).

Constraint programming in Oz again yields simplicity and clarity (because
the programmer can express what needs to be true rather than the more complex
issue of how to make it true), and offers a powerful mathematical notation that
is difficult to implement on top of languages that do not support it natively.

Mozart’s distributed computing model makes for improved interfaces and
eases the evolution of systems. In my own work, one of the most important
concerns is to be able to quickly scale up a prototype implementation into a large-
scale service that can run reliably on thousands of computers, serving millions
of users. The field of computer science needs more research to discover the best
ways of facilitating this, but Mozart provides one powerful approach.

Altogether, Mozart/Oz helps with all the lasting concepts except automation,
and it plays a particularly strong role in notation, which Kernighan and Pike
point out is an underappreciated area. I believe that providing the right notation
is the most important of the six concepts, one that supports all the others. Multi-
paradigm systems such as Oz provide more choices for notation than single-
paradigm languages.

Going beyond Kernighan and Pike’s six concerns, I recognize three more
concerns that I think are important, and cannot be added on to a language by
writing functions and classes; they must be inherent to the language itself.

The first is the ability to separate concerns, to describe separate aspects of
a program separately. Mozart supports separation of fault tolerance and dis-
tributed computation allocation in an admirable way.

My second concern is security. Sure, you can eliminate a large class of security
holes by replacing the char* datatype with string, but strong security cannot
be guaranteed in a language that is not itself secure.

My third concern is performance. David Moon once said, in words more pithy
than I can recall, that you can abstract anything except performance. That is,
you can add abstraction layers, but you can’t get back sufficient speed if the
underlying language implementation doesn’t provide it. Mozart/Oz has a 10-year

VI Foreword

history of making choices that provide for better performance, thereby making
the system a platform that will rarely run up against fundamental performance
problems.

We all look for tools and ideas to help us become better programmers. Some-
times the most fundamental idea is to pick the right programming environment.

Peter Norvig
Director of Search Quality, Google, Inc.

Coauthor, Artificial Intelligence: A Modern Approach

Preface

Multiparadigm programming, when done well, brings together the best parts of
different programming paradigms in a simple and powerful whole. This allows
the programmer to choose the right concepts for each problem to be solved. This
book gives a snapshot of the work being done with Mozart/Oz, one of today’s
most comprehensive multiparadigm programming systems. Mozart/Oz has been
under development since the early 1990s as a vehicle to support research in pro-
gramming languages, constraint programming, and distributed programming.1

Since then, Mozart/Oz has matured into a production-quality system with an ac-
tive user community. Mozart/Oz consists of the Oz programming language and
its implementation, Mozart. Oz combines the concepts of all major program-
ming paradigms in a simple and harmonious whole. Mozart is a high-quality
open source implementation of Oz that exists for different versions of Windows,
Unix/Linux/Solaris, and Mac OS X.2

This book is an extended version of the proceedings of the 2nd International
Mozart/Oz Conference (MOZ 2004), which was held in Charleroi, Belgium on
October 7 and 8, 2004. MOZ 2004 consisted of 23 technical talks, four tutorials,
and invited talks by Gert Smolka and Mark S. Miller. The slides of all talks
and tutorials are available for downloading at the conference website.3 This
book contains all 23 papers presented at the conference, supplemented with
two invited papers written especially for the book. The conference papers were
selected from 28 submissions after a rigorous reviewing process in which most
papers were reviewed by three members of the Program Committee. We were
pleasantly surprised by the high average quality of the submissions.

Mozart/Oz research and development started in the early 1990s as part of
the ACCLAIM project, funded by the European Union. This project led to the
Mozart Consortium, an informal but intense collaboration that initially con-
sisted of the Programming Systems Lab at Saarland University in Saarbrücken,
Germany, the Swedish Institute of Computer Science in Kista, Sweden, and the
Université catholique de Louvain in Louvain-la-Neuve, Belgium. Several other
institutions have since joined this collaboration. Since the publication in March
2004 of the textbook Concepts, Techniques, and Models of Computer Program-
ming by MIT Press, the Mozart/Oz community has grown significantly. As a
result, we are reorganizing the Mozart Consortium to make it more open.

Security and Concurrency

Two important themes in this book are security and concurrency. The book
includes two invited papers on language-based computer security. Computer secu-

1 In the early days before the Mozart Consortium the system was called DFKI Oz.
2 See www.mozart-oz.org.
3 See www.cetic.be/moz2004.

VIII Preface

rity is a major preoccupation today both in the computer science community and
in general society. While there are many short-term solutions to security problems,
a good long-term solution requires rethinking our programming languages and op-
erating systems. One crucial idea is that languages and operating systems should
thoroughly support the principle of least authority. This support starts from the
user interface andgoes all thewaydowntobasic object invocations.With such thor-
ough support, many security problems that are considered difficult today become
much simpler. For example, the so-called trade-off between security and usability
largely goes away. We can have security without compromising usability. The two
invited papers are the beginning of what we hope will become a significant effort
from the Mozart/Oz community to address these issues and propose solutions.

The second important theme of this book is concurrent programming. We
have built Mozart/Oz so that concurrency is both easy to program with and
efficient in execution. Many papers in the book exploit this concurrency sup-
port. Several papers use a multiagent architecture based on message passing.
Other papers use constraint programming, which is implemented with light-
weight threads and declarative concurrency. We find that both message-passing
concurrency and declarative concurrency are much easier to program with than
shared-state concurrency. The same conclusion has been reached independently
by others. Joe Armstrong, the main designer of the Erlang language, has found
that using message-passing concurrency greatly simplifies building software that
does not crash. Doug Barnes and Mark S. Miller, the main designers of the E
language, have found that message-passing concurrency greatly simplifies build-
ing secure distributed systems. E is discussed in both of the invited papers in
this book.

Joe Armstrong has coined the phrase concurrency-oriented programming for
languages like Oz and Erlang that make concurrency both easy and efficient.
We conclude that concurrency-oriented programming will become increasingly
important in the future. This is not just because concurrency is useful for multi-
agent systems and constraint programming. It is really because concurrency
makes it easier to build software that is reliable and secure.

Diversity and Synergy

Classifying the papers in this book according to subject area gives an idea of
the diversity of work going on under the Mozart banner: security and language
design, computer science education, software engineering, human-computer in-
terfaces and the Web, distributed programming, grammars and natural language,
constraint research, and constraint applications. Constraints in Mozart are used
to implement games (Oz Minesweeper), to solve practical problems (reconfigura-
tion of electrical power networks, aircraft sequencing at an airport, timetabling,
etc.), and to do complex symbolic calculation (such as natural language process-
ing and music composition). If you start reading the book knowing only some
of these areas, then I hope that it will encourage you to get involved with the
others. Please do not hesitate to contact the authors of the papers to ask for
software and advice.

Preface IX

The most important strength of Mozart, in my view, is the synergy that comes
from connecting areas that are usually considered as disjoint. The synergy is
strong because the connections are done in a deep way, based on the fundamental
concepts of each area and their formal semantics. It is my hope that this book
will inspire you to build on this synergy to go beyond what has been done
before. Research and development, like many human activities, are limited by
a psychological barrier similar to that which causes sports records to advance
only gradually. It is rare that people step far beyond the boundaries of what
has been done before. One way to break this barrier is to take advantage of
the connections that Mozart offers between different areas. I hope that the wide
variety of examples shown in this book will help you to do that.

In conclusion, I would like to thank all the people who made MOZ 2004 and
this book a reality: the paper authors, the Program Committee members, the
Mozart developers, and, last but not least, the CETIC asbl, who organized the
conference in a professional manner. I thank Peter Norvig of Google, Inc., who
graciously accepted to write the Foreword for this book. And, finally, I give a
special thanks to Donatien Grolaux, the local arrangements chair, for his hard
work in handling all the practical details.

November 2004 Peter Van Roy
Louvain-la-Neuve, Belgium

Organization

MOZ 2004 was organized by CETIC in cooperation with the Université catholique
de Louvain. CETIC asbl is the Centre of Excellence in Information and Com-
munication Technologies, an applied research laboratory based in Charleroi,
Belgium.1 CETIC is focused on the fields of software engineering, distributed
computing, and electronic systems. The Université catholique de Louvain was
founded in 1425 and is located in Louvain-la-Neuve, Belgium.

Organizing Committee

Donatien Grolaux, CETIC, Belgium (local arrangements chair)
Bruno Carton, CETIC, Belgium
Pierre Guisset, director, CETIC, Belgium
Peter Van Roy, Université catholique de Louvain, Belgium

Program Committee

Per Brand, Swedish Institute of Computer Science, Sweden
Thorsten Brunklaus, Saarland University, Germany
Raphaël Collet, Université catholique de Louvain, Belgium
Juan F. Dı́az, Universidad del Valle, Cali, Colombia
Denys Duchier, INRIA Futurs, Lille, France
Sameh El-Ansary, Swedish Institute of Computer Science, Sweden
Kevin Glynn, Université catholique de Louvain, Belgium
Donatien Grolaux, CETIC, Belgium
Seif Haridi, KTH – Royal Institute of Technology, Sweden
Martin Henz, FriarTuck and the National University of Singapore
Erik Klintskog, Swedish Institute of Computer Science, Sweden
Joachim Niehren, INRIA Futurs, Lille, France
Luc Onana, KTH – Royal Institute of Technology, Sweden
Konstantin Popov, Swedish Institute of Computer Science, Sweden
Mahmoud Rafea, Central Laboratory for Agricultural Expert Systems, Egypt
Juris Reinfelds, New Mexico State University, USA
Andreas Rossberg, Saarland University, Germany
Camilo Rueda, Pontificia Universidad Javeriana, Cali, Colombia
Christian Schulte, KTH – Royal Institute of Technology, Sweden
Gert Smolka, Saarland University, Germany
Fred Spiessens, Université catholique de Louvain, Belgium
Peter Van Roy, Université catholique de Louvain, Belgium (Program Chair)

1 See www.cetic.be.

Table of Contents

Keynote Talk

The Development of Oz and Mozart
Gert Smolka . 1

Security

The Structure of Authority: Why Security Is Not a Separable Concern
Mark S. Miller, Bill Tulloh, Jonathan S. Shapiro 2

The Oz-E Project: Design Guidelines for a Secure Multiparadigm
Programming Language

Fred Spiessens, Peter Van Roy . 21

Computer Science Education

A Program Verification System Based on Oz
Isabelle Dony, Baudouin Le Charlier . 41

Higher Order Programming for Unordered Minds
Juris Reinfelds . 53

Software Engineering

Compiling Formal Specifications to Oz Programs
Tim Wahls . 66

Deriving Acceptance Tests from Goal Requirements
Jean-François Molderez, Christophe Ponsard . 78

Human-Computer Interfaces and the Web

Using Mozart for Visualizing Agent-Based Simulations
Hala Mostafa, Reem Bahgat . 89

Web Technologies for Mozart Applications
Mahmoud Rafea . 103

XIV Table of Contents

Overcoming the Multiplicity of Languages and Technologies for
Web-Based Development Using a Multi-paradigm Approach

Sameh El-Ansary, Donatien Grolaux, Peter Van Roy,
Mahmoud Rafea . 113

Distributed Programming

P2PS: Peer-to-Peer Development Platform for Mozart
Valentin Mesaros, Bruno Carton, Peter Van Roy 125

Thread-Based Mobility in Oz
Dragan Havelka, Christian Schulte, Per Brand, Seif Haridi 137

A Fault Tolerant Abstraction for Transparent Distributed Programming
Donatien Grolaux, Kevin Glynn, Peter Van Roy 149

Grammars and Natural Language

The CURRENT Platform: Building Conversational Agents in Oz
Torbjörn Lager, Fredrik Kronlid . 161

The Metagrammar Compiler: An NLP Application with a
Multi-paradigm Architecture

Denys Duchier, Joseph Le Roux, Yannick Parmentier 175

The XDG Grammar Development Kit
Ralph Debusmann, Denys Duchier, Joachim Niehren 188

Constraint Research

Solving CSP Including a Universal Quantification
Renaud De Landtsheer . 200

Compositional Abstractions for Search Factories
Guido Tack, Didier Le Botlan . 211

Implementing Semiring-Based Constraints Using Mozart
Alberto Delgado, Carlos Alberto Olarte, Jorge Andrés Pérez,
Camilo Rueda . 224

A Mozart Implementation of CP(BioNet)
Grégoire Dooms, Yves Deville, Pierre Dupont . 237

Table of Contents XV

Constraint Applications

Playing the Minesweeper with Constraints
Raphaël Collet . 251

Using Constraint Programming for Reconfiguration of Electrical Power
Distribution Networks

Juan Francisco Dı́az, Gustavo Gutierrez, Carlos Alberto Olarte,
Camilo Rueda . 263

Strasheela: Design and Usage of a Music Composition Environment
Based on the Oz Programming Model

Torsten Anders, Christina Anagnostopoulou, Michael Alcorn 277

Solving the Aircraft Sequencing Problem Using Concurrent Constraint
Programming

Juan Francisco Dı́az, Javier Andrés Mena . 292

The Problem of Assigning Evaluators to the Articles Submitted in
an Academic Event: A Practical Solution Incorporating Constraint
Programming and Heuristics

B. Jesús Aranda, Juan Francisco Dı́az, V. James Ort́ız 305

An Interactive Tool for the Controlled Execution of an Automated
Timetabling Constraint Engine

Alberto Delgado, Jorge Andrés Pérez, Gustavo Pabón,
Rafael Jordan, Juan Francisco Dı́az, Camilo Rueda 317

Author Index . 329

Author Index

Alcorn, Michael 277
Anagnostopoulou, Christina 277
Anders, Torsten 277
Aranda, Jesús B. 305

Bahgat, Reem 89
Brand, Per 137

Carton, Bruno 125
Collet, Raphaël 251

Debusmann, Ralph 188
De Landtsheer, Renaud 200
Delgado, Alberto 224, 317
Deville, Yves 237
Dı́az, Juan Francisco 263, 292,
305, 317

Dony, Isabelle 41
Dooms, Grégoire 237
Duchier, Denys 175, 188
Dupont, Pierre 237

El-Ansary, Sameh 113

Glynn, Kevin 149
Grolaux, Donatien 113, 149
Gutierrez, Gustavo 263

Haridi, Seif 137
Havelka, Dragan 137

Jordan, Rafael 317

Kronlid, Fredrik 161

Lager, Torbjörn 161
Le Botlan, Didier 211
Le Charlier, Baudouin 41
Le Roux, Joseph 175

Mena, Javier Andrés 292
Mesaros, Valentin 125
Miller, Mark S. 2
Molderez, Jean-François 78
Mostafa, Hala 89

Niehren, Joachim 188

Olarte, Carlos Alberto 224, 263
Ort́ız, James V. 305

Pabón, Gustavo 317
Parmentier, Yannick 175
Pérez, Jorge Andrés 224, 317
Ponsard, Christophe 78

Rafea, Mahmoud 103, 113
Reinfelds, Juris 53
Rueda, Camilo 224, 263, 317

Schulte, Christian 137
Shapiro, Jonathan 2
Smolka, Gert 1
Spiessens, Fred 21

Tack, Guido 211
Tulloh, Bill 2

Van Roy, Peter 21, 113, 125, 149

Wahls, Tim 66

The Development of Oz and Mozart

Gert Smolka

Saarland University
Saarbrücken, Germany
smolka@ps.uni-sb.de

In this talk I will review the development of the programming language Oz and
the programming system Mozart. I will discuss where in hindsight I see the
strong and the weak points of the language. Moreover, I will compare Oz with
Alice, a typed functional language we developed after Oz.

The development of Oz started in 1991 at DFKI under my lead. The initial
goal was to advance ideas from constraint and concurrent logic programming
and also from knowledge representation and to develop a practically useful pro-
gramming system. After a number of radical and unforeseen redesigns we arrived
in 1995 at the final base language and a stable implementation (DFKI Oz). In
1996 we founded the Mozart Consortium with SICS and Louvain-la-Neuve. Oz
was extended with support for persistence, distribution and modules and Mozart
1.0 was released in January 1999.

P. Van Roy (Ed.): MOZ 2004, 3389, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

The Structure of Authority: Why Security
Is Not a Separable Concern

Mark S. Miller1,2, Bill Tulloh3,��, and Jonathan S. Shapiro2

1 Hewlett Packard Labs
2 Johns Hopkins University
3 George Mason University

Abstract. Common programming practice grants excess authority for
the sake of functionality; programming principles require least authority
for the sake of security. If we practice our principles, we could have both
security and functionality. Treating security as a separate concern has not
succeeded in bridging the gap between principle and practice, because
it operates without knowledge of what constitutes least authority. Only
when requests are made – whether by humans acting through a user
interface, or by one object invoking another – can we determine how
much authority is adequate. Without this knowledge, we must provide
programs with enough authority to do anything they might be requested
to do.

We examine the practice of least authority at four major layers of
abstraction – from humans in an organization down to individual objects
within a programming language. We explain the special role of object-
capability languages – such as E or the proposed Oz-E – in supporting
practical least authority.

1 Excess Authority: The Gateway to Abuse

Software systems today are highly vulnerable to attack. This widespread vul-
nerability can be traced in large part to the excess authority we routinely grant
programs. Virtually every program a user launches is granted the user’s full au-
thority, even a simple game program like Solitaire. All widely-deployed operating
systems today – including Windows, UNIX variants, Macintosh, and PalmOS
– work on this principle. While users need broad authority to accomplish their
various goals, this authority greatly exceeds what any particular program needs
to accomplish its task.

When you run Solitaire, it only needs the authority to draw in its window,
to receive the UI events you direct at it, and to write into a file you specify
in order to save your score. If you had granted it only this limited authority, a
corrupted Solitaire might be annoying, but not a threat. It may prevent you from

�� Bill Tulloh would like to thank the Critical Infrastructure Protection Project at
George Mason University for its financial support of this research.

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 2–20, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

The Structure of Authority: Why Security Is Not a Separable Concern 3

Application
Dynamic Least Authority

Static
Sandboxing

No Authority

SafeDangerous

Isolated

Cooperative
User’s Authority

E, CapDesk, Polaris

Applets

Fig. 1. Functionality vs. Security?

playing the game or lie about your score. Instead, under conventional systems,
it runs with all of your authority. It can delete any file you can. It can scan
your email for interesting tidbits and sell them on eBay to the highest bidder. It
can install a back door and use your computer to forward spam. While Solitaire
itself probably doesn’t abuse its excess authority, it could. If an exploitable bug
in Solitaire enables an attacker to gain control of it, the attacker can do anything
Solitaire is authorized to do.

If Solitaire only needs such limited authority, why do you give it all of your
authority? Well, what other choice do you have? Figure 1 shows your choices.
On the one hand, you can run Solitaire as an application. Running it as an ap-
plication allows you to use all the rich functionality and integration that current
application frameworks have been built to support; but at the price of trusting it
with all your authority. On the other hand, you could run it as an applet, grant-
ing it virtually no authority, but then it becomes isolated and mostly useless. A
Solitaire applet could not even offer to save its score into a file you specify.

Sandboxing provides a middle ground between granting a program the user’s
full authority, and granting it no authority. Most approaches to sandboxing en-
able you to configure a static set of authorities (as might be represented in
a policy file) to be granted to the program when it is launched. The prob-
lem is that you do not know in advance what authorities the program actually
needs; the least authority needed by the program changes as execution progresses
[Schneider03]. Or it might allow you to add authority incrementally, so you can
trade away your safety piecemeal for functionality, but only by suffering a torrent
of annoying security dialog boxes that destroy usability.

In order to successfully apply the principle of least authority (POLA), we
need to take a different approach. Rather than trading security for functionality,
we need to limit potential abuse without interfering with potential use. How
far out might we move on the horizontal axis without loss of functionality or
usability? Least authority, by definition, includes adequate authority to get the
job done. Providing authority that is adequate means providing it in the right
amount and at the right time. The key to putting POLA into practice lies in the

4 M.S. Miller, B. Tulloh, and J.S. Shapiro

dynamic allocation of authority; we must provide the right amount of authority
just-in-time, not excess authority just-in-case.

In this paper we explain how narrow least authority can be practically achieved.
We report on recent experience in building two working systems that put POLA
into practice, and that demonstrate the potential for building secure systems
that are both useful and usable. CapDesk is an open source proof-of-concept
secure desktop and browser built from the ground up using the E language.
Polaris is an experimental prototype from HP Labs that shows how the benefits
of POLA can be applied to legacy applications.

1.1 How Much Authority Is Adequate?

How do we know how much authority a program actually needs? Surprisingly, the
answer depends on architectural choices not normally thought to be related to
security – the logic of designation. Consider two Unix shell commands for copying
a file. In the following example, they both perform the same task, copying the
file foo.txt into bar.txt, yet they follow very different logics of designation in
order to do so. The result is that the least authority each needs to perform this
task differs significantly.

Consider how cp performs its task:

$ cp foo.txt bar.txt

Your shell passes to the cp program the two strings “foo.txt” and “bar.txt”.
The cp program uses these strings to determine which files it should copy.

By contrast consider how cat performs its task:

$ cat < foo.txt > bar.txt

Your shell uses these strings to determine which files you mean to designate.
Once this is resolved, your shell passes direct access to the files to cat, as open
file descriptors. The cat program uses these descriptors to perform the copy.

Now consider the least authority that each one needs to perform its task.
With cp, you tell it which files to copy by passing it strings. By these strings,

you mean particular files in your file system – your namespace of files. In order
for cp to open the files you name, it must already have the authority to use your
namespace, and it must already have the authority to read and write any file you
might name. Given this way of using names, cp’s least authority still includes all
of your authority to the file system. The least authority it needs is so broad as
to make achieving security hopeless.

With cat, you tell it which files to copy by passing it direct access to those
two specific files. Like the cp example, you still use names in your namespace to
say which files you wish to have cat copy, but these names get evaluated in your
namespace prior to being passed to cat. By passing cat direct access to each file
rather than giving it the file name, it does not need broad authority to do its
job. Its least authority is what you’d expect – the right to read your foo.txt and
the right to write your bar.txt. It needs no further access to your file system.

The Structure of Authority: Why Security Is Not a Separable Concern 5

Currently under Unix, both cp and cat, like Solitaire, run with all your au-
thority. But the least authority they require to copy a file differs substantially.
Today’s widely deployed systems use both styles of access control. They grant
authority to open a file on a per-user basis, creating dangerous pools of excess
authority. These same systems dynamically grant access to a file descriptor on
a per-process basis. Ironically, only their support for the first style is explained
as providing a form of access control.

2 Composing Complex Systems

In order to build systems that are both functional and secure, we need to provide
programmers with the tools, practices, and design patterns that enable them to
combine designation with authority. We can identify two main places where acts
of designation occur: users designate actions through the user interface, and
objects designate actions by sending requests to other objects. In both places,
developers already have extensive experience with supporting such acts of desig-
nation. User-interface designers have developed a rich set of user-interface wid-
gets and practices to support user designation [Yee04]. Likewise, programmers
have developed a rich tool set of languages, patterns, and practices to support
designation between objects.

That the tools for separating and integrating actions (and potentially author-
ity) already exist should not be too surprising. Programmers use modularity and
abstraction to first decompose and then compose systems in order to meet the
goals of providing usability and functionality. By combining designation and au-
thority, the same tools can be applied to meeting the goals of providing security.

2.1 The Object-Capability Model: Aligning Rights with
Responsibilities

Object-oriented programming already embodies most of what is needed to pro-
vide secure programming. We introduce the object-capability model as a straight-
forward extension of the object model. Computer scientists, usually without any
consideration for security, seeking only support for the division and composition
of knowledge by abstraction and modularity, have recapitulated the logic of the
object-capability model of secure computation.

In the object model, programmers decompose a system into objects and then
compose those objects to get complex functionality. Designers use abstraction
to carve a system into separate objects that embody those abstractions. Objects
package abstractions as services that other objects can request. Each object is
responsible for performing a specialized job; the knowledge required to perform
the job is encapsulated within the object [Wirfs-Brock02].

Objects are composed dynamically at run-time through objects acquiring
references to other objects. In order for an object to collaborate with another
object, it must first come to know about the other object; the object must
come to hold a reference that identifies a particular object that is available for

6 M.S. Miller, B. Tulloh, and J.S. Shapiro

collaboration. Objects must also have a means of communicating with these
potential collaborators. References create such paths of communication. Objects
can send messages along these references to request other objects to perform
services on their behalf.

In the object-capability model references indivisibly combine the designation
of a particular object, the means to access the object, and the right to access the
object. By requiring that objects interact only by sending messages on references,
the reference graph becomes the access graph. The object-capability model does
not treat access control as a separate concern; rather it is a model of modular
computation with no separate access control mechanisms.

By claiming that security is not a separable concern, we do not mean to sug-
gest that no degree of separation is possible. Dijkstra’s original modest suggestion
– that we temporarily separate concerns as a conceptual aid for reasoning about
complex systems [Dijkstra74] – is applicable to security as it is to correctness
and modularity. What we wish to call into question, however, is the conventional
practice of treating access control concerns – the allocation of access rights within
a system – separately from the practice of designing and building systems. One
cannot make a system more modular by adding a modularity module. Security,
again like correctness and modularity, must first and foremost be treated as part
of the process of de-composing and composing software systems. Access con-
trol in the object-capability model derives from the pursuit of abstraction and
modularity. Parnas’ principle of information hiding [Parnas72] in effect says our
abstractions should hand out information only on a need to know basis. POLA
simply adds that authority should be handed out only on a need to do basis.
Modularity and security each require both.

2.2 The Fractal Locality of Knowledge: Let “Knows-About” Shape
“Access-to”

What the object model and object-capability model have in common is a logic
that explains how computational decisions dynamically determine the structure
of knowledge in our systems – the topology of the “knows-about” relationship.
The division of knowledge into separate objects that cooperate through sending
requests creates a natural sparseness of knowledge within a system. The object-
capability model recognizes that this same sparseness of knowledge, created in
pursuit of good modular design, can be harnessed to protect objects from one
another. Objects that do not know about one another, and consequently have
no way to interact with each other, cannot cause each other harm. By combining
designation with authority, the logic of the object-capability model explains how
computational decisions dynamically determine the structure of authority in our
systems – the topology of the “access-to” relationship.

What we typically find in computational systems is a hierarchical, recursive
division of responsibility and knowledge. Computation, like many complex sys-
tems, is organized into a hierarchic structure of nested levels of subsystems. We
can identify four majors layers of abstraction: at the organizational level systems
are composed of users; at the user level, systems are composed of applications; at

The Structure of Authority: Why Security Is Not a Separable Concern 7

the application level, systems are composed of modules; at the module level, sys-
tems are composed of objects. Each layer of abstraction provides a space where
the subsystems at that level can interact, while at the same time significantly
limiting the intensity of interaction that needs to occur across these layers.

Computer scientist and Nobel Laureate in Economics, Herbert Simon, argues
that this hierarchic nesting of subsystems is common across many types of com-
plex systems [Simon62]. Complex systems frequently take the form of a hierarchy,
which can be decomposed into subsystems, and so on; “Hierarchy,” he argues,
“is one of the central structural schemes that the architecture of complexity
uses.” Simon shows how this nesting of subsystems occurs across many different
types of systems. For example, in the body, we have cells that make up tissues,
that make up organs, that make up organisms. As Simon notes, the nesting of
subsystems helps bring about a sparseness of knowledge between subsystems.
Each subsystem operates (nearly) independently of the detailed processes going
on within other subsystems; components within each level communicate much
more frequently than they do across levels. For example, my liver and my kidney
in some sense know about each other; they use chemical signals to communicate
with one another. Similarly, you and I may know about each other, using verbal
signals to communicate and collaborate with one another. On the other hand we
would be quite surprised to see my liver talk to your kidneys.

While the nesting of subsystems into layers is quite common in complex sys-
tems, it provides a rather static view of the knowledge relationship between
layers. In contrast, within layers we see a much more dynamic process. Within
layers of abstraction, computation is largely organized as a dynamic subcon-
tracting network. Subcontracting organizes requests for services among clients
and providers. Abstraction boundaries between clients and providers enable sep-
aration of concerns at the local level. They help to further reduce knows-about
relationships, not just by thinning the topology of who knows about whom, but
also by reducing how much they know about each other [Tulloh02]. Abstrac-
tion boundaries allow the concerns of the client (the reasons why it requests a
particular service) to be separated from the concerns of the provider (how it
implements a particular service). Abstraction boundaries, by hiding implemen-
tation details, allow clients to ignore distractions and focus on their remaining
concern. Applied to authority, abstraction boundaries protect clients from fur-
ther unwanted details; by denying the provider authority that is not needed to
do its job, the client does not need to worry as much about the provider’s intent.
Even if the intent is to cause harm, the scope of harm is limited.

Simon’s fellow Nobel Laureate in Economics, Friedrich Hayek, has argued
that the division of knowledge and authority through dynamic subcontract-
ing relationships is common across many types of complex systems [Hayek45,
Hayek64]. In particular, Hayek has argued that the system of specialization and
exchange that generates the division of labor in the economy is best understood
as creating a division of knowledge where clients and providers coordinate their
plans based on local knowledge. Diverse plans, Hayek argues, can be coordinated
only based on local knowledge; no one entity possesses the knowledge needed to

8 M.S. Miller, B. Tulloh, and J.S. Shapiro

coordinate agents’ plans. Similarly no one entity has the knowledge required to
allocate authority within computer systems according to the principle of least
authority. To do this effectively, the entity would need to understand the duties
of every single abstraction in the system, at every level of composition. Without
understanding the duties of each component, it’s impossible to understand what
would be the least authority needed for it to carry out these duties. “Least” and
“duties” can only be understood locally.

3 The Fractal Nature of Authority

The access matrix model [Lampson74, Graham72] has proven to be one of the
most durable abstractions for reasoning about access control in computational
systems. The access matrix provides a snapshot of the protection state of a
particular system, showing the rights (the filled-in cells) that active entities
(the rows) have with respect to protected resources (the columns). While not
specifically designed for reasoning about least authority, we adapt the access
matrix model to show how the consistent application of POLA across levels can
significantly reduce the ability of attackers to exploit vulnerabilities. We show
how POLA applied at the four major layers of abstraction – from humans in an
organization down to individual objects within a programming language – can
achieve a multiplicative reduction in a system’s attack surface.

The access matrix is normally used to depict only permissions – the direct
access rights an active entity has to a resource, as represented by the system’s
protection state. Since we wish to reason about our overall exposure to attack,
in this paper access matrices will instead depict authority. Authority includes
both direct permissions and indirect causal access via the permitted actions of
intermediary objects [Miller03]. It is unclear whether Saltzer and Schroeder’s
famous “principle of least privilege” [Saltzer75] should be understood as “least
permission” or “least authority”. But it is clear that, to minimize our exposure,
we must examine authority. To avoid confusion, when we wish to speak specif-
ically about the structure of permissions, we will instead refer to the “access
graph” – an alternate visualization in which permissions are shown as arcs of
the graph [Bishop79].

Howard, Pincus and Wing [Howard03] have introduced the notion of an attack
surface as a way to measure, in a qualitative manner, the relative security of
various computer systems. This multi-dimensional metric attempts to capture
the notion that system security depends not only on the number of specific bugs
found, but also on a system’s “process and data resources” and the actions that
can be executed on these resources. These resources can serve as either targets
or enablers depending on the nature of the attack. Attackers gain control over
the resources through communication channels and protocols; access rights place
constraints on which resources can be accessed over these channels.

They define the attack surface of a system to be the sum of the system’s
attack opportunities. An attack is a means of exploiting a vulnerability. Attack
opportunities are exploitable vulnerabilities in the system weighted by some

The Structure of Authority: Why Security Is Not a Separable Concern 9

notion of how exploitable the vulnerability is. By treating exploitability not just
as a measure of how likely a particular exploit will occur, but as a measure of the
extent of damage that can occur from a successful attack, we can gain insight
into the role least authority can play in reducing a system’s attack surface.

We can use the area of the cells within the access matrix to visualize, in an
abstract way, the attack surface of a system. Imagine that the heights of the
rows were resized to be proportional to the likelihood that each active entity
could be corrupted or confused into enabling an attack. Imagine that the width
of the columns were resized to be proportional to the damage an attacker with
authority to that asset could cause. Our overall attack surface may, therefore,
be approximated as the overall filled-in area of the access matrix. (In this paper,
we do not show such resizing, as the knowledge needed to quantify these issues
is largely inaccessible).

By taking this perspective and combining it with Simon’s insight that com-
plex systems are typically organized into nested layers of abstractions, we can
now show how applying POLA to each level can recursively reduce the attack
surface of a system. While it is well-recognized that the active entities in an
access matrix can be either people or processes, the precise relationship between
them is rarely recognized in any systematic way. We show how the same nesting
of levels of abstraction, used to organize system functionality, can be used to
organize the authority needed to provide that functionality.

We now take a tour through four major levels of composition of an example
system:

1. among the people within an organization
2. among the applications launched by a person from their desktop
3. among the modules within an application
4. among individual language-level “objects”

Within this structure, we show how to practice POLA painlessly at each level,
and how these separate practices compose to reduce the overall attack surface
multiplicatively.

Some common themes will emerge in different guises at each level:

– the relatively static nesting of subsystems
– the dynamic subcontracting networks within each subsystem
– the co-existence of legacy and non-legacy components
– the limits placed on POLA by the “TCB” issue, explained below, and by

legacy code.

3.1 Human-Granularity POLA in an Organization

When an organization is small, when there’s little at stake, or when all of an
organization’s employees are perfectly non-corruptible and non-confusable, the
internal distribution of excess authority creates few vulnerabilities. Otherwise,
organizations practice separation of responsibilities, need to know, and POLA
to limit their exposure.

10 M.S. Miller, B. Tulloh, and J.S. Shapiro

Kernel + ~root = TCB

~alan

~barb

~doug

/etc/passwd Alan’s stuff Barb’s stuff Doug’s stuff

Desktop

Mozilla

Excel

Eodora + pgp

email addrs pgp keyring killer.xls Net access

Level 1: Human Granularity POLA

Level 2a: Conventional App Granularity Authority

Fig. 2. Barb’s situation

The figure labeled “Level 1” (in Figure 2) uses the access matrix to visualize
how conventional operating systems support POLA within a human organiza-
tion. Alan (the “~alan” account) is given authority to access all of Alan’s stuff,
and likewise with Barb and Doug. In addition, because Barb and Alan are collab-
orating, Barb gives Alan authority to access some of her stuff. The organization
should give Alan those authorities needed for him to carry out his responsibilities.
This can happen in both a hierarchical manner (an administrator determining
which of the organization’s assets are included in “Alan’s stuff”) and a decentral-
ized manner (by Barb, when she needs to collaborate with Alan on something)
[Abrams95]. If an attacker confuses Alan into revealing his password, the assets
the attacker can then abuse are limited to those entrusted to Alan. While better
training or screening may reduce the likelihood of an attack succeeding, limits
on available authority reduce the damage a successful attack can cause.

To the traditional access matrix visualization, we have added a row repre-
senting the TCB, and a column, labeled /etc/passwd, which stands for resources
which are effectively part of the TCB. Historically, “TCB” stands for “Trusted
Computing Base”, but is actually about vulnerability rather than trust. To avoid
the confusion caused by the traditional terminology, we here define TCB as that
part of a system that everything in that system is necessarily vulnerable to. In
a traditional timesharing context, or in a conventional centrally-administered
system of accounts within a company, the TCB includes the operating system
kernel, the administrator accounts, and the administrators. The TCB provides
the mechanisms used to limit the authority of the other players, so all the au-
thority it manages is vulnerable to the corruption or confusion of the TCB itself.
While much can be done to reduce the likelihood of an exploitable flaw in the
TCB – primarily by making it smaller and cleaner – ultimately any centralized
system will continue to have this Achilles heel of potential full vulnerability.
(Decentralized systems can escape this centralized vulnerability, and distributed

The Structure of Authority: Why Security Is Not a Separable Concern 11

languages like E and Oz should support the patterns needed to do so. But this
issue is beyond the scope of this paper.)

3.2 Application-Granularity POLA on the Desktop

With the exception of the TCB problem, organizations have wrestled with these
issues since long before computers. Operating System support for access control
evolved largely in order to provide support for the resulting organizational prac-
tices [Moffett88]. Unfortunately, conventional support for these practices was
based on a simplifying assumption that left us exposed to viruses, worms, Tro-
jan horses, and the litany of problems that, now, regularly infest our networks.
The simplifying assumption? When Barb runs a program to accomplish some
goal, such as killer.xls, an Excel spreadsheet, conventional systems assume the
program is a perfectly faithful extension of Barb’s intent. But Barb didn’t write
Excel or killer.xls.

Zooming in on Level 1 brings us to Level 2a (Figure 2), showing the con-
ventional distribution of authority among the programs Barb runs; they are all
given all of Barb’s authority. If Excel is corruptible or confusable – if it contains
a bug allowing an attacker to subvert its logic for the attacker’s purposes – then
anything Excel may do, the attacker can do. The attacker can abuse all of Barb’s
authority – sending itself to her friends and deleting her files – even if her op-
erating system, her administrator, and Barb herself are all operating flawlessly.
Since all the assets entrusted to Barb are exposed to exploitable flaws in any
program she runs, all her programs are in her TCB. If Barb enables macros,
even her documents, like killer.xls, would be in her TCB as well. How can Barb
reduce her exposure to the programs she runs?

Good organizational principles apply at many scales of organization. If the
limited distribution of authority we saw in Level 1 is a good idea, can we adopt
it at this level as well?

Level 2b (Figure 3) is at the same “scale” as Level 2a, but depicts Doug’s
situation rather than Barb’s. Like Barb, Doug launches various applications
interactively from his desktop. Unlike Barb, let’s say Doug runs his desktop
and these apps in such a way as to reduce his exposure to their misbehavior.
One possibility would be that Doug runs a non-conventional OS that supports
finer-grained POLA [Dennis66, Hardy85, Shapiro99]. In this paper, we explore
a surprising alternative – the use of language-based security mechanisms, like
those provided by E [Miller03] and proposed for Oz by the paper on Oz-E in
this volume [Spiessens-VanRoy05]. We will explain how Doug uses CapDesk and
Polaris to reduce his exposure while still running on a conventional OS. But
first, it behooves us to be clear about the limits of this approach. (In our story,
we combine the functionality of CapDesk and Polaris, though they are not yet
actually integrated. Integrating CapDesk’s protection with that provided by an
appropriate secure OS would yield yet further reductions in exposure, but these
are beyond the scope of this paper.)

CapDesk [Stiegler02] is a capability-secure distributed desktop written in
E, for running caplets – applications written in E to be run under CapDesk.

12 M.S. Miller, B. Tulloh, and J.S. Shapiro

Kernel + ~root = TCB

~alan

~barb

~doug

/etc/passwd Alan’s stuff Barb’s stuff Doug’s stuff

Level 1: Human Granularity POLA

email addrs pgp keyring killer.xls Net access

Level 2b: App−granularity POLA

Level 3: Module −granularity POLA

pgp keyring killer.xls Net accessemail addrs

main()= CapMail’s TCB

address book

gpg plugin

smtp/pop stacks

CapDesk=Doug’s TCB

DarpaBrowser

Excel

CapMail

Fig. 3. Doug’s situation

CapDesk is the program Doug uses to subdivide his authority among these
apps. To do this job, CapDesk’s least authority is all of Doug’s authority. Doug
launches CapDesk as a conventional application in his account, thereby granting
it all of his authority.

Doug is no less exposed to a flaw in CapDesk than Barb is to a flaw in each
app she runs. CapDesk is part of Doug’s TCB; but the programs launched by
CapDesk are not. Doug is also no less exposed to an action taken by Barb, or
one of her apps, than he was before. If the base OS does not protect his interests
from actions taken in other accounts, then the whole system is in his TCB. With-
out a base OS that provides foundational protection, no significant reduction of
exposure by other means is possible. So let us assume that the base OS does
at least provide effective per-account protection. For any legacy programs that
Doug installs or runs in the conventional manner – outside the CapDesk frame-
work – Doug is no less exposed than he was before. All such programs remain
in his TCB. If “~doug” is corrupted by this route, again, CapDesk’s protections
are for naught.

However, if the integrity of “~doug” survives these threats, Doug can protect
the assets entrusted to him from the programs he runs by using CapDesk +
Polaris to grant them least authority. This granting must be done in a usable

The Structure of Authority: Why Security Is Not a Separable Concern 13

fashion – unusable security won’t be used, and security which isn’t used doesn’t
protect anyone. As with cat, the key to usable POLA is to bundle authority with
designation [Yee02, Yee04]. To use Excel to edit killer.xls, Doug must somehow
designate this file as the one he wishes to edit. This may happen by double
clicking on the file, by selecting it in an open file dialog box, or by drag-and-drop.
(Drag-and-drop is supported by CapDesk, but not yet by Polaris.) The least
authority Excel needs includes the authority to edit this one file, but typically
not any other interesting authorities. Polaris [Stiegler04] runs each legacy app
in a separate account, created by Polaris for this purpose, which initially has
almost no authority. Under Polaris, Doug’s act of designation dynamically grants
Excel the authority to edit this one file. Polaris users regularly run with macros
enabled, since they no longer live in fear of their documents.

3.3 Module-Granularity POLA Within a Caplet

Were we to zoom into Doug’s legacy Excel box, we’d find that there is no further
reduction of authority within Excel. All the authority granted to Excel as a whole
is accessible to all the modules of which Excel is built, and to the macros in the
spreadsheets it runs. Should the math library’s sqrt function wish to overwrite
killer.xls, nothing will prevent it. At this next smaller scale (the third level) we’d
find the same full-authority picture previously depicted as Level 2a.

Caplets running under CapDesk do better. The DarpaBrowser is a web
browser caplet, able to use a potentially malicious plug-in as a renderer. Al-
though this is an actual example, the DarpaBrowser is “actual” only as a proof
of concept whose security properties have been reviewed [Wagner02] – not yet
as a practical browser. We will instead zoom in to the hypothetical email client
caplet, CapMail. All the points we make about CapMail are also true for the
DarpaBrowser, but the email client makes a better expository example. Of the
programs regularly run by normal users – as opposed to system administrators
or programmers – the email client is the worst case we’ve identified. Its least au-
thority includes a dangerous combination of authorities. Doug would grant some
of these authorities – like access to an smtp server – by static configuration,
rather than dynamically during each use.

When Doug decides to grant CapMail these authorities, he’s deciding to rely
on the authors of CapMail not to abuse them. However, the authors of CapMail
didn’t write every line of code in CapMail – they reused various reusable libraries
written by others. CapMail should not grant its crypto library the authority
needed to read your address book and send itself to your friends.

Zooming in on the bottom row of Level 2b brings us to Level 3. A caplet
has a startup module that’s the moral equivalent of the C or Java programmer’s
“main()” function. CapDesk grants to this startup module all the authority it
grants to CapMail as a whole. If CapMail is written well, this startup module
should do essentially nothing but import the top level modules constituting the
bulk of CapMail’s logic, and grant each that portion of CapMail’s authority
that it needs during initialization. This startup module is CapMail’s TCB – its

14 M.S. Miller, B. Tulloh, and J.S. Shapiro

C

A says: b.foo (c)

fooA B

Fig. 4. Level 4: Object Granularity POLA

logic brings about this further subdivision of initial authority, so all the assets
entrusted to CapMail as a whole are vulnerable to this one module.

When a CapMail user launches an executable caplet attachment, CapMail
should ask CapDesk to launch it, in which case it would only be given the
authority the user grants by explicit actions. CapMail users would no longer
need to fear executable attachments. (The DarpaBrowser already demonstrates
equivalent functionality for downloaded caplets.)

3.4 Object-Granularity POLA

At Level 3, we again see the co-existence of boxes representing legacy and non-
legacy. For legacy modules, we’ve been using a methodology we call “taming”
to give us some confidence, under some circumstances, that a module doesn’t
exceed its proper authority [Miller02]. Again, for these legacy boxes, we can
achieve no further reduction of exposure within the box. Zooming in on a legacy
box would again give a full authority picture like that previously depicted as
Level 2a, but at the fourth level. Zooming in on a non-legacy box takes us
instead to a picture of POLA at Level 4 (Figure 4). This is our finest scale
application of these principles – at the granularity of individual programming
language objects. These are the indivisible particles, if you will, from whose logic
our levels 2 and 3 were built.

By “object”, we do not wish to imply a class-based system, or built-in support
for inheritance. We are most comfortable with the terms and concepts of object-
oriented programming, but the logic explained below applies equally well to
lambda calculus with local side effects [Morris73, Rees96], Actors [Hewitt77],
concurrent logic/constraint programming [Miller87], and the Pi calculus. Oz’s
semantics already embodies this logic. (The following explanation skips some
details; see [Miller03] for a precise statement of the object-capability model.)

Let’s examine all the ways in which object B can come to know about, i.e.,
hold a reference to, object C.

The Structure of Authority: Why Security Is Not a Separable Concern 15

1. By Introduction. If B and C already exist, and B does not already know
about C, then the only way B can come to know about C is if there exists
an object A that
– already knows about C
– already knows about B
– decides to share with B her knowledge of C.

In object terms, if A has variables in her scope, b and c, that hold references
to B and C, then A may send a message to B containing a copy of her
reference to C as an argument: “b.foo(c)”. Unlike the cp example, and like
the cat example, A does not communicate the string “c” to B. B does not
know or care what name A’s code uses to refer to C.

2. By Parenthood. If B already exists and C does not, then, if B creates C, at
that moment B is the only object that knows about C (has a reference to
C). From there, other objects can come to know about C only by inductive
application of these steps. Parenthood may occur by normal object instan-
tiation, such as calling a constructor or evaluating a lambda expression, or
by import, which we return to below.

3. By Endowment. If C already exists and B does not, then, if there exists
an object A that already knows about C, A can create B such that B is
born already endowed with knowledge of C. B might be instantiated by
lambda evaluation, in which case a variable “c” which is free within B might
be bound to C within B’s creation context, as supplied by A. Or A might
instantiate B by calling a constructor, passing C as an argument. If A creates
module B by importing data describing B’s behavior (in Oz, a functor file),
then A’s importing context must explicitly provide bindings for all the free
variables in this functor file, where these values must already be accessible to
A. The imported B module must not be able to magically come into existence
with authorities not granted by its importer. (The underlying logic of the
Oz module manager seems ideally designed to support this, though various
details need to be fixed.)

4. By Initial Conditions. For purposes of analysis, there’s always a first instant
of time. B might already know about C when our universe of discourse came
into existence.

By these rules, only connectivity begets connectivity – new knows-about re-
lationships can only be brought about from existing knows-about relationships.
Two disjoint subgraphs can never become connected, which is why garbage col-
lection can be transparent. More interestingly, if two subgraphs are almost dis-
joint, they can only interact or become further connected according to the deci-
sions of those objects that bridge these two subgraphs.

An object can affect the world outside itself by sending messages on ref-
erences it holds. An object can be affected by the world outside itself by re-
ceiving messages from objects that hold a reference to it. If objects have no
possibility of causal access by other means, such as global variables, then an
object’s permissions are the references it holds. The object reference graph be-
comes the access graph. Together with designational integrity (also known as

16 M.S. Miller, B. Tulloh, and J.S. Shapiro

the y-property [Close03]), and support for defensive correctness, explained in
the paper on Oz-E in this volume, these are the rules of object-capability secu-
rity [Spiessens-VanRoy05].

But knowing the rules of chess is distinct from knowing how to play chess.
The practice of using these rules well to write secure code is known as capability
discipline. As we should expect, capability discipline is mostly just an extreme
form of good modular software engineering practice. Of the people who have
learned capability discipline, several have independently noticed that they find
themselves following capability discipline even when writing programs for which
security is of no concern. We find that it consistently leads to more modular,
more maintainable code.

Table 1. Security as extreme modularity

Good software engineering Capability discipline
Responsibility driven design Authority driven design
Omit needless coupling Omit needless vulnerability
assert(..) preconditions Validate inputs
Information hiding Principle of Least Authority
Designation, need to know Permission, need to do
Lexical naming No global name spaces
Avoid global variables Forbid mutable static state
Procedural, data, control, · · · · · · and access abstractions
Patterns and frameworks Patterns of safe cooperation
Say what you mean Mean only what you say

This completes the reductionist portion of our tour. We have seen many issues
reappear at each level of composition. Let’s zoom back out and see what picture
emerges.

3.5 Nested TCBs Follow the Spawning Tree

The nesting of subsystems within each other corresponds to a spawning tree. The
TCB of each system creates the initial population of subsystems within it, and
endows each with their initial portion of the authority granted to this system as a
whole. The organization decides what Alan’s responsibilities are, and its admin-
istrators configure Alan’s initial authorities accordingly. Doug uses CapDesk to
endow CapMail with access to his smtp server by static configuration. CapMail’s
main() grants this access to its imported smtp module. A lambda expression with
a free variable “c” evaluates to a closure whose binding for “c” is provided by its
creation context. The spawning tree has the hierarchic structure that Herbert
Simon explains as common to many kinds of complex systems [Simon62]. Mostly
static approaches to POLA, such as policy files, may succeed at mirroring this
structure.

The Structure of Authority: Why Security Is Not a Separable Concern 17

3.6 Subcontracting Forms Dynamic Networks of Authority

Among already instantiated components, we see a network of subcontracting
relationships whose topology dynamically changes as components make requests
of each other. Barb finds she needs to collaborate with Alan; or Doug selects
killer.xls in an open file dialog box; or object A passes a reference to object C as
an argument in a message to object B. In all these cases, by following capability
discipline, the least authority the subcontractor needs to perform a request can
often be painlessly conveyed along with the designations such requests must
already carry. The least adjustments needed to the topology of the access graph
are often identical to the adjustments made anyway to the reference graph.

3.7 Legacy Limits POLA, But Can Be Managed Incrementally

Among the subsystems within each system, we must engineer for a peaceful co-
existence of legacy and non-legacy components. Only such co-existence enables
non-legacy systems to be adopted incrementally. For legacy components, POLA
can and indeed must be practiced separately. For example, Polaris restricts the
authority available to killer.xls without modifying the spreadsheet, Excel, or
WindowsXP. However, we can only impose POLA on the legacy component –
we cannot enable the component to further practice POLA with the portion of
its authority it grants to others, or to sub-components of itself. Following initial
adoption, as we replace individual legacy components, we incrementally increase
our safety.

3.8 Nested POLA Multiplicatively Reduces Attack Surface

The cross-hatching within the non-legacy boxes we did not zoom into – such
as the “~alan” row – represents our abstract claim that exposure was further
reduced by practicing POLA within these boxes. The claim can now be explained
by the fine structure shown in the non-legacy boxes we did zoom into – such
as the “~doug” box. Whatever fraction of the attack surface we removed at
each level by practicing POLA; these effects compose to create a multiplicative
reduction in our overall exposure. Secure languages used according to capability
discipline can extend POLA to a much finer grain than is normally sought. By
spanning a large enough range of scales, the remaining attack surface resembles
the area of a fractal shape which has been recursively hollowed out. Although we
do not yet know how to quantify these issues, we hope any future quantitative
analysis of what is practically achievable will take this structure into account.

4 Conclusions

To build useful and usable systems, software engineers build sparse-but-capable
dynamic structures of knowledge. The systems most successful at supporting
these structures – such as object, lambda, and concurrent logic languages –
exhibit a curious similarity in their logic of designation. Patterns of abstraction

18 M.S. Miller, B. Tulloh, and J.S. Shapiro

and modularity divide knowledge, and then use these designators to compose
divided knowledge to useful effect. Software engineering discipline judges these
design patterns partially by their support for the principle of information hiding –
by the sparseness of the knowledge structures they build from these designators.

To build useful, usable, and safe general purpose systems, we must lever-
age these impressive successes to provide correspondingly sparse-but-capable
dynamic structures of authority. Only authority structures aligned with these
knowledge structures can both provide the authority needed for use while nar-
rowly limiting the excess of authority available for abuse. To structure authority
in this way, we need “merely” make a natural change to our foundations, and a
corresponding natural change to our software engineering discipline.

Capability discipline judges design patterns as well by their support for the
principle of least authority – by the sparseness of the authority structures they
build from these permissions. Not only is this change needed for safety, it also
increases the modularity needed to provide ever greater functionality.

An object-capability language can extend this structuring of authority down
to finer granularities, and therefore across more scales, than seem practical by
other means. The paper on Oz-E in this volume explores how Oz can become
such a language [Spiessens-VanRoy05]. In this paper we have presented a proof-
of-concept system – consisting of E, CapDesk, and Polaris – that explains an
integrated approach for using such foundations to build general purpose systems
that are simultaneously safer, more functional, more modular, and more usable
than is normally thought possible.

Acknowledgements

For various comments and suggestions, we thank Per Brand, Scott Doerrie, Jack
High, Alan Karp, Christian Scheideler, Swaroop Sridhar, Fred Spiessens, Terry
Stanley, and Marc Stiegler. We thank Norm Hardy for first bringing to our atten-
tion the intimate relationship between knowledge and authority in computation.

References

[Abrams95] Marshall Abrams and David Bailey. “Abstraction and Refine-
ment of Layered Security Policy.” In Marshall D. Abrams,
Sushil Jajodia, and Harold J. Podell, eds. Information Secu-
rity: An Integrated Collection of Essays. IEEE Computer Soci-
ety Press. Los Alamitos, CA 1995: 126-136.

[Bishop79] Matt Bishop and Lawrence Snyder. “The Transfer of Informa-
tion and Authority in a Protection System.” Proc. 7th ACM
Symposium on Operating Systems Principles (Operating Sys-
tems Review 13(4)), 1979, pp. 45–54.

[Close03] Tyler Close “What Does the ’y’ Refer to”, 2003.
http://www.waterken.com/dev/YURL/Definition/

[Dennis66] J.B. Dennis, E.C. Van Horn. “Programming Semantics for Mul-
tiprogrammed Computations”, Communications of the ACM,
9(3):143-155, March 1966.

The Structure of Authority: Why Security Is Not a Separable Concern 19

[Dijkstra74] Edsger W. Dijkstra, “On the role of scientific thought”, EWD
447, 1974, appearing in E.W.Dijkstra, Selected Writings on
Computing: A Personal Perspective, Springer Verlag, 1982.

[Graham72] Graham, G.S., and Denning, P.J. Protection-principles and
practice. Proc. AFIPS 1972 SJCC, Vol. 40, AFIPS Press, Mont-
vale, N.J., pp. 417-429.

[Hardy85] N. Hardy. “The KeyKOS Architecture” ACM Operating Sys-
tems Review, September 1985, p. 8–25.
http://www.agorics.com/Library/KeyKos/architecture.html

[Hayek45] Friedrich A. Hayek “Use of Knowledge in Society” American
Economic Review, XXXV, No. 4; September, 1945, 519-30.
http://www.virtualschool.edu/mon/Economics/
HayekUseOfKnowledge.html

[Hayek64] Friedrich A. Hayek “The Theory of Complex Phenomena”,
1964, in Bunge, editor, The Critical Approach to Science and
Philosophy.

[Hewitt77] Carl Hewitt, Henry Baker, “Actors and Continuous Function-
als” , MIT-LCS-TR-194, 1977. Locality Laws online at
http://www.erights.org/history/actors.html

[Howard03] Michael Howard, Jon Pincus, Jeannette M. Wing. “Measuring
Relative Attack Surfaces” Proceedings of the Workshop on Ad-
vanced Developments in Software and Systems Security, 2003.

[Lampson74] Butler W. Lampson. “Protection” ACM Operating Systems Re-
view. 8:1, Jan. 1974.

[Miller87] M. S. Miller, D. G. Bobrow, E. D. Tribble, J. Levy, “Logical
Secrets” Concurrent Prolog: Collected Papers, E. Shapiro (ed.),
MIT Press, Cambridge, MA, 1987.

[Miller02] Mark S. Miller, “A Theory of Taming”, 2002.
http://www.erights.org/elib/legacy/taming.html

[Miller03] Mark S. Miller, Jonathan S. Shapiro, “Paradigm Regained:
Abstraction mechanisms for access control” , Proceedings of
ASIAN’03, Springer Verlag, 2003. Complete version online at
http://www.erights.org/talks/asian03/index.html

[Moffett88] Jonathan D. Moffett and Morris S. Sloman, “The Source of
Authority for Commercial Access Control” IEEE Computer,
February 1988.

[Morris73] J. H. Morris. “Protection in Programming Languages” CACM
16(1) p. 15–21, 1973.
http://www.erights.org/history/morris73.pdf

[Parnas72] David L. Parnas. “On the Criteria To Be Used in Decomposing
a System into Modules.” Communications of the ACM, Vol. 15,
No. 12, December 1972: pp. 1053–1058.

[Rees96] J. Rees, A Security Kernel Based on the Lambda-Calculus. MIT
AI Memo No. 1564. MIT, Cambridge, MA, 1996.
http://mumble.net/jar/pubs/secureos/

[Saltzer75] J. H. Saltzer, M. D. Schroeder, “The Protection of Information
in Computer Systems” Proceedings of the IEEE 63(9), Septem-
ber 1975, p. 1278–1308.

[Schneider03] Fred B. Schneider. “Least Privilege and More.” IEEE Security
& Privacy, September/October, 2003: 55-59.

20 M.S. Miller, B. Tulloh, and J.S. Shapiro

[Simon62] Herbert S. Simon, “The Architecture of Complexity: Hierarchic
Systems” Proceedings of the American Philosophical Society,
106:467-482, 1962

[Shapiro99] J. S. Shapiro, J. M. Smith, D. J. Farber. “EROS: A Fast Ca-
pability System” Proceedings of the 17th ACM Symposium on
Operating Systems Principles, December 1999, p. 170–185.

[Spiessens-VanRoy05] Fred Spiessens and Peter Van Roy, “The Oz-E Project: De-
sign Guidelines for a Secure Multiparadigm Programming Lan-
guage”, Lecture Notes in Artificial Intelligence, Vol. 3389,
Springer Verlag, 2005.

[Stiegler02] M. Stiegler, M. Miller. “A Capability Based Client: The
DarpaBrowser”, 2002.
http://www.combex.com/papers/darpa-report/index.html

[Stiegler04] Marc Stiegler, Alan H. Karp, Ka-Ping Yee , Mark Miller, “Po-
laris: Virus Safe Computing for Windows XP”, HP Tech Re-
port, in preparation.

[Tulloh02] Bill Tulloh, Mark S. Miller. “Institutions as Abstraction Bound-
aries”, To appear in Economics, Philosophy, & Information
Technology: The Intellectual Contributions of Don Lavoie,
George Mason University, Fairfax, VA. 2002.
http://www.erights.org/talks/categories/

[Wagner02] David Wagner, Dean Tribble, “A Security Analysis of the
Combex DarpaBrowser Architecture”, 2002.
http://www.combex.com/papers/darpa-review/index.html

[Wirfs-Brock02] Rebecca Wirfs-Brock and Alan McKean. Object Design: Roles,
Responsibilities, and Collaborations. Addison-Wesley, 2002.

[Yee02] Ka-Ping Yee, “User Interaction Design for Secure Systems”,
In Proceedings of the International Conference on Information
and Communications Security, 2002. Complete version online
at http://zesty.ca/pubs/csd-02-1184.ps

[Yee04] Ka-Ping Yee, “Aligning Usability and Security”, In IEEE Se-
curity & Privacy Magazine, Sep 2004.

The Oz-E Project: Design Guidelines for a
Secure Multiparadigm Programming Language

Fred Spiessens and Peter Van Roy

Université catholique de Louvain,
Louvain-la-Neuve, Belgium

{fsp, pvr}@info.ucl.ac.be

Abstract. The design and implementation of a capability secure multi-
paradigm language should be guided from its conception by proven prin-
ciples of secure language design. In this position paper we present the
Oz-E project, aimed at building an Oz-like secure language, named in
tribute of E [MMF00] and its designers and users who contributed greatly
to the ideas presented here.

We synthesize the principles for secure language design from the ex-
periences with the capability-secure languages E and the W7-kernel for
Scheme 48 [Ree96]. These principles will be used as primary guidelines
during the project. We propose a layered structure for Oz-E and discuss
some important security concerns, without aiming for completeness at
this early stage.

1 Introduction

The Oz language was designed to satisfy strong properties, such as full composi-
tionality, lexical scoping, simple formal semantics, network transparent distribu-
tion, and so forth. Security, in the sense of protection against malicious agents,
was not a design goal for Oz. In this paper, we give a road map for making a
secure version of Oz, which we call Oz-E. Our approach is not to add security to
Oz, but to remove insecurity. We start with a small subset of Oz that is known
to be secure. We add functionality to this subset while keeping security. The
ultimate goal is to reach a language that is at least as expressive as Oz and
is secure both as a language and in terms of its implementation. It should be
straightforward to write programs in Oz-E that are secure against many realistic
threat models.

Structure of the Paper

This paper is structured into five parts:

– Section 2 summarizes the basic principles of language-based security, to set
the stage for the rest.

– Section 3 discusses a possible structure for Oz-E and a migration path to
get there.

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 21–40, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

22 F. Spiessens and P. Van Roy

– Section 4 discusses some concerns that will influence the design of Oz-E.
– Section 5 gives some practical scenarios with fragments of pseudocode.
– Section 6 summarizes the paper and the work that remains to be done.

Readers unfamiliar with the terminology of capabilities (authority, permission,
etc.) are advised to have a look at the glossary at the end of the paper.

2 Basic Principles of Language-Based Security

We distinguish between three kinds of principles: mandatory, pragmatic, and
additional. All principles serve a common goal: to support the development of
programs that use untrusted modules and entities to provide (part of) their
functionality, while minimizing their vulnerability to incorrectness and malicious
intents of these entities.

To avoid excess authority the Principle of Least Authority (POLA) – ex-
plained in another paper in this book [MTS05] – has to be applied with scrutiny
and supported by the language. POLA is not just about minimizing and fine-
graining the authority that is directly provided to untrusted entities, but also
about avoiding the abuse – by adversaries or incorrect allies – of authority pro-
vided to relied-upon entities.

The latter form of abuse is known in the literature as the luring attack or
the confused deputy [Har89]. A deputy is an entity that gets authority from its
clients to perform a task. A confused deputy is a deputy that cannot tell the
difference between its own authority and the authority it is supposed to get from
its clients.

Figure 1 (left) shows what can go wrong with Access Control Lists (ACL’s).
The client wants the deputy to write its results to the file “file#123”. Assume
the deputy has the authority to write to this file. Should the deputy write to the
file? It may be that the client is abusing the deputy to write somewhere that the
client itself should not be allowed to write. There is no simple way to solve this
problem with ACL’s.

Figure 1 (right) shows how capabilities solve the problem. Instead of provid-
ing a mere designation, the client now provides a capability that bundles the

Fig. 1. ACL’s vs. Capabilities

The Oz-E Project: Design Guidelines 23

designation with the authority to write the file. The deputy can use this capabil-
ity without second thoughts, because the client can no longer trick the deputy
into writing into a place it should not.

2.1 Mandatory Principles

This section explains the principles that form the minimum necessary conditions
to enable secure programming, following the object-capability approach [MS03].

No Ambient Authority. All authority is to be carried by capabilities: unforge-
able entities that combine designation with permissions. To enable the individual
entities to control the propagation of authority, the language has to cut off every
other way of getting authority. All entities come to live with no default authority,
and capabilities can only be acquired in the following ways:

– By endowment and parenthood (as defined in Sect. 7).
– By introduction: an entity can initiate an exchange of capabilities with an-

other entity, by exerting a permission of a capability that designates the
other entity (Sect. 7).

The language thus has to make sure that no authority can be acquired in any
other way, whether via globally or dynamically scoped variables, or via memory
probing and forging. This means that the language has to be purely lexically
scoped and completely memory safe.

No Authority Generation. The availability of two capabilities can result in
more authority than the simple sum of both authorities. This phenomenon is
called “authority amplification”.

Except for the purpose of authentication – which will be handled in section
2.2 – authority amplification is very dangerous and should be avoided when

Fig. 2. Authority amplification can confuse deputies

24 F. Spiessens and P. Van Roy

possible. It is as if “ambient authority” becomes available to an entity, thereby
turning the entity into a confused deputy, because the extra authority is not
provided by the client nor by the deputy.

Figure 2 shows what can happen. The client passes a capability to the deputy.
This capability designates an entity. Authority amplification will increase the
authority that the deputy has over this entity. This is shown by the small bold
oval. In that way, designation and authority have effectively become separated
again, just like with ACL’s, and the same problems arise.

Since the language will represent capabilities as data abstractions (e.g. ob-
jects, procedures, abstract data types (ADT’s)) it must make sure that these
abstractions can handle delegation of authority appropriately. Unbundled ab-
stractions (ADT’s), that provide operations separately from values, can lead
very easily to the creation of deputies that are confused by authority amplifica-
tion.

To minimize the opportunities for deputies to be confused by authority am-
plification, a secure language must provide all access to system resources as
bundled data abstractions that completely encapsulate their internal state. Au-
thority amplification is defendable only in cases where normal capabilities would
not suffice.

2.2 Pragmatic Principles: Promoting Secure Programming

With the basic principles in place, all essential control of authority distribution
and propagation becomes available to programmers, and they can now – in prin-
ciple – start building entities that will perform reliably in collaboration with un-
trusted ones. However, it is not enough that Oz-E enables secure programming,
it should also make secure programming feasible in practice and consequently
favor secure programming (Sect. 7) as the default.

Defensive Correctness. The dominant pattern of secure programming, which
the language must make practical, is that clients may rely on the correctness of
servers, but that servers should not rely on the correctness of clients. In other
words, a server (any “callee” in general) should always check its preconditions.
A client (any “caller” in general) may rely on the server, if it has the means
to authenticate the server. The usefulness of this pattern has emerged from
experience with E and its predecessors.

In traditional correctness arguments, each entity gets to rely on all the other
entities in the program. If any are incorrect, all bets are off. Such reasoning pro-
vides insufficient guarantees for secure programming. To expect programmers to
actually check all preconditions, postconditions, and invariants is not a realistic
approach either. Defensive correctness is when every entity explicitly checks its
input arguments when invoked. This is a realistic and effective middle way.

We require the language to make it practical to write most abstractions
painlessly to this standard. We require the libraries to be mostly populated
by abstractions that live up to this standard, and that the remaining members
of the library explicitly state that they fall short of this standard.

The Oz-E Project: Design Guidelines 25

Fig. 3. Paths of vulnerability

Figure 3 shows an access graph. Dashed nodes are entities not relied upon
in any way. White crescents indicate explicit checking of input arguments when
invoked. A black crescent indicates explicitly checking all arguments when invok-
ing. A and B are vulnerable to (rely upon) C and C is vulnerable to D, and since
vulnerability is a transitive relation, A and B are also vulnerable to D. Because C
checks its incoming arguments when invoked, it will protect itself and its clients
from malicious arguments (e.g. provided by X). Paths of vulnerability are easy
to follow and go one way only. Two clients vulnerable to the same server are not
for that reason vulnerable to each other.

To support defensive correctness, Oz-E has to make it easy for the program-
mer to check incoming arguments. Guards, authentication primitives, and audi-
tors, presented in the next sections, realize such support.

Guards. E ’s guards [Sti00] form a soft typing system [CF91] that provides
syntax support to make dynamic checking as easy as using static types. Guards
are first class citizens and support arbitrary complex dynamic checking without
cluttering the code with the actual tests. They can be user defined, and combined
into more complex guards by logical operators.

Authentication. For an entity to defend its invariants in a mutually distrust-
ing context, it can be important to know the origin of collaborating entities.
The entity might want to authenticate a procedure before invoking it, and an
argument before applying the procedure to it. Because capabilities unify designa-
tion and permission, and because the confused deputy problem can be naturally
avoided, there is no need to authenticate the invoker.

We do not necessary want to know who wrote the code for that entity – since
that knowledge is not very useful in general – but whether we want to rely upon
the entity that loaded it and endowed it with initial authority. For example, if
we rely upon bank B, we can authenticate an account-entity A by asking B if A
is genuine, in other words if B recognizes A as one of the accounts B – or maybe
an associated branch – created earlier.

Authentication by Invited Auditors. The above form of authentication is
only useful to authenticate entities of which the alleged creator is a relied-upon
third party. Moreover, this form of authentication cannot tell us anything further
about the actual state of an entity at the time of authentication.

26 F. Spiessens and P. Van Roy

To reliably interact with entities of unknown origin, it must be possible to
have them inspected by a relied-upon third party. Without breaking encapsula-
tion – which would violate the principles in section 2.1 – that can be done as
shown by E’s auditors [YM00]. When an entity is created, a relied-upon third
party auditor is invited by the creator, to inspect the entity’s behavior and lexical
scope. Later, when the auditor is asked to vouch for the relied-upon properties,
it will reveal its conclusions, or if necessary re-inspect the state of the entity
before answering yes or no. If inconclusive or uninvited, it will answer no.

Failing Safely. When an entity cannot guarantee its invariants in a certain
condition, it should raise an exception. The default mechanism should not enclose
any capabilities or potentially sensitive information with the exception that is
raised. Part of this concern can be automated by the guards discussed earlier,
who will throw an exception on behalf of the entity.

Preemptive Concurrency and Shared State. Preemptive concurrency en-
ables an activation of an entity at some point in its progress to destroy the
assumptions of another activation of the same entity at another point in its
progress. This phenomenon is called plan interference.

Semaphores and locks give programmers control over the interaction between
concurrently invoked behavior, but their use is error-prone and increases the
overall complexity of a program. Good locking becomes a balancing exercise be-
tween the danger of race conditions and deadlocks. Preemptive concurrency with
shared state makes defensive programming too hard because considering a single
invocation of behavior is not enough to ensure preconditions and invariants.

For example, consider a simple “observer”-pattern [GHJV94]. With message-
passing concurrency as explained in chapter 5 of [VH04] – all entities involved
are Active Objects, subscription is done by providing a Port, and notification
via a Port.send operation – all update notifications of an entity are guaranteed
to arrive at all subscribers in the order of the update. With threads there is no
guarantee whatsoever about the order of arrival and it becomes dauntingly hard
to impose a proper order while at the same time avoiding deadlocks.

2.3 Additional Principles: Support for the Review Process

When the language is ready to provide all the necessary support for secure
programming, one more important design concern remains. The programmers
are now in the position to avoid security flaws while programming, but they also
need to be able to quickly find any remaining vulnerabilities that might have got
in. Oz-E must be designed to make security debugging easy. Its syntax should
therefore allow programmers to quickly identify big parts in a program that are
obviously safe, and concentrate on the remaining part.

A minimum set of tools to support debugging and analyzing the vulnera-
bilities is indispensable. These can range from support for syntax coloring to
debuggers of distributed code and tools for security analysis. To this goal, we
are currently researching formal models that allow us to analyze authority con-
finement amongst entities collaborating under mutual distrust [SMRS04]. A tool

The Oz-E Project: Design Guidelines 27

based on this model would allow us to investigate the limits of the usability of
patterns of safe collaboration that emerged from experience (e.g. the Power-
box [SM02] and the Caretaker[MS03]), and enable the discovery of new such
patterns.

3 Proposed Structure of Oz-E

The Oz language has a three-layered design. We briefly introduce these layers
here, and refer to chapter 2 and appendix D of [VH04] for a detailed explanation.

The lowest layer is a simple language, kernel Oz, that contains all the concepts
of Oz in explicit form. The next layer, full Oz, adds linguistic abstractions to
make the language practical for programmers.1 The final layer, Mozart/Oz, adds
libraries and their interfaces to the external environment that depends on the
operating system functionality.

We realize that in an ideal world, the language and the operating system
should be developed together. Pragmatically, we will provide as much of the oper-
ating system functionality as possible inside the third layer of the language. Any
remaining functionality – not fitting the language without a complete rewrite of
the operating system – will be accessible through a general system interface.

The importance of the layered architecture for security is stressed by a flaw
in the current Mozart system that was found by Mark Miller. The module Time,
currently available in the second layer as ambient authority, provides access to
the system clock and should therefore be transferred to layer three, the func-
tionality of which can only be available via explicitly granted capabilities.

Read access to the system time can be used to read covert channels regard-
less of the countermeasures (e.g. randomness in thread execution sequence and
adding randomizing delays) the system could have taken to prevent this. Ad-
versaries that are prevented from reading the system type might still be able to
send out the secrets they can discover, but there are countermeasures that can
make it arbitrary hard for them receive their instructions via covert channels.

We propose for Oz-E to keep as much of this layered structure as possible,
while staying within the boundaries of the security requirements. We will start
with very simple versions of these layers and grow them carefully into a full-
featured language, maintaining the security properties throughout the process.
The project will start by showing formally that the initial versions of kernel lan-
guage and full language are secure. During the growth process, we will maintain
at all times a formal semantics of the kernel language.

In the following three subsections, we present each of the three layers and
we discuss some of the issues that need to be resolved for each layer. Of course,
the early stage of the project does not allow us to attempt completeness in this
respect.

1 A linguistic abstraction is an abstraction with syntactic support. An abstraction is
a way of organizing a data structure or a control flow such that the user is given a
higher-level view and does not have to be concerned with its implementation.

28 F. Spiessens and P. Van Roy

3.1 Kernel Language

The kernel language should be complete enough so that there is no need to go
lower, e.g., to a byte code level. As the kernel language is the lowest level seen by
(normal) application developers and library designers, reasoning and program
development will be simplified. Only the language designers themselves will go
below that level. The implementation will guarantee that the kernel language
satisfies its semantics despite malicious interference by programs written in it.

The initial kernel language will be as close as possible to the general kernel
language of Oz, which has a complete and simple formal semantics as given
in chapter 13 of [VH04]. This is the most complete formal semantics of Oz
that exists currently. As far as we know, the relevant part of the Mozart system
implements this semantics. It is straightforward to show that this kernel language
satisfies basic security properties such as secure closures (encapsulation based
on lexical scoping), absence of ambient authority, and unforgeable identity of
kernel language entities.

In the rest of this subsection, we address two specific issues that are directly
related to the kernel language, namely authentication and finalization. Authen-
tication is an issue that is directly related to security. Finalization is an issue
that is indirectly related to security: the current design has problems that would
make building secure systems difficult.

We prefer the kernel language of Oz-E to be a subset of the full language.
This results in semantic clarity, uniformity of syntax and simplicity, all impor-
tant pedagogical assets when teaching Oz-E. Furthermore, the kernel language
subset will allow us to experiment with language extensions while staying within
the language.

Authentication via Token Equality. A basic requirement for building se-
cure systems is authentication of authority-carrying entities. Entities that were
created by relied-upon third parties should be recognizable with the help of the
third party. This means that the entity needs an identity that is unforgeable and
unspoofable, otherwise a creator could never be sure the entity is really the one
it created earlier. Unforgeable means that it is impossible to create an identity
out of thin air that matches with the identity of an existing entity. Unspoofable
means that the authenticity check cannot be relayed (man in the middle attack).

The kernel language has to let us achieve these properties for its own authority-
carrying entities and also for user-defined entities built using the kernel language.
Both of these categories impose conditions on the kernel language semantics. Let
us examine these conditions. In the following paragraphs we use the term “entity”
to mean a language entity of a type that can carry authority (be a capability),
as opposed to pure data (Sect. 7).

For kernel entities, authentication is achieved by the kernel language syntax
and semantics. The kernel semantics ensures that each newly created entity has
a new identity that does not exist elsewhere and that is unforgeable.

For user-defined entities, authentication has to be programmed. For exam-
ple, say we have a user-defined entity called “object” that is implemented as a
one-argument procedure. The object’s identity should not be confused with the

The Oz-E Project: Design Guidelines 29

procedure’s identity. This implies that the kernel language should have opera-
tions to build unforgeable and unspoofable identity into user-defined entities.
One way to do this uses the concepts of chunk and name from the Oz kernel
language. A chunk is a record with only one operation, field selection. A name
is an unforgeable constant with an equality operation. With chunks and names,
it is possible to build an operation that wraps an entity in a secure way, so
that only the corresponding unwrap operation can extract the entity from the
wrapped one [VH04]. This is similar to the sealer/unsealer pairs [Mor73] in the
E language [Sti00].

Finalization. Finalization is the user-defined “clean-up” operation that is re-
lated to automatic memory management. When an entity is no longer reachable
from an active part of the program, its memory can be reclaimed. Sometimes
more than that has to be done to maintain the program invariants. For example,
there might be a data structure whose value depends on the entity’s existence
(it counts the number of entities satisfying a particular property). Or the entity
might hold a descriptor to an open file. Finalization handles cases such as these.

The current finalization in Oz does not guarantee that an entity that became
unreachable is no longer used. The last operation performed on an entity before it
becomes unreachable should truly be the last operation performed on the entity.
To guarantee this, we propose to follow the “postmortem finalization” technique
(executor of an estate). This was invented by Frank Jackson, Allan Schiffman,
L. Peter Deutsch, and Dave Ungar.2 When an entity becomes unreachable, the
finalization algorithm invokes another entity, which plays the role of the executor
of the first entity’s estate. The executor will perform all the clean-up actions but
has no reference to the original entity.

3.2 Full Language

The full language consists of linguistic abstractions built on top of the kernel
language and (base) libraries written in the full language itself. Giving this lin-
guistic support simply means that there is language syntax that is designed to
support the abstraction. For example, a for loop can be given a concise syn-
tax and implemented in terms of a while loop. We say that the for loop is a
linguistic abstraction.

The full language has to be designed to support the writing of secure pro-
grams. This implies both building new abstractions for secure programming and
verifying that the current language satisfies the properties of secure program-
ming. The language should not provide ambient authority or leak potentially
confidential information by default. For example, the current Mozart system has
an exception handling mechanism that in some cases leaks too much information
through the exceptions.

Modules and Functors. Like Oz, the full language will provide operations
to create and manipulate software components. In Oz, these components are

2 We searched for a publication to reference this work but found none.

30 F. Spiessens and P. Van Roy

values in the language called functors, which are defined through a linguistic
abstraction. Functors are instantiated to become modules, which are executing
entities. Modules are linked with other modules through a tool called the module
manager. This linking operation gives authority to the instantiated module.

In Oz-E, the module manager has to be a tool for secure programming. For
example, it should be easy to run an untrusted software component in an envi-
ronment with limited authority, by linking it only to limited versions of running
modules. Such modules can be constructed on the fly by the user’s trusted shell
or desktop program, to provide the right capabilities to host programs. This
mechanism can also be used for coarse grained “sandboxing”, e.g. to run a nor-
mal shell with a limited set of resources.

3.3 Environment Interaction

The security of Oz-E must be effective even though the environment is largely
outside of the control of the Oz-E application developers and system developers.
How can this be achieved? In the long term, we can hope that the environment
will become more and more secure, similar to Oz-E itself. In the short term, we
need libraries to provide controlled access to the operating system and to other
applications.

Security of an application ultimately derives from the user of the application.
An application is secure if it follows the user’s wishes. The user should have the
ability to express these wishes in a usable way through a graphical user interface.
Recent work shows that this can be done [Yee02]. For example, selecting a file
from a browser window gives a capability to the application: it both designates
the file and gives authority to perform an operation (such as an edit) on the file.
A prototype desktop environment, CapDesk, has been implemented using these
ideas. CapDesk shows that both security and usability can be achieved on the
desktop [SM02].

Oz has a high-level GUI tool called QTk. It combines the conciseness and
manipulability of the declarative approach with the expressiveness of the pro-
cedural approach. QTk builds on the insecure module Tk and augments that
functionality instead of restricting it. QTk has to be modified so that it satisfies
the principles enunciated in [Yee02] and implemented in CapDesk.

4 Cross-Layer Concerns

The previous section presented a layered structure for the Oz-E language and
system. In general however, security concerns cannot be limited to a single layer
in such a structure. As explained by another paper in this book [MTS05], they
are pervasive concerns. Some them will affect several layers. In this section we
discuss three such concerns: pragmatic issues of how to make the system easy
to program, execution on distributed systems, and the need for reflection and
introspection.

The Oz-E Project: Design Guidelines 31

4.1 Pragmatic Issues in Language Design

A secure language should not just make it possible to write secure programs, it
must also make it easy and natural. Otherwise, one part of a program written
with bad discipline will endanger the security of the whole program. The default
way should always be the secure way. This is the security equivalent of fail-safe
programming in fault-tolerant systems.

We propose to use this principle in the design of the Oz-E concurrency model.
The two main concurrency models are message-passing concurrency (asynchro-
nous messages sent to concurrent entities) and shared-state concurrency (concur-
rent entities sharing state through monitors). Experience shows that the default
concurrency model should be message-passing concurrency. This is not a new
idea; Carl Hewitt anticipated it long ago in the Actor model [Hew77, HBS73].
But now we have strong reasons for accepting it. For example, the Erlang lan-
guage is used for building highly available systems [Arm03, AWWV96]. The E
language is used for building secure distributed systems [MSC+01]. For funda-
mental reasons, both Erlang and E use message-passing concurrency. We there-
fore propose for Oz-E to have this default as well. One way to realize this is by
the following semantic condition on the kernel language: cells can only be used
in one thread. This simple semantic condition has as consequence that threads
can communicate only through dataflow variables (declarative concurrency) and
ports (message-passing concurrency).

4.2 Distributed Systems

The distribution model of Oz allows all language entities to be partitioned over
a distributed system, while keeping the same semantics as if the entities were
on different threads in a single system, at least when network or node failures
are not taken into account. For every category of language entities (stateless,
single-assignment, and stateful) a choice of distributed protocols is available that
minimizes network communications and handles partial failure gracefully. Fault-
tolerant abstractions can be built within the language, on top of this system.

We want to keep the Oz-E distribution system as close as possible to this
model and put the same restrictions on communication with remote threads as
with local threads (such restrictions were discussed in section 4.1).

We are in the process of replacing the current, monolithic implementation of
distribution in Mozart by a modular implementation using the DSS (Distribution
Subsystem) [KEB03]. The DSS is a language-independent library, developed
primarily by Erik Klintskog, that provides a set of protocols for implementing
network-transparent and network-aware distribution. We will briefly consider
the opportunities offered by the DSS to add secure distribution to Oz-E.

Responsibility of the Language Runtime System. The division of labor
between the DSS and the language system assigns the following responsibilities
to the language runtime system:

32 F. Spiessens and P. Van Roy

1. Marshalling and unmarshalling of the language entities.
2. Differentiating between distributed and local entities.
3. Mapping of Oz-E entities and operations to their abstract DSS-specific types,

which the DSS will distribute.
4. Choosing amongst the consistency protocols provided by the DSS, based on

the abstract entity types, and adjustable for individual entities.

Secure marshalling should not break encapsulation, and every language entity
should be allowed to specify and control its own distribution strategy and mar-
shalling algorithm. E provides such marshalling support via “Miranda” methods
that every object understands and that provide a safe default marshalling be-
havior which can be overridden. Oz-E could build a similar implementation for
the language entities that can perform method dispatching (e.g. objects). For
the other entities (e.g. zero-argument procedures), Oz-E could allow specialized
marshalers to be invited into the lexical scope of an entity when it is created.
Section 5.2 gives two examples of how invitation can be implemented in Oz-E.
Alternatively, Oz-E’s kernel language could use only object-style procedures that
by default forward marshalling behavior to marshalers, and that can override this
behavior.

Depending on these choices, marshalling might need support at the kernel
language level. The other three responsibilities of the language system can be
provided as part of an Oz-E system library.

Responsibility of the Distribution Subsystem. The DSS itself takes re-
sponsibility for:

1. Distributing abstract entities and abstract operations.
2. Providing consistency, using the consistency protocols that were chosen.
3. Properly encrypting all communication, making sure that external parties

cannot get inside the connection.
4. Ensuring that it is unfeasibly hard to get (guess) access to an entity without

having received a proper reference in the legal way.
5. Authenticating the distributed entities to ensure that no entity is able to

pretend to be some other entity.

In [BKB04] the DSS is shown to have security requirements that are compatible
with the requirements for safely distributing capabilities. Three attack scenarios
have been investigated:

1. Outsider attacks. It should be impossible (infeasibly hard) for an attacker
node that does not have legal access to any distributed entities, to access an
entity at a remote site or to make such an entity unavailable for legal access.

2. Indirect attacks. It should be impossible for an attacker node that has legal
access to a distributed entity but not the one being attacked, to perform this
kind of intrusion or damage.

3. Insider attacks. It should be impossible for an attacker node that has legal
access to a distributed entity, to render the entity unavailable for legal access.

The Oz-E Project: Design Guidelines 33

This can only be guaranteed for protocols that do not distribute or relocate
state such as protocols for asynchronous message sending or stationary ob-
jects (RPC), and only if the attacker node did not host the original entity,
but only a remote reference to it.

Apart from the requirements of the second scenario, the current DSS implemen-
tation claims to follow all these requirements. DSS distribution protocols will be
made robust to ensure that no DSS-node can be crashed – or forced to render
entities unavailable for legal access – by using knowledge of the implementation.
This is called “protocol robustification” and is still under development.

The fact that only asynchronous message sending and RPC-style protocols
are protected from insider attacks is no objection for Oz-E. In section 4.1 such re-
striction was already put on the interaction between entities in different threads:
normal threads on as single node will not be able to share cells.

4.3 Reflection and Introspection

To verify security properties at runtime, we propose to add the necessary prim-
itive operations to the kernel language, so that it can be programmed in Oz-E
itself. How much should a program be able to inspect itself, to verify security
properties? The problem is that there is a tension between introspection and
security. For example, a program might want to verify inside a lexically scoped
closure. Done naively, this breaks the encapsulation that the closure provides. In
general, introspection can break the encapsulation provided by lexical scoping.

To avoid breaking encapsulation the E language allows a user-defined entity
to invite relied-upon third parties (auditors) to inspect an abstract syntax tree
representation of itself, and report on properties that they find. Section 5.2 shows
how this could work in Oz-E.

Safe Debugging. In a distributed environment, where collaborating entities
spread over different sites have different interests, how can debugging be done?
The principle is similar to safe introspection: entities are in control of what
debugging information they provide, and the debugger is a third party that may
or may not be “invited into the internals” of the entity.

Code Verification. Loaded code should not be able to bring about behavior
which exceeds behavior that could be described within the kernel language. Since
we plan to use the Oz VM to run Oz-E bytecode, and the Oz VM itself provides
no such guarantee, we must verify all code before loading it. Such verification
of byte code is a cumbersome and error-prone task. Oz-E should be restricted
to load code from easily verifiable abstract syntax tree (AST) representations of
kernel and full language statements instead of byte code.

5 Some Practical Scenarios

In this section we take a closer look at how some of these ideas could be im-
plemented. We want to stress that the examples only present one of the many

34 F. Spiessens and P. Van Roy

possible design alternatives and do not express any preferences or recommenda-
tions from the authors. They are only provided as a clarification to the principles
and as a sample of the problems that Oz-E designers will need to solve.

5.1 At What Level Should We Implement Guards?

In section 2.2 we explained briefly the benefits of guards and how they are
supported in E. Let us now show in pseudocode how expressions could be guarded
in Oz-E and how a linguistic abstraction for guards could look like.

fun {EnumGuard L}
if {Not {List.is L}}
then raise notAList(enumGuard) end
end
for X in L do {Wait X} end
proc {$ X}

try
if {Member X L}
then skip
else raise guardFailed(enumGuard) end
end

catch _ then
raise guardFailed(enumGuard) end

end
end

end
Trilogic = {EnumGuard [true false undefined]}
{Trilogic (x == y)} % will succeed
{Trilogic 23} % will raise an exception

Fig. 4. A three valued logic type guard

The example in Figure 4 guards a three valued logic type consisting of true,
false, or unknown. EnumGuard ensures that the set is provided as a list and
that all its elements are bound. Then it creates a single parameter procedure
that will do nothing if its argument is in the set, or raise an exception otherwise.
A guard Trilogic is created from that, and tested in the two last lines. The
first test will succeed, the second one will raise an exception.

What if we want to use this guard in a procedure declaration? Let’s first
assume we want to guard an input parameter, in this case X. Then:
proc {$ X:Trilogic ?Y} <S> end

can be translated into:
proc {$ X ?Y} {Trilogic X} <S> end

Guarding output parameters is more difficult. If Y is unbound then:
proc {P X ?Y:Trilogic} <S> end

The Oz-E Project: Design Guidelines 35

proc {$ X ?Y}
Y2

in
thread

try {Trilogic Y2} Y = Y2
catch Ex
then Y = {Value.failed Ex}
end

end
<S>{Y->Y2} %(1)

end

Fig. 5. Guarding output parameters

can be translated as shown in Figure 5. Note that in Figure 5 the expression
marked (1) represents the statement <S> in which all free occurrences of the
identifier Y are replaced by an identifier Y2 which does not occur in <S> (see
chapter 13 of [VH04]).

These examples work for atomic values that are either input or output param-
eters, but they cannot simply be extended for guarding partial values, because
the latter can be used for both input and output at the same time. Another
problem is the relational programming style where all parameters can be input,
output or both depending on how the procedure is used. This definitely calls for
more research, possibly revealing the need for a new primitive to support guards.

5.2 A Mechanism for Invitation and Safe Introspection

Let’s assume we have a new construct NewProc that takes an abstract syntax
tree (AST) and an environment record mapping the free identifiers in the AST
to variables and values, and returns a procedure. Instead of creating a procedure
like this:
P1 = proc {$} skip end

we could now also create a procedure like this:
P1 = {NewProc ast(stmt:´skip´) env()}

To create an audited procedure, an auditor is invoked with an AST and an
environment. The client of the procedure can call the auditor to inquire about
the properties that it audits. Let’s build an auditor to check declarative behavior.
We first present one that keeps track of the declarative procedures it creates.

Figure 6 builds an auditor procedure that takes a message as argument. If
the message matches createProc(...) it will investigate the AST and envi-
ronment provided, and create a procedure by calling {NewProc ...} with the
same arguments. If the investigation returned true, it will store the resulting
procedure in a list of all the created procedures that succeeded the Investigate
test. If the message matches approved(...) it will check this list.

Rees [Ree96] gives strong arguments against the approach of Figure 6, as it
easily leads to problems with memory management, performance, and to seman-

36 F. Spiessens and P. Van Roy

declare
local

AuditedProcedures = {NewCell nil}
fun {Investigate AST Env}

... % return boolean indicating whether
% {NewProc AST Env} returns a declarative procedure

end
proc {MarkOK P} % remember that P is declarative

AuditedProcedures := P | @AuditedProcedures
end
fun {IsOK P} % checks if P is marked declarative
{Member P @AuditedProcedures}

end
in

proc {DeclarativeAuditor Msg}
case Msg
of createProc(Ast Env ?P) then

if {Investigate Ast Env}
then

NewP = {NewProc Ast Env}
in

{MarkOK NewP}
P = NewP

else P = {NewProc Ast Env}
end

[] approved(P ?B) then
B = {IsOK P}

end
end

end
end

P1 = proc {$} skip end
P2 = {DeclarativeAuditor createProc(ast(stmt:´skip´) env())}
P1OK = {DeclarativeAuditor approved(P1 $)} % P1OK will be false
P2OK = {DeclarativeAuditor approved(P2 $)} % P2OK will be true

Fig. 6. Stateful auditor that investigates declarativity

tic obscurity. For this reason W7 – like E – has chosen to provide a primitive
function to create sealer-unsealer pairs. Figure 7 provides an alternative approach
that avoids these drawbacks.

The auditor built in Figure 7 is stateless, and lets MarkOK wrap the created
procedure in some kind of recognizable entity that can be invoked as a normal
procedure. An invokable chunk would do for that purpose, as it could have a
secret field accessible by the name Secret known only to the auditor. For this
to work, Oz-E’s kernel language has to provide either invokable chunks or a
primitive function to create sealer-unsealer functions.

The Oz-E Project: Design Guidelines 37

declare
local

Secret = {NewName}
fun {Investigate AST Env}

... % return boolean indicating whether
% {NewProc AST Env} returns a declarative procedure

end
fun {MarkOK P}

WrappedP in
... % wrap P in some sort of invokable chunk WrappedP
... % WrappedP when invoked, will transparently invoke P
WrappedP.Secret = ok
WrappedP

end
fun {IsOK P} % checks if P is marked declarative

try P.Secret == ok catch _ then false end
end

in
proc {DeclarativeAuditor Msg}

case Msg
of createProc(Ast Env ?P) then

if {Investigate Ast Env}
then P = {MarkOK {NewProc Ast Env $}}
else P = {NewProc Ast Env}
end

[] approved(P ?B) then
B = {IsOK P}

end
end

end
end

Fig. 7. Stateless auditor that investigates declarativity

Instead of providing the environment directly for the auditor to investigate,
[Rei04] suggests a mechanism to manipulate the values in the environment before
giving them to the auditor (e.g. by sealing) to make sure that they cannot be
used for anything else than auditing.

Instead of inviting an auditor, one could invite a relied-upon third party that
offers general introspection and reflection. It would have roughly the same code-
frame as the auditor, but provide more detailed – and generally non-monotonic
– information about the internal state and the code of the procedure.

6 Conclusions and Future Work

A long-term solution to the problems of computer security depends critically
on the programming language. If the language is poorly designed, then assuring
security becomes complicated. If the language is well-designed, for example, by

38 F. Spiessens and P. Van Roy

thoroughly following the principle of least authority, then assuring security is
much simplified. With such a language, problems that appear to be very difficult
such as protection against computer viruses and the trade-off between security
and usability become solvable [Sti].

A major goal of Oz language research is to design a language that is as
expressive as possible, by combining programming concepts in a well-factored
way. The current version of Oz covers many concepts, but it is not designed
to be secure. This paper has given a rough outline of the work that has to be
done to create Oz-E, a secure version of Oz that supports the principle of least
authority and that makes it possible and practical to write secure programs. We
have covered both language and implementation issues. We also explain what
problems arise when a secure language lives in an insecure environment. Building
Oz-E will be a major undertaking that will require the collaboration of many
people. But the potential rewards are very great. We hope that this paper will
be a starting point for people who want to participate in this vision.

7 Glossary

Data. A reference to an Oz-entity that has structural equality and consists only
of atoms, numbers, and completely grounded records that contain only data.

Capability. An unforgeable reference that designates an entity of any type with
token identity. A capability comes with a fixed set of permissions: the different
kinds of interactions it supports.

Permission. A means for interacting with the entity designated by a capability.
For example, a procedure comes with the permission to be applied to values.

Authority. Any directly or indirectly observable effect an entity can cause. The
entity has to use a permission to achieve such an effect. Invoking a procedure for
instance could result in the update of a file, or influence the state of an object
that will eventually effect the screen.

Dynamic Authority and Revocation. While the permission to invoke a
procedure cannot be revoked, the authority that is provided by such a permission
can dynamically change and even reduce to zero. Authority depends on the
behavior of the invoked entity, which is usually influenced by its state and by
the arguments provided to it. Authority also depends on the behavior of the
invoker, which can decide whether or not it will use the returned values, and to
which extent. Authority is thus generated via collaboration during the exertion
of a permission, and both collaborators – invoker and invoked entity – have
certain means to dynamically influence the authority that is realized.

Endowment. When creating an entity, the creating entity can provide part of
its authority to the created entity.

Parenthood. When creating an entity, the creating entity automatically gets
the only initial capability to the created entity.

The Oz-E Project: Design Guidelines 39

Secure Programming. Programming using components of which the reliabil-
ity is unknown or uncertain, while still guaranteeing that a predefined level
of vulnerability is not exceeded. Secure programming has to guarantee two
conditions:

1. all relied-upon components are programmed reliably so that they
(a) do not abuse their authority to inflict unacceptable damage, and
(b) cannot be lured into doing so by their collaborators.

2. no authority that can be abused to inflict unacceptable damage can become
available to not-relied-upon components.

Acknowledgments

This work was partially funded by the EVERGROW project in the sixth Frame-
work Programme of the European Union under contract number 001935, and
partly by the MILOS project of the Walloon Region of Belgium under con-
vention 114856. We owe a great deal of our insights and ideas on Oz-E to the
e-lang community. We thank Raphaël Collet, Boriss Mejias, Yves Jaradin and
Kevin Glynn for their cooperation during the preparation of this paper. We es-
pecially want to thank Mark Miller for contributing ideas on capability-secure
programming and defensive correctness, for pointing out some security flaws in
the current Mozart implementation, and for reviewing this paper and suggest-
ing corrections and reformulations. Any remaining errors and obscurities in the
explanation are the sole responsibility of the authors.

References

[Arm03] Joe Armstrong. Making Reliable Distributed Systems in the Presence
of Software Errors. PhD thesis, Royal Institute of Technology (KTH),
Stockholm, December 2003.

[AWWV96] Joe Armstrong, Mike Williams, Claes Wikström, and Robert Virding.
Concurrent Programming in Erlang. Prentice-Hall, Englewood Cliffs, NJ,
1996.

[BKB04] Zacharias El Banna, Erik Klintskog, and Per Brand. Report on security
services in distribution subsystem. Technical Report PEPITO Project
Deliverable D4.4 (EU contract IST-2001-33234), K.T.H., Stockholm, Jan-
uary 2004.

[CF91] R. Cartwright and M. Fagan. Soft typing. In Proceedings of the SIGPLAN
’91 Conference on Programming Language Design and Implementation,
pages 278–292, 1991.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison
Wesley, Massachusetts, 1994.

[Har89] Norm Hardy. The confused deputy. ACM SIGOPS Oper. Syst. Rev,
22(4):36–38, 1989.
http://www.cap-lore.com/CapTheory/ConfusedDeputy.html.

40 F. Spiessens and P. Van Roy

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular AC-
TOR formalism for artificial intelligence. In 3rd International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 235–245, August 1973.

[Hew77] Carl Hewitt. Viewing control structures as patterns of passing messages.
Journal of Artificial Intelligence, 8(3):323–364, June 1977.

[KEB03] Erik Klintskog, Zacharias El Banna, and Per Brand. A generic mid-
dleware for intra-language transparent distribution. Technical Report
T2003:01, Swedish Institute of Computer Science, June 2003.

[MMF00] Mark S. Miller, Chip Morningstar, and Bill Frantz. Capability-based
financial instruments. In Proceedings of the 4th International Conference
on Financial Cryptography, pages 349–378. Springer Verlag, 2000.

[Mor73] James H. Morris. Protection in programming languages. Communications
of the ACM, 16(1):15–21, 1973.

[MS03] Mark S. Miller and Jonathan Shapiro. Paradigm regained: Abstraction
mechanisms for access control. In 8th Asian Computing Science Confer-
ence (ASIAN03), pages 224–242, December 2003.

[MSC+01] Mark Miller, Marc Stiegler, Tyler Close, Bill Frantz, Ka-Ping Yee, Chip
Morningstar, Jonathan Shapiro, Norm Hardy, E. Dean Tribble, Doug
Barnes, Dan Bornstien, Bryce Wilcox-O’Hearn, Terry Stanley, Kevin
Reid, and Darius Bacon. E: Open source distributed capabilities, 2001.
Available at http://www.erights.org.

[MTS05] Mark S. Miller, Bill Tulloh, and Jonathan S. Shapiro. The structure of
authority: Why security is not a separable concern. In Multiparadigm
Programming in Mozart/Oz: Proceedings of MOZ 2004, volume 3389 of
Lecture Notes in Artificial Intelligence. Springer-Verlag, 2005.

[Ree96] Jonathan A. Rees. A security kernel based on the lambda-calculus. Tech-
nical report, MIT, 1996.

[Rei04] Kevin Reid. [e-lang] Proposal: Auditors without unshadowable names,
August 2004. Mail posted at e-lang mailing list, available at
http://www.eros-os.org/pipermail/e-lang/2004-August/010029.html.

[SM02] Marc Stiegler and Mark S. Miller. A capability based client: The
darpabrowser. Technical Report Focused Research Topic 5 / BAA-00-
06-SNK, Combex, Inc., June 2002. Avalalbe at
http://www.combex.com/papers/darpa-report/index.html.

[SMRS04] Fred Spiessens, Mark Miller, Peter Van Roy, and Jonathan Shapiro. Au-
thority Reduction in Protection Systems. Available at:
http://www.info.ucl.ac.be/people/fsp/ARS.pdf, 2004.

[Sti] Marc Stiegler. The SkyNet virus: Why it is unstoppable; how to stop it.
Talk available at http://www.erights.org/talks/skynet/.

[Sti00] Marc Stiegler. The E Language in a Walnut. 2000. Draft available at
http://www.erights.org.

[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of
Computer Programming. MIT Press, Cambridge, MA, 2004.

[Yee02] Ka-Ping Yee. User interaction design for secure systems. In 4th Interna-
tional Conference on Information and Communications Security (ICICS
2002), 2002. UC Berkeley Technical Report CSD-02-1184.

[YM00] Ka-Ping Yee and Mark S. Miller. Auditors: An extensible, dynamic code
verification mechanism.
Available at http://www.erights.org/elang/kernel/auditors/, 2000.

A Program Verification System Based on Oz

Isabelle Dony and Baudouin Le Charlier

Université catholique de Louvain
{dony, blc}@info.ucl.ac.be

Abstract. We present an imperative program verification system that
exploits many powerful aspects of Oz. Our verification system supports
an expressive assertion language for writing specifications and loop in-
variants. It is able to prove the correctness of elaborated imperative pro-
grams consisting of several subproblems that are checked independently.
We illustrate the functionalities of our system on a few non trivial ex-
amples. Then, we explain that, using Oz constraint programming and
other convenient programming mechanisms of Oz, the implementation
of the system is straightforward. We also provide information about the
efficiency of our implementation.

1 Introduction

The work we describe in this paper originates from pedagogical objectives, which
were first presented in [12]. Our goal is to build a practical tool that can help
students to deeply understand the classical programming methodology based
on specifications, invariants, and decomposition into subproblems, advocated
by Dijkstra, Gries, and Hoare to name only a few famous computer scientists.
Such a tool should support an imperative programming language and a logical
language to express specifications and invariants. It should be able not only
to prove that a program is correct but also, and maybe more importantly, to
provide interesting counter-examples to highlight and explain programming and
reasoning errors. Moreover, in our view, the assertion language supported by such
a system should be extremely expressive and convenient because, in a learning
context, specifications and invariants must express their meaning as directly as
possible. On the contrary, the programming language can be kept very simple
because, as far as program correctness is concerned, programming reasoning
principles are exactly the same for any kind of languages, be they simple as
Pascal or complicated as Java.

It appears that constraint programming over finite domains is especially con-
venient to check the kind of verification conditions that are needed to express
the correctness of imperative programs. However, to conveniently generate the
constraint problems equivalent to a given verification condition, it is desirable
to have at hand a powerful language that allows us to interleave constraints gen-
eration, constraints solving, and to specify a distribution strategy to overcome
the incompleteness of the usual consistency techniques used by finite domain

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 41–52, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

42 I. Dony and B. Le Charlier

constraint programming. We show in this paper that the Oz language [1, 15, 14]
includes all programming mechanisms that are needed to reach our goals.

The rest of this paper is organised as follows: In Section 2, we illustrate
the functionalities of our system on two significant examples. In Section 3, we
summarize the basics of Oz constraint programming. In Section 4, we describe
the Oz implementation of our verification system. Section 5 is devoted to the
related work and Section 6 contains the conclusion and a discussion of possible
future work.

2 What Our System Can Do

A Binary Search Algorithm. We first discuss a classical binary search algorithm,
which is notoriously difficult to construct correctly without a good programming
method. Figure 1 depicts the algorithm, together with its specification and loop
invariant, exactly as it must be given to our system.1 To construct this algorithm,

– Declarations:
const n;
var a: array[1..n] of integer; x: integer; (input)
var b: boolean; (output)
var g, d, m: integer; (auxiliary variables)

– Pre: a, x initialised, n is the array size,
(∀ i : 1 ≤ i ≤ n − 1 : a[i] ≤ a[i + 1])
Post: a, x unchanged & b = (∃ i : 1 ≤ i ≤ n : a[i] = x)
Inv: 1 ≤ g ≤ d ≤ n + 1 && (∀ i : 1 ≤ i < g : a[i] < x) & (∀ i : d ≤ i ≤ n : a[i] > x)
& b ⇒ (∃ i : 1 ≤ i ≤ n : a[i] = x)

– Init : g:= 1; d:= n+1; b := false
Iter : m:= (g+d)div 2;

if(a[m]<x) then g:= m+1;
if(a[m]>x) then d:= m;
if(a[m]=x) then b:= true

B : g=d or b

Fig. 1. A binary search algorithm and its specification

we have first fixed the set of variables (Declarations). Then, we have formally
specified the problem by means of a precondition (Pre) and a postcondition
(Post). The precondition states that the array is sorted; the postcondition says
that variable b is equal to true if and only if x occurs in array a. Next, we have
choosen an invariant (Inv). Finally, we have derived the statements: the initial-
isation (Init), the iteration (Iter), the closing (Clot) and the halting condition
(B) so that the following propositions are true:

1 The actual concrete syntax of assertions is just a bit more “computer readable” in
our system

A Program Verification System Based on Oz 43

– {Pre} Init {Inv}
– {Inv & ¬B} Iter {Inv}
– {Inv & B} Clot {Post}

Following [10], we write {P} S {Q} to mean that if the assertion P holds, it is
guaranteed that, after executing S, the assertion Q also holds. However, to the
contrary of [10], we require the termination of S and the absence of run-time
errors. The purpose of our system is to prove these propositions when they are
true and to give counter-examples when some of them are not correct.

Proving the Correctness of the Binary Search Algorithm. Using a AMD ahtlon
XP 2800+, 2GHz CPU with 1GB RAM, our system is able to prove the cor-
rectess of this program in 15ms (for n = 0), 16ms (n = 1), 78ms (n = 2), 328ms
(n = 3), 2.5s (n = 4), and 12.5s (n = 5). We do not have to fix the array
size: We can choose a upper bound for n, instead. It takes 1m 33s to prove the
correctness of the program for n ≤ 6. With finite domain techniques, 2 it is not
possible to prove the correctness of the program for an arbitrary value of n but
we can reasonably argue that the program is most probably correct, since it is
correct for small values of n.

Finding Errors in an Incorrect Binary Search Algorithm. Now, we keep the same
specification and loop invariant, but we introduce an error in the algorithm: we
replace the statement d := m by the statement d := m−1. Assuming n = 3, the
system gives the following counter-examples in 297ms:

{Inv & ¬B} Iter {Inv},
precondition : n = 3 a = [1 1 1] x = 0
before : n = 3 a = [1 1 1] x = 0 b = false d = 2 g = 1
after : n = 3 a = [1 1 1] x = 0 b = false d = 0 g = 1 m = 1
violated assertion : g ≤ d

This counter-example shows that proposition {Inv & ¬B} Iter {Inv} is not
true; the precondition part gives the corresponding input values; the before part
displays a state satisfying the assertion Inv & ¬B before an execution of the
iteration; the after part provides the state obtained after executing the iteration.
It can be observed that the assertion Inv is false in this state. Additionally, the
system is able to exhibit the part of the assertion that is violated, i.e. g ≤ d. If we
resume the execution of the system, the following counter-example is obtained:

{Inv & ¬B} Iter {Inv},
precondition : n = 3 a = [0 1 1] x = 0
before : n = 3 a = [0 1 1] x = 0 b = false d = 3 g = 1
after : n = 3 a = [0 1 1] x = 0 b = false d = 1 g = 1 m = 2
violated assertion : (∀ i : d ≤ i ≤ n : a[i] > x)

We can see that the violated part of the invariant is different in this second
counter-example. However, since variable d is involved in both cases, we have a
clue that the error lies in the statement d := m− 1.

2 To be fair, let us also mention that we need restricting the domain of values of x
and a to get those execution times. See Section 4.

44 I. Dony and B. Le Charlier

Finding Reasoning Errors. We can also consider the scenario where there is a
mistake in the invariant. If, for example, we write (∀i : 1 ≤ i < g − 1 : a[i] < x)
instead of (∀ i : 1 ≤ i < g : a[i] < x), the system shows the following counter-
example in 422ms (for n ≤ 3):

{Inv & B} Clot {Post},
precondition : n = 1 a = [0] x = 0
before : n = 1 a = [0] x = 0 b = false d = 2 g = 2
after : n = 1 a = [0] x = 0 b = false d = 2 g = 2 m = 1
violated assertion : b = (∀ i : 1 ≤ i ≤ n : a[i] = x)

Predicting Run-Time Errors. Let us finally assume that we use the condition
g = d+1 instead of g = d in the halting condition of the algorithm. In this case,
the system finds input values for which an index out of bound error occurs.

An Algorithm to Find the Next Permutation. We consider a second more compli-
cated example, whose verification needs a decomposition into four subproblems.
Given a permutation of the natural numbers 1, . . . , n, the problem is to write
an algorithm that finds the next permutation according to the lexicographic or-
dering (denoted by �). For example, the next permutation of a0 = [1 2 3 5 4]
is a = [1 2 4 3 5]. Informally, this problem can be decomposed as follows: First
(SP1), we compute the largest index i such that a[i] < a[i + 1] (in our example,
above, i = 3). Then (SP2), we determine j, which is the index of the smallest
element on the right side of a[i] that is bigger than a[i] (in our example, j = 5).
Next, we exchange a[i] and a[j] (a becomes [1 2 4 5 3]). Finally (SP3), we reverse
the order of elements in the sub-array a[i + 1..n] (a = [1 2 4 3 5] is the next
permutation). To construct the algorithm, we must formally specify the three
sub-problems, construct them with a loop invariant, and prove their correctness,
independently from each other and from the main problem. The formal specifi-
cations of the subproblem are given below.

SP1: Pre: a initialised
Post: unchanged(a) &
((i = 0 & (∀ k : 1 ≤ k ≤ n − 1 : a[k] ≥ a[k + 1]))
∨ ((0 < i < n) && (∀ k : i + 1 ≤ k ≤ n − 1 : a[k] ≥ a[k + 1]) & a[i] < a[i + 1]))

SP2: Pre: a initialised & 1 ≤ i < n
&& (∀ k : i + 1 ≤ k ≤ n − 1 : a[k] > a[k + 1]) & a[i] < a[i + 1]
Post: unchanged(a) & unchanged(i) &&
((j = n && a[j] > a[i]) ∨ (i < j < n && a[j + 1] ≤ a[i] & a[j] > a[i])

SP3: Pre: a initialised & 1 ≤ i < n
Post: inchanged(i) &&
unchanged(1, i, a)3 & (∀ k : i + 1 ≤ k ≤ n : a[k] = a0[n − (k − (i + 1))])

Writing correct formal specifications for the subproblems is the key issue to
prove the correctness of the complete algorithm in a compositional way. This

3 The subarray a[1..i] is unchanged.

A Program Verification System Based on Oz 45

– Decl: const n;
var a: array [1..n] of integer; (input)
var b: boolean; (output)
var i, j, temp: integer; (auxiliary variable)

– Pre: a initialised , n is the array size,
(∀ k : 1 ≤ k ≤ n : (# w : 1 ≤ w ≤ n : a[w] = k) = 1)
Post:
(b ⇒ (permut(a, a0) & a � a0&&(∀ c[1 . . . n] : (permut(a0, c) & c � a0) ⇒ c 	 a)))
&(¬b ⇒ (unchanged(a)&&(∀ c[1 . . . n] : ¬permut(a, c) ∨ c
 a)))

– Instr: SP1;
if (i>0)
then SP2;

temp:= a[j]; a[j]:=a[i]; a[i]:= temp;
SP3;
b:= true

else
b:= false

end

Fig. 2. Finding the next permutation in lexicographical order

task is not always completely straightforward. For instance, let’s have a look
at the postcondition of subproblem SP2. It must express that a[j] is the least
element greater than a[i], on its right. Since the precondition states that the
sub-array a[i + 1..n] is decreasing and that a[i] < a[i + 1], it is sufficient to write
that a[j] > a[i] and a[j + 1] ≤ a[i] if j < n, but the case j = n needs a special
treatment, since there is no element a[n + 1]. In the postcondition, is necessary
to use the conditional operator && to avoid evaluating undefined conditions.
We are now in position to provide the code of the main algorithm with its spec-
ification. They are given in Figure 2. Notice that the code does not involve an
iteration. Hence no invariant is needed. One should also observe that the post-
condition is very understandable because it uses powerful primitive predicates
of our assertion language, such as �, �, and permut; universal quantification
over an array variable is also needed. The precondition states that every natural
number from 1 to n occurs exactly once in the array. Proving the correctness
of the main algorithm takes 15ms (for n = 1), 16ms (n = 2), 187ms (n = 3),
3.9s (n = 4), 2m16s (n = 5). Assuming n ≤ 5, proving the correctness of the
subproblems takes 27s for SP1, 672ms for SP2 and 46ms for SP3. Let us now
assume that we try to prove the correctness of the main algorithm with an
inadequate (i.e., to weak) specification of a subproblem. So we forget the con-
straint a[j] > a[i] in the postcondition of SP2. For n = 5, we get the following
counter-example for the main algorithm.

precondition : n = 5 a = [4 5 3 2 1]
postcondition : n = 5 a = [3 1 2 4 5] b = true i = 1 j = 3 temp = 3
violated assertion : a � a0

46 I. Dony and B. Le Charlier

On the other hand, if we forget the special case (j = n && a[j] > a[i]) in
the postcondition of SP2, we get a run-time error prediction in the verification
of the main algorithm. However, this error, which was actually made by one of
the authors when she first solved this problem, can be detected if we analyse
the subproblem itself: If we attempt to construct the algorithm according to this
wrong specification, we have get an out of bound error prediction; if we check
a correct algorithm with respect to the wrong specification, we get counter-
examples for { Inv & B } Clot { Post }.

To conclude on this second example, we emphasize that proving the correct-
ness of such an algorithm by hand is far from a trivial task. Notice also that
there is no need to arbitrary reduce the domains of the input variables, here; so
the proof is actually complete (for small values of n).

3 Overview of Oz Constraint Programming

The Oz language allows constraint programming over finite domains. In this
section, we provide an overview of the Oz constraint programming model, a
complete description of which can be found in [14].

Constraints. Oz constraint programming uses two kinds of constraints. Basic
constraints are in the form x ∈ D where x is a variable and D is a finite subset
of the natural numbers, called the domain of x. Non-basic constraints express
relations between variables; a simple example is x + y ≤ z.

Constraint Solving. Operationally, computation takes place in a computation
space. A computation space consists of a constraint store and a set of propaga-
tors. The constraint store implements a conjunction of basic constraints, which
can be dynamically refined by the propagators. A propagator is a concurrent
computational agent that imposes a non basic constraint by narrowing the do-
mains of the variables involved in the constraint. Let us assume, for instance,
that the constraint store s consists of two basic constraints x ∈ {1, . . . , 6}, and
y ∈ {1, . . . , 6}. Moreover, let us suppose that the propagator pa1 imposes the
constraint x + 3 = y. The basic constraints are refined into x ∈ {1, 2, 3} and
y ∈ {4, 5, 6} because other values of the domains are not compatible with the
constraint x + 3 = y. Propagators communicate through the constraint store
by shared variables. Consider again our example and let us add an other prop-
agator pa2, that imposes the constraint y − 2 × x > 1. Once pa1 has refined
the basic constraints to x ∈ {1, 2, 3} and y ∈ {4, 5, 6}, the second propagator
ensures that x ∈ {1, 2}. Now, pa1 can propagate again giving y ∈ {4, 5}, then
pa2 establishes x = 1, and, finally, pa1 computes y = 4. At this moment, the
computation space encapsulating s, pa1 and pa2 becomes stable (i.e., no further
constraint propagation is possible). Moreover, one says that this computation
space has succeeded, which means that the variable assignement x = 1 and y = 4
is a solution to the initial constraint problem. A computation space can also be
failed if a propagator detects that its associated constraint is inconsistent with
a basic constraint.

A Program Verification System Based on Oz 47

Variable Distribution. Constraint propagation is not a complete solution method:
It may happen that a set of constraint has a unique solution and that constraint
propagation does not find it. Similarly, constraint propagation may be unable to
detect that no solution exists. Consider, for instance, the same problem where
propagator pa2 is replaced by propagator pa′

2, which imposes y − x ∗ x > 1.
After propagation, the computation space gets stable with the following store:
x ∈ {1, 2, 3} and y ∈ {4, 5, 6}. In such a situation, the computation space is said
distributable, which means that it can be divided into two disjoint computation
spaces by splitting the domain of a variable. To do so, we make two copies of the
original computation space and we add a propagator that imposes x = 1 to the
first copy and a propagator that imposes x 	= 1 to the second one. Propagators
may then wake up in both spaces. The choice of the variable to be distributed
and the choice of the value given to this variable is called a distribution strat-
egy. The efficiency of constraint solving may heavily depend on the distribution
strategy.

4 Checking Verification Conditions with Oz

To check the correctness of an imperative program with respect to a specifica-
tion, we use verification conditions. A verification condition is a formula that is
logically equivalent to propositions of the form {P}S{Q}, where P and Q are
assertions and S is a program fragment. In our approach, verification formulas
belongs to an interpreted logic that includes natural numbers, simple variables
and arrays, a set of predefined functions and predicates, and quantifiers. Quan-
tified variables are only allowed to range over a (dynamically defined) finite set
of values as, for instance, in the formula (∀ i : 1 ≤ i < g : a[i] < x). Quan-
tification on array variables is allowed, for instance,in the formula (∀ c[1 . . . n] :
(permut(a0, c) & c � a0) ⇒ c � a). Providing a complete definition of our inter-
preted logic is outside the scope of this paper. We focus instead on the method
we use to transform verification conditions into Oz constraint problems and to
solve the constraint problems.

Generating the Constraints. A key choice of our method is to use reified con-
straints. Reified constraints are of the form c ↔ b where c is a non basic constraint
and b is a boolean (0/1) variable. If b = 1, the reified constraint is equivalent
to c. If b = 0, it is equivalent to ¬b. The main reason to use reified constraints
is that any formula of our interpreted logic can be translated into a single con-
junction of reified constraints, i.e., into a single constraint problem. For instance,
consider a formula of the form A ∨ B. It can be translated to the conjunction
of reified constraints (b = bA ∨ bB) & c1 & . . . & cn & c′

1 & . . . & c′
n′ where

the ci are the reified constraints translating A and bA is the boolean variable
associated to A (similarly for B). Without reified constraints, we should have
to create different computation spaces for A and B, which is more complicated
and less efficient. Another benefit of using reified constraints is that we maintain
a different boolean variable for every subformula of the verification condition

48 I. Dony and B. Le Charlier

to check. The values of these boolean variables can be used to identify parts of
the verification condition that are violated and, therefore, to provide interesting
feedback to the user.

Let us show on an example how this method works in our system. We go back
to our binary search example (see Figure 1) and we check part of the proposition
{Inv & ¬B} Iter{Inv}, namely the case where a[m] > x. Using the strongest
postcondition approach (sp), introduced by Floyd in [9], we want to prove the
following implication:

(∃d1 : d = m & Invd
d1

& g 	= d1 & ¬b & m = (g +d1)div 2 & a[m] > x) ⇒ Inv

The notation Invd
d1

means that we substitute the new variable d1 to every free
occurrence of the variable d in the formula Inv. Unfolding the formula Invd

d1
,

the first part of the implication rewrites to the formula

(∀ i : 1 ≤ i ≤ n− 1 : a0[i] ≤ a0[i + 1]) & d = m
& a, x unchanged(1) & 1 ≤ g ≤ d1 ≤ n + 1(2)

&& (∀ i : 1 ≤ i < g : a[i] < x)(3) & (∀ i : d1 ≤ i ≤ n : a[i] > x)
& b ⇒ (∃ i : 1 ≤ i ≤ n : a[i] = x) & g 	= d1 & b = false
& m = (g + d1) div 2 & a[m] > x(4)

Subformulas (1) to (4) are translated to the following reified constraints.

(1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

b1 = (x = x0)
ba1 = (a[1] = a0[1])
ba2 = (a[2] = a0[2])
...
ban = (a[n] = a0[n])
b2 = (ba1 & ba2 & . . . & ban)

(3)

⎧⎪⎪⎨
⎪⎪⎩

bb1 = (a[1] < x)
bb2 = (a[2] < x)
. . .
b6 = (bb1 & bb2 & . . .)

(2)

⎧⎨
⎩

b3 = (1 ≤ g)
b4 = (g ≤ d1)
b5 = (d1 ≤ n + 1)

(4)

⎧⎨
⎩

z = g + d1
y = z div 2
b7 = (m = y)

In fact, the above description of the generated set of constraints is not totally
accurate since the variables used by the imperative program and its companion
assertions are different from the Oz variables that are used by the constraints.
There is a one to one correspondence between the two sets of variables, however.
Our implementation uses a dictionary to maintain the correspondence. The pre-
vious discussion also ignores a major difficulty in our method, which is that the
number and the form of some constraints may depend on the value of one or
several variables, such as g, d, and n in our example. To overcome this difficulty,
we interleave constraint generation and constraint solving as explained later on.

Solving the Constraints. All verification conditions have the form A ⇒ B. There-
fore, to check that a verification condition is valid, we first generate the reified
constraints corresponding to A and B; then we impose that bA = 1 and bB = 0,
where bA and bB are the boolean variables associated to A and B. This way, the

A Program Verification System Based on Oz 49

Oz constraint solving systems tries to find the solutions of a constraint problem
equivalent to A & ¬B. If no solution exists, the verification condition is valid.
Otherwise, counter-examples to the verification condition are found. In practice,
constraint generation and constraint solving are interleaved as follows. Corre-
sponding to each kind of formula in our assertion language, we have defined
an Oz procedure which is responsible to generate the set of reified constraints
corresponding to any such formula. For instance, Figure 3 depicts the procedure
that translates assertions of the form (∀x : i ≤ x ≤ j : p(x)). Notice that i
and j may denote complex expressions with variables and p(x), an arbitrary
formula. A precondition to execute the procedure of Figure 3 is that the values
of variables I and J are determined. This precondition can be ensured by adding
WAIT statements for the actual parameters corresponding to I and J before any
call to the procedure ForAll, as shown in Figure 4. However, adding those WAIT
statements may result in a deadlock if variables V 1 and V 2 are never deter-
mined. To avoid such deadlocks we apply an appropriate distribution strategy:

proc {ForAll I J P Rs B}
Dom = {List.number I J 1} (1)

in
Rs = {Map Dom P} (2)
B = {FoldL Rs fun{$ X Y#_} {FD.conj X Y} end 1} (3)

end

(1)Dom =[I, I+1,...,J]
(2)Rs = [P I, P I+1, ... P J] = [BI#LI , Bi+1#LI+1, ...BI#LJ]
(3)B = BI & BI+1 & ...& BJ

Fig. 3. Generating propagators for ∀x : i ≤ x ≤ j : p(x)

proc{$ Bool}
P= fun {$ K} Li Bo Mpl in

{Dictionary.clone Mp Mpl}
K = {Dictionary.put Mpl X}
Bo = {{PropB P Mpl Li}}
Bo#Li

end
V1 LV1 V2 LV2 L

in
Liste = [[LV1 LV2]# L]
{Eval A1 Mp LV1 V1}
{Eval A2 Mp LV2 V2}
thread {Wait V1} {Wait V2}

Bool = {ForAll V1 V2 P L}
end

end

Fig. 4. Translating the formula (∀ x : a1 ≤ x < a2 : p(x))

50 I. Dony and B. Le Charlier

In parallel to reified constraint generation, we incrementally build a partially in-
stantiated data structure that defines a priority relation between Oz variables.
Although every variable may eventually need being distributed, variables that
must be determined to allow reified constraint generation must be distributed
first. Thus, we introduce those variables first in the data structure. The data
structure is read in parallel to its construction by the Oz procedure that imple-
ments distribution. This procedure first distributes the most prioritary variables
and it may block when all variables are determined, until the data structure gets
more instantiated. Figure 4 explains why the call to procedure ForAll will not
be delayed forever: First the variable Liste, which is part of the partially data
structure used for distribution, is further instantiated with two new variables
LV1 and LV2; then procedure Eval is executed to create two threads that will
both evaluate V1 and V2 and instantiate LV1 and LV2 with the variables to be
distributed in A1 and A2 (i.e., the Oz variables corresponding to the variables
occurring in the expressions a1 and a2 of the assertion).

Limitations of Our System. Although we have not performed any formal com-
plexity analysis of our system yet, it is quite obvious that its execution time is
at least exponential in the size of the problem, most of the time. Nevertheless,
we believe that its efficiency is sufficient for the pedagogical objectives we have
in mind. In most cases, the correctness of an algorithm does not depend on the
size of the problem. Moreover, we are often more interested in the discovery of
counter-examples, which can be used to explain reasoning errors, than in cor-
rectness proofs. Obviously large input data are not needed to discover interesting
counter-examples.

Nonetheless, the main weakness of our finite domain implementation is that,
in many cases, we must restrict the domain size of input variables (mainly,
arrays) to make the problem tractable. Such restrictions must be done carefully
to avoid ruling out potential error cases. It should be desirable to elaborate a
kind of theory of such “safe” restrictions.

5 Related Work

A lot of research has been done towards verifying the correctness of programs. A
complete overview of this research is outside the scope of this paper. At the tech-
nical level, we briefly compare our work with three major approches: abstract
interpretation, model-checking and (general) theorem-proving. At the method-
ological level, we relate it to formal software engineering approaches.

Abstract interpretation amounts to automatically compute a finite (abstract)
description of an infinite set of program executions. To be efficient, program prop-
erties are approximated. For instance, P. Cousot and N. Halbwachs show how
to infer properties of imperative programs using polyhedrons in [8]. The goal is
not to provide complete formal correctness proofs but to infer specific properties
that are useful for program optimisation or to ensure safety properties. Model-
checking [3, 4, 7]applies to finite systems and is mainly used for the verification

A Program Verification System Based on Oz 51

of concurrent systems. Temporal logics are used as specification languages. Once
again, the goal is generally not to prove the full correctness of programs but some
key properties such as mutual exclusion or reachability of certain states. Efficient
implementations have been designed using BDDs and Sat-solvers. Altough our
assertion language has been designed for different goals, it should be interesting
to investigate its applicability to the verification of concurrent systems and to
compare the efficiency of finite domain techniques with classical model-checking
implementations. Theorem provers such as, for example, PVS [2] can be used
to provide complete correctness proofs of imperative programs without restrict-
ing the size of the problem as we do. However, even for simple problems, using
theorem provers requires a lot of “mathematical maturity”, which makes them
almost impossible to use in a pedagogical context. For instance, we are quite
sure that proving the correctness of our next permutation example with PVS
would be a major achievement.

At the methodological level, many researchers advocate formal methods to
validate software construction. For instance, D. Jackson combines abstraction,
model-checking, and executable specifications for imperative program verifi-
cation (see [5, 6, 11]). Since the emphasis is on “real life” software, a com-
plete verification of the system is hardly possible and only critic properties are
checked. Our approach is different since we only consider small programs which
we want to check in full details. Nevertheless, our approach has been
adapted to the B specification language by Laka Moussa and Emmanuel Dieul
(see [13]).

6 Conclusion and Future Work

We have presented a verification system that supports an expressive assertion
language for writing specifications and loop invariants about programs written in
a simple imperative language. We have shown on two significant examples that
the system is able to prove the correctness of elaborated programs consisting of
several subproblems that are checked independently of each other. The system is
still better for finding errors in programs and/or inconsistencies in specifications
and invariants; it is also much more efficient at this task since the discovery of
a significant set of counter-examples generally requires to explore only a small
part of the search space. The verification system is intended to be used in a
teaching context, for educational goals (although it has been adapted by another
researcher for software engineering applications).

In future work, we intend to make experiments with the system in the context
of an advanced programming course, namely the course INGI2122 (Méthodes de
conception de programmes), to study the benefit of such a tool for understand-
ing both rigorous program construction methods and formal methods advan-
tages and drawbacks. We also foresee to develop better distribution strategies to
improve the system efficiency. Finally, we plan to compare our approach with rel-
evant model-checking and theorem proving systems on a few classical examples
in concurrent program verification.

52 I. Dony and B. Le Charlier

Acknowledgements

The authors are indebted to the members of the Oz pool, in Louvain-la-Neuve,
and particularly to Raphaël Collet for invaluable support and kindness.

References

1. The Mozart Programming System. http:www.mozart-oz.org.
2. The PVS specification and verification system. http://pvs.csl.sri.com.
3. T. Bal and S.K. Rajamani. Boolean programs: A model and process for software

analysis. Technical Report 2000-14, Microsoft Research, 2000.
4. J.C. Corbett, M.B. Dwyer, J. Hatcliff, and Robby. A language framework for

expressing checkable properties of dynamic software. In Proc. of SPIN Model
Checking and software Verifications, volume 1885. LNCS.Springer, 2000.

5. Somesh Jha D. Jackson and Craig A.Damon. Isomorph-free model enumeration: a
new method for checking relational specifications. ACM Trans. on Programming
Languages and Systems, 20(2):302–343, March 1998.

6. C.A. Damon and D. Jackson. Efficient search as a means of executing specifications.
In Proc. TACAS 96, March 1996.

7. O. Grumberg E.M. Clarke and D.E. Long. Model checking and abstraction. ACM
Transactions on Programming Langages and Systems, 16(5):1512–1542, Sept 1994.

8. P.Cousot et N.Halbwachs. Automatic discovery of linear restraints among variables
of a program. In Proc. of the conference record of the Fifth annual ACM Symp-
tium on Principles of Programming Languages, pages 84–97, Tukson,Arizona, 1978.
ACM Press.

9. R.W. Floyd. Assigning meanings to programs. In Proc. of Symposia in Applied
Mathematics, volume 19, pages 19–32. Mathematical Society, 1967.

10. C.A.R Hoare. An axiomatic definition of semantics. Communications of the ACM,
12(10), 1969.

11. D. Jackson. Aspect: Detecting bugs with abstract dependences. ACM Trans. on
Software Engineering and Methodology, 4(2):109–145, April 1995.

12. B. Le Charlier M. Derroite. Un système d’aide à l’enseignement d’une méthode
de programmation. In Actes du premier colloque francophone sur la didactique de
l’informatique, 1989.

13. Laka Moussa and Emmanuel Dieul. VICS, verification of an implementation con-
forming to its specification. http://vics.sourceforge.net.

14. Christian Schulte. Programming constraint services. Master’s thesis, Saarbrucken,
2000.

15. Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer
Programming. The MIT Press, 2004.

Higher Order Programming for Unordered
Minds

Juris Reinfelds

Klipsch School of Electrical & Computer Engineering,
New Mexico State University

juris@nmsu.edu

Abstract. In this paper we describe our experience with how Mozart-
Oz facilitates the introduction of distributed computing to students of
limited programming background and how the application of a few basic
programming concepts can increase the students’ comprehension of how
distributed computations actually happen.

1 Introduction

In a graduate CS course in Spring 2003, there was a need to introduce distributed
computing as quickly and concisely as possible. As it often happens in CS pro-
grams with students from all parts of the world, their background knowledge
varied widely in scope and depth with hands-on lab-skills at a very low level.

Java with remote threads [1] or MPI [2] with C-programming was beyond
the reach of most students. Instead we took advantage of the clear, concise and
powerful semantics of Oz and Oz’s natural inclusion of distributed computations.
To illustrate how we fared, this paper will discuss the simple but canonical
Compute Server/Client Problem of distributed computing.

First, in Spring 2003, we took the conventional approach as illustrated in the
Mozart Documentation [3] and in Van Roy & Haridi [4]. The students quickly
learned how to save and take tickets and where to put “their code” in the prepa-
ration of client’s compute tasks. This enabled the students to complete the re-
quired homeworks, but their depth of understanding and interest in the power
and possibilities of this new kind of programming remained low. Only one of
21 students of this course saw the power of the Mozart approach, learned more
Oz and applied it to other projects in other courses. Section 2 describes this
approach and defines our version of the Compute Server/Client Problem.

To improve the students’ depth of comprehension, we set out to determine
what programming concepts and mechanisms underlie the remarkable simplicity,
directness and ease with which distributed computations can be initiated and
controlled in Oz. In our opinion, the key to simple yet powerful distributed
computing lies in the distributed, internet-wide value store of Oz. We developed
a programmer’s model of such value storage and management. This is discussed
in Section 3.

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 53–65, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

54 J. Reinfelds

Using our new approach, half the class of 18 students in Spring 2004 was
sufficiently interested and able to use Mozart in their end of semester project al-
though they had the freedom to choose any programming tools and methods and
they had a wide range of project topics available to them. In Section 4 we aug-
ment the Compute Server/Client we introduce in Section 2 with an explanation
of how it works in terms of the concepts that we define in Section 3.

In conclusion, we suggest that distributed computations would be facilitated
even more if Mozart could provide an option to access a global value store as a
network service by extending the existing mechanisms with which the runtime
system of Oz accesses remote values.

2 A Simple Compute Server and Client

Let us define a simple compute-server and client by removing the unessential
object orientation from the compute-server example that appears in Mozart
documentation [3] volume “Distributed Computing”, Section 3.2.4 as well as in
VanRoy & Haridi [4] Chapter 11.

To further simplify the surprisingly concept-rich program, we have omitted
exception message handling in the code that we give to the students. We ask
them to insert exception handling into the given code in a homework assignment
to expand and test the depth of their understanding of Oz programming.

2.1 The Server

The server uses an Oz-Port (Port) to collect incoming messages from one or more
clients into a list (PortList). The Port mechanism appends incoming messages
at the end of the port list and maintains an unbound identifier at the end of this
list. Processing of the list suspends when it reaches the unbound identifier until
that identifier gets bound to a value which is the next incoming task.

The server expects incoming messages to refer to Oz-values that contain zero-
arg-procedures and sets up a recursive ForAll loop that executes each zero-arg-
proc from the head of the list until execution suspends on the unbound identifier
at the end of the list. Here is the Oz program for our version of the server:
% Server waits for and processes compute tasks
% that are zero-arg-procedures.
proc {ComputeServer}

PortList % list of incoming tasks
Port % appends incoming tasks to PortList
Q % one-arg-proc for recursive loop
TicketToPort % offers remote access to Port

in
Port = {NewPort PortList}
TicketToPort = {Connection.offerUnlimited Port}
{Pickle.save TicketToPort "/home/juris/filenameOfTicket"}
proc {Q I} {I} end % if incoming I’s are zero-arg-procs
{ForAll PortList Q}

end %ComputeServer

Higher Order Programming for Unordered Minds 55

Here it is again. Expressed more concisely and parametrized for multiple
server creation the server program looks simpler than it is:

proc {CompSrv FileName}
PortList
Port={NewPort PortList}

in
{Pickle.save {Connection.offerUnlimited Port} FileName}
{ForAll PortList proc {$ I} {I} end}

end %CompSrv

Students had no trouble with typing-in and executing this program to create
one or more compute servers, yet understanding how the server works is another
matter that we will take up in Section 4. At this stage students cannot under-
stand open lists and external variables and have difficulties with the simplest
modifications of the server program. For example, a simple modification to en-
able examination of the PortList while the server runs is beyond the grasp of
most students because the idea that PortList could be an external variable in
CompSrv needs to be introduced gently to students brought up on the string-
of-pearls model [5] of side-effect avoidance in imperative programming.

2.2 The Ackermann Function

The Ackermann function is an example of a very simple code that defines non-
trivial computations of any desired duration. In the days of early mainframes
and compilers the Ackermann Number was used to measure the recursive capa-
bilities of mainframe-op.sys.-compiler combinations [6]. The Ackermann Number
is defined as the smallest value N for which Ack(3,N) crashes because some re-
source in the computer-operating system-compiler combination runs out. In the
testing of our compute server we can choose suitable values of N to give a run
time of a few minutes, so we can use an Oz-panel on each machine to observe
the remote computations as they happen. Here is the code of the Ackermann
function. The arguments are small non-negative integers.

fun {Ack M N}
if M==0 then N+1
elseif N==0 then {Ack (M-1) 1}
else {Ack (M-1) {Ack M (N-1)} }
end

end %Ack

2.3 The Client

The conventional explanation of the compute-client goes somewhat like this.
Any Oz-invocation can become a client of our server if it has access to the file
that stores the Oz-ticket to the server’s Oz-port. To become a client an Oz-
invocation has to Pickle.load the “pickled” ticket into the client’s Oz invocation
and then Connection.take the server’s port-ticket to establish a connection to
the server’s port. The client can create a compute-task by taking a statement

56 J. Reinfelds

sequence in client’s name-space and wrapping it into a zero argument procedure.
Then the client uses the built-in Send procedure to send the zero-arg-proc to
the server’s port for processing. The Oz-runtime systems of client and server
manage the network connections and transmissions between client and server in
a program-transparent way.

Here is a statement by statement discussion of the client’s Oz-code. The
potential client becomes a client by establishing a connection to the server’s
Oz-port by executing

ServPort1 = {Connection.take {Pickle.load "filenameOfTicket"}}

Without a model of the global store students find it difficult to reason about
the ticket mechanism. For example, is the connection made by transferring the
remote value or its global store reference? Suppose that the client wants to
calculate the value of Ack(3,18) remotely. In other words, the client wants to
execute the following statement on the server:

M3N18 = {Ack 3 18}

The client constructs a zero argument procedure:

proc {ZeroArgProc}
M3N18 = {Ack 3 18}

end %ZeroArgProc

sends it to the server for processing and displays the result in the Browser window
at client:

{Send ServPort1 ZeroArgProc}
{Browse m3n18#M3N18}

and it works! The user is pleased but confused. Just how did all this happen? The
client did not explicitly tell the server what Ack was. What if the server already
has the identifier Ack bound to a different value? The calculation of Ack(3,18)
makes millions of calls to the function Ack that is defined on the client but not
on the server. Did our remote computation swamp the network?

A deeper understanding of the programming concepts and mechanisms that
underlie our compute server is necessary to answer these questions. In the rest
of the paper, we will explore one way to achieve more depth in minimal time
even if students have a limited background in programming and mathematics.

3 Programming Concepts and Mechanisms on Which
Compute Server Is Based

First we define several basic programming concepts especially where we differ
from historically established traditional definitions. Then we define a program-
mer’s model of a distributed, global value store which in our opinion is the key to
a deeper understanding of why Oz achieves distributed computations so simply
and naturally.

Higher Order Programming for Unordered Minds 57

3.1 Definitions

Statement. An Oz-statement is a piece of information that defines one step in
the transformation of input information toward a desired output. An Oz-program
is a sequence of Oz statements.

Consequences of this definition: since a program is a sequence of statements,
execution should start with the first statement of the program and proceed
with the next statement until there are no more statements to execute. Since
a statement defines one step, we should be able to compile and execute one
statement at a time. Imposition of “main program” or function or method named
“main()” is an unnecessary restriction on what the user may want to do.

Value. An Oz-value is any piece of information of a type that the Oz program-
ming language can handle. The type of a value defines a set of properties that
are common to all values of that type. In particular, a type defines which oper-
ators of a programming language can accept values of this type as arguments.
Acceptable Oz-value types are int, char, procedure, function, class, object and
others. The programmer is burdened with the least amount of semantic baggage
if all values can be handled in the same way as much as possible.

Consequences of this definition: The historically established requirement for
special handling of procedure and function-value introductions is an unnecessary
restriction on the programmer. An introduction of integer 256 creates an Oz-
value of type “int” and an Oz-value of type “function” is introduced by executing
the Oz-declaration

fun {$ N} N*N*N end

which introduces a function that returns the cube of its argument. It should
and does behave very much like an Oz-value that is an integer. We can form
an expression with it where it is called with the argument 3 and the expression
returns the value 283.

256 + {fun {$ N} N*N*N end 3}

Bowing to years of traditional practice, Oz also accepts proc/fun value creation
combined with identifier binding as in

fun {Cube X} X*X*X end

Regardless of which form of introduction we choose, function introduction cre-
ates a value that is just another piece of information. Only when a function
is executed, the function value is used to create an information transformation
process that produces the desired result. With such an introduction of procedure
and function values, higher order programming becomes the default without the
need to explain to mathematically naive students what “higher order” is.

3.2 One Distributed Value Store for All Invocations of Oz

Here we will describe a programmer’s model of a global value store that combines
the design ideas of the declarative Oz-value store and the the design concepts

58 J. Reinfelds

of the Unix file system. We will use programming concepts that best allow a
programmer to relate this model to program design and structure. Our aim is
to provide a model that truthfully portrays the behavior and capabilities of
the Mozart value store but that does not necessarily reflect every nuance of its
implementation.

A key concept is that there is one universal, distributed value store. The
runtime system of every Oz invocation maintains its piece of the universal value
store of Oz. In other words, all invocations of Oz, past, present and future,
maintain one distributed data base of Oz-values.

Each invocation of Oz maintains the Oz-values that were created in this
invocation and which are still useful. An Oz value is useful if there is at least
one valid Oz identifier in any Oz-invocation that references this value.

Traditional programming languages adhere to the implementation-inspired
definition:

a variable is both a name that corresponds to the address of a memory
location and a value at that memory location.

In traditional programming languages we usually have a one to one correspon-
dence between variable names and the values to which the names are bound (or
as we say, assigned). To bind another name to a value that already has a name
assigned to it, we use pointers or a similar mechanism. We teach ourselves to say
that after the assignment X:=5 “X is five” and in doing so we attach a second
meaning to X which already meant a memory location containing int. In the
statement X:=X+1, we quietly overlook the de-referencing of one X, but not the
other, hoping that the compiler will get it right.

Oz makes a clear separation between the local name space and scope of iden-
tifiers that programmers use in Oz-programs and global value store references
that must uniquely distinguish between values from all Oz-invocations.

The binding statement of Oz supports variable-value binding as in traditional
languages. It also supports variable-variable bindings so that both variables be-
come bound to the same value. This removes the need for a pointer mecha-
nism, but requires the introduction of a value-type “reference” and programmer-
transparent de-referencing by the runtime system to explain the binding of ad-
ditional identifiers to a value that is already bound to an identifier.

Oz supports the introduction and use of unbound variables. Our model ac-
commodates unbound variables by introducing an additional value-type which
we call ”no-value-yet”. A store-item with type “no-value-yet” is created for ev-
ery identifier at the moment this identifier is introduced. Similarly, whenever
a value is introduced a store-item is created containing the value and its type.
Store items are identified by globally unique reference tags. Binding statements
link store-items of identifiers to store-items of values.

To remind us of the differences between Oz and traditional programming
languages, we use the term “binding” instead of “assignment” and the terms
“identifier” and “value” instead of “variable” which in conventional languages
often denotes either the storage address allocated to that variable or the value
that is stored there. In our model a global value store item has three components:

Higher Order Programming for Unordered Minds 59

– a reference tag that is unique in all invocations of Oz;
– the type of this Oz-value;
– the bit-pattern that represents this Oz-value.

When a new identifier is introduced in the program, the compiler creates a
global value store item with a new unique reference and with the type “no-value-
yet”. The compiler also updates its name table with an entry that relates the
newly introduced identifier with its value store reference. The compiled byte-
code of this and subsequent statements within the scope of this identifier will
contain the globally unique reference to the value store item instead of the local
identifier. In this way local name-space remains strictly local and unconcerned if
same identifiers reference different values in other name spaces, while byte-code
can be executed to give the same result in any context in any invocation of Oz.

Identifier introductions are executable statements in Oz, but the scopes of
identifiers are known at compile-time from actual and implied local ... in

... end statements. Formal parameters of proc/funs are treated as belonging
to a local ... end statement around the proc/fun body that includes the call
of this proc/fun in the scope. This scope is somewhat unusual, but it turns the
formal/actual parameter mechanism of a proc/fun call into a sequence of bind-
ing statements of formal parameters with their corresponding actual parameter
expressions.

Internal local ... in ... end statements introduce identifiers that are
scoped within the proc/fun’s body. Other identifiers that appear in the procedure
or function are called “external variables”. They must already have global store
references and the compiler places their global store references into the Oz byte-
code, so that the code can be executed in any context in any Oz-invocation with
the same results.

Oz has no restrictions as to where procedures and functions may be intro-
duced in a program or expression. In this sense the handling of procedure and
function values is no different from the handling of integer and char values which
are also compiled into their value store items when and where they appear in
the program.

Store references may appear in store items as values with type ”reference”.
Appropriate dereferencing is performed by the executing runtime system. One
situation where a reference must appear as the value of a value store item is for
an identifier that is bound to an Oz-cell. In the statement that creates a cell (a
state variable that can change the value to which it refers) we have

local C in {NewCell 25 C} ... end

First, the identifier C is introduced with the type “no-value-yet”. The execution
of the procedure NewCell binds C to a cell, which in terms of our model means
that NewCell

– Creates a new store item containing int 25.
– Changes the type of store item of C from “no-value-yet” to “cell”.
– Sets the value of C’s store item to the reference to the newly created store

item containing int 25.

60 J. Reinfelds

In summary, the compiler compiles every identifier to a store reference, so that
although we say that “we send a compute task to Oz-port P” when we execute
the procedure call {Send P Task}, what actually gets transferred to the input
queue of P is a reference to the store item represented by the identifier Task.

3.3 Global Value Store as a Network Service

The current implementation of the global value store works very well if all par-
ticipating Oz-invocations stay up as long as needed. However, the handling of
situations when a remote site has shut down making its global value store refer-
ences unexpectedly invalid is extremely awkward. For a few references this can
be remedied by pickling a ticket for each reference, so that on restart a new
reference can be obtained more easily. For more connected distributed compu-
tations as well as for backup and data preservation it might be useful to provide
at least a part of the global value store as a network service using currently
well developed database and uninterruptable hardware technology that would
provide backup and redundancy 24/7 with continuous availability and recovery
of previous states of computation if so desired. On the surface, it seems that
the cost of the extra network accesses would be well worth it, especially because
the current remote value fetching mechanism is so effective and efficient. There
is hope that relatively small extensions of the current mechanisms to provide
such a network service might provide a substantial facilitation of distributed
computations.

There is active Mozart research along these lines [7], but it is focused on
management of fault-tolerance using ordinary machines as components. We be-
lieve that an uninterruptable global value store would be a valuable network
service for Mozart users, especially when applying Mozart to cluster computing
on medium to large clusters.

3.4 External Variables in Procedures and Functions

Here we summarize the concept of external variables of Oz. At the point of intro-
duction of a procedure or function there may be previously introduced identifiers
that are in scope. If these identifiers appear in the procedure that is being in-
troduced, the compiler will compile their store references into the Oz-byte-code
of the procedure. These identifiers and the values to which they refer are called
”external variables” of the procedure. Whenever a procedure value is bound to
an identifier, the lifetime (scope) of the procedure value and the lifetime of the
value store items to which its external variables refer is extended by the lifetime
of this identifier.

Our model creates the same semantics for declarative external variables as
the more mathematical environments of VanRoy&Haridi [4] Section 2.4, but our
model of the global value store includes Oz-cells and brings the external variable
concept closer to the experience of programmers who have followed the tradi-
tional Algol-Pascal-C pearls-of-a-necklace of Dijkstra [5] style of program design
and who have regarded any departure from strictly nested stack-implementable

Higher Order Programming for Unordered Minds 61

variable scopes such as the relatively modest “own variables” of Algol-60 [8] as
unacceptable.

4 The Compute Server/Client in Terms of Our Value
Store Model

Identifiers are introduced by explicit or implicit

local Identifiers ... in StatementSequence ... end

local-statements that determine the scope of each identifier. In our model the
compiler associates each identifier with a unique global reference tag as it pro-
cesses the left part of the local-statement. The compiler compiles global refer-
ences and not local identifier names into byte code. At execution time the runtime
system executes the byte code and creates a store item with the reference of this
identifier and the type no-value-yet.

Values are introduced as text in the source code and byte code is compiled
requesting the runtime system to create a store-item with a unique reference tag
and appropriate type and value.

Binding statements bind store-items of identifiers to store-items of values by
placing the reference of the value into the value part of the identifier’s store item
with type “reference”. When execution requires actual values, but the store
item of the identifier contains a value of type reference, the runtime-system
dereferences values of type “reference” until a non-reference value is reached
and performs dynamic type-checking to ensure that this value is compatible
with the operator that requires it.

4.1 The Server

Let us discuss the global store and identifier scope aspects of the compute server.

proc {CompSrv FileName}

This is an abbreviation for a binding statement within some local-statement such
as

local
CompSrv

in ...
CompSrv = proc {$ FileName}...end
...

end

where the formal parameter FileName has an implied local FileName in ...

that includes the proc-call and the procedure body, so the identifier of this
formal parameter, which appears in the procedure body, can be bound to its
corresponding actual parameter value when the proc is executed. This removes
the need for a special consideration of formal-actual parameter mechanisms.
Continuing with the statements of the server:

62 J. Reinfelds

proc {CompSrv FileName}
PortList Port in

There is an implied local before PortList that scopes the identifiers PortList and
Port to the procedure body. Next:

Port = {NewPort PortList}

The identifier NewPort is external to this procedure. It does not appear as a
formal parameter nor is it defined as a procedure-local identifier. If there is no
lexically more recent local use of the identifier NewPort, the compiler compiles
a call to the system function NewPort.

The identifier NewPort and its store reference were placed into the compiler’s
identifier table as this Oz-invocation started up. This applies to all system pro-
vided procedures and functions. Next,

{Pickle.save {Connection.offerUnlimited Port} "filename"}

A text-string, called ticket, which allows remote invocations of Oz to pick up
the global store reference to the server’s Oz-port, will be placed in a file in the
current directory from which the server proc is executed. Next,

{ForAll PortList proc {$ I} {I} end}

The second argument of this call of the system-supplied procedure ForAll is
a procedure value proc ... end that is introduced where it appears in the
procedure-call. This procedure value (actual parameter) gets bound to the cor-
responding formal parameter of ForAll, so it can be used in the procedure body.
It cannot be used anywhere else in the program because it is not bound to an
identifier that is valid outside of the procedure body.

We also need to explain the Oz-Port mechanism and how ForAll works. Let
us use source code statements to describe how the execution proceeds:

Port = {NewPort PortList}

There is very little information about how Oz-ports and Oz-runtime systems
work. According to VanRoy&Haridi [4] p.719, an Oz-Port is a value that is a
FIFO channel with an asynchronous Send-operation that allows many-to-one
communications from multiple clients. NewPort needs an unbound identifier (we
use PortList) as argument which NewPort binds to the list of incoming global
value store references that clients will Send to this port. The type“port” value
returned by the NewPort call gets bound to our unbound identifier Port. The
port mechanism terminates the list PortList with an unbound identifier. The
port mechanism ensures that each newly arrived Send-carried input extends the
list with itself and a new unbound identifier. In this way, if we consume the list
in the usual way from the head, we have a FIFO queue of incoming items in
PortList.

{Pickle.save {Connection.offerUnlimited Port} ´filename´}

System function Connection.offerUnlimited returns an ASCII string version of
the global store reference of the argument of the call. System procedure

Higher Order Programming for Unordered Minds 63

Pickle.save writes the ASCII string value of its first argument into a file pro-
vided that the second argument is a valid file name on the platform on which
this Oz-invocation runs. This is a convenient way to convey the global value
store reference of the Oz-Port of the Compute Server to a number of potential
clients in systems where NFS is used to share the same home directory over a
cluster of computers.

{ForAll PortList proc {$ I} {I} end}

ForAll executes the second argument that should be a one-argument procedure
value with each element of PortList as the argument. Since Oz expressions sus-
pend execution if execution reaches a value of type “no-value-yet”, ForAll waits
at the end of the input list for the arrival of input items which it executes, in
order of arrival, and then waits again. From the form of the procedure value
in the ForAll call, we see that our server will execute incoming zero-argument
procedure values. Any other incoming value will raise an exception which in this
very simple version of the server will not get transmitted back to the client.

4.2 A Client

Assume that a potential client has introduced four identifiers

Ack M3N18 ServPort1 CompTask

and Ack is bound to the Ackermann function that we discussed in a previous
section. To become a client of our compute server, we have to pick up the global
value store reference to the server’s Oz-Port that the server pickled into the file
with the name “filename.” Assuming this filename is valid where this invocation
of Oz is executed, the client executes the binding statement

ServPort1 = {Connection.take {Pickle.load ´filename´}}

Pickle.load returns the ASCII string version of the value store reference of the
Oz-Port of the server. Connection.take converts the ASCII string version to an
actual value store reference that gets bound to ServPort1, so that after this
statement completes the value store item of ServPort1 on the client contains the
value store reference to the Oz-Port of the server with the value-type “reference.”
Whenever the client program needs the actual port-value, as in a Send call, the
runtime system of the client will recognize that the reference is remote and
in collaboration with the runtime system of the server will obtain access to the
actual port-value. The Oz-Port value at the server is now bound to two identifiers
Port and ServPort1, which are in separate namespaces on separate invocations
of Oz.

Client creates a zero-arg procedure that defines a computation task. The
identifiers M3N18 and Ack are external variables in the zero-arg procedure. The
identifiers Ack and M3N18 are local to the client, but their global value store
references ref(M3N18) and ref(Ack) are compiled into the zero-arg-procedure
value that is sent to the server.

CompTask = proc {$} M3N18 = {Ack 3 18} end
{Send ServPort1 CompTask}

64 J. Reinfelds

The system procedure Send arranges help from the runtime systems of the client
and the server to use the network connection between these runtime systems that
was established when the ticket to the server’s Port was taken. “Send” transfers
the value store reference of CompTask from client to server-port Port. The server-
port appends this reference to the end of its input list. Although we like to say:
“We send a compute task to the server”, only the global value store reference
ref(CompTask) gets attached to the end of the server’s ProcList. If and when
the execution of some expression on the server (as in the ForAll call) requires
the value itself, the server’s runtime system will use the remote reference to get
to its Oz-value. The Send procedure terminates when the network transfer of
the reference is completed.

In our server, the incoming reference creates a value store element of type
“reference” that becomes a list element in the input list and does not have its
own identifier in the identifier table of the server.

The ForAll procedure fetches the remote value from the client and executes
it as a zero argument procedure. If the remote value is not a zero arg proc, an
exception is raised and our very simple server crashes. Programming of crash
avoidance is a good exercise for the students.

During the execution of the remote ref(CompTask), the runtime system of
the server encounters two more remote references for M3N18 and Ack. If the
runtime system of Oz is implemented efficiently, the server copies the value of
Ack from the client calls it locally millions of times. The server determines that
the value of M3N18 is of type “no-value-yet” and binds it to a type “int” value
that is the result of the computation. The client can now see the result of the
remote computation because it is bound to the client’s local identifier M3N18.

5 Conclusions

Our model of the global store helps Oz programmers to untangle and visualize the
way in which computations take place when values are referenced from several
different name spaces by identifiers with non-nested, non-overlapping scopes. The
negative history of Algol-60’s modest break with stack-friendly scopes with ”own
variables” [8], [9] shows that scopes that are not cleanly nested and therefore
stack-implementable are a hard nut for imperative programmers and compiler
writers. It is wonderful that Oz has cracked this nut so cleanly, elegantly, and
effectively.

It is interesting to observe that the design of our model is similar to the
design of the UNIX file system with

– value <> i-node,
– identifier <>file-name or link-name
– identifier-table <>directory.

Cluster computing and well connected distributed computations in general would
benefit greatly if the existing remote value handling mechanisms of Oz could
be extended to provide the global value store as a 24/7 network service with

Higher Order Programming for Unordered Minds 65

backups, crash-proof redundancy and optional restoration of previous states of
computation.

Acknowledgements

The author is grateful to the students of CS5340 at UTEP in Spring 2003 and
Spring 2004 for their patience, understanding and willingness to try new ideas
while our global value store model was under development. The author is grateful
to Denys Duchier for the rescue of our Mozart system in early 2003 when the
Emacs-based API refused to run because SUSE Linux 8.1 had not loaded a font
that no one needed, but nevertheless Emacs decided to check for its existence
before it allowed the Oz-menu to be created although Oz did not need this font
either. The author is grateful to the authors of the Mozart-Oz system, especially
to Peter Van Roy for many discussions on the deeper aspects of the Kernel
Language and Oz design.

References

1. Oaks, Scott,& Wong, Henry, Java Threads, Second Ed. O’Reilly (1999).
2. Pacheco, Peter S., Parallel Programming with MPI, Morgan Kaufmann Publishers

Inc. (1997).
3. Mozart-Oz: web site and home-page: http://www.mozart-oz.org (2004).
4. Van Roy, Peter., Haridi, Seif, Concepts, Techniques, and Models of Computer Pro-

gramming, MIT Press (2004).
5. Dijkstra, Edsger W., A Necklace of Pearls, p.59, Section 14, Structured Program-

ming, Academic Press (1972).
6. Sundblad, Yngve, The Ackermann Function, a Theoretical, Computational and For-

mula Manipulative Study, BIT, Vol. 11, p. 107-119 (1971).
7. Al-Metwally, Mostafa, Alouini, Ilies, Fault Tolerant Global Store Module,

http://www.mozart-oz.org/mogul/doc/metwally/globalstore (2001).
8. Naur, Peter, Editor: Report on the Algorithmic Language Algol 60, CACM, Vol. 3,

#5, p. 299-314, (1960).
9. Wirth, Niklaus, Computing Science Education: The Road Not Taken, SIGCSE Bul-

letin 34(3), 1-3., (2002)

Compiling Formal Specifications to Oz Programs

Tim Wahls

Dickinson College, P.O. Box 1773, Carlisle, PA 17013, USA
wahlst@dickinson.edu

Abstract. Although formal methods have the potential to greatly en-
hance software development, they have not been widely used in industry
(particularly in the United States). We have developed a system for ex-
ecuting specifications by compiling them to Oz programs. Executability
is a great aid in developing specifications, and also increases the useful-
ness of specifications by allowing them to serve as prototypes and test
oracles. In this work, we describe how we have used the Oz language
both as a translation target and in implementing a library of procedures
used by the generated programs. Oz is ideal for our purposes, as it has
allowed us to easily use declarative, concurrent constraint and graphical
user interface programming together within a single framework.

1 Introduction

Formal specifications of software system functionality have a number of impor-
tant advantages over specifications expressed in English, such as conciseness, the
ability to serve as a basis for proofs of program correctness or of other impor-
tant system properties, and freedom from ambiguity and implementation bias.
A large number of formal specification notations have thus been developed, in-
cluding VDM [1, 2], Z [3, 4], B [5, 6], JML [7], and SPECS-C++ [8, 9].

However, formal specifications have not been widely adopted in industry, par-
ticularly in the United States. The perception is that the cost of using formal
methods does not justify the benefits. The use of formal methods is difficult
to justify to clients and managers who typically do not understand the nota-
tion. Hence, there is a need for tools and techniques that make specifications
accessible to nontechnical users, and that reduce the cost of developing formal
specifications.

One way to approach these problems is through the use of executable formal
specifications. The ability to execute and validate specifications eases their devel-
opment, as specifiers can immediately check intuition about their specifications.
An executable specification can serve as a prototype of the final system, allowing
nontechnical users to interact with the specification and to provide feedback on
it. Clients and managers can also see the utility of an executable specification
as a test oracle. Unsurprisingly, many executable specification languages and
execution techniques have been developed [10, 11, 12, 13, 14, 15, 16, 17, 18].

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 66–77, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

Compiling Formal Specifications to Oz Programs 67

We have developed a system for executing SPECS-C++ specifications [9]
by compiling them to Oz [19, 20, 21] programs1. Our system requires no hand
translation, no explicit identification of the range of possible values for variables
in most cases, and also introduces almost no implementation bias into speci-
fications. We have also developed a formal semantics [8] and a graphical user
interface [22] for our system.

SPECS-C++ is similar to other model-based specification languages such as
VDM and Z in that operations are specified using first order pre- and postcondi-
tions written over a fixed set of model types. These types include C++ primitive
types, as well as tuples, sets, sequences, multisets, functions and maps. SPECS-
C++ is designed for specifying the interfaces of C++ classes, and so operation
signatures are given as C++ member function prototypes. The model types in
SPECS-C++ include references so that interface specifications can handle alias-
ing and object containment.

Figure 1 presents the specification of a C++ template class Table, which
allows references to values of any type to be stored and indexed by integer
keys. This type would most naturally be modeled as a function from integers
to value references, but we have modeled it as a sequence of tuples in order to
better demonstrate the kinds of specifications that can be executed. In fact, the
specification becomes much easier to execute if a function is used, as there is then
no need to use quantifiers and the sortKeys operation becomes nonsensical.

The domains section of the specification defines types for later use, while the
data members section gives the abstract data members used to model instances
of the class. The constraints section specifies any invariants that all instances
of the class must satisfy. Here, the invariant is that for any two tuples at different
indices within the sequence, the key values must be different (i.e. the sequence
of tuples properly represents a function)2. The abstract functions section de-
fines “specification only” functions that are not part of the interface of the class,
but are useful for specification purposes. The abstract functions presented here
respectively check that the table values are sorted by key, and that a particular
integer value is in the domain of the table.

The member function specifications (following public:) describe the inter-
face of the class that is available to client code. Angle brackets are used as
sequence constructors, and || is sequence concatenation. The modifies clause
specifies which objects can change from the prestate (before the operation exe-
cutes) to the poststate. The ^ is used to dereference an object in the prestate,
while ’ is used for the poststate value. The notation theTable^ (for example) is
a shorthand for self^.theTable. Note that the postconditions of lookUp and
sortKeys are highly implicit – they simply describe the return value (specified
as result) or poststate resulting from the operation with no indication of how

1 The system originally generated Agents Kernel Language (AKL) programs, and was
later ported to Oz.

2 SPECS-C++ specifications are intended for use as C++ header files, so quantifiers
(for example) can not be written as ∀ and ∃.

68 T. Wahls

Fig. 1. The SPECS-C++ specification of class Table

Compiling Formal Specifications to Oz Programs 69

this result is to be constructed. In particular, the postcondition of sortKeys
simply specifies that the poststate value of the calling object is a sorted permu-
tation of the prestate value. The postcondition of sortKeys is strong enough to
uniquely determine the poststate, assuming that the prestate satisfies the invari-
ant. The inDomain member function is provided so that client code can check
the preconditions of addEntry and lookUp.

Our compiler translates SPECS-C++ specifications such as this one to Oz
programs. The scanner for the compiler was generated using flex, and the parser
using bison. The remaining components of the compiler are implemented in
C++. All of the operations on the SPECS-C++ model types are implemented
in a library of Oz procedures (as a functor), which are called from the generated
programs. The library also includes the code for the graphical user interface (us-
ing the Oz embedding of Tk) and various utility procedures. Poststate values and
variables bound by existential quantifiers are represented by fresh Oz variables,
which are then constrained by the generated code. Additional information about
the translation and the library is presented in the following section. A complete
description of the translation is contained in [9], and a formal presentation of
selected portions of the translation can be found in [8].

2 Compiling to Oz

In this section, we describe how we have used various features of Oz in imple-
menting the specification execution system. We highlight features that have been
particularly useful, or that we have used in potentially novel ways.

2.1 Threads

In a formal specification, conjuncts and disjuncts should be ordered in the most
natural way for the specifier, or in a way that is intended to increase readability.
Of course, the order has no effect on the meaning of the specification. However,
in an Oz program, the order of statements in a procedure body and the order of
choices in a choice or dis statement has a tremendous impact on performance
and even on whether or not the program terminates. This issue is well known
in the logic and constraint programming communities, where it is referred to
as literal ordering [23, 24, 25]. Requiring the specifier to write specifications in a
particular order is an unacceptable form of implementation bias, so the specifi-
cation execution system must not rely on ordering properties of specifications.

Our primary approach to this problem has been to make liberal use of threads
– the majority of the library procedures that implement SPECS-C++ operators
are threaded. When called, these procedures block until their arguments are suf-
ficiently defined to permit execution. This greatly decreases the sensitivity of
the system to the order in which the specification is written – if a procedure
is called “to early”, it simply suspends and waits until enough of its arguments
are available to permit execution. Oz’s data-flow threads are ideal for this pur-
pose, as no code is required for this synchronization. Additionally, Oz threads
are sufficiently lightweight so that execution times remain reasonable, even for

o

70 T. Wahls

programs that create many hundreds of threads (as the programs generated by
our system often do).

For example, the procedure implementing the length operation on sequences
is threaded. The procedure takes two arguments (the sequence and the length)
and unblocks when either becomes known. If the sequence becomes known, the
procedure constrains the length. (If only some prefix of the sequence becomes
known, the procedure finds the length of the prefix and resuspends.) If the length
becomes known, the procedure constrains the sequence to contain that number
of free variables. Those variables can then be constrained by other parts of the
specification that refer to index positions within the sequence. Note that imple-
menting the length procedure in this manner makes it a constraint propagator
in the Oz sense.

It is advantageous to call such threaded library procedures as soon as they
could possibly perform some propagation. Calling such an operation too early
does no harm (it simply suspends), while calling it too late may drastically hurt
performance if unnecessary search is done. Hence, the specification compiler does
some explicit reordering to move up calls to threaded procedures. An alternative
to using threading in this manner is to reorder (unthreaded) statements/literals
based on data flow analysis (to ensure that a procedure can always execute at the
time that it is called). That has been implemented within the Mercury project
[25], but is considerably more complex than our approach.

2.2 Choice Points

In Oz, choice points are explicitly created (by the programmer) when search
is needed, and are later explored via backtracking. This contrasts sharply with
traditional logic programming languages such as Prolog in which any condi-
tional is expressed by creating an implicit choice point. Several of the proce-
dures in the library of the specification execution system create choice points
by using dis statements, and disjunction in a specification is translated to a
choice statement. The library procedures that create choice points correspond
to SPECS-C++ operators that are frequently used in underdetermined or non-
deterministic computations. For example, the procedure implementing sequence
indexing is implemented using dis to allow all indices where a particular ele-
ment occurs within a sequence to be found, or to allow a range of possibilities
for where an element is to be inserted into a sequence (depending on the mode
of use).

The reordering done by the specification compiler moves calls to library pro-
cedures that create choice points as late as possible in the generated programs.
The idea is to delay search until variables are as constrained as possible, so that
a search path that can not lead to success fails as soon as possible. This re-
ordering, in conjunction with judicious selection as to which library procedures
create choice points, seems to be effective in controlling the amount of search
done by the generated programs, and in reducing the sensitivity of the system
to the order in which the specification is written. We have tested the system
extensively with specifications that were intentionally written to cause search

Compiling Formal Specifications to Oz Programs 71

(for example, the sortKeys member function specification of Figure 1, the spec-
ification of a maximum clique member function for a graph class, . . .), and have
systematically permuted the order of conjuncts, the order of disjuncts, the order
of arguments where possible (i.e. to the = operator), and so on. In every case,
the system could execute specifications over large enough inputs for reasonable
testing purposes.

2.3 Computation Spaces

An Oz space is a complete encapsulation of a computation. A space consists of
a constraint store and one or more threads that operate on the store. In Oz,
the programmer can create and execute a space explicitly. Once the space be-
comes stable (can no longer execute), the programmer can query it to determine
whether it succeeded, failed or suspended (contains at least one blocked thread),
and the result of a succeeded space can be extracted. The idea of spaces in im-
plicit in other languages – for example, backtracking search in Prolog can be
thought of as creating one space for each of a set of rules with the same head,
and then executing the space corresponding to the first rule. If that space fails,
then it is discarded and the space for the second rule is executed (and so on).
However, Oz is unique in that spaces can be explicitly created and manipulated
by the programmer.

We have used explicit spaces in several ways in the specification execution
system. In one (possibly novel) use, spaces are used to determine whether all
threads resulting from a member function call have terminated. When a mem-
ber function is called, a new space is created, and the Oz procedure representing
that member function is executed within the space. If the space becomes sta-
ble and suspended, at least one thread blocked and could not be resumed. In
this case, the system reports to the user that the specification did not contain
sufficient information to permit execution. If spaces were not used in this man-
ner, explicit synchronization would be necessary to determine if some threads
remained blocked. This synchronization is not difficult in Oz (especially in pro-
grams written by an experienced human), but would have added some unneces-
sary complication to both the specification compiler and the library.

A nice property of spaces is that any binding of nonlocal variables is not
visible outside of the space (and its child spaces). The specification execution
system takes advantage of this property for executing assertions simply for their
boolean value (rather than as constraints). For example, the antecedent of an
implication is executed in a new space. If the space succeeds, the consequent
is treated as a constraint. If the space fails, the consequent is ignored. If the
space is stuck, the system reports that the specification is not executable. If the
antecedent were just treated as a constraint (not executed in a new space), an ex-
plicit choice point would be required so that any variable bindings that resulted
could be “backed out” in case the antecedent were false (i.e. treating P ⇒ Q
as ¬P ∨Q). We have experimented with both approaches and found creating a

72 T. Wahls

choice point for this purpose to be considerably less efficient in practice. Similarly,
a negated assertion is executed within a new space and simply succeeds if the
space fails and vice versa with no danger of determining nonlocal variables (that
correspond to poststate values of the specification). This is quite similar to the
behavior of the Oz not statement, but seems to be more general. We have found
cases where this approach allows a specification to be executed, while using a
not statement causes the thread to block.

Reification is another option for executing assertions for their value only, as
the value of the assertion would then simply be the value of the boolean variable
associated with it. However, this approach would require implementing reified
versions of all of the SPECS-C++ predicates (operations that return boolean)
and major changes to the structure of the generated programs. Additionally, it
is not clear that this effort would lead to significant performance improvements.

2.4 The User Interface

The specification execution system can run specifications from the command line
or via a graphical user interface (GUI). When running from the command line,
the desired variable declarations and member function invocations are placed
directly in the SPECS-C++ specification (.h) file. After the specification is
compiled, running it will display the state resulting from the sequence of mem-
ber function invocations, and the return value from the last member function
invocation (if the return type of the member function is not void). The default is
to display only the first solution, but all solutions can be generated by specifying
appropriate arguments to the specification compiler.

The GUI can be used to declare variables (including those that instantiate
template classes), to choose member functions to execute, to specify the actual
arguments in a member function invocation, and to step through all post states
that satisfy the member function specification. Figure 2 is a screen shot of the
interface being used to execute the Table specification of Figure 1. The specifica-
tion has been instantiated with string as the parameter type (note that strings
are represented as sequences of characters), and after adding several entries, the
sortKeys operation has been invoked.

SPECS-C++ references are displayed as arrows (i.e. pointers) in the inter-
face using a canvas widget. This allows aliasing (multiple references to the same
object) to be indicated by multiple arrows pointing to the same object [22].
Aliasing is a common source of errors and confusion in specifications (and pro-
grams!), so indicating aliases in this graphical fashion is extremely useful for
developing specifications. In Figure 2, it is immediately apparent that each of
the string objects s1 and s2 have been added to the table three times, and so
that a great deal of aliasing is present. The interface allows allows the user to
directly edit specification states, including adding and removing aliases using
the mouse. New objects (targets of references) can also be added directly. If
this functionality were not provided, building complex states for use in testing
specifications would be much more tedious.

Compiling Formal Specifications to Oz Programs 73

Fig. 2. The Graphical User Interface

2.5 Miscellaneous Features

Each specification is compiled to an Oz functor, and only the procedures im-
plementing public member function specifications are exported. This enforces
SPECS-C++ accessibility rules, as only these procedures are visible from client
test code and the GUI.

An existentially quantified variable of type int is translated to an Oz finite
domain variable if its domain is explicitly specified as a range of integers, i.e.:

\exists int x [1 <= x <= 10 /\ ...]

and the range is within the possible values of an Oz finite domain variable. As
each such variable is found, it is added to a single instance of an Oz class. This
instance is then used to distribute over all of these variables at at the same time
(after all constraints have been seen). The distribution strategy used determines
the order in which these variables are considered during search. In particular, the
execution system uses the built-in first fail distribution strategy, which means
that the variable with the smallest domain is considered first, then the variable
with the next smallest domain and so on. This strategy often explores a much
smaller search tree than a naive distribution strategy (simply considering the
variables in order of appearance in the program) would. For the first fail strategy
to be most effective, all finite domain variables should be distributed at the same
time. Hence, it is convenient to collect all such finite domain variables within
an instance of a class, as instances have state and can be updated. For similar
reasons, several data structures used by the GUI are implemented as classes.

Currently, the execution system does not take advantage of propagators for
finite domains. Propagators are operators or procedures that reduce the domains

74 T. Wahls

of finite domain variables without performing search, and thus often dramatically
decrease running times. For example, if the domain of variable X is {3, 5, 7} and
of variable Y is {1,2,3,4,5}, then the constraint X <: Y (using the propagator
<: in place of a less than comparison) immediately reduces the domain of X
to {3} and of Y to {4,5}. The search tree now has 2 leaves (rather than 15),
and so can be explored much more quickly. The execution system does not use
these propagators because they can only be used with finite domain variables
and constants, and we have found it difficult to test whether or not a variable is
a finite domain variable without introducing additional problems. However, this
is an important area for future work.

3 Conclusion

3.1 Future Work

Currently, the execution system does not handle inheritance in general and in-
heritance of specifications in particular. Additionally, the system does not check
invariants – they are parsed and typechecked, but never executed. We are cur-
rently working on a version of the system for the Java Modeling Language (JML)
[7] that will address these deficiencies.

We are aware that the use of dis statements has fallen out of favor within
some parts of the Oz community, and we are investigating how the dis state-
ments used in our system could be replaced by choice or or statements, or
(preferably) how choice points could be removed altogether. However, because
we are executing programs generated from specifications, we frequently do not
know and can not control the mode of use of library operations. For example,
the sequence index operation is essentially implemented in the library as:

proc {Index S N V}
dis N = 1 then

S = V | _
[] SR N1 in S = _ | SR

{Greater N 1}
then
{Plus N1 1 N}
{Index SR N1 V}

end
end

where Plus and Greater are threaded library procedures with the obvious func-
tionality. If the index parameter N is known, this procedure creates no choice
points, and so is much more efficient than a version using choice. If N is not
known, this procedure can find all indices where the value V occurs in the se-
quence S, or can insert V at any index within S (via backtracking). The problem
is how to achieve this combination of flexibility and efficiency without using dis.

We are currently attempting to reduce or eliminate the use of dis by taking
advantage of the search that is implicit for finite domain variables. For example,

Compiling Formal Specifications to Oz Programs 75

the index operation can mimic the standard FD.element constraint propagator
in a naive manner 3, i.e.:

proc {Index S N V}
thread

local L in
{List.length S L}
N::1#L
{List.nth S N V}

end
end

end

providing that the variable N is then included in distribution. FD.element can
not be used directly because the elements of the list are not finite domain vari-
ables. Preliminary performance results for this approach are encouraging, but
considerable work remains to be done to extend it to all library procedures that
currently use dis.

In general, we are interested in any technique that increases the range of
specifications that can be executed, or that increases the efficiency of the gen-
erated Oz programs and library code (without introducing implementation bias
into specifications, of course). Specific areas for further work include making
more sophisticated use of finite domain variables, incorporating finite set con-
straints, eliminating explicit choice points whenever possible, and improving the
constraint propagation done by the library procedures. We are also interested
in testing the system on a wider range of practical specifications in order to
determine what kinds of additional performance improvements would be most
beneficial.

3.2 Summary

We have developed a system that allows many formal specifications to be exe-
cuted directly. Our system can execute specifications that are written at a high
level of abstraction, so that executability does not compromise other uses (doc-
umentation, proof, etc.) of specifications. The generated programs and library
procedures take advantage of many features of Oz. Threads, constraint propaga-
tion, computation spaces and search are used heavily in finding post states that
satisfy specifications. The graphical user interface capabilities of Oz are critical
for enabling users to freely interact with specifications, and for displaying refer-
ences and aliasing directly. We have found Oz to be nearly ideal as a translation
target language for formal specifications.

References

1. Jones, C.B.: Systematic Software Development Using VDM. Second edn. Interna-
tional Series in Computer Science. Prentice Hall, Englewood Cliffs, N.J. (1990)

3 Thanks to Christian Schulte for suggesting this idea at the conference.

76 T. Wahls

2. Fitzgerald, J.S., Larsen, P.G.: Modelling Systems: Practical Tools and Techniques
in Software Development. Cambridge University Press (1998) ISBN 0521623480.

3. Spivey, J.M.: An introduction to Z and formal specifications. Software Engineering
Journal 4 (1989) 40 – 50

4. Davies, J., Woodcock, J.C.P.: Using Z: Specification, Refinement and Proof. In-
ternational Series in Computer Science. Prentice Hall (1996)

5. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996) ISBN 0 521 49619 5.

6. B-Core(UK) Ltd: B-Core website (2004) http://www.B-core.com/.
7. Leavens, G.T., Leino, K.R.M., Poll, E., Ruby, C., Jacobs, B.: JML: notations

and tools supporting detailed design in Java. In: OOPSLA 2000 Companion,
Minneapolis, Minnesota, ACM (2000) 105–106

8. Wahls, T., Leavens, G.T.: Formal semantics of an algorithm for translating model-
based specifications to concurrent constraint programs. In: Proceedings of the 16th
ACM Symposium on Applied Computing, Las Vega, Nevada (2001) 567 – 575

9. Wahls, T., Leavens, G.T., Baker, A.L.: Executing formal specifications with con-
current constraint programming. The Automated Software Engineering Journal 7
(2000)

10. West, M.M., Eaglestone, B.M.: Software development: Two approaches to anima-
tion of Z specifications using Prolog. IEE/BCS Software Engineering Journal 7
(1992) 264–276

11. Fuchs, N.: Specifications are (preferably) executable. Software Engineering Journal
7 (1992) 323 – 334

12. Gray, J.G., Schach, S.R.: Constraint animation using an object-oriented declarative
language. In: Proceedings of the 38th Annual ACM SE Conference, Clemson, SC
(2000) 1 – 10

13. O’Neill, G.: Automatic translation of VDM specifications into Standard ML pro-
grams. The Computer Journal 35 (1992) 623–624

14. Elmstrøm, R., Larsen, P.G., Lassen, P.B.: The IFAD VDM-SL toolbox: A practical
approach to formal specifications. ACM Sigplan Notices 29 (1994) 77 – 80

15. Fröhlich, B.: Program Generation Based on Implicit Definitions in a VDM-like
Language. PhD thesis, Technical University of Graz (1998)

16. Jackson, D., Damon, C.: Semi-executable specifications. Technical Report CMU-
CS-95-216, School of Computer Science, Carnegie Mellon University (1995)

17. Breuer, P.T., Bowen, J.P.: Towards correct executable semantics for Z. In Bowen,
J.P., Hall, J.A., eds.: Z User Workshop, Cambridge 1994. Workshops in Computing,
Springer-Verlag (1994)

18. Grieskamp, W.: A computation model for Z based on concurrent constraint reso-
lution. In Bowen, J.P., Dunne, S., Galloway, A., King, S., eds.: ZB 2000: Formal
Specification and Development in Z and B, First International Conference of Z
and B Users. Volume 1878 of Lecture Notes in Computer Science., York, UK,
Springer-Verlag (2000) 414 – 432

19. Mehl, M., Müller, T., Popov, K., Scheidhauer, R., Schulte, C.: DFKI Oz User’s
Manual. Programming Systems Lab, German Research Center for Artificial In-
telligence (DFKI) and Universität des Saarlandes, Postfach 15 11 50, D-66041
Saarbrücken, Germany. (1998)

20. Mozart Consortium: Mozart Programming System website (2004)
http://www.mozart-oz.org.

21. Van Roy, P., Haridi, S.: Concepts, Techniques and Models of Computer Program-
ming. The MIT Press, Cambridge, Massachusetts (2004)

Compiling Formal Specifications to Oz Programs 77

22. Wu, D., Cheng, Y., Wahls, T.: A graphical user interface for executing formal
specifications. The Journal of Computing in Small Colleges 17 (2002) 79 – 86

23. Marriott, K., Stuckey, P.J.: Programming with Constraints: An Introduction. The
MIT Press, Cambridge, Massachusetts (1998)

24. Struyf, J., Blockeel, H.: Query optimization in inductive logic programming by
reordering literals. In Horváth, T., Yamamoto, A., eds.: Proceedings of the 13th
International Conference on Inductive Logic Programming. Volume 2835 of Lecture
Notes in Artificial Intelligence., Springer-Verlag (2003) 329 – 346

25. Overton, D., Somogyi, Z., Stuckey, P.J.: Constraint-based mode analysis of Mer-
cury. In: Proceedings of the 4th ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming, Pittsburgh, PA, USA, ACM
Press (2002) 109 – 120

Deriving Acceptance Tests from Goal
Requirements

Jean-François Molderez and Christophe Ponsard

CETIC Research Center, Charleroi (Belgium)
{jfm, cp}@cetic.be

Abstract. Acceptance testing is formal testing conducted to determine
whether or not a system satisfies its acceptance criteria and to enable
the customer to determine whether or not to accept the system. An
Acceptance Test Generator has been built in Oz that receives as input the
formalized goal-based requirements of a system-to-be. In this framework,
we motivate our choice of the Oz programming language.

1 Introduction

Acceptance testing is formal testing conducted to determine whether or not a
system satisfies its acceptance criteria and to enable the customer to determine
whether or not to accept the system [1]. Acceptance tests are thus black-box
tests or specification-based tests performed by a customer unaware of architec-
ture and code aspects in contrast with code-based tests or white box tests which
look inside the code. Software testing is labor intensive and there is a need to gen-
erate these tests automatically. Most tools generating specification-based tests
use as main input an operational model and are based on model-checking (e.g.
[4]). However, it can be advantageous to generate tests from the requirements
themselves even in the absence of an actual operational model. This has at least
two advantages : the designer can sooner validate the requirements and the tests
produced can serve as plans for more detailed tests downstream the development
cycle. In what follows, we describe an Acceptance Test Generator built with the
Oz programming language and based on goal oriented requirements.

Goal oriented requirements engineering refers to the use of goals for require-
ments elicitation and elaboration. Goals are objectives to be achieved by the
system under consideration. They refer to functional or non functional prop-
erties and range from high level concerns (e.g. safe transportation for a train
control system1) to lower level ones(e.g. maintain door closed while moving).

In the KAOS methodology [2], the main elaboration process builds a goal
model, i.e. a tree where ancestor nodes referring to abstract (strategic/system-
wide) goals are successively refined into descendant nodes referring to more con-
crete (operational/local) goals. This refinement process can bear upon various

1 As running example for this paper, we will use a simple railway system.

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 78–88, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

Deriving Acceptance Tests from Goal Requirements 79

tactics known as refinement patterns [3] which help the designer in finding a cor-
rect set of children goals for a given goal. The refinement process goes on until
the leaf goals or terminal goals become realizable [6]. A realizable goal is a goal
whose satisfaction can be assigned as a responsibility to a software, hardware or
human agent. If assigned to an agent in the system-to-be, it is a requirement. If
assigned to an agent in the environment, it is an assumption. Besides require-
ments and assumptions, domain properties are properties in the environment
that hold independently of the system-to-be.

By formalizing goals, requirements, assumptions and domain properties it
becomes possible to check the validity of the refinements and to generate possible
scenarii of use of the future system. These scenarii can be used to validate the
goals and possibly to refine them further. Once the requirements become stable,
these scenarii take the status of acceptance tests.

The concrete acceptance tests generated from the formal properties are finite
sequences of states or traces where each state is a set of propositions holding in
that state. These traces are representative logical models of the properties and
are thus generated by satisfying them. The formal language used in KAOS is
the Linear Temporal Logic, abbreviated LTL [7]. The standard models of LTL
are infinite execution traces reflecting the behaviors of reactive and concurrent
systems as being ideally always ready to respond to requests. However, in a
testing context, the traces are finite and therefore we use a finite trace seman-
tics of LTL [5] to generate the tests. The syntax and the finite trace semantics
of LTL are described in section 2 where the choice of the semantics is further
motivated.

In section 3, the derivation process is detailed on a simple railway unload sys-
tem. This process relies on heuristics (1) to partition the set of possible histories,
based on the metaknowledge captured in the goal model and (2) to stress the
system with respect to the safety requirements. Both yield a set of constraints
on the system history. The problem of producing a trace can thus be translated
into a CSP problem and a constraint solver can be used to produce the actual
acceptance tests. Section 4 describes our implementation and explains why the
Oz programming language was chosen. Finally, in section 5, we summarize our
approach and open further research directions.

2 Background on Linear Temporal Logic

In addition to the usual first order logic operators (∧ ∨ ¬ →↔), classical linear
temporal logic (LTL) provides a number of temporal operators for the future: ◦
(next), � (always), � (eventually) and U (until)[7]. The dual past operators
can also be defined but will not be considered here. The following shorthand
notations will be used: P ⇒ Q ≡ �(P → Q), P ⇔ Q ≡ �(P ↔ Q) and
@P ≡ ¬P ∧ ◦P . The last one denotes a change of P’s truth value from P from
currently false to true in the next state; a similar notation is used in [4].

80 J.-F. Molderez and C. Ponsard

A standard LTL model is a function t : N+ → 2P for some set of atomic
propositions P, i.e. an infinite trace over the alphabet 2P , which maps each time
point (a natural number) into the set of propositions that hold at that point.
However, in the context of a goal model, the traces are logical models of re-
quirements and assumptions which are by definition realizable [6], i.e. properties
that can be implemented as operations. A necessary condition for realizability
of a property is that it must constrain the finite runs of its responsible agent.
Therefore a finite trace semantics defining what it means for a finite trace to
satisfy a LTL formula is adopted here.

In this finite trace semantics [5], each trace is regarded as an infinite station-
ary trace in which the last state is repeated infinitely. Assume two total functions
on traces, head : Trace → State returning the head state of a trace and length
returning the length of a finite trace, and a partial function tail : Trace→ Trace
for taking the tail of a trace. That is, head(e, t) = head(e) = e, tail(e, t) = t, and
length(e) = 1 and length(e, t) = 1 + length(t).

The satisfaction relation |= ⊆ Trace × formula defines when a trace t
satisfies a formula f , written t |= f , and is defined inductively over the structure
of the formulae as follows, where A is any atomic proposition and X and Y
are any formulae. In the case of state formulas that do not include temporal
operators, the semantics is:

t |= true iff true
t |= false iff false
t |= A iff A ∈ head(t)
t |= X ∧ Y iff t |= X and t |= Y
t |= X ∨ Y iff t |= X or t |= Y

In the case of formulas with temporal operators where the current state e is
not terminal, the semantics is:

e, t |= ◦X iff t |= X
e, t |= @X iff e |= ¬X and t |= X
e, t |= �X iff e, t |= X or t |= �X
e, t |= �X iff e, t |= X and t |= �X
e, t |= X U Y iff e, t |= Y or e, t |= X and t |= X U Y

In the case of formulas with temporal operators where the current state e
ends the trace, the semantics is:

e |= ◦X iff e |= X
e |= @X iff false
e |= �X iff e |= X
e |= �X iff e |= X
e |= X U Y iff e |= Y

The semantics of the ◦ operator reflects perhaps best the stationarity assump-
tion of last states in finite traces. Finite trace LTL can behave quite differently
from standard infinite trace LTL. There are formulas which are valid in the for-
mer but not in the later, for example: �(�A∨�¬A) for any atomic proposition A.

Deriving Acceptance Tests from Goal Requirements 81

3 Generation of Acceptance Tests

3.1 A Formal Requirements Model for a Train Docking System

In this section, we present a rather contrived example of a railway station man-
aging four blocks on which trains can move to be unloaded: an Accept block on
which the trains enter the station, a Wait block on which trains can wait until
the Unload block becomes available and an Out block.

The object model in figure 1 shows that there is only one relation, the relation
On between Train and Block. The Accept and Wait blocks have a signal Ok
authorizing the trains to leave these blocks to proceed to the Unload block.

In the KAOS methodology, this model is derived from a full goal analysis in
order to abstract only the relevant aspects of the problem. Those goals can be
divided in two main categories:

– progress goals, stating a state that the system has to reach during its history.
Figure 2 shows the refinement of the main progress goal for our system, ie.
that all incoming train will eventually come out unloaded.

– safety goals, stating invariants which have to be maintained throughout the
system history. Due to space limits, the goal analysis will not be shown here
but notice that one of the cardinality constraints of the object model is
related to such a goal (”there can be at most one train on a block”). Note
also that the other cardinality (”a train cannot occupy 2 blocks”) is a domain
property.

In acceptance tests, the input-output relation between the system-to-be and
its environment is considered. In our case, the system is composed of the Station
Manager software agent while the environment is mainly composed of trains and
their drivers.

Fig. 1. Object Model

82 J.-F. Molderez and C. Ponsard

Fig. 2. Refinement of progress goal

In figure 2, the goal model obtained by refining the main progress goal G1
stating that any train entering the station will eventually leave it, is shown. All
leaf goals appear to be assumptions as the progress of a train is the responsibility
of the train (driver), an agent in the environment.

In contrast, the Station Manager is mainly responsible of the following safety
requirements:

- Req1: It never happens that the two signals allow at the same time trains to
proceed to the Unload block.

Ok(Accept) ⇒ ¬(∃t : Train On(t, Unload)) ∧ ¬(Ok(Wait))
- Req2: When the Unload block is occupied, there is no signal allowing a train

to proceed to the Unload block.
∀t : Train On(t, Unload) ⇒ (¬Ok(Accept) ∧ ¬Ok(Wait))

Deriving Acceptance Tests from Goal Requirements 83

We will also consider the following domain properties for capturing the spatial
layout and making the temporal behavior more precise:

- Dom1: A train on the blocks Accept,Wait, Unload is a train which is loaded.
∀t : Train (On(t, Accept) ∨On(t, Unload) ∨On(t, Wait))

⇔ isLoaded(t)
- Dom2: A train can only enter the station via the Accept block.

∀t : Train @(∃b : Block On(t, b)) ⇒ ◦(On(t, Accept))
- Dom3: Unloading a train takes at least two time steps.

∀t : Train @On(t, Unload) ⇒ ◦(◦On(t, Unload))

Those requirements together with the progress assumptions and domain prop-
erties ensure that there will never be two trains on the Unload block. No schedul-
ing is performed and the responsibility of the occupation of the Accept and Wait
blocks by only one train is left to the environment.

3.2 Generation of Acceptance Tests

The covering problem, how to define the relation between tests and the model
from which to derive the tests, is a difficult one. One way to tackle this problem
is to use heuristics bearing upon the rich KAOS ontology that includes concepts
such as the refinement patterns, the responsibilities of agents, the obstacles and
conflicts. These heuristics can be represented as rules extracting from the model
additional properties used to select the best representative traces among all the
possible behaviors of the system. These best representative are the acceptance
tests and they will be generated by satisfying boolean constraints resulting from
the translation of the assumptions, requirements, domain properties and addi-
tional properties. In what follows, two heuristics are detailed : the first one bears
upon the case refinements in the goal tree while the second one aims at stressing
the system as much as possible. For all these tests, we assume a same initial and
final state where there are no trains on the blocks. A criterion to find a good
representative is to minimize its cost. An important cost element of a trace is
its length which will thus be minimized.

The complexity of the constraint satisfaction process is exponential in the
length of the traces, in the size of the formula and in the cardinality of the
product of the domains. This is an additional incentive to shorten the traces as
much as possible as well as to minimize the number of instances involved in the
acceptance tests.

Covering of the Case Refinements. The heuristics will first collect the sub-
trees in the goal tree that match the refinements by cases. A refinement by
cases follows the common pattern in which a father goal P ⇒ R is refined
into cases Ci ⇒ R where the Ci partition P . In the example on figure 2, the
refinement of G2 into G4 and G5 follow this pattern and the two cases are :
On(t, Accept)∧Ok(Accept) and On(t, Accept)∧¬Ok(Accept). These two condi-
tions partition the set of all the admissible behaviors into two classes. Had there
been additional refinements by cases in the subtrees of G4 and G5, these two
classes would have been further partitioned.

84 J.-F. Molderez and C. Ponsard

Fig. 3. Acceptance test derived from refinements by cases

Next, the heuristic creates, for each case, test specifications by adding the
corresponding case conditions to the concerned formal properties. By concerned
properties, we mean that only the properties present in the corresponding sub-
tree of a case will be retained in the corresponding test specification. The case
condition is the property that makes the test specification correspond to its class.
In our example, the case conditions are:

�(On(t#1, Accept) ∧Ok(Accept) for G4 and
�(On(t#1, Accept) ∧ ¬Ok(Accept) for G5
where t#1 is an instance of Train.

The initial and final state of the traces will also be included in these test
specifications. In the example, the initial and the final state are a same state
in which the substation is empty. As stated before, when trying to satisfy these
specifications, the shortest traces where the final state is reached as soon as
possible will be looked for. This is done by giving a preference to the presence
of a final state in a trace of a predefined maximal length.

The two test specifications are then fed to the constraint satisfaction engine
which outputs the two traces. Those are visually depicted in figure 3 using a
Message Sequence Chart style. It mainly shows a sequence of states. Each state
is specified as a (unordered) set of messages exchanged between the system and
the environment, in a way or the other following who is monitoring/controlling

Deriving Acceptance Tests from Goal Requirements 85

Fig. 4. Acceptance test stressing the system

that state information. Only messages carrying the state information delta with
respect to the previous state are shown. The left trace shows a scenario where
an incoming train is immediately accepted for unload, while the left trace shows
a scenario where it as to go through the Wait block.

Stressing the System. With the two preceding acceptance tests, the basic
logic of the system was covered. However, these tests are rather weak in the
sense that they only cover the assumptions refined by cases. To validate the
requirements that prevent two trains from being at the same time on the Unload
block, we make two trains t#1 and t#2 enter the station by feeding the additional
property:

◦(@On(t#1, Accept)) ∧ ◦(◦(@On(t#2, Accept)))

where t#1 and t#2 are two instances of Train.
Again, the two trains must leave the station as soon as possible. The resulting

acceptance test of length 9 is shown on figure 4 and is an intertwined combination

86 J.-F. Molderez and C. Ponsard

of the scenarii of figure 3: the first incoming train (T1, on the left lifeline) is
immediately accepted but forces a second train (T2, on the right lifeline) to
go through the Wait block until the Unload block becomes available. This kind
of complex interaction is precisely the kind of tests wished for evaluating the
system compliance to its requirements.

4 Implementation

As already mentioned, the very heart of the generation process is the transla-
tion of the formulas into boolean constraints that must be satisfied. Oz is a full
fledged programming language that includes constraint programming facilities,
ie. hard constraints expressing links (or relationships) among programmer de-
fined entities can be stated and a constraint solver program ensures that these
links are enforced. In our context, the entities are the components making up
the states in the traces and the links relate these components. For example, a
constraint could express that if a train is on the Unload block in this state, then
in the next state, the same train must be on the Out block. Besides these hard
constraints that must be enforced, weak constraints are optimization criteria for
the constraint solver. In our context, the weak constraint is that the solver must
look for a trace where the final state is reached as soon as possible. On figure 5,
a data flow diagram shows the architecture of the acceptance test generator.

The test specification is a pickled record containing the object model, all the
formal properties and the additional test data : number of instances, initial and
final conditions, possible case conditions and predefined maximal length for the
test. The formal properties are fed to the LTL Formula Parser while a Knowl-

Fig. 5. Architecture of the acceptance tests generator

Deriving Acceptance Tests from Goal Requirements 87

edge Base Builder processes the object model and outputs some dictionaries
mainly used for instances bookkeeping purposes. The Constraint Script Genera-
tor is a set of functions that generate and tells the constraints to the Constraint
Satisfaction Engine. There are two main functions : the first one tells the con-
straints obtained by recursively translating the parsed formula trees, following
the rules of the LTL semantics (see Section2) and the second one tells the car-
dinality constraints. Finally, the Constraint Satisfaction Engine generates the
shortest traces by branch and bound.

Alternatives to the Oz programming language are of course available to solve
the same problem. But we experienced Oz as the best compromise for ease of
programming and this, for three main reasons:

1. as already been mentioned, Oz is a full fledged programming language with
constraint programming facilities and there is no need to implement a bridge
between a mainstream language program on one side and a constraint solver
on the other one.

2. another reason which makes us prefer Oz to other solutions like the use of a
SAT solver or the precompilation of the formula into finite automata is the
ability to deal with weak constraints. The ability to provide the constraint
solver with search criteria to look for better solutions is essential in a testing
framework since tests must be somewhere the best representatives among all
the possible behaviors of a system. Every time there is a limit that may not
be exceeded in a requirement, a weak constraint can be stated to produce
an acceptance test corresponding to a behavior in which this limit is reached
as often as possible. In a railway context, for example, the limit would be
the distance expressed in number of blocks to maintain between successive
trains and the acceptance test would exhibit a number of trains entering a
station with a minimal distance between them.

3. a last reason is the natural combination in Oz of higher order programming
and constraint programming. Consider a cardinality constraint stating that
there may be between 0 and 10 trains on a block Bl. The following simple
Oz code takes care of this:

Again, this kind of constraints about integers would not so easily be han-
dled with a SAT solver or a finite automaton.

5 Conclusion

Acceptance tests have been automatically generated from a formal model of the
requirements. The generation algorithm receives as input a data and require-
ments model built with the KAOS methodology. Acceptance test specifications
are then built by applying different heuristics. These specifications partition the
set of all the possible behaviors by adding additional constraints to select the best
representative traces. The formal properties and the additional constraints are
then fed to a constraint solver engine which outputs the actual acceptance tests.

Starting from this, there are two directions to enhance the test generator. Up-
stream, a rule engine could be operated to apply the heuristics on the metaknowl-

88 J.-F. Molderez and C. Ponsard

edge stored in the requirements model. For example, conflicts in requirements are
often resolved by the introduction of boundary conditions. An additional heuris-
tic could be designed to select these boundaries and generate test specifications.
Downstream, if an operations model reflecting the transition relation among the
states is available, the acceptance test specifications can be used as specifications
of plans to generate more concrete tests which will show the explicit application
of the operations.

The toy example presented in this paper is an excerpt from a larger railway
signaling system including a level-crossing description. The model was built in
the context of the replacement of a large number of level-crossings by the Belgian
railway company. The initial specification is essentially an operational descrip-
tion leaving many critical goals implicit. Our plan is to validate our goal-coverage
heuristics on this real-world case. The test generator will also be integrated in a
larger requirements engineering toolbox, called FAUST, whose aim is to provide
early quality assurance for critical systems [8]. An interesting feature will be the
ability to animate the generated traces using a requirements animator providing
domain-based visualizations [9].

Acknowledgement

This work is financially supported by the European Union (ERDF and ESF)
and the Walloon Region (DGTRE). We also thank Andre Rifaut and Philippe
Massonet for their helpful comments in writing this paper.

References

1. IEEE Std 610.12-1990, IEEE standard glossary of software engineering terminology,
1990.

2. A. Dardenne, A. van Lamsweerde, and Stephen Fickas, Goal-directed requirements
acquisition, Science of Computer Programming 20 (1993), no. 1-2, 3–50.

3. R. Darimont and A. van Lamsweerde, Formal refinement patterns for goal-driven
requirements elaboration, 4th ACM Symp. on the Foundations of Software Engi-
neering, San Francisco, 1996.

4. A. Gargantini and C. Heitmeyer, Using model checking to generate tests from re-
quirements specifications, ESEC/FSE 99 Toulouse (France), LNCS 1687, 1999.

5. K. Havelund and G. Rosu, Rewriting-based techniques for runtime verification, To
appear in Journal of Automated Software Engineering. (2004).

6. E. Letier and A. van Lamsweerde, Agent-based tactics for goal-oriented requirements
elaboration, 2002.

7. Z. Manna and A. Pnueli, The reactive behavior of reactive and concurrent system,
Springer-Verlag, 1992.

8. The FAUST toolbox, http://faust.cetic.be, 2004.
9. H. Tran Van, A. van Lamsweerde, P. Massonet, and C. Ponsard, Goal-oriented

requirements animation, 12th IEEE Int.Req.Eng.Conf., Kyoto, September 2004.

Using Mozart for Visualizing Agent-Based
Simulations

Hala Mostafa and Reem Bahgat

Faculty of Computers and Information
Cairo University, Cairo, Egypt

{h.mostafa, r.bahgat}@fci-cu.edu.eg

Abstract. Scientists from various domains resort to agent-based simula-
tion for a more thorough understanding of complex real-world systems.
We developed the Agent Visualization System; a generic system that
can be added to a simulation environment to enrich it with a variety of
browsers allowing the modeler to gain insight into his simulation scenario.
In this paper we discuss how the various features of the Oz language and
the Mozart platform aided us in the development of our system. Of par-
ticular importance were dataflow variables, high-orderness, the support
for distribution and concurrency, the flexibility offered by QTk which
was crucial in generating browsers whose structure is only known at run-
time, in addition to a miscellany of features that were conductive to our
work. We also highlight some of the implementation difficulties we faced
and explain the techniques we utilized in overcoming them.

1 Introduction

Domains as varied as biology and mechanical physics have resorted to Agent-Based
Simulation (ABS) to capture the behavior of, and interaction between, entities in
their respective systems.Anagent canbe thought of as a software componentwhich
not only encapsulates code and data as in object-oriented programming, but can
also be pro-active, autonomous, adaptive and collaborative [14].

In ABS, a scenario of entities that interact with each other and with their
environment is modeled as a multi-agent system, hence the name Multi-Agent-
Based Simulation (MABS). A MABS usually involves agents of different types.
Each type represents a class of entities in the real-world system and captures
its relevant attributes and behaviors. Compared to simulation techniques which
assume that all instances of a certain entity are alike, ABS has the advantage of
being able to explicitly model the heterogeneity of real-world entities by allowing
entities of the same type to differ in their attribute values and behaviors [13].

The increasing demand for MABS by scientists foreign to the field of com-
puter science created a need for simulation environments that facilitate rapid
development of MABSs. One of the main facilities that should be provided by
such platforms is the ability to visualize the proceedings of a simulation sce-
nario from different perspectives without requiring the modeler to delve into
technicalities.

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 89–102, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

90 H. Mostafa and R. Bahgat

Visualization

Information visualization (IV) is a research domain that aims at supporting
discovery and analysis of data through visual exploration. Its principle is to map
the attributes of an abstract data structure to visual attributes such as Cartesian
position, color and size [2]. IV is one means of carrying out Exploratory Data
Analysis which aims at the manipulation, summarization, and display of data to
make them more comprehensible to human minds, thus uncovering interesting
trends and relationships. Some IV tools rely on an interface metaphor ; they
allow the user to operate on data in the same way he operates on things in real
life (e.g. the lens metaphor [11] where data is displayed differently when viewed
through different lenses, and the rubber sheet metaphor [8] which allows the user
to stretch parts of the display, thus revealing more details)

In this paper we illustrate how we used the Oz language, the Mozart de-
velopment platform [7] and the QTk graphical package [5] to implement the
Agent Visualization System (AVS); the first generic, distributed system specifi-
cally dedicated to the visualization of agent-based simulation scenarios [6]. The
AVS is used as an add-on to a simulation environment to equip it with a rich set
of visualization facilities offering a variety of textual and graphical browsers that
allow the modeler to detect trends and relationships in the simulation scenario.
Some techniques from IV were adapted and added to our system, while others
were devised especially to be used in it. Regardless of their origin, all visualiza-
tion techniques were thoroughly revised to make them generic enough to fit in
our generic system.

The structure of the paper is as follows: Section 2 discusses some of the chal-
lenges faced in visualizing agents and the requirements fulfilled by our AVS. Sec-
tion 3 describes the various browsers that make up the AVS while Section 4 out-
lines the high-level design of our system and its usage. Section 5 discusses some
implementation issues and the various Mozart features that are involved in them.
Some of the difficulties we faced are also mentioned, together with how they were
overcome. We conclude and briefly discuss areas for future work in Section 6.

2 Agent Visualization Challenges and Requirements

The issue of visualization is of primary importance in ABS. The modeler needs
to be presented with a view of the simulation that allows him to make and verify
hypotheses regarding relationships between the various entities in it. However,
the task of agent visualization poses major challenges, the most notable of which
is that an agent’s state is continuously changing, thus the data to be visualized is
dynamic rather than static. At the same time, the responsiveness of the system
is a key requirement, so those changes have to be visually reflected within an
acceptable time limit. The volume of data to be visualized poses another chal-
lenge since a large number of agents is typically involved in a MABS, each of
which has a set of attributes that the modeler may like to observe. Moreover,
the nature of simulation data is usually not restricted to variable-value pairs
with which traditional IV techniques are most effective. Rather, the simulation

Using Mozart for Visualizing Agent-Based Simulations 91

produces data concerning actions, events and communication between agents in
addition to variable-value pairs describing agents states. A visualization system
should therefore include means to visually represent this multitude of data types.

Our AVS attempts to handle these challenges. In addition, the following are
some requirements that are fulfilled by our system: In order to be usable in a
wide variety of MABSs, the AVS needs to be completely generic; it should not
require any a priori information about the particulars of the simulation scenario
being visualized (agent types, together with their attributes and attribute meta-
data, should be known only at run time), nor should it make assumptions about
the domain of the simulation. Another requirement concerns the flexibility of the
AVS. The user should have full control over the way his agents are represented,
whether textually or graphically. Moreover, the user should be able to specify
which subset(s) of agents he wants to observe in any given browser by choosing
agents by ID, type, or location, or by expressing interest in agents satisfying
certain criteria. In order to abide by the famous IV mantra ”Overview first,
zoom and filter, then details on demand” [10], the AVS is required, at all times,
to provide an overall view of the proceedings of the simulation scenario, as well
as allow the user to obtain details about any part of it. In order to both promote
collaboration and distribute the computational load, it is advantageous to have
a distributed AVS where observers can launch browsers from remote sites just
as easily as they would from a central site. Another requirement concerns how
often the display of an AVS browser is refreshed. Depending on the rate at which
interesting events happen in a simulation scenario, the modeler may choose to
be shown every single step of the simulation. Alternatively, he may only be
interested in every nth step. For any browser, the user should be able to set the
value of n, with the ability to freeze a view and create static browsers which
are only refreshed on demand. Finally, when running in real-time mode, the
AVS can skip the visualization of some older time units in favor of newer ones.
The modeler may then miss some important or rare events in the course of a
simulation. The AVS should therefore be able to run in playback mode where
the user can step through the simulation at leisure.

3 AVS Browsers

The AVS offers the following browsers which provide graphical and textual rep-
resentations of the simulation scenario (for more details, please refer to [6]).

• Lens browser: in Magic Lens filters [11] the lens metaphor is used for
filtration, as well as presenting alternative views, of the underlying data.
Our adaptation of the lens filter allows the user to set the acceptance
criteria for the lens, move it over the environment where his agents live,
and only view through it those agents satisfying the criteria.

• Labeling browser: this browser uses dynamic labels illustrated in Ex-
centric Labels [1] for agents in densely-populated areas where static labels
would occlude neighboring agents. The user moves a labeling region over
his area of interest and only the agents within this region are labeled (Fig-

92 H. Mostafa and R. Bahgat

Fig. 1. Dynamic Labeling in a crowded area

ure 1). When the user moves the region, the set of labeled agents changes
accordingly. Color is used to associate agents and their labels. We devised
a placement algorithm to make sure that a label is as close as possible to its
associated agent. In addition, the modeler can specify, for each agent type,
the agent attribute whose value will be used to label agents of this type.

• Aggregation browser: when the region of interest is too large to be
displayed in its entirety, the aggregate browser uses 1 cell to represent every
N x N sub-region in the original simulation landscape, where N is specified
by the user. All agents of a certain type in the sub-region appear as a
single agent whose attributes are calculated from those of individual agents
according to functions specified by the user (e.g. minimum, maximum,
average). Choosing to expand a marquee-selected region creates a new
browser showing the interesting region at normal size. The high degree of
flexibility offered by Mozart made it possible to treat aggregate agents the
same as normal ones; features like lens filters and dynamic labeling operate
on a grid of agents, regardless of the nature of the agents inside the grid.

• Dynamic Query (DQ) browser: DQ is a way to dynamically and
visually control the amount of data on display [4]. In a DQ display, the user
executes a query on his dataset and watches the results of this query. This
is done by associating with each data attribute an input control whose
manipulation changes the chosen values for this attribute. The sub-queries
formed by the controls are ANDed to form the overall query. In our DQ
browser (Figure 2), the controls are automatically generated based on
which attributes the user includes in the query (e.g. range slider controls
for numeric attributes and radiobuttons for categorical ones). As the user
manipulates these controls, the result pane instantly reflects the changes
by showing agents that meet the current query and hiding all others.

• Brushing-based browser: the notion of brushing [9] is used in this
browser to associate the sender of a message with its recipient(s). On
clicking an agent’s graphical representation, the same color is assigned to

Using Mozart for Visualizing Agent-Based Simulations 93

Fig. 2. A Dynamic Query browser with the controls on the left and result pane on the
right

this agent and all the agents with whom he exchanged messages during the
displayed time unit. A random color is assigned to the brushed entities.
In order not to mislead the observer, the original colors of the agents
are restored when brushing is no longer active, since color may encode
an attribute value. The browser acts like a normal browser in all other
respects and can be combined with any other feature.

• Fading browser: borrowing on ideas from Chat Circles [12], this browser
makes it easier for the user to identify the most active participants in a
conversation and observe the general pattern of communication. The color
of an agent brightens every time he “speaks” and gradually fades during
periods of silence. Optionally, a pop-up containing the message’s label can
appear next to an agent every time he sends a message.

• Conversation sequence browser: this browser focuses on conversations
held among a group of agents. Inspired by Protocol Diagrams [3], we use
a vertical line, called lifeline, for each agent, while messages are shown
as labeled horizontal lines from sender to receiver. The user specifies the
agents of interest and can later choose to add or delete a lifeline and
change the message field used as a label. Clicking a message textually
displays its details in a side browser.

• Text browser: the AVS allows the modeler to create text browsers that
direct their output to either a file or a textual browser. This is convenient
when the level of detail required by the user is high or when a persistent
record is needed.

94 H. Mostafa and R. Bahgat

4 High-Level Design

In deciding whether the simulation system and the AVS should operate syn-
chronously, we chose to allow them to go at their own paces, with the AVS
operating on the most recent simulation data and discarding older data. The
simulation should merely dump its output to files that the AVS can later pro-
cess. These files also act as useful recordings of simulation runs, thus allowing
the AVS to replay old runs.
The AVS therefore consists of the following four stages:

• The readers are notified by the mirror store to fetch data from files gen-
erated by the simulation system when the AVS is ready to process them.

• The mirror store (MS) uses input from the readers to construct a faith-
ful replica of the simulation system at a certain point in time, thus acting
as a local store for states/messages to avoid querying the simulation system
every time a browser requires data. The MS also calculates values of derived
attributes (as opposed to raw attributes which constitute the agent state
as reported by the simulation system) using the calculation rules specified
by the user (for example, the user can add the Boolean derived attribute
isEligible that is true if the following conditions on raw attributes hold:
(age == 18) and (gender == male)).

• The dispatcher is responsible for keeping track of the interests of the
various browsers. In a large simulation, it would be unwise to forward
data about every agent to every browser every time unit. Therefore, upon
creation, a browser informs the dispatcher of its initial interests which are
later used to decide which states/messages are sent to it and when. A
browser can later modify its registered interests (e.g. when the user scrolls
the display, the browser becomes interested in a different region of the
simulation and thus updates its interests).

• The browser renders data received from the dispatcher depending on the
graphical mapping specified for it (see next section). A browser can be
dynamic or static. The MS pushes data to dynamic browsers on a regular
basis whereas a static browser pulls data whenever the user explicitly asks
for an updated view by pressing the refresh button.

AVS Usage

To use the AVS with a simulation system, the latter should periodically output
the state of the simulation to a known location on the file system. It should also
establish a socket connection with the AVS over which it sends a token at the end
of every simulated time unit. When the AVS starts, it reads information about
the simulation (environment dimensions, agent types, attributes, attribute types
and legal values) from a simple text file. A GUI then asks the user to specify
any derived attributes and the rules that will be used to calculate them from
raw ones. To create a browser, the user provides a specification file containing
the browser’s type (e.g. text, aggregate), whether it is dynamic or static (and in
the former case, the refresh rate), region of interest and criteria for displaying

Using Mozart for Visualizing Agent-Based Simulations 95

agents, together with any additional features (e.g. lens filter). In the case of
graphical browsers, a GUI asks the user how each agent type will be represented
graphically. All these specifications can be stored to a file for later use with other
browsers.

5 Implementation Issues

5.1 QTk-Related Issues

The Graphical Mapping. For all graphical browsers except the Conversation
Sequence browser, the user specifies how an agent’s graphical representation is
calculated from its state. This is done by specifying a graphical mapping from
the values of the attributes making up an agent’s state to the values of various
graphical properties of the shape representing this agent (e.g. color can depend
on attribute a1 through an if-statement, width can be calculated by dividing
attribute a2 by 10 and height can be determined by the average of attributes a3
and a4).

The user specifies the mapping through a GUI that uses the Tree control
developed by Donatien Grolaux at the Université Catholique de Louvain. Nodes
at the first level of the tree are associated with graphical properties of the shape
chosen to represent agents of the type in question (Figure 3). Our customized
node inherits from Grolaux’s TreeNode to extend it with an awareness of what
kind of node this is (property, expression, if, then, end or elseif). Each of these
kinds responds differently when clicked. For example, clicking a ’property’ node
results in a dialog box asking whether the value should be calculated using a
constant, a mathematical expression involving constants and agent attribute
names or an if-statement. If the user chooses an if-statement, a sub-tree of if-
then-else/end/elseif nodes is attached to the ’property’ node. On clicking an ’if’
node, the user is asked to enter a Boolean expression. Clicking ’then’ and ’else’
nodes allows the user to either enter an expression, or choose to have a further
level of if-statements, in which case a new sub-tree of if-then-else/end/elseif
nodes is inserted.

The final form of the entire tree is parsed into a nested Oz record which, when
it is time to draw an agent of the type in question, is evaluated by replacing
attribute names with actual values of the agent’s attributes and carrying out
the operations specified by the sub-records. The result is a set of values used to
set the various properties of the shape representing the agent.

Implementing Dynamic Queries. QTk’s flexibility played an important role
in the dynamic generation of input controls for the DQ browser. Because QTk
allows the programmer to specify the window structure at run-time, it was pos-
sible to have the DQ browser consult the meta-data of the attributes forming the
query and construct the DQ window accordingly (i.e. decide on the types of input
controls based on the query attributes). However, we faced a certain difficulty:
the controls for which DQ was most famous are missing in QTk. Range-sliders
and alpha-sliders, used to manipulate numerical and ordered string attributes,

96 H. Mostafa and R. Bahgat

Fig. 3. The GUI for specifying the graphical mapping

respectively, are not part of QTk’s repertoire. We therefore used QTk’s canvas
items to hand-craft a general slider control that can be used as a range-slider
if initialized with a range of numbers, or an alpha-slider if initialized with an
ordered list of strings.

We used the callback technique to allow the slider to call methods in the out-
side world when certain user actions take place. This was greatly facilitated by
Mozart’s high-orderness; the callback procedures can be passed as arguments to
slider methods. These procedures are invoked when the user moves the maximum
and minimum pointers, represented by two triangles that respond to the appro-
priate mouse events. The trough of the slider is a rectangle whose tag responds
to mouse clicks by making the label and pointer jump to where the mouse is.
The assembled whole was wrapped in a class to hide the numerous details while
offering methods that are typically supported by slider controls (e.g. setting the
range of the slider, the increment of the pointers and, in case of an alpha-slider,
the list of ordered strings that acts as a value source).

Controls available in QTk were not used for DQ as-is. Each one was wrapped
in a class that is aware of the attribute it manipulates, the values it can take, and
the message that should be sent to the browser every time the user manipulates
it. These messages, expressing sub-queries, are used by the browser to determine
which agents will be added/removed to/from the result set. We therefore avoid
re-processing the entire new query and only consider “delta”; the part of the
query that changed as a result of the user’s last action. We believe this greatly
improved the performance of the DQ browser.

Using Mozart for Visualizing Agent-Based Simulations 97

Wrapping QTk’s Tags. QTk’s canvas tags are very basic entities that al-
low simple manipulation (e.g. scaling, moving, deletion) but do not provide for
more advanced manipulation (e.g. resizing, selection, dragging). To overcome
this shortcoming, it was necessary to create bindings to associate certain events
with certain actions to achieve the desired effects (e.g. bind the left-mouse-down
event to an action that makes the width of the tag’s outline thicker in order to
give the effect of being selectable). We therefore implemented BaseTag which is
a class that encapsulates QTk’s tag and keeps track of things like tagID, scale
and tag size in logical units. Also implemented are the mixin classes Resizeable,
Dragable, Selectable and Marquee, each of which can be mixed with BaseTag to
produce hybrid tags exhibiting a set of behaviors.

Callback functions were again extensively used. For example, in the lens and
dynamic labeling browsers, the lens and labeling region are instantiated from
a mixture of BaseTag, Resizeable and Dragable and initialized with callback
functions that should be called in cases of resizing and dragging. The lens’s
callback function receives the new lens region as a parameter and uses it to
apply the filter to agents in this region. The labeling region’s callback function
labels agents who have just gotten inside the region and removes the labels of
those who have moved out of it. In the case of the aggregate browser, marquee
selection uses a tag instantiated from BaseTag and Marquee whose callback
function updates the value of an attribute called RegionToExpand.

5.2 Synchronization-Related Issues

Synchronizing Data Rendering. As mentioned earlier, the AVS fetches sim-
ulation data from files generated by the simulation system when it is ready to
process them. To declare its readiness to receive a new batch of data, the mirror
store needs to make sure that all browsers have finished rendering the previous
batch. But the browsers render their data concurrently. Therefore, a browser
needs a way of finding out whether it is the last one to finish rendering, in which
case it should notify the mirror store so that the latter can fetch more data.

Dataflow variables markedly facilitated handling this issue. The following
pseudocode shows what the dispatcher needs to do when it sends data to browsers:

proc {SendToAll BrowsersList Token}
case BrowsersList of [Browser] then

{SendTokens Browser Token finishToken}
elseof Browser|OtherBrowsers then

declare T to be a free variable
{SendTokens Browser Token T}
{SendToAll OtherBrowsers T}

end
end

The initial call to SendToAll uses the value beginToken as Token. The following
variant of the famous Test-and-Set technique forms part of any browser, with a
Mozart lock to ensure its atomicity:

98 H. Mostafa and R. Bahgat

fun {TestAndSet T1 T2}
start atomic section

if T1 and T2 are both bound return true
else

T1 = T2
return false

end
end atomic section

end

When a browser finishes rendering its data, it sends its 2 tokens to the TestAnd-
Set function and notifies the mirror store if the function returns true. Therefore,
as they proceed concurrently, browsers unify the two tokens passed to them. The
last browser to finish will find that both tokens are bound, and can then notify
the mirror store that all browsers are done.

The Readers-Writers Problem. Operations on the mirror store are divided
into write operations (simulation data is fetched from files and written to the
store) and read operations (extracting the interests of browsers). The store is in
an inconsistent state while it is being written to because part of it reflects the
state of the simulation system at a certain time, while another part reflects the
state of an earlier time. The programmer is therefore faced with a readers-writers
problem.

To synchronize the various readers and writers, a Semaphore class was im-
plemented using dataflow variables and the built-in locking property of classes.
Three semaphore instances are needed: a readers mutex, a writers mutex and a
readers-writers semaphore. The scheme is as follows:

• The readers mutex is used to guarantee mutual exclusion during incre-
menting the counter in the following pseudocode (note that the first
reader/writer waits on the readers-writers semaphore and the last one sig-
nals it):

NumberOfReaders := NumberOfReaders + 1
If NumberOfReaders == 1 then

wait on the readers-writers semaphore

The same goes for these steps:

NumberOfReaders := NumberOfReaders - 1
If NumberOfReaders == 0 then

signal the readers-writers semaphore

• The writers mutex is used in a similar fashion. The difference between the
classical readers-writers problem and ours is that in our case, writers can
work in parallel since they write to non-overlapping regions of the store.

• The readers-writers semaphore is used to make sure that when one or more
writers are active, readers are blocked, and vise versa. It is waited on by the
first reader or writer, and signaled when the last reader or writer finishes.

Using Mozart for Visualizing Agent-Based Simulations 99

The Canvas Mutual Exclusion Problem. A graphical browser draws on a
QTk canvas that is accessed by more than one method for rendering, clearing
and destroying it. Without proper precautions, these methods can undesirably
interfere with each other’s actions. For example, if clearing takes place during
rendering, only the part that was rendered will be cleared, while other parts
continue to have graphical entities and yet will be considered clear. If the canvas
is destroyed while it is being drawn to, attempts will be made to access a non-
existent canvas resulting in an error. For these reasons, it is necessary to have
a canvas lock shared by all concerned parties. Two dataflow variables are also
needed; shouldClose indicates when the user wants to close the browser, and
canClose indicates when the canvas can actually be closed.

The pseudocode for the three relevant methods in a graphical browser is as
follows (the methods for clearing and rendering are written as one):

meth clear/Render
free canClose
obtain canvas lock

for all items to clear/render
if shouldClose then break
clear/render item

end
release canvas lock
bind canClose

end
meth RequestClose

shouldClose = true
end

An additional method is needed to allow an outside entity to know whether it
is ok to close a browser, thus destroying its canvas. The method is blocking; it
waits until it is ok to close the browser then returns.

meth Closable
wait on canClose

end

The combined use of dataflow variables, locks and the loop breaking mechanism
(through the ’break’ loop feature), all of which are provided by Mozart, allowed
the development of this simple, yet effective synchronization solution.

5.3 Miscellaneous Issues

The Use of Mixin Classes. The classes implementing the various AVS browsers
do not fit into a single inheritance hierarchy. Instead, a basic behavior is enhanced
upon using inheritance, with possible add-ins in the form of mixin classes im-
plementing features like the lens filter and DQ. This arrangement has a twofold
advantage: adding a new feature is greatly simplified, since we only need to in-
herit from the appropriate class(es) and add methods realizing the new feature.
In addition, combinations of classes can be created at run-time based on browser

100 H. Mostafa and R. Bahgat

specifications. This precludes the need to have static classes for all possible com-
binations of browser types and features. Thus no matter how many new features
we incorporate, it is left to the run-time combination of classes to add these
features to the appropriate base browser types as desired.

Distribution Issues. As mentioned before, the dispatcher sends interesting
data to the various browsers. To enhance uniformity, both local and remote
browsers create ports for themselves and register these ports with the dispatcher.
This has the advantage of making distribution transparent to the dispatcher, thus
allowing it to send messages on the ports without worrying where the browsers
actually reside.

One of the difficulties faced in allowing the dispatcher and browsers to reside
on different sites is the problem of passing objects between sites. In the Mozart
version we used (1.2.4), some of the commonly needed Mozart entities are sited,
whereas the Abstract Data Types (ADTs) that we use to encapsulate states and
messages depend on Mozart’s Dictionary and Array which are both sited. To
get over this problem, the ADTs were extended with a method that returns the
object’s contents in a simple unsited form (a record or a list). Those unsited
entities are sent to the -possibly remote- browsers who can later reconstruct the
original ADTs.

Improving Responsiveness. Throughout the AVS, various objects respond
to various user actions. For example:

1. Scrolling results in data being pulled from the dispatcher (data is pulled
lazily when a new region is revealed by scrolling or zooming out).

2. Moving a lens results in some agents being hidden (filtered out) and others
being shown.

3. Manipulating DQ controls changes the number of agents on display.

Because the user can perform actions in rapid succession, we should consider
whether it is necessary to respond to every single action. There are three alter-
natives matching the above three cases:

1. Queue the actions and process them in a First-Come-First-Served manner,
but before processing an action, check whether it is still relevant and if not,
disregard it. This is suitable in case 1 where the display should not scroll
to a region that was already scrolled out of view by a subsequent scrolling
action. Note though that in this case, new actions should not automatically
overwrite older ones.

2. Process only the most recent action (new actions should overwrite older
ones). This is suitable in case 2 where a user moving a lens filter very rapidly
only cares about its effect on the final region it is placed on.

3. Process every single action in a First-Come-First-Served manner but do so
asynchronously, i.e. the method call should not block until a particular action
is responded to. This is suitable in case 3 where every change in the controls
affects the agents in the result pane of the DQ browser.

Using Mozart for Visualizing Agent-Based Simulations 101

Alternative 2 was realized using Mozart’s attributes which are class members
that allow destructive assignment. One such member stores the action to be
processed, with new actions overwriting the value of the attribute, thereby dis-
carding older actions. Alternatives 1 and 3 were realized using Mozart ports
since they are, by definition, asynchronous channels on which messages appear
in the order they were sent. The difference between 1 and 3 is that 1 blindly
processes all the actions received by the port while 3 checks every action to see
whether it is still relevant.

6 Conclusion and Future Work

In this paper, we illustrated the use of Mozart and Oz in developing the Agent Vi-
sualization System; the first generic, distributed system specifically dedicated to
the visualization of agent-based simulation scenarios. The AVS provides several
graphical and textual browsers that utilize a variety of Information Visualization
techniques to offer a deeper insight into the simulation scenario being studied.
Throughout the AVS, we made use of various features offered by Mozart includ-
ing dataflow variables, threads, high-orderness, and many others. Mozart allowed
us to use approaches from the object-oriented, functional, logic, concurrent and
distributed paradigms in a smoothly-integrated way that would not have been
possible with another development platform.

There are a number of useful extensions that can be made to the AVS. Cur-
rently, the fact that the Mirror Store is centralized makes it a bottleneck. The
MS can be broken down by region, agents, or attributes. A central entity should
keep track of which agents/regions/attributes are on which site. How the dis-
tributed fragments can be managed is a research topic. Another enhancement is
to support landscapes that are not grid-like, possibly allowing the visualization
of arbitrary-shaped landscapes, as well as nested landscapes where each cell is
either a simple cell or a landscape.

Acknowledgements. The authors would like to thank Fredrik Holmgren of the
Distributed Systems Lab at the Swedish Institute of Computer Science (SICS)
for the numerous fruitful discussions with him during the design phase of the
AVS. We would also like to thank Donatien Grolaux of the Université Catholique
de Louvain for his patience with our technical questions regarding QTk.

References

1. Jean-Daniel Fekete, Catherine Plaisant: Excentric Labeling: Dynamic Neighbor-
hood Labeling for Data Visualization, Conference on Human Factors in Computer
Systems (CHI’99), ACM , New York, pp. 512-519, 1999.

2. Jean-Daniel Fekete, Catherine Plaisant: Interactive Information Visualization to
the Million, Symposium on Information Visualization (InfoVis’02), Massachusetts,
USA, October 2002.

3. Foundation For Intelligent Physical Agents: FIPA Interaction Protocol Library
Specification. Document number DC00025F, 2000.

102 H. Mostafa and R. Bahgat

4. Jade Goldstein, Steven F. Roth: Using Aggregation and Dynamic Queries for Ex-
ploring Large Data Sets, Computer Human Interaction (CIH’94) Human Factors
in Computing Systems, ACM, April 1994.

5. Donatien Grolaux, Peter Van Roy, Jean Vanderdonckt: QTk - A Mixed Declara-
tive/Procedural Approach for Designing Executable User Interfaces, Engineering
for Human-Computer Interaction (EHCI 2001), Canada, May 2001.

6. Hala Mostafa, Reem Bahgat: The Agent Visualization System: A Graphical and
Textual Representation for Multi-Agent Systems. In Proceedings of the Second
International Conference on Informatics and Systems (INFOS2004), Cairo, Egypt,
2004.

7. Mozart, http://www.mozart-oz.org.
8. Manojit Sarkar, Scott S. Snibbe, Oren J. Tversky, Steven P. Reiss: Stretching

The Rubber Sheet: A Metaphor For Viewing Large Layouts on Small Screens. In
Proceedings of the 6th Annual ACM Symposium on User Interface Software and
Technology, 1993.

9. Chris North, Ben Shneiderman: Snap-together Visualization: Can users construct
and operate coordinated views?, International Journal of Human Computer Stud-
ies, Elsevier Ltd., 2000.

10. Ben Shneiderman.: The Eyes Have It: A Task by Data Type Taxonomy for Informa-
tion Visualization. In Proceedings of the IEEE Symposium on Visual Languages,
pp. 336-343, September 1996.

11. Maureen C. Stone, Ken Fishkin, Eric A. Bier: The Movable Filter as a User Inter-
face Tool, Computer Human Interaction (CHI’94) Human Factors in Computing
Systems, ACM, April 1994.

12. Fernanda B. Viegas, Judith S. Donath: Chat Circles, Special Interest Group Com-
puter Human Interaction Conference on Human Factors in Computing Systems:
the CHI is the limit, Pittsburgh, Pennsylvania, United States, pp. 9-16, 1999.

13. Gerd Wagner, Florin Tulba: Agent-Oriented Modeling and Agent-Based Simu-
lation, The 5th International Workshop on Agent-Oriented Information Systems
(AOIS-2003), 2003.

14. M. Wooldridge: Intelligent Agents. In: Gerhard Weiss (Ed.). Multiagent Systems:
A Modern Approach to Distributed Artificial Intelligence. The MIT Press, 1999.

Web Technologies for Mozart Applications

Mahmoud Rafea

The Central Laboratory for Agricultural Expert Systems, Egypt
mahmoud@claes.sci.eg

Abstract. In this paper we describe two architectures and a methodol-
ogy for building Mozart applications using Web technologies and tools.
The first architecture is for standalone applications and the second is for
web applications. An implemented example is described.

1 Introduction

In the last decade, there were tremendous efforts to improve Web technologies
[1]. Those efforts led to great advances that impact not only the quality of
Web pages but also the development of application-user-interface (AUI) [2]. The
discussion of those advances is out of the scope of this article. The concern of this
article is to present an approach that enables Mozart programmers to develop
AUI supported by Web technologies and tools. AUI is critical to the success
of an application. AUI takes a lot of time and efforts in order to satisfy the
end-users needs. While web applications are becoming more and more popular,
the current Mozart implementation supports only Oz applets and Servlets. As a
result, Mozart web applications cannot compete in the area of web application
development, where efficient web tools that facilitate the development of elegant
and highly functional interfaces exist. To overcome this, all what we need is to
architect an integration approach and implement supporting code (components).

The work carried out, in this article, exploits the technologies provided by
Microsoft Internet Explorer (IE) and the Internet Information server (IIS). The
approach is still valid in other Internet Browsers (IB) and other web servers
(WS), but different technologies may be used. The reusable code that supports
this approach is designed and implemented as components that are available for
free. Both Mozart and C++ are used to develop those components.

The next section describes the conceptual architecture or approach. In section
3, details about the application development methodology are presented. An
implemented real example is briefly described in section 4.

2 Conceptual Approach

The main idea is that an application user-interface is a set of HTML web pages
that incorporate script code. Consequently, an Internet Browser (IB) is used
as an application-front-end. One can use available IBs. Interactions between

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 103–112, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

104 M. Rafea

an application that is written in Mozart and its user-interface are achieved
through remote procedural calls (RPCs). For instance, Mozart code can call
JavaScript functions to either initialize or update the user-interface content,
while JavaScript functions, which are activated through users actions, can call
Mozart procedures (proc, fun, meth) to do processing using user-interface con-
tent as an input. The crucial issue is the implementation of RPCs.

The RPC implementation can be simple or complex. This depends on the
requirements and specifications of the target application. In case of a stand
alone application, which means that Mozart executable and IB will be running
on the same machine, the implementation can be of a very simple type where
RPCs are passed as messages over a socket connection (Fig. 1). The Mozart
socket-support represents the server and enables one connection only. Once the
user closes the application IB, the Mozart executable terminates.

Fig. 1. Architecture of stand alone application

In case of a web application, a Mozart-executable will be running on a ma-
chine different from the machine running IB. Consequently, security issues com-
plicate the communication, e.g., firewalls. To overcome these security problems,
the application may interact with a Web Server (WS), possibly running on a
different machine. The WS in turn communicates with the IB client. This neces-
sitates the use of a web technology that can facilitate this scenario (Fig. 2). In
the presented work, the web technology used is the Active Server Pages (ASP).
Notice that if security issues are not important, the stand alone approach can be
used after being modified to accept multiple connections and making it run as
a server daemon. A similar approach has already been used before with Prolog
applications, but using Java applets as a front end [3].

It should be remarked that the current Mozart implementation for the module
Tk, in Microsoft Windows, is based on socket connection, too. Regardless of
the details of user-interface particulars, the main differences are that the user-
interface is not built in Mozart and interactions are indirect through another
programming language. Whether this is better or worse, the current approach
empowers Mozart programmers through using another very strong technology.

3 Implementation

The IB-socket-support and the WS-socket-support are both implemented as
COM components so that they can be easily reused. Both components can be
initialized to connect to a particular host-machine using a specified port number.

Web Technologies for Mozart Applications 105

Fig. 2. Architecture of Web application

The need for two components arises because in case of a web application, the
component which is running at the server side cannot execute directly a script
in a web page while an IB is running at the client side.

The Mozart socket support is implemented as classes to exploit the reuse char-
acteristic of object-oriented programming. The application class of both stand
alone and web application inherits the same class. The difference is in how objects
are initialized. In the next subsections, the Mozart socket support is described
followed by descriptions of stand alone and web application implementations.

3.1 Mozart Socket Support

Fig. 3. Classes of Mozart socket-support component and the relation between their
objects are represented using UML static structures

The purpose of this component is to collect code that will be used repeatedly
in different applications. Mainly, this component performs the following tasks:

– Creates a socket stream
– Accepts clients connections
– Reads messages from different connections and passes them to an application

class with the connection-parameter
– Sends messages
– Closes connections

106 M. Rafea

There are two classes defined in this component: Accepted and Browser

(Fig. 3). For each new connection an object of class Accepted is created. All
information necessary for sending messages is stored in that object. The appli-
cation developer needs to define another class that inherits from Browser. In
this class, he needs to define a method named execute/3 because all received
messages will be passed to this method with a reference to an Accepted object
related to that message and a physical port number that he can use to keep a
session history (Fig. 4). Notice that the procedure-call ComplaintAction/4 is
part of the example that will be explained below.

class ApplClass from Browser
meth execute(Accepted HostPort CmdArgs)
Cmd = CmdArgs.1 Args = CmdArgs.2 in

case Cmd
of bye then {self close}
[] complaint then
{ComplaintAction HostPort self Args

Accepted}
[] ... % rest of code here
else
{Exception.´raise´ error(cmd:Cmd arg:Args)}

end
end

Fig. 4. An application class showing a fragment of execute/3 method

3.2 Standalone Application

In Microsoft Windows an application’s main-HTML file can have the file-extension:
’hta’ to load it in an IB-Window. We refer the reader to the Microsoft documen-
tation to know how to customize an IB-Window according his/her needs [4]. This
is only a professional tip, but it is not important for an application’s functions.
One can use any of the available web-development tools to create a professional
look and feel of a user-interface. He/she can then writes the script code that is
used to respond to user’ actions. This may involve collection of data from this
interface to be sent to Mozart code for processing.

In Fig. 5, two JavaScript functions that can be used in any application are
demonstrated. The function initControl, which is intended to be generic,
uses two variables: Host and Port. Those variables may be defined globally and
assigned particular values. The default host defined in the COM component is
the local host (127.0.0.1) and the default port is 4321. The best time to call this
function is after the web page has been loaded. In Fig 3, we demonstrated how we
call this function and how the COM object is declared. Notice that professional
tools usually take care of defining COM objects.

Web Technologies for Mozart Applications 107

<html>
<head>
<HTA:APPLICATION See Microsoft documentation />
<script LANGUAGE="JavaScript">;
function initControl() {
control.port = Port;
control.host = Host;
control.init(window.document);

}

function sendToOZ() {
var cmd = arguments[0];
var msg ="<M><"+cmd+">";
for (var i=1; i<arguments.length; i++){
msg += "<ARG>"+arguments[i]+"</ARG>"
}

msg +="</"+cmd+"></M>";
control.sendToOz(msg);

}
</script>
</head>
<body onload="initControl()">
<OBJECT id="control" data="data:application/x-oleobject;base64,O =="
classid="CLSID:43348D1A-84E3-4ABA-A165-37534CDAE6AE"></OBJECT>

</body>
</html>

Fig. 5. JavaScript functions that can be used in HTA file of any stand-alone application

3.3 Web Application

The second function sendToOZ takes a variable length of arguments and con-
structs an XML string to be sent to Mozart’s executable part of the application.
It assumes that the first argument is a Mozart procedure and the rest are argu-
ments of that procedure.

The application Mozart code consists of the basic application method, the
socket initialization code, and the application code. The basic application method
is execute/3, (Fig. 4). This method can be used, as it is, in web applications.
The socket initialization code is shown in the procedure Start (Fig. 6). The
initialization of the object should provide the URI of the HTML file of the user-
interface. It may also provide the port number. If it is not provided the default
port (4321) is used. The method call isRunning/0 prevents the program from
termination until the user closes the IB.

Generally, in web applications the main problems (difficulties) are:

– Security measures taken to prevent intrusion (e.g., firewalls) and hence socket
connection will not be convenient

– Handling of multiple connections especially when the code is stateful.

108 M. Rafea

proc {Start}
W = {New ApplClass init(port:MyPort url:URI)} in
{W isRunning}

end

Fig. 6. The basic methods of an application

The use of web technologies, as for instance ASP, JSP, and PHP can overcome
the security problem through the use of WS to communicate with IB clients
while the Mozart application communicates with the WS. In this article, the
ASP approach will be described. In this approach, the sendToOZ function is
modified so as to send RPC messages to the WS. Fig 7 shows those modifications.

Furthermore, a script file that is run by the WS is created so as to function
as moderator (Fig. 8). Notice that the script file name (server.asp) is defined
within the body of the sendToOZ function. So the role of this script file is the
following:

1. accept RPC messages form IB clients
2. pass those messages to a Mozart application
3. receive messages from a Mozart application
4. pass those messages to IB clients to be executed

The next step is how to initialize the COM component, and how to ensure
that a Mozart application is running and ready for connections. In the current
approach, the ”global.asa” file, which is part of ASP, is used to achieve these
objectives. This file is a VBScript file that has a set of predefined subroutines.
The programmer may fill one or more of those subroutines with appropriate code.
In our case, the subroutine for Session_OnStart is used (Fig 9). Notice that
the COM component initialization takes the Mozart executable’s file name so
that it may initiate its execution when necessary.

function sendToOZ() {
var cmd = arguments[0];
var msg ="<M><"+cmd+">";
for (var i=1; i<arguments.length; i++){
msg += "<ARG>"+arguments[i]+"</ARG>"

}
msg +="</"+cmd+"></M>";
var nameStr="server.asp?msg="+msg; //(1)
var OZxml=new ActiveXObject("Microsoft.XMLHTTP");
OZxml.Open("POST", nameStr, false);
OZxml.setRequestHeader("Content-Type","text/xml")
OZxml.setRequestHeader("encoding", "windows-1256")
OZxml.Send(null);
window.execScript(OZxml.responseText);

}

Fig. 7. JavaScript function that can be used in web page of any web application

Web Technologies for Mozart Applications 109

<script LANGUAGE="JavaScript" runat=server>;
var control = Session("CONTROL");
var Msg = Request.QueryString("msg");
control.sendToOz(Msg);
Response.Write(control.GetCode());

</script>

Fig. 8. Script of the file: server.asp

<script LANGUAGE=VBScript RUNAT=Server>
sub Session_OnStart
dim WebCon
dim code
set WebCon = Server.CreateObject("ASPUI.control")
WebCon.port = 5555
WebCon.host = "localhost"
WebCon.init("c:\\sheep\\sheepWeb.exe")
set Session("CONTROL") = WebCon

end sub
</script>

Fig. 9. An example of global.asa file

proc {Start}
W = {New ApplClass init(port:5555)} in
{W webAccept}

end

Fig. 10. Web application initialization

The Mozart code related to initialization so that the application may accept
multiple connections is shown in Fig. 10. The HTML file that represents the
application user-interface is loaded as a web-page; hence it is omitted in the
object initialization. The method webAccept/0 loops forever so that it may
accept new connections.

4 Real Example Application

This example is a successful commercial product that is used by veterinary
doctors and students. It is an expert system for the diagnosis and treatment of
disorders affecting sheep and goats; hence its name is Caprine Clinical Expert
System. The user-interfaces for standalone and web applications are shown in
Fig. 11 and Fig 12, respectively. The only difference is that the IE menu, address
combo box, and icons are hidden in the standalone application.

In Fig 12, all the disorders that affect the species: sheep, which are newly
born, their sex is male, and the number of affected animals is sporadic, are

110 M. Rafea

Fig. 11. User-interface of Caprine Clinical Expert System standalone-application

Fig. 12. User-interface of Caprine Clinical Expert System web-application

displayed in the Differential Diagnosis list (lstDD). The properties that can
diagnose a condition are displayed in the Properties list (lstPr). Those two lists
are filled in response to pushing the button Diagnose. In Fig 12, the state is
displayed after applying further steps which are: 1) the selection of the property
(Abdomen wall) and one of its characteristics (distended), 2) pushing the upper
arrow to add this finding to the Positive Findings list with consequent update
of lstDD, and lstPr.

The pushing of the button ’Diagnose’ calls the function complaint that is
demonstrated in Fig 13 to show how the function sendToOz is called. In effect,

Web Technologies for Mozart Applications 111

the method execute/3 (Fig 4) demonstrates how this call is handled in Mozart
through calling the complementary procedure ComplaintAction/4. A fragment
of this complementary procedure is shown in Fig 14 to demonstrate how a script
function (Fig 15) is called from Mozart.

function complaint() {
clear(lstDD);
clear(lstPr);
clear(lstPrVs);
clear(lstPos);
clear(lstNeg);
sendToOZ("complaint",

"Species",lstSpecies.options[lstSpecies.selectedIndex].text,
"Age", lstAge.options[lstAge.selectedIndex].text,
"Sex", lstSex.options[lstSex.selectedIndex].text,
"No of affected animals",
lstAffected.options[lstAffected.selectedIndex].text
);

}

Fig. 13. JavaScript function executed in response to clicking the button ’Diagnosis’

proc {ComplaintAction HP O Args Accepted} Ds Ps in
...
{O sendToPage(Accepted ´fillList(lstDD,´#Ds#´);´)}
{O sendToPage(Accepted ´fillList(lstPr,´#Ps#´);´)}

end

Fig. 14. Mozart code showing how a JavaScript function is called from Oz

function fillList() {
var w = arguments[0];
for (var i=1; i<arguments.length ; i++){
var oOption = document.createElement("OPTION");
oOption.text=arguments[i];
w.options.add(oOption); }

Fig. 15. JavaScript function that is called from Oz in response to clicking the button
’Diagnosis’

5 Conclusion

In this paper, we have demonstrated how to develop Mozart applications us-
ing web technology for building their user-interfaces. Although a variant of this
approach has been in conjunction with other languages, we have proved its feasi-
bility and applicability for Mozart using a real example. In effect, we believe that

112 M. Rafea

the demonstrated approaches will empower Mozart programmers in developing
their applications.

The feasibility and applicability of the proposed approaches need to be proved
in different UNIX platforms. This will be the subject of future work.

References

1. Fraternali, P.: Tools and approaches for developing data-intensive web applications:
A survey. ACM Computing Surveys 31 (1999)

2. Myers, B., Hollan, J., et al., I.C.: Strategic directions in human-computer interac-
tion. ACM Computing Surveys 28 (1996)

3. ElBeltagy, S., Rafea, M., Rafea, A.: Practical development of internet prolog ap-
plications using a java front end. In: The 2nd International workshop on logic
programming tools for Internet applications, in conjunction with ICLP97. (1997)

4. Microsoft: (Html applications) http://msdn.microsoft.com/library.

Overcoming the Multiplicity of Languages and
Technologies for Web-Based Development Using

a Multi-paradigm Approach�

Sameh El-Ansary1, Donatien Grolaux2, Peter Van Roy2 and Mahmoud Rafea1

1 Swedish Institute of Computer Science, Sweden
{sameh, mahmoud}@sics.se

2 Université catholique de Louvain, Belgium
{ned, pvr}@info.ucl.ac.be

Abstract. In this paper, we present QHTML, a library for building
Web-based applications in Oz. QHTML provides the Oz programmer
with a basic set of abstractions through which creating Web-based in-
terfaces becomes similar to traditional graphical toolkits. In the mean
time, QHTML is an experiment investigating whether a single language
can replace the numerous ad-hoc combined languages/technologies cur-
rently used for building Web-based interfaces. QHTML is realized thanks
to the multi-paradigm features of the Oz programming language, which
supports symbolic data structures, a functional programming style, an
object-oriented style and concurrency via dataflow and lightweight
threads.

1 Introduction

Building Web-based applications requires the mastering of a number of lan-
guages/technologies (e.g. HTML, CSS, CGI, ASP, PHP, XML, etc..). Such lan-
guages and technologies were created to address different aspects on a by-need
evolutionary manner. The result is a plethora of tools that are fitted together in
an ad hoc fashion. Such languages/technologies include and are not limited to
the following:

– HTML [1] is the main language for describing a Web-based Graphical User
Interface (GUI) and it is a declarative language.

– A scripting language such as Javascript [2] or VBscript [3] for implementing
any client-side dynamic behavior. Such scripts are imperative and are usually
inlined inside the HTML code using a special tag to fit the declarative and
the imperative flavors together.

� This work was funded at UCL and SICS by the Information Society Technologies
programme of the European Commission, Future and Emerging Technologies under
IST-2001-33234 PEPITO.

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 113–124, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

114 S. El-Ansary et al.

– CGI Forms [4] provide a way to collect data from client-side. CGI Forms
are neatly integrated in the syntax of HTML. However, server-side scripts
written in ASP [5] or PHP [6] need to obtain the values entered by a user in
the forms and repeatedly generate new pages to provide responses to client-
side events. Server side-scripts in both ASP and PHP are also inlined with
HTML using special tags.

– Cascading Style-Sheets (CSS) [7] are used for uniform and reusable format-
ting. CSS syntax is declarative, however, yet another syntax that needs to
be learned.

– XML [8] and XSL [8] and the family of related standards are used for - among
other functions - separation of content and presentation. This, despite its
elegance, adds another burden of learning a new technology to achieve the
separation aspect.

This multiplicity of languages and tools has negative implications on Web-
based applications on the theoretical and practical levels. From a programming
languages point of view, Web technologies lack a comprehensive model that ac-
counts for all the aspects needed for a Web-based application. From the practical
point of view, this multiplicity makes it harder to gain experience in Web devel-
opment, as a developer needs to learn many technologies and languages and to
know how to combine them together to achieve desired functionalities.

2 The QHTML Approach

QHTML1 provides an integrated model in the form of a set of abstractions to
make it possible for the developer to build a Web-based application in the same
way as any traditional application. In that model, the Web browser is perceived
as a toolkit with well-defined geometry management capabilities.

QHTML is built as a layer over existing Web technologies such as Dynamic
HTML (DHTML) [9] and the Document Object Model (DOM) [10].

QHTML is a module written in the multi-paradigm symbolic language Oz
[11] and it is developed using the Mozart system [12]. Oz has support for declar-
ative, functional, logic, concurrent, object-oriented and constraint programming.
The diversity of paradigms in Oz has permitted the integration of many aspects
involved in authoring Web-based applications in one language. The declarative
paradigm in Oz is used to capture the declarative aspects such as interface de-
scription and style reuse. The functional and logic paradigms are used to provide
the imperative aspects of interactivity, namely event-handling and dynamism of
interface. The separation between the data and the presentation is enhanced by
the advantages of symbolic manipulation of data to achieve several presenta-
tions for the same data by using different mapping functions. Communication
between the client and the server is completely transparent to the application

1 A working implementation of QHTML could be obtained from:
http://www.info.ucl.ac.be/people/ned/qhtml.

Overcoming the Multiplicity of Languages and Technologies 115

Fig. 1. A Basic Interface in QHTML

developer and is perceived as handling events in the graphical user interface.
Abstractions for geometry management and more complete support for concur-
rency that accounts for threads is a consequence of having such an integrated
model.

3 The QHTML Functionality

QHTML models the user interface as a structure of record values. An interface
consists of a set of widgets, where each widget is specified by a record. Pro-
gramming a complex interface then becomes a matter of doing computations
on records. Since records are strongly supported by the Oz declarative pardigm,
these calculations are efficient and easy to specify. This model is based on a sim-
ilar model for higher abstraction for Tk [13] called QTK [14, 15], and it includes
the following components: Windows, widgets, events, actions, handlers. In ad-
dition to those components, the model has support for enhanced semantics for
geometry management, a more general concurrency support, and abstractions
for context-sensitive interfaces.

3.1 Windows and Widgets

A window is a rectangular area of the screen that contains a set of widgets ar-
ranged hierarchically according to a particular layout. A widget is a GUI prim-
itive that is represented visually on the screen and that contains an interaction
protocol, which describes its interaction with a human user. An interaction pro-
tocol defines what information is displayed by the widget and what sequences
of user commands and widget actions are acceptable. A widget is specified by a
record, which gives its type and its initial state. The following is an example:

Descr=td(img(src:"mozart.gif")
lr(

button(value:"Hi")
text(value:"Hello, please type here")))

Window={QHTML.build Descr}
{Window show}

In the above example, we have the Descr variable whose value is a record de-
scribing an interface where img, lr and label are widgets. The call QHTML.build

116 S. El-Ansary et al.

creates a window containing that interface (figure 1) and the show method
spawns the browser.

A stand-alone QHTML application uses the show method to spawn a browser
process. A different method is used in case the interface is to be remotely loaded
which is further discussed in section 4. The widgets lr and td are used to align
other widgets in horizontal or vertical fashions respectively and are covered in
section 3.4 about geometry management.

The importance of having interface descriptions represented by Oz records
lies in preserving the declarativeness of the GUI. Declarativeness simplifies the
mapping data to GUI. Such mapping can be accomplished by coupling tech-
nologies like XML and XSL. The contribution of QHTML is that the data, the
GUI and the mapping between them is all provided in one programming lan-
guage under the same model. Style uniformity and reuse are also supported in
the QHTML model by the look abstraction without any additional particular
syntax, e.g. the following code creates a look that makes a button red and a
label green and then applies this look to a GUI description.

MyLook={QHTML.newLook}
{MyLook.set button(backgroundColor:red)}
{MyLook.set label(backgroundColor:green)}
Descr=td(look:MyLook

label(value:"Hello world")
label(value:"Amazing colors !")
button(value:"Ok")
button(value:"Ok also")))

3.2 Handlers

A handler is an object with which the program can control a widget. Each widget
can have a corresponding handler. Consider the following example:

Descr=td(text(value:"Hello, please type here" handle:T))
Window={QHTML.build Descr}
{Window show}
. . .
X = {T get()}
. . .
{T set("A new text")}

By having the handle T, we were able to get and set the contents of the text
widget after the whole interface has been displayed. Observe that the variable
X is a server side variable while T is referring to a text widget which is in the
client/browser side. Nevertheless, this fact is completely transparent to the au-
thor of the Web-based application so he/she should no longer care about that
difference.

3.3 Events and Actions

An event is a well-defined discrete interaction made by the external world on the
user interface. An event is defined by its type, the time at which it occurs, and

Overcoming the Multiplicity of Languages and Technologies 117

possibly some additional information (such as the mouse coordinates). Events
are not seen directly by the program, but only indirectly by means of actions.
An event can trigger the invocation of an action. An action is a procedure that
is invoked when a particular event occurs. Each widget has an associated list of
actions. To illustrate actions, we can modify our simple example in the previous
section as follows:

proc {Foo}
X = {T get()}

end
Descr=td(text(value:"Hello, please type here" handle:T)

button(value:"Hi" action:Foo))

Here we can see that we have exactly the same technique for handling events
like HTML. Nevertheless, QHTML has the advantages of the integrated model
because the actions, which are of an imperative nature, are written in the same
language as the interface description, which is of a declarative nature. That was
made possible by the functional paradigm in Oz where references to the action
procedures are provided to the declarative description of the interface as values.
The transparency property is also inherited from the model because when an
author writes an action he/she does not differentiate whether this action is going
to affect a server- or a client-side entity. This is a more intuitive and high-level
way of performing interaction between the client and the server compared to the
submission of a CGI form or the reloading of a certain PHP or ASP page. That
transparency is a result of the integrated model implemented in one language.

3.4 Geometry Management

Current Web technologies lack a mature model for geometry management. It
is the task of the HTML developer to figure out how to manipulate tables and
frames to achieve a desired layout, which is a knowledge available only in the
hands of experienced HTML programmers.

To cope with that, the integrated model also provides higher abstractions for
geometry management. This is accomplished by having the top-down, left-right
widgets: td and lr for controlling the placement of widgets and tdframe and
lrframe for controlling relations between frames. That is in addition to a glue
value that defines a constraint on the space taken by a widget and its response
to resizing. The td and lr widgets are widget containers that pack widgets in a
top-down and left-right orientation respectively. By default a widget takes only
the space enough for it to be rendered and no more and is centered vertically and
horizontally with respect to the containing widget/window. That layout could
be further constrained by the glue feature that could be assigned the values n,
s, e and w for north, south, east and west respectively or a combination of them.
Gluing a side is asserting a constraint on that widget to let it always be tangent
to its neighbor at that side and to occupy all the space available in the direction
of that side. Gluing two opposite sides results in the widget taking all the space
available in the direction of both these sides. This is illustrated by the following
example:

118 S. El-Ansary et al.

td(glue:nswe
button(value:"Button1")
button(value:"Button2" glue:nse)
button(value:"Button3" glue:w)
button(value:"Button4" glue:we))

In figure 2, we see how the glue values affect the layout of the buttons.
Button1 is not glued, so it is centered in the containing widget td. The gluing
of Button2 and Button3 to east and west respectively made them take the
available space in the direction of the respective sides. The result of gluing to
opposite sides is exemplified in Button2 and Button4.

Fig. 2. Using Glue Values Fig. 3. Response of gluing to resizing

Figure 3 illustrates the response of the widgets to resizing. We see that the
constraints are maintained and that Button2 and Button4 grew when they
found available space.

It is also possible to have a grid structure where all widgets are organized in
lines or columns of the same size (figure 4). The lr (resp. td) widget supports
the newline special code which makes the following contained widgets jump to
a new line (resp. column) right below the previous widgets, keeping the same
column structure (resp. line) with the widgets above them. The following code
exemplifies the use of newline:

lr(button(text:"One" glue:we) button(text:"Two" glue:we)
button(text:"Three" glue:we) newline
button(text:"Four" glue:we) button(text:"Five" glue:we)
button(text:"Six" glue:we) newline
button(text:"Seven" glue:we) button(text:"Height" glue:we)
button(text:"Nine" glue:we) newline
empty button(text:"Zero" glue:we) continue)

The empty special code leaves an empty space in a line (resp. column) and
the continue special code spans a widget over several columns (resp. lines). The
same logic is extended for arranging frames using the tdframe and lrframe

widgets.

3.5 Concurrency

The concurrency support in dynamic HTML documents is limited to a main
event loop that serializes the events happening in the browser window in addition

Overcoming the Multiplicity of Languages and Technologies 119

Fig. 4. Using newline, empty and continue

to an ad-hoc way to have more concurrency by inserting new events in the
event queue after a certain time delay namely using Javascript timers. As a
consequence of the integrated model, we can offer a more general support for
concurrency by providing threads. In the Oz abstract machine, concurrency is
supported by the ability to have many light-weight threads in the same operating
system process [16]. The following is an example of how to integrate a thread
easily in a Web-based application.

Window = {QHTML.build td(text(handle:E))}
{Window show}
. . . %%Some manipulations
thread

{Wait X}
{E set(value:X)}

end
. . . %%rest of maninputlations

Where X is some dataflow variable. In that example, we have created a
thread that blocked on X, i.e, it waits until X is bound to a certain value and
then executes its manipulation on the handle E. Again, notice that, X could be
bound as a result of some GUI event or as a result of any other action in the
application.

3.6 Dynamic Window Subparts

Another high-level abstraction offered by the QHTML model is the placeholder
widget that is particularly useful for context-sensitive GUIs. The contents of
a place-holder can change dynamically during GUI execution. A placeholder
widget defines a rectangular area in the window that can contain any other
widget(s) at any time as long as the window exists.

One can declare at any level of the GUI description a placeholder by writing
placeholder(handle:P) where P is a handle to the placeholder. Afterwards, the
application can set the contents of that placeholder to contain an arbitrary inter-
face description and with the ability to change those contents later. Placehold-
ers are particularly useful for building context-sensitive GUIs because one could
specify a window with subparts that are sensitive to the available visual resources
and who change their contents accordingly, e.g. an application can do the follow-
ing: {P set(label (text:"Hello") button(text:"World"))} is filling the
placeholder with a label and a button after the detection of inadequate space, it

120 S. El-Ansary et al.

Fig. 5. Javascript-Oz RPC proto-
col architecture

Fig. 6. Architecture of an application
using QHTML

can change the contents of the placeholder to: {P set(button(text:"World"))}

where the placeholder is filled with a button only.

4 QHTML Architecture

The first requirement for the implementation of QHTML is a means of com-
munication between the Oz language and a Web browser. To achieve that, we
developed a simple Remote Procedure Call (RPC) protocol between Javascript
and Oz, which is an independent component that could be used separately.

4.1 Javascript-Oz RPC Protocol

As illustrated in figure 5, the protocol has two components, an Oz component
and a Javascript component. The Javascript component is primarily a Javascript
interface to a Java applet, which is providing the real implementation of the
protocol on the browser side. The Oz component is a module that could be
embedded in any Oz application.

The technique makes use of the tight integration between Java and Javascript
on the client-side. The Java applet provides socket communication with an Oz
application. Consequently, any client-side Javascript function can use the Java
applet to make RPCs to Oz procedures. Similarly, server-side Oz code can make
RPCs to Javascript functions.

QHTML is a module that an Oz application links to (figure 6). Its main
role is to hide all the details of the interaction with the browser. The steps for
delivering the GUI and achieving that goal are as follows:

1. The Oz application builds the GUI description using record structures. For
example something like: {Descr=label(value:"Hello World")}.

2. The Oz application requests the creation of the described GUI by executing
the following statement. {Window={QHTML.build Descr}}. Consequently,
the QHTML module transparently executes two operations:
(a) It creates a connection server, if it did not already exist, that waits

for incoming connections. A connection represents an instance of the
described GUI. Window is an object that maps to a particular connection
in the connection server.

Overcoming the Multiplicity of Languages and Technologies 121

(b) It generates a page containing the RPC Java applet and an empty HTML
display area, which we refer to by the connection page. Moreover, to facil-
itate the deployment of QHTML, a small HTTP server written in Oz was
embedded inside the module in order to deliver the HTML connection
page while its functionality is completely hidden from the application
developer.

3. At that point, there are two ways to display the GUI: 1) A Web browser
process is spawned locally by executing {Window show} where show is a
method in the Window object. 2) A redirection page to the connection page
is saved in a user-defined place by executing {Window save("<Publicly -

Accessible - Dir>")}. In that way, it is accessible to other remote ma-
chines. In both cases, the connection page is generated with the right pa-
rameters to the Java applet depending on whether the browser is going to
be spawned locally or will be used on a remote site.

4. Disregarding the Web browser spawning method, upon loading of the con-
nection page, the Java applet runs and establishes a connection with the
QHTML connection server. That connection becomes the communication
link between the Web browser and the QHTML module and remains trans-
parent to the Oz application.

5. Upon connection establishment, the QHTML module makes RPCs to gener-
ated Javascript functions that start to render the described interface using
Dynamic HTML. After that GUI events can trigger server-side Oz code.
Similarly, any events occurring on the Oz side can trigger GUI changes.

5 Conclusion

We have presented in this paper QHTML, a module for the Oz programming
language that provides a model for symbolic authoring of Web-based applications
through which the developer can treat the HTML document like a traditional
graphical toolkit. QHTML makes use of: 1) The power of expression of the multi-
paradigm language Oz. 2) An application architecture that realizes a transparent
interaction mechanism between the Oz language and the Web browser.

The following table summarizes the aspects needed for the development of a
Web-based application and enumerates the current languages/technologies that
support those aspects in comparison with the Oz language constructs for sup-
porting the same aspects in the QHTML approach.

In addition to the main advantage of the QHTML approach which is the
integration of multiple aspects in one model implemented in a single language,
two other features are realized:
1. A higher-level of abstraction for geometry management that simplifies the

construction of complex layouts and that has support for context-sensitive
interfaces.

2. A consequence of the integration of QHTML inside Oz is the ability to
use threads which are the more intuitive and natural means of modeling
concurrency. That is contrasted to the “hacky” incomplete way of using
Javascript timers for supporting animation and similar tasks.

122 S. El-Ansary et al.

Table 1. Summary of QHTML approach

Aspect Current Techs. QHTML Model

GUI description HTML Oz records
Events/Actions Client-side scripts Oz procedures & concurrency
Client/server communication CGI/PHP/ASP Oz-Javascript RPCs
Uniform styling CSS Oz records operations
Content-layout XML + XSL Oz records operations

6 Related Work

We compare in this section our work to other approaches of authoring HTML-
based GUIs through symbolic languages exemplified by Haskell [17] and Curry
[18]:

1. Haskell, a purely functional language, has an HTML library [19] that aims at
presenting Haskell data structures in HTML. For that, it encompasses some
abstractions for building tables with constructs like “above”, “below” and
“beside”. It also offers a mapping to all the HTML tags to make it easier for
the Haskell programmer to generate HTML code. Thus, the Haskell HTML
library is more of an interface rather than an abstraction layer in most of
the parts except for the tables. There is no particular support for interaction
other than by generating needed HTML tags.

2. Curry, a multi-paradigm language, provides an additional abstraction layer
to HTML interfaces via its “High-Level Server Side Web Scripting” module
[20]. In that module, syntactical details of HTML and passing of values with
CGI are wrapped and abstracted as HTML forms. This leads to a high-level
approach to server side programming that has the notions of event handlers,
state variables and control of interaction. Despite of that, it does not account
for any abstractions for better geometry management.

QHTML for Oz, shares with the libraries of Haskell and Curry the advantage
of being able to symbolically transform data into user interface entities. QHTML
shares the support for higher-level geometry management with the Haskell li-
brary but it has a more sophisticated model- based geometry abstractions that
completely hide the notion of tables and is general for all interface elements.
QHTML shares with the Curry library the support for interactivity and dy-
namism but without the administrative overhead for integrating programs with
HTTP servers and with the ability to supply the user interface for Web sites
or for stand-alone applications indifferently. Finally, QHTML has the advantage
letting a developer treat the HTML document as a traditional graphical toolkit.

7 Limitations and Future Work

QHTML has some limitations and missing features where some of them consti-
tute future work. Examples of those are the following:

Overcoming the Multiplicity of Languages and Technologies 123

1. In general, there is a performance penalty that is attributed to the fact that
all events in the GUI are routed to the QHTML module first and are han-
dled there, where communication is done over a stream connection between
the Java applet at the browser side and the QHTML module at the server
side. Nevertheless, The performance of a GUI constructed with QHTML is
application-specific, in applications where the GUI contains many widgets, a
QHTML implementation will perform better than a form-based implemen-
tation because changes will be done to individual widgets after an exchange
of small messages with the server that is in contrast to reloading the whole
page in a form-based approach.

2. QHTML has no support for vector graphics. The Scalable Vector Graphics
(SVG) [21] recommendation is the most prominent candidate for integration
within our model.

3. Due to the different implementations of standards in mainstream browsers,
not all features could be provided in all browsers and some of them have to
be implemented differently in different browsers. More work is planned to be
done to achieve the same result on different Web browsers.

References

1. W3C: HTML 4.01 specification (1999) http://www.w3.org / TR / html4.
2. Netscape: Javascript documentation (2004) http://devedge.netscape.com.
3. Microsoft: VBScript documentation (2004) http:// msdn.microsoft.com/ library/

default.asp? url=/ library/ en-us/ script56/ html/ vbstutor.asp.
4. ncsa.uiuc.edu: The common gateway interface (2001) http://

hoohoo.ncsa.uiuc.edu/ cgi/ overview.html.
5. Microsoft: Active server pages (2004) http:// msdn.microsoft.com/ library/ de-

fault.asp? url=/ nhp/ default.asp? contentid = 28000522.
6. PHP: PHP homepage (2004) http://www.php.net.
7. W3C: Cascading style sheet level2, CSS2 specification (1998) http:// www.w3.org/

TR/ REC-CSS2.
8. W3C: The extensible markup language (2001) http://www.w3c.org/XML.
9. Goodman, D.: Dynamic HTML: The Definitve Reference. O’Reilly & Assoicates

(1998)
10. W3C: Document object model (DOM) level 3 core specification (2001) http://

www.w3.org/ TR/ 2001/ WD-DOM-Level-3-Core-20010913/.
11. Smolka, G.: The Oz programming model. In van Leeuwen, J., ed.: Computer

Science Today. Lecture Notes in Computer Science, vol. 1000. Springer-Verlag,
Berlin (1995) 324–343

12. Mozart Consortium: The Mozart Programming System homepage (2004)
http://www.mozart-oz.org.

13. Ousterhout, J.: Tcl and the Tk Toolkit. Addison-Wesley (1994)
14. Grolaux, D., Van Roy, P.: QTk – an integrated model-based approach to designing

executable user interfaces. In: 8. Lecture Notes in Computer Science, Glasgow,
Scotland, Springer-Verlag (2001)

15. Grolaux, D., Van Roy, P., Vanderdonckt, J.: QTk – a mixed declarative/procedural
approach for designing executable user interfaces. In: 8. Lecture Notes in Computer
Science, Toronto, Canada, Springer-Verlag (2001)

124 S. El-Ansary et al.

16. Mehl, M.: The Oz Virtual Machine - Records, Transients, and Deep Guards. PhD
thesis, Technische Fakultät der Universität des Saarlandes (1999)

17. Hudak, P.: The Haskell school of expression: learning functional programming
through multimedia. Cambridge University Press (2000)

18. Hanus, M.: A unified computation model for functional and logic programming. In:
Proc. 24st ACM Symposium on Principles of Programming Languages (POPL’97).
(1997) 80–93

19. Gill, A.: The HTML library for haskell (1999) http:// www.cse.ogi.edu/ andy/
html/ intro.htm.

20. Hanus, M.: High-level server side Web scripting in curry. In: PADL’01. Volume
1990 of Lecture Notes in Computer Science. (2001) 76+

21. W3C: Scalable vector graphics (SVG) 1.0 specification (2001) http:// www.w3.org/
TR/ SVG.

P2PS: Peer-to-Peer Development Platform for Mozart�

Valentin Mesaros1, Bruno Carton2, and Peter Van Roy1

1 CS Department, Université catholique de Louvain, Louvain-la-Neuve, Belgium
{valentin, pvr}@info.ucl.ac.be

2 CETIC, Charleroi, Belgium
bruno.carton@cetic.be

Abstract. Recently, development of peer-to-peer (P2P) applications has been giv-
ing a paramount attention mostly due to their attractive features such as decentral-
ization and self-organization. Providing the programmer with the “right” platform
for developing such applications became a challenge. In this paper we describe
the functionality of P2PS, a platform for developing P2P applications in Mozart.
The P2PS platform provides the developer with a means for building and working
with P2P overlay applications, offering different primitives and services such as
group communication, efficient data location, and dealing with highly dynamic
networks. P2PS implements Tango, an efficient algorithm for constructing struc-
tured P2P systems. It is delivered as a library and already made public, being used
as underlying structure for different P2P applications.

1 Introduction

With the advent of popular peer-to-peer (P2P) applications and systems such as Gnutella
(gnutella.wego.com) and Napster (www.napster.com), the development of P2P systems has
become important and even a research topic. The main reasons for this “rush” is due
to the practical and useful features and objectives of P2P computing, e.g., scalability,
self-organization, decentralization. The very idea behind the peer-to-peer concept is the
fact that the processes participating in a distributed computing can exchange information
directly, without passing through a central point. Thus, they become peers. A peer can
be client, server, and router at the same time. Generally speaking, peers have equal
capabilities and eventually equal responsibility.

In this paper we present some of our ongoing work within the framework of extending
Mozart/Oz (www.mozart-oz.org) to reflect new programming abstractions that use differ-
ent distributed algorithms in order to offer P2P abilities. We describe the functionality of
the P2PS [1] peer-to-peer development platform. The P2PS platform provides the de-
veloper with the ability of building and working with P2P overlay applications, offering
him different P2P primitives and services such as group communication, efficient data
lookup, and fault-resilience. Although independent of the underlying P2P technology,

� This work was funded at UCL by the Information Society Technologies programme of the
European Commission, Future and Emerging Technologies under IST-2001-33234 PEPITO,
and at CETIC by the Walloon Region (DGTRE) and the E.U. (ERDF and ESF).

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 125–136, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

126 V. Mesaros, B. Carton, and P. Van Roy

P2PS currently only implements Tango [2]. Tango is a peer-to-peer algorithm that we
developed to better structure relative exponential networks to increase their scalability.
It extends and improves Chord [3], and thus it can be included into the category of
structured P2P systems (see Section 2).

Mozart already provides the programmer with an advanced interface for developing
distributed applications. However, the underlying distribution layer of Mozart is based on
a client-server model which may lead to scalability problems with respect to the number
of processes involved in the computation. There is ongoing work [4, 5] to reduce some
of these problems. On the other hand, the P2PS development platform inherits all its
functionality from the P2P algorithms. For example, it can provide full connectivity
(though, multi-hop) between all nodes within the network, and this with a logarithmic
number of physical connections per node. Moreover, the loosely coupled model together
with the management of highly dynamic networks make of P2PS the right choice to
develop P2P applications in Mozart.

Related to our work, there exists several research projects for P2P development
platform. One is the Chord project (www.pdos.lcs.mit.edu/chord) written in C++ and based
on the Chord algorithm. Another platform is FreePastry (freepastry.rice.edu) written in
Java and based on the Pastry [7] algorithm. As P2PS, both platforms are based on
a structured P2P system and aim to build scalable, robust distributed systems. They
both offer a programming interface based on the “common API” [6]. P2PS provides
rather a combination between layers tire 0 (i.e., key-based routing) and tire 1 (e.g.,
multicast and broadcast) of the “common API”. P2PS as well as Chord project and
FreePastry are in ongoing research and they all three are more or less similar with
respect to the services they offer. One thing that differentiate them from one another
is the programming language they are written in. Hence, we believe that, given the
expressiveness of Mozart/Oz, P2PS represents an attractive choice for writing P2P
applications with.

JXTA [8] and JXTAnthill [9] are two other development platforms for P2P appli-
cations. JXTA defines a set of basic protocols for a number of P2P services such as
discovery, communication, and peer monitoring. JXTAnthill is written on top of JXTA
and it implements algorithms rooted in complex adaptive systems, based on the behav-
ior of ants. The difference between P2PS and these two platforms is mostly based on
the P2P algorithms they each implement. While P2PS is based on algorithms offering
strong data lookup guarantees, this is not the case for JXTA and JXTAnthill.

The remainder of this document is organized as follows. We continue by briefly
recalling the principles of structured P2P systems. In Section 3 we present the main
functionality provided by P2PS. In Section 4 we describe the internal architecture of
P2PS. In Section 5 we show how to write a simple application for P2PS, and in Section 6
we describe a more realistic application that uses P2PS, and then conclude.

2 Structured P2P Systems

In this section we briefly recall the principles and notations of the structured P2P net-
works. Unlike unstructured P2P systems like Gnutella, whose overlay topology is ad-hoc,
structured P2P systems organize their overlay by following well specified rules in or-

P2PS: Peer-to-Peer Development Platform for Mozart 127

der to improve overall efficiency. A key challenge in building P2P systems is providing
means for efficient location of information distributed across a large number of processes
(or nodes) of a highly dynamic network. We take the Chord algorithm as a case study
since Chord is one of the first P2P algorithms based on the idea of Distributed Hash
Table – DHT, and also because Chord and Tango have many commonalities.

There are three main characteristics of a P2P structured system. First is the fact that
it is DHT-based, where key#value pairs are associated to nodes in the overlay network
depending on the “distance” between the key id and the nodes’ ids. (Hereinafter, we
will use the term node to refer both to the node itself and to its identifier under the
hash function, as the meaning will be clear from the context.). Both, nodes and keys,
take values in the same identifier space. In the case of Chord, the identifier space is
a virtual ring within which hashed node and data item key identifiers are spread by
using a consistent hashing. Second is the fact that the overlay network is well defined
in order to achieve logarithmic key lookup. With the advent of the DHT-based systems,
the main procedure in the P2P systems, i.e., the key lookup, is provided with clear
guarantees. For instance, while in Gnutella a flooding-based algorithm is used, leading
to network resource waste, in Chord and Tango the lookup for a key will not take more
than a certain maximum number of hops and messages, i.e., O(logN), where N is
the maximum number of nodes in the overlay. Third is the system’s resilience to node
failures and its ability to self-organize face to the network’s dynamics. That is, when
nodes join or leave the network, the nodes pointing to them will adapt their local routing
tables in order to guarantee overall efficient lookup. Furthermore, since the system is
totally decentralized, there is no risk for single points of failure to occur.

In Chord each node has a predecessor and a successor, representing references to
the previous and respectively the subsequent node in the identifier space. A key is stored
at the node succeeding the id of that key on the circular identifier space. Thus, the naive
lookup procedure for a certain key reduces to looking for the first node whose id is
greater than, or equal to, the id of that key along the identifier space, going clockwise.
To speed up the lookup process, each node maintains supplementary references (called
fingers) to some other nodes inside a routing table. Given an identifier space of size N ,
beside the references to its predecessor and successor, each node in the Chord system
stores logN fingers. Note that in structured P2P systems there is a tradeoff between the
size of the routing table at each node and the maximum number of hops a request would
take when looking for a key.

3 Functionality

In this section we present the main functionality provided by our P2P platform, called
P2PS: Peer-to-Peer System. The main functionality of P2PS is offered via the class
P2PS.p2pServices. The P2PS library provides the developer with the possibility of
building and working with P2P overlay applications, offering different P2P primitives
and services.P2PS is providing the distributed peer-to-peer applications with a means to
organize themselves in large scale structured overlay networks as well as providing them
with management and communication primitives whose costs evolve logarithmically
with the system size. Although implementing the Tango algorithm, P2PS offers an API

128 V. Mesaros, B. Carton, and P. Van Roy

that can apply to any structured P2P system. Thus, the programmer does not have to
worry about the underlying details. For more info on the API, the reader should refer to
the P2PS tutorial [1].

The main functionality provided by the P2PS library can be summarized as follows:
network management primitives such as create, join and leave a network, communication
primitives such as one-to-one, broadcast and multicast, and monitoring primitives. With
P2PS we intend to provide basic P2P primitives on top of which more specialized ser-
vices will be built. Dictionary functionality such as looking for the responsible of a key is
not provided as a basic primitive in P2PS. Instead, the main basic primitives are sending
and receiving a message from one node to another. Nevertheless, dictionary operations
can be immediately provided by using the communication primitives offered by theP2PS
library. Furthermore, we have undergoing research to extend the functionality of P2PS.

3.1 Create a Network

This functionality provides the programmer with the possibility to create a P2P overlay
network. It will create the first node of a network. What this actually means is the
fact that an AccessPoint is created for this node. (For the description of the access
point, see Section 4.1.) In order to create a network in P2PS, one will use the method
createNet. This method can be featured with different overlay network and node
parameters (e.g., the maximum number of nodes in the overlay, the id of this node),
as well as with parameters related to the local access point (e.g., IP and port number).
Then, after creating a peer node, its access point can be published, thus allowing other
nodes to connect and join the overlay network. Furthermore, the node is provided with
message and event input streams on which messages from other nodes and respectively
different node and network events will eventually be accessible.

3.2 Join a Network

When joining an overlay network, a peer node n needs to have the knowledge of an
AccessPoint of another peer node p already present in the respective overlay network.
The underneath protocols will actually join n to the network via the node p. Note that
node p serves only as an entry point to the network for node n. Generally, the position of a
node within the system does not depend on the entry point it used to get into the network.
The system will self-organize in order to guarantee overall efficiency (see Section 4.2
for details). In order to join a network in P2PS, one will use the method joinNet. This
method can be featured with different node parameters (e.g., the id of this node), as
well as with parameters related to the local access point (e.g., IP and port number). As
any other node in the overlay network, a new joined node will be associated an access
point. Furthermore, once inside the network, a node may receive messages from other
nodes from the network, and node and network events on the associated message and
respectively event input streams.

3.3 Leave a Network

Leaving an overlay network means implicitly disconnecting this node from all the other
nodes it is connecting to in the overlay network. Although, generally, a P2P network tol-

P2PS: Peer-to-Peer Development Platform for Mozart 129

erates node failures, it is expected that a node does a gracefully leave. Thus, underneath,
a node will run a simple protocol to disconnect it from its neighbors. In order to leave a
network in P2PS, one will use the method leaveNet. This will terminate the message
and the event streams.

3.4 Message Sending and Receiving

P2PS provides end-to-end communication primitives. That is, sending messages from
one peer node to another throughout the overlay network. Due to its organization, the
system performs efficient key based routing. Thus, a message from a node s to a node d
is routed throughout the overlay network according with the corresponding key lookup
procedure, where d is considered a key. In P2PS the message sending and receiving are
asynchronous. Nevertheless, the reliable send can be made synchronous. In the following
we describe how to send messages by using different communication primitives. In all
cases, receiving a message at a node implies reading the message input stream at that
node. The messages addressed to a node will appear on its associated message stream.

One-to-One Communication. This primitive is to be used to send messages from one
node to another one, throughout the overlay network. It is important to note that in P2PS
one can choose to send a message either to the node responsible for the key with value
d, or directly to the node whose id equals d. While in the former case the message will
eventually always reach its destination (since there will always be a node responsible
for any key), in the latter the destination may simply not be present. Both flavors of
message delivery are useful in practice. On the other hand, one can choose between a
best-effort send or a reliable send. In the case of a best-effort send, although generally
the message will reach its destination, there are situations when the message may be lost,
e.g., due to the overlay network dynamics. In the case of a reliable send the message
will be delivered to the destination; otherwise, its loss will be signaled to the sender. To
send one-to-one messages in P2PS, one will use the method send for best-effort send
and the method rsend for reliable send.

One-to-Many Communication. Another communication primitive that P2PS provides
is one-to-many, where simple and efficient broadcast and multicast is provided.
Both protocols employed are based on an idea [10] that exploits the tree structure of a
Chord-like system. In the case of the broadcast, the message is sent to all the nodes in
the network. In the case of multicast, the message is sent to a given list of nodes, i.e.,
explicit multicast. As in the case of one-to-one primitive, in the case of multicast one
can choose to send the message either to nodes’ responsibles, or directly to the nodes
whose ids equal those in the destination list.

Send to Successor. To increase its resilience, an application might decide to replicate
the content stored at a node to some of the node’s successors. The method sendToSucc
can be used to send a message to a number of successors of a node (whoever they be).

3.5 Monitoring

In a dynamic network, as in P2P overlay networks, being aware of the status and the
changes with respect to the peer node and the network might be very useful for the

130 V. Mesaros, B. Carton, and P. Van Roy

upperlying application. A good example is the application running on nodes with limited
resources. Hence, inP2PSwe decided to provide a set of events on the event input stream
associated with the peer node. These events indicate changes on the connections with
the node’s neighbors. This way, for example, if the successor of a node has changed, the
application may do replication on the new successor.

Another way of monitoring a node is offered by the method getStatistics. It
provides a set of information – most of it in the form of counters – about the status of
the node. For example, one can obtain information about the followings: the number of
incoming and outgoing connections, the number of data and control messages sent by
this node, the number of data and control messages forwarded by this node.

4 Architecture

The P2PS library is organized in three layers: COM, Core, and Services (see Figure 1).
They correspond to P2P services provided to the application: structural operations in
order to preserve overlay network properties, and message sending/receiving and channel
establishment operations.

4.1 COM Layer

The COM layer is in charge with interfacing with the underlying physical network.
Basically, COM provides the Core layer with communication functionality through a
common API, regardless the underlying transport protocol employed. The functionality
provided by COM is: access point creation, connection establishment, basic communi-
cation primitives, and fault detection.

Access Point Creation. We define an access point to be an addressable entry point of
a node. It is the COM layer who defines the form and the meaning of an access point.
Moreover, the representation of an AccessPoint will have a meaning only to the COM
layer. It can, for example, be defined as an ipAddr/socketNr pair, but its definition
can also be security-flavored. The access point creation primitive consists in creating an

Services
Core
Com

Mozart VM

Peer−to−peer application
Msg Evnt

P2PS

Fig. 1. The three-layer architecture of a P2PS node, and its interaction with the application and
the transport module (here provided by the distributed layer of Mozart)

P2PS: Peer-to-Peer Development Platform for Mozart 131

addressable entry point for a peer node. Then, a peer node can publish its access point,
allowing remote connections to it, and thus providing an access point to the overlay
network itself.

Connection Establishment. The connection establishment functionality offers the prim-
itives connect and disconnect for point-to-point connecting to and respectively dis-
connecting from a node, given its AccessPoint.

Basic Communication Primitives. The basic communication primitives provided are
send message and receive message. They are point-to-point primitives providing
reliable transfer over connections established via an AccessPoint.

Fault Detection. The fault detection primitives provide a means for detecting two
types of network anomalies relative to point-to-point connection, i.e., permanent faults
and temporary faults. Given the high dynamics of a P2P network, this functionality
is very important. For this end, P2PS uses indirectly the distribution functionality of
Mozart.

4.2 Core Layer

An overlay network topology can be viewed as a graph composed of arcs and nodes.
The Core layer provides high-level connectivity primitives between nodes, thus allowing
to add and remove arcs to and respectively from a node. The Core layer, as its name
indicates, is the central component of the P2PS library. It implements the Tango [2]
algorithm. Its purpose is threefold: implement node join and leave mechanisms, route
key based messages to their responsibles, and maintain the routing table and the successor
list regardless the nodes joining and leaving, thus guaranteeing overlay efficiency.

Joining/Leaving a Network. Given an entry point to the system (i.e., AccessPoint),
the join mechanism consists in finding the right place for the joining node within the
overlay network (i.e., between its successor and predecessor), and establishing a com-
munication channel with its neighbors. Obviously, the predecessor and successor of the
joining node will be affected by the join operation and therefor they must update their
references in order to reflect the network change. The particularity of the implemented
distributed join is the fact that it is atomic. Indeed, once the joining node n has located
its successor p, it asks p to insert it into the system. If a node receives an insertion re-
quest while inserting another node, it will delay the request until the current insertion
has finished. Furthermore, a node can perform an insertion only after being itself cor-
rectly inserted into the overlay. The leave operation is much simpler and consists only
in advertising its connected peers about the leave, and disconnecting from them.

Routing Messages. The message routing algorithm is based on the key lookup primitive
of the P2P algorithm employed (i.e., Tango in the case of P2PS). It consists in handing
the incoming message to the upper layer if it reached its destination (i.e., if the receiver
peer is responsible of the message identifier) or forwarding the message to the closest
peer entry of the routing table, according to the routing metric used.

Topology Maintenance. Another operation is overlay topology maintenance, or routing
table maintenance. This procedure is run at each node and consists in maintaining con-

132 V. Mesaros, B. Carton, and P. Van Roy

nections to well defined neighbors in order to ensure certain global guarantees (e.g., a
lookup for a key will not take more than a certain maximum number of hops). Instead of
correcting the routing table by probing periodically the neighbors, the routing table of a
node in P2PS is corrected when the peers are actually using the network (as described
in [11]). While this economic way is well suited for maintaining the routing table, it is
not for maintaining the successor list of a node. Since the reason to keep the successor
list is to preserve the network coherence (i.e., when the successor of a peer has failed,
the peer has to refer to the next peer in the successor list), a peer should be notified
immediately about all modifications of the r next succeeding peers (r is the length of
the successor list).

4.3 Services Layer

The Services layer is a kind of wrapper, building up the raw primitives offered by the
Core layer; operations needed to implement peer-to-peer applications. These operations
can fit into three categories. First is the overlay network management which comprises
system initialization, create connection access, and system join and leave operations.
Second are the communication primitives at the overlay network level which comprise
one-to-one message send, and message broadcast and multicast operations. Third are
the monitoring primitives.

The application can interact with the Services layer by invoking the corresponding
methods directly as well as by simply reading information on the two available input
streams: message and event associated with each peer node. The message and event
streams are a way of asynchronously obtaining information about the received messages
and respectively the node and network events.

5 An Example Using P2PS

Here is a simple example of a P2P application composed of three peers that uses the
P2PS library. The system is composed of three nodes node1, node2, and node3,
where node2 and node3 join the system through node1 and respectively node2.
In this example node3 sends an one-to-many message to node1 and node2, and
an one-to-one message to the responsible of key 42. For more clarity, we purposely
omitted the exception handling. The code runs directly in the OPI – Oz Programming
Interface.

The first node of a P2P system is always “special”. Actually, it represents a system
by itself. When creating a network (i.e., the first node) one can specify the network
parameters. In our example, we decided to work with the default network values provided
by the system. Nevertheless, we specify parameters for the node and its access point.
That is, we indicate we want nodeId=1 and that it should work on port number 3001.
Than, we run a loop over the message stream and displays the messages it receives. The
following is the code implementing node1.

declare /* node 1 */
[P2PS] = {Module.link [´x-ozlib://cetic_ucl/p2ps/P2PS.ozf´]}

% Create the first node (with id 1) in the P2PS network.

P2PS: Peer-to-Peer Development Platform for Mozart 133

OP2PS = {New P2PS.p2pServices
createNet(nodeConfig: nodeConfig(nodeId:1)

apConfig: apConfig(pn:3001))}

% Get the message stream and display each message received.
for M in {OP2PS getMsgStrm($)} do {Show M} end

Then, we create node2 with nodeId 16. This node joins the system via node1,
specifying its remote AccessPoint as the IP address and port number. Further on, it
runs a loop to wait and displays the messages sent to this node. The following is the code
implementing node2.

declare /* node 2 */
[P2PS] = {Module.link [´x-ozlib://cetic_ucl/p2ps/P2PS.ozf´]}

% Build an access point representation for the node to join to.
RAP = {P2PS.address2ap "127.0.0.1" 3001}

% Create a node with id 16 and join the network, using RAP.
OP2PS = {New P2PS.p2pServices

joinNet(remoteAP: RAP
nodeConfig: nodeConfig(nodeId:16)
apConfig: apConfig(pn:3002))}

for M in {OP2PS getMsgStrm($)} do {Show M} end

Finally, we create node3 without specifying its nodeId; the node will be pro-
vided with a random id. This node chooses to join the system via node2, speci-
fying its address and port number. Note that it could have chosen to join via any
other node within the network. Further on, it sends an one-to-one message to the re-
sponsible of key 42 (which can actually end up to any of node1 or node3), and
a multicast message to node1 and node2. The following is the code implementing
node3.

declare /* node 3 */
[P2PS] = {Module.link [´x-ozlib://cetic_ucl/p2ps/P2PS.ozf´]}

RAP = {P2PS.address2ap "127.0.0.1" 3002}

OP2PS = {New P2PS.p2pServices joinNet(remoteAP: RAP)}

{OP2PS send(dst:42 msg:anOzValue toResp:true)}
{OP2PS multicast(dst:[1 16] msg:hello)}

6 An Application Using P2PS

There are different applications that have been developed with P2PS. Some examples
(http://renoir.info.ucl.ac.be/twiki/bin/view/INGI/Peer2PeerSystem) are PostIt, P2P-Matisse,
and Community-Panel. In this section we describe the Community-Panel.

134 V. Mesaros, B. Carton, and P. Van Roy

Fig. 2. The Community-Panel GUI

Software development is rarely a solo task. The development process of a software,
starting from the conceptual design to the code implementation, is the concern of a team
involving a lot of people not necessarily located at the same place. Despite of its benefits,
collaboration is time consuming. Indeed, some studies reveal that the efforts dedicated
to collaboration among developers leave less than half of the workday to do any real
coding. Collaborative tools can help to increase the part of the day to do any real coding
while still supporting a high level of collaboration. Since from the individual developer’s
perspective the IDE (Integrated Development Environment) is where coding take place,
why not including collaborative code edition capabilities alongside the editor, compiler
and debugger?

The Community-Panel, coming with the peer-to-peer facilities provided by the P2PS
library, is a first step toward a collaborative IDE. Its main objective is to gather Oz devel-
opers concerned with a common problem in one community, and provide the community
with tools for real-time collaborative edition.

The targeted functionalities of the Community-Panel are threefold. First, the applica-
tion provides users with community membership information. This information can be
partial or complete, regarding the size of the community and scalability issues, but can be
extended at the user’s request. Second, the application facilitates the communication be-
tween developers by supporting chat-like and instant messaging facilities.This allows to
meet appropriated community or person according to the user matter, by involving social
connections via the friends management tools. Finally, the Community-Panel provides
a developing framework for exchanging code in text/binary format but also language
entity. For instance, one can imagine to develop an application by adopting a component
based architecture where the Community-Panel plays the role of real-time component
connector.

From Figure 2 one can see that the GUI is composed of 3 areas: the membership,
the received messages, and the submit. The membership area displays all the available
groups and the connected users. The received messages area displays all the messages
received during the session. The submit area is composed of a text box allowing to
write a message and to attach some Oz-code. Once the user received a message with
an attachment, she can retrieve the corresponding Oz-code by clicking on « Attachment

P2PS: Peer-to-Peer Development Platform for Mozart 135

» in the received messages area. The retrieved Oz-code will be inserted in the current
buffer of the OPI, just after the cursor’s position.

The friends management tools and the language entity sharing are not yet supported
but this does not prevent the usage of the Community-Panel. We have developed the core
functionalities allowing a first experimentation on collaborative IDE.

7 Conclusion

This document presents part of our ongoing work within the framework of extending
Mozart/Oz with new programming abstractions to offer P2P abilities. Throughout the
document we described P2PS, a P2P development platform for Mozart. We focused on
its functionality and on its architecture as well as on how to write simple applications.
The P2PS library is developed in Mozart/Oz and it implements Tango, a DHT-based al-
gorithm. From its functionality, one can see that P2PS is simple to use and very practical
to construct and work with large scale distributed applications; thus taking advantage
of the provided P2P services and primitives. Furthermore, given the expressiveness of
Mozart/Oz, we believe that P2PS is an attractive choice for developers.

The feedback – since one year now from its first release – we have been receiving
from different developers using P2PS allow us to continuously improve its API and
functionality. The P2PS library is available to be (and it is already) used for develop-
ing P2P applications as well as to be extended with more specialized services. More
encouraging, P2PS will be used as a distributed communication environment in further
research projects at UCL and CETIC.

P2PS is the first Mozart/Oz development platform offering primitives for building
P2P applications. It is delivered as a software package containing the source code together
with an API documentation and an example-based user tutorial. Last fall we made the
public release of P2PS on MOGUL (www.mozart-oz.org/mogul); the official archive of
Mozart libraries. Since then, P2PS has become known to researchers in the domain of
overlay networks and P2P systems, and its web site is daily visited.

References

1. Carton, B., Mesaros, V.: P2PS: Peer-to-Peer System Library. http://www.mozart-
oz.org/mogul/info/cetic ucl/p2ps.html (2003)

2. Carton, B., Mesaros, V.: Improving the Scalability of Logarithmic-Degree DHT-based Peer-
to-Peer Networks. Euro-Par – International Conference on Parallel Processing (2004)

3. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scalable Peer-to-
Peer Lookup Service for Internet Applications. ACM SIGCOMM – Special Interest Group
on Data Communication (2001)

4. Klintskog, E., Mesaros, V., El-Banna, Z., Brand, P., Haridi, S.: A Peer-to-Peer Approach to
Enhance Middleware Connectivity. OPODIS – International Conference On Principles Of
DIstributed Systems (2003)

5. Klintskog, E., Brand, P.: Extended Distribution Subsystem. D4.6 PEPITO deliverable
http://www.sics.se/pepito (2004)

6. Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a Common API for
Structured Peer-to-Peer Overlays. IPTPS – International Workshop on Peer-to-Peer Systems
(2003)

136 V. Mesaros, B. Carton, and P. Van Roy

7. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and Routing
for Large-Scale Peer-to-Peer Systems. IFIP/ACM Middleware – International Conference on
Distributed Systems Platforms (2001)

8. Traersat, B., Abdelaziz, M., Pouyoul, E.: Project JXTA: a Loosely-Consistent DHT Ren-
dezvous Walker. White Paper, Sun Microsystems, Inc. (2003)

9. Russo, F.: JXTAnthill. Master Thesis. Department of Computer Science, Bologna, Italy (2002)
10. El-Ansary, S., Onana, L., Brand, P., Haridi, S.: Efficient Broadcast in Structured P2P Net-

works. IPTPS – International Workshop on Peer-to-Peer Systems (2003)
11. Onana, L., El-Ansary, S., Brand, P., Haridi, S.: DKS: A Family of Low Communication, Scal-

able and Fault-Tolerant Infrastructures for P2P Applications. IEEE CCGRID – International
Symposium on Cluster Computing and the Grid (2003)

Thread-Based Mobility in Oz�

Dragan Havelka1,2, Christian Schulte1, Per Brand2, and Seif Haridi1,2

1 IMIT, KTH - Royal Institute of Technology
Electrum 229, SE-16440 Kista, Sweden

phone(+46 8 633 1609)
{dragan, schulte}@imit.kth.se

2 SICS - Swedish Institute of Computer Science
Box 1263, SE-16429 Kista, Sweden

{perbrand,seif}@sics.se

Abstract. Strong mobility enables migration of entire computations
combining code, data, and execution state (such as stack and program
counter) between sites of computation. This is in contrast to weak mobil-
ity where migration is confined to just code and data. Strong mobility is
essential for many applications where reconstruction of execution states
is either difficult or even impossible: load balancing, reduction of net-
work latency and traffic, and resource-related migration, just to name
a few. This paper presents a model, programming abstractions, imple-
mentation, and evaluation of thread-based strong mobility. The model
extends and takes advantage of a distributed programming model based
on automatic synchronization through dataflow variables. It comes as
a natural extension of dataflow computing which carefully separates is-
sues concerning distribution and mobility. The programming abstrac-
tions capture various migration scenarios which differ in how the source
and destination site relate to the site initiating migration. The imple-
mentation is based on replicating concurrent lightweight threads between
sites controlled by migration managers.

1 Introduction

In this paper we present a model and an implementation of strong mobility
based on distributed dataflow computing. We identify a set of essential primitives
and abstractions (Go, Pull, and Push) for explicit thread migration. Common
programming patterns for mobile applications are presented. The paper describes
how migration of thread-based execution states is implemented.

While the prototypical argument for strong mobility is load balancing, it is
vital for a broad range of applications: mobile agent platforms, network traffic
reduction, fault tolerance, etc. Strong mobility allows the migration of code,
data, and execution state (stack and program counter), as opposed to weak

� This work was partially funded at KTH by the European project PEPITO IST-
2001-33234.

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 137–148, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

138 D. Havelka et al.

migration which only requires migration of code and data [1]. The advantage
strong mobility offers over weak mobility is that migration can take place at any
time. Another important advantage is the fact that execution continues at the
next statement (the statement which follows the migration call). In the case of
weak migration the transferred code is accompanied by some initialization data
which is used together with a restart procedure.

The migration model described here is compatible with systems where compu-
tation is organized into multiple concurrent lightweight threads and distribution
is supported. Distribution includes both distribution of data and code (such as
procedures, classes, and objects).

This paper makes the general contribution of a model, programming abstrac-
tions, and an implementation architecture for thread-based strong mobility for
a distributed dataflow language. In detail, the contributions are as follows:

Thread-based Mobility. The paper contributes a model for strong mobil-
ity based on threads and distribution based on dataflow synchronization. The
model is an extension of a well-established model for distributed programming in
Mozart/Oz. The model insists on the fact that mobility is under explicit control
of the programmer.

Programming Abstractions and Application Scenarios. Based on thread-based
mobility, this paper contributes programming abstractions (Go, Push, and Pull)
which capture common programming idioms in the construction of mobile appli-
cations. It is shown how the abstractions can be used in prototypical application
scenarios.

Implementation Architecture. All programming abstractions are implemented
on top of a primitive for thread mobility. The paper identifies thread replication
together with migration managers as basic building blocks for an architecture to
implement thread-based mobility. The implementation is currently under testing
and will be incorporated into the official Mozart system.

Plan of the paper. The next section introduces the migration model. Section 3
introduces migration abstractions by presenting several application scenarios.
The following section presents a migration primitive as foundation for the mi-
gration abstractions. An implementation of the model is sketched in Section 5.
An evaluation is presented in Section 6 followed by discussion of related work.
Section 8 summarizes our results.

2 Thread Migration Model

In this paper we assume that programs execute concurrently by running typi-
cally many lightweight threads, where one thread is executed at time. Threads
synchronize automatically by using dataflow variables (also known as logic vari-
ables). Dataflow variables serve as place-holders for not yet known values. Threads
are assumed to be first-class language entities in that they can be passed as ar-
guments to procedures, stored in data structures, and so on.

A thread is a stack of statements. It executes by trying to execute its topmost
statement. A thread automatically suspends if its topmost statement suspends

Thread-Based Mobility in Oz 139

due to insufficient information available on its dataflow variables. Thread re-
sumption again is automatic: providing the value for a variable automatically
and fairly resumes all threads suspending on this variable. For more details on
our model of computation we refer the reader to [2].

We also assume that execution can be distributed across several sites of com-
putation: both data structures as well as code (in form of procedures, objects
and their attached classes) are distributed. A language entity has the same lan-
guage semantics whether it is used on only one site or on several sites (network-
transparency). If used on several sites, the language entity is implemented using
a distributed protocol. This gives the language entity a particular distributed
semantics in terms of network messages. For more details on our model of dis-
tribution, we refer the reader to [3, 4, 5, 6].

Migration. Thread migration is based on thread replication by creating an
exact copy (a clone) of the original thread at the destination site and destroying
the original thread at the source site.

When a thread migrates all data referred to by the thread’s statements is
migrated as well. This does not apply to resources. A resource is a data struc-
ture where its use is restricted to one site (such as standard output, standard
error, GUI). In this paper we restrict ourselves to strong mobility and assume
that resources are ubiquitous and dynamically rebound when threads are mi-
grated. We are aware that this is a severe restriction. Work on a generic model
for dynamic resource rebinding is under progress. The current model is based
on combination of transparent rebinding of standard libraries and the explicit
rebinding of other resources handled by the application programmer.

A thread executes at a location which we refer to here as site, for exam-
ple a virtual machine run by an operating system process. Migration is always
performed between source site and destination site. Thread migration implies
migration of the computation state consisting of a stack of statements. A state-
ment is a closure defined by a program counter that points to the next instruction
and an environment needed for executing the instruction.

Thread migration can be initiated from any site including the source and the
destination sites. On the source site thread migration can be initiated by the
thread itself or by some other thread.

3 Programming Patterns

The migration abstractions and their common areas of application are identified
in this section. The code fragments used are presented in Oz [7, 3]. To help the
reader, {P Arg} calls the procedure P with the argument Arg. thread <s> end
creates a new thread which executes the statement <s>. By X in a new dataflow
variable X is introduced.

Self Migration. The abstraction Go is useful for proactive mobile agents (that
is, agents which initiate their migration in anticipation of future problems, re-
quirements, or changes).

140 D. Havelka et al.

Consider as an example: a mobile agent MA moves between sites and collects
as well as offers information:

1. MA collects information about computing resources such as: processor power,
amount of available memory, available software components and libraries,
and available external hardware resources.

2. MA offers information collected on already visited sites to the local agents
(that is, the agents that are located on the visiting site).

3. MA gets a list of neighbor sites and chooses one of them for migration.
4. MA performs migration.
5. MA repeats the outlined execution.

A code example for MA is as follows:

proc {Collector Info ThisSite}
ListOfNeigh NextSite SiteInfo UpdatedInfo

in
SiteInfo = {CollectInfo}
{OfferInfo Info}
UpdatedInfo = {UdateInfo Info ThisSite SiteInfo}
ListOfNeigh = {GetNeigh}
NextSite = {ChooseNext ListOfNeigh}
/* Here comes the migration */
{Go NextSite}
/* Executes on site ‘‘NextSite’’ */
/* after migration has finished */
{Collector UpdatedInfo NextSite}

end

MA is started by spawning a thread which calls Collector appropriately:
thread {Collector StartInfo CurrentSite} end.

Please note that the Go abstraction has one argument representing the des-
tination site.

Execution Attractor. The abstraction Pull is used to move execution from
the source site to the destination site, and is invoked from the destination site.
It is useful for several reasons: traffic reduction, network latency avoidance, and
other resource-related issues.

An example of use in the case of traffic reduction can be implemented in the
following way. A procedure TrafficController takes a list of remote threads
and checks for each thread if it is worth moving. The decision is made based on
specified criteria (for example, measuring amount of network-traffic produced by
the thread). A matching code example is presented below:

proc {TrafficController RemoteThreads}
for T in RemoteThreads do

if {WorthMoving T} then
{Pull T}

end
end

end

Thread-Based Mobility in Oz 141

Please note that the Pull abstraction has one argument representing the
thread to be pulled to the current site. Note that this is in contrast to Go which
takes a site as single argument.

Execution Mediator. The abstraction Push is used to mediate execution be-
tween sites. An example of use is dynamic load balancing. For example: A dis-
tributed scheduler (DS) has access to a list of thread queues with one queue per
involved site. The goal is to optimize performance by moving threads from heav-
ily loaded sites to less loaded sites. The corresponding code example is presented
below:

proc {LoadBalance SiteList}
HighestLoadSite LowestLoadSite
LoadList Thr

in
LoadList = {GetLoads SiteList}
HighestLoadSite = {Max LoadList}
LowestLoadSite = {Min LoadList}
Thr = {ChooseThread HighestLoadSite}
{Push Thr LowestLoadSite}

end

Please note that the Push abstraction takes two arguments, the thread to be
migrated and the destination site. It can be invoked from any site including the
source and destination site.

4 Migration Primitives

The abstractions discussed earlier use thread replication as follows: after the
replica has been created, the original thread is destroyed.

Each site runs a migration manager which controls migration of threads.
Thread migration is performed by sending messages between migration man-
agers. The information needed to migrate a thread T is located at the source
site of T and the replication process starts there.

In the following MMs refers to the migration manager of the source site,
whereas MMd refers to the migration manager at the destination site.

Source Site. The thread T is suspended, its execution state is collected, serial-
ized, and sent to the destination site. The migration manager MMs waits until
an acknowledgment on thread reception issued by the migration manager MMd

is received. The acknowledgment confirms the existence of two copies of T , the
original thread at the source site and the replicated thread at the destination
site. Then, the original is terminated and MMd is informed that the replica can
resume.

Destination Site. When the serialized thread is received by MMd, it rebuilds
the thread Tr from the network representation by unmarshaling. After rebuild-
ing, an acknowledgment message is sent to MMs. Then MMd waits on a con-

142 D. Havelka et al.

3.0 3.1 3.4

2.0 => {Thread.suspend Thr1 }

2.4 => {Thread.terminate Thr1}

2.5 => Reply.terminationAck = terminated

2.1 => MT = {MarshalThread Thr1}

2.3 => {Wait Reply}

2.2 => {Send Site threadMigration(MT Reply)}

3.0 => {GotMessage threadMigration(MT Reply)}

3.1 => Thr = {UnmarshalThread MT}

3.2 => Reply = ack(TerminationAck)

3.3 => {Wait TerminationAck}

3.4 => {Thread.resume Thr}

2.1 2.42.2 2.3

Thr1

Thr2

Thr
3

Thr’
1

3.2 3.3

Thread States

2.0 2.5

Site

Site
2

1

message:

runnable:

suspended:

Fig. 1. Execution of {ThreadReplicate Thr1 Site2}

firmation that the original thread has been terminated. When termination of T
is confirmed, Tr is resumed.

MMs and MMd synchronize twice during thread migration. The first syn-
chronization is on the replica-thread creation and the second synchronization
is on the original-thread termination. Figure 1 shows the interaction and the
synchronization between migration managers.

Migration and Thread States. A thread can be either runnable, running, sus-
pended, or terminated. Thread migration can be requested on a thread regardless
of its state. The thread state after migration remains the same.

Running. A running thread cannot be migrated directly. There is only one run-
ning thread at each site. Thus, a thread which wants to migrate itself delegates
migration to another thread. The thread to be migrated is stopped first, and an-
other thread (the thread executing the migration manager) performs the actual
migration.

Runnable. A runnable thread waits to be scheduled for execution. The migra-
tion manager suspends the thread and performs migration. The original thread
at the source site is terminated. The replicated thread at the destination site is
created as suspended and is then resumed.

Suspended. This case is slightly more involved and exploits invariants on
dataflow synchronization. In a language with dataflow variables, a thread sus-
pends if its topmost statement cannot execute due to yet unbound dataflow
variables.

The thread is replicated and during replication all variables on the thread
stack are discovered and distributed. The original thread is terminated and the
replicated thread is resumed. When the replicated thread is scheduled to run
at the destination site, it will try to execute the same statement that caused
suspension at the source site. Thus, the thread rediscovers its suspensions on
its own. This allows to maintain suspension on dataflow variables locally (that
is, suspension information is not distributed across the net). This property is a
direct consequence of using dataflow variables for distributed computing [5].

Thread-Based Mobility in Oz 143

Terminated. A terminated thread has no stack and can not become runnable
again. Thus, its migration is not useful and the thread requesting migration is
properly informed.

4.1 Programming the Abstractions

With the help of migration managers and thread replication as discussed above,
the abstractions introduced in Section 3 can be programmed easily.

proc {Push Thr Site} %’THS’ is the home site
THS S % of the thread to be

in % migrated. ’GetSite’
THS = {GetSite Thr} % returns the current
{Send THS migrate(Thr Site S)} % site of the thread. ’S’
{Wait S} % is a synchronization

end % variable.

proc {Go RemoteSite} % The thread to be migrated
Sync Thr % ’Thr’ spawns a new thread

in % which performs migration.
Thr = {Thread.this} % ’Thr’ blocks on the Sync
thread % variable used to synchronize

{Push Thr RemoteSite} % on migration. ’Go’ returns
Sync = done % when the migration

end % process is finished.
{Wait Sync}

end

proc {Pull Thr} % ’MyThr’ is the thread in
MySite MyThr % which Pull executes.

in % ’MySite’ is the destination
MyThr = {Thread.this} % site.
MySite = {GetSite MyThr}
{Push Thr MySite}

end

Failures. Extensive mechanisms for fault tolerance are not yet implemented,
but we plan to adapt the model developed for the Mozart programming system.

5 Implementation

In this section we describe how strong mobility is implemented as an extension
to the Mozart programming system [8].

Our implementation is based on the Mozart implementation of Oz [9]. Lan-
guage entities can be transparently distributed between different sites (imple-
mented by operating system processes). Distribution of stateless data entities is
achieved by copying (replication). Consistency of distributed stateful entities is
implemented by distribution protocols [4, 5].

The replication primitive is based on marshaling and unmarshaling of threads
by extending the system. Marshaling a thread amounts to marshaling a stack of

144 D. Havelka et al.

statements where each statement consists of a program counter for code to be
executed and an environment of local variables.

The threads are extended with globally unique names which is the standard
procedure in the Mozart system used for globalization of the stateful entities.
The sites are made the first-class entities and are represented as Oz ports. Thus,
the sites are input communication channels used by the migration managers.

One important design decision in Mozart to make marshaling simple is that
only values are marshaled. To comply with that, program counters in stack
entries are translated to a pair of procedure and relative offset of the PC from the
start of the procedure. This construction ensures that only complete procedures
are marshaled and also that absolute and site-specific addresses are translated
into relative and hence site-independent values.

All values are first-class including procedures, objects and classes. A proce-
dure accessed by a thread is transferred only once for each thread. Migration of
another thread that has the same procedure reference leads to a second transfer
of the same procedure. However all distributed stateful entities have globally
unique identifiers which means that procedures (and other stateful entities) are
represented at most once at each site.

6 Evaluation

The evaluation scenario used here is inspired by the paradigmatic mobile agent
evaluation (see [10]). First, we compare the performance of the mobile agent
model built on top of thread-based mobility with the client-server model. Then
we compare the performance of two implementations of the mobile agent model:
one is based on the Mozart implementation and the other is based on the NO-
MADS [11] implementation.

The first test is performed on a single processor machine (Pentium 750 MHz,
384 MB RAM) running the Linux Gentoo 2.4.19-gentoo-r5 operating system. It
is repeated 10 times and the standard deviation was smaller than 0.2 percent.

The second test is performed on a single processor machine (AMD Athlon
XP 1700+, 512 MB RAM) running the Windows 2000 operating system (the
NOMADS system is only available for the Windows platform). It is repeated 10
times and the standard deviation was smaller than 0.3 percent.

The task of the application is to collect a list of hotels with phone numbers
in one town at a customer site Sc. Two database servers are consulted: The
hotel database server H at the site SH to obtain a list of available hotels in the
specified town; the phone database server P at the site SP to obtain a phone
number of each hotel from the list, one at time.

6.1 Client-Server Versus Mobile Agent

Client-Server. The client at the customer site sends a hotel list request reqh

to the H server. After the list has been received, the client sends one request
reqp per hotel to the server P to obtain telephone numbers. The total time for

Thread-Based Mobility in Oz 145

Table 1. Mobile Agent vs. Client-Server in the information collection

Number of hotels
1 10 20 30 40

Client-Server (ms) 80 370 710 1040 1380
Mobile Agent (ms) 410 410 410 410 440

(a) On a WAN

Number of hotels
10 20 30 40 50 100 200

Client-Server (ms) 3 6 10 13 17 35 82
Mobile Agent (ms) 6 7 7 8 9 12 24

(b) On a single computer

the task is equal to the time for reqh plus the time for n ∗ reqp, where n is the
number of hotels.

Mobile Agent. The mobile agent moves from the customer site Sc to the site
SH and requests a list of hotels locally. After the list has been received, the agent
moves to the site SP and queries the server P for telephone numbers. When all
phone numbers are collected the agent moves back to the site Sc and returns the
result.

Results. We assume that database operations have constant cost. We have
performed two measurement:

– The customer is sited on a computer in Germany1 and the servers are sited
on computers in Sweden2.

– The customer and the servers are sited on a single machine in three processes.

We vary the number of returned hotels and measure the total time in both
solutions. Tables 2(a) and 2(b) summarize the results. We see that in the WAN
case for small numbers of hotels the client-server is more efficient than the mobile
agent. In all other cases the mobile agent is much more efficient and it scales.

The second test shows that the client-server performs better only if the num-
ber of hotels is less than 20. The test also shows that in the case of client-server
the time increases linearly with the number of hotels, which is not the case with
the mobile agent. In the case of the client-server, communication is performed
between operating system processes. In the case of the mobile agent communi-
cation is performed between threads inside one operating system process.

The evaluation shows that the mobile agent model is not only well adjusted
to the distributed applications that run over WAN, but for applications that run
over cluster, grid, and LAN as well.

6.2 Mozart Versus NOMADS

In the second part of the evaluation two implementations of the mobile agent
model are compared, our implementation in Mozart and the NOMADS system
implemented in Java running on the virtual machine Aroma. The test is per-

1 Universität des Saarlandes
2 Swedish Institute of Computer Science, SICS

146 D. Havelka et al.

Table 2. Mobile Mozart vs. NOMADS in the Information Collection

Number of hotels
10 20 30 40

Mozart (ms) 210 220 220 220
NOMADS (ms) 3609 4625 5656 6766

formed on a single machine. In the case of Mozart the same agent implementation
is used as in the test described above.

The agent written in Java uses RMI for communication with H and sockets
for communication with P . Sockets are used instead of RMI because the RMI
implementation in Aroma does not work with mobile agents.

Table 2 shows that our implementation has much better performance and
that it scales much better than the NOMADS system.

7 Related Work

Related work can be best classified with respect to the following main criteria:
what is the unit of mobility for the approach; whether strong or weak mobility is
supported; what is the connection to support for distributed programming; how
is mobility implemented (or what is the underlying implementation architecture
for mobility).

Which unit of mobility is chosen in a certain approach typically coincides with
the preferred abstraction of structuring programs in a certain programming lan-
guage. Current approaches choose either objects, agents, operating system pro-
cesses, or active objects combining objects and threads. Prominent approaches
are the following, where we highlight what decisions are made for the above
mentioned criteria.

Emerald [12] has been the first system that offers fine-grained mobility. The
unit of mobility are objects. Migration is provided by the move() statement. In
Emerald, threads follow objects as an object moves.

JoCaml [13] is an implementation of the Join-Calculus, which is a reformu-
lation of the π-calculus making places of interaction explicit. The programming
model is based on locations and channels. Sites are toplevel locations and agents
are nested locations. Threads are not first-class entities. The unit of mobility is
a location. Migration is provided by the go() statement.

Obliq is an untyped object-oriented interpreted language with distributed
lexical scope developed at DEC by Cardelli [14]. Obliq supports weak mobility.
Thus, remote execution is provided and when remote execution is requested the
code representing a procedure is sent and executed at the remote site. Remote
execution is function-call based and suspends until execution returns.

ARA [15] is a multi-language system that provides strong mobility. A migra-
tion unit in ARA is an agent. Agents are managed by a language independent
system core and interpreters for supported languages (C, C++, Tcl, Java). An
ARA agent cannot share data with other agents and resource bindings are re-
moved prior to migration.

Thread-Based Mobility in Oz 147

D’Agents [16] is a multi-language system consisting of Agent Tcl [17], Agent
Java, and Agent Scheme. The first two support strong mobility (Agent Java is
based on the Sumatra system). The unit of migration in D’Agents is a process in
the case of Agent Tcl. The system provides a migration abstraction agent jump.
A D’Agent server must be running at each cooperating site. When an agent calls
agent jump, the complete state of the agent is captured and marshaled to the
target machine. The D’Agent server on the target machine on reception creates
a new process running the Tcl interpreter.

Sumatra [18] is a Java-based system and implements strong mobility by ex-
tending JVM. The unit of mobility is a new abstraction primitive object-group.
The system is based on JDK 1.02 VM which does not use native threads and is
not longer supported.

JavaThreads [19] is a JVM extension. The portable thread state is provided
by a type inference technique and thread serialization by combination of type
inference and dynamic de-optimization techniques. Migration in JavaThreads
depends on the deprecated stop() method in Java.lang.Thread. The unit of
mobility is a thread. The migration is provided by the go() statement.

NOMADS [11] is a Java-based agent system. It uses a custom virtual ma-
chine, known as Aroma, with the ability to capture thread execution states. Java
threads are mapped to native operating system threads. The unit of mobility is
a thread. Migration is provided by the go() statement.

8 Conclusion

We have presented a model and an implementation of thread-based strong mo-
bility in a distributed lightweight concurrent system based on dataflow variables.
Important migration abstractions Go, Pull, and Push are identified. These ab-
stractions provide programming support for explicit thread migration covering
many aspects of migration found in mobile applications.

The paper describes an implementation architecture which rests on thread
replication and mobility managers. The implementation extends the Mozart
system and reuses systematically its support for transparent distribution. The
evaluation provides evidence that mobile applications can be constructed eas-
ily using thread-based strong mobility. Moreover, the performance is sufficient
to construct mobile applications which are more efficient and scalable than a
corresponding client-server architecture.

References

1. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding Code Mobility. IEEE Trans-
actions on Software Engineering 24 (1998) 342–361

2. Smolka, G.: The Oz programming model. In van Leeuwen, J., ed.: Computer
Science Today. Volume 1000 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin (1995) 324–343

3. Van Roy, P., Haridi, S.: Concepts, Techniques, and Models of Computer Program-
ming. MIT Press (2004)

148 D. Havelka et al.

4. Van Roy, P., Haridi, S., Brand, P., Smolka, G., Mehl, M., Scheidhauer, R.: Mobile
objects in Distributed Oz. ACM Transactions on Programming Languages and
Systems 19 (1997) 804–851

5. Haridi, S., Van Roy, P., Brand, P., Mehl, M., Scheidhauer, R., Smolka, G.: Efficient
logic variables for distributed computing. ACM Transactions on Programming
Languages and Systems 21 (1999) 569–626

6. Haridi, S., Van Roy, P., Brand, P., Schulte, C.: Programming languages for dis-
tributed applications. New Generation Computing 16 (1998) 223–261

7. Haridi, S., Franzén, N.: Tutorial of Oz. The Mozart Consortium,
www.mozart-oz.org. (1999)

8. Duchier, D., Kornstaedt, L., Müller, T., Schulte, C., Van Roy, P.: System Modules.
The Mozart Consortium, www.mozart-oz.org. (1999)

9. Mozart Consortium: The Mozart programming system (1999) Available from
www.mozart-oz.org.

10. Hagimont, D., Ismail, L.: A performance evaluation of the mobile agent paradigm.
In: Proceedings of the 14th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, ACM Press (1999) 306–313

11. Suri, N., Bradshaw, J.M., Breedy, M.R., Groth, P.T., Hill, G.A., Jeffers, R.: Strong
mobility and fine-grained resource control in nomads. In: The Second International
Symposium on Agent Systems and Applications / Fourth International Symposium
on Mobile Agents, Zürich, Switzerland, Springer-Verlag (2000)

12. Jul, E., Levy, H., Hutchinson, N., Black, A.: Fine-grained mobility in the Emerald
system. ACM Transactions on Computer Systems 6 (1988) 109–133

13. Conchon, S., Fessant, F.L.: Jocaml: Mobile agents for Objective-Caml. In: First
International Symposium on Agent Systems and Applications (ASA’99)/Third In-
ternational Symposium on Mobile Agents (MA’99), Palm Springs, CA, USA (1999)

14. Cardelli, L.: Obliq: A language with distributed scope. Technical report, Digital
Equipment Corporation Systems Research Center, 130 Lytton Avenue, Palo Alto,
California 94301, USA (1994)

15. Peine, H., Stolpmann, T.: The architecture of the Ara platform for mobile agents.
In Popescu-Zeletin, R., Rothermel, K., eds.: First International Workshop on Mo-
bile Agents MA’97. Volume 1219 of Lecture Notes in Computer Science., Berlin,
Germany, Springer Verlag (1997) 50–61

16. Gray, R.S., Kotz, D., Cybenko, G., Rus, D.: Mobile agents: Motivations and state-
of-the-art systems. Technical Report TR2000-365, Dartmouth College, Hanover,
NH (2000)

17. Gray, R.S.: Agent Tcl: A flexible and secure mobile-agent system. Dr. Dobbs
Journal 22 (1997) 18–27

18. Acharya, A., Ranganathan, M., Saltz, J.: Dynamic linking for mobile programs.
In: Mobile Object Systems: Towards the Programmable Internet. Springer-Verlag
(1997) 245–262 Lecture Notes in Computer Science No. 1222.

19. Bouchenak, S., Hagimont, D.: Zero overhead java thread migration. Technical
Report 0261, INRIA (2002)

A Fault Tolerant Abstraction for Transparent
Distributed Programming�

Donatien Grolaux1, Kevin Glynn2, and Peter Van Roy2

1 CETIC asbl, Rue Clément Ader 8,
B-6041 Charleroi, Belgium

dg@cetic.be
2 Université catholique de Louvain,

Département d’Ingénierie Informatique,
B-1348 Louvain-la-Neuve, Belgium

{glynn, pvr}@info.ucl.ac.be

Abstract. This paper introduces a network fault model for distributed
applications developed with the Mozart programming platform. First, it
describes the fault model currently offered by Mozart, and the issues that
make this model inconvenient for building fault-tolerant applications.
Second, it introduces a novel fault model that addresses these issues.
This model is based on a localization operation for distributed entities,
and on an event-based mechanism to manage network faults. We claim
that this model 1) is much better than the current one in all aspects, and
2) simplifies the development of fault-tolerant distributed applications by
making the fault-tolerant aspect (largely) separate from the application
logic. A prototype of this model has been developed on the existing
Mozart platform. This prototype has been used on real applications to
validate the aforementioned claims.

1 Introduction

With the Internet distributed applications have become commonplace, and soft-
ware environments have adapted to offer adequate programming support. At
first, TCP/IP offered a reliable communication channel between two processes on
remote computers to exchange information in byte form. Then, different schemes
were invented to further abstract from the network layer: remote procedure calls
(or method invocations), message based and event driven communication mech-
anisms (examples are Java’s Remote Method Invocation [1], Web Services, and
Erlang [2]), peer to peer communication patterns (e.g., JXTA [3]), and the trans-
parent distribution of language entities (e.g., Mozart [4]). Since the Internet is
not a reliable environment where all components are constantly available, these

� The first author was funded at CETIC by the Walloon Region (DGTRE) and the
E.U. (ERDF and ESF). The second author was funded by European project PEPITO
IST-2001-33234.

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 149–160, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

150 D. Grolaux, K. Glynn, and P. Van Roy

approaches also provide mechanisms for dealing with network faults. This paper
focuses on the Mozart system, an implementation of the Oz language, which
provides transparent distribution of language entities. We assume the reader
is familiar with the Oz language (tutorials are available from the Mozart web
site [5], or an overview is provided in Chapter 1 of Van Roy and Haridi’s text
book [6]).

Section 2 introduces Mozart’s distributed implementation of Oz. In Section 3
the current fault model of Mozart, which is based on the operations on language
entities, is described and criticised. In Section 4 we propose a new approach
based on the distributed entities, rather than the operations, and demonstrate its
advantages. Finally, in Section 5 we conclude by describing a prototype version
of this new model, a fault tolerant application written using it, and preliminary
conclusions we can draw from this experience.

2 Transparent Distribution of Oz

The Mozart implementation of Oz offers distributed programming by attaching
distributed protocols to the language entities [7]. In essence, a single Oz store is
shared between the different inter-connected Oz processes. There is no explicit
notion of communication channel between the processes at the language level.
From the Mozart programmer’s point of view, as long as there are no communica-
tion problems, there is no difference in operating on entities locally or remotely1.
Similarly, a thread running in a remote process is equivalent to a local thread.

In practice, two or more processes have to share at least one common reference
if they want to communicate. Once an entity is shared it can be used to introduce
more shared entities. A typical example is a shared port: the output stream of
the port stays local to the site that created the port and a reference to the port is
shared with other processes. They can use the port reference to send information
to the output stream of the port, and this information can include references to
free variables, other ports, cells, locks, and so on. When exchanging a non-scalar
reference a distributed protocol is transparently attached to the local entity (if
not already done) to turn it into a global entity.

Of course, this mechanism requires a first reference to be exchanged between
the different processes as a bootstrap mechanism. A built-in Mozart operation
maps a local reference into a global identity, accessible by a unique, universal,
human-readable name. Any process that knows this name can use it to create
a reference to the original entity. The name can be transferred by any means,
including voice call, email, web pages, and so on.

Figure 1 shows this mechanism being used to share variables between two
Mozart processes. Process 1 exports a reference to the variable A as a text string.
This string is given (by mail, phone, web interface, and so on) to process 2 which
imports the variable as B. Now both sites have a shared virtual store. Process 2

1 Assuming the entity does not refer to localised resources (local file system, keyboard
or display, for example). We assume this to be the case in this paper.

A Fault Tolerant Abstraction for Transparent Distributed Programming 151

declare A

{Show {Export A}}

Process 1 Process 2

declare B C

> ‘x−oz://tick:192.168.0.1:

 8080:mlkNkj87’
B = {Import

‘x−oz://tick:192.168.0.1:

 8080:mlkNkj87’}

B = ‘hello’#C

Shared virtual store
BA

 A=‘hello’#C

A=‘hello’#‘world’ C=‘world’
B=‘hello’#‘world’

A.2 = ‘world’

Fig. 1. Transparent Distribution in Oz

assigns a value to B containing a reference to C (B=`hello`#C); the shared virtual
store reflects this assignation in Process 1 too. Now C is shared by both sites
as they both have a reference to it. Process 1 indirectly assigns a value to C

(A.2=`world`) and this is reflected back to Process 2.

3 Fault Tolerance Management

As already explained, a remote entity is equivalent to a local entity as long as
the communication between the different processes is never interrupted. This
condition is not respected on real networks like the Internet. To achieve fault
tolerance at the application level the network problems must be made visible at
the language level. This breaks the transparency of the distribution: an operation
that cannot fail on a local entity can fail on a remote one because of network
problems. Breaking the transparency is unfortunate, but unavoidable2. The goal
of our proposal is to minimize the cost of adding fault management to real
distributed applications.

3.1 Fault Tolerance Management in Mozart

First, we take a look at the current Mozart implementation and the mechanisms
offered for managing network faults. There are two aspects involved:

2 In the context of network transparency as provided by Oz. Other schemes use dedi-
cated data structures and operations for remote entities where failure of communi-
cation is supported by the data type (for example, remote procedure calls).

152 D. Grolaux, K. Glynn, and P. Van Roy

1. The health of a distributed entity can be ok, permFail, or tempFail:
– ok: operations on the entity are applied successfully for now.
– permFail: the entity is in a permanent state of failure; no operation on

the entity can succeed, ever. A permFail is definitive. permFails are
detected only when the remote computer can certify the death of the
process. This is usually only possible on local area networks when a pro-
cess crashes; if the whole computer crashes, or no further communication
is possible then the permFail cannot be detected.

– tempFail: the entity is in a temporary state of failure. For now, the
system cannot successfully apply operations on the entity but that may
be possible in the future. A tempFail may turn into a permFail, may
disappear, or may stay forever. Most network faults over the Internet
produce a never-ending tempFail, instead of a permFail because of the
lack of information about the remote site.

An application can trigger a computation in a separate thread when an entity
changes its state (these computations are called watchers)3.

2. The behaviour of operations on distributed entities when there is a network
fault. There are three possibilities:
– Suspend the operation. This ensures that a distributed application that

suffers from network problems does not do anything unwanted; instead
all distributed operations block. In the case of a tempFail that eventu-
ally resolves itself the suspended operations are automatically resumed.

– Raise an exception.
– Replace the operation (message send, variable binding, and so on) by a

user defined one. For example, a client could be configured to automat-
ically switch to another server and retry the failed operation.

An entity can be configured to have different behaviours for tempFail and
permFail conditions. For example, operations may block during a tempFail
and raise an exception during a permFail.

The idea behind this model is that Mozart programmers should first develop
their applications centrally using threads to simulate the different processes.
Once the application is locally complete and correct, the threads are taken away
to become real processes on remote computers. At this stage, in the absence of
network problems, the distributed application is already working correctly be-
cause of the network transparency. The designers of Mozart’s distributed mech-
anisms assumed that fault tolerance could then be straightforwardly achieved
by configuring each of the distributed entities to react correctly to failures.

In practice, this goal is almost impossible to achieve with Mozart’s fault
model for several reasons:

Network Transparency Conflicts with Modularity. With Mozart’s current
fault model entities change their semantics upon network problems. Depending

3 Oddly this is not possible for the transition from tempFail to ok in the current
Mozart implementation; so this mechanism cannot be used to trigger a computation
when an entity is working again.

A Fault Tolerant Abstraction for Transparent Distributed Programming 153

how the entity’s fault management is configured, an operation on an entity might
raise an exception, block, or execute an arbitrary piece of code, none of which
it would ever do in the centralized case. This is a deep change of the entity’s
semantics that breaks the modularity of the language. A module is composed
of a public interface and a private implementation; a module’s user should only
have to know the public interface. If a module is written for localized entities, it
may not work in a distributed environment.

In practice, it is often necessary to understand the inner workings of code
which we want to reuse for distributed entities and it is depressingly common
that we must rewrite that code to make it fault-tolerant.

We demonstrate the difficulty of writing modular, transparent, fault-tolerant
applications in the case study below.

Misleading Feedback from Asynchronous Operations. Probably the most
heavily used communication scheme used by Mozart applications is to make re-
mote procedure calls through an Oz port, using a free variable to hold the re-
sponse from the other site. The fault detection provided by Mozart when sending
a message to a Port is inadequate: the operation is intrinsically asynchronous
but the fault detection mechanisms of Mozart are synchronous. Consequently, a
Port.send operation might act as if it were successful when, in fact, the link
is already down but not yet detected by Mozart. Similarly, a Port.send opera-
tion might fail when, in fact, the link is back up again but not yet detected by
Mozart. As a general rule, the only way to be sure an asynchronous message was
sent successfully is to have an acknowledgement protocol, i.e., to introduce some
synchronization. Since the application must handle this anyway it is preferable
that the Port.send operation should always succeed (as in Erlang), regardless
of the current state of the network.

Lack of Control at the Application Level. Distributed applications can
make good use of knowledge about the status of network connections. For exam-
ple, to give feedback to the user, to allow the user to cancel a computation that
is suspended due to a network problem, and so on. This is currently difficult to
achieve.

Additionally, operations that are automatically retried by Mozart cannot
be cancelled, they will be retried forever (until the whole process is killed).
Unfortunately, it is not possible to completely avoid situations where that might
happen.

This does not mean that it is impossible to write well-behaved, fault-tolerant
Mozart applications. Several successful applications have been written using
this model. However, in our experience, they circumvent the difficulties by hid-
ing them in abstractions that offer a limited communication channel, and poor
transparency, in exchange for nicer fault awareness and management. As a con-
sequence, the transparency distribution of language entities is not directly used
and it completely nullifies the benefits of transparent distribution in Mozart.

154 D. Grolaux, K. Glynn, and P. Van Roy

3.2 Case Study: A Simple Problem Requiring a Complex Solution

In this section we describe a simple distributed client server application. The
server makes use of a procedure that was originally written for a centralized
environment. Ideally, we would like to make the client-server application fault-
tolerant without rewriting the given procedure, and without knowing how it is
implemented. We show that this is not possible with Mozart’s fault model.

For our case study we assume that we have a pair of Oz procedures, Add
and GetValue. Add takes an integer as argument and adds it to the contents of
an internal mutable cell shared only by Add and GetValue. A call to GetValue

binds its argument to the current value of the shared cell.
If the argument to Add is an unbound variable then Add creates a thread

to add the argument once it is bound. This thread only waits 3 seconds, if the
variable is not bound in this time then it is bound to the atom ´ignored´ so
that the caller can see that it was unsuccessful. In all cases, a call to Add returns
without waiting or blocking.

It is simple to turn Add into a distributed server; we just create a port and
call Add for all the entities received on the port’s stream:

P={NewPort S}
thread {ForAll S Add} end

Here is a possible implementation of the Add and GetValue procedures:

local Counter={NewCell 0} in
proc {Add V}

if {IsDet V} then Old New in % do addition immediately
{Exchange Counter Old New}
New=Old+V

else TimeOut in
% run a thread to timeout the wait
thread {Delay 3000} TimeOut=unit end
% run a thread to wait for timeout or the value
thread

{WaitOr V TimeOut}
% might have been already bound
try V=ignored catch _ then skip end
if V\=ignored then Old New in

{Exchange Counter Old New}
New=Old+V

end
end

end
end
proc {GetValue V} V = @Counter end

end

If the entity sent to the server is already determined then it is immediately
added to the internal Counter. If an unbound variable is sent then we create
two threads and return. The first thread waits 3 seconds and binds the TimeOut

A Fault Tolerant Abstraction for Transparent Distributed Programming 155

variable. The second thread waits until either TimeOut or the variable are bound,
then it binds V to ignored inside a try ... catch statement (if V was already
bound then this statement has no effect, the unification error exception will be
thrown away by the try .. catch). Finally, if V is not bound to ignored we
add it to the internal counter. The additions to the counter are performed by
Exchange which is atomic with respect to other threads attempting to update
the counter.

In the absence of communication errors, this implementation is correct. Here
are some possible calls from clients:

% Immediately adds 10 to the internal cell
{Port.send P 10}

% waits 2 seconds then adds 10 to the internal cell
local X in {Port.send P X} {Delay 2000} X=10 end

% waits 10 seconds, there will be a unification error
% as X will have been bound to ’ignored’ already
local X in {Port.send P X} {Delay 10000} X=10 end

Now, consider making this application fault tolerant. Suppose a remote client
sends a variable X to the server’s port, as we have described previously we have
a number of options:

We can make operations on X block. If the client has a tempFail or permFail
condition then we might block in Add on the IsDet operation. In the case of a
permFail we will block for ever, in the case of tempFail we may or may not
eventually proceed. While Add is blocked the server is unable to service other
clients. This is unacceptable, we would like the server to ignore this client and
continue servicing other requests.

We can make operations on X raise an exception. The application may raise
an exception when performing the V\=ignored test. This exception is not caught
by the thread doing the test. In Oz, exceptions that are not caught by a thread
terminate the whole application, so again this is unacceptable.

Finally, we can replace the operations on X. This mechanism replaces low-
level, primitive operations on a distributed entity. For a variable the primitive
operations are bind, wait, and isDet. For our application the only sensible
replacement action would be to throw an exception, which we have already dis-
cussed. But even if we could modify this mechanism to give more control over
the operations replaced, we can easily get problems. Suppose, for tempFail we
replace the binding V=ignored with a skip operation. If the tempFail then im-
mediately disappears we will block forever when testing if V\=ignored because
V will be unbound!

In summary, it is impossible to make Add fully fault-tolerant without modi-
fying it. Further, it is often necessary to understand the implementation of code
in order to make it successfully tolerant to network failures.

The issues raised by this Add example (and more!) appear often when building
real, distributed, fault-tolerant applications. In practice Mozart’s current fault
model is often difficult, and sometimes impossible, to use successfully.

156 D. Grolaux, K. Glynn, and P. Van Roy

4 A New Approach to Fault Tolerance Management

We have observed that fault management implies a change in the semantics of
shared entities. The existing model spreads this semantic change to every oper-
ation on the entities in a very drastic way: temporary or infinite suspension of
threads; exceptions where none was possible before; a completely new definition
of the operation. To write an application that automatically recovers from net-
work faults these semantic changes spread like a plague: every single distributed
operation has to be taken care of, and asynchronous operations require complex
workarounds.

We propose a model that minimizes the semantic impact of network faults on
shared entities. We consider that shared entities are local entities synchronized
with compatible local entities in remote processes. Entities act as a single global
entity when there are no network problems. If this synchronisation fails then
the synchronisation is dropped and the entity becomes an unsynchronised local
entity. It is also possible for an application to explicitly remove the synchroniza-
tion from an entity with the same result. If it is not possible to determine if the
synchronisation is currently working (for example, because of a tempFail) then
operations on the synchronised entity are suspended until it is working again, it
fails, or the synchronization is explicitly dropped. In essence, the operations on
the entities always keep their local semantics: if possible, operations are applied
globally, otherwise they are applied only locally. If it is not possible to determine
between these two then they are suspended until this determination is achieved.

This approach removes the need to define replacement operations for dis-
tributed operations, but it is not enough to achieve fault-tolerance. Applications
need awareness about the synchronisation state of an entity in order to manage
failures. In our approach we associate a possibly infinite list of states with each
entity. DistStates={Watch X} assigns to the variable DistStates the list of
states of entity X. The possible states when there are no network problems are:

´local´ : the entity is not synchronized with any other entity.
shared : the entity is synchronized with at least one other entity in a remote

process.

Figure 2 demonstrates the progression of distribution states with an example.
Reading clockwise from the top left hand corner, the variable V is created in
process 1 which then shares it with process 2. Process 2 terminates, and V is
now local to process 1 again. Another process, process 3, shares V with process 1.
V is assigned the atom foo. As scalar values are copied and do not need to be
shared any more (scalar values are invariant over time), V becomes local for both
process 1 and process 2 and will stay local forever.

By observing the change between these two states, an application can guess if
a communication with a remote site has succeeded or not (in the above example,
process 2 terminated itself and V became local again). However, it is not very
easy to manage faults based on only this information:

A Fault Tolerant Abstraction for Transparent Distributed Programming 157

local

 V

Site 1

local

 V

Site 1

V

shared

Site 2

Site 1

V

shared

Site 1

Site 1

final local

Site 3

Site 3

V=foo

V=foo

Fig. 2. Distribution States

1. The state stream is concurrent to the execution of the application; conse-
quently, when an operation is applied on an entity that changes its state
from shared to ´local´ it is not possible to know whether the operation
was applied globally (the change occurred right after the operation) or only
locally (the change occurred right before the operation).

2. It is important that the transparency property should go both ways: as well
as turning a local application into a distributed one, we should also be able
to turn a distributed application (or parts thereof) back into a local one.
In particular, the modifications introduced to support fault tolerance in the
distributed case should not break the application when it is run centralized.
If the fault detection is based on the local/shared state then when run locally
the application may think that the entity constantly has network problems.

Two more states are introduced to better manage network problems:

shared(suspend): the entity is synchronized with at least one other entity
in a remote process. However, due to a network problem, it cannot function
globally for now. While this state lasts all operations on the entity block. When
(if) the network problem disappears the blocked operations will be automatically
resumed.

dirty: the entity used to be synchronized with at least one other entity in a
remote process but a network problem, or an explicit operation, terminated that
synchronization. Operations on the entity block while this state lasts.

158 D. Grolaux, K. Glynn, and P. Van Roy

Applications use the following operations to implement fault tolerance:

1. The Break operation takes an entity as parameter and puts it into the dirty
state, whatever its original state. All remote synchronizations of the entity
are dropped. By calling Break the application can force an entity from the
shared(suspend) state.

2. The Clean operation takes an entity as parameter. If this entity is in the
dirty state then it turns it into the ´local´ state, otherwise it does nothing.
All operations that were blocked on the dirty entity resume on the local copy.

3. The Watch function returns the list of states of an entity, starting with its
current state; new elements are added at each change of state. This list
remains open as long as the current state can change; it is closed when the
current state is final (as in Fig.2 above).

4. The WaitCond procedure blocks until the condition specified as parameter
is fulfilled. The operation can specify complex conditions about the states of
one or more entities. We do not provide further details here, but an example
is shown below in the definition of FaultTolerantAdd.

Applications should be written to support the disconnection / unavailabil-
ity of remote sites. This could happen at any time; threads working on en-
tities shared with the remote site will block on them. Concurrently, watcher
threads waiting (by using WaitCond) on the shared(suspend) and/or dirty

state changes will be scheduled. If appropriate, the watcher thread can take
whatever action is needed to cleanly separate the entity or application from the
dead site. It can then resume the blocked operations by localizing the entities
(using Clean). The work being done by threads on these broken entities is prob-
ably lost as they are now working on dummy local entities instead of the real
globalized ones, but importantly they usually do not require to be adapted from
their centralized version.

Fault detection via shared(suspend) and dirty does not break backward
transparency (centralizing a previously distributed operation): in the local case
these states never occur and the recovery actions are never triggered.

A fault tolerant version of Add in the case study (Section 3.2) would be:

proc {FaultTolerantAdd V}
thread

if {WaitCond ´or´(dirty(V) suspend(V) det(V))}\=det(V)
then
{Break V} {Clean V}
try V=0 catch _ then skip end

end
end
{Add V}

end

The server should call this procedure instead of Add. The additional thread waits
for V to be bound, or to go into a network problem state. If it detects that V

has a problem (dirty or suspend), then it breaks and cleans V, to make it

A Fault Tolerant Abstraction for Transparent Distributed Programming 159

´local´, and binds it to 0 so that this call to Add will not change the internal
cell. The binding is done in a try ... catch in case the Add procedure has
already bound V to ignored itself.

4.1 Properties of This New Model

1. It is possible to prevent distributed operations from suspending forever. Sus-
pension is useful when one wants the system to retry the operation for some
time. However, the retrying can be stopped using Break and Clean.

2. No semantic change to the entities. Contrary to the current Mozart model,
a distributed entity cannot raise additional exceptions or execute arbitrary
code compared to its local version. It can cause a suspension, but that sus-
pension can be resumed externally. Consequently, in most situations, code
written for local entities will also run unchanged for distributed ones. When
a network failure occurs it is possible to complete running the code on a
local version of the entity (to keep the current flow of the application) then
take specific actions to recover from the failure. When this model is used ef-
ficiently the management of the failure can be achieved once per distributed
entity, in a dedicated thread orthogonal to the rest of the application.

3. Asynchronous operations always succeed: detection of network problems is
orthogonal to these operations. (Although they may block: asynchronous
operations will be queued until sent or discarded, eventually an operation
may block due to the unavailability of local resources such as buffers).

4. This model makes a trade-off. It simplifies applications by retaining local
semantics for distributed entities, but possibly performs unnecessary com-
putations on dummy entities. It is a fair trade-off for many cases where the
rate of network faults is small or if the unnecessary computations are too
small to be of any importance. If large, unnecessary computations may oc-
cur, it may be necessary to modify the application so that network fault
detection can prematurely terminate the thread(s) of the computation.

5. The application has complete control over its communication channels. In
particular, it may stop working with other sites at any time by breaking the
distributed entities they are sharing.

6. This model is independent of the protocols used to synchronize distributed
entities. In particular, if a protocol requires one or more particular commu-
nication links to run correctly this requirement does not appear directly at
the application level. Instead, the distributed entity will switch from shared

to shared(suspend) or dirty depending on the capacity of the underlying
protocol to maintain its synchronization. If the protocols are changed then
the application will not have to be adapted to reflect these changes.

7. The principle of a local entity synchronized with other local entities is inde-
pendent of the type of entity being shared. As a result, this approach can
be applied to any of Mozart’s distributable entities, such as cells or locks.
For example, in this model a cell shared among several sites can be broken
then cleaned by any of the sharing sites. This site then has a local cell that
contains the last locally known state of the distributed cell.

160 D. Grolaux, K. Glynn, and P. Van Roy

5 Conclusion and Future Work

A partial prototype version of this model, supporting ports and logic variables,
has been implemented on top of Mozart’s existing fault model. Due to restric-
tions in the current model it cannot directly use the usual Oz data types and
operations because of the blocking requirement of the dirty state. Consequently,
the prototype implements its own set of data types and associated operations.

This prototype was used to make a rather complex peer-to-peer algorithm
fault tolerant. The algorithm was first written in a local setting, using threads to
simulate nodes. It was extended to recover from the disappearance of any node
in the network: this is the application-specific part which manages fault recovery.
Then the node threads were turned into remote processes: this is straightforward
thanks to the transparent distribution of Mozart. Finally, the algorithm was
extended to add fault detection to the distributed entities. A watcher thread
cleans faulty entities and tells the application to eject the corresponding node.
This thread is a dozen lines of code, orthogonal to the remaining 5000 lines of
code. The resulting application is fully fault-tolerant. This example validates the
proposed approach, and shows it is possible to have a fault model that keeps
both the modularity and transparency properties of distributed computing.

Due to space constraints this paper has omitted many details. A follow up
paper will describe the implementation of the fault tolerant mechanisms for
Mozart, we will address the problem of the identity of broken entities, and also
we will describe how the different data types of Oz behave in case of faults.

We have described a novel fault tolerant abstraction for a language with
transparent distribution and demonstrated that it solves fundamental problems
that exist in Mozart’s current fault tolerant abstraction.

References

1. Grosso, W.: Java RMI. O’Reilly (2001)
2. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Chapter 6, Chapter 8. In:

Concurrent Programming in Erlang. 2 edn. Prentice Hall (1996)
3. Flenner, R., Abbott, M., Boubez, T., Boubez, T., Cohen, F., Krishnan, N., Moffet,

A., Ramamurti, R., Siddiqui, B., Sommers, F.: Java P2P Unleashed: With JXTA,
Web Services, XML, Jini, JavaSpaces, and J2EE. Sams Publishing (2002)

4. Haridi, S., Van Roy, P., Smolka, G.: An overview of the design of Distributed
Oz. In: Proceedings of the Second International Symposium on Parallel Symbolic
Computation (PASCO ’97), Maui, Hawaii, USA, ACM Press (1997) 176–187

5. The Mozart Consortium: Mozart documentation (2004) Available at http://
www.mozart-oz.org/documentation/.

6. Van Roy, P., Haridi, S.: Chapter 1. In: Concepts, Techniques, and Models of
Computer Programming. The MIT Press (2004)

7. Van Roy, P., Haridi, S., Brand, P.: Distributed programming in Mozart – a tutorial
introduction (2004) Available at http://www.mozart-oz.org/documentation/.

The CURRENT Platform:
Building Conversational Agents in Oz

Torbjörn Lager and Fredrik Kronlid

GU Dialogue Systems Laboratory,
Göteborg University, Department of Linguistics

Abstract. At the GU Dialogue Systems Lab in Göteborg we are em-
bedding a conversational agent platform – the Current platform – in
the Oz programming language. Current is based on a simple and intu-
itive characterization of conversational agents as interactive transducers,
and on the fact that this characterization has a very direct implementa-
tion in Oz. Concurrency as offered by Oz allows our agents to ‘perceive’,
‘think’ and ‘act’ at the same time. Concurrency in combination with
streams allow our agents to process input in an incremental manner,
even when the original underlying algorithms are batch-oriented. Con-
currency and streams in combination with ports allow us to specify the
‘toplevel’ transducer as a network of components – an interesting and
highly modular architecture. We believe that software tools for specify-
ing networks should have a strong visual aspect, and we have developed
a ‘visual programming language’ and an IDE to support it. Also, we
have found that if we specify the non-visual aspects of transducers and
other components as class definitions that inherit the methods responsi-
ble for the interpretation of condition-action rules, regular expressions,
grammars, dialogue management scripts, etc. from (abstract) classes pro-
vided by separate modules, we are able to hide most of the gory details
involving threads, streams and ports from the agent developer.

1 Introduction

A conversational software agent is a program that is able to interact with a user,
through typed text, spoken language and/or perhaps other modalities, and is
capable of responding in an intelligent way to the user’s requests. Building in-
teresting and useful conversational agents is not an easy task as there are quite
a few requirements that we want to impose on them. Since they are agents we
expect them to interact with the environment, and perform (communicative)
actions either on their own initiative (i.e. being proactive) or in response to
(communicative) events which occur externally (i.e. being reactive). Since they
are conversational agents we require of them the ability to process natural lan-
guage – the ability to parse and to semantically and pragmatically interpret
the user’s (often fragmented or ‘ill-formed’) contributions as well as to generate
sensible natural language responses in the course of a dialogue. Like with any

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 161–174, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

162 T. Lager and F. Kronlid

software we expect implementations to be modular and easily portable from one
domain and/or task to another.

At the GU Dialogue Systems Lab in Göteborg we are embedding a con-
versational agent platform – the Current platform – in the Oz programming
language, taking advantage of what Oz has to offer in the form of streams, ports,
lightweight concurrency and network-transparent distribution. We believe that
this may provide new means for fulfilling some of the above requirements. Basi-
cally, the Current platform comprises the following:

– An abstract characterization of what it means to be a conversational agent.
– A visual programming language allowing a developer to build a conversa-

tional agent by constructing a graphical representation of a network of NLP
components on a canvas.

– An integrated development environment (IDE) supporting the development
of collectives of conversational agents (where each ‘project’ corresponds to
an agent).

– A number of ready-made NLP components such as lexica, taggers and parsers
for a variety of languages, and dialogue managers for a variety of tasks.

– A number of libraries supporting the implementation of other such NLP
components.

– A number of libraries providing support for ‘other things’, such as wrappers
around databases, media players, http clients, etc.

We are interested not only in single agents in dialogue with single human users.
We also intend to explore multi-party dialogue, where there may be three or more
(human and/or artificial) agents engaged in dialogue (Kronlid, in preparation).
In the simplest case, human agents are using simple chat clients to communicate
with other agents in the community, but we also envision the use of multimodal
chat tools, i.e. tools enhanced with speech recognition, speech synthesis and
graphical input and output areas such as maps. From the beginning, Current
has been designed as an agent-based platform where different conversational
agents/dialogue systems can be run in separate OS processes on different ma-
chines in a network, and may talk to each other over a server – an ‘agent server’.

The present paper will concentrate on the development of single agents rather
than whole communities, and the multi-party dialogue aspect of our work will
not be dealt with at all.

2 Conversational Agents in CURRENT

2.1 An Abstract Characterization of Conversational Agents

From an abstract, theoretical point of view we think of a conversational agent
as a kind of transducer.

A conversational agent is an interactive transducer of one or more input
streams of (representations of) communicative events into one or more
output streams of (representations of) communicative events, accompa-
nied by an evolving internal state.

163

By “interactive” we mean that the transducer is able to accept external input,
as well as output (intermediate) responses, during the course of a transduction.
Whereas ordinary transducers transform predetermined input strings into output
strings, shutting out the world during the process of computation, interactive
stream transducers are transducers of incrementally generated streams, which
means that interaction with the external world – e.g. with a human agent –
during computation is possible. The point is that a whole dialogue can and (we
think) should be regarded as just one transduction, rather than one transduction
per utterance or something like that. In fact, it makes sense to regard an agent’s
interaction with its environment throughout the agent’s lifetime as just one
transduction.1

2.2 The CURRENT Approach

Our characterization is abstract in the sense that it is meant to apply to all
conversational agents – human as well as artificial – regardless of how they are
implemented. The important thing from our point of view is that this abstrac-
tion has a very direct and straightforward implementation in a programming
language such as Oz, where streams are provided as basic building blocks, where
transducers working on streams are no harder to implement than transducers
working on lists or strings, and where incrementality comes for free.

Our approach is component based. An agent consists of a network of compo-
nents connected by streams. There are five kinds of components:

– A source turns real world communicative events into a stream of represen-
tations of communicative events, in the form of Oz records.

– A transducer reads records from exactly one input stream and writes records
to exactly one output stream.

– A splitter reads records from exactly one input stream and writes records to
two output streams.

– A merger reads records from two input streams and writes records to one
output stream.

– A sink turns a stream of representations of communicative events into real
world events.

Typically, sources correspond to input devices such a speech recognizers, text
input widgets, clickable maps, etc., whereas sinks correspond to output devices
such as speech synthesizers and text output widgets. The majority of natural
language processing components are transducers. Here we find tokenizers, lexica,
morphological analyzers, taggers, parsers, dialogue managers, etc. Exactly where
and how splitters and mergers are going to fit in the scheme of things is more
of an open research question at this stage of the project, but in section 4.4 we
sketch a few ideas.

1 Peter Wegner’s work on “interaction machines” (Wegner [1997]) has provided some
of the inspiration for this view. To our knowledge, however, we are the first to regard
conversational agents/dialogue systems in this manner.

The CURRENT Platform Building Conversational Agents in Oz:

164 T. Lager and F. Kronlid

3 The CURRENT Integrated Development Environment

At the heart of the Current development environment we have placed a visual
programming language for gluing different components together. A developer
selects components from a number of floating palettes – one palette for each kind
of component – and places them on a canvas. By connecting the output streams
of some components with the input streams of other components the developer
builds a network which implements the application. At any time, a component
may be double-clicked, which will bring up an Emacs window loaded with the Oz
source code associated with the component. The code may be edited and saved
back into the component again. Also, the visual appearance of components –
name, colour, icon, etc. – may be changed at any time. The canvas supports the
generation of postscript, so that pretty flow diagrams may be created for later
inclusion in documents.

A developer is able to run his application by selecting Start from the Run
menu or by clicking on the Start button placed in the lower left corner of the
main window. If Oz compilation errors are detected, the offending component

Fig. 1. Building and running an incremental part-of-speech tagger and chunker in
Current. One inspector shows the output from part-of-speech tagging, the other the
chunker’s output. Note the palette for source components in the upper left corner

165

Fig. 2. Running a multimodal conversational agent in Current. The speech recog-
nizer (ASR), the text-to-speech module (TTS) and the animated face component are
borrowed from the CSLU Toolkit (Sutton et al. [1998])

is marked with a thick red frame, and an error message dialogue is displayed. If
compilation and initialization succeeds, some of the components, in particular
the sources and the sinks, will display graphical widgets allowing textual, spoken
or graphical input or output. Now, the developer is able to try his application
out.2

As an aid for run time debugging, an edge blinks in red each time a record is
placed on the corresponding stream, thus creating a ‘running light’ or ‘electric
current’ effect indicating the flow through the network. The content of a stream
may also be inspected by selecting from the right-click menu while the mouse
pointer is placed over the corresponding edge. A modified version of the Oz
Inspector is used for this purpose.

At any time, by selecting Add to Palette from the right-click menu, the
developer may decide to copy a component from the canvas to the relevant
palette. This is how the reuse of components is supported by the system.

We take the visual aspect of programming with a network of concurrent
stream processors very seriously. Our design for a special purpose visual program-
ming language embedded in Oz has been informed by (Lee & Webber [2003]). A
lot of time and effort has gone into the implementation of a well-designed and

2 An agent may also be run in a stand-alone mode, separately from the IDE.

The CURRENT Platform Building Conversational Agents in Oz:

166 T. Lager and F. Kronlid

robust user interface, and although still in alpha, we expect this tool to become
widely used in the future, at least in our own projects.

4 CURRENT Components and Component Technologies

Current components do not form a closed set. The platform is extensible in
the sense that new components may always be added to it. In this section we
will go into more detail about a few examples of components and component
technologies available in the current version of Current. Along the way, we try
to say something about the underlying philosophy, and also a little about how
Oz is used in the actual implementations.

On the Oz level, a Current component corresponds to a functor. The func-
tor exports a feature, either source, transducer, splitter, merger or sink,
depending on what kind of component it is. The value of the feature is always
a class, and (by inheritance) the class has features corresponding to the input
and/or output stream(s) the component expects. For example, a class C corre-
sponding to a transducer component has features in and out as well as a method
run() that will initiate and run an object O of C in a separate thread, reading
from O.in and writing to O.out.

We strive to hide the stream(s), the thread(s) and the implementation of
a particular stream transduction strategy from the developer. Ideally, the only
thing that should meet the eye of the developer double-clicking the graphical
representation of (say) a transducer component is a description in linguistic or
other high-level terms of the transduction between the input stream and the
output stream.

4.1 Pattern Matching ver Streams of Records

Current supports an NLP paradigm which was pioneered with Appelt’s ([1996])
CPSL (Common Pattern Specification Language) and which is used also on the
well-known GATE platform (Cunningham et al. [2002]). The idea is based on
condition-action rules where conditions are described in terms of patterns to
match over some input and where actions involve building structured output.
This method has been used mainly for batch-oriented information extraction
purposes – for building keyword spotters, named-entity recognizers, phrase chun-
kers, etc. – but we believe that since a clever combination of threads and streams
in Oz provides us with a general mechanism for turning what is usually done in
batch into something incremental (cf. van Roy & Haridi [2004]), it has a role to
play when building conversational agents and dialogue systems too.

We exemplify the use of the Current pattern matching machinery by build-
ing a noun-phrase chunker which maps a stream of parts-of-speech tagged words
represented by records of the form o(wd:<Word> cat:<Cat>) into a stream of
parse trees represented by records of the form o(cat:<Cat> dtrs:<Subtree>).3

3 The part-of-speech tags used here may be interpreted as follows: DT = determiner,
NN = noun, JJ = adjective, and NNP = proper name.

o

167

This bottom-up, longest-match style of parsing is inspired by Abney ([1996]).
Here is what meets the eye of a developer inspecting the source for this
component:

functor
import

TCS at ´x-ozlib://current/control/TCS.ozf´
Regexp at ´x-ozlib://current/interpreters/regexp/Regexp.ozf´

export
transducer: NPchunker

define
class NPchunker from TCS.chunkRule Regexp.match

feat
test: match(alt([con([opt(sym([cat#´DT´]))

rep(sym([cat#´JJ´]) min:0)
rep(sym([cat#´NN´]) min:1)])

rep(sym([cat#´NNP´]) min:1)]
label:np))

todo: add(tree(cat:´NP´ dtrs:val(np)))
end

end

The rule is implemented by a class NPchunker which inherits from two other
classes. The class TCS.chunkRule implements a stream transduction control
strategy based on a condition-action rule. A class inheriting from TCS.chunkRule
is expected to provide values for two features test and todo, which specify the
condition and the action of the rule, respectively. If the test applied to an initial
part of the input stream succeeds, then the action (typically involving an update
of the output stream) is performed, else the head of the input stream is placed in
the output stream. In either case, the rule is then applied to the remaining part of
the input stream in order to generate the rest of the content of the output stream.

The NPchunker class also inherits from the class Regexp.match which en-
sures that the rule will know exactly what to do with the value of the test fea-
ture, in this case treat it as (part of) a call to an interpreter of labelled regular
expressions over the input stream of records. Regexp.match supports regular ex-
pression pattern matching, allowing operators for con(catenation), rep(etition),
alt(ernation) and opt(ionality) to be used. Put in a more conventional notation,
the above rule is looking for matches to [[(DT) JJ* NN+] | NNP].4 Regular
expressions matching has been enhanced with a labelling construct. If a subex-
pression is named by some label, whenever this subexpression matches some
sequence of elements in a stream, that sequence, in the form of an Oz list, is
assigned to the label. As a note of implementation, the regular expression inter-
preter has been implemented in roughly 150 lines of code using the Oz choice
construct and the built-in search that Oz provides.

4 We note that Abney argues that greedy (longest match) matching is the way to go
here. This is what the rep operator does by default. The rep operator has a feature
mode the value of which is either greedy or lazy. The default is greedy.

The CURRENT Platform Building Conversational Agents in Oz:

168 T. Lager and F. Kronlid

The value of the todo feature forms (part of) a call of a method add() that
will update the output stream with a record representing a noun-phrase parse
tree. The value assigned to the label in the test part of the rule is used to build
the parse tree.

The module TCS gives access to a number of classes, implementing various
stream transduction control strategies. Apart from TCS.chunkRule the module
TCS also contains TCS.caseRule which allows a sequence of test-todo pairs to
be tried in order, where the todo corresponding to the first succeeding test is
performed, and TCS.appeltRule where the action corresponding to the longest-
matching test is performed. We exemplify the former strategy with the “Hello
World” of Current – a simple Eliza style component:5

class Eliza from TCS.caseRule Regexp.match
feat

cases:[class $ from TCS.´case´
feat

test: match(con([sym(´I´)
sym(nil label:x)
sym(you)
sym(´.´)]))

todo: add(´Why do you ´ # val(x) # ´ me? ´)
end
class $ from TCS.´case´

feat
test: match(sym(mother))
todo: add(´Tell me more about your family.´)

end]
end

Sometimes, regular expression matching is not enough, and we would like to
call on something more powerful, such as full, deep parsing (using e.g. phrase-
structure grammars) and translation into logical forms. Parsing is easy, and
thanks to the availability of first class functions in Oz, it is straightforward to
do compositional logical semantics for natural language in a fairly orthodox style.

We give a simple example of a transducer able to process a stream containing
sentences such as “John saw Mary” and translate them into their logical forms,
like so:

´Indeed´|´John´|saw|´Mary´|and|´Mary´|saw|´John´|´.´|_<Fut>

is transduced into the stream

´Indeed´|saw(j m)|and|saw(m j)|´.´|_<Fut>

5 In order to save space, functor declarations – imports, exports, etc. – are left out of
the examples from here on.

169

Here is the code:
Grammar =
o(rules:[

s # [np vp] # fun {$ [NP VP]} {NP VP} end
np # [pn] # fun {$ [N]} N end
vp # [tv np] # fun {$ [V NP]} {V NP} end
]

lex:[
´John´ # pn # fun {$ P} {P j} end
´Mary´ # pn # fun {$ P} {P m} end

saw # tv # fun {$ W}
fun {$ X}

{W fun{$ Y} saw(X Y) end}
end

end
]

)

class MyParser from TCS.chunkRule Parser.parse
feat

test: parse(Grammar start:s label:sem)
todo: add(val(sem))

end

Note that the semantics for “John” is represented by an Oz function corre-
sponding to the lambda expression λP [P (j)], and for “saw” we have chosen a
function corresponding to λW [λx[W (λy[saw(x, y)])]]. Informed by this gram-
mar, the parser inherited from Parser.parse takes care of parsing as well as
the function applications and beta reduction steps necessary for putting together
the logical forms corresponding to full sentences.

4.2 Tagging with Transformation Rules

Current also supports the transformation-based tagging paradigm invented by
Eric Brill ([1995]). In their Current incarnation, the purpose of transformation
rules is to replace some of the values of record features with other values, on the
basis of values of features of records in the local input-stream context. Rules can
be made to perform a variety of tasks such as part-of-speech disambiguation,
noun phrase detection, word sense disambiguation and dialogue act recognition
(Lager [2001]). Moreover, rule sequences may be induced from manually tagged
corpora, using the transformation-based learning (TBL) method (Brill [1995]).
In a component for part-of-speech tagging, we may find something like this:

class MyTagger from Core.tagger
feat

rules: [replace(pos `VB` `NN`) # [pos#`DT`#[˜1]]
replace(pos `IN` `RB`) # [wd#as#[0] wd#as#[2]]
...
]

end

The CURRENT Platform Building Conversational Agents in Oz:

170 T. Lager and F. Kronlid

The first rule means “replace value VB of the pos feature with NN if the value
of the pos feature of the previous (-1) record has the value DT”. The second
rule is to be read “replace value IN of the pos feature with RB if the value of
the wd feature of the current (0) record has the value ’as’ and the wd feature
of the record two steps behind has the value ’as’”. Conditions may refer to
different features in the input, conditions may look backward or forward, and
complex conditions may be composed from simpler ones. Two or more rules may
be connected into sequences – or composed – by placing them in a list, where
the output of the rule at position i in the sequence forms the input to the rule
at position i + 1.

The Current platform comes with a component for part-of-speech tagging
of English, consisting of 278 rules, and achieving an accuracy of 95-97% when
evaluated on typical English language data. In this component, each rule is a
stream transducer running in a separate thread, reading from the stream that
the rule that is placed before it in the sequence is writing to, and writing to
the stream that the rule after it is reading from. Thus, corresponding to the 278
rules we have 279 streams and 278 threads. This creates an overhead, but in the
kind of applications that we are interested in, the speed is more than adequate,
allowing us to part-of-speech tag around 10-25 words per second (which is faster
than anyone can speak or write). The almost word-by-word incrementality that
we achieve makes it worth it.

4.3 Dialogue Management in CURRENT

A dialogue manager is an important component in any conversational system,
and we plan to experiment with several approaches in the future. At this time
however, Current supports only a simple dialogue management technology
based on VoiceXML and the form-filling paradigm. VoiceXML is a W3C recom-
mendation designed to be easy to use for simple interactions, and yet provide
language features to support more complex ones, such as mixed initiative conver-
sations (McGlashan [2004]). One motive for providing a component technology
inspired by VoiceXML is to allow dialogue services written in VoiceXML to be
straightforwardly translated into something that works on the Current plat-
form. Another motive is that the performance of a VoiceXML-based approach
may serve as a baseline, to which the performances of future approaches may be
compared.

Similar to a VoiceXML document, a Current FIA-DM component consists
of forms interpreted by an implicit form interpretation algorithm (FIA). A form
defines an interaction that collects values for a set of form items such as blocks
and fields.

The FIA has a main loop that repeatedly selects the first form item in the
order of appearance which does not yet have a value. If a simple form contains
only fields, the user will be prompted for each field in turn. A field may specify
a regular expression or grammar that defines the allowable inputs for that field.
If a form-level regular expression or grammar is present, it can be used to fill
several fields from one utterance.

171

The example in Figure 3, adapted from an example in section 2.3.3 of the
VoiceXML recommendation, shows a typical mixed-initiative form. A DM.initial
item is visited when the user is initially being prompted for form-wide informa-
tion, and has not yet entered into the directed mode where each field is visited
individually. At this point the user may be able to fill more than one field (in
our example both fromCity and toCity) using only one utterance.

class $ from DM.form
feat

id: getFromAndToCities
test: match(con([opt(sym(’from’))

sym(Station label:fromCity)
sym(to)
sym(Station label:toCity)]))

items: [
class $ from DM.block

feat
todo: prompt(’Welcome to the Driving Distance Service.’)

end
class $ from DM.initial

feat
name: bypassInit
todo: prompt(’Where do you want to drive from and to?’)

meth nomatch()
if {self nomatchCount($)}==1 then

{self prompt(’Please say something like "from Oslo to Kiel".’)}
else

{self prompt(’I\’m sorry, I still don\’t understand. ’#
’I\’ll ask you for info one piece at a time.’)}

{self assign(name:bypassInit expr:true)}
{self reprompt()}

end
end

end
class $ from DM.field

feat
name: fromCity
todo: prompt(’From which city are you leaving? ’)
test: match(sym(nil label:fromCity))

end
class $ from DM.field

feat
name: toCity
todo: prompt(’Which city are you going to? ’)
test: match(sym(nil label:toCity))

end
class $ from DM.trigger

feat
trig: filled(namelist:[fromCity toCity])

meth filled(From To)
Distance = {DistanceDB lookup(From.1 To.1 $)}

in
{self prompt(’From ’#From.1#’ to ’#To.1#’ is ’#Distance#’ km.’)}
{self clear(namelist:[bypassInit fromCity toCity])}

end
end

]
end

Fig. 3. A Current FIA-DM dialogue management example, inspired by the example
in section 2.3.3 of the VoiceXML recommendation (McGlashan [2004])

The CURRENT Platform Building Conversational Agents in Oz:

172 T. Lager and F. Kronlid

The FIA is designed to trigger events at various points during processing. For
example, the noinput event is generated when – after being prompted – no input
is supplied by the user within a certain timeout period, and the nomatch event
is generated when the input supplied does not match the current field’s regular
expression or grammar. Events (Oz method calls in the implementation) may be
handled locally to the current field (like in the class inheriting from DM.initial
in the example), but if no method is defined for it locally, it will be delegated
to the form-level, and if not handled there either, a default handler provided by
the FIA will eventually take care of it.

The assignment of values to fields may trigger filled actions – actions to
be performed when some combination of field items are filled. In the example
in Figure 3, the filling of the fields fromCity and toCity triggers a database
lookup that provides the answer to the user’s question.

Due to space limitations, the example in Figure 3 does not reflect the fact that
in a FIA-DM component, as well as in a VoiceXML document, it is possible to
have more than one form, and to define jumps between them in a state-machine
manner, on the basis of actions or events being triggered.

4.4 Other Components

The previous sections have covered only a selection of the components and compo-
nent technologies that are available in Current. For the sake of completeness, let
us mention a few others very briefly. Lexica are naturally treated as transducers
from streams of wordforms into streams of records capturing lexical analyses of
words. At this stage, an English lexicon with around 90,000 forms is available.
Also, an unknown-word guesser, performing prefix and suffix analysis of word-
forms not in the lexicon in order to guess their part-of-speech has been built, using
a sequence of 56 machine-learned transformation rules. Abney-style chunkers for
English adjective phrases and verb clusters has been constructed as well. These are
all available for selection from palettes, and together they represent a significant
resource for the analysis of English. Other NLP components under construction
include components for language identification, stemming, morphological analy-
sis, syntactic parsing, etc., but also more sophisticated components such as dia-
logue managers based on the information-state update approach (Larsson [2002]).

As we noted in Section 2.2, exactly where and how splitters and mergers
of various kinds are going to fit in with the rest is an open research question
at this stage of the project, and a very interesting one at that. Here are some
tentative suggestions: Given a chain of transducers performing (say) part-of-
speech tagging followed by (say) chunking, it may well be that we want to ‘tap’
the stream (by using a fair splitter) just after the part-of-speech tagger, in order
to feed the stream, not only to the chunker, but also to other components having
use for it. This is what is suggested in Figure 1. Furthermore, in multimodal
settings, one needs to do so called ‘modality fusion’ and ‘modality fission’, and
this suggests that variants of merging and splitting may be useful. This is hinted
at in Figure 2. Finally, in NLP it is sometimes wise to process the same input
using more than one method, and select the ‘best’ analysis afterwards. Splitting

The CURRENT Platform Building Conversational Agents in Oz 173

the input and using one component per method in parallel and then performing
some sort of selective merge seems like a good approach that fits well into the
Current architecture. No doubt, other interesting ways of using splitting and
merging may surface further down the road.

5 Summary and Conclusions

We have based the Current platform for building conversational software
agents on a simple and intuitive characterization of conversational agents as
interactive transducers, and on the fact that this characterization has a very
direct implementation in Oz. Concurrency as offered by Oz allows our agents to
‘perceive’, ‘think’ and ‘act’ at the same time. Concurrency in combination with
streams allow our agents to process input in an incremental manner, even when
the original underlying algorithms are batch-oriented. Concurrency and streams
in combination with ports allow us to specify the ‘toplevel’ transducer as a net-
work of components – an interesting and highly modular architecture. We believe
that software tools for specifying networks should have a strong visual aspect,
and we have developed a ‘visual programming language’ and an IDE to support
it. Also, we have found that if we specify the non-visual aspects of transducers
and other components as class definitions that inherit the methods responsible
for the interpretation of condition-action rules, regular expressions, grammars,
dialogue management scripts, etc. from (abstract) classes provided by separate
modules, we are able to hide most of the gory details involving threads, streams
and ports from the agent developer.

We have found that the expressiveness of Oz allows us to concentrate on
semantics rather than on syntax. Indeed, we have resisted the temptation to
design and implement special purpose notations for regular expressions and dif-
ferent kinds of rules, and have instead opted for an ‘Oz syntax only’ approach.
It means that in order to become a serious Current developer one has to learn
Oz, but we think that this is easier and also more rewarding in the long run,
than to learn a large number of different home-brewed notations – one for each
component technology available on the platform.

We also believe that, as a consequence of our ‘Oz syntax only’ approach,
Current could develop into a useful teaching environment. Students would
be able to learn the main ideas behind GATE’s pattern matching language,
transformation-based tagging, compositional-logical semantics and VoiceXML,
on the same platform, and without having to learn four fundamentally different
notations. We see this in analogy to how Oz is used in (van Roy & Haridi [2004])
to teach the concepts underlying Haskell, Erlang, Java and Prolog.

Acknowledgements

We thank the other members of the GU Dialogue Systems Laboratory – Robin
Cooper, Stina Ericsson, David Hjelm and Staffan Larsson in particular – for
interesting discussions and good cooperation.

:

174 T. Lager and F. Kronlid

References

Abney S (1996) Partial Parsing via Finite-State Cascades. In: Proceedings of the
ESSLLI ’96 Robust Parsing Workshop.
Appelt DE (1996) The Common Pattern Specification Language. Technical report,
SRI International, Artificial Intelligence Center.
Brill E (1995) Transformation-Based Error-Driven Learning and Natural Language
Processing: A Case Study in Part of Speech Tagging. Computational Linguistics 21,
pp. 543-565.
Cunningham H, Maynard D, Bontcheva K and Tablan V (2002) GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications. In:
Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics (ACL’02). Philadelphia.
Kronlid F (in preparation) Multi-Party Dialogue in Agent Communities. PhD thesis,
Göteborg University.
Lager T (2001) Shallow Processing and Cautious Incrementality in a Dialogue System
Front End: Two Steps Towards Robustness and Reactivity. In: Matousek V, Mautner
P, Moucek R and Tauser K (Eds.) Proceedings of the Fourth International Confer-
ence on Text, Speech and Dialogue (TSD 2001). Springer-Verlag, Lecture Notes in
Computer Science. VOL. 2166.
Larsson S (2002). Issue-based Dialogue Management. PhD thesis, Göteborg Univer-
sity.
Lee P and Webber J (2003). Taxonomy for visual parallel programming lan-
guages. School of Computing Science University of Newcastle upon Tyne. See also:
http://www.cs.ncl.ac.uk/research/pubs/trs/papers/793.pdf
McGlashan S (Ed.) (2004) Voice Extensible Markup Language (VoiceXML)
Version 2.0. W3C Recommendation 16 March 2004. Available at
http://www.w3.org/TR/voicexml20/
van Roy P and Haridi S (2004) Concepts, Techniques, and Models of Computer Pro-
gramming. MIT Press.
Sutton S, Cole R, de Villiers J, Schalkwyk J, Vermeulen P, Macon M, Yan Y, Kaiser
E, Rundle B, Shobaki K, Hosom P, Kain A, Wouters J, Massaro M, and Cohen M
(1998) Universal speech tools: the CSLU toolkit. In Proceedings of the International
Conference on Spoken Language Processing (ICSLP), pages 3221-3224, Sydney, Aus-
tralia.
Wegner P (1997) Why interaction is more powerful than algorithms. In: Communica-
tions of the ACM, v.40 n.5, p.80-91.

The Metagrammar Compiler:
An NLP Application

with a Multi-paradigm Architecture

Denys Duchier, Joseph Le Roux, and Yannick Parmentier

LORIA Campus Scientifique, BP 239,
F-54 506 Vandœuvre-lès-Nancy, France

{duchier, leroux, parmenti}@loria.fr

Abstract. The concept of metagrammar has been introduced to factor-
ize information contained in a grammar. A metagrammar compiler can
then be used to compute an actual grammar from a metagrammar. In
this paper, we present a new metagrammar compiler based on 2 impor-
tant concepts from logic programming, namely (1) the Warren’s Abstract
Machine and (2) constraints on finite set.

1 Introduction

In order to develop realistic NLP applications and support advanced research in
computational linguistics, large scale grammars are needed. By the end of 90’s,
several such grammars had been developed by hand; especially for English [1]
and French [2].

Unsurprisingly, wide-coverage grammars become increasingly hard to extend
and maintain as they grow in size and scope. There is often grammatical in-
formation which cannot be adequately modularized and factorized using the
facilities offered by standard grammar formalisms. As a consequence, grammar
rules become distressingly rife with structural redundancy and any modification
frequently needs to be repeated in many places; what should be a simple main-
tenance intervention turns into a chore which is both work intensive and error
prone.

For these reasons, and others, a new methodology for grammar development
has emerged that is based on the compilation of meta-descriptions. These meta-
descriptions should help express simply linguistically relevant intuitions, as well
as mitigate the redundancy issue through better means of factorizing the infor-
mation present in the rules of the grammar.

In this paper, we present a system designed for generating a wide-coverage
Tree Adjoining Grammar (TAG) from such a meta-description (generally called
a metagrammar). Our proposal is especially novel in that it adopts a resolutely
multi-paradigmatic approach: it combines (1) an object-oriented specification
language for abstracting, structuring, and encapsulating fragments of grammat-
ical information, (2) a logic programming backbone for expressing the combina-

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 175–187, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

176 D. Duchier, J. Le Roux, and Y. Parmentier

tions and non-deterministic choices of the metagrammatical specification, (3) a
constraint-based back-end to resolve underspecified combinations.

2 Tree Adjoining Grammars

In this section, we informally introduce the notion of a tree adjoining grammar
(tag).

A grammar is a formal device used to describe the syntax of natural (or
artificial) languages. While details vary, at heart, a grammar consists in the
stipulation of a finite number of building blocks and a finite number of operations
to combine them together.

In the Chomskian tradition of context free grammars, the building blocks are
production rules and the only operation is the expansion of a non-terminal by
application of a matching production rule.

In tag, the building blocks are tree fragments, and there are two operations
to combine them called substitution and adjunction. Substitution plugs one tree
fragment into a matching leaf, marked for substitution (i.e. marked with ↓) of
another tree fragment:

S
����

NP↓ VP

sleeps

NP

John

S
����

NP

John

VP

sleeps

+ →

Adjunction splices in one tree fragment, from root to foot node (the latter marked
with ∗), in place of a matching node in another tree fragment:

S
����

NP

John

VP

sleeps

VP
����

VP∗ ADV

deeply

S
���

���
NP

John

VP
����

VP

sleeps

ADV

deeply

+ →

tags are used as a formalism designed for describing natural language syntax
because of their linguistic properties [3]. A precise introduction to tag is given
in [4]. tags belong to the family of so-called mildly context-sensitive grammars
as their generative capacity is larger than just the context free languages.

3 The Concept of Metagrammar

A tag consists of a very large number (thousands) of tree fragment schemata.
The reason for this large number of trees is that basically a tag enumerates for
each word all its possible patterns of use. Thus, not only can a verb be used in

The Metagrammar Compiler 177

many ways (e.g. active vs. passive), but its arguments can also be realized in
various ways such as direct object vs. clitic vs. extracted as illustrated in1:

– Jean mange la pomme
– Jean la mange
– la pomme que Jean mange

Thus, while a tag will contain verbal tree fragments for these two constructions:

S

VN N

Jean mange la pomme

SN*

V

N

S

N

N

queLa pomme Jean mange

(extracted object)John eats the apple

The apple that John eats

(canonical object)

they actually both derive from the same linguistic intuitions about the possibil-
ities for realizing a verb and its arguments. A formalism which only allows us to
write tree fragments is insufficient to also express this higher-level view of how
tree fragments actually arise simply from linguistic regularities governing how
verbs and their arguments can be realized.

Adopting a more engineering-minded view, we arrive at a dual perspective
on essentially the same issue: current large-scale tag suffer from a high degree
of structural redundancy as illustrated in:

S S

V

V V P N

est

N N PPVN

mangéeLa pomme par

eats the appleJohn

Jean mange la pomme

The apple is eaten by John

Jean

In order to ease development and maintenance, it would again be advantageous
to be able to factorize such common chunks of grammatical information. Thus we
have illustrated two important motivations for the factorization of grammatical
information: (1) structure sharing to avoid redundancy [5], and (2) alternative
choices to express diathesis such as active, passive. Attempts to address these
issues lead to the notion of metagrammar, i.e. to formalisms which are able to
describe grammars at a higher-level of abstraction and in more modular ways.

1 In this paper, the tree schemas are inspired by [2] and are characterized by the
absence of VP or NP nodes.

178 D. Duchier, J. Le Roux, and Y. Parmentier

4 Existing Metagrammars and Compilers

The notion of metagrammar as a practical device of linguistic description (as op-
posed to merely increasingly expressive grammar formalisms) has a fairly short
history, but is now rapidly gaining support in the linguistic community. In this
section, we first review the seminal work of Candito [6], then the revised im-
provements of Gaiffe [7], finally leading to our own proposal2.

4.1 A Framework Based on 3 Linguistic Dimensions

The first implementation of a metagrammar (mg) compiler was realized by
Marie-Hélène Candito [6]. It laid down the bases of the mg concept which are:

– a mg is a modular and hierarchical representation of the trees of a tag
– the hierarchy is based on linguistic principles

This compiler was used at the Université Paris 7 to automate the writing of the
French tag, was coded in Common LISP, and dealt with verbal trees.

Candito’s mg methodology stipulates three dimensions, each containing hi-
erarchically organized classes:

1. the first dimension provides the initial subcategorization frame (e.g. active
transitive verb) which reflects the number of arguments of a verb and their
positions.

2. the second dimension handles the redistribution of syntactic functions, i.e.
the modifications of the function of the arguments defined in the 1st dimen-
sion (e.g. active becoming passive).

3. the third dimension expresses the different realizations for each syntactic
function (canonical, cleft, etc).

Classes typically contain some topological information (e.g. tree descriptions [9]).
The combination operation picks one class from the 1st dimension, one class from
the 2nd dimension and n classes from the 3rd dimension, where n is the number of
realized arguments of the verb. Figure 1 illustrates the idea of this 3-dimensional
hierarchy and offers an example of a generated tag tree. Candito’s approach has
the following drawbacks:

1. class evaluation is non monotonic, as some information can be erased during
the compilation process, e.g. in agentless passive.

2. there is no clean separation between the knowledge encoded in the meta-
description and the procedural knowledge encoded in the compiler. As a
result (a) the compiler is hard to extend, and (b) you cannot define meta-
descriptions with more than 3 dimensions.

3. the combination mechanism wildly attempts all possible class crossings. It
is difficult to achieve enough control to avoid undesirable combinations.

2 One should also consult Xia’s work [8] to have a more complete view of the process
of automatic generation of tags.

The Metagrammar Compiler 179

Dimension 2 Dimension 3Dimension 1

PP S

P
N0 N1 V

Par

Vm

(subcategorization frame) (redistribution of syntactic functions) (realization of syntactic functions)

strict
transitive

personal
full subject −

canonical
position

position

par−object
wh−questioned

wh−questioned par object
canonical subject

personal full passive
strict transitive

(Example inspired by "A principle−based

hierarchical representation of LTAGs"

Candito 96)

passive

Sr

Generated Rule (TAG tree)Produced class

Fig. 1. 3-dimensional hierarchy

4.2 A Framework Based on the Concept of Needs and Resources

To address the issues identified with Candito’s approach, Bertrand Gaiffe et al. at
LORIA developed a new mg compiler [7], in Java, with the following properties:

– the process of class evaluation is monotonic;
– you may define an arbitrary number of dimensions instead of being limited

to the strictly 3-dimensional approach of Candito.

In this implementation, a mg corresponds to several hierarchies of classes in
multiple inheritance relation. The classes contain partial tree descriptions and/or
node equations. The novelty is that classes can be annotated with Needs and
Resources. For instance, the class for a transitive verb bears the annotation that
it needs a subject and an object, while a class for a nominal construction would
indicate that it supplies e.g. a subject. The combination process that produces
the tag grammar is entirely driven by the idea of matching needs and resources.
However, there are still some drawbacks:

1. while the notion of needs and resources generalizes Candito’s approach and
allows to drive the combination process more accurately, it still exhibits the
same practical drawback, namely that too many useless crossings must be
explored. This problem, also present in Candito, comes from the lack of
separation between the realization of structure sharing and the expression
of alternative choices.

180 D. Duchier, J. Le Roux, and Y. Parmentier

2. All node names have global scope (same as with Candito). In wide-coverage
grammars, name management, and the discovery and handling of name con-
flicts become unrealistically difficult.

3. Since names have global scope, it is not possible to instantiate the same
class more than once in a complex crossing because the names of the two
instances would clash. This poses problems e.g. for constructions requiring
two prepositional arguments.

4.3 A Framework Based on Nondeterminism and
Underspecification

Our approach realizes a methodology developed jointly with Benoit Crabbé at
LORIA and aimed at large tag lexica [10]. Crabbé’s essential insight is that
instead of matching nodes very strictly by names, we can use some form of
underspecification. The main requirements are:

1. There are no transformations, such as deletion, to compute a special form
(i.e. passive, middle, extracted. . . for verbs) from the canonical form (basic
active frame). Only alternative constructions are given. This is an important
point (see [11]) since it makes our formalism monotonic and declarative.

2. Instead of being given names, nodes are assigned colors, which basically
correspond again to a notion of needs and resources, that constrain how
they can (or must) be matched.

3. Linguistically motivated global well-formedness principles can be stated that
limit the admissibility of resulting combinations.

We depart from previous approaches on the following points:

1. The mg uses a logical language of conjunctions and disjunctions to express
directly how abstractions are to be combined. With Candito, the mechanism
is completely external to the mg. With Gaiffe, it is still implicit, but driven by
needs and resources. Our method brings us consequent time savings during
grammar generation.

2. The mg consists of classes arranged in a multiple inheritance hierarchy. Each
class can introduce local identifiers, and their scope in the hierarchy can be
managed with precision using import and export declarations. Renaming is
supported.

3. We expressly wanted our mg to handle not only syntax, but also semantics.
For this reason, our design is multi-dimensional, where each dimension is ded-
icated to a descriptive level of linguistic information. To our knowledge, ours
is the first mg compiler to offer such a naturally integrated syntax/semantics
interface.

4. Our design is not tag-specific and can be instantiated differently to ac-
commodate other formalisms. It is currently being adapted for Interaction
Grammars [12].

Our tool is implemented in Mozart/Oz and has been used by linguists at LORIA
to develop French wide-coverage grammars.

The Metagrammar Compiler 181

5 A New Metagrammatical Formalism

In this section, we first introduce the logical core of our formalism using the
paradigm of Extended Definite Clause Grammars [13]. Then we introduce the
object-oriented concrete level and show how it can be translated into this core.

5.1 Logical Core

Metagrammar as grammar of the lexicon. There is a well-known descriptive de-
vice which offers abstractions, alternations, and compositions, namely the tradi-
tional generative grammar expressed as production rules. In our mg application,
the elements which we wish to combine are not words but e.g. tree descriptions,
yet the idea is otherwise unchanged:

Clause ::= Name→ Goal (1)
Goal ::= Description | Name | Goal ∨Goal | Goal ∧Goal (2)

We thus start with a logical language which can be understood as a definite clause
grammar (dcg) where the terminals are tree Descriptions. We can already write
abstractions such as:

TransitiveVerb → Subject ∧ActiveVerb ∧Object
Subject → CanonicalSubject ∨WhSubject

Tree description language. We adopt a tree Description language that is based
on dominance constraints:

Description ::= x → y | x →∗ y | x ≺ y | x ≺+ y | x[f :E] | x(p:E) (3)

x, y range over node variables,→ represents immediate dominance,→∗ its reflex-
ive transitive closure, ≺ is immediate precedence, and ≺+ its transitive closure.
x[f :E] constrains feature f on node x, while x(p:E) specifies its property p, such
as color.

Accumulations in several dimensions. When the meta-grammar terminals are
syntactic tree fragments, we have a meta-grammar that can describe syntax,
but we also want to support other descriptive levels such as semantics. Basically,
we want to accumulate descriptive fragments on multiple levels.

This can be done simply by reaching for the formalism of extended definite
clause grammars (edcg) [13]: where a dcg has a single implicit accumulator, an
edcg can have multiple named accumulators, and the operation of accumulation
can be defined arbitrarily for each one. In (2), we replace Description with:

Dimension += Description

which explicitly accumulates Description on level Dimension. In our application
to tag we currently use 3 accumulators: syn for syntax, sem for semantics,
and dyn for an open feature structure accumulating primarily morpho-syntactic
restrictions and other items of lexical information.

182 D. Duchier, J. Le Roux, and Y. Parmentier

Managing the scope of identifiers. One of our goals is to support a concrete
language with flexible scope management for identifiers. This can be achieved
using explicit imports and exports. We can accommodate the notion of exports
by extending the syntax of clauses:

Clause ::= 〈f1:E1, . . . , fn:En〉 ⇐ Name → Goal (4)

where 〈f1:E1, . . . , fn:En〉 represents a record of exports. Correspondingly, we
extend the abstract syntax of a Goal to replace the invocation of an abstraction
Name with one that will accommodate the notion of imports:

Var⇐ Name (5)

To go with this extension, we assume that our expression language permits
feature lookup using the dot operator, so that we can write Var.fk, and that
Goals can also be of the form E1 = E2 to permit equality constraints. Finally,
we allow writing Name instead of ⇐ Name when the exports are not of interest.

5.2 Object-Oriented Concrete Syntax

A mg specification consists of (1) definitions of types, features and properties,
(2) class definitions, (3) valuations. For lack of space, we omit concrete support
for defining types, typed features attaching morpho-syntactic information with
nodes, and properties annotating nodes with e.g. color or an indication of their
nature (anchor, substitution node, foot-node. . .). We introduce the concrete syn-
tax for class definitions by example, together with its translation into the logical
core.

Class definitions. Classes may actually take parameters, but we omit this detail
here. A class may introduce local identifiers, and export some of them, and has
a body which is just a Goal. Here is an example on the left, and its translation
into the logical core on the right:

class A
define ?X ?Y
export X

{ X=f(Y) }

≡ 〈X:X〉 ⇐ A → X = f(Y)

Inheritance is expressed with import declarations. Importing class A in the def-
inition of class B is very much like instantiating (calling) it in B’s body, except
for scope management: when A is imported, all its identifiers are made available
in B’s scope and automatically added to B’s exports.

class B { A } ≡ 〈〉 ⇐ B → R ⇐ A

class B import A ≡ R ⇐ B → R ⇐ A

Our concrete language of course supports importing/exporting only selected
identifiers, and renaming on import/export, but that is beyond the scope of
this article. To get an intuitive understanding of how the concrete language is
mapped to the core, let’s look at the following example:

The Metagrammar Compiler 183

class C1
declare ?X
export X
{
<syn>
{node X[cat=s]}

}

class C2
declare ?Y
export Y
{
<syn>
{node Y[tense=past]}

}

class C
import C1 C2
{
<syn>
{X->Y}

}

C1 (resp. C2) declares local identifier X (resp. Y) and exports it. Both of these
classes accumulate some syntactic descriptions (a new node with some features).
C imports both these classes and therefore can access X and Y as if they were
locally defined, and adds the syntactic constraint that X immediately dominates
Y. This code gets translated into the core as follows:

〈X:X〉 ⇐ C1 → syn += node(X)
∧ syn += X[cat = s]

〈Y:Y 〉 ⇐ C2 → syn += node(Y)
∧ syn += Y [tense = past]

〈X:X, Y:Y 〉 ⇐ C → E1 ⇐ C1 ∧ X = E1.X
∧ E2 ⇐ C2 ∧ Y = E2.Y
∧ syn += X → Y

Valuations. While a grammar traditionally stipulates a start symbol, we have
found it more convenient to let the grammar writer supply any number of state-
ments of the form value E. For each one, all valuations of E, computed with
our non-deterministic mg, are to be contributed to the lexicon.

6 Implementation of the Metagrammar Processor

The processor consists of 3 modules: a front-end to compile the object-oriented
concrete syntax into the logical core, a virtual machine (vm) to execute core
programs, and a solver to take the resulting accumulated trees descriptions and
compute their minimal models, i.e. the tag trees which they describe.

6.1 Compiler Front-End

The compilation process converts the mg object-oriented concrete syntax into
our logic programming core, then compiles the latter into instructions for a vm
inspired by the Warren Abstract Machine (wam) [14].

Parsing was implemented using gump. The next step of compilation is to take
care of scope management and resolve all identifiers. By examining and following
import/export declarations, we compute for each class (1) all the identifiers in
its scope, (2) its export record. This is sufficient to permit translation into the
core.

184 D. Duchier, J. Le Roux, and Y. Parmentier

We then compile the logical core into symbolic code (scode) for our vm.
Every instruction is represented by a record and we have instructions for con-
junction conj(_ _) and disjunction disj(_ _).

6.2 An Object-Oriented Virtual Machine

The vm implements a fairly standard logic programming kernel with chronolog-
ical backtracking, but with some extensions. Contrary to the wam which uses
structure copying, our vm uses structure sharing where a term is represented
by a pair of a pattern and an environment in which to interpret it. This tech-
nique enables us to save memory space, although pointer dereferencing can be
time consuming. The vm is implemented as an object with methods for each
instruction: in this manner it can directly execute scode. It maintains a stack
of instructions (the success continuation), and a trail (the failure continuation)
to undo bindings and explore alternatives.

The vm is meant to be extended with support for multiple accumulators.
Each extension provides dedicated registers and specialized instructions for ac-
cumulating descriptions.

There are a number of reasons why it was more convenient to build our own
vm rather than target an existing logic programming language. (1) this makes
it easy to extend the vm with efficient support for non-standard data types
such as open feature structures, properties, nodes and tree descriptions. (2) non-
standard data types often require non-standard extensions of unification (e.g.
the polarities of interaction grammars). (3) advanced constraint programming
support is required to compute solutions of accumulated tree descriptions

When the vm has computed a complete derivation for a valuation statement,
it takes a snapshot of its accumulators and sends it for further processing by the
solver. It then backtracks to enumerate all possible derivations.

At the end of the execution we possibly have tree descriptions for each val-
uation of class. For tag formalism trees are needed, thus we then have to find
all the trees that are specifications of those descriptions. Because of the high
complexity of this satisfiability problem, we chose a constraint-based approach
to decrease the search space.

6.3 A Constraint-Based Tree Description Solver

In the last stage of processing, the snapshot (D1, . . . , Dn)3 taken by the vm is
then submitted to a solver module, where, for each dimension i, there is a special-
ized solver Si for computing the solutions (models) Si(Di) of the corresponding
accumulated description Di. The lexical entries contributed by the snapshot are
then: {(M1, . . . , Mn) | Mi ∈ Si(Di) for 1 ≤ i ≤ n}

In the case of semantics, the solver is trivial and basically just returns the
description itself. However, for syntax, we use a dominance constraint solver
based on the set constraint approach of [15] which we extended to implement
Crabbé’s semantics for the color annotation of nodes.

3 assuming n dimensions.

The Metagrammar Compiler 185

Eq

Up

Down

Left

Right

Fig. 2. node regions

When observed from a specific node x, the nodes of a solution tree (a model),
and hence the variables which they interpret, are partitioned into 5 regions (see
figure 2): the node denoted by x itself, all nodes below, all nodes above, all nodes
to the left, and all nodes to the right.

The main idea is to introduce corresponding set variables Eqx, Upx, Downx,
Leftx, Rightx to encode the sets of variables that are interpreted by nodes in
the model which are respectively equal, above, below, left, and right of the
node interpreting x. The interested reader should refer to [15] for the precise
formalization.

Color constraints. An innovative aspect of Crabbé’s approach is that nodes are
decorated with colors (red, black, white) that constrains how they can be merged
when computing models. The color combination rules are summarized in table 3:
a red node cannot merge with any node, a black node can only merge with white
nodes, and a white node must merge with a black node. Thus, in a valid model,
we only have red and black nodes; in fact, exactly those which where already
present in the input description.

Table 1. color merging table

•b •r ◦w ⊥
•b ⊥ ⊥ •b ⊥
•r ⊥ ⊥ ⊥ ⊥
◦w •b ⊥ ◦w ⊥
⊥ ⊥ ⊥ ⊥ ⊥

Intuitively, black nodes represent nodes that can be combined, red nodes are
nodes that cannot, and white nodes those that must be combined. Thus, in valid
models, all white nodes are absorbed by black nodes.

We extend the formalization of [15] with variables RBx representing the
unique red or black node that each x is identified with. We write Vb, Vr, and Vw
for the sets of resp. black, red and white variables in the description. A red node
cannot be merged with any other node (6), a black node can only be merged
with white nodes (7), a white node must be merged with a black node (8):

186 D. Duchier, J. Le Roux, and Y. Parmentier

x ∈ Vr ⇒ RBx = x ∧ Eqx = {x} (6)
x ∈ Vb ⇒ RBx = x (7)
x ∈ Vw ⇒ RBx ∈ Vb (8)

Finally, two nodes are identified iff they are both identified with the same red or
black node. Thus we must extend the clause of [15] for x¬= y as follows, where
‖ denotes disjointness:

x ¬= y ≡ (Eqx‖Eqy ∧ RBx 	= RBy) (9)

7 Conclusion

We motivated and presented a metagrammar formalism that embraces a multi-
paradigm perspective, and we outlined its implementation in a Mozart-based
tool. Our approach is innovative in that it combines an object-oriented man-
agement of linguistic abstraction, with a logic programming core to express and
enumerate alternatives, and with constraint solving of dominance-based tree
descriptions. That is why we chose Mozart/Oz: this multi-paradigm language
provides parsing tools along with useful libraries for dealing with constraints.

Our new mg processor has already been used to develop a significant tag for
French, with over 3000 trees. And we are currently interfacing this tool with two
parsers: the LORIA LTAG PARSER4 version 2 [16] and the DyALog5 system
[17]. We are also extending it to support Interaction Grammars [12].

References

[1] XTAG-Research-Group: A lexicalized tree adjoining grammar for english. Tech-
nical Report IRCS-01-03, IRCS, University of Pennsylvania (2001) Available at
http://www.cis.upenn.edu/˜xtag/gramrelease.html.

[2] Abeillé, A., Candito, M., Kinyon, A.: Ftag: current status and parsing scheme.
In: VEXTAL, Venice, Italy. (1999)

[3] Kroch, A., Joshi, A.: The linguistic relevance of tree adjoining grammars. Tech-
nical report, MS-CIS-85-16, University of Pennsylvania, Philadelphia (1985)

[4] Joshi, A., Schabes, Y.: Tree-adjoining grammars. In Rozenberg, G., Salomaa,
A., eds.: Handbook of Formal Languages. Volume 3. Springer, Berlin, New York
(1997) 69 – 124

[5] Vijay-Shanker, K., Schabes, Y.: Structure sharing in lexicalized tree adjoining
grammars. In: Proceedings of the 16th International Conference on Computational
Linguistics (COLING’92), Nantes, pp. 205 - 212. (1992)

[6] Candito, M.: Représentation modulaire et paramétrable de grammaires
électroniques lexicalisées : application au français et à l’italien. PhD thesis, Uni-
versité Paris 7 (1999)

4 http://www.loria.fr/~azim/LLP2/help/fr/index.html
5 ftp://ftp.inria.fr/INRIA/Projects/Atoll/Eric.Clergerie/DyALog/

The Metagrammar Compiler 187

[7] Gaiffe, B., Crabbé, B., Roussanaly, A.: A new metagrammar compiler. In: Pro-
ceedings of the 6th International Workshop on Tree Adjoining Grammars and
Related Frameworks (TAG+6), Venice. (2002)

[8] Xia, F., Palmer, M., Vijay-Shanker, K.: Toward semi-automating grammar
development. In: Proc. of the 5th Natural Language Processing Pacific Rim
Symposium(NLPRS-99), Beijing, China. (1999)

[9] Rogers, J., Vijay-Shanker, K.: Reasoning with descriptions of trees. In: Proceed-
ings of the 30th Annual Meeting of the Association for Computational Linguistics,
pp. 72 - 80. (1992)

[10] Crabbé, B.: Lexical classes for structuring the lexicon of a tag. In: Proceed-
ings of the Lorraine/Saarland workshop on Prospects and Advances in the Syn-
tax/Semantics Interface. (2003)

[11] Crabbé, B.: Alternations, monotonicity and the lexicon : an application to fac-
torising information in a tree adjoining grammar. In: Proceedings of the 15th
ESSLLI, Vienne. (2003)

[12] Perrier, G.: Interaction grammars. In: Proceedings of the 18th International
Conference on Computational Linguistics (COLING’2000), Saarbrucken, pp. 600
- 606. (2000)

[13] Van Roy, P.: Extended dcg notation: A tool for applicative programming in
prolog. Technical report, Technical Report UCB/CSD 90/583, Computer Science
Division, UC Berkeley (1990)

[14] Ait-Kaci, H.: Warren’s abstract machine: A tutorial reconstruction. In Furukawa,
K., ed.: Logic Programming: Proc. of the Eighth International Conference. MIT
Press, Cambridge, MA (1991) 939

[15] Duchier, D.: Constraint programming for natural language process-
ing (2000) Lecture Notes, ESSLLI 2000. Available at http://www.ps.uni-
sb.de/Papers/abstracts/duchier-esslli2000.html.

[16] Crabbé, B., Gaiffe, B., Roussanaly, A.: Représentation et gestion du lexique d’une
grammaire d’arbres adjoints (2004) Traitement Automatique des Langues, 43,3.

[17] Villemonte de la Clergerie, E.: Designing efficient parsers with DyALog (2004)
Slides presented at GLINT, Universidade Nova de Lisboa.

The XDG Grammar Development Kit

Ralph Debusmann1, Denys Duchier2, and Joachim Niehren3

1 Saarland University, Programming Systems Lab, Saarbrücken, Germany
2 LORIA, Équipe Calligramme, Nancy, France

3 INRIA Futurs, Mostrare Project, Lille, France

Abstract. Extensible Dependency Grammar (XDG) is a graph descrip-
tion language whose formulas can be solved by constraint programming.
XDG is designed so as to yield a declarative approach to natural language
processing, in particular to parsing and generation. In this paper, we
present the XDG Development Kit (XDK), the first XDG-based gram-
mar development system, which we have implemented in Mozart/Oz,
thereby making full use of its multi-paradigmatic nature. The XDK sup-
ports an expressive lexicon specification language which which has not
been published previously.

1 Introduction

Declarative grammar formalisms have a long tradition for modeling and pro-
cessing natural language syntax and semantics [1, 2]. The idea is to specify lin-
guistic knowledge in grammars independently from processing aspects, such that
parsers, semantic constructions, or sentence generators can be created generically
for all grammars of a given formalism.

The most prominent grammar formalisms support dialects of Lexical Func-
tional Grammar (LFG) [1], Head-Driven Phrase Structure Grammar (HPSG)
[3], Categorial Grammar [4, 5], Tree Adjoining Grammar (TAG) [6, 7], and De-
pendency Grammar (DG) [8, 9].

Grammar development systems are collections of tools that support the de-
velopment of grammars in some formalism. They offer a concrete syntax for
grammar specification, and contain parsers, generators, graphical output tools,
debugging facilities, etc. The most powerful grammar development systems are
the LKB system [10] for HPSG, the XTAG system [11] for TAG, and the Gram-
mar Writer’s Workbench [12] for LFG.

Parsers for grammars in LFG and HPSG rely on first-order unification for
feature structures. Smolka raised the question [13] whether more advanced con-
straint technology could help to improve existing natural language processing
methods. Duchier [14] proposed a first solution to this question. Motivated by
Dependency Grammar, he proposed to axiomatize valid dependency graphs by
finite set constraints, and reduced parsing to finite set constraint programming.
Duchier and Debusmann [15] developed this approach further into a grammar
formalism called Topological Dependency Grammar (TDG), which is particu-
larly well suited for free word order, as in German, Czech, Latin, etc.

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 188–199, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

The XDG Grammar Development Kit 189

Recently, Debusmann et. al. [16] proposed a further generalization, Extensible
Dependency Grammar (XDG). This is a general graph description language
flexible enough to model multiple levels of linguistic structure, while still enjoying
the same constraint-based parsing techniques [17]. In particular, XDG permits
to extend TDG by a constraint-based, bi-directional syntax-semantics interface.

In this paper, we propose the first grammar development system for XDG,
the XDG Grammar Development Kit (XDK). This includes a lexicon descrip-
tion language that has not been published previously. We have implemented the
XDK in Mozart/Oz and published it in the MOGUL library [18]. The XDK
provides a comprehensive suite of facilities for grammar development. It offers
multiple concrete syntaxes for grammar specification: one XML-based for auto-
matic grammar creation, and one more human-friendly for handcrafted gram-
mars. Moreover, it provides a solver for parsing and generation, and various
graphical output tools and debugging facilities. All of this is implemented in one
coherent system, making use of the multi-paradigmatic nature of Mozart/Oz: We
could use object-oriented programming for the GUI, functional programming for
grammar compilation, and constraint programming for the solver.

2 Extensible Dependency Grammar

In XDG, we regard grammars as graph descriptions. This allows us to view
parsing of natural language expressions and the generation of sentences as graph
configuration problems which can be solved using constraint programming in
Mozart/Oz.

2.1 Graphs

XDG describes finite labeled graphs, using the linguistic notion of Dependency
Grammar [8, 9]. We show a typical dependency graph in Fig. 1 (left hand side).
Each node corresponds one-to-one to a word in the sentence. The edges are labeled
by grammatical relations such as subject, object and determiner. Here, “program-
mer” is the subject of “should”, and “like” the verbal complement (vcomp). “ev-
ery” is the determiner of “programmer”, and “Mozart” is the object of “like”.

An XDG analysis can be split up into an arbitrary number of dependency
graphs, all sharing the same set of nodes, but having different edges. This is useful
for the handling of word order [15], and for the representation of the semantics
of natural language. We call each of the graphs a dimension. In Fig. 1 (right),
we display an analysis of the same sentence on a second, semantic dimension.
Here, “programmer” is simultaneously the agent of “should”, and the agent of
“like”. “every” is the determiner of “programmer”. “like” is the proposition of
“should”, and “Mozart” the patient of “like”.

2.2 Graph Description Language

XDG describes the well-formedness conditions of an analysis by the interaction
of principles and the lexicon. The principles stipulate restrictions on one or more

190 R. Debusmann, D. Duchier, and J. Niehren

.

every programmer should like Mozart

det obj

vcompsubj

.

every programmer should like Mozart

patag

prop
ag

det

Fig. 1. Syntactic (left) and semantic (right) dependency graphs

of the dimensions, and are controlled by the feature structures assigned to the
nodes from the lexicon. Here is a lexical entry for “like”:

“like” =

⎡
⎢⎢⎣

syn :
[

in : {vcomp?}
out : {obj!}

]

sem :
[

in : {prop?}
out : {ag!, pat!}

]
⎤
⎥⎥⎦

The entry is separated into a syntactic and a semantic part, and controls the
valency principle, constraining the licensed incoming and outgoing edges of each
node. In the syntax, “like” can have zero or one incoming edges labeled vcomp
(in : {vcomp?}), and requires an object (out : {obj!}). In the semantics, it can
have zero or one incoming edges labeled prop (in : {prop?}) and requires an agent
and a patient (out : {ag!, pat!}).

XDG is “extensible” for two reasons: 1) the set of dimensions of graphs is
arbitrary, and 2) the set of principles to describe the graphs is a subset of an
extensible principle library. The principle library already contains the necessary
principles to model the syntax and semantics for large fragments of German and
English, and smaller fragments of Arabic, Czech and Dutch. We present a subset
of the principle library below.

Tree principle. Dimension i must be a tree. In the example above, we use this
principle on the syntactic dimension.

DAG principle. Dimension i must be a directed acyclic graph. We use this prin-
ciple on the semantic dimension.

Valency principle. For each node on dimension i, the incoming edges must be
licensed by the in specification, and the outgoing edges by the out specification.

Order principle. For each node v on dimension i, the order of the daughters
depends on their edge labels. We use this principle to constrain the order of the
words in a sentence. We can use it e.g. to require that subjects (“programmer”)
precede verbal complements (“like”).

Linking principle. The linking principle allows us to specify how semantic argu-
ments must be realized in the syntax. In our example, the lexical entry for “like”
would contain the following feature specification:

The XDG Grammar Development Kit 191

“like” =
[
sem :

[
link :

[
ag : {subj}

pat : {obj}
]]]

This stipulates that the agent of “like” must be realized by the subject, and
the patient by the object.

3 Lexicon Specification

The XDG development kit offers a flexible method to define types of lexical
entries, to build lexical abstractions, and to describe sets of lexical entries com-
pactly using a descriptive device known as metagrammar. A metagrammar is
processed to automatically generate all the entries of an XDG lexicon.

3.1 Lexicalization

Lexicalization is a widely accepted principle in computational linguistics that is
indispensable in formal grammar approaches. Lexicalization means that linguis-
tic information is mostly specified in the lexicon, given that information is often
mostly specific to words.

The lexicon quickly becomes huge even for grammars with moderately am-
bitious coverage. They may contain thousands of words, each of which having
multiple lexical entries, which are often large too. From the engineering perspec-
tive, it is important to provide facilities that allow to adequately modularize and
factorize lexical information; otherwise, information needs to be duplicated and
maintained in multiple places.

3.2 Ambiguity

XDG is very much a lexicalized grammar formalism. Most information is speci-
fied in the lexical entries for the words. The exceptions are some of the principles,
which specify how words can interact, or how graphs in different dimensions are
related.

We have already seen XDG lexical entries in the examples. Lexical entries are
records of dimensions, and each dimension is itself a record representing linguistic
information which pertains to the word. These items may have different types.
We have already seen valency stipulations, specifying which labeled edges are
permitted to enter or exit a node in a graph, and linking specifications, specifying
how semantic arguments are to be realized in the syntax.

In a typical lexicon, there are a number of lexical entries for each word, e.g.
if a word has different categories: “help” for instance can either be a noun or a
verb. The problem is to describe such sets of lexical entries compactly, without
representing the same information in different lexical entries twice. XDG provides
lexical abstractions for this purpose.

192 R. Debusmann, D. Duchier, and J. Niehren

3.3 Lexical Types

XDG supports a flexible system to define various types of lexical information.
Each type consists of a set L and a partial function � : L× L → L, the combi-
nation function of L. Most typically, the operation � defines the greatest lower
bound with respect to the information amount represented by members of L.

The grammar writer starts by defining some domain types, for instance the
type of edge labels in the syntactic dimension:

syn.label = {det, subj, obj, vcomp}
Domain types are always flat in that a � a = a for all elements and a � b is
undefined for all a 	= b. Given a set of features (fi)i=1...n and a correspond-
ing set of types Ti=(Li,�i)i=1...n, XDG allows you to define the record type
[f1:T1, . . . , fn:Tn] with values of the form:

[f1:v1, . . . , fn:vn]

where vi ∈ Li, and where the composition operation is defined feature-wise by:

[f1:v1, . . . , fn:vn] � [f1:v′
1, . . . , fn:v′

n] = [f1:v1 �1 v′
1, . . . , fn:vn �n v′

n]

when vi �i v′
i are all defined, and is undefined otherwise.

The grammar writer needs to define a type for valencies on the syntactic
level. The XDG system provides a built-in constructor to define valencies over a
given domain type of edge labels:

syn.valency = valency(syn.label)

This merely defines syn.valency to be the record type:

[det:mode, subj:mode, obj:mode, vcomp:mode]

where type mode consists of the values {0, ?, !, ∗}— where 0 stands for no occur-
rence, ! for one unique and obligatory occurrence, ? for an optional occurrence,
and ∗ for zero or more occurrences — and the following (commutative) combi-
nation operation:

0 � x = x ∗ � ! = ! ∗ � ? = ? ? � ! = !

Since syn.valency was declared with the valency constructor, the XDK supports
the following more convenient notation:

{subj!, obj?} ≡ [det:0, subj:!, obj:?, vcomp:0]

In practice, record types serve for defining dimensions and lexical entries. A
lexical entry is a record of named dimensions, and a dimension a record of
lexical information about valency, agreement etc. . . The XDK also supports
defining new types using Cartesian products, set type constructors, and other
possibilities.

The XDG Grammar Development Kit 193

3.4 Lexical Meta Grammars

Once we have specified the type (L,�) of lexical entries, we need to supply the
set of values of this type that constitute the lexicon. For this purpose, we adapt
a well-known descriptive device: generative grammar, consisting of a finite set of
clauses with the following abstract syntax:

Clause ::= Name → Goal
Goal ::= Goal ∧Goal | Goal ∨Goal | Name | c

where each Clause defines a non-terminal Name, and where the terminals c range
over elements of L, i.e. lexical entries Traditional context free grammars are
similar. Name correspond to non-terminals and elements of c ∈ L to terminals.
Conjunction is usually written as juxtaposition, and disjunction as choice |. Here,
we use grammars to describe sets of lexical entries. Compared to the traditional
semantics, we replace words by lexical entries and word concatenation by the �
operator on lexical entries. We call such a device a metagrammar over (L,�).

3.5 Example

In this section, we present a simple, idealized example of a metagrammar. First,
we state that finite verbs can either be the head of the main clause or of a relative
clause, i.e. either they have no incoming edges, or they can have incoming edge
rel:

finite → root ∨ rel

root → [
syn :

[
in : {}]]

rel → [
syn :

[
in : {relcl?}]]

Then we state that verbs may be either intransitive, transitive or ditransitive:

verb → intr ∨ tr ∨ ditr

intr → [
syn :

[
out : {subj!}]]

tr → intr ∧ [syn :
[
out : {obj!}]]

ditr → tr ∧ [syn :
[
out : {iobj!}]]

The notion of a finite verb can be stated as the composition of the previous two
abstractions:

finite.verb → finite ∧ verb

The generative process using finite.verb as start symbol produces the following
six values which are alternative lexical entries for finite verbs:

(root ∧ intr) (root ∧ tr) (root ∧ ditr) (rel ∧ intr) (rel ∧ tr) (rel ∧ ditr)

For instance, the lexical entry for a ditransitive finite verb which is the head of
a relative clause is:

rel ∧ ditr →
[
syn :

[
in : {relcl?}

out : {subj!, obj!, iobj!}
]]

(1)

194 R. Debusmann, D. Duchier, and J. Niehren

4 XDG Grammar Development Kit

The XDK is a complete grammar development kit for XDG. It defines concrete
syntaxes for grammar specification, and various mechanisms for testing and de-
bugging grammars, including a comprehensive graphical user interface. Addi-
tional non-interactive command-line tools can be used for automated grammar
processing. Moreover, the XDK contains a solver for XDG, the extensible princi-
ple library, and an interface to external knowledge sources to (e.g. statistically)
guide the search for solutions.

4.1 Concrete Syntax

The XDK defines three concrete syntaxes for grammar specification, each of
which fulfills a different purpose. The User Language (UL) is an input language
for manual grammar development. The XML language (XML) is based on XML,
and is particularly well suited for automated grammar development (e.g. auto-
matic grammar induction from corpora). The Intermediate Language (IL) is a
record-based language tailored for Mozart/Oz and for further processing within
the XDK, but is neither readable (as the UL), nor suited for automated process-
ing outside Mozart/Oz (as the XML). The XDK offers functionality to convert
the different languages into each other, e.g. to make XML grammars readable
by converting them into the UL.

We illustrate how XDG grammars look like by a miniature example grammar
using UL syntax. XDG grammars are split up into two main parts: 1) the header,
and 2) the lexicon. The header includes type definitions (e.g. the set of edge labels
or the type of a lexical entry), and specifies the principles used from the principle
library. The lexicon is a metagrammatical lexicon specification. We display the
header of the example grammar in Fig. 2, and the lexicon in Fig. 3.

The usedim keyword activates dimensions. In the example, it activates the syn,
sem and lex1. In the defdim sections, we define the types pertaining to the respec-
tive dimensions of the grammar. deftype defines a type and binds it to a name,
e.g. syn.label to {det subj obj vcomp}. These names can be dereferenced by
their name. defentrytype defines the type of a lexical entry, and deflabeltype
the type of edge labels. The useprinciple keyword indicates the use of a principle
and dims binds dimension variables to actual dimensions. E.g. the linking princi-
ple principle.linking binds dimension variable D1 to sem, and D2 to syn. The
output and useoutput keywords specify the output functors to visualize analyses.

The UL syntax of the lexicon specification is close to the abstract syntax pre-
sented before. defclass defines lexical classes (clauses). E.g. defclass "det"
Word defines the lexical class named det, and with one argument Word. Lexical
classes can be dereferenced by giving their name and the required arguments. E.g.
"det" {Word: "every"} dereferences class det and binds its argument Word to
every. defentry defines a set of lexical entries. Disjunction (∨) is written |.

1 The lex dimension is not a real XDG dimension—it is used solely identify a word
with each lexical entry.

The XDG Grammar Development Kit 195

usedim syn
usedim sem
usedim lex
%%
defdim syn {
deftype "syn.label" {det subj obj vcomp}
deftype "syn.entry" {in: valency("syn.label")

out: valency("syn.label")}
defentrytype "syn.entry"
deflabeltype "syn.label"

%%
useprinciple "principle.graph" { dims {D: syn} }
useprinciple "principle.tree" { dims {D: syn} }
useprinciple "principle.valency" { dims {D: syn} }

%%
output "output.dag"
useoutput "output.dag"

}
defdim sem {
deftype "sem.label" {det ag pat prop}
deftype "sem.entry" {in: valency("sem.label")

out: valency("sem.label")
link: map("sem.label" iset("syn.label"))}

defentrytype "sem.entry"
deflabeltype "sem.label"

%%
useprinciple "principle.graph" { dims {D: sem} }
useprinciple "principle.dag" { dims {D: sem} }
useprinciple "principle.valency" { dims {D: sem} }
useprinciple "principle.linking" { dims {D1: sem

D2: syn} }
%%
output "output.dag"
useoutput "output.dag"

}
%%
defdim lex { defentrytype {word: string} }

Fig. 2. The header of the example grammar

4.2 Error Detection

The XDK offers various ways to detect errors, including a very fast static gram-
mar type checker. This type checker is implemented for the IL, and hence also
for the UL and the XML languages (since they are always compiled into the IL).
The type checker also detects cycles in the definition of lexical classes.

4.3 Graphical Interfaces

The XDK comprises a comprehensive graphical user interface (GUI) for conve-
nient access to all the functionality of the system. The GUI is most useful for
debugging grammars, e.g. by switching off any of the principles to find out which
constraints have ruled out desired analyses. The GUI visualizes the solver search
tree using the Oz Explorer or optionally Guido Tack’s new Explorer replacement
IOzSeF, and can visualize partial and total analyses using functors from an ex-
tensible output library of output functors, including a graphical DAG display, a
detailed display of the underlying analysis using the Oz Inspector, LATEX output

196 R. Debusmann, D. Duchier, and J. Niehren

defclass "n" {
dim syn {in: {subj?} | in: {obj?}}
dim sem {in: {ag*} | in: {pat*}}}

defclass "cn" Word {
"n"
dim syn {out: {det!}}
dim sem {out: {det!}}
dim lex {word: Word}}

defclass "pn" Word {
"n"
dim lex {word: Word}}

defclass "modal" Word {
dim syn {in: {}

out: {subj! vcomp!}}
dim sem {in: {}

out: {ag! prop!}
link: {ag: {subj}

prop: {vcomp}}}
dim lex {word: Word}}

defclass "det" Word {
dim syn {in: {det?}}
dim sem {in: {det?}}
dim lex {word: Word}}

defclass "trans" Word {
dim syn {in: {vcomp?}

out: {obj!}}
dim sem {in: {prop?}

out: {ag! pat!}
link: {ag: {subj}

pat: {obj}}}
dim lex {word: Word}}

%%
defentry { "det" {Word: "every"} }
defentry { "cn" {Word: "programmer"} }
defentry { "modal" {Word: "should"} }
defentry { "trans" {Word: "like"} }
defentry { "pn" {Word: "Mozart"} }

Fig. 3. The lexicon of the example grammar

(as used to create Fig. 1), or an XML-based output for further processing. We
depict the main GUI window and the Oz Explorer in Fig. 4, and an example
XDG analysis as displayed by the DAG output functor in Fig. 5.

Fig. 4. The main window of the GUI (top), the Oz Explorer (bottom left), and IOzSeF
(bottom right)

The XDG Grammar Development Kit 197

Fig. 5. The XDG analysis displayed by the DAG output functor

4.4 Solver

The XDK solver makes use of Denys Duchier’s axiomatization of dependency
parsing [14, 17], and turns it into a completely modular, extensible principle
library. Principles are composed from sets of constraint functors: For instance
the valency principle is composed from the in constraint and the out constraint,
constraining resp. the incoming and outgoing edges of each node. The starting
sequence of the constraints can be regulated by global constraint priorities. This
can help gaining efficiency. New principles and new constraints can easily be
added and integrated into the XDK, which makes it an ideal launchpad for new
linguistic theories.

4.5 Preferences and Search

Following ideas by Thorsten Brants and Denys Duchier, Dienes et al. [19] in-
troduce the idea to guide the search for solutions of the XDK solver by exter-
nal knowledge sources called Oracles. Oracles interact with the XDK solver by
sockets, and are based either on statistical information or heuristics. The XDK
supports the use of Oracles using a standard architecture for Oracles developed
by Marco Kuhlmann and others.

5 Mozart Implementation

In this section, we discuss selected aspects of our implementation of the XDK
in Mozart/Oz.

5.1 Constraint Programming

Constraint programming is used to enumerate graph models of graph descrip-
tions. The techniques used for XDG rely on ideas from TDG[17]. We illustrate
them here in order to illustrate XDG’s requirements on constraint programming.

Finite Set Constraints are used to model graph configuration problems. For
example, the daughters of node w that can be reached by traversing an edge
labeled obj are represented by the set variable obj(w). A valency specification
obj? can be enforced by posting the cardinality constraint |obj(w)| ∈ {0, 1}

Selection Constraints are used to efficiently handle ambiguity. Typically, a word
w has multiple lexical entries L1, . . . , Ln. If we introduce a variable Ew to denote

198 R. Debusmann, D. Duchier, and J. Niehren

the lexical entry that is ultimately selected among them, and an integer variable
Iw to denote it’s position in that sequence, then we can relate these quantities
by a selection constraint:

Ew = 〈L1, . . . , Ln〉[Iw]

with the declarative semantics that Ew = LIw . The basic selection constraints
implemented for finite domains and finite sets can trivially be lifted to record
types.

Deep Guards in Disjunctive Propagators. The construct or G1 [] G2 end is used
to enforce complex mutually exclusive well-formedness conditions. For example
that either (G1) a certain tree edge exists and it satisfies some additional con-
dition, or it does not exist (G2). For every possible edge, there is a disjunctive
propagator to monitor these alternatives concurrently.

5.2 Programming Environment

The XDK makes use of modules from the MOzart Global User Library (MOGUL),
and applies ozmake for convenient compilation and deployment (again into
MOGUL). The principle and output libraries are realized using dynamically
linked functors.

The grammar compiler utilizes two parsers: 1) a flexible LR/LALR parser
generator (fully written in Mozart by Denys Duchier) for parsing the UL, and
2) the fast XML parser by Denys Duchier from the Mozart Standard Library for
parsing grammars written in XML. Per default, grammars are stored as pickles,
but the XDK can also make use of Denys Duchier’s interface to the GNU GDBM
database library, with which very large grammars can be handled more efficiently.

The graphical user interface of the XDK is written using the Tcl/Tk inter-
face of Mozart/Oz. Moreover, the XDK utilizes the Oz Explorer and optionally
IOzSeF (by Guido Tack) to visualize the solver search tree, and the Oz Inspector
to display XDG structures in more detail.

6 Conclusion

We have presented the XDG Development Kit (XDK), and described its lexicon
specification language. The XDK includes a large number of grammar develop-
ment tools fully implemented in Mozart/Oz, making use of its flexible multi-
paradigmatic nature. No other programming system provides the required ex-
pressiveness to combine set constraints, selection constraints, and deep guards as
used in the solver of the XDK. Furthermore, it was very easy to add a GUI, and
support for multiple input languages, including an XML-based one, and much
more.

A stable and thoroughly tested version of the XDK is freely available in the
MOGUL library, including a comprehensive manual covering the entire system
in quite some detail (more than 200 pages).

The XDG Grammar Development Kit 199

References

1. Bresnan, J., Kaplan, R.: Lexical-Functional Grammar: A Formal System for Gram-
matical Representation. In Bresnan, J., ed.: The Mental Representation of Gram-
matical Relations. The MIT Press, Cambridge/USA (1982) 173–281

2. Kay, M.: Functional Grammar. In C. Chiarello et al., ed.: Proceedings of the 5th

Annual Meeting of the Berkeley Linguistics Society. (1979) 142–158
3. Pollard, C., Sag, I.A.: Head-Driven Phrase Structure Grammar. University of

Chicago Press, Chicago/USA (1994)
4. Lambek, J.: The Mathematics of Sentence Structure. American Mathematical

Monthly (1958) 154–170
5. Steedman, M.: The Syntactic Process. MIT Press (2000)
6. Joshi, A.K., Levy, L., Takahashi, M.: Tree Adjunct Grammars. Journal of Com-

puter and System Sciences 10 (1975)
7. Joshi, A.K.: How much context-sensitivity is necessary for characterizing structural

descriptions—Tree Adjoining Grammars. In Dowty, D., Karttunen, L., Zwicky, A.,
eds.: Natural Language Processing—Theoretical, Computational and Psychological
Perspectives. Cambridge University Press, New York/USA (1985)

8. Tesnière, L.: Eléments de Syntaxe Structurale. Klincksiek, Paris/FRA (1959)
9. Mel’čuk, I.: Dependency Syntax: Theory and Practice. State Univ. Press of New

York, Albany/USA (1988)
10. Copestake, A.: Implementing Typed Feature Structure Grammars. CSLI Publica-

tions (2002)
11. XTAG Research Group: A Lexicalized Tree Adjoining Grammar for English. Tech-

nical Report IRCS-01-03, IRCS, University of Pennsylvania (2001)
12. Kaplan, R.M., Maxwell, J.T.: LFG Grammar Writer’s Workbench. Technical

report, Xerox PARC (1996)
13. Smolka, G., Uszkoreit, H.: NEGRA Project of the Collaborative Research Centre

(SFB) 378 (1996–2001) Saarland University/GER.
14. Duchier, D.: Axiomatizing Dependency Parsing Using Set Constraints. In: Pro-

ceedings of MOL6, Orlando/USA (1999)
15. Duchier, D., Debusmann, R.: Topological Dependency Trees: A Constraint-Based

Account of Linear Precedence. In: Proceedings of ACL 2001, Toulouse/FRA (2001)
16. Debusmann, R., Duchier, D., Koller, A., Kuhlmann, M., Smolka, G., Thater, S.:

A Relational Syntax-Semantics Interface Based on Dependency Grammar. In:
Proceedings of COLING 2004, Geneva/SUI (2004)

17. Duchier, D.: Configuration of Labeled Trees under Lexicalized Constraints and
Principles. Research on Language and Computation 1 (2003) 307–336

18. Duchier, D.: MOGUL: the MOzart Global User Library (2004)
http://www.mozart-oz.org/mogul/.

19. Dienes, P., Koller, A., Kuhlmann, M.: Statistical A* Dependency Parsing. In:
Prospects and Advances in the Syntax/Semantics Interface, Nancy/FRA (2003)

Solving CSP Including a Universal
Quantification

Renaud De Landtsheer�

UCL, Département d’Ingéniérie Informatique, Belgium
rdl@info.ucl.ac.be

Abstract. This paper presents a method to solve constraint satisfaction
problems including a universally quantified variable with finite domain.
Similar problems appear in the field of bounded model checking. The
presented method is built on top of the Mozart constraint programming
platform. The main principle of the algorithm is to consider only repre-
sentative values in the domain of the quantified variable. The presented
algorithm is similar to a branch and bound search. Significant improve-
ments have been achieved both in memory consumption and execution
time compared to a naive approach.

1 Introduction

The minimal constraint satisfaction problem including a universal quantification
(CSPU for short) with two variables is presented in (1) where X and Y are
finite sets of integers and P (x) and Q(x, y) represent constraints on x and (x, y)
respectively. They are expressions built with the connectives ∧,∨,¬,→, +, ∗, =
, <, ...

(∃x ∈ X)
{

P (x)
(∀y ∈ Y)Q(x, y) (1)

We want to solve this problem, i.e: find a value of x. An order of magnitude for
the cardinality of Y is 10k.

This problem was encountered in the development of a bounded model checker
prototype similar to [2]. The bounded model-checking problem was reduced to
CSPU with many universally quantified variables and small domains. The paper
focuses on CSPU with only two variables, but it can be extended to the general
case.

� I want to thank Raphaël Collet for the many discussions on how to solve constraint
satisfaction problem with universal quantification and also for the encouragement to
build a dedicated search engine. I also want to thank Luis Quesada who suggested
me the propagator for universally quantified expressions. This is the propagator
presented as redundant propagator in this paper. The work reported herein was
supported by the belgian FNRS (Fonds National de la Recherche Scientifique).

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 200–210, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

Solving CSP Including a Universal Quantification 201

Similar problems have already been approached. Non-linear real constraint
systems with universally quantified variables have been approached in [1] by
means of interval constraint solver. They have also been approached in the field
of planning and resolved by regression techniques [4].

This approach achieves significant gains both in memory consumption and
in execution speed compared to a naive approach. It turns out to be viable for
simple cases, though it is still possible to build CSPU such that it will perform
as bad as the naive approach.

The approach presented in this paper has been implemented in Oz, on top
of the Mozart constraint satisfaction problem solver [6, 5].

The paper is organized as follows: Section 2 presents a naive approach to
solve the problem, discusses its deficiencies and introduces our approach, Sec-
tion 3 presents some time and memory consumption measures of our approach
compared to the naive one. Section 4 discusses some further improvements of
our approach.

2 Solving the CSPU Problem

In this section, we first present a naive approach and then build on the deficien-
cies of this approach to elicit a better one.

2.1 A Naive Approach

The naive approach to solve CSPU consists in solving the expanded problem
where y has been instantiated to each of the possible values in Y . The expanded
problem is presented in (2) where y1, y2, ... are the values in Y 1.

(∃x ∈ X)
{

P (x)
Q(x, y1) ∧Q(x, y2) ∧Q(x, y3) ∧ ...

(2)

This approach has many deficiencies:

– it is time consuming because a large number of Q(x, yi) must be generated
by the expansion procedure, as the cardinality of Y is very large;

– it is time consuming because all the Q(x, yi) must be handled by the search
procedure, i.e: cloned when the computation space is cloned by the search
engine;

– it is memory consuming because all the Q(x, yi) must be stored in memory.

This algorithm aborts for simple problems because of excessive memory con-
sumption. Recomputation makes it better, but still unusable.

1 In this paper, the convention is that subscripted letters are values and non sub-
scripted letters are variables. Moreover, x (resp y) denotes a variable whose domain
is X (resp Y). For instance, y1, y2 and yi are values in Y and x1, x2 and xj are
values in X.

202 R. De Landtsheer

2.2 Eliciting a Better Approach

The problems of the naive approach appear because the computation space is
very heavy, because it contains too many propagators. Our objective is to make
this computation space lighter in order to make it possible to perform search
with it.

The basic observation is that not every Q(x, yi) is useful. Many of these
Q(x, yi) are either redundant or not exploited by the search engine to find the
first solution. This leads to the idea that we should make the problem lighter
for the search engine in order to achieve better efficiency, by injecting only the
useful Q(x, yi). In order to express this idea and to reason on it, we introduce
here the concept of representative constraint.

A representative constraint is one such that some other constraints are redun-
dant to it. A good representative constraint is one such that many constraints are
redundant to it. The other constraints can be removed from the system without
changing the result. We extend the notion of representative constraint to rep-
resentative value. This concept is similar to the one used in black box software
test case generation. [3]. The concept of representative value can be formalized
in our context as follows: A value yi is a good representative if there are many
yj ∈ Y such that for all xk ∈ X: Q(xk, yi) → Q(xk, yj).

The basic idea is to solve a simplified problem with only good representative
Q(x, yi). However, we don’t know which are the good representative Q(x, yi).
The solution presented here consists in eliciting the representative constraint
during the search. Our approach is then highly dependent on the existence of
such representatives. We elaborate on this idea in the next two sections.

2.3 An Incremental Strengthening Approach

We first solve the simplified problem

(∃x ∈ X)P (x)

If no solution is found to this simplified problem, no solution for the complete
problem exists either. If a solution x1 is found, we search a solution to the
auxiliary problem

(∃y ∈ Y)¬Q(x1, y)

Note that it is possible to do this because Q is an expression and ¬ is a con-
nective of the expression language. It would be much more difficult to express
this negation if Q was a script like the ones used by classical search engines of
Mozart.

– If a solution y1 is found to the auxiliary problem, then x1 was not a good
solution. We reinforce the initial simplified problem with Q(x, y1) and restart
the algorithm. We make the assumption that y1 is a good representative.

– If no solution is found to the auxiliary problem, then x1 is a solution to the
initial problem as

¬∃y¬Q(x1, y) is equivalent to ∀yQ(x1, y)

Solving CSP Including a Universal Quantification 203

% This function returns a solution to the problem:
% (∃x ∈ X)(P (x) ∧ (∀y ∈ Y)Q(x, y)) Where X and Y are finite sets.
% It returns no solution if no solution exists.
function Search With Universal Quantification(P, X, Q, Y)
% Main search
Search for a solution to (∃x ∈ X)P (x)
if no solution is found then
% There is no solution to (∃x ∈ X)P (x),
% thus no solution to the original problem
return no solution

else if there is a solution x1 then
% Here, we know that P (x1) but, we don’t know if ∀yQ(x1, y)
% Auxiliary search
Search for a solution to (∃y ∈ Y)¬Q(x1, y)
if no solution is found then
% x1 is a solution to the original problem,
% as ¬∃y¬Q(x1, y) ≡ ∀yQ(x1, y)
return x1

else if else there is a solution y1 then
% x1 was not a solution to the original problem as ¬Q(x1, y1) holds.
% Reinforce P (x) with Q(x, y1) and solve the new problem.
let R = (λx)(P (x) ∧ Q(x, y1))
return Search With Universal Quantification(R, X, Q, Y)

end if
end if
end function

Fig. 1. An incremental strengthening algorithm to solve CSPU

The initial constraint P (x) is gradually strengthened with some Q(x, yi) until
either the problem cannot be solved or a solution to the CSPU problem is found.
We hope that the strengthened problem will be much lighter than the expanded
CSPU problem of the naive approach. The search of the form (∃x ∈ X)P (x) is
called the main search while the search of the form (∃y ∈ Y)¬Q(x1, y) is called
the auxiliary search. A pseudo-code formulation of the algorithm is given in
Fig. 1.

2.4 A Branch and Bound Approach

The main search of the algorithm presented in Fig. 1 is often performed on the
same set of data, but with progressively strengthened constraints. During the
execution of the algorithm, a main search will likely encounter failures that have
been encountered by the previous main search. With a naive distribution for the
main search, roughly, the engine will test if 0 is a solution, if not, it will test for
1, then 2 and so on. The next main search will progress similarly. We want to
keep track of the last reached value for x by a main search, say x1, so that the
next main search can start at x1 + 1 instead of 0.

In order to achieve that for all form of distribution, we have to transform our
algorithm into a form of branch and bound. The auxiliary search is then initi-

204 R. De Landtsheer

Fig. 2. Graphical representation of a snapshot of the search trees. The primary search
finds a solution x1 to its initial constraints P (x). An auxiliary search is initiated and
finds y1, so that the constraint Q(x, y1) is added in the primary search and this search
carries on

ated from within the main search. When the main search encounters a solution,
an auxiliary search is initiated for the found x1. If a solution to the auxiliary
search is found, then the main search carries on with an additional propaga-
tor. This consumes more memory than the previous algorithm because there are
sometimes two ongoing searches (the main and the auxiliary) stored together in
memory. A graphical snapshot of the main and auxiliary search trees is given in
Fig. 2. A pseudo-code formulation of the algorithm is annexed in Fig. 3.

We don’t build our algorithm on top of the branch and bound search engine
available in Mozart because it takes time to generate our additional propagators
(the Q(x, yi)). For this reason, we want to be sure that they will be generated
only once, even if they are injected in many different spaces. This is not possible
with the Mozart branch and bound search engine because it does not distinguish
the additional constraint generation from its injection in a computation space.

2.5 A Redundant Constraint to Speed Up CSPU Solving

The main search tree of the algorithm presented in Fig. 3 is bigger than the one
produced by the naive search because it initially lacks some propagators of the
form Q(x, yi). In this section, we discuss a method do reduce the size of this
search tree.

The Mozart programming system allows us to represent a propagator for uni-
versally quantified variables. This propagator can improve the primary search by
pruning the exploration of a search subtree as soon as it detects that no solution
in this subtree will enforce the universally quantified constraint. However, most
of the time, this propagator cannot be used to solely represent the universally
quantified constraint because it might be incomplete. We use it as a redundant
propagator to improve the search.

Solving CSP Including a Universal Quantification 205

% This function returns a solution to the problem:
% (∃x ∈ X)(P (x) ∧ (∀y ∈ Y)Q(x, y)) Where X and Y are finite sets.
% It returns no solution if no solution exists.
function Search With Universal Quantification(P, X, Q, Y)
let CurrentSpace = new space; root variable x, constraint P (x)
return Universal Quantification BB(CurrentSpace, [CurrentSpace], Q, Y)
end function

% This function solves the problem below with branch and bound search:
% (∃x ∈ X)(P (x) ∧ (∀y ∈ Y)Q(x, y)) Where X and Y are finite sets.
% The function returns the solution
% or no solution if no solution exists.
% CurrentSpace is a space containing P (x)
% History is a stack of space clones used for backtracking.
function Universal Quantification BB(CurrentSpace, History, Q, Y)
if CurrentSpace is a successful space then
let x1 = Solution(CurrentSpace)
% Auxiliary search
Search for a solution to (∃y ∈ Y)¬Q(x1, y)
if no solution is found then
% x1 is a solution to the original problem,
% as ¬∃y¬Q(x1, y) ≡ ∀yQ(x1, y)
return x1

else if there is a solution y1 then
% x1 was not a solution to the original problem,
% as ¬Q(x1, y1) holds. Inject Q(x, y1) in all the spaces of
% the history and continue the search.
for all space s in History do
Inject constraint (λx)Q(x, y1) in space s

end for
return no solution

end if
else if CurrentSpace is a failed space then
return no solution

else
%CurrentSpace needs distribution.
let Clone = a clone of Currentspace
commit first possibility for CurrentSpace
commit second possibility for Clone
let FirstSearchResult =

Universal Quantification BB(CurrentSpace, Clone|History, Q, Y)
if FirstSearchResult == no solution then
return Universal Quantification BB(Clone, History, Q, Y)

else
return FirstSearchResult

end if
end if
end function

Fig. 3. A branch and bound algorithm to solve CSPU

206 R. De Landtsheer

The principle of this propagator is based on the way Mozart handles the
variables. At each node of the explored search tree, for each variable, the search
procedure has a representation of the possible domain for the solution value of the
variable. This domain is gradually reduced until either one possible value is left,
the value of the variable is then determined or no possible value is left, leading to
a failure in the search tree and a form of backtracking. Mozart propagators reduce
the domain of variable in an eager way. As soon as a propagator can restrict a
domain of a variable, this domain is updated to reflect this new knowledge. Note
that propagators generally perform interval propagation. It means that they only
focus on the upper and lower bound of the variables’ domains.

The principle of this propagator is to insert a variable ỹ in the space that
represents the universally quantified variable y. We also post the propagator
Q(x, ỹ). No distribution is performed on ỹ. If the domain of ỹ is reduced, it
means that some value in the previous domain of ỹ cannot enforce Q. We then
have to watch the domain size of ỹ and ensure that any change of the domain
of the ỹ variables results in a failure.

Practically, it is implemented by adding a thread to watch the size of the
domain of ỹ. This thread causes a failure as soon as it notices that the do-
main of ỹ has changed. The Oz code for such thread is given in Fig. 4. It uses
the /?FD.watch.size *D1 +D2? function that returns true when the size of the
domain of D1 becomes smaller than D2.

proc {ForAll X InitialDomainSize}
thread
if {FD.watch.size X InitialDomainSize} then
fail

end
end

end

Fig. 4. A ”propagator” that captures universal quantification

This propagator might be incomplete. For instance, let be the universally
quantified variable y ∈ [0..2] and the universally quantified constraint be x 	=
y . If x is assigned the value 1 and the propagator for 	= performs interval
propagation, it will not be able to restrict the domain of the possible values of
y. So that the currently explored search tree will not be pruned.

Also note that this method does not enable any kind of propagation on x.
Propagation is provided by the representative constraints inserted by the branch
and bound approach. This is another reason why this method should not be
used alone. We use this propagator as a redundant propagator in the branch
and bound approach presented in Section 2.4.

Solving CSP Including a Universal Quantification 207

3 Efficiency Results

We present here some efficiency results. The benchmark problems (3,4,5) are
presented below. In order to enrich the results, we use N as a parameter of the
problems.

(∃x ∈ [2..1000], y ∈ [2..1000)

⎧⎨
⎩

x > 41
x > 5y
(∀z ∈ [0..N])x 	= yz

(3)

(∃x ∈ [2..1000], y ∈ [2..1000)

⎧⎪⎪⎨
⎪⎪⎩

x > 41
x > 5y
(∀a ∈ [0..N], b ∈ [0..N])

¬(b < 10 ∧ x = ay + b)

(4)

(∃x ∈ [2..1000], y ∈ [2..1000)

⎧⎪⎪⎨
⎪⎪⎩

x > 41
x > 5y
(∀a ∈ [0..N], b ∈ [0..N])

¬(1 ≤ a < b ∧ 1 ≤ b < x ∧ ax = by)

(5)

Timings and maximum memory of the naive and the branch and bound
approaches to solve the three examples with various values for N are compared
on Fig. 5 and 6. We measure the maximal memory and the time to find the first
solution. These measures have been done on a Pentium4 1.7GHz with 768 Mb
of RAM and no swap running Linux OS.

Fig. 5. Comparing the processing time of the naive approach and the branch and
bound approach to find the first solution of various problems. This graphic reports the
processing time in ms to find the first solution. Some measures of the naive algorithm
are missing because the measure program aborts due to excessive memory consumption

208 R. De Landtsheer

Fig. 6. Comparing the maximal memory use of the naive approach and the branch
and bound approach to find the first solution of various problems. This graphic reports
the maximal size of used memory in kB to find the first solution. Some measures of
the naive algorithm are missing because the measure program aborts due to excessive
memory consumption

The results clearly show an improvement from the naive approach. For each
problem our approach is nearly insensitive to parameter N while the naive ap-
proach does not scale to large domain. The little variation between the first and
the second measure is due to a change in the difficulty of the problem. Additional
divisors of x are inserted when N increases from 100 to 1k.

4 Further Improvements

In this section, we outline some weaknesses of our approach and some possible
solutions.

4.1 Choosing the Good Representative

We don’t have any indication that the Q(x, y1) are good representative for the
universally quantified variable. For instance, for the problem (6) and for naive
distributions for the main and auxiliary searches, the added Q(x, yi) will likely
be: Q(x, 0), Q(x, 1), Q(x, 2), Q(x, 3) ... Q(x, 10000). The best representative is
actually the last inserted one.

(∃x ∈ [0..1000])
{

true
(∀y ∈ [0..1000])x + 1 > y

(6)

A possible solution is to use randomized distribution for the auxiliary search. It
will then find a y1 somewhere in the range of the possible y, with a chance that
it will be a good representative.

Solving CSP Including a Universal Quantification 209

4.2 Simplifying the Additional Constraints

Recall that the primary objective of this approach is to make computation space
lighter. It might be the case that the Q(x, y) is of the form R(x, y) ∧ S(x, y).
It makes sense to consider this case because in this paper Q(x, y) represents
an expression with variables x and y. Suppose that R is very weak (few values
of (x, y) are forbidden by R) and S is very strong (many values of (x, y) are
forbidden by S). In this case, it might not make sense to insert the complete
Q(x, y1) in the primary search. Rather, we would like to make it lighter, by
injecting for instance only S(x, y1) if the R-part is useless.

A possible solution is to examine the y1 delivered by the auxiliary search
and inject R(x, y1) (resp. S(x, y1)) only if R(x1, y1) (resp. S(x1, y1)) does not
hold. We can imagine going further, by resolving Q to a conjunctive normal form
before starting the algorithm. This option should be carefully examined, as the
conjunctive form of an expression is generally much bigger than its original form.

5 Conclusion

This paper presents an approach to solve constraint satisfaction problems in-
cluding a universal quantification. The approach is built from the deficiencies
of a naive approach that expands the universally quantified constraint before
solving the resulting problem. The deficiencies are mostly due to the fact that
the computation space contains a huge amount of propagators and cannot be
handled efficiently. The approach exposed here mostly focuses on making the
computation space lighter, so that search can be practically performed with it.

The approach is first introduced as a recursive algorithm performing a suc-
cession of search. For efficiency reasons, it is then transformed into a branch and
bound search procedure. This algorithm was easily implemented on top of the
Mozart constraint programming engine.

This algorithm is built on the hypothesis that it is possible to find good
representative values in Y for the Q predicate of the CSPU defined in the in-
troduction. A good representative value for y is a value yi such that there are
many yj ∈ Y such that for all xk ∈ X: Q(xk, yi) → Q(xk, yj). If the CSPU does
not meet this hypothesis, the algorithm will not be efficient.

This approach will produce a search tree at least as big as the one produced
by the naive approach. All the improvement is in the size of the computation
space. A method is proposed in section 2.5 to reduce the size of the search tree.

The resulting algorithm is compared for memory consumption and execution
time to the naive approach on the basis of some benchmark. It turns out that
interesting gains are achieved. However, it is possible to design CSPU’s such that
this method will perform very bad, as discussed in section 4.1.

This algorithm needs some improvements at least in the choice of the repre-
sentatives. We make the assumption that the first value found by the auxiliary
search is a good representative. Some solutions have been proposed in section
4.1, but we need a more reliable method than the proposed solution. This is an
open issue.

210 R. De Landtsheer

It would also be interesting to examine how the Mozart branch and bound
search engine could dissociate the additional constraint generation and its injec-
tion in a computation space, as discussed in section 2.4.

References

1. Frédéric Benhamou and Frédéric Goualard. Universally quantified interval con-
straints. In Proceedings of the 6th International Conference on Principles and Prac-
tice of Constraint Programming, pages 67–82. Springer-Verlag, 2000.

2. A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model check-
ing using sat procedures instead of bdds. In Proceedings of the 36th ACM/IEEE
conference on Design automation, pages 317 – 320, New Orleans, Louisiana, United
States, 1999. ACM Press, New York, NY, USA.

3. Beizer Boris. Black-box testing - Techniques for functional testing of software and
systems. John Wiley & Sons, 1995.

4. Golden K. and Frank J. Universal quantification in a constraint-based planner. In
AIPS 2002, 2002.

5. Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer
Programming. MIT Press, March 2004. ISBN 0-262-22069-5.

6. Christian Schulte. Programming Constraint Services, volume 2302 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, Berlin, Germany, 2002.

Compositional Abstractions for Search Factories

Guido Tack and Didier Le Botlan

Programming Systems Lab, Saarland University, Germany
{tack, botlan}@ps.uni-sb.de

Abstract. Search is essential for constraint programming. Search en-
gines typically combine several features like state restoration for back-
tracking, best solution search, parallelism, or visualization. In current
implementations like Mozart, however, these search engines are mono-
lithic and hard-wired to one exploration strategy, severely complicating
the implementation of new exploration strategies and preventing their
reuse.

This paper presents the design of a search factory for Mozart, a pro-
gram that enables the user to freely combine several orthogonal aspects
of search, resulting in a search engine tailored to the user’s needs. The
abstractions developed here support fully automatic recomputation with
last alternative optimization. They present a clean interface, making the
implementation of new exploration strategies simple. Conservative exten-
sions of the abstractions are presented that support best solution search
and parallel search as orthogonal modules. IOzSeF, the Interactive Oz
Search Factory, implements these abstractions and is freely available for
download.

1 Introduction

Constraint programming is at the heart of the Mozart programming system.
Mozart provides a high-level language for describing the search problem in terms
of propagators and distributors.

For programming exploration strategies, on the other hand, the situation
is unsatisfactory: recomputation and exploration strategies are usually defined
jointly, using low-level primitives. As a result, the implementor requires not only
a deep understanding of the underlying abstractions but also carries the burden
of implementing efficient recomputation strategies. This is a complex task: the
book-keeping that is necessary for recomputation, especially when combined with
other techniques like parallel search, last alternative optimization or branch &
bound best solution search, is rather involved and a source of subtle bugs.

As an example, consider the Search module, the Explorer and parallel
search (also called distributed search sometimes). All of these modules define
independent search engines. Although most of the code for recomputation or
search is similar, it is duplicated and therefore hard to maintain. Besides, if one
wishes to implement a new exploration strategy, it is not possible to benefit from
visualization for free, nor from parallelism.

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 211–223, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

212 G. Tack and D. Le Botlan

Contribution. This paper presents the design of a search factory for Mozart.
The specific contributions of this paper are abstractions for the search tree

that provide fully automatic, encapsulated recomputation and a clean interface
for implementing exploration strategies. Recomputation is only efficient when
combined with last alternative optimization. The paper shows how to make this
automatic and orthogonal. As two more complex modules of a search factory,
branch & bound search and parallel search are considered. The paper shows
that they can be made orthogonal to exploration strategy, recomputation and
last alternative optimization by conservative extensions to the base abstractions.
The correctness of the resulting parallel search engine is discussed.

All these abstractions are modeled in the Mozart object system, using inher-
itance to combine them. The resulting system is called IOzSeF, the integrated
Oz search factory. It is freely available and can be used as a replacement for the
Mozart search libraries including the Explorer.

This work is based on and extends previous research on search in constraint
programming [13, 2, 3]. Differences and similarities will be discussed in the paper,
in particular in the related work section (Section 7).

Organization of This Paper. The next section gives a short overview of
some of the main concepts used in this paper. Section 3 introduces space nodes,
the abstraction that encapsulates recomputation, and gives details about their
implementation. Section 4 builds the tree node layer on top; it provides a tree
interface to search. In the same section, we show that these abstractions lead to a
simple and concise way of formulating exploration strategies. Section 5 explains
how to extend space and tree nodes to refine the search engine: we address
branch & bound optimization, parallel search, and last alternative optimization.
Section 6 discusses IOzSeF, the Mozart implementation of the search factory.
The related work is summarized in Section 7. We conclude in Section 8.

2 Concepts

In Mozart/Oz, computation spaces are used to imple-
ment constraint propagation, branching (also called
distribution) and search. A computation space is cre-
ated by applying the system procedure Space.new to a
unary procedure, the search script, which contains the
problem specification. Propagation immediately starts.
The space becomes stable as soon as no more propaga-
tion can occur. It is up to the search engine to react on
the space’s state, which may be one of alternatives, Fig. 1 A search tree

succeeded or failed. Spaces with alternatives are choice points: the search
engine commits to one of the alternatives (which triggers propagation again),
choosing one of the possible branches.

A search engine thus traverses a tree: inner nodes represent choices, leaf nodes
can be either failed or contain solutions. Such a tree is called a search tree and

.

Compositional Abstractions for Search Factories 213

can be drawn as in Figure 1 (circles stand for choices, diamonds for solutions,
squares for failures, and the triangle represents a yet unexplored subtree). Search
engines must perform backtracking: once they reach a leaf node, they restore the
state of the search engine to for example its parent node in order to explore the
next branch. For state restoration, you can either memoize each node in the
search tree, or have a method to reconstruct its state. In Mozart, memoization
is called cloning, and the reconstruction of a state can be achieved by recompu-
tation. The state of a node in the search tree can be reconstructed by redoing
the choices on the path from the root node or any other ancestor node that has
been cloned during search.

3 Abstracting Recomputation

In this section, we present the space node interface, an interface to computation
spaces that abstracts from recomputation. From the outside, every space node
looks as if it contained a computation space. Internally, space nodes perform
recomputation automatically whenever it is needed.

We basically provide the same abstraction as the Node class introduced by
Choi et al. [3]. We take a slightly different perspective though and split the
interface into two parts: a space node deals with recomputation, but is not
concerned with the interface for a search engine programmer. Search engines are
built on top of the tree node interface, which is the topic of the next section.

At the implementation level, each space node contains two attributes for
computation spaces:

– The first one possibly contains a working space, which represents its node’s
state (including propagators, distributors and constraint variables).

– The second one possibly contains a copy. Space nodes with a copy are used
as a basis for recomputation.

copy

working space

copy

working space

Acquire working space Recomputation

In addition, as in the Node class in [3] again, space nodes are organized in a
tree with parent links and store the number of the alternative they represent.
The straightforward way of implementing such a tree in Mozart is reflected in
the following interface:

214 G. Tack and D. Le Botlan

class SpaceNode
attr workingSpace %% space or empty
attr copy %% space or empty
attr parent %% SpaceNode
attr alternative %% int

meth constructRoot(Root) %% space
meth newChild(Alternative ?Child) %% int, returns SpaceNode
meth ask(?Status) %% returns status

end

The constructor is straightforward. The newChild method takes an integer
and creates a node representing that alternative, but with empty working space
and copy. The ask method returns the status of a node’s working space (whether
it is failed, solved, or has alternatives for branching). What happens if the space
node does not have a working space, for example because it has just been cre-
ated? Space nodes obey the following protocol for creating and communicating
computation spaces:

– If the parent has a working space, it will give it to its child.
– If the parent does not have a working space, recompute.

Recomputation. Given that there is a copy at least in the root of the search
tree (which we will assume from now on), the basic recomputation mechanism
can be implemented in Mozart in a straight-forward way:

meth recompute(?C)
if @copy\=empty then {Space.clone @copy C}
else

{@parent recompute(C)}
{Space.commit C @alternative}

end
end

There are two obvious recomputation strategies:

– Full recomputation: let constructRoot place a copy in the root node.
– No recomputation: let recompute place a copy in every node.

These two make it very clear that recomputation is a means of trading space for
time. Schulte [12] discusses recomputation in detail (including a comparison to
trailing). Really efficient recomputation requires more sophisticated strategies
that can be implemented by refining the recompute method:

– Fixed recomputation: place a copy in every n-th node (n is called maximal
recomputation distance or MRD).

– Adaptive recomputation: place a copy on the middle of the path between
the node that is to be recomputed and the ancestor it is recomputed from.

Compositional Abstractions for Search Factories 215

4 Abstracting the Search Tree

On top of the space node interface, the second abstraction layer is built, namely
tree nodes. Space nodes make recomputation fully transparent: tree nodes need
no knowledge of the underlying recomputation strategy.

In this section, we first elaborate tree nodes as a high-level interface to search
trees. Then, we show how to use the tree node interface to implement exploration.

4.1 The Tree Node Interface

The tree node interface provides a simple interface to the search tree that ab-
stracts from its dynamic construction.

Indeed, the full structure of the search tree can only be known by computing
the status of each single node that indicates if it is a leaf or branching. However,
we want to avoid the full construction of the tree prior to search because it is
exactly the role of the search engine to explore the tree. As a consequence, it is
necessary to build tree nodes lazily, that is, only once they are required by the
search engine. To sum up, the tree node interface can be seen as a regular tree
interface, although nodes of the tree are only built on demand.

Trees can be implemented in many different ways. In the following, we present
an object-oriented interface to tree nodes; however, the same technique can be
easily adapted to any other tree representation. Tree nodes are implemented
following this interface:

class TreeNode from SpaceNode
feat Children %% TreeNode tuple
meth constructRoot(RootSpace) %% space
meth getChildren(?Children) %% return TreeNode tuple

end

The constructor for the root node requires an initial computation space. Then,
the exploration of the tree is performed using the method getChildren.

Implementation. As mentioned above, the main point is to create tree nodes
lazily. We can use Mozart’s by-need mechanism to achieve this: getChildren in-
vokes ask to find out how many children to create, and then initializes children
to a tuple of by-needs. The implementation is shown in Figure 4.1.

There are three levels of laziness in this design: The tuple of children is created
only when getChildren is called, each child node is constructed by-need, and
the underlying space node methods lazily copy and transfer their computation
spaces.

4.2 Exploration Strategies

Implementing an exploration strategy is now as simple as traversing a tree. This
makes the following code sample look like a text-book version of a depth-first
tree traversal:

216 G. Tack and D. Le Botlan

meth getChildren($)
if {IsFree self.Children} then

case {self ask($)} of alternatives(N) then
self.Children = {MakeTuple c N}

in
{Record.forAllInd self.Children
fun {$ I}

{ByNeed fun {$} {self newChild(I $)} end}
end}

else self.Children=c
end

end
self.Children

end

Fig. 2. Implementation of getChildren

proc {Explore Node}
{Record.forAll {Node getChildren($)} Explore}

end

Incremental Search. It is possible to get more control over the search process,
for example by defining a stateful search engine. Its interface consists of two
methods initSearch and nextSolution. For parallel search (see Section 5.2),
a more fine-grained control is necessary: we require only one exploration step,
that is, explore only one node at each call.

Control. You may have noticed that search algorithms do not handle the case
that a solution was found. We leave this task to a separate Control module
that takes care of collecting solutions, setting up the root node and starting and
stopping search. Some of the extensions presented in the following sections will
also require global control, always realized as extensions to the Control module.

5 Extensions

The architecture we have so far can be extended in orthogonal ways to support
some more advanced search techniques. The features we develop here in detail
are branch & bound search for solving optimization problems, parallel search
for distributing a search problem over several computers, and last alternative
optimization, a technique that reduces the number of copies in the search tree.
All extensions happen below the tree node interface, making them completely
orthogonal to the implementation of exploration strategies.

5.1 Branch & Bound Optimization

A well-known mechanism for solving optimization problems is the branch &
bound metaphor: each time a solution is found, every node that remains to be

Compositional Abstractions for Search Factories 217

explored is constrained to yield a “better” solution (in terms of a given order).
Branch & bound therefore maintains the invariant that every solution that is
found is better than the previous one. As a direct consequence, the last solution is
the globally best one. In practice, this optimization considerably reduces the size
of the search tree by pruning whole subtrees that cannot give better solutions.

Implementation Model. Logically, every time a new solution is found, it is
put in special nodes between all unexplored children and their parents. Each
time a space is “pushed over” such a node (for example when a working space is
given to a child, or during recomputation), the constraint that the space must
be better is injected.

In Figure 3, the logical view of branch &
bound is illustrated: assume the right child
needs recomputation. It makes use of its
mother’s copy by cloning it, which gives a
new computation space. Since a “best” con-
straint lies between these two nodes, the
space must be constrained to yield a bet-
ter solution (1) before being passed to the
child (2). Still, this mechanism is transpar-

(1)

(2)

Best

Fig. 3 Recomputation and B&B

ent and does not appear in the space node or tree node interfaces: the special
nodes are automatically inserted and traversed.

Implementation. This scheme can be implemented by inheriting from the
SpaceNode class and refining the ask and recompute methods to post the ad-
ditional “best” constraints. The Control module maintains the current globally
best solution. The newChild method of SpaceNode is refined so that it inserts
a special node reflecting the current best solution when a child is created.

As this does not influence the tree node interface, optimization is completely
orthogonal to search: all search engines can be used without any modification
for solving optimization problems using branch & bound.

5.2 Parallel Search

In this section, we consider parallel search and show how it can easily fit within
our layered abstractions. As a result, all exploration strategies designed over the
tree node interface can be immediately used in a network-distributed setting.

Parallel search speeds up exploration of large constraint problems, by taking
advantage of several networked computers that independently explore disjoint
subtrees. This can be nicely implemented in Oz, as described by Schulte [13].

The main actors of the parallel search framework are a single manager and
several workers. The former implements network distribution: it dispatches in-
dependent parts of the search problem to the workers and gathers solutions. In
the case of branch & bound, the manager also propagates solutions in order to
constrain each worker to yield a better solution.

.

218 G. Tack and D. Le Botlan

The interface between the workers and the manager can be represented as
follows (see Chapter 9 of [13] for a more detailed presentation of this interface):

ManagerWorker

find

collect
ManagerWorker

share

explore

stop

Implementation. Implementing the parallel search framework amounts on the
one hand, to setting up the network distribution layer, which makes use of the
Mozart distribution library; on the other hand, to providing the actual code
corresponding to the messages of the interface. We only focus on the messages
that are not straightforward to implement.

The explore message carries along a path that describes the location of a
tree node in the search tree. In order to reconstruct a node given its path, a
straightforward extension to SpaceNode is needed, namely a method fromPath

that builds a space node from a given path. Then, a search engine independent
of the parallel search implementation can be used, starting at the given tree
node. Still, each worker must be able to reply concurrently to a share message,
that is, to provide the path of a subtree that remains to be explored. One way
to do so is to use an incremental search engine, as described in Section 4.2, and
to extend its interface with a method getUnexploredPath that (may) return a
path to some unexplored node. In order to maximize the work being shared, it
is usually wise to return the highest unexplored node in the tree, because it is
likely to correspond to the largest unexplored subtree. The tree node and space
node interfaces need to be enriched with a straightforward getPath method.

In the case of branch & bound search, solutions sent by the manager must
be taken into account by the workers. This requires an interaction with the
Control module to update the current best solution. As the tree node inter-
face remains unchanged, branch & bound optimization is independent of the
exploration strategy.

Since the parallel search only relies on the standard interface of tree nodes
(up to the additional method fromPath), it is possible to freely use different
implementations of tree nodes and space nodes. Thus, for instance, it is possi-
ble for some workers to display a graphical representation of the subtree being
explored, and to dynamically choose the most suitable recomputation technique.

Discussion. In the following, we show that the network-distributed setting is
correct in the sense that it yields the same solutions as a single search engine. The
main difficulty arises from the fact that it is possible to use different exploration
strategies on workers, as well as different recomputation techniques. We prove
that this is not a problem, as long as some invariant is ensured.

Distributing search problems on networks mainly relies on paths, that is, an
abstract representation of the location of a tree node in the search tree. Only two

Compositional Abstractions for Search Factories 219

extra methods are needed: fromPath that builds a tree node given a path, and
getPath that returns the path associated to a tree node. It is mandatory that
paths have the same “meaning” across different workers. In order to formalize
this statement, we give the following definition (at first, we do not consider
branch & bound):

Definition 1. Two computation spaces are equipotent if and only if they admit
the same set of solutions. By extension, two tree nodes are equipotent if and only
if their associated spaces are equipotent.

Parallel search amounts to dispatching subparts of the problem to workers.
Soundness (found solutions solve the problem) and completeness (no solution is
discarded) follow from the invariant on paths, to be found next. The notation
fromPathi means the method fromPath executed on worker wi.

Invariant 1. For every pair of workers w1 and w2, fromPath2 ◦getPath1, con-
sidered as a binary relation, is a sub-relation of equipotence.

In simpler words, the computation space at the origin (worker w1) and the
computation space reconstructed at the destination (worker w2) are equipotent.

Notice that ensuring this invariant does not depend on the exploration strat-
egy. As a consequence, all workers may use different exploration strategies.

In the case of branch & bound, it suffices to modify the definition of equipo-
tence so that we only take into account the best global solution. Then, two
computation spaces s1 and s2 are equipotent under a global solution g if and
only if the best solution of s1 ∪{g} is as optimal as the best solution of s2 ∪{g}.
By lack of space, we omit the details.

5.3 Last Alternative Optimization

When all but one children of a node have been completely explored, and the node
contains a copy, this can be handed down to the last child. This technique is
known as last alternative optimization (LAO), and Schulte [13] presents a formal
reasoning why it is important. To support it in an orthogonal, automatic way, we
have to change the space node interface and the tree node implementation: space
nodes need a special askLast method (analogous to createLastLeftChild and
createLastRightChild in [3]) that acquires its parent’s copy instead of working
space – if available. Tree nodes internally maintain the number of open children,
subtrees that have not been explored exhaustively yet. Thus getChildren can
call either ask or askLast, depending on the parent’s number of open children.
This scheme makes LAO completely automatic, invisible to both search engines
and recomputation strategies. It also fits seamlessly into our branch & bound
setup, as pushing a copy over a special node during LAO of course constrains
that copy.

We want to keep the invariant that the root node always stores a copy, so
LAO must not be applied there.

Some search engines may require a different notion of last alternative, if
they can say for sure that they will never visit a certain subtree again. This

220 G. Tack and D. Le Botlan

can be accomplished by a method closeSubtree in the TreeNode interface
that simply sets the number of open children to 0. Note that even a badly
designed search engine cannot break system invariants: With a copy in the root
node, recomputation is always guaranteed to terminate, even if some LAO was
done prematurely. An interesting extension might be a search engine that can
speculatively close a subtree that it will most probably not return to.

6 IOzSeF – A Search Factory for Mozart

A complete implementation of the system described in this paper, the Integrated
Oz Search Factory (IOzSeF), is available from the Mogul archive under the URL
mogul:/tack/iozsef.

IOzSeF is a replacement for both the Explorer and the standard Search

module. It currently features the following exploration strategies:

– Depth first search
– Breadth first search
– Iterative deepening [8]
– Limited Discrepancy search [5]
– A∗ search [10]

The user can chose between no, fixed, adaptive, and full recomputation, last
alternative optimization is always done automatically. Branch & bound optimiza-
tion can be combined with all the other features. The graphical user interface is
closely modeled after that of the Explorer; it basically offers the same function-
ality. A prototype implementation of parallel search supplies evidence that the
design carries over to a parallel setting.

Visualization. Visualizing the search tree can be an important aid in mod-
eling the problem. It helps to find sources of weak propagation and to match
distribution heuristics and exploration strategy.

The space/tree node abstractions already provide a complete tree data struc-
ture. It can be refined further to contain all additional attributes necessary for
computing a visual layout and displaying the tree. It is straightforward to reuse
the Explorer’s layout algorithm, which is an incremental version of Kennedy’s
tree drawing algorithm [7]. This yields a visualization module (similar to the one
presented in [2]) that is truly independent of recomputation, branch & bound,
and exploration strategy. We provide the tree visualization as an independent
Mozart library, the TkTreeWidget (mogul:/tack/TkTreeWidget).

Implementation. The implementation makes heavy use of Mozart’s object sys-
tem, especially of dynamic inheritance: the interfaces are modeled as classes that
are combined dynamically at run time. For example, the class TreeNode inherits
either directly from SpaceNode or from BNBNode, a class derived from SpaceNode

that provides the extensions necessary for branch & bound optimization.

Compositional Abstractions for Search Factories 221

Evaluation. IOzSeF is competitive with the explorer in terms of speed – for a
number of standard examples, it performs sometimes better and never more than
thirty percent worse. The overhead is due to the more complex data structures
representing nodes, and the need for more method calls between the independent
modules – the usual price that is paid for modularity. The implementation was
not optimized towards efficiency but towards clean design and extensibility, so
there is probably still quite some room for improvements.

The benefit of the principled design and orthogonality of the modules is that
IOzSeF delivers correct results also when combining recomputation, branch &
bound, and unorthodox exploration strategies (for example arbitrary manual
exploration), whereas the Explorer is sometimes unpredictable.

7 Related Work

Schulte explains the need for a search factory in the Future Work section of his
book “Programming Constraint Services” [13]. This book is the reference for
computation spaces, recomputation, exploration strategies and parallel search.
However, most of the algorithms presented there assume depth-first, left-to-right
exploration, which we do not.

The Explorer [11], Mozart’s graphical frontend to search, contains most of the
features we present here, but in a monolithic, ad-hoc implementation. Besides,
the combination of some features, especially branch & bound and recomputation,
is not correct.

Chew et al. introduce STK [2], a SearchToolKit for Oz. Their design fea-
tures several dimensions: memory policy, exploration, interaction, information,
visualization, and optimization. They do not elaborate on how memory policy
(recomputation) interacts with the other dimensions. Parallel search is not con-
sidered. However, their information dimension contains debugging functionality
(like information on the choice a distributor made) that should be considered to
be integrated into our setup.

Choi et al. [3] present an architecture for implementing state restoration poli-
cies in an orthogonal way. They also organize their fundamental data structures
in a tree of nodes, making state restoration automatic and invisible to the user.
Their version of last alternative optimization requires the search engine to collab-
orate, it is not automatic. The interactions of branch & bound and LAO with re-
computation are only sketched. Choi et al. design their interface such that it sup-
ports novel state restoration policies (namely lazy copying, course-grained trail-
ing and batch recomputation). We do not consider these extensions here, because
Mozart does not provide for powerful enough primitives to implement them.

ILOG Solver [6] provides an object-oriented interface for programming explo-
ration strategies. State restoration is realized through trailing. The exploration
strategy is programmed only indirectly, by supplying a node evaluator and a
search selector that specify which node and which branch to select, respectively
(this is discussed in [9]). Although this also abstracts over state restoration, our

222 G. Tack and D. Le Botlan

interface is more intuitive to use. ILOG Solver does not allow to extend the
underlying abstractions.

8 Conclusion and Outlook

Analyzing the main features provided by usual search libraries in constraint
programming, we identify orthogonal concepts that are however interleaved in
available implementations. Separating these key elements, we design a search
factory for Mozart that is based on two abstractions: space nodes, encapsulating
recomputation, and tree nodes, providing a clean interface for programming ex-
ploration strategies. Then, we show how to implement parallel search, branch &
bound, and last alternative optimization by slightly extending the core abstrac-
tions. We notice that these extensions are mostly orthogonal and can be easily
combined.

As a first example, a new implementation of an exploration strategy im-
mediately benefits from recomputation and visualization, for free. As a second
example, the workers used in parallel search may transparently use different
exploration strategies, different recomputation techniques, and different visual-
ization modules. Soundness and completeness of the search is preserved.

The search factory not only serves as a proof of concept, but can be used as
a replacement for the Explorer and the engines found in the Search module.

In a prototype implementation, the search factory has been ported to the
Alice programming language [1], using the Gecode constraint library (available
at [4], some implementation details can be found in [14]). As a result, the design
we develop here maps pretty well to a functional, statically typed, non-object-
oriented language (Alice is based on SML). Besides, the tree node layer provides
a very clean interface that integrates perfectly within a functional language. The
stack of layers starting from the computation space paradigm to the tree node
interface allows for a higher-order view of search in constraint programming that
reconciles the incompatible natures of logic variables and functional abstractions.
New features available in Gecode (like batch recomputation [3]) easily fit into
our framework.

9 Future Work

Our future work goes in two directions: on the one hand, the Mozart-based
implementation needs thorough testing and optimization for speed and memory
requirements, and the parallel search engine should be fully incorporated. This
will lead to a true alternative to Mozart’s current search engines. On the other
hand, the port to Alice/Gecode will be completed, to provide a full featured
search environment on this platform. It may be interesting to build an extension
similar to the “Information” dimension introduced by Chew et al. [2], which can
provide important insight that is needed to debug constraint programs. Another
opportunity for improvement consists in finding clear abstractions that describe
precisely the chosen recomputation policy. In particular, it remains to design

Compositional Abstractions for Search Factories 223

an interface that allows the programmer to easily specify hybrid recomputation
strategies as suggested by Choi et al. [3].

Acknowledgements. We would like to thank Christian Schulte, who proposed
this topic as a student’s project to Guido Tack and supervised it. He and
Thorsten Brunklaus made helpful comments on a draft version of this paper.
Marco Kuhlmann helped in testing and debugging the implementation; he also
provided the A∗ exploration strategy. We also want to thank the anonymous
referees for their constructive suggestions that helped improve the paper.

References

1. The Alice Project. http://www.ps.uni-sb.de/alice, 2004. Homepage at the
Programming Systems Lab, Universität des Saarlandes, Saarbrücken, Germany.

2. Tee Yong Chew, Martin Henz, and Ka Boon Ng. A toolkit for constraint-based
inference engines. In Practical Aspects of Declarative Languages, Second Interna-
tional Workshop, LNCS, Volume 1753, pages 185–199, Boston, MA, January 2000.
Springer-Verlag.

3. Chiu Wo Choi, Martin Henz, and Ka Boon Ng. Components for state restoration
in tree search. In Proceedings of the Seventh International Conference on Princi-
ples and Practice of Constraint Programming, LNCS, vol. 2239, Paphos, Cyprus,
November 2001. Springer Verlag.

4. Gecode, the generic constraint development environment.
http://www.gecode.org, 2004.

5. William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In Pro-
ceedings of the Fourteenth International Joint Conference on Artificial Intelligence
(IJCAI-95); Vol. 1, pages 607–615, Montréal, Québec, Canada, August 1995.

6. ILOG Inc., Mountain View, CA, USA. ILOG Solver 5.0 reference Manual, 2000.
7. A. J. Kennedy. Functional pearls: Drawing trees. Journal of Functional Program-

ming, 6(3):527–534, May 1996.
8. Richard E. Korf. Iterative-deepening–an optimal admissible tree search. In Aravind

Joshi, editor, Proceedings of the 9th International Joint Conference on Artificial
Intelligence, pages 1034–1036, Los Angeles, CA, August 1985. Morgan Kaufmann.

9. Irvin J. Lustig and Jean-François Puget. Program does not equal program: Con-
straint programming and its relationship to mathematical programming. White
paper, ILOG Inc., 1999. Available at http://www.ilog.com.

10. Stuart J. Russel and Peter Norvig. Artificial Intelligence - A Modern Approach -
Second Edition. Prentice Hall, Englewood Cliffs, 2003.

11. Christian Schulte. Oz explorer: A visual constraint programming tool. In Lee
Naish, editor, Proceedings of the Fourteenth International Conference on Logic
Programming, pages 286–300, Leuven, Belgium, July 1997. The MIT Press.

12. Christian Schulte. Comparing trailing and copying for constraint programming. In
Danny De Schreye, editor, Proceedings of the Sixteenth International Conference
on Logic Programming, pages 275–289. The MIT Press, December 1999.

13. Christian Schulte. Programming Constraint Services, volume 2302 of Lecture Notes
in Artficial Intelligence. Springer-Verlag, Berlin, Germany, 2002.

14. Christian Schulte and Peter J. Stuckey. Speeding up constraint propagation. In
Tenth International Conference on Principles and Practice of Constraint Program-
ming, LNCS, Toronto, Canada, September 2004. Springer-Verlag. To appear.

Implementing Semiring-Based Constraints Using
Mozart�

Alberto Delgado, Carlos Alberto Olarte, Jorge Andrés Pérez,
and Camilo Rueda

Pontificia Universidad Javeriana - Cali
{albertod, japerezp}@puj.edu.co

{caolarte, crueda}@atlas.puj.edu.co

Abstract. Although Constraint Programming (CP) is considered a use-
ful tool for tackling combinatorial problems, its lack of flexibility when
dealing with uncertainties and preferences is still a matter for research.
Several formal frameworks for soft constraints have been proposed within
the CP community: all of them seem to be theoretically solid, but few
practical implementations exist. In this paper we present an implementa-
tion for Mozart of one of these frameworks, which is based on a semiring
structure. We explain how the soft constraints constructs were adapted
to the propagation process that Mozart performs, and show how they
can be transparently integrated with current Mozart hard propagators.
Additionally, we show how over-constrained problems can be successfully
relaxed and solved, and how preferences can be added to a problem, while
keeping the formal model as a direct reference.

1 Introduction

Constraint Satisfaction Problems (CSP) have been studied for more than four
decades. Real-life problems expressed as CSPs are in general closer to the ap-
plication domain and thus simpler to understand than using other techniques.
Despite its advantages, the CSP formalism still lacks flexibility when represent-
ing some situations, such as when dealing with preferences, uncertainties and
similar notions. The need for relaxing problems such as constraints that do not
always have to be satisfied, motivated the research on Soft Constraints Satisfac-
tion Problems (SCSP) as an extension of the classical CSP. Several formal and
practical works have been proposed in this direction. All of them allow users to
find approximate solutions for a given problem, while considering all constraints
in the problem at the same time. The quality or degree of usefulness for an ap-
proximate solution is given by an overall valuation. In this paper, we focus on
the Semiring-Based Constraints, a formalism developed by Bistarelli et al [2, 7].

� This work was partially supported by the Colombian Institute for Science and Tech-
nology Development (Colciencias) under the CRISOL project (Contract No. 298-
2002).

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 224–236, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

Implementing Semiring-Based Constraints Using Mozart 225

This formalism adds valuations to the problem solutions and provides a mecha-
nism for choosing the best of them without implying the complete satisfaction
of all the constraints in the problem.

Several implementations of the semiring-based constraints exist. To our know-
ledge, however, most of them are based on CLP (Constraint Logic Program-
ming). These implementations include clp(FD,S) [9] which extends the clp(FD)
solver with a new data type for handling semiring operations and the semiring
extension for SICStus Prolog based on Constraint Handling Rules (CHR) [5].
In addition, there are other prototypes like [10] that propose interesting ideas
that could be applied for implementing tuple evaluation, as well as [12], where
an iterative algorithm is proposed in order to implement the abstraction scheme
for semiring-based constraints proposed in [4].

We implemented semiring-based constraints by exploiting the extension mech-
anisms that Mozart provides, in particular the Constraint Propagation Interface
(CPI) [11]. In this setting, the behavior of semiring-based constraints is imple-
mented in propagators. The system allows Mozart programmers to naturally
express soft and hard constraints in the same program. We believe this con-
servative approach is more practical for Mozart since the theoretical extension
proposed in [7] would imply changing the formal model of the language.

We tested our implementation in some known problems. Such tests were
useful to highlight some advantages of the implementation. They also provided
a valuable experimental reference that can be generalized when dealing with
over-constrained problems, or to handle both soft and hard constraints. We
identified some strategic issues that should be considered when including soft
constraints in existing CP applications. The main contribution of the paper is
to show that semiring-based constraints can be efficiently included in Mozart by
defining appropriate propagators.

This paper is structured as follows: in the next section, we introduce the
semiring-based formalism for soft constraints. Then, our propagator implemen-
tation is described, demonstrating its use in section 4. In section 5, some direc-
tions in using soft constraints are discussed, and some of the factors that influence
these directions are pointed out. Finally, we propose a set of concluding remarks
and describe some ideas for future work.

2 Semiring-Based Constraint Satisfaction Problems

In this section we briefly summarize the main definitions and properties of the
semiring framework for handling soft constraints. Further details can be found
in [2].

2.1 Semirings and c-Semirings

A semiring is a tuple 〈A, +,×, 0,1 〉 such that
– A is a set and 0, 1 ∈ A
– +, the additive operator is closed, commutative and associative. Moreover,

its unit element is 0.

226 A. Delgado et al.

– ×, the multiplicative operator, which is a closed, associative operation, such
that 1 is its unit element and 0 is its absorbing element.

– × distributes over +.

A c-semiring (for constraint semiring) is a semiring with some additional
properties: × is commutative, + is idempotent, and 1 is its absorbing element.
The idempotency of + is needed in order to define a partial ordering ≤S over the
set A, which serves to compare different elements of the semiring. Such partial
order is defined as follows: a ≤S b iff a+ b = b. Intuitively, given a ≤S b, one can
say that b is better than a. Moreover, for this order, it is possible to prove that
+ and × are monotonic, 0 is its minimum and 1 is its maximum, 〈A,≤S〉 is a
complete lattice and, that for all a, b ∈ A, a + b = lub(a, b).

2.2 Soft Constraint Systems and Problems

A constraint system is a tuple CS = 〈S, D, V 〉, where S is a semiring, D is a
finite set and V is an ordered set of variables. Given a constraint system CS =
〈S, D, V 〉, where S = (A, +,×, 0, 1), a constraint over CS is a pair 〈def, con〉,
where con ⊆ V is called the type of the constraint, and def : Dk=|con| → A
is called the value of the constraint. Therefore, a constraint specifies a set of
variables (the ones in con), and assigns an element of the semiring to each tuple
of values of these variables.

A soft constraint problem (SCSP) P over CS is a pair P = 〈C, con〉, where
C is a set of constraints over CS and con is a subset of V .

2.3 Combination and Projection for Soft Constraints

Consider any tuple of values t and two sets of variables I and I ′, with I ′ ⊆ I. t ↓I
I′ ,

denotes the tuple projection for t w.r.t. the variables in I ′. Let c1 = 〈def1, con1〉
and c2 = 〈def2, con2〉 be two constraints over CS. Then, its combination c1⊗c2,
is the constraint c′ = 〈def ′, con′〉, where con′ = con1 ∪ con2 and def ′(t) =
def1(t ↓con1

con′) × def2(t ↓con2
con′). Informally, the combination of two constraints

builds a new constraint which includes all the variables in both constraints. This
new constraint associates a semiring value to each tuple of domain values for all
variables. Such value is obtained by multiplying the elements associated by the
two constraints to the appropriate subtuples.

Given the constraint c = 〈def, con〉 and a subset w of con, the projection
of w over c, written c ⇓w is the constraint 〈def∗, con∗〉, where con∗ = w and
def∗(t∗) =

∑
{t|t↓con

w =t∗} def(t). Expressed in words, projection removes some
variables by associating to each tuple over the remaining variables a semiring
element. Such an element is obtained by summing the elements associated by the
original constraint to all the extensions of this tuple over the removed variables.

Note the correspondence between the combination and the multiplicative
operator as well as the one between the projection and the additive operator.

Implementing Semiring-Based Constraints Using Mozart 227

2.4 Solution of a SCSP

Given a constraint problem P = 〈C, con〉 over a constraint system CS, the
solution of P is a constraint defined as Sol(P) = (

⊗
C) ⇓con where

⊗
C is the

obvious extension of × to a set of constraints C. In words, a solution represents
the combination of all constraints in the problem; such a combination is projected
over the variables of interest. Note that the solution for a problem is also a
constraint.

Sometimes it is enough to know the best value associated with the tuples of a
solution. This is called the best level of consistency: Given an SCSP P = 〈C, con〉,
the best level of consistency for P is defined as blevel(P) = (

⊗
C) ⇓∅ . P is said

to be consistent if 0 <S blevel. In the case where blevel(P) = α, P is said to be
α-consistent.

2.5 Instances of the Framework

C-semirings including the most known variants of CSPs are listed below:

– Classic CSP: 〈{false, true},∨,∧, false, true〉
– Fuzzy CSP: 〈{x | x ∈ [0, 1]}, max, min, 0, 1〉
– Probabilistic CSP: 〈{x | x ∈ [0, 1]}, max,×, 0, 1〉
– Weighted CSP: 〈�+, min,+, +∞, 0〉

In addition, it is possible to combine several c-semirings and obtain another:
given n c-semirings Si = 〈Ai, +i,×i, 0i, 1i〉, for i = 1 . . . n, let us define the
structure Comp(S1, . . . , Sn) = 〈〈A1, . . . , An〉, +,×, 〈01, . . . , 0n〉, 〈11, . . . , 1n〉〉.
Given 〈a1, . . . , an〉 and 〈b1, . . . , bn〉 such that ai, bi ∈ Ai for i = 1, . . . , n. In
this scheme, the semiring operations can be performed in the following way:
〈a1, . . . , an〉+〈b1, . . . , bn〉 = 〈a1+1b1, . . . , an+nbn〉 and 〈a1, . . . , an〉×〈b1, . . . , bn〉
= 〈a1 ×1 b1, . . . , an ×n bn〉.

3 Implementing Semiring-Based Constraints

Frequently, applications using constraint programming need to express prefer-
ences, uncertainty and similar ideas in order to be more flexible and to support
partially “inconsistent” inputs. Mozart programmers use the FD propagators
to write procedures enforcing constraints modeling the real problem, but they
have no elegant and formal mechanism to express softness or to deal with over-
constrained inputs. Some language constructs like reified constraints [14] and
disjunctions (or) can be used to fulfill these requirements. Nevertheless, solu-
tions obtained in this way cannot be compared in a uniform way because some
of them do not satisfy the same constraints.

Our propagator-based implementation aims at integrating the previously de-
scribed c-semiring formalism into the efficient available propagator mechanisms
in Mozart. This section describes our implementation of a c-semiring based con-
straint system using the Constraint Propagation Interface (CPI) [11] and points
out some interesting advantages in using it.

228 A. Delgado et al.

3.1 Soft Propagators

Our first implementation of a c-semiring constraint system in Mozart was built
using its functional and object-oriented features. Basically, we defined some
structures representing most of the model concepts, implemented c-semiring op-
erations like constraint combination and Sol(P) over these, and finally built a
search procedure based on arc-consistency algorithms. Using this implementa-
tion defining new constraints was easy, as the user only had to write the def
function and then to combine this definition with the implemented semiring
operations.

This implementation had serious performance problems because we had to
implement our own version of some mechanisms like propagation queues and
domain definitions, instead of using those provided by Mozart (CPI). Initially,
we did not use CPI’s facilities, because a relationship between semiring opera-
tions and propagators was not clear. For example, the constraint definition for
the c-semiring formalism differs from the notion of propagation implemented in
Mozart. Indeed, the c-semiring constraint definition only expresses a function
(def) to evaluate tuples in the Cartesian product of the variable domains, while
constraints in Mozart are enforced by means of propagators that narrow values
of its associated variables.

Trying to unify both concepts, we decided to build some propagators dealing
with the semiring valuation idea. These propagators should implement the prop-
agation function (by overloading the propagate method from OZ Propagator
class) and a valuation method (def function). The propagate method must re-
move elements from the variable domain only when all the tuples with these
values have a valuation less than the minimum level of preference accepted by
the user.

3.2 Creating Soft Propagators

Soft propagators implement an efficient mechanism for handling softness in con-
straint applications, allowing transparent integration of soft constraints with
current Oz propagators (hard constraints). In this approach, if the user wants
to implement a new propagator, he/she must extend an abstract class, and deal
with some low-level language implementation issues. Our idea for solving this
drawback is to provide a wide set of soft propagators (much like in the FD sys-
tem) to build most common applications, thus minimizing programming efforts.
In the following, we first describe the basic class and procedures required to
create new soft propagators. Later, we show the set of implemented soft propa-
gators.

Semiring Class. This class implements the semiring structure and provides
the following methods:

– plus(a,b): Computes a + b
– times(a,b): Computes a× b

Implementing Semiring-Based Constraints Using Mozart 229

– max(): Returns the max ring value (1)
– min(): Returns the min ring value (0)
– lt(a,b): Tests a <s b
– decrease(u,dlevel): Returns the ring value obtained from decreasing u

times the ring value dlevel to the max value (1).

The first six functions are self explanatory. The last one allows writing propaga-
tors independently of the c-semiring selected by the user. For example, decrease
(2, 0.2) will return 0.6 (1.0 − 2 ∗ 0.2) when using the fuzzy semiring, and 0.4
(0.0 + 2 ∗ 0.2) when using the weighted semiring.

OZ Soft Propagator. This is the abstract class from which all soft propaga-
tors inherit. It inherits itself from OZ Propagator, forcing the user to implement
the propagate method as well as others like sClone and gCollect for memory
management (see [11]). Additionally, this class provides the following methods:

– setDegreeLevel: changes the Softness Degree of the propagator, making it
softer or harder (see section 3.3)

– computeValuation: Computes def(t) when all propagator variables are
singletons.

– getRingValue: Returns the overall semiring value, computed by applying
the times operator over all the c-semirings values returned by all soft prop-
agators.

– propagate: Filter function.

Before reaching the entailed state, all soft propagators must call their Com-
puteValuation method, allowing the abstract class to compute the overall semir-
ing value. The filter function must be carefully written since it must be compat-
ible with the valuation function. This implies that the propagator should only
remove inconsistent values (i.e., di ∈ dom(X) s.t. def(t) <s minLevel for all
t with t ↓X= di) and the valuation function should assign values correspond-
ing to this selection (for all t ∈ D|con|, computeV aluation ≥s minLevel). For
non-idempotent times operators, an additional check is required: when a compu-
tation space reaches stability, the overall semiring value must be better than the
minimal level of preference stated by the user (

∏
propi.ComputeV aluation ≥s

minLevel). Currently, this check is performed by the distributor using the pro-
cedure field in the generic distribution strategy specification.

Some Additional Functions. The user can invoke the following functions in
Mozart:

– {Soft.chooseRing R}: Selects the semiring R. For example,

{Soft.chooseRing fuzzy}

chooses the fuzzy c-semiring.
– {SetBLevel ML}: Changes the minimal level of preference (minLevel)

accepted by the user. For example, invoking

230 A. Delgado et al.

{Soft.chooseRing fuzzy}
{Soft.setBlevel 0.35}

makes the solver reject all solutions where the semiring value is less than
0.35. In general, all variable assignments with valuation α <S minLevel,
will be considered as inconsistent.

– {Soft.setSoftDegree Dl}: This function defines the softness degree pa-
rameter with value Dl for all the propagators created after this statement.
As the softness degree parameter is included in the state of a propagator, it
is possible to define different degrees for each propagator in a program. The
interaction of this parameter and the minLevel, makes propagators softer
or harder as explained in the next section.

– {GetValuation}: Returns the overall semiring valuation when all propaga-
tors are entailed. This is computed by applying the times semiring operator
over the valuation of each soft propagator.

3.3 Current Soft Propagators

– {Soft.lt X Y}: Asserts the constraint X < Y . This propagator “allows”
values for X equal to or greater than Y according to the softness degree. For
example, if we impose the Soft.lt propagator over two variables X and Y ,
set the softness degree to 0.4 and choose the fuzzy semiring, the valuation
criteria for all tuples ti = 〈xi, yi〉 is :

def(ti) =
{

1.0 if xi < yi

max(0.0, 1.0− (0.4 ∗ (1.0 + xi − yi))) otherwise

Observe that a softness degree equal to 1 turns Soft.lt into the classical
LessThan propagator. Furthermore, if the minLevel parameter is fixed to
0.5, only tuples 〈xi, yi〉 where xi ≤ yi are accepted. This fact is used by the
propagator to enforce bound consistency.

– {Soft.distinct LVar}: Asserts the all different constraint over variables in
LV ar. In this case, according to the Softness Degree, the propagator allows
that some values be equal in the list (or tuple) LV ar. Consider the following
fragment of code:

Sol = sol(var: Vars value:Val)
N=4 Vars = {FD.tuple sol N 1#N-1}
{Soft.chooseRing fuzzy}
{Soft.setBlevel 0.3} {Soft.setSoftDegree 0.4}
{Soft.distinct Vars}
{FD.distribute ff Vars}
Val = {Soft.getValuation}

Here, those solutions where two variables are pairwise equal, such as 〈1, 2, 3, 1〉,
are allowed and evaluated to 0.6(1.0 − 0.4). Solutions where three or four
variables are pairwise equal such as 〈1, 1, 1, 2〉 are rejected (its valuation is
0.2 = 1.0− 0.4− 0.4 ≤s 0.3).

Implementing Semiring-Based Constraints Using Mozart 231

– {Soft.distance X Y RelOp Z:} Asserts |X−Y | RelOp Z constraint where
RelOp stands for the basic relational operators. The softness (or hardness)
of this constraint depends on the softness degree parameter.

– {Soft.unaryPreference X RPref}: Allows the user to express preferences
over some values in the domain of X. For example, in

X::1#5
{Soft.chooseRing fuzzy}
{Soft.setBlevel 0.4}
{Soft.unaryPreference X val(1:0.3 3:0.7 5:0.4)}

the UnaryPreference propagators will remove {1} in the first propagation
step (since 0.3 <s 0.4), and the semiring value assigned by the propagator
(ComputeValuation method) is 0.7 if X = 3, 0.4 if X = 5 and 1.0 (max)
otherwise. This propagator is not affected by the softness degree parameter.

– {Soft.nPreference LVar RPref}: Like the previous one, but this function
allows to express valuations for n-ary tuples. For example, in

[X Y]::1#4
{Soft.chooseRing fuzzy}
{Soft.setBlevel 0.4}
{Soft.nPreference [X Y] val(´1-2´:0.2 ´3-2´:0.6)}

Soft.nPreference will remove 1(resp. 2) from dom(X) (resp. dom(Y)) iff the
only value in dom(Y) (resp. dom(X)) is 2 (resp. 1) respectively. If X is
entailed to 3 and Y to 2, computeValuation will return 0.6 and 1.0 (1)
otherwise.

Summing up, this implementation adopts the formal concepts of the semiring
formalism with efficient propagation techniques in Mozart. We also provide some
useful mechanisms for expressing soft statements in constraint applications, for
example the softness degree for expressing accurate soft statements over con-
straints and the minLevel for filtering solutions obtained so far. Thus, we gain
some interesting advantages: (1) Capability of mixing soft and hard (current
Mozart FD propagators) constraints. In this case, we do not need to evaluate
the hard constraint assuming a semiring value of 1 ; (2) ability to filter unde-
sirable solutions w.r.t. a fixed parameter (minLevel) and (3) having criteria to
compare different solutions.

4 Results

Although we have not tested the c-semiring based constraint implementation
with real-life applications yet, we have run some small examples that show the
level of expressiveness and offer some ideas about performance of our system.
This section evaluates some examples, using an Intel Pentium IV CPU 1.80 GHz,
256 MB RAM computer running Mozart system 1.3 over Linux Gentoo Kernel
2.6.3.

232 A. Delgado et al.

4.1 An Over-Constrained Problem Example

We implemented a simple timetabling problem proposed in the Mozart tutorial
[14]. The problem consists of allocating conferences with some precedence and
disjoint constraints. The input for the solver is composed of:

– nbParSessions, an integer representing the maximum number of parallel ses-
sions that can be assigned.

– nbSessions, the number of conference sessions to be assigned.
– A list of before tuples 〈x, y〉 asserting that conference x must take place

before conference y
– A list of disjoint tuples 〈x, [y1, ..yn]〉 asserting that conference x must not be

in parallel with conferences y1, y2, ..., yn

The solution strategy proposed in [14] used the FD.atMost propagator to
enforce the maximum number of parallel sessions (nbParSessions), FD. < to
enforce precedence constraints and FD.’distinct’ for disjoint constraints. When
we added some new precedence constraints to the original data input, the prob-
lem became over-constrained. To solve this, we changed the LessThan (FD. <:)
propagator by our Soft.lt propagator and obtained a solution to the new input
data. Note that a slight change was necessary for solving the problem, keeping
the same initial model.

This example is interesting because by making small and well located changes,
we integrated soft and hard constraints in a consistent and efficient way. Addi-
tionally, it is possible to know when a solution is better than others by using the
plus semiring operator (recall that a is better than b iff a + b = a).

4.2 Expressing Preferences

Many real life problems include expressing preferences such as “this color is
better than that one” or “I prefer having more RAM than a faster processor”.
Implementing this kind of constraint is not easy using only hard propagators.
For example, one could try implementing those preferences using FD. <, but
usually not all user preferences can be satisfied at once. We can instead use soft
propagators expressing preferences, compare, and choose a desirable solution
according to its semiring value.

A formalism called CP-Network was proposed in [8] to reason with preference
statements. For example, given two finite domain variables A and B, the pref-
erence statement a1 � a2 � a3 expresses that the user prefers the assignment
A = a1 independently (regardless other assignments) over A = a2 and A = a3.
We also have conditional preferences such as b1 : a2 � a1 expressing that given
an assignment of b1 for B, the user prefers assigning a2 rather than a1 to A.

The user preferences can be represented by a Conditional Preference Graph
G = 〈V, A〉 where V is the set of variables and ai = 〈X, Y 〉 ∈ A iff a preference
of the form xi : y1 � y2 � ... � yn is given. In [13] a solving strategy using
the Sweighted c-semiring was proposed. We implemented a CP-Network solver
following those ideas.

Implementing Semiring-Based Constraints Using Mozart 233

The solver imposes the UnaryPreference propagator for each unconditional
preference and imposes nPreference over each conditionally preference state-
ment. For example, a customer trying to buy a car could give preferences such
as:

White � Red � Black � Green ; Hydraulic � Mechanic

Chevrolet � Renault � Mazda � Fiat � Kia ; 1600cc3 � 1300cc3 � 2300cc3

1300cc3 : Mechanic � Hydraulic

Chevrolet : Red � White � Black � Green

In this case, we created variables related to each feature (Color, Transmission,
Trademark, Capacity). Using the solver we obtained all ordered solutions (by≤s)
in a few milliseconds (8ms). Observe that the trivial solution 〈White, Hydraulic,
Chevrolet, 1600cc3〉 taking account only the unconditional preferences does not
satisfy all the preferences (unsatisfiable using only hard constraints) but it is
still a good solution.

4.3 Avoiding Reified Constraints

Reification is the usual means in Mozart for expressing soft statements or solving
over-constrained problems. The reification of a constraint C w.r.t. a variable x
is the constraint (C ↔ x = 1) ∧ x ∈ 0#1 [14]. This new constraint is defined by
the following propagation rules: if x = 1 (resp. x = 0) is entailed by the store
then the reified propagator reduces to a propagator for C (resp. ¬C) and if the
store entails C (resp. store in inconsistent with C) then the reified propagator
tells x = 1 (resp. x = 0).

Using this approach, users can define satisfiability degrees (ai) for each rei-
fied constraint and compute Sat =

∑
ai×xi

by means of a propagator such as
FD.sumC. Sat can be maximized (or minimized) using a suitable distribution
strategy and its final value can be used to choose or reject solutions, giving some
ideas about their “quality”.

The following example shows that sometimes imposing soft constraints in-
stead of reified constraints may be useful. In particular, the semiring structure
offers well defined mechanisms for expressing softness over constraints involved
in the problem and provides an operator for choosing solutions in a consistent
way. Furthermore, we do not need to explicitly compute the valuation function
because it is implicitly computed by the overall ring valuation.

The problem consists of aligning some people for a photo [14]. Some prefer-
ences about the distance between two persons are given. The original input in
[14] turns the problem over-constrained. The solution proposed by the authors
consists in adding reified constraints asserting Sat.i = 1 ↔ |P.x − P.y| = 1,
meaning that Sat.i is equal to 1 only if the i-th preference (x wants to be be-
sides y) can be satisfied. Finally, the solver maximizes the satisfaction function∑

Sat.i implementing a two-dimensional distribution strategy.
We rewrote the script using the soft version of the distance propagator in-

stead of the reification mechanism. The soft propagator will allow distances not

234 A. Delgado et al.

necessarily equal to 1, penalizing its valuation according to the softness de-
gree parameter chosen for each propagator. The satisfiability (modeled as a dis-
tributed variable in the previous implementation) is now obtained via the overall
semiring valuation (we do not require a two-dimensional distribution strategy).
Furthermore, by stating preferences, we can fix the associated cost with a con-
dition stating that two persons must be together when they cannot be.

5 Integrating Soft Constraints into Existing Applications

Once a soft constraints implementation is available, considering its use in real
settings becomes a crucial issue centered around two basic factors:

– Modifications needed on existing constraint applications that wish to use
soft constraints.

– Agreements regarding the obtained solutions by using a soft constraints im-
plementation.

The first item is related with the cost of introducing soft constraints in an existing
application. Although soft constraints allow a more faithful representation for
constraint models, stating all or most of the constraints in a problem in terms of
soft constraints is computationally harder, because soft propagators perform less
pruning than hard ones. Consider any commercial application: the costs, in time
and money, of changing the application are huge; the performance consequences
of the soft constraints are also significant. For this reason, we consider that
adding soft constraints in real settings depends on the identification of a specific
set of constraints to be relaxed. Such a set must contain those constraints that
reflect optional or variable features of the problem. Think of any application
in operations research: constraints regarding the number of available resources
can be relaxed, since some kind of arrangements are possible in real life. On the
contrary, constraints stating mandatory conditions (such as the business rules),
cannot be replaced by their soft counterpart, because of the serious consequences
of such decisions for the final user. Moreover, this replacement (or relaxing) of
constraints is related to the second item stated above: the agreement process
derived from the approximate solutions obtained by using soft constraints.

By using soft constraints, the programmer must negotiate with the final user
those solutions that are good enough with respect to the constraints of the
problem, but does not hold for all of them. Moreover, as in the case described
before, such approximate solutions will require additional effort on the part of
the user. This implies that the programmer (and the final user) must be willing to
deal with less than satisfactory solutions as a result of the software development
process. We believe that either the process of convincing the user to accept an
approximate solution and/or the effort of the user in arranging some conditions
in its real setting, will be easier if the relaxed constraints are carefully chosen.

To make these arguments clear, remember the conference allocation example
previously described. It is possible that the precedence constraints that were
imposed by the before tuples (relaxed by using Soft.lt) were less important for

Implementing Semiring-Based Constraints Using Mozart 235

the users of the application than the disjoint constraints. This implies that
for such users, those solutions possibly not satisfying all the before constraints,
but satisfying the rest of them, are acceptable approximations. Conversely, this
also means that in that case, the disjoint constraints must always hold under
any condition.

Summing up, using the soft constraints in existing applications can be very
useful, but their inclusion must be carefully planned. Since our module for soft
constraints in Mozart can be consistently used in conjunction with the efficient,
existing hard mechanisms (the FD propagators), the main task of the program-
mer is to select and replace crucial constraints in the problem. This choice will
influence the rest of the development process, since approximated solutions (ob-
tained from a relaxed problem) can be more easily accepted by the final users
of the application if the changes and/or trade-offs he/she has to make are rea-
sonably manageable.

6 Conclusions

Our implementation offers a new alternative for dealing with over-constrained
problems in Mozart. Such problems are often modeled using reified constraints
and other constructs. The main drawback of such constructs is its lack of ex-
pressiveness. Since the number of satisfied constraints in a problem does not
necessarily reflect its quality (or its usefulness), comparing several solutions for
the same problem is not easy. On the contrary, our semiring-based implementa-
tion allows such comparison, because the resulting valuations are related to the
entire solution.

Our implementation also allows the direct interaction between hard and soft
constraints, in such a way that the hard constraints are not modeled using soft-
based constructs (by using the c-semiring instance for Classical CSP), but taking
advantage of the existent (often very efficient) hard constraints mechanisms. This
feature allows us to consider that not all the constraints in a problem should be
relaxed by soft constraints; it is important to choose a subset of the constraints
carefully, and relaxing just that subset, avoiding poor valued solutions and/or
efficiency overheads.

The semiring-based formalism has practical application for programs written
in Mozart. Existing applications can take advantage of this approach, without
changing the core of its model. Moreover, those applications that try to solve an
over-constrained problem can benefit from this relaxation alternative, since they
could obtain solutions that were previously rejected by a hard solver. We believe
that these two issues – the modifications needed in existing applications and the
solutions that can be obtained in over-constrained settings – are fundamental
when considering the industrial and commercial application of soft constraints.

6.1 Future Work

We plan to increase the number of soft propagators available for finite domain con-
straints in Mozart. This will increase the number of applications that can introduce

236 A. Delgado et al.

soft constraints in their models. We also plan to study a formal framework for prov-
ing properties of filter functions in propagators such as the one in [1, 6].

In order to include soft ideas in the distribution process, we consider that
the labeling process in [3] could be a good starting point. Other approaches,
like building a distributor that looks for those solutions that are better than
a valuation threshold, or considering as alternatives for distribution the best
valued variables could also be a subject of study in the near future.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments for
improving this paper. We are also grateful to Stefano Bistarelli for his comments
about this work.

References

1. Krzysztof R. Apt. The rough guide to constraint propagation. In Principles and
Practice of Constraint Programming, pages 1–23, 1999.

2. Stefano Bistarelli. Semirings for Soft Constraint Solving and Programming. Num-
ber 2962 in LNCS. Springer-Verlag, 2004.

3. Stefano Bistarelli, Philippe Codognet, Yan Georget, and Francesca Rossi. Labeling
and partial local consistency for soft constraint programming. Lecture Notes in
Computer Science, 1753, 2000.

4. Stefano Bistarelli, Philippe Codognet, and Francesca Rossi. Abstracting soft con-
straints: framework, properties, examples. Artif. Intell., 139(2), 2002.

5. Stefano Bistarelli, Thom Frühwirth, Michael Marte, and Francesca Rossi. Soft
constraint propagation and solving in constraint handling rules. In Proc. of the
Third Workshop on Rule-Based Constraint Reasoning and Programming, 2001.

6. Stefano Bistarelli, Rosella Gennari, and Francesca Rossi. Constraint propagation
for soft constraints: Generalization and termination conditions. In Principles and
Practice of Constraint Programming, pages 83–97, 2000.

7. Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Soft concurrent constraint
programming. In European Symposium on Programming, 2002.

8. Craig Boutilier, Ronen I. Brafman, Holger H. Hoos, and David Poole. Reasoning
with ceteris paribus preference statements. In Proc. 15th Conf. on Uncertainty in
AI, pages 71–80, 1999.

9. Yan Georget and Philippe Codognet. Compiling semiring-based constraints with
clp(fd,s). In Proceedings of CP’98, 1998.

10. Jerome Kelleher and Barry O’Sullivan. Evaluation-based semiring meta-
constraints. In Proceedings of MICAI, April 2004.

11. Tobias Muller. The Mozart Constraint Extensions Reference. Available electroni-
cally at www.mozart-oz.org, April 2004.

12. I. Pilan and F. Rossi. Abstracting soft constraints: some experimental results. In
Proc. ERCIM/Colognet workshop on CLP and constraint solving., June 2003.

13. F. Rossi, K. B. Venable, and T. Walsh. Cp-networks: semantics, complexity, ap-
proximations and extensions.

14. Christian Schulte and Gert Smolka. Finite Domain Constraint Programming in
Oz - A Tutorial. Available electronically at www.mozart-oz.org, April 2004.

A Mozart Implementation of CP(BioNet)

Grégoire Dooms, Yves Deville, and Pierre Dupont

Computing Science and Engineering Department,
Université catholique de Louvain,

B-1348 Louvain-la-Neuve - Belgium
{dooms, yde, pdupont}@info.ucl.ac.be

Abstract. The analysis of biochemical networks consists in studying the
interactions between biological entities cooperating in complex cellular
processes. To facilitate the expression of analyses and their computa-
tion, we introduced CP(BioNet), a constraint programming framework
for the analysis of biochemical networks. An Oz-Mozart prototype of
CP(BioNet) is described. This prototype consists of the implementa-
tion of a new kind of domain variables, graph domain variables, and
the implementation of constraint propagators for constraints over graph-
domain variables. These new variables and constraints are implemented
in Oz and they can then be used like other domain variables in the Oz-
Mozart platform. An implementation of a path constraint propagator is
described in depth and constrained path finding tests are analysed to as-
sess the tractability of our approach. Finally, an alternative Oz-Mozart
data-structure for the graph-domain variables is presented and compared
to the first one.

Keywords: Mozart, Oz, Constraint Programming, Graph Domain Vari-
ables, Constrained Path Finding, Path Constraint.

1 Introduction

Biochemical networks are the networks describing the entities and interactions
between entities in the cells. Some network models focus on some aspects of the
cell [9, 2] while others [12, 1, 13] try to represent as much data as possible in a
unified way.

Analyzing biochemical networks is an important issue to improve the under-
standing of the working of a cell. The analysis of such networks typically consists
in answering (parameterized) queries such as:

• find the process(es) transforming A into B in less than X steps,
• find the genes whose expression is affected by entity A,
• find the compounds deriving from a given entity A in less than X steps,
• find the pathways including the list L of entity, ligand, reaction, etc..

Several projects (aMaze [1], KEGG [14], BioCyc [12], Um-BBD [6], Emp [7],
PathDB [15], CSNDB [16]) provide a set of predefined queries as those listed

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 237–250, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

238 G. Dooms, Y. Deville, and P. Dupont

above. Such queries cover several analyses thanks to the choice of their parame-
ters (denoted in capitals in our examples). Available queries are however usually
limited to simple ones which can be answered by the database management
system or by simple ad-hoc routines.

More advanced queries are interesting from a biological viewpoint but they
may require a significant design and programming effort while covering less
generic analyses. Combining and/or extending analyses, as well as designing
new analyses require lot of programming effort that cannot be reused for other
analyses.

In [4, 5], we proposed a constraint programming approach to biochemical
network analysis. The goal is to be able to cover a broad range of analyses
(including very computationally complex ones) by using a declarative query
language and still be able to perform these analyses in reasonable time.

A first evaluation [4, 5] of the CP(BioNet) framework consisted in imple-
menting a prototype and testing it against a complex problem: constrained path
finding. The implementation was done using Oz-Mozart. The results of this eval-
uation are:

• Different and complex analyses of biochemical networks can be done using
CP(BioNet).

• Oz-Mozart is adequate to prototype a new computation domain with new
variables and propagators.

During the implementation of CP(BioNet), we found Oz-Mozart possesses in-
teresting qualities with respect to other constraint systems. First, it is free and
open-source. Second, Oz-Mozart supports functional and procedural program-
ming which can sometimes be more natural than rule-based programming for
programming new domains and propagators. It supports several types of domain
variables: finite domain variables (as a special case, boolean variables) and finite
set variables. Finally, it’s object-orientation and its higher-order approach of con-
straint propagation makes it easily extendable. Our new graph domain variable
can then be seen as a new primitive domain variable for the programmer.

This paper focuses on the implementation of the prototype of CP(BioNet)
over the Oz-Mozart system. This includes the implementation of a new kind of
domain variables, graph domain variables (from now on denoted gd-variables)
and of a few propagators for constraints over these gd-variables. All the imple-
mentation is done in the Oz language, no C++ extension is involved.

Section 2 describes the approach used in CP(BioNet) to express a biochem-
ical analysis as a subgraph finding problem then as a constraint program over
gd-variables. Section 3 describes the Oz data structure used for our first proto-
type of CP(BioNet), then some words will be said about another more efficient
data-structure. Section 4 describes the implementation of a few propagators.
Constraints available in the Mozart system were used whenever possible but
a stateful propagator was necessary for the path constraint. Finally section 6
concludes with current and future work on this prototype.

A Mozart Implementation of CP(BioNet) 239

2 CP(BioNet)

This section will briefly describe our biochemical networks modeling and our
approach to their analysis. Then it will describe CP(BioNet), a new con-
straint programming computing domain for the analysis of biochemical networks.
CP(BioNet) introduces graph domain variables and constraints over these vari-
ables.

2.1 Biochemical Networks Model

Biochemical networks are networks representing the working of the cell. We
adopt the aMAZE [1, 13] model of these networks. This model integrates many
aspects of the functioning of the cell in an integrated model. It consists of an
object oriented model with relations to represent as many biological concepts as
possible.

For the analysis of these networks, we model them as graphs whose nodes
have attributes. The set of attributes attached to each node is determined ac-
cording to the family of analyses under consideration. The simplest attributes
are the three main classes present in the object-oriented aMAZE model: entities,
transforms and controls (see Fig. 1). Entities are the physical small objects in
the cell: molecules, proteins, compounds, genes, mRNA, etc.. Transforms link
a set of entities to another set of entities: reactions, gene transcription, mRNA
translation, protein assembly, etc.. Controls link an entity to either a transform
or another control: catalysis, inhibition, regulation of gene expression, etc..

The described prototype uses undirected graphs but all the algorithms and
data-structures have been extended and applied to directed graphs. We use undi-
rected graphs in this paper for the sake of consistency and simplicity. Different
types of arrow glyphs can be seen in Fig. 1. This is the classical representation of
biochemical networks in the biological community. But as the type of an arrow
is completely determined by the types of its end nodes, we use non-labelled arcs.

2.2 Analysis of Biochemical Networks

The size of biochemical networks became gigantic since a few years and these
networks are no longer printable as a whole (even on huge posters) nor possible

Fig. 1. A small biochemical network in the object-oriented model containing bio-
entities, transforms and controls

240 G. Dooms, Y. Deville, and P. Dupont

to store in a single head. They were then stored in computers using models
such as the aMAZE model. This computer storage of biochemical data raised
needs for specific data-mining tools. These tools are what the term ”biochemical
network analysis” stands for.

Biochemical networks analysis consists in answering user queries about, for
instance, the organization and potential interactions between the components
of the cell. We chose to model these queries as subgraph finding problems. The
answer to a query is a graph extracted from the biochemical network under
analysis. We think that kind of model covers a broad range of current and future
queries about biochemical networks.

Queries like ”Find the process transforming A into B in less than X steps”,
”Find all the paths expressed by a set of genes” or ”Show how gene G is affected
by entity E” are typical examples. They are translated into, respectively, ”Find
a path from A to B of length less than X, going only through entities and trans-
forms”, ”Find the biggest subgraph containing no other gene than those given
and respecting common biochemistry semantics rules (e.g. discard a reaction if
its catalyst or one of its substrate is missing)”, or ”Find all the paths from any
regulation node attached to the expression of gene G to node E”.

2.3 CP(BioNet): Constraint Programming Model

To model and solve these subgraph extraction problems, we designed
CP(BioNet). CP(BioNet) consists of graph domain variables and constraints
over these variables.

Graph domain variables are variables which initial domain is the set of all
subgraphs of a reference graph. This reference graph is the maximum element of
their initial domain. In the present work, it is assumed that all gd-variables have
the same initial domain, that is the same reference graph. Problems including
the comparison of different graphs are not covered by this work.

The constraints over gd-variables currently defined and implemented are:

• The unary constraint NodeInGraph(G, n) on the gd-variable G states that
the node n (of the reference graph of G) must be present in graph G.

• The unary constraint ArcInGraph(G, a) on the gd-variable G states that
the arc a (of the reference graph of G) must be present in graph G.

• The unary constraint EveryArc(G) on the gd-variable G states that if two
nodes are in G and an arc joining these nodes belongs to the reference graph
of G, then this arc must also belong to G.

• The binary constraint SubGraph(P, G) on the gd-variables P and G states
that P must be a subgraph of G (nodes and arcs of P must be in G too). P
and G have the same reference graph.

• A constraint Path(P, ns, ne, maxlength) states that the gd-variable P must
be a path from node ns to node ne (both in the reference graph of P) of
length at most maxlength.

• A constraint ExistsPath(G, ns, ne, maxlength) on the gd-variable G, de-
rived from the Path constraint but weaker, states that there must exist a

A Mozart Implementation of CP(BioNet) 241

path from ns to ne in G (and possibly other nodes and arcs). This is se-
mantically equivalent to the introduction of a new gd-variable P and using
the SubGraph(P, G) and Path(P, ns, ne, maxlength) constraints. However,
such an expression would be far too inefficient.

• The unary constraint Connected(G) states that a gd-variable G must be
a connected graph. This is semantically equivalent to stating that the
ExistsPath constraint must be satisfied for any pair of nodes in G.

In NodeInGraph and ArcInGraph, the parameters n and a must be determined.
NodeInGraph and ArcInGraph are reified constraints, they can be used as
boolean variables in conjunction with first order logic operators to build more
complex constraints (i.e. with a disjunction). For Path and ExistsPath, ns and
ne must be determined and if maxlength is a domain variable, the highest value
of its domain is used.

3 The Data Structure Used for Graph Domain Variables

A gd-variable G can be implemented using boolean domain variables. A boolean
variable per node in the reference graph states whether this node is present
in the domain of the gd-variable. This vector of boolean variables is denoted
nodes(G). The presence of arcs in the domain of gd-variables is currently encoded
with an adjacency matrix of boolean variables (see Fig. 2). If N denotes the
number of nodes in the reference graph, every gd-variable is represented with
N2 + N boolean variables (actually roughly half this number as the matrix is
symmetric). This matrix is denoted adjMat(G). Every graph domain variable
has an associated constraint on its boolean domain variables to ensure that if
an arc is present then both of its endpoint nodes must be present as well. Such
a constraint can be implemented by a set of boolean constraints of the form

adjMat(G)ij ⇒ nodes(G)i ∧ nodes(G)j

The gd-variable itself is implemented as a class. We chose to use a class
for design matters (not because we need to encapsulate a state). A new gd-
variable is created by instantiation of the class and by telling it its domain using
an init method. Two init methods are available: one states the upper bound
of the domain of the variable (the reference graph), the other one states that
the variable is already determined and takes its reference graph and value as
parameters. The constraints are available as methods of the gd-variable instance.
The instance variables of the class are:

1. the domain graph
2. the adjacency matrix
3. the vector of node membership boolean variables

The adjacency matrix is implemented using a Tuple of Tuples of boolean
variables (0#1). The node membership boolean variables are stored in a Tuple.
That matrix is forced to be symmetrical by unifying symmetrical variables in the

242 G. Dooms, Y. Deville, and P. Dupont

Fig. 2. Adjacency matrix implementation of a graph domain variable. The current
domain of a variable, in the middle of the search process, is represented in this graph
and coded in tables of boolean domain variables. A node or an arc is filled (nodes 1
and 2 and the arc joining them) when it is present in all graphs in the domain of the
gd-variable. A light gray node or arc (node 0 and arc (0,4)) is never included in a graph
of the domain. A dashed arc or unfilled node (all other nodes and arcs), may be present
or absent in the graphs of the domain. All the graphs of the current domain of this
gd-variable are displayed on the right

matrix. The built-in constraints for forcing that matrix and tuple of nodes to rep-
resent a graph are implemented using N2/2 implication constraints (FD.impl).

In a second implementation, the adjacency matrix is replaced by an adjacency
list: a Tuple of Records having a boolean variable only where the reference graph
has an arc. This lead to an average twofold speedup relative to the test results
showed in [4, 5] (these results are plotted in Section 5). A finite set implementa-
tion is currently being investigated.

4 Implementation of the Constraint Propagators

In this section, the adjacency matrix of the gd-variable G is denoted adjMat(G),
the vector of node membership boolean variables of G is denoted nodes(G). To
refer to a specific boolean variable, the matrix is subscripted twice and the vector
once.

Most of the constraints listed above are very straightforward to implement us-
ing available constraints over boolean variables (or more generally finite domain
variables):

– NodeInGraph and ArcInGraph are both reified. They just return the
boolean variable under consideration.

– EveryArc simply posts an implication constraint for each arc ij in the ref-
erence graph:

nodes(G)i ∧ nodes(G)j ⇒ adjMat(G)ij

– SubGraph(S, G) posts again a set of implications. For each node i in the
reference graph:

nodes(S)i ⇒ nodes(G)i

A Mozart Implementation of CP(BioNet) 243

Fig. 3. The Path constraint. The graph domain variable must be a path from 0 to 4
and include at most 3 arcs (at most 2 additional nodes). Nodes 0 and 4 are outlined
in the reference graph

For each arc ij in the reference graph:

adjMat(S)ij ⇒ adjMat(G)ij

The Path, ExistsPath and Connected constraints were partly implemented
using a stateful propagator of our own. This section will focus on the Path con-
straint as the ExistsPath constraint is just slightly weaker and the Connected
constraint propagator is part of the Path propagator.

4.1 The Path Propagator Implementation

The propagator of the constraint Path(P, ns, ne, maxlength) is implemented in
three parts. The first part uses integer domain propagators provided by the
Oz-Mozart system. The second part is implemented using standard graph algo-
rithms. The third part uses more advanced graph algorithms to further reduce
the domain of the gd-variable.

1. P is constrained to contain only nodes of degree one or two. The start node
ns and end nodes ne have a degree of one, the other nodes have a degree of
two. By stating this simple constraint, P is forced to contain a path from ns

to ne and possibly some cycles on nodes not in the path (in Fig. 3, a graph
P consisting in a path from 0 to 4 and the cycle 5,6,7 is satisfying this first
constraint). This first part of the propagator is implemented using the sum
constraint on the rows of the adjacency matrix of the graph domain variable
forcing the rows to contain exactly x (1 or 2) boolean variables with the
value true (true is 1 while false is 0 in the sum):

∀n ∈ {ns, ne} :
∑

j

adjMat(P)n,j = 1

∀n ∈ nodes(P) \ {ns, ne} :
∑

j

adjMat(P)n,j = 2

These FD.sum constraints are posted when the path constraint is called on
the gd-variable instance.

The cycles in other connected components are avoided by the second part
of the propagator. It is also possible to constrain the number of nodes in the

244 G. Dooms, Y. Deville, and P. Dupont

Fig. 4. BridgeTree on the right representing the 2-edge connected components and the
bridges of the graph on the left. The bridge (2,4) and the 2-edge connected component
4,5,6 cannot be part of the path from 0 to 9 while both other bridges must be in that
path

path using the maxlength information. A path of maximal length maxlength
can contain at most maxlength + 1 nodes:∑

i

nodes(P)i ≤ maxlength + 1

2. P is constrained to be a single connected component. This implies that
P will only be the path from ns to ne as the cycles are in other connected
components. A graph data structure ConnGraph is built. It is the supremum
(with respect to graph inclusion) of all the graphs in the current domain of
P . A node or an arc of the reference graph is not in ConnGraph if and only
if its boolean variable in P is set to false. If this boolean variable is true or
unknown (i.e. {true,false}) then the node/arc is in ConnGraph.

This ConnGraph is implemented with a class. This class holds the
ConnGraph data structure (a Dictionary of Dictionaries of integers) and
methods to operate on it. A ConnGraph instance is associated to a gd-
variable and stores the maximum element of its domain. We use threads
watching each boolean variable of the gd-variable to keep this instance up
to date with the domain of the gd-variable. The job of each thread is to wait
until a boolean variable is determined and if its value is false, update the
ConnGraph accordingly.

Each time the boolean variable associated with an arc in the adjacency
matrix is set to false, all the already included nodes of P (among those are
ns and ne) could be checked to see if they are still in the same connected
component. Two cases can arise:
– the constraint fails if they are not in the same connected component;
– otherwise, all nodes and arcs in other components can be eliminated

from the domain of P .
A standard breadth-first depth-limited (maxlength) search in ConnGraph
performs the connected component checking. During this search, all nodes
in the same component as ns are collected within a maxlength radius (if
maxlength is an integer domain variable, the highest value of its domain is
taken). As a by-product, the graph can be checked to see if it contains cycles.
If there are no cycles, the connected component of ConnGraph starting from

A Mozart Implementation of CP(BioNet) 245

ns is a tree. In that case, the graph P can be forced to be the only available
path from ns to ne in ConnGraph. This is implemented with a depth-first
search from ns to ne in ConnGraph.

As we do not use an incremental algorithm [11] for the connected com-
ponent checking, we avoid redoing this check for every arc deletion. Instead,
this connected component checking is performed only when the computa-
tion space is stable (all other propagators have done their job). The stability
check is not explicit: this stateful part of the propagator is automatically run
by the generic distributor available in Mozart. The propagation procedure
to be run by the distributor is returned by the path constraint method, the
script passes this procedure to the distributor.

3. Parts 1 and 2 guarantee to find a solution whenever there is one. An ad-
ditional routine improves the propagation by detecting as soon as possible
that some arcs must or must not belong to the graph P .

A bridge in a connected component of a graph is an arc the removal of
which breaks the connected component into two unconnected components.
A connected component is said to be 2-edge connected if it does not con-
tain any bridge. A 2-edge connected component algorithm is used to find
all bridges in ConnGraph [10, 8, 3]. It uses BridgeTree, an additional data
structure representing a tree. The nodes of this tree correspond to the 2-edge
components of ConnGraph and its arcs are the bridges of ConnGraph. Two
nodes of BridgeTree are labeled n1 and n2, corresponding respectively to
the 2-edge connected component of ConnGraph containing ns and ne (see
Fig. 4).

In this BridgeTree, all arcs on the path from n1 to n2 must be in P and all
other arcs (and the 2-edge connected components on the other end) cannot
be present in P . This information is propagated by adding or removing these
arcs and nodes from the domain of P .

The BridgeTree is just a theoretic definition. It is not built by the im-
plementation. The selection of positive and negative bridges is implemented
using the previously cited algorithm [10, 8, 3] which computes a DFS span-
ning tree of ConnGraph (stored as an adjacency list over the nodes of
ConnGraph: Tuple of Dictionaries). The ”Low” values (lowest node reach-
able from each node) are then computed in this tree which enables to find all
bridges. A depth first search in the tree allows to find a path from ns to ne

and all bridges on this path are the bridges to be included in the gd-variable
while all others can be taken out of the domain.

A similar reasoning can be made about cut-nodes (nodes the removal of
which breaks the connected component) and the same algorithm can take
care of these nodes.

5 Experiments

Some experiments were conducted to assess the tractability of this framework
for biochemical analyses. Constrained path finding tests were done using real

246 G. Dooms, Y. Deville, and P. Dupont

biological data. This section will first describe the data used for these tests.
Then the constrained path finding tests are described along with their results.
One other test will show the impact of the data structure used for the gd-variable:
an adjacency matrix and an adjacency list implementation are compared.

5.1 Data

Graphs of increasing size (50, 100, 200, and 500 nodes) have been extracted
from a metabolic network consisting of 4492 chemical entities and 5281 reac-
tions. This data comes from the KEGG project and concerns two organisms:
Escherichia Coli and Saccharomyces Cerevisiae. Extraction of smaller graphs
from this network was performed while preserving approximately the degree dis-
tribution in the original graph. More precisely, an extracted graph must be a
single connected component. The average degree of its nodes is around 4 and
the maximum degree is 18 percent of its number of nodes.

5.2 Tests and Results

Five tests were performed on the extracted graphs. They are path finding prob-
lems expressed in CP(BioNet) using the Path constraint. The maxlength pa-
rameter was set to the number of nodes in the graph (no constraint on the length
of the extracted path).

1. Path finding between two random nodes in the graph (always a solution since
the graph is connected).

2. Path finding between two random nodes in the graph, with the additional
constraint of containing two randomly preselected intermediate nodes.

3. Path finding between two random unconnected nodes in a double graph (two
separate connected components were created by cloning the extracted graph;
no solution).

4. Path finding between two random nodes in the graph, with the additional
constraint of containing from one up to five randomly preselected interme-
diate node(s).

5. Selection of a random path p of k nodes in the graph. Path finding between
the first and last nodes of p, with the additional constraint of containing from
one up to k − 2 intermediate nodes randomly preselected from p (always a
solution).

The running time of every query was measured. For the first three tests,
1,000 queries were performed on each extracted graph. The fourth and fifth
queries were performed on extracted graphs with 200 nodes. The fourth query
was performed 1,000 times for every number of intermediate nodes. The fifth
query was performed 1,000 times for every number of intermediate nodes and
for values of k being 7, 10 and 15.

Figure 5 shows the average and standard deviation of the running time for
these tests. Results from tests 2 and 4 are split in two groups: a curve for those
where a solution was found and another for those for which no solution was
found.

A Mozart Implementation of CP(BioNet) 247

Fig. 5. Running time of the five tests. Logarithmic Y axis

5.3 Analysis

Tests 1 and 3 concern single path finding in a graph. This problem is not relevant
alone for analyzing biochemical networks and dedicated algorithms are obviously

248 G. Dooms, Y. Deville, and P. Dupont

Fig. 6. Comparison of the results of test 5 path length of 10 when results are filtered
(on the left) or not (on the right). The only difference lies in 2 runs (among the 8000
presented) for five intermediate nodes: one lasted 765 s and the other 18 s. The standard
deviation is more affected by these rare results than the mean

 0.1

 1

 10

 1 2 3 4 5

ru
nn

in
g

tim
e

[s
]

Number of intermediate nodes

Adj List VS Adj Matrix

Fig. 7. Comparison of the adjacency matrix and adjacency list implementations of
the graph-domain variable data-structure. The test is a test of random constrained
path finding (test 4). The curves from top to bottom are ”successful” queries with the
matrix, with the list, then ”failed” queries with matrix and with list

more efficient. These tests were done to analyze the path propagator on its own.
For test 3, the reported size in the plots is the size of one component of the
graph (the graph having twice that size). The plots for these tests show a sub-
exponential curve and very low standard deviations. These tests illustrate the
tractability of this propagator over increasing sizes of graphs.

Tests 2, 4, and 5 concern the constrained path finding problem. Two pa-
rameters were taken into account for this analysis: the size of the graph and
the number of mandatory intermediate nodes. Test 2 shows the evolution of the
running time of a query with 2 intermediate nodes versus the size of the graph.
The plot shows two curves: one, for successful queries (the CSP solver found a
path) and another, below, for failed queries (the CSP found no solution to this
query). The results show that the curves are similar to the ones of the path
propagator alone. The major difference is a larger standard deviation.

A Mozart Implementation of CP(BioNet) 249

Tests 4 and 5 show the evolution of the running time on the graph of size
200 versus the number of mandatory intermediate nodes. Test 5 was performed
to be able to show results of successful runs for high values of the number of
intermediate nodes. When these nodes are chosen randomly in the graph (test 4),
the odds of having a successful run are very low. The plots show that the average
running time of these tests is nearly constant while the standard deviation has
a slight tendency to grow.

A small fraction of the runs (from 0.08% up to 1%, depending on the tests)
of the constrained path finding tests had running times several orders of mag-
nitude worse than average. This somehow illustrates the NP-Hardness of these
problems. Plots with and without these results are compared in Fig. 6. An ad-
ditional test comparing an adjacency matrix (Tuple of Tuple) and an adjacency
list (Tuple of Records) implementation of the gd-variable shows a near twofold
speedup when using lists (see Fig. 7).

Our results show that the path constraint is tractable when used alone, al-
though specialized algorithms are more efficient. When used along with other
constraints (specifying a NP-Hard problem), the results show that the average
running time is approximately the same (apart from rare diverging results) as
the running time of the path constraint alone, independently of the number of
additional constraints. Additional constraints on the type and attributes of the
nodes of the biochemical network can thus be designed and used in our con-
strained path finding framework. This framework can then exploit the richness
of the model of biochemical networks.

6 Conclusion

This paper showed how we used Oz-Mozart to implement a prototype of
CP(BioNet), a new computing domain in constraint programming. A new type of
variables, graph domain variables, was designed and implemented using the Oz
language. New constraints were designed and implemented as well. Much time
was saved by reusing domain variables and constraints available in the Mozart
system modules (boolean variables, propositional logic constraints, sum of finite
domain variables constraint). Another advantage of the Mozart system is the
possibility to implement this prototype in C/C++ if necessary.

CP(BioNet) allows the bio-informatician user to specify complex and diverse
analyses using a declarative language and should provide him/her with an answer
in reasonable time. Constrained path finding tests were conducted to assess the
tractability of this framework in the average case. We also showed that this
framework is expressive enough to state complex analyses. We now intend to use
it on real problems from bio-informaticians.

We intend to design and implement a specific distributor and an optimization
search engine (using branch and bound). Current constraints will be improved
(definition, mode of usage, propagator, etc.) and new constraints are also under
investigation.

250 G. Dooms, Y. Deville, and P. Dupont

References

1. The aMAZE data-base project. http://www.amaze.ulb.ac.be/.
2. G.D. Bader, I. Donaldson, C. Wolting, B.F. Ouellette, T. Pawson, and C.W. Hogue.

Bind the biomolecular interaction network database. Nucleic Acids Research,
29(1):242-5, 2001.

3. Joëlle Cohen. Théorie des graphes et algorithmes. Course notes.
http://www.univ-paris12.fr/lacl/cohen/poly_gr.ps.

4. G. Dooms, Y. Deville, and P. Dupont. Constrained path finding in biochemical
networks. In Proceedings of JOBIM 2004, pages JO–40, 2004.

5. G. Dooms, Y. Deville, and P. Dupont. Recherche de chemins contraints dans
les réseaux biochimiques. In F. Mesnard, editor, Programmation en logique avec
contraintes, actes des JFPLC 2004, pages 109–128. Hermes Science, 2004.

6. L.B.M. Ellis, B. Kyeng Hou, W. Kang, and L.P. Wackett. The university of mi-
nesota biocatalysis/biodegradation database : post-genomic data mining. Nucleic
Acids Research, 31(1):262–265, 2002.

7. EMP project. Informations about EMP can be found at :
http://www.empproject.com/.

8. Michel Gondran and Michel Minoux. Graphes et algorithmes. Eyrolles, 1995. 3ème
éd.

9. S. Goto, T. Nishioka, and M. Kanehisa. LIGAND: Chemical database for enzyme
reactions. Bioinformatics, 14:591–599, 1998.

10. Jonathan Gross and Jay Yellen. Graph Theory and its Applications. CRC Press,
1999.

11. Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge,
and biconnectivity. Journal ACM, 48(4):723–760, 2001.

12. P.D. Karp, M. Riley, M. Saier, I.T. Paulsen, J. Collado-Vides, S.M. Paley,
A. Pelligrini-Toole, C. Bonavides, and S. Gama-Castro. The EcoCyc database.
Nucleic Acids Research, 30(1):56–8, 2002.

13. Chrisian Lemer, Erick Antezana, Fabian Couche, Frédéric Fays, Xavier Santolaria,
Rekin’s Janky, Yves Deville, Jean Richelle, and Shoshana J. Wodak. The aMAZE
lightbench: a web interface to a relational database of cellular processes. Nucleic
Acids Research, 32:D443–D448, 2004.

14. K. Minoru, G. Susumu, K. Shuichi, and N. Akihiro. The KEGG databases at
GenomeNet. Nucleic Acids Research, 30(1):42–46, 2002.

15. Faye Schilkey. PathDB : a pathway database. http://www.ncgr.org/pathdb.
16. Takako Takai-Igarashi and Tsuguchika Kaminuma. A pathway finding system for

the cell signaling networks database. Silico Biology, 1:129–146, 1999.

Playing the Minesweeper with Constraints

Raphaël Collet

Université catholique de Louvain,
B-1348 Louvain-la-Neuve, Belgium

raph@info.ucl.ac.be

Abstract. We present the design and implementation of a Minesweeper
game, augmented with a digital assistant. The assistant uses constraint
programming techniques to help the player, and is able to play the game
by itself. It predicts safe moves, and gives probabilistic information when
safe moves cannot be found.

1 Introduction

The Minesweeper game has been popular for several years now. Part of its pop-
ularity might come from its simplicity. A board represents a mine field, with
mines hidden under the squares. The game consists in finding the mines without
making them explode. You get new hints each time you uncover a non-mined
square. Though, the simplicity does not make the game easy. The Minesweeper
problem is hard: it has been proven NP-complete by Richard Kaye [1]. So simple
techniques are not enough to solve it.

In this paper we show how the problem of finding safe moves can be modeled
as a Constraint Satisfaction Problem (CSP). Techniques from the field of con-
straint programming can be used to program a digital assistant for a player. We
applied several of them in a real application, the Oz Minesweeper [2]. This rela-
tively small program demonstrates the power of the programming language Oz.

Contribution. The paper describes a diverting application, that applies various
techniques from constraint programming to implement a digital assistant. The
contribution is mainly educational. We model a simple problem, and show the
key ideas underlying the application’s implementation.

History. The Oz Minesweeper is born in spring 1998. It started as a student
work, in a course on constraint programming. The goal was to study a program-
ming language called Oz, and give a presentation about it. To make the presen-
tation attractive, I showed an example of a CSP in the “real world”, namely the
Minesweeper game. I had hacked a small solver that was playing the game.

Later I rewrote it as a demonstration program, and gave it a graphical user
interface. A simple inference engine based on propagation was provided. It al-
ready impressed quite a lot of visitors. The next step was a solver, which was
basically making the inference engine complete. I wrote several implementations

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 251–262, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

252 R. Collet

of it, notably by hacking a special search engine. I eventually found a way to com-
pute mine probabilities. I rewrote everything from scratch. The hacked special
search engine went to the trash can.

The last step happened last year. I understood the issue of symmetries in
the problem, and designed an improved solver that eliminates them. A better
propagation-based inference engine was designed while implementing the solver.
I reworked a bit the implementation, and integrated the inference engines in a
proper way. I finally improved the user interface the week before submitting this
paper.

Paper Organization. Section 2 recalls the rules of the game, and proposes
a simple mathematical model for it. Section 3 investigates how constraint pro-
gramming techniques can be applied in order to solve the problem with reason-
able efficiency. Section 4 then gives an overview of the implementation of the
Oz Minesweeper. Section 5 evaluates and quickly compares our work to other
similar products.

2 The Game as a Constraint Satisfaction Problem

Let us recall the rules of the game. A mine field is given to the player as a
rectangular board. Each square on the board may hide at most one mine. The
total number of mines is known by the player. A move consists in uncovering
a square. If the square holds a mine, the mine explodes and the game is over.
Otherwise, a number in the square indicates how many mines are held in the
surrounding squares, which are the adjacent squares in the eight directions north,
north-east, east, south-east, south, south-west, west, and north-west. The goal
of the game is to uncover all the squares that do not hold a mine.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Fig. 1. An example of a board with 20 mines

Playing the Minesweeper with Constraints 253

Figure 1 shows an example of a board that contains 20 mines. We identify
each square by its coordinates (row , column). The squares (1,1), (1,2), (1,3),
(1,4), (2,1), (2,2), (2,3), (2,4), (3,4), and (4,4) have already been played, and
have no mine in their respective surrounding squares. The squares (1,5), (3,1),
(3,2), (3,3), (4,3), and (4,5) have been played, too, and are surrounded by one
mined square each. The squares (2,5), (3,5), (5,4), and (5,5) each have two mines
in their neighborhood, while the square (5,3) has three mines around it. In this
example, the player might deduce from (3,3) that (4,2) is mined, and by (3,2)
that (4,1) is a safe move.

Model. Finding safe moves on the board consists in solving the problem defined
by those numbers in the squares. The unknown of the problem is the positions
of the mines. We model this as a binary matrix that represents the mine field,
with one entry per square. The value 1 means that the corresponding square is
mined, while 0 means a safe square.⎛

⎜⎜⎜⎝
x11 x12 · · · x1n

x21 x22 x2n

...
. . .

...
xm1 xm2 · · · xmn

⎞
⎟⎟⎟⎠

By convention, xij always denotes the matrix entry corresponding to the square
at position (i, j). The problem can be written as linear equations over the xij ’s.
In the example, we have 20 mines (first equation below), and the played squares
are not mined (second equation below). The other equations are given by the
numbers in the squares. The corresponding square coordinates are given on the
left of each equation.∑

i,j∈{1,...,10} xij = 20

x11 = x12 = x13 = · · · = 0

(1, 1) x12 + x21 + x22 = 0
(1, 2) x11 + x13 + x21 + x22 + x23 = 0

. . .
(1, 5) x14 + x16 + x24 + x25 + x26 = 1

. . .
(2, 5) x14 + x15 + x16 + x24 + x26 + x34 + x35 + x36 = 2

. . .

This binary model of the game defines a CSP, which we can solve to find
hints for the player’s next move. If we have all the solutions of the problem, we
can look at what is common to all those solutions. For instance, if all solutions
give x41 = 0, we know that the square at position (4, 1) is a safe move.

But we even go further than this. Assuming that all those solutions have
the same probability, we can compute the expected solution, i.e., the mean of
all solutions. This gives us a probability for each square to be mined. In case
no safe move can be found, the player might use this information to choose her
next move.

254 R. Collet

3 Propagation, Search, and Probabilities

We now present specific information related to the implementation of the in-
ference engines. Each of them provides a way to solve the CSP defined by the
current state of the game. Sections 3.1 and 3.2 shows two implementation based
on constraint propagation only. Sections 3.3 and 3.4 presents two solvers, and
explains how their results are used to compute mine probabilities.

3.1 Simple Propagators

The simplest inference engine uses the binary model of the Minesweeper game,
and posts the propagators that trivially implement the constraints of the model.
We illustrate this with the example shown in Fig. 1. A quick sketch of the CSP
is given at the end of Sect. 2. All those constraints can be implemented with
the Oz propagator FD.sum, taking a list of FD variables with domain 0#1. For
instance, the propagator for (2,5) is created by a statement like

{FD.sum [X14 X15 X16 X24 X26 X34 X35 X36] ´=:´ 2}

Let us examine the effect of those propagators. For the sake of simplicity,
we assume that the “zero” constraints like (1,1) have been propagated, and we
simplify the remaining constraints using the known values. The constraints are

(1, 5) x16 + x26 = 1
(2, 5) x16 + x26 + x36 = 2
(3, 1) x41 + x42 = 1
(3, 2) x41 + x42 = 1
(3, 3) x42 = 1
(3, 5) x26 + x36 + x46 = 2

(4, 3) x42 + x52 = 1
(4, 5) x36 + x46 + x56 = 1
(5, 3) x42 + x52 + x62 + x63 + x64 = 3
(5, 4) x63 + x64 + x65 = 2
(5, 5) x46 + x56 + x64 + x65 + x66 = 2

The propagator for (3,3) immediately infers x42 = 1, which means that we have
found the position of a mine. This information allows propagators (3,1) and (3,2)
to infer x41 = 0, while the propagator (4,3) infers x52 = 0.

The remaining propagators cannot infer new constraints, and thus wait for
more information to come. Still, more information can be deduced from those
constraints. But the propagators that we have considered here cannot do it, be-
cause they share too few information with each other. For instance, propagators
(1,5) and (2,5) could infer x36 = 1 if they were sharing x16 + x26 = 1 as a basic
constraint. This insight leads us to an improvement in the propagation of the
constraints.

3.2 The Set Propagators

We now show propagators that infer information about sets of squares, hence the
name “set” propagators. We continue with the example shown in Fig. 1. Let us
assume that the simple propagators have determined the variables as explained
above. We consider the remaining constraints

Playing the Minesweeper with Constraints 255

(1, 5) x16 + x26 = 1
(2, 5) x16 + x26 + x36 = 2
(3, 5) x26 + x36 + x46 = 2
(4, 5) x36 + x46 + x56 = 1

(5, 3) x42 + x52 + x62 + x63 + x64 = 3
(5, 4) x63 + x64 + x65 = 2
(5, 5) x46 + x56 + x64 + x65 + x66 = 2

Remember that the weakness of the simple propagators was coming from their
unability to share information about subterms like x16 + x26. Consider for in-
stance constraint (2,5). The improved implementation of this constraint will ac-
tually create as many propagators as partitions of the set of indices {16, 26, 36}.

For each subset I of indices, we consider the “set” variable xI defined by

xI =
∑
i∈I

xi (0 ≤ xI ≤ |I|).

The definition of xI can be implemented by a simple propagator over finite
integers. We can now express the constraint (2,5) as follows. For each partition
P = {I1, . . . , Ik} of the indices, we create one propagator for the constraint

xI1 + · · ·+ xIn = 2,

which is logically equivalent to (2,5). We thus have propagators for the follow-
ing equations. Note that (2,5)(a) has the same effect as the simple propagator
for (2,5).

(2, 5)(a) x{16} + x{26} + x{36} = 2
(2, 5)(b) x{16} + x{26,36} = 2
(2, 5)(c) x{26} + x{16,36} = 2
(2, 5)(d) x{36} + x{16,26} = 2
(2, 5)(e) x{16,26,36} = 2

Let us observe the effect of those propagators in the example. One of the
propagators for (1,5) infers x{16,26} = 1, which makes (2,5)(d) infer x{36} = 1,
giving x36 = 1. The simple propagator (4,5) then infers x46 = x56 = 0. The
propagation of (3,5) and (1,5) then gives x26 = 1 and x16 = 0.

3.3 A Binary Solver

As we said in Sect. 2, useful information can be deduced from the set of solutions
of the Minesweeper problem. The issue is, there usually are many solutions.
Consider the board in Fig. 2, which contains 20 mines. Four squares have been
played. It defines the following CSP.∑

i,j∈{1,...,10} xij = 20

x11 = x21 = x31 = x32 = 0

(1, 1) x12 + x21 + x22 = 1
(2, 1) x11 + x12 + x22 + x31 + x32 = 1
(3, 1) x21 + x22 + x32 + x41 + x42 = 1
(3, 2) x21 + x22 + x23 + x31 + x33 + x41 + x42 + x43 = 3

256 R. Collet

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Fig. 2. An example for search

Table 1. Solutions of the restricted binary problem

solution s1 s2 s3 s4 s5 s6 s7 s8 s9

x12 0 0 0 1 1 1 1 1 1
x22 1 1 1 0 0 0 0 0 0
x23 0 1 1 0 1 1 0 1 1
x33 1 0 1 1 0 1 1 0 1
x41 0 0 0 0 0 0 1 1 1
x42 0 0 0 1 1 1 0 0 0
x43 1 1 0 1 1 0 1 1 0

class size
(89
17

) (89
17

) (89
17

) (89
16

) (89
16

) (89
16

) (89
16

) (89
16

) (89
16

)

This problem has 3.333× 1018 solutions. Computing all solutions is simply im-
possible, except for very small boards.

Though, that issue can be addressed. We simply restrict the problem to some
of its variables. Each solution of the restricted problem defines a class of solutions
of the full problem1. We consider the variables given by the squares neighboring
the already played squares. In the example, this gives x12, x22, x23, x33, x41, x42,
and x43. The remaining unknowns can be determined by other simple means.
The solutions of the restricted problem are given in Table 1. If we consider the
solution s1 in the table, there remains 89 unknowns, out of which 17 must be
mined. The number of ways to choose 17 elements out of 89 is given by the
binomial N1 =

(89
17

)
. This is the size of the class of solutions defined by s1. The

same argument applies for all classes.

1 The word “class” is used with the meaning of “subset” here. The subset we consider
is actually an equivalence class in the set of solutions.

Playing the Minesweeper with Constraints 257

The problem clearly has N = N1 + N2 + · · · + N9 ! 3.333 × 1018 solutions.
Let Xij denote how many solutions satisfy xij = 1. The probability that xij = 1
is simply given by Xij/N . As a first example, take square (1,2). As x12 = 0
in s1, s2, and s3, we have X12 = N4 + N5 + · · · + N9 ! 1.059 × 1018. So the
probability that x12 = 1 is X12/N ! 0.318. Now take square (6,9). In the class
s1, the number of solutions satisfying x69 = 1 is

(88
16

)
= 17

89

(89
17

)
. Summing up

those numbers for all classes of solutions, we have X69 ! 6.247 × 1017, which
gives a mine probability of 0.187.

3.4 The Set Solver

The binary solver still computes too many solutions. In the example, one can see
that the problem has symmetries. For instance, each permutation of the values
of x23, x33, x43 in one solution leads to another solution. This symmetry comes
from the fact that those three variables are constrained by x23 + x33 + x43 = 2
only.

The improved solver reformulates the CSP in terms of the set variables xI in
order to eliminate those symmetries. Taking all equations that define the binary
problem, it computes a partition of the variable’s indices. Every subset I in the
partition is such that, for each equation xJ = k in the problem, I ∩ J = I or ∅.
The subsets are chosen to be maximal, so that symmetries are eliminated.

Let us reformulate the CSP of the example in Fig. 2, which gives∑
I∈P xI = 20

x{11} = x{21} = x{31} = x{32} = 0

(1, 1) x{12} + x{21} + x{22} = 1
(2, 1) x{11} + x{12} + x{22} + x{31} + x{32} = 1
(3, 1) x{21} + x{22} + x{32} + x{41,42} = 1
(3, 2) x{21} + x{22} + x{31} + x{41,42} + x{23,33,43} = 3

The indices have been partitioned into

P =
{{11}, {12}, {21}, {22}, {31}, {32}, {41, 42}, {23, 33, 43}, R},

where R contains the remaining indices. This problem has two solutions, shown
in Table 2. Each class of solutions is equivalent to the Cartesian product of the
possible combinations for the set variables of the reformulated problem. Each
valuation xI = k has

(
n
k

)
solutions, where n = |I|. Therefore the size of each

class is given by a product of binomials. The computation of the probabilities is
similar to what the binary solver does. For instance, the probability that x41 = 1
is
(0

2N1 + 1
2N2

)
/N ! 0.159.

The efficiency is typically one order of magnitude faster compared to the
binary solver. Let us illustrate this with an example. Figure 3 shows a snapshot
of the application’s window. The squares containing a mine have been marked
with a black disk. The probabilities are drawn as filled rectangles in the squares.
The more a rectangle is filled, the greated the mine probability. A precise value

258 R. Collet

Table 2. Solutions of the reformulated problem

solution s1 s2

x{12} 0 1
x{22} 1 0

x{41,42} 0 1
x{23,33,43} 2 2

xR 17 16
class size N1 N2

N1 =
(1
0

)(1
1

)(2
0

)(3
2

)(89
17

)

N2 =
(1
1

)(1
0

)(2
1

)(3
2

)(89
16

)

N = N1 + N2

Fig. 3. A snapshot showing probabilistic information

of a probability is shown in the bottom right of the window when the player
moves her mouse cursor over a given square. The set solver has computed 6
solutions to find the probabilities, while the binary solver would compute 246
solutions for the same problem!

4 Implementation

The general architecture of the Oz Minesweeper is depicted in Fig. 4. Boxes
refer to concurrent agents (active objects), while “Symbolic field” and “Symbolic
constraints” are simply shared data. Arrows from data to agents (resp. from
agents to data) correspond to ask (resp. tell) operations. Arrows between agents
represent messages or procedure calls. The removal of the components in the
dashed box gives an implementation of the game without digital assistance.

Playing the Minesweeper with Constraints 259

4.1 The Core Components

The central point in the application is the symbolic field, which simply reflects
the information known about the mine field. The symbolic field is a tuple whose
elements correspond to the board squares. An element can be either safe(K) or
mine(X). The value safe(K) means that the corresponding square is not mined,
and K gives the number of mines in the surrounding squares. Note that K can
be unbound, if the square is known to be safe, but has not been played yet. The
value mine(X) means that the square is mined, and X is bound to exploded if
the mine has exploded, i.e., the game is over.

The user interface updates the board by threads that synchronize on the
symbolic field. For instance, if an entry in the symbolic field is safe(K) and K is
unbound, the square is marked with a dash “-”. This shows the user that this
square is safe. As soon as K is determined, its value is shown in the square, which
becomes inactive. When the user clicks on a square, the user interface calls the
game agent to play that square. The game automatically tells the result in the
symbolic field, which wakes up the thread that updates the square.

Symbolic
field

Game �

User
interface

						

play �

Autoplayer

						

�
play

Zero
propagator

�

�

Constraint
collector

� � Symbolic
constraints

Propagators
��

Solvers

�

� show probabilities

�����������

Fig. 4. Dataflow diagram of the Oz Minesweeper

4.2 The Zero Propagator and Autoplayer

The zero propagator simply asks and tells information in the symbolic field. If
a square has no mines around it, which correspond to value safe(0) in the
symbolic field, the surrounding squares are told to be safe. The code of the
propagator is shown below. The symbolic field appears as the tuple SymField.
The procedure WaitEnabled blocks until the user enables the propagator. The
same mechanism is used by all inference engines, and allows to user to experiment
with them. The call to function BoxI returns the coordinates of all the squares
in a box around square I.

260 R. Collet

for I in 1..{Width SymField} do
thread

case SymField.I of safe(0) then
{WaitEnabled}
for J in {BoxI I 1} do SymField.J = safe(_) end

else skip end
end

end

The autoplayer works in a similar way. When enabled, it plays all the squares
known to be safe in the symbolic field. So the user can let the various inference
engines discover safe moves, and decide whether they should be played automat-
ically.

4.3 The Constraint Inference Engines

The constraint collector incrementally builds the symbolic constraints, a list of
the constraints that appear implicitly in the symbolic field. The inference engines
using constraint programming simply read this list to get the constraints of the
current problem. A constraint in the list has the form sum(Is K), where Is is
a list of square coordinates, and K is a nonnegative integer. Its semantics is the
equation

∑
i∈Is xi = K. All the constraints in the Minesweeper problem can be

written in this way.

Propagators. Both the simple and set propagators read the symbolic con-
straints and progressively post propagators as explained in Sect. 3. Those prop-
agators are posted over binary constrained variables, that correspond to the
xij ’s in the model. Whenever such a variable is determined, the information is
automatically told in the symbolic field with a statement like

thread
SymField.I = if X.I==0 then safe(_) else mine(_) end

end

Recall that the set propagator for the equation
∑

i∈I xi = k reformulates it as
xI1 + · · · + xIn

= k, for every partition {I1, . . . , In} of I. If I has 8 elements
(the typical case in the Minesweeper), this gives 255 set variables, and 4140
equations! The implementation optimizes this simple scheme. First, the equation
is simplified by subtracting the known xi’s. Second, the set variables are created
lazily, and memoized for sharing between propagators. When a set variable xI

is created, a propagator is posted for xI =
∑

i∈I xi.

Solvers. A search with a solver is triggered by pushing a button in the user
interface. The solver first takes the known part of the symbolic constraints list,
and solves the problem given by those constraints. In the case of the set solver, it
implies to first compute the optimal partition of the indices, to reformulate the
constraints in terms of the set variables, and to solve the reformulated problem.
If new safe moves or mine positions are found, they are told to the symbolic
field. Otherwise, the mine probabilities are shown on the board.

Playing the Minesweeper with Constraints 261

5 Evaluation and Related Work

The Oz Minesweeper has been entirely written in Mozart [3], and is about 1000
lines of code. The digital assistant is capable to find all the safe moves in a given
situation. The set propagator proved to be effective at this task, it usually finds
most of them. The solver rarely finds new moves, and provides mine probabilities
instead. It leaves the player with the toughest decision, involving a cost-benefit
strategy. An interesting observation we have made is that the proportion of
mined squares should be around 20% to make the game interesting. A proportion
less than 20% makes the problem too easy, while more than 20% quickly makes
the game unplayable.

We have not explored the problem of choosing a square to play when all
you know is the mine probabilities. Playing the square with the lowest mine
probability is a safe and conservative move. But we observed that such moves
do not often bring much information to go further. It seems that taking a risk
can be worth the candle. Our implementation is flexible enough to implement
strategies on top of the existing solvers, which would provide a complete digital
player.

We have found only one other application that solves the Minesweeper prob-
lem and computes the mine probabilities, called Truffle-Swine Keeper [4]. It
seems efficient, but we have found the interaction with the solver not as practi-
cal as the Oz Minesweeper.

Other Techniques. Is constraint programming really a good choice for solving
this problem? The Minesweeper problem is completely defined by linear equa-
tions. So one might think that integer programming could be a better choice. To
my current understanding, integer programming can be applied successfully for
some parts, but not all of them. We can use integer programming for checking
a board square, for instance. Given a problem P and a variable xij , we check
whether P ∧xij = 0 is solvable. In case it is not, we can infer xij = 1 in our case.
But I don’t see how to use it for computing mine probabilities. The latter is a
result about all solutions of a problem, while integer programming is oriented
toward finding one solution.

6 Conclusion

We have designed and implemented a Minesweeper application with a digital
assistant. The latter is based on a simple mathematical model of the Minesweeper
game, and various techniques coming from the field of constraint programming.
It proved to be effective, and is capable to infer every logical consequence of the
problem to solve. It computes mine probabilities without computational burden.

The simplicity and efficiency of our application relies on the language Oz and
the platform Mozart. The dataflow concurrency, symbolic data, and constraint
system make the application’s architecture modular and elegant.

262 R. Collet

References

1. Kaye, R.: Minesweeper is NP-complete. Mathematical Intelligencer (2000) See also
http://web.mat.bham.ac.uk/R.W.Kaye/minesw/ordmsw.htm (08/26/2004).

2. Collet, R.: The Oz Minesweeper (2004) Program available at
http://www.info.ucl.ac.be/~raph/minesweeper/ (08/26/2004).

3. Mozart Consortium (DFKI, SICS, UCL, UdS): The Mozart programming system
(Oz 3) (1999) Available at http://www.mozart-oz.org.

4. Kopp, H.: Truffle-Swine Keeper (2001) Program available at
http://people.freenet.de/hskopp/swinekeeper.html (08/26/2004).

Using Constraint Programming for
Reconfiguration of Electrical Power Distribution

Networks�

Juan Francisco Dı́az2, Gustavo Gutierrez1, Carlos Alberto Olarte1,
and Camilo Rueda1

1 Pontificia Universidad Javeriana, Cali, Colombia
{ggutierrez, caolarte, crueda}@atlas.puj.edu.co

2 Universidad del Valle, Cali, Colombia
jdiaz@univalle.edu.co

Abstract. The problem of reconfiguring power distribution systems to
reduce power losses has been extensively studied because of its significant
economic impact. A variety of approximation computational models have
recently been proposed. We describe a constraint programming model for
this problem, using the Mozart system. To handle real world reconfigu-
ration systems we implemented and integrated into Mozart an efficient
constraint propagation system for the real numbers. We show how the
CP approach leads to a simpler model and allows more flexible control
of reconfiguration parameters. We analyze the performance of our sys-
tem in canonical distribution networks of up to 60 nodes. We describe
how the adaptability of the Mozart search engine allows defining effec-
tive strategies for tackling a real distribution system reconfiguration of
around 600 nodes.

1 Introduction

The purpose of an electric power distribution system is to deliver power to
customers. The energy source in this system is a power transformer directly
connected to a set of feeders. Each feeder acts as the energy supplier for a given
section of the distribution system. Energy from the feeders reaches customers
through a network of nodes linked by branches (transmission lines). Some of
the branches have switches that can be opened (resp. close) to interrupt (resp.
allow) the current flow.

The topology of lines interconnecting customers to feeders forms a mesh
network in which radiality must be guaranteed (i.e. there cannot be a path
connecting any two different feeders) while ensuring power delivery to all users
(Service Continuity). Radial networks simplify overcurrent protections in the

� This work was partially supported by the Colombian Institute for Science and Tech-
nology Development (Colciencias) under the CRISOL project (Contract No.298-
2002).

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 263–276, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

264 J.F. Dı́az et al.

feeders. A power distribution network usually has to be reconfigured (i.e. the
state of some switches changed) from time to time, for two reasons: 1) to restore
power to customers following a fault, and 2) in order to minimize or reduce power
losses induced by the resistance and current in branches. Although similarities
exist between reconfiguration strategies in both cases we confine ourselves in this
paper to reconfiguration to reduce power losses. When a network is reconfigured
it is typically the case that some nodes that were previously connected by a
path of branches to a given feeder, connect to a different feeder in the new
configuration. For this reason the problem is sometimes referred to as feeder
reconfiguration.

Customer power loads vary with time of day and day of the week. Each
feeder serves a different mix of residential, commercial and industrial loads (i.e.
amount of power requested), and each type of load has different time profiles.
Consequently, the load pattern on each feeder varies constantly. To keep losses
to a minimum in these changing situations, feeders must be reconfigured with a
frequency that usually depends on the degree of automation available for switch
control.

The power distribution system should in principle be operated with minimum
losses, satisfying different types of constraints:

– All customers must be served (i.e. every node in the network should be
connected to a feeder)

– Radial configuration must be maintained.
– Current in lines and transformers should fall within given capacity limits.
– Voltage drop limits should be obeyed.

For reasons including poor line maintenance, ill planned system growth poli-
cies or the presence of unauthorized connections, losses in power distribution
systems are very high in developing countries([3]). Moreover, switch control is
usually done manually which means that the number of switching operations
performed in reconfiguration must be constrained. Finding (not necessarily op-
timal) distribution network configurations reducing losses and respecting switch-
ing constraints can thus have a significant economic impact.

Two main strategies have been previously used for power loss reduction by
reconfiguration: 1) start with a feasible (i.e. radial) solution, select a tie switch
(the ones linking two feeder circuits) to close (thus forming a loop) and then
select a line switch to open to restore radiality ([4]), and 2) start with all tie
switches closed (thus forming “weak” loops) and then opening selected switches
one by one until radiality is restored ([14]). In both strategies computing losses
of each trial configuration entails determining current values in the network by
a process called load flow computation. Known values in this computation are
essentially customer loads and resistance of network branches. Other electrical
values have to be calculated. The process starts with an estimate of voltages
and uses electrical laws to determine currents. These in turn serve to refine the
initial guesses. The process iterates until computation of electrical parameters
stabilizes.

Using Constraint Programming for Reconfiguration 265

We can thus identify two distinct processes in reconfiguration: selecting a
switch to open or close (a combinatorial number of boolean possibilities) and
performing load flow computation (calculations over the complex numbers). This
constitutes a hybrid combinatorial optimization problem. Solutions proposed
recently (simulated annealing [10], expert systems [16], tabu search [7]) usually
employ approximation techniques to avoid generating (and performing load flow
computation of) a combinatorial number of configurations, by focusing the search
to a small subset of “promising” configurations.

In [5, 6] a system (called PLANET) performing power network reconfigura-
tion is presented. This system, based on the constraint language CHIP, aims at
finding an optimal maintenance schedule. Since maintenance involves isolating a
section of the network, reconfiguration has to be performed to ensure that cus-
tomers serviced through that section are kept energized (or to minimize those
that are not, when full service is not possible). Load flow must also be done to
compute fundamental electrical values of the reconfigured network so as to ensure
operating constraints. CRE2 , the application implementing the approach pre-
sented in this paper, differs from this system in two important ways. First, in its
purpose, since CRE2 does not address optimal maintenance scheduling, whereas
PLANET does not address minimizing power losses. Second, in their technolog-
ical choices: in CRE2 all computations including load flow, are performed using
constraint programming (CP) technology (a real intervals constraint system was
developed for load flow). In PLANET, an electric library, written in C, is used
for computing load flow and also for reconfiguring (using the heuristic approach
in [14]).

The main contribution of this paper is to show that constraint programming
can effectively be used both for load flow computation and for reconfiguration.
Moreover, we show how the interaction of these two processes modeled in CP
can be used to significantly prune the search tree. Implemented in Mozart ([15],
www.mozart-oz.org), our model has been tested successfully in canonical recon-
figuration problems of networks up to 60 nodes. To compute load flow we had
to implement for Mozart a new efficient constraint propagation system over the
real numbers, based on the interval arithmetic package in [9]. We used the mod-
ularity and extension facilities of Mozart to effectively couple these constraint
propagators to the existing finite domain system and also to build into the la-
beling process strategies better suited to the reconfiguration problem. While our
approach is arguably less efficient than some existing approximation schemes,
we think that using CP provides definite advantages: 1) all electrical and oper-
ational power system constraints are always satisfied, 2) it provides a simpler
computational model, directly related to fundamental electricity laws of the sys-
tem, 3) it allows more flexible parameter control, such as a maximum number of
switching operations and 4) leaves more room for the introduction of additional
operational constraints or search control strategies.

Our research group is interested in studying the application of CP techniques,
particularly the Mozart system, to real world problems. We are currently adapt-

266 J.F. Dı́az et al.

ing this implementation to run a loss reduction reconfiguration of a power system
network of around 600 nodes in the southern region of Colombia.

In section 3 we formally define the reconfiguration problem and describe a
constraint model for solving it. In section 4, we analyze the results of running
the implementation of this model in two canonical power distribution networks.
Finally, sections 5 and 6 are dedicated to stating our considerations on the strong
and weak points of using CP for this problem, and the line of work we plan to
pursue.

2 XRI: A Constraints System Over Real Intervals

XRI is an implementation of a real intervals constraint system for Mozart . This
implementation is an extension of the Real Interval module (RI) implemented by
Tobias Müller ([12]) and distributed as a contribution with the Mozart sources.
The XRI module provides constraint propagators for real intervals relations and
a general customizable distribution procedure for real intervals domains.

In the following pages we describe the foundations of our module implementa-
tion (interval arithmetic, interval constraints and hull consistency) and its main
features (real intervals domains, propagators and distribution).

2.1 Interval Arithmetic and Constraints

Interval arithmetic aims at bounding numeric errors that appear when making
calculations with the classical representation of real numbers as floating-point
numbers. A closed interval [l, u], with l, u ∈ R can be regarded either as the
set of real numbers {r | l ≤ r ≤ u}, or as an approximation of some real num-
ber laying within that set. Instead of using a single floating-point number to
approximate a real number, interval arithmetic encloses the real number within
a closed interval having (in general) floating-point bounds. Different intervals
can thus approximate the same real number. When the width of the interval is
sufficiently small (i.e. the approximation conforms to a desired precision), the
interval is said to represent the real number.

Any function (arithmetical operation) f over the real numbers can be ex-
tended to a function F over intervals by

F (I) = outerI({r | ∃v. v ∈ I ∧ f(v) = r}),
where outerI(S) denotes an interval enclosing all values in the set S. It is in
general desirable to have the smallest such interval.

Similarly, any relation over the real numbers can be extended to an interval
relation. A Cartesian product of intervals, B = I1 × ... × In is called a Box. A
relation c(x1, ..., xn) over the reals (i.e. a set of tuples) is extended to a relation
over intervals:

C(I1, ..., In) = outerB({(r1, ..., rn) | r ∈ I1, ..., rn ∈ In ∧ c(r1, ..., rn)},
where outerB(S) is a box enclosing the set of tuples S.

Using Constraint Programming for Reconfiguration 267

A key issue in interval arithmetic is how to define outer so that tight intervals
are obtained. For basic arithmetical functions this can be achieved by simple
operations on the bounds of the intervals involved. For example,

[l1, u1] + [l2, u2] = [l1 + l2, u1 + u2],

[l1, u1]× [l2, u2] = [min(l1 × l2, l1 × u2, u1 × l2, u1 × u2),

max(l1 × l2, l1 × u2, u1 × l2, u1 × u2)]

A problem is that these operations do not obey the usual algebraic properties
(e.g. distributive laws). This means that equivalent arithmetic expressions do
not lead to equivalence of their interval extension counterparts. The practical
consequence of this fact is that the width of the interval computed by outer
might depend on the form a particular expression takes (see [13] for a thorough
discussion of these issues). Section 2.2 describes a way to avoid this problem in
some particular cases.

In [9] an interval arithmetical system is presented, using function and relation
extensions with the properties of correctness (operating on any values in the
argument intervals always gives a value belonging to the result interval), totality
(interval operations are defined on all intervals), closeness (interval operations
return intervals), optimization (interval results are not wider than necessary)
and efficiency. It is also shown how to implement basic arithmetic operators
extensions over intervals (such as + and×), on a computer meeting the IEEE754-
Standard for floating-point arithmetic.

The term interval constraint denotes a constraint in which variables are asso-
ciated to intervals. In our implementation this interval (the domain of the vari-
able) represents in reality the set of all its subintervals. The value of a variable
is thus always an interval (a sufficiently narrow one). XRI is an implementa-
tion of efficient techniques for solving sets of interval constraints, integrated as
constraint propagators of Mozart .

Research in this area (see for example [2]) is devoted to finding correct and
(near) optimal interval propagation techniques that can be efficiently imple-
mented. These techniques are known as narrowing algorithms whereas propa-
gators for constraints are called constraint narrowing operators. A constraint
narrowing operator transforms the domains of those variables involved in it into
tighter intervals such that:

– Result intervals are always included in the original ones (contractance prop-
erty).

– All values in the original intervals verifying the associated constraint of the
narrowing operator, belong to the result intervals (soundness or correct-
ness).

– The subset interval relation is conserved by the transformation (monotonic-
ity).

Well known examples of constraint narrowing operators are Hull and Box
Consistency (see [2]) and kB−Consistency Operators (see [11]). The current

268 J.F. Dı́az et al.

version of XRI contains an efficient implementation of Hull consistency known
as HC4 (see next section).

2.2 HC4

A major problem of interval arithmetic is the overestimation of results. As men-
tioned before, this might be a consequence of the form the arithmetical expression
takes. For instance, extending the function f(x) = x2 − 2x + 1 on the interval
x = [−1, 3] we get F ([−1, 3]) = [−4, 4]. If the function is equivalently written
f(x) = (x−1)2, then we get F ([−1, 3]) = [0, 4]. This is the so-called data depen-
dency problem: interval operations work independently on each occurrence of a
variable, i.e. they consider the above expression as x2

1− 2x2 +1 and then extend
it with x1 = [−1, 3], x2 = [−1, 3].

A related problem occurs when constraint propagators for arithmetical equa-
tions are defined over a fixed number of variables. For example, if a propa-
gator for interval equations of the form X + Y = Z expects three variables,
then an interval equation like X + Y + Z = W must be split into equations
T1 = X + Y, T2 = T1 + Z, T2 = W using two new “temporal” variables. Since
interval values for these are not known, information on the fact that all vari-
ables in the original equation are related is lost. Moreover, the constraint system
would have to launch three propagators instead of just one.

An efficient hull consistency algorithm called HC4 was proposed by Ben-
hamou in [2]. Input to HC4 is a constraint in “user form” (i.e. without decom-
posing it in several equations). The algorithm efficiently computes an interval
extension of the equation, narrowing intervals of the variables involved. In HC4
the input equation is represented as an attribute tree where the root node is a
p-ary relation symbol and terms in the equation form subtrees rooted at nodes
containing either a variable, a constant or an operation symbol.

Algorithm HC4 works in two phases called “forward evaluation” and “back-
ward propagation”. The forward phase is a tree traversal going from the leaves
to the root, evaluating at each node the natural interval extension of that sub-
term of the constraint. The backward phase traverses the tree from the root
to the leaves, projecting on each node the effects of interval narrowings already
performed on its parent node. In the ”backward propagation” phase” an interval
may become empty. When this happens the constraint is inconsistent w.r.t. the
initial domains.

In the XRI module, the user can define a precision for each variable. This
value is used in propagators to control the minimum narrowing considered signif-
icant. If narrowing is less than that, HC4 does not change the intervals. Addition
of this control is a consequence of a pathological behavior we observed in some
problems: the algorithm may sometimes narrow an interval, say, by one floating
point value, causing the HC4 propagator to be triggered again to narrow an
additional float, and so on. In this case the rationale is to let other propagators
narrow the intervals involved in a more significant way.

We implement HC4 as a Mozart propagator. It uses the Mozart propagator
control, garbage collection and computation space cloning. This guarantees that

Using Constraint Programming for Reconfiguration 269

it is triggered when the interval domain of any of its associated variables is
changed by some other propagator (either basic or HC4). The user defines a
HC4 propagator by a procedure call whose argument is the constraint written
in prefix form. For example,

{XRI.hc4 eq(plus(square(X)Y 1.0) plus(times(2.0 X)W))}
sets up a propagator for equation x2 + y + 1.0 = 2.0x + w

Other than equality(eq), relational operators < (lt),>(gt),≤(leq) are sup-
ported by XRI.hc4, as well as several arithmetical and trigonometric functions.

2.3 XRI Variables and Propagators

As mentioned previously, the domain of a XRI variable is an interval with
floating-point bounds, denoting the set of all its subintervals. Interval bounds
are updated via the application of a set of hull-consistency based propagators.

A variable is determined when the width of the interval is less than a given
precision. In XRI, precision can be defined globally or assigned locally to each
variable. A failure occurs when the domain of a variable becomes empty, i.e when
its interval lower bound is greater than the upper bound.

As is usual in constraints systems, computational agents (called propagators)
in XRI work to enforce relations (constraints) among variables in the store. The
XRI module offers two kinds of propagators: basic propagators enforcing basic
arithmetic constraints, and the HC4 propagator described above.

Basic propagators implement interval extensions of basic arithmetic and
trigonometric constraints. A constraint is asserted by a Mozart procedure call
of the form {XRI.op X Y Z}, where suffix “op” is an appropriate operator. For
example, {XRI.plus X Y Z} asserts constraint X ⊕ Y = Z, where X, Y and Z
are interval variables and ⊕ denotes interval addition. Constraint Z = Y % X
can of course be asserted with the same propagator by invoking {XRI.plus X Z
Y}).

Floating point operations performed by arithmetic constraints propagators
comply with the IEEE754-standard. XRI also offers other propagators with float-
ing point operations not covered by the IEEE754-standard, in particular for
trigonometric and logarithmic constraints.

2.4 XRI Distribution

Distribution is the process used in most constraints systems to guarantee com-
pleteness. The XRI module provides a customizable distributor of interval vari-
ables similar to the one provided in the Mozart finite domains module. In the
XRI distributor the user can specify the order in which variables are to be dis-
tributed, the order in which values should be tested (e.g. try first the lower half
interval), and can also supply a procedure to be run when a computation space
becomes stable (i.e. when no propagator is active). Well-known strategies are
provided by default: first-fail, naive and split-upper. The first-fail strategy tells
the distributor to select the variable having the smallest domain first and to test

270 J.F. Dı́az et al.

first the lower half of the interval. A naive strategy distributes the list of vari-
ables in the order they were originally supplied to the distributor, also checking
first the lower half of the interval. The split-upper strategy tries the upper half
of the interval first.

3 CRE2 : A Power Distribution System Reconfigurator

CRE2 is an application written in Mozart for reconfiguring power distribution
networks for power loss reduction. It includes two distinct interacting processes:
load flow computation (finding values for electrical variables) using the XRI
constraint system and reconfiguration (finding new network topologies) using
the Mozart finite domain constraint system (FD).

As said before, an electric distribution network consists of a power trans-
former connected to a set of feeders, each supplying power to a subnetwork
of nodes. Some of the nodes represent customer connected to the distribution
system. These nodes have associated active (P) and reactive (Q) loads. Active
loads are the amount of power (measured in watts) actually consumed by the
user, whereas reactive power (measured in “volt-amperes-reactive”, or var) is
an abstract quantity used to describe the effects of a load which on the aver-
age neither supplies nor consumes power. It is known that reactive devices such
as inductors and capacitors dissipate zero power, yet the fact that they drop
voltage and draw current gives the deceptive impression that they actually do
dissipate power. This ”phantom power” is called reactive power. Power losses in
a network are highly dependent on both P and Q.

Nodes (and feeders) are connected by branches. A resistance R and a reac-
tance X is associated with each branch. In certain branches current flow (or lack
thereof) along that branch is controlled by a switch.

The load flow problem consists of finding values for all electrical variables
involved in the network, given values for P , Q, R and X. These variables include
the current along each branch (I), the voltage in each node (V) and the output
current (or load current) generated by the power consumed by each user denoted
Iq. Active (Lp = |I|2×R) and reactive (Lq = |I|2×X) losses along each branch
are then computed. Summing the latter for all branches gives the overall power
loss of the system.

Values found must satisfy both the fundamental electrical laws described in
section 3.1 and also the operational constraints listed in section 3.2.

3.1 Electrical Constraints

Values computed in the load flow process should obey: Ohm law equations (1)
on each branch , Kirchoff laws on each node and two equations relating load
current w.r.t P and Q. In the following equations, variable Z (impedance) is
equal to R + Xi.

For each branch with a closed switch in the network, Ohm’s law must hold:

ΔV = Z × I (1)

Using Constraint Programming for Reconfiguration 271

Electrical equations such as 1 can be expressed either in rectangular form
(real and imaginary parts) or in polar form (angles and magnitudes).

Constraints in polar form require trigonometric propagators whereas those
in rectangular form need basic arithmetic propagators. Since the latter can be
made stronger and more efficient than the former, CRE2 uses the rectangular
representation. Furthermore, magnitude and angle can easily be computed from
the rectangular values.

Equation 1 can be decomposed into equations 2 and 3; figure 1 shows an
Mozart procedure implementing those equations.

V1.real − V2.real = I.real ×R− I.img ×X (2)

V1.img − V2.img = I.real ×X + I.img ×R (3)

proc {LOhm InfBranches VarBranches VarNodes EstSw}
for I in 1..{Width InfBranches} do

Id#N1#N2#R#X#CCR#Ss#Eso = InfBranches.I
V1_real = VarNodes.vo_real.N1
V1_img = VarNodes.vo_img.N1
V2_real = VarNodes.vo_real.N2
V2_img = VarNodes.vo_img.N2
I_real = VarBranches.io_real.Id
I_img = VarBranches.io_img.Id

in
if Ss==0 orelse {Nth EstSw I} == 1 then

{XRI.hc4 eq(sub(V1_real V2_real)
sub(times(I_real R) times(I_img X)))}

{XRI.hc4 eq(sub(V1_img V2_img)
plus(times(I_real X) times(I_img R)))}

end
end
end

Fig. 1. Ohm law procedure

For each node in the network Kirchoff Law asserts that:∑
input branch current =

∑
output branch current (4)

In radial systems the above equation can be simplified to:

input branch current =
∑

output branch current + Iq (5)

where Iq can be computed by:

P = V.real × Iq.real + V.img × Iq.img (6)

Q = V.img × Iq.real − V.real × Iq.img (7)

272 J.F. Dı́az et al.

3.2 Reconfiguration Procedure

The feeder reconfiguration problem can be modeled using finite domains to rep-
resent the state of each switch (0 for open, 1 for closed). The target configuration
(network topology) must satisfy the following constraints:

– Radiality: The number of branches supplying current into a given node must
be equal to one

– Service Continuity: current must flow to all nodes
– Maximum switching operations: limits the number of switches that can be

changed
– Active losses reduction: active losses in the new topology must be less than

in the original network.

We implemented an FD procedure enforcing service continuity using the FD.sum
propagator (each node has at least one incident closed branch). System radiality
is enforced in the load flow procedure by computing the direction of current flow
in the network and then verifying that each node has exactly one input current.
Finally, the maximum switching operations constraint is implemented using a
reified constraint computing the number k of switch changes and asserting a
FD.atMost propagator using k.

Our method uses a reconfiguration technique in which switch changes are
guided by the goal of balancing power loads among the feeders. For each trial
configuration the load flow procedure is invoked to compute its active losses.
Configurations in which power losses are not less (by a given amount) than in
the original one are rejected.

Operational Constraints. Most reconfiguration methods reported in the lit-
erature must verify their solutions against operational constraints. Since CRE2
uses a CP model, operational constraints interact with the search procedure.
Some operational constraints are expressed as HC4 equations and can be easily
integrated to the load flow procedure itself. For example, we can easily impose
operational limits over voltage in nodes and current in branches:

– Voltage limit in internal nodes:

1.0− PvMNO ≤
√

Vo.real2 + Vo.img2 (8)

Asserting that voltage magnitude in each node cannot drop below an oper-
ational percentage (PvMNO).

– Limit of current in branches:√
Io.real2 + Io.img2 ≤ CCR× (1.0 + PsCPR) (9)

Asserting that the percentage of overcurrent in branches (PsCPR) cannot
exceed the current limit of the conductor (CCR).

Using Constraint Programming for Reconfiguration 273

4 Results

This section describes the results obtained by running CRE2 on two canonical
problems we will refer to as Civanlar (16 nodes, [4]) and Baran (53 nodes, [1]).
In both cases a reconfiguration minimizing active losses must be found.

All tests were done on an Intel Pentium 4 1.80 GHz computer with 256 of
RAM, running Linux Gentoo 1.4 with kernel 2.6.20 and Mozart system 1.2.5.

The Civanlar system consists of 3 circuits (each one starting with a different
feeder). Circuits have 5, 6, and 5 nodes, respectively (including the feeders).
Each pair of circuits is connect each by a branch containing a switch (initially
open).

A normalized active losses reduction (0.0054 per unit) of the initial config-
uration was found in 142ms using a precision of 10−5.

Computing losses for all feasible reconfigurations achieving some reduction
and performing at most four switching operations (see Table 1), took 8.30s.
In Table 1, column “Proposed configurations” specify switches to open and/or
close (only four out of seven possible reconfigurations are shown), and column
”% gain” shows the reduction percentage w.r.t the initial active losses.

Table 1. Reconfiguration of Civanlar case

Active Losses
[p.u]

% Gain Proposed reconfigurations

0.0053 1.85 Open 4,7 and close 15,16
0.0054 0.00 The initial topology
0.0054 0.00 Open 7,13 and close 15,16
0.0049 9.25 Open 7,8 and close 14,15 (Best Configuration)

Table 2. Reconfiguration of Baran case

Active Losses
[p.u]

% Gain Proposed reconfigurations

0.0012 7.69 Open 47 and close 53
0.0011 15.38 Open 46 and close 53
0.0010 23.08 Open 32,35,46 and close 51,52,53

4.1 Baran Case

The Baran system consists of 5 circuits having 6,9, 6, 18 and 14 nodes, re-
spectively. Active losses in the original network (0.0013 pu) were computed in
572ms. Not all reconfigurations were searched for, due to the huge size of the
search tree. Some configurations reducing losses and performing at most four
switching operations are summarized in table 2.

274 J.F. Dı́az et al.

5 Conclusions

One of the main challenges we faced was to integrate into Mozart a robust, cor-
rect and efficient constraint system for real intervals. Although the XRI module
is still being improved, we believe it does provide in its present state good func-
tionality and reasonable performance.

As usual in CP, efficiency was strongly dependent on the constraint model
used. We initially enforced all electric constraints both in polar and in rectan-
gular form, trying to obtain better interval narrowing by constraint redundancy.
We did not obtain the results we expected. We conclude that our propagators
for trigonometric constraints are not yet efficient enough to handle real world
applications. A redundant constraint that did cause a significant improvement
was asserting that the number of closed switches in branches entering a node
must be at least one. In this way, no configuration isolating nodes is generated.

We have shown that using CP is a real alternative for the problem of reduc-
ing power losses by network reconfiguration. Optimal configurations were found
in reasonable time for two canonical problems. Moreover, other approaches aim
at finding one (hopefully optimal) configuration. In some practical cases, a (not
necessarily optimal) configuration reducing losses and satisfying some extra oper-
ational constraints (such as number of switch changes) might be a better option.
Our CP model easily handles these cases. In addition, CRE2 provides more flex-
ibility, such as the ability to incorporate new load flow models or to add new
operational constraints. It is also easy to integrate strategies that have been
proved to be effective in some cases. For example, totally meshed networks have
minimal losses. A good strategy is then starting with this type of network and
opening selected switches one by one. This strategy is “free” in our CP model:
the distribution strategy simply selects the upper value first per switch state (1=
a closed switch) and constraints quickly prune non radial networks.

Although the computation time of CRE2 on the canonical problems was
greater than in other approaches, it has to be considered that our model actually
solved a somewhat (more complex) different problem. We assumed every branch
in the network had a switch. This, of course, greatly increases the size of the
search tree. In real networks only a few number of switches exist. The reason
we model the problem in this way is that, for the particular network we have in
mind, we would also like to suggest the best places to install a given number of
switches, an issue not considered in other approaches.

It is clear to us that handling bigger networks requires better distribution
strategies than those currently implemented. We have tried some problem do-
main driven strategies, such as ensuring each time a switch has to be opened to
choose the one that better balances loads in the resulting two circuits. For small
problems, the potential gains of this strategy are countered by the time spent
in computing subnetwork loads. We still lack enough evidence to claim that this
improves performance significantly in large networks.

Using Constraint Programming for Reconfiguration 275

6 Future Work

We implemented in CRE2 a network of around 600 nodes corresponding to six
electric circuits of the power system for the city of Buenaventura in Colombia.
We expect to have reconfiguration results in the short term.

We plan to pursue CP formulation of related problems in electrical engineer-
ing, such as the unit commitment problem and the service restoration problem
([8]).

Acknowledgments

We are greatly indebted to Gladys Caicedo and Carlos Lozano, from the GRALTA
research group1, for referring the reconfiguration problem to the authors and
for many enlightening discussions. We are also grateful to James Ortiz, Janeth
Rodŕıguez and Diana Torres for their patient debugging of the initial imple-
mentations. Finally, we would like to thank the anonymous reviewers for their
valuable comments for improving this paper.

References

1. M.E. Baran and F.F: Wu. Network reconfiguration in distribution systems for loss
reduction and load balancing. IEEE Transactions on Power Delivery, 4(2):1401–
1407, April 1989.

2. F. Benhamou, Fréderic Goualard, and Laurent Granvilliers. Revising hull and box
consistency. In Proceedings of ICLP’99 - MIT Press, pages 230–244, 1999.

3. G. Caicedo. Nueva propuesta en reconfiguracion de alimentadores utilizando pro-
gramacion con restricciones, 2004. PhD thesis, Universidad del Valle, Cali, Colom-
bia.

4. S. Civanlar, J.J. Grainger, H. Yin, and S.S. Lee. Distribution feeder reconfiguration
for loss reduction. IEEE Transactions on Power Delivery, 3(3):1217–1223, July
1988.

5. T. Creemers, L. Ros, J. Riera, C. Ferrarons, J. Roca, and X. Corbella. Constraint-
based maintenance scheduling on an electric power-distribution network. In Third
International Conference and Exhibition on Practical Applications of Prolog, April
1995.

6. T. Creemers, L. Ros, J. Riera, C. Ferrarons, J. Roca, and X. Corbella. Programacin
optima de tareas de mantenimiento y reconfiguracin sobre redes de media tensin. In
The Fourth Portuguese-Spanish Conference on Electrical Engineering, July 1995.

7. Y. Fukuyama. Reactive tabu search for distribution load transfer operation. In
IEEE PES winter meeting, Singapore, January 2000.

8. Y. Fukuyama and H. D. Chiang. Modern heuristic techniques for combinatorial
problem. In Proc. of IEEE FUZZ/IFES conference, Yokohama, March 1995.

9. T. Hickey, Q. Ju, and M. H. Van Emden. Interval arithmetic: From principles to
implementation. Journal of the ACM, 48(5):1038–1068, September 2001.

1 High Tension Research group, Universidad del Valle

276 J.F. Dı́az et al.

10. Y.J. Jeon, J.Ch. Kim, J.O. Kim, J.R Shin, and K.Y. Lee. An efficient simmulated
annealing algorithm for network reconfiguration in large-scale distribution systems.
IEEE Transactions on Power Delivery, 17(4):1070–1078, October 2002.

11. O. Lhomme. Consistency techniques for numeric csps. In Proceedings of the 13th
IJCAI, IEEE Computer Society Press, pages 232–238, 1993.

12. Tobias Müller. Adding constraint systems to DFKI Oz. In WOz’95, International
Workshop on Oz Programming, Institut Dalle Molle d’Intelligence Artificielle Per-
ceptive, Martigny, Switzerland, 29 November–1 December 1995.

13. A. Neumaier. Interval methods for system of equations. Cambridge University
Press, 1990.

14. H. Shirmohammadi and W. Hong. Reconfiguration of electric distribution networks
for resistive line losses reduction. IEEE Transactions on Power Delivery, 4(2):1492–
1498, April 1989.

15. G. Smolka. A foundation for higher-order concurrent constraint programming.
In Jean-Pierre Jouannaud, editor, 1st International Conference on Constraints in
Computational Logics, Lecture Notes in Computer Science, vol. 845, pages 50–72,
München, Germany, September 1994. Springer-Verlag.

16. C.T. Su and C.S Lee. Feeder reconfiguration and capacitor setting for loss reduction
of distribution systems. Elect. Power Syst. Res., 58(2):97–102, 2001.

Strasheela: Design and Usage of a Music
Composition Environment Based on the Oz

Programming Model

Torsten Anders, Christina Anagnostopoulou, and Michael Alcorn

Sonic Arts Research Centre, Queen’s University Belfast, Northern Ireland
{t.anders, c.anagnostopoulou, m.alcorn}@qub.ac.uk

Abstract. Strasheela provides a means for the composer to create a
symbolic score by formally describing it in a rule-based way. The en-
vironment defines a rich music representation for complex polyphonic
scores. Strasheela enables the user to define expressive compositional
rules and then to apply them to the score. Compositional rules can re-
strict many aspects of the music – including the rhythmic structure, the
melodic structure and the harmonic structure – by constraining the pa-
rameters (e.g. duration or pitch) of musical events according to some
numerical or logical relation. Strasheela combines this expressivity with
efficient search strategies.

Strasheela is implemented in the Oz programming language. The Stra-
sheela user writes an Oz program which applies the Strasheela music rep-
resentation. The program searches for one or more solution scores which
fulfil all compositional rules applied to the score.

1 Introduction

In computer aided composition (CAC), a composer creates music by commu-
nicating her or his musical intentions to her ’assistant’, the computer. CAC
addresses music mainly on the score level and in that way CAC differs from
other areas of computer music such as sound synthesis or spatialisation. By
using a CAC environment a composer formalises musical ideas or composi-
tional problems and implements them in a computer program which outputs
music in a symbolic representation. Diverse strategies exist to generate or trans-
form music; examples include mathematical models (e.g. stochastics), models
based on transforming existing data (such as spectral analysis data), or mod-
els implementing already existing compositional strategies (e.g. serial composi-
tion) [1].

To advance in the compositional process, the composer must not worry too
much about low level programming detail. It is therefore highly desirable for the
composer to express her intentions on a high level of abstraction. Consequently,
CAC environments rely heavily on the expressive power of the underlying pro-
gramming language and its programming concepts.

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 277–291, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

278 T. Anders, C. Anagnostopoulou, and M. Alcorn

Different CAC environments are based on different programming concepts
or paradigms. Often, an environment supports a specific paradigm particularly
well and encourages the user to employ this paradigm. Other CAC environments
support a combination of programming paradigms and the user may separately
choose the adequate paradigm for each given sub-problem.

Most CAC strategies and programming paradigms are clearly different com-
pared to the way in which musicians describe a musical style. Using a CAC
environment a composer may control aspects of the pitch contour of some voice
by deciding for a specific random distribution to generate the pitches. She may
further shape the contour by multiplying the resulting pitch sequence with an
envelope. Instead of using such a deterministic strategy – in which one pro-
cess modifies the result of the previous process – musicians tend to describe
music by a set of modular rules. A rule is not an algorithm to create a cer-
tain result. A rule often states merely a restriction on single notes and their
parameters (e.g. duration or pitch) or mutual dependencies between the pa-
rameters of multiple notes. Such restrictions do not necessarily result in a sin-
gle solution score. Instead, the restrictions reduce the domain of all possible
scores.

The constraint programming paradigm presents a natural CAC approach in
which the composer defines such modular rules restricting a score. In fact, during
the last decade constraint programming has become an important strategy for
CAC and several environments supporting constraint programming have been
developed [2, 3, 4, 5, 6].

Virtually all existing constraint based CAC environments extend already es-
tablished general CAC environments by constraint programming means. Perhaps
surprisingly, most current environments come with their own specifically devel-
oped constraint solver. This article proposes a different approach by extending a
state-of-the-art constraint programming language into a CAC environment. The
programming language Oz [7] offers highly expressive constraint programming
means in a multi-paradigm programming context which makes the language very
interesting for CAC. The present article proposes Strasheela,1 a CAC environ-
ment implemented in Oz.

The implementation of Strasheela takes advantage of Oz’ multi-paradigm pro-
gramming support. Besides constraint programming, Strasheela applies object-
oriented programming, and higher-order functional programming. Strasheela’s
main data structure, the score representation, is defined by a class hierarchy.
Many score object methods are higher-order procedures and expect procedures
or method labels as argument. Compositional rules are expressed by constraints
on score objects.

1 Strasheela is also the name of a scarecrow in the children’s novel The Wizard of the
Emerald City by Alexandr Volkov (in which the Russian author retells The Wonderful
Wizard of Oz by L. Frank Baum). Although Strasheela’s brain consists only in bran,
pins and needles, he is a brilliant thinker who loves to multiply four figure numbers
at night. Little is yet known about his interest in music, but Strasheela is reported to
sometimes dance and sing with joy.

Strasheela: Design and Usage of a Music Composition Environment 279

Plan of the Paper. The following section presents an overview of Strasheela
from a user’s point of view. The Strasheela score representation is discussed in
Sec. 3. Strasheela suggests expressive strategies to define compositional rules and
to apply them to the score (Sec. 4). Strasheela predefines distribution strategies
– in effect search orders – which are optimised for scores (Sec. 5). Many aspects
of Strasheela are explained throughout the text by a single canon example which
is finished in Sec. 6. Section 7 presents related work. The article concludes with
a discussion of Strasheela’s limitations (Sec. 8).

2 Strasheela Overview

Strasheela offers a means to create a symbolic score by formally describing it
in a rule-based way. The resulting score is later performed by human musicians
or a sound synthesis language to create the actual sound. The main objective
of Strasheela is the creation of original music and not to replicate traditional
musical styles. Having said that, a conventional example based on well-known
textbook rules is more easy to communicate in a paper focusing on software
design. All compositional rules discussed here are hence inspired by traditional
counterpoint [8].

As an example, we assume that a composer wishes to use Strasheela to create
a canon, a musical form in which several voices imitate each other in a rather
literal way. The Strasheela user first instantiates a score data object and in doing
so she predetermines certain aspects of the score. For the canon, the composer
predefines the number of voices in the score and the number of notes in each
voice. However, the composer leaves other aspects of the score undetermined.
She may leave undetermined all durations and pitches of the notes, because she
wants these parameters to satisfy a set of compositional rules she has in mind.

Possible rules include restrictions on the pitch succession in each voice
(melodic rules), rules restricting the simultaneous pitch combinations (harmonic
rules), rules on the sequence of durations in a voice (rhythmic rules), and a rule
restricting the different voices to be similar such that they form a canon.

Each rule imposes some constraints on some score objects. For example, a
melodic rule may restrict the pitch interval between two successive notes. How-
ever, a melodic rule will usually not only affect a single note pair but, for in-
stance, all successive note pairs in all voices. Rules are therefore defined in a
modular way: the rule definition is abstracted from its application to multiple
score objects.

By instantiating the score data object, defining the compositional rules, and
by applying the rules to the score, the composer states the constraint problem.
A solution of the problem is a score which fulfils all the rules applied to it.

In Oz, a constraint problem is implemented by a search script, a procedure
with the solution as its only argument [9]. The constraint solver of Oz finds one
or more solutions for the script.

Strasheela outputs the solution score into multiple formats including the score
format of several sound synthesis languages and common music notation.

280 T. Anders, C. Anagnostopoulou, and M. Alcorn

The Strasheela user interface is the Oz programming language: a Strasheela
user writes an Oz program which applies Strasheela’s contributions to Oz – most
of all its score representation.

3 The Score Representation

A general and powerful music representation is vital for the expressivity of Stra-
sheela, because both the solution score and the problem definition are expressed
using this representation. Much research has been done in the domain of music
representation [10,11,12,13,14,15]. The score representation of Strasheela com-
bines ideas presented in the literature and in existing implementations of CAC
environments.

3.1 Class Hierarchy

A musical score contains many different object types. Examples in conventional
music notation include notes marking pitch and timing information, articulation
signs, and staffs of five lines to organise notes in voices. Different musical styles
may use different type sets. During the compositional process the composer
may even introduce further types (e.g. roman numbers to sketch a harmonic
progression).

The Strasheela score representation attempts to generalise this broad width of
possible score information. Instead of implementing an enormous set of different
types in an unrelated way, the representation defines the score data types as
classes in a class hierarchy in the object-oriented programming sense. Figure 1
presents an example excerpt of the class hierarchy. Depicted are the relations
between the classes used to represent timing information. Many of these classes
are explained in subsequent sections. The user can extend the class hierarchy by
her own classes if so desired.

Object-oriented programming in Oz is often stateful. Nevertheless, the Stra-
sheela score representation is stateless.

3.2 Hierarchic Score Structure

Most existing score representations support the notion of score events. The in-
stances of the event class produce sound when the score is played.

Many event attributes (such as start time or pitch) are specified by parameters.
Strasheela defines parameters in their own class to allow the addition of informa-
tion to the actual parameter value. For instance, parameters allow the composer
to specify their unit of measurement (such as key-number or cent-value for pitch)
which subsequently affects the score when it is transformed into an output format.
Parameter objects are also important for the definition of specific search strategies
(Sec. 5). Parameter values are the only predefined score data which the composer
can constrain.

The class note is an event subclass. Besides other event parameters (e.g.
start time) a note defines the additional parameter pitch. The class element is

Strasheela: Design and Usage of a Music Composition Environment 281

Fig. 1. Score class hierarchy. The excerpt shows timing related classes. The figure
omits some classes for brevity, making some class names appear arbitrary (such as
TimeAspect instead of TimedContainer)

a superclass of event. Instances of element subclasses (besides event) are silent
when the score is played. Examples include the predefined class pause or a class
representing an initialisation statement for some sound synthesis language.

Musicians rarely talk about single score events when talking about music.
They talk about event groups such as motives, voices, rhythmic patterns, or
chords. To express such concepts, Strasheela defines the class container. The
superclass of both container and element is called an item in Strasheela. A
container contains other items and so can represent groups of score objects.
Data can be recursively nested to form a tree (e.g. to express a note in a motive
in a melody, or a note in a chord in a staff).

Strasheela supports different hierarchies of different container types to ex-
press, for example, timing structure, grouping, harmonic information, or the bar
structure. Multiple hierarchies can be combined in a graph in which different
hierarchies share the same elements as leaves of their trees. As most of these
container types depend closely on the music the user wants to represent, Stra-
sheela predefines only abstract classes from which the user may derive her own
classes according needs. Nevertheless, containers expressing a timing hierarchy
are already predefined.

3.3 Hierarchic Timing Structure

Some score items have timing related parameters. For these objects, Strasheela
explicitly represents the start time, offset time, duration, and end time. For all
timed items, Strasheela implicitly constrains start time, duration, and end time
(1). The offset time is an alternative means to express a pause in front of an
item.

282 T. Anders, C. Anagnostopoulou, and M. Alcorn

enditem − startitem = durationitem (1)

Strasheela defines container classes whose instances constrain the timing of
their contained items (Fig. 2). The items contained in a simultaneous object run
in parallel with each other. The offset time of a contained item denotes how much
the start time of the item is delayed. Equations (2) and (3) show the implicit
constraints between a simultaneous object and all its contained items, n denotes
the number of items in the container.

simultaneous

simultaneous

simultaneous

sequential

simultaneous

note note note

sequential

note note

Fig. 2. The timing structure forms a tree with events as leaves, parameters are omitted
(Béla Bartók. Mikrokosmos, No. 87)

∀ i ∈ {1, . . . , n} : startsimItemi = startsim + offsetsimItemi (2)
endsim = max(endsimItem1 , . . . , endsimItemn) (3)

The items contained in a sequential object follow each other sequentially
in time. The offset times of contained items specify pauses between the items
(Equations (4) to (6)). Only the constraints (1) to (6) are implicitly applied to
every score; further constraints are applied by the user.

startseqItem1 = startseq + offsetseqItem1 (4)
∀ i ∈ {1, . . . , n− 1} : startseqItemi+1 = endseqItemi + offsetseqItemi+1 (5)

endseq = endseqItemn (6)

3.4 Application Programming Interface and Patterns

The application programming interface (API) for the score classes includes con-
venient constructors for complex scores, expressive score accessors as well as
score transformers. For instance, the standard score constructor expects a short-
hand representation of a score which consists of all score object initialisation
methods nested according to the score hierarchy. Examples for typical accessors
include a method which returns the item preceding some item in a container or

Strasheela: Design and Usage of a Music Composition Environment 283

a method which returns all items in the whole score which are simultaneous to
some item. Many accessors and transformers are higher-order procedures. Such
accessors include, for instance, a method which maps a user specified function
to all objects in the score graph which fulfil some test function. With the help of
this method, the user can, for example, collect the pitches of every second note
in some voice to constrain this pitch list to follow some user defined pattern.

Strasheela predefines many pattern constraints which either constrain the
order of list elements by unification, impose numeric constraints on list elements,
or combine multiple sublists into an other list. For example, a simple order
pattern repeats the first n list elements throughout the list in a circular manner;
a more complex example unifies list elements according to some Lindenmayer
system defined by the user. Numeric patterns constrain, for example, each list
predecessor to be smaller then its successor, the maximum number in a list to
occurs only once, or n list elements to be pairwise distinct.

4 Compositional Rules and Their Application

Oz predefines a broad width of constraints, for instance, for finite domain (FD)
integers [9] and for finite sets of integers [16]. The Strasheela user applies con-
straints to score parameter values – which are usually FD integers but may be
other constrainable data as well – to express restrictions on these parameters.
For instance, a composer may express a melodic restriction which constraints the
distance between the pitches of two consecutive notes to not exceed the interval
of a fifth (7). The interval is measured in semitones, 7 denotes a fifth.

7 ≥ |pitch1 − pitch2| (7)

Yet, a compositional rule is usually more general as it holds more than only
once. The Strasheela user therefore often encapsulates the constraints expressing
a compositional rule into an Oz procedure. The user freely controls the rule scope
by defining a control structure which accesses sets of score objects and applies
the rule to them. Often – but not necessarily – the rule scope has a relation
to the hierarchic nesting of the score. For example, a rule restricting a melodic
interval may be applied to any consecutive note pair in any sequential container
of a score.

Each application of this rule constraints a set of score objects which are
inter-related in a uniform way: the pitches of a consecutive note pair in a se-
quential. Another rule may constrain sets of score objects which are inter-related
in another uniform way, for example, the duration of some note and the dura-
tions of all its simultaneous notes. A context is the way how a set of objects is
inter-related. Strasheela’s score API predefines various context accessor methods
which return, for example, all items in the score which are simultaneous to some
given item. The user can also define her own context accessors. Using these ac-
cessors, the context for a rule as well as the control structure for the rule scope
is usually defined in a convenient way.

284 T. Anders, C. Anagnostopoulou, and M. Alcorn

Figure 3 illustrates the terms rule, context and scope graphically and shows
how each rule imposes one ore more constraints between several score object
sets. The example rule RestrictMelodicInterval (Fig. 3, a – Fig. 4 shows the
Oz code) implements (7) as a procedure with the argument note1. The preceding
note2 is accessed within the procedure. The rule is applied to all notes in two
different voices which have a predecessor (Fig. 3, b).

7 pitch 1 pitch 2

Fig. 3. Definition and application of a compositional rule. (a) A rule is a procedure
which imposes constraints between the procedure arguments and often their contexts
as well. (b) The rule scope is a set of score object sets to which the user applies the
rule

proc {RestrictMelodicInterval Note1}
Note2 = {Note1 getTimeAspectPredecessor($)}

in
7 >=: {FD.distance {Note1 getPitch($)} {Note2 getPitch($)}}

end

Fig. 4. A melodic rule, defined as procedure

In Oz, a procedure is a first-class value which can be used as an argument to
other procedures. Figure 5 shows how the scope of the rule RestrictMelodic-
Interval (i.e. all notes which have a predecessor) is controlled. The method
forAll applies the rule recursively to all score objects contained in MyScore for
which the specified test function returns true – regardless of nesting depth.

There are situations in which a particular context of a score item is unde-
termined before search. For instance, simultaneous items are undetermined for
most score items in case timing parameters (e.g. note durations) are found only
during the search process. In such cases, standard accessors are unsuitable as
they will suspend until the context is determined. Nonetheless, Oz supports the
notion of constraining the validity of constraints and we can use this ability to
constrain the context of an item even if we can not directly access this context.

Strasheela: Design and Usage of a Music Composition Environment 285

{MyScore
forAll(RestrictMelodicInterval

test:fun {$ X}
{X isNote($)} andthen
{X hasTimeAspectPredecessor($)}

end)}

Fig. 5. Application of the melodic rule

In Oz, the validity of a constraint is reflected into a truth value by a reified con-
straint [9]. A 0/1-integer – a FD integer with the domain {0, 1} – represents the
truth values false or true. Reified constraints can be used to state logical con-
nectives. For example, the Strasheela user can express: the fact that two notes
are simultaneous implies that the pitches of these notes must form a consonant
interval (8). As ’isSimultaneous’ and ’isConsonant’ are both reified constraints,
the user can express this implication even when simultaneous notes are unde-
termined before the search. The scope of the rule implementing (8) are all note
pairs which are possibly simultaneous in the solution.

(isSimultaneous(note1, note2) → isConsonant(note1, note2)) ↔ true (8)

Whether two items are simultaneous or not is formalised by reified constraints
on their respective start and end time (9). In an implementation of (9), the
validity b is a 0/1-integer. Whether two notes are consonant is formalised in
a similar way by reified constraints stating whether the interval between the
pitches of two notes is in {minor third, major third, fifth, . . . , octave + major
third} (10).

((start1 < end2) ∧ (start2 < end1)) ↔ b (9)

(|pitch1 − pitch2| ∈ {3, 4, 7, 8, 9, 12, 15, 16}) ↔ b (10)

The rules discussed so far restrict local relations between score objects. How-
ever, to specify aspects of the musical form such as motifs and their relations,
a rule context may also range over a longer time span. A simple example of
this kind is a rule which constrains the musical form to a canon by a pair-wise
unification of the note durations and pitches of two voices.

5 Score Distribution Strategies

Constraint problems in Strasheela involve often hundreds or more constrained
variables resulting in a huge search space. An efficient search strategy is therefore
crucial to make Strasheela useful for a composer.

Oz employs a complete search strategy which is often referred to as propa-
gate and distribute [9]. Constraint propagation reduces the variables’ domains
by removing the values that cannot satisfy the constraints. When no further

286 T. Anders, C. Anagnostopoulou, and M. Alcorn

propagation happens, distribution decides for either some additional constraint
on some variable or the complement of that constraint. That way, distribution
restarts propagation. An important advantage of the Oz constraint programming
model lies in the fact that this decision making process is fully programmable on
a high level of abstraction: Oz allows to customise the search strategy according
to the constraint problem.

Strasheela adapts this high-level means to define distribution strategies pro-
vided by Oz; the Strasheela user can easily define strategies to distribute score
parameters. Such a distribution strategy has access to the whole score via each
parameter, because the relations between an item and its parameters as well as
a container and its contained items are bidirectional linked in the score repre-
sentation. A distribution strategy aims to help constraint propagators to reduce
the search space. To this end, a score distribution strategy often addresses with
special care undetermined rule contexts. For instance, the constraints of a har-
monic rule can only propagate and reduce the domain of note pitches after it is
known which notes are simultaneous.

A few score distribution strategies are already predefined. A typical strategy
first determines timing parameters, or determines parameters ’from left to right’,
that is in increasing order of the start times of their respective items. The latter
strategy is explained in more detail in [17].

A distribution strategy not only effects efficiency. Also heuristics can be de-
fined by distribution strategies, as the distribution strategy affects the order in
which solutions are found. For instance, particularly useful for musical purposes
are heuristics in which the distribution randomly decides in favour of a particular
domain value.

6 The Canon Example

The above-mentioned rules established the starting point for a composer who
extended the canon (Fig. 6) description to about 15 rules, many of which are
inspired by [8].2 The conjunction of all rules results in a complex search problem;
the solution shown below is found in about 20 seconds (first solution found with
a distribution strategy involving random on a 2GHz PC). However, a solution is
found in only a single second in case some rule is excluded. Strasheela solutions
can be output into several formats. Currently, the sound synthesis languages

2 The composer controlled the rhythm (the canon starts and ends with long notes and
note durations may change only slowly across a voice). She adjusted the melodic rules
(only notes in c-major are allowed, the first and last pitch of the lower voice must
be the fundamental, only jumps up a minor third are permitted) and extended the
harmonic rule by voice-leading rules (passing notes are allowed, open parallels are
not). The canon is changed into a canon in the fifth of the first n notes (n = 10 in
Fig. 6). Perhaps the most important extension are rules which control the melodic
contour, for example, which force the maximum and minimum pitch of each voice to
occur only once.

Strasheela: Design and Usage of a Music Composition Environment 287

Csound [18], SuperCollider [19], Common Lisp Music (CLM) [20], and the music
notation software LilyPond [21] are supported.

Fig. 6. A canon example which applies about 15 rules

7 Related Work

Many constraint based CAC environments have been proposed [2,3,4,5,6]. This
section discusses the Oz application COMPOzE and the environment PWCon-
straints.

7.1 COMPOzE

The composition system COMPOzE [22] generates a sequence of four-note chords
to accompany multimedia presentations. The system expects as input a symbolic
musical plan which consists of a harmonic progression and additional informa-
tion. The harmonic progression is represented by harmonic functions in the tradi-
tion of the music theorist Hugo Riemann (e.g. T s3D7T). Additional information
is used to restrict movements of single voices (e.g. “soprano melody shall move
downward”). Besides this musical plan, COMPOzE’s chord sequence output fol-
lows further compositional rules which are defined by the system and implement
standard textbook rules on harmony.

COMPOzE represents music as a sequence of chords. Each chord consists
of four notes and each note is represented by a FD integer denoting the pitch.
The harmonic functions, voice movement restrictions and compositional rules
are formulated as constraints on these pitches.

COMPOzE and Strasheela clearly have different goals. COMPOzE, on the
one hand, formalises a certain sub-task of traditional music composition. COM-
POzE solely constrains note pitches. The COMPOzE user adjusts the arguments
of a predefined set of compositional rules applicable to four-voiced music.

Strasheela, on the other hand, does not predefine any general musical laws.
Instead, Strasheela aims to provide the composer with a general tool to describe
her own music by programming compositional rules from scratch. Strasheela
offers means to represent and constrain music that is far more complex than
a four-voiced chord progression. In particular, Strasheela supports polyphonic
music where voices containing items such as notes, or chords run in parallel.
More complex music is represented by further nesting of sequential and simulta-
neous containers. Besides note pitches, the whole timing structure and arbitrary
additional parameters are constrainable.

288 T. Anders, C. Anagnostopoulou, and M. Alcorn

7.2 PWConstraints and Score-PMC

PWConstraints [2, 6] is a library of the graphical programming language and
CAC environment PatchWork [2]. PWConstraints consists of two main layers:
a general constraint programming language (PMC) and an extension with spe-
cial support for polyphonic music (Score-PMC). The Score-PMC user prepares
in advance an arbitrary complex score to determine the rhythmic structure of
the final result. She defines compositional rules which constrain score parameter
relations (e.g. 7 ≥ |pitch(note1) − pitch(note2)|). The user states the scope of
each rule with a pattern matching expression (e.g. a pattern like [∗ note1 note2]
applies a rule to all consecutive note pairs in the score). Within the rule defini-
tion, the user often accesses some score context (e.g. the pitches of simultaneous
notes). PatchWork and PWConstraints are implemented in Common Lisp.

When I designed Strasheela, Score-PMC was one of the models I had in
mind: Strasheela aims at being more general than Score-PMC without loosing
efficiency. Important differences between the two environments are due to the
differences of their underlying constraint solvers. PWConstraints, on the one
hand, applies backtracking (with optional refinements such as forward check-
ing or backjumping): a constraint checks the validity of constrained variables
only after they are determined.3 During search, the variables are determined in
an order which was fixed before the search started. In Oz, on the other hand,
constraint propagators prune the domains of constrained variables before their
values are determined. During search, the distributor decides which variable to
visit next only when it actually happens.

The Score-PMC user must fully predetermine the rhythmic structure of a
score before the search starts. The program needs this information to deduce its
static search order. Strasheela is more general: parameters which determine the
rhythmic structure are constrainable like all other parameters. The Strasheela
user may freely mix rhythmic rules with rules on, for instance, pitches, and rules
which interrelate timing parameters and pitches. Score distribution strategies
still allow an efficient search.

In the general language PMC, the domains of constrained variables consist
of arbitrary data (e.g. ratios representing microtonal frequency proportions or
nested lists representing whole musical sections). As constraints are only applied
to determined variables, any Lisp function returning a boolean can serve as
a constraint. In this respect, Oz is less expressive for the sake of efficiency.
Constrained variables are quasi typed (e.g. FD integers or finite sets) and only
specially defined propagators can constrain variables.

Score-PMC predefines several context accessors, but its design does not allow
the user to define her own accessors. For example, to create a canon the user
would wish to define an accessor for note sets which hold the same position in
different voices, as this context is not predefined by Score-PMC. The pattern
matching mechanism of Score-PMC to define the scope of a rule is convenient

3 Forward checking rules complicate the situation, but most PWConstraints programs
use plain backtracking.

Strasheela: Design and Usage of a Music Composition Environment 289

mainly for melodic rules where notes occur in a sequential order. The Score-
PMC user can not extend or change this mechanism, non-melodic rules are only
expressible with the help of context accessors. Strasheela, however, allows the
user to freely define new score accessors. The Strasheela user defines the scope
of a rule by an arbitrary control structure. She could, for example, define her
own pattern matching mechanism.

The polyphonic music representation of Score-PMC has a fixed hierarchic
structure and a fixed set of score object types. In Strasheela, the hierarchic
nesting is user defined and the class hierarchy is user extendable.

8 Discussion

The present paper argued that the Oz programming language is a highly suitable
foundation for a computer aided composition (CAC) environment. The text in-
troduced Strasheela, a composition environment implemented in Oz. Strasheela’s
design was outlined and the usage was shown in an application example.

Nonetheless, Strasheela is limited in some ways. Strasheela does not support
arbitrary compositional rules, only score parameters are constrainable. In par-
ticular, the musical form is not freely constrainable as the hierarchic nesting of
score containers and events must be fully determined before search. However,
Strasheela allows to constrain the number of elements in a container by a ’trick’:
events with the duration 0 may be considered as non-existing.

Complex rhythms (e.g. nested tuplets) or complex microtonal music is best
represented using fractions or real numbers for parameter values. The extend-
able Oz constraint model does support real-interval constraints. However, much
more constraints are predefined for finite domain (FD) non-negative integers in
Oz. Therefore, the predefined timing constraints (1) to (6) as well as related
score API methods such as ’isSimultaneous’ (9) are defined for FD integers and
consequently the values of all timing parameters (i.e. all offset times, start times,
durations and end times) are restricted to non-negative integers. As offset times
are non-negative, they can only express pauses before items and not the over-
lapping of items.

Composers often want to formulate merely a preference instead of defin-
ing a strict rule. For instance, a composer might prefer small melodic intervals
but still allow larger intervals. Also, composers wish to grade the importance of
compositional rules such that less important rules might be neglected in an over-
constraint situation. The Strasheela user may specify rule sets which allow the
violation of rules a certain number of times or in certain situations using reified
constraints. Also preferences (optionally graded in importance) can be expressed
using best solution search: after a solution is found, further solutions are con-
strained to be better according to some user defined criterion. However, best
solution search is often less efficient than searching for a single strict solution.

The score representation of Strasheela is rich and explicit. For instance, for
every timed score item Strasheela introduces variables and propagators for four
timing parameters. On the one hand, such an explicit representation makes a

290 T. Anders, C. Anagnostopoulou, and M. Alcorn

score description very convenient. For instance, both the definition of a rhyth-
mical rule constraining item durations and a relation such as ’isSimultaneous’
which constrains start and end times are straightforward. On the other hand,
this rich representation causes the search script to consume much memory during
search. Nevertheless, the Strasheela user may use recomputation – a technique
which substitutes computer memory for computation time – to solve problems
which would not fit into the available memory otherwise.

Despite these shortcomings, Strasheela realises a highly expressive CAC en-
vironment. The present paper explained how Strasheela represents a score, how
the composer defines compositional rules and how she applies them to the score.
Compositional rules can restrict many aspects of the music including the rhyth-
mic structure, the melodic structure and the harmonic structure. Strasheela
combines this expressivity with an efficient search strategy.

Acknowledgements

I am grateful to Mikael Laurson, Tobias Müller, Örjan Sandred, Chris Share as
well as three anonymous reviewers for many comments on this text. I wish to
thank the Oz community: many of my questions related to the present research
were answered on the Oz mailing-list. This research was funded by a Support
Programme for University Research (SPUR) studentship at Queen’s University
Belfast.

References

1. Roads, C.: The Computer Music Tutorial. MIT press (1996)
2. Laurson, M.: Patchwork. A Visual Programming Language and Some Musical

Applications. PhD thesis, Sibelius Academy (1996)
3. Anders, T.: Arno: Constraints Programming in Common Music. In: Proceedings

of the 2000 International Computer Music Conference. (2000)
4. Truchet, C., Assayag, G., Codognet, P.: OMClouds, a heuristic solver for musi-

cal constraints. In: MIC2003: The Fifth Metaheuristics International Conference.
(2003)

5. Sandred, O.: OpenMusic. RC library Tutorial. (2000)
6. Rueda, C., Lindberg, M., Laurson, M., Block, G., Assayag, G.: Integrating Con-

straint Programming in Visual Musical Composition Languages. In: ECAI 98
Workshop on Constraints for Artistic Applications, Brighton (1998)

7. van Roy, P., Haridi, S.: Concepts, Techniques, and Models of Computer Program-
ming. MIT Press (2004)

8. Motte, D.d.l.: Kontrapunkt. Bärenreiter-Verlag (1981)
9. Schulte, C., Smolka, G.: Finite Domain Constraint Programming in Oz. A Tutorial.

(2004)
10. Selfridge-Field, E., ed.: Beyond MIDI. The Handbook of Musical Codes. MIT

press (1997)
11. Dannenberg, R.B.: Music Representation Issues, Techniques, and Systems. Com-

puter Music Journal 17(3) (1993)

Strasheela: Design and Usage of a Music Composition Environment 291

12. Wiggins, G., Miranda, E., Smaill, A., Harris, M.: Surveying Musical Representation
Systems: A Framework for Evaluation. Computer Music Journal 17(3) (1993)

13. Desain, P., Honing, H.: CLOSe to the edge? Advanced object oriented techniques
in the representation of musical knowledge. Journal of New Music Research 2
(1997)

14. Dannenberg, R.B.: The Canon Score Language. Computer Music Journal (1989)
15. Dannenberg, R.B., Desain, P., Honing, H.: Programming language design for music.

In Poli, G.D., Picialli, A., Pope, S.T., Roads, C., eds.: Musical Signal Processing.
Lisse: Swets & Zeitlinger (1997)

16. Müller, T.: Problem Solving with Finite Set Constraints in Oz. A Tutorial. (2004)
17. Anders, T.: A wizard’s aid: efficient music constraint programming with Oz. In:

Proceedings of the 2002 International Computer Music Conference. (2002)
18. Boulanger, R., ed.: The Csound Book. Perspectives in Software Synthesis, Sound

Desing, Signal Processing, and Programming. The MIT Press (2000)
19. McCartney, J.: Rethinking the Computer Music Language: SuperCollider. Com-

puter Music Journal 26(4) (2002)
20. Schottstaedt, B.: CLM. (http://ccrma-www.stanford.edu/software/clm/)
21. Nienhuys, H.W., Nieuwenhuizen, J.: LilyPond . . .music notation for everyone.

(http://lilypond.org/)
22. Henz, M., Lauer, S., Zimmermann, D.: COMPOzE — intention-based music com-

position through constraint programming. In: Proceedings of the 8th IEEE Inter-
national Conference on Tools with Artificial Intelligence. (1996)

Solving the Aircraft Sequencing Problem Using
Concurrent Constraint Programming�

Juan Francisco Dı́az and Javier Andrés Mena

Universidad del Valle, Cali, Colombia
Escuela de Ingenieŕıa de Sistemas y Computación

{jdiaz, javimena}@univalle.edu.co
http://eisc.univalle.edu.co/

Abstract. In this paper we describe an application that solves the prob-
lem of aircraft sequencing in airports using a single runway. In this prob-
lem, the air traffic controller must compute a landing (take off) time
for each plane in the horizon or airport. The cost is associated with the
difference between the plane preferred time (for landing or taking off)
and the time assigned to it. There is also a minimum separation time
between planes that must be respected to avoid accidents. We have im-
plemented an application using Mozartwith finite domain constraints,
GUIs to interact with the user, and a propagator with a simple, but very
helpful operation to cut domains. The basis of the application is the en-
gine that implements the model of the problem; it is easily extensible
through the implementation of new distributors. This paper shows how
the powerful features of Mozart could be exploited to implement practical
applications.

1 Introduction

Upon entering within the radar range (radar horizon) of air traffic control (ATC)
at an airport, a plane requires ATC to assign it a landing time, sometimes known
as the broadcast time and also, if more than one runway is in use, assign it a
runway to land.

The landing time must lie within a specified time window, bounded by an
earliest time and a latest time, these times being different for different planes.
The earliest time represents the earliest a plane can land if it flies at its maximum
airspeed. The latest time represents the latest a plane can land if it flies at its
most fuel efficient airspeed whilst holding (circling) for the maximum allowed
time.

Each plane has a most economical, preferred speed, referred to as the cruise
speed. The preferred or target time of a plane is the time it would land if it is
required to fly at cruise speed. If ATC requires the plane to either slow down,
hold or speed up, a cost will be incurred. This cost will grow as the difference
between the assigned landing time and the target landing time grows.

� This work is supported in part by grant 298-2002 from Colciencias.

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 292–304, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

Solving the Aircraft Sequencing Problem 293

The time between a particular plane landing and the landing of any successive
plane must be greater than a specified minimum (separation time) which is
dependent on the planes involved.

Separation times depend on aerodynamic considerations. A Boeing 747, for
example, generates a great deal of air turbulence (wake vortices) and a plane
flying too close behind could lose aerodynamic stability. Indeed a number of
aircraft accidents are believed to have been caused by this phenomena [7]. For
safety reasons, therefore, landing a Boeing 747 necessitates a (relatively) larger
time delay before other planes can land. A light plane, by contrast, generates lit-
tle air turbulence; therefore, landing such a plane necessitates only a (relatively)
small time delay before other planes can land. Planes taking off impose similar
restrictions on successive operations, so we will only consider the landing case.

In this paper we describe a concurrent constraint programming application
for solving the Aircraft Sequencing Problem (ASP) with only one runway. The
ASP is about scheduling efficiently the landing (take off) times of planes at an
airport, finding the solution at the minimum cost.

This application was developed in the context of the CRISOL1 project; one
of its aims is to build CCP performant applications for real-world problems. As
our programming language we choose Mozart ([11]).

The rest of this paper is organized as follows: in section 2 we describe different
distribution strategies for the ASP problem, that coupled with the branch and
bound Mozart engine, allow us to find good solutions (optimal or close to the
optimal) in a competitive way. In section 3, we describe one of the main aspects
of this application: its architecture. It gives a big flexibility to the user: he can
set a few parameters to specify a variety of behaviours of the search engine
that allows the user to find the best solution in the time he has. In section 4,
we show our first results for generic benchmark instances taken from [2] and
for other (pad)instances mentioned in [4]. Finally, in section 5 we present some
conclusions and future work.

2 The Implementation in Mozart

2.1 The Model

The input data of the problem (where it is assumed that costs grow linearly) is
given as follows (where i, j ∈ 1..P):

P is the number of planes.
Ei is the earliest landing time for plane i.
Li is the latest landing time for plane i.
Ti is the preferred landing time for plane i.
Bi is the cost per time unit for landing before the target time Ti for plane i.
Ai is the cost per time unit for landing after the target time Ti for plane i.
Sij Minimum separation times between planes i and j if i lands before j.

1 Constraints Research and Innovation for Software Solutions.

294 J.F. Dı́az and J.A. Mena

Fig. 1. Reference points for cost propagator and variables costsi and cost where x1

is the minimum value in ti less than Ti, x2 is the maximum value in ti less than or
equal to Ti, x3 is the minimum value in ti greater than or equal to Ti, and x4 is the
maximum value in ti greater than or equal to Ti

The model used to specify the problem using constraint programming in
Mozart is obtaining the minimum cost, following the constraints below:

ti :: Ei#Li (1)
(ti + Sij ≤ tj ∧mij = 0) ∨ (tj + Sji ≤ ti ∧mij = 1) (2)

cost =
∑

costsi (3)

costsi = ci(ti) (4)

Where ci(x), the cost function for plane i landing at time x, is defined as
follows (see fig. 1):

ci(x) =

{
(Ti − x)×Bi, if x ≤ Ti

(x− Ti)×Ai, if x > Ti

(5)

The first constraint is used to model the fact that plane i must land in its
time window. The second constraint models that the separation between every
plane must hold. It is obvious that plane i can land before or (exclusive) after
a plane j. The matrix m encodes a binary relation; if the plane i lands before
the plane j then mij is 0; if the plane i lands after j then mij is 1. If we cannot
assure that plane i must land before or after plane j, mij is undetermined. This
matrix can be used to make some kind of preprocessing of the input data, and
impose some redundant constraints. It is also assumed that mii = 0.

Every plane contributes particularly to the total cost of the solution. Plane
i has an associated variable called costsi that is the cost this plane contributes
to the total cost of the solution. If plane i lands before its preferred time Ti

then the cost of landing plane i before Ti must be calculated using the penalty

295

cost per unit Bi. Something similar occurs when plane i lands after its preferred
time. This is modeled in the 3rd and 4th constraints.

Constraints 1, 2 and 3 were implemented directly in Mozart using its func-
tions and propagators. Specially, there is a propagator called FD.disjointC that
behaves exactly like constraint 2.

Constraint 4 could be implemented in Mozartwith a thread waiting the value
of ti to be determined. Instead, we have implemented a propagator to take ad-
vantage of the additional information the problem provides, cutting the domains
of ti and costsi variables.

In order to model this problem, serializers and scheduling constraints could
be used. However, these constraints are designed for problems in which choosing
the minimum value for a variable is the best option. This is not the case of the
ASP problem. Here it is probably better to try first some values (for variables)
close to the target time.

Another problem when using Mozart serializers is that they are designed to
set the same amount of time for each resource. This is not true for ASP because
the separation time among planes (that is, the time a plane uses the runway)
varies depending on the landing order.

2.2 Preprocessing

In [6–Section 5.2] we found some tips for preprocessing the input data; these tips
help to know if a plane must land before another in an optimal solution. First,
it is obvious that if, for example ti :: 1#10 and tj :: 11#20 then i lands before
j, no mather the value of Sij or Sji. Note that FD.disjointC takes care of this
preprocessing.

Second, if all of the following conditions are satisfied, then we can assure that
i lands before j (i.e. i ≺ j):

1. Plane i is earlier than plane j. More precisely Ei ≤ Ej , Ti ≤ Tj and Li ≤ Lj .
2. The separation time between planes i and j is not longer than the one

between planes j and i, i.e. Sij ≤ Sji.
3. It is not more expensive (in terms of displacement of planes i and j) to make

plane i land before plane j than the opposite. Mathematically speaking:
(Ai ≥ Aj or Li ≤ Tj) and (Bi ≤ Bj or Ti ≤ Ej).

4. Reversing the order making plane j land before plane i would not reduce
the separation among plane i and other planes. If some third plane k is
comparable to both i and j (i.e. k ≺ i, j or i, j ≺ k) then we only need
to check the separation in one direction; otherwise we check both. More
precisely:

∀k(i, k) /∈ U ∨ (j, k) /∈ U, Skj ≥ Ski

and ∀k(k, i) /∈ U ∨ (k, j) /∈ U, Sjk ≥ Sik

where U = {(i, j) : mij = 0}.
The complexity of this algorithm is O(n3), but it makes the search of the

optimal solution to be faster; however, in some cases it may impose several
constraints hard to accomplish, making it harder to find a solution.

Solving the Aircraft Sequencing Problem

296 J.F. Dı́az and J.A. Mena

2.3 The Cost Propagator

For solving the problem we first tried to implement constraint 4 using the
Mozart propagators. However, this option did not perform as fast as expected.
In addition, in this implementation the use of reified propagators was necessary,
but it was not successful because they only worked (reduced domains) when the
search was very advanced. That is why we decided to create a propagator to cut
domains of variables representing the cost of planes.

This propagator operates over variables ti and costsi. There are two ways to
cut the domains: 1) cutting costsi based on the information of ti, and 2) cutting
ti based on the information of costsi.

There are three essential cases for both:

Case A. When (min(ti) < Ti)∧ (Ti < max(ti)), that is, when the preferred time
could be in the solution. In this case we must consider both, the penalty for
landing before and the penalty for landing after the preferred time.

Case B. When max(ti) ≤ Ti, that is, when any possible landing time is before
the preferred time. Here, we only need to consider the penalty for landing
before the preferred time.

Case C. When Ti ≤ min(ti), that is, when any possible landing time is after the
preferred time. Here, we only need to consider the penalty for landing after
the preferred time.

Cutting costsi Based on the Information of ti: To carry out this type of
propagation, the variable costsi must be expressed as a function of ti.

Finding the maximum value of costsi is easy. For case B, costsi ≤ ci(x1)
can be imposed. For case C, costsi ≤ ci(x4) must be used. For case A we must
impose that costsi ≤ max(ci(x1), ci(x4)).

Similarly, to find the minimum value of costsi, the equations costsi ≥ ci(x2)
and costsi ≥ ci(x3) must be used for cases B and C respectively. For case A we
must impose that costsi ≥ min(ci(x2), ci(x3)).

It is important to find the minimum value of costsi because it will help to cut
branches in the branch and bound method. For example, if there are k planes,
whose costsi variables have a minimum value μ, then cost ≥ kμ must hold. This
process is related to constraint (3).

Cutting ti Based on the Information of Costsi: In this case, ti must be
expressed as a function of costsi.

(Ti − ti) ∗Bi ≤ costsi ⇐⇒ ti ≥ Ti − costsi

Bi
(for Case B) (6)

(ti − Ti) ∗Ai ≤ costsi ⇐⇒ ti ≤ Ti +
costsi

Ai
(for Case C) (7)

For Case A we can use the equations 6 and 7 together.

Implementation and Stronger Propagation. The implementation has some
“parameters” that can be defined in compilation time. The parameters are used

297

because at first glance we do not know how good different propagation methods
will be. The first parameter is to know if we want to propagate ti based on the
information of costsi.

The second parameter determines how much of the stronger propagation must
be done. There are three levels of stronger propagation:

Level 0 or Normal Propagation. It cuts the domain of ti based on costsi. It
also sets the minimum value of costsi (if it is possible).

Level 1. It cuts the domain of costsi reducing its maximum value using the
information of ti.

Level 2. It does the same propagation of Level 1, and also executes the algorithm
again if some of the crucial variables (ti or costsi) are changed.

Activation of these operations slows down the propagation process, but can
cut complete branches of the search tree, speeding up the whole search process.
We also know that in some cases it is better to search fast than “thinking” very
much on how to cut domains. This approach tries to find some (semi)optimal
points where propagation reduces domains while maintaining efficiency.

2.4 Distribution Strategies

Before trying to make a new distributor, we first tried to use the default Mozart
distributors and we found the best performance was reached by the splitMin
strategy. Although the performance was acceptable, it was not enough. That is
why we decided to build our own distribution strategies.

Several distribution strategies have been implemented on ti variables; the
variable cost is ignored in all of them. We have built a generic distributor very
similar to the generic distributor that is defined in FD.distribute, but it differs
when selecting the value of the variable. Our distributor uses as arguments the
number of the plane that we have selected according to the order, as well as
variable ti.

Strategy 1 - Modified Split. This strategy is based on the fact that SplitMin
works well. However, we modified it so that it could select the “best half” for
each plane time window.

Specifically, the strategy chooses variable ti with the smallest domain. Then,
if Ti ≤ mid(ti) it tries first with ti ≤ mid(ti); otherwise, it tries with ti > mid(ti).

Strategy 2 - Cost Acting as a Linear Function. This strategy tries to take
advantage of the following cost propagator property: if all the possible values of
plane i are on the left or on the right of Ti then the cost acts as a linear function.
Then, the propagator can properly cut the domains and can determine easily
and precisely the bounds of costsi.

Solving the Aircraft Sequencing Problem

298 J.F. Dı́az and J.A. Mena

Choosing the ti variable to be distributed is done according to an order
defined by the following rules:

1. When Sij < Sji (resp. Sji < Sij), ti is better than tj (resp. tj is better than
ti).

2. When Sij = Sji then ti is better than tj if Bi + Ai < Bj + Aj ; otherwise tj
is better.

With this strategy, we try to distribute first the variable representing a plane
generating the lowest waiting time due to turbulences. Ties are broken choosing
the plane variable that seems more costly to move.

The value of the selected variable ti is chosen in the following way (in order):

1. If the size of ti is 2 then it takes the element nearest Ti.
2. If Ti < min(ti) then it tries first with ti ≤ mid(ti).
3. If max(ti) < Ti then it tries first with ti > mid(ti).
4. If Ti ∈ ti then it tries first with ti = Ti.
5. If Bi < Ai then it tries first with ti ≤ Ti

6. It tries with ti > Ti.

The problem of this strategy is that it is not dynamic, that is, the order of
the distribution of each variable is determined from the beginning. Then, we
can not use new information about the domain of ti variables as computation
evolves.

Strategies 3 & 4 - Higher Penalty Strategy/Higher Expected Cost
Strategy. These strategies are based on a greedy technique: when a variable is
selected by the order function then it selects the value that implies the minimum
local costs, i.e. the minimum costsi. To select a variable, it tries to choose first
the variable that seems to be the most expensive, because if we choose it later
then the cost could be very high. Since it is very hard to know in the early stages
of the search process if a variable is more expensive than other, we have made a
very elaborate heuristic.

The heuristic consists of taking two measurements of the ti variables. 2 One
of the measurements is done by means of a function(k) that returns the expected
cost of landing plane i in the worst case. The second measurement consists of
adding the costs of not landing at the preferred time Ti, but before or after it,
that is, adding Bi and Ai.

Using this information, measurements are taken into account in a special
order to build strategies 3 and 4. For strategy 3, the variable with the highest
adding Sumi = Bi + Ai between Sumi and Sumj is chosen. If they are the
same, the variable with the highest k value is chosen. If the k value is the same
for both planes, then the variable with the smallest domain is chosen.

Strategy 4 is similar, but it first takes into account the k(ti) values and then
Sumi values.

2 At first, only one measurement was done but this value was often the same in many
variables and hence it did not discriminate which variable was better.

299

The special cost function k(ti) is not related to ci(x), and is defined as follows:

1. Let X ∈ ti be the upper element less than Ti.
Let Y ∈ ti be the lower element greater than Ti.

2. If Ti ∈ ti then k(ti) = 0, .
3. If (min(ti) < Ti) ∧ (Ti < max(ti)) then

k(ti) = max((Ti −X)×Bi, (Y − Ti)×Ai).
4. If Ti < min(ti) then k(ti) = (Y − Ti) ∗Ai.
5. Otherwise, k(ti) = (X − Ti) ∗Bi.

Once the variable ti to be distributed is selected, we choose the value
nearest Ti.

3 The Application and Its Implementation

The application has three main parts, each one independent from each other:

1. The Graphical User Interfaces (GUIs).
2. The ESASP (Engine for Solving Aircraft Sequencing Problem)
3. The distributors

The GUIs were designed to provide a good environment for solving, compar-
ing, testing and showing the problems, solutions and some application issues.
They are not designed only for the user but also for the programmer.

The ESASP is like an ADT that implements all the functions needed for
solving the ASP. It consists mainly of the file reader, the definition (not imple-
mentation) of the distributors, the search engine and the solver.

The distributors implement the distribution logic for the program according
to the explanation in Section 2.4.

3.1 The GUIs

Every time the user presses the Solve button, the program reads the file that
contains the problem specification and then starts an execution environment
(ESASP) that contains all the parameters the user has selected using the GUI
showed in Fig. 2.

Once the ESASP has been initialized, the program shows a GUI like in Fig. 3
that initially shows the problem specification. When the user chooses to search
a new solution, the program tries to find a better solution and if one or more
solutions are found, then it shows the best of them. More generally there can be
5 types of answers that are showed on the top of the window:

– No search has been done: is showed when the user has not made any
search.

– Optimum solution: is showed when the search tree has been explored
totally and in the last search at least one (optimum) solution was found.

Solving the Aircraft Sequencing Problem

300 J.F. Dı́az and J.A. Mena

Fig. 2. GUI for configuration and control parameters

Fig. 3. Initial state for the problem solver

– There are no more solutions: is showed when the search tree has been
explored, but no solution was found in the last search.

– There has been found n better solutions: is showed when n solutions
have been found in the last search, but the search tree has not been explored
totally.

– There has not been found better solutions: is showed when no solution
was found in the last search, but the search tree has not been explored totally.

The program always shows the best solution found, its cost, the total execu-
tion time that has been used in the search, and the number of solutions found
in the last search (if any).

Maybe the most interesting GUI is the one that handles the “cancelable”
search. It is a window that shows the progress of the search. It has a cancel
button that executes the StopSearch function (see Fig. 5) when it is pressed,
and in another thread it calls the function SearchBestSolution (see Fig. 4) to
find the best solution concurrently. This is interesting because its code executes

301

1 proc {SearchBestSolution Engine NoSearch DeadTime Res?}
2 proc {SearchNextSolution Found Counter Res?}
3 if {IsFree NoSearch} then
4 case {Engine next($)} of [S] then
5 BestSolution := S
6 {SearchNextSolution true Counter+1 Res}
7 [] L then
8 Res = L#Found#Counter
9 end

10 else
11 Res = stopped#Found#Counter
12 end
13 end
14 NoStop BestSolution Sol
15 in
16 BestSolution = {NewCell nil}
17 thread Dead in
18 {Alarm DeadTime Dead}
19 {WaitOr Dead NoStop}
20 if {IsDet Dead} then
21 {StopSearch Engine NoSearch}
22 end
23 end
24 Res = {SearchNextSolution false 0}#Sol
25 Sol = @BestSolution
26 NoStop = unit
27 end

Fig. 4. The SearchBestSolution function

concurrently using Mozart threads, data-flow variables and timers, and the im-
plementation is hidden from the GUI; it simply uses the functions defined by
ESASP.

3.2 Engine for Solving the Aircraft Sequencing Problem (ESASP)

The ESASP is basically composed of 3 files: a) a file specification reader, b) an
engine that encapsulates the functions of a generic ASP solver, and c) a generic
distribution engine that replaces FD.distribute.

The problem of using the generic distributor of FD.distribute is that the
call to the value function does not pass all the information we need about the
chosen distribution variable. This is a problem for us, because in that function
we need to know which variable was selected to choose a sound value properly.
For example, when the variable ti is selected, we need to know i to choose the
value nearest Ti.

The real engine uses Search.object as its main search engine because it
allows us to stop the search in any moment. The creation of the engine for
solving ASP was easy; just a call to a function with the problem specification
and some options. In this point it does the preprocessing, creates the specified

Solving the Aircraft Sequencing Problem

302 J.F. Dı́az and J.A. Mena

1 proc {StopSearch Engine NoSearch}
2 NoSearch = unit
3 {Engine stop}
4 end

Fig. 5. The StopSearch function

distributor with its parameters and creates a solver using a parameterized script,
and a branch and bound constraint that says that the cost of a new solution
must be better than that of the last solution.

In the earlier versions of the application, the preprocessing (creating the
matrix Mij) was done in the script because the boolean parameter received by
FD.disjointC needed to be a FD variable. But this alternative uses a lot of
memory, so we decided to make the preprocessing outside the solver, so that
every time the space was cloned, only the changing information was cloned.

So, the matrix Mij is created and initialized by the engine creator, and it is
passed as argument to the parameterized distributor. In the moment of imposing
the constraint (2) it checks if the value in Mij is bound; in that case, it uses
FD.disjointC. Otherwise (if Mij is free) it uses FD.disjoint that does not
require the parameter but does the same propagation.

ESASP provides one function called SearchBestSolution (see Fig. 4) that
can be used to find a solution of any problem that uses Search.object with
branch and bound. It executes the search unless the user calls the function
StopSearch (see Fig. 5) or the time specified in DeadTime has been elapsed.
NoSearch is a variable needed to avoid deadlocks; it is defined by the caller as a
free variable and is used to communicate the threads that use the functions.

The SearchBestSolution function returns a tuple State#Sol where State
is a tuple S#F#C containing information about the last search. Sol contains the
best solution of the last search or nil if no solution was found. S can be either
stopped if the search was stopped by the user or nil if there are no more
solutions. F is true if solutions have been found in the last search, and C is the
number of solutions found in the last search.

4 Results

Results are shown in Table 1. We have made all the tests of the application using
a Pentium r© III at 933 MHz with 256 MB of RAM running Gentoo LinuxTM

2004.1.
Time for searching solutions for airland instances was set to 30 seconds

approximately, while for pad instances was set to a minute. For each strategy
we show the Cost of the Best Solution found (CBS) and the time (given in
milliseconds) to find it (TBS). For some instances, the distributor could not
find a solution in the elapsed time; we show that by using the symbol “–”. For
some instances, we don’t know which the optimum solution is so we use the
symbol “?”.

303

Table 1. Comparison among our strategies

Strat. #1 Strat. #2 Strat. #3 Strat. #4
Problem Optimum CBS TBS CBS TBS CBS TBS CBS TBS
airland1 700 700 360 700 260 700 6960 700 470
airland2 1480 1480 2750 1480 3330 2140 10 1720 220
airland3 820 3910 24200 820 5880 1980 50 820 230
airland4 2520 4400 18680 3240 2190 6780 120 3820 14870
airland5 3100 9150 160 4430 50 7620 520 7620 50
airland6 24442 24442 10 24442 10 24442 10 24442 10
airland7 1550 1550 130 1550 890 3974 160 3974 150
airland8 1950 4410 6520 3050 7760 2415 310 1980 5150
airland9 ? 20149.97 14020 14951.68 1330 – – 13432.76 15950
airland10 ? – – – – – – – –
airland11 ? 41341.52 27150 – – – – 32763.05 8650
airland12 ? 52226.3 22960 – – – – 39825.21 14470
airland13 ? – – – – – – – –

pad1 531.6121 531.6121 0 531.6121 20 531.6121 0 531.6121 0
pad2 995.9342 995.9342 12960 995.9342 4870 995.9342 53760 995.9342 790
pad3 2418.12 2886.1932 9730 – – 2771.7053 36930 2419.3508 67150
pad4 3345.43 – – – – – – – –
pad5 2424.68 – – – – – – – –
pad6 3675 7180 23540 – – – – – –
pad8 4820 15065 46680 – – – – – –
pad10 6605 30610 4750 – – – – – –

For airland instances, it was relatively easy to find at least one solution
but in pad instances it was more difficult to find a solution. This might have
happened because airland instances had a greater time-window for their planes,
while in pad instances, some time-windows were very small. Also, pad instances
had many airplanes whose landing times were very close. That could entail the
preprocessing to be non-effective.

We cannot conclude that a strategy is better than the others because the
results were very diversified. Anyway, we can execute concurrently the ESASP
using all the distributors, and we would not have to spend much more time. It
would be possible, indeed, to solve the problem using several computers with
the distributed system that Mozart provides.

5 Conclusions and Future Work

We have shown that using simple problem-dependent distribution strategies is
possible to build performant CCP applications for the ASP problem. In this
aspect, our results are much better than those shown in [4] for constraint pro-
gramming, and competitive with those found there using other techniques.

One of the main caveats of using CCP is memory consumption. However, this
problem did not stop us from building a feasible application for this problem.

Solving the Aircraft Sequencing Problem

304 J.F. Dı́az and J.A. Mena

Now we are working in two ways: building more elaborate distribution strate-
gies for the ASP problem, and extending the application for managing more
complex ASP-like problems, as ASP with more than one runway as defined
in [10].

References

1. Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Incorporating efficient op-
erations research algorithms in constraint-based scheduling. In 1st International
Joint Workshop on Artificial Intelligence and Operations Research, Timberline
Lodge, Oregon, 1995.

2. J. E. Beasley. Or-library: distributing problems by electronic mail. Journal of the
Operations Research Society, 41:1069–1072, 1990.

3. J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha, and D. Abramson. Scheduling
aircraft landings–the static case. Transportation Science, 34(2):180–197, 2000.

4. Torsten Fahle, Rainer Feldmann, Silvia Götz, Sven Grothklags, and Burkhard
Monien. The aircraft sequencing problem. In Computer science in perspective,
pages 152–166. Springer-Verlag New York, Inc., 2003.

5. Gyungwon Jung and Manuel Laguna. Time segmentation heuristic for an aircraft
landing problem, March 6 2003.

6. M Krishnamoorthy and A T Ernst. Scheduling aircraft landings optimally. In
Proceedings of the 41st Annual Symposium of AGIFORS, Sydney, Australia, 27
August – 1 September 2001.

7. J. Mullings. Trails of destruction. New Scientist, 1996.
8. A De Silva, G. Mills, J. Abela, and Krishnamoorthy Krishnamoorthy. Computing

optimal schedules for landing aircraft, October 19 1995.
9. Antonio A. Trani, Julio Martinez, Hojong Baik, and Vineet Kamat. A new

paradigm to model aircraft operations at airports: The virginia tech airport simu-
lation model (vtasim). NEXTOR Research Symposium, November 13 2000.

10. Pim van Leeuwen, Henk Hesselink, and Jos Rohling. Scheduling aircraft using
constraint satisfaction. In Marco Comini and Moreno Falaschi, editors, Electronic
Notes in Theoretical Computer Science, volume 76. Elsevier, 2002.

11. Peter Van Roy and Seif Haridi. Mozart: A programming system for agent applica-
tions. In International Workshop on Distributed and Internet Programming with
Logic and Constraint Languages, November 1999. Part of International Conference
on Logic Programming (ICLP 99).

The Problem of Assigning Evaluators to the
Articles Submitted in an Academic Event:

A Practical Solution Incorporating Constraint
Programming and Heuristics�

B. Jesús Aranda, Juan Francisco Dı́az, and V. James Ort́ız

Universidad Del Valle, Escuela de Ingeniera de Sistemas y Computacin,
Ciudad Universitaria - Melendez

{jesarana, jdiaz, jaortiz}@univalle.edu.co

Abstract. This article shows a practical solution to The Problem of
Assigning Evaluators to the Articles Submitted in an Academic Event,
a problem of combinatorial optimization. Apart from stating the prob-
lem formally and proposing a constraint model, the article describes the
heuristics designed to find solutions. The application was developed us-
ing Mozart; different distribution strategies were implemented based on
the already mentioned heuristics. The experimental partial results turned
out to be competitive for real problems (180 articles, 25 evaluators).

1 Introduction

An academic event or congress consists of a series of conferences in which differ-
ent research works or articles, previously referenced and selected by a Program
Committee, are presented. These articles may cover different research areas, but
they should be related to the main topic of the congress. Each representative
of the Program Committee relies on a work group for the process of evaluating
those articles.

The Program Committee receives the articles, and according to certain cri-
teria including the strengths of the evaluators and the topics of the articles
among others, assigns them for evaluation so that each article is evaluated by
the maximum number of evaluators determined by the organizers of the event.

The quality of the solution (understood as the adaptation of it to all the
distribution criteria) and the time taken to estimate it are critical aspects of the
process. The first one minimizes the task of reassigning evaluators when they
are not satisfied with the article assigned. The latter makes things easier for
the Program Committee since it depends on time to test different solutions and
choose the best one in quality. In the case of the organization of the Conferencia
Latinoamericana de Informática (Latin American computing conference) of the

� This work is supported in part by grant 298-2002 from Colciencias.

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 305–316, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

306 B.J. Aranda, J.F. Dı́az, and V.J. Ort́ız

CLEI 1, this process can take approximately three days and the solution found
produces dissatisfaction among evaluators.

Therefore, it is interesting to have an application that allows us to find a
solution that maximizes its quality (that is, a solution that minimizes the number
of inconsistencies between assignation criteria and the real solution) as quickly
as possible.

Based on what was previously stated, the design and construction of such an
application was proposed. This application was developed using the Constraint
Programming paradigm and the Oz language. As expected, the application of
general mechanisms to find solutions was not very useful in real size entries. For
that reason, problem-dependent mechanisms were designed and implemented.
More specifically, different distribution strategies based on heuristics designed
especially for the problem were implemented.

This article presents a formal description of the problem (Section 2), the
most appropriate constraint model that we have found up to now (Section 3)
and the heuristics designed to orientate the distribution strategies (Section 4).
Finally, the results obtained (Section 5), a global description of the application
architecture (Section 6) and the conclusions (Section 7) are presented.

2 Description of the Problem

According to the organizers of the CLEI, the process of distributing articles
takes from 3 to 4 days. This is true for an entry of approximately 300 articles, 80
evaluators and 3 evaluations per article. The greatest difficulty lies in assigning
enough evaluators to each of the articles complying with certain constraints the
event involves (those constraints will be described later.) Most of the times, the
article distribution results in many article assignations that do not comply with
the constraints.

Considering that, the organization of the CLEI 2005 event, which will be held
in Colombia in 2005, needs an application that supports the article distribution
process, aiming to reduce the time the process takes and minimize the number
of assignations that do not comply with the constraints set for the event.

The entry for the article distribution process in the academic event of the
CLEI consists of the following data:

– A set of articles or works: The quantity of articles sent to an event
as CLEI 2005 is approximately 300 from which the articles that will be
presented in the conferences are selected.

– The number of evaluations per article: An article is reviewed by 3
evaluators; therefore, if there are 300 articles for the event, 900 evaluations
would be necessary, and they would be done by the evaluators of the program
committee.

– A group of evaluators: They are the program committee. Events as CLEI
2005 usually have, more or less, 80 members.

1 Centro Latinoamericano de Estudios en Informática.

The Problem of Assigning Evaluators to the Articles 307

– A set of constraints: They are the requirements that should be met in
any assignation of the articles received.

The constraints that should be taken into account when distributing the
articles are:

– Constraint 1 : The number of evaluations per article must be higher than
or the same as the minimum required.

– Constraint 2: The number of evaluations per article must be less than or
the same as the maximum required.

– Constraint 3: The number of articles assigned to each evaluator must be
less than or the same as his capacity.

– Constraint 4: For each article, each of the evaluations should be done by
a different evaluator.

– Constraint 5: The article’s country must be different from the evaluator’s
country.

– Constraint 6: At least one of the main topics of the paper must coincide
with a preferred topic stated by each one of the assigned evaluators.

– Constraint 7: The language of the paper must coincide with one of the
languages each assigned evaluator masters.

The idea is minimizing the number of assignments that do not comply with
the previous constraints during the assignment process. When it is not possible to
assign an article complying with all the preferences, it is assigned considering the
most important constraints, complying just with some of them. The organizers of
the event may also consider that some preferences are mandatory and, therefore,
a total distribution may not be achieved. In that case, the missing assignments
are analyzed by the organizers of the event in order to find a solution.

Our application considers the factors mentioned, providing a solution to the
distribution process.

3 Constraint Model of the Problem

The model developed to solve the problem is presented below.

– Parameters
• m : Number of evaluators.
• n : Number of articles
• nT : Number of topics of the event
• minEP : Minimum number of evaluators per article.
• maxEP : Maximum number of evaluators per article.
• cPi : The country of article i, ∀i = 1, . . . , n.
• sPi : The set of topics of article i, ∀i = 1, . . . , n.
• lPi : The language in which the article i, is written ∀i = 1, . . . , n.
• cEj : The country of evaluator j, ∀j = 1, . . . , m.
• sEj : The set of topics the evaluator j masters, ∀j = 1, . . . , m.

308

• lEj : The set of languages in which evaluator j is willing to evaluate,
∀j = 1, . . . , m.

• capEj : The number of evaluations evaluator j is willing to do, ∀j =
1, . . . , m.

– Decision variables

• domi,k=
{

j if the k-th evaluation of the article i is assigned to evaluator j,
0 if no evaluator could be assigned

∀i = 1, . . . , n, k = 1, . . . , maxEP
• c : Total number of evaluations assigned, in which n ∗ minEP ≤ c ≤

n ∗maxEP .

– Objective function
• Maximizing c = |{(i, k) : domi,k 	= 0, 1 ≤ i ≤ n, 1 ≤ k ≤ maxEP}|

– Constraints

• Constraint 1:

minEP ≤ |{(i, k) : domi,k 	= 0, 1 ≤ k ≤ maxEP}|, ∀i = 1, . . . , n

• Constraint 2:

maxEP ≥ |{(i, k) : domi,k 	= 0, 1 ≤ k ≤ maxEP}|, ∀i = 1, . . . , n

• Constraint 3:

capEj ≥ |{(i, k); domi,k = j, 1 ≤ i ≤ n, 1 ≤ k ≤ maxEP}|,

∀j = 1, . . . , m

• Constraint 4:

(domi,k1 = domi,k2 = 0) ∨ (domi,k1 > domi,k2),

∀i = 1, . . . , n, ∀k1, k2 : 1 ≤ k1 < k2 ≤ maxEP

• Constraint 5:
∀i = 1, . . . , n ∀j = 1, . . . , m

[cPi = cEj → (∀1 ≤ k ≤ maxEP : domi,k 	= j)]

• Constraint 6:
∀i = 1, . . . , n ∀j = 1, . . . , m

[sPi ∩ sEj = ∅ → (∀1 ≤ k ≤ maxEP : domi,k 	= j)]

• Constraint 7:
∀i = 1, . . . , n ∀j = 1, . . . , m

[lPi /∈ lEj → (∀1 ≤ k ≤ maxEP : domi,k 	= j)]

B.J. Aranda, J.F. Dı́az, and V.J. Ort́ız

The Problem of Assigning Evaluators to the Articles 309

4 Heuristics Designed to Orientate the Distribution
Strategies

One of the most important factors that influences efficiency on the application
is the distribution strategy. Usually, the distribution strategy is defined based
on a variable sequence. When distribution is needed, the strategy selects one of
the non-determined variables present in the sequence and distributes based on
that variable.

Distribution strategies can be classified as follows:

– Generic distribution strategies: These are general strategies that do not
depend on the problem and are defined in Mozart programming system.
Some of them are: first-fail and naive.

– Problem-specific distribution strategies: In these strategies the pro-
grammer sets criteria to select the variables that will be distributed and
their corresponding value. The criteria used in the strategy depend on the
characteristics of the problem in order to speed up the distribution process.

In the development of our application, we used generic and problem-specific
strategies. The results obtained with both kinds of strategies are presented later.

Problem-specific distribution strategies were implemented based on the fol-
lowing heuristics.

4.1 Heuristics in Variable Selection

In our problem, the variables to be distributed are the article evaluations (domi,k)
and their values correspond to the assigned evaluator. In a solution, we expect
all the variables to have an assigned value.

The selection of variables to be distributed was made using two heuristic
functions:

– Heuristic function based on the comfort of the evaluators
– Heuristic function based on the topics of the article

Using those functions we expect to have an indicator of the difficulty to
assign a value to each variable. With this information, the most difficult variable
is selected.

Heuristic Function Based on the Comfort of the Evaluators. The com-
fort of the evaluator regarding a partial assignment is defined as the number
of evaluations that he may still be assigned. The comfort of each evaluator is
calculated dynamically as the difference between the maximum number of eval-
uations that he is able to do (cMEj) and the number of evaluations assigned in
the partial assignment (cUEj):

hEvaluatorj = cMEj − cUEj ,

∀j = 1, . . . , m.

310

Based on that, the hComfort function is defined for each article as the
addition of comforts of each of the possible evaluators of the article:

hComforti =
∑

j:sPi∩sEj 	=∅
hEvaluatorj ,

lPi ∈ lEj ,

cPi 	= cEj ,

j 	= domi,k,

∀k = 1, . . . maxEP,

∀i = 1 . . . n,

Based on the values obtained by applying the heuristic function for each
article, we choose to distribute one of the domi,k variables of article i with the
lowest hComforti value. Intuitively, that means that we choose to distribute
a variable representing that paper posing the greatest difficulty for finding a
suitable reviewer.

Heuristic Function Based on the Topics of the Article. Again, the idea
here is ”calculating” the difficulty of evaluating an article. In this case, the
heuristics that calculates the difficulty of evaluating article i is directly related
to the main topics of the article.

Given any topic, t, its competitiveness (cSubjectt) is defined regarding a par-
tial assignation of evaluators, as the difference between the remaining evaluators
capacity for topic t (oSubjectt) and the number of article evaluations containing
topic t that are still to be assigned (dSubjectt).

More exactly,
cSubjectt = oSubjectt − dSubjectt,

in which

oSubjectt =
∑

j:1≤j≤m,{t}∩Subjects(Evaluatorj) 	=∅
cMEj − cUEj ,

and

dSubjectt =
∑

i:1≤j≤n,{t}∩Subjects(Articlei) 	=∅
eNi,

being eNi the number of evaluations of article i still to be assigned (according
to the current partial assignation).

The idea here is ”estimating” the difficulty of evaluating an article(hSubjecti).
In this case, the heuristics that calculates the difficulty of evaluating article i is
directly related to the main topics of the article:

hSubjecti =
∑

t∈Subjects(Articlei)

cSubjectt,

B.J. Aranda, J.F. Dı́az, and V.J. Ort́ız

The Problem of Assigning Evaluators to the Articles 311

Intuitively, hSubjecti measures what our capacity to assign a reviewer to
paper i is, given its main topics. We choose the variable with the lowest hSubjecti
value.

4.2 Heuristics When Choosing the Variable Value

Suppose that domi,k is the variable chosen for distribution. And let {j1, j2, . . . ,
jmi} be the set of possible evaluators for article i. The jl value that is first chosen
for the domi,k variable is the one that corresponds to the evaluator with more
comfort in that moment:

hEvaluatorjl
≥ hEvaluatorjs∀s = 1, . . . , mi.

5 Results Obtained

Below we present the results obtained for problems of different sizes and using
both models, but always the same set of data (taken from CLEI 1996).

In table 1, for each instance of the problem and for each distribution strategy,
we show times (in seconds) obtained searching the first partial solution (using
searchOne), number of non assignments nns (that is, the number of evaluations
without an evaluator assigned at the end of the running) and its rate with
respect to the total number of assignments required nra (nra = n ∗maxEP).
Columns ffs,hhbs,chbs show results for the standard strategy (first-fail) and
the two strategies that use heuristics based on the comfort of the evaluator
and the heuristics based on the topics of the article, to select the variables. In
both heuristic strategies the same function is used (based on the comfort of the
evaluators) to choose the value of the variable to be distributed.

As it can be seen in the table above, the application performance in terms
of efficiency in time and quality of the solution is better when using distribution
strategies with heuristics.

However, it can not be said that one of the heuristics strategies is better than
the other. And in terms of optimal solutions, it can not also be said that the
solution found is always the optimum.

Table 1. Solution obtained for CLEI96 problem

Input Size ffs hhbs chbs nra
n m time nns %nns time nns %nns time nns %nns
50 10 1 32 21.33 1 32 21.33 1.5 32 21.33 150
90 12 3 37 13.7 2 34 12.59 4 34 12.59 270
90 25 3 9 3.33 3 9 3.33 5 9 3.33 270
100 15 5 44 14.66 4 26 8.66 6 26 8.66 300
150 20 9 47 10.44 9 23 5.11 11 25 5.55 450
180 12 14 225 41.66 10 224 41.48 13 224 41.48 540
180 20 26 77 14.26 22 63 11.66 18 54 10 540
180 25 40 37 6.85 30 21 3.88 31 19 3.51 540

312

6 The Application

The name of the application created is CREAR. It is based on the model and
strategies described above. Its architecture can be seen in Figure 1.

Three levels can be observed there:

– Presentation Level: It includes all functionalities that allow interaction be-
tween the program and the user.

– Application Level: It includes the program control and the main functional-
ities of the tool.

– Persistence or Storage Level: It includes the input and output files and the
functionalities that allow their communication with the program.

In developing CREAR, besides Oz language, Java programming language
was used, mainly at the presentation level. The description of each level is pre-
sented below.

Presentation Level. It includes the input reading and the presentation of
results. It has the following modules:

– Data Capture Module: It includes the functionalities that allow to select
input data, decide where to store output data, the constraints to be applied
and the strategies that will be used to find the solution.

Presentation Layer

Aplication Layer

Storage Layer

Data Capture
Module

Reports
Module

Information
Manager

Control
Module

Constraints
Module

Distribution
Module

File Handling
Module Data

Fig. 1. Architecture of CREAR

B.J. Aranda, J.F. Dı́az, and V.J. Ort́ız

The Problem of Assigning Evaluators to the Articles 313

– Report Module: It includes the functionalities that allow the program to
show reports with statistics and interesting data of the solution found. These
reports are fundamental for the organization of the event since, based on
them, a final analysis which aims to lead to a better solution is done.

Application Level. It is here where solutions are to be found. It includes the
following modules:

– Information Agent: It includes the functionalities that allow the communi-
cation between the interface and the driving force of the application so that
they can work jointly.

– Control Module: It includes the functionalities that allow to ensure the sys-
tem’s integrity basically in the process of finding a solution.

– Distribution Module: It includes the different strategies that can be used to
find the solution.

– Constraints Module: It includes all constraints to be considered.

Persistence Level. At this level, input and output data are stored.

– File Handling Module: It includes the functionalities that allow to read the
input data of the problem and create the file with the solution.

6.1 Flexibility of Constraints

One of the most important characteristics of the application is the flexibility for
imposing constraints.

Since in the problem entries are naturally over-constrained, the system lets
the user choose the constraints he wishes to apply. The constraints that the user
can choose are the following:

– Capacity Constraint: The number of articles to be evaluated must not exceed
the capacity of the evaluator.

– Language Constraint: The language of the article must be one of the lan-
guages mastered by the evaluator.

– Country Constraint: The country of the main author of the article and of
the evaluator must not be the same.

It should be observed that topic constraint is not optional since it is not
convenient that an evaluator reviews a topic that he does not master.

6.2 Step by Step Solution

Another distinctive characteristic of the application lies in the possibility to find
an incremental solution which disqualifies constraints as the solution is coming
near.

314

To do that, the system allows to handle up to four steps as follows:

1. The system searches for a solution that meets the constraints chosen by
the user. At the end, there may be still evaluations without an evaluator
assigned.

2. The system considers those assignations that could not be done in the previ-
ous step and tries to do them taking into account the constraints chosen at
that moment; generally these constraints are less than the ones in the pre-
vious step. At the end, there may be still evaluations without an evaluator
assigned. This step can be repeated up to three times.

At the end of all steps it is possible that there may be not enough evaluations
assigned to some of the articles; however, the system makes this number to be
fairly reduced.

It is important to underline that the user may choose the number of steps
and the constraints to be taken into account in each of them.

6.3 The Interface

The interface offers great flexibility to the user. It allows him to chose the con-
straints, steps, and the strategies to find the solution.

First of all, the interface lets the user determine the file with the input data of
the problem and where the solution is to be stored. Based on what was previously
said, the user can choose the strategy he wants to use to find the solution among
the strategies described in Section 4.

After that, the system asks which constraints are to be applied (see Figure
2). Once the user has chosen them, he has to determine how many later stages
will be tried (maximum 3), and which constraints are to be considered in each
of them with a similar interface.

Fig. 2. Interface to choose constraints

B.J. Aranda, J.F. Dı́az, and V.J. Ort́ız

The Problem of Assigning Evaluators to the Articles 315

Fig. 3. Report 1

Fig. 4. Report 2

Once the solution is calculated, the system offers different options of reports,
which are shown in Figure 3 and 4.

7 Conclusions and Further Works

This work shows the expressiveness of the CCP paradigm and the versatility of a
programming language like Oz in developing applications that solve combinato-

316

rial optimization problems. Particularly, the ability to handle flexible constraints
and to handle partial values was very important for building a flexible application
with the ability to handle over-constrained problems and to perform iterative
refinements of potential solutions.

Defining specific heuristics for the problem and the implementation of dis-
tribution strategies based on them are an important contribution of this work.
The performance of the application in real problems was clearly superior using
these strategies rather than generic distribution strategies.

One of the fundamental aspects in using CCP applications is the ability of
the application to give an answer even when the entry is over-constrained. In this
case, other important characteristics of our application were (1) modeling the
problem as an optimization problem of just a CSP, (2) the flexibility in imposing
constraints, and (3) the possibility of using constraints to increase the partially
found solution.

Anyway, the possibility of using first class constraints is a characteristic that
would give Oz more flexibility when facing over-restricted entries.

In a further work, we expect to integrate the application in current support
systems like WIMPE [6] and OpenConf [10].

References

1. C. Castro and S. Manzano. (2001) Variable and value ordering when solving bal-
ance academics curriculum problem. In: Proc. of the ERCIM WG on constraints.

2. Juan F. Daz and Camilo Rueda. (2001) VISIR: Software de soporte para la toma
de decisiones de vertimiento de agua en la represa del alto anchicay usando pro-
gramacin concurrente por restricciones. Ingeniera y Competitividad. Vol 3, No. 2.
Universidad del Valle, Cali (Colombia)

3. M. Henz and M. Muller. (1995) Programming in Oz. In G. Smolka and R. Treinen,
Editors, DFKI Oz, Documentation Series. Mozart Documentation

4. Brahim Hnich, Zeynep Kiziltan and Toby Walsh.(2002) Modelling a Balanced Aca-
demic Curriculum Problem. In: Proceedings of CP-AI-OR-2002.

5. K. Marriott and P. J. Stuckey. (1998) Programming with Constraints: An Intro-
duction. MIT Press, Cambridge, Mass

6. David M. Nicol. (2001) WIMPE: Web Interface for Managing Programs Electron-
ically. http://www.crhc.uiuc.edu/ nicol//wimpe/wimpe6.1.html

7. C.Rueda and J.F. Daz and L.O. Quesada and C. Garca and S. Cetina. (2002)
PATHOS: Object Oriented concurrent constraint timetabling for real world cases.
In Proceedings XXVIII Conferencia Latinoamericana de Informtica, Montevideo,
Uruguay

8. Christian Schulte and Gert Smolka. (2004) Finite Domain Constraint Programming
in OZ. A Tutorial. Mozart Documentation

9. Peter Van Roy and Seif Haridi. (2004) Concepts, Techniques, and Models of Com-
puter Programming. MIT Press

10. Zacon Group. (2004) OpenConf-Conference Manual Management System.
http://www.OpenConf.org

B.J. Aranda, J.F. Dı́az, and V.J. Ort́ız

An Interactive Tool for the Controlled Execution
of an Automated Timetabling Constraint

Engine�

Alberto Delgado1, Jorge Andrés Pérez1, Gustavo Pabón3, Rafael Jordan1,
Juan F. Dı́az2, and Camilo Rueda1

1 Pontificia Universidad Javeriana - Cali
{albertod, japerezp, rjordan}@puj.edu.co, crueda@atlas.puj.edu.co

2 Universidad del Valle
jdiaz@eisc.univalle.edu.co
3 Central Planning Software

gustavo.pabon@centralsw.com

Abstract. Here we introduce DePathos, a graphical tool for a time-
tabling constraint engine (Pathos). Since the core of Pathos is text-
based and provides little user-interaction, finding an appropriate solution
for large problems (1000-2000 variables) can be a very time consuming
process requiring the constant supervision of a constraint programming
expert. DePathos uses an incremental solution strategy. Such strategy
subdivides the problem and checks the consistency of the resulting sub-
divisions before incrementally unifying them. This has shown to be use-
ful in finding inconsistencies and discovering over-constrained situations.
Our incremental solution is based on hierarchical groupings defined at
the problem domain level. This allows users to direct the timetabling
engine in finding partial solutions that are meaningful in practice. We
discuss the lessons learned from using Pathos in real settings, as well as
the experiences of coupling DePathos to the timetabling engine.

1 Introduction

Combinatorial problems are ubiquitous in areas such as planning, logistics, sche-
duling and many others. One of these problems, university timetabling, refers
to the scheduling of courses, lecturers and classrooms in such a way that several
academic, administrative and resource constraints are satisfied. This task usu-
ally has to be performed at the beginning of each academic period. Constraint
Programming (CP) has been used for modeling and solving this problem, as it
naturally allows the expression of different types of conditions involved. Many
solutions to this problem using CP technology have been proposed before (see

� This work was partially supported by the Colombian Institute for Science and
Technology Development (Colciencias) under the CRISOL project (Contract No.298-
2002).

P. Van Roy (Ed.): MOZ 2004, 3389, pp. 317–327, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNCS

318 A. Delgado et al.

Related Work, section 4.1). However, those proposals solve small size (albeit
real) problems. Effectively handling timetabling for medium size universities
(those having, say, at least 350 courses to schedule) poses a big challenge for
CP technology. We believe that CP strategies must be complemented with tools
giving the user clues as how to go about constructing a suitable solution in an
incremental way. This is important since large timetabling problems tend to be
over-constrained so that not every possible solution turns out to be acceptable
in practice.

Pathos [9] is a timetabling application written in Mozart that has been used
to successfully solve a problem of more than 1000 variables. A major obsta-
cle in using Pathos is facing over-constrained situations. The front-end De-
Pathos provides a systematic way to search for inconsistencies in these cases.

In our scheme the problem is partitioned in subproblems that are solved
independently. Partitioning is done by the user following criteria relevant to the
problem domain. This makes finding inconsistencies easier, as the user has more
information and control over the data (constraints and variables) involved. This
approach is also suitable when searching for approximate solutions that may not
satisfy some of the constraints defined in the given problem, since it is possible
to leave aside some elements of the input data.

The purpose of this paper is to describe a systematic approach for solving
large timetabling problems in a real setting, using a constraint-based application.
Ensuring consistency of the input data is one of the most difficult processes when
solving this kind of problems. Automated mechanisms for guiding the search for
inconsistencies are fundamental for the overall success of the scheduling process.
We show how the systematic approach of DePathos helped us in solving complex
timetabling problems.

The paper is organized as follows. In the next section the main features of
the Pathos constraint engine are described. The process of running Pathos in
a real setting is also discussed, showing the basic tasks involved and pointing
out the factors that make the scheduling process difficult. Section 3 is devoted
to DePathos, the developed solution for addressing some of the drawbacks of
Pathos. Its components and main features are throughly explained, and some
experiences in using DePathos are presented. We finally propose some directions
for future work and also some concluding remarks.

2 Pathos: A Timetabling Constraint Engine

The variables used in Pathos are structures called events. Each event represents a
session of a particular course (e.g., the first weekly session of Quantum Physics).
Events keep information about the duration, the required resources, the location
and the time slot in which the event will take place. The constraints modeling
the problem can be categorized as follows:

DePathos 319

– Domain constraints, used to determine the valid set of time slots for each
event.

– Basic constraints over events, such as non overlapping constraints over events
(called no clash constraints in [3]).

– Non-basic constraints extend basic constraints to groups of events. For in-
stance, a condition stating that the lectures given by the same person cannot
overlap.

– Place constraints are conditions on the location of an event. In Pathos, these
constraints also take into account the required resources such as room ca-
pacity or particular teaching devices.

Pathos has been used for solving the timetabling problem at Universidad
Javeriana - Cali. This problem is composed of approximately 1600 events, and
has been solved in 46 seconds using an Intel Processor 900 MHz [9]. This per-
formance refers only to the time taken by the constraint engine to find the first
solution, and it does not include the time needed to eliminate inconsistencies in
the input data, which was by far the longest process. This issue is analyzed in
the following section.

2.1 Running Pathos in a Real Environment

In an ordinary execution of the system, the process of finding a schedule using
Pathos could take between four and six weeks since the problem is usually over
constrained. Usual sources of inconsistencies are small errors in stating resources
or in asserting constraints related to needed resources. Because of the large num-
ber of constraints required for modeling the problem (around 17000 constraints),
it is not easy to find such inconsistencies. Running Pathos comprises the follow-
ing tasks:

Gathering of Data. The first step is to collect basic data: information about
lecturers, courses to be offered, number and features of the available rooms,
among others. This process has to handle both explicit and implicit information.
The explicit information is extracted from well established sources like admin-
istrative policies and rules, curriculum and existing databases. In contrast, the
implicit information is usually only known by the administrative personnel. Such
information has to be precisely established by the programmer. While the ex-
plicit information can be easily extracted, gathering implicit information requires
a more sophisticated process involving series of meetings between the program-
mer and the administrative personnel. The goal here is to state the constraints
that must be satisfied, and to get an idea of which are the most important ones.
In these meetings the programmer tries to explicit all conditions that are implic-
itly taken for granted by administrative people. The final result of this process
is a XML-formatted input file for the constraint engine.

Initial Tests and Processing. The solving process begins by feeding the con-
straint engine with a problem constructed from the XML file obtained in the pre-
vious stage. Since a significant fraction (approximately 65%) of the constraints

320 A. Delgado et al.

in the input data for Pathos are usually involved in some inconsistency, the bulk
of the work rests on a debugging task. This process is time-consuming and is
done with practically no guide, as the programmer must guess where the incon-
sistencies are and try to figure out how to correct them.

To make the debugging process easier, the input data is usually grouped by
academic departments before being fed into the system. This is justified by the
almost-disjoint nature of these subproblems. Within each department a further
grouping by academic program is done. In most cases, however, these groupings
do not provide enough information for finding inconsistencies. With no options
left, a blind search over the input file is then performed. This splitting process is
required because the system occasionally returns fail or is taking a long time
trying to solve the given input. The splitting process has to be repeated many
times until an appropriate solution is found. The result of this stage is a set of
conflictive constraints.

Constraint Modifications. Once conflictive constraints are identified, it is
necessary to negotiate them: in collaboration with administrative personnel,
these inconsistent constraints are modified or eliminated, trying to satisfy as
many constraints as possible. The changes in the constraints usually consist of
augmenting or modifying weekly availability of certain rooms or resources needed
for a given course. When inconsistencies are successfully corrected, the relevant
output reports and database scripts are generated. Unfortunately, this rarely
occurs in the initial runs of the system. The previous process is repeated several
times.

2.2 Some Remarks Regarding the Process

The most salient disadvantage of the scheduling process is the human manipu-
lation of the input data when looking for inconsistent data. This stage took a
significant time of the overall project because modifications to the input file were
done in an almost blind fashion. Most drawbacks in using Pathos are related to
three issues:

– The monolithic structure of the input data.
– The process of manipulating the input data to search for inconsistencies.
– Communication with administrative personnel, i.e., what to do when an

inconsistency is found.

Taking these issues as a starting point, we created a tool that solves the first
issue in a simple way: adding a meaningful structure to the input data, based on
the relationships and conditions present in the real problem. By augmenting the
problem with such a structure, the manipulation of the input file is also tackled,
as one could use such a structure as reference when debugging the input data.
In relation with the last item, it is difficult to achieve substantial savings of the
administrative work by means of an automated tool. This is due to the dynamic
nature of the administrative work, where decisions are constantly changing based
on many different factors. Nevertheless, the structure can serve as a common

DePathos 321

Fig. 1. Components of DePathos. The arrows represent the flow of information between
them

place for programmers and end users. As pointed out in the next section, the
reported tool improves the overall scheduling process by dealing with its most
complicated task, the debugging process.

3 An Incremental Solution Approach

DePathos takes advantage of the hierarchical relations that underlies educational
institutions to handle the timetabling process in an incremental way, as described
next.

3.1 System Components

DePathos is composed of the following elements, shown in figure 1.

– A database, storing all information related to the scheduling process. This
includes the input data, the solutions returned by the constraint engine and
the modifications performed by the user.

– A XML parser that inserts the data representing the problem (described by
a XML file) into the Database.

– A XML generator that outputs the data file for the constraint engine from
the information in the database.

– A Graphical User Interface allowing the activation and deactivation of con-
straints, as well as configuration of some parameters for the solving process.

– The Pathos constraint engine.

The process of running DePathos can be summarized as follows. First, input
data1 is recorded into the database (using the XML parser) and loaded in the
graphical interface. The user then configures and starts the incremental solution
process using the graphical interface. As described in section 3.3, such a process
requires multiple executions of the constraint engine. Input files (containing user

1 It is assumed that such data was structured with a hierarchy in a prior process.

322 A. Delgado et al.

Fig. 2. Snapshot of the graphical user interface for DePathos before starting the in-
cremental solution process

modifications and information in the database) for the engine are generated by
the XML intermediate generator. When the incremental solution process stops,
the user can either generate output reports from the solution or to perform some
modifications.

It is important to remark that the integration between Pathos and De-
Pathos is based on the XML interfaces and database connections provided by
Mozart. In this way, a graphical interface developed in a programming language
different from Mozart can be transparently combined with a program written
in Mozart (Pathos). This turns out to be very useful when the user wants the
application to be developed in a specific environment, such as a web-enabled
one.

3.2 Establishing Hierarchies

The particular academic organization of an educational institution plays a fun-
damental role in DePathos. In this section we discuss how the solving process
can take advantage of this organization.

For each event in the problem, Pathos attempts to assign a time slot satisfying
every constraint over it. Thus Pathos can be seen as a constraint engine that
only solves problems expressed in terms of events. However, a user would like

DePathos 323

to express the features and conditions of the problem more naturally. It is then
necessary to create a layer above the constraint engine that abstracts away details
of the engine from the user.

DePathos works as a tool for handling this layer. Besides the abstraction
advantages mentioned before, DePathos supports the modeling of a timetabling
problem in a set-based, hierarchical fashion, encouraging systematic thinking for
solving it.

Consider the hierarchy depicted in the right hand side of figure 2. The whole
university is modeled as a set containing three subproblems, corresponding to
each one of the academic departments: Engineering (400-A), Social Studies (501-
B) and Management and Economics (600-C). Each one of them is composed of
several academic programs. The figure shows four different programs within the
Engineering Department: Civil (41-A1), Electronic (42-A2), Industrial (43-A3)
and Computer Science and Systems (44-A4). Note that each program has sev-
eral subdivisions. For instance, the Computer Science and Systems Engineering
program is divided in two curricula (401-971 and 402-992), and each curriculum
is composed of several semesters and courses. Finally, at the lowest level in the
hierarchy, each course is represented by its corresponding events. For instance,
course “CB070 - Mathematics I” (inside curricula 1) has two events: “CALC-I 1”
and “CALC-I 2”.

In this way, an intuitive structure of subproblems can be obtained; its defini-
tion depends on unique features of the educational institution and on the desired
level of detail. A salient feature of our approach is that it allows to include con-
straints over sets of events. Since Pathos does not consider these hierarchies,
DePathos translates such constraints into constraints over events. In the next
section we show how this hierarchical scheme can be combined with a systematic
approach for finding inconsistencies.

3.3 Incremental Solution

The idea is to successively increase the size of the input data that is fed into
the constraint engine, until all input data is considered. The process starts by
considering a significant fraction of the hierarchy explained before –the initial
set– which will be increased with a fixed number of subproblems (also extracted
from the hierarchy) at each step of the process. The process is implemented in
Algorithm 1. In this approach, a subproblem is a user-defined group of variables
with their associated constraints, e.g., Mathematics in figure 2. A consistency
check of a subproblem consists in running Pathos with the given problem. This
process is represented in the algorithm with the isConsistent boolean function.

The parameters of the algorithm are the size of the initial set, the number of
subproblems to be added in each step, the problem itself and an order relation
over the subproblems inside the problem, respectively. In DePathos, this order
relation is implemented by a user-defined priority over the elements in the hi-
erarchy. getSet extracts a certain number of subproblems from a given problem
and function evaluate checks consistency for a given set of subproblems. These
functions are described in algorithm 2. Given two sets of problems A and B,

324 A. Delgado et al.

Algorithm 1 Incremental Solution Algorithm
IncSolution := proc (sizeInitSet, sizeAddSet, P , ≤)
Requires: sizeInitSet, sizeAddSet > 0, P is ordered w.r.t. ≤.
1: setEval = getSet(P , ≤, sizeInitSet)
2: if evaluate(setEval, ≤) == true then
3: while P �= ∅ do
4: P = P − setEval
5: setToAdd = getSet(P , ≤, sizeAddSet)
6: if evaluate(setToAdd, ≤) == true then
7: setEval = Union(setEval, setToAdd)
8: if isConsistent(setEval) == false then
9: return failure

10: else
11: return failure
12: else
13: return failure
14: return true

Union (A, B) returns the set of all variables and constraints that are either in A
or in B, including those constraints over both sets. Function first(P , ≤) extracts
the first element in P , according to the ordering relation ≤.

Termination of the incremental solution algorithm is guaranteed by P , which
is the variant of the while loop. The same applies for tempSet in function
evaluate. When the output is failure, the user is expected to modify (acti-
vate/deactivate) some elements in the problem using the graphical interface.

3.4 Visual Aids and Other Tools

DePathos allows the configuration of settings such as the maximum execution
time allowed for each subproblem. DePathos also allows the user viewing and/or
modifying constraint parameters, priorities and the state of the elements in the
hierarchy.

DePathos provides visual tools (see figure 2). Two trees showing hierarchies
are displayed. The left one (visualization tree) reflects the original problem in
terms of resources, events and constraints during the whole process. Its pur-
pose is to serve as a quick guide to browse the input data. This tree does not
change during the process. Modifications of the input data are done on the ex-
ecution tree, shown in the right hand side of the window. The content of the
tree is continuously changing as the process progresses, taking into account user
modifications and the current state of the problem.

3.5 Impact of DePathos in the Scheduling Process

In our tests it was clear that the size of the initial set and the number of sub-
problems added in each step are fundamental when trying to perform an efficient
debugging process with DePathos. Consider a problem that is divided in a large

DePathos 325

Algorithm 2 getSet and Evaluate functions
getSet := proc (P , ≤, numOfSets)
Requires: numOfSets > 0, P is ordered w.r.t. ≤.
1: i = 0, nSet = ∅
2: while i < numOfSets do
3: f = first(P , ≤)
4: nSet = Union(nSet, f)
5: P = P − {f}
6: i = i + 1
7: return nSet

evaluate := proc (S, ≤)
Requires: S is a set of subproblems, ordered w.r.t. ≤.
1: tempSet := S
2: while tempSet �= ∅ do
3: subSet := first(tempSet, ≤)
4: tempSet := tempSet − {subSet}
5: if isConsistent(subSet) == false then
6: return false
7: if isConsistent(S) == false then
8: return false
9: return true

number of subproblems. We found it too cumbersome to run the incremental
solution by adding only one or a few sets in each step. Nevertheless, situations
where it is necessary to add only one subproblem in each step are possible, like
when the user is interested in catching a concrete source of inconsistencies.

On the other side, taking a large size for the initial set (about half of the
number of subproblems) and adding about 10% of the total number of subprob-
lems in each step, a solution was found faster than in the previous case. However,
when inconsistencies were detected, finding the source of the problem in such a
huge search space was not straightforward.

During our tests we distinguished two types of inconsistencies. Inconsisten-
cies within a subproblem, mainly caused by some human error when defining
constraints (or their associated elements) and inconsistencies caused by the in-
teraction of subproblems, i.e., over-constrained situations. These inconsistencies
were harder to find, since several subsets had to be considered. As we expected,
such inconsistencies were related with the subproblem DePathos was considering
at the moment, although the source of the inconsistency involved several other
subproblems.

Using DePathos, we gain a concrete knowledge about a significant part of the
inconsistencies in the input data. In contrast, when using Pathos alone the user
had no clue at all to pinpoint the errors and inconsistencies. We believe that
being able to distinguish the two kinds described above provides valuable help
for the user. While the process of correcting inconsistencies was cumbersome,
those “solvable” inconsistencies were easy to find and correct using DePathos,
due to the visual aids it provides.

326 A. Delgado et al.

4 Conclusions

The modular implementation of DePathos allows the transparent replacement
or modification of any of its components. For instance, a more efficient imple-
mentation of the constraint could be devised without affecting the behavior of
the other components. Moreover, this design philosophy can be used in other
constraint applications.

The whole development process of Pathos and DePathos has shown that
building a constraint application is more complex than building an acceptable
constraint program: as in any software development, the end user plays an im-
portant role. In our case, we showed how a stage of requirements elicitation for
discovering implicit information about the problem was necessary. By expressing
the problem in common terms, DePathos encourages the interaction between the
constraint programmer and the end user.

In the choice of the parameters for the incremental solution process a trade-off
between precision (or level of detail) and time performance must be considered.
Bigger sets of subproblems in each step of the process allow a faster scheduling
process but make the finding of inconsistencies difficult. An opposite selection
of parameters can be time-consuming but it is more appropriate when searching
for specific inconsistencies.

Inconsistencies can arise within a subproblem as well as in the union of sev-
eral subproblems. DePathos can report some of the subproblems involved in the
inconsistencies, although such subproblems may not be the only source of the in-
consistencies. In this cases, the information DePathos provides guides the search
for the conflictive elements in the problem.

Since finding a solution satisfying all constraints is hard, it is a common
practice to accept partial or approximate solutions. DePathos makes the con-
struction of such solutions easier by allowing deactivation of elements during the
incremental solution process.

4.1 Related Work

The university timetabling problem has been studied from different perspectives,
including operations research, simulated annealing [2], tabu search [1] and genetic
algorithms [10]. Various timetabling systems using constraint technologies have
been proposed (see [11, 8, 7, 5, 3, 12, 6]).

In [4], an incremental approach for scheduling timetables is proposed. How-
ever, such a proposal addresses the administrative problem of centralizing the
information about timetables. In that case, as each department or section had
its own method for building their timetables, the resources were not fully used
and several timetable clashes arose. An incremental approach for centralizing the
departmental timetabling procedures is then proposed. This takes into account
the need of preserving the autonomous administration in each department. On
the contrary, DePathos assumes a centralized scheduling process that considers
all the departments and divisions in a University.

DePathos 327

Acknowledgments. We would like to thank to the anonymous reviewers for
their valuable comments that helped us improve this paper significantly. Luis
Quesada, Carlos Olarte and Diego Linares also gave useful comments and sug-
gestions.

References

1. Jean Paul Boufflet and Stéphane Nègre. Three methods used to solve an exam-
ination timetable problem. In Practice and Theory of Automated Timetabling.
Springer, LNCS 1153, 1996.

2. M. A. Saleh Elmohamed, Paul Coddington, and Geoffrey Fox. A comparison of
annealing techniques for academic course scheduling. In Practice and Theory of
Automated Timetabling II. Springer, LNCS 1408, 1998.

3. Thom Fruhwirth and Slim Abdennadher. Essentials of Constraint Programming.
Springer, 2002.

4. Simon Geller. Timetabling at the University of Sheffield, UK - an incremen-
tal approach to timetable development. In Practice and Theory of Automated
Timetabling, 2002.

5. M. Henz and J. Wurtz. Using oz for college timetabling. In International Confer-
ence on the Practice and Theory of Automated Timetabling, 1995.

6. Kazuya Kaneko, Masazumi Yoshikawa, and Yoichiro Nakakuki. Improving a heuris-
tic repair method for large-scale school timetabling problems. In Principles and
Practice of Constraint Programming. Springer, LNCS 1713, 1999.

7. W. Legierski. Using Mozart for Timetabling Problems. In Proceedings of the
CPDC’01 Workshop on Constraint Programming for Decision and Control, 2001.

8. Michael Marte. Models and Algorithms for School Timetabling - A Constraint-
Programming Approach. Dissertation/Ph.D. thesis, Institute of Computer Science,
LMU, Munich, 2003.

9. Gustavo Pabón and Carlos Rodriguez. Reingenieŕia de PATHOS (In Span-
ish). B.Sc. Thesis - Universidad Javeriana, Cali, 2003. Available at
http://correo.puj.edu.co/japerezp/Crisol/.

10. D.C. Rich. A Smart Genetic Algorithm for University Timetabling. In Practice
and Theory of Automated Timetabling. Springer, LNCS 1153, 1996.

11. C. Rueda, J.F. Dı́az, L.O. Quesada, C. Garćıa, and S. Cetina. Pathos: Object-
oriented concurrent constraint timetabling for real world cases. In Proceedings,
XXVIII Latin-American Conference on Informatics, Uruguay, 2002.

12. D. Wasacz. Timetabling with CHIP. In Proceedings of the CPDC’99 Workshop on
Constraint Programming for Decision and Control, 1999.

Author Index

Alcorn, Michael 277
Anagnostopoulou, Christina 277
Anders, Torsten 277
Aranda, Jesús B. 305

Bahgat, Reem 89
Brand, Per 137

Carton, Bruno 125
Collet, Raphaël 251

Debusmann, Ralph 188
De Landtsheer, Renaud 200
Delgado, Alberto 224, 317
Deville, Yves 237
Dı́az, Juan Francisco 263, 292,
305, 317

Dony, Isabelle 41
Dooms, Grégoire 237
Duchier, Denys 175, 188
Dupont, Pierre 237

El-Ansary, Sameh 113

Glynn, Kevin 149
Grolaux, Donatien 113, 149
Gutierrez, Gustavo 263

Haridi, Seif 137
Havelka, Dragan 137

Jordan, Rafael 317

Kronlid, Fredrik 161

Lager, Torbjörn 161
Le Botlan, Didier 211
Le Charlier, Baudouin 41
Le Roux, Joseph 175

Mena, Javier Andrés 292
Mesaros, Valentin 125
Miller, Mark S. 2
Molderez, Jean-François 78
Mostafa, Hala 89

Niehren, Joachim 188

Olarte, Carlos Alberto 224, 263
Ort́ız, James V. 305

Pabón, Gustavo 317
Parmentier, Yannick 175
Pérez, Jorge Andrés 224, 317
Ponsard, Christophe 78

Rafea, Mahmoud 103, 113
Reinfelds, Juris 53
Rueda, Camilo 224, 263, 317

Schulte, Christian 137
Shapiro, Jonathan 2
Smolka, Gert 1
Spiessens, Fred 21

Tack, Guido 211
Tulloh, Bill 2

Van Roy, Peter 21, 113, 125, 149

Wahls, Tim 66

	Frontmatter
	Keynote Talk
	The Development of Oz and Mozart

	Security
	The Structure of Authority: Why Security Is Not a Separable Concern
	The Oz-E Project: Design Guidelines for a Secure Multiparadigm Programming Language

	Computer Science Education
	A Program Verification System Based on Oz
	Higher Order Programming for Unordered Minds

	Software Engineering
	Compiling Formal Specifications to Oz Programs
	Deriving Acceptance Tests from Goal Requirements

	Human-Computer Interfaces and the Web
	Using Mozart for Visualizing Agent-Based Simulations
	Web Technologies for Mozart Applications
	Overcoming the Multiplicity of Languages and Technologies for Web-Based Development Using a Multi-paradigm Approach

	Distributed Programming
	P2PS: Peer-to-Peer Development Platform for Mozart
	Thread-Based Mobility in Oz
	A Fault Tolerant Abstraction for Transparent Distributed Programming

	Grammars and Natural Language
	The CURRENT Platform: Building Conversational Agents in Oz
	The Metagrammar Compiler: An NLP Application with a Multi-paradigm Architecture
	The XDG Grammar Development Kit

	Constraint Research
	Solving CSP Including a Universal Quantification
	Compositional Abstractions for Search Factories
	Implementing Semiring-Based Constraints Using Mozart
	A Mozart Implementation of CP(BioNet)

	Constraint Applications
	Playing the Minesweeper with Constraints
	Using Constraint Programming for Reconfiguration of Electrical Power Distribution Networks
	Strasheela: Design and Usage of a Music Composition Environment Based on the Oz Programming Model
	Solving the Aircraft Sequencing Problem Using Concurrent Constraint Programming
	The Problem of Assigning Evaluators to the Articles Submitted in an Academic Event: A Practical Solution Incorporating Constraint Programming and Heuristics
	An Interactive Tool for the Controlled Execution of an Automated Timetabling Constraint Engine

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

