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Preface

The Symposium on Theoretical Aspects of Computer Science (STACS) is alter-
nately held in France and in Germany. The conference of February 24–26, 2005
in Stuttgart was the twenty-second in this series. Previous meetings took place in
Paris (1984), Saarbrücken (1985), Orsay (1986), Passau (1987), Bordeaux (1988),
Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), Würzburg
(1993), Caen (1994), München (1995), Grenoble (1996), Lübeck (1997), Paris
(1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003),
and Montpellier (2004).

The interest in STACS has been increasing continuously during recent years
and has turned it into a leading conference in theoretical computer science. The
call for papers for STACS 2005 led to 217 submissions from all over the world.

The 17 members of the Program Committee met in Stuttgart for two days
at the end of October 2004 to select the contributions to be presented at the
conference. Thanks are due to the committee as well as to all the external referees
for their valuable work put into the reviewing process. Just 54 papers (i.e., 25%
of the submissions) could be accepted, thus guaranteeing the very high scientific
quality of the conference. Moreover, this strict selection enabled us to keep the
conference in its standard format with only two parallel sessions.

We would like to thank the three invited speakers Manindra Agrawal (Singa-
pore), Mireille Bousquet-Mélou (Bordeaux), and Uwe Schöning (Ulm) for pre-
senting lectures and for their contributions to the proceedings.

Finally we thank the local organizing committee and all members of the
Institute of Formal Methods in Computer Science for their help. In particular
we thank Holger Austinat, Heike Photien, and Horst Prote for their great efforts.
Special thanks are due to Andrei Voronkov for his PC-expert software EasyChair
and for continuously supporting us.

Financial support for the conference was provided by the German research
foundation DFG and by the University of Stuttgart. The Informatik Forum
Stuttgart (infos e.V.) helped in the management of the conference.

February 2005 Volker Diekert
Bruno Durand
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Véronique Bruyère
Harry Buhrman
Andrei Bulatov
Peter Bürgisser

Julien Cassaigne
Julien Cervelle
Rohit Chada
Krishna Chatterjee
Jingchao Chen
Victor Chepoi
Yannick Chevalier
Andrew Childs
Janka Chlebikova
Bogdan Chlebus
Christian Choffrut
Ferdinando Cicalese
Julien Clément
Loek Cleophas
Johanne Cohen
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Eric Schost
Lutz Schröder
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Automorphisms of Finite Rings and
Applications to Complexity of Problems

Manindra Agrawal and Nitin Saxena

National University of Singapore��

{agarwal, nitinsax}@comp.nus.edu.sg

1 Introduction

In mathematics, automorphisms of algebraic structures play an important role.
Automorphisms capture the symmetries inherent in the structures and many
important results have been proved by analyzing the automorphism group of
the structure. For example, Galois characterized degree five univariate polyno-
mials f over rationals whose roots can be expressed using radicals (using ad-
dition, subtraction, multiplication, division and taking roots) via the structure
of automorphism group of the splitting field of f . In computer science too, au-
tomorphisms have played a useful role in our understanding of the complexity
of many algebraic problems. From a computer science perspective, perhaps the
most important structure is that of finite rings. This is because a number of
algebraic problems efficiently reduce to questions about automorphisms and iso-
morphisms of finite rings. In this paper, we collect several examples of this from
the literature as well as providing some new and interesting connections.

As discussed in section 2, finite rings can be represented in several ways.
We will be primarily interested in the basis representation where the ring is
specified by its basis under addition. For this representation, the complexity of
deciding most of the questions about the automorphisms and isomorphisms is in
FPAM∩coAM [KS04]. For example, finding ring automorphism (find a non-trivial
automorphism of a ring), automorphism counting problem (count the number
of automorphisms of a ring), ring isomorphism problem (decide if two rings are
isomorphic), finding ring isomorphism (find an isomorphism between two rings).
Also, ring automorphism problem (decide if a ring has a non-trivial automor-
phism) is in P [KS04]. In addition, a number of problems can be reduced to
answering these questions. Some of them are:

Primality Testing. Fermat’s Little Theorem states that the map a �→ an is the
trivial automorphism in Zn if n is prime. Although this property is not strong
enough to decide primality, the recent deterministic primality test [AKS04]
generalizes this to the property that the map is an automorphism in the ring
Zn[Y ]/(Y r − 1) for a suitable r iff n is prime. Further, they prove that it is

�� On leave from Indian Institute of Technology, Kanpur.

V. Diekert and B. Durand (Eds.): STACS 2005, LNCS 3404, pp. 1–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 M. Agrawal and N. Saxena

enough to test the correctness of the map at a “few” elements to guarantee
that it is indeed an automorphism.

Polynomial Factorization. Factoring univariate polynomials over finite fields
uses automorphisms in a number of ways [LN86, vzGG99]. It is used to split
the input polynomial into factors with each one being square-free and com-
posed only of same degree irreducible factors. Then to transform the problem
of factoring polynomial with equal degree irreducible factors to that of root
finding. And finally, in finding the roots of the polynomial in the field (this
step is randomized while the others are deterministic polynomial-time).

Integer Factorization. Two of the fastest known algorithms for factoring inte-
gers, Quadratic sieve [Pom84] and Number Field sieve [LLMP90], essentially
aim to find a non-obvious automorphism of the ring Zn[Y ]/(Y 2 − 1). Be-
sides, recently [KS04] have shown that integer factorization can be reduced to
(1) automorphism counting for ring Zn[Y ]/(Y 2), (2) finding automorphism
of the ring Zn[Y ]/(f(Y )) where f is a degree three polynomial, (3) find-
ing isomorphism between rings Zn[Y ]/(Y 2 − 1) and Zn[Y ]/(Y 2 − a2) where
a ∈ Zn.

Graph Isomorphism. Again, [KS04] show this problem reduces to ring iso-
morphism problem for rings of the form Zp3 [Y1, . . . , Yn]/I where p is an
odd prime and ideal I has degree two and three polynomials. Here, we im-
prove this result to the rings with any prime characteristic. As the isomor-
phism problems for a number of structures reduce to Graph Isomorphism
(e.g., Group Isomorphism), this shows that all these problems reduce to ring
isomorphism and counting automorphisms of a ring (it can be shown eas-
ily that ring isomorphism problem reduces to counting automorphism in a
ring [KS04]).

Polynomial Equivalence. Two polynomials p(x1, · · · , xn) and q(x1, . . . , xn)
over field F are said to be equivalent if there is an invertible linear transfor-
mation T , T (xi) =

∑n
j=1 ti,jxj , ti,j ∈ F , such that p(T (x1), . . . , T (xn)) =

q(x1, . . . , xn).1 This is a well studied problem: we know a lot about the struc-
ture of equivalent polynomials when both p and q are quadratic forms (ho-
mogeneous degree two polynomials) resulting in a polynomial time algorithm
for testing their equivalence (Witt’s equivalence theorem, see, e.g., [Lan93]).
The structure of cubic forms (homogeneous degree three polynomials) is less
understood though. There is also a cryptosystem based on the difficulty of de-
ciding equivalence between a collection of degree three polynomials [Pat96].
In [Thi98], it was shown that polynomial equivalence problem is in NP ∩
coAM and Graph Isomorphism reduces to polynomial isomorphism problem
where we require T to be a permutation.

Here, we show that the ring isomorphism problem over finite fields reduces
to cubic polynomial equivalence. We prove a partial converse as well: deciding
equivalence of homogeneous degree k polynomials with n variables over field
Fq such that (k, q − 1) = 1, reduces to ring isomorphism problem in time

1 In some literature, p and q are said to be equivalent if p = q for all elements in F n.
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nO(k). This shows that (1) equivalence for homogeneous constant degree
polynomials (for certain degrees) can be efficiently reduced to equivalence for
degree three polynomials, and (2) Graph Isomorphism reduces to equivalence
for degree three polynomials. In fact, we show that Graph Isomorphism can
even be reduced to cubic form equivalence. This explains, at least partly,
why cubic form equivalence has been hard to analyze.

The organization of the remaining paper is as follows. The next section dis-
cusses the various representations of the rings and their morphisms. Sections 3
to 7 discuss applications of ring automorphisms and isomorphisms in the order
outlined above. The last section lists some open questions.

2 Representations of Rings and Automorphisms

We will consider finite rings with identity. Any such ring R can be represented
in multiple ways. We discuss three important representations.

Table Representation

The simplest representation is to list all the elements of the ring and their addi-
tion and multiplication tables. This representation has size n = O(|R|2) where
|R| is the number of elements of the ring. This is a highly redundant representa-
tion and the problem of finding automorphisms or isomorphisms can be solved
in nO(log n) time since any minimal set of generators for the additive group has
size O(logn).

Basis Representation

This representation is specified by a set of generators of the additive group of
R. Let n be the characteristic of the ring. Then the additive group (R,+) can
be expressed as the direct sum ⊕m

i=1Znibi where b1, . . ., bm are elements of R
and ni | n for each i. The elements b1, . . ., bm are called basis elements for
(R,+). Therefore, the ring R can be represented as (n1, . . . , nm, A1, . . . , Am)
where matrix Ai = (ai,j,k) describes the effect of multiplication on bi, viz.,
bi · bj =

∑m
k=1 ai,j,kbk, ai,j,k ∈ Znk

. The size of this representation is O(m3).
This, in general, is exponentially smaller than the size of the ring |R| =

∏m
i=1 ni.

For example, the ring Zn (it has only one basis element).
The problem of finding automorphisms or isomorphisms becomes harder for

this representation. As [KS04] show, these problems belong to the complexity
class FPAM∩coAM and are at least as hard as factoring integers and—in the case
of finding isomorphisms—solving graph isomorphism.

Polynomial Representation

A third, and even more compact, representation of R is obtained by starting
with the basis representation and then selecting the smallest set of bis, say b1,
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. . ., bm such that the remaining bis can be expressed as polynomials in b1, . . .,
bm. The representation can be specified by the m basis elements and generators
of the ideal of polynomials satisfied by these. Each polynomial is specified by an
arithmetic circuit.

The ring can be written as:

R = Zn[Y1, Y2, . . . , Ym]/(f1(Y1, . . . , Ym), . . . , fk(Y1, . . . , Ym))

where Y1, . . ., Ym are basis elements and (f1(Y1, . . . , Ym), . . . , fk(Y1, . . . , Ym)) is
the ideal generated by the polynomials f1, . . ., fk describing all polynomials satis-
fied by Y1, . . ., Ym.2 Often, this representation is exponentially more succinct that
the previous one. For example, consider the ring Z2[Y1, . . . , Ym]/(Y 2

1 , Y
2
2 , . . . , Y

2
m).

This ring has 2m basis elements and so the basis representation would require
Ω(23m) space.

The problem of finding automorphisms or isomorphisms is even harder for
this representation:

Theorem 1. Ring automorphism for polynomial representation is NP-hard and
ring isomorphism problem is coNP-hard.

Proof. To prove NP-hardness of ring automorphism problem, we reduce 3SAT
to it. Let F be a 3CNF boolean formula over n variables, F = ∧m

i=1ci. Let
F̂ =

∏m
i=1 ĉi and ĉi = 1− (1− xi1) · xi2 · (1− xi3) where ci = xi1 ∨ x̄i2 ∨ xi3 . It is

easy to verify that F is unsatisfiable iff F̂ (x1, . . . , xn) ∈ (x2
1 − x1, . . . , x

2
n − xn).

Let ring

R = F2[Y1, . . . , Yn]/(1 + F̂ (Y1, . . . , Yn), {Y 2
i − Yi}1≤i≤n).

It follows that R is a trivial ring iff formula F is unsatisfiable. So ring R⊕R has
a non-trivial automorphism iff F is satisfiable.

For hardness of ring isomorphism problem, simply note that ring R is iso-
morphic to trivial ring {0} iff F is unsatisfiable.

So the table representation is too verbose while the polynomial representation
is too compact. In view of this, we will restrict ourselves to the basis represen-
tation for the rings. The rings that we will consider are all commutative with a
basis that has all basis elements of the same additive order. In addition, their
polynomial representation is of similar size to the basis representation and so,
for clarity of exposition, we will use the polynomial representation to express
our rings.

Representation of Automorphisms and Isomorphisms

An automorphism φ of ring R is a one-one and onto map, φ : R �→ R such that
for all x, y ∈ R, φ(x+ y) = φ(x) + φ(y) and φ(x · y) = φ(x) · φ(y).

2 Throughout the paper, we use lower case letters, e.g., x, y for free variables (as in
polynomial p(x, y) = x2 − 2y) and upper case letters, e.g., X, Y for bound variables
(as in the ring Zn[X, Y ]/(X2 − 2Y, Y 2)).
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An isomorphism between two rings R1 and R2 is a one-one and onto map
φ, φ : R1 �→ R2 such that for all x, y ∈ R1, φ(x + y) = φ(x) + φ(y) and
φ(x · y) = φ(x) · φ(y).

Their representations will depend on the representation chosen for the rings.
For basis representation, an automorphism (and isomorphism) will be repre-
sented as a linear transformation mapping basis elements. Thus, it corresponds
to an invertible matrix of dimension n where n is the number of basis elements.

For polynomial representation, say R = Zn[Y1, . . . , Yt]/I, an automorphism
(or isomorphism) φ will be specified by a set of t polynomials p1, . . ., pt with
φ(Yi) = pi(Y1, . . . , Yt).

3 Application: Primality Testing

A number of primality tests use the properties of the ring Zn where n is the
number to be tested. The prominent ones are Miller-Rabin test [Mil76, Rab80],
Solovay-Strassen test [SS77], Adleman-Pomerance-Rumely test [APR83] etc.
There are several others that use a different algebraic structure, e.g., elliptic
curve based tests [GK86].

However, even the ones based on Zn use properties other than automorphisms
of Zn. The reason is that approaches based on automorphisms do not work. For
example, when n is prime, the map φ(x) = xn is an automorphism (in fact it is
the trivial automorphism); on the other hand when n is composite then φ may
not be an automorphism. We can use this to design a test, however, as testing
if φ(x) = x (mod n) for all x’s requires exponential time, we do the test for only
polynomially many x’s. This test does separate prime numbers from non-square-
free composites (see Lemma 1 below), however fails for square-free composites.
The reason are Carmichael numbers [Car10]: these are composite numbers for
which φ is the trivial automorphism.

So an automorphism based property appears too weak to separate primes
from composites. However, it is not so. The strongest known deterministic pri-
mality test [AKS04] is based on the same property of automorphisms as outlined
above! What makes it work is the idea of using a polynomial ring instead of Zn.
Let R = Zn[Y ]/(Y r − 1) where r is a “small” number. As before, the map φ
remains an automorphism of R when n is prime. It is easy to see that φ is an
automorphism of R iff for every g(Y ) ∈ R,

gn(Y ) = φ(g(Y )) = g(φ(Y )) = g(Y n). (1)

As above, this can be tested for polynomially many g(Y )’s. It was shown
in [AKS04] that for a suitably chosen r, if the equation (1) holds for

√
r log n

many g(Y )’s of the form Y +a then n must be a prime power. The analysis in the
paper can easily be improved to show that when a’s are chosen from [1,

√
r log n]

then n must be a prime: Suppose equation (1) holds for all a’s in the above
range. Then we know that n is a prime power. Let n = pk for some k > 1. Let
ring R0 = Zp2 [Y ]/(Y − 1) ∼= Zp2 . Clearly, equation (1) will hold in R0 too. This
implies that for all a ≤ 1 +

√
r log n:
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apk

= a (mod p2).

The choice of r is such that r ≥ log2 n [AKS04] and therefore, the above
equation holds for all a ≤ 4 log2 p. The following lemma, proved by Hendrik
Lenstra [Len] contradicts this:

Lemma 1. (Hendrik Lenstra) For all large enough primes p, for every � > 0
there is an a ≤ 4 log2 p such that ap� = a (mod p2).

Proof. Suppose there is an � > 0 such that ap�

= a (mod p2) for all a ≤ 4 log2 p.
We first prove that we can always assume � to be 1. Consider the case when
� > 1. Since ap = a (mod p), we have

ap = a+ p · t (mod p2)

for some t. Therefore,

ap�

= (a+ p · t)p�−1
(mod p2)

= ap�−1
(mod p2)

Repeating this, we get ap = ap�

= a (mod p2). Now, there are at most p
solutions to the equation ap = a (mod p2) in Zp2 . Since all numbers up to
4 log2 p are solutions to this, so will be all their products. Let ψ(p2, 4 log2 p)
denote the number of distinct numbers less than p2 that are 4 log2 p-smooth
(all their prime factors are at most 4 log2 p). Using the bound for ψ [CEG83],
ψ(x, x1/u) = x · u−u+o(1) for u = O( x

log x ), we get that ψ(p2, 4 log2 p) > p for
large enough p. This is a contradiction. ��

So when n is composite then for at least one of Y + a’s, φ does not satisfy
equation 1 and the test works correctly.

4 Application: Factoring Polynomials

Automorphisms play a central role in efficient factoring of univariate polynomials
over finite fields. We outline a randomized polynomial time factoring algorithm
using automorphisms. This, and similar algorithms can be found in any text
book discussing polynomials over of finite fields, e.g., [LN86, vzGG99]. Let f be
a degree d polynomial over finite field Fq. Let R = Fq[Y ]/(f(Y )) and φ : R �→ R,
φ(x) = xq. Clearly, φ is an automorphism of R. Notice that if f is irreducible
then φd is trivial. Conversely, if φd is trivial then, letting f0 be an irreducible
factor of f , φd is trivial on the ring Fq[Y ]/(f0(Y )) as well. Therefore, degree of
f0 divides d. This can be generalized to show that all irreducible factors of f
have degrees dividing k iff φk is trivial. Moreover, φk is trivial iff φk(Y ) = Y .
An algorithm for distinct degree square-free factorization of f follows: for k = 1
to d, compute the gcd of f(Y ) and φk(Y )− Y . The algorithm can also be used
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to decide if f is irreducible: f is irreducible iff the smallest k with non-trivial
gcd(f(Y ), φk(Y )− Y ) is d.

For equal degree factorization—given f that is square-free and all irreducible
factors of the same degree k—some more work is needed. Find an t(Y ) ∈ R =
Fq[Y ]/(f(Y )) with t(Y ) ∈ Fq and φ(t(Y )) = t(Y ). Since f is reducible, such a
t(Y ) always exists and can be found using linear algebra as φ is a linear map.
Clearly, t(Y ) (mod fi(Y )) ∈ Fq where fi is an irreducible factor of f and so,
gcd(t(Y )− x, f(Y )) > 1 for some x ∈ Fq. This condition can be expressed as a
polynomial in x, e.g., gcd(t(Y )−x, f(Y )) > 1 iff R(t(Y )−x, f(Y )) = 0 where R
is the resultant polynomial defined as determinant of a matrix over coefficients
on two input polynomials. Therefore, g(x) = R(t(Y ) − x, f(Y )) ∈ Fq[x]. By
above discussion, a root of this polynomial will provide a factor of f .

To factor g(x), we use the distinct degree factorization method. Choose a
random a ∈ Fq and let h(x) = g(x+a). Then with probability at least 1

2 , h(x2) can
be factored over Fq using the above distinct degree factorization algorithm. To see
this, let g(x) =

∏d
i=1(x− ηi) for ηi ∈ Fq. Then h(x2) =

∏d
i=1(x

2 − ηi + a). With
probability at least 1

2 , there exist i and j such that ηi +a is a quadratic residue and
ηj +a is a quadratic non-residue in Fq. The distinct degree factorization algorithm
will separate these factors into two distinct polynomials h1(x2) and h2(x2). This
gives g(x) = h1(x− a) · h2(x− a).

Algorithms for polynomial factorization over rationals also (indirectly) use
automorphisms since these proceed by first factoring the given polynomial f over
a finite field, then use Hensel lifting [Hen18] and LLL algorithm for short lattice
vectors [LLL82] to obtain factors over rationals efficiently.

Multivariate polynomial factorization can be reduced, in polynomial time,
to the problem of factoring a univariate polynomial via Hilbert irreducibility
theorem and Hensel lifting [Kal89]. Therefore, this too, very indirectly though,
makes use of automorphisms.

5 Application: Factoring Integers

Integer factorization has proven to be much harder than polynomial factor-
ization. The fastest known algorithm is Number Field Sieve [LLMP90] with
a conjectured time complexity of 2O((log n)1/3(log log n)2/3). This was preceded
by a number of algorithms with provable or conjectured time complexity of
2O((log n)1/2(log log n)1/2), e.g., Elliptic Curve method [Len87], Quadratic Sieve
method [Pom84].

Of these, the fastest two—Quadratic and Number Field Sieve methods—can
be easily viewed as trying to find a non-obvious automorphism in a ring. Both the
methods aim to find two numbers u and v in Zn such that u2 = v2 and u = ±v
in Zn where n is an odd, square-free composite number to be factored. Consider
the ring R = Zn[Y ]/(Y 2 − 1). Apart from the trivial automorphism, the ring has
another obvious automorphism specified by the map Y �→ −Y . The problem of
finding u and v as above is precisely the one of finding a third automorphism ofR.
This can be seen as follows. Let φ be an automorphism of R with φ(Y ) = ±Y . Let
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φ(Y ) = aY + b. We then have 0 = φ(Y 2−1) = (aY + b)2−1 = a2 + b2−1+2abY
inR. This gives ab = 0 and a2 +b2 = 1 inZn. Notice that (a, n) = 1 since otherwise
φ( n

(a,n)Y ) = n
(a,n)b = φ( n

(a,n)b). Therefore, b = 0 and a2 = 1. By assumption,
a = ±1 and so u = a and v = 1. Conversely, given a u and v with u2 = v2, u = ±v
in Zn, we get φ(Y ) = u

vY as an automorphism of R.
In fact, as shown in [KS04], factoring integers can be reduced to a number of

questions about automorphisms and isomorphisms of rings. They show that an
odd, square-free composite number n can be factored in (randomized) polynomial
time if
– one can count the number of automorphisms of the ring Zn[Y ]/(Y 2), or
– one can find an isomorphism between rings Zn[Y ]/(Y 2−a2) and Zn[Y ]/(Y 2−

1) for a randomly chosen a ∈ Zn, or
– one can find a non-trivial automorphism of the ring Zn[Y ]/(f(Y )) where f

is a randomly chosen polynomial of degree three.

6 Application: Graph Isomorphism

In this section, we consider the application of ring isomorphisms for solving the
graph isomorphism problem. It was shown in [KS04] that testing isomorphism
between two graphs on n vertices can be reduced to testing the isomorphism
between two rings of the form Zp3 [Y1, . . . , Yn]/I where p is any odd prime and I is
an ideal generated by certain degree two and three polynomials. Here, borrowing
ideas from [KS04] and [Thi98] we give a different, and more general, reduction.

Let G = (V,E) be a simple graph on n vertices. We define polynomial pG as:

pG(x1, . . . , xn) =
∑

(i,j)∈E

xi · xj .

Also, define ideal IG as:

IG(x1, . . . , xn) = (pG(x1, . . . , xn), {x2
i }1≤i≤n, {xixjxk}1≤i,j,k≤n). (2)

Then,

Theorem 2. Simple graphs G1 and G2 over n vertices are isomorphic iff either
G1 = G2 = Km∪Dn−m (Dn−m is a collection of n−m isolated vertices) or rings
R1 = Fq[Y1, . . . , Yn]/IG1(Y1, . . . , Yn) and R2 = Fq[Z1, . . . , Zn]/IG2(Z1, . . . , Zn)
are isomorphic. Here Fq is a finite field of odd characteristic.3

Proof. If the graphs are isomorphic, then the map φ, φ : R1 �→ R2, φ(Yi) =
Zπ(i), is an isomorphism between the rings where π is an isomorphism mapping
G1 to G2. This follows since φ(pG1(Y1, . . . , Yn)) = pG2(Z1, . . . , Zn). Conversely,

3 The theorem also holds for fields of characteristic two. For such fields though, we
need to change the definition of the ideal IG. It now contains xn+1 · pG, x3

i ’s and
xixjxkx�’s and the ring is defined over n + 1 variables. The proof is similar.
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suppose that G2 is not of the form Km∪Dn−m and the two rings are isomorphic.
Let φ, φ : R1 �→ R2 be an isomorphism. Let

φ(Yi) = αi +
∑

1≤j≤n

βi,jZj +
∑

1≤j<k≤n

γi,j,kZjZk.

Since Y 2
i = 0 in the ring,

0 = φ(Y 2
i ) = φ2(Yi) = α2

i + (higher degree terms).

This gives αi = 0. Again looking at the same equation:

0 = φ(Y 2
i ) = φ2(Yi) = 2

∑
1≤j<k≤n

βi,jβi,kZjZk.

If more than one βi,j is non-zero, then we must have
∑

j,k∈J,j<k βi,jβi,kZjZk

divisible by pG2(Z1, . . . , Zn) where J is the set of non-zero indices. Since pG2 is
also homogeneous polynomial of degree two, it must be a constant multiple of
the above expression implying that G2 = K|J| ∪Dn−|J|. This is not possible by
assumption. Therefore, at most one βi,j is non-zero. Now suppose that all βi,j ’s
are zero. But then φ(YiY�) = 0 which is not possible. Hence, exactly one βi,j is
non-zero for every i.

Define π(i) = j where j is the index with βi,j non-zero. Suppose π(i) = π(�)
for i = �. Then, φ(YiY�) = 0. Again, this is not possible. Hence π is a permutation
on [1, n]. Now consider φ(pG1(Y1, . . . , Yn)). It follows that:

0 = φ(pG1(Y1, . . . , Yn))

=
∑

(i,j)∈E1

φ(Yi)φ(Yj)

=
∑

(i,j)∈E1

βi,π(i)βj,π(j)Zπ(i)Zπ(j)

The last expression must be divisible by pG2 . This gives βi,π(i) = β�,π(�) for
all i and �. This implies that the expression is a constant multiple of pG2 , or
equivalently, that G1 is isomorphic to G2. ��

Notice that the rings R1 and R2 constructed above have lots of automor-
phisms. For example, Yi �→ Yi + Y1Y2 is a non-trivial automorphism of R1.
Therefore, automorphisms of graph G1 do not directly correspond to automor-
phisms of the ring R1. In fact, each automorphism of G1 gives rise to at least
pn·((n

2)−1) automorphisms of R1 (this is the number of ways we can add quadratic
terms to the automorphism map).

7 Application: Polynomial Equivalence

Thomas Thierauf [Thi98] analyzed the complexity of polynomial isomorphism
problem where one tests if the two given polynomials, say p and q, become equal
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after a permutation of variables of p. He showed that this problem is in NP ∩
coAM and Graph Isomorphism reduces to it. His upper bound proof can easily be
generalized to polynomial equivalence. We first prove a lower bound by showing
that ring isomorphism problem reduces to it.

Theorem 3. Ring isomorphism problem for rings of prime characteristic re-
duces, in polynomial time, to cubic polynomial equivalence.

Proof. For this proof, we adopt the basis representation of rings. Let R and
R′ be two rings with additive basis b1, . . . , bn and d1, . . . , dn respectively and
characteristic p. Multiplication in R is defined as

(∀) i, j, 1 ≤ i, j ≤ n : bi · bj =
n∑

k=1

ai,j,kbk where ai,j,k ∈ Fp.

Let us define a polynomial which captures the relations defining ring R:

fR(ȳ, b̄) :=
∑

1≤i≤j≤n

yi,j

⎛
⎝bibj −

∑
1≤k≤n

ai,j,kbk

⎞
⎠ (3)

Similarly, we define fR′ over variables z̄ and d̄.
Let us start off with an easy observation:

Claim 1. If rings R and R′ are isomorphic then fR is equivalent to fR′ .

Proof of Claim. Let φ be an isomorphism from R to R′. Note that φ sends each bi
to a linear combination of d’s and for all i, j, φ(bi)φ(bj)−

∑
1≤k≤n ai,j,kφ(bk) = 0

in R′. This implies that there exist c’s in Fp such that

φ(bi)φ(bj)−
∑

1≤s≤n

ai,j,sφ(bs) =
∑

1≤k≤l≤n

ci,j,k,�

⎛
⎝dkd� −

∑
1≤s≤n

a′
k,�,sds

⎞
⎠ .

This immediately suggests that the linear transformation:

bi �→ φ(bi)∑
1≤i≤j≤n

ci,j,k,�yi,j �→ zk,�

makes fR equal to fR′ . ��

Conversely,

Claim 2. If fR is equivalent to fR′ then R and R′ are isomorphic.

Proof of Claim. Let φ be a linear transformation such that

∑
1≤i≤j≤n

φ(yi,j)

⎛
⎝φ(bi)φ(bj)−

∑
1≤k≤n

ai,j,kφ(bk)

⎞
⎠
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=
∑

1≤i≤j≤n

zi,j

⎛
⎝didj −

∑
1≤k≤n

a′
i,j,kdk

⎞
⎠ . (4)

This immediately implies that
∑

1≤i≤j≤n

φ(yi,j)φ(bi)φ(bj) =
∑

1≤i≤j≤n

zi,jdidj . (5)

We intend to show that φ(bi) has no z’s, i.e., φ(bi) is a linear combination of
only d’s. We will be relying on the following property of rhs of equation (5): let
τ be an invertible linear transformation on the z’s then for all 1 ≤ i ≤ j ≤ n the
coefficient of zi,j in

∑
1≤i≤j≤n τ(zi,j)didj is nonzero.

Suppose φ(b1) has z’s:

φ(b1) =
∑

i

c1,idi +
∑
ij

c1,i,jzi,j

We can apply an invertible linear transformation τ on z’s in equation (5) so
that τ :

∑
i,j c1,i,jzi,j �→ z1,1 and then apply an evaluation map val by fixing

z1,1 ← − (
∑

i c1,idi). So equation (5) becomes:
∑

2≤i≤j≤n

val◦τ ◦φ(yi,jbibj) =
∑

1≤i≤j≤n;i,j �=1,1

zi,j(quadratic d’s)+(cubic d’s) (6)

We repeat this process of applying invertible linear transformations on z’s and
fixing z’s in equation (6) so that for all 2 ≤ i ≤ j ≤ n, val ◦ τ ◦ φ(yi,jbibj) either
vanishes or is a cubic in d’s. Thus, after 1 +

(
n
2

)
z-fixings the lhs of equation (5)

is a cubic in d’s while the rhs still has
(
n+1

2

)
−
(
n
2

)
− 1 = (n − 1) unfixed z’s,

which is a contradiction.
Since φ(b)’s have no z’s and there are no cubic d’s in rhs of equation (4)

we can ignore the d’s in φ(y)’s. Thus, now φ(y)’s are linear combinations of
z’s and φ(b)’s are linear combinations of d’s. Again looking at equation (4),
this means that

(
φ(bi)φ(bj)−

∑
1≤s≤n ai,j,sφ(bs)

)
is a linear combination of(

dkd� −
∑

1≤s≤n a
′
k,�,sds

)
where 1 ≤ k, � ≤ n. This implies that

⎛
⎝φ(bi)φ(bj)−

∑
1≤s≤n

ai,j,sφ(bs)

⎞
⎠ = 0

in ring R′. This combined with the fact that φ is an invertible linear transfor-
mation on b̄ means that φ induces an isomorphism from ring R to R′. ��

The above two claims complete the proof. ��

In the case of Graph Isomorphism, we can reduce the problem to cubic form
equivalence.
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Theorem 4. Graph Isomorphism reduces in polynomial time to cubic form
equivalence.

Proof. Suppose we are given two graphs G1 and G2 and we have rings R1
and R2 as in the proof of Theorem 2. To simplify matters suppose (i0, j0) ∈
E(G1), E(G2). We fix an additive basis {1, b1, . . . , bm} of the ring R1 over Fp

such that

b1 = Y1, . . . , bn = Yn, {bn+1, . . . , bm} = {YiYj}1≤i<j≤n \ {Yi0Yj0}. (7)

Note that m =
(
n+1

2

)
− 1 and that {b1, . . . , bm} is an additive basis of the

maximal ideal M (M′) of local ring R1 (R2). Also, bibj = 0 except for
(
n
2

)
unordered tuples (i, j).

As local rings are isomorphic iff their maximal ideals are isomorphic [McD74],
we focus on M and M′. So let us construct homogeneous cubic polynomials
capturing the relations in M,M′. These polynomials are similar to the ones
seen in the proof of Theorem 3:

fM(u, ȳ, b̄) =
∑

1≤i≤j≤m

yi,j

⎛
⎝bibj − u

∑
1≤k≤m

ai,j,kbk

⎞
⎠+ u3

fM′(v, z̄, d̄) =
∑

1≤i≤j≤m

zi,j

⎛
⎝didj − v

∑
1≤k≤m

a′
i,j,kdk

⎞
⎠+ v3

where, ai,j,k, a
′
i,j,k ∈ {−1, 0, 1} are given by the definition of ideal IG and b’s in

equations (2) and (7).
Let us start off with the easier side:

Claim 3. If G1 is isomorphic to G2 then fM is equivalent to fM′ .

Proof of Claim. If G1 is isomorphic to G2 then by Theorem 2, R1 is isomorphic
to R2 which meansM is isomorphic toM′. Now by sending u �→ v and following
the proof of claim 1, we deduce fM is equivalent to fM′ . ��

Conversely,

Claim 4. If fM is equivalent to fM′ then G1 is isomorphic to G2.

Proof of Claim. We will try to show that if fM is equivalent to fM′ then M is
isomorphic toM′, which when combined with Theorem 2 means that the graphs
are isomorphic.

Suppose φ is an invertible linear transformation on (u, ȳ, b̄) such that:

∑
1≤i≤j≤m

φ(yi,j)

⎛
⎝φ(bi)φ(bj)− φ(u)

∑
1≤k≤m

ai,j,kφ(bk)

⎞
⎠+ φ(u)3

=
∑

1≤i≤j≤m

zi,j

⎛
⎝didj − v

∑
1≤k≤n

a′
i,j,kdk

⎞
⎠+ v3. (8)
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The main idea again is to show that φ(bi) is a linear combination of d’s and
the proof is very similar to the one above.

Suppose φ(b1) has z’s:

φ(b1) = c1,vv +
∑

i

c1,idi +
∑
i,j

c1,i,jzi,j .

As before, We apply an invertible linear transformation τ on z’s in equa-
tion (8) so that τ :

∑
i,j c1,i,jzi,j �→ z1,1 and then apply an evaluation map val

by fixing z1,1 ← − (c1,vv +
∑

i c1,idi). So equation (8) becomes:

∑
2≤i≤j≤m

val◦τ◦φ(yi,jbibj)−
∑

1≤i≤j≤m

val◦τ◦φ

⎛
⎝uyi,j

∑
1≤k≤m

ai,j,kbk

⎞
⎠+val◦τ◦φ(u)3

=
∑

1≤i≤j≤m;i,j �=1,1

zi,j ((quadratic d’s)− v(linear d’s)) + (cubic in v, d’s). (9)

Note that now on the lhs of the equation (9) there are at most
(
m
2

)
terms of

the form val◦τ ◦φ(yi,jbibj). And since except for
(
n
2

)
pairs (i, j), the product bibj

is zero, there are at most
(
n
2

)
terms of the form val◦τ ◦φ

(
uyi,j

∑
1≤k≤m ai,j,kbk

)
.

We repeat this process of applying invertible linear transformations on z’s and
fixing z’s in equation (9) so that the expressions val ◦ τ ◦ φ(yi,jbibj) for 2 ≤ i ≤
j ≤ m, val ◦ τ ◦ φ

(
uyi,j

∑
1≤k≤m ai,j,kbk

)
for 1 ≤ i ≤ j ≤ m, and val ◦ τ ◦ φ(u)3

either vanish or are cubics in v and d’s. Thus, after at most 1 +
(
m
2

)
+
(
n
2

)
+ 1

z-fixings the lhs of equation (8) is a cubic in v and d’s while the rhs still has(
m+1

2

)
−
(
m
2

)
−
(
n
2

)
− 2 = m−

(
n
2

)
− 2 =

(
n+1

2

)
− 1−

(
n
2

)
− 2 = n− 3 > 0 unfixed

z’s, which is a contradiction.
So φ(bi)’s have no z’s. Now if φ(u) has zi,j then there is a nonzero coefficient

of z3
i,j on the lhs of equation (8) while z3

i,j does not appear on the rhs. Thus,
even φ(u) has no z’s. Looking at equation (8) we deduce that all the z’s on the
lhs occur in φ(y)’s. So we can apply a suitable invertible linear transformation
τ on the z’s such that for all 1 ≤ i ≤ j ≤ m:

τ ◦ φ(yi,j) = zi,j +
∑

1≤k≤m

ci,j,kdk + ci,j,vv,

and then equation (8) simply looks like:

∑
1≤i≤j≤m

zi,j

⎛
⎝φ(bi)φ(bj)− φ(u)

∑
1≤k≤m

ai,j,kφ(bk)

⎞
⎠+ (cubic in v, d’s)

=
∑

1≤i≤j≤m

zi,j((quadratic d’s)− v(linear d’s)) + v3.
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Therefore,

∑
1≤i≤j≤m

zi,j

⎛
⎝φ(bi)φ(bj)− φ(u)

∑
1≤k≤m

ai,j,kφ(bk)

⎞
⎠

=
∑

1≤i≤j≤m

zi,j((quad d’s)− v(linear d’s)). (10)

Let us compare the coefficients of zi,i in equation (10):

φ(bi)2 = (quadratic d’s)− v(linear d’s).

This clearly rules out φ(bi) having a nonzero coefficient of v. Thus, φ(bi)’s
are linear combinations of d’s. Since we have obtained equation (10) from equa-
tion (8) by applying invertible linear transformation on z’s, there has to be a
nonzero v coefficient in the rhs and hence in the lhs of equation (10). Thus, φ(u)
has a nonzero v coefficient. Say, for some cu,v = 0:

φ(u) = cu,vv +
∑

1≤k≤m

cu,kdk.

For any 1 ≤ i ≤ j ≤ m, by comparing coefficients of zi,j in equation (10) we
get that there exist elements ei,j,k,� ∈ Fp such that:

φ(bi)φ(bj)−

⎛
⎝cu,vv +

∑
1≤s≤m

cu,sds

⎞
⎠ ∑

1≤s≤m

ai,j,sφ(bs)

=
∑

1≤k≤�≤m

ei,j,k,�

⎛
⎝dkd� − v

∑
1≤s≤m

a′
k,l,sds

⎞
⎠ .

By fixing v = 1 this actually means that in the ring M′:

φ(bi)φ(bj) =

⎛
⎝cu,v +

∑
1≤s≤m

cu,sds

⎞
⎠ ∑

1≤s≤m

ai,j,sφ(bs). (11)

Notice that there is an inverse of the expression
(
cu,v +

∑
1≤s≤m cu,sds

)
in

the ring R2 that looks like:
⎛
⎝cu,v +

∑
1≤s≤m

cu,sds

⎞
⎠

−1

=

⎛
⎝c−1

u,v +
∑

1≤s≤m

c′u,sds

⎞
⎠ . (12)

Since the product of any three terms in M′ vanishes, we get the following
when we multiply both sides of equation (11) by the inverse (12) in M′:

c−1
u,vφ(bi)φ(bj) =

∑
1≤s≤m

ai,j,sφ(bs)

⇒ φ(bi)
cu,v

φ(bj)
cu,v

=
∑

1≤s≤m

ai,j,s
φ(bs)
cu,v

.
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In other words, this means that bi �→ φ(bi)
cu,v

is an isomorphism from M →
M′.

��
This completes the reduction from graph isomorphism to cubic form

equivalence. ��

Polynomial equivalence for homogeneous constant degree polynomials effi-
ciently reduces to ring isomorphism for certain degrees.

Theorem 5. Polynomial equivalence for homogeneous degree d polynomials over
field Fq with (d, q − 1) = 1 reduces, in time nO(d), to ring isomorphism.

Proof. Let p and q be two homogeneous degree d polynomials over field Fq with
n variables. Define rings Rp and Rq as:

Rp = Fq[Ȳ ]/(p(Ȳ ), {Yj1Yj2 · · ·Yjd+1}1≤j1,j2,...,jd+1≤n)
Rq = Fq[Z̄]/(q(Z̄), {Zj1Zj2 · · ·Zjd+1}1≤j1,j2,...,jd+1≤n).

It is easy to see that if p and q are equivalent, then Rp and Rq are isomorphic.
The converse is also not difficult. Let φ be an isomorphism from Rp to Rq.

Let

φ(Yi) = αi +
n∑

j=1

βi,jZj + (higher degree terms). (13)

The fact φd+1(Yi) = 0 implies that αi = 0. Let ψ(Yi) =
∑n

j=1 βi,jZj , i.e.,
the linear component of φ. We show that ψ is (almost) an equivalence between
p and q.

First of all, ψ is an invertible linear transformation. This is because for every
j, there exists a polynomial rj such that φ(rj(Ȳ )) = Zj (using the fact that φ
is an isomorphism). Let rL

j be the linear part of rj . Then, φ(rL
j (Ȳ )) = Zj +

(higher degree terms). It follows that ψ(rL
j (Ȳ )) = Zj .

Now consider the polynomial p. We have

φ(p(Ȳ )) ∈ (q(Z̄), {Zj1Zj2 · · ·Zjd+1}1≤j1,j2,...,jd+1≤n).

Of the polynomials defining the ideal in above equation, only q is of degree
d. Hence the degree d part of φ(p(Ȳ )) must be divisible by q(Z̄). In other words,
ψ(p(Ȳ )) is divisible by q(Z̄). Since both p and q have the same degree, this
means ψ(p(Ȳ )) = c · q(Z̄) for c ∈ Fq. Since (d, q − 1) = 1, there exists an e ∈ Fq

with ed = c. Therefore, the map 1
eψ is an equivalence. ��

The restriction on degree in the above theorem, (d, q−1) = 1, appears neces-
sary. For example, consider polynomials x2 and ax2 over field Fq with a being a
quadratic non-residue. These two polynomials are not equivalent while the rings
defined by them, Fq[Y ]/(Y 2) and Fq[Y ]/(aY 2) are equal.
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8 Open Questions

We have listed a number of useful applications of automorphisms and isomor-
phisms of finite rings in complexity theory. Our list is by no means exhaustive,
but should convince the reader about the importance of these. We pose a few
questions that we would like to see an answer of:

– It is not clear if automorphisms play a role in some important algebraic
problems, e.g., discrete log. This problem can easily be viewed as that of
finding a certain kind of automorphism in a group, however, we do not know
any connections to ring automorphisms.

– Nearly all the effort in integer factoring has been concentrated towards find-
ing automorphism in the ring Zn[Y ]/(Y 2 − 1). Is there another ring where
this problem might be “easier”? Can some of the other formulations of [KS04]
be used for factoring?

– Theorems 2 and 4 together show that Graph Isomorphism reduces to equiv-
alence of cubic forms over fields of any characteristic. Can the theory of
cubic forms (over complex numbers) be used to find a subexponential time
algorithm for Graph Isomorphism?

– It appears likely that ring isomorphism problem reduces to equivalence of
cubic forms, but we have not been able to find a proof.

– It appears likely that equivalence of constant degree polynomials reduces to
ring isomorphism at least when (d, q − 1) = 1. However, we have been able
to prove it only for homogeneous polynomials.
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351 cours de la Libération, 33405 Talence Cedex, France

mireille.bousquet@labri.fr

Abstract. Numerous families of simple discrete objects (words, trees,
lattice walks...) are counted by a rational or algebraic generating func-
tion. Whereas it seems that objects with a rational generating function
have a structure very similar to the structure of words of a regular lan-
guage, objects with an algebraic generating function remain more mys-
terious. Some of them, of course, exhibit a clear “algebraic” structure,
which recalls the structure of words of context-free languages. For many
other objects, such a structure has not yet been discovered. We list sev-
eral examples of this type, and discuss various methods for proving the
algebraicity of a generating function.

1 Introduction

The general topic of this paper is the enumeration of simple discrete objects
(words, trees, lattice walks...) and more specifically the rational or algebraic
nature of the associated generating functions. Let A be a class of discrete objects
equipped with a size:

size : A → N

A �→ |A|
Assume that for all n,

An := {A ∈ A : |A| = n}

is finite. Let an = |An|. The (ordinary) generating function of the objects of A,
counted by their size, is the following formal power series in the indeterminate t:

A(t) :=
∑
n≥0

ant
n =

∑
A∈A

t|A|.

The purpose of enumerative combinatorics is to provide tools for finding a
closed formula for the numbers an, or an expression for the generating function
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A(t). In many cases, one is happy enough to find a recurrence relation defining
the sequence an, or a functional equation defining A(t). Enumerative problems
naturally arise in various fields of mathematics and computer science, such as
probability theory and the average case analysis of algorithms. Numerous inter-
esting problems also arise from models in statistical physics, the most celebrated
probably being the Ising model. When dealing in problems with a computer sci-
ence of physics flavour, it is often sufficient, and more informative, to obtain the
asymptotic behaviour of the numbers an rather than an exact formula.

Before defining the main classes of generating functions we are interested in,
let us examine a few simple examples.

Example 1: A Regular Language
Let L = (a+ bb)∗, and let �n be the number of words of length n in L. Clearly,
�0 = �1 = 1, and for n ≥ 2,

�n = �n−1 + �n−2. (1)

Hence �n is the sequence of Fibonacci numbers. Solving the above recurrence
relation gives

�n =
1√
5

(
μn+1 −

(
− 1
μ

)n+1
)

where μ =
1 +

√
5

2
.

Multiplying (1) by tn, and summing over n ≥ 2 gives

L(t) :=
∑
n≥0

�nt
n =

1
1− t− t2 ,

in accordance with the fact that the non-commutative generating function
of L is

1
1− a− bb .

The closed form expression of �n implies that �n ∼ μn+1/
√

5 as n→∞.

Example 2: Ternary Trees
Let T be the set of plane trees in which any vertex has either three children
(ordered from left to right) or no child at all. In the former case, the vertex is
said to be a node, and in the latter case, it is called a leaf. Let tn be the number
of such trees – called ternary trees – having n nodes. Then t0 = t1 = 1 and for
n ≥ 2,

tn =
∑

i,j,k≥0,i+j+k=n−1

titjtk.

This recurrence relation is simply obtained by looking at the sizes of the three
subtrees attached to the root. It translates into the following algebraic equation
that defines the generating function T (t) =

∑
n≥0 tnt

n:

T (t) = 1 + tT (t)3.
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It is possible, but not very pleasant, to solve this equation and write T (t) with
radicals. More interestingly, the Lagrange inversion formula [47–p. 38] allows
one to derive from the equation the following expression of tn:

tn =
1

3n+ 1

(
3n+ 1
n

)
=

1
n+ 1

(
3n
n

)
.

This formula may also be obtained by a purely combinatorial argument, through
the encoding of ternary trees by certain Lukasiewicz words. The enumeration of
these words is then performed via the cycle lemma [47–Ch. 5].

Using Stirling’s formula, one finds

tn ∼
√

3
4
√
π

(
27
4

)n

n−3/2.

Note that for n ≥ 0,

2(2n+ 3)(n+ 1)tn+1 = 3(3n+ 2)(3n+ 1)tn,

with the initial condition t0 = 1, and this implies that the series T (t) satisfies
the linear differential equation:

6T (t) + 6(9t− 1)T ′(t) + t(27t− 4)T ′′(t) = 0.

Example 3: Loops in the Plane
Let W be the set of walks in the discrete plane, formed from North, South, East
and West steps, that start and end at the origin (0, 0). The length of such walks
is necessarily even. Let wn be the number of such walks (called loops) having 2n
steps. Alternatively, wn is the number of words on the alphabet {N,S,E,W}
having as many N ’s and S’s, and as many E’s as W ’s. By projecting the walk
onto the two main diagonals of the plane, one finds

wn =
(

2n
n

)2

∼ 42n

πn
.

These numbers satisfy the recurrence relation

(n+ 1)2wn+1 = 4(2n+ 1)2wn

with the initial condition w0 = 1. This gives the following linear differential
equation satisfied by W (t) =

∑
n≥0 wnt

n:

4W (t) + (32t− 1)W ′(t) + t(16t− 1)W ′′(t) = 0.

As we shall see later, the term n−1 in the asymptotic behaviour of wn prevents
the series W (t) from satisfying a (non-trivial) polynomial equation of the form
P (t,W (t)) = 0.
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In enumerative combinatorics, there is a strong interest in the nature of the
generating function for a class of objects. Before we try to explain why, let us
define the three main types of formal power series that are usually considered:
rational series, algebraic series, and D-finite series.

The formal power series A(t) is rational if it can be written in the form

A(t) =
P (t)
Q(t)

where P (t) and Q(t) are polynomials in t (see [46–Ch. 4]). In particular, the
generating function of Example 1 is rational.
The series A(t) is algebraic (over Q(t)) if it satisfies a (non-trivial) polynomial
equation [47–Ch. 6]:

P (t, A(t)) = 0.

The degree of A(t) is the smallest possible degree of P (in its second variable).
The generating function of ternary trees was shown in Example 2 to be algebraic
(of degree 3).

The series A(t) is D-finite if it satisfies a (non-trivial) linear differential equa-
tion [47–Ch. 6]:

Pk(t)A(k)(t) + · · ·+ P1(t)A′(t) + P0(t)A(t) = 0.

Thegenerating function of loops in theplanewas shown inExample 3 tobeD-finite.
Why do combinatorialists like these families of series? Firstly, combinatori-

alists obey the general mathematical temptation of classifying everything that
they see. Note that the three classes of series we have defined form a hierar-
chy, since every rational series is algebraic and every algebraic series is D-finite.
Secondly, these three classes of series are rather well-behaved:

– they have interesting closure properties: to mention only the simplest ones,
each of these families is closed under the sum and product of series,

– they can be guessed from sufficiently many of their first coefficients (for
instance using the Maple package GFUN [42]),

– they are reasonably easy to handle via computer algebra (partial fraction
expansions, elimination, resultants, Gröbner bases, GFUN...)

– the asymptotic behaviour of their coefficients is rather smooth, and can in
general be determined automatically: typically, for a D-finite series,

a(n) ∼ αμnnγ (logn)j

where α, μ and γ are algebraic over Q and j ∈ N. For algebraic series, j = 0
and γ ∈ Q \ {−1,−2, . . .}. Moreover, for rational series, the exponent γ belongs
to N. The word “typically” means that this is not exactly true... See [29] or [30]
for more details on the algebraic case. The above description is especially in-
complete in the case of D-finite series: their coefficients may actually grow faster
than any exponential when the differential equation they satisfy has an irregular
singular point. However, the systematic study of the asymptotic behaviour of
the coefficients remains attainable via the determination of singular expansions
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of the solutions (see [35, 51] for the theory, and the Maple packages DEtools and
LREtools for its implementation).

Finally, and most importantly in this paper, there are also combinatorial
reasons why we like to be able to determine in which class of series the generating
function we consider lies: there is a general intuition as to what a class of objects
with a rational or algebraic generating function looks like. This is described in
the next two sections1.

2 Rational Generating Functions

The combinatorial intuition associated with rational generating functions is easy
to describe, since it essentially coincides with the notion of regular (or: ratio-
nal) languages [34, 41]. It is generally believed that, if a class A of objects has
a rational generating function, then the structure of the objects is similar to
the structure of the words of a regular language. In particular, they can be con-
structed recursively using a finite-state automaton. Informally, we may say that

“A class of objects has a rational generating function if these objects have a
linear structure: that is, if all objects of size n can be constructed by expanding
all objects of size n− 1 in a finite number of ways.”

Again, this is not a complete description, since it is usually necessary to
introduce several families of objects, A = A1,A2, . . . ,Ak (one per state of the
automaton).

Another way to describe this intuition is to say that the objects of A are
in bijection with certain paths on a finite directed graph, or that they can be
counted using the transfer matrix method [46–Ch. 4]. This intuition has proved
so right in the past that I do not know of any rational generating function
(counting combinatorial objects) that would not be N-rational2. Moreover, it is
usually rather easy to realize that a class of objects has a rational generating
function (a few minutes for a well-trained combinatorialist?).

A typical example is that of integer compositions. Numerous examples are
presented in [46–Ch. 4]. We shall not discuss further the rather simple case
of rational generating functions. However, there are many interesting questions
regarding positive rational series in several variables (see I. Gessel’s lecture at
the 50th Séminaire Lotharingien, available from his web page [31]).

3 Algebraic Generating Functions

By analogy with the rational case, one may think that the objects of a class A
counted by an algebraic generating function have the same structure as the words
of a non-ambiguous context-free (or: algebraic) language. In more combinatorial
terms, we may say, informally again, that

1 I do not believe there currently exists such an intuition for D-finite series.
2 A series is N-rational if it is the generating function of a regular language.
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“A class of objects has an algebraic generating function if these objects have
an algebraic structure: that is, if they admit a recursive description based on the
concatenation of smaller objects of the same type.”

= +

1 +

ε

=T (t) tT (t)3

Fig. 1. Ternary trees have an algebraic generating function

A typical example is that of ternary trees, which consist of three smaller trees.
This intuition was translated in the 80’s into a methodology for proving the alge-
braicity of the generating function of some classes of objects. The principle was
the following: in order to prove in a satisfactory way that the generating function
of a class A of objects is algebraic, one should establish a size-preserving bijection
between these objects and the words of a non-ambiguous context-free language
L. From a non-ambiguous grammar generating L, one can then write a system
of algebraic equations defining the generating function of L, or, equivalently, of
the objects of A. This approach was called “Schützenberger’s methodology” by
X. G. Viennot and the Bordeaux school, and provided satisfactory explanations
for the algebraicity of the generating function of numerous classes of objects [50].
In particular, it helped to clarify the algebraic nature of many families of poly-
ominoes and animals (see Figure 2 and [23, 24, 25]). In some cases, the algebraic
structure of the objects was rather clear, but in other instances, as for directed
animals, it took a few years before this structure was elucidated [6, 7]. Note that,
very often, the algebraic structure can be read directly from the objects: to take
but a simple example, it is not necessary to encode plane trees by Dyck words

Fig. 2. Column-convex polyominoes and directed animals have an algebraic structure
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Fig. 3. The decomposition of a plane tree into two subtrees matches the decomposition
of a Dyck word (or path) into two factors

to realize that their generating function is algebraic (Figure 3). This observation
was formalized, many years later, into the notion of “object grammars” [26].

So, is it always true that objects with an algebraic generating function are in
bijection with words of a non-ambiguous context-free language? In other words,
is every algebraic generating function N-algebraic? Well, maybe not.

Historically, one of the first combinatorial examples suggesting that things
may be more tricky than in the rational case was the example of planar maps. A
planar map is a proper embedding of a planar graph in the sphere, defined up to
a continuous deformation (Figure 4). Maps are usually rooted, meaning that one
edge is distinguished and oriented. It was proved in the early 60’s by Tutte [48]
that the generating function M(t) of planar maps, counted by their number of
edges, satisfies

M(t) = T (t)− tT (t)3 (2)

where T (t) is the only formal power series in t such that

T (t) = 1 + 3tT (t)2. (3)

Tutte’s result raised two questions:
– do we definitely need “minus” signs to describe algebraic generating func-

tions arising from combinatorics? In particular, is M(t) N-algebraic?
– are there combinatorial interpretations of the above pair of equations?

M = T − tT 3 with
T = 1 + 3tT 2

Fig. 4. Planar maps, counted by the number of edges, have an algebraic generating
function
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I do not know, at the moment, the answer to the first question. I would actually
be happy to learn about techniques for proving that an algebraic series is, or is
not, N-algebraic. Is there a characterization of N-algebraic series, as there is a
characterization of N-rational series [5, 45]?

The second question came from the fact that Tutte’s proof did not consist
of a direct combinatorial explanation of these equations. He derived them by
guessing the solution of another functional equation that was easier to establish
(see Section 5 for details). The first combinatorial explanation was given in 1980
by Cori and Vauquelin [22]. They describe a set of trees T naturally counted by
the series T (t), and a size-preserving bijection between planar maps and a subset
S of T . Then, they show that the trees of size n lying in T \ S are in bijection
with 3-tuples of trees of T , of total size n − 1. This explains combinatorially
the system (2–3). Another, simpler explanation was given much more recently.
Again, it is based on a bijection (due to Schaeffer) between planar maps and
certain trees, called balanced blossoming trees [43, 44]. The series T (t) counts all
blossoming trees, and a bijective argument borrowed from [19] shows that the
unbalanced blossoming trees are counted by tT (t)3.

At this stage, we have encountered an algebraic generating function that is
likely not to be N-algebraic. This suggests that context-free languages may not
encapsulate all algebraic series. Still, from a purely combinatorial point of view,
this is not really annoying: the important point for combinatorialists is to be
able to provide a direct combinatorial explanation of an algebraic system that
defines the generating function.

This is, however, not the end of the story: the truth is that many classes
of objects simply refuse to show their algebraic structure, even though they do
have an algebraic generating function. More precisely, in the past few years, I
have kept stumbling across classes of objects for which I was able to prove, with
some difficulty, that the generating function is algebraic, without being able to
exhibit neither a recursive construction of these objects based on concatenation,
nor a bijection with other objects that were clearly algebraic. Some of the most
striking examples of this type are presented in the next section.

4 Why re These Objects “Algebraic”?

All the classes of objects listed in this section have been proved to possess an
algebraic generating function by an ad hoc method. Unless explicitly stated, no
combinatorial explanation (based on bijections and algebraic decompositions)
has been given for the algebraicity of these generating functions. Several of
them have, moreover, nice and simple coefficients, which are not understood
combinatorially either. This raises challenging combinatorial problems.

4.1 Kreweras’ Words and Walks on the Quarter Plane

Let L0 be the set of words u on the alphabet {a, b, c} satisfying the following
two conditions:

A
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(i) |u|a = |u|b = |u|c,
(ii) for every prefix v of u, |v|a ≥ |v|b and |v|a ≥ |v|c.

These words encode certain walks on the plane: these walks start and end at
(0, 0), are made of three types of steps, a = (1, 1), b = (−1, 0) and c = (0,−1),
and never leave the first quadrant of the plane, defined by x, y ≥ 0. The pumping
lemma [34–Theorem 4.7], applied to the word anbncn, shows that the language
L0 is not context-free. However, its generating function is algebraic. Denoting
by �0,0(3n) the number of words of L0 of length 3n, one has

L0(t) =
∑
n≥0

�0,0(3n)t3n =
W

2t

(
1− W 3

4

)
,

where W ≡W (t) is the unique power series in t satisfying

W = t(2 +W 3).

Moreover, the number of such words is remarkably simple:

�0,0(3n) =
4n

(n+ 1)(2n+ 1)

(
3n
n

)
.

The latter formula was proved in 1965 by Kreweras, in a fairly complicated
way [36]. The algebraicity of the generating function was recognized by Ges-
sel [32]. This rather mysterious result has attracted the attention of several
combinatorialists since its publication [10, 12, 32, 38, 39].

The language L formed by the words satisfying condition (ii) above is not
context-free either (the pumping lemma again), but it also has an algebraic
generating function:

L(t) = 2
(1/W − 1)

√
1−W 2

1− 3t
− 1
t
.

More generally, let us denote by �i,j(n) the number of words u of L of length
n such that |u|a−|u|b = i and |u|a−|u|c = j. Define the associated three-variable
generating function

a
b

c

j

i

Fig. 5. Kreweras’ walks in a quadrant
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L(u, v; t) =
∑
i,j,n

�i,j(n)uivjtn.

Then

L(u, v; t) =
(1/W − ū)

√
1− uW 2 + (1/W − v̄)

√
1− vW 2

uv − t(u+ v + u2v2)
− 1
uvt

where ū = 1/u and v̄ = 1/v.
Note that it is not true that walks in the quarter plane always have an

algebraic generating function: for instance, the number of square lattice walks
(with North, South, East and West steps) of size 2n that start and end at (0, 0)
and always remain in the quarter plane is

1
(2n+ 1)(2n+ 2)

(
2n+ 2
n+ 1

)2

∼ 42n+1

πn3 ,

and this asymptotic behaviour prevents the corresponding generating function
from being algebraic. The above formula is easily proven by looking at the pro-
jections of the walk onto the horizontal and vertical axes. A bijective proof is
given in [21].

4.2 Walks on the Slit Plane

Let S0 be the set of words u on the alphabet {a, b, c} satisfying the following
two conditions:

(i) |u|a = 1 + |u|b = 1 + |u|c,
(ii) for every non-empty prefix v of u, if |v|b = |v|c then |v|a > |v|b.

These words encode certain walks on the plane: these walks start at (0, 0),
end at (2, 0), are made of three types of steps, a = (2, 0), b = (−1, 1) and
c = (−1,−1), and never hit the non-positive x-axis once they have left their
starting point. We call such walks “walks on the slit plane” (Figure 6). The
pumping lemma, applied to the word bnan+1cn, shows that the language S0 is
not context-free. However, its generating function is algebraic – and even N-
algebraic. Indeed, denoting by s2,0(3n+ 1) the number of words of S0 of length
3n+ 1, one has

s2,0(3n+ 1) =
4n

n+ 1

(
3n
n

)
.

In other words, this number is 4n times the number of ternary trees with n
nodes, which we encountered in Example 2.

In contrast to the case of walks in the quarter plane, the algebraicity of walks
on the slit plane is a robust property: that is, it is rather resistant to changes
in the set of allowed steps. Take any finite set of steps S ⊂ Z × {−1, 0, 1} (we
say that these steps have small height variations). Let si,j(n) be the number of
walks of length n that start from the origin, never return to the non-positive
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b

c

a

Fig. 6. A walk on the slit plane ending at (2, 0)

i
j

n steps

si,j(n)

Fig. 7. A walk on the slit plane, with steps in {N, S, E, W}

horizontal axis, consist of steps of S and end at (i, j). Let S(u, v; t) be the
associated generating function:

S(u, v; t) =
∑

i,j∈Z,n≥0

si,j(n)uivjtn.

Then this series is always algebraic, as well as the series Si,j(t) :=
∑

n si,j(n)tn

that counts walks ending at (i, j) [9, 17].
Let us consider for instance the case where S is formed of the usual square

lattice steps (North, South, West and East). See Figure 7. Then

S(u, v; t) =

(
1− 2t(1 + ū) +

√
1− 4t

)1/2 (
1 + 2t(1− ū) +

√
1 + 4t

)1/2

1− t(u+ ū+ v + v̄)

with ū = 1/u and v̄ = 1/v. Moreover, the number of walks ending at certain
specific points is remarkably simple. For instance:

s1,0(2n+ 1) = C2n+1, s0,1(2n+ 1) = 4nCn, s−1,1(2n) = C2n.

where Cn =
(2n

n

)
/(n + 1) is the celebrated nth Catalan number, which counts

binary trees, Dyck words, and numerous other combinatorial objects [47–Ch. 6].
The first of these three identities has been proved combinatorially by Barcucci
et al. [3]. The others still defeat our understanding.
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4.3 Embedded Binary Trees

We consider here the classical binary trees, defined in much the same way as
the ternary trees of Example 2: every vertex has either two ordered children (in
which case it is called a node), or no child at all (in which case it is called a leaf).
Let us associate with each node of a binary tree a label, equal to the difference
between the number of right steps and the number of left steps one does when
going from the root to the node. In other words, the label of the node is its
abscissa in the natural integer embedding of the tree (Figure 8).

2

−1 1

11

0

0

Fig. 8. The integer embedding of a binary tree

Let Sj ≡ Sj(t, u) be the generating function of binary trees counted by the
number of nodes (variable t) and the number of nodes at abscissa j (variable u).
The standard decomposition of binary trees gives

S0 = 1 + tuS−1S1,
Sj = 1 + tSj−1Sj+1 for j = 0.

It has be shown that for all j ∈ Z, the series Sj(t, u) is algebraic of degree (at
most) 8 (while Sj(t, 1) is quadratic) [8].

Let j ≥ 1. Setting u = 0 in Sj(t, u), we obtain the generating function Tj−1(t)
that counts binary trees in which all nodes lie at abscissa at most j−1. Of course,
the series Tj are algebraic too. Their degree is (at most) 2, and they admit a
simple expression in terms of the series T ≡ T (t) and Z ≡ Z(t) defined as
follows:

T = 1 + tT 2 and Z = t

(
1 + Z2

)2
(1− Z + Z2)

.

For j ≥ 0,

Tj = T
(1− Zj+2)(1− Zj+7)
(1− Zj+4)(1− Zj+5)

.

Why is that so? From this, one can derive some limit results on the dis-
tribution of the number of nodes at abscissa �λn1/4� in a random tree with n
nodes [8]. These results may tell us something about the law of a “universal”
random mass distribution called the integrated super-Brownian excursion [1, 37].
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5 Proving the Algebraicity of a Generating Function

The first (and best) strategy for proving the algebraicity of a generating function
was described and illustrated at length in Section 3. It consists of finding a
recursive description of the objects based on concatenation: this gives directly
a polynomial equation (or a set of polynomial equations) for their generating
function. This is illustrated by Example 2 and Figure 1 (ternary trees).

A variant of this strategy consists in describing a bijection with other objects,
which admit a clear “algebraic” decomposition. We have already mentioned in
Section 3 the rather recent example of the enumeration of planar maps by Scha-
effer via balanced blossoming trees [43, 44]. Recall that the associated decompo-
sition involves a “minus” sign. In the past few years, this type of construction
has been extended to many families of planar maps, thus providing a satisfactory
explanation for the algebraicity of their generating functions [15, 16, 40].

This approach, however, has not (yet) been successful to prove any of the
results stated in Section 4. Then, how did one prove these results? What can be
done if one cannot discover an “algebraic structure” in the objects one is trying
to count? Well, the natural strategy is to discover any (recursive) structure, to
translate it into a functional equation for the generating function, and finally to
prove that the solution of this equation is algebraic.

+ +=

Fig. 9. Tutte’s decomposition of rooted planar maps

Let us examine again the “historical” example of planar maps. Tutte estab-
lished the equations of Figure 4 without giving a combinatorial explanation for
them. Yet, he gave a very simple decomposition of maps (based on the deletion
of the root edge, see Figure 9). But, in order to exploit this decomposition, he
had to take into account an additional parameter in the enumeration, namely
the degree of the infinite face (also called outer-degree) [48]. This forced him to
introduce refined numbers mn,k (counting maps with n edges and outer-degree
k), and a bivariate generating function M(u, t) =

∑
n,k≥0mn,kt

nuk. At this cost,
it became very easy to write a functional equation defining M(u, t):

M(u, t) = 1 + tu2M(u, t)2 + t
uM(u, t)−M(1, t)

u− 1
.

Tutte then proved that the seriesM(1, t) was algebraic. This implies thatM(u, t)
is algebraic too. He actually guessed the value of M1(t) := M(t, 1), then showed
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the existence of a series M(u, t) that fits with M1(t) when u = 1, and satisfies
the above equation.

The above example is actually rather typical: it very often happens that it
becomes much much easier to find and exploit a decomposition of the objects
(even a very nave one) when taking into account one or several additional param-
eters. In the case of planar maps, one has to add a single parameter. For walks
in the quarter plane (Section 4.1), writing an equation becomes almost trivial
if one agrees to count walks ending at any point (i, j) of the quadrant, and to
take into account, in the enumeration, the coordinates of this endpoint. At this
cost, it becomes possible to exploit the most nave decomposition of walks one
can dream of, based on the deletion of the final step. This gives, for the series
L(u, v; t) defined in Section 4.1:

L(u, v; t) = 1+tuvL(u, v; t)+
t

u
(L(u, v; t)− L(0, v; t))+

t

v
(L(u, v; t)− L(u, 0; t))

(4)
and this equation completely defines the series L(u, v; t) – but does not tell us
very clearly why it is algebraic. Similarly, for the walks on the slit plane of
Figure 7,

S(u, v; t) = 1 + t(u+ v +
1
u

+
1
v
)S(u, v; t)−B(1/u; t)

where B(1/u; t) is a series in t with polynomial coefficients in 1/u that corre-
sponds to the “forbidden moves”, and can be described explicitly in terms of the
coefficients of S(u, v; t) (this description is actually not necessary to solve the
equation, see [9]).

Following a terminology introduced by Zeilberger [52], we say that the vari-
ables u and v are catalytic variables. The above examples suggest that we have to
learn which equations with catalytic variables have an algebraic solution, and how
to obtain an algebraic system defining this solution. More generally, one would like
to be able to solve such equations, whether their solution is algebraic or not...

5.1 Polynomial Equations with One Catalytic Variable

The case of one catalytic variable has now been completely clarified. Consider
an equation of the form

P (F (u), F1, . . . , Fk, t, u) = 0 (5)

and assume it defines uniquely a (k+ 1)-tuple (F (u), F1, . . . , Fk) of formal power
series in t. Typically, F (u) ≡ F (t, u) has polynomial coefficients in u, and Fi ≡
Fi(t) is the coefficient of ui−1 in F (t, u). In a recent work with A. Jehanne, we
proved that the solution of “every” such equation is algebraic [18]. Moreover, a
practical strategy allows one to solve specific examples (that is, to derive from (5)
an algebraic equation forF (u), orF1, . . . , Fk). Our method extends what had been
done before for linear and quadratic equations (the kernel method [27, 2, 13] and
the quadratic method [20, 33–Section 2.9]). See [18] for more references and details.
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These results provide a second general strategy for proving the algebraicity of
the generating function of a class of objects: it suffices to establish a polynomial
equation with one catalytic variable. Recent applications include the solution of
a model of hard-particles on planar maps [18], and the enumeration of triangu-
lations with high vertex degrees [4].

5.2 Linear Equations with Two Catalytic Variables

In contrast to the case of one catalytic variable, there is no hope that all lin-
ear equations with two catalytic variables have an algebraic solution. This is
shown by the enumeration of square lattice walks constrained to stay in the first
quadrant. Their three-variable generating function satisfies

Q(u, v; t)=1+t(u+v)Q(u, v; t)+
t

u
(Q(u, v; t)−Q(0, v; t))+

t

v
(Q(u, v; t)−Q(u, 0; t))

but, as mentioned at the end of Section 4.1, the series Q(0, 0; t) is transcendental,
which prevents the complete series Q(u, v; t) from being algebraic.

To our knowledge, there is, at the moment, no way to solve systematically a
linear equation with two catalytic variables. However, some principles are begin-
ning to emerge, and have proved successful for several instances of such equa-
tions. In particular, it is shown in [10, 12] how to derive the algebraicity of the
generating function of Kreweras’ walks in the quarter plane from the functional
equation (4). See also [10, 14] for other results on walks confined to the quarter
plane, and [11] for other occurrences of such equations in the enumeration of
pattern avoiding permutations. Some of the key ideas in the treatment of these
equations were inspired by the book of Fayolle, Iasnogorodski and Malyshev, in
which related equations are solved in a more analytic context [28].

Let us finally underline the word “linear” in the title of this subsection: we
only know of one example of a non-linear (but polynomial) equation with two
catalytic variables that has been solved. It is related to the enumeration of planar
triangulations, weighted by their chromatic polynomial. It took Tutte ten years
and ten papers to solve the equation he had established in 1973. The solution
turned out to be differentially algebraic, meaning that it satisfies a polynomial
differential equation

P (A(t), A′(t), A′′(t), t) = 0.

See [49] for a summary of this tour de force.

6 Concluding Remarks and Questions

Some of the questions below may have been solved already, or be simple to solve.

Regarding N-Algebraic Series
It is still an open question to know whether all (combinatorial) generating
functions that are rational (resp. algebraic) are actually N-rational (resp. N-
algebraic). It seems that the answer could be yes in the first case, and no in
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the second. The generating function for planar maps (Figure 4) is possibly not
N-rational.

How can one decide whether an algebraic series with positive coefficients is
N-algebraic, or not? What about the singularities of N-algebraic series? What
about the asymptotic behaviour of their coefficients? Can we find context-free,
non-ambiguous languages L such that the number of words of length n in L
grows like αμnnγ , for any γ ∈ Q \ {−1,−2, . . .}?
Regarding D-Finite Series
Regular languages, and context-free languages, fit well with the first two steps
of our hierarchy of formal power series, namely rational series and algebraic
series. Is there somewhere a well-polished class of languages that would fit with
the third step of our hierarchy, namely the class of D-finite series defined in
Section 1? Recall that a series A(t) =

∑
n ant

n is D-finite if and only if its
coefficients satisfy a linear recurrence relation with polynomial coefficients:

P0(n)an + P1(n)an−1 + · · ·+ Pk(n)an−k = 0

for n large enough.
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6. J. Bétréma and J.-G. Penaud. Animaux et arbres guingois. Theoret. Comput. Sci.,

117(1-2):67–89, 1993.
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Abstract. Exponential algorithms, i.e. algorithms of complexity O(cn)
for some c > 1, seem to be unavoidable in the case of NP-complete
problems (unless P=NP), especially if the problem in question needs to
be solved exactly and not approximately. If the constant c is close to 1
such algorithms have practical importance. Deterministic algorithms of
exponential complexity usually involve some kind of backtracking. The
analysis of such backtracking algorithms in terms of solving recurrence
equations is quite well understood. The purpose of the current paper is to
show cases in which the constant c could be significantly reduced, and to
point out that there are some randomized exponential-time algorithms
which use randomization in some new ways. Most of our examples refer
to the 3-SAT problem, i.e. the problem of determining satisfiability of
formulas in conjunctive normal form with at most 3 literals per clause.

1 Why Exponential-Time Algorithms?

Unless P=NP, exponential (or at least non-polynomial) algorithms are unavoid-
able for NP-complete problems such as SAT or 3-SAT. This is especially so if
the problem in question needs to be solved or decided exactly, and when there
is no use of any type of approximation algorithm.

Having accepted that we have to deal with exponential-time algorithms only,
it makes sense to improve the relative efficiency of our algorithms by reducing
the value of the base constant c in the exponential time bound O(cn). New
algorithms which are able to reduce the constant c can mean an tremendous
improvement. Moving from an algorithm with complexity O(cn) to another,
better one, with complexity O(dn) where d =

√
c means that, within the same

given time limit, the input size that can be solved by the new algorithm, doubles.
In concrete terms, improving the brute-force algorithm for 3-SAT of complexity
O(2n) (where n is the number of Boolean variables) to another one of complexity
O(1.324n) (as it was indeed the case within the last years [14, 17, 10]). This
improvement allows to increase the number of tractable Boolean variables by a
factor of more than 2.4 .

Another motivating example are SAT-solvers which are extremely useful
general-purpose programs which are operating in worst-case exponential-time.
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2 Backtracking

Most deterministic exponential-time algorithms use some version of backtrack-
ing. For example, one can try out all potential 2n many assignments for a Boolean
formula in n variables in a backtracking manner. In each level of the recursive
backtrack tree one more variable is assigned one of the two Boolean values true
or false. This direct approach leads to the recursion T (n) ≤ 2 · T (n− 1), giving
the complexity T (n) = O(2n).

More sophisticated approaches can reduce the number of variables in the
recursive procedure calls not only from n to n− 1, but to n− 2, n− 3, etc. The
3-SAT algorithm of Monien and Speckenmeyer [11], for example, first chooses
a shortest clause in the formula which, in the worst case, has 3 literals, say
x, y, z. The first recursive call of the procedure assigns x = 1 and simplifies
the formula accordingly. If this recursive call is not successful (no satisfying
assignment is found), then the partial assignment (x = 0, y = 1) is tried next.
If again unsuccessful, the last recursive call is done with respect to the partial
assignment (x = 0, y = 0, z = 1). This leads to the recursion T (n) ≤ T (n− 1)+
T (n− 2) + T (n− 3) with the solution T (n) = O(1.84n).

This algorithm has been trimmed even more in [11]. Using the concept of au-
tark partial assignments, the new recursive tree structure leads to the equations
T (n) ≤ T ′(n − 1) + T ′(n − 2) + T ′(n − 3), T ′(n) ≤ max{T (n − 1), T ′(n − 1) +
T ′(n− 2)} having the solution T (n) = O(1.619n).

Consider as another example the problem of 3-coloring a given graph with
n vertices. The very naive approach to solve this problem is to assign to each
vertex independently one of the 3 colors and try all cases in brute-force manner.
This leads to an O(3n) algorithm. The next (still) naive approach is to start in
a backtracking way with a first node, assign it color 1, then backtrack through
all its neighbors and try out all 2 remaining colors. Continue recursively by
considering the neighbor vertices which have not been colored yet and try both
remaining possibilities. This leads to a O(2n) algorithm. The next option is to
notice that one of the 3 colors cannot occur more often than

(
n

n/3

)
many times.

Hence, we systematically assign color 1 to at most
(

n
n/3

)
vertices in the graph.

These are
n/3∑
i=0

(
n

i

)
≤ 2h(1/3)n ≤ 1.89n

many posssibilities (where h is the entropy function [2].) In all those cases where
there is no edge between any two vertices with color 1, the remaining graph
needs to be 2-colored. Whether this is possible can be determined in polynomial
time. Therefore, this procedure has complexity O(1.89n).

3 Local Search

Local Search starts with a given assignment. If this assignment is not yet a
solution (i.e. a satisfying assignment in case of the SAT problem), the actual
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assignment is modified. These modifications are typically very local, for example,
a 1 bit flip is performed (one variable which has the actual value true is set
to false, or vice versa). These modifications (or ”mutations” in evolutionary
algorithms terminology) are either done in a random or some deterministic,
systematic fashion. The better algorithms of this kind use in some sense the
(mis-)behavior of the actual assignment on the input to get some kind of ”hint”
what modification might be useful and will probably lead in the right direction.
”Leading in the right direction” can be quantified in terms of the Hamming
distance between the actual assignment and some fixed solution assignment (i.e.
satisfying assignment).

In [16, 7, 8] a deterministic backtracking-like recursive procedure
search(F,a,d) is used for solving 3-SAT. This procedure returns true, if
there exists a satisfying assignment a∗ for the Boolean formula F which is
within Hamming distance at most d from the given initial assignment a. The
Hamming distance between two bit vectors of equal length is the number of
bits in which they differ. This procedure search works as follows. First it checks
whether one of the trivial cases occurs. If for example a already satisfies F
(leading to the returned value true), or else, if d = 0 (leading to the returned
value false). If these cases do not occur, then a does not satisfy F and d > 0.
Since a does not satisfy F there is a clause C in F which is not satisfied by
a. All ≤ 3 literals in C are set to false by a. Under the satisfying assignment
a∗ that we are looking for, at least one of these literals must be set to true.
Hence, if we flip the value of one of the variables in C, we make the Hamming
distance between a and a∗ smaller by 1. Therefore, we perform 3 recursive calls,
in each recursive call one of the bits in the assignment a which corresponds to
a variable in C is flipped. Further, the parameter d is reduced to d − 1. It is
clear that this procedure needs time T (d) ≤ 3 · T (d − 1), hence T (d) = O(3d)
(ignoring polynomial factors). Now we have to discuss the question, how the
initial assignments a come about. The easiest case is that we take just two
initial assignments 0n and 1n and set d = n/2. This gives us already a very
simple 3-SAT algorithm of complexity O(3n/2) = O(1.74n).

Next we push this further, and choose the initial assignments systematically
from some precomputed list L = {a1, a2, a3, . . . , at} where t is an exponential
function in n, the number of variables. This list L, together with some suitable
chosen Hamming distance d, should be a so called covering code [6], i.e. every bit
vector of length n should be within Hamming distance at most d to at least one
ai ∈ L. It turns out that the optimal choice for d is n/4, and t = 1.14n (together
with an appropriate choice of the ai). This gives the overall complexity bound
t · 3d = 1.14n · 3n/4 = 1.5n.

In [7, 8] it is shown how the procedure search can be further modified such
that the complexity of searching up to Hamming distance d can be estimated as
T (d) ≤ 6 · T (d− 2) + 6 · T (d− 3) with the solution T (d) = O(2.85d). Using this
bound and modifying the choices of d and t to d = 0.26n and t = 1.13n gives
the overall complexity bound t · 2.85d = 1.13n · 2.850.26n = 1.481n. (This was
recently improved to 1.473n [5].)
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4 Randomization: Reducing to a Polynomial-Time Case

Up to now, we have considered deterministic strategies which are able to reduce
the exponential constant c as compared to the direct brute-force strategy (which
usually means that the constant is c = 2). Randomization can help in various
ways to improve such algorithms. Many randomized algorithms are superior to
their deterministic competitors.

Often, NP-complete problems have versions which are efficiently solvable (like
2-SAT or 2-colorability). A random choice can reduce a difficult problem to an
easy one if some of the parameters (values of variables) are chosen and assigned at
random. Of course, by assigning some variable or problem parameter at random
in a wrong way, we might loose the chance of finding any solution afterwards.
Such random restrictions have to be repeated a certain number of times. The
repetition number is determined by the reciprocal of the success probability of
one such random restriction. Of course, this repetition number has to be taken
into account within the overall complexity estimation. In other words, if we have
some randomized algorithm which has complexity t and success probability p
(both depending on n), then this algorithm needs to be repeated c · p−1 many
times to achieve an error probability of at most (1 − p)c/p ≤ e−c so that the
overall complexity becomes c · t · p−1.

As an example, in [4] a method for solving the 3-coloring problem is de-
scribed. For each of the n vertices decide at random which one of the 3
colors should not be placed on this vertex. Each of these random decision
can be wrong with probability 1/3, and all decisions are consistent with
a potential 3-coloring with probability p = (2/3)n. Given such an assign-
ment of 2 possible colors to each of the n vertices of a graph, it is pos-
sible to decide whether such a coloring exists in polynomial time, e.g. by
reducing the problem to a 2-SAT problem which can be solved in poly-
nomial time [1]. That is, in this case t is a polynomial in n, and the
overall complexity for solving 3-coloring becomes some polynomial times
(3/2)n.

5 Randomization: Permuting the Evaluation Order

In some cases, the complexity of an algorithm can depend very much on the order
in which the variables (or the possible values of the variables) are processed. To
escape the worst case input situations, it might be a good idea to choose the
order in a random way. A nice example of this strategy can be found in [15]:
A game tree evaluation can be considered as evaluating a quantified Boolean
formula of the form

∃x1 ∀x2 ∃x3 ∀x4 . . . Qnxn F (x1, x2, . . . , xn)

Each variable xi can take the possible values true or false. It is standard to
evaluate such expressions in a backtracking manner. The recursion tree can be
interpreted as an AND-OR tree. Evaluating an OR (or existential quantifier)
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can turn out to be rather quickly done if the first subtree returns the value true.
In this case there is no need to evaluate the second subtree; the result will be
the truth value true. Obviously, we do not know beforehand which (if any) of
the two subtrees might return true. Now let us decide at random which of the
two arguments to evaluate first. If one of the subtrees has value true, then with
probability at least 1/2 we select this subtree first and the evaluation of the OR
is fast. Even in the case that both subtrees have the truth value false, there
is some advantage, namely, in the AND-level (or universal quantifier) which is
immediately following, we know now that the result value is false, which means
that at least one argument is false. Again (by dual reasoning) this is a good
situation when evaluating an AND. This leads to the following recursion for
the expected number of recursive calls: T (n) ≤ S(n− 1) + 1

2 · T (n− 1), S(n) =
2·T (n−1), giving the complexity bounds T (n) = O(1.69n) and S(n) = O(1.69n).

Another such random permuting idea can be found in the 3-SAT algorithm
of Paturi et al [13, 14]. Here the variable order is chosen at random. Now, given a
particular order of the Boolean variables, one variable after the other (according
to that order) is assigned a truth value. In the regular case, this is done at
random (with probability 1/2 this choice might be wrong and will not lead to a
satisfying assignment), or after having substituted the partial assignment so far
into the formula (and simplified) it sometimes turns out that the next variable
to be assigned according to the order forms a unit clause in the (remaining)
formula. In this case the variable is assigned such that this unit clause becomes
true. Assuming that the previous random choices were correct, this deterministic
setting of the variable is also correct. It turns out, that in this (simple version of
the) algorithm, on the average, taken over all n! permutations of the variables,
just 2n/3 many random choices are needed. Consequently, the probability for
finding a satisfying assignment this way is 2−2n/3, and the overall complexity
bound is O(22n/3) = O(1.58n).

Intuitively, one might say that after substituting those partial assignments
into the formula, the (resulting) formula occasionally gives a 1-bit ”hint” what
the next assignment should be. In the second paper [14] the authors show that it
is possible to do some preprocessing with the formula F which is transformed to
F ′, a formula having more clauses, but the same number of variables, and being
equivalent to the original formula F . The advantage of using F ′ instead of F is
that F ′ is likely to give more such 1-bit hints, on the average, and therefore, more
random bits can be saved. The analysis in [14] shows that this is an O(1.36n)
algorithm for 3-SAT.

6 Randomized Local Search

We already discussed a way of performing a deterministic local search, starting
from some initial assignment a, to find out whether there is a satisfying assign-
ment a∗ within Hamming distance at most d from a. Instead of flipping each
value of the 3 variables systematically in a backtracking fashion as described in
Section 3, we now just choose one these variables at random and flip its value.
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(This idea appears already in the randomized O(n2) 2-SAT algorithm of Pa-
padimitriou [12]. Applying and analyzing this principle in the context of 3-SAT
was done in [17, 18].) Of course, the probability of choosing the correct variable
to flip can be as low as 1/3. Therefore, the probability of finding a satisfying
assignment which is by Hamming distance d away from the initial assignment, is
just (1/3)d. But now we modify this approach by letting the flipping process last
for 3d steps instead of just d steps. Even if we have d ”mistakes” (within the 3d
steps) by flipping variables which have already the correct value, there is still a
chance that we correct these mistakes (by another d steps) and further on do the
necessary corrections (by another d steps) to make the assignment equal to the
satisfying assignment a∗. There are

(3d
d

)
possibilities of this situation happening,

and each of these has probability (2/3)d · (1/3)2d, resulting in a success prob-
ability of

(3d
d

)
· (2/3)d · (1/3)2d = (1/2)d (up to some small polynomial factor).

Compare with the (1/3)d from above. This means, if we just select a random
initial assignment and then perform a random local search (as described) for 3n
steps, we get a success probability (probability of finding a satisfying assignment
- if one exists) of E[(1/2)D]. Here D is the random variable that indicates the
Hamming distance of the initial assignment to some fixed satisfying assignment.

If we produce the initial assignment absolutely at random – without referring
to the input formula F – then this expectation becomes E[(1/2)X1+...+Xn ] =∏n

i=1E[(1/2)Xi ] = (3/4)n. Here the Xi are 0-1-valued random variables which
indicate whether there is a difference in the i-th bit. Therefore, we get the com-
plexity bound O((4/3)n) (ignoring polynomial factors).

In the paper by Iwama and Tamaki [10] this random walk algorithm is com-
bined with the O(1.36n)-algorithm [14] from above. Both algorithms work on the
same random initial assignment. This results in the fastest algorithm for 3-SAT
known so far with a complexity bound of O(1.324n) (where ”fastest” refers to
the fact that there is a rigorous proof for the upper bound – of course there are
numerous other algorithms in the SAT-solver scene using all kind of heuristics
and different approaches. Doing performance test on benchmark formulas and
random formulas is, of course, serious and important research, but usually leaves
us without a proven worst-case upper bound.)

The same principle strategy can be applied to the 3-colorability problem.
First, guess an initial coloring at random. Whenever there is an edge with its
both vertices of the same color, select one of the vertices at random and change
its color to one of the two remaining colors at random. Repeat this ”repair”
process for 3n steps. The probability of success for one such run turns out to be
(2/3)n. Therefore the complexity bound isO(1.5n) (ignoring polynomial factors),
when the basis algorithm is repeated this number of times.

7 Randomization with Biased Coins

In the algorithm of the last section, we used the structure of the formula to lead
the search process. But on the other hand, when producing the initial assignment
we ignored the input formula completely. The question is now whether the input
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formula can be used to lead the stochastic choice of the initial assignment. We
present some ideas from [3, 9].

The first thing we do is to collect as many mutually variable-disjoint clauses
having 3 literals of as possible, by some greedy strategy. Suppose the number
m of clauses collected this way is small (say m < 0.1469n). Then we can cycle
through all potential 7m assignments of these variables. After plugging in these
partial assignments, the rest of the formula becomes a 2-CNF formula, and its
satisfiability can be determined in polynomial time. Hence, in this case, we stay
below the total complexity O(1.331n).

If the number of mutually disjoint clauses is larger than 0.1469n, then we
assign each of the 3 literals of these clauses at random an initial assignment
in a particular biased way: with probability 3p exactly one of the 3 literals is
assigned the value true (where each of the 3 literals gets the same chance p),
With probability 3q we assign exactly two of the 3 literals in the clause the value
true. With probability 1− 3p− 3q assign all three literals the value true. Good
values for p and q will be determined later.

Supposing that the satisfying assignment a∗ assigns the three literals x, y, z
the values 1, 0, 0, we get that the Hamming distance between the initial assign-
ment a and a∗, as a random variable, can have the value 0 (with probability p),
the value 1 (with probability 2q), the value 2 (with probability 1− p− 3q), and
the value 3 (with probability q). Hence, the expectation of the random variable
(1/2)D where D is the Hamming distance on these 3 variables, is

1 · (p) +
1
2
· (2q) +

1
4
· (1− p− 3q) +

1
8
· q = (1/4 + 3p/4 + 3q/8)

For a satisfying assignment which assigns to x, y, z the values 1, 1, 0 or the
values 1, 1, 1 similar calculations can be done. If the number m of of mutually
disjoint clauses splits into m = m1 +m2 +m3 where mi is the number of clauses
which have exactly i literals true under assignment a∗, we get for the overall
expectation of (1/2)Hamming-distance, and hence for the success probability, the
term

(1/4 + 3p/4 + 3q/8)m1 · (1/2− 3p/8)m2 · (1− 9p/4− 3q/2)m3 · (3/4)n−3m

Now, either we determine p and q in such a way that all three exponential
bases become identical (giving p = 4/21 and q = 2/21), or we compute for each
of the (polynomially many!) choices for m1,m2,m3 individually a good choice
for p and q which minimizes the complexity. The latter strategy is somewhat
better, both are close to O(1.331n).
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Abstract. In recent years, probabilistic analyses of algorithms have re-
ceived increasing attention. Despite results on the average-case complex-
ity and smoothed complexity of exact deterministic algorithms, little
is known about the average-case behavior of randomized search heuris-
tics (RSHs). In this paper, two simple RSHs are studied on a simple
scheduling problem. While it turns out that in the worst case, both RSHs
need exponential time to create solutions being significantly better than
4/3-approximate, an average-case analysis for two input distributions
reveals that one RSH is convergent to optimality in polynomial time.
Moreover, it is shown that for both RSHs, parallel runs yield a PRAS.

1 Introduction

It is widely acknowledged that worst-case analyses may provide too pessimistic
estimations for the runtime of practically relevant algorithms and heuristics.
Therefore, in recent years, there has been a growing interest in the probabilistic
analysis of algorithms. Famous examples include results on the average-case
time complexity of a classical algorithm for the knapsack problem [1] and of
the simplex algorithm [2]. Both papers show a polynomial runtime in the even
stronger model of so-called smoothed complexity.

Approximation is another way out of this worst-case way of thinking. It is
well known that many NP-hard problems allow polynomial-time approximation
algorithms or even approximation schemes [3]. However, if even no approxima-
tion algorithms are available, one often resorts to heuristic approaches, which
are said to provide good solutions within a tolerable span of time. Such ap-
proaches may be the only choice if there are not enough resources (time, money,
experts, . . . ) available to design problem-specific (approximation) algorithms.

Many general-purpose heuristics such as the Metropolis algorithm or Sim-
ulated Annealing [4] rely on the powerful concept of randomization. Another
popular class of randomized search heuristics (RSHs) is formed by the so-called
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Evolutionary Algorithms (EAs), see [5]. Despite having been applied success-
fully for more than 30 years, a theoretical foundation of the computational time
complexity of EAs has started only recently, see, e. g., [6, 7, 8, 9, 10].

However, almost all results on the time complexity of RSHs are concerned
with exact optimization. Moreover, these results mostly refer to worst-case in-
stances from the class of problems considered. In contrast, the real aims of heuris-
tics are approximation and efficient average-case behavior. Therefore, we should
consider these aspects when studying general-purpose heuristics such as EAs.
Positive and negative results will help to understand under what circumstances
such heuristics can be efficient (approximation) algorithms and to provide guide-
lines for the practitioner when and how to apply them. Our approach starts by
investigating RSHs on well-studied combinatorial problems. Such analyses have
already been carried out in the context of exact optimization, e. g., [9, 10]. Of
course, our goal is not to compare RSHs with clever problem-specific algorithms.

In this paper, we consider two simple RSHs for a well-known optimization
problem, namely the optimization variant of the NP-complete PARTITION
problem: Given n positive integers w1, . . . , wn, find some subset I ⊆ {1, . . . , n}
such that m(I) := max

{∑
i∈I wi,

∑
i/∈I wi

}
becomes minimal. This is one of

the easiest-to-state and easiest-to-solve NP-hard problems since it even allows
an FPAS [3]; from a practical point of view, it may be regarded as a simple
scheduling problem. In fact, there already are some average-case analyses of
classical greedy heuristics designed for this problem [11, 12]. We will relate these
results to those for the general-purpose RSHs considered by us.

Since the RSHs to be defined have been designed for pseudo-Boolean opti-
mization, we encode a solution to a PARTITION instance by the characteristic
vector of I and arrive at the pseudo-Boolean function f : {0, 1}n → R, whose
value f(x) equals m(I) if x encodes the set I. The following two simple RSHs
are sometimes called hillclimbers. They store only one current search point and
do not accept worsenings, which are, in this case, search points with some larger
f -value. Both can be described by an initialization step and an infinite loop.

(1+1) EA
Initialization: Choose a ∈ {0, 1}n randomly.
Loop: The loop consists of a mutation and a selection step.
Mutation: For each position i, decide independently whether ai should be

flipped (replaced by 1− ai), the flipping probability equals 1/n.
Selection: Replace a by a′ iff f(a′) ≤ f(a).

The (1+1) EA has a positive probability to create any search point from any
search point and eventually optimizes each pseudo-Boolean function. This does
not hold for Randomized Local Search (RLS), which flips only one bit per step.

RLS
This works like the (1+1) EA with a different mutation operator.
Mutation: Choose i ∈ {1, . . . , n} randomly and flip ai.

We ignore the stopping criterion needed by practical implementations of these
RSHs and are interested in the f -value of the current search point by some time t,
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i. e., after t iterations of the infinite loop. Mainly, we try to estimate in how far
this f -value approximates the optimum if t is bounded by some polynomial.

The paper is structured as follows. In Sect. 2, we provide some basic defi-
nitions and proof techniques needed to estimate the progress of the RSHs. In
Sect. 3, we prove worst-case results on the approximation ratios obtainable by the
RSHs within polynomial time. Moreover, we show that these results can be ex-
tended to parallel runs of the RSHs so as to design a randomized approximation
scheme. In Sect. 3, we extend our techniques toward a probabilistic average-case
analysis for two well-known input distributions. We finish with some conclusions.

2 Definitions and Proof Methods

Throughout the paper, we adopt the following conventions. Given an instance
w1, . . . , wn for the optimization problem PARTITION, we assume w. l. o. g. that
w1 ≥ · · · ≥ wn. Moreover, we set w := w1 + · · · + wn. We call the indices
1, . . . , n objects and call wi the volume of the i-th object. Sometimes, the objects
themselves are also called w1, . . . , wn. The optimization problem can be thought
of as putting the objects in one of two bins, and a search point x ∈ {0, 1}n is the
characteristic vector of the set of objects put into the first bin. Then the goal
function f corresponds to the total volume in the fuller bin w. r. t. x.

We will essentially exploit two proof methods in order to show bounds on
the approximative quality of a solution output by the considered RSH. Both
techniques only study progresses by so-called local steps, i. e., steps to search
points at Hamming distance 1. Therefore, the analyses apply only until points
of time where the heuristic RLS is able to get stuck in a local optimum. We
are interested in sufficient conditions such that the considered RSH is able to
improve the f -value by local steps. A first idea is to bound the volume of the
largest object in the fuller bin from above. We do something similar but neglect
the objects making the bin the fuller bin.

Definition 1 (Critical Volume). Let W = (w1, . . . , wn) be an instance for
the partition problem and let � ≥ w/2 be a lower bound on the optimum f-value
w. r. t. W . Moreover, let x ∈ {0, 1}n be a characteristic vector s. t. f(x) > �. Let
wi1 ≥ wi2 ≥ · · · ≥ wik

be the objects in the fuller bin w. r. t. x, ranked in non-
increasing order. Let r := ij for the smallest j such that wi1 + · · ·+wij

> �. The
volume wr is called the critical volume (w. r. t. W , � and x).

The idea behind the critical volume is as follows. Suppose that x is the current
search point of the RSH, leading to f(x) > �, and we know an upper bound v
on the critical volume w. r. t. the instance, � and x. Let r be the minimum i s. t.
wi ≤ v. Due to w1 ≥ · · · ≥ wn, we know that wr is also an upper bound on the
critical volume. By the definition of critical volume, there is some object wr′ ,
where r′ ≥ r, in the fuller bin. If we additionally know that f(x) ≥ �+ v holds,
together with � ≥ w/2 this implies that wr′ can be moved from the fuller bin
into the emptier one, decreasing the f -value. Thus, a local step improves x.
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The described sufficient condition for locally improvable search points can
even be strengthened. Suppose that we have the same setting as before with the
exception that now �+ v/2 < f(x) < �+ v holds. If wr′ ≤ f(x)− w/2, wr′ can
still be moved to the emptier bin. Otherwise, this step makes the fuller bin the
emptier bin. Since wr′ ≤ wr ≤ v, the total volume in this bin will be greater
than � + v/2 − wr ≥ w/2 − wr/2 and, therefore, the f -value less than � + v/2.
Hence, the step is accepted by the RSH, too.

For RLS, a local step to a specific point at Hamming distance 1 has probabil-
ity 1/n, and for the (1+1) EA, the probability is at least (1/n)(1 − 1/n)n−1

≥ 1/(en). If we know that the critical volume is always bounded by some
small value, we can exploit this to show upper bounds on the f -values
obtainable in expected polynomial time. The special case w1 ≥ w/2 can be
solved exactly.

Lemma 1. Let W and � be as in Definition 1. Suppose that from some time t∗

on, the critical volume w. r. t. W , � and the current search point of the (1+1) EA
or of RLS is at most v. Then the RSH reaches an f-value at most �+v/2 if w1 <
w/2 and at most w1 otherwise in an expected number of another O(n2) steps.

Proof. Let r be the smallest i where wi ≤ v. We consider the run of the RSH only
from time t∗ on. The proof uses a fitness-level argument [6]. Let s := wr+· · ·+wn,
i. e., the sum of all volumes at most as large as wr. Note that the conditions of
the lemma and the definition of critical volume imply that f(x) ≤ � + s for all
current search points x. According to wr, . . . , wn, we partition the set of possible
current search points by so-called fitness levels as follows. Let

Li :=
{
x
∣∣∣ �+ s−

r+i−1∑
j=r

wj ≥ f(x) > �+ s−
r+i∑
j=r

wj

}

for 0 ≤ i ≤ n− r and Ln−r+1 := {x | � = f(x)}. Now consider some x such that
f(x) > � + wr/2. By the definition of critical volume, there must be an object
from wr, . . . , wn in the fuller bin whose move to the emptier bin decreases the
f -value by its volume or leads to an f -value of at most � + wr/2 ≤ � + v/2. If
x ∈ Li, due to wr ≥ · · · ≥ wn, there is even an object from wr, . . . , wr+i with this
property. By the above considerations, moving this object to the emptier bin by a
local step of the RSH has probability at least 1/(en) and, due to wr ≥ · · · ≥ wn,
leads to some x′ ∈ Lj such that j > i. The expected waiting time for such a step
is at most en. After at most n−r+1 sets have been left, the f -value has dropped
to at most �+ wr/2. Hence, the total expected time after time t∗ is O(n2).

If w1 ≥ w/2, we can apply the previous arguments with the special values
� := w1 and r := 2. The only difference is that in case that f(x) > �, there must
be an object of volume at most f(x)−� in the fuller bin. Hence, the RSH cannot
be in a local optimum and is able to reach Ln−r+1 by local steps. ��

If we are satisfied with slightly larger f -values than guaranteed by Lemma 1,
significantly smaller upper bounds on the expected time can be shown.
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Lemma 2. Let W and � be as in Definition 1. Suppose that from some time t∗

on, the critical volume w. r. t. W , � and the current search point of the (1+1) EA
or of RLS is at most v. Then for any γ > 1 and 0 < δ < 1, the (1+1) EA (RLS)
reaches an f-value at most �+ v/2 + δw/2 if w1 < w/2 and at most w1 + δw/2
otherwise in at most �en ln(γ/δ)� (�n ln(γ/δ)�) another steps with probability
at least 1 − γ−1. Moreover, the expected number of another steps is at most
2�en ln(2/δ)� (2�n ln(2/δ)�).
Proof. Let r be the smallest i where wi ≤ v. First, we consider the run of the
(1+1) EA from time t∗ on. Let x be a current search point s. t. f(x) > �+wr/2.
We are interested in the contribution of the so-called small objects wr, . . . , wn

to the f -value and want to estimate the average decrease of the f -value by a
similar method as presented in [10]. Let p(x) := max{f(x)−�−wr/2, 0} and note
that due to the definition of critical volume and the conditions of the lemma,
p(x) is a lower bound on the contribution of small objects to f(x). Moreover,
as long as p(x) > 0, all steps moving only a small object to the emptier bin
are accepted and decrease the p-value by its volume or lead to an f -value of at
most �+v/2. Let p0 be some current p-value. Since a local step of the (1+1) EA
has probability at least 1/(en), the expected p-decrease is at least p0/(en) and
the expected p-value after the step, therefore, at most (1− 1/(en))p0. Since the
steps of the (1+1) EA are independent, this argumentation remains valid if p0 is
only an expected value and can be iterated until the p-value equals 0. Hence, the
expected p-value pt after t steps is at most (1− 1/(en))tp0. For t′ := en ln(γ/δ),
we have pt′ ≤ δp0/γ ≤ δw/(2γ). Since the p-value is non-negative, we can apply
Markov’s inequality, implying pt′ ≤ δw/2 with probability at least 1−1/γ. Since
the previous arguments make no assumptions on p0, we can repeat independent
phases of length �en ln(2/δ)�. The expected number of phases until the p-value
is at most δw/2 is at most 2, implying the lemma for the case w1 < w/2.

If w1 ≥ w/2, we can apply the previous arguments with the special values
� := w1 and r := 2. The only difference is that in case that f(x) > �, there must
be an object of volume at most f(x)− � in the fuller bin. Hence, the (1+1) EA
cannot be in a local optimum. Redefining p(x) := f(x) − �, the lemma follows
for the (1+1) EA. The statements on RLS follow in the same way, taking into
account that a local step has probability 1/n. ��

3 Worst-Case Analyses

In this section, we will study bounds on the approximation ratios obtainable by
the RSHs within polynomial time regardless of the problem instance.

Theorem 1. Let ε > 0 be a constant. On any instance for the partition problem,
the (1+1) EA and RLS reach an f-value that is at least (4/3+ε)-approximate in
an expected number of O(n) steps and an f-value that is at least 4/3-approximate
in an expected number of O(n2) steps.

Proof. We start by studying trivial instances with w1 ≥ w/2. Then even both
statements follow for δ := 1/3 by means of Lemma 2.
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Now let w1 < w/2 and � := w/2. We still have to distinguish two cases. The
first case holds if w1+w2 > 2w/3. This implies w1 > w/3 and, therefore, w−w1 <
2w/3. Hence, if we start with w1 and w2 in the same bin, a step separating
w1 and w2 by putting w2 into the emptier bin is accepted, and these objects
will remain separated afterwards. The expected time until such a separating
step occurs is O(n). Afterwards, the critical volume according to Definition 1
is always bounded above by w3. Since w3 + · · · + wn < w/3, we know that
wi < w/3 for i ≥ 3. Hence, the first statement of the theorem follows for δ := ε
by Lemma 2 and the second one by Lemma 1. If w1 + w2 ≤ 2w/3, we have
wi ≤ w/3 for i ≥ 2. Since w1 < w/2, this implies that the critical volume is
always at most w2 ≤ w/3. Therefore, the theorem holds also in this case. ��

The approximation ratio 4/3 that the RSHs are able to obtain within ex-
pected polynomial time is at least almost tight. Let n be even and ε > 0 be
some arbitrarily small constant. Then the instance W ∗

ε , an almost worst-case in-
stance, contains two objects w1 and w2 of volume 1/3−ε/4 each and n−2 objects
of volume (1/3 + ε/2)/(n− 2). Note that the total volume has been normalized
to 1 and that the instance has an exponential number of perfect partitions.

Theorem 2. Let ε be any constant s. t. 0 < ε < 1/3. With probability Ω(1),
both the (1+1) EA and RLS take nΩ(n) steps to create a solution better than
(4/3− ε)-approximate for the instance W ∗

ε .

Proof. The proof idea is to show that the RSH reaches a situation where w1 and
w2 are in one bin and at least k := n− 2− (n− 2)ε/2 of the remaining so-called
small objects are in the other one. Since ε < 1/3, at least k objects yield a total
volume of more than 1/3 + ε/4. To leave the situation by separating w1 and w2,
the RSH has to transfer small objects of a total volume of at least ε/4 from one
bin to the other one in a single step. For this, (n − 2)ε/2 small objects are not
enough. Flipping Ω(n) bits in one step of the (1+1) EA has probability n−Ω(n),
and flipping Ω(n) bits at least once within ncn steps is, therefore, still expo-
nentially unlikely if the constant c is small enough. For RLS, the probability is
even 0. Since the total volume in the fuller bin is at least 2/3 − ε/2 unless w1
and w2 are separated, this will imply the theorem.

To show the claim that the described situation is reached with probabil-
ity Ω(1), we consider the initial search point of the RSH. With probability 1/2,
it puts w1 and w2 into the same bin. Therefore, we estimate the probability
that enough small objects are transferred from this bin to the other one in or-
der to reach the situation, before a bit at the first two positions (denoting the
large objects) flips. In a phase of length cn for any constant c, with probability
(1− 2/n)cn = Ω(1), the latter never happens. Under this assumption, each step
moving a small object into the emptier bin is accepted. By the same idea as in
the proof of Lemma 2, we estimate the expected decrease of the contribution
of small objects to the f -value. Reducing it to at most an ε/2-fraction of its
initial contribution suffices to obtain at least k objects in the emptier bin. Each
step leads to an expected decrease by at least a 1/(en)-fraction. Since ε is a
positive constant, O(n) steps are sufficient to decrease the contribution to at
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most an expected ε/4-fraction. By Markov’s inequality, we obtain the desired
fraction within O(n) steps with probability at least 1/2. Since c may be chosen
appropriately, this proves the theorem. ��

The worst-case example studied in Theorem 2 suggests that the RSH is likely
to arrive at a bad approximation if it misplaces objects of high volume. On the
other hand, it can easily be shown for the example that the RSH is able to find
an optimal solution with probability Ω(1) in polynomial time if it separates the
two largest objects in the beginning. We try to generalize this to arbitrary in-
stances. In order to obtain a (1 + ε)-approximation in polynomial time according
to Lemma 1, the critical volume should be bounded above by εw. Due to the
ordering w1 ≥ · · · ≥ wn, all objects of index at least s := �1/ε� are bounded by
this volume. Therefore, the crucial idea is to bound the probability that the RSH
distributes the first s−1 objects in such a nice way that the critical volume is at
most ws. Interestingly, this is essentially the same idea as for the classical PTAS
for the partition problem presented by Graham [13]. Even if the RSH does not
know of this algorithmic idea, it is able to behave accordingly by chance.

Theorem 3. Let ε ≥ 4/n. With probability at least 2−(e log e+e)
2/ε� ln(2/ε)−
2/ε�,
the (1+1) EA on any instance for the partition problem creates a (1 + ε)-approx-
imate solution in �en ln(2/ε))� steps. The same holds for RLS with �n ln(2/ε))�
steps and a probability of even at least 2−(log e+1)
2/ε� ln(2/ε)−
2/ε�.

Proof. Let s := �2/ε� ≤ n/2 + 1. Since w1 ≥ · · · ≥ wn, it holds that wi ≤ εw/2
for i ≥ s. If w1 + · · · + ws−1 ≤ w/2, the critical volume w. r. t. � := w/2 is
always bounded above by ws and, therefore, by εw/2. Therefore, in this case,
the theorem follows for δ := ε and γ := 2 by Lemma 2.

In the following, we assume w1 + · · ·+ws−1 > w/2. Consider all partitions of
only the first s−1 objects. Let �∗ be the minimum volume of the fuller bin over all
these partitions and � := max{w/2, �∗}. Then with a probability at least 2−s+2,
in the beginning, neither bin receives a contribution of more than � by these
objects. As long as the property remains valid, we can be sure that the critical
volume w. r. t. � is at most ws ≤ εw/2, and we can apply the arguments from
the first paragraph. The probability that in a phase of t := �en ln(2/ε)� steps, it
never happens that at least one of the first s− 1 bits flips is bounded below by

(
1− s− 1

n

)en(ln(2/ε))+1

≥ e−e(ln(2/ε))(s−1)
(

1− s− 1
n

)se ln(2/ε)

,

which is at least 2−(e log e+e)
2/ε� ln(2/ε) since s− 1 ≤ n/2. Under the mentioned
conditions, by Lemma 2 for δ := ε and γ := 2, the (1+1) EA reaches a (1 + ε)-ap-
proximation within t steps with probability at least 1/2. Altogether, the desired
approximation is reached within t steps with probability at least

1
2
· 2−
2/ε�+2 · 2−(e log e+e)
2/ε� ln(2/ε) ≥ 2−(e log e+e)
2/ε� ln(2/ε)−
2/ε�.

The statement for RLS follows by redefining t := �n ln(2/ε)�. ��
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Theorem 3 allows us to design a PRAS (polynomial-time randomized approx-
imation scheme, see [14]) for the partition problem using multistart variants of
the considered RSH. If �(n) is a lower bound on the probability that a single
run of the RSH achieves the desired approximation in O(n ln(1/ε)) steps then
this holds for at least one out of �2/�(n)� parallel runs with a probability of at
least 1 − e−2 > 3/4. According to the lower bounds �(n) given in Theorem 3,
the computational effort c(n) incurred by the parallel runs is bounded above by
O(n ln(1/ε)) · 2(e log e+e)
2/ε� ln(2/ε)+O(1/ε). For ε > 0 a constant, c(n) = O(n)
holds, and c(n) is still a polynomial for any ε = Ω(log log n/log n). This is the
first example where it could be shown that an RSH serves as a PRAS for an
NP-hard optimization problem. Before, a characterization of an EA as a PRAS
was only known for the maximum matching problem [9].

4 Average-Case Analyses

A probabilistic analysis of RSHs on random inputs must take into account two
sources of randomness. Since this constitutes one of the first attempts in this
respect, we concentrate on two fairly simple and well-known distributions. First,
we assume the volumes wi to be independent random variables drawn uniformly
from the interval [0, 1]. This is called the uniform-distribution model. Second, we
rather consider exponentially distributed random variables with parameter 1,
which is called the exponential-distribution model.

In the last two decades, some average-case analyses of deterministic heuristics
for the partition problem have been performed. The first such analyses studied
the LPT rule, a greedy algorithm sorting the volumes decreasingly and putting
each object from the resulting sequence into the currently emptier bin. Extending
a result that stated convergence in expectation, Frenk and Rinnooy Kan [11] were
able to prove that the LPT rule converges to optimality at a speed of O(logn/n)
almost surely in several input models, including the uniform-distribution and
exponential-distribution model. Further results on average-case analyses of more
elaborate deterministic heuristics are contained in [12].

In our models, the optimum f -value is random. Therefore, for a current search
point, we now consider the so-called discrepancy measure rather than an ap-
proximation ratio. The discrepancy denotes the absolute difference of the total
volumes in the bins. It is easy to see that the initial discrepancy in both models
is Ω(

√
n) with constant probability. We start with a simple upper bound on the

discrepancy after polynomially many steps in the uniform-distribution model.

Lemma 3. The discrepancy of the (1+1) EA (RLS) in the uniform-distribution
model is bounded above by 1 after an expected number of O(n2) (O(n log n)) steps.
Moreover, for any constant c ≥ 1, it is bounded above by 1 with probability at
least 1−O(1/nc) after O(n2 log n) (O(n log n)) steps.

Proof. Recall the argumentation given after Definition 1. Hence, if the discrep-
ancy is greater than 1, local steps can improve the f -value by the volume moved
or lead to a discrepancy of less than 1. By a fitness-level argument like in the
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proof of Lemma 1, we obtain the O(n2) bound for the (1+1) EA. This holds for
any random instance. Hence, by Markov’s inequality and repeating phases, the
discrepancy is at most 1 with probability 1−O(1/nc) after O(n2 log n) steps. The
statements for RLS follow immediately by the Coupon Collector’s Theorem. ��

The foregoing upper bound on the discrepancy was easy to obtain; however,
for the (1+1) EA, we can show that with a high probability, the discrepancy
provably becomes much lower than 1 in a polynomial number of steps. The
reason is as follows. All preceding proofs considered only local steps; however,
the (1+1) EA is able to leave local optima by flipping several bits in a step.

The following two theorems will use the following simple properties of or-
der statistics (e. g., [15]). Let X(1) ≥ · · · ≥ X(n) be the order statistics of
the volumes in the uniform-distribution model. Then for 1 ≤ i ≤ n − 1 and
0 < t < 1, Prob(X(i) − X(i+1) ≥ t) = Prob(X(n) ≥ t) = (1 − t)n. In the
exponential-distribution model, there is a sequence of independent, parameter-1
exponentially distributed random variables Y1, . . . , Yn s. t. X(i) =

∑n
j=i

Yj

j for
1 ≤ i ≤ n.

Theorem 4. Let c ≥ 1 be an arbitrary constant. After O(nc+4 log n) steps,
the discrepancy of the (1+1) EA in the uniform-distribution model is bounded
above by O(logn/n) with probability at least 1−O(1/nc). Moreover, the expected
discrepancy after O(n5 log n) steps is also bounded by O(logn/n).

Proof. By Lemma 3, the discrepancy is at most 1 after O(n2 log n) steps with
probability at least 1−O(1/n2). Since the discrepancy is always bounded by n,
the failure probability contributes only an O(1/n)-term to the expected discrep-
ancy after O(n5 log n) steps. From now on, we consider the time after the first
step where the discrepancy is at most 1 and concentrate on steps flipping two
bits. If an accepted step moves an object of volume w′ from the fuller to the
emptier bin and one of volume w′′ < w′ the other way round, the discrepancy
may be decreased by 2(w′−w′′). We look for combinations s. t. w′−w′′ is small.

Let X(1) ≥ · · · ≥ X(n) be the order statistics of the random volumes. If for
the current search point, there is some i s. t. X(i) is the order statistic of an
object in the fuller and X(i+1) is in the emptier bin then a step exchanging
X(i) and X(i+1) may decrease the discrepancy by 2(X(i) −X(i+1)). If no such i
exists, all objects in the emptier bin are larger than any object in the fuller bin.
In this case, X(n) can be moved into the emptier bin, possibly decreasing the
discrepancy by 2X(n). Hence, we need upper bounds on X(i)−X(i+1) and X(n).

Let t∗ := (c+1)(lnn)/n, i. e., t∗ = O(logn/n) since c is a constant. We obtain
(1 − t∗)n ≤ n−c−1. By the above-mentioned statement, this implies that with
probability 1−O(1/nc), X(i)−X(i+1) ≤ t∗ holds for all i and Prob(X(n) ≥ t∗) =
O(1/nc+1). Now assume X(i) −X(i+1) ≤ t∗ for all i and X(n) ≤ t∗. If this does
not hold, we bound the expected discrepancy after O(nc+4 log n) steps by 1,
yielding a term of O(1/nc) = O(1/n) in the total expected discrepancy. By the
argumentation given after Definition 1, there is always a step flipping at most 2
bits that decreases the discrepancy as long as the discrepancy is greater than t∗.
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It remains to estimate the time to decrease the discrepancy. Therefore, we
need lower bounds on X(i) − X(i+1) and Xn. Let �∗ := 1/nc+2. We obtain
Prob(X(i) − X(i+1) ≥ �∗) ≥ e−2/nc+1 ≥ 1 − 2/nc+1. Hence, with probability
1 − O(1/nc), X(i) −X(i+1) ≥ �∗ for all i. Moreover, X(n) ≥ �∗ with probability
1 − O(1/nc+1). We assume these lower bounds to hold, introducing a failure
probability of only O(1/nc), whose contribution to the expected discrepancy
is negligible as above. A step flipping 1 resp. 2 specific bits has probability at
least n−2(1− 1/n)n−2 ≥ 1/(en2). Hence, the discrepancy is decreased by at
least �∗ or drops below t∗ with probability Ω(1/n2) in each step. The expected
time until the discrepancy becomes at most t∗ is, therefore, bounded above by
O(�∗n2) = O(nc+4), and, by repeating phases, the time is at most O(nc+4 log n)
with probability 1−O(1/nc). The sum of all failure probabilities is O(1/nc). ��

Theorem 5. Let c ≥ 1 be an arbitrary constant. With probability 1−O(1/nc),
the discrepancy of the (1+1) EA in the exponential-distribution model is bounded
above by O(logn) after O(n2 log n) steps and by O(logn/n) after O(nc+4 log2 n)
steps. Moreover, the expected discrepancy is O(logn) after O(n2 log n) steps and
it is O(logn/n) after O(n6 log2 n) steps.

Proof. The expected value of the initial discrepancy is bounded above by n since
each object has an expected volume of 1. In the following, all failure probabilities
can be bounded byO(1/n2). In case of a failure, we will tacitly bound the failure’s
contribution to the expected discrepancy after O(n2 log n) resp. O(n6 log2 n)
steps by O(1/n). Next, we will show that with probability 1−O(1/nc), the
critical volume w. r. t. � := w/2 is always O(logn). Together with Lemma 1, this
claim implies the theorem for the situation after O(n2 log n) steps.

To show the claim, like in the proof of Theorem 4, we consider the order
statisticsX(1) ≥ · · · ≥ X(n) of the random volumes. Our goal is to show that with
high probability, X(1) + · · ·+X(k) ≤ w/2 holds for k := �δn� and some constant
δ > 0. Afterwards, we will prove that X(k) = O(logn) with high probability.

Each object has a volume of at least 1 with probability e−1 > 1/3. By Cher-
noff bounds, w ≥ n/3 with probability 1− 2−Ω(n). To bound X(1) + · · ·+X(k),
we use the above-mentioned identity X(i) =

∑n
j=i Yj/j. Hence,

X(1) + · · ·+X(k) = Y1 + 2 · Y2

2
+ · · ·+ k · Yk

k
+ k

n∑
i=k+1

Yi

i

≤
k∑

j=1

Yj +

n/k�∑
i=1

1
i

(i+1)k∑
j=ik+1

Yj ,

where Yj := 0 for j > n. Essentially, we are confronted with �n/k� sums of k
exponentially distributed random variables each. A simple calculation (deferred
to the last paragraph of this proof) yields that a single sum is bounded above
by 2k with probability 1−2−Ω(k), which is at least 1−2−Ω(n) for the values of k
considered. Since we consider at most n sums, this statement also holds for all
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sums together. Hence, with probability 1− 2−Ω(n), the considered expression is
bounded above by

2�δn�+
1/δ∑
i=1

2�δn�
i

≤ 2(δn+ 1) ln(1/δ + 2),

which is strictly less than n/6 for δ ≤ 1/50 and n large enough. Together with
the above lower bound on w, this implies that with probability 1− 2−Ω(n), the
critical volume is always bounded above by the �n/50�-th largest volume.

How large is X(
n/50�)? Since with probability at least 1 − ne−(c+1) ln n ≥
1 − n−c, all random variables Yj are bounded above by (c + 1) lnn, it follows
that with at least the same probability, we have

X
n/50� =
n∑

j=
n/50�

Yj

j
≤ (c+ 1)(lnn)((lnn) + 1− ln(n/49))

(for n large enough), which equals (c+ 1)(ln(49) + 1)(lnn) = O(logn). The sum
of all failure probabilities is O(1/nc), bounding the critical volume as desired.

We still have to show the theorem for the case of O(nc+4 log2 n) steps. Now
we assume that the discrepancy has been decreased to O(logn) and use the same
idea as in the proof of Theorem 4 by investigating steps swappingX(i) andX(i+1)
or moving X(n). Above, we have shown that with probability 1− O(1/nc), the
smallest object in the fuller bin is always at most X(k) for some k ≥ n/50. Since
X(k) −X(k+1) = Yk/k, we obtain X(k) −X(k+1) ≤ 50Yk/n with the mentioned
probability. Moreover, it was shown that Yj ≤ (c+ 1) lnn for all j with at least
the same probability. Altogether, X(k) −X(k+1) ≤ 50(c+ 1)(lnn/n) =: t∗ with
probability 1 − O(1/nc). Since X(n) = Yn/n, Prob(X(n) ≤ t∗) with probability
1−O(1/nc), too. In the following, we assume these upper bounds to hold. This
implies that as long as the discrepancy is greater than t∗, there is a step flipping
at most 2 bits and decreasing the discrepancy.

It remains to establish lower bounds onX(k)−X(k+1) andX(n). We know that
X(k) −X(k+1) ≥ Yk/n and obtain Prob(X(k) −X(k+1) ≥ 1/nc+2) ≥ e−1/nc+1 ≥
1 − 1/nc+1 for any fixed k and Prob(X(n) ≥ 1/nc+2) ≥ 1 − 1/nc+1. All events
together occur with probability 1− O(1/nc). By the same arguments as in the
proof of Theorem 4, the expected time until the discrepancy becomes at most t∗

is O(nc+4 log n), and the time is bounded by O(nc+4 log2 n) with probability
1−O(1/nc). The sum of all failure probabilities is O(1/nc). This will imply the
theorem.

We still have to show the following claim. The sum Sk of k exponentially
distributed random variables with parameter 1 is at most 2k with probability
1− 2−Ω(k). Observe that Sk follows a gamma distribution, i. e.,

Prob(Sk ≥ 2k) = e−2k

(
1 +

2k
1!

+ · · ·+ (2k)k−1

(k − 1)!

)
≤ ke−2k(2k)k−1

(k − 1)!
.
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By Stirling’s formula, the last expression is bounded above by

e−2k+(k−1) · 2k−1 · k · kk−1

(k − 1)k−1 = e−2k+(k−1) · 2k−1 · k ·
(

1− 1
k

)−(k−1)

= 2−Ω(k).

This proves the claim and, therefore, the theorem. ��

Theorem 4 and Theorem 5 imply that in both models, the solution of the
(1+1) EA after a polynomial number of steps converges to optimality in expecta-
tion. Moreover, the asymptotic discrepancy after a polynomial number of steps is
at most O(logn/n), i. e., convergent to 0, with probability 1−O(1/nc), i. e., con-
vergent to 1 polynomially fast. This is almost as strong as the above-mentioned
result for the LPT rule.

5 Conclusions

In this paper, we have presented a probabilistic analysis for randomized search
heuristics on the optimization variant of the PARTITION problem. In the worst
case, both the (1+1) EA and RLS with constant probability need exponential
time to create solutions being better than (4/3−ε)-approximate; however, paral-
lel runs of the heuristics lead to a PRAS. An average-case analysis with respect
to two input distributions shows that the (1+1) EA, inspected after a poly-
nomial number of steps, creates solutions that are in some sense convergent to
optimality. By this average-case analysis, we have made a step towards a theoret-
ical justification of the efficiency of randomized search heuristics for practically
relevant problem instances.

Acknowledgements. The author thanks Ingo Wegener for helpful discussions.
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Extended Abstract

Abstract. Recent work in the analysis of randomized approximation al-
gorithms for NP -hard optimization problems has involved approximat-
ing the solution to a problem by the solution of a related sub-problem of
constant size, where the sub-problem is constructed by sampling elements
of the original problem uniformly at random. In light of interest in prob-
lems with a heterogeneous structure, for which uniform sampling might
be expected to yield sub-optimal results, we investigate the use of nonuni-
form sampling probabilities. We develop and analyze an algorithm which
uses a novel sampling method to obtain improved bounds for approxi-
mating the Max-Cut of a graph. In particular, we show that by judicious
choice of sampling probabilities one can obtain error bounds that are su-
perior to the ones obtained by uniform sampling, both for weighted and
unweighted versions of Max-Cut. Of at least as much interest as the re-
sults we derive are the techniques we use. The first technique is a method
to compute a compressed approximate decomposition of a matrix as the
product of three smaller matrices, each of which has several appealing
properties. The second technique is a method to approximate the feasi-
bility or infeasibility of a large linear program by checking the feasibility
or infeasibility of a nonuniformly randomly chosen sub-program of the
original linear program. We expect that these and related techniques will
prove fruitful for the future development of randomized approximation
algorithms for problems whose input instances contain heterogeneities.

1 Introduction

1.1 Background

We are interested in developing improved methods to compute approximate
solutions to certain NP -hard optimization problems that arise in applications of
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graph theory and that have significant heterogeneities and/or nonuniformities.
The methods we present here are a first step in that direction; they make use of
random sampling according to certain judiciously chosen nonuniform probability
distributions and they depend heavily on our recent work on designing and
analyzing fast Monte Carlo algorithms for performing useful computations on
large matrices [12, 13, 14].

As an application of these methods we design and analyze an algorithm to
compute an approximation for the Max-Cut problem. In a Max-Cut problem,
also known as a maximum weight cut problem, the input consists of the n × n
adjacency matrix A of an undirected graph G = (V,E) with n vertices, and the
objective of the problem is to find a cut, i.e., a partition of the vertices into two
subsets V1 and V2, such that the number of edges of E that have one endpoint
in V1 and one endpoint in V2 is maximized. In its weighted version, the input
consists of an n× n weighted adjacency matrix A, and the objective is to find a
cut such that the sum of the weights of the edges of E that have one endpoint
in V1 and one endpoint in V2 is maximized.

Work originating with [3] has focused on designing PTASs for a large class
of NP -hard optimization problems, such as the Max-Cut problem, when the
problem instances are dense [3, 6, 16, 18, 17, 1, 2]. [3] and [6], using quite different
methods, designed approximation algorithms for Max-Cut (and other problems)
that achieve an additive error of εn2 (where ε > 0, ε ∈ Ω(1) is an error parameter)
in a time poly(n) (and exponential in 1/ε); this implies relative error for dense
instances of these problems. In [18] it was shown that a constant-sized (with
respect to n) sample of a graph is sufficient to determine whether a graph has
a cut close to a certain value. This work investigated dense instances of NP -
hard problems from the viewpoint of query complexity and property testing
and yielded an O(1/ε5) time algorithm to approximate, among other problems,
dense instances of Max-Cut. [16] and [17] examined the regularity properties of
dense graphs and developed a new method to approximate matrices; this led
to a PTAS for dense instances of all Max-2-CSP, and more generally for dense
instances of all Max-CSP, problems. [1, 2] extended this and developed a PTAS
for dense instances of all Max-CSP problems in which the sample complexity
was poly(1/ε) and independent of n; when applied to the Max-Cut problem this
led to an O

(
log 1/ε

ε4

)
time approximation algorithm.

In all these cases, these approximation algorithms involve sampling elements
of the input uniformly at random in order to construct a sub-problem which
is then used to compute an approximation to the original problem with addi-
tive error at most εn2 [3, 6, 16, 18, 17, 1, 2]; this then translates into a relative
error bound for dense graphs. These methods are not useful for nondense graphs
since with such an error bound a trivial approximate solution would always suf-
fice. This uniform sampling does have the advantage that it can be carried out
“blindly” since the “coins” can be tossed before seeing the data; then, given
either random access or one pass, i.e., one sequential read, through the data,
samples from the data may be drawn and then used to compute. Such uniform
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sampling is appropriate for problems that have nice uniformity or regularity
properties [16].

In many applications of graph theory problems, however, significant hetero-
geneities are present [22]. For instance, the graph may have a power-law struc-
ture, or a large part of the graph may be very sparse and a small subset of
vertices (sometimes, but not always a o(n)-sized subset) may have most of the
edges (1−o(1) of the edges) incident to them. Similarly, in a weighted graph, the
total weight of edges incident to most vertices may be small, while among the
remaining vertices the total weight of incident edges may be quite large. Neither
the adjacency matrix nor the adjacency list representation of a graph used in
property testing captures well this phenomenon [18].

With the additional flexibility of several passes over the data, we may use
one pass to assess the “importance” of a piece (or set of pieces) of data and de-
termine the probability with which it (or they) should be sampled, and a second
pass to actually draw the sample. Such importance sampling has a long his-
tory [21]. In recent work, we have shown that by sampling columns and/or rows
of a matrix according to a judiciously-chosen and data-dependent nonuniform
probability distribution, we may obtain better (relative to uniform sampling)
bounds for approximation algorithms for a variety of common matrix opera-
tions [12, 13, 14]; see also [8, 9, 10]. The power of using information to construct
nonuniform sampling probabilities has also been demonstrated in recent work
examining so-called oblivious versus so-called adaptive sampling [4, 5]. For in-
stance, it was demonstrated that in certain cases approximation algorithms (for
matrix problems such as those discussed in [12, 13, 14]) which use oblivious uni-
form sampling cannot achieve the error bounds that are achieved by adaptively
constructing nonuniform sampling probabilities [4, 5].

1.2 Our Main Result

In this paper we develop an approximation algorithm for both weighted and
unweighted versions of the Max-Cut problem. We do so by using nonuniform
sampling probabilities in the construction of the sub-problem to be solved. For
weighted graphs, these methods lead to substantial improvements when the av-
erage edge weight is much less than the maximum edge weight; for unweighted
graphs, we show that at the cost of substantial additional sampling, these meth-
ods lead to an additive error improvement over previous results [18, 2].

Let A be the n × n weighted adjacency matrix of a graph G = (V,E), let ε
be a constant independent of n, and recall that ‖A‖2F =

∑
ij A2

ij . A main result
of this paper, which is presented in a more precise form in Theorem 3, is that
there exists an algorithm that, upon being input A, returns an approximation
Z to the Max-Cut of A such that with high probability

|Z −MAX-CUT [A]| ≤ εn ‖A‖F . (1)

The algorithm makes three passes, i.e., three sequential reads, through the ma-
trix A and then needs constant additional space and constant additional time
(constant, that is, with respect to n) in order to compute the approximation.
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The algorithm uses a judiciously-chosen and data-dependent nonuniform proba-
bility distribution in order to obtain bounds of the form (1); these probabilities
are computed in the first two passes through the matrix.

Our results are of particular interest for weighted graphs. Note that for
weighted problems, the εn2 error bound of previous work for unweighted graphs
extends easily to εn2Wmax, where Wmax is the maximum edge weight. For these
problems, ‖A‖F /n may be thought of as the average weight over all the edges;
one may then view our error bounds as replacing Wmax in the εn2Wmax error
bound by ‖A‖F /n. If only a few of the weights are much higher than this aver-
age value, the bound of εn ‖A‖F given in (1) is much better than the bound of
εn2Wmax.

For a complete graph ‖A‖2F = n(n − 1) since Aij = 1 for every i = j. For
general unweighted graphs

√
2 |E| = ‖A‖F < n, where |E| the cardinality of

the edge set. Thus, in general, the additive error bound (1) becomes εn
√

2 |E|,
which is an improvement over the previous results of εn2 [18, 2]. In addition,
from this bound we obtain a PTAS for graphs with |E| = Ω(n2). Unfortu-
nately, this does not translate into a PTAS for any class of sub-dense graphs.
Demonstrating that such a PTAS exists would be significant application of our
methodology and is the object of current work; it has been shown recently by
other methods that there does exist a PTAS for Max-Cut and other Max-2-
CSP problems restricted to slightly subdense, i.e., Ω(n2/ log n) edges, graphs
[7]. Since we are primarily interested in presenting a methodology to deal with
heterogeneities and nonuniformities that arise in applications of graph theory
problems, we make no effort to optimize constants or polynomial factors. In
particular, although we have a PTAS, both the sampling complexity and the
running time of the algorithm are exponential in 1/ε, which is substantially
larger than previous results [18, 2]; we expect that this may be substantially
improved.

1.3 Outline of the Paper

In Section 2 we provide a review of relevant linear algebra and of our first
intermediate result which is the approximate CŨR decomposition results from
[14] that will be needed for the proofs of our results. In Section 3 we then present
our second intermediate result that deals with approximating the feasibility of
a LP by considering random sub-programs of the LP. Then, in Section 4 we
present and analyze an algorithm to approximate the Max-Cut of a matrix; in
particular, we summarize a proof of Theorem 3 which establishes (1).

1.4 Technical Report and Journal Paper

For the proofs of the results presented here, as well as for more details and
discussion related to these results, see the associated technical report [15]. Also,
see the associated journal paper [11].
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2 Review of Relevant Background

This section contains a review of linear algebra that will be useful throughout
the paper; for more detail, see [19, 20, 23] and references therein. This section
also contains a review of the compressed approximate CŨR decomposition of a
matrix. The CŨR result is presented in much more generality in [14] and depends
critically on related work on computing an approximation to the Singular Value
Decomposition (SVD) of a matrix and on computing an approximation to the
product of two matrices; see [12, 13, 14] for more details.

2.1 Review of Linear Algebra

For a vector x ∈ Rn we let xi, i = 1, . . . , n, denote the i-th element of x and we
let |x| =

(∑n
i=1 |xi|2

)1/2. For a matrix A ∈ Rm×n we let A(j), j = 1, . . . , n, de-
note the j-th column of A as a column vector and A(i), i = 1, . . . , m, denote the
i-th row of A as a row vector. We denote matrix norms by ‖A‖ξ, using subscripts
to distinguish between various norms. Of particular interest will be the Frobe-
nius norm, the square of which is ‖A‖2F =

∑m
i=1
∑n

j=1 A2
ij , and the spectral

norm, which is defined by ‖A‖2 = supx∈Rn, x�=0
|Ax|
|x| . These norms are related

to each other as: ‖A‖2 ≤ ‖A‖F ≤
√

n ‖A‖2. If the SVD of A is A = UΣV T

=
∑ρ

t=1 σtu
tvtT

, where ρ is the rank of A, then for k ≤ ρ define Ak =
∑k

t=1σtu
tvtT

.

2.2 Review of Approximating a Matrix as the Product CŨR

In [14] we presented and analyzed two algorithms to compute compressed ap-
proximate decompositions of a matrix A ∈ Rm×n. The second approximation
(computed with the ConstantTimeCUR algorithm of [14]) is of the form
A′ = CŨR, where C is an m × c matrix consisting of c randomly picked (and
suitably rescaled) columns of A, R is an r × n matrix consisting of r randomly
picked (and suitably rescaled) rows of A; the algorithm constructs the w× c ma-
trix W consisting of w randomly picked (and suitably rescaled) rows of C, and
from the SVD of WT W constructs the c×r matrix Ũ . The CŨR approximation
may be defined after making three passes through the data matrix A, and Ũ
can be constructed using additional RAM space and time that is O(1). In the
following theorem we let c = w = r = s for simplicity. Note also that γ is a
parameter and k is the rank of the approximation; see [14] for a full discussion
and definition of notation.

Theorem 1. Suppose A ∈ Rm×n and let C, Ũ , and R be constructed from the
ConstantTimeCUR algorithm by sampling s columns of A (and then sampling
s rows of C) and s rows of A. Let δ, ε > 0. If a spectral norm bound is desired,
and hence the ConstantTimeCUR algorithm of [14] is run with γ = Θ(ε)
and s = Ω

(
1/ε8

)
, then under appropriate assumptions on the sampling proba-

bilities we have that with probability at least 1 − δ each of the following holds:
‖C‖F = ‖A‖F ,

∥∥∥Ũ
∥∥∥

2
≤ O(1/ε)/ ‖A‖F , ‖R‖F = ‖A‖F , and

∥∥∥A− CŨR
∥∥∥

2
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≤ ‖A−Ak‖2 + ε ‖A‖F . Thus, if we choose k = 1/ε2 (and s = Ω
(
1/ε8

)
) then

with probability at least 1− δ
∥∥∥A− CŨR

∥∥∥
2
≤ ε ‖A‖F . (2)

3 Sampling Sub-programs of a Linear Program

In this section, we examine relating the feasibility or infeasibility of a Linear
Program to the feasibility or infeasibility of a randomly sampled version of that
LP.

Theorem 2. Let P be a r × n matrix and b be a r × 1 vector. Let P (i) denote
the i-th column of P and consider the following Linear Program:

Px =
n∑

i=1

P (i)xi ≤ b 0 ≤ xi ≤ ci. (3)

Suppose q is a positive integer and Q is a random subset of {1, 2, . . .n} with
|Q| = q formed by picking elements of {1, 2, . . .n} in q i.i.d. trials, where, in
each trial, the probability of picking the i-th element is

pi = Pr [it = i] =

∣∣P (i)
∣∣2

‖P‖2F
. (4)

Let 1r denote the r×1 all-ones vector. If the Linear Program (3) is feasible then,
with probability at least 1− δ

∑
i∈Q

1
qpi

P (i)xi ≤ b +
1

δ
√

q
|x| ‖P‖F 1r 0 ≤ xi ≤ ci , i ∈ Q (5)

is feasible as well. If the Linear Program (3) is infeasible then, with probability
at least 1− δ

∑
i∈Q

1
qpi

P (i)xi ≤ b− 1
δ
√

q
|x| ‖P‖F 1r 0 ≤ xi ≤ ci , i ∈ Q (6)

is infeasible as well.

Proof: We first claim that Px is well approximated by P̃ x̃ =
∑

i∈Q
1

qpi
P (i)xi,

i.e., that

Pr
[ ∥∥∥Px− P̃ x̃

∥∥∥
F
≤ 1

δ
√

q
|x| ‖P‖F

]
≥ 1− δ. (7)

To establish the claim, first note that

E
[ ∥∥∥Px− P̃ x̃

∥∥∥
F

]
≤
(

1
q

n∑
i=1

1
pi

∣∣∣P (i)
∣∣∣
2
|xi|2

)1/2

≤ 1
√

q
|x| ‖P‖F , (8)
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and then apply Markov’s inequality. (5) then follows immediately since there
exists a vector v such that with high probability P̃ x̃ = Px + v, where |v| ≤

1
δ
√

q |x| ‖P‖F . (6) follows by using LP duality. For details (and for a related
theorem), see [15].

�
Note that establishing (7) in Theorem 2 uses ideas that are very similar

to those used in [12] for approximating the product of two matrices. Once we
are given (7) then the proof of (5) is immediate; we simply show that if the
original LP has a solution then the sampled LP also has a solution since P̃ x̃ is
sufficiently close to Px. On the other hand, proving (6) is more difficult; we must
show that the non-existence of a solution of the original LP implies the same for
the randomly sampled version of the LP. Fortunately, by LP duality theory the
non-existence of a solution in the LP implies the existence of a certain solution
in a related LP.

A special case of these results occurs when ci = 1 for all i, since in that case
the Cauchy-Schwartz inequality implies

∑n
i=1

∣∣P (i)
∣∣ ≤ √n ‖P‖F . The induced

LPs (5) and (6) in Theorem 2 may then be replaced by

∑
i∈Q

1
qpi

P (i)xi ≤ b± 1
δ

√
n

q
‖P‖F 1r 0 ≤ xi ≤ ci , i ∈ Q. (9)

4 An Approximation Algorithm for Max-cut

In this section we present and analyze a new approximation algorithm for the
Max-Cut problem. Recall that the Max-Cut of a graph G with weighted adja-
cency matrix A is:

MAX-CUT [G] = MAX-CUT [A] = max
x∈{0,1}n

xT A(1n − x), (10)

where 1n is the all-ones n×1 vector and x is the characteristic vector of the cut,
i.e., it is a 0-1 vector whose i-th entry denotes whether vertex i is on the left or
right side of the cut.

4.1 The Algorithm

Consider the ApproximateMaxCut algorithm which is presented in Figure
1 and which takes as input an n × n matrix A, which is the weighted adja-
cency matrix of a weighted undirected graph G on n vertices, and computes an
approximation ZLPQ to MAX-CUT [A]. In order to compute ZLPQ, the Ap-
proximateMaxCut algorithm uses the ConstantTimeCUR algorithm of [14]
to compute a constant-sized description of three matrices, C, Ũ , and R, whose
product CŨR ≈ A. In addition, from the (not explicitly constructed) matrices
C and R two constant-sized matrices, denoted C̃ and R̃, consisting of q rows
of C and the corresponding q columns of R, each appropriately rescaled, are
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ApproximateMaxCut Algorithm

Input: A ∈ Rn×n, the weighted adjacency matrix of a graph G = (V, E), and ε, an
error parameter.

Output: ZLPQ, an approximation to MAX-CUT [A].

– Let s = Θ(1/ε8) be the number of columns/rows of A that are sampled for the
CŨR approximation, let q = poly(1/ε) exp(poly(1/ε)) be the dimension of the
randomly sampled Linear Program, and let Q be the set of indices of the sampled
variables.

– Compute (using the ConstantTimeCUR algorithm of [14]) and store the s × s
matrix Ũ .

– Compute and store the matrices C̃ and R̃.
– Construct all possible vector pairs (u, v) ∈ [−

√
n ‖A‖F ,

√
n ‖A‖F ]2s in increments

of (ε/4s)
√

n ‖A‖F . Let ΩΔ be the set of all such pairs.
– For every pair (u, v) ∈ ΩΔ check whether the Linear Program LPQ(u, v)

u − ε
4s

√
n ‖A‖F 1s ≤

∑
i∈Q

1
qwi

C(i)xi ≤ u + ε
4s

√
n ‖A‖F 1s

v − ε
4s

√
n ‖A‖F 1s ≤ R1n −

∑
i∈Q

1
qwi

R(i)xi ≤ v + ε
4s

√
n ‖A‖F 1s

xi ∈ [0, 1], i ∈ Q

is feasible, and select (ū, v̄) such that uT Ũv is maximized among all feasible pairs.
– Return ZLPQ = ūT Ũ v̄.

Fig. 1. The ApproximateMaxCut Algorithm

constructed. These matrices are used in the construction of the linear programs
LPQ(u, v); the algorithm then checks whether a constant number of these LPs
(each on a constant number q of variables) are feasible and returns the maxi-
mum of an easily-computed function of the feasible vectors as the approximation
ZLPQ of MAX-CUT [A].

4.2 Analysis of the Implementation and Running Time

The ApproximateMaxCut algorithm may be implemented with three passes
over the matrix and constant (with respect to n, but exponential in 1/ε) addi-
tional space and time. For details, see [15].

4.3 The Main Theorem

Theorem 3 is our main theorem; note that the 3/4 is arbitrary and can be boosted
to any number less than 1 using standard methods.

Theorem 3. Let A be the n × n weighted adjacency matrix of a graph G
= (V,E), let ε be fixed, and let ZLPQ be the approximation to the MAX-CUT [A]
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returned by the ApproximateMaxCut algorithm. Then, with probability at
least 3/4

|ZLPQ −MAX-CUT [A]| ≤ εn ‖A‖F .

The algorithm makes three passes, i.e., three sequential reads, through the ma-
trix A and then uses constant (with respect to n) additional space and constant
additional time. The algorithm chooses a random sample of A according to a
nonuniform probability distribution.

4.4 Intuition Behind the Proof of Theorem 3

In order to prove Theorem 3, we will require four levels of approximation, and
we will have to show that each level does not introduce too much error. We note
that the algorithm and its analysis use ideas similar to those used in [17, 2] for
the case of uniform sampling.

In the first level of approximation we will use the ConstantTimeCUR
algorithm of [14] and sample s = Θ(1/ε8) rows and columns of the matrix A in
order to compute a constant-sized description of C, Ũ , and R. As discussed in
[14] the description consists of the explicit matrix Ũ and labels indicating which
s columns of A and which s rows of A are used in the construction of C and
R, respectively. From Theorem 1 we see that under appropriate assumptions
on the sampling probabilities (which we will satisfy) CŨR is close to A in the
sense that

∥∥∥A− CŨR
∥∥∥

2
≤ ε ‖A‖F with high probability. A good approximation

to MAX-CUT [A] is provided by MAX-CUT
[
CŨR

]
, which is the Max-Cut

of the graph whose weighted adjacency matrix is CŨR. Thus, it suffices to
approximate well

MAX-CUT
[
CŨR

]
= max

x∈{0,1}n
xT CŨR(1n − x).

Since with high probability
∣∣CT x

∣∣ ≤ √n ‖A‖F and |R(1n − x)| ≤
√

n ‖A‖F ,
both CT x and R(1n − x) lie in [−

√
n ‖A‖F ,

√
n ‖A‖F ]s. Consider the set of

vectors (u, v) ∈ Ω, where Ω = [−
√

n ‖A‖F ,
√

n ‖A‖F ]2s. Suppose we pick the
vector pair (ū, v̄) that satisfies the following two conditions:

1. (feasibility) There exists a vector x̄ ∈ {0, 1}n such that the pair (ū, v̄) sat-
isfies

CT x̄ = ū and R(1n − x̄) = v̄,

2. (maximization) (ū, v̄) maximizes the value uT Ũv over all such possible
pairs.

For such a (ū, v̄) the vector x̄ defines a Max-Cut of the graph with weighted
adjacency matrix CŨR and thus ūT Ũ v̄ = MAX-CUT

[
CŨR

]
.

We will then perform a second level of approximation and discretize the set of
candidate vector pairs. Let ΩΔ denote the discretized set of vector pairs, where
the discretization Δ is defined below. Consider the set of vectors (u, v) ∈ ΩΔ and
suppose we pick the vector pair (ū, v̄) that satisfies the following two conditions:
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1’. (approximate feasibility) There exists a vector x̄ ∈ {0, 1}n such that the
pair (ū, v̄) satisfies

ū− ε

s

√
n ‖A‖F 1s ≤ CT x̄ ≤ ū +

ε

s

√
n ‖A‖F 1s and

v̄ − ε

s

√
n ‖A‖F 1s ≤ R(1n − x̄) ≤ v̄ +

ε

s

√
n ‖A‖F 1s,

i.e., there exists a vector x̄ ∈ {0, 1}n such that the pair (ū, v̄) satisfies

CT x̄ ≈ ū and R(1n − x̄) ≈ v̄,

2’. (maximization) (ū, v̄) maximizes the value uT Ũv over all such possible
pairs.

In this case, we are checking whether every vector pair (u, v) ∈ ΩΔ in the dis-
cretized set is approximately feasible in the sense that a nearby vector pair
(u, v) ∈ Ω satisfies the feasibility condition exactly. If we choose the discretiza-
tion in each dimension as Δ = ε

4s

√
n ‖A‖F , then every vector pair (u, v) ∈ Ω

is near a vector pair (u, v) ∈ ΩΔ. Thus, (subject to a small failure probabil-
ity) we will not “miss” any feasible vector pairs, i.e., for every exactly feasible
(u, v) ∈ Ω there exists some approximately feasible (u, v) ∈ ΩΔ. Equally im-
portantly, with this discretization, we only have to check a large but constant
number of candidate vector pairs. Taking the maximum of uT Ũv over the feasible
vector pairs (u, v) ∈ ΩΔ will lead to an approximation of MAX-CUT

[
CŨR

]
.

At this point we have reduced the problem of approximating MAX-CUT [A]
to that of checking the feasibility of a large but constant number of IPs and
returning the maximum of an easily computed function of them.

Next, we reduce this to the problem of checking the feasibility of a large but
constant number of constant-sized LPs on a constant number q of variables and
returning the maximum of an easily computed function of them. We do this in
two steps. First, we will perform a third level of approximation and consider the
LP relaxation of the IP. Since this LP has a very special structure, i.e., even
though the LP lies in an n-dimensional space the number of the constraints is
a constant independent of n, there exists a feasible solution for the LP that
has at most a constant number of non-integral elements. We will exploit this
and will consider an LP which is a slight tightening of the LP relaxation of the
IP; we will prove that if the IP is infeasible then the LP is infeasible as well.
Then, we will perform a fourth level of approximation and construct a constant-
sized randomly-sampled LP on a constant number q of variables, such that the
infeasibility of the LP on n variables implies, with probability at least 1−δ∗, the
infeasibility of the LP on q variables.This last level of approximation involves
sampling and thus a failure probability. Since there are a constant number

( 8s
ε

)2s

of values of (u, v) ∈ ΩΔ to check, by choosing δ∗ to be a sufficiently small
constant independent of n, the probability that any one of the large but constant
number of sampling events involved in the construction of the constant-sized LPs
will fail can be bounded above by a small constant. Theorem 3 will then follow.

For details of the proof, see [15].
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Truthful Approximation Mechanisms for
Scheduling Selfish Related Machines
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Abstract. We consider the problem of scheduling jobs on related ma-
chines owned by selfish agents. Previously, Archer and Tardos showed a
2-approximation randomized mechanism which is truthful in expectation
only (a weaker notion of truthfulness). We provide a 5-approximation de-
terministic truthful mechanism, the first deterministic truthful result for
the problem.

In case the number of machines is constant, we provide a determinis-
tic Fully Polynomial Time Approximation Scheme (FPTAS) algorithm,
and a suitable payment scheme that yields a truthful mechanism for the
problem. This result, which is based on converting FPTAS to mono-
tone FPTAS, improves a previous result of Auletta et al, who showed a
(4 + ε)-approximation truthful mechanism.

1 Introduction

The emergence of the Internet as the platform for distributed computation
changed the point of view of the algorithm designer [14, 15]. The old implicit
assumption that the participating machines (agents) act as instructed can no
longer be taken for granted. As the machines over the Internet are controlled
by different users, they will likely to do what is most beneficial to their own-
ers, manipulate the system and lie when it is possible to maximize their own
profit. Where optimization problems are concerned, results can be severe and
unexpected when false information is introduced to the classic optimization al-
gorithms, due to the selfish behavior of the agents.

In this paper we deal with the problem Minimum Makespan for scheduling
jobs on related machines, (also known as Q||Cmax). The system allocates jobs
with arbitrary sizes to the machines, where each machine is owned by an agent.
The machines have different speeds, known to their owner only. At first phase,
the agents declare their speeds, then given these bids the system allocates the
jobs to the machines. The objective of the system is to minimize the makespan.
The classic scheduling problem (when information is complete and accurate) is
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known to be NP-Complete. Hence research focused on obtaining a polynomial
time approximation algorithms for this problem.

The field of Mechanism Design provides a scheme to overcome the selfishness
of the agents, mainly by paying the agents in order to force them to declare their
true properties, thus helping the system to solve the optimization problem cor-
rectly. The most famous result in this area is the Vickrey-Clarke-Groves (VCG)
Mechanism [6, 16, 9] which applies to utilitarian objective only (the sum of the
agent’s valuations). The Minimum Makespan problem is not utilitarian as we
are seeking to minimize the maximum load, not the sum of the loads.

Several optimization problems were re-considered in the context of selfish
agents [12]. Even in cases where truthful tools such as VCG are at hand, it turned
out that applying them to combinatorial optimization problems is computation-
ally intractable. Ronen and Nisan [13] showed that if the optimal outcome is
replaced by the result of a computationally tractable approximation algorithm
then the resulting mechanism is no longer necessarily truthful. New attitudes
are required to achieve approximation who still retain truthfulness.

Archer and Tardos introduced a framework for designing a truthful mech-
anism for one-parameter agents [3]. In particular they considered the funda-
mental problem of scheduling on related machines, and showed a randomized
3-approximation truthful mechanism, later improved to a 2-approximation [4].
Their mechanism utilizes a weaker notion of truthfulness, as it is truthful in
expectation only.

1.1 Results in This Paper

Our main results are the following

– We show a deterministic 5-approximation truthful mechanism for scheduling
jobs on arbitrary number of related machines.

– We show deterministic truthful FPTAS for scheduling jobs on a fixed number
of machines.

All results follow the framework of Archer and Tardos, introducing monotone
algorithms together with a payments scheme computable in polynomial time.

Our truthful mechanisms are deterministic. Hence truth-telling is a dominant
strategy over all possible strategies of an agent. This truthfulness, analogous to
universal truthfulness for randomized mechanisms, is stronger than the one use
in the 3-approximation randomized mechanism in [3], as the latter is truthful in
expectation only.

We also show the existence of truthful deterministic PTAS and FPTAS mech-
anisms for any fixed number of related machines. Our mechanisms improve the
result of the (4 + ε)-approximation truthful mechanism for constant number of
machines introduced in [5, 2]. We present both mechanisms since our PTAS is
fairly simple to implement and may be more efficient than the FPTAS if the
required approximation ratio 1 + ε is moderate.
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1.2 Previous Work

The classic problem of scheduling jobs on parallel related machines was dealt
by several approximation approaches. The known basic result of an LPT algo-
rithm which sorts the jobs in non-increasing order of job size, then allocates a
job to the machine which will be least busy afterwards is 2-approximation [8].
An FPTAS was first introduced by Horowitz and Sahni for the case where the
number of machines is constant. Their approach was based on rounding and ex-
act solution by dynamic programming [11]. Finally, in the late 80’s Hochbaum
and Shmoys introduced a PTAS for the general case of an arbitrary number
of machines [10, 7]. Since the problem is strongly NP-Complete, no FPTAS is
possible for the general case, and their result remains the best possible, unless
P=NP.

Scheduling with selfish agents was first analyzed by Ronen and Nisan. Their
results mainly concern scheduling on unrelated machines, known also asR||Cmax.
Our problem was first tackled by Archer and Tardos [3] who showed that the
former known approximation algorithms for the problem are not truthful. They
introduced a truthful randomized mechanism which achieves a 3-approximation
to the problem. This approach achieves truthfulness with respect to the expected
profit only. Thus it possible that even though the expected profit is maximized
when telling the truth, there might exist a better (untruthful) strategy.

The first deterministic result is due to Auletta et al [5]. They show a deter-
ministic truthful mechanism which is (4+ε)-approximation for any fixed number
of machines. The case of arbitrary number of machines remained open previous
to our paper.

A different approach by Nisan and Ronen introduces another model in which
the mechanism is allowed to observe the machines process their jobs and compute
the payments afterwards. Using these mechanisms with verification [12] allows
application of penalty on lying agents, and was shown to cope well with the
existing known approximation algorithms.

2 Preliminaries

We consider the problem of scheduling jobs on related machines. We are given
a number of machines, m, and a job sequence with sizes σ = (p1, p2, ..., pn).
Each machine, owned by an agent, has a speed si known only to its agent.
Alternatively, the secret (sometimes called type) of each agent is ti = 1/si which
is the number of time units required to process one unit of work (or the cost per
unit of work). Thus the processing time of job pj on machine i is pjtj . The work
of machine i, denoted by wi is given by the sum of the processing time of jobs
assigned to it (the total work assigned to it). We assume a machine incurs a cost
proportional to the total processing time spent. The output is an assignment of
jobs to machines. The mechanism’s goal is to minimize the maximum completion
time over all machines.

A mechanism for this problem is a pair M = (A,P ), where A is an algo-
rithm to allocate jobs to the machines (agents) and P is a payment scheme. The



72 N. Andelman, Y. Azar, and M. Sorani

mechanism asks each agent to report its bid (their cost per unit of work). Based
on these reports, the mechanism uses A to construct an allocation, and pays
according to P.

A strategy for agent i is to declare a value bi as its cost per unit of work (which
in principle can be larger or smaller than ti). Let b to be the vector of bids, and
b−i denote the vector of bids not including bi, i.e. (b1, b2, .., bi−1, bi+1, ..., bm).
Denote by (b−i, α) the vector generated by inserting the value α to the vector
b−i. Notice that if we view b as a sorted vector, then (b−i, α) corresponds also
to a sorted vector (thus the index of α might be different than i).

The output of the algorithm o(b) is an allocation of the jobs to the agents, and
the profit of agent i is defined as profiti(ti, b) = Pi(b) − tiwi(o(b)). A strategy
bi is (weakly) dominant for agent i if bidding bi always maximizes his profit, i.e.
profiti(ti, (b−i, bi)) ≥ profiti(ti, (b−i, b

′
i)) for all b−i, b

′
i. A mechanism is truthful

if truth-telling is a dominant strategy for each agent (i.e. ti is a dominant strategy
for all i)

We assume w.l.o.g that the vector of bids b is sorted in non-increasing order
of speed (non-decreasing order of cost per unit of work), breaking ties by the
original index.

An algorithm A is a c-approximation algorithm if for every instance (σ, t) ,
cost(A,σ, t) ≤ c · opt(σ, t). For our problem the cost is the maximum completion
time. An c-approximation mechanism is one whose output algorithm is an c-
approximation. A PTAS (Polynomial-time approximation scheme) is a family
of algorithms such that for every ε > 0 there exists a (1 + ε)-approximation
algorithm. If the running time is also polynomial in 1/ε, the family of algorithms
is an FPTAS.

A vector (v1, v2, .., vn) is lexicographically smaller than (u1, u2, .., un) if for
some i, vi < ui and vk = uk for all 1 ≤ k < i.

2.1 Monotone Algorithms

Archer and Tardos showed necessary and sufficient conditions to obtain a truth-
ful mechanism [3].

Definition 1. Fixing the other agents bids b−i, we define the work-curve for
agent i as wi(b−i, bi), namely a single-variable function of bi. A work-curve is
decreasing if wi(b−i, bi) is a decreasing function of bi for all b−i.

A decreasing work-curve means that when an agent bids lower (saying he is
faster) more or equal amount of work should be allocated to his machine, given
that the other agents’ bids are fixed. A monotone algorithm is an algorithm that
produces an assignment which preserves the decreasing work-curve property for
all agents. Several classic approximation algorithms fail to keep this monotonic-
ity, among them the greedy algorithm, and the classic PTAS of Horowitz and
Sahni [3, 5].

Definition 2. A mechanism satisfies the voluntary participation condition
if agents who bid truthfully never incur a net loss, i.e. profiti(ti, (b−i, ti)) ≥ 0
for all agents i, true values ti and other agents’ bids b−i.
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Input: a job sequence σ , and a non-decreasing sorted bids vector b = (b1, b2, .., bm)
Output: An allocation of jobs to the m machines

1. Set d1 = 5
8 b1

2. For j ≥ 2, round up the bids to the closest value of b1 · 2.5i, which is larger than
the original bid, i.e. dj = b1 · 2.5i, where i =

⌊
log2.5

bj

b1

⌋
+ 1

3. Sort the job sequence in non-increasing order
4. Calculate the valid fractional assignment for the job sequence σ given the new

bids-vector d. Let T f be the value of the fractional solution.
5. For each machine j = 1 . . . m, assign jobs in non-increasing order of job-size to

machine j (using bid dj), until machine j exceeds threshold T f (or equals it)
6. Return the assignment

Fig. 1. Monotone-RF

Theorem 1. [3] A mechanism is truthful and admits a voluntary participation
if and only if the work-curve of each agent is decreasing,

∫∞
0 wi(b−i, u)du < ∞

for all i, b−i and the payments in this case should be

Pi(b−i,bi) = biwi(b−i, bi) +
∫ ∞

bi

wi(b−i, u)du (1)

Therefore in order to achieve a truthful mechanism we need to design a
monotone algorithm, and use the payment scheme as in (1). Since truthfulness
is reduced to designing a monotone algorithm, we may assume, for the sake of
the monotonicity proof, that the bids are equal to the real speeds.

3 Truthful Approximation for Arbitrary Number of
Machines

A classic approximation algorithm for the problem, forms a “valid” fractional
allocation of the jobs to the machines, and then uses a simple rounding to get
a 2-approximation for the problem. In [3] it has been shown that this simple
algorithm is not monotone, thus not truthful.

The main result of this section is a deterministic monotone algorithm which is
based on the fractional assignment. Algorithm Monotone-RF (Monotone
Rounded Fractional), shown in figure 1, is shown to be a 5-approximation al-
gorithm.

Given a threshold T , we can treat the machines as bins of size T/bi. A frac-
tional assignment of the jobs to the machines, is a partition of each job j into
pieces whose sizes sum to pj and an assignment of these pieces to the machines
(bins). A fractional assignment is valid if each bin is large enough to contain the
sum of all pieces assigned to it, and for every piece assigned to it, it is capable of
containing the entire job the piece belongs to. The smallest threshold for which
there exist a valid fractional assignment, T f is a lower bound to the optimal
solution, and can be calculated exactly in the following manner (see [3]):
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T f = max
j

min
i

max {bipj ,

∑j
k=1 pk∑i
l=1

1
bl

} (2)

This valid fractional assignment with respect to this threshold is obtained by
sorting the jobs in non-increasing order, and allocating them to the machines
(ordered in non-increasing order of their speeds). Some jobs are sliced between
two machines when the threshold is exceeded in the middle of a job.

An important property of the valid fractional assignment is the monotonicity
of T f : as we increase the speed of a machine, T f is not increased. Let T f (b−i, bi)
be the the smallest threshold for which there exist a valid fractional assignment,
given the bids vector (b−i, bi).

Observation 1. [3] T f (b−i, αbi) ≤ αT f (b−i, bi) for all α > 1 and i.

Lemma 1. For any machine i which is not the fastest (i > 1), and for any
rounded bids vector d:

T f (d−i, di) ≤ T f (d−i, β) ≤ 5
4
T f (d−i, di)

for all β ≥ di

Proof. The first inequality is straight-forward as the allocation for (d−i, β) is
also a valid fractional assignment for (d−i, di), given any fixed threshold T.

As for the second inequality, we generate a valid fractional assignment which
allocates zero work to machine i. This allocation would use a threshold at most
5
4T

f (d−i, di). Since this allocation is a valid fractional assignment for (d−i, β),
the minimal threshold for (d−i, β) might only be smaller than the generated one.

To form an allocation which does not use machine i, for every 2 ≤ j ≤ i
take all the pieces previously assigned to machine j and assign them to machine
(j − 1). The first machine is now allocated the pieces originally assigned to the
second machine, along with its original assignment. Since the algorithm assures
that 4d1 ≤ d2, the assignment is clearly valid, with a threshold which is at most
5
4T

f (d−i, di). ��

We note that Lemma 1 holds for rounded bids vectors created by Monotone-
RF, but does not hold in general. The following lemmata consider several sce-
narios in which machine i slows down. We denote by d′ the rounded bid vector
obtained after the machine’s slowdown. Let i′ be the index of the slowing-down
machine in d′; Notice that i′ might be different than i. We denote by w′

j the
total work allocated to machine j given the new bids vector d′. We denote by vi

the rounded speed of machine i, i.e. vi = 1/di.

Lemma 2. Using Algorithm Monotone-RF, when machine i which is not the
fastest slows down, the total amount of work assigned to the machines faster
than it can not decrease. i.e.
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i−1∑
k=1

wk ≤
i−1∑
k=1

w′
k ≤

i′−1∑
k=1

w′
k

Proof. If the rounded bid of machine i is the same as before the slowdown, the
assignment is not changed. Thus we consider the case where the new rounded
bid is different than the one before the slowdown. Let β be the rounded bid of
machine i where β > di. Let i′ be the new index of the slowing machine in d′.
Clearly i ≤ i′.

By Lemma 1, T f (d−i, β) ≥ T f (d−i, di), i.e. the new threshold used by algo-
rithm Monotone-RF can only increase due to the slowdown. By induction the
index of the last job assigned to each of the first i− 1 machines can be equal, or
higher after the slowdown. Thus the total amount of work assigned to the first
i − 1 machines is the same or higher, and the amount of work assigned to the
first i′ − 1 machines can only be higher than that. ��

Lemma 3. If the fastest machine slows down yet remains the fastest, the amount
of work assigned to it can only decrease.

Proof. We observe how the bin size of the first machine changes as its speed
decreases gradually. As long as the value of �log2.5

bj

b1
� does not change for all

j ≥ 2, all rounded speeds change proportionally, i.e. there is some constant c > 1
such that d′ = c ·d. Therefore, the same fractional assignment is calculated (with
a new threshold of cT f ) with the same sizes for bins. In the breakpoints where
the rounded bid of at least one machine is cut down by 2.5, by Observation 1
the threshold cannot increase, and therefore the bin size of the first machine can
only decrease.

Since the fastest machine is always assigned the first jobs, a decrease in its
bin size can only decrease the number of jobs assigned to it, and therefore the
amount of work assigned to it in the integral assignment also decreases. ��

Definition 3. Given an assignment of jobs by algorithm Monotone-RF, we clas-
sify the machines in the following way:

Full machine a machine (bin) which the total processing time of the jobs as-
signed to it is at least its threshold.

Empty machine a machine with no jobs allocated to it
Partially-full machine a non-empty machine (bin) which is not full. (There

is at most one partially-full machine)

Lemma 4. When machine i decreases its speed (increases its bid) the total work
allocated to it by algorithm Monotone-RF can not increase.

Proof. Lemma 3 proves the claim when machine i is the fastest machine and
remains the fastest. If machine i is not the fastest machine but its rounded bid
di does not change, then the slowdown has no effect since the same assignment is
generated. It remains to prove the claim for the breakpoints, which are when the
fastest machine becomes the non-fastest, and when the rounded bid is multiplied
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by 2.5. We prove the claim for each step, thus the claim holds for the entire
slowdown.

Consider the following cases for the class of machine i before the slowdown:

1. Machine i is the fastest machine (i = 1), but after the slowdown another ma-
chine j becomes the fastest - we observe the breakpoint where both machines
have the same speed and add an artificial stage to the slowdown where the
title of the fastest machine passes from i to j (without having the speeds
change). The same threshold is calculated in both cases, only the order of
the machines changes. The amount of work allocated to machine i when it
is considered the fastest is at least 8

5 · v1 ·T f , while after machine j becomes
the fastest it is at most 2 · v1

2.5 · T f = 4
5 · v1 · T f , and therefore decreases.

2. Machine i is a full machine which is not the fastest - the threshold used for
assigning jobs to the machine is T f . Due to Lemma 1, T f (d) ≤ T f (d′) ≤
5
4T

f (d) , where d is the rounded bids vector, and d′ is the rounded vector
after the slowdown. Before the slowdown the amount of work allocated to
it was at least T f · vi, whereas after slowing down it can become at most
2 · ( 5

4 ·T f ) · vi

2.5 = T f · vi. If the machine became partially-full or empty after
slowing down, the amount of work allocated to it can only be smaller.

3. Machine i is partially-full - if it becomes empty then the claim is trivial,
otherwise some jobs are allocated to machine i. Let i′ ≥ i be the new index
of the machine in the sorted order. Due to Lemma 2 the amount of work
allocated to machines with a lower index than i′ can be no less than the
amount before the slowdown (i.e.

∑i−1
k=1 wk ≤

∑i′−1
k=1 w

′
k), thus leaving less

work to be allocated to machine i.
4. Machine i is empty - The machine stays empty due to Lemma 2. ��

Lemma 4 shows that the work-curve of agent i is non-increasing. Hence the
following theorem is immediate:

Theorem 2. Algorithm Monotone-RF provides monotone assignment. Hence A
Mechanism Design based on Algorithm Monotone-RF and payment scheme as
in (1) is truthful.

We now analyze the approximation provided by algorithm Monotone-RF.
Denote by kf (i) the index of the last job (or a fraction of a job) assigned to

machine i in the fractional assignment. Respectively let k(i) be the index of the
last job assigned to machine i by Monotone-RF.

Lemma 5. for all i, kf (i) ≤ k(i)

Proof. By induction. The claim clearly holds for i = 1 since T1 ≥ T f . Assume
the argument is true for machine i. By induction hypothesis kf (i) ≤ k(i). Since
allocation is done in non-increasing order of job size, the first job to be allocated
to i + 1 by our algorithm might be only smaller than the one allocated by
the fractional assignment. Moreover, since the allocation exceeds the fractional
threshold, at least the same number of jobs will be assigned to machine i. Thus
kf (i+ 1) ≤ k(i+ 1). ��
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Theorem 3. Algorithm Monotone-RF is a 5-approximation.

Proof. Lemma 5 assures that at the end of the run of algorithm Monotone-RF
all jobs are allocated. Since the speeds were decreased by at most a factor of 2.5,
the threshold T f (d) may be at most 2.5 times the value of the optimal allocation
using the unrounded speeds. Since the speed of the fastest machine is increased
by a factor of 1.6, the amount of work assigned to the fastest machine in the
fractional solution may be at most 1.6 · 2.5 = 4 times the value of the optimal
allocation.

In the integral solution, since the amount of work assigned to the first machine
can exceed the bin’s size by at most the size of the second bin, and since the first
bin is at least 4 times larger than the second bin, the load on the fastest machine
can be at most 1.25 · T f (d), and therefore the load on this machine is at most
1.25 · 4 = 5 times the optimal. For any other machine, the last job can exceed
the threshold by at most T f (d), and therefore the load on any other machine is
at most 2 · T f (d), which is at most 2 · 2.5 = 5 times the optimal. Therefore, a
5-approximation is achieved. ��

To conclude, we need to show that calculating the payments given by (1)
can be done in polynomial time. We analyze the number of breakpoints of the
integral in that expression. According to Lemma 5 the work curve for machine i
is zeroed furthermost when the valid fractional assignment does not use machine
i. There is no use in assigning jobs to a machine when its bid β is too high even
for the smallest job, i.e. βpn > T f . Using the higher bound T f ≤ np1d1 < np1b1,
we get a zero assignment for β ≥ n p1

pnb1. The only exception is when the integral
is calculated for the fastest machine, where we get a higher bound of β ≥ n p1

pnb2.
While β ≤ b2, there is a breakpoint whenever bj = 2.5iβ, for some i and for
any machine j > 1. Therefore, for each factor of 2.5, there are at most m − 1
breakpoints (one for each of the other machines), while for β > b2, there is one
breakpoint for each step.

Thus the number of iterations will beO(log2.5 n
p1
pn+m log2.5

b2
b1

) for the fastest
machine, O(m log2.5 n

p1
pn

b2
b1

) in total, which is polynomial in the input size.

4 Truthful PTAS-Mechanism for Any Fixed Number of
Machines

We now show a truthful mechanism for any fixed number of machines. Due to
simplicity of presentation, we normalize the sizes of the jobs such that the total
size of all jobs is one,

∑n
j=1 pj = 1 (as they are known to the mechanism).

Based on the payments scheme as in (1), it is enough to show a monotone
PTAS algorithm. The algorithm, Monotone-PTAS, is shown in figure 2. This
algorithm shares similar ideas of the PTAS variant of Alon et al [1].

Theorem 4. A Mechanism Design based on Algorithm Monotone-PTAS and
payment scheme as in (1) is truthful.
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Proof. It is suffice to show that Algorithm Monotone-PTAS is monotone. Notice
that the job sizes in the instance σ� were generated independently from the
bids of the agents. It was shown in [3] that the optimal minimum-lexicographic
solution is monotone. ��

Theorem 5. The algorithm Monotone-PTAS achieves a Polynomial Time Ap-
proximation Scheme (PTAS)

Proof. We first show that the algorithm is polynomial. The construction of σ�

takes a linear time. As for the rest - the construction of σ� ensures that the
minimal job size is 1

2 ·
ε2

m2 . Thus the total number of jobs is no more than 2m2

ε2 ,
a constant. Solving σ� exactly on m machines while enumerating all the possible
allocations takes a constant time.

We now analyze the quality of the approximation. First assume, for the pur-
pose of analysis , that both Opt and our algorithm are not using “slow” machines,
i.e. machines whose speed is less than smax · ε

m , where smax is the maximal
speed. Let T ′

opt be the optimal solution for this instance, and T ′ our solution.
Since we solve for chunks whose size is no more than ε2

m2 , unlike Opt who solves
for the original sizes, we can suffer an addition in processing time of maximum

ε2

m2

smax· ε
m

= ε
m·smax

(i.e. an additional chunk on the slowest machine used). A lower

bound on the optimal solution is T ′
opt ≥ 1

m·smax
, Thus T ′ ≤ (1 + ε)T ′

opt.
We now compare T ′

opt to performance of Opt when the “slow” machines
restriction is removed, namely Topt. The total work done by the “slow” machines
in opt is bounded above by smax · εTopt. If we move this amount of work to the
fastest machine we pay maximum extra processing time of εTopt, thus T ′

opt ≤
(1+ε)Topt. Combining these two lower bounds we get that T ≤ T ′ ≤ (1+ε)T ′

opt ≤
(1 + ε)2·Topt ≤ (1 + 3ε)Topt for any ε < 1

2 , a PTAS. ��

Input: a job sequence σ ,a bids vector b = (b1, b2, .., bm) and parameter ε
Output: An allocation of jobs to the m machines that achieves a (1 + 3ε)-

approximation

1. Construct a new instance σ� based on the original job instance, as follows:
(a) sort the job sequence in non-increasing order
(b) σ� = {pj ∈ σ|pj ≥ ε2

m2 }
(c) merge the rest of jobs in a greedy manner to chunks of size in the range

[ 12 · ε2

m2 , ε2

m2 ] and add them to σ�

2. Solve Minimum Makespan exactly with the instance (σ�, b) to obtain the opti-
mal solution. If several optimal allocations exist, choose the one with the lexico-
graphically minimum schedule (where the machines are ordered according to some
external machine-id)

3. Return the same allocation achieved on σ�. A small job is allocated to the same
machine which his chunk has been allocated.

Fig. 2. Monotone PTAS
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To conclude, we need to show that calculating the payments given by (1) can
be done in polynomial time. Notice that the integral in this expression has a
constant number of breakpoints (the number of all possible allocations to agent
i) thus calculating the payments can be done in constant time.

5 Truthful FPTAS-Mechanism for Any Fixed Number of
Machines

We now show another truthful mechanism for any fixed number of machines.
The mechanism uses a c-approximation algorithm as a black box, to generate
a c(1 + ε)-approximation monotone algorithm. Using an FPTAS as the black
box (for example, the FPTAS of Horowitz and Sahni [11]) outputs a monotone
FPTAS. Adding a payments scheme as in (1), ensures truthful mechanism. The
algorithm, Monotone-Black-Box, is shown in figure 3.

Input: a non decreasing sorted job sequence σ ,a bids vector b = (b1, b2, .., bm), a
parameter ε and a black box, which is a polynomial time c-approximation.

Output: An allocation of jobs to the m machines that achieves a c(1 + ε)-
approximation

1. Construct a new bid vector d = (d1, d2, . . . , dm), in the following way:
(a) round up each bid to the closest value of (1 + ε)i

(b) normalize the bids such that d1 = 1
(c) for each bid dj = (1 + ε)i, if i > l + 1 where l = �log1+ε cn · p1

pn
� then set

dj = (1 + ε)l+1

2. Enumerate over all possible vectors d′ = ((1 + ε)i1 , (1 + ε)i2 , . . . , (1 + ε)im), where
ij ∈ {0, 1, . . . , l + 1}. For each vector:
(a) apply the black box algorithm to d′

(b) sort the output assignment such that the i-th fastest machine in d′ will get the
i-th largest amount of work

3. Test all the sorted assignments on d, and return the one with the minimal
makespan. In case of a tie, choose the assignment with the lexicographically max-
imum schedule (i.e. allocating more to the faster machines)

Fig. 3. Monotone Black Box

Theorem 6. Algorithm Monotone Black Box is a c(1 + ε) approximation algo-
rithm.

Proof. The output assignment is a c-approximation for the vector d, since d is
tested in the enumeration, and since sorting the assignment can only improve
the makespan. As for the original bid vector b, and rounding the bids add a
multiplicative factor of 1 + ε to the approximation ratio. Normalizing the vector
has no effect, as well as trimming the largest bids, since any non zero assignment
to a machine with a bid of at least (1 + ε)l cannot be a c-approximation, since
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the load on that machine will be more than c times the load of assigning all the
jobs to the fastest machine. ��

Theorem 7. If the black box in Algorithm Monotone Black Box is an FPTAS
then the algorithm itself is also an FPTAS.

Proof. By Theorem 6, the algorithm is a (1 + ε)2 approximation. It remains to
prove that the running time is polynomial in the input, including 1

ε . In each
iteration of the enumeration, applying the black box, sorting the output assign-
ment and testing it on the vector d can be completed in polynomial time, by
the assumption that the black box is an FPTAS. The size of the enumeration is
O(lm), where m is a constant and l is polynomial in the input. ��

Theorem 8. Algorithm Monotone Black Box is monotone.

Proof. We prove that if a machine j raises its bid (lowers its speed) then the
amount of work assigned to it cannot increase. We increment the bid in steps,
such that in each step the power of 1 + ε that equals the rounded bid rises by
one. We prove the claim for a single step, and therefore, the claim also holds for
the entire increment.

We first assume that dj is not the unique fastest machine (i.e., there is a
machine k = j such that dk = 1). If dj ≥ (1 + ε)l then by the proof of Theorem
6, the assignment to machine j must be null, otherwise the approximation ratio
is not achieved. Clearly, by raising the bid the assignment will remain null, and
the claim holds. Therefore, we assume that the normalized rounded bid rises
from dj to dj(1 + ε), the assignment changes from W to W ′, and the amount of
work allocated to machine j changes from wj to w′

j > wj .
We use T (W,d) to denote the makespan of assignment W on bid vector d.

Since the algorithm chooses the optimal assignment among a set that contains
both W and W ′, we have that T (W,d) ≤ T (W ′, d) and T (W ′, d′) ≤ T (W,d′).
Additionally, since the bids in d are smaller than the bids in d′, we have that
T (W,d) ≤ T (W,d′) and T (W ′, d) ≤ T (W ′, d′).

Suppose that machine j is the bottleneck in T (W,d′), meaning that the load
on machine j is the highest. Since w′

j > wj , we have T (W,d′) < T (W ′, d′), as
the load on machine j increases even more. This is a contradiction to T (W ′, d′) ≤
T (W,d′), and therefore machine j cannot be the bottleneck in T (W,d′). There-
fore, if machine j is not the bottleneck in T (W,d′), we have that T (W,d) =
T (W,d′). Since T (W,d) ≤ T (W ′, d) ≤ T (W ′, d′) ≤ T (W,d′), we actually have
that T (W,d) = T (W ′, d) and T (W,d′) = T (W ′, d′). Therefore, we have a tie be-
tweenW andW ′ for both d and d′. Since in each case the tie is broken differently,
it must be that W = W ′. Since the assignment is sorted (the faster machine is
assigned more work), if a machine decreases its speed then the amount of work
assigned to it (by the same assignment) cannot increase, which is a contradiction
to w′

j > wj .
If machine j is the unique fastest, then due to the normalization of the

rounded bids and trimming of high bids, after it raises its bid by one step the
new bid vector d′ will be as follows: dj remains 1, bids between 1+ ε and (1+ ε)l
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decrease by one step, and bids equal to (1 + ε)l+1 can either decrease to (1 + ε)l

or remain (1 + ε)l+1.
Let d̂ be the same bid vector as d′, with all the bids of (1+ε)l+1 replaced with

(1 + ε)l. Since machines that bid (1 + ε)l or more must get a null assignment,
then the optimal assignment (among all assignments that are considered by the
algorithm) for d̂ is the same as d′. The same assignment remains the optimum
for vector d̂(1 + ε), where all bids are incremented by one step. The bid vector
d̂(1+ ε) is exactly the bid vector d, with dj replaced with 1+ ε (instead of 1). By
the same argument from the case where machine j is not the unique fastest, the
work assigned to machine j in d̂(1 + ε) is at most the same as the work assigned
in d, and therefore the algorithm is monotone for the unique fastest machine as
well. ��

To conclude, we claim that the payments for each agent can be calculated
in polynomial time, since the number of breakpoints in the integral is bounded
by the number of possible allocations considered by the algorithm, which is
polynomial in the input size (including 1

ε ) .

6 Conclusions and Open Problems

We have shown a deterministic constant-approximation truthful mechanism for
assigning jobs on uniformly related machines, and an FPTAS truthful mechanism
for the special case where the number of machines is fixed. The main open
question left is whether a truthful PTAS mechanism exists in the case of an
arbitrary number of machines.
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Abstract. We show that the extension of the two-variable guarded frag-
ment with transitive guards (GF+TG) by functionality statements is
undecidable. This gives immediately undecidability of the extension of
GF+TG by counting quantifiers. The result is optimal, since both the
three-variable fragment of the guarded fragment with counting quanti-
fiers and the two-variable guarded fragment with transitivity are unde-
cidable.

We also show that the extension of GF+TG with functionality, where
functional predicate letters appear in guards only, is decidable and of the
same complexity as GF+TG. This fragment captures many expressive
modal and description logics.

Keywords: guarded fragment, counting, transitivity, decision problem,
computational complexity.

1 Introduction

The guarded fragment or GF of first-order logic, introduced by H. Andréka,
J. van Benthem and I. Németi [1], has appeared to be a successful attempt to
transfer good properties of modal and temporal logics to a naturally defined
fragment of predicate logic. These properties include among others decidability,
the finite model property, finite axionatization, Craig interpolation and Beth
definability.

In the guarded fragment formulas are built as in first-order logic with the
only restriction that quantifiers are appropriately relativized by atoms, i.e. nei-
ther the pattern of alternations of quantifiers nor the number of variables is
restricted. Andréka et al. showed that modal logic can be embedded in GF and
they argued convincingly that GF inherits the nice properties of modal logic.
The nice behavior of GF was confirmed by Grädel [6] who proved that the satis-
fiability problem for GF is complete for double exponential time and complete
for exponential time, when the number of variables is bounded.

GF was later generalized by van Benthem [18] to the loosely guarded frag-
ment, LGF, and by Grädel [7] to the clique guarded fragment, CGF, where all
quantifiers are relativized by more general formulas, preserving the idea of quan-
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tification only over elements that are close together in the model. Most of the
properties of GF generalize to LGF and CGF.

The above mentioned positive results led directly to the question, if the
guarded fragment keeps the good properties when extended by other operators,
similarly to modal logic that remains decidable and of fairly low complexity un-
der addition of a variety of operators and features, such as counting modalities,
transitive closure modalities and conditions on the accessibility relation.

In fact, E. Grädel and I. Walukiewicz [9] proved that the extension of GF
with fixed point operators that captures the modal μ-calculus is a decidable logic
and of the same complexity as pure GF.

On the other hand it has been observed in [6] that very modest extensions
of GF lead to undecidability: three-variable GF with transitive predicates and
three-variable GF with counting quantifiers are both undecidable extensions of
GF. The latter result is optimal with respect to the number of variables since
the whole two-variable first-order logic with counting quantifiers is decidable [8],
[13]. H. Ganzinger, C. Meyer and M. Veanes improved the first result showing
that even the two-variable GF with transitive predicates and without equality
is undecidable.

The paper by Ganzinger et al. [5] presents also a decidability result for the mo-
nadic two-variable guarded fragment with transitivity, namely when binary pred-
icates can appear in guards only. This result was sharpened by W. Szwast and
L. Tendera [16], who proved that the guarded fragment with transitive guards,
GF+TG, i.e. of the fragment where transitive predicate letters appear only in
guards whereas remaining predicates and the equality symbol may appear ev-
erywhere, is decidable in double exponential time. Surprisingly, the complexity
stays the same even for the monadic two-variable fragment as it was proved
by E. Kieroński in [12]. It is worth mentioning that in contrast to the model-
theoretic construction used in [16] (full version in [17]), a resolution based de-
cision procedure for GF+TG without equality has been recently presented by
Y. Kazakov and H. de Nivelle in [11].

In this paper we investigate the possibility of extending GF with both transi-
tive predicates and counting. The expressive power for the resulting logic would
be well suited to capture many powerful description logics that are used to ex-
press properties of aggregated objects [15] and have applications e.g. in the area
of conceptual data models [3], [4] and query optimization [10].

Since, as it was mentioned above, the three-variable GF with counting quan-
tifiers and GF2 with transitivity are both undecidable, we restrict our attention
to the two-variable restriction of the guarded fragment with transitive guards,
GF2+TG, and we prove first that the extension of GF2+TG by functionality
statements is undecidable. This gives undecidability of the extension of GF2+TG
by counting quantifiers, since functionality of a predicate R can be easily ex-
pressed by a guarded formula of the form ∀x(x = x)→ ∃=1yR(x, y).

As a second result we show that if we restrict our attention to the guarded
fragment with transitive and functional guards, i.e. where both transitive and
functional predicate letters can appear in guards only, we get a decidable logic.
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Moreover, we show that the complexity of the fragment is the same as for simple
GF+TG, i.e. functional guards do not increase the complexity of the reasoning.
This result can also be seen as an additional confirmation of the status of the
guarded fragment as the best classical counterpart of modal and temporal logics:
if we use functionality only there where it could appear in a modal formula, we
stay in a decidable fragment of the same computational complexity.

The remainder of the paper is organized as follows. In the next section we
introduce the guarded fragments in detail. In section 3 we show undecidability
of GF+TG with functionality by reducing a domino tiling problem. And in the
last section, basing on the ideas from [17], we show that GF+TG with functional
guards is decidable in double-exponential time.

2 Guarded Fragments

The guarded fragment, GF, of first-order logic with no function symbols is defined
as the least set of formulas such that

1. every atomic formula belongs to GF,
2. GF is closed under logical connectives ¬,∨,∧,→,
3. if x,y are tuples of variables, α(x,y) is an atomic formula containing all

the variables of {x,y} and ψ(x,y) is a formula of GF with free variables
contained in {x,y}, then the formulas

∀y(α(x,y)→ ψ(x,y)) and ∃y(α(x,y) ∧ ψ(x,y))

belong to GF.

The atom α(x,y) in the above formulas is called the guard of the quantifier.
A guard that is a P atom, where P is a predicate letter from the signature, is
called a P -guard.

We will use (∀y.α(x,y))ψ(x,y), and (∃y.α(x,y))ψ(x,y) as alternative no-
tations for ∀y(α(x,y)→ ψ(x,y)), and ∃y(α(x,y) ∧ ψ(x,y)), respectively.

We denote by FOk the class of first-order sentences with k variables over a
relational signature. By GFk we denote the fragment GF ∩ FOk.

By a transitivity statement we mean an assertion Trans[P ], saying that the
binary relation P is a transitive relation. By a functionality statement we mean an
assertion Functional[P ], saying that the binary relation P is a graph of a partial
function, i.e. a statement of the form ∀x∃≤1yPxy. A binary predicate letter P
is called transitive (functional) if Trans[P ] (Functional[P ], respectively) holds.

By GF+TG we denote the guarded fragment with transitive guards that is
the restriction of GF with transitivity statements where all transitive predicate
letters appear in guards only and where the equality symbol can appear every-
where. By GF2+TG we denote the restriction of GF+TG to two variables.

In this paper we are particularly interested in the following logics

– GF2+TG+F, the extension of GF2+TG with functionality statements.
Note that in this fragment we can declare both the binary relation and
its inverse to be functional, see e.g. ∀x, y Pxy → Ryx ∧ Functional[R].
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– GF2+TG+FG, the restriction of GF2+TG+F, where functional predicate
letters can appear in guards only.
Here it should be decided if inverses of functional predicates can be declared
to be functional as well and whether a relation can be functional and tran-
sitive at the same time.

– GF2+TG+Counting, the extension of GF2+TG with counting, i.e. the frag-
ment where formulas can be built using also counting quantifiers of the form
∃≤m, ∃≥m, m ≥ 0 (in the standard guarded way).

It is clear that

GF2+TG ⊆ GF2+TG+FG ⊆ GF2+TG+F ⊆ GF2+TG+Counting.

In this paper we show first that GF2+TG+F is undecidable that immediately
gives undecidability of GF2+TG+Counting. In the next section we show that
GF2+TG+FG is decidable in deterministic double-exponential time.

3 GF2+TG+F

In this section we prove that the satisfiability problem for the two-variable
guarded fragment with transitive guards and functionality statements is undecid-
able. Note that since GF+TG is decidable, this clearly shows that GF2+TG+F
is more expressive than GF+TG.

Theorem 1. The satisfiability problem for GF 2+TG+F is undecidable.

Proof. We modify the undecidability proof of GF2 with transitivity from [5],
where a reduction from the halting problem for Minsky (two-counter) machines
is shown. In fact, here the same reduction can be applied but we need to char-
acterize two-dimensional grids with origin using transitive predicates in guards
only.

To characterize grids with , we write a sentence Grid in GF2+TG+F with
four transitive relations W0, W1, B0, B1, four functional arc relations ↑0, ↑1, 0→,
1→, equality and additional unary relations. There is a unary predicate Node.
In any model of Grid we are interested in elements in Node, such elements are
called nodes. It is worth noticing that equality is not an issue here. Instead of
using equality we could add an additional functional predicate E and insure that
it behaves as equality on nodes in every model of Grid, saying: ∀xNode(x) ⇒
E(x, x) ∧ Functional[E].

The formula Grid is a conjunction of the formulas (1)-(12).
It is easy to express the following properties using additional unary predicate

letters Bottom, Left, Origo, Whitel and Blackl, where l = {0, 1}.

”The set of nodes is non-empty and all nodes are either black or
white and have either 0 or 1 as a label.”

(1)

”Bottom nodes have no vertical predecessors and all horizontal
successors of bottom nodes are bottom nodes, similarly for Left nodes.” (2)
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The origin element has the following properties.

∃x (Origo(x)) ∧ ∀x (Origo(x)⇒White0(x))∧
∀x (Origo(x) ⇒ (Left(x) ∧ Bottom(x)))∧
∀x (Bottom(x)⇒ (Left(x)⇒ Origo(x)))

(3)

The colors and labels alternate in both horizontal and vertical directions as
follows. For l ∈ {0, 1}, let l̄ = 0 if l = 1 and l̄ = 1, if l = 0:

∀xy (x l→ y ⇒ ((Whitel(x) ∧Blackl̄(y)) ∨ (Blackl(x) ∧Whitel̄(y)))) (4)

∀xy (x ↑l y ⇒ ((Whitel(x) ∧Blackl(y)) ∨ (Blackl̄(x) ∧Whitel̄(y)))) (5)

Every node with a certain label has the following arcs connected to it:

∀x (White0(x)⇒ (∃y (W0(x, y) ∧ x 0→ y) ∧ ∃y (W0(y, x) ∧ x 0→ y)∧
∃y (W0(x, y) ∧ x ↑0 y) ∧ ∃y (W0(y, x) ∧ x ↑0 y)∧
(Bottom(x)∨(∃y (W1(x, y) ∧ y ↑1x) ∧ ∃y (W1(y, x) ∧ y ↑1x)))∧

(Left(x) ∨ (∃y (W1(x, y) ∧ y 1→ x) ∧ ∃y (W1(y, x) ∧ y 1→ x)))))
(6)

∀x (White1(x)⇒(∃y (W1(x, y) ∧ x 1→ y) ∧ ∃y (W1(y, x) ∧ x 1→ y)∧
∃y (W1(x, y) ∧ x ↑1 y) ∧ ∃y (W1(y, x) ∧ x ↑1 y)∧
∃y (W0(x, y) ∧ y ↑0x) ∧ ∃y (W0(y, x) ∧ y ↑0x)∧

∃y (W0(x, y) ∧ y 0→ x) ∧ ∃y (W0(y, x) ∧ y 0→ x)))

(7)

∀x (Black0(x)⇒ (∃y (B0(x, y) ∧ x 0→ y) ∧ ∃y (B0(y, x) ∧ x 0→ y)∧
∃y (B0(x, y) ∧ x ↑1 y) ∧ ∃y (B0(y, x) ∧ x ↑1 y)∧
∃y (B1(x, y) ∧ y ↑0x) ∧ ∃y (B1(y, x) ∧ y ↑0x)∧

(Left(x) ∨ (∃y (B1(x, y) ∧ y 1→ x) ∧ ∃y (B1(y, x) ∧ y 1→ x))))

(8)

∀x (Black1(x)⇒ (∃y (B1(x, y) ∧ x 1→ y) ∧ ∃y (B1(y, x) ∧ x 1→ y)∧
∃y (B1(x, y) ∧ x ↑0 y) ∧ ∃y (B1(y, x) ∧ x ↑0 y)∧

∃y (B0(x, y) ∧ y 0→ x) ∧ ∃y (B0(x, y) ∧ y 0→ x)∧
(Bottom(x) ∨ (∃y (B0(x, y) ∧ y ↑1x) ∧ ∃y (B0(y, x) ∧ y ↑1x))))

(9)

For each of the transitive relations we have the following formulas.

∀xy (Wl(x, y)⇒ (x = y ∨ x l→ y ∨ y l→ x ∨ x ↑l y ∨ y ↑lx ∨
(White0(x) ∧White1(y)) ∨ (White1(x) ∧White0(y))∨
(Black0(x) ∧Black1(y)) ∨ (Black1(x) ∧Black0(y))))

(10)
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∀xy (Bl(x, y)⇒ (x = y ∨ x l→ y ∨ y l→ x ∨ x ↑l̄ y ∨ y ↑l̄x ∨
(White0(x) ∧White1(y)) ∨ (White1(x) ∧White0(y))∨
(Black0(x) ∧Black1(y)) ∨ (Black1(x) ∧Black0(y))))

(11)

For each unary predicate P and each binary predicate R we have the formulas:

∀x (P (x)⇒ Node(x)) and ∀xy (R(x, y)⇒ (Node(x) ∧Node(y))) (12)

Formulas (1)-(5) and (10)-(12) are taken from [5]. The other conjuncts are
added to yield the same models for Grid as in [5]. To see that our formula Grid
properly characterizes grids we need to show the following two properties:

Claim. The arc relations are functional in both arguments in all models of Grid.

Proof. Consider the relation 0→ and assume that b 0→ a and c
0→ a, for some

nodes a, b and c. By (4), a has label 1. Assume a is white. By (4), b and c are
black with label 0. By (6) and functionality of 0→, we have W0(b, a) and W0(a, c).
By transitivity of W0 we have W0(b, c). By (10), b = c. In case a is black, we
apply (9) to get B0(b, a) and B0(a, c) and we get b = c by transitivity of B0.
The proof for other arc relations is symmetrical. �

We say that the arc relations induce a diagonal if whenever a → b ↑ c and
a ↑ b′ → c′, then c = c′, where → is either 0→ or 1→ and ↑ is either ↑0 or ↑1.

Claim. The arc relations induce a diagonal in all models of Grid.

Proof. Consider a model of Grid and let a be a white node with label 0. Then
we have by functionality of the arc relations, unique nodes b, b′, c, c′ such that
a ↑0 b 0→ c and a 0→ b′ ↑0 c′. By (4) and (5) c and c′ are white nodes with label
1. By (6), we have W0(a, b′), W0(b′, a), W0(b, a) and W0(a, b). By (7), we have
W0(b, c), W0(c, b), W0(b′, c) and W0(c, b′). By transitivity of W0, W0(c, c′). By
(10), c = c′. The proof for other arc relations is symmetrical. �

Inspecting the proof of the above Theorem we get the following corollary

Corollary 1. GF 2+TG+F is undecidable, even when no predicate letter is de-
clared at the same time transitive and functional.

4 GF2+TG+FG

In this section we prove that the guarded fragment with transitive and functional
guards is decidable in double exponential time.

Throughout the section we assume that we have a signature σ that contains
unary and binary predicate letters. We denote by Funct (Trans) the subset of
σ with all functional (respectively, transitive) predicate letters and by FunctInv
the subset of Funct with functional inverses. We assume that we can declare the
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same predicate letter to be both transitive and functional, i.e. Funct ∩Trans can
be nonempty.

The decidability proof follows the lines of the proof for GF+TG from [17].
In particular, we use the same normal form for GF2+TG+FG. In the definition
of ramified models we describe good properties of models of sentences in normal
form that are later used to enumerate witnesses of the existence of a model
(called carpets of flowers).

4.1 Basic Definitions

Let x = (x1, . . . , xl) be a sequence of variables. An l-type t(x) is a maximal
consistent set of atomic and negated atomic formulas over σ in the variables of
x. A type t is often identified with the conjunction of formulas in t. In this paper
we need 1- and 2-types that, if not stated otherwise, will be types of the variable
x and of the variables x and y, respectively. A 2-type t is proper if t contains
the formula x = y. If t(x) is an l-type and x′ ⊆ x then we denote by t(x)�x′ the
unique type t(x′) in the variables of x′ included in t(x).

Let ψ(x) be a quantifier-free formula in the variables of x. We say that a type
t satisfies ψ, t |= ψ, if ψ is true under the truth assignment that assigns true to
an atomic formula precisely when it is a member of t.

In this paper, σ-structures are denoted by Gothic capital letters and their
universes by corresponding Latin capitals. If A is a σ-structure with the universe
A, and if a is an l-tuple of elements of A, then we denote by tpA(a) the unique
l-type t(x) realized by a in A. If B ⊆ A then A�B denotes the substructure of
A induced on B. Usually we do not distinguish predicate letters and their inter-
pretations in a structure. However, when it is not clear from the context, we use
PA to denote the interpretation of the predicate letter P in the structure A.

If A and B are σ-structures, a ∈ A and b ∈ B then we write (A, a) ∼= (B, b) to
say that there is an isomorphism f of the structures A and B such that f(a) = b.

Let A be a σ-structure, B a binary predicate letter in σ and C a substructure
of A. We say that C is a B-clique if for every a, b ∈ C we have A |= B(a, b). Let
a ∈ A. If B ∈ Trans, BA is transitive and A |= B(a, a) then we denote by [a]AB
the maximal B-clique containing a; otherwise [a]AB is the one-element structure
A�{a}.

4.2 Normal Form

Definition 1. A GF 2+TG+FG-sentence is in normal form if it is a conjunction
of sentences of the following forms:

∃x (α(x) ∧ ψ(x)), (1)
∀x (α(x)→ ∃y (β(x, y) ∧ ψ(x, y))), (2)
∀x∀y (α(x, y)→ ψ(x, y)), (3)

where y = x, α, β are atomic formulas, ψ is quantifier-free and contains neither
a transitive nor a functional predicate letter.
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The following lemma can be proved in the same way as in [17].

Lemma 1. With every GF 2+TG+FG-sentence Γ of length n over a signature
τ one can effectively associate a set Δ of GF 2+TG+FG-sentences in normal
form over an extended signature σ, Δ = {Δ1, . . . ,Δd}, such that

1. Γ is satisfiable if and only if
∨

i≤d Δi is satisfiable,
2. d ≤ O(2n), card(σ) ≤ n and for every i ≤ d, |Δi| = O(n log n),
3. Δ can be computed deterministically in exponential time and every sentence

Δi can be computed in time polynomial with respect to n.

For future reference in a sentence in normal form we distinguish the following
kinds of conjuncts of the form (2):

(∀x.α(x)) (∃y.Fxy)ψ(x, y), where F ∈ Funct , (2a)
(∀x.α(x)) (∃y.Fyx)ψ(x, y), where F ∈ FunctInv , (2b)
(∀x.α(x)) (∃y.Fyx)ψ(x, y), where F ∈ Funct \ FunctInv , (2c)
(∀x.α(x)) (∃y.Txy)ψ(x, y), where T ∈ Trans, (2d)
(∀x.α(x)) (∃y.Tyx)ψ(x, y), where T ∈ Trans, (2e)
(∀x.α(x)) (∃y.Pxy)ψ(x, y) or (∀x.α(x)) (∃y.Pyx)ψ(x, y), (2f)

where P ∈ (Funct ∪ Trans).

4.3 Ramified Models

In [16] the notion of ramified models was introduced. We show that GF2+TG+FG-
sentences have appropriate ramified models as well. In a ramified structure
cliques are of exponential size (with respect to the cardinality of the signa-
ture), and distinct transitive and/or functional predicates have only disjoint
paths.

First, we distinguish some special kinds of 2-types that will be useful later.

Definition 2. Let t(x, y) be a proper 2-type, B a binary predicate letter in σ,
F ∈ Funct and T ∈ Trans.

1. t(x, y) is T -transitive if t |= T (x, y) ∨ T (y, x). t(x, y) is transitive if t is
T -transitive, for some T ∈ Trans.

2. t(x, y) is F -functional if t |= F (x, y). t(x, y) is functional, if t is F -functional
for some F ∈ Funct.

3. t(x, y) is plain if t is neither transitive nor functional.
4. t(x, y) is singular if there exists exactly one predicate letter B ∈ Funct∪Trans

such that t |= B(x, y) ∨B(y, x).
Note that a singular type is either transitive or functional or can be both, if
B ∈ Funct ∩ Trans.

5. t(x, y) is B-symmetric if t |= B(x, y) ∧ B(y, x) and t is B-oriented if t |=
B(x, y)∨B(y, x) but t is not B-symmetric. t(x, y) is symmetric if t is singular
and B-symmetric, for some B ∈ Funct ∪ Trans. t(x, y) is oriented if t is
singular and B-oriented, for some B ∈ Funct ∪ Trans.
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We also need the following operations to construct new types from given ones.

Definition 3. 1. Let t = t(x, y) be a 2-type. By t̄ we denote the type t(y, x)
obtained from t by swapping the variables x and y.

2. Let v(x), w(y) be 1-types. The negative link of v and w, denoted by v, w,
is the unique proper 2-type containing v(x), w(y) and no positive atomic
two-variable formula.

3. Let t be a proper 2-type over σ and B be a binary predicate letter in σ.
The B-slice of t, denoted by

←→
t, B, is the unique proper 2-type obtained from t

by replacing in t every atomic formula of any of the forms T (x, y), T (y, x),
F (x, y), F (y, x), with T = B, F = B, for any T ∈ Trans, F ∈ Funct, by its
negation.

Let γ be a σ-sentence of the form ∀xα(x) → ∃y φ(x, y), A be a σ-structure
and a ∈ A. We say that an element b ∈ A is a witness of γ for a in A if
A |= α(a) → φ(a, b). Note that if A |= α(a) then any element b ∈ A is a witness
of γ for a in A. Similarly, we say that a ∈ A is a witness of γ of the form ∃xφ(x)
in A if A |= φ(a).

We also need the notion of petals from [17] that correspond to cliques of
transitive predicates.

Definition 4. Let Δ be a GF2+TG+FG-sentence in normal form, A be a model
for Δ, p ∈ A and T ∈ Trans. We say that a σ-structure D is a T -petal of [p]AT
if there exists a function g : D �→ [p]AT that preserves 1-types and the following
conditions hold:

(p1) card(D) ≤ 3 · |Δ| · 2card(σ),
(p2) p ∈ Im(g),
(p3) every proper 2-type realized in D is a T -slice of some type realized in [p]AT ,
(p4) for every a ∈ D, for every conjunct γ of Δ of the form (2) ∀x(α(x) →

∃y(β(x, y) ∧ ψ(x, y))),where β is a T -guard, if there exists a witness of γ
for g(a) in [p]AT (i.e. the type between g(a)and the witness is T -symmetric),
then there exists a witness of γ for a in D.

In case we consider a binary predicate letter B ∈ Funct ∩ Trans, we know that
B-cliques contain exactly 1 element. In case B ∈ Funct , we know from [17] that
petals exist. So we have the following proposition.

Proposition 1. Let Δ be a GF2+TG+FG-sentence in normal form and let A
be a model for Δ. For every T ∈ Trans, for every p ∈ A, there exists a T -petal
of [p]AT .

Below we adapt the notion of r-ramified models for GF2+TG+FG-sentences
in normal form. In such models the cardinality of all T -cliques is bounded by the
constant r and paths of elements corresponding to distinct transitive predicates
do not have common edges. In addition, elements belonging to two distinct
cliques containing a common element are connected by negative types.
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Definition 5. Let Δ be a GF2+TG+FG-sentence in normal form over σ, let R
be a model for Δ and let r be a positive integer. We say that R is an r-ramified
model for Δ if the following conditions hold:

1. for every T ∈ Trans, for every a ∈ R, the cardinality of [a]RT is bounded by r,
2. for every a, b ∈ R such that a = b, tpR(a, b) is either singular or plain,
3. for every T, T ′ ∈ Trans such that T = T ′, for every a, b, c ∈ R, b = a, c = a,

if b ∈ [a]RT and c ∈ [a]RT ′ then tpR(b, c) = tpR(b), tpR(c).

We have the following theorem. The proof has been omitted due to space
limits.

Theorem 2. Every satisfiable GF2+TG+FG-sentence Δ in normal form has a
3 · |Δ| · 2card(σ)-ramified model.

4.4 Syntactic Witness for Satisfiability

In this section we fix a GF2+TG+FG-sentence Δ in normal form and we aim
at defining a syntactic witness for satisfiability of Δ.

We first define 1- and 2-types that may appear in models of Δ.

Definition 6. A 1-type s(x) is Δ-acceptable if

a. for every conjunct of Δ of the form (2) ∀x (α(x) → ∃y (x = y ∧ ψ(x, y))),
we have s |= α(x)→ ψ(x, x), and

b. for every conjunct of Δ of the form (3) ∀x∀y (α(x, y) → ψ(x, y)), we have
s |= (α(x, x)→ ψ(x, x)).

A 2-type t(x, y) is Δ-acceptable if t�x and t�y are Δ-acceptable and for every
conjunct of Δ of the form (3) ∀x∀y(α(x, y)→ ψ(x, y)), we have t |= (α(x, y)→
ψ(x, y)) ∧ (α(y, x)→ ψ(y, x)).

Now, we define Δ-flowers as fragments of ramified models of Δ visible from
a single point of the model. Each flower has a pistil corresponding to a fixed
element of the model, the pistil has a color (defined by a 1-type). Each flower
has petals corresponding to cliques of transitive predicates, leaves correspond-
ing to colors of elements connected by transitive oriented edges with the pistil
and stamens (defined by 2-types) corresponding to functional witnesses for the
pistil.

Definition 7. Let r be a positive integer. An r-flower F is a tuple

F = 〈p, tp(p), {DT }T∈Trans , {InT }T∈Trans , {tF }F∈Funct〉 ,

where tp(p) is a 1-type, each DT is a σ-structure, each InT is a set of 1-types
and each tF is either a 1-type or a singular F -functional 2-type such that the
following conditions hold
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1. for every T, T ′ ∈ Trans, T = T ′, we have DT ∩DT ′ = {p}.
2. for every T ∈ Trans, DT = [p]DT

T , tpDT (p) = tp(p), card(DT ) ≤ r and
every proper 2-type realized in DT is singular T -transitive. Moreover, if T is
functional, then card(DT ) = 1.

3. for every F ∈ Funct, tF �x = tp(p) and t |= (F (x, x) ∨ F (x, y)) ∧ (F (x, x)→
x = y). If, additionally, F ∈ Trans then either tF is an oriented 2-type and
InF = ∅ or tF is a 1-type and card(InF ) ≤ 1.

An r-flower F is called a Δ-flower if additionally, r = 3 · |Δ| · 2card(σ) and

4. for every T ∈ Trans,
for every a, b ∈ DT , tp

DT (a, b) is Δ-acceptable,
for every s ∈ InT there is a Δ-acceptable, singular transitive 2-type
t such that t |= tp(p)(x) ∧ s(y) ∧ T (y, x) ∧ ¬T (x, y) (t is proper,
T -oriented).

5. for every F ∈ Funct, tF is Δ-acceptable,
6. for every conjunct γ of the form (2a): (∀x.α(x)) (∃y.Fxy)ψ(x, y), tF (x, y) |=
α(x)→ Fxy ∧ ψ(x, y).

The element p is called pistil, the structures DT are T -petals, the sets InT are
called T -leaves and the types tF are F -stamens of the r-flower F .

Let γ be a sentence of the form (2) and F a flower. If either for some of
the types tF in F we have tF (x, y) |= α(x) → β(x, y) ∧ ψ(x, y), or there is a
witness of γ for p in some structure DT , then we say that there is a witness of
γ for p in F .

The flowers in a model are connected, so we need the following definition.

Definition 8. Let F and W be r-flowers and t be either a singular or plain
2-type. We say that W is connectable to F with t if

1. t |= tp(pW)(x) ∧ tp(pF )(y),
2. if t is T -transitive then t |= T (x, y) ∧ ¬T (y, x), tp(pW) ∈ InF

T and

InF
T � InW

T ∪ {tpDW
T (d) : d ∈ DW

T } ,

3. if t |= F (x, y), then t = tWF and if t |= F (y, x), then t = tFF . (By Def. 7, if
F ∈ Trans then t cannot be F -symmetric.)

We say that W is petal-connectable to F at a point a ∈ DF
T , if 〈DF

T , a〉 ∼=
〈DW

T , pW〉 and InW
T = InF

T .

Note that if W is connectable to F with a plain 2-type t then also F is
connectable to W with t̄.

Now, we define carpets of flowers as sets of flowers that are syntactic witnesses
of a model of a GF2+TG+FG-sentence.

Definition 9. Let F be a set of Δ-flowers. We say that F is a Δ-carpet if the
following conditions hold:
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(c1) F contains flowers necessary for conjuncts of the form (1):
for every conjunct γ of the form (1): ∃x(α(x) ∧ ψ(x)) there exists F ∈ F
such that tp(pF ) |= α(x) ∧ ψ(x),

(c2) every element of a petal of a flower from F can be a pistil of another flower
from F :
for every F ∈ F , for every T∈Trans, for every a ∈ DF

T there exists W ∈ F
such that W is petal-connectable to F at a,

(c3) every stamen of a flower from F can be a pistil of another flower from F :
for every F ∈ F , for every F ∈ Funct, if tF is a proper 2-type then there
exists W ∈ F such that W is connectable to F with tF ,

(c4) every pistil of a flower from F may get witnesess for all conjuncts of the
form (2b) as pistils of another flower from F :
for every F ∈ F , for every F ∈ FunctInv, if tp(p)F |=¬F (x, x) and there is
a conjunct γ of Δ of the form (2b)such that there is no witness of γ for pF

in F , then there exists W ∈ F and a Δ-acceptable proper 2-type t such that
t = tWF , F is connectable to W with t,and for every conjunct γ of the form
(2b): γ = (∀x.α(x)) (∃y.Fyx)ψ(x, y), t |= α(x)→ F (y, x) ∧ ψ(x, y) holds.

(c5) every pistil of a flower from F may getwitnesess for all remaining conjuncts
of the form (2) as pistils of another flower from F :
for every F ∈ F , for every conjunct γ of Δ of the form (2): γ = ∀x(α(x)→
∃y(β(x, y) ∧ ψ(x, y))) that is not of the form (2b), if there is no witness of
γ for pF in F , then there exists W ∈ Fand a Δ-acceptable proper 2-type t
such that t |= β(x, y) ∧ ψ(x, y), and
(a) if γ is of the form (2c), then t = tWF and F is connectable to W with t,
(b) if γ is of the form (2d), then W is connectable to F with t,
(c) if γ is of the form (2e), then F is connectable to W with t,
(d) if γ is of the form (2f), then t is plainand W is connectable toF with t.

The main result of this section is the following theorem.

Theorem 3. The sentence Δ is satisfiable if and only if there exists a Δ-carpet.

The above Theorem allows to reduce the satisfiability problem for the sen-
tence Δ to the existence of a Δ-carpet that is shown in the next section to be
verifiable in double exponential time. The proof is omitted due to space limits.

4.5 Algorithm for Satisfiability

We prove in this section that the satisfiability problem for GF2+TG+FG is de-
cidable in deterministic double exponential time. In fact we design an alternating
algorithm working in exponential space and the result follows from the theorem
that alternating exponential space coincides with double exponential time (see
[2] for details on alternating complexity classes).

Theorem 4. The satisfiability problem forGF 2+TG+FGis 2Exptime-complete.
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Proof. Hardness follows from the lower bound for monadic-GF2+TG given by
Kieroński in [12]. For the upper bound we proceed as in [17].

Let Γ be a GF2+TG+FG-sentence over a signature τ . Let Δ be the set
of sentences in normal form over a signature σ given by Lemma 1. Then, Γ is
satisfiable if and only if there exists a satisfiable sentence Δ ∈Δ. By Theorem 3,
the satisfiability of a sentence Δ ∈Δ can be tested by checking the existence of
a Δ-carpet. This can be done by an alternating decision procedure that, roughly
speeking, keeps at every moment two different Δ-flowers and a counter for the
number of steps already performed. The size of one Δ-flower is exponential
in the length of Γ . The number of steps can be bounded by the number of
distinct Δ-flowers and therefore the space required by the alternating procedure
is exponential with respect to the length of Γ . Details are omitted due to space
limits.

4.6 Future Work

We plan to extend the decidability result to the fragment with constants. Con-
stans correspond to nominals that are used in the context of both modal and
description logics. The technique presented in this paper cannot be directly ap-
plied because using constants we can write formulas that do not have ramified
models in the sense of Definition 5.
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Abstract. The modal μ-calculus Lμ attains high expressive power by
extending basic modal logic with monadic variables and binding them
to extremal fixed points of definable operators. The number of variables
occurring in a formula provides a relevant measure of its conceptual
complexity. In a previous paper with Erich Grädel we have shown, for
the existential fragment of Lμ, that this conceptual complexity is also
reflected in an increase of semantic complexity, by providing examples
of existential formulae with k variables that are not equivalent to any
existential formula with fewer than k variables.

In this paper, we prove an existential preservation theorem for the
family of Lμ-formulae over at most k variables that define simulation
closures of finite strongly connected structures. Since hard formulae for
the level k of the existential hierarchy belong to this family, it follows
that the bounded variable fragments of the full modal μ-calculus form a
hierarchy of strictly increasing expressive power.

Keywords: μ-calculus, structural complexity.

1 Introduction

Among the various formalisms for reasoning about dynamic systems, the modal
μ-calculus Lμ enjoys a prominent position due to its high expressive power and
model-theoretic robustness, in balance with its fairly manageable computational
complexity. As such, Lμ offers a frame of reference for virtually every logic for
specifying the operational behaviour of reactive and concurrent systems.

Typically, such systems are modelled as transition structures with elemen-
tary states labelled by propositions and binary transition relations labelled by
actions. A simple language for speaking about these models is basic modal logic,
or Hennessy-Milner logic [10], which extends propositional logic by modalities
associated to actions, i.e., existential and universal quantifiers over the successors
of a state which are reachable via the specified action.
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The μ-calculus of Kozen [12] extends basic modal logic by adding monadic
variables bound by least and greatest fixed points of definable operators. This
provides a notion of recursion which invests the logic with high expressive power.
On the other hand, the variables also import considerable conceptual complexity.

A well studied source of conceptual complexity is the alternation depth of
Lμ-formulae, that is, the number of (genuine) alternations between least and
greatest fixed points. In [7] Bradfield showed that the alternation hierarchy of
the μ-calculus is semantically strict; variants of this result have also been proved
by Lenzi [15] and Arnold [1]. Hence, this notion of syntactic complexity of a
formula is reflected in its semantic complexity.

Interestingly, most of the formalisms commonly used for process description
allow translations into low levels of the Lμ alternation hierarchy. On its first level
this hierarchy already captures, for instance, PDL as well as CTL, while their
expressive extensions ΔPDL and CTL∗ do not exceed the second level. Still, the
low levels of this hierarchy do not exhaust the significant properties expressible
in Lμ. A comprehensive example of formulae distributed over all levels of the
alternation hierarchy is provided by parity games. Thus, strictly on level n, there
is a formula stating that the first player has a winning strategy in parity games
with n priorities.

By reusing fixed point variables several times, it is possible to write many
Lμ-formulae, even with highly nested fixed-point definitions, using only very few
variables. For any k, let us denote by Lμ[k] the fragment of Lμ consisting of
those formulae that make use of at most k distinct fixed-point variables. It turns
out that most specification properties of transition structures can be embedded
into Lμ[2]. This is actually the case for all the aforementioned formalisms, CTL,
PDL, CTL*, and ΔPDL (see [17]). But the expressive power of the two-variable
fragment of Lμ goes well beyond this. As shown in [3], the formulae describing the
winning position of a parity game, can also be written with only two variables.

In this context, the question arises, whether a higher number of variables
is indeed necessary, or, in other words, whether the number of variables of a
formula is reflected as a measure of its semantic complexity.

As a first step towards answering this question, we have proved, together
with Grädel in [5], that the variable hierarchy of the existential fragment of Lμ

is strict. This syntactic fragment, consisting of the formulae built from atoms
and negated atoms by means of boolean connectives, existential modalities, and
least and greatest fixed points, admits a strong semantic characterisation. In [8],
D’Agostino and Hollenberg proved that it captures precisely those Lμ-expressible
properties ψ that are preserved under extensions, in the sense that whenever
K, v |= ψ and K ⊆ K′, then also K′, v |= ψ. Unfortunately, the technique used in
their proof does not comply with a variable-confined setting, and the question
whether the variable hierarchy is strict for the full μ-calculus remained open.

To witness the strictness of the variable hierarchy in the restricted existential
case considered in [5], we provided examples of formulae ψk ∈ Lμ[k], for each
level k, that cannot be equivalently expressed by any formula over less than k
variables using only existential modalities. Essentially, the formulae ψk describe
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the class of structures extending a clique with k states, where every pair of states
i, j is linked by a transition labelled ij.

In the present paper, we prove a preservation theorem stating that every
formula defining the extensions of a finite strongly connected structure can be
transformed into an existential formula without increasing the number of vari-
ables. In particular, this holds for the witnesses ψk to the strictness of the ex-
istential hierarchy provided in [5]. Consequently, even if the use of universal
modalities is allowed, none of the formulae ψk can be equivalently written as
a formula with less than k variables. In this way, we can answer positively the
question concerning the strictness of the variable hierarchy of the full μ-calculus
by reducing it to the existential case.

Besides revealing a new aspect of the rich inner structure of the μ-calculus,
this result settles an open question formulated in [17] regarding the expressive
power of Parikh’s Game Logic GL. This logic, introduced in [16] as a gener-
alisation of PDL for reasoning about games, subsumes ΔPDL and intersects
nontrivially all the levels of the Lμ alternation hierarchy [3]. When interpreted
on transition structures, GL can be translated into Lμ[2]. However it was un-
known, up to now, whether the inclusion in Lμ was proper. The strictness of the
variable hierarchy implies that already Lμ[3] is more expressive than GL.

The paper is structured as follows. In Section 2, we introduce the necessary
background on the μ-calculus. Section 3 is dedicated to the proof of the Preser-
vation Theorem. We conclude by stating the Hierarchy Theorem in Section 4.

2 The Modal μ-Calculus

Fix a set act of actions and a set prop of atomic propositions. A transition
structure for act and prop is a structure K with universe K (whose elements
are called states), binary relations Ea ⊆ K ×K for each a ∈ act, and monadic
relations p ⊆ K for each atomic proposition p ∈ prop.

Syntax. For a set act of actions, a set prop of atomic propositions, and a set
var of monadic variables, the formulae of Lμ are defined by the grammar

ϕ ::= false | true | p | ¬p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | μX.ϕ | νX.ϕ

where p ∈ prop, a ∈ act, and X ∈ var. An Lμ-formula in which no universal
modality [a]ϕ occurs is called existential.

The number of distinct variables appearing in an Lμ-formula induces the
following syntactic hierarchy. For any k ∈ N, the k-variable fragment Lμ[k] of
the μ-calculus is the set of formulae ψ ∈ Lμ that contain at most k distinct
variables.

Semantics. Formulae of Lμ are evaluated on transition structures at a particular
state. Given a sentence ψ and a structure K with state v, we write K, v |= ψ to
denote that ψ holds in K at state v. The set of states v ∈ K such that K, v |= ψ
is denoted by [[ψ]]K.
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Here, we only define [[ψ]]K for fixed-point formulae ψ. Towards this, note that a
formula ψ(X) with a monadic variable X defines on every transition structure K
(providing interpretations for all free variables other than X occurring in ψ) an
operator ψK : P(K) → P(K) assigning to every set X ⊆ K the set ψK(X) :=
[[ψ]]K,X = {v ∈ K : (K, X), v |= ψ}. As X occurs only positively in ψ, the
operator ψK is monotone for every K, and therefore, by a well-known theorem
due to Knaster and Tarski, has a least fixed point lfp(ψK) and a greatest fixed
point gfp(ψK). Now we put

[[μX.ψ]]K := lfp(ψK) and [[νX.ψ]]K := gfp(ψK).

Least and greatest fixed points can also be constructed inductively. Given a
formula νX.ψ, we define for each ordinal α, the stage Xα of the gfp-induction
of ψK by X0 := K, Xα+1 := [[ψ]](K,Xα), and Xα :=

⋂
β<αX

β if α is a limit
ordinal. By monotonicity, the stages of the gfp-induction decrease until a fixed
point is reached. By ordinal induction, one easily proves that this inductively
constructed fixed point coincides with the greatest fixed point. The finite ap-
proximants of a formula νX.ϕ are defined by ϕ0 := true and ϕn+1 = ϕ[X/ϕn]
(the formula obtained by replacing every occurrence of X in ϕ, by ϕn). Obvi-
ously, νX.ϕ implies ϕn for all n. Likewise, but starting from false, one defines
the approximants ϕn of μX.ϕ.

The validity of existential Lμ-formulae is preserved under model extensions
and, more generally, under the following notion of simulation.

Definition 1. A simulation from a structure K to a structure K′ is a relation
Z ⊆ K × K ′ respecting the atomic propositions p ∈ prop in the sense that
K, v |= p iff K′, v′ |= p, for (v, v′) ∈ Z, which satisfies the following condition.
For all (v, v′) ∈ Z, a ∈ act, and every w such that (v, w) ∈ Ea, there exists a
w′ ∈ K ′ such that (v′, w′) ∈ E′

a and (w,w′) ∈ Z. We say that K′, u′ simulates
K, u and write K, u � K′, u′, if between the structures there is a simulation
containing (u, u′).

As a modal logic, the μ-calculus distinguishes between transitions structures
only up to behavioural equivalence, captured by the notion of bisimulation.

Definition 2. A bisimulation between two transition structures K and K′ is a
simulation Z from K to K′ such that the inverse relation Z−1 is a simulation
from K′ to K. Two transition structures K, u and K′, u′ are bisimilar , if there is
a bisimulation Z between them, with (u, u′) ∈ Z.

An important model-theoretic feature of modal logics is the tree model prop-
erty meaning that every satisfiable formula is satisfiable in a tree. This is a
straightforward consequence of bisimulation invariance, since K, u is bisimilar
to its tree unravelling, i.e., a tree whose nodes correspond to the finite paths in
K, u. Every such path π inherits the atomic propositions of its last node v; for
every node w reachable from v in K via an a transition, π is connected to its
prolongation by w via an a-transition.

Another significant feature of Lμ is its finite model property.
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Theorem 1 ([13]). Every satisfiable Lμ-formula has a finite model.

Since the unravelling of a finite model is a finitely branching tree, we obtain
the following corollary.

Corollary 1. Every satisfiable Lμ-formula holds in some finitely branching tree.

For later use, we state a further consequence of the finite model property.

Corollary 2. For ψ ∈ Lμ, let ψ[ν := νn] denote the result of replacing ev-
ery occurrence νX.η of a ν-predicate in ψ with its n-th approximant ηn. Then,
a formula ϕ ∈ Lμ implies ψ if, and only if, ϕ implies ψ[ν := νn], for each n.

Model-Checking Games. The semantics of Lμ can also be described in terms of
parity games, in which two players form a path in a given graph with nodes
labelled by natural numbers called priorities. If a player cannot move, he loses.
If this never occurs, the winner is decided by looking at the (infinite) sequence of
priorities occurring in the play. The first player wins if the least priority appear-
ing infinitely often in this sequence is even, otherwise his opponent wins. The
Forgetful Determinacy Theorem states that these games are always determined,
and the winner has a memoryless winning strategy, that is, a strategy that does
not depend on the history of the play but only on the current position.

Theorem 2 (Forgetful Determinacy, [9]). In any parity game, one of the players
has a memoryless winning strategy.

Given a transition structure K, v0 and a Lμ-sentence ψ, the model-checking
game G(K, ψ) is a parity game associated with the problem whether K, v0 |= ψ.
Deviating from the more traditional way to define this game with positions
associated to subformulae of ψ (see, e.g., [4, 18]), we use a variant more familiar
in automata theory which, instead of subformulae, refers to their closure [9, 14].

Definition 3. Let ψ ∈ Lμ be a formula without free variables. For each subfor-
mula ϕ in ψ, we define its closure clψ(ϕ) as the formula obtained by replacing
recursively every free occurrence of a variable in ϕ by its binding definition. By
cl(ψ) we denote the set of closures of all subformulae in ψ.

The positions in the game G(K, ψ) are pairs (v, ϕ) of states v ∈ K and
sentences ϕ ∈ cl(ψ). The first player, called Verifier, moves from the positions
(v, ϕ1∨ϕ2), (v, 〈a〉ϕ), (v, p) with v ∈ p, and (v,¬p) with v ∈ p and his opponent,
called Falsifier, moves from every other position. All plays start at (v0, ψ) and
can proceed as follows:

– no moves are possible from (v, α) where α is atomic or negated atomic;
– from (v, ϕ1 ∨ ϕ2) or (v, ϕ1 ∧ ϕ2) available moves lead to (v, ϕ1) and (v, ϕ2);
– from (v, 〈a〉ϕ) or (v, [a]ϕ) there are available moves to all positions (w,ϕ)

where w is an a-successor of v;
– from (v, λX.ϕ(X)) the play moves to (v, ϕ(λX.ϕ(X))).
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The priority labelling assigns even priorities to positions (v, νX.ϕ) and odd
priorities to positions (v, μX.ϕ), respecting the nesting of greatest and least
fixed-point operators. For details (which are not needed in this paper), see [4].

Theorem 3 ([18]). Verifier has a winning strategy in the model-checking game
G(K, ψ) from position (u, ψ) iff K, u |= ψ.

Simultaneous Fixed Points. There is a variant of Lμ that admits simultaneous
fixed points of several formulae. This does not increase the expressive power but
allows more transparent formalisations. The mechanism for building simultane-
ous fixed-point formulae is the following. Given formulae ϕ1, . . . , ϕn and variables
X1, . . . , Xn, we can write an equational system S := {X1 = ϕ1, . . . , Xn = ϕn}
and build formulae (μXi : S) and (νXi : S). On every structure K, the system S
defines an operator SK mapping an n-tuple X̄ = (X1, . . . , Xn) of sets of states
to SK

1 (X̄), . . . , SK
n (X̄) so that, for each i we have: SK

i (X̄) := [[ϕi]](K,X̄). As SK

is monotone, it has extremal fixed points lfp(S) = (Xμ
1 , . . . , X

μ
n ) respectively

gfp(S) = (Xν
1 . . . , X

ν
n), and we set [[(μXi : S)]]K := Xμ

i and [[(νXi : S)]]K := Xν
i .

It is known that simultaneous least fixed points can be eliminated in favour
of nested individual fixed points.

Proposition 1 ([2]). Every formula in Lμ with simultaneous fixed points can be
translated into an equivalent formula in plain Lμ without increasing the number
of variables.

3 The Preservation Theorem

The key argument in our proof of the Hierarchy Theorem consists in the preser-
vation property stated in the current section, which implies that the formulae
proposed in [5] to separate the hierarchic levels of the existential fragment also
witness the strictness of the full μ-calculus variable hierarchy.

This preservation property concerns formulae which define simulation clo-
sures of certain structures. The simulation closure of a rooted transition struc-
ture K, v0 is the class

(K, v0)� := {K′, v′
0 | K, v0 � K′, v′

0 }.

Clearly, if K is finite, this class can be axiomatised by an Lμ-formula. For con-
venience, we will use simultaneous fixed points. Let S be the system defining,
for every node v ∈ K, a proposition Xv via the equation

Xv =
∧

p|v∈p

p ∧
∧

a∈act,(v,w)∈Ea

〈a〉Xw.

It can be easily seen that on any transition structure K′, the greatest solution of
this system maps every variable Xv to the set { v′ ∈ K ′ | K, v � K′, v′ }. Hence,
for any state v′ ∈ [[νXv : S]]K

′
, we have K, v � K′, v′.
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For further use, let us denote the Lμ-formula obtained as a translation of
the equational expression νXv : S by ψK

v . For the formula ψK
v0

associated to the
designated root v0 of K, we write ψK, and call it the canonical axiom of (K, v0)�.

Our main technical contribution is stated in the following theorem.

Theorem 4. Every formula over k variables ψ ∈ Lμ[k] that defines the simula-
tion closure (K, v0)� of a finite strongly connected structure is equivalent to an
existential formula ψ′ ∈ Lμ[k].

To prove that universal modalities can be safely eliminated from any for-
mula ψ of the considered kind, we take a detour and first show that they can be
eliminated from the formula expressing that a node at which ψ holds is reachable.
To refer to this formula, we use a shorthand borrowed from temporal logics:

Fψ := μX.ψ ∨
∨

a∈act

〈a〉X.

Lemma 4 in the second part of this section then states that from any formula
equivalent to Fψ, an existential formula equivalent to ψ can be recovered without
increasing the number of variables.

Lemma 1. Let K be a finite strongly connected structure and let ψK be the
canonical axiom of its simulation closure (K, v0)�. Then, every formula χ ≡ FψK

can be transformed, without increasing the number of variables, into an equivalent
formula χ′ with the following properties:

(i) no universal modalities occur in χ′;
(ii) χ′ is of shape Fψ, where ψ contains no μ-operators;
(iii) every formula ϕ ∈ cl(χ′) holds at some vertex of K.

Proof. (i) Given an Lμ-formula χ, we say that a subformula 〈a〉ϕ starting with a
diamond is vital, if clχ(ϕ) implies FψK. Dually, a subformula [a]ϕ starting with
a box is vital, if the negation ¬ clχ(ϕ) implies FψK.

Eliminating Vital Boxes. For χ ≡ FψK, let χ′ be the formula obtained by replac-
ing any occurrence of a vital box-subformula [a]ϕ with true. Then, χ obviously
implies χ′. For the converse, let us consider a tree model T of χ′. If, at all its
nodes, T , v |= [a] clχ(ϕ) holds, then T |= χ. Else, there exists a node v ∈ T with
T , v |= 〈a〉¬ clχ(ϕ). But, since [a]ϕ is vital, this means that T , v and hence T
verifies FψK. Either way, we obtain T |= χ and hence χ ≡ χ′.

Eliminating Non-vital Modalities. By iterating the above elimination step a finite
number of times, we obtain a formula χ ≡ FψK without vital box-subformulae.
Let now χ′ be the formula obtained from χ by substituting simultaneously all
remaining (i.e., non-vital) box-subformulae with false and all non-vital diamond-
subformulae with true.

We will first show that the obtained formula χ′ implies χ. Let T be a tree
model of χ′ and, for every non-vital subformula 〈a〉ϕ of χ, let Tϕ be a tree model
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of clχ(ϕ)∧¬FψK. With the latter models, we construct an extension T ′ of T by
introducing for every node v ∈ T and every non-vital subformula 〈a〉ϕ of χ, a
fresh copy of Tϕ to which we connect v via an a-edge.

Since χ′ contains no box-subformulae, it is closed under extensions. Conse-
quently T ′ |= χ′ and Verifier has a winning strategy σ in the model-checking
game G(T ′, χ′). Also, for every tree Tϕ, Verifier has a winning strategy σϕ in
the game G(Tϕ, clχ(ϕ)). We can combine these strategies, to obtain a winning
strategy for Verifier in the game G(T ′, χ) as follows. Move according to σ unless
a position with a non-vital subformula of χ is met; up to that point, the play
cannot leave T , otherwise, since FψK is falsified at any node w ∈ T ′\T , any vital
subformula 〈a〉ϕ would fail at w. Moreover, no subformula [a]ϕ can occur, as it
would correspond to a false position in G(T ′, χ′). Consequently, σ leads the play
to a position (v, 〈a〉ϕ) where v ∈ T and 〈a〉ϕ is non-vital. At that event, let the
Verifier choose the a-successor at the root of Tϕ and proceed with his memoryless
winning strategy σϕ for the remaining game. In this way, Verifier finally wins
any play of G(T ′, χ). Notice that, for all nodes w ∈ T ′ \T , we have T ′, w |= FψK,
and hence T ′ verifies FψK (or, equivalently, χ) if, and only if, T does. Hence, we
have the following chain of implications, showing that χ′ implies χ:

T |= χ′ =⇒ T ′ |= χ′ =⇒ T ′ |= χ =⇒ T |= χ.

For the converse, consider a tree model T |= χ and, for every (non-vital)
subformula [a]ϕ of χ, a tree model T¬ϕ |= ¬ clχ(ϕ) ∧ ¬FψK. As in the previous
step, we construct an extension T ′ of T by connecting every node v ∈ T via an
a-edge to a fresh copy of T¬ϕ, for every subformula [a]ϕ of χ. Since χ ≡ FψK is
preserved under extensions, T ′ is still a model of χ. Let σ be a winning strategy
for Verifier in the model-checking game G(T ′, χ). We will show that σ is also a
winning strategy for Verifier in G(T , χ′).

Notice that, in G(T ′, χ) Falsifier has a winning strategy from every position
(v, [a]ϕ) with v ∈ T , by moving to the a-successor of v at the root of T¬ϕ. Con-
sequently, any play according to Verifier’s strategy σ will avoid such positions.
Besides this, at every position (v, 〈a〉ϕ) where v ∈ T and 〈a〉ϕ is a vital subfor-
mula of χ, the strategy σ will appoint a successor position (w,ϕ) with w ∈ T ,
otherwise, since any a-successor w′ ∈ T ′ \T falsifies FψK, ϕ would fail too. Sum-
marising, every play of G(T ′, χ) according to σ, will avoid universal modalities
and meet only nodes v ∈ T , unless at some position a non-vital subformula 〈a〉ϕ
occurs. But under these conditions, we can replicate every play of G(T ′, χ) ac-
cording to σ as a play of G(T , χ′): in case a non-vital subformula 〈a〉ϕ of χ is
met in the former game, Verifier immediately wins G(T , χ′), since the non-vital
diamond-subformulae have been replaced by true. Otherwise, the outcome of the
play is the same for both games and Verifier wins as well.

This concludes the proof that χ ≡ χ′.

(ii) By the above result, we can assume without loss that χ ≡ FψK contains
no box-modalities. For n being the number of states in K, let ψ be the formula
obtained by replacing every occurrence of a least fixed-point subformula μX.ϕ in
χ by it’s n-th approximant ϕn. Then, by definition of the μ-operator, ψ implies χ
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and thus Fψ implies Fχ, which is equivalent to χ. Conversely, since K, v0 |= χ and
K has n states, we have K, v0 |= ψ. Since ψ is preserved under extensions, this
means that ψK implies ψ. Accordingly FψK, which is equivalent to χ, implies Fψ.
Hence, χ ≡ Fψ.

Note that the transformation of χ into Fψ does not increase the number of
variables, as we can pick any of the variables already occurring in χ to expand
the F-notation.

(iii) By the previous argument, we can assume that χ is of shape Fψ where ψ
contains no boxes, i.e., χ = μX.ψ ∨

∨
a〈a〉X. Clearly, χ itself holds at every

node of K and therefore, for every transition a occurring in K, there is a node
v ∈ K where 〈a〉χ, and thus clχ

(
〈a〉X

)
, holds. Hence, any subformula ϕ of χ,

with K, v |= clχ(ϕ) for all v, must actually be a subformula of ψ. Let ψ′ be the
formula obtained by replacing every such occurrence ϕ in ψ with false. On the
one hand, ψ′ then obviously implies ψ. On the other hand, as K, v0 |= Fψ, there
must exists a node v of K where ψ holds. At that node we also have K, v |= ψ′

and, because ψ′ is closed under extensions, this means that ψK
v implies ψ′. But

then FψK implies Fψ′ and, by Fψ ≡ FψK, it follows that Fψ implies Fψ′. ��

Radical Formulae and Crisp Models. Before we proceed towards proving the
Preservation Theorem, we will introduce some notions which will be useful in
the proof of Lemma 4

Given a formula ψ ∈ Lμ, we call a subformula ϕ radical, if it appears directly
under a modal quantifier in ψ. We refer to the closure of radicals in ψ by

cl0(ψ) := {ψ} ∪ {ϕ ∈ cl(ψ) | 〈a〉ϕ ∈ cl(ψ) or [a]ϕ ∈ cl(ψ) for some a ∈ act }.

Radical formulae are the first to be met when a play of the model-checking
game reaches a new node of the transition structure. For this reason, we need
to care for game positions carrying radical formulae when merging strategies of
different games.

LetM be a model of ψ ∈ Lμ and σ a winning strategy for Verifier in G(M, ψ).
For any node v ∈M , we define the strategic type of v in M under σ as follows:

tpM
σ (v) := {ϕ ∈ cl0(ψ) | position (v, ϕ) is reachable in G(M, ψ) following σ }.

In arbitrary games, the type of a node can be rather complex. However, for
existential formulae, Verifier has full control over the moves in the transition
structure. In the ideal case, he can foresee for every node, a single radical formula
to be proven there.

Given a transition structure M and a formula ψ, we say that a Verifier
strategy σ in the model-checking game G(M, ψ) is crisp, if the strategic type
tpM

σ (v) of any v ∈M consists of not more than one radical. Accordingly, we call
a model M of ψ crisp (under σ), if Verifier has a crisp winning strategy σ in the
associated model-checking game.

The subsequent lemmas, that can be easily proved, provide us with sharp
tools for manipulating models of existential formulae.
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Lemma 2. Every existential formula ψ ∈ Lμ satisfied in some model M |= ψ
also has a tree model T bisimilar to M which is crisp. Moreover, if M is finitely
branching, then T can be chosen so as well.

Lemma 3. Let T be a crisp tree model of a formula ψ ∈ Lμ under a strategy σ
and let x ∈ T be a node with strategic type tpT

σ (x) = {ϕ}. Then, for every crisp
tree model S of ϕ, the tree T [x/S], obtained by replacing the subtree of T rooted
at x with S, is still a crisp model of ψ.

We are now ready for the final step, the elimination of the F-operator.

Lemma 4. Let ψK be the canonical axiom for the simulation closure (K, v0)� of
a finite strongly connected structure K. Then, every formula ψ so that Fψ ≡ FψK

can be transformed, without increasing the number of variables, into a formula ψ′

without universal modalities, so that ψ′ ≡ ψK.

Proof. According to Lemma 1, we can assume that ψ contains no universal
modalities or least fixed point operators and that (the closure of) every subfor-
mula is true at some node in K.

We will first show that for any node v in K, there is a subformula ϕ of ψ
whose closure clψ(ϕ) implies ψK

v . Actually, we always find a radical formula with
this property.

Towards a contradiction, let us assume that ψK
v is not implied by any radical

subformula of ψ. This means that every ϕ ∈ cl0(ψ) has a tree model Tϕ which
falsifies ψK

v . According to Corollary 2, we can choose Tϕ to be a finitely branching
tree that falsifies already an approximant of ψK

v to some finite stage mϕ. Observe
that this approximant (ψK

v )[ν := νmϕ ] is a modal formula. Let us denote its
modal depth by nϕ. Further, let us fix a number n which is greater than any nϕ

for ϕ ∈ cl0(ψ) and co-prime to every number up to |K|.
By Lemma 2, we can assume without loss of generality that each Tϕ is a crisp

model of ϕ, this being witnessed by a crisp winning strategy for Verifier in the
game G(Tϕ, ϕ). In particular, Tψ is a crisp model of ψ. Let σψ be a crisp winning
strategy for Verifier in the model-checking game G(Tψ, ψ).

By means of these, we construct a sequence of trees (Ti)0≤i<ω, together with
crisp Verifier strategies σi witnessing that Ti |= ψ. To start, we set T0 := Tψ and
σ0 := σψ. In every step i > 0, the tree Ti+1 is obtained from Ti by performing
the following manipulations at depth n(i+ 1). For each subtree of Ti rooted at
a node x of this depth, we check whether Ti, x |= ψK

v . If this is not the case, the
subtree remains unchanged. Else, we look at the strategic type of x under σi. If
the type is empty, we simply cut all successors of x. Otherwise, tpTi

σi
(x) consists

of a single radical formula ϕ, and we replace the subtree Ti, x with Tϕ. According
to Lemma 3, the resulting tree Ti+1 is a model of ψ, and the composition of the
strategy σi with the crisp strategies σϕ on the newly appended subtrees Tϕ yields
a crisp Verifier strategy σi+1 for the model-checking game G(Ti+1, ψ).

By construction, each of the trees Ti is finitely branching and the sequence
(Ti)0≤i<ω converges in the prefix topology of finitely branching trees (see [11]).
Let Tω be the limit of this sequence. Since no μ-operators occur in ψ, its model
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class is topologically closed on finitely branching trees, according to [11]. Con-
sequently, Tω is still a model of ψ. By our hypothesis, ψ implies FψK. Thus, at
some depth d in Tω a node x with Tω, x |= ψK

v appears. Since K is strongly con-
nected, v must lie on a cycle in K. Hence, for k ≤ |K| being the length of such a
cycle, there exist nodes y with Tω, y |= ψK

v at every depth d+ jk. However, our
construction eliminated all subtrees carrying the similarity type of v at depths
multiple of n. Since n was chosen to be co-prime to any integer up to |K|, it
follows that Tω cannot satisfy ψ. This is a contradiction which invalidates our
assumption that ψK

v is not implied by any ϕ ∈ cl0(ψ).
Hence, for every node v ∈ K, there exists a formula ϕv ∈ cl0(ψ) imply-

ing ψK
v . We can show that the converse also holds, if v is maximal with respect

to the preorder �, in the sense that for every w with v � w we have w � v.
Recall that, by Lemma 1 (iii), the formula ϕv must be verified at some node
w in K. Since ϕv is existential and thus preserved under extension, it follows
that ψK

w implies ϕv, which further implies ψK
v . But this means that v � w and,

by maximality of v, that w simulates v. Hence, K, v |= ϕv and consequently
ψK

v ≡ ϕv.
This concludes the proof for the case when v0 is maximal in K with respect

to �. Otherwise, we could not guarantee, of course, that ϕv0 ≡ ψK
v0

. But in that
case, a formula equivalent to ψK

v can be recovered from cl0(ψ) without great
difficulty. ��

4 The Hierarchy Theorem

In [5], it was shown that every level k of the variable hierarchy contains ex-
istential formulae which are not equivalent to any existential formula from a
lower hierarchical level. Examples of such formulae are obtained by considering
so-called clique structures Ck over the set of states {0, . . . , k − 1} with transi-
tion relations Eij = {(i, j)}, for 0 ≤ i, j < k. For each k, the canonical axiom
ψk of the simulation closure of Ck is an existential Lμ-formula over k variables.
The Hierarchy Theorem for the existential fragment states that, if we restrict to
formulae using only existential quantification, k variables are indeed necessary.

Theorem 5 ([5]). For every k > 0, the simulation closure of Ck cannot be
defined by any existential formula in Lμ[k − 1].

However, this left open the question whether a formula from Lμ[k− 1] which
uses universal quantification may be equivalent to ψk. Due to our Preservation
Theorem, we are now able to assert that this cannot be the case.

Theorem 6. For every k > 0, the formula ψk ∈ Lμ[k] defining the simulation
closure of Ck is not equivalent to any formula in Lμ[k − 1].

Proof. Let us assume that there exists a formula ψ ∈ Lμ[k−1] equivalent to ψk.
Since ψ defines the simulation closure of Ck, a finite strongly connected structure,
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we can apply Theorem 4 to conclude that there also exists a formula ψ′ ∈
Lμ[k − 1] using only existential modalities which is equivalent to ψk. But this
contradicts the Hierarchy Theorem 5 for the existential fragment. ��

As a direct consequence, we can separate the expressive power of Parikh’s
Game Logic [16] and the μ-calculus, thus answering an open question posed by
Pauly in [17]. Since Game Logic can be translated into the two variable fragment
of Lμ, its expressive power is strictly subsumed already by Lμ[3].

Corollary 3. The modal μ-calculus is strictly more expressive than Game Logic
interpreted over transition structures.

Notice that the examples of strict formulae for Lμ[k] given in [5] use a vocab-
ulary consisting of k2 actions. In a forthcoming paper [6], we provide examples
of hard formulae over a fixed alphabet of only two actions for every level k.
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Abstract. A relational structure is a core, if all endomorphisms are em-
beddings. This notion is important for the classification of the computa-
tional complexity of constraint satisfaction problems. It is a fundamental
fact that every finite structure S has a core, i.e., S has an endomorphism
e such that the structure induced by e(S) is a core; moreover, the core
is unique up to isomorphism.

We prove that this result remains valid for ω-categorical structures,
and prove that every ω-categorical structure has a core, which is unique
up to isomorphism, and which is again ω-categorical. We thus reduced
the classification of the complexity of constraint satisfaction problems
with ω-categorical templates to the classifiaction of constraint satisfac-
tion problems where the templates are ω-categorical cores. If Γ contains
all primitive positive definable relations, then the core of Γ admits quan-
tifier elimination. We discuss further consequences for constraint satis-
faction with ω-categorical templates.

1 Introduction

The notion of a core has applications in the theory of constraint satisfaction.
We therefore start with a brief introduction to constraint satisfaction; for formal
definitions, see Section 2. Let Γ be a structure with a relational signature τ .
The constraint satisfaction problem for the so-called template Γ is the following
computational problem:

CSP(Γ )
INSTANCE: A finite structure S of the same relational signature τ as the tem-
plate Γ .
QUESTION: Is there a homomorphism h : S → Γ , i.e., a map h from S to Γ
that preserves all relations from τ?

We want to stress that Γ is not part of the input. Each Γ defines a computa-
tional problem. Some of them might be equivalent, though. A classification into
tractable and hard problems in this class is intensively studied for finite Γ , but
still not complete. See [10,18,22,24,28], just to mention a few highlights on that
subject.

The class of constraint satisfaction problems with an infinite template was not
yet studied systematically. One example of a constraint satisfaction problem with
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an infinite template is CSP((Q;<)), where (Q;<) is the countable dense linear
order on the rational numbers. The binary relation for the linear order can be
interpreted as a set of directed edges, and thus the corresponding computational
problem is digraph-acyclicity, which can be solved in polynomial time.

It turns out that many other interesting computational problems can be for-
mulated with templates that are ω-categorical. A structure is ω-categorical, if
all countable models of its first-order theory are isomorphic to Γ . This is for
instance the case for (Q;<). On the one hand, ω-categoricity is a rather strong
model-theoretic assumption on a relational structure, and many techniques for
constraint satisfaction with finite templates extend to ω-categorical templates.
On the other hand, the class of computational problems that can be formulated
as a constraint satisfaction problem with such a template is large, as demon-
strated by the following list of well-known computational problems.

– Allen’s interval algebra, and all its fragments [4,25,27].
– Problems in phylogenetic analysis [20,29].
– Tree description constraints from computational linguistics [8, 9, 16].
– All problems in monotone monadic SNP without inequality [7, 18].

The class strictly contains all constraint satisfaction problems with finite tem-
plates: the subclasses of problems mentioned above can not be formulated with
finite templates.

Note that the image of a relational structure Γ under an endomorphism (i.e.,
a homomorphism from Γ to Γ ) has the same constraint satisfaction problem
as Γ . Sometimes one can simplify the formulation of a constraint satisfaction
problem with template Γ by considering CSP(Γ ′), where Γ ′ is an endomorphic
image of Γ . This works particularly well for finite structures, where we have a
canonical choice for Γ ′, namely the core of Γ . A finite relational structure A is
called a core if every endomorphism of A is an automorphism of A; a core A is
called a core of B if A is the image of an endomorphism of B. The following is
well-known and easy to prove.

Theorem 1. Every finite relational structure has a core, which is unique up to
isomorphism.

Therefore, we speak of the core of a finite relational structure A; see [21].
The countable dense linear order (Q;<) has many endomorphisms that are not
automorphisms. However, all endomorphisms are injective, and strong, i.e., they
preserve not only the order < but also its complement ≥. Various generalizations
of the notion of a core for infinite structures were studied by Bauslaugh [5, 6].
He introduced the notation below. If there is a homomorphism from Γ to H, we
also write Γ→H.

– I(Γ ) holds if every endomorphism of Γ is an injection.
– S(Γ ) holds if every endomorphism of Γ is a surjection.
– N(Γ ) holds if every endomorphism of Γ is strong, i.e., preserve also the

complements of the relations in Γ .
– i(Γ ) holds if there is a substructure H ⊆ Γ s.t. Γ → H and I(H).
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– s(Γ ) holds if there is a substructure H ⊆ Γ s.t. Γ → H and S(H).
– n(Γ ) holds if there is a substructure H ⊆ Γ s.t. Γ → H and N(H).

Bauslaugh canonically defined combinations of the uppercase properties. For in-
stance the property ISN of a finite structure A states that A is a core. For finite
structures, ISN is equivalent to IN, IS, I, and to S. These properties all general-
ize the definition of a core for finite structures, and they are all inequivalent for
infinite structures. For combinations of the lowercase properties we additionally
require that the same subgraph H of Γ has the required properties. Finite struc-
tures A satisfy isn. Infinite structures in general satisfy none of the properties
i, s, or n. For ω-categorical structures, we argue that the following definition is
most useful.

Definition 1. A (finite or infinite) structure Γ is a core, if all endomorphisms
are injective and strong.

Hence, the dense linear order of the rational numbers is a core. This definition
corresponds to IN-cores in the terminology of Bauslaugh, and generalizes the
definition for finite structures.

We will show that for every ω-categorical structure there is an endomor-
phism c such that the image of c is a core; in the terms above, we show that
ω-categorical templates Γ satisfy in(Γ ). Moreover, we show that this core is
unique up to isomorphism, and again ω-categorical. If we add all primitive pos-
itive formulas to the signature of an ω-categorical core, the resulting relational
structure admits quantifier elimination. The implications of these results for
constraint satisfaction are discussed in Section 5; in particular we generalize an
important result of [11] for constraint satisfaction with finite templates to all
ω-categorical templates.

Examples. To illustrate the concepts we have seen so far, we formulate several
well-known computational problems as constraint satisfaction problems. With
Theorem 3 in the next section it will be easy to check that the corresponding
templates are all ω-categorical. Three more examples follow at the end of Sec-
tion 3, since we need the concept of amalgamation to define them conveniently.
In all these examples, it is fairly easy to check that the chosen template is a core.

Betweenness. An important NP-hard problem is Betweenness [19], since the
hardness of many fragments of Allen’s Interval Algebra [4, 25] is most easily
checked by reduction from Betweenness. Given a finite set V , and a collection
C of ordered triples (x, y, z) of distinct elements from V , the computational
question is whether there is an injective function f : V → {1, . . . , |V |} such that,
for each (a, b, c) ∈ V , we have either f(a) < f(b) < f(c) or f(c) < f(b) < f(a).
The formulation as a constraint satisfaction problem is straightforward, using
the rational numbers as the base set.

Switching-Acyclicity. The following problem was studied in [9]. Given a digraph
D = (V ;E), can we partition the vertices V into two parts, such that the
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graph that arises from D by switching all arcs between the two parts is acyclic?
To formulate this as a constraint satisfaction problem with an ω-categorical
template, consider a dense subset X of Q, and switch the order < between
the elements of X and Q−X, and leave the edges within X and within Q−X
unchanged. The resulting structure is called S(2) and is isomorphic for all choices
of dense sets X. The constraint satisfaction problem of S(2) is the problem
described above. For equivalent definitions of S(2) and an hardness-proof of its
constraint satisfaction problem, see [7, 9].

Partial tree descriptions. Our next example was studied in computational lin-
guistics [16], and the first polynomial time algorithm can be found in [8]. Let D
be a digraph with two types of arcs, called ancestorship and non-ancestorship
arcs. The question is whether D is a consistent partial tree description, i.e.,
whether we can find a forest with oriented edges on the vertex set of D, such
that for every ancestor arc in D there is a directed path in the forest, and for
every non-ancestor arc there is no directed path in the forest. Here we choose the
following dense proper semilinear order [2, 13,17] as a template. The domain of
the structure is the set Λ of all non-empty finite sequences a = (q0, q1, . . . , qn−1)
of rational numbers. Let a < b if either

– b is a proper initial subsequence of a, or
– b = (q0, . . . , qn−1, qn) and a = (q0, . . . , qn−1, q

′
n, qn+1, . . . , qm), where the

rational number qn is smaller than q′
n.

The relation < corresponds to ancestorship edges, this is, we write a < b if b is an
ancestor of a. The set of all ordered pairs of distinct points not in <, denoted by
�, corresponds to the non-ancestorship edges. CSP((Λ;<, �)) is the constraint
satisfaction problem we are interested in.

Non-cores. Of course, there are plenty of ω-categorical structures that are not
cores, for instance the Random graph R [12, 23], whose core is the complete
graph Kω on countably many vertices (the constraint satisfaction problem of R
and Kω is trivial). Another example is the structure (Λ;<), i.e., the template for
partial tree descriptions introduced above without the relation �. This structure
contains an isomorphic copy of the core (Q;<), and there is an endomorphism
from Λ to this copy.

2 Model-Theoretic Preliminaries

Let A and B be relational structures with the same relational signature τ .
A mapping f : A → B is called a homomorphism, if for all relations R ∈
τ and x1, . . . , xn ∈ A the relation R(f(x1), . . . , f(xn)) holds in B whenever
R(x1, . . . , xn) holds in A. A homomorphism is called strong, if R(x1, . . . , xn)
holds in A if and only if R(f(x1), . . . , f(xn)) holds in B. A strong and injec-
tive homomorphism is also called an embedding. Homomorphisms that are not
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embeddings are called strict. A homomorphism from A to A is called an endo-
morphism of A, and a bijective strong homomorphism from A to A is called an
automorphism of A.

A formula φ is primitive (primitive positive), if it is of the form ∃x.ψ1 ∧ · · · ∧
ψk, where ψi are literals (atomic formulas). It is called existential (existential
positive), if it is of the form ∃x.Ψ where Ψ is quantifier-free (and negation-
free). The strongest of these four syntactic restrictions, primitive positivity, is
important for constraint satisfaction, since the expansion of a template with a
primitive positive definable (short, p.p.-definable) relation does not change the
complexity of the corresponding constraint satisfaction problem. This is an easy
observation, see e.g. [24].

A structure Γ admits quantifier elimination, if every first-order formula has
in Γ a quantifier-free definition. For example, consider modules, and add all p.p.-
definable relations to the signature. The theorem of Baur and Monk says that
the resulting structure admits quantifier elimination (see e.g. [23]). As we will see
at the end of this section, cores behave similarly in this respect. It is sometimes
possible to apply the following well-known theorem to eliminate negations in
existential formulas.

Theorem 2. Let T be a first-order theory such that every homomorphism be-
tween models of T is an embedding. Then every existential formula is equivalent
to an existential positive formula with respect to T .

For the proofs for the statements in this section we refer to the full version of
this paper. If Γ is a structure with relational signature τ , then Th(Γ ) denotes
the set of all first-order sentences (where the atomic formulas are built from
the symbols in τ and equality) that hold in Γ . The following is an important
consequence of Theorem 2.

Proposition 1. Let Γ be a τ -structure with finitely many p.p.-definable rela-
tions of arity k, for all k ≥ 1, and where τ contains a relation symbol for each
of them. If all homomorphisms between models of Th(Γ ) are embeddings, then
Γ allows quantifier elimination.

3 Countably Categorical Structures

Finite structures are up to isomorphism determined by their first-order theory.
We can not expect this for infinite structures: by the theorem of Löwenheim-
Skolem, every consistent theory with a model of cardinality λ has models of
arbitrary cardinality ≥ λ. However, it might still be the case that all models of
a certain cardinality are isomorphic. If this is the case for the countable models,
we call the theory ω-categorical. A countable structure is called ω-categorical
(or countably categorical), if its first-order theory is ω-categorical. Throughout
the paper we only consider relational and at most countable structures and sig-
natures. Despite the powerful theorems quoted below, the class of ω-categorical
structures remains somewhat mysterious, and all classification results require
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some additional properties (stability in e.g. [26], or homogeneity in [15]). All
notions that are used here are standard and can be found e.g. in [23].

Theorem 3 (Engeler, Ryll-Nardzewski, Svenonius). The following prop-
erties of a structure Γ are equivalent:

1. the structure Γ is ω-categorical;
2. for each n ≥ 1, there are finitely many orbits of n-tuples in the automorphism

group Aut(Γ ) of Γ ;
3. for each n ≥ 1, there are finitely many inequivalent formulas with n free

variables over Γ .

Permutation groups with the second property in Theorem 3 are called oligo-
morphic [12]. We need yet another characterization of ω-categoricity, which is
of a more combinatorial nature, and links the concept via Fräıssé’s theorem to
homogeneity and amalgamation classes.

A structure is homogeneous (sometimes also called ultra-homogeneous) if ev-
ery isomorphism between finite substructures of Γ can be extended to an au-
tomorphism (in this paper, substructure always means induced substructure, as
in [23]). Every ω-categorical structure can be expanded by first-order definable
relations such that the resulting structure is homogeneous. An ω-categorical
structure has quantifier elimination if and only if it is homogeneous (2.22 in [12]).
An example of an ω-categorical structure that is not homogenous is (Λ; <, �)
[17]. For an example of a homogeneous structure that is not ω-categorical,
consider the expansion of a countable structure Γ by unary singleton predicates
for each element in Γ . This structure is homogeneous, since there are no distinct
isomorphic substructures in Γ , and it is not ω-categorical, since the number of
orbits in the automorphism group of Γ is infinite.

The next theorem asserts that a countable homogeneous structure is up to
isomorphism characterized by its age, i.e., the set of its finite substructures. A
class of finite relational structures C is an amalgamation class if C is nonempty,
closed under isomorphisms and taking substructures, and has the amalgamation
property. The amalgamation property says that for all A,B1, B2 ∈ C and em-
beddings e1 : A → B1 and e2 : A → B2 there exists C ∈ C and embeddings
f1 : B1 → C and f2 : B2 → C such that f1e1 = f2e2.

Theorem 4 (Fräıssé). A countable class C of finite relational structures with
countable signature is the age of a countable homogeneous structure if and only
if C is an amalgamation class. In this case the homogeneous structure is up to
isomorphism unique and called the Fräıssé-limit of C.

The following templates of well-known constraint satisfaction problems are easily
defined with amalgamation classes.

Triangle-Free Colorings. The class of all triangle-free graphs is an amalgamation
class. Let us denote its Fräıssé-limit by �. Clearly, CSP(�) is tractable; but it
can not be formulated with a finite template. The structure [�, �], i.e., the
structure that consists out of two copies of �, where all vertices between the two
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copies are linked, has an interesting constraint satisfaction problem, which can be
formulated as follows: Given a graph, can we partition its vertices into two parts
such that both parts do not contain a triangle? This problem is a rather typical
example from the class monotone monadic SNP without inequality (MMSNP),
a fragment of existential second-order logic introduced in [18] in the context of
constraint satisfaction. A general result on so-called G-free colorability implies
its NP-hardness [1].

Quartet Compatibility. The next example is an important structure in the theory
of infinite permutation groups [12]. A boron tree is a finite tree in which all
vertices have degree one (hydrogen atoms) or degree three (boron atoms). On
the hydrogen atoms of a boron tree we can define a quaternary relation xy|uv
that holds when the paths joining x to y and u to v are disjoint. The class
of all structures D with a quaternary relation that stem from a boron tree as
defined above is an amalgamation class [2]. Let D be the Fräıssé-limit of D. Then
CSP(D) is a well-known NP-hard problem [29] that was independently studied
in phylogenetic analysis (without any reference to constraint satisfaction), and
is called quartet-compatibility : Given a collection C of quartets xy|uv over a set
X, is there some tree with leaf set X such that for each quadruple xy|uv in C
the paths from x to y and from u to v do not have common vertices?

Rooted Triple Consistency. The next problem is studied in phylogenetic analysis,
again without notice that the problem can be stated as a constraint satisfaction
problem. If we fix a point a in the previous structure D and consider the ternary
relation ‘:’ defined by x : yz ⇔ ax|yz, we again obtain an ω-categorical struc-
ture (this is a C-set in [2]). The age of this structure now contains the finite
structures T that come from finite rooted trees, and the relation x : yz says
that the least common ancestor of y and z is strictly below the least common
ancestor of x, y, and z in the tree T . The corresponding constraint satisfaction
problem is known as the rooted triple consistency problem [29], and tractable.
The first polynomial time algorithm for this problem goes back to [3], motivated
by a question in database theory.

4 The Core of a Countably Categorical Structure

We define the notion of a core of a relational structure, and prove that every
countably categorical structure has a core, which is again ω-categorical and
unique up to isomorphism. Recall from Definition 1 that a relational structure
Γ is a core, if every endomorphism of Γ is an embedding of Γ in Γ . In other
words, cores do not have strict endomorphisms.1

Definition 2. We say that a structure Γ ′ is a core of Γ if Γ ′ is a core and is
induced by the image of an endomorphism of Γ .

1 A concept with a related flavour is the concept of a simple model of a theory defined
in [23] and, slightly different, in [14].
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We start with a proposition that states the existence of a ‘youngest’ endomorphic
image of an ω-categorical structure. The proof employs a typical technique for
ω-categorical structures.

Proposition 2. Let Γ be an ω-categorical relational τ -structure. Then there
exists an endomorphism c of Γ such that for every other endomorphism g, all
finite substructures of c(Γ ) embed into g(Γ ). This is, there exists an endomorphic
image of Γ of smallest age.

Proof. Let S be the set of all finite τ -structures S such that there is an endomor-
phism g of Γ such that S is not a substructure of g(Γ ). We have to show that
there is an endomorphism c such that c(Γ ) does not contain any substructure
from S. For the construction of c we consider the following tree. Let a1, a2, . . .
be an enumeration of Γ . The vertices on level n of the tree are equivalence
classes of good homomorphisms from {a1, . . . , an} to Γ . A homomorphism h is
good, if h({a1, . . . , an}) does not contain any substructure from S. Two homo-
morphisms g1 and g2 are equivalent, if there exists an automorphism α of Γ
such that g1 = α(g2). Clearly, if a homomorphism is good, then all equivalent
homomorphisms are also good. A vertex u on level n+1 in the tree is connected
to a vertex v on level n, if some homomorphism from u is the restriction of some
homomorphism from v. Because of ω-categoricity, the tree is finitely branch-
ing. We want to show that the tree has vertices on each level n, and iteratively
construct a sequence h1, h2, . . . , hk of homomorphisms from {a1, . . . , an} to Γ ,
where the last endomorphism hk induces a good homomorphism. Initially, if the
structure induced by {a1, . . . , an} does not have a substructure from S, we can
choose the identity as a good homomorphism. Otherwise, there is a substructure
S ∈ S on the elements {a1, . . . , an} and an endomorphism e such that e(Γ ) does
not contain S. Hence, h1 := e|{a1,...,an} is a strict homomorphism.

Instepi, ifthestructure inducedbyhi({a1, . . . , an})doesnothaveasubstructure
from S, then hi is a good homomorphism, and we are again done. Otherwise there is
an endomorphism e of Γ and a structure S ∈ S on elements from hi({a1, . . . , an}),
such that e(Γ )doesnot containS.We can thendefine a strict homomorphismhi+1 :
{a1, . . . , an}→ Γ by hi+1(x) := e(hi(x)). Since in the sequence h1({a1, . . . , an}),
h2({a1, . . . , an}), . . . either the number of vertices decreases or the number of
tuples in relations increases, and since Γ is ω-categorical, the sequence has to be
finite. Hence, there exists a good homomorphism from {a1, . . . , an} to Γ , for all
n ≥ 0. By König’s tree lemma, there exists an infinite path in the tree. Since
adjacency in the tree was defined by restriction between homomorphisms, this
path defines an endomorphism c of Γ . By construction, c(Γ ) does not contain a
substructure from S. ��

As a direct consequence all cores of Γ have the same age as c(Γ ). The following
theorem is one of themain results of this paper; again, the proofs canbe found in the
fullversionof thepaper,availableatwww.informatik.hu-berlin.de/∼bodirsky.

Theorem 5. If Γ is ω-categorical and contains all primitive positive definable
relations, then it has a homogeneous and ω-categorical core, which is unique up
to isomorphism.
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The idea of the proof is to show that every homomorphism between two models
Γ1 and Γ2 of Th(c(Γ )) is strong and injective.

Corollary 1. Every countably categorical structure has a core, which is again
ω-categorical and unique up to isomorphism.

5 Adding Constants to the Signature

Why is it useful to look at the constraint satisfaction problem of the core of Γ ,
instead of the constraint satisfaction problem of Γ itself? One reason will be
given in this section. First a useful fact for ω-categorical cores.

Proposition 3. Let Γ be an ω-categorical core, and let R be an orbit of k-tuples
in Aut(Γ ). Then R has a primitive positive definition in Γ .

Proof. Let Γ ′ be the expansion of Γ by all p.p.-definable relations. Since R is an
orbit also in Γ ′, all k-tuples in R are isomorphic to some substructure S of Γ ′.
By Theorem 5, Γ ′ is homogeneous, and all k-tuples in Γ ′ that are isomorphic
to S are contained in R. Thus, R has a definition as a conjunction ϕ of atomic
formulas. We replace all relation symbols in ϕ that are contained in the signature
of Γ ′, but not in the signature of Γ , by their primitive positive definition. The
resulting formula is equivalent to a primitive positive definition of R in Γ . ��

One of the most often cited results in [11] is that if Γ is a finite core, adding
a singleton-relation does not increase the complexity of the constraint satisfac-
tion problem. In this section we will show that the same holds for constraint
satisfaction problems where the template is an ω-categorical core.

Theorem 6. Let Γ be an ω-categorical core, and Γ ′ be the expansion of Γ by a
unary singleton relations C = {c}. If CSP(Γ ) is tractable, then so is CSP(Γ ′).
(If CSP(Γ ′) is NP-hard, then so is CSP(Γ ).)

Proof. We show how to solve CSP(Γ ′) in polynomial time, under the assumption
that CSP(Γ ) can be solved in polynomial time. Let S′ be an instance of CSP(Γ ′).
Let P be the orbit of c in the automorphism group of Γ . By Proposition 3, P is
p.p.-definable in Γ . Thus we can assume without loss of generality that Γ and
Γ ′ contain the relation P . Replace all occurrences of the relation C in S′ by
the relation P . Solve the resulting instance S of CSP(Γ ); by assumption this is
possible in polynomial time. If S is not satisfiable, then in particular S′ could
not have been satisfiable. On the other hand, if there is a homomorphism h from
S to Γ , we claim that there is a homomorphism from S′ to Γ ′. Since P is the
orbit of the element c, there is an automorphism a of Γ such that h ◦ a is a
solution of the instance S′ of CSP(Γ ′). ��

6 Discussion

We showed that every ω-categorical structure Γ has a core, which is unique
up to isomorphism. Since the core of Γ has the same constraint satisfaction
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problem as Γ , and since the core is again ω-categorical, we reduced the classi-
fication of constraint satisfaction with ω-categorical templates to the classifica-
tion of constraint satisfaction problems where the template is an ω-categorical
core.

The complexity of a constraint satisfaction problem does not change if we
expand the template by a p.p.-definable relation. The following result resem-
bles the theorem of Baur and Monk, and is of theoretical interest in constraint
satisfaction: if we expand the core by all p.p.-definable relations, the resulting
structure admits quantifier elimination. Finally we proved that a result known for
constraint satisfaction with finite templates [11] remains valid for ω-categorical
structures: if we expand an ω-categorical core by a singleton relation then the
resulting constraint satisfaction problem has the same complexity.
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Abstract. We address the problem of the density of intrinsically uni-
versal cellular automata among cellular automata or a subclass of cel-
lular automata. We show that captive cellular automata are almost all
intrinsically universal. We show however that intrinsic universality is un-
decidable for captive cellular automata. Finally, we show that almost all
cellular automata have no non-trivial sub-automaton.

Keywords: cellular automata, universality, zero-one law.

Cellular automata are simple discrete dynamical systems involving full unifor-
mity and perfect synchronism. They are capable of producing very complex be-
haviours despite their apparent simplicity and therefore constitute an idealistic
model to study the paradigm of complex systems. Besides its ability to capture
any sequential computations, the model of cellular automata possesses a natural
notion of intrinsic universality. A cellular automaton is intrinsically universal if
it is able to directly simulate any other cellular automaton. There is no general
definition of what is an acceptable simulation but in [1] a natural and rather
minimal class of acceptable simulation is introduced and give rise to the formal
notion of intrinsic universality adopted in this paper.

Since the very beginning of cellular automata theory great efforts have been
devoted to the design of particular cellular automata having some desired prop-
erty. The property of being intrinsically universal was of course especially studied
and the quest for the smallest intrinsically universal cellular automaton has now
almost reached the limits (closed in dimension 2 and higher by [2] and reduced
to a 4 states gap in dimension 1 by [3]). However, these tricky constructions only
give results concerning sufficient conditions and do not respond to the problem
of how strong is the intrinsic universality requirement for a cellular automaton
in general, or, said differently, how many different ways there are to achieve in-
trinsic universality. Unfortunately, this converse problem reveals to be difficult
since the set of non intrinsically universal cellular automata is not recursively
enumerable (see [1]) whereas the set of intrinsically universal one is.

In the present paper we tackle this problem using a different point of view: we
study density of intrinsically universal cellular automata. Our main result is that
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a simple hypothesis on the local transition map gives rise to a class of cellular au-
tomata (namely captive cellular automata) for which density follows a zero-one
law over an interesting class of properties. We then show that intrinsic univer-
sality belongs to that class and, using the zero-one law, that almost all captive
cellular automata are intrinsically universal. We show however that the set of
non intrinsically universal captive cellular automata is not recursively enumer-
able. Back to the general case, we show that almost all cellular automata lack of
any non-trivial local structure making a strong difference with the captive case.

1 Formal Framework

Although many results extend to higher dimensions, we will only consider one-
dimensional ca. Besides, this paper is not concerned with comparisons between
different shapes of neighbourhood and we consider only von Neumann-like
neighbourhood (connected and centred). Formally a ca is triple A = (A, r, fA)
where A is a finite set of states, r is a positive integer (the radius of the neighbour-
hood) and A is a map from A2r+1 to A. Configurations are maps from Z to A giv-
ing each cell a particular state. The local transition function fA induces a global
evolution rule on configurations denoted A and defined as follows: ∀c ∈ AZ, A(c)
is such that ∀i ∈ Z,

(
A(c)

)
(i) = fA

(
c(i− r), c(i− r + 1), . . . , c(i+ r)

)
. In the

sequel, when considering a ca A (resp. B), we implicitly refer to the triple
(A, rA,A) (resp. (B, rB,B)) where the same symbol A (resp. B) denotes both
the local and the global map.

Local maps in ca are arbitrary, but in this paper we pay a special attention
to a particular regularity they may possess which is captured by the notion of
sub-automaton. Up to renaming, a sub-automaton of a ca A is a subset of the
states set which is stable under iterations of A. Formally the sub-automaton
relation, denoted by &, is defined as follows.

Definition 1. A & B if there is an injective map i from A to B such that
i ◦ A = B ◦ i, where i : AZ → BZ denotes the uniform extension of i.

When X ⊆ A is stable for A (A(XZ) ⊆ XZ), we denote by AX the restriction
of A to X (then AX & A). Besides, when |A| = |B|, A & B implies B & A and
A is isomorphic to B what is denoted by A ∼ B.

Intrinsic universality we now define relies on a formal notion of direct sim-
ulation between ca. A restricted version of this notion was first introduced by
J. Mazoyer and I. Rapaport in [4] and N. Ollinger extended it in [5].
A can simulate B (denoted by A ' B) if, up to some regular spatio-temporal
transformations, A is a sub-automaton of B. Transformations considered here
are very simple: they allow grouping several cells in one block and running sev-
eral steps of a ca in one. Formally, for any finite set A and any m ∈ N (m = 0),
let om : AZ → (Am)Z be the map such that

∀c ∈ AZ,∀z ∈ Z :
(
om(c)

)
(z) =

(
c(mz), c(mz + 1), . . . , c(m(z + 1)− 1)

)
.
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Then, denoting the ca om ◦ An ◦ (om)−1 (with states set Am) by A<m,n>,
the relation ' is defined as follows:

A ' B ⇔ ∃ma,mb, na, nb : A<ma,na> & B<mb,nb>.

' defines a quasi-order on the set of ca (see [5]) and naturally induces
an equivalence relation denoted by ( and an order on equivalence classes of
(. In addition to being natural for the model of ca, this simulation relation
nicely captures the examples of intrinsically universal ca already present in the
literature (see [2, 6]).

Definition 2. A is intrinsically universal if ∀B,∃m,n : B & A<m,n>.

An important fact is that the set of intrinsically universal ca is exactly the
maximal class of ( (see [5] for a detailed proof) and we will use alternatively
this characterisation and the definition above.

A property P is a set of ca. A has the property P if A ∈ P. A property P
is said to be increasing if: ∀A,∀B, A & B implies A ∈ P ⇒ B ∈ P. Similarly, P
is said to be decreasing if: ∀A,∀B, A & B implies B ∈ P ⇒ A ∈ P. Notice that
since the ∼ relation is included in &, increasing (or decreasing) properties are
closed under renaming of states—a natural requirement when studying ca. We
will specifically concentrate on monotonic properties in section 2. For now, just
notice that intrinsic universality is an increasing property.

To measure how common a property is among ca, we consider its density
using the following canonical enumeration of ca: a radius r is fixed and we let
the number of states grow. To avoid irrelevant consideration of states renaming
we consider only ca whose states are integers. Precisely, An denotes the set of
ca of radius r with states set {1, . . . , n} and the density of properties is defined
as follows.

Definition 3. The density of property P is μ(P) = lim
n→∞

|An ∩ P|
|An|

when the

limit exists.

To end this section, we give some useful notations. If a ∈ A then a de-
notes the configuration of AZ made solely of a. Similarly, if f : A→ A, f de-
notes its uniform extension to configurations of AZ, and fk its extension to Ak

(fk(a1 · · · ak) = f(a1) · · · f(ak)). If c is a configuration, L(c) denotes the set of
words appearing in c. Finally, if w is a word, Σ(w) denotes the set of letters
appearing in w.

2 A Class of Cellular Automata Inducing a Zero-One
Law for Monotonic Properties

In this section we consider a sub-class of ca (namely captive cellular automata)
which was first introduced in [7]. Captive cellular automata are ca such that
any subset of the states set is stable (i.e. induces a sub-automaton). We insist
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that this class does not rely on any structural assumption on the states set and
that it is characterised a property of the local transition map.

Definition 4. A of radius r is a captive cellular automaton (cca for short) if
∀u ∈ A2r+1 we have A(u) ∈ Σ(u).

We address the problem of the density of universality among ca from that
class. Formally, if Cn denotes the set of cca on states set {1, . . . , n}, the density

of a property P among cca is μC(P) = lim
n→∞

|Cn ∩ P|
|Cn|

when the limit exists.

Quite surprisingly, the structure of cca allows to globally solve the problem
of density for any monotonic property.

Lemma 1. For any B ∈ Cn (n ≥ 2), there exists a rational λB ∈]0, 1[ such that
for all m ≥ n and X = {a1, . . . , an} ⊆ {1, . . . ,m}, we have :

∣∣{A ∈ Cm : AX ∼ B
}∣∣

|Cm|
= λB.

Proof. Let m ≥ n be fixed and consider X a subset of {1, . . . ,m} of size n. The
equivalence relation ≡X such that A ≡X B ⇔ AX = BX is well-defined on Cm

since the set X always induces a sub-automaton for any cca. It is clear that
≡X has exactly |Cn| equivalence classes (independently of X), each of the same
size |Cm|

nn2r+1 . Besides, {A : AX ∼ B} is the union of a number b of classes of ≡X

depending only on B. Therefore,
∣∣{A ∈ Cm : AX ∼ B

}∣∣
|Cm|

=
b

|Cn|
and the lemma follows. ��

Theorem 1. For any monotonic property P which is non-trivial in C, we have:

– if P is decreasing in C then μC(P) = 0;
– if P is increasing in C then μC(P) = 1.

Proof. First suppose P is non-trivial and decreasing. There must therefore be
some B ∈ Cn \ P for some n ∈ N. Now for m ∈ N let m = kn+ r be the Eu-
clidean division of m by n and for 1 ≤ i ≤ k let Xi = {(i− 1)n+ 1, . . . , in}.
Then we have:

P ∩ Cm ⊆
⋂

1≤i≤k

{A ∈ Cm : AXi
∼ B}

because A ∈ P implies ∀i, 1 ≤ i ≤ k : AXi ∈ P. Now since the sets Xi are pair-
wise disjoint, the events ”AXi

∼ B” are pairwise independent. Hence, expressing
the set inclusion above in terms of probabilities we get:

∣∣P ∩ Cm

∣∣
|Cm|

≤
∏

1≤i≤k

∣∣{A ∈ Cm : AXi
∼ B}

∣∣
|Cm|

= (1− λB)k,
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the right-hand equality being derived from lemma 1. Finally, taking the limit
when m→∞ for both sides, we conclude: μC(P) ≤ limk→∞(1− λB)k = 0.

Now suppose P is a non-trivial increasing property. Then ¬P is a non-
trivial decreasing property. From what we have shown before μC(¬P) = 0. Thus
μC(P) = 1. ��

The first immediate implication of theorem 1 is of dynamical nature (see [8]
for a definition of expansivity).

Corollary 1. For any fixed radius, almost no cca is injective, or expansive, or
surjective.

Proof. Since the surjectivity property is obviously non-trivial for cca, it is suf-
ficient to show that it is decreasing and applying theorem 1 we get that almost
no cca is surjective. The fact that surjectivity is decreasing comes directly from
theorem 5.9 of [9] which states that A is surjective if and only if the number
of preimages of any word under A is uniformly bounded (independently of the
word).

The facts that both injectivity and expansivity implies surjectivity are clas-
sical results (see [9]), but we insist that injectivity and expansivity are also
decreasing non-trivial properties. ��

In the case of cca, the answer to the central question addressed in this paper
is now obtained as a direct corollary of theorem 1.

Corollary 2. There exists an integer r0 such that for any fixed radius r ≥ r0,
almost all cca are intrinsically universal: μC

(
{A : ∀B,B ' A}

)
= 1.

Proof. The property of being intrinsically universal is obviously increasing so it is
sufficient to show that it is non-trivial and the result follows from theorem 1. The
existence of intrinsically universal cca was first pointed out in [7]. Definition 5
and lemma 2 show that there is an intrinsically universal cca of radius 7 and it
is not difficult to tune the construction to lower its radius down to 5. ��

Although almost all cca are intrinsically universal as shown above, we are
going to show that the problem of whether a given cca is intrinsically universal
or not is undecidable. This fact may seem scheming compared with the ubiquity
of universality in cca. But, overall, it has a noticeable structural consequence
on the class cca concerning the limit between universality and non-universality
as pointed out by corollary 3.

The proof is a reduction from the same decision problem with any ca as
input. It essentially relies on the transformation τ (given hereafter). We insist
that algorithmic constructions on captive cellular automata are non-classical and
involve new construction techniques because no Cartesian product can generally
be used and every state which eventually appears at a position must already
be present locally—thus a fixed radius implies a limited number of states being
potentially used at each time whatever the states set is.
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We now give the construction τ . It transforms a ca A into a cca τ(A)
simulating it. As usual, the simulation occurs on a particular set of “legal”
configurations. On such configurations each cell of A is directly simulated by
some data cell of τ(A) surrounded by several control cells. The main idea is as
follows. For a data cell to change its state we must guarantee that its future
state already appears in its neighbourhood. For that purpose, signal cells placed
regularly along the line take periodically each state of A (thanks to a shift
behaviour) and thus eventually allow the transition of their neighbouring data
cell. The construction uses 3 other types of control cells: 2 are used to ensure
the global synchronism of the simulation—which is the difficult part—and 1
is used to propagate encoding errors—a feature essential for the correctness of
the reduction. The synchronism is controlled by offset cells and memory cells.
The configuration formed by successive signal cells is spatially periodic and
consist in an alternation of letters of A and offset indicators. Offset indicators are
placed in such a way that all offset cell are “aligned” with their corresponding
offset indicator at the same time. Finally, the memory cells are used to keep
the result of transitions—which occur asynchronously—until offsets cells are
“aligned” with their indicators. Each time this “alignment” occurs data cells are
updated with saved transition results and memory cells are cleaned up. For sake
of simplicity we only give the explicit construction of τ on ca with radius 1 but
it is straightforward to extend it to any radius.

Definition 5. Let A be a ca (supposed of radius 1 in the present definition). Let
O = {o0, . . . , on−1} (with n = |A|) and {κ} be sets of states disjoint with A. De-
note by WA the set of words of the form O · (A ∪O) · {κ} · (A ∪O) · (A ∪O) ·A.
Let CA be the set of configurations which are a bi-infinite concatenation of words
of WA. Finally let KS = {ajoj+1 mod n, 0 ≤ j ≤ n− 1} ∪ {ojaj , 0 ≤ j ≤ n− 1}
and KO = {ojoj+1 mod n, 0 ≤ j ≤ n− 1}. τ(A) is the cca of radius 7 and state
set Aτ = A ∪ {κ} ∪O defined as follows:

1. for any offset states o, o′, o′′ ∈ O, signal states s1, s′
1, s

′′
1 , s2, s

′
2, s

′′
2 ∈ A ∪O,

memory states m,m′,m′′ ∈ A ∪O and data states d, d′, d′′ ∈ A,

u τ(A)(u)

d′′ o s1 κ s2md o′ s′
1 κ s

′
2m

′ d′ o′′ s′′
1

{
o′ if oo′ ∈ KO

κ otherwise,

o s1 κ s2md o′ s′
1 κ s′

2m
′ d′ o′′ s′′

1 κ

{
s′
2 if s′

1s
′
2 ∈ KS

κ otherwise,
s1 κ s2md o′ s′

1 κ s′
2m

′ d′ o′′ s′′
1 κ s

′′
2 κ

κ s2md o′ s′
1 κ s′

2 m′ d′ o′′ s′′
1 κ s

′′
2 m

′′

{
s′′
1 if s′

2s
′′
1 ∈ KS

κ otherwise,

s2md o′ s′
1 κ s

′
2 m′ d′ o′′ s′′

1 κ s
′′
2 m

′′ d′′

{
s′
1 if s′

1 ∈ {A(dd′d′′), o′},
m′ otherwise,

md o′ s′
1 κ s

′
2m

′ d′ o′′ s′′
1 κ s

′′
2 m

′′ d′′ o

{
m′ if s′

1 = o′

d′ otherwise,
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2. for any u ∈ A15
τ \ L(CA), τ(A)(u) =

{
u8 if κ ∈ Σ(u),
κ if κ ∈ Σ(u)

The 6 cases in the first part of the definition above are mutually exclusive
because of a different position of state κ in u. Actually, in a configuration of
CA, the type of a cell and the way it behaves is determined by its distance to
the closest κ on its left, precisely: 3 for data cells, 2 for memory cells, 1 and 5
for signal cells and 4 for offset cells. Besides notice that for any configuration
c ∈ CA, τ(A) checks whether

– the configuration formed by the successive offset cells in c, the offset config-
uration of c, is periodic of period o0 . . . on−1;

– the configuration formed by the successive signal cells in c, the signal con-
figuration of c, is periodic of period o0a0o1a1 . . . on−1an−1.

Such configurations are characterised by the set of words of length 2 they contain
(KO and KS respectively) and thus the checks can be done locally (line 1, 2 and
4 of the first point of definition 5). In the following, we will denote by ΓA the set
of configurations from CA whose offset configuration and signal configuration
are periodic with the respective periods given above. Informally, ΓA is the set
of “legal” configurations and it is straightforward to verify that ΓA is stable
under τ(A). The following lemma shows that τ(A) can simulate A on such
configurations.

Lemma 2. For any ca A, A ' τ(A).

Proof. We show that A<n,1> & τ(A)<6n,2n> where n = |A|. Adopting the nota-
tions of definition 5, denote by ψ the following map from A× {0, . . . , n− 1} to
A6

τ :
(α, j) �→ ojajκoj+1 mod noja.

Then we define an injection Υ from An to A6n
τ as follows:

Υ (α0, . . . , αn−1) = ψ(α0, 0) . . . ψ(αj , j) . . . ψ(αn−1, n− 1).

Now consider the set E of configurations of the form Υ (An)Z. E is precisely
the set of “legal” configurations (E ⊆ ΓA) which have just been “synchronised”
(copy of memory cells to data cells and cleaning of memory cells). It is easy
to verify that for c ∈ E we have τ(A)<6n,2n>(c) ∈ E (the spatial period of the
signal configuration of c has length 2n). Finally, τ(A) simulate 1 iteration of A
every 2n iterations through the encoding Υ , precisely:

(An)Z Υ−−−−→ E⏐⏐'A<n,1>

⏐⏐'τ(A)<6n,2n>

(An)Z Υ−−−−→ E

To see this, first notice that starting from c ∈ E data cells remain in the same
state during 2n− 1 steps until they take the state of their neighbouring memory
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cell at step 2n. Second, memory cells are initially in a state from O and they
wait for a particular state of A to be displayed by their corresponding signal
cell. It is precisely the state obtained when applying a transition of A to the 3
local data cells. This state must eventually appear within 2n− 1 steps in each
signal cell (thanks to the particular form of the signal configuration) so that
after 2n− 1 steps, each memory cell contains the result of the transition of A.
After 2n steps the configuration is finally synchronised by the copy of memory
cells to data cells and the cleaning of memory cells. ��

Lemma 3. For any ca A and any surjective ca B, if B & τ(A)<m,m′> for
some m,m′ ∈ N then either B is the identity map, or B ' A.

Proof. Let φ : B → Am
τ be the injection involved in the relation B & τ(A)<m,m′>

and let Lφ be the semi-group generated by the set of words {φ(b), b ∈ B}. Com-
paring Lφ to the language L(ΓA), two cases are to be considered:

– if Lφ ⊆ L(ΓA) then either κ does not appear in Lφ and then B = id (since
τ(A) does nothing on configuration without κ), or there is some b0 ∈ B
such that κ appears in φ(b0). In the latter case let w ∈ Lφ \ L(ΓA) be a
concatenations of words from φ(B) and consider the periodic configuration
c0 of period φ(b0)w. c0 can be chosen different from κ (otherwise it im-
plies that φ(b) = κm ∀b ∈ B, hence B has only 1 state and then clearly
B ' A). Let p = |φ(b0)w|. Then κp ∈ L(c0). Besides, since B is surjective
and c0 ∈ (φ(B))Z, the simulation of B by τ(A) implies that there exists some
c−1 ∈ φ(B)Z such that τ(A)m′

(c−1) = c0. Then, if p− 1 ≥ 2, κp−1 ∈ L(c−1)
(otherwise κp ∈ L(c0)) and we can continue the same reasoning so that there
must be some c ∈ φ(B)Z such that κ2 ∈ L(c) and τ(A)t(c) = c0 for some t.
Clearly κ ∈ L(c) since κ ∈ L(c0) and τ(A) is a cca. Finally, by surjectivity
of B, there is c′ such that τ(A)(c′) = c. Again we have κ ∈ L(c′) and thus
c′ ∈ ΓA because a configurations not in ΓA containing a κ necessarily leads
to a configuration containing κ2. Since ΓA is stable under τ(A), we must
have c0 ∈ ΓA : contradiction with the initial choice of c0.

– now suppose Lφ ⊆ L(ΓA). If c ∈ ΓA and c′ are such that τ(A)t(c′) = c for
some t then c′ ∈ ΓA because any d ∈ τ(A)

(
AZ

τ \ ΓA
)

is such that κ2 ∈ L(d).
Moreover the orbit of c′ enters E (defined in proof of lemma 2) every 2n
steps, so when t ≥ 2n we can consider

χ(c) = max
t′≤t

{τ(A)t′
(c′) : τ(A)t′

(c′) ∈ E}.

Notice that the definition is independent of t and c′ (because from χ(c) to c,
τ(A) does not alter the state of data cells and since χ(c) ∈ E it is entirely
determined by its data cells). Since B is surjective, any configuration of
φ(B)Z can be reached in arbitrarily many steps so χ is well-defined on φ(B)Z.
Notice also that χ is a local mapping (each bloc of 6 states of c is mapped to
a single bloc of 6 states in χ(c)) and that it is injective (by determinism of
τ(A)). Moreover, on φ(B)Z, χ commutes with τ(A)2n. Finally, notice that
the mapping Υ is one-to-one from (An)Z to E. Then, from lemma 2 and
properties of χ, we have the following commutative diagram:
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(B6n)Z
φ6n

−−−−→ (A6mn
τ )Z

χmn

−−−−→ (Υ (An)m)Z
(Υ m)−1

−−−−−→ (Amn)Z

⏐⏐'B<6n,2n>

⏐⏐'τ(A)<6nm,2nm′>

⏐⏐'τ(A)<6nm,2nm′>

⏐⏐'A<nm,m′>

(B6n)Z
φ6n

−−−−→ (A6mn
τ )Z

χmn

−−−−→ (Υ (An)m)Z
(Υ m)−1

−−−−−→ (Amn)Z

(here χ denotes the local map from A6
τ to A6

τ mentioned above). This shows
B<6n,2n> & A<nm,m′> by the injection (Υm)−1 ◦ χmn ◦ φ6n. Hence B ' A
by definition. ��

Theorem 2. There exists r0 such that for any fixed radius r ≥ r0, it is un-
decidable to know whether a cca of radius r is intrinsically universal or not.

Proof. Let X be the following ca over {0, 1}: X (a, b, c) = b+ c mod 2. ∀m,n,
X<m,n> is always surjective but neither the identity map so we deduce from
lemma 2 and lemma 3 that ∀A: X ' A⇔ X ' τ(A).

N. Ollinger established in [1] the undecidability of intrinsic universality1

by giving a recursive construction Uq such that for any ca A of radius 1:

– Uq(A) has radius rU (where rU only depends on Uq, not on A),
– if A is q-nilpotent over periodic configurations then X ' Uq(A),
– and if A is not q-nilpotent over periodic configurations then Uq(A) is intrin-

sically universal.

A ca is q-nilpotent over periodic configurations if every periodic configuration
leads to the same configuration q in finite time. The problem of nilpotency
over periodic configurations for ca of radius 1 was proven undecidable in [10].
From the previous observation, the recursive construction τ ◦ Uq has the same
properties as Uq and maps to cca of fixed radius r0 = 7rU . ��

The following corollary shows that, as in the general case, there is no limit
on how complex a cca of fixed radius can be without being intrinsically uni-
versal. Hence non-universal cca cannot be reduced to a negligible set of simple
exceptions among an overwhelming majority of universal objects.

Corollary 3. There exits r0 such that for any r ≥ r0 and for any non-universal
cca A of radius r, there is a non-universal cca B of radius r such that A ' B
but B ' A.

Proof. Let r ≥ r0 be a fixed radius for all following ca, where r0 is the constant
of theorem 2. First we show that there is no cca A which is non-universal
and such that for all non-universal cca B, B ' A. As already pointed out in
the general case by N. Ollinger in [5], this follows from the semi-decidability
of intrinsic universality: with a maximal cca for non-universal cca we could
semi-decide non-universality and combining the two semi-decision procedures
we could finally decide intrinsic universality which contradicts theorem 2.

1 In [1], the undecidability result is not formulated for a fixed radius, but it is easy to
check that the result remains true.
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Now let us show that for any pair A, B of non-universal cca, there is a non-
universal cca C such that A ' C and B ' C. This fact complete the proof since it
implies that there cannot be more than one non-universal cca which is maximal
for non-universal cca. C can be chosen as follows. Let ) be a total ordering on
A ∪B such that ∀a ∈ A and ∀b ∈ B: b) a (up to renaming of states, we can
suppose A ∩B = ∅). Then for any u ∈ (A ∪B)2r+1, C is defined by:

C(u) =

⎧⎪⎨
⎪⎩

A(u) if u ∈ A2r+1,

B(u) if u ∈ B2r+1,

max Σ(u) otherwise,

where max is relative to the order ). Clearly C is a cca and A ' C and B ' C.
Moreover if C is universal, then A or B must also be universal. To see this
consider a universal ca U such that for any pair a, b of states the periodic
configuration of period ab is a fixed point (to be convinced of the existence of
U notice that any behaviour can be specified on “non-coding” configurations in
the construction of a universal ca). Hence, if C is universal then U & C<m,n>

for some m,n ∈ N. And, denoting by φ the injection involved in this relation,
we must have φ(U) ⊆ Am or φ(U) ⊆ Bm because, otherwise, there would exists
u1 and u2 in U such that the word φ(u1)φ(u2) contains both a state from A
and a state from B. From the definition of C, the periodic configuration of
period φ(u1)φ(u2) cannot be a fixed point (because any state of B ultimately
disappears) which contradicts the property of U . Therefore we must have either
U & A<m,n> or U & B<m,n>. ��

3 What About the General Case?

There is no zero-one law for monotonic properties on ca in general. Indeed, let
P be the property of possessing at least one quiescent state (q ∈ A is quiescent
for A if A(q) = q). Then P is an increasing property but 0 < μ(P) < 1. To be
precise, it is not difficult to show that

μ(¬P) = lim
n→∞

(
1− 1

n

)n

=
1
e
.

Actually, there are also increasing properties with density 0. This is what
we are going to show with the property P� of possessing a non trivial sub-
automaton: P� = {A : ∃B, 1 < |B| < |A| andB & A}.

Before giving the proof, notice that this shows at least that arguments similar
to those of theorem 1 cannot be used in the general case. The following lemma
establish a useful upper bound.

Lemma 4. ∃n0∀n ≥ n0∀k, 2 ≤ k ≤ n− 1 :
(

k
n

)k2r+1

≤ n−2k.

Proof. Taking the log of the expression, it is sufficient to show that the following
relation eventually holds uniformly for k: k2r

2 log n
k ≥ log n. This majoration is

obtained by a standard analysis of the real function
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f(k, n) : k, n �→ k2r

2
log

n

k

as follows. First, f(2, n) ≥ log n and f(n− 1, n) ≥ log n are eventually true. Then
∂f
∂k (k, n) = rk2r−1 log n

k −
k2r−1

2 so it equals zero for k = e− 1
2r n. Finally, for any

0 < α < 1, f(αn, n) is eventually greater than logn since it is a monomial in n
with a positive coefficient. ��

Proposition 1. For any fixed radius, almost no ca possesses a non-trivial sub-
automaton: μ(P�) = 0.

Proof. For 2 ≤ k ≤ n− 1, the probability thatA ∈ An has a sub-automaton with

k states is bounded by Ck
n

(
k
n

)k2r+1

: for a fixed choice of k states, each transition
involving only these k states must lead to one of them. Hence we have:

μ(P�) ≤ lim
n→∞

n−1∑
k=2

Ck
n

(
k

n

)k2r+1

. (1)

Using majoration of lemma 4 in the inequality, we obtain:

μ(P�) ≤ lim
n→∞

n−1∑
k=2

Ck
n

(
1
n2

)k

≤ lim
n→∞

⎛
⎝

n∑
k=0

Ck
n

(
1
n2

)k

−
∑

k∈{0,1,n}
Ck

n

(
1
n2

)k
⎞
⎠

≤ lim
n→∞

((
1 +

1
n2

)n

− 1− 1
n
− 1
n2n

)
.

Thus μ(P�) = 0. ��

4 Perspectives and Open Problems

We have shown that intrinsic universality is ubiquitous in cca. Actually, the
result extends to any reasonable notion of universality including Turing uni-
versality. We insist however that the set of intrinsically universal cca is rich
because non recursive. Moreover, lemma 3 shows that it is possible given any ca
to construct a cca that is somehow similar with respect to '. Can this lemma
be extended and more precisely can we characterise (-classes containing a cca?
Or at least give a large collection of (-classes containing a cca?

Besides, although the density result for cca gives a lower bound on the
growing rate of intrinsically universal ca, the density problem for ca remains
open since cca constitute a negligible subset of cellular automata (see proposi-
tion 1). However, if this density turned out to be non-zero, it would mean that
a significant part of ca acquire any sub-structure by simple spatio-temporal
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transformation while they are locally totally unstructured (proposition 1). To
that extent, a study of the way a ca can or cannot acquire structure by spatio-
temporal transformations reveals to be essential to decide the density problem.
In [11] it is shown that some ca avoid some sub-automaton size even up to
spatio-temporal transformations. Can we extend this kind of result and show
that there exists some ca which has no non-trivial sub-automaton at any scale?
Or conversely is there for any ca some unavoidable transformation giving him
some non-trivial structure even if it is totally unstructured locally?
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Cellular Automata: Real-Time Equivalence
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Abstract. It is well known that one-dimensional cellular automata work-
ing on the usual neighborhood are Turing complete, and many accel-
eration theorems are known. However very little is known about the
other neighborhoods. In this article, we prove that every one-dimensional
neighborhood that is sufficient to recognize every Turing language is
equivalent (in terms of real-time recognition) either to the usual neigh-
borhood {−1, 0, 1} or to the one-way neighborhood {0, 1}.

Keywords: Cellular automata, neighborhoods, real-time.

1 Introduction

Cellular automata (CA) are a computation model that is simple at microscopic
scale (local transitions) but can have very complex behaviours at macroscopic
scale (global transitions). As a complex systems, it is natural to wonder what
their compuational capabilities are. It is known that they can simulate any Tur-
ing Machine [15, 10, 1] (Turing universality) and that there exist “universal” CA
that can simulate the evolution of any other [8] (intrinsic universality).

Once their computational power is known, we investigate the complexity
of such computations (in time and memory). Many famous algorithms [6, 5]
have shown that the massively parallel structure of the CA enables complex
computations to be realized in a very short time. However, because of the local
communication between cells, it is possible to show that information cannot be
transmitted faster than some “maximal speed”.

In this article, we will work on the problem of language recognition by CA,
and more specifically the recognition of languages in “real time”, which is the
fastest possible time according to the “maximal speed” restriction. Many results
are already known on this topic concerning one-dimensional CA working on
the standard neighborhood [11, 7, 4, 9, 12, 13], but very little is known about CA
working on different neighborhoods.

Concerning Turing machines, it is easy to show that any computation can be
accelerated by a constant time (as long as the time stays greater than the minimal
time necessary to read the entry). As for cellular automata, C. Choffrut and K.
Čulik in [2] first show that with the neighborhood {−1, 0, 1}, any computation
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on a CA can be accelerated by a constant time. In [9], J. Mazoyer and N.
Reimen show that for any positive integers r and q, the neighborhoods [−r, r]
and [−q, q] are time wise equivalent. Moreover, S. Cole [3] showed that on every
neighborhood “complete enough” (such that every cell can, after some finite
time, be affected by the state of any other) it is possible to simulate the behaviour
of any CA working on any other neighborhood. This last result gives a first
computational equivalence between neighborhoods.

Here, a strong “real-time equivalence” between neighborhoods will be proved
that shows that the languages recognized in real-time by CA working on a given
neighborhood “complete enough” (similarly to Cole’s definition) are either ex-
actly the same as the ones recognized in real-time by CA working on the usual
neighborhood or exactly the ones recognized in real-time by CA working on the
one-way neighborhood (one-way cellular automata).

2 Preliminary Study: Neighborhoods Growth

In all this section, a neighborhood will be a finite subset of Z. We will here
study an algebraic property of neighborhoods that is independent of the notion
of cellular automaton.

Given a neighborhood V , we will use the notations V 0 = {0} and for all
k ∈ N, V k+1 = {x + y|x ∈ V, y ∈ V k}. Moreover, we will always consider that
the neighborhoods contain 0.

Definition 21. Let V be a neighborhood. V is

– r-complete if ∀n ∈ N,∃k ∈ N, n ∈ V k;
– complete if ∀n ∈ Z,∃k ∈ N, n ∈ V k;
– r-incomplete if it is r-complete but not complete.

Proposition 21. A neighborhood V is r-incomplete if and only if it contains 1
and has no negative element. It is complete if and only if its non-zero elements
are prime altogether (their gcd is 1) and has both a positive and a negative
element.

The proof is a trivial combination of the previous definitions and Bezout’s
theorem.

Remark. We will see later that the r-complete neighborhoods are the neighbor-
hoods on which a CA can correctly recognize a language.

From now on, if V is an r-complete neighborhood, we will use the following
notations

xp = maxV
−xn = minV
tc = min{t ∈ N|[[−xn, xp]] ⊆ V t+1}

Remark. Proposition 21 ensures that tc is correctly defined.
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Proposition 22. Let V be an r-complete neighborhood. For all t ∈ N, we have

[[−txn, txp]] ⊆ V t+tc ⊆ [[−(t+ tc)xn, (t+ tc)xp]]

Proof. The rightmost inclusion is trivial. As for the leftmost one, we prove it
inductively. For t = 0 and t = 1, the property is obvious. For t ≥ 1, we assume
that [[−txn, txp]] ⊆ V t+tc . So

[[−(t+ 1)xn, (t+ 1)xp]] = [[−txn, txp]] + {−xn, 0, xp} ⊆ V t+tc + V = V t+tc+1

�
Definition 22. Let V be an r-complete neighborhood. We will call r-shadow
of V at time (t+ tc) the set

S+
t+tc

(V ) =
(
V t+tc ∩ [[txp, (t+ tc)xp]]

)
− txp

Similarly, we’ll call l-shadow of V at time (t+ tc) the set

S−
t+tc

(V ) =
(
V t+tc ∩ [[−(t+ tc)xn,−txn]]

)
+ txn

Remark. According to the proposition 22,

V t+tc =
[
S−

t+tc
(V )− txn

]
∪ [[−txn, txp]] ∪

[
S+

t+tc
(V ) + txp

]

Proposition 23. Let V be an r-complete neighborhood. The sequences
(
S+

t+tc
(V )
)
t∈N

and
(
S−

t+tc
(V )
)
t∈N

are ultimately constant.

Proof. Let x ∈ S+
t+tc

(V ), then (x+txp) ∈ V t+tc and so (x+(t+1)xp) ∈ V t+tc+1

and finally x ∈ S+
t+1+tc

(V ). This proves that
(
S+

t+tc
(V )
)
t∈N

is an increasing
sequence (where the considered order is the inclusion). Moreover, this sequence’s
elements are all in the subsets of [[0, tcxp]], which is a finite set. This implies that
the sequence is ultimately constant. The proof is similar for

(
S−

t+tc
(V )
)
t∈N

. �

Definition 23. Let V be an r-complete neighborhood. The stabilization time
ts of V is the smallest integer from which the sequences

(
S+

t+tc
(V )
)
t∈N

and(
S−

t+tc
(V )
)
t∈N

are constant.
We also define S+(V ) = S+

tc+ts
, S−(V ) = S−

tc+ts
and x0 = min{x ∈ N|x /∈

S+(V )}.

Proposition 23 ensures that ts is correctly defined for all r-complete neigh-
borhoods. We have proven the following theorem

Theorem 21. For all r-complete neighborhood V , there exists an integer ts, and
two sets S−(V ) ⊆ [[−tcxn, 0]] and S+(V ) ⊆ [[0, tcxp]] such that for all t ≥ ts,

V t+tc =
(
S−(V )− txn

)
∪ [[−txn, txp]] ∪

(
S+(V ) + txp

)
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3 Language Recognition by Cellular Automata

3.1 Cellular Automata

Definition 31. A cellular automaton (CA) is a triple A = (Q, V, f) where

– Q is a finite set called set of states containing a special quiescent state #;
– V = {v1, . . . , v|V |} ⊆ Z is a finite set called neighborhood that contains 0.
– f : Q|V | → Q is the transition function. We have f(#, . . . ,#) = #.

For a given automaton A, we call configuration of A any function C from Z

into Q. The set of all configurations is therefore QZ. From the local function f
we can define a global function F

F : QZ → QZ

C �→ C′ | ∀x ∈ Z,C′(x) = f(C(x+ v1), . . . ,C(x+ v|V |))

Elements of Z are called cells. Given a configuration C, we’ll say that a cell
c is in state q if C(c) = q.

If at time t ∈ N the CA is in a configuration C, we’ll consider that at time
(t+ 1) it is in the configuration F (C). This enables to define the evolution of a
CA from a configuration. This evolution is completely determined by C.

3.2 Language Recognition

Definition 32. We consider a CA A = (Q, V, f) and a set Qacc ⊆ Q of ac-
cepting states. Let w = w0w1 . . . wl−1 be a word on a finite alphabet A ⊆ Q. We
define the configuration Cw as follows.

Cw : Z → Q{
x
x
�→
�→
wx

#
if 0 ≤ x < l
otherwise

We’ll say that the CA A recognizes the word w with accepting states Qacc in
time tw if, starting from the configuration Cw at time 0, the cell 0 is in a state
in Qacc at time tw.

Definition 33. Let A = (Q, V, f) be a CA and L ⊆ A∗ a language on the
alphabet A ⊆ Q. For a given function T from N into N, we’ll say that the
language L is recognized by A in time T if there exists a set Qacc ⊆ Q such
that, for all word w of length l in A∗, the CA A recognizes w with accepting
states Qacc in time T (l) if and only if w ∈ L.

3.3 Real-Time

Definition 34. Given an r-complete neighborhood V , we define the real-time
function on V

TRV : N → N

l �→ min{t ∈ N|[[0, l − 1]] ⊆ V t}
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Definition 35. Let A = (Q, V, f) be a CA where V is r-complete and L a
language on A ⊆ Q. We’ll say that the CA A recognizes L in real-time if it
recognizes L in time TRV .

4 Constant Speed-Up Theorem

In this section we will prove the following theorem

Theorem 41. Let V be an r-complete neighborhood. For all k ∈ N, if a language
L can be recognized by a CA working on the neighborhood V in time TRV + k
then it is recognized by a CA working on V in real-time.

To prove this theorem, let’s consider an r-complete neighborhood V (and all
the corresponding notations from section 2). Let L be a language on a given
alphabet recognized by a CA A working on V in time TRV + k. Let Q be the
set of states of A.

We will construct a CA A′ working on V that will simulate the evolution of
A but with a constant speed-up (of k generations).

In all the following proof, we will consider the evolution of the automaton A
from the initial configuration corresponding to a word w = w0 . . . wl−1 of length
l. The initial configuration is

. . .###w0w1 . . . wl−1### . . .

The state of the cell c ∈ Z at time t in the evolution of A will be noted 〈c〉t.
The states of A′ will be tuples of elements of Q.

4.1 The Evolution of A′

Time 0. The initial configuration is the same than the one of A. Each cell c is
in the state 〈c〉0.

Time 0 → (tc + ts). The cells will gather information, meaning that they will
only read the state of their neighbors (the transition rule of A is not applied)
and memorize the state of the cells that are further away from them.

Time (tc+ts). Each cell c knows exactly the states {〈c+ x〉0|x ∈ V tc+ts}, and
will “assume” that all states {〈c+ x〉0|x ∈ [[tsxp, (tc + ts +k)xp]]} that it doesn’t
already know (the ones not in c + V tc+ts) are #. Note that this assumption
is true for the cells that are close enough to the end of the word w, and false
for the others (we’ll see this more in details later). Also each cell will do the
symmetrical assumption that all states in {〈c− x〉0|x ∈ [[tsxn, (tc + ts + k)xn]]}
that it doesn’t know are #.

¿From now on we’ll make a difference between the information that a cell
“knows” and the information it “assumes” on its right and on its left.

Time (tc + ts) → ∞. Here, each cell will apply the transition rule of A to
all the information it knows. This way, at time (tc + ts + t) each cell knows the
states {〈c+ x〉t|x ∈ V tc+ts}. Also, it will apply the transition rule to the assumed
information. In this computation, the cell might have incompatible information
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(what it has assumed so far and what the cell (c + xp) knows or assumes for
example). In this case, it will always give the priority to the information held by
the cell (c+xp) when computing assumptions on its right, and to the information
held by (c− xn) when computing assumptions on its left.

4.2 Why the Simulation Works

Here we will prove that the automaton A′ described in the previous subsec-
tion recognizes the language L in real-time. We will still focus on the evolu-
tion from the word w and keep the notations of the states in the evolution
of A.

Claim 41. At time (tc + ts) the cell c knows the states {〈c+ x〉0|x ∈ V tc+ts}.

Proof. By induction, if at time t the cell knows {〈c+ x〉0|x ∈ V t} then it can
see its neighbors (V + c) and their stored information. At time (t + 1) it can
therefore have the information

{〈c+ v + x〉0|v ∈ V, x ∈ V t} = {〈c+ x〉0|x ∈ V t+1}

�
Claim 42. At time (tc +ts +t) the cell c knows the states {〈c+ x〉t|x ∈ V tc+ts}.

Proof. Induction again. To compute the states

{〈c+ x〉t+1|x ∈ V tc+ts}

the cell c needs to see the states

{〈c+ x〉t|x ∈ (V tc+ts + V )}

which it does by looking at its neighbors in (V + c). �

Definition 41. At a given time t, a cell c will be called r-correct if all the
assumptions it does on its right are correct. The cell will be called r-incorrect
otherwise.

We have similar definitions of l-correct and l-incorrect for the left side.

Remark. If at time (tc + ts + t) the cell c is r-correct, then it knows or assumes
correctly all the states {〈c+ x〉t|x ∈ [[−tsxn, (tc + ts + k)xp]]}.

Claim 43. At time (tc + ts) all the cells c ≥ (l − tsxp − x0) are r-correct.

Proof. These cells assume that the initial states of the cells c ≥ l are # which
is true according to the initial configuration (by definition (tsxp + x0) is the
smallest positive integer not in V tc+ts). �
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Claim 44. If the cell (c+ xp) is r-correct at time (tc + ts + t) then the cell c is
r-correct at time (tc + ts + t+ 1).

Proof. We have seen that when the cell c applies the transition rule to the
assumed information, it considers the information held by (c+xp) with a higher
priority. To compute correctly the states

{〈c+ x〉t+1|x ∈ [[tsxp, (tc + ts + k)xp]]}

the cell c needs to see the states

{〈c+ x+ v〉t|v ∈ V, x ∈ [[tsxp, (tc + ts + k)xp]]}

that are all included in

{〈c+ xp + x〉t|x ∈ [[−tsxn, (tc + ts + k)xp]]}

so c sees all the correct information at time (tc + ts + t) and is therefore r-correct
at time (tc + ts + t+ 1). �

Claim 45. At time (tc + ts + t), all cells c ≥ l − (ts + t)xp − x0 are r-correct.

Proof. Immediate consequence of claims 43 and 44. �

Claim 46. At every time, the origin and all negative cells are l-correct.

Proof. The proof is easy and similar to the previous ones �

Claim 47. If the length of the word w is such that l ≥ (ts + 1)xp + x0 + 1 then

the real-time (for this word) is TRV (l) ≥ tc +
⌊

l−1−x0
xp

⌋
+ 1.

Proof. Let’s define α =
⌊

l−1−x0
xp

⌋
. We have αxp + x0 ≤ l − 1. Moreover, since

l ≥ (ts + 1)xp + x0 + 1 we have α ≥ ts and so by theorem 21 we have

(αxp + x0) /∈ V tc+α

which means that TRV (l) ≥ tc + α+ 1. �

Claim 48. If the length of w is such that l ≥ (ts + 1)xp + x0 + 1 then at time
TRV (l) the automaton A′ can determine whether or not the word w is in L.

Proof. From claim 45, we know that the origin is r-correct at times

t ≥ tc +
⌈
l − x0

xp

⌉
= tc +

⌊
l − 1− x0

xp

⌋
+ 1
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This means that the origin is r-correct at time TRV (l) (from claim 47) and,
since it is always l-correct (claim 46), at time TRV (l) the origin knows (or
assumes correctly) all the states in

{〈c〉TRV (l)−tc−ts
|c ∈ [[−(tc + ts + k)xn, (tc + ts + k)xp]]}

which contain all the necessary information to compute the state 〈0〉TR+k. The
automaton can therefore determine if w is in L. �

This last proposition and the fact that there is only a finite number of words
of length l ≤ (ts + 1)xp + x0 (so the automaton A′ can handle these exceptions
directly) end the proof of theorem 41.

5 Real-Time Equivalences

Definition 51. For every neighborhood V and every natural number n, we will
define Ln

TR(V ) the set of languages on the alphabet [[0, n− 1]] that can be recog-
nized in real-time by a CA working on V . We will also define

LTR(V ) =
⋃
n∈N

Ln
TR(V )

This section is dedicated to the proof of the following theorem.

Theorem 51. Let V and V ′ be two neighborhoods, we have the following rela-
tions:

1. if V is r-complete and V ′ is complete then LTR(V ) ⊆ LTR(V ′);
2. if V and V ′ are complete then LTR(V ) = LTR(V ′);
3. if V and V ′ are r-incomplete then LTR(V ) = LTR(V ′).

Proposition 51. For all r-complete neighborhood V , if −xn = minV and xp =
maxV then LTR(V ) = LTR([[−xn, xp]]).

Proof. It is obvious that any automaton on V can be simulated by an automaton
on [[−xn, xp]] without any loss in time. Proposition 22 shows that the difference
between the real-time on V and the real-time on [[−xn, xp]] is at most tc for any
word. Therefore, from theorem 41, we have LTR(V ) ⊆ LTR([[−xn, xp]]).

Now if a language L is recognized in real-time by an automaton working
on [[−xn, xp]] we can construct an automaton working on V that will gather
information during the first tc steps. From there each cell sees enough infor-
mation at each step to apply the transition rule of the automaton working on
[[−xn, xp]] and update its information. The resulting automaton recognizes L
in time TR[[−xn,xp]] + tc which is obviously smaller than TRV + tc, and so by
theorem 41 we have the converse inclusion. �
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Proposition 52. For all r-complete neighborhood V and all k ∈ N∗, we have
LTR(V ) = LTR(V k).

Proof. By proposition 51 we can restrict ourself to the connex neighborhoods.
It is clear that for a connex neighborhood V , TRV ≥ k(TRV k − 1). We know
that one step of a CA working on V k can be simulated by a CA working on
V in k steps, so every language L that can be recognized in time TRV k on
V k can be recognized in time kTRV k ≤ TRV + k. From theorem 41 we have
LTR(V k) ⊆ LTR(V ).

Reciprocally, it is easy to see that TRV k ≥ �TRV /k�. Since we know that a
CA working on V k can simulate k steps of a CA working on V in only one gener-
ation, every language that can be recognized on V in real-time can be recognized
on V k in time �TRV /k� ≤ TRV k + 1. Conclusion comes from theorem 41. �

Proposition 53. For all xn ≤ x′
n ∈ N and xp ∈ N∗, we have

LTR([[−xn, xp]]) ⊆ LTR([[−x′
n, xp]])

Proof. It is enough to observe that the real-time functions for both of these
neighborhoods are the same, and since it is obvious that every CA working on
the smaller can be simulated without loss of time by a CA working on the bigger
we have this trivial inclusion. �

Proposition 54. For all xn and xp in N∗ we have

LTR([[−xn, xp]]) = LTR([[−2xn, xp]])

Proof. It is well known that if there is a CA working on [[−2xn, xp]] that recog-
nizes L in real-time, then there exists another CA working on the same neighbor-
hood that recognizes L in real-time on limited space (meaning that a cell in state
# never changes its state). This technique is very similar to the technique used
to prove that Turing machines working on a semi-infinite tape are equivalent to
the ones working on a bi-infinite tape.

To prove the inclusion LTR([[−2xn, xp]]) ⊆ LTR([[−xn, xp]]), consider an au-
tomaton A working on V2 = [[−2xn, xp]] that recognizes a language L in real-time
and limited space. Let w = w0w1 . . . wl−1 be a word, and let’s consider the evo-
lution of A from the initial configuration corresponding to w. Like previously,
we will denote as 〈c〉t the state of the cell c at time t in the evolution of A.

Now we will explain the behaviour of a CA working on the neighborhood
V1 = [[−xn, xp]] starting from the same initial configuration, and recognizing the
language L in exactly the same time as A (the evolution of A′ on an initial
configuration corresponding to a word of length 7 for V1 = [[−1, 1]] is illustrated
on figure 1).

– Time 0. Each cell c has the information 〈c〉0.
– Time 1. Cell c has the information 〈c〉0 and 〈c+ 1〉0. This is possible because
{0, 1} ⊆ V .
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– When 1 ≤ t ≤ c, the cell c has the information 〈c+ t− 1〉0 and 〈c+ t〉0.
This again is possible simply by looking at the cell (c+ 1).

– When t = c + k with 0 ≤ k ≤ xn, the cell c has information 〈2c− 1〉0,
〈2c− 1〉1, . . . , 〈2c− 1〉k and 〈2c〉0, 〈2c〉1, . . . , 〈2c〉k. The information up
to time (k − 1) is already on c at the previous time (only memory), and
the information of time k can be computed from the information c sees
because by construction it can now see “twice as far” to the left, from the
compression.

– At time (c + xn + t), the cell c has the information 〈2c− 1〉t, 〈2c− 1〉t+1,
. . . , 〈2c− 1〉t+xn

and 〈2c〉t, 〈2c〉t+1, . . . , 〈2c〉t+xn
. Again, some information

was already on c at the previous time, the rest can be computed.

With such an evolution, we can see that the origin 0 has at each step t the
information 〈0〉t so the automaton A′ can decide whether or not w is in L at
time TRV1(l) = TRV2(l), which proves the inclusion. The converse inclusion is
covered by proposition 53. �

. . . # 〈0〉6〈0〉5
〈1〉5〈2〉5
〈1〉4〈2〉4

〈3〉4〈4〉4
〈3〉3〈4〉3

〈5〉3〈6〉3
〈5〉2〈6〉2 # . . .

. . . # 〈0〉5〈0〉4
〈1〉4〈2〉4
〈1〉3〈2〉3

〈3〉3〈4〉3
〈3〉2〈4〉2

〈5〉2〈6〉2
〈5〉1〈6〉1 # . . .

. . . # 〈0〉4〈0〉3
〈1〉3〈2〉3
〈1〉2〈2〉2

〈3〉2〈4〉2
〈3〉1〈4〉1

〈5〉1〈6〉1
〈5〉0〈6〉0 # . . .

. . . # 〈0〉3〈0〉2
〈1〉2〈2〉2
〈1〉1〈2〉1

〈3〉1〈4〉1
〈3〉0〈4〉0 〈5〉0〈6〉0 〈6〉0# # . . .

. . . # 〈0〉2〈0〉1
〈1〉1〈2〉1
〈1〉0〈2〉0 〈3〉0〈4〉0 〈4〉0〈5〉0 〈5〉0〈6〉0 〈6〉0# # . . .

. . . # 〈0〉1〈0〉0 〈1〉0〈2〉0 〈2〉0〈3〉0 〈3〉0〈4〉0 〈4〉0〈5〉0 〈5〉0〈6〉0 〈6〉0# # . . .

. . . # 〈0〉0 〈1〉0 〈2〉0 〈3〉0 〈4〉0 〈5〉0 〈6〉0 # . . .

Fig. 1. The evolution of A′ (time goes from bottom to top)

To prove the 3 propositions of theorem 51, let us consider two r-complete
neighborhoods V and V ′, with −xn = minV , −x′

n = minV ′, xp = maxV and
x′

p = maxV ′.

1. If V’ is complete then x′
n > 0. From propositions 51, 52, 53 and 54 we have,

for some k big enough

LTR(V)=LTR([[−xn, xp]])=LTR([[−x′
pxn, x

′
pxp]])⊆LTR([[−2kxpx

′
n, xpx

′
p]])

⊆ LTR([[−xpx
′
n, xpx

′
p]]) ⊆ LTR([[−x′

n, x
′
p]]) ⊆ LTR(V ′)



Cellular Automata: Real-Time Equivalence 143

2. This equality is a direct consequence of the previous inclusion.
3. If both are r-incomplete then xn = x′

n = 0 and

LTR(V ) = LTR([[0, xp]]) = LTR([[0, x′
pxp]]) = LTR([[0, x′

p]]) = LTR(V ′)

This ends the proof of theorem 51.

6 Conclusion

We have here proven an extension of Cole’s equivalence [3] for one-dimensional
neighborhoods. Since the usual simulation between neighborhoods is linear (in
time), it was already known that linear, polynomial and exponential capabilities
of the complete neighborhoods are all equal. We now know that the real-time
capabilities are the same.

We have also studied an extension of one-way cellular automata: the CA
working on r-incomplete neighborhoods. For these neighborhoods too we have
obtained a strong equivalence. These two kinds of neighborhoods (complete and
r-incomplete) are the only ones that enable a computation power equivalent to
Turing machines. On the other neighborhoods (not r-complete) it is possible to
prove that some cells will never interact with the origin (no matter what their
state is) and that the position of these “invisible cells” is ultimately periodic.
From this observation, it is easy to show that the languages that can be recog-
nized on these neighborhoods are exactly the sub-class of Turing languages that
do not depend on the letters on the “invisible cells”. We can prove a constant
speed-up theorem for this sub-class too.

We have therefore shown that language recognition by one-dimensional cel-
lular automata can always be reduced to a recognition on either the usual neigh-
borhood {−1, 0, 1} or the one-way neighborhood {0, 1}.

In dimension 2 and above, it is known that the different neighborhoods aren’t
equivalent in terms of real-time recognition (of two-dimensional shapes) [14].
Although we can prove a theorem similar to theorem 21 that gives an exact
description of any iteration of a two-dimensional neighborhood, it is unknown if
we have a constant speed-up theorem.
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Abstract. We consider qualitative and quantitative model-checking
problems for probabilistic pushdown automata (pPDA) and vari-
ous temporal logics. We prove that the qualitative and quantita-
tive model-checking problem for ω-regular properties and pPDA is in
2-EXPSPACE and 3-EXPTIME, respectively. We also prove that
model-checking the qualitative fragment of the logic PECTL∗ for pPDA
is in 2-EXPSPACE, and model-checking the qualitative fragment of
PCTL for pPDA is in EXPSPACE. Furthermore, model-checking the
qualitative fragment of PCTL is shown to be EXPTIME-hard even for
stateless pPDA. Finally, we show that PCTL model-checking is unde-
cidable for pPDA, and PCTL+ model-checking is undecidable even for
stateless pPDA.

1 Introduction

In this paper we concentrate on a subclass of discrete probabilistic systems (see,
e.g., [22]) that correspond to probabilistic sequential programs with recursive
procedure calls. Such programs can conveniently be modeled by probabilistic
pushdown automata (pPDA), where the stack symbols correspond to procedures
and global data is stored in the finite control. This model is equivalent to proba-
bilistic recursive state machines, or recursive Markov chains (see, e.g., [3, 16, 15]).
An important subclass of pPDA are stateless pPDA, denoted pBPA1. In the non-
probabilistic setting, BPA are often easier to analyze than general PDA (i.e., the
corresponding algorithms are more efficient), but they still retain a reasonable
expressive power which is sufficient, e.g., for modelling some problems of inter-
procedural dataflow analysis [12]. There is a close relationship between pBPA
and stochastic context-free grammars. In fact, pBPA are stochastic context-free
grammars, but they are seen from a different perspective in the setting of our
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paper. We consider the model-checking problem for pPDA/pBPA systems and
properties expressible in probabilistic extensions of various temporal logics.

The State of the Art. Methods for automatic verification of probabilistic sys-
tems have so far been examined mainly for finite-state probabilistic sys-
tems. Model-checking algorithms for various (probabilistic) temporal logics like
LTL, PCTL, PCTL∗, probabilistic μ-calculus, etc., have been presented in
[23, 19, 26, 18, 4, 10, 20, 11]. As for infinite-state systems, most works so far con-
sidered probabilistic lossy channel systems [21] which model asynchronous com-
munication through unreliable channels [5, 1, 2, 6, 25]. The problem of deciding
probabilistic bisimilarity over various classes of infinite-state probabilistic sys-
tems has recently been considered in [7]. Model-checking problems for pPDA
and pBPA processes have been studied in [13]. In [13], it has been shown that
the qualitative/quantitative random walk problem for pPDA is in EXPTIME,
that the qualitative fragment of the logic PCTL is decidable for pPDA (but
no upper complexity bound was given), and that the qualitative/quantitative
model-checking problem for pPDA and a subclass of ω-regular properties defin-
able by deterministic Büchi automata is also decidable. The reachability problem
for pPDA and pBPA processes is studied in greater depth in [16], where it is
shown that the qualitative reachability problem for pBPA is solvable in polyno-
mial time, and a fast-converging algorithm for quantitative pPDA reachability
is given.

Our Contribution. In this paper we continue the study initiated in [13]. We
still concentrate mainly on clarifying the decidability/undecidability border for
model-checking problems, but we also pay attention to complexity issues. Basic
definitions together with some useful existing results are recalled in Section 2.
As a warm-up, in Section 3 we show that both qualitative and quantitative
model-checking problem for ω-regular properties and pPDA is decidable. More
precisely, if ω-regular properties are encoded by Büchi automata, then the quali-
tative variant of the problem is in 2-EXPSPACE, and the quantitative one is in
3-EXPTIME. The proof is obtained by extending and modifying the construc-
tion for deterministic Büchi automata given in [13] so that it works for Muller
automata. Note that the considered problems are known to be PSPACE-hard
even for finite-state systems [26]. The core of the paper is Section 4. First we
prove that model-checking general PCTL is undecidable for pPDA, and model-
checking PCTL+ is undecidable even for pBPA. Since the structure of formu-
lae which are constructed in our proofs is relatively simple, our undecidability
results hold even for fragments of these logics. From a certain point of view,
these results are tight (see Section 4). Note that in the non-probabilistic case,
the model-checking problems for logics like CTL, CTL∗, or even the modal μ-
calculus, are decidable for PDA. Our undecidability proofs are based on a careful
arrangement of transition probabilities in the constructed pPDA so that various
nontrivial properties can be encoded by specifying probabilities of certain events
(which are expressible in PCTL or PCTL+). We believe that these tricks might
be applicable to other problems and possibly also to other models. In the light of
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these undecidability results, it is sensible to ask if the model-checking problem is
decidable at least for some natural fragments of probabilistic branching-time log-
ics. We show that model-checking the qualitative fragment of the logic PECTL∗

is decidable for pPDA, and we give the 2-EXPSPACE upper bound. For the
qualitative fragment of PCTL we give the EXPSPACE upper bound. We also
show that model-checking the qualitative fragment of PCTL is EXPTIME-
hard even for pBPA processes. Our proof is a simple modification of the one
given in [27] which shows EXPTIME-hardness of the model-checking problem
for (non-probabilistic) CTL and PDA. Due to space constraints, formal proofs
are omitted. We refer to [8] for technical details.

2 Preliminaries

For every alphabet Σ, the symbols Σ∗ and Σω denote the sets of all finite and
infinite words over the alphabet Σ, respectively. The length of a given w ∈
Σ∗∪Σω is denoted |w| (if w ∈ Σω then we put |w| = ω). For every w ∈ Σ∗∪Σω

and every 0 ≤ i < |w|, the symbols w(i) and wi denote the i+1-th letter of w
and the suffix of w which starts with w(i), respectively. By writing w(i) or wi

we implicitly impose the condition that the object exists.

Definition 1. A Büchi automaton is a tuple B = (Σ, B, �, bI ,Acc), where Σ is
a finite alphabet, B is a finite set of states, � ⊆ B × Σ × B is a transition
relation (we write b a−→ b′ instead of (b, a, b′) ∈ �), bI is the initial state, and
Acc ⊆ B is a set of accepting states.

A word w ∈ Σω is accepted by B if there is a run of B on w which visits some
accepting state infinitely often. The set of all w ∈ Σω which are accepted by B
is denoted L(B).

Definition 2. A probabilistic transition system is a triple T = (S,−→,Prob)
where S is a finite or countably infinite set of states, −→ ⊆ S × S is a tran-
sition relation, and Prob is a function which to each transition s −→ t of T
assigns its probability Prob(s −→ t) ∈ (0, 1] so that for every s ∈ S we have that∑

s−→t Prob(s −→ t) ∈ {0, 1}. (The sum above can be 0 if s does not have any
outgoing transitions.)

In the rest of this paper we write s x−→ t instead of Prob(s −→ t) = x. A path in
T is a word w ∈ S∗ ∪ Sω such that w(i−1) −→ w(i) for every 1 ≤ i < |w|. A run
is a maximal path, i.e., a path which cannot be prolonged. The sets of all finite
paths, all runs, and all infinite runs of T are denoted FPath, Run, and IRun,
respectively2. Similarly, the sets of all finite paths, runs, and infinite runs that
start in a given s ∈ S are denoted FPath(s), Run(s), and IRun(s), respectively.

Each w ∈ FPath determines a basic cylinder Run(w) which consists of all
runs that start with w. To every s ∈ S we associate the probabilistic space
(Run(s),F ,P) where F is the σ-field generated by all basic cylinders Run(w)

2 In this paper, T is always clear from the context.
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where w starts with s, and P : F → [0, 1] is the unique probability function such
that P(Run(w)) = Π

|w|−1
i=1 xi where w(i−1) xi−→ w(i) for every 1 ≤ i < |w| (if

|w| = 1, we put P(Run(w)) = 1).

The Logics PCTL, PCTL+, PCTL∗, PECTL∗, and Their Qualitative
Fragments. Let Ap = {a, b, c, . . . } be a countably infinite set of atomic propo-
sitions. The syntax of PCTL∗ state and path formulae is given by the following
abstract syntax equations (for simplicity, we omit the bounded ‘until’ operator
from the syntax of path formulae).

Φ ::= tt | a | ¬Φ | Φ1 ∧ Φ2 | P∼�ϕ

ϕ ::= Φ | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1 U ϕ2

Here a ranges over Ap, � ∈ [0, 1], and ∼ ∈ {≤, <,≥, >}. The logic PCTL is a
fragment of PCTL∗ where state formulae are defined as for PCTL∗ and path
formulae are given by the equation ϕ ::= XΦ | Φ1 U Φ2. The logic PCTL+ is
a fragment of PCTL∗ where the X and U operators in path formulae can be
combined using Boolean connectives, but they cannot be nested. Finally, the logic
PECTL∗ is an extension of PCTL∗ where only state formulae are introduced and
have the following syntax:

Φ ::= tt | a | ¬Φ | Φ1 ∧ Φ2 | P∼�B

Here B is a Büchi automaton over an alphabet 2{Φ1,··· ,Φn}, where each Φi is a
PECTL∗ formula.

Let T = (S,−→,Prob) be a probabilistic transition system, and let
ν : Ap → 2S be a valuation. The semantics of PCTL∗ is defined below. State
formulae are interpreted over S, and path formulae are interpreted over IRun.
(Alternatively, path formulae could also be interpreted over Run. This would
not lead to any problems, and our model-checking algorithms would still work
after some minor modifications. We stick to infinite runs mainly for the sake of
simplicity.)

s |=ν tt
s |=ν a iff s ∈ ν(a)
s |=ν ¬Φ iff s �|=ν Φ
s |=ν Φ1∧Φ2 iff s |=ν Φ1 and s |=ν Φ2

s |=ν P∼	ϕ iff P({w∈IRun(s) | w|=νϕ})∼�

w |=ν Φ iff w(0) |=ν Φ
w |=ν ¬ϕ iff w �|=ν ϕ
w |=ν ϕ1∧ϕ2 iff w |=ν ϕ1 and w |=ν ϕ2

w |=ν Xϕ iff w1 |=ν ϕ
w |=ν ϕ1 U ϕ2 iff ∃j ≥ 0 : wj |=ν ϕ2 and

wi|=νϕ1 for all 0≤i<j

For PCTL, the semantics of path formulae is redefined to

w |=ν XΦ iff w(1) |=ν Φ
w |=ν Φ1 U Φ2 iff ∃j ≥ 0 : w(j) |=ν Φ2 and w(i) |=ν Φ1 for all 0 ≤ i < j

The semantics of a PECTL∗ formula P∼�B, where B is a Büchi automaton
over an alphabet 2{Φ1,··· ,Φn}, is defined as follows. First, we can assume that
the semantics of the PECTL∗ formulae Φ1, · · · , Φn has already been defined.
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This means that for each w ∈ IRun we can define an infinite word wB over
the alphabet 2{Φ1,··· ,Φn} by wB(i) = {Φ ∈ {Φ1, · · · , Φn} | w(i) |=ν Φ}. For
every state s, let Run(s,B) = {w ∈ IRun(s) | wB ∈ L(B)}. We stipulate that
s |=ν P∼�B iff P(Run(s,B)) ∼ �.

The qualitative fragments of PCTL, PCTL∗, and PECTL∗, denoted qPCTL,
qPCTL∗, and qPECTL∗, resp., are obtained by restricting the allowed opera-
tor/number combinations in P∼�ϕ and P∼�B subformulae to ‘≤ 0’ and ‘≥ 1’,
which can also be written as ‘= 0’ and ‘= 1’, resp. (Observe that ‘< 1’, ‘> 0’ are
definable from ‘≤ 0’, ‘≥ 1’, and negation).

Probabilistic PDA. A probabilistic pushdown automaton (pPDA) is a tuple
Δ = (Q,Γ, δ,Prob) where Q is a finite set of control states, Γ is a finite stack
alphabet, δ ⊆ Q× Γ ×Q× Γ ∗ is a finite transition relation (we write pX −→ qα
instead of (p,X, q, α) ∈ δ), and Prob is a function which to each transition
pX −→ qα assigns its probability Prob(pX −→ qα) ∈ (0, 1] so that for all p ∈ Q
and X ∈ Γ we have that

∑
pX−→qα Prob(pX −→ qα) ∈ {0, 1}.

A pBPA is a pPDA with just one control state. Formally, a pBPA is under-
stood as a triple Δ = (Γ, δ,Prob) where δ ⊆ Γ × Γ ∗.

In the rest of this paper we adopt a more intuitive notation, writing pX x−→ qα
instead of Prob(pX −→ qα) = x. The set Q × Γ ∗ of all configurations of Δ is
denoted by C(Δ). We also assume (w.l.o.g.) that if pX −→ qα ∈ δ, then |α| ≤ 2.
Given a configuration pXα of Δ, we call pX the head and α the tail of pXα.
To Δ we associate the probabilistic transition system TΔ where C(Δ) is the set
of states and the probabilistic transition relation is determined by pXβ x−→ qαβ
iff pX x−→ qα.

The model checking problem for pPDA configurations and any nontrivial
class of properties is clearly undecidable for general valuations. Therefore, we
restrict ourselves to simple valuations where the (in)validity of atomic proposi-
tions depends just on the current control state and the current symbol on top of
the stack. Alternatively, we could consider regular valuations where the set of all
configurations that satisfy a given atomic proposition is encoded by a finite-state
automaton. However, regular valuations can be “encoded” into simple valuations
by simulating the finite-state automata in the stack (see, e.g., [14]), and therefore
they do not bring any extra expressive power.

Definition 3. A valuation ν is simple if there is a function fν which assigns to
every atomic proposition a subset of Q× Γ such that for every configuration pα
and every a ∈ Ap we have that pα |=ν a iff α = Xα′ and pX ∈ fν(a).

Random Walks on pPDA Graphs. Let T = (S,−→,Prob) be a probabilis-
tic transition system. For all s ∈ S, C1, C2 ⊆ S, let Run(s, C1 U C2) = {w ∈
Run(s) | ∃j ≥ 0 : w(j) ∈ C2 and w(i) ∈ C1 for all 0 ≤ i < j}. An instance of
the random walk problem is a tuple (s, C1, C2,∼, �), where s ∈ S, C1, C2 ⊆ S,
∼ ∈ {≤, <,≥, >,=}, and � ∈ [0, 1]. The question is if P(Run(s, C1 U C2)) ∼ �.
In [13], it was shown that the random walk problem for pPDA processes and
simple sets of configurations is decidable (a simple set is a set of the form⋃

pX∈H{pXα | α ∈ Γ ∗} where H is a subset of Q×Γ ). More precisely, it was
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shown that for a given tuple (pX, C1, C2,∼, �), where C1, C2 are simple sets of con-
figurations of a given pPDA system Δ, there is an efficiently constructible system
of recursive quadratic equations such that the probability P(Run(pX, C1 U C2))
is the first component in the tuple of non-negative real values which form the
least solution of the system. Thus, the relation P(Run(pX, C1 U C2)) ∼ � can
effectively be expressed in (R,+, ∗,≤) by constructing a formula Φ saying that a
given vector x is the least solution of the system and x(1) ∼ �. Since the quan-
tifier alternation depth in the constructed formula is fixed, it was concluded in
[13] that the random walk problem for pPDA and simple sets of configurations
is in EXPTIME by applying the result of [17]. Later, it was observed in [16]
that the existential fragment of (R,+, ∗,≤) is sufficient to decide the quantita-
tive reachability problem for pPDA. This observation applies also to the random
walk problem. Actually, it follows easily from the results of [13] just by observ-
ing that the existential (or universal) fragment of (R,+, ∗,≤) is sufficient to
decide whether P(Run(pX, C1 U C2)) ∼ � when ∼ ∈ {<,≤} (or ∼ ∈ {>,≥},
resp.). Since the existential and universal fragments of (R,+, ∗,≤) are decid-
able in polynomial space [9], we obtain the following result which is used in our
complexity estimations:

Lemma 1. The random walk problem for pPDA processes and simple sets of
configurations is in PSPACE.

3 Model-Checking ω-Regular Properties

In this section we show that the qualitative and quantitative model-checking
problems for pPDA and ω-regular properties represented by Büchi automata
are in 2-EXPSPACE and 3-EXPTIME, respectively. For both of these prob-
lems there is a PSPACE lower complexity bound due to [26]. Our proof is a
generalization of the construction for deterministic Büchi automata presented in
[13]. We show that this construction can be extended to (deterministic) Muller
automata, which have the same expressive power as general Büchi automata.

Definition 4. A Muller automaton is a tuple M = (Σ,M, �,mI ,F), where Σ
is a finite alphabet, M is a finite set of states, � : M × Σ → M is a (total)
transition function (we write m a−→ m′ instead of �(m, a) = m′), mI is the initial
state, and F ⊆ 2M is a set of accepting sets.

For every infinite run v of M, let inf(v) be the set of all states which appear
in v infinitely often. A word w ∈ Σω is accepted by M if inf(v) ∈ F , where v is
the (unique) run of M on w.

For the rest of this section, we fix a pPDA Δ = (Q,Γ, δ,Prob). We consider
specifications given by Muller automataM having Q×Γ as their alphabet. Each
infinite run w of Δ determines a unique word v ∈ (Q×Γ )ω, where v(i) is the head
of w(i) for every i ∈ N0. A run w of Δ is accepted byM if its associated word v is
accepted by M. For a given configuration pX, let Run(pX,M) be the set of all
runs of IRun(pX) that are accepted by M. Our aim is to show that the problem
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if P(Run(pX,M)) ∼ � for given Δ, pX, M, ∼ ∈ {≤, <,≥, >}, and � ∈ [0, 1],
is in 2-EXPTIME. In the qualitative case, we derive the EXPSPACE upper
bound.

Theorem 1. The quantitative model-checking problem for pPDA processes
and ω-regular properties represented by Muller automata is in 2-EXPTIME,
and the qualitative variant of this problem is in EXPSPACE.

Corollary 1. The quantitative model-checking problem for pPDA processes
and ω-regular properties represented by Büchi automata is in 3-EXPTIME,
and the qualitative variant of this problem is in 2-EXPSPACE.

4 Model-Checking PCTL, PCTL∗, and PECTL∗

Properties

We start by proving that model-checking PCTL is undecidable for pPDA pro-
cesses, and model-checking PCTL+ is undecidable for pBPA processes.

A Minsky machine with two counters is a finite sequence C of labeled instruc-
tions �1:inst1, · · · , �n:instn, where n ≥ 1, instn = halt, and for every 1 ≤ i < n,
the instruction inst i is of one of the following two types:

Type I. cr := cr + 1; goto �j
Type II. if cr = 0 then goto �j else cr := cr − 1; goto �k

Here r ∈ {1, 2} is a counter index. A configuration of C is a triple (�i, v1, v2),
where 1 ≤ i ≤ n and v1, v2 ∈ N0 are counter values. Each configuration (�i, v1, v2)
has a unique successor which is the configuration obtained by performing insti on
(�i, v1, v2). The halting problem for Minsky machines with two counters initial-
ized to zero, i.e., the question whether (�1, 0, 0) eventually reaches a configuration
of the form (�n, v1, v2), where v1, v2 ∈ N0, is undecidable [24].

Our aim is to reduce the halting problem for Minsky machines to the PCTL
model checking problem for pPDA. Since a full proof is somewhat technical, we
give just an intuitive explanation and refer to [8] for missing details.

Let C be a Minsky machine. We construct a pPDA system Δ, a process pα
of Δ, and a PCTL formula ψ such that C halts iff pα |= ψ. The formula ψ looks
as follows:

ψ ≡ P>0((check ⇒ (ϕstate ∧ ϕzero ∧ ϕcount)) U halt)

Here check and halt are atomic propositions, ϕstate and ϕzero are qualitative
formulae with just one U operator, and ϕcount is a quantitative formula with just
one U operator. So, ϕcount is the only non-qualitative subformula in ψ. The stack
content of the initial process pα corresponds to the initial configuration of C. In
general, a configuration (�i, v1, v2) is represented by the sequence �iAv1Bv2 of
stack symbols, and individual configurations are separated by the # marker.

Starting from pα, Δ tries to “guess” the successor configuration of C by
pushing a sequence of stack symbols of the form �jA

v1Bv2#. The transitions
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of Δ are arranged so that only strings of this syntactical form can be pushed.
Transition probabilities do not matter here, the only important thing is that the
“right” configuration can be guessed with a non-zero probability. After guessing
the configuration (i.e., after pushing the symbol �j), Δ inevitably pushes one
of the special “checking” symbols of the form (�i, �j , r, d), where 1 ≤ i ≤ n,
r ∈ {1, 2} is a counter index, and d ∈ {−1, 0, 1} a counter change (note that the
previously pushed �j is in the second component of the checking symbol). An
intuitive meaning of checking symbols is explained later. Let us just note that
checking symbols correspond to instructions of C and hence not all tuples of
the form (�i, �j , r, d) are necessarily checking symbols. Still, there can be several
checking symbols with the same �j in the second component, and Δ can freely
choose among them. Actually, the checking symbol is pushed together with �j ,
and hence the guessing phase ends in a “checking configuration” where the stack
looks as follows: (�i, �j , r, d)�jAv1Bv2# . . .. The atomic proposition check is valid
in exactly all checking configurations (i.e., configurations with a checking symbol
on top of the stack), and the proposition halt is valid in exactly those configu-
rations where �n (i.e., the label of halt) is on top of the stack.

From a checking configuration, Δ can either pop the checking symbol (note
that the symbol �j appears at the top of the stack at this moment) and go on
with guessing another configuration of C, or perform other transitions so that
the subformulae ϕstate , ϕzero , and ϕcount are (possibly) satisfied. Hence, the
formula ψ says that there is a finite sequence of transitions from pα leading
to a “halting” configuration along which all checking configurations satisfy the
formulae ϕstate , ϕzero , and ϕcount . As can be expected, these three subformulae
together say that the configuration of C just pushed to the stack is the successor
of the configuration which was pushed previously. Let us discuss this part in
greater detail.

First, let us clarify the meaning of checking symbols. Intuitively, each checking
symbol corresponds to some computational step of C. More precisely, the set of
all checking symbols is the least set T such that for every 1 ≤ i ≤ n we have
that

– if inst i ≡ cr := cr + 1; goto �j , then (�i, �j , r, 1) ∈ T ;
– if inst i ≡ if cr = 0 then goto �j else cr := cr − 1; goto �k, then

(�i, �j , r, 0), (�i, �k, r,−1) ∈ T .

Note that the checking symbol (�i, �j , r, d) which is pushed together with
�j at the end of guessing phase is chosen freely. So, this symbol can also be
chosen “badly” in the sense that �i is not the label of the previously pushed
configuration, or the wrong branch of a Type II instruction is selected.

The formula ϕstate intuitively says that we have chosen the “right” �i, and
the subformula ϕzero says that if the checking symbol (�i, �j , r, d) claims the
use of a Type II instruction and the counter cr was supposed to be zero (i.e.,
d = 0), then the previously pushed configuration of C indeed has zero in the
respective counter. In other words, ϕzero verifies that the right branch of a Type
II instruction was selected.



On the Decidability of Temporal Properties 153

The most interesting part is the subformula ϕcount , which says that the
counter values in the current and the previous configuration have changed ac-
cordingly to (�i, �j , r, d). For example, if r = 0 and d = −1, then the subformula
ϕcount is valid in the considered checking configuration iff the first counter was
changed by −1 and the second counter remained unchanged.

To get some intuition on how this can be implemented, let us consider a
simplified version of this problem. Let us assume that we have a configuration of
the form pAm#An#. Our aim is to set up the transitions of pAm#An# and to
construct a PCTL formula ϕ so that pAm#An# |= ϕ iff m = n (this indicates
how to check if a counter remains unchanged). Let

pA
1/2−−→ qA,

pA
1/2−−→ tA,

qA
1−→ qε,

q# 1−→ rε,
rA

1/2−−→ sA,

rA
1/2−−→ rε,

tA
1/2−−→ tε,

tA
1/2−−→ uA,

t# 1−→ sA,

sA
1−→ sA,

uA
1−→ uA

By inspecting possible runs of pAm#An#, one can easily confirm that the
probability that a run of pAm#An# hits a configuration having sA as its head
is exactly

1
2
· (1− 1

2n
) +

1
2
· 1
2m

=
1
2
− 1

2n+1 +
1

2m+1

Let psA be an atomic proposition which is valid in (exactly) all configurations
having sA as their head. Then pAm#An# |= P= 1

2 (ttU psA) iff m = n.
One can argue that formulae where some probability is required to be equal

to some value are seldom used in practice. However, it is easy to modify the
proof so that for every subformula of the form P∼�ϕ which is employed in the
proof we have that ∼ is > and � is a “simple” rational like 1/2 or 1/4. We refer
to [8] for details.

Finally, let us note that our undecidability result is tight with respect to
the nesting depth of U . The fragment of PCTL where the U operators are not
nested (and the X operators can be nested to an arbitrary depth) is decidable by
applying the results of [13]. In our undecidability proof we use a PCTL formula
where the nesting depth of U is 2 (PCTL formulae where the U operators are
not nested have the nesting depth 1).

Theorem 2. The model-checking problem for pPDA processes and the logic
PCTL is undecidable. Moreover, the undecidability result holds even for the
fragment of PCTL where the nesting depth of U is at most two, and for all
subformulae of the form P∼�ϕ we have that ∼ is >.

The proof of Theorem 2 does not carry over to pBPA processes. The decid-
ability of PCTL for pBPA processes is one of the challenges which are left open
for future work. Nevertheless, we were able to show that model-checking PCTL+

(and in fact a simple fragment of this logic) is undecidable even for pBPA. The
structure of the construction is similar as in Theorem 2, but the proof con-
tains new tricks invented specifically for pBPA. In particular, the consistency
of counter values in consecutive configurations is verified somewhat differently.
This is the only place where we use the expressive power of PCTL+.
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Theorem 3. The model-checking problem for pBPA processes and the logic
PCTL+ is undecidable. More precisely, the undecidability result holds even for
a fragment of PCTL+ where the nesting depth of U is at most two, and for all
subformulae of the form P∼�ϕ we have that ∼ is >.

Now we prove that the model-checking problem for pPDA and the logic
qPECTL∗ is decidable and belongs to 2-EXPSPACE. For the logic qPCTL,
our algorithm only needs singly exponential space.

Let us fix a pPDA Δ = (Q,Γ, δ,Prob), qPECTL∗ formula τ , and a simple
valuation ν. The symbol Cl(τ) denotes the set of all subformulae of τ , and
Acl(τ) ⊆ Cl(τ) is the subset of all “automata subformulae” of the form P=xB.

Let ϕ ≡ P=xB ∈ Acl(τ) where B is a Büchi automaton over an alphabet
Σϕ = 2{Φ1,...,Φn}. Then there is a (deterministic) Muller automaton Mϕ =
(Σϕ,Mϕ, �ϕ,m

I
ϕ,Fϕ) whose size is at most exponential in the size of B such

that L(Mϕ) = L(B). In our constructions we use Mϕ instead of B.
The intuition behind our proof is that we extend each configuration of Δ

with some additional information that allows to determine the (in)validity of
each subformula of τ in a given configuration just by inspecting the head of the
configuration. Our algorithm computes a sequence of extensions of Δ that are
obtained from Δ by augmenting stack symbols and transition rules with some
information about subformulae of τ . These extensions are formally introduced in
our next definition. For notation convenience, we define St = Πϕ∈Acl(τ)2Q×Mϕ .
For every v ∈ St , the projection of v onto a given ϕ ∈ Acl(τ) is denoted v(ϕ).
Note that v(ϕ) is a set of pairs of the form (q,m), where q ∈ Q and m ∈Mϕ.

Definition 5. We say that a pPDA Δ′ = (Q,Γ ′, δ′,Prob′) is an extension of
Δ if and only if Γ ′ = St× Γ × St (elements of Γ ′ are written as (uXv), where
u, v ∈ St and X ∈ Γ ), and the outgoing transitions of every p(uXv) ∈ Q × Γ ′

satisfy the following:

1. if pX x−→ qε, then p(uXv) x−→ qε;
2. if pX x−→ qY , then there is a unique z ∈ St such that p(uXv) x−→ q(zY v);
3. if pX x−→ qY Z, then there are unique z, w ∈ St such that
p(uXv) x−→ q(zY w)(wZv);

4. p(uXv) has no other outgoing transitions.

Note that due to 2. and 3., a given Δ can have many extensions. However,
all of these extensions have the same set of control states and the same stack
alphabet. Moreover, the part of TΔ′ which is reachable from a configuration
p(u1X1v1) · · · (unXnvn) is isomorphic to the part of TΔ reachable from the con-
figuration pX1 · · ·Xn.

Definition 6. Let Δ′ = (Q,Γ ′, δ′,Prob′) be an extension of Δ. For each
ϕ ∈ Cl(τ) we define a set Cϕ ⊆ Q× Γ ′ inductively as follows:

– if ϕ = a where a ∈ Ap, then Cϕ = {p(uXv) | pX ∈ fν(a) and u, v ∈ St}
– if ϕ = ψ ∧ ξ, then Cϕ = Cψ ∩ Cξ



On the Decidability of Temporal Properties 155

– if ϕ = ¬ψ, then Cϕ = (Q× Γ ′) � Cψ

– if ϕ = P=xB, then Cϕ = {p(uXv) | u, v ∈ St and (p,mI
ϕ) ∈ u(ϕ)}

For each ϕ ∈ Acl(τ) we define a Muller automaton M′
ϕ =

(Σ′
ϕ,Mϕ, �

′
ϕ,m

I
ϕ,Fϕ), which is a modification of the automaton Mϕ, as fol-

lows: Σ′
ϕ = Q× Γ ′, and m h−→ m′ is a transition of �′

ϕ iff there is A ∈ Σϕ such

that m A−→ m′ is a transition of �ϕ and h ∈ (
⋂

ψ∈A Cψ) �
⋃

ψ �∈A Cψ. Note that
M′

ϕ is again deterministic.

Let Δ′ be an extension of Δ. The symbol [s, p(uXv)•]ϕ denotes the prob-
ability that a run of Run(p(uXv)) is accepted by M′

ϕ where the initial state
of M′

ϕ is changed to s. Furthermore, the symbol [s, p(uXv)q, t]ϕ denotes the
probability that a run w of Run(p(uXv)) hits the configuration qε, i.e., w is of
the form w′ qε, so that M′

ϕ initiated in s moves to t after reading the heads of
all configurations in w′.

Intuitively, the sets Cϕ are supposed to encode exactly those configurations
where ϕ holds (the information which is relevant for the (in)validity of ϕ should
have been accumulated in the symbol at the top of the stack). However, this
works only under some “consistency” assumptions, which are formalized in our
next definition (see also Lemma 2 below).

Definition 7. Let ϕ ∈ Acl(τ) and let Δ′ be an extension of Δ. We say that a
symbol (uXv) ∈ Γ ′ is ϕ-consistent in Δ′ iff the following conditions are satisfied:

– if ϕ ≡ P=1B, then u(ϕ) = {(p, s) | [s, p(uXv)•]ϕ +
∑

(q,t)∈v(ϕ)[s, p(uXv)q, t]ϕ = 1}
– if ϕ ≡ P=0B, then u(ϕ) = {(p, s) | [s, p(uXv)•]ϕ +

∑
(q,t) �∈v(ϕ)[s, p(uXv)q, t]ϕ = 0}

We say that a configuration p(u1X1v1) · · · (unXnvn) is ϕ-consistent in Δ′ iff
(uiXivi) is ϕ-consistent in Δ′ for every 1 ≤ i ≤ n, and vi = ui+1 for every
1 ≤ i < n.

An extension Δ′ of Δ is ϕ-consistent iff for all transitions of the form
p(uXv) x−→ q(zY v) and p(uXv) x−→ q(zY w)(wZv) of Δ′ we have that q(zY v)
and q(zY w)(wZv) are ϕ-consistent in Δ′, respectively.

It is important to realize that the conditions of Definition 7 are effectively veri-
fiable, because, e.g., the condition [s, p(uXv)•]ϕ+

∑
(q,t)∈v(ϕ)[s, p(uXv)q, t]ϕ = 1

can effectively be translated into (R,+, ∗,≤) using the construction of Theorem 1
and the results on random walks of [13] which were recalled in Section 2. We
refer to [8] for details and complexity estimations.

A v ∈ St is terminal iff for each ϕ ∈ Acl(τ) we have that if ϕ = P=1B then
v(ϕ) = ∅, and if ϕ = P=0B then v(ϕ) = Q×Mϕ.

Lemma 2. Let ϕ ∈ Cl(τ), and let Δ′ be an extension of Δ which is ψ-consistent
for all ψ ∈ Acl(ϕ). Let p(u1X1v1) · · · (unXnvn) (where n ≥ 1) be a configuration
of Δ′ which is ψ-consistent in Δ′ for each ψ ∈ Acl(ϕ), and where vn is terminal.
Then pX1 · · ·Xn |= ϕ iff p(u1X1v1) ∈ Cϕ.
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Lemma 3. Let pX be a configuration of Δ. Then there exists an extension Δτ

of Δ which is ϕ-consistent for each ϕ ∈ Acl(τ), and a configuration p(uXv)
which is ϕ-consistent in Δτ for each ϕ ∈ Acl(τ). Moreover, Δτ and p(uXv) are
effectively constructible is space which is doubly exponential in the size of τ (if
τ is a PCTL formula, then the space complexity is only singly exponential in
the size of τ) and singly exponential in the size of Δ.

An immediate corollary to Lemma 2 and Lemma 3 is the following:

Theorem 4. The model-checking problems for pPDA processes and the logics
qPECTL∗ and qPCTL are in 2-EXPSPACE and EXPSPACE, respectively.

Finally, let us note that the construction presented in [27] which shows
EXPTIME-hardness of the model-checking problem for the logic CTL and
PDA processes can be adapted so that it works for (non-probabilistic) BPA3.
This idea carries over to the probabilistic case after some trivial modifications.
Thus, we obtain the following:

Theorem 5. The model-checking problem for pBPA processes and the logic
qPCTL is EXPTIME-hard.
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Abstract. We show that for infinite transition systems induced by cryp-
tographic protocols in the Rusinowitch/Turuani style certain fundamental
branching properties are decidable. As a consequence, we obtain that cru-
cial properties of contract-signing protocols such as balance are decidable.

1 Introduction

There has been intensive research on the automatic analysis of cryptographic pro-
tocols in the recent past (see, e.g., [8, 13] for an overview) which led to industrial-
strength debugging tools (see, e.g., [2]). One of the central results of the area is
that security of cryptographic protocols is decidable when analyzed w.r.t. a finite
number of sessions, without a bound on the message size, and in presence of the
so-called Dolev-Yao intruder (see, e.g., [15, 1, 5, 14]). This result (and all the re-
lated ones) is, however, restricted to security properties such as authenticity and
secrecy, which are reachability properties of the transition system associated with
a given protocol: Is a state, in which the intruder possesses a certain secret, such
as a session key, reachable? In contrast, crucial properties required of contract-
signing and related protocols [10, 3, 4, 17], for instance abuse-freeness [10] and
balance [6], are properties of the structure of the transition system associated
with a protocol. Balance, for instance, requires that in no stage of a protocol
run, the intruder or a dishonest party has both a strategy to abort the run and
a strategy to successfully complete the run and thus obtain a valid contract.

The main goal of this paper is to show that the central result mentioned
above extends to branching properties, such as balance, and similar properties of
contract-signing protocols. In other words, we want to show that these branching
properties are decidable w.r.t. a finite number of sessions, without a bound on
the message size, and in presence of the so-called Dolev-Yao intruder. This can
potentially lead to fully automatic analyzers for contract-signing protocols that
are much more precise than the existing ones, which consider only drastically
scaled down finite-state versions of the protocols in question.

The protocol and intruder model that we suggest to use is a “finite ses-
sion” version of a model proposed in [6].1 It contains different features im-

1 Our technical exposition though is closer to the term-rewriting approach [15] than
to the multi-set rewriting framework employed in [6].
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portant for contract-signing protocols which are absent in the models for au-
thentication and key exchange protocols referred to above. First, as in [6], we
include private contract signatures in our model as an important example of
a cryptographic primitive used in contract-signing protocols, such as the pro-
tocol proposed in [10]. Second, as in [6], we model write-protected channels
which are not under the control of the intruder. In this paper, we call these
channels secure channels for simplicity, although this notion is also used in
cryptography with a different meaning. Third, for protocols expressed in our
model we explicitly define the induced transition systems. These transition sys-
tems have infinitely many states and are infinitely branching, but have paths
of bounded length, and allow us to state crucial properties of contract-signing
properties.

Our main technical result is that for the transition systems induced by cryp-
tographic protocols certain game-theoretic properties—expressing the existence
of certain strategies of the intruder—are decidable. From this we obtain that bal-
ance is decidable for contract-signing protocols. We also show that reachability
properties slightly more general than those mentioned above are decidable and
conclude that other important properties of contract signing protocols, namely
effectiveness and fairness, are decidable as well.

The basic technique used in our proofs is the same as the one first introduced
in [15], where they show that to find an attack on a protocol only reasonably
small substitutions have to be considered. For our framework, we extend and
modify this idea appropriately.

In several papers, contract-signing and related protocols have been analyzed
using finite-state model checkers (see, e.g., [16, 12]). Due to the restriction to a
finite state set, the Dolev-Yao intruder is, however, only approximated. A much
more detailed model has been considered by Chadha et al. [6], who analyzed the
contract-signing protocol proposed by Garay, Jakobsson, and MacKenzie [10], even
taking into account an unbounded number of sessions. However, the analysis was
carried out by hand and without tool support. As mentioned, our model is the “fi-
nite session” version of the model by Chadha et al. Hence, our results show that
when restricted to a finite number of sessions, the analysis carried out in [6] can be
fully automated (given a specification of the protocols) without resorting to finite-
state models as in [16, 12]. Drielsma and Mödersheim [9] apply an automatic tool
originally intended for authentication and key exchange protocols in the analysis
of the Asokan-Shoup-Waidner (ASW) protocol [3]. Their analysis is, however, re-
stricted to reachability properties as branching properties cannot be handled by
their tool. Also, secure channels are not modeled explicitly in that paper.

Structure of This Paper. In Section 2, we introduce our protocol and intruder
model, with an example provided in Section 3. In Section 4, we present our main
technical result, stating that certain game-theoretic properties of transition sys-
tems induced by cryptographic protocols are decidable. In Section 5, this result
is applied to contract-signing protocols. Due to the page limit, private contract
signatures and reachability properties are only dealt with in our technical report
[11], which also includes the full proofs of our results.



160 D. Kähler, R. Küsters, and T. Wilke

2 The Protocol and Intruder Model

As mentioned in the introduction, in essence, our model is the “finite session”
version of the model proposed in [6]. When it comes to the technical exposition,
our approach is, however, inspired by the term-rewriting approach of [15] rather
than the multi-set rewriting approach of [6].

In our model, a protocol is a finite set of principals and every principal is a
finite tree, which represents all possible behaviours of the principal. Each edge
of such a tree is labeled by a rewrite rule, which describes the receive-send
action that is performed when the principal takes this edge in a run of the
protocol.

When a principal carries out a protocol, it traverses its tree, starting at the
root. In every node, the principal takes its current input, chooses one of the
edges leaving the node, matches the current input with the left-hand side of the
rule the edge is labeled with, sends out the message which is determined by the
right-hand side of the rule, and moves to the node the chosen edge leads to.
Whether or not a principal gets an input and which input it gets is determined
by the secure channel and the intruder (see below), who receives every message
sent by a principal, can use all the messages he has received to construct new
messages, and can provide input messages to any principal he wants—this is the
usual Dolev-Yao model (see, e.g., [15]).

The above is very similar to the approach in [15]. There are, however, three
important ingredients that are not present in [15]: secure channels, explicit
branching structure, and certain cryptographic primitives relevant to contract-
signing protocols, such as private contract signatures. In the following, we deal
with secure channels and the branching structure. Private contract signatures
are only dealt with in the technical report [11].

Secure Channels. Unlike in the standard Dolev-Yao model, in our model the
input of a principal may not only come from the intruder but also from a so-
called secure channel. While a secure channel is not read-protected (the intruder
can read the messages written onto this channel), the intruder does not control
this channel. That is, he cannot delay, duplicate, or remove messages, or write
messages onto this channel under a fake identity (unless he has corrupted a
party).

Branching Structure. As mentioned in the introduction, unlike authentication
and key-exchange protocols, properties of contract-signing and related proto-
cols cannot be stated as reachability properties, i.e., in terms of single runs of
a protocol alone. One rather has to consider branching properties. We there-
fore describe the behavior of a protocol as an infinite-state transition system
which comprises all runs of a protocol. To be able to express properties of
contract-signing protocols we distinguish several types of transitions: there are
intruder transitions (just as in [15]), there are ε-transitions, which can be used
to model that a subprotocol is spawned without waiting for input from the in-
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truder, and secure channel transitions, which model communication via secure
channels.

2.1 Terms and Messages

We have a finite set V of variables, a finite set A of atoms, a finite set K of
public and private keys, an infinite set AI of intruder atoms, and a finite set N
of principal addresses. All of them are assumed to be disjoint.

The set K is partitioned into a set Kpub of public keys and a set Kpriv of
private keys. There is a bijective mapping ·−1 : K → K which assigns to every
public key the corresponding private key and to every private key its correspond-
ing public key.

Typically, the set A contains names of principals, atomic symmetric keys,
and nonces (i.e., random numbers generated by principals). We note that we
will allow non-atomic symmetric keys as well. The atoms in AI are the nonces,
symmetric keys, etc. the intruder may generate. The elements of N are used as
addresses of principals in secure channels.

We define two kinds of terms by the following grammar, namely plain terms
and secure channel terms:
plain-terms ::= V | A | AI | 〈plain-terms, plain-terms〉 | {plain-terms}s

plain-terms |
{plain-terms}a

K | hash(plain-terms) | sigK(plain-terms)
sec-terms ::= sc(N ,N , plain-terms)

terms ::= plain-terms | sec-terms | N
Plain terms, secure channel terms, and terms without variables (i.e., ground
terms) are called plain messages, secure channel messages, and messages, re-
spectively. As usual, 〈t, t′〉 is the pairing of t and t′, the term {t}s

t′ stands for the
symmetric encryption of t by t′ (note that the key t′ may be any plain term),
{t}a

k is the asymmetric encryption of t by k, the term hash(t) stands for the hash
of t, and sigk(t) is the signature on t which can be verified with the public key k.

A secure channel term of the form sc(n, n′, t) stands for feeding the secure
channel from n to n′ with t. A principal may only generate such a term if he
knows n and t (but not necessarily n′). This guarantees that a principal cannot
impersonate other principals on the secure channel. Knowing n grants access to
secure channels with sender address n.

A substitution assigns terms to variables. The domain of a substitution is de-
noted by dom(σ) and defined by dom(σ) = {x ∈ V | σ(x) = x}. Substitutions are
required to have finite domains and it is required that σ(x) is a ground term for
each x ∈ dom(σ). Given two substitutions σ and σ′ with disjoint domains, their
union σ∪σ′ is defined in the obvious way. Given a term t, the term tσ is obtained
from t by simultaneously substituting each variable x occurring in t by σ(x).

2.2 Principals and Protocols

Principal rules are of the form R ⇒ S where R is a term or ε and S is a
term.
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A rule tree Π = (V,E, r, �) is a finite tree rooted at r ∈ V where � maps every
edge (v, v′) ∈ E of Π to a principal rule �(v, v′). A rule tree Π = (V,E, r, �) is
called a principal if every variable occurring on the right-hand side of a principal
rule �(v, v′) also occurs on the left-hand side of �(v, v′) or on the left-hand side
of a principal rule on the path from r to v.

For v ∈ V , we write Π↓v to denote the subtree of Π rooted at v. For a
substitution σ, we write Πσ for the principal obtained from Π by substituting
all variables x occurring in the principal rules of Π by σ(x).

A protocol P = ((Π1, . . . , Πn), I) consists of a finite set of principals and
a finite set I of messages, the initial intruder knowledge. We require that each
variable occurs in the rules of only one principal, i.e., different principals must
have disjoint sets of variables. We assume that intruder atoms, i.e., elements of
AI , do not occur in P .

2.3 Intruder

Given a set I of general messages, the (infinite) set d(I) of general messages the
intruder can derive from I is the smallest set satisfying the following conditions:

1. I ⊆ d(I).
2. Composition and decomposition: If m,m′ ∈ d(I), then 〈m,m′〉 ∈ d(I). Con-

versely, if 〈m,m′〉 ∈ d(I), then m ∈ d(I) and m′ ∈ d(I).
3. Symmetric encryption and decryption: If m,m′ ∈ d(I), then {m}s

m′ ∈ d(I).
Conversely, if {m}s

m′ ∈ d(I) and m′ ∈ d(I), then m ∈ d(I).
4. Asymmetric encryption and decryption: If m ∈ d(I) and k ∈ d(I)∩K, then
{m}a

k ∈ d(I). Conversely, if {m}a
k ∈ d(I) and k−1 ∈ d(I), then m ∈ d(I).

5. Hashing : If m ∈ d(I), then hash(m) ∈ d(I).
6. Signing : If m ∈ d(I), k−1 ∈ d(I)∩K, then sigk(m). (The signature contains

the public key but can only be generated if the corresponding private key is
known.)

7. Writing onto and reading from the secure channel: Ifm ∈ d(I), n ∈ d(I)∩N ,
and n′ ∈ N , then sc(n, n′,m) ∈ d(I). If sc(n, n′,m) ∈ d(I), then m ∈ d(I).

8. Generating fresh constants: AI ⊆ d(I).

Each of the above rules only applies when the resulting expression is a term
according to the grammar stated above. For instance, a hash of a secure channel
term is not a term, so rule 5 does not apply when m is of the form sc(n, n′,m′).

Intuitively, n ∈ d(I)∩N means that the intruder has corrupted the principal
with address n and therefore can impersonate this principal when writing onto
the secure channel. Also, the intruder can extract m from sc(n, n′,m) since, just
as in [6], the secure channel is not read-protected. (However, our results hold
independent of whether or not the secure channel is read-protected.)

2.4 The Transition Graph Induced by a Protocol

We define the transition graph GP induced by a protocol P and start with the
definition of the states and the transitions between these states.
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A state is of the form ((Π1, . . . , Πn),σ, I,S) where
1. σ is a substitution,
2. for each i, Πi is a rule tree such that Πiσ is a principal,
3. I is a finite set of messages, the intruder knowledge, and
4. S is a finite multi-set of secure channel messages, the secure channel.

The idea is that when the transition system gets to such a state, then the substi-
tution σ has been performed, the accumulated intruder knowledge is what can
be derived from I, the secure channels hold the messages in S, and for each i, Πi

is the “remaining protocol” to be carried out by principal i. This also explains
why S is a multi-set: messages sent several times should be delivered several
times.

Given a protocol P = ((Π1, . . . , Πn), I) the initial state of P is set to be
((Π1, . . . , Πn),σ, I, ∅) where σ is the substitution with empty domain.

We have three kinds of transitions: intruder, secure channel, and ε-transitions.
In what follows, let Πi = (Vi, Ei, ri, �i) and Π ′

i = (V ′
i , E

′
i, r

′
i, �

′
i) denote rule trees.

We define under which circumstances there is a transition

((Π1, . . . , Πn),σ, I,S) τ−→ ((Π ′
1, . . . , Π

′
n),σ′, I ′,S ′)

with τ an appropriate label.
1. Intruder transitions: The above transition with label i,m, I exists if there

exists v ∈ Vi with (ri, v) ∈ Ei and �i(ri, v) = R ⇒ S, and a substitution σ′′

of the variables in Rσ such that
(a) m ∈ d(I),
(b) σ′ = σ ∪ σ′′,
(c) Rσ′ = m,
(d) Π ′

j = Πj for every j = i, Π ′
i = Πi↓v,

(e) I ′ = I ∪ {Sσ′},
(f) S ′ = S if S = sc(·, ·, ·), and S ′ = S ∪ {Sσ′} otherwise.
This transition models that principal i reads the messagem from the intruder
(i.e., the public network).

2. Secure channel transitions: The above transition with label i,m, sc exists if
there exists v ∈ Vi with (ri, v) ∈ Ei and �i(ri, v) = R⇒ S, and a substitution
σ′′ of the variables in Rσ such that m ∈ S, (b)–(e) from 1., and S ′ = S \{m}
if S = sc(·, ·, ·), and S ′ = (S \ {m}) ∪ {Sσ′} otherwise.
This transition models that principal i reads message m from the secure
channel.

3. ε-transitions: The above transition with label i exists if there exists v ∈ Vi

with (ri, v) ∈ Ei and �i(ri, v) = ε ⇒ S such that σ′ = σ and (d), (e), (f)
from above.

This transition models that i performs a step where neither a message is
read from the intruder nor from the secure channel.

If q τ→ q′ is a transition where the first component of the label τ is i, then the
transition is called an i-transition and q′ an i-successor of q.

Given a protocol P , the transition graph GP induced by P is the tuple
(SP , EP , qP ) where qP is the initial state of P , SP is the set of states reach-
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able from qP by a sequence of transitions, and EP is the set of all transitions
among states in SP . Formally, a transition q τ→ q′ is a tuple (q, τ, q′).

We write q ∈ GP if q is a state in GP and q τ→ q′ ∈ GP if q τ→ q′ is a transition
in GP .

Remark 1. The transition graph GP of P is a DAG since by performing a tran-
sition the size of the first component of a state decreases. While the graph may
be infinite branching, the maximal length of a path in this graph is bounded by
the total number of edges in the principals Πi of P .

For a state q, we denote the subgraph of GP consisting of all states reachable
from q by GP,q.

3 Modeling the Originator of the ASW Protocol

To demonstrate that our framework can actually be used to analyze contract-
signingprotocols,weshowhowtheoriginatoroftheAsokan-Shoup-Waidner(ASW)
protocol [3] can be modeled. In a similar fashion, other contract-signing protocols,
such as the Garay-Jakobsson-MacKenzie protocol [10], can be dealt with.

3.1 Overview of the Protocol

Our informal description of the ASW protocol follows [16] (see this work or [3] for
more details). For ease in notation, we will write sig[m, k] instead of 〈m, sigk(m)〉.

The ASW protocol enables two principals O (originator) and R (responder)
to obtain each other’s commitment on a previously agreed contractual text, say
text, with the help of a trusted third party T , which, however, is only invoked in
case of problems. In other words, the ASW protocol is an optimistic two-party
contract-signing protocol.

There are two kinds of valid contracts specified in the ASW protocol: the
standard contract, 〈sig[mO, kO], NO, sig[mR, kR], NR〉, and the replacement con-
tract, sig[〈sig[mO, kO], sig[mR, kR]〉 , kT ], where kT is the key of the trusted third
party, mO = 〈kO, kR, kT , text, hash(NO)〉, and mR = 〈mO, hash(NR)〉. The keys
kO, kR, and kT are used for identifying the principals. Note that a signed con-
tractual text (sig[text, kO] or sig[text, kR]) is not considered a valid contract.

The ASW protocol consists of three subprotocols: the exchange, abort, and
resolve protocol. However, we can describe every principal—O, R, and T—in
terms of a single tree as introduced in Section 2.2.

The basic idea of the exchange protocol is that O first indicates his/her inter-
est to sign the contract. To this end, O hashes a nonce NO and signs it together
with text and the keys of the principals involved. The resulting message is the
message mO from above. By sending it to R, O commits to the contract. Then,
similarly, R indicates his/her interest to sign the contract by hashing a nonce
NR and signing it together with text and the keys of the involved principals.
This is the message mR from above. By sending it to O, R commits to the con-
tract. Finally, first O and then R reveal NO and NR, respectively. This is why a
standard contract is only valid if NO and NR are included.
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If, after O has sent the first message, R does not respond, O may contact T to
abort. At any point, if one of O and R does not respond, the other may contact T
to resolve. In case the protocol is successfully resolved, the replacement contract
sig[〈mO,mR〉 , kT ] is issued. While this version of the contract only contains the
message indicating O’s and R’s intention to sign the contract (and neither NO

nor NR), the signature of T validates the contract.
In the next subsection, the model of O is presented. The models for R and

T as well as the security properties for the ASW protocol can be found in the
technical report [11].

3.2 The Principal O

The principal O is defined by the treeΠO depicted in Figure 1 where the numbers
stand for the principal rules defined below. Rules 1, 2, and 3 belong to the
exchange protocol, rules 4, 5, and 6 belong to the abort protocol, and rules 7, 8,
and 9 belong to the resolve protocol.

Exchange Protocol. The actions performed in the exchange protocol have infor-
mally been discussed above.

Abort Protocol. If, after the first step of the exchange protocol, O does not get an
answer back from R, the principal O may start the abort protocol, i.e., send an
abort request via a secure channel to T (rule 4). Then, T will either confirm the
abort of the protocol by returning an abort token—in this case O will continue
with rule 5—or send a resolve token—in this case O will continue with rule 6.
(The trusted third party T sends a resolve token if R previously contacted T to
resolve the protocol run.)

Resolve Protocol. If after rule 2, i. e., after sending NO, the principal O does not
get an answer back from R, then O can start the resolve protocol by sending a
resolve request to T via the secure channel (rule 7). After that, depending on
the answer returned from T (which again will return an abort or resolve token),
one of the rules 8 or 9 is performed.

2

6

98

7 5

1

3

4

Fig. 1. The Originator O
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We now present the principal rules for O where the numbering corresponds
to the one in Figure 1. Any occurrence of should be substituted by a new fresh
variable, that is, the term which is matched is not used afterwards.
1. ε⇒ me1 where

me1 = sig[me2, kO] and me2 = 〈kO, kR, kT , text, hash(NO)〉 .

2. sig[me3, kR]⇒ NO where me3 = 〈me1, hash(x)〉 .
3. x⇒ OHasValidContract.
4. ε⇒ sc(O, T,ma1) where ma1 = sig[〈aborted,me1〉 , kO].
5. sc(T,O,ma2)⇒ OHasValidContract where

ma2 = sig[〈me1,me4〉 , kT ] and me4 = sig[〈me1, 〉 , kR].

6. sc(T,O, sig[〈aborted,ma1〉 , kT ])⇒ OHasAbortToken.
7. ε⇒ sc(O, T, 〈me1, sig[me3, kR]〉).
8. sc(T,O, sig[〈aborted,ma1〉 , kT ])⇒ OHasAbortToken.
9. sc(T,O,mr1)⇒ OHasValidContract where

mr1 = sig[〈me1,mr2〉 , kT ] and mr2 = sig[〈me1, 〉 , kR].

4 Main Result

As indicated in the introduction, our main result states that for the transition
graphs induced by cryptographic protocols certain game-theoretic properties—
expressing the existence of certain strategies of the intruder—are decidable. In
what follows we formalize this.

We first define the notion of a strategy graph, which captures that the in-
truder has a way of acting such that regardless of how the other principals act,
he achieves a certain goal, where goal in our context means that a state will be
reached where the intruder can derive certain constants and cannot derive others.

A q-strategy graph Gq is a sub-transition system of GP where q is the initial
state of Gq and such that for all states q′ in Gq, the following conditions, which
are explained below, are satisfied.

1. If q′ j−→ q′′ ∈ GP , then q′ j−→ q′′ ∈ Gq for every j and q′′.

2. If q′ j,m,sc−→ q′′ ∈ GP , then q′ j,m,sc−→ q′′ ∈ Gq for every m, j, and q′′.

3. If q′ j,m,I−→ q′′ ∈ Gq and q′ j,m,I−→ q′′′ ∈ GP , then q′ j,m,I−→ q′′′ ∈ Gq for every m, j,
q′′, and q′′′.

The first condition says that every ε-transition of the original transition sys-
tem must be present in the strategy graph; this is because the intruder should not
be able to prevent a principal from performing an ε-rule. The second condition
is similar: the intruder should not be able to block secure channels. The third
condition says that although the intruder can choose to send a particular mes-
sage to a particular principal, he cannot decide which transition this principal
uses (if the message matches two rules).
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A strategy property is a tuple ((C1, C
′
1), . . . , (Cs, C

′
s)), where Ci, C

′
i ⊆ A ∪

K∪N . A state q satisfies ((C1, C
′
1), . . . , (Cs, C

′
s)) if there exist q-strategy graphs

G1, . . . ,Gs such that every Gi satisfies (Ci, C
′
i), where Gi satisfies (Ci, C

′
i) if for

all leaves vi of Gi all elements from Ci can be derived by the intruder and all
elements from C ′

i cannot.
The decision problem Strategy asks, given a protocol P and a strategy

property ((C1, C
′
1), . . . , (Cs, C

′
s)), whether there exists a state q that satisfies the

property.

Theorem 1. Strategy is decidable.

To prove this theorem, we show that given a possibly large state q and
large q-strategy graphs satisfying the properties, we can reduce the sizes of the
state and the strategy graphs, i.e., the sizes of the substitutions in the state
and the graphs. For this purpose, we need to deal with all substitutions in all
of the strategy graphs at the same time. The challenge is then to guarantee
that the reduced strategy graphs are in fact strategy graphs, i.e., satisfy the
required conditions. We make use of the fact that the intruder can generate new
constants.

5 Balance

In this section, we formalize a fundamental property of contract-signing proto-
cols, namely balance, and explain why this property is decidable in our frame-
work.

As in [6] and most other works on the formal analysis of contract-signing
protocols we formulate balance for two-party optimistic contract-signing proto-
cols (see, however, [7]). Besides the two parties (the contractual partners), say A
and B, who want to sign the contract, a trusted third party T is involved in the
protocol, and is consulted in case a problem occurs. We assume in what follows
that the protocols are modeled in such a way that if A has a valid contract, it
writes the atom AHasValidContract into the network, similarly for B.

We formulate balance under the assumption that one of the contractual par-
ties is dishonest and the other party is honest, i.e., follows the protocol. The
actions of the dishonest party are performed by the intruder, and hence, are
arbitrary. All private information the dishonest party has, such as private keys
and addresses for the secure channel, are given to the intruder as part of his
initial knowledge. The trusted third party is assumed to be honest. We denote
the honest party by H and the dishonest party by I.

Informally speaking, balance for H means that at no stage of the protocol
run I has both a strategy to prevent H from obtaining a valid contract with I
on the previously agreed contractual text, say text, and a strategy to obtain a
valid contract with H on text.

In order to formulate that I has a strategy to obtain a valid contract, we
assume that the protocol description contains a specific principal, a watch dog,
which when receiving a valid contract for I outputs IHasValidContract. Such
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a watch dog can easily be derived from a protocol specification. For the ASW
protocol, for example, the watch dog would be a principal with two edges leaving
the root of the tree. The first edge would be labeled with the rule

〈sig[mO, kH ], NH , sig[mI , kI ], x〉 ⇒ IHasValidContract

where mH = 〈kH , kI , kT , text, hash(NH)〉 and mI = 〈mH , hash(x)〉. The nonce
NH could be replaced by a variable y in case no specific instance of H is con-
sidered, and hence, no specific nonce generated in such an instance. This rule
indicates that I has a standard contract with H. Analogously, the rule for the
second edge would check whether I has a replacement contract with H.

Now, formally a protocol P is not balanced for H if P satisfies the strategy
property (({IHasValidContract}, ∅), (∅, {HHasValidContract})). By Theorem 1,
this can be decided. In [11], following [6], we also consider a formulation of
balance involving abort tokens.

6 Conclusion

In this paper we have shown that effectiveness, fairness, and balance, a branching
property of contract-signing protocols, is decidable when there is no bound on the
message size for a Dolev-Yao intruder and when there are only a finite number of
sessions. This extends known results on the decidability of reachability problems
for cryptographic protocols in a natural way. Our approach is fairly generic; it
should therefore be a good starting point for analyzing other game-theoretic
properties of cryptographic protocols. From a practical point of view, our result
may also be a good starting point for developing more precise analyzers for
contract-signing protocols.

Acknowledgment. We thank the anonymous referees for their comments, which
helped, in particular, to improve the presentation in Section 5.
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Abstract. We study (i) regular languages that are polylog-time re-
ducible to languages in dot-depth 1/2 and (ii) regular languages that
are polylog-time decidable. For both classes we provide
– forbidden-pattern characterizations, and
– characterizations in terms of regular expressions.

Both classes are decidable. A language is in class (ii) if and only if the
language and its complement are in class (i). We apply our observations
and obtain three consequences.
1. Gap theorems for balanced regular-leaf-language definable classes C

and D:
(a) Either C is contained in NP, or C contains coUP.
(b) Either D is contained in P, or D contains UP or coUP.
We extend both theorems such that no promise classes are involved.
Formerly, such gap theorems were known only for the unbalanced
approach.

2. Polylog-time reductions can tremendously decrease dot-depth com-
plexity (despite that these reductions cannot count). We construct
languages of arbitrary dot-depth that are reducible to languages in
dot-depth 1/2.

3. Unbalanced starfree leaf-languages can be much stronger than bal-
anced ones. We construct starfree regular languages Ln such that the
balanced leaf-language class of Ln is NP, but the unbalanced leaf-
language class of Ln contains level n of the unambiguous alternation
hierarchy. This demonstrates the power of unbalanced computations.

1 Introduction

Regular languages are described by regular expressions. These consist of single
letters which are combined by three types of operations: Boolean operations,
concatenation, and iteration. If we forbid iteration, then these restricted regular
expressions define starfree regular languages (starfree languages for short). The
class of these languages is denoted by SF. It is a subclass of REG, the class of
regular languages.

Throughout the paper all automata are deterministic. Call a minimal finite
automaton permutationfree if the following holds for all n ≥ 2, all words w, and
all states s: If s on input wn leads to s, then already s on input w leads to s.
While regular languages are accepted by finite automata, starfree languages are
accepted by permutationfree finite automata [21, 16] (permutationfree automata

V. Diekert and B. Durand (Eds.): STACS 2005, LNCS 3404, pp. 170–181, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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for short). By definition, if any state of a permutationfree automaton has a loop
wn, then it already has a loop w. So permutationfree automata cannot count the
number of certain events modulo some m > 1 (e.g., number of letters a modulo
2). We say that permutationfree automata cannot do modulo-counting. For this
reason, McNaughton and Papert [16] call such automata counterfree. However,
permutationfree automata can do threshold-counting. This means to count the
number of events up to some threshold (e.g., counting whether the number of
a’s is 0, 1, 2, or ≥ 3).

Dot-Depth Hierarchy. The most interesting aspect of starfree languages is the
dot-depth hierarchy which was introduced by Brzozowski and Cohen [9, 6]. The
dot-depth measures the complexity of starfree languages. It counts the minimal
number of nested alternations between Boolean operations and concatenation
that is needed to define a language. Classes of the dot-depth hierarchy consist
of languages that have the same dot-depth. Fix a finite alphabet that has at
least two letters (the hierarchy collapses for unary alphabets). Define Pol(C), the
polynomial closure of C, to be C’s closure under finite (possibly empty) union
and finite (possibly empty) concatenation. Let BC(C) be the Boolean closure of
C. For n ≥ 0 define the classes (levels) of the dot-depth hierarchy:

B0
df= {L

∣∣L is finite or cofinite}
Bn+ 1

2

df= Pol(Bn)

Bn+1
df= BC(Bn+ 1

2
)

The dot-depth of a language L is defined as the minimal m such that L ∈ Bm

where m = n/2 for some integer n. At first glance, the definition of levels n+1/2
looks a bit artificial. The reason for this definition is of historic nature: Originally,
Brzozowski and Cohen were interested in the full levels Bn and therefore, defined
the dot-depth hierarchy in this way. Later Pin and Weil [20] considered both,
the levels Bn and their polynomial closure. To be consistent with Brzozowski
and Cohen, they extended the dot-depth hierarchy by half levels Bn+1/2.

By definition, all levels of the dot-depth hierarchy are closed under union
and it is known that they are closed under intersection, under taking inverse
morphisms, and under taking residuals [19, 1, 20]. The dot-depth hierarchy is
strict [7, 23] and it exhausts the class of starfree languages [10].

Does there exist an algorithm that computes the dot-depth of a starfree
language? This question is known as the dot-depth problem. Today, more than
30 years after it was discovered by Brzozowski and Cohen, it is still an open
problem. Most researchers consider the dot-depth problem as one of the most
difficult problems in automata theory.

The problem remains hard, if we ask for decidability of single classes of the
dot-depth hierarchy. However, we know that the 4 lowest classes are decidable.
B0 is decidable for trivial reasons. Pin and Weil [20] proved decidability of B1/2,
Knast [14] proved decidability of B1, and Glaßer and Schmitz [11] proved de-
cidability of B3/2. Other levels are not known to be decidable, but it is widely
believed that they are. The decidability results for B1/2 and B3/2 share an inter-
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esting property: Both classes, B1/2 and B3/2, have forbidden-pattern character-
izations. This means that a language belongs to B1/2 if and only if its minimal
automaton does not have a certain pattern. This implies decidability of B1/2.

Restricted Modulo-Counting. We come back to the result by Schützenberger
[21] and McNaughton and Papert [16]: The class of languages accepted by per-
mutationfree automata (or counterfree automata) is exactly the class of starfree
languages. This tells us that starfree languages cannot do modulo-counting. For
instance the set of even-length words is not starfree. However, there do exist star-
free subsets of all even-length words. This is possible, since sometimes counting
can be reformulated as local properties. For instance, L = (ab)∗ is starfree, since
a word belongs to L if and only if it starts with a, ends with b, and neither has
aa nor has bb as factor. This example adjusts our intuition: Starfree languages
cannot do arbitrary modulo-counting, but modulo-counting in a restricted sense
is possible. We will exploit this phenomenon.

Leaf Languages. The concept of leaf languages was independently introduced
by Bovet, Crescenzi, and Silvestri [5] and Vereshchagin [24]. LetM be any nonde-
terministic polynomial-time Turing machine such that every computation path
stops and outputs one letter. M(x) denotes the computation tree on input x.
Call a nondeterministic polynomial-time Turing machine M balanced if there
exists a polynomial-time computable function that on input (x, n) computes the
n-th path of M(x). Let leafstringM (x) be the concatenation of all outputs of
M(x). For any language B, let Leafp

u(B) be the class of languages L such that
there exists an (unbalanced) nondeterministic polynomial-time Turing machine
M as above such that for all x,

x ∈ L ⇐⇒ leafstringM (x) ∈ B.

If we assume M to be a balanced, nondeterministic polynomial-time Turing
machine, then this defines the class Leafp

b(B). For any class C let Leafp
u(C) =⋃

B∈C Leafp
u(B) and Leafp

b(C) =
⋃

B∈C Leafp
b(B). If C ⊆ REG and D = Leafp

u(C),
then we say that D is an unbalanced regular-leaf-language definable class. Anal-
ogously define balanced regular-leaf-language definable classes. Since in this pa-
per, C will always be a subclass of REG, we will use the term (un)balanced
leaf-language definable class as abbreviation.

Connection Between Hierarchies. Starfree languages have a very nice con-
nection with complexity theory. In the concept of leaf languages, classes of the
dot-depth hierarchy correspond exactly to classes of the polynomial-time hier-
archy. For n ≥ 1,

Leafp
b(Bn−1/2) = Leafp

u(Bn−1/2) = ΣP
n .

This connection allows a translation of knowledge about dot-depth classes into
knowledge about complexity classes. Here the forbidden-pattern characteriza-
tions come into play. They allow us to identify gaps between leaf-language defin-
able complexity classes. We sketch this elegant technique with help of an example
which goes back to Pin and Weil [20] and Borchert, Kuske, and Stephan [4].
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Consider B1/2. If B belongs to B1/2, then, by the mentioned correspondence,
B’s leaf-language class is contained in NP. Otherwise, B does not belong to
B1/2. So B’s minimal automaton contains the forbidden pattern [20]. This can be
exploited to show that B’s leaf-language class is powerful enough to solve coUP
[4]. Therefore, between NP and coUP there are no unbalanced leaf-language
definable classes. We call this a gap theorem.

Another gap theorem is known for P. Borchert [3]1 showed that the following
holds for any unbalanced leaf-language definable class C: Either C is in P, or C
contains at least one of the following classes: NP, coNP, MODpP for p prime.

Balanced vs. Unbalanced. We are interested in gap theorems similar to the
ones showed by Borchert [3] and Borchert, Kuske, and Stephan [4]. However,
this time we consider balanced leaf languages which show a new situation.

For the unbalanced case the following holds: For any regular B in dot-depth
1/2, Leafp

u(B) is contained in NP; for any regular B not in dot-depth 1/2,
Leafp

u(B) is not contained in NP (unless coUP ⊆ NP). This does not hold
anymore for the balanced case. It is possible to construct a starfree language C
(Example 1) such that C is outside dot-depth 1/2, but Leafp

b(C) ⊆ NP. Even
more, there is a regular D that is not starfree, but still Leafp

b(D) ⊆ NP (e.g.,
D = (AA)∗ for any alphabet A). In this sense, the classes of the dot-depth hi-
erarchy do not fit to balanced leaf languages. The reason for this becomes clear
with help of a theorem discovered by Bovet, Crescenzi, and Silvestri [5] and
Vereshchagin [24].

B≤pltC ⇔ for all oracles O, Leafp
b(B)O ⊆ Leafp

b(C)O

So Leafp
b(B) ⊆ NP not only for all B in dot-depth 1/2, but also for all B that

are polylog-time reducible to a language in dot-depth 1/2.

Our Contribution. We start the paper with a study of the power of polylog-
time reductions restricted to regular languages. More precisely, we study

1. Rplt(B1/2) ∩ REG, the class of regular languages that are polylog-time re-
ducible to a language in dot-depth 1/2, and

2. PLT ∩ REG, the class of regular languages that are polylog-time decidable.

For both classes we give forbidden-pattern characterizations, and characteriza-
tions in terms of regular expressions. This immediately implies decidability of
the classes. Moreover, we show that both classes are strongly connected:

Rplt(B1/2) ∩ coRplt(B1/2) ∩ REG = PLT ∩ REG.

We derive three consequences from the characterizations above.

Consequence 1: Two Gap Theorems. We obtain gap theorems for balanced
leaf-language definable classes C and D:

1 In contrast to chronological order, we first mention the result by Borchert, Kuske,
and Stephan [4] and then that by Borchert [3]. The reason is that our paper first
proves a result similar to Borchert, Kuske, and Stephan, and then derives a result
similar to Borchert.
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1. Either C is contained in NP, or C contains coUP.
2. Either D is contained in P, or D contains UP or coUP.

We translate this into gap theorems that do not involve promise classes.

1. Either C is contained in NP, or C contains at least one of the following classes:
coNP, co1NP, MODpP for p prime.

2. Either D is contained in P, or D contains at least one of the following classes:
NP, coNP, MODpP for p prime.

Formerly, such gap theorems were known only for the unbalanced case [3, 4].

Consequence 2: Polylog-Time Reductions Can Decrease Dot-Depth
Complexity. Here it is important to note that polylog-time machines neither
can do threshold-counting nor can do modulo-counting. (Of course these ma-
chines can find out whether the length of the input is even, but they cannot
find out whether this holds for the number of a’s in the input.) However, there
exists a starfree language outside dot-depth 1/2 that is polylog-time reducible
to a language in dot-depth 1/2 (Example 1). This shows that polylog-time ma-
chines (unable to count by their own) can help permutationfree automata to do
threshold-counting. They can decrease dot-depth complexity. It turns out that
this decrease can be tremendous: For any n ≥ 1 there exist starfree languages
Ln that are not in Bn but still in Rplt(B1/2).

We show how polylog-time reductions can exploit restricted modulo-counting
possible in B1/2. For this we construct starfree languages with high dot-depth
complexity. These languages have the property that words not in the language
have a periodical pattern of letters b. We can locally test whether a given word
has this pattern. If so, then by looking at the position of the last b we can
gain information about the number of a’s and b’s in the word. This tells us
immediately whether the word belongs to the language. Otherwise, if a word
does not have the periodical pattern, then it is in the language by definition.
All needed computations can be done by polylog-time reductions. In this way,
we shift parts of the counting complexity into the polylog-time reduction. This
results in a drastic decrease of dot-depth complexity.

Consequence 3: Unbalanced Starfree Leaf-Languages Can Be Much
Stronger Than Balanced Ones. Remember that Ln /∈ Bn, but still Ln ∈
Rplt(B1/2). We exploit this to obtain conclusions for leaf-language definable
complexity classes. We prove lower bounds for the complexity of Leafp

u(Ln):
Leafp

b(Ln) = NP, but Leafp
u(Ln) contains level n of the unambiguous alterna-

tion hierarchy. It is expected that level n of the unambiguous alternation hierar-
chy is not contained in level n− 1 of the polynomial-time hierarchy. Spakowski
and Tripathi [22] construct an oracle such that for every n ≥ 1, level n of the
unambiguous alternation hierarchy is not contained in ΠP

n . So relative to this
oracle, for every n ≥ 1, Leafp

b(Ln) = NP, yet Leafp
u(Ln) ⊆ ΣP

n−1. Therefore, our
result gives evidence that even for starfree languages, unbalanced leaf-languages
are much stronger than balanced ones. This supports the intuition that in gen-
eral, unbalanced models of computation are stronger than balanced models (e.g.,
BPPpath is stronger than BPP unless the polynomial hierarchy collapses [12]).
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2 Preliminaries

N denotes the set of natural numbers. We fix a finite alphabet A such that
|A| ≥ 2 and a, b ∈ A. A∗ denotes the set of words (including the empty word
ε) over A. Throughout the paper all languages and all classes of the dot-depth
hierarchy are considered with respect to A. A language B is polylog-time reducible
to a language C, B≤pltC, if there exists a polylog-time computable f such that
for all x, x ∈ B ⇔ f(x) ∈ C. Rplt(C) denotes C’s closure under polylog-time
reductions. PLT is the class of languages that have polylog-time computable
characteristic functions.

Theorem 1 ([13, 8, 4]). For n ≥ 1 and relative to all oracles:

1. P = Leafp
b(PLT) = Leafp

b(B0) = Leafp
u(B0)

2. ΣP
n = Leafp

b(Bn−1/2) = Leafp
u(Bn−1/2)

3. ΠP
n = Leafp

b(coBn−1/2) = Leafp
u(coBn−1/2)

4. BC(ΣP
n ) = Leafp

b(Bn) = Leafp
u(Bn)

5. NP(n) = Leafp
b(B1/2(n)) = Leafp

u(B1/2(n)) 2

Bovet, Crescenzi, and Silvestri [5] and Vereshchagin [24] showed an important
connection between polylog-time reducibility and balanced leaf languages.

Theorem 2 ([5, 24]). For all languages B and C,

B≤pltC ⇔ for all oracles O, Leafp
b(B)O ⊆ Leafp

b(C)O.

3 Regular Languages That Are ≤plt-Reducible to B1/2

We characterize the polylog-time closure of B1/2 by:

– a forbidden-pattern characterization, and
– a characterization in terms of regular expressions.

As a consequence, we obtain a gap theorem for balanced leaf-language defin-
able complexity classes C: Either C is contained in NP, or C contains coUP. We
describe this gap so that no promise classes are involved: Either C is contained
in NP, or C contains at least one of the following classes: coNP, co1NP, MODpP
for p prime. Finally, our forbidden-pattern characterization implies decidability
of Rplt(B1/2) ∩ REG.

Theorem 3. For every regular L the following are equivalent.

1. L ∈ Rplt(B1/2).
2. The pattern in Figure 1 does not appear in the minimal automaton of L.
3. There exists d ≥ 1 such that L is a finite union of languages of the form
w0(Ad)∗

w1 · · · (Ad)∗
wn where n ≥ 0 and wi ∈ A∗.

2 NP(n) denotes level n of the Boolean hierarchy over NP.
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s1 s2
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��v

+ −
� �

z z

Fig. 1. Forbidden pattern for Rplt(B1/2) ∩ REG where |v| = |u|

Barrington et al. [2] give a characterization of AC0∩REG for alphabet {0, 1}:
The smallest class containing {0}, {1}, and all ({0, 1}d)∗ for d ≥ 1, that is
closed under Boolean operations and concatenation. Interestingly, if we only
demand closure under union and concatenation, then, by Theorem 3, this yields
Rplt(B1/2) ∩ REG. So for alphabet {0, 1}, Rplt(B1/2) ∩ REG ⊆ AC0 ∩ REG.
This inclusion is strict, since AC0 contains all starfree languages over {0, 1},
but 0∗ /∈ Rplt(B1/2). Péladeau, Straubing, and Thérien [18] consider classes of
languages that are p-recognized by semigroups of a given variety. For certain
varieties V ∗ LI they prove a characterization similar to that in Theorem 3.
However, we cannot use their characterization, since Rplt(B1/2)∩REG cannot be
described in terms of varieties V ∗ LI. Moreover, Maciel, Péladeau, and Thérien
[15] characterize the class ÂC0

1 ∩ REG similar to Theorem 3.3. In our notation,
ÂC0

1 ∩ REG is the Boolean closure of Rplt(B1/2) ∩ REG.

Corollary 1. Let C = Leafp
b(L) for some regular L.

1. If L ∈ Rplt(B1/2), then C ⊆ NP.
2. If L /∈ Rplt(B1/2), then coUP ⊆ C.

Corollary 1 shows a gap for balanced leaf-language definable classes above
NP: Any such class higher than NP contains coUP. Since coUP is a promise
class, it would be most welcome to show a similar gap that does not involve
any promise class. Borchert, Kuske, and Stephan [4] show how to do this. By
iterating the coUP pattern they obtain a list of non-promise complexity classes
such that every unbalanced leaf-language definable class higher than NP contains
at least one class from the list.

Corollary 2. Let C = Leafp
b(L) for some regular L.

1. If L ∈ Rplt(B1/2), then C ⊆ NP.
2. If L /∈ Rplt(B1/2), then coNP ⊆ C, or co1NP ⊆ C, or MODpP ⊆ C for p

prime.

Corollary 3. It is decidable whether a regular language is ≤plt reducible to B1/2.

Example 1. A starfree L /∈ B1/2 that is ≤plt reducible to a language in B1/2.3

3 Some of the following properties of this example were discovered during a discussion
with Bernhard Schwarz, Victor Selivanov, and Klaus W. Wagner.
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Fig. 2. Automaton E with initial state s0

We consider automaton E (Figure 2). E is minimal and permutationfree.
So L = L(E) is starfree. The automaton contains the forbidden pattern for
B1/2 [20]. Therefore, L /∈ B1/2. Moreover, E does not contain the pattern in
Figure 1. Therefore, by Theorem 3, L ∈ Rplt(B1/2) (e.g., L polylog-time reduces
to A∗bA∗). L can be characterized in different ways:

L = (AA)∗ ∪ L0 = (ab)∗ ∪ L0 = (ab)∗b(ab)∗

where L0
df=A∗aaA∗ ∪A∗bbbA∗ ∪A∗bbA∗bbA∗ ∪A∗a∪ bbA∗ ∪ bA∗bbA∗. It follows

that L ∈ B1/2 ∨ coB1/2 which is the complement of the second level of the
Boolean hierarchy over B1/2. In particular, L ∈ B1. Moreover, Leafp

b(L) = NP
and Leafp

u(L) = co1NP.

4 Regular Languages That Are Polylog-Time Decidable

This section is similar to Section 3. Here we consider PLT ∩ REG instead of
Rplt(B1/2)∩REG. We provide a characterization of Rplt(B1/2)∩ coRplt(B1/2)∩
REG which immediately implies

Rplt(B1/2) ∩ coRplt(B1/2) ∩ REG = PLT ∩ REG.

This strong connection between Rplt(B1/2) and PLT allows a translation of
results about Rplt(B1/2) (Section 3) to results about PLT. Beside the equation
above we obtain two characterizations of regular languages in PLT ∩ REG:

– a forbidden-pattern characterization, and
– a characterization in terms of regular expressions.

While the first characterization is new, the latter one is already known [25].
As a consequence of the forbidden-pattern characterization, we obtain another
gap theorem for balanced leaf-language definable complexity classes C: Either
C is contained in P, or C contains UP or coUP. We describe this gap so that
no promise classes are involved: Either C is contained in P, or C contains at
least one of the following classes: NP, coNP, MODpP for p prime. Finally, the
forbidden-pattern characterization implies decidability of the class PLT∩REG.
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z z

Fig. 3. Forbidden pattern for PLT ∩ REG where |v| = |u| and s3 accepts ⇔ s4 rejects

Theorem 4. If L ∈ Rplt(B1/2) ∩ coRplt(B1/2) ∩ REG, then there exists d ≥ 1
such that L is a finite union of singletons {u} and languages v(Ad)∗

w where
u, v, w ∈ A∗.

This allows the following characterizations of PLT. We point out that the
equivalence of statements 1 and 4 in Corollary 4 has been shown by Wagner [25].

Corollary 4. For every regular L the following are equivalent.

1. L ∈ PLT.
2. L ∈ Rplt(B1/2) ∩ coRplt(B1/2)
3. The pattern in Figure 3 does not appear in the minimal automaton of L.
4. There exists d ≥ 1 such that L is a finite union of singletons {u} and lan-

guages v(Ad)∗
w where u, v, w ∈ A∗.

Corollary 5. Let C = Leafp
b(L) for some regular L.

1. If L ∈ PLT, then C ⊆ P.
2. If L /∈ PLT, then UP ⊆ C or coUP ⊆ C.

So we have a gap for balanced leaf-language definable classes above P: Any
such class higher than P contains UP or coUP. We express this without involving
promise classes.

Corollary 6. Let C = Leafp
b(L) for some regular L.

1. If L ∈ PLT, then C ⊆ P.
2. If L /∈ PLT, then at least one of the following classes is contained in C: NP,

coNP, MODpP for p prime.

Corollary 7. It is decidable whether a given regular language belongs to PLT.

5 Balanced Versus Unbalanced Computations

In Example 1 we have seen that there exist starfree languages L that are not in
B1/2, but ≤plt reducible to languages in B1/2. This raises two questions:

1. Does Rplt(B1/2) ∩ SF fall into some level of the dot-depth hierarchy?
2. Can we characterize the complexity of Leafp

u(L) for L ∈ Rplt(B1/2) ∩ SF?



Polylog-Time Reductions Decrease Dot-Depth 179

+�+ + +� � �a a a a
�

b

+� + +� � �a a a a
�

b

−�

b b

�a

s(n−1)n

a

+
accepting sink s+

�

s0 s1 s2 sn sn+1 sn+2 s2n

Fig. 4. Automaton Ap where p ≥ 3, n = p − 1, s0 is initial state, s(n−1)n is the only
rejecting state, and all undefined transitions lead to the accepting sink s+. All Ap are
minimal. For any prime p ≥ 3, L(Ap) ∈ SF ∩ Rplt(B1/2) but L(Ap) �∈ Bp−3

In this section we give a ‘no’ answer to the first question. For any n ≥ 1 there
exist starfree languages Ln that are not in Bn but still in Rplt(B1/2). Regarding
the second question, we prove lower bounds for the complexity of Leafpu(Ln).
More precisely,

– Leafp
b(Ln) = NP, but

– Leafp
u(Ln) contains level n of the unambiguous alternation hierarchy.

It is expected that level n of the unambiguous alternation hierarchy is not
contained in level n−1 of the polynomial-time hierarchy. Spakowski and Tripathi
[22] construct an oracle such that for every n ≥ 1, level n of the unambiguous
alternation hierarchy is not contained in ΠP

n . So relative to this oracle, for every
n ≥ 1, Leafp

b(Ln) = NP, yet Leafp
u(Ln) ⊆ ΣP

n−1. Therefore, our result gives evi-
dence that for starfree languages, unbalanced leaf-languages are much stronger
than balanced ones.

We want to give an intuition why it is possible to construct languages of
arbitrary dot-depth that are still polylog-time reducible to languages in B1/2.
Choose any prime p ≥ 3. We argue that the language L accepted by automaton
Ap (Figure 4) is not in dot-depth p− 3, but is polylog-time reducible to A∗aA∗.

Why does L not belong to dot-depth p−3? Thomas [23] constructed a family
of languages that separate dot-depth classes. ¿From this family we use a language
L′ that is not in dot-depth p−3. It is easy to see that L is the image of L′ under
the morphism that maps a �→ ap−1 and b �→ b. Since dot-depth levels are closed
under taking inverse morphisms, we obtain that L is not in dot-depth p− 3.

Why is L polylog-time reducible to A∗aA∗? Let n df= p−1. In Ap, the number
of a’s between sin and s(i+1)n is ≡ −1 (mod p). All loops that do not go through
s+ are of length ≡ 0 (mod p). So if we reach sin, then the number of letters
that has been read so far is ≡ −i (mod p). Call a word well-formed if it does
not lead from s0 to s+.

In every well-formed word, after (n−1)n consecutive
a’s there must follow a letter b.

(∗)

Let w be well-formed. Consider any b in w. This b must be read in some
state sin where i ≥ 1. It follows that the number of letters left of this b is
≡ −i (mod p). This shows:
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If w is well-formed and w = w1bw2, then w1 leads
from s0 to sin where i df=(−|w1| mod p).

(∗∗)

Hence in a well-formed word, the position (modulo p) of some letter b tells
us the state in which this letter is read. This shows that we can locally test
whether a word is well-formed: Just guess all neighboring b’s, make sure that
their distance is small (∗), determine the states in which these b’s must be read
(∗∗), and test whether these states fit to the factor between the b’s. This local test
shows that the set of words that are not well-formed is polylog-time reducible
to A∗aA∗. It remains to argue that the set of words that are in L and that are
well-formed is polylog-time reducible to A∗aA∗. This is easy, since by (∗∗), the
position of the last b tells us the state in which this b is read. We just have to
verify that the remaining part of the word does not lead to s(n−1)n.

Theorem 5. For any prime p ≥ 3, L(Ap) ∈ SF∩Rplt(B1/2) but L(Ap) ∈ Bp−3.

Corollary 8. For every n, there exists a starfree language Ln such that Ln is
polylog-time reducible to a language in B1/2, but Ln does not belong to Bn.

Niedermeier and Rossmanith introduced unambiguous alternating poly-
nomial-time Turing machines and defined the levels AUΣP

k and AUΠP
k of the

unambiguous alternation hierarchy [17].

Theorem 6. For every k ≥ 1 and every p ≥ 4k + 2, AUΣP
k ⊆ Leafp

u(L(Ap)).

Corollary 9. For every k ≥ 1 there exists L ∈ SF ∩ Rplt(B1/2) such that
AUΣP

k ⊆ Leafp
u(L) but Leafp

b(L) = NP.
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Abstract. Let χ(G) denote the chromatic number of a graph G. A
colored set of vertices of G is called forcing if its coloring is extendable
to a proper χ(G)-coloring of the whole graph in a unique way. The forcing
chromatic number Fχ(G) is the smallest cardinality of a forcing set of
G. We estimate the computational complexity of Fχ(G) relating it to
the complexity class US introduced by Blass and Gurevich. We prove
that recognizing if Fχ(G) ≤ 2 is US-hard with respect to polynomial-
time many-one reductions. Furthermore, this problem is coNP-hard even
under the promises that Fχ(G) ≤ 3 and G is 3-chromatic. On the other
hand, recognizing if Fχ(G) ≤ k, for each constant k, is reducible to a
problem in US via a disjunctive truth-table reduction. Similar results
are obtained also for forcing variants of the clique and the domination
numbers of a graph.

1 Introduction

The vertex set of a graph G will be denoted by V (G). An s-coloring of G is a
map from V (G) to {1, 2, . . . , s}. A coloring c is proper if c(u) = c(v) for any
adjacent vertices u and v. A graph G is s-colorable if it has a proper s-coloring.
The minimum s for which G is s-colorable is called the chromatic number of G
and denoted by χ(G). If χ(G) = s, then G is called s-chromatic.

A partial coloring of G is any map from a subset of V (G) to the set of positive
integers. Suppose that G is s-chromatic. Let c be a proper s-coloring and p be
a partial coloring of G. We say that p forces c if c is a unique extension of p to
a proper s-coloring. The domain of p will be called a defining set for c. We call
D ⊆ V (G) a forcing set in G if this set is defining for some proper s-coloring
of G. The minimum cardinality of a forcing set is called the forcing chromatic
number of G and denoted by Fχ(G).

We study the computational complexity of this graph invariant. To estab-
lish the hardness of computing Fχ(G), we focus on the respective slice decision
problems Forceχ(k): Given a graph G, decide if Fχ(G) ≤ k. Here k is a fixed
nonnegative constant.
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The cases of k = 0 and k = 1 are tractable. It is clear that Fχ(G) = 0 iff
χ(G) = 1, that is, G is empty. Furthermore, Fχ(G) = 1 iff χ(G) = 2 and G is
connected, that is, G is a connected bipartite graph. Thus, we can pay attention
only to k ≥ 2. Since there is a simple reduction of Forceχ(k) to Forceχ(k + 1)
(see Lemma 5), it would suffice to show that even Forceχ(2) is computationally
hard. This is indeed the case.

Let 3COL denote the set of 3-colorable graphs and U3COL the set of those
graphs in 3COL having a unique, up to renaming colors, proper 3-coloring. First
of all, note that a hardness result for Forceχ(2) is easily derivable from two
simple observations:

If Fχ(G) ≤ 2, then G ∈ 3COL;
If G ∈ U3COL, then Fχ(G) ≤ 2. (1)

The set 3COL was shown to be NP-complete at the early stage of the NP-
completeness theory by reduction from SAT, the set of satisfiable Boolean for-
mulas. It will be benefittable to use a well-known stronger fact: There is a
polynomial-time many-one reduction p from SAT to 3COL which is parsimo-
nious, that is, any Boolean formula Φ has exactly as many satisfying assignments
to variables as the graph p(Φ) has proper 3-colorings (colorings obtainable from
one another by renaming colors are not distinguished). In particular, if Φ has
a unique satisfying assignment, then p(Φ) ∈ U3COL and hence Fχ(p(Φ)) ≤ 2,
while if Φ is unsatisfiable, then p(Φ) /∈ 3COL and hence Fχ(p(Φ)) > 2.

Valiant and Vazirani [16] designed a polynomial-time computable randomized
transformation r of the set of Boolean formulas such that, if Φ is a satisfiable
formula, then with a non-negligible probability the formula r(Φ) has a unique
satisfying assignment, while if Φ is unsatisfiable, then r(Φ) is surely unsatisfiable.
Combining r with the parsimonious reduction p of SAT to 3COL, we arrive at the
conclusion that Forceχ(2) is NP-hard with respect to randomized polynomial-
time many-one reductions. As a consequence, the forcing chromatic number is
not computable in polynomial time unless any problem in NP is solvable by a
polynomial-time Monte Carlo algorithm with one-sided error.

We aim at determining the computational complexity of Fχ(G) more pre-
cisely. Our first result establishes the hardness of Forceχ(2) with respect to
deterministic polynomial-time many-one reductions. This reducibility concept
will be the default in what follows. The complexity class US, introduced by
Blass and Gurevich [1], consists of languages L for which there is a polynomial-
time nondeterministic Turing machine N such that a word x belongs to L iff
N on input x has exactly one accepting computation path. Denote the set of
Boolean formulas with exactly one satisfying assignment by USAT. This set is
complete for US. As easily seen, U3COL belongs to US and, by the parsimo-
nious reduction from SAT to 3COL, U3COL is another US-complete set. By the
Valiant-Vazirani reduction, the US-hardness under polynomial-time many-one
reductions implies the NP-hardness under randomized reductions and hence the
former hardness concept should be considered stronger. It is also known that
US includes coNP [1] and this inclusion is proper unless the polynomial time
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hierarchy collapses [14]. Moreover, the US-hardness implies the coNP-hardness
[1]. We prove that the problem Forceχ(2) is US-hard.

Note that this result is equivalent to the reducibility of U3COL to Forceχ(2).
Such a reduction would follow from the naive hypothesis, which may be suggested
by (1), that a 3-chromatic G is in U3COL iff Fχ(G) = 2. It should be stressed
that the latter is far from being true in view of Lemma 4.2 below.

On the other hand, we are able to estimate the complexity of every Forceχ(k)
from above by putting this family of problems in a complexity class which is a
natural extension of US. We show that, for each k ≥ 2, the problem Forceχ(k)
is reducible to a set in US via a polynomial-time disjunctive truth-table reduc-
tion (see Sect. 2 for definitions). This improves on the straightforward inclusion
of Forceχ(k) in ΣP

2 .
Denote the class of decision problems reducible to US under such reductions

by PUS
∨-tt. As shown by Chang, Kadin, and Rohatgi [2], PUS

∨-tt is strictly larger than
US unless the polynomial time hierarchy collapses to its third level. The position
of the problems under consideration in the hierarchy of complexity classes is
shown in Fig. 1, where PNP[log n] denotes the class of decision problems solvable
by polynomial-time Turing machines with logarithmic number of queries to an
NP oracle. The latter class coincides with the class of problems polynomial-time
truth-table reducible to NP [10].

Our next result gives a finer information about the hardness of Forceχ(2).
Note that, if χ(G) = 2, then Fχ(G) is equal to the number of connected com-
ponents of G. It turns out that the knowledge that χ(G) = 3 does not help in
computing Fχ(G). Moreover, it is hard to recognize whether or not Fχ(G) = 2
even if it is also known that Fχ(G) ≤ 3. Stating these strengthenings, we relax
our hardness concept from the US-hardness to the coNP-hardness. Thus, we
prove that the problem Forceχ(2) is coNP-hard even under the promises that
G ∈ 3COL and Fχ(G) ≤ 3 (see Fig. 1). Note that the Valiant-Vazirani reduction
implies no kind of a hardness result for the promise version of Forceχ(2).

In fact, many other graph characteristics also have natural forcing variants.
Recall that a clique in a graph is a set of pairwise adjacent vertices. The maxi-
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mum number of vertices of G in a clique is denoted by ω(G) and called the clique
number of G. A clique is optimal if it consists of ω(G) vertices. A set of vertices is
called forcing if it is included in a unique optimal clique. We denote the minimum
cardinality of a forcing set by Fω(G) and call it the forcing clique number of G.

Furthermore, we say that a vertex of a graph G dominates itself and any
adjacent vertex. A set D ⊆ V (G) is called dominating if every vertex of G is
dominated by a vertex in D. The domination number of G, denoted by γ(G),
is the minimum cardinality of a dominating set of G. Similarly to the above, a
forcing set of vertices is one included in a unique optimal dominating set. The
minimum cardinality of a forcing set is denoted by Fγ(G) and called the forcing
domination number of G. This graph invariant is introduced and studied by
Chartrand, Gavlas, Vandell, and Harary [3].

For the forcing clique and domination numbers we consider the respective
slice decision problems Forceω(k) and Forceγ(k) and show the same relation
of them to the class US that we have for the forcing chromatic number. Actually,
the disjunctive truth-table reducibility to US is proved for all the three numbers
by a uniform argument. However, the US-hardness with respect to many-one
reductions for ω and γ is proved differently than for χ. The case of ω and γ
seems combinatorially simpler because of the following equivalence: A graph G
has a unique optimal clique iff Fω(G) = 0 and similarly with γ. The study of
unique optimum (UO) problems was initiated by Papadimitriou [13]. Due to
the US-hardness of the UO CLIQUE and UO DOMINATING SET problems,
we are able to show the US-hardness of Forceω(k) and Forceγ(k) using only
well-known standard reductions, whereas for Forceχ(k) we use somewhat more
elaborate reductions involving graph products.

Overview of Previous Related Work

Forcing Chromatic Number of Particular Graphs. For a few particular
families of graphs, the forcing chromatic number is computed in [12, 11]. Our re-
sults show that no general approach for efficient computing the forcing chromatic
number is possible unless NP = P (and even US = P).

Latin Squares and Complexity of Recognizing a Forcing Coloring. A
Latin square of order n is an n × n matrix with entries in {1, 2, . . . , n} such
that every row and column contains all the n numbers. In a partial Latin square
some entries may be empty and every number occurs in any row or column at
most once. A partial Latin square is called a critical set if it can be completed
to a Latin square in a unique way. Colbourn, Colbourn, and Stinson [4] proved
that recognition if a given partial Latin square L is a critical set is coNP-hard.
As it is observed in [12], there is a natural one-to-one correspondence between
Latin squares of order n and proper n-colorings of the Cartesian square Kn×Kn

which matches critical sets and forcing colorings. It follows that it is coNP-hard
to recognize if a given partial coloring p of a graph is forcing, even if the problem
is restricted to graphs Kn ×Kn.
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VarietyofCombinatorialForcingNumbers.Critical sets are studied since the
seventies.The forcingchromaticnumber (aswell as the forcingdominationnumber)
attractedattentionofresearchersinthemid-nineties.Infact,anumberofotherprob-
lems in diverse areas of combinatorics have a similar forcing nature. Defining sets in
block designs (Gray [6]) and forcing matching number (Harary, Klein, and Živković
[8]) now have a rather rich bibliography. Other graph invariants whose forcing ver-
sions have appeared in the literature are the geodetic, the hull, and the unilateral
orientation numbers, and this list is likely inexhaustive.

2 Background
2.1 Basics of Complexity Theory

We write X ≤P
m Y to say that there is a polynomial-time many-one reduction

from a language X to a language Y . A disjunctive truth-table reduction of X to
Y is a transformation which takes any word x to a set of words y1, . . . , ym so
that x ∈ X iff yi ∈ Y for at least one i ≤ m. We write X ≤P

∨-tt Y to say that
there is such a polynomial-time reduction. If C is a class of languages and ≤ is
a reducibility, then C ≤ X means that Y ≤ X for all Y in C (i.e. X is C-hard
under ≤) and X ≤ C means that X ≤ Y for some Y in C.

Let Y and Q be languages. Whenever referring to a decision problem Y under
the promise Q, we mean that membership in Y is to be decided only for inputs
in Q. A reduction r of an ordinary decision problem X to a problem Y under
the promise Q is a normal many-one reduction from X to Y with the additional
requirement that r(x) ∈ Q for all x. This definition allows us to extend the
notion of C-hardness to promise problems.

A polynomial-time computable function h is called an AND2 function for a
language Z if for any pair x, y we have both x and y in Z iff h(x, y) is in Z.

2.2 Graph Products

Let E(G) denote the set of edges of a graph G. Given two graphs G1 and G2, we
define a product graph on the vertex set V (G1) × V (G2) in two ways. Vertices
(u1, u2) and (v1, v2) are adjacent in the Cartesian product G1×G2 if either u1 =
v1 and {u2, v2} ∈ E(G2) or u2 = v2 and {u1, v1} ∈ E(G1). They are adjacent in
the categorical product G1 ·G2 if both {u1, v1} ∈ E(G1) and {u2, v2} ∈ E(G2).

A set V (G1) × {v} for each v ∈ V (G2) will be called a G1-layer of v and a
set {u} × V (G2) for each u ∈ V (G1) will be called a G2-layer of u.

Lemma 1 (Sabidussi). χ(G×H) = max{χ(G), χ(H)}.

If c is a proper coloring of G, it is easy to see that c∗(x, y) = c(x) is a proper
coloring of G ·H. We will say that c induces c∗. Similarly, any proper coloring of
H induces a proper coloring of G ·H. This implies the following well-known fact.

Lemma 2. χ(G ·H) ≤ min{χ(G), χ(H)}.

We call two s-colorings equivalent if they are obtainable from one another
by permutation of colors. Proper s-colorings of a graph G are equivalent if they
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determine the same partition of V (G) into s independent sets. Let Nχ(G) denote
the number of such partitions for s = χ(G). A graph G is uniquely colorable if
Nχ(G) = 1. In particular, G ∈ U3COL iff χ(G) = 3 and Nχ(G) = 1.

Lemma 3 (Greenwell-Lovász [7]). Let G be a connected graph with χ(G) >
n. Then G ·Kn is uniquely n-colorable.

Lemma 4. 1. Fχ(G) ≥ χ(G)− 1 and we have equality whenever Nχ(G) = 1.
2. For any k, there is a 3-chromatic graph Gk on 4k+2 vertices with Fχ(Gk) = 2

and Nχ(Gk) = 2k−1 + 1.

Item 2 shows that the converse of the second part of Item 1 is false.

Proof. Item 1 is obvious. To prove Item 2, consider H = K3 ×K2. This graph
has two inequivalent colorings c1 and c2 shown in Fig. 2. Let u, v, w ∈ V (H) be
as in Fig. 2. Note that a partial coloring p1(u) = p1(v) forces c1 or its equivalent
and that p2(u) = p2(v) = p2(w) forces c2.

Fig. 2. Proper 3-colorings of K3 × K2

Let Gk consist of k copies of H with all u and all v identified, that is, Gk has
4k + 2 vertices. Since the set {u, v} stays forcing in Gk, we have Fχ(Gk) = 2. If
u and v are assigned the same color, we are free to assign each copy of w any of
the two remaining colors. It follows that Nχ(Gk) = 2k−1 + 1.

3 Complexity of Fχ(G): Lower Bounds

Theorem 1. For each k ≥ 2, the problem Forceχ(k) is US-hard. Moreover,
this holds true even if we consider only connected graphs.

We first observe that the family of problems Forceχ(k) is linearly ordered
with respect to the ≤P

m-reducibility. A simple reduction showing this does not
preserve connectedness of graphs. However, if we restrict ourselves to connected
graphs, we are able to show that Forceχ(2) remains the minimum element in
the ≤P

m order. We then prove that Forceχ(2) is US-hard (even for connected
graphs).

Lemma 5. Forceχ(k)≤P
m Forceχ(k + 1).
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Proof. Given a non-empty graph G, we add one isolated vertex to it. Denoting
the result by G+K1, it is enough to notice that Fχ(G+K1) = Fχ(G) + 1.

Lemma 6. Let k ≥ 2. Then Forceχ(2) reduces to Forceχ(k) even if we con-
sider the problems only for connected graphs.

The proof is omitted due to space limitation and can be found in the complete
version of the paper [9].

Lemma 7. Forceχ(2) is US-hard even if restricted to connected graphs.

To prove the lemma, we describe a reduction from U3COL. Note that U3COL
remains US-complete when restricted to connected graphs and that our reduction
will preserve connectedness. Since the class of 2-colorable graphs is tractable
and can be excluded from consideration, the desired reduction is given by the
following lemma.

Lemma 8. Suppose that χ(G) ≥ 3. Then G ∈ U3COL iff Fχ(G×K3) = 2.

Proof. Case 1: G ∈ U3COL. We have to show that Fχ(G×K3) = 2.
Fix arbitrary u, v ∈ V (G) whose colors in the proper 3-coloring of G are

different, for example, u and v can be any adjacent vertices of G. Let V (K3) =
{1, 2, 3}. Assign p(u, 1) = 1 and p(v, 2) = 2 and check that p forces a proper 3-
coloring of G×K3. Assume that c is a proper 3-coloring of G×K3 consistent with
p. Since c on each G-layer coincides with the 3-coloring of G up to permutation
of colors, we easily infer that c(v, 1) = c(u, 2) = 3. This implies c(u, 3) = 2 and
c(v, 3) = 1. Thus, in each G-layer we have two vertices with distinct colors, which
determines colors of all the other vertices. As easily seen, the coloring obtained
is really proper.
Case 2: G ∈ 3COL \U3COL. We have to check that Fχ(G×K3) ≥ 3.

Given a partial coloring p of two vertices a, b ∈ V (G×K3), we have to show
that it is not forcing. The cases that p(a) = p(b) or that a and b are in the same
G- or K3-layer are easy. Without loss of generality we therefore suppose that
p(a) = 1, p(b) = 2, a = (u, 1), and b = (v, 2), where u and v are distinct vertices
of G. Define two partial colorings of G by c1(u) = c1(v) = 1 and by c2(u) = 1,
c2(v) = 3.

Subcase 2.1: Both c1 and c2 extend to proper 3-colorings of G. Denote the
extensions by e1 and e2 respectively. Denote the three G-layers of G × K3 by
G1, G2, G3 and consider e1, e2 on G1. For each i = 1, 2, ei and p agree and have
a common extension to a proper coloring of G×K3. Thus, p is not forcing.

Subcase 2.2: Only c1 extends to a proper 3-coloring of G. Since G is not
uniquely colorable, there must be at least two extensions, e1 and e2, of c1 to
proper 3-colorings of G1. As in the preceding case, e1 and e2 each agree with p
and together with p extend two distinct colorings of G×K3.

Subcase 2.3: Only c2 extends to a proper coloring of G. This case is completely
similar to Subcase 2.2.
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Case 3: G /∈ 3COL. We have χ(G×K3) ≥ 4 by Lemma 1 and Fχ(G×K3) ≥ 3
by Lemma 4.1.

Theorem 1 immediately follows from Lemmas 7 and 6.

Theorem 2. The problem Forceχ(2) is coNP-hard even under the promises
that Fχ(G) ≤ 3 and χ(G) ≤ 3 and even if an input graph G is given together
with its proper 3-coloring.

Let us for a while omit the promise that Fχ(G) ≤ 3. Then Theorem 2 is
provable by combining the Greenwell-Lovász reduction of coNP to US given by
Lemma 3 and our reduction of US to Forceχ(2) given by Lemma 8. Doing so,
we easily deduce the following. If χ(G) > 3, then G ·K3 is uniquely 3-colorable
and hence Fχ((G ·K3)×K3) = 2. If χ(G) = 3, then G ·K3 is 3-chromatic, has
two induced 3-colorings, and hence Fχ((G ·K3)×K3) ≥ 3. To obtain Theorem 2
(the weakened version without the promise Fχ(G) ≤ 3), it now suffices to make
the following simple observation.

Lemma 9. χ((G·K3)×K3) = 3 for any graph G. Moreover, a proper 3-coloring
is efficiently obtainable from the explicit product representation of (G ·K3)×K3.

To obtain the full version of Theorem 2, we only slightly modify the reduc-
tion: Before transforming G in (G · K3) × K3, we add to G a triangle with
one vertex in V (G) and two other new vertices. Provided χ(G) ≥ 3, this does
not change χ(G) and hence the modified transformation is an equally good re-
duction. The strengthening (the promise Fχ(G) ≤ 3) is given by the following
lemma, concluding the proof of Theorem 2.

Lemma 10. If a graph G is connected and contains a triangle, then Fχ((G ·
K3)×K3) ≤ 3.

The proofs of Lemmas 9 and 10 can be found in [9].

4 General Setting

In fact, many other graph characteristics also have natural forcing variants.
Taking those into consideration, it will be convenient to use the formal concept
of an NP optimization problem (see e.g. [5]).

Let {0, 1}∗ denote the set of binary strings. The length of a string w ∈ {0, 1}∗

is denoted by |w|. We will use notation [n] = {1, 2, . . . , n}.
An NP optimization problem π = (optπ, Iπ, solπ, vπ) (where subscript π may

be omitted) consists of the following components.

– opt ∈ {max,min} is a type of the problem.
– I ⊆ {0, 1}∗ is the polynomial-time decidable set of instances of π.
– Given x ∈ I, we have sol(x) ⊂ {0, 1}∗, the set of feasible solutions of π

on instance x. We suppose that all y ∈ sol(x) have the same length that
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depends only on |x| and is bounded by |x|O(1). Given x and y, it is decidable
in polynomial time whether y ∈ sol(x).

– v : {0, 1}∗×{0, 1}∗ → N is a polynomial-time computable objective function
taking positive integer values. If y ∈ sol(x), then v(x, y) is called the value
of y.

The problem is, given an instance x, to compute the optimum value

π(x) = opt
y∈sol(x) v(x, y).

Such a problem is called polynomially bounded if v(x, y) = |x|O(1) for all x ∈ I
and y ∈ sol(x).

Any y ∈ sol(x) whose value is optimum is called an optimum solution of π on
instance x. Let optsol(x) denote the set of all such y. Given an NP optimization
problem π, we define

UOπ = {x : | optsol(x)| = 1} .

Example 1. The problem of computing the chromating number of a graph is
expressible as a quadruple χ = (min, I, sol, v) as follows. A graph G with vertex
set V (G) = {v1, . . . , vn} is represented by its adjacency matrix written down row
after row as a binary string x of length n2. A feasible solution, that is a proper
coloring c : V (G) → [n], is represented by a binary string y = c(v1) . . . c(vn) of
length n2, where a color i is encoded by string 0i−110n−i. The value v(x, y) is
equal to the actual number of colors occurring in y.

For the problem of computing the clique number it is natural to fix the
following representation. An instance graph G is encoded as above. A feasible
solution, which is a subset of V (G), is encoded by its characteristic binary string
of length n. The problem of computing the domination number is represented
in the same way.

Given a non-empty set U ⊆ {0, 1}l, we define force(U) to be the minimum
cardinality of a set S ⊆ [l] such that there is exactly one string in U with 1 at
every position from S. Additionally, let force(∅) = ∞. With each NP optimiza-
tion problem π we associate its forcing number Fπ, an integer-valued function
of instances of π defined by

Fπ(x) = force(optsol(x)).

Let Forceπ(k) = {x : Fπ(x) ≤ k}. It is easy to check that, if χ, ω, and γ are
represented as in Example 1, then Fχ, Fω, and Fγ are precisely those graph
invariants introduced in Sect. 1.

Note that force(U) = 0 iff U is a singleton. It follows that for π ∈ {ω, γ} we
have

x ∈ UOπ iff Fπ(x) = 0. (2)

This will be the starting point of our analysis of the decision problems Forceω(k)
and Forceγ(k).
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5 Hardness of Forceω(k) and Forceγ(k)

Theorem 3. Let π ∈ {ω, γ}. Then US ≤P
m UOπ = Forceπ(0) ≤P

m Forceπ(k)
≤P

m Forceπ(k + 1) for any k ≥ 0.

As observed in [15], the decision problem UOω is US-hard. The composition
of a few standard reductions shows that UOω≤P

m UOγ (for details see [9]). Thus,
UOω and UOγ are both US-hard and Theorem 3 follows from the following fact.

Lemma 11. Let π ∈ {ω, γ}. Then Forceπ(k)≤P
mForceπ(k + 1) for any k ≥ 0.

Proof. Given a graph G, we have to construct a graph H such that Fπ(G) ≤ k
iff Fπ(H) ≤ k + 1. It suffices to ensure that

Fπ(H) = Fπ(G) + 1. (3)

Let π = ω. Let H be the result of adding to G two new vertices u and v and
the edges {w, u} and {w, v} for all w ∈ V (G). Any optimal clique in H consists of
an optimal clique in G and of either u or v. Hence any forcing set in H consists
of a forcing set in G and of either u or v (we use the terminology of Sect. 1). This
implies (3).

If π = γ, we obtain H from G by adding a new isolated edge.

6 Complexity of Forceπ(k): An Upper Bound

Theorem 4. Let π be a polynomially bounded NP optimization problem (in par-
ticular, π can be any of χ, ω, and γ). Then Forceπ(k)≤P

∨-tt US for each k ≥ 0.

Proof. We will assume that π is a minimization problem (the case of maxi-
mization problems is quite similar). Suppose that v(x, y) ≤ |x|c for a constant
c. Given 1 ≤ m ≤ |x|c, we define solm(x) = {y ∈ sol(x) : v(x, y) = m} and
Fm

π (x) = force(solm(x)). In particular, Fm
π (x) = Fπ(x) if m = π(x).

Let k be a fixed integer. Notice that

Fπ(x) ≤ k iff
|x|c∨
m=1

(Fm
π (x) ≤ k ∧ π(x) ≥ m) (4)

(actually, only a disjunction member where m = π(x) can be true). The set of
pairs (x,m) with π(x) ≥ m is in coNP and hence in US. Let us now show that
the set of (x,m) with Fm

π (x) ≤ k is disjunctively reducible to US.
Recall that sol(x) ⊆ {0, 1}l(x), where l(x) ≤ |x|d for a constant d. Define T

to be the set of quadruples (x,m, l,D) such that m and l are positive integers,
D ⊆ [l], and there is a unique y ∈ solm(x) of length l with all 1’s in positions
from D. It is easy to see that T is in US and

Fm
π (x) ≤ k iff

∨

l,D: l≤|x|d
D⊆[l], |D|≤k

(x,m, l,D) ∈ T.
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Combining this equivalence with (4), we conclude that Fπ(x) ≤ k iff there are
numbers m ≤ |x|c and l ≤ |x|d and a set D ⊆ [l] of size at most k such that

(x,m, l,D) ∈ T ∧ π(x) ≥ m.

Since every US-complete set has an AND2 function, this conjunction is express-
ible as a proposition about membership of the quadruple (x,m, l,D) in a US-
complete set. Thus, the condition Fπ(x) ≤ k is equivalent to a disjunction of less
than |x|c+d(k+1) propositions each verifiable in US.

7 Open Questions

1. We have considered forcing versions of three popular graph invariants: the
chromatic, the clique, and the domination numbers (Fχ, Fω, and Fγ respec-
tively). We have shown that slice decision problems for each of Fχ, Fω, and Fγ

are as hard as US under the many-one reducibility and as easy as US under the
disjunctive truth-table reducibility. The latter upper bound is actually true for
the forcing variant of any polynomially bounded NP optimization problem. The
lower bound in the case of Fω and Fγ is provable by using standard reductions on
the account of a close connection with the unique optimum problems UOω and
UOγ . However, in the case of Fχ we use somewhat more elaborate reductions
involving graph products. We point out two simple reasons for the distinction
between Fχ and Fω, Fγ . First, unlike the case of ω and γ, the unique colorability
of a graph is apparently inexpressible in terms of Fχ (cf. Lemma 4.2). Second,
we currently do not know any relation between Fχ, Fω, and Fγ as optimization
problems (cf. further discussion).

2. As is well known, most NP-complete decision problems, including those
for χ, ω, and γ, are rather similar to each other: There are parsimonious many-
one reductions between them. However, it is also well known that the total
similarity disappears as soon as we get interested in approximation properties of
the underlying NP optimization problems or in parametrized complexity variants
of the decision problems themselves. In particular, χ, ω, and γ occupy different
positions in the two mentioned hierarchies. It would be interesting to compare
complexities of Fχ, Fω, and Fγ introducing appropriate reducibility concepts.

3. Our results imply that the problems Forceπ(k) for any π ∈ {χ,ω, γ}
and k ≥ 0 (except k = 0, 1 if π = χ) have the same polynomial-time Turing
degree. Let Forceπ(∗) = { (x, k) : Fπ(x) ≤ k}. How related are Forceπ(∗) for
π ∈ {χ,ω, γ} under polynomial-time reductions? Note that these three decision
problems are US-hard and belong to ΣP

2 .
4. Is Forceπ(∗) NP-hard under≤P

m-reductions for any π under consideration?
5. Given a graph with a perfect matching, Harary, Klein, and Živković [8] define

its forcing matching number as the minimum size of a forcing set of edges, where
the latter is a set contained in a unique perfect matching. Is this graph invariant
computationally hard? Note the well-known fact that, despite computing the
number of perfect matchings is #P-complete, uniqueness of a perfect matching is
efficiently decidable. Note also that forcing sets of edges are efficiently recognizable
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and, as a consequence, for each fixed k the problem of deciding if the forcing
matching number does not exceed k is polynomial-time solvable.
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Abstract. In the PCP model, a verifier is supposed to probabilistically
decide if a given input belongs to some language by posing queries to a
purported proof of this fact. The probability that the verifier accepts an
input in the language given a correct proof is called the completeness c;
the probability that the verifier rejects an input not in the language
given any proof is called the soundness s. For a verifier posing q queries
to the proof, the amortized query complexity is defined by q/ log2(c/s) if
the proof is coded in binary. It is a measure of the average “efficiency”
of the queries in the following sense: An ideal query should preserve
the completeness and halve the soundness. If this were the case for all
queries, the amortized query complexity would be exactly one.

Samorodnitsky and Trevisan [STOC 2000] gave a q-query PCP for
NP with amortized query complexity 1 + 2/

√
q + ε for any constant

ε > 0. In this paper, we examine to what extent their result can be
sharpened. Using the layered label cover problem recently introduced by
Dinur et al. [STOC 2003], we devise a new “outer verifier” that allows us
to construct an “inner verifier” that uses the query bits more efficiently
than earlier verifiers. This enables us to construct a PCP for NP that
queries q positions in the proof and has amortized query complexity
1 +

√
2/q + ε. As an immediate corollary, we also obtain an improved

hardness of approximation result for the Maximum q-CSP problem.
Since the improvement compared to previous work is moderate, we

then examine if there is an underlying reason for this. Our construction
in this paper follows a paradigm for query efficient PCPs for NP outlined
by many previous researchers and it combines a state-of-the-art “outer
verifier” with a natural candidate for a query efficient “inner verifier”.
We prove in the full version of this paper that all natural attempts to
construct more query efficient versions of our verifier are doomed to fail.
This implies that significantly new ideas regarding proof composition and
encoding of PCP proofs are required to construct PCPs for NP that are
more query efficient than the one we propose in his paper.

1 Introduction

For more than a decade, one of the most powerful techniques for proving ap-
proximation hardness results for various types of discrete optimization prob-
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lems, in particular constraint satisfaction problems, has been the use of Prob-
abilistically Checkable Proofs (PCPs) for NP. In the PCP model, the veri-
fier is given an input and oracle access to an alleged proof of the fact that
the input belongs to some specified language. The verifier also has access to
a specified amount of random bits. Based on the random bits and the in-
put, the verifier decides which positions in the proof it should look at. Once
it has examined the positions of its choice, it uses all available information
to decide if the input should be accepted or rejected. The PCP theorem [1]
asserts the startling fact that any language in NP can be probabilistically
checked by a verifier that uses logarithmic randomness, always accepts a cor-
rect proof of an input in the language, accepts proofs of inputs not in the lan-
guage with probability at most 1/2, and examines a constant number of bits
of the proof. The probability that the PCP verifier accepts a correct proof of
an input in the language is called the completeness c, while the probability
that the verifier accepts any proof of an input not in the language is called
the soundness s. It is generally desirable to have c ≈ 1 and s as small as
possible.

PCPs using a logarithmic number of random bits can be used to prove ap-
proximation hardness results for many combinatorial optimization problems. In
particular, PCPs querying a small number of bits, say q bits, are intimately con-
nected with Boolean q-ary constraint satisfaction problems: Strong approxima-
tion hardness results follow immediately from such PCPs with high completeness
and low soundness.

H̊astad’s approximation hardness result for linear equations mod 2 gives such
a characterization [12]: The verifier in his PCP for NP queries three bits, has
completeness 1 − ε and soundness 1/2 + δ for arbitrary ε and δ. Allowing the
verifier to make more queries to the proof is a natural way to lower the sound-
ness even further; independent repetition of H̊astad’s protocol k times gives a
PCP that queries 3k bits, has completeness at least 1 − kε and soundness at
most (1/2 + δ)k. Hence the soundness goes down exponentially fast with the
number of bits read from the proof. The purpose of this paper is to study
exactly how fast the soundness can go down. There are several possible mea-
sures of “fast” in this context. One is the so called amortized query complex-
ity : For a PCP with q queries, the amortized query complexity is defined as
q̄ = q/ log(c/s). The task of constructing PCPs for NP with low amortized
query complexity—as well as the related question of testing if a function is
linear—has been explored previously, most notably in a sequence of papers
by Trevisan with different coauthors [18, 17, 16]. The key idea in those pa-
pers is to use dependent repetitions of H̊astad’s basic protocol. The technical
part of the argument then boils down to showing that this dependence does
not destroy the soundness of the verifier. In this paper, we adapt and extend
these previous ideas. In particular, we show that the idea of using dependent
repetitions can be combined with the recently introduced layered label cover
problem [6].
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1.1 Query-Efficient Verification of NP

Another important efficiency measure for PCPs is the free bit complexity : A PCP
has free bit complexity f if there are, for every outcome of the random bits used
by the verifier, at most 2f possible answers to the verifier’s queries that make
the verifier accept. Using the free bit complexity, our first main result in this
paper can be written as follows:

Theorem 1. For any integer f ≥ 2, any positive integer t ≤ f(f − 1)/2, and
any constant ε > 0, there is a PCP for NP with free bit complexity f , query
complexity f + t, completeness 1− ε, and soundness 2−t + ε.

To compare this with the previously best known result, due to Samorodnitsky
and Trevisan [16], it is instructive to cast this result in terms of the amortized
query complexity as a function of the number of queries:

Corollary 1. For any integer q ≥ 3 and any constant ε > 0, there is a PCP for
NP with query complexity q and amortized query complexity 1 +

√
2/q + ε.

Writing the soundness of our PCP as a function of the number of queries, we
also get as an immediate corollary of our main result an improved approximation
hardness result for the q-CSP problem:

Corollary 2. For any integer q ≥ 3 and any constant ε > 0, it is NP-hard to
approximate the q-CSP problem within 2q−

√
2q−2−1/2 − ε.

The previously best known construction, due to Samorodnitsky and Tre-
visan [16] gives amortized query complexity 1 + 2/

√
q + ε and hardness of ap-

proximation within 2q−2
√

q+1+1. While our improvements might at first seem
moderate, we remark that it is possible to approximate the q-CSP problem
within 2q−1.4 in polynomial time and that a PCP for NP cannot have amor-
tized query complexity 1+1/(5q/7−1) unless P = NP; this follows from Hast’s
recent approximation algorithm for q-CSP [11]. Hence the only possible further
improvements, unless P = NP, along this line of research concern the lower order
term in q̄ and the lower term in the exponent of the approximation factor—where
we get an improvement by a factor of

√
2. We also point out that an assignment

selected uniformly at random satisfies a fraction 2−q of the constraints in a q-
CSP problem. Hence, it is possible to construct, in polynomial time, an algorithm
which is a factor of roughly 2.3 better than a random assignment. Prior to our
paper, it was known that it is NP-hard to beat the random assignment by a
factor of 4

√
q [16]; we improve this latter factor to roughly 2.67

√
q.

Our second main result is that there seems to be an underlying reason for
why our improvement compared to previous work is moderate. Our construction
in this paper follows a paradigm for query efficient PCPs for NP outlined by
many previous researchers: On a high level, it combines a state-of-the-art “outer
verifier” corresponding to a so called “layered label cover problem” with a cor-
responding “inner verifier” that is more query efficient than previously known
verifiers. There are natural ways to extend this inner verifier in certain ways to
produce what, at first, looks like even more query efficient verifiers. We prove in
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the full version [9] of this extended abstract, however, that all such extensions
give verifiers that are less query efficient than our proposed verifier in the sense
that the new verifiers have the same soundness as our verifier but pose more
queries. This implies that significantly new ideas regarding proof composition
and encoding of PCP proofs are required to construct PCPs for NP that are
more query efficient than the one we propose in his paper.

Driven by the desire to prove strong inapproximability results for Maximum
Clique another measure, the amortized free bit complexity, was introduced [4].
Recall that a PCP has free bit complexity f if there are, for every outcome of
the random bits used by the verifier, at most 2f possible answers to the verifier’s
queries that make the verifier accept. The amortized free bit complexity is then
defined as f̄ = f/ log(c/s). The intuition behind the term free bit complexity is
that a typical verifier with free bit complexity f first reads f bits, the so called
“free bits”, from the proof and then performs a number of consistency checks,
each involving some of the free bits and some new positions in the proof.

The PCP constructed by Samorodnitsky and Trevisan [16] has a verifier that
first queries 2k free bits and then makes k2 consistency checks, each of which uses
two (different) free bits and one unique non-free bit. Hence the verifier queries
in total 2k + k2 bits and it can be shown that the test has completeness 1 − ε
and soundness 2−k2

+ ε. It follows that the amortized query complexity can be
written as 1 + 4/f + ε where f is the number of free bits used by the verifier.
Under the assumption that the verifier first queries some free bits and then per-
forms consistency checks involving two free bits where the same two free bits are
present in at most one consistency check, the amortized query complexity cannot
be lower than 1 + 2/(f − 1). Our construction in this paper achieves this goal.

Corollary 3. For any integer f ≥ 2 and any constant ε > 0, there is a PCP for
NP with free bit complexity f and amortized query complexity 1+2/(f − 1)+ ε.

Hence it is optimal among the PCPs that work as described above. One
natural suggestion to improve the soundness is to perform consistency checks
not only on pairs of free bits but on all possible subsets of free bits. In their
paper [16], Samorodnitsky and Trevisan show that such an approach is futile for
the related problem of linearity testing. In that setting, the “proof” is a table
of a Boolean function and “consistency” simply means that this table respects
linearity. For the more complex situation involving PCPs for NP with several
tables defining different functions that should be correlated in some way, there
is no known corresponding result.

As mentioned above, our second main result is an optimality result. In the
above language, this result shows that it is impossible to beat the soundness
bounds stated above even with a verifier that tests consistency induced not only
by pairs of free bits but by all possible Boolean predicates on the free bits. Since
all hitherto constructed PCPs with low amortized query complexity follow the
paradigm outlined above, our result shows that to construct PCPs with even
lower amortized query complexity, radically new ideas are needed.
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1.2 Main Sources of Our Improvements

Our paper uses the fundamental idea of “recycling” query bits in linearity tests
and PCPs, introduced and explored in a sequence of papers authored by Trevisan
with different coauthors. For linearity tests, the construction is founded on the
basic BLR linearity test [5] that selects random x and y and tests if f(x)f(y) =
f(xy). Trevisan [18] introduced the notion of a graph test iterating the basic BLR
test once for every edge in the graph: Each variable in the graph corresponds to
a randomly selected value and for each edge {x, y} the test f(x)f(y) = f(xy)
is executed. These tests are, of course, dependent, but Trevisan [18] was able to
show that they still behave essentially as independent tests for some graphs. He
also used similar ideas to construct a PCP for NP with q̄ = 2.5+ε. Extending the
analysis, both for linearity tests and PCPs, Sudan and Trevisan [17] constructed
a PCP for NP with q̄ = 1.5 + 3/(q − 2) + ε, and, finally, Samorodnitsky and
Trevisan [16] constructed the PCP for NP mentioned above, with q̄ = 1 +
2/
√
q + ε.

Our main source of improvement is that we use a layered label cover problem
recently introduced by Dinur et al. [6] as our underlying NP-hard problem.
While our construction of the label cover instance is exactly the same as used by
Dinur et al., we need in this paper a stronger hardness result than they state in
their paper. We also use a new way to connect this layered label cover problem—
or “outer verifier” as it is often called in PCP jargon—with the actual PCP—or
“inner verifier”. Loosely speaking, while previous constructions checked pairwise
consistency between pairs (W0,Wi) of proof tables for some number of Wi:s, our
use of the layered label cover problem as an outer verifier enables us to devise
an inner verifier that tests pairwise consistency between all pairs (Wi,Wj).

On a slightly more concrete level, the Samorodnitsky-Trevisan verifier queries
k free bits in the table W0 and then one free bit in each of the tables Wi. But it
does not use all possible pairs of free bits for consistency checks, only (roughly)
half of them. The intuitive reason why our construction is more efficient with
respect to the free bits is that we check pairwise consistency between tables
(Wi,Wj) by first querying one free bit from each table and then using all pairs
of free bits for a consistency check.

H̊astad and Wigderson [14] have presented a much simplified analysis of the
Samorodnitsky-Trevisan PCP; we use the same kind of analysis in this paper.

2 Background

Our construction, as most other PCP constructions, use the powerful technique
of proof composition, introduced by Arora and Safra [2]. The main idea in such
constructions is to combine two verifiers that optimize different type of parame-
ters into one verifier that optimizes both parameters. In particular, it is common
to use an “outer verifier” that queries a proof containing values from some large
domain and an “inner verifier” whose proof contains purported answers to the
outer verifier encoded with some error correcting code.
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To get an intuitive understanding of both our construction and earlier re-
lated constructions, it is instructive to recall a high-level description of H̊astad’s
PCP for NP with three queries—two of which are free—completeness 1− ε and
soundness 1/2 + ε [12]. The outer verifier used by H̊astad can be described in
several different ways. While H̊astad describes it in terms of a two-prover one-
round protocol for a certain class of 3-Sat formulae, we chose one of the alternate
formulations: a label cover problem with a certain “gap” property.

Definition 1. Given two sets R and S, an instance of the label cover problem
on R and S is a set Ψ ⊆ V ×Φ, where V and Φ are sets of variables with ranges
R and S, respectively, with an onto function πvφ:S → R for every (v, φ) ∈ Ψ .
The instance is regular if every v ∈ V occurs in the same number of pairs in Ψ
and every φ ∈ Φ occurs in the same number of pairs in Ψ .

The following theorem is a consequence of the PCP theorem [1] combined
with a certain regularization procedure [10] and the parallel repetition theo-
rem [15].

Theorem 2 ([1, 10, 15]). There exists a universal constant μ > 0 such that for
every large enough constant u there exist sets R and S with 2u ≤ |R| ≤ |S| ≤ 7u

such that it is NP-hard to distinguish between the following two cases given a
regular instance Ψ ⊆ V × Φ of a label cover problem on R and S:

YES: There exist assignments ΠV :V → R and ΠΦ:Φ → S such that for
every (v, φ) ∈ Ψ , ΠV (v) = πvφ(ΠΦ(φ)).

NO: There are no assignments ΠV :V → R and ΠΦ:Φ → S such that for
more than a fraction |R|−μ of the pairs (v, φ) ∈ Ψ , ΠV (v) = πvφ(ΠΦ(φ)).

A regular label cover problem Ψ on (V,R) and (Φ, S) can be viewed as a
bi-regular bipartite graph with the node set V ∪ Φ and an edge {v, φ} for every
(v, φ) ∈ Ψ . The objective is then to assign labels to the nodes in such a way
that for every edge {v, φ}, the constraint ΠV (v) = πvφ(ΠΦ(φ)) holds. The above
theorem says that it is NP-hard to distinguish the case when this is possible
from the case when it is only possible to satisfy a tiny fraction of the constraints.

The inner verifier in H̊astad’s PCP has access to several sub-tables: one for
each v ∈ V and one for each φ ∈ Φ. These tables contain purported encodings of
the labels assigned to the corresponding variable/vertex. The labels are encoded
by the so called long code, first used in the context of PCPs by Bellare, Goldreich
and Sudan [3]. The long code Aw,σ of an assignment/label σ to some variable/
vertex w assuming values in some set R is a function mapping f ∈ {−1, 1}R to
a value in {−1, 1} by the map Aw,σ(f) = f(σ).

To check the proof, H̊astad’s inner verifier essentially selects a random (v, φ) ∈
Ψ , random functions f and g and then checks if Av(f)Aφ(g) = Aφ(fg). (The
test is actually slightly more complicated. In fact, the test as written above does
not quite work, but we ignore this here, and for the rest of this section, for the
sake of clarity.) There are two important points to note here: 1) There are two
free queries, Av(f) and Aφ(g), and one “check”, Aφ(fg). 2) The queries involve
tables of two types, one v-table and one φ-table.
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Trevisan put forward the idea that the free queries could be “recycled”.
In his first paper [18], he recycled the query Aφ(g) and made two checks:
Av(f1)Aφ(g) = Aφ(f1g) and Av(f2)Aφ(g) = Aφ(f2g). These checks are depen-
dent, but it turns out that the dependence is weak enough to give soundness
1/4 + ε at the price of 3 free and 2 non-free queries. Hence this construction has
amortized query complexity 2.5 + ε.

Sudan and Trevisan [17] extended the analysis by using a modification of the
outer verifier: From an instance Ψ ⊆ V × Φ of the basic label cover problem,
a modified label cover instance is constructed as follows: The instance consists
of all tuples (v, φ1, . . . , φk) such that (v, φj) ∈ Ψ for all j; denote by Ψ̃ this set
of tuples. The objective is then to construct labelings ΠV and ΠΦ, respectively,
of V and Ψ , respectively, such that for all (v, φ1, . . . , φk) ∈ Ψ̃ , the constraint
ΠV (v) = πvφj (ΠΦ(φj)) holds for every j. Sudan and Trevisan show in their
paper that it is NP-hard to distinguish the case when this is possible from the
case when it holds for at most a tiny fraction of the tuples in Ψ̃ that ΠV (v) =
πvφj

(ΠΦ(φj)) for some j.
Using this new outer verifier, Sudan and Trevisan [17] were able to analyze

an inner verifier that selects random functions f1, f2 and g1, . . . , gk, and then
checks Av(fi)Aφj (gj) = Aφj (figj) for all i and j. This gives amortized query
complexity 1.5 + ε. Finally, Samorodnitsky and Trevisan [16], using the same
outer verifier, were able to analyze the even more general case where the verifier
selects v and φ1, . . . , φk as above, random functions f1, . . . , fk and g1, . . . , gk and
then checks Av(fi)Aφj

(gj) = Aφj
(figj) for all i and j. This construction gives

amortized query complexity 1 + ε.

3 A Multi-layered Label Cover Problem

The outer verifier devised by Sudan and Trevisan [17] has the property that
one v and several φj connected to v are used. There is one “check” for every
pair (f, g) of free queries where f is queried from table Av and g is queried
from table Aφj

. Hence, all of the above constructions check pairwise consistency
between the same node v and several nodes φj connected to v in the underly-
ing label cover instance. Our main idea to push the “recycling” further is to
instead select k + 1 nodes from a tailored label cover instance in such a way
that we can check pairwise consistency between every pair of nodes. This tai-
lored label cover instance was recently devised by Dinur et al. [6] and used
by them to prove strong approximation hardness results for hypergraph vertex
cover.

Recall that the objective of the label cover problem on R and S is to assign
to nodes in V labels from R and to nodes in Φ labels from S in such a way
that many edges are “satisfied” in the sense that the corresponding projections
{πvφ}(v,φ)∈Ψ are satisfied. The label cover used as a basis for our construction
is similar in spirit, but the instance has more structure. It can be viewed as a k-
wise parallel repetition of the original label cover problem but with the objective
to construct certain “hybrid” labelings. Given an instance Ψ of the basic label
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cover problem from Definition 1 we construct a corresponding instance of our
layered label cover problem as all k-tuples of elements from Ψ ; hence the instance
is simply the k-wise Cartesian product Ψk and some arbitrary ψ ∈ Ψk can be
written as ψ = ((v1, φ1), . . . , (vk, φk)).

In an “ordinary” k-wise parallel repetition the goal would be to construct an
assignment to all k-tuples (v1, . . . , vk) ∈ V k and an assignment to all k-tuples
(φ1, . . . , φk) ∈ Φk in such a way that the assignments are consistent, where “con-
sistent” means that each coordinate satisfies the corresponding projection πvjφj

from the basic label cover problem. The goal in our layered label cover prob-
lem is to construct in total k+1 assignments: not only one assignment to tuples
in V k and one assignment to tuples in Φk, but also k−1 “hybrid” assignments to
“hybrid“ tuples of the form (φ1, . . . , φt, vt+1, . . . , vk) ∈ Φt×V k−t. We say that a
tuple belongs to layer t if the first t coordinates of the tuple contain values from Φ
and the remaining coordinates contain values from V . With this notation, layer 0
corresponds to tuples containing only variables from V , layer k corresponds to
tuples containing only variables from Φ, and each ψ ∈ Ψk corresponds to k + 1
tuples, one in each layer. (Readers very familiar with the presentation of the
layered verifier in [6] may want to notice that what we call a tuple correspond-
ing to ψ ∈ Ψk corresponds to a clique in the multi-partite graph defined in the
proof of Theorem 3.3 in [6].) Write ψ = ((v1, φ1), . . . , (vk, φk)) and consider the
tuples corresponding to ψ. Assignments to these tuples produce tuples of val-
ues from R (values to V -variables) and S (values to Φ-variables). There is an
obvious way to require consistency between these assignments. For two tuples
(φ1, . . . , φi, vi+1, . . . , vk) and (φ1, . . . , φj , vj+1, . . . , vk) where i < j and corre-
sponding assignments (s1, . . . , si, ri+1, . . . , rk) and (s′

1, . . . , s
′
j , r

′
j+1, . . . , r

′
k), we

use the projections πvφ from the basic label cover instance to define what it
means for the assignments to be consistent: st = s′

t (t ≤ i) and rt = πvtφt
(s′

t)
(i < t ≤ j) and rt = r′

t (t > j).

Definition 2. Given R, S, V , Φ, Ψ , and {πvφ}(v,φ)∈Ψ as in Definition 1, denote
an arbitrary ψ ∈ Ψk by the vector ((v1, φ1), . . . , (vk, φk)) and define the shorthand

πψ,j→i:Sj ×Rk−j → Si ×Rk−i

as the function mapping (s1, . . . , sj , rj+1, . . . , rk) to

(s1, . . . , si, πvi+1φi+1(si+1), . . . , πvjφj
(sj), rj+1, . . . , rk).

The objective of our label cover problem is to produce k + 1 assignments
such that all constraints πψ,j→i are satisfied. It is straightforward to see that
if the case “YES” from Theorem 2 holds for the original instance Ψ , the as-
signments ΠV and ΠΨ guaranteed in this case can be used to construct such
assignments.

Our “inner verifier” described in § 4 checks a purported proof of an assign-
ment to the nodes in a layered label cover problem. For a correctly encoded
proof of an assignment described in the “YES” case of Theorem 2, it is easy to
see that our verifier almost always accepts. For the reverse direction, we show
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that if our “inner verifier” accepts with only a small advantage over a random
assignment, it is possible to construct an assignment to the underlying basic
label cover problem that contradicts the “NO” case in Theorem 2. Hence, this
in some sense reduces the hardness of the layered label cover problem to hard-
ness of the basic label cover problem. Dinur et al. [6] use the same idea in their
paper but formulate the hardness of the layered label cover problem as a sep-
arate theorem. It is possible to do so also in our case, but the formulation of
this separate theorem is bit more complicated, and in fact somewhat unnatu-
ral, due to some fairly intricate dependencies between the various layers in the
“inner verifier”. By doing the reduction to the standard label cover problem as
a part of the analysis of the “inner verifier”, we avoid this complication. The
interested reader can find the more complicated proof in an earlier version of
this paper [9].

4 A Recycling PCP

We now describe a verifier with access to several proof tables, each containing a
purported encoding of a label for a node in the layered label cover instance. The
verifier bases its decision to accept or reject on some carefully selected values
from tables corresponding to the nodes created from some ψ ∈ Ψk as described
in § 3. The main properties of the verifier can loosely be described as follows:
1) If case “YES” in Theorem 2 holds, there exists a proof that makes the verifier
accept with high probability; 2) If case “NO” in Theorem 2 holds, the PCP
verifier accepts with very small probability.

4.1 The Proof

The proof in our PCP contains for each i such that 0 ≤ i ≤ k and each
w ∈ Φi × V k−i a table Aw of size 2|S|i|R|k−i

which should be interpreted as
the values of a function from {−1, 1}Si×Rk−i

to {−1, 1}. For such a w and some
function f :Si ×Rk−i → {−1, 1}, Aw(f) denotes the position in table Aw corre-
sponding to f .

Definition 3. Given R, S, V , Φ, Ψ , and an arbitrary ψ ∈ Ψk, define Aψ,i

to be the table Aw where w ∈ Φi × V k−i is defined from ψ as follows: Write
ψ as ((v1, φ1), . . . , (vk, φk)). Then w is defined as the k-tuple where position t
contains φt if t ≤ i and vt if t > i.

We remark here, that a function f :Si × Rk−i → {−1, 1} can be used to
index into Aw for any w ∈ Φi × V k−i. This simplifies our analysis below. Also,
all tables are assumed to be folded, i.e., Aw(f) = −Aw(−f) for all w and f ;
this property can be enforced by certain access conventions in the verifier. Our
only need for folding comes from the fact that certain Fourier coefficients of
the tables in the proof are guaranteed to vanish for folded tables; see H̊astad’s
paper [12–§§ 2.4–2.6] for details.
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4.2 The Verifier

The verifier is parameterized by a rational ε > 0, an integer k > 0 and a non-
empty subset P of {(i, j) : 0 ≤ i < j ≤ k}. The actions of the verifier are
follows:

1. Select ψ ∈ Ψk uniformly at random.
2. Select fi:Si ×Rk−i → {−1, 1} for each i such that 0 ≤ i ≤ k independently

uniformly at random.
3. Select functions eij :Sj × Rk−j → {−1, 1} for each (i, j) ∈ P by selecting
eij(x) independently at random to be 1 with probability 1− ε and −1 oth-
erwise.

4. Accept if Aψ,i(fi)Aψ,j(fj) = Aψ,j((fi ◦ πψ,j→i)fjeij) for every (i, j) ∈ P ;
reject otherwise. Here, πψ,j→i is defined as described in Definition 2 and
Aψ,i is defined as in Definition 3.

Before embarking on the analysis of the soundness of the verifier, let us note
some immediate consequences of the construction.

Lemma 1. The verifier has completeness at least 1 − |P |ε, query complexity
|P |+ k+ 1, and free bit complexity k+ 1. Moreover, it uses at most k�log |Ψ |�+
(k + 1)|S|k + |P ||S|k�log ε−1� random bits.

Proof. Consider a proof consisting of correct encodings of labels satisfying the
“YES” case in Theorem 2. Let {ri}k

i=0 denote the labels to the nodes cor-
responding to some arbitrary ψ. Then Aψ,i(fi) = fi(ri) and it can be seen
that Aψ,j((fi ◦ πψ,j→i)fjeij) = fi(πψ,j→i(rj))fj(rj)eij(rj) = fi(ri)fj(rj)eij(rj).
Hence, the verifier accepts if eij(rj) = 1 for all (i, j) ∈ P . This establishes the
completeness. The other claims are verified by straightforward inspection of the
protocol.

4.3 Analysis of the Soundness

The acceptance predicate is arithmetized as usual:

∏
(i,j)∈P

1 +Aψ,i(fi)Aψ,j(fj)Aψ,j((fi ◦ πψ,j→i)fjeij)
2

is an indicator for the event that the verifier accepts. This expression can be
rewritten as

2−|P |
∑
S⊆P

∏
(i,j)∈S

Aψ,i(fi)Aψ,j(fj)Aψ,j((fi ◦ πψ,j→i)fjeij).

If the expectation of this is at least 2−|P |+δ, there must exist some nonempty
S ⊆ P such that

E
[ ∏
(i,j)∈S

Aψ,i(fi)Aψ,j(fj)Aψ,j((fi ◦ πψ,j→i)fjeij)
]
≥ δ. (1)
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We now consider one such S and prove that it is possible to extract assign-
ments violating property “NO” in Theorem 2 provided that the above inequality
holds. The main idea in the proof of this result is to split the product inside the
expectation in inequality (1) above into three parts. The Fourier transform of
two of these parts are then used to devise functions ΠV and ΠΦ that violate
property “NO” in Theorem 2. The precise way to split the product is carefully
chosen so that the resulting functions ΠV and ΠΦ are guaranteed to depend
only on certain variables, as required by Theorem 2.

Lemma 2. Suppose that a PCP is constructed as described above from an in-
stance of the layered label cover problem with |R| > (ε−1δ−2/4)1/μ and that

E
[ ∏
(i,j)∈S

Aψ,i(fi)Aψ,j(fj)Aψ,j((fi ◦ πψ,j→i)fjeij)
]
≥ δ, (2)

where the expectation is over the random choices of the verifier, for some non-
empty S ⊆ P . Then property “NO” in Theorem 2 is violated.

The complete proof of Lemma 2 is omitted due to space limitations; a proof
using the slightly complicated formalism mentioned earlier is given in [9].

5 Future Work: Larger Domains and Perfect
Completeness

It is straightforward to extend our result to PCPs over arbitrary finite Abelian
groups using the, by now, standard approach [7, 8, 12].

H̊astad and Khot [13] proved results similar to those of Samorodnitsky and
Trevisan [16] but for the case when the verifier has completeness 1 rather than
1 − ε. In particular, they provide a protocol that iterates a basic test involv-
ing four free and one non-free bit, the entire test queries 4k + k2 bits and has
soundness 2−k2

. They also provide an adaptive protocol, i.e., a protocol where
the verifier’s queries may depend on the answers to earlier queries, that queries
2k + k2 bits and has soundness 2−k2

. It seems that those results can also be
adapted with reasonably straightforward but rather tedious calculations to our
setting, the main complication being the adaptive protocol with 2k+ k2 queries
and soundness 2−k2

.
An interesting direction for future research is to try to construct a PCP

with perfect completeness that iterates a predicate with fewer free bits but still
only one non-free bit. If such a predicate were found and combined with the
techniques of this paper, it could potentially give results comparable to ours—
we query approximately

√
2k+ k2 bits to get soundness 2−k2

—but with perfect
rather than near-perfect completeness.

In the full version [9] of this extended abstract, we also prove that it is
impossible to improve the soundness of the PCP by adding additional queries
of a certain form. As a consequence, new ideas are required to construct PCPs
that are even more query efficient than those proposed in this paper.
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Abstract. We consider a game played by two players, Paul and Carol.
Carol fixes a coloring of n balls with three colors. At each step, Paul
chooses a pair of balls and asks Carol whether the balls have the same
color. Carol truthfully answers yes or no. In the Plurality problem, Paul
wants to find a ball with the most common color. In the Partition prob-
lem, Paul wants to partition the balls according to their colors. He wants
to ask Carol the least number of questions to reach his goal. We find opti-
mal deterministic and probabilistic strategies for the Partition problem
and an asymptotically optimal probabilistic strategy for the Plurality
problem.

1 Introduction

We study a game played by two players, Paul and Carol, in which Paul wants to
determine a certain property of the input based on Carol’s answers. Carol fixes
a coloring of n balls by k colors. Paul does not know the coloring of the balls.
At each step, he chooses two balls and asks Carol whether they have the same
color. Carol truthfully answers YES or NO. Paul wants to ask the least number of
questions in the worst case to determine the desired property of the coloring.

The first problem of this kind which was considered is the Majority problem,
in which Paul wants to find a ball b such that the number of balls colored with
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the same color as b is greater than n/2, or to declare that there is no such
ball. Saks and Werman [11], later Alonso, Reingold and Schott [4], showed that
n− ν(n) questions are necessary and sufficient for Paul to resolve the Majority
problem with n balls of two colors, where ν(n) is the number of 1’s in the binary
representation of n. Fisher and Salzberg [6] showed that �3n/2� − 2 questions
are necessary and sufficient to solve the Majority problem with n balls and an
unrestricted number of colors. Some variants of the Majority problem were also
considered in [1, 8].

In this paper, we consider the Plurality problem, introduced by Aigner et
al. [2], and the Partition problem. In the Plurality problem, Paul seeks for a ball
such that the number of balls with the same color exceeds the number of balls of
any other color (or he finds out that there is a tie between two or more different
colors). In the Partition problem, Paul wants to partition the balls according to
their colors. Aigner et al. [2, 3] found a strategy to solve the Plurality problem
with n balls of three colors such that Paul asks at most � 5n

3 � − 2 questions. On
the other hand, Carol can force Paul to ask at least 3�n

2 � − 2 questions (when
the balls can have three colors) and at least Ω(nk) questions when the balls
can have k colors. The Plurality problem in the probabilistic setting has been
studied in [7] where the upper and lower bounds of 2

3n+ o(n) on the number of
questions for balls of two colors and the lower bound Ω(nk) for balls of k colors
can be found. Another problem similar to the Plurality problem was studied by
Srivastava [12].

We focus on the case when the balls are colored with three colors and present
a probabilistic strategy for the Plurality problem and both deterministic and
probabilistic strategies for the Partition problem. In the probabilistic setting,
Paul may flip coins and use the outcome to choose his questions. The quality
of a probabilistic strategy is measured as the maximum of the expected number
of Paul’s questions over all inputs. For both the deterministic and probabilis-
tic strategies, we assume that Carol knows the strategy and chooses the worst
coloring. In the deterministic setting, Carol can also choose the coloring on-line
in response to the questions. This is not appropriate for probabilistic strategies,
since we assume that Carol does not know outcome of the coin flips.

Our results are summarized in Table 1. In the case of deterministic strategy
of the Partition problem, we provide matching lower and upper bounds on the
number of Paul’s questions. The result can be generalized for balls with arbitrary

Table 1. Bounds for the Plurality and Partition problems with n balls of three colors

The problem Lower bound Upper bound
The Plurality Problem
Deterministic strategy [2] 3�n

2 � − 2 � 5n
3 � − 2

Probabilistic strategy 3
2n − O

(√
n log n

) 3
2n + O(1)

The Partition Problem
Deterministic strategy 2n − 3 2n − 3
Probabilistic strategy 5

3n − 8
3

5
3n − 8

3 + o(1)
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number of colors (see Section 6). In the probabilistic setting, our bounds for the
Partition problem match up to the o(1) term. For the Plurality problem, we
managed to prove a lower bound in the probabilistic setting which is close to the
lower bound proved by Aigner et al. [2] in the (more constrained) deterministic
setting and we show that the lower bound is asymptotically tight by providing
a matching upper bound.

2 Notation

In this section, we introduce a compact way of representing a deterministic
strategy for Paul, and the state of his information about the colors of the balls
as the strategy proceeds.

The game of Paul and Carol can be viewed as a game on a graph whose
vertices are the balls. Initially the graph is empty. At each turn, Paul chooses
a pair of nonadjacent vertices and adds that edge to the graph. Carol then
colors the edge by red if the two vertices have the same color, or by blue if
the two vertices have a different color. This edge-colored graph represents the
state of Paul’s knowledge and is referred to as Paul’s graph. Notice that each
connected component of red edges consists of vertices corresponding to balls
with the same color. The reduced graph has as its vertex set each of these red
connected components, with two components joined if there is at least one blue
edge between them. In the Partition problem with k colors, the game ends when
the reduced graph is uniquely vertex k-colorable (up to a permutation of the
colors). In the Plurality problem with k colors, the game ends when there is a
vertex v in the reduced graph with the property that in every vertex k-coloring,
v belongs to a largest color class, where the size of a color class is the sum of
orders of the contracted components.

A deterministic strategy for Paul can be represented by a rooted binary tree
in which the left edge from each internal vertex is colored with red and the right
edge with blue. The root is associated with Paul’s first question. The left subtree
represents Paul’s strategy for the case when Carol answers that the colors of the
balls are the same, and the right one for the case when she answers that they
are different. At each node, information on the coloring obtained so far can be
represented by Paul’s graph. For a given coloring of the balls, there is a unique
path from the root to a leaf in the tree. This path in the tree is called the
computation path.

3 Yao’s Principle

Yao [13] proposed a technique for proving lower bounds on probabilistic algo-
rithms which is based on the minimax principle from game theory. Informally,
to prove such a lower bound, instead of constructing a hard coloring of the balls
for every probabilistic algorithm, it is enough to find a probability distribution
on colorings which is hard for every deterministic algorithm. Yao’s technique
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applies to our setting, too. We formulate the principle formally using our no-
tation as a proposition. Since the proof follows the same line as in the original
setting, we do not include it and refer the reader, e.g., to [10–Subsection 2.2.2]
if necessary.

Proposition 1. If for the Plurality or Partition problem with n balls of k col-
ors, there exists a probability distribution on colorings of the balls such that the
expected number of Paul’s questions is at least K for each deterministic strategy,
then for each probabilistic strategy there exists a coloring I of the balls such that
the expected number of Paul’s questions for the coloring I is at least K.

4 Probabilistic Strategy for the Plurality Problem

We can now provide the probabilistic strategy for the Plurality problem:

Theorem 1. There is a probabilistic strategy for the Plurality problem with n
balls of three colors such that the expected number of Paul’s questions does not
exceed 3

2n+O(1) for any coloring of the balls.

Proof. Fix a coloring of the balls and choose any subset B0 of 3n′ balls from
the input, where n′ =

⌊
n
3

⌋
. Partition randomly the set B0 into n′ ordered triples

(ai, bi, ci), 1 ≤ i ≤ n′. For each i, 1 ≤ i ≤ n′, Paul asks Carol whether the balls
ai and bi have the same color and whether the balls bi and ci have the same
color. If Carol answers in both the cases that the balls have different colors, Paul
asks, in addition, whether the colors of the balls ai and ci are the same.

Based on Carol’s answers, Paul is able to classify the triples into three types:

Type A. All the three balls of the triple have the same color. This is the case
when Carol answers both the initial questions positively.

Type B. Two balls of the triple have the same color, but the remaining one
has a different color. This is the case when Carol answers one of the initial
questions positively and the other one negatively, or both the initial questions
negatively and the additional question positively.

Type C. All the three balls have different colors. This is the case when Carol
answers the initial questions and the additional question negatively.

Paul now chooses randomly and independently a representative ball from
each triple of type A or B. Let B be the set of (at most n′) chosen balls. In
addition, he chooses randomly a ball d from B0.

For each ball from the set B, Paul asks Carol whether its color is the same as
the color of d. Let B′ ⊆ B be the set of the balls whose colors are different. Paul
chooses arbitrarily a ball d′ ∈ B′ and compares the ball d′ with the remaining
balls of B′. Paul is able to determine the partition of the balls of B according to
their colors: the balls of B \ B′, the balls of B′ which have the same color as the
ball d′ and the balls of B′ whose color is different from the color of d′.

Finally, Paul determines the partition of all the balls from the triples of type
A or B. The balls contained in a triple of type A have the same color as its
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representative. In the case of a triple of type B, Paul asks Carol whether the
colors of balls d1 and d2 are the same, where d1 is a ball of the triple whose color
is different from the color of the representative, and d2 is a ball of B whose color
is different from the color of the representative. In this way, Paul obtains the
partition of all the balls from triples of type A or B according to their colors.

After at most 2(n−3n′) additional questions, Paul knows the partition of the
balls of B according to their colors, where B is the set of all the n balls except
for the balls of B0 which are contained in triples of type C. Since each triple of
type C contains one ball of each of the three colors, the plurality color of the
balls of B is also the plurality color of all the balls. If there is no plurality color
in B, then there is no plurality color in the original problem either.

Before we formally analyze the described strategy, we explain some ideas
behind it. Let α, β and γ be the fractions of the balls of each of the colors
among the balls of B0. If the ratios α, β and γ are close to 1/3, then a lot of the
balls belong to the triples of type C. Clearly, such balls can be removed from the
problem and we solve the Plurality problem for the remaining balls (this reduces
the size of the problem). However, if the ratios α, β and γ are unbalanced, then
the previous fails to work. But in this case, with high probability, the ball d has
the same color as a lot of the balls of B and Paul does not need to compare too
many balls of B with the ball d′.

We are now ready to start estimating the expected number of Paul’s ques-
tions. The expected numbers of triples of each type are the following:

–
(
α3 + β3 + γ3 +O

( 1
n′
))
n′ triples of type A,

–
(
3(α2β + α2γ + β2α+ β2γ + γ2α+ γ2β) +O

( 1
n′
))
n′ triples of type B, and

–
(
6αβγ +O

( 1
n′
))
n′ triples of type C.

The expected numbers of Paul’s questions to determine the type of the triple are
2, 7

3 and 3 for types A, B and C, respectively. Therefore, the expected number
of Paul’s questions to determine the types of all the triples is:

(
2(α3 + β3 + γ3) + 7(α2β + α2γ + β2α+ β2γ + γ2α+ γ2β) + 18αβγ

)
n′ +O(1)

(1)
Next, we compute the expected number of Paul’s questions to determine the

partition of the balls of B. Fix a single ball b0 out of the 3n′ balls. Assume that
the color of b0 is the color with the fraction α. Since the probability that the
ball b0 is in a triple of type C is 2βγ +O( 1

n′ ), the ball b0 is contained in the set
B with the probability 1

3 −
2
3βγ+O

( 1
n′
)
. If b0 ∈ B and the colors of the balls b0

and d are the same, Paul asks Carol a single question; if b0 ∈ B, the colors of b0
and d are different, and b0 = d′, he asks two questions. The former is the case
with the probability α. Hence, if b0 ∈ B, Paul asks 2 − α questions on average.
We may conclude that in this stage, the expected number of Paul’s questions
involving balls of the color with the fraction α does not exceed:

3αn′
(

1
3
− 2

3
βγ +O

(
1
n′

))
(2− α)
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Hence, the expected number of the questions to determine the partition of B is:

3αn′
(

1
3
− 2

3
βγ +O

(
1
n′

))
(2− α) + 3βn′

(
1
3
− 2

3
αγ +O

(
1
n′

))
(2− β)

+ 3γn′
(

1
3
− 2

3
αβ +O

(
1
n′

))
(2− γ)

= (2− α2 − β2 − γ2)n′ − 2αβγn′(6− α− β − γ) +O(1)
= (2− α2 − β2 − γ2)n′ − 10αβγn′ +O(1) (2)

Next, Paul asks Carol a single question for each triple of type B. The expected
number of such questions is:

3(α2β + α2γ + β2α+ β2γ + γ2α+ γ2β)n′ +O(1) (3)

Finally, Paul asks at most 2(n− 3n′) ≤ 4 questions to find the partition of B.
The expected number of all the questions asked by Paul is given by the sum

of (1), (2) and (3), which is equal to the following expression:
(
2 + 2(α3 + β3 + γ3) + 10(α2β + α2γ + β2α+ β2γ + γ2α+ γ2β)

+ 8αβγ − α2 − β2 − γ2)n′ +O(1) (4)

It can be verified (we leave out the details due to space limitations) that the
maximum of (4) for α, β, γ ∈ [0, 1] with α+β+ γ = 1 is attained for α=β=1/2
and γ = 0 (and the two other symmetric permutations of the values of the vari-
ables α, β and γ). Therefore, the expected number of Paul’s questions does not
exceed:

(
2 +

2 · 2 + 10 · 2 + 8 · 0
8

− 2
4

)
n′ +O(1) =

9
2
n′ +O(1) =

3
2
n+O(1) .

5 Lower Bound for the Plurality Problem

First, we state an auxiliary lemma (the proof is omitted due to space constraints):

Lemma 1. Let n be an even positive integer, and let T be a rooted binary tree
of depth at most n − 1 with

(
n

n/2

)
/2 leaves. Assume that for each inner node w

of T , the edge which leads to its left child is colored by red and the edge which
leads to its right child by blue. The average number of blue edges on the paths
from the root to the leaves in T is at least:

n

2
−O

(√
n log n

)
.

We are now ready to prove the desired lower bound:

Theorem 2. For any probabilistic strategy for the Plurality problem with n balls
of three colors, where n is an even positive integer, there is a coloring of the balls
such that Paul asks at least 3

2n−O
(√
n log n

)
questions on average.



212 Z. Dvořák et al.

Proof. By Yao’s principle (Proposition 1), it is enough to find a probability
distribution on colorings of the balls such that if Paul uses any deterministic
strategy, then he asks at least 3

2n − O
(√
n log n

)
questions on average. The

desired distribution is the uniform distribution on colorings in which half of
balls have the first color and the other half have the second color. There are
no balls of the third color. Clearly, there is no plurality color for any of these
colorings. Let I be the set of all

(
n

n/2

)
such colorings.

Fix a deterministic strategy. Let G be Paul’s final graph for one of the col-
orings from I. We claim that each of the two subgraphs of G induced by the
balls of the same color is connected. Otherwise, let V1 and V2 be the sets of the
vertices corresponding to the balls of the first and the second color, respectively,
and assume that G[V1] contains a component with a vertex set W ⊂ V1. Based
on G, Paul is unable to determine whether the balls of W have the same color
as the balls of V1 \W , and thus he is unable to decide whether there is a plu-
rality color (which would be the case if the balls of W had the third color). We
conclude that Paul’s final graph contains at least n− 2 red edges.

Let T be the rooted binary tree corresponding to Paul’s strategy and let Vlf
be the set of the leaves of T to which there is a valid computation path for a
coloring of I (note that T contains additional leaves corresponding to colorings
not contained in I). Since for each of the colorings of I the two subgraphs
induced by the balls of the same color in Paul’s final graph are connected, each
leaf from Vlf corresponds to exactly two such colorings (which differ just by a
permutation of the two colors). Therefore, Vlf consists of

(
n

n/2

)
/2 leaves of T .

We modify T to a binary tree T ′. T ′ is obtained from the union of all the
paths in T from the root to the leaves of Vlf by contracting of paths formed by
degree-two vertices. T ′ has

(
n

n/2

)
/2 leaves. The edges of T ′ are colored by red

and blue according to whether they join the parent with its left or right child.
The tree T ′ corresponds to a deterministic strategy for distinguishing the

colorings from the set I. At each inner node w of T ′, the edge corresponding to
Paul’s question at the node w joins two different components of Paul’s graph:
otherwise, the answer is uniquely determined by his graph, and the node w has
a single child (there are no colorings of I consistent with the other answer) and
the edge leading from w to its child should have been contracted.

Since all Paul’s questions correspond to edges between different components,
Paul’s final graph (for his strategy determined by T ′) is a forest for each coloring
of I. In particular, Paul’s final graph contains at most n − 1 edges. Therefore,
the depth of T ′ does not exceed n− 1. By Lemma 1, the average number of blue
edges on the path from the root to a leaf of T ′ is at least n

2 −O
(√
n log n

)
. Since

the number of blue edges on such a path is equal to the number of blue edges
in Paul’s final graph if Paul follows the strategy determined by T ′, the average
number of blue edges in Paul’s graphs is at least n

2 −O
(√
n log n

)
.

Observe that for each coloring of I, the edges of the computation path in
T ′ form a subset of the edges of the computation path in T . Therefore, the
average number of blue edges in Paul’s final graphs with respect to the strategy
corresponding to T is also at least n

2 − O
(√
n log n

)
. Since each final graph
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contains also (at least) n− 2 red edges, the average number of Paul’s questions,
which is equal to the average number of edges in the final graph, is at least
3
2n−O

(√
n log n

)
.

6 Deterministic Strategy for the Partition Problem

We first describe Paul’s strategy (note that the considered problem for the num-
ber k of colors larger than the number n of balls is the same as for k = n):

Proposition 2. There is a deterministic strategy for the Partition problem with
n balls of k colors such that Paul always asks at most (k − 1)n −

(
k
2

)
questions

(for n ≥ k).

Proof. Paul’s strategy is divided into n steps. In the i-th step, Paul determines
the color of the i-th ball.

If the first i − 1 balls have only k′ < k different colors, then Paul compares
the i-th ball with the representatives of all the k′ colors found so far. In this
case, Paul finds either that the i-th ball has the same color as one of the first
i− 1 balls, or that its color is different from the colors of all of these balls.

If the first i − 1 balls have k different colors, then Paul compares the i-th
ball with the representatives of k−1 colors. If Paul does not find a ball with the
same color, then the color of the i-th ball is the color with no representative.

In this way, Paul determines the colors of all the balls. We estimate the
number of comparisons in the worst case. Since the first i− 1 balls have at most
i − 1 different colors, the number of comparisons in the i-th step is at most
min{i− 1, k − 1}. Therefore, the number of questions does not exceed:

k∑
i=1

(i− 1) +
n∑

i=k+1

(k − 1) =
k(k − 1)

2
+ (n− k)(k − 1) = n(k − 1)−

(
k

2

)
.

Next, we show that Carol can force Paul to ask (k − 1)n−
(
k
2

)
questions:

Theorem 3. If Paul is allowed to use only a deterministic strategy to solve the
Partition problem with n balls of k colors, then Carol can force him to ask at
least (k − 1)n−

(
k
2

)
questions (for n ≥ k).

Proof. We can assume that Paul never asks a question whose answer is uniquely
determined. Therefore, Carol can answer each question that the colors of the
pair of the balls are different. Let G be Paul’s graph at the end of the game.
Note that all the edges of G are blue because of Carol’s strategy.

Let V1, . . . , Vk be the vertices of G corresponding to the sets of the balls of
the same color. Each of the sets Vi, 1 ≤ i ≤ k, is non-empty: otherwise, there
exist an empty set Vi and a set Vi′ with at least two vertices (recall that n ≥ k).
Move a vertex from Vi′ to Vi. The new partition is also consistent with the graph
G and therefore Paul is unable to uniquely determine the partition.
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Assume now that the subgraph of G induced by Vi ∪ Vi′ for some i and i′,
1 ≤ i < i′ ≤ k, is disconnected. Let W be the vertices of one of the components
of the subgraph. Move the vertices of Vi ∩W from Vi to Vi′ and the vertices
of Vi′ ∩W from Vi′ to Vi. Since the new partition is consistent with the graph
G, Paul cannot uniquely determine the partition of the balls according to their
colors. We may conclude that each set Vi is non-empty and the subgraph of G
induced by any pair of Vi and Vi′ is connected.

Let ni be the number of vertices of Vi. For every i and i′, 1 ≤ i < i′ ≤ k, the
subgraph of G induced by Vi ∪ Vi′ contains at least ni + ni′ − 1 edges because it
is connected. Since the sets Vi are disjoint, the number of edges of G, which is
the number of questions asked by Paul, is at least the following:

∑
1≤i<i′≤k

(ni + ni′ − 1) =
k∑

i=1

(k − 1)ni −
∑

1≤i<i′≤k

1 = (k − 1)n−
(
k

2

)
.

7 Probabilistic Strategy for the Partition Problem

We first state an auxiliary lemma whose proof is omitted due to space limitations:

Lemma 2. Consider a random ordering of n balls, out of which, ξn balls are
white and (1−ξ)n are black. The expected length of the initial segment comprised
entirely of white balls in the random ordering is at least:

min
{

9,
ξ

1− ξ −O
(

log n√
n

)}
.

We now describe Paul’s strategy:

Theorem 4. There is a probabilistic strategy for the Partition problem with n
balls of three colors such that the expected number of Paul’s questions does not
exceed 5

3n−
8
3 +O

(
log n√

n

)
for any coloring of the balls.

Proof. Fix a coloring of the n balls. Let α, β and γ be fractions of the balls of
each of the three colors in the coloring. Paul first chooses a random ordering of
the balls. His strategy is divided into n steps, and in the i-th step Paul determines
the color of the i-th ball (in the random ordering).

Paul compares the i-th ball with a representative of a randomly chosen color
among the colors of the first i − 1 balls. If Carol answers that the balls have
different colors and the first i − 1 balls have two or three distinct colors, then
Paul also compares the i-th ball with a representative of another color (in case
of three colors, again chosen in random).

If the input does not contain balls of all three colors, then the expected num-
ber of Paul’s questions in each step is at most 3/2. Consequently, the expected
number of all the questions asked by Paul does not exceed 3

2n, and the statement
of the lemma readily follows. Therefore, we assume in the rest that there is a
ball of each of the three colors, i.e., α, β, γ > 0.
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Fix an ordering of the balls. Let j be the largest integer such that the first j
balls have the same color, and j′ the largest integer such that the first j′ balls
have at most two different colors. We compute the expected number of Paul’s
questions for the fixed ordering. In the first j+1 steps (except for the first step),
Paul always asks a single question. At each of the next j′ − j − 1 steps, Paul
asks 3/2 questions on average. In the (j′ + 1)-th step, Paul asks two questions.
At each of the n − j′ − 1 remaining steps, Paul asks 5/3 questions on average.
Hence, the expected number of Paul’s questions for the fixed ordering is:

j +
3
2
(j′ − j − 1) + 2 +

5
3
(n− j′ − 1) =

5
3
n− 1

2
j − 1

6
j′ − 7

6
.

The expected number of the questions (averaged through all the orderings) is:

5
3
n− 1

2
j − 1

6
j′ − 7

6
(5)

where j and j′ are the expected lengths of the initial segments in the random
ordering comprised by balls of one color and two colors, respectively.

Let jA, jB and jC be the expected lengths of initial segments in the ordering
formed entirely by balls of the color with the fractions α, β and γ, respectively.
Similarly, jAB , jAC and jBC are the expected lengths of initial segments formed
by balls of two indexed colors. Clearly, the following holds:

j = jA + jB + jC

j′ = jAB + jAC + jBC − jA − jB − jC

If one of the numbers jA, jB , jC , jAB , jAC and jBC is at least 9, then the
sum j + j′ is at least 9, and the expected number of Paul’s questions is at least
5
3n−

9
6 −

7
6 = 5

3n−
8
3 . If none of the numbers exceed 9, we have by Lemma 2:

j = α
1−α + β

1−β + γ
1−γ +O

(
log n√

n

)
and

j + j′ = α+β
1−α−β + α+γ

1−α−γ + β+γ
1−β−γ +O

(
log n√

n

)
.

Since the function ξ
1−ξ is convex and α + β + γ = 1, the minimum of both

the expressions on the right hand side in the above equations is attained for
α = β = γ = 1/3. Therefore, we have the following:

j ≥ 3 · 1/3
1− 1/3

−O
(

log n√
n

)
=

3
2
−O

(
log n√
n

)
(6)

j + j′ ≥ 3 · 2/3
1− 2/3

−O
(

log n√
n

)
= 6−O

(
log n√
n

)
(7)

Plug (6) and (7) to the expression (5) for the expected number of questions:

5
3
n− 1

3
j− 1

6
(
j + j′

)
− 7

6
≤ 5

3
n− 1

2
−1− 7

6
+O

(
log n√
n

)
=

5
3
n− 8

3
+O

(
log n√
n

)
.
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A proof of the next lemma is due to space limitations:

Lemma 3. Let T be a rooted binary tree with N leaves. Assume that on each
path from the root of T to a leaf, at least � inner nodes have the following property
("): the number of the leaves in the left subtree is precisely half of the number of
the leaves in the right subtree. The average length of the path from the root to a
leaf of T is at least the following:

log2N +
(

5
3
− log2 3

)
�

We now show that the number of Paul’s questions in Theorem 4 is optimal:

Theorem 5. For any probabilistic strategy for the Partition problem with n balls
of three colors, there is a coloring of the balls which forces Paul to ask at least
5
3n−

8
3 questions on average.

Proof. By Yao’s principle (Proposition 1), it is enough to find a probability
distribution on colorings such that if Paul uses any deterministic strategy, then he
asks at least 5

3n−
8
3 questions on average. We claim that the uniform distribution

on all 3n possible colorings has this property.
Fix a deterministic strategy and let T be the corresponding binary tree. Since

Paul is able to solve the Partition problem using this strategy, the computation
paths may end in the same leaf for at most six different colorings (they can differ
only by a permutation of the colors). Hence, T has at least N = 3n/6 leaves.

Consider an inner node w of T at which the question corresponds to an edge
e between two different components of Paul’s graph. Let I be the set of colorings
whose computation path reaches w. Since e joins two different components, for
exactly one third of the input colorings Carol answers that the balls have the
same colors, and for exactly two thirds she answers that their colors are different:
for each coloring X ∈ I, the set I contains all the five other colorings obtained
from X by permutation of the colors in one of the components. Hence, if the
question at w corresponds to an edge between two different components of Paul’s
graph, then w has the property (") from the statement of Lemma 3.

Observe that Paul’s final graph is connected: otherwise, permute the colors
of the balls in one of the components and keep the colors of the remaining balls.
This yields a different partition consistent with Paul’s final graph, and Paul is
unable to uniquely determine the partition. Since Paul’s final graph is connected,
on each path from the root to a leaf, there are at least n−1 nodes in which Paul
asks a question corresponding to an edge between two components. Therefore,
on each such path, at least n− 1 nodes have the property (") from Lemma 3.

By Lemma 3, the average length of the path from the root to a leaf of T ,
which is equal to the expected number of Paul’s questions, is at least:

log2
3n

6
+
(

5
3
− log2 3

)
(n− 1) = log2 3 · n− log2 3− 1 +

(
5
3
− log2 3

)
(n− 1)

=
5
3
n− 1− 5

3
=

5
3
n− 8

3
.
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The arguments of this section generalize to colorings with more colors, but
the corresponding lower and upper bounds do not match: a probabilistic strategy
similar to that in Proposition 4 requires k2+k−2

2k n + O(1) questions on average
for the Partition problem with n balls of k colors. On the other hand, the tree of
any deterministic strategy must contain at least n−1 nodes w on any path from
the root to a leaf such that the subtree of the left child of w contains exactly the
fraction of 1/k of the leaves of the whole subtree of w. This yields a lower bound
of
(

k−1
k log2(k − 1) + 1

)
n−Θ(k log k) on the expected number of questions.
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7. Král’ D., Sgall J., Tichý T.: Randomized strategies for the plurality problem, in
preparation.

8. De Marco G., Pelc A.: Randomized algorithms for determining the majority on
graphs, in: Rovan B., Vojtás P. (eds.): MFCS 2003, LNCS 2747, Springer-Verlag,
Berlin, Heidelberg, 2003, 368–377.
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Abstract. We develop for set cover games several general cost-sharing
methods that are approximately budget-balanced, core, and/or group-
strategyproof. We first study the cost sharing for a single set cover game,
which does not have a budget-balanced core. We show that there is no
cost allocation method that can always recover more than 1

ln n
of the

total cost if we require the cost sharing being a core. Here n is the
number of all players to be served. We give an efficient cost allocation
method that always recovers 1

ln dmax
of the total cost, where dmax is the

maximum size of all sets. We then study the cost allocation scheme for all
induced subgames. It is known that no cost sharing scheme can always
recover more than 1

n
of the total cost for every subset of players. We

give an efficient cost sharing scheme that always recovers at least 1
2n

of
the total cost for every subset of players and furthermore, our scheme
is cross-monotone. When the elements to be covered are selfish agents
with privately known valuations, we present a strategyproof charging
mechanism, under the assumption that all sets are simple sets, such that
each element maximizes its profit when it reports its valuation truthfully;
further, the total cost of the set cover is no more than ln dmax times that
of an optimal solution. When the sets are selfish agents with privately
known costs, we present a strategyproof payment mechanism in which
each set maximizes its profit when it reports its cost truthfully. We also
show how to fairly share the payments to all sets among the elements.

1 Introduction

Generalized Set Cover Problem. Let U = {e1, e2, · · · , en} be a finite set,
and let S = {S1, S2, · · · , Sm} be a collection of multisets (or sets for short) of
U . For each ei ∈ U and each Sj ∈ S, we denote the multiplicity of ei in Sj by
kj,i. Each Sj is associated with a cost cj . For any X ⊆ S, let C(X ) denote the
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total costs of the sets in X , i.e., C(X ) =
∑

Sj∈X cj . For a given k > 0 and a set
of element coverage requirements {r1, r2, · · · , rn}, a k-partial-cover C is defined
to be a subset {Sj1 , Sj2 , · · · , Sjl

} of S such that
∑n

i=1 min{ri,
∑l

t=1 kjt,i} ≥ k.
The generalized set cover problem is to compute an optimum k-partial-cover Copt

with the minimum cost C(Copt).
This problem becomes the traditional multicover problem [1, 2] when we set

k =
∑n

i=1 ri and kj,i = 1 for all Sj and ei, as each element ei should be fully
covered and each set Sj is a simple set. When we set ri = 1, it becomes the
traditional partial cover problem [3]. This problem is therefore a natural ex-
tension of the classic set cover problem by allowing partial cover, multiset, and
element coverage requirement greater than 1. Accordingly, the greedy algorithm
for this problem is a combination of the algorithms designed for partial cover
and multicover [1, 2, 3].

Set Cover Game. Consider the following scenario: a company can choose from
a set of service providers S = {S1, S2, · · · , Sm} to provide services to a set of
service receivers U = {e1, e2, · · · , en}.
– With a fixed cost cj , each service provider Sj can provide services to a fixed

subset of service receivers.
– There may be a limit kj,i on the number of units of service that a service

provider Sj can provide to a service receiver ei. For example, each service
provider may be a cargo company that is transporting goods to various cities
(the service receivers), and the amount of goods that can be transported to a
particular city daily is limited by the number of trains/trucks that are going
to that city everyday.

– Each service receiver ei may have a limit ri on the number of units of service
that it desires to receive (and is willing to pay for).

– There may be a limit k on the total number of units of service that the
service providers shall provide to the service receivers.
The problem can be modeled by the generalized set cover problem defined pre-

viously. There may be different types of games according to various conditions:
1. Each service receiver ei has to receive at least ri units of service, and the

costs incurred by the service providers will be shared by the service receivers.
2. Each service receiver ei declares a bid bi,r for the r-th unit of service it shall

receive, and is willing to pay for it only if the assigned cost is at most bi,r.
3. Each service provider Sj declares a cost cj , and is willing to provide the

service only if the payment received is at least cj .
There are different algorithmic issues for these games. For example, for Game

1, we shall define a cost allocation method so that every subset of service receivers
feel that the total cost they need to pay is “fair” according to certain criteria. For
Games 1 and 2, the cost allocation method, by charging service receivers, needs
to recover (either entirely or a constant fraction of) the total cost of the chosen
service providers. For Games 2 and 3, we need a mechanism (for determining
costs charged to service receivers and payments paid to service providers) that
can guarantee that the players are truthful with their declaration of bids/costs.
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Our Results. We first study how we share the cost of the selected service
providers among the service receivers such that some fairness criteria are met. We
present a cost sharing method that is 1

ln dmax
-budget-balanced and core, where

dmax is the maximum set size. The bound 1
ln dmax

is tight. We also present a cost
sharing method that is 1

2n -budget-balanced core and cross-monotone, which is
almost the optimum [4].

We then design greedy set cover methods that are cognizant of the fact that
the service providers or the service receivers are selfish and rational. By “selfish,”
we mean that they only care about their own benefits without consideration for
the global performances or fairness issues. By “rational,” we mean that when
the methods of computing the output for the set cover game are instituted, they
will always choose their actions to maximize their benefits. When the elements
to be covered are selfish agents with privately known valuations, we present a
strategyproof charging mechanism, under the assumption that all sets are simple
sets, such that each element maximizes its profit when it reports its valuation
truthfully; further, the total cost of the set cover is no more than ln dmax times
that of an optimal solution for these selected service receivers and their coverage
requirements. When the sets are selfish agents with privately known costs, we
present a strategyproof payment mechanism in which each set maximizes its
profit when it reports its cost truthfully. We also show how to fairly share the
payments to all sets among the elements.

Paper Organization. In Section 2, we give the exact definitions of fair cost
sharing and mechanism design. In Section 3, we study how to fairly share the cost
of the service providers among the covered service receivers when the receivers
must receive the service. We show in Section 4 how to charge the cost of service
providers to the selfish service receivers when each receiver has a valuation on
the r-th cover received. We then show in Section 5 a strategyproof payment
scheme to the selfish service providers when each has a privately known cost.
We conclude our paper in Section 6.

2 Preliminaries and Prior Art

2.1 Preliminaries

Algorithm Mechanism Design (AMD). Assume that there are n agents.
Each agent i, for i ∈ {1, · · · , n}, has some private information ti, called its type.
All agents’ types define a type vector t = (t1, t2, · · · , tn). A mechanism defines,
for each agent i, a set of strategies Ai. For each strategy vector a = (a1, · · · , an),
i.e., agent i plays a strategy ai ∈ Ai, the mechanism computes an output o =
O(a) and a payment vector P(a) = (p1, · · · , pn), where pi = Pi(a) is the amount
of money given to the participating agent i. Let vi(ti, o) denote agent i’s prefer-
ences to an output o and ui(ti, o(a), pi(a)) denote its utility at the outcome (o, p)
of the game. We assume that agents are rational and have quasi-linear utility
functions. The utility function is quasi-linear if ui(ti, o) = vi(ti, o)+pi. An agent
is called rational if it always adopts its best strategy (called dominant strategy)
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that maximizes its utility regardless of what other agents do. A direct-revelation
mechanism is incentive compatible (IC) if reporting valuation truthfully is a dom-
inant strategy. Another common requirement in the literature for mechanism de-
sign is the so called individual rationality (IR): the agent’s utility of participating
in the output of the mechanism is not less than the utility of the agent if it did
not participate at all. A mechanism is called truthful or strategyproof if it satisfies
both IC and IR properties. To make the mechanism tractable, both methods O()
and P() should be computable in polynomial time. A mechanism M = (O,P) is
β-efficient if ∀t,

∑n
i=1 vi(ti,O(t)) ≥ β ·maxo

∑n
i=1 vi(ti, o). Obviously for the set

cover game, we cannot design an o(lnn)-efficient polynomial-time computable
strategyproof mechanism unless NP ⊂ DTIME(nlog log n) [2].

Cost Sharing. Consider a set U of n players. For a subset S ⊆ U of players,
let C(S) be the cost of providing service to S. Here C(S) could be the minimum
cost, denoted by OPT(S), or the cost computed by some algorithm A, denoted
by A(S). We always assume that the cost function C(S) is cohesive, i.e., for any
two disjoint subsets S1 and S2, C(S1 ∪ S2) ≤ C(S1) + C(S2). A cost sharing
scheme is simply a function ξ(i, S) with ξ(i, S) = 0 for i ∈ S, for every set
S ⊆ U of players. An obvious criterion is that the sharing method should be
fair. While the definition of budget-balance is straightforward, defining fairness
is more subtle: many fairness concepts were proposed in the literature, such as
max-min [5], min-max [6], core and bargaining set [7]. Typically, the following
three properties are required by a cost sharing scheme.

1. (α-budget-balance) For a given parameter α ≤ 1, α ·C(U) ≤
∑

i∈U ξ(i,U)
≤ C(U). If α = 1, we call the cost sharing scheme budget-balanced.

2. (fairness under core) For any subset S ⊆ U ,
∑

i∈S ξ(i,U) ≤ OPT(S).
3. (Cross-monotonicity) For any two subsets S ⊆ T and i ∈ S, ξ(i, S) ≥
ξ(i, T ).

When only the first two conditions are satisfied, we call the cost sharing
scheme to be in the α-core. When all three conditions are met, we call the cost
sharing scheme to be cross-monotone α-core. When each player i has a valuation
vi on getting the service, a mechanism should first decide the output of the game
(who will get the service), and then decide what is the share of each selected
player (what is the payment method). It is well-known that a cross-monotone
cost sharing scheme implies a group-strategyproof mechanism [8]. Notice that the
cross-monotone property is not the necessary condition for group-strategyproof.
Naturally, several additional properties are required for a cost sharing scheme
when every player has a valuation on getting the service.

1. (Incentive Compatibility) Assume that the valuation by player i on get-
ting the service is vi. Let b = (b1, b2, · · · , bn) be the bidding vector of n
players. Let O(b) = (o1, o2, · · · , on) denote whether a player is selected to
get the service or not and P(b) be the charge to player i, i.e., the mecha-
nism is M = (O(b),P(b)). It satisfies IC if every player maximizes its profit
vi · oi − pi when bi = vi.

2. (No Positive Transfer) For every player i, pi ≥ 0.
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3. (Individual Rationality) For every player i, vi · oi − pi ≥ 0.
4. (Consumer Sovereignty) Fix the bids of all other players, there exists a

value τi such that player i is guaranteed to get the service when its bid is
larger than τi.

2.2 Prior Arts on Cost Sharing and Algorithm Mechanism Design

Although the traditional set cover problem (without multisets and partial-cover
requirement) can be viewed as a special case of multicast, several results were
proposed specifically for set cover in selfish environment. Devanur et al. [9] stud-
ied, for the set cover game and facility location game, how the cost of shared
resource is to be distributed among its users in such a way that revealing the
true valuation is a dominant strategy for each user. Their cost sharing method
is not in the core of the game. One of the open questions left in [9] is to design
a strategyproof cost sharing method for multicover game in which the bidders
might want to get covered multiple times. For facility location game, Pál and
Tardos [10] gave a cost sharing method that can recover 1

3 of the total cost, and
recently, Immorlica et al. [4] showed that this is the best achievable upper bound
for any cross-monotonic cost sharing method. Sharing the cost of the multicast
structure among receivers was studied in [8, 11, 12, 13, 14, 15, 16] so some fairness
is accomplished.

3 Cost Sharing Among Unselfish Service Receivers

In this section, we study how to share the cost of the service providers among
a given set of service receivers. For this scenario, it is difficult to find realistic
examples where a partial cover is desired. Therefore, in the remainder of this
section, we only consider the multiset multicover problem, i.e., k =

∑n
i=1 ri.

However, the results presented here can easily be generalized to the partial cover
case, should such a scenario arise.

3.1 α-Core

Given a subset of elements X, let OPT(X) denote the cost of an optimum
cover Copt(X) of X. This cost function clearly is cohesive: for every partition
T1, T2, · · · , Tt of U , OPT(U) ≤

∑t
i=1 OPT(Ti). A cost allocation for U is a

n-dimensional vector x = (x1, x2, · · · , xn) that specifies for each element ei ∈ U
the share xi ≥ 0 of the total cost of serving U that ei shall pay. Ideally, when
the set of elements to be covered is fixed to be U , we want the cost allocation x
to be budget-balanced and fair, i.e., being in core. However, a simple example
in [17] shows that there is no budget-balanced core for the set-cover game. We
then relax the notion of budget-balance to the notion of α-budget-balance for
some α ≤ 1. See [17] for the proof of the achievable α-core.

Theorem 1. For the set cover game, no cost allocation method is α-core for
α > 1

ln n .
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We then give a cost allocation method that can recover 1
ln dmax

of the total
cost OPT(U) for a multiset multicover game, where dmax = max1≤j≤m |Sj |.
Without loss of generality, we assume that dmax ≤

∑n
i=1 ri. The basic approach

of our cost allocation method is as follows. We first run the greedy Algorithm
1 to find a set cover Cgrd with an approximation ratio of ln dmax. Starting with
Cgrd = ∅, the greedy algorithm adds to Cgrd a set Sjt′ at each round t′. After
the s-th round, we define the remaining required coverage r′

i of an element ei to
be ri −

∑s
t′=1 kjt′ ,i. For any Sj ∈ Cgrd, the effective coverage k′

j,i of ei by Sj is
defined to be min{kj,i, r

′
i}, the value vj of Sj is defined to be

∑n
i=1 k

′
j,i, and the

effective average cost of Sj is defined to be cj

vj
.

Algorithm 1 Greedy algorithm for multiset multicover problem.
1: Cgrd←∅; r′

i←ri for each ei.
2: while U = ∅ do
3: pick the set St′ in S \ Cgrd with the minimum effective average cost.
4: Cgrd←Cgrd ∪ {St′}.
5: for all ei ∈ U do
6: r′

i←max{0, r′
i − kt′,i}.

7: if r′
i = 0 then U←U \ {ei}.

The greedy algorithm will select a set Sj with the least effective average cost.
For any ei and r such that ri−r′

i+1 ≤ r ≤ ri−r′
i+k

′
j,i, we let price(i, r) = cj

vj
. Let

x′
i =

∑ri

r=1 price(i, r) and xi = x′
i

ln dmax
. We claim the following theorem (see [17]):

Theorem 2. The above-defined cost allocation x is a 1
ln dmax

-core.

Recall that the core we defined, given a set of players U , required that∑
ei∈T ξ(i,U) is at most the optimum cost of providing service to elements in T .

For a set cover game, clearly it is NP-hard to find the optimum cost of covering
T . Naturally, one may relax the α-core as follows: a cost sharing method ξ(i, ·)
is called a relaxed α-core if (1) α · Cgrd(U) ≤

∑
i∈U ξ(i,U) ≤ Cgrd(U); and (2)∑

i∈T ξ(i,U) ≤ Cgrd(T ) for every subset T ⊆ U . Even we relax the definition of
the core to this, we can still prove in [17] that with the cost function computed
by the greedy algorithm, there is no cost sharing method that is a relaxed α-core
for α = Ω( 1

ln n ).

3.2 Cross-Monotone α-Core

Clearly, if a cost sharing scheme is cross-monotone α-core then every cost allo-
cation method ξ(·, S) induced on a subset S of players is always α-core, but the
reverse is not true. From Theorem 1, clearly no cost sharing scheme for the set
cover game is cross-monotone α-core for α = 1

ln n . Recently, it was claimed in [4]
that for set cover game, there is no cross-monotone α-core cost sharing scheme
for α = 1

n + ε.
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For generalized set cover games, we will present a cross-monotone cost sharing
scheme ξ(i, S) (see Algorithm 2) that can recover 1

2n of the total cost. We show an
example in [17] that the bound 1

2n is tight for Algorithm 2. Further, the bound
is tight, for set cover games without multisets (but still allowing multicover
requirements): our cross-monotone cost sharing scheme ξ(i, S) can recover 1

n of
the total cost.

Algorithm 2 Cost sharing for multiset multicover game with elements T
1: Set CA ← ∅, Y (i, j) = 0 and ζ(i, j) = 0 for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Here
Y (i, j) denotes how many cover requirements of element ei are provided by
set Sj , and ζ(i, j) denotes the fraction cost of set Sj shared by the element
ei.

2: for all element ei ∈ T do
3: Set r′

i ← ri;
4: while r′

i > 0 do
5: Find the set St with the minimum ratio minSj∈S−CA

cj

min(kj,i,r′
i)

;
6: Y (i, t)← min(kj,i, r

′
i); r

′
i ← r′

i − Y (i, t); and CA ← CA ∪ {St}.
7: for all set Sj do
8: if

∑
1≤i≤n Y (i, j) > 0 then ρj ← cj∑

1≤i≤n Y (i,j) ;
9: for all element ei ∈ T do

10: Set ζ(i, j) = Y (i, j) · ρj .
11: for all element ei ∈ T do
12: Set ξ′(i, T ) =

∑
1≤j≤m ζ(i, j) and ξ(i, T ) =

∑
1≤j≤m ζ(i,j)

2|T | .

Theorem 3. The cost sharing scheme ξ(·, ·) is a cross-monotone 1
2n -core and

is cross-monotone 1
n -core for set cover game when every set Sj is a simple set.

4 Cost Sharing Among Selfish Service Receivers

In Section 3 we assumed that all elements (service receivers) are unselfish and
all their coverage requirements are to be satisfied. In this section, we consider
the problem of selecting service providers under the constraint of a collection of
bids B = B1 ∪B2 ∪ · · · ∪Bn. Each Bi contains a series of bids bi,1, bi,2, · · · , bi,ri ,
where bi,r denotes the declared price that element ei is willing to pay for the
r-th coverage (i.e., the valuation of the r-th coverage). In this scenario, we may
also consider partial cover, as the total number of units of service available may
be limited by a constant k.

We assume that bi,1 ≥ bi,2 ≥ · · · ≥ bi,ri
. This is often true in realistic situ-

ations: the marginal valuations are usually decreasing. A bid bi,r will be served
(and the subsequent bid bi,r+1 will be considered) only if bi,r ≥ price(i, r), where
price(i, r) is the cost to be paid by ei for its r-th coverage. Further, to guarantee
that the mechanism is both strategyproof and budget-balanced, we assume that
each set is a simple set.
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We use a greedy algorithm (see Algorithm 3) similar to the one for the tra-
ditional set cover game [9]. Informally speaking, we start with y = 0, where y
is the cost to be shared by each bid served. We raise y until there exists a set
Sj whose cost can be sufficiently covered by the element copies in Sj , if each
element copy needs to pay y. To adapt to the multicover scenario, we make the
following changes:
" For any set Sj ∈ Cgrd and any ei, we define the collection of alive bids B(j)

i of
ei with respect to Sj to be {bi,ri−r′

i+1} if k′
j,i > 0 (i.e., k′

j,i = 1 since Sj is a
simple set) and bi,ri−r′

i+1 ≥ y, or ∅ if otherwise. That is, if y is the cost to be

paid for each bid served, B(j)
i contains the bid of ei covered by Sj that can

afford the cost (if any).
" Define the value vj of Sj as

∑n
i=1 |B

(j)
i |, and its effective average cost as cj

vj
.

Algorithm 3 Cost sharing for multicover game with selfish receivers.
1: Cgrd(B)←∅; A←∅; y←0; k′←k; B′ = ∅;
2: while A = U and k′ > 0 do
3: Raise y until one of the two events happens:
4: if B(j)

i = ∅ for all Sj then U←U \ {ei};
5: if cj ≤ vj · y for some set Sj then
6: Cgrd(B)←Cgrd(B)

⋃
{Sj}; k′←k′ − vj ;

7: for all element ei with B(j)
i = ∅ do

8: price(i, ri − r′
i + 1)← cj

vj
; B′←B′ ∪ {bi,ri−r′

i+1};
9: r′

i←r′
i − 1;

10: if r′
i = 0 then A←A

⋃
{ei};

11: update all B(j′)
i for all Sj′ ∈ Cgrd and ei ∈ Sj

⋂
Sj′ ;

When the algorithm terminates, B′ contains all bids (of all elements) that
are served. We prove the following theorem about this mechanism (see [17] for
proof):

Theorem 4. Algorithm 3 defines a strategyproof mechanism. Further, the total
cost of the sets selected is no more than ln dmax times that of an optimal solution.

In [9] multicover game was also considered. However, the algorithm used is dif-
ferent from ours and also they did not assume that the bids by the same element
are non-increasing, and their mechanism is not strategyproof.

5 Selfish Service Providers

The underline assumption made so far in previous sections is that the service
providers are truthful in revealing their costs of providing the service. In this
section, we will address the scenario when service providers are selfish in revealing
their costs.
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5.1 Strategyproof Mechanism

We want to find a subset of agents D such that
⋃

j∈D Sj has ri copies of element
ei for every element ei ∈ U . Let c = (c1, c2, · · · , cm). The social efficiency of the
output D is −

∑
j∈D cj , which is the objective function to be maximized. Clearly

a VCG mechanism [18, 19, 20] can be applied if we can find the subset of S that
satisfies the multicover requirement of elements in U with the minimum cost.
Unfortunately this is NP-hard. Let Cgrd(S, c,U, r) be the sets selected from S
(with cost specified by a cost vector c = (c1, · · · , cm)) by the greedy algorithm to
cover elements in U with cover requirement specified by a vector r = (r1, · · · , rn)
(see Algorithm 1). We assume that the type of an agent is (Sj , cj), i.e., every
service provider j could lie not only about its cost cj but also about the elements
it could cover. This problem now looks very similar to the combinatorial auction
with single minded bidder studied in [21]. We show in [17] that the mechanism
M = (Cgrd,PV CG) is not truthful, i.e., use Algorithm 1 to find a set cover,
and apply VCG mechanism to compute the payment to the selected agents: the
payment to an agent j is 0 if Sj ∈ Cgrd; otherwise, the payment to a set Sj ∈ Cgrd

is PV CG
j = C(Cgrd(S \ {Sj}, c|j∞,U, r))−C(Cgrd(S, c,U, r)) + cj . Here C(X ) is

the total cost of the sets in X ⊆ S.
For the moment, we assume that agent j won’t be able to lie about its element

Sj . We will drop this assumption later. Clearly, the greedy set cover method
presented in Algorithm 1 satisfies a monotone property: if a set Sj is selected
with a cost cj , then it is still selected with a cost less than cj . Monotonicity
guarantees that there exists a strategyproof mechanism for generalized set cover
games using Algorithm 1 to compute its output. We then show how to compute
the payment to each service provider efficiently. We assume that for any set Sj ,
if we remove Sj from S, S still satisfies the coverage requirements of all elements
in U . Otherwise, we call the set cover problem to be monopoly : the set Sj can
charge an arbitrarily large cost in the monopoly game. The following presents
our payment scheme for multiset multicover set cover problem.

Algorithm 4 Strategyproof payment Pgrd
j to service provider Sj ∈ Cgrd

1: Cgrd←∅ and s←1;
2: k′←k, r′

i = ri for each ei;
3: while k′ > 0 do
4: pick the set St = Sj in S \ Cgrd with the minimum effective average cost;
5: Let vt and vj be the values of the sets St and Sj at this moment;
6: κ(j, s)←vj

vt
ct and s←s+ 1; Cgrd←Cgrd ∪ {St}; k′←k′ − vt;

7: for each ei, r′
i←max{0, r′

i − kt,i};
8: Pgrd

j = maxs−1
t=1 κ(j, t) is the payment to selfish service provider Sj .

We show in [17] that the mechanism M = (Cgrd,Pgrd) is strategyproof (when
the agent j does not lie about the set Sj of elements it can cover) and the payment
Pgrd

j is the minimum to the selfish service provider j among any strategyproof
mechanism using Algorithm 1 as its output. We now consider the scenario when
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agent j can also lie about Sj . Assume that agent j cannot lie upward1, i.e., it
can only report a S′

j ⊆ Sj . We argue that agent j will not lie about its elements
Sj . Notice that the value κ(j, s) computed for the s-th round is κ(j, s) = vj

vt
ct =

∑
1≤i≤n min(r′

i,kj,i)
∑

1≤i≤n min(r′
i,kt,i)

ct. Obviously vj cannot increase when agent j reports any set

S′
j ⊆ Sj . Thus, falsely reporting a smaller set S′

j will not improve the payment
of agent j.

Theorem 5. Algorithm 1 and 4 together define a ln dmax-efficient strategyproof
mechanism M = (Cgrd,Pgrd) for multiset multicover set cover game.

5.2 Sharing the Payment Fairly

In the previous subsection, we only define what is the payment to a selfish
service provider Sj . A remaining question is how the payment should be charged
fairly (under some subtle definitions) to encourage cooperation among service
receivers. One natural way of defining fair payment sharing is to extend the
fair cost sharing method. Consider a strategyproof mechanism M = (O,P). Let
P(T ) be the total payment to the selfish service providers when T is the set of
service receivers to be covered. A payment sharing scheme is simply a function
π(i, T ) such that π(i, T ) = 0 for any element ei ∈ T . A payment sharing scheme is
called α-budget-balanced if α ·P(T ) ≤

∑
ei∈T π(i, T ) ≤ P(T ). A payment sharing

scheme is said to be a core if
∑

ei∈S π(i, T ) ≤ P(S) for any subset S ⊂ T . A
payment sharing scheme is said to be an α-core if it is α-budget-balanced and
it is a core. For payment method Pgrd, we prove in [17] that

Theorem 6. There is no α-core payment sharing scheme for Pgrd if α > 1
ln n .

It is easy to show that if we share the payment to a service provider equally
among all service receivers covered by this set, the scheme is not in the core
of the game. We leave it as an open problem whether we can design an α-core
payment sharing scheme for the payment Pgrd with α = O( 1

ln n ).
In the next, we study the cross-monotone payment sharing scheme. A pay-

ment sharing scheme is said to be cross-monotone if π(i, T ) ≤ π(i, S) for any
two subsets S ⊂ T and i ∈ S. A payment sharing scheme is said to be a cross-
monotone α-core if it is α-budget-balanced and cross-monotone, and it is a core.
We propose the following conjecture.

Conjecture 1. For the strategyproof mechanismM = (Cgrd,Pgrd) of a set cover
game, there is no payment sharing scheme π(·, ·) that is cross-monotone α-core
for α = 1

n + ε.

In the remaining of this section we will present a cross-monotone budget-
balanced payment sharing scheme for a strategyproof payment scheme of the

1 This can be achieved by imposing a large enough penalty if an agent could not
provide the claimed service when it is selected.
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set cover game. Our payment sharing scheme is coupled with the following least
cost set mechanism M = (Clcs,P lcs). It uses the output called least cost set
Clcs (described in Algorithm 5): for each service receiver ei, we find the service
provider Sj with the least cost efficiency cj

min(ri,kj,i)
to cover the element ei.

New cost efficient sets are found till the cover requirement of ei is satisfied. The
payment (described in Algorithm 6) to a set Sj is defined as P lcs

j = maxei∈U p
i
j ,

where pi
j is the largest cost that Sj can declare while Sj is still selected to cover

ei. If the set Sj is not selected to cover ei, then pi
j = 0.

Algorithm 5 Least cost set greedy for multiset multicover game.
1: Let Clcs ← ∅.
2: for all element ei ∈ T do
3: Let r′

i ← ri;
4: while r′

i > 0 do
5: Find the set St with the minimum ratio minSj∈S−Clcs

cj

min(kj,i,r′
i)

;
6: r′

i ← r′
i −min(kj,i, r

′
i); Clcs ← Clcs ∪ {St}.

Algorithm 6 Compute the payment P lcs
j to a set Sj in Clcs

1: Let Clcs ← ∅, pi
j = 0 for 1 ≤ i ≤ n and s = 1;

2: for all element ei ∈ T do
3: Let r′

i ← ri;
4: while r′

i > 0 do
5: Find the set St = Sj with the minimum ratio

minSx∈S−Clcs−{Sj}
cx

min(kx,i,r′
i)

;

6: κ(j, i, s) = min(kj,i,r
′
i)

min(kt,i,r′
i)
ct; r′

i ← r′
i − min(kj,i, r

′
i); Clcs ← Clcs ∪ {St} and

s←s+ 1;
7: pi

j←max1≤x<s κ(j, i, s);
8: P lcs

j ←max1≤i≤n p
i
j ;

Theorem 7. The mechanism M = (Clcs,P lcs) is 1
2n -efficient and strategyproof.

We then study how we charge the service receivers so that a budget-balance
is achieved and the charging scheme also is fair under some concepts. Notice
that, given a subset of elements T , we can view the total payments P(T ) to
all service providers covering T as a “cost” to T . The payment computed by
mechanism M = (Clcs,P lcs) clearly is cohesive. Then naturally, we could use the
cost-sharing schemes studied before to share this special cost among elements.
However, it is easy to show by example that the previous cost-sharing schemes
(studied in Section 3) are not in the core and also not cross-monotone.

Roughly speaking, our payment sharing scheme works as follows. Notice that
a final payment to a set Sj is the maximum of payments pi

j by all elements.
Since different elements may have different value of payment to set Sj , the final
payment P lcs

j should be shared proportionally to their values, not equally among
them as cost-sharing.
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Algorithm 7 Sharing MV cost P among receivers
1: Initialize ξ(i,U) = 0 and ζj(i,U) = 0. Here ζj(i,U) denotes the payment to

set Sj shared by the element ei when the set of elements is U .
2: for all Sj ∈ S do
3: For all elements ei, we compute the payment pi

j . Sort the payments pi
j ,

1 ≤ i ≤ n, in an increasing order. Assume that pσ(1)
j , pσ(2)

j , · · · , pσ(n−1)
j ,

p
σ(n)
j are the sorted list of payments in an incremental order.

4: For elements eσ(1), · · · , eσ(n), let ζj(σ(i),U)←
∑i

t=1
p

σ(t)
j −p

σ(t−1)
j

n−t+1 . Here we

assume that pσ(0)
j = 0. Update the payment sharing as follows: ξ(i,U) =

ξ(i,U) + ζj(i,U) for each ei ∈ U .
5: ξ(i,U) is the final payment sharing of service receiver ei.

Our payment sharing method described in Algorithm 7 applies to a more
general cost function. A cost function P is said to be maximum-view cost (MV
cost) if it is defined as Pj = maxei∈U p

i
j where pi

j is the view of the cost of set
Sj by element ei. Obviously, the traditional cost c is a MV cost function by
setting pi

j = cj for each element ei. The payment function P lcs is also a MV cost
function.

A service receiver is called free-rider in a payment sharing scheme if its shared
total payment is no more than 1

n of its total payment it has to pay if it acts
alone. Notice that, when a service receiver acts alone, the same mechanism is
applied to compute the payment to the service providers.

Theorem 8. The payment sharing scheme described in Algorithm 7 is budget-
balanced, cross-monotone, in the core and does not permit free-rider.

6 Conclusion

We studied cost sharing and strategyproof mechanisms for various set cover
games. We gave an efficient cost allocation method that always recovers 1

ln dmax

of the total cost, where dmax is the maximum size of all sets. We gave an efficient
cost sharing scheme that is 1

2n -budget-balanced, core and cross-monotone. When
the elements to be covered are selfish agents with privately known valuations, we
presented a strategyproof charging mechanism. When the sets are selfish agents
with privately known costs, we presented two strategyproof payment mechanisms
in which each set maximizes its profit when it reports its cost truthfully. We also
showed how to fairly share the payments to all sets among the elements.

There are several open problems left for future works. Are the bounds on the
α-budget-balanced cost sharing schemes tight, although we proved that they are
asymptotically tight? Consider the strategyproof mechanism M = (Cgrd,Pgrd).
Is there a payment sharing method that is 1

ln n -core? Is there a payment sharing
method that is cross-monotone 1

n -core? Is this 1
n a tight lower bound?
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Abstract. We consider the well-known problem of randomly allocating
m balls into n bins. We investigate various properties of single-choice
games as well as multiple-choice games in the context of weighted balls.
We are particularly interested in questions that are concerned with the
distribution of ball weights, and the order in which balls are allocated.
Do any of these parameters influence the maximum expected load of any
bin, and if yes, then how?

The problem of weighted balls is of practical relevance. Balls-into-
bins games are frequently used to conveniently model load balancing
problems. Here, weights can be used to model resource requirements of
the jobs, i.e., memory or running time.

1 Introduction

The balls-into-bins game, also referred to as occupancy problem or allocation
process, is a well known and much investigated model. The goal of a (static)
balls-into-bins game is to sequentially allocate, at random, a set ofm independent
balls (tasks, jobs, . . . ) into a set of n bins (printers, servers, . . . ), such that the
maximum number of balls in any bin is minimised. In the dynamic case, we
do not have a fixed number of balls but rather new balls arrive over time (and
existing ones may be removed).

In this paper, we are interested in static sequential games, where a fixed
number of balls, m, are allocated one after the other; see [13] for an overview of
balls-into-bins games in different settings. The classical single-choice game allo-
cates each ball to a bin that is chosen independently and uniformly at random
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(i.u.r.). For m = n balls and n bins the maximum load (maximum number of
balls) in any bin is Θ (log(n)/ log log(n)). More generally, for m balls and n bins
the maximum load is (m/n) + Θ(

√
m log n/n). Surprisingly, the maximum load

can be decreased dramatically by allowing every ball to i.u.r. choose a small
number of d > 1 bins. The ball is then allocated to a least loaded of the d
chosen bins. Then, the maximum load drops to Θ(log log(n)/ log(d)) (see [1]) in
the m = n case, and (m/n) + Θ(log log(n)/ log(d)) in the general case, respec-
tively (see [2]). Notice that the results cited above all hold with high probability1

(w.h.p.). Following [1], we refer to the multiple-choice algorithm defined above
as Greedy[d].

Most work done so far assumes that the balls are uniform and indistinguish-
able. In this paper we concentrate on the weighted case where the i-th ball comes
with a weight wi. We define the load of a bin to be the sum of the weights of the
balls allocated to it. In [5] the authors compare the maximum load of weighted
balls-into-bins games with the maximum load of corresponding uniform games.
They compare the maximum load of a game with m weighted balls with maxi-
mum weight 1 and total weight W = w1 + · · ·+wm to a game with cW uniform
balls with constant c ≈ 4. Basically, they show that the maximum load of the
weighted game is not larger than the load of the game with uniform balls (which
has a slightly larger total weight). Their approach can be used for a variety of
balls-into-bins games and can be regarded as a general framework. See [4] for
more details.

However, the results of [5] seem to be somewhat unsatisfactory. The authors
compare the allocation of a (possibly huge) number of “small” weighted balls
with an allocation of fewer but “heavier” uniform balls. Intuitively, it should be
clear that it is better to allocate many “small” balls compared to fewer “big”
balls. After all, the many small balls come with more random choices. The main
goal of this paper is to get tighter results for the allocation of weighted balls,
both for the single-choice and the multiple-choice game. To show our results we
will use the majorisation technique introduced in [1].

1.1 Known Results

Single-Choice Game. In [13] the authors give a tight bound on the maximum
load of any bin when m uniform balls are allocated uniformly at random into n
bins.

In [11] Koutsoupias et al. consider the random allocation of weighted balls.
Similar to [5], they compare the maximum load of an allocation of weighted balls
to that of an allocation of a smaller number of uniform balls with a larger total
weight. They repeatedly fuse the two smallest balls together to form one larger
ball until the weights of all balls are within a factor of two of each other. They
show that the bin loads after the allocation of the weighted balls are majorised
by the loads of the bins after the allocation of the balls generated by the fusion

1 We say an event A occurs with high probability, if Pr[A] ≥ 1−1/nα for some constant
α ≥ 1.
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process. Their approach also applies to more general games in which balls can
be allocated into bins with nonuniform probabilities.

Multiple-Choice Game. During recent years much research has been done for
games with multiple choices in different settings. See [13] for a nice overview.
Here, we shall only mention the “classical” and most recent results.

Azar et al. [1] introduced Greedy[d] to allocate n balls into n bins. Their
algorithm Greedy[d] chooses d bins i.u.r. for each ball and allocates the ball
into a bin with minimum load. They show that after placing n balls the maxi-
mum load is Θ(log log(n)/ log(d) + 1), w.h.p. Compared to single-choice games,
this is an exponential decrease of the maximum load. Vöcking [19] introduced
the Always-Go-Left protocol yielding a maximum load of (log logn)/d, w.h.p.
In [18], Sanders et al. show that in the general case it is possible to achieve
a maximum load of �m/n� + 1, w.h.p., using a centralised flow algorithm. In
[2] the authors analyse Greedy[d] for m - n. They show that the maximum
load is m/n+ log log(n), w.h.p. This shows that the multiple-choice process be-
haves inherently different from the single-choice process, where it can be shown
that the difference between the maximum load and the average load depends
on m. They also show a memorylessness property of the Greedy process, i.e.,
whatever the situation is after allocation of some ball, after sufficiently many
additional balls the maximum load of any bin can again be bounded as ex-
pected. Finally, Mitzenmacher et al. [14] show that a similar performance gain
occurs if the process is allowed to store the location of the least loaded bin in
memory.

1.2 Model and Definitions

We assume that we have m balls and n bins. In the following we denote the set
{1, . . . ,m} by [m]. Ball i has weight wi for all i ∈ [m]. Let w = (w1, . . . , wm) be
the weight vector of the balls. We assume wi > 0 for all i ∈ [m]. W =

∑m
i=1 wi is

the total weight of the balls. If w1 = · · · = wm we refer to the balls as uniform.
In this case, we normalise the ball weights such that wi = 1 for ∀i ∈ [m].

The load of a given bin is the sum of the weights of all balls allocated
to it. In the case of uniform balls the load is simply the number of balls al-
located to the bin. The status of an allocation is described by a load vector
L(w) = (�1(w), . . . , �n(w)). Here, �i is the load of the i-th bin after the alloca-
tion of weight vector w. Whenever the context is clear we write L = (�1, . . . , �n).
In some cases we consider the change that occurs in a system after allocating
some number of additional balls. Then we define Lt to be the load vector af-
ter the allocation of the first t balls with weights w1, . . . , wt for 1 ≤ t ≤ m.
In many cases we will normalise a load vector L by assuming a non-increasing
order of bin loads, i.e. �1 ≥ �2 ≥ · · · ≥ �n. We then define Si(w) =

∑i
j=1 �j(w)

as the total load of the i highest-loaded bins. Again, when the context is clear
we shall drop the “w” and write Si =

∑i
j=1 �j . Finally, in what follows, we let

Ω = [n].
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To compare two load vectors and also the balancedness of vectors of balls
weights we use the concept of majorisation. First, we briefly review the notion
of majorisation from [12].

Definition 1. For two normalised vectors w = (w1, . . . , wm) ∈ Rm and w′ =
(w′

1, . . . , w
′
m) ∈ Rm with

∑m
i=1 wi =

∑m
i=1 w

′
i, we say that w′ majorises w, writ-

ten w′ . w, if
∑k

i=1 w
′
i ≥

∑k
i=1 wi for all 1 ≤ k ≤ m.

Majorisation is a strict partial ordering between (normalised) vectors of the
same dimensionality. Intuitively, vector v′ majorises another vector v if v is
“more spread out”, or “more balanced”, than v′. In the following we will say
that weight vector w is more balanced than weight vector w′ if w′ majorises w,
and we will use the term majorisation if we refer to load vectors.

1.3 New Results

In the next section we first present some additional definitions that we will
use later on in this paper. Section 3 is concerned with the single-choice game. In
Theorem 2 we fix the number of balls and show that the maximum load is smaller
for more balanced ball weight vectors. In more detail, we allocate two sets of balls
into bins, where the first set has a more even weight distribution than the second
one, i.e., the second corresponding weight vector majorises the first one. We show
that the expected maximum load after allocating the first set is smaller than the
one after allocation the second set. This also holds for the sum of the loads of
the i largest bins. One could say that the majorisation is preserved: if one weight
vector majorises another one, then we have the same order with respect to the
resulting expected bin load vectors. Hence, uniform balls minimise the expected
maximum load. Theorem 2 uses majorisation together with T-transformations
(see the definition in the next section), thereby allowing us to compare sets of
balls that only differ in one pair of balls.

Corollary 2 extends the results showing that the allocation of a large number
of small balls with total weight W ends up with a smaller expected maximum
load than the allocation of a smaller number of balls with the same total weight.
We also show that the results are still true for many other random functions
that are used to allocate the balls into the bins. Our results are much stronger
than the ones of [11] since we compare arbitrary systems with the same number
of balls and the same total weight. We also consider the entire load distribution
and not only the maximum load.

Section 4 deals with multiple-choice games. The main result here is Theo-
rem 3. It shows that, for sufficiently many balls, allocation of uniform balls is
not necessarily better than allocation of weighted balls. It is better to allocate
first the “big balls” and then some smaller balls on top of them, instead of alloca-
tion the same number of average sized balls. This result uses the memorylessness
property of [2].

For fewer balls we show in Theorem 4 that the majorisation order is not
generally preserved. Assume that we have two systems A and B, and that the
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load vector of system A is majorised by the load vector of system B. Now,
throwing only one additional ball into both systems may reverse the majorisation
order and suddenly B is majorised by A. The previous results mentioned for the
single-choice game use the majorisation technique inductively. Unfortunately, it
seems difficult to use T-transformations and the majorisation technique to obtain
results for weighted balls in the multiple-choice game. We also present several
examples showing that, for the case of a small number of balls with multiple-
choices, the maximum load is not necessarily smaller if we allocate more evenly
weighted balls.

2 Majorisation and T-Transformations

In Section 1.2 we defined the concept of majorisation. In [1] Azar et al. use
this concept for random processes. Here we give a slightly different definition
adjusted for our purposes.

Definition 2 (Majorisation). Let w and w′ be two weight vectors with m balls,
and let Ωm be the set of all possible random choices for Greedy applied on m
balls. Define w(ω) (respectively, w′(ω)) to be the allocation resulting from the
choices ω ∈ Ωm, and let f : Ωm −→ Ωm be a one-to-one correspondence. Then
we say that w′ is majorised by w if there exists a function f such that for any
ω ∈ Ωm we have w(ω) . w′(f(ω)).

A slightly weaker form of the majorisation is the expected majorisation defined
below. We will use it in order to compare the allocation of two different load
vectors with each other.

Definition 3 (Expected majorisation). Let w and w′ be two weight vec-
tors with m balls, and let Ωm be the set of all possible random choices. Let
L(w,ω) = �1(w,ω), . . . , �n(w,ω) (resp., L′(w′,ω) = �1(w′,ω), . . . , �n(w′,ω)) be
the normalised load vector that results from the allocation of w (respectively, w′)
using ω ∈ Ωm. Let Si(w,ω) =

∑i
j=1 �j(w,ω) and Si(w′,ω) =

∑i
j=1 �j(w

′,ω).
Then we say that L(w′) is expectedly majorised by L(w) if for all i ∈ [n], we
have E[Si(w)] ≥ E[Si(w′)].

Note that the expectation is over all possible nm elements (selected uniformly
at random) in Ωm.

Now we introduce a class of linear transformations on vectors called T-
transformations which are crucial to our later analysis. We write w

T
=⇒w′, mean-

ing that w′ can be derived from w by applying one T-transformation.
Recall that a square matrix Π = (πij) is said to be doubly stochastic if all

πij ≥ 0, and each row and column is one. Π is called a permutation matrix if
each row and each column contains exactly one unit and all other entries are
zero (in particular, a permutation matrix is doubly stochastic).
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Definition 4 (T-transformation). A T-transformation matrix T has the form
T = λI + (1 − λ)Q, where 0 ≤ λ ≤ 1, I is the identity matrix, and Q is a per-
mutation matrix that swaps exactly two coordinates. Thus, for some vector x of
correct dimensionality, xT = (x1, . . . , xj−1, λxj+(1−λ)xk, xj+1, . . . , xk−1, λxk+
(1− λ)xj , xk+1, . . . , xm).

T -transformations and majorisation are closely linked by the following lemma
(see [12]).

Lemma 1. For w,w′ ∈ Rm, w . w′ if and only if w′ can be derived from w by
successive applications of at most m− 1 T-transformations.

One of the fundamental theorems in the theory of majorisation is the following.

Theorem 1. (Hardy, Littlewood and Pólya, 1929). For w,w′ ∈ Rm, w . w′ if
and only if w′ = wP , for some doubly stochastic matrix P .

3 Weighted Single-Choice Games

In this section we study the classical balls-into-bins game where every ball has
only one random choice. Let w and w′ be two m−dimensional weight vectors.
Recall that Si(w) is defined to be the random variable counting the cumulative
loads of the i largest bins after allocating w. In this section we show that, if
there exist a majorisation order between two weight vectors w and w′, the same
order holds for E[Si(w)] and E[Si(w′)]. This implies that, if w majorises w′,
the expected maximum load after allocating w is larger than or equal to the
expected maximum load after allocating w′.

Note that in the single-choice game, the final load distribution does not de-
pend upon the order in which the balls are allocated. From Lemma 1 we know
that, if w . w′, then w′ can be derived from w by applying at most m − 1 T-
transformations. Thus, it is sufficient to show the case in which w′ can be derived
from w by applying one T-transformation, which is what we do in Lemma 2.

Lemma 2. If w
T

=⇒w′ (i.e. w . w′), then E[Si(w′)] ≤ E[Si(w)] for ∀i ∈ [n].

Proof. (Sketch) Let w = (w1, . . . , wm). According to the definition of a T-
transformation, for some 0 ≤ λ ≤ 1 we have

w′ = wT = (w1, . . . , wj−1, λwj + (1− λ)wk, wj+1, . . . , wk−1,

λwk + (1− λ)wj , wk+1, . . . , wm).

We define yj = max{λwj + (1 − λ)wk, λwk + (1 − λ)wj}, yk = min{λwj+
(1− λ)wk, λwk + (1− λ)wj}.

Since the final allocation does not depend on the order in which the balls
are allocated, we can assume in the following that both wj , wk and yj , yk are
allocated in the last two steps. Now fix the random choices for the first m − 2
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balls and let � = (�1, . . . , �n) be the resulting normalised load vector from the
allocation of those balls. Let Ω2 = [n]2 be the set of random choices of the last
two balls. Note that every random choice in Ω2 occurs with probability 1/n2.

Fix a pair of choices (p, q) for the last two balls and let L(�, (wj , p), (wk, q))
be load vector after placing the ball with weight wj into the bin with rank
p in � and the ball with weight wk to the bin with rank q in �. (Note, after
the allocation of wj the order of the bins might change but q still refers to the
old order. Let Si(�, (wj , p), (wk, q)) be the cumulative load of the i largest bins of
L(�, (wj , p), (wk, q)). Similarly define L(�, (yj , p), (yk, q)) and Si(�, (yj , p), (yk, q)).
To prove this lemma we compare the two choices (p, q) and (q, p) with each other
and show that for all �

Si(�, (wj , p), (wk, q)) + Si(�, (wj , q), (wk, p))
≥ Si(�, (yj , p), (yk, q)) + Si(�, (yj , q), (yk, p))

Since we compute expected values over all pairs (p, q), this shows that the ex-
pected cumulative loads of the i largest bins of both systems also obey the same
order.

The repeated application of Lemma 2 can now be used to generalize the
majorisation result for vectors that only differ by a single T -transformation to
vectors that differ by several T -transformations. This results in the following
theorem that is presented without formal proof.

Theorem 2. If w . w′, then for ∀i ∈ [n], E[Si(w′)] ≤ E[Si(w)].

Finally, it is clear that the uniform weight vector is majorised by all other
vectors with same dimension and same total weight. Using Theorem 2, we get
the following corollary.

Corollary 1. Let w = (w1, . . . , wm), W =
∑m

i=1 wi, and w′ = (W
m , . . . , W

m ). For
∀i ∈ [n], we have E[Si(w′)] ≤ E[Si(w)].

Proof. Note that w′ = wP , where P = (pij) and pij = 1
m ∀i, j ∈ [m]. Clearly P

is a doubly stochastic matrix. Hence by Lemma 1, w . w′. Consequently, from
Theorem 2 we have E[Si(w′)] ≤ E[Si(w)].

Theorem 2 also shows that an allocation of a large number of small balls with
total weight W ends up with a smaller expected load than the allocation of a
smaller number of balls with the same total weight.

Corollary 2. Let w = (w1, . . . , wm) and W =
∑m

i=1 wi. Suppose that w′ =
(w′

1, . . . , w
′
m′) with m ≤ m′, and also that W =

∑m
i=1 w

′
i. If w . w′ we have

E[Si(w′)] ≤ E[Si(w)] ∀i ∈ [n].
[In this case the relation w . w′ must be treated somewhat loosely because

the vectors do not necessarily have the same length, but the meaning should be
clear, namely that

∑j
i=1 wi ≥

∑j
i=1 w

′
i for all j ∈ [m]].

Proof. Simply add zeros to w until it has the same dimension than w′.
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It is easy to see that we can generalise the result to other probability distributions
that are used to chose the bins.

Corollary 3. If w . w′, and the probability that a ball is allocated to bin bi, 1 ≤
i ≤ n, is the same for all balls, then we have for ∀i ∈ [n], E[Si(w′)] ≤ E[Si(w)].

4 Weighted Multiple-Choice Games

In the first sub-section we show that for multiple-choice games it is not always
better to allocate uniform balls. For m- n we construct a set of weighted balls
that ends up with a smaller maximum load than a set of uniform balls with the
same total weight. The second sub-section considers the case where m is not
much larger than n. As we will argue in the beginning of that section, it appears
that it may not be possible to use the majorisation technique to get tight results
for the weighted multiple-choice game. This is due to the fact that the order in
which weighted balls are allocated is crucial, but the majorisation order is not
necessarily preserved for weighted balls in the multiple-choice game (in contrast
to [1] for uniform balls). We discuss several open questions and give some weight
vectors that result in a smaller expected maximum load than uniform vectors
with the same total weight.

4.1 Large Number of Balls

We compare two systems, A and B, respectively. In A we allocate m/2 balls of
weight 3 each and thereafterm/2 balls of weight 1 each, using the multiple-choice
strategy. System B is the uniform counterpart of A where all balls have weight
2. We show that the expected maximum load in A is strictly smaller than that
in B. We will use the short term memory property stated below in Lemma 3. See
[2] for a proof. Basically, this property says that after allocating a sufficiently
large number of balls, the load depends on the last poly(n) many balls only. If
m is now chosen large enough (but polynomially large in n suffices), then the
maximum load is w.h.p. upper bounded by 2m/n+log logn. In the case of balls
with weight 2, the maximum load is w.h.p. upper bounded by 2m/n+2 log logn.
Since [2] gives only upper bounds on the load, we can not use the result directly.
We introduce two auxiliary systems named C and D, respectively. System C is
derived from system A, and D is derived from B. The only difference is that
in systems C and D we allocate the first m/2 balls optimally (i.e., we always
place the balls into the least loaded bins). In Lemma 5 we first show that the
maximum loads ofA and C will be nearly indistinguishable after allocating all the
balls. Similarly, the maximum loads of B and D will be nearly indistinguishable.
Moreover, we show that the expected maximum load in D is larger than in C.
Then we can show that the expected maximum load in A is smaller than in B
(Theorem 3). For an overview, we refer to Table 1.

To state the short memory property we need one more definition. For any
two random variables X and Y defined jointly on the same sample space, the
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Table 1. Systems A, B, C, and D

First m/2 balls Last m/2 balls
Systems ball weights algorithm ball weights algorithm

A 3 Greedy[d] 1 Greedy[d]
B 2 Greedy[d] 2 Greedy[d]
C 3 Optimal 1 Greedy[d]
D 2 Optimal 2 Greedy[d]

variation distance between L (X) and L(Y ) is defined as: ‖L(X) − L(Y )‖ =
supA |Pr(X ∈ A)− Pr(Y ∈ A)|. The following Lemma is from [2].

Lemma 3. Suppose L0 = (�1, . . . , �n) is an arbitrary normalised load vector
describing an allocation of m balls into n bins. Define Δ = �1 − �n to be the
maximum load difference in L0. Let L′

0 be the load vector describing the optimal
allocation of the same number of balls to n bins. Let Lk and L′

k, respectively,
denote the vectors obtained after inserting k further balls to both systems using
the multiple-choice algorithm, Then: || L(Lk) − L(L′

k) || ≤ k−α. for k ≥ n5 ·Δ,
where α is an arbitrary constant.

Intuitively, Lemma 3 indicates that given any configuration with a maximum
difference Δ, in Δ · poly(n) steps the system “forgets” the difference, i.e., the
allocation is nearly indistinguishable from the allocation obtained by starting
from a completely balanced system. This is in contrast to the single-choice game
requiring Δ2 · poly(n) steps in order to “forget” a load difference Δ (see [2]).

Lemma 4. Suppose we allocate m balls to n bins using Greedy[d] with d ≥ 2,
m - n. Then the number of bins with load at least m

n + i+ γ is bounded above
by n · exp(−di), w.h.p, where γ denotes a suitable constant. In particular, the
maximum load is m

n + log log n
log d ±Θ(1) w.h.p.

Let Li(A) (or Li(B), Li(C), Li(D)) be the maximum load in System A (re-
spectively, B, C, D) after the allocation of the first i balls. If we refer to the
maximum load after the allocation of all m balls we will simply write L(A) (or
L(B), L(C), L(D)). The following lemma compares the load of the four systems.

Lemma 5. Let m = Ω(n7).

1. |E[L(A)]− E[L(C)] | ≤ m−β, where β is an arbitrary constant.
2. |E[L(B)]− E[L(D)] | ≤ m−β′

, where β′ is an arbitrary constant.
3. E[L(D)]− E[L(C)] ≥ log log n

log d −Θ(1).

Finally, we present the main result of this section, showing that uniform balls
do not necessarily minimize the maximum load in the multiple-choice game.

Theorem 3. E[L(B)] ≥ E[L(A)] + log log n
log d −Θ(1).
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4.2 Majorisation Order for Arbitrary Values of m

In this section we consider the Greedy[2] process applied on weighted balls, but
most of the results can be generalised to the Greedy[d] process for d > 2. Just to
remind you, in the Greedy[2] process each ball sequentially picks i.u.r. two bins
and the current ball is allocated in the least loaded of the two bins (ties can be
broken arbitrarily). This means, of course, that a bin with relative low load is
more likely to get an additional ball than one of the highly loaded bins.

Another way to model the process is the following: Assume that the load
vector of the bins are normalised, i.e. �1 ≥ �2 ≥ · · · ≥ �n. If we now place an
additional ball into the bins, the ball will be allocated to bin i with probability
(id − (i − 1)d)/nd, since all d choices have to be among the first i bins, and
at least one choice has to be i. For d = 2 this simplifies to (2i − 1)/n. Hence,
in this fashion, the process can be viewed as a “one choice process”, provided
after the allocation of each ball the system is re-normalised. This means that he
load distribution of the bins depends highly on the order in which the balls are
allocated.

Unfortunately, the dependence of the final load distribution on the order
in which the balls are allocated makes it very hard to get tight bounds using
the majorisation technique together with T-transformations. Theorem 2 highly
depends on the fact that we can assume that wj and wk (yj and yk) are allocated
at the very end of the process, an assumption that can not be used in the
multiple-choice game. In order to use T-transformations in this case, we would
again need a result that shows that the majorisation order is preserved when
we add more (similar) balls into the system. We need a result showing that if
A . B and we add an additional ball to both A and B, after the allocation
we still have A′ . B′ (where A′ and B′ denote the new systems with the one
additional ball). While this is true for uniform balls (see [1]), the following easy
example shows that it is not true for weighted balls. LetA = (7, 6, 5, 0, . . . , 0) and
B = (7, 5.8, 5.2, 0 . . . , 0). If we now allocate one more ball with weight w = 2 into
the pair of systems, with probability 5/n2 the ball is allocated to the third bin in
both systems and we have A′ = (7, 7, 6, 0, . . . , 0) and B′ = (7.2, 7, 5.8, 0, . . . , 0),
hence B′ . A′. Alternatively, with probability 3/n2 the ball is allocated to the
second bin in each system resulting in load vectors A′′ = (8, 7, 5, 0, . . . , 0) and
B′′ = (7.8, 7, 5.2, 0, . . . , 0) and in this case we have A′′ . B′′. Note that the load
distributions of A and B are not “atypical”, but they can easily come up using
Greedy[2]. For example weight vectors w = (7, 6, 5, 2) and w′ = (7, 5.8, 5.2, 2)
with w . w′ will do the job for values of n large enough (≈ 16). This shows
that the expected maximum load after the allocation of w using Greedy[2] is
majorised by the one of w′.

The next lemma gives another example showing that the majorisation rela-
tion need not be preserved for weighted balls in the multiple-choice game. The
idea is that we can consider two systems C and D where C . D, but by adding
one additional ball (with large weight w), we then have D′ . C′. It is easy to
generalise the lemma to cases where w is not larger than the maximum bin load
to show that the majorisation relation need not be preserved.
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Lemma 6. Let v and u be two (normalised) load vectors with v
T

=⇒u (so v . u).
Let w be the weight of an additional ball with w > v1. Let v′, u′ be the new
(normalised) load vectors after allocating the additional ball into the systems
with loads v and u. Then we have E[u′

1] > E[v′
1].

We can easily extend the above result to the following.

Corollary 4. Let v and u be two load vectors with v . u. Let w be the weight of
an additional ball with w ≥ v1. Let v′, u′ be the load vectors after the allocation
of the additional ball into v and u. Then we have E[u′

1] > E[v′
1].

Lemma 6 and the example preceding that lemma both showed that a more
unbalanced weight vector can end up with a smaller expected maximum load.
However, in those cases we assumed that the number of bins is larger than
the number of balls, or that one of the balls is very big. Simulation results
(see full version) show that for most weight vectors w,w′ with w . w′ the
expected maximum load after the allocation of w′ is smaller than the one after
the allocation of w. Unfortunately, we have been unable to show this result
formally.

Order of the Balls. Another interesting question concerns the order of allocating
balls under the multiple-choice scenario. In the case that m ≥ n we conjecture
that if all the balls are allocated in decreasing order, the expected maximum
is the smallest among all possible permutations. This is more or less intuitive
since if we always allocate bigger balls first, the chances would be low to place
the remaining balls in those bins which are already occupied by the bigger balls.
However, we still do not know how to prove this conjecture. We can answer
the peer question: what about if we allocate balls in increasing order? The next
observation shows that the increasing order does not always produce the worst
outcome.

Observation 4. Fix a set of weighted balls. The maximum load is not neces-
sarily maximised by allocating the balls in increasing order.

Proof. We compare two systems A and B both with n bins. Let wA = {1, 2, 1, 5},
and wB = {1, 1, 2, 5} be two weight vectors (sequences of ball weights). Notice
that wB is a monotonically increasing sequence while wA is not. Note that after
allocating the first three balls, B certainly majorises A. Since the last ball (with
weight 5) is bigger than the loads of all bins in both A and B after allocating
the first three balls, by Lemma 4 the expected maximum load after allocating
wA is bigger than that after allocating wB.

Many Small Balls. Another natural question to ask is the one we answered in
Corollary 2 for the single-choice game. Is it better to allocate a large number
of small balls compared to a smaller number of large balls with the same total
weight? The next example shows again that the majorisation relation is not
always maintained in this case.
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Observation 5. Let A = (k + 1, k, . . . , k) and B = (k + 0.5, k + 0.5, k, . . . , k)
denote two load vectors. After the allocation of one more ball with weight 1 the
expected maximum load in B is bigger than in A.

Proof. It is easy to check (simply enumerate all cases) that the expected load in
A is k + 1 + 1

n2 and that in B is k + 1 + 2
n2 .

We emphasize again that the initial majorisation relation is no longer pre-
served during the allocation. However, we still conjecture that in “most” cases
the allocation of a large number of small balls is majorised by the one of a smaller
number of large balls with the same total weight, but so far we have been unable
to show formal results. The full version of this paper contains empirical results
obtained by computer simulations.
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Abstract. Computing good estimates for the number of solutions of a
polynomial system is of great importance in many areas such as compu-
tational geometry, algebraic geometry, mechanical engineering, to men-
tion a few. One prominent and frequently used example of such a bound
is the multi-homogeneous Bézout number. It provides a bound for the
number of solutions of a system of multi-homogeneous polynomial equa-
tions, in a suitable product of projective spaces. Given an arbitrary,
not necessarily multi-homogeneous system, one can ask for the optimal
multi-homogenization that would minimize the Bézout number. In this
paper, it is proved that the problem of computing, or even estimating the
optimal multi-homogeneous Bézout number is NP-hard. In terms of ap-
proximation theory for combinatorial optimization, the problem of com-
puting the best multi-homogeneous structure does not belong to APX,
unless P = NP. As a consequence, polynomial time algorithms for es-
timating the minimal multi-homogeneous Bézout number up to a fixed
factor cannot exist even in a randomized setting, unless BPP ⊇ NP.

1 Introduction

Many important algorithmical problems can be phrased as problems about poly-
nomial systems. To mention a few, it is easy to reduce NP-complete or NP-hard
problems such as SAT, the Traveling Salesman problem, Integer Programming

� G.M. is partially supported by CNPq (Brasil). This work was done while visiting
Syddansk Universitet at Odense, thanks to the generous support of the Villum Kann
Rasmussen Fond.

�� K.M. was partially supported by EU Network of Excellence PASCAL Pattern Analy-
sis, Statistical Modelling and Computational Learning and by SNF (Danish Natural
Science Research Council).

V. Diekert and B. Durand (Eds.): STACS 2005, LNCS 3404, pp. 244–255, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Computing Minimal Multi-homogeneous Bézout Numbers Is Hard 245

(and thus all other NP problems as well) to the question whether certain poly-
nomial systems have a common zero.1 Other examples include computational
geometry (f.e. robot motion planning), computer algebra and problems in engi-
neering like the design of certain mechanisms [10, 13].

In analyzing such problems one of the most important questions is to deter-
mine the structure of the zero set of a polynomial system. This structure usually
has tremendous impact on the complexity of all kind of related algorithms for
such systems. In particular, if the solution variety is 0-dimensional the number of
zeros is an important quantity for many algorithms. This holds for the two major
families of algorithms for polynomial systems, namely symbolic and numerical
methods. For example, the very successfully used path-following methods for
numerically solving polynomial systems heavily rely on good estimates for the
number of solutions; such estimates determine how many paths to follow and
thus influence the complexity of such algorithms. It is therefore crucial to get as
tight as possible bounds for the number of zeros.

The best-known example giving such an estimate certainly is the Funda-
mental Theorem of Algebra. It was generalized to multivariate polynomial sys-
tems at the end of the 18th century by Etienne Bézout. The Bézout number
bounds the number of (isolated) complex zeros of a polynomial f : Cn �→ Cn

from above by the product of the degrees of the involved polynomials. How-
ever, in many cases this estimate is far from optimal. A well known exam-
ple is given by the eigenvalue problem: Given a n × n matrix M , find the
eigenpairs (λ, u) ∈ C × Cn such that Mu − λu = 0. If we equate un to 1,
the classical Bézout number becomes 2n−1, though of course only n solutions
exist.

The multi-homogeneous Bézout numbers provide sharper bounds on the num-
ber of isolated solutions of a system of equations, in a suitable product of pro-
jective spaces. The multi-homogeneous Bézout bounds depend on the choice of
a multi-homogeneous structure, that is of a partition of the variables (λ, u) into
several groups.

In the eigenvalue example, the eigenvector u is defined up to a multiplicative
constant, so it makes sense to define it as an element of Pn−1. With respect to
the eigenvalue λ, we need to introduce a homogenizing variable. We therefore
rewrite the equation as: λ0Mu−λ1u = 0, and λ = λ1/λ0. Now the pair (λ0 : λ1)
is an element of P1. The multi-homogeneous Bézout number for this system is
precisely n.

Better bounds on the root number are known, such as Kushnirenko’s [6] or
Bernstein’s [3]. However, interest in computing the multi-homogeneous Bézout
number stems from the fact that hardness results are known for those sharper
bounds. Another reason of interest is that in many cases, a natural multi-
homogeneous structure is known or may be found with some additional human
work. An application of multi-homogeneous Bézout bounds outside the realm of

1 Note, however, that many of these reductions lead to overdetermined systems; below,
we are mainly interested in generic systems.
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algebraic equation solving is discussed in [4], where the number of roots is used
to bound geometrical quantities such as volume and curvature.

In this paper, we consider the following problem. Let n ∈ N and a finite
A ⊂ Nn be given as input. Find the minimal multi-homogeneous Bézout number,
among all choices of a multi-homogeneous structure for a polynomial system with
support A.

Geometrically, this minimal Bézout number is an upper bound for the number
of isolated roots of the system in Cn.

The main result in this paper (restated formally in section 2.1 below) is:

Theorem 1. There cannot possibly exist a polynomial time algorithm to ap-
proximate the minimal multi-homogeneous Bézout number up to any fixed factor,
unless P = NP.

This means that computing or even approximating the minimal Bézout num-
ber up to a fixed factor is NP-hard. In terms of the hierarchy of approximation
classes (see [2]) the minimal multi-homogeneous Bézout number does not belong
to the class APX unless P = NP.

Motivated by what is known on volume approximation one could ask whether
allowing for randomized algorithms would be of any improvement. By standard
arguments the theorem implies

Corollary 1. There cannot possibly exist a randomized polynomial time algo-
rithm to approximate the minimal multi-homogeneous Bézout number up to any
fixed factor, with probability of failure ε < 1/4, unless BPP ⊇ NP.

2 Background and Statement of Main Results

2.1 Bézout Numbers

A system f(z) of n polynomial equations with support (A1, . . . , An), each Ai ⊂
Nn, is a system of the form:

⎧⎪⎨
⎪⎩

f1(z) =
∑

α∈A1
f1αz

α1
1 zα2

2 · · · zαn
n

...
fn(z) =

∑
α∈An

fnαz
α1
1 zα2

2 · · · zαn
n ,

(1)

where the coefficients fiα are non-zero complex numbers. (Note that we are
interested in systems with the same number of variables and polynomials).

A multi-homogeneous structure is given by a partition of {1, . . . , n} into
(say) k sets I1, . . . , Ik. Then for each set Ij , we consider the group of variables
Zj = {zi : i ∈ Ij}.

The degree of fi in the group of variables Zj is

dij
def= max

α∈Ai

∑
l∈Ij

αl .
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When for some j, for all i, the maximum dij is attained for all α ∈ Ai, we
say that (1) is homogeneous in the variables Zj . The dimension of the projective
space associated to Zj is:

aj
def=
{

#Ij − 1 if (1) is homogeneous in Zj , and
#Ij otherwise .

We assume that n =
∑k

j=1 aj . Otherwise, we would have underdetermined

(n <
∑k

j=1 aj) systems (which we do not treat in this paper) or overdetermined

(n >
∑k

j=1 aj) polynomial systems (for which multi-homogeneous Bézout num-
bers have no meaning).

The multi-homogeneous Bézout number Béz(A1, . . . , An; I1, . . . , Ik) is the co-
efficient of

∏k
j=1 ζ

aj

j in the formal expression
∏n

i=1
∑k

j=1 dijζj (see [11, 7, 12]).
Here, the ζj ’s are new indeterminates associated to each j-block of variables.
The multi-homogeneous Bézout number bounds the maximal number of iso-
lated roots of (1) in Pa1 × · · · × Pak . Therefore it also bounds the number of
finite roots of (1), i.e. the roots in Cn.

In the particular case where A = A1 = · · · = An (i.e. all polynomials have the
same support) there is a simpler expression for the multi-homogeneous Bézout
number Béz(A; I1, . . . , Ik) def= Béz(A1, . . . , An; I1, . . . , Ik), namely:

Béz(A; I1, . . . , Ik) =
(

n
a1 a2 · · · ak

) k∏
j=1

d
aj

j , (2)

where dj = dij (equal for each i) and the multinomial coefficient
(

n
a1 a2 · · · ak

)
def=

n!
a1! a2! · · · ak!

is the coefficient of
∏k

j=1 ζ
ak
j in (ζ1 + · · ·+ ζk)n (recall that n =

∑k
j=1 aj).

Heuristics for computing a suitable multi-homogeneous structure (I1, . . . , Ik)
given A1, . . . , An are discussed in [8, 9]. Surprisingly enough, there seems to
be no theoretical hardness results available on the complexity of computing
the minimal Bézout number. It was conjectured in [8–p.78] that computing the
minimal multi-homogeneous Bézout number is NP-hard.

Even, no polynomial time algorithm for computing the multi-homogeneous
Bézout number given a multi-homogeneous structure seems to be known (see [9,
p.240]).

This is why in this paper, we restrict ourselves to the case A = A1 = · · · = An.
This is a particular subset of the general case, and any hardness result for this
particular subset implies the same hardness result in the general case.

More formally, we adopt the Turing model of computation and we consider
the function:

Béz : n, k,A, I1, . . . , Ik �→ Béz(A; I1, . . . , Ik) ,

where all integers are in binary representation, and A is a list of n-tuples
(α1, . . . , αn), and each Ij is a list of its elements. In particular, the input size is
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bounded below by n#A and by maxα,i�log2 αi�. Therefore, Béz(A; I1, · · · , Ik)
can be computed in polynomial time by a straight-forward application of formula
(2). As a matter of fact, it can be computed in time polynomial in the size of A.

Problem 1. Given n and A, compute minI Béz(A; I) , where I = (I1, . . . , Ik)
ranges over all the partitions of {1, . . . , n}.

Problem 2. Let C > 1 be fixed. Given n and A, compute some B such that
BC−1 < min Béz(A; I) < BC. Again, I = (I1, . . . , Ik) ranges over all the parti-
tions of {1, . . . , n}.

Important Remark: The different multi-homogeneous Bézout numbers do only
depend on the support of the system (i.e. on the monomials with non-zero coef-
ficients) and on the chosen partition. They do not depend on the actual values
of the coefficients fiα. Thus, throughout the paper we consider only n and A as
input, but not the values fiα = 0.

In the problems above, we are not asking for the actual partition. Thus, our
results are even stronger. In the statements below that refer to approximation
classes like APX computation of a feasible solution is included in the problem.

Theorem 1 (Restated). Problem 2 is NP-hard.

This is actually stronger than the conjecture by Li and Bai [8], that corre-
sponds to the first part of the following immediate corollary:

Corollary 2. Problem 1 is NP-hard. Moreover, it does not belong to APX,
unless P = NP.

Corollary 1 (Restated). There is no ε < 1/2 and no probabilistic machine
solving Problem 2 with probability 1− ε, unless BPP ⊇ NP.

Concerning other bounds on the number of roots let us briefly mention that
Kushnirenko [6] bounds the number of isolated solutions of (1) (for supports
Ai = A) in (C∗)n by n! · Vol(ConvA), where ConvA is the smallest convex
polytope containing all the points of A. This bound is sharper than the Bézout
bound, but the known hardness results are far more dramatic: In [5], Khachiyan
proved that computing the volume of a polytope given by a set of vertices is
#P-hard. For the huge amount of literature on algorithms for approximating
the volume of a convex body in different settings we just refer to [14] as a
starting point for further reading.

3 Proof of the Main Theorems

3.1 From Graph Theory to Systems of Equations

It is well known that the Graph 3-Coloring Problem is NP-hard. We will need
to consider an equivalent formulation of the Graph 3-coloring problem.
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Recall that the cartesian product of two graphs G1 = (V1, E1) and G2 =
(V2, E2) is the graph G1 ×G2 = (V1 × V2, E) with ((v1, v2), (v′

1, v
′
2)) ∈ E if and

only if v1 = v′
1 and (v2, v′

2) ∈ E2 or v2 = v′
2 and (v1, v′

1) ∈ E1.
Also, let K3 denote the complete graph with 3 vertices.

Lemma 1. The graph G admits a 3-coloring if and only if the graph G × K3
admits a 3-coloring I = (I1, I2, I3) with #I1 = #I2 = #I3 = |G| (where I1, I2, I3
are subsets of vertices colored with each of the three colors). ��

To each graph H = (V,E) we will associate two spaces of polynomial systems.
Each of those spaces is characterized by a support set A = A(H) (resp. A(H)l)
to be constructed and corresponds to the space of polynomials of the form (1)
with complex coefficients. Of particular interest will be graphs of the form H =
G×K3.

We start by identifying the set V of vertices of H to the set {1, . . . ,m}. Let
Ks denote the complete graph of size s, i.e. the graph with s vertices all of them
pairwise connected by edges.

To each copy of Ks, s = 0, . . . , 3 that can be embedded as a subgraph of
H (say the subgraph generated by {v1, · · · , vs}) we associate the monomial
zv1zv2 · · · zvs

(the empty graph K0 corresponds to the constant monomial). Then

1

2

3 4

H

Fig. 1. In this example, A(H) = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),
(1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0), (0, 0, 1, 1), (1, 1, 1, 0)}. A possible polynomial with that
support would be 1 + v1 + v2 + v3 + v4 + v1v2 + v1v3 + v2v3 + v3v4 + v1v2v3

we consider the linear space generated by all those monomials (Figure 1). There-
fore, the support A(H) is the set of all ev1 + · · ·+ evs

⊂ Nm such that 0 ≤ s ≤ 3
and {v1, . . . , vs} induces a copy of Ks as a subgraph of H. Here, ei denotes the
i-th vector of the canonical basis of Rn.

Given a set A, we denote by Al the l-fold cartesian product of A.
The two spaces of polynomial systems associated to a graph H will be the

polynomial systems with support A(H) and A(H)l.
Remark that none of the two classes of systems above is homogeneous in

any possible group of variables (because we introduced a constant monomial).
Therefore, in the calculation of the Bézout number for a partition I , we can set
aj = #Ij . The following is straightforward:

Lemma 2. Let l be fixed. Then, there is a polynomial time algorithm to compute
A(H) and A(H)l, given H. ��
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3.2 A Gap Between Bézout Numbers

In case the graph H admits a 3-coloring I = (I1, I2, I3), any corresponding
polynomial system is always trilinear (linear in each set of variables). If moreover
H is of the form H = G ×K3 with |G| = n, the cardinality of the Ij is always
n, and formula (2) becomes:

Béz(A(G×K3); I) =
(

3n
n n n

)
.

The crucial step in the proof of Theorem 1 is to show that this number is

≥ 4
3

(
3n

n n n

)
unless k = 3 and I is a 3-coloring of G×K3.

In order to do that, we introduce the following cleaner abstraction for the
Bézout number: if k ∈ N and a = (a1, . . . , ak) ∈ Nk are such that

∑k
j=1 aj = 3n,

we set

B(a) def=
(

3n
a1 a2 · · · ak

) k∏
j=1

⌈aj

n

⌉aj

.

Lemma 3. If H = G × K3 and I = (I1, . . . , Ik) is a partition of the set
{1, . . . , 3n} of vertices of H, then Béz(A(H); I) ≥ B(a) with aj = #Ij. ��

The main step towards establishing the “gap” is the following Proposition:

Proposition 1. Let n, k ∈ N and let a1 ≥ a2 ≥ · · · ≥ ak ≥ 1 be such that∑k
j=1 aj = 3n. Then, either k = 3 and a1 = a2 = a3 = n, or B(a) ≥ 4

3B(n, n, n).
Moreover, this bound is sharp.

The proof of Proposition 1 is postponed to section 4.
Putting it all together,

Lemma 4. Let G be a graph and n = |G|. Then, either

min
I

Béz(A(G×K3); I) =
(

3n
n n n

)
or min

I
Béz(A(G×K3); I) ≥ 4

3

(
3n

n n n

)
,

depending on whether G admits a 3-coloring or not.

Proof. According to Lemma 1, G admits a 3-coloring if and only if G×K3 admits
a 3-coloring. If I = (I1, I2, I3) is a 3-coloring of G×K3, then

Béz(A(G×K3); I) =
(

3n
n n n

)
.

If I = (I1, . . . , Ik) is not a 3-coloring of G × K3, then we distinguish two
cases. We set aj = #Ij .
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Case 1: a = (n, n, n) and hence k = 3. Then the degree in at least one group of
variables is ≥ 2, and

Béz(A(G×K3); I) ≥ 2n

(
3n

n n n

)
.

Case 2: a = (n, n, n). Then

Béz(A(G×K3); I) ≥ B(a1, . . . , ak) ≥ 4
3

(
3n

n n n

)

by Lemma 3 and Proposition 1. In both cases,

min
I

Béz(A(G×K3), I) ≥ 4
3

(
3n

n n n

)
. ��

3.3 Improving the Gap

In order to obtain a proof valid for any constant gap C the idea is to increase
the gap by considering several copies of a polynomial system, but each copy in
a new set of variables. This idea works out because of the special multiplicative
structure of the multi-homogeneous Bézout number. We will need:

Proposition 2. Let m, l ∈ N. Let A ⊂ Nm be finite and assume that 0 ∈ A.
Then,

min
J

Béz(Al;J) =
(

lm
m m · · · m

) (
min

I
Béz(A; I)

)l

.

Proof. 1. Let I = (I1, · · · , Ik) be the partition of {1, . . . ,m} where the minimal
Bézout number for A is attained. This induces a partition J = (Jjs)1≤j≤k,1≤s≤l

of {1, . . . ,m} × {1, . . . , l}, given by Jjs = Ij × {s}. Identifying each pair (i, s)
with i+ms, the Jjs are also a partition of {1, . . . , lm}. By construction of Al, the
degree djs in the variables corresponding to Jjs is equal to the degree dj of the
variables Ij inA. The systems corresponding toA andAl cannot be homogeneous
for any partition, since 0 ∈ A and 0 ∈ Al. Then we have aj = #Ij = ajs for any
s. Therefore,

min
K

Béz(Al,K) ≤ Béz(Al,J) =

⎛
⎝

lm
a1 · · · a1︸ ︷︷ ︸

l times

· · · ak · · · ak︸ ︷︷ ︸
l times

⎞
⎠

l∏
s=1

k∏
j=1

d
aj

j

=
(

lm
m m · · · m

) ⎛
⎝
(

m
a1 a2 · · · ak

) k∏
j=1

d
aj

j

⎞
⎠

l

=
(

lm
m m · · · m

) (
min

I
Béz(A; I)

)l

.

2. Now, suppose that the minimal Bézout number for Al is attained for a
partition J = (J1, · · · , Jr). We claim that each Jt fits into exactly one of the l
sets {1, . . . ,m} × {s}.
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Suppose this is not the case. Assume without loss of generality that J1 splits
into K ⊂ {1, . . . ,m} × {1} and L ⊂ {1, . . . ,m} × {2, . . . , l}, both K and L non-
empty. If dK denotes the degree in the K-variables and dL the degree in the L
variables, then d1 = dK + dL. Also, a1 = aK + aL where aK is the size of K
and aL is the size of L. The multi-homogeneous Bézout number corresponding
to the partition J ′ = (K,L, J2, · · · , Jr) is:

Béz(Al;J ′) =
(

3lm
aK aL a2 · · · ar

)
daK

K daL

L

r∏
j=2

d
aj

j .

Therefore,

Béz(Al;J ′)
Béz(Al,J)

=

(
a1
aK

)
daK

K daL

L

(dK + dL)a1
< 1

and the Bézout number was not minimal, thus establishing the claim.
3. Denote by J = ∪l

s=1J
(s) the partition minimizing the Bézout number

corresponding to Al. In the notation above, we assume that J(s) is a partition
of {1, . . . ,m} × {s}.

In that case,

Béz(Al;J) =
(

lm
m m · · · m

) l∏
s=1

⎛
⎝
(

m

a
(s)
1 · · · a(s)

k

) k∏
j=1

(d(s)
j )a

(s)
j

⎞
⎠

=
(

lm
m m · · · m

) l∏
s=1

Béz(A,J(s)) ≥
(

lm
m m · · · m

)(
min

I
Béz(A; I)

)l

.

��

Combining Lemma 4 and Proposition 2, we established that:

Lemma 5. Let G be a graph and n = |G|. Let l ∈ N. If G admits a 3-coloring,
then

min
J

Béz(A(G×K3)l,J) =
(

3nl
3n 3n · · · 3n

)(
3n

n n n

)l

.

Otherwise,

min
J

Béz(A(G×K3)l,J) ≥
(

4
3

)l ( 3nl
3n 3n · · · 3n

)(
3n

n n n

)l

. ��

Proof (of Theorem 1). Assume that ApproxBéz is a deterministic, polynomial
time algorithm for solving problem 2, i.e., for estimating the Bézout number up
to a factor of C. Then we could decide Graph 3-coloring in polynomial time as
follows:
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Let l =
⌈

log C
2 log 4/3

⌉
and apply the potential approximation algorithm to(

A(G×K3)l
)
. Compute

ρ ←
ApproxBéz

(
A(G×K3)l

)
(

3nl
3n 3n · · · 3n

)(
3n

n n n

)l
.

By our choice of the constant l,
√
C ≤ (4/3)l. Therefore, Lemma 5 asserts

that the output of our algorithm is correct.
The bit-size of the numbers that occur when computing the denominator of

line 2 are bounded above by O(3nl log(3nl)). The size of the graph G × K3 is
O(n), and Lemma 2 says that Al can be computed in polynomial time. It follows
that the above algorithm runs in polynomial time. Since Graph 3-coloring is NP-
complete, we deduce that P = NP. ��

Proof (of Corollary 1). Assume now that ApproxBéz is a probabilistic polyno-
mial time algorithm for solving problem 2, which returns a correct result with
probability 1− ε, ε < 1/4. Then the algorithm will return the correct answer for
the Graph 3-coloring Problem, with probability at least 1− ε. This implies that
Graph 3-coloring is actually in BPP. ��

4 Proof of Proposition

Lemma 6. Let x, n ∈ N. Then,
(⌈

x
n

⌉
n
x

)x ≥ 1 +
(
(n− x) mod n

)
.

In particular, the left-hand side is ≥ 2 whenever n  | x, and is always ≥ 1.

Next, we will make use of the Stirling Formula [1, (6.1.38)]:

x! =
√

2π xx+ 1
2 e−x+ θ(x)

12x , (3)

where 0 < θ(x) < 1.

Proof (of Proposition 1). The ratio between B(a) and B(n, n, n) is:

B(a)
B(n, n, n)

=
k∏

j=1

⌈aj

n

⌉aj n! n! n!
a1! a2! · · · ak!

.

From Stirling formula (3) it follows immediately that:

B(a)
B(n, n, n)

=
√

2π
3−k

k∏
j=1

⌈aj

n

⌉aj n3n+ 3
2

∏k
j=1 a

aj+ 1
2

j

e
θ(n)
4n −

∑ θ(aj)
12aj . (4)

Now we distinguish the cases k = 1, k = 2, and k ≥ 3. The first two cases
are easy:
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Case 1: If k = 1, then a1 = 3n and (4) becomes:

B(a)
B(n, n, n)

= 2π
n√
3
e

θ(n)
4n − θ(3n)

36n

which is bounded below by 2π√
3
e−1/36 ( 3.528218766.

Case 2: If k = 2, Lemma 6 implies that B(a)
B(n,n,n) ≥

√
2π n

3
2√

a1 a2
e−1/6 .

Since
√
a1 a2 ≤ a1+a2

2 = 3n
2 , we obtain: B(a)

B(n,n,n) ≥
2
3

√
2πe−1/6 ( 1.41454 .

Case 3: Let k ≥ 3. If a3 = n, then k = 3 and a1 = a2 = a3 = n, so there is
nothing to prove. Therefore, we assume from now on that a3 < n.

We separate the right-hand side of (4) into two products, the first for j =
1, 2, 3 and the second for j ≥ 4. Equation (4) becomes now:

B(a)
B(n, n, n)

=

⎛
⎝

3∏
j=1

(⌈aj

n

⌉ n
aj

)aj n
3
2

√
a1a2a3

e
θ(n)
4n −

∑3
j=1

θ(aj)
12aj

⎞
⎠

⎛
⎝√2π

3−k
k∏

j=4

naj

a
aj+ 1

2
j

e
−

∑k
j=4

θ(aj)
12aj

⎞
⎠

(5)

using the fact that aj < n for j ≥ 4. In case k = 3, the second factor in equation
(5) above is equal to one. Since a3 < n, n  | a3 and Lemma 6 implies that for
a3 < n

3∏
j=1

(⌈aj

n

⌉ n
aj

)aj

≥ 2 .

Moreover, 3
√
a1a2a3 ≤ (a1+a2+a3)/3 ≤ n, so the first factor of the right-hand

side of (5) can be bounded below by

k∏
j=1

(⌈aj

n

⌉ n
aj

)aj n
3
2

√
a1a2a3

e
θ(n)
4n −

∑3
j=1

θ(aj)
12aj ≥ 2e−1/4 ( 1.557601566 .

If k = 3 we are done. Otherwise, we notice that since the aj are non-
increasing, aj ≤ 3n

4 for all j ≥ 4. In order to bound the second factor of (5), we
will need the following technical Lemma:

Lemma 7. Let n, x ∈ N and let x ≤ 3n
4 . Then, unless (n, x) ∈ {(2, 1), (3, 2),

(4, 3), (6, 4), (7, 5), (8, 6)}, we have:

nx

√
2πxx+ 1

2
e− 1

12x > 1 .

Therefore, unless some of the pairs (n, aj), j ≥ 4 belong to the exceptional
subset {(2, 1), (3, 2), (4, 3), (6, 4), (7, 5), (8, 6)}, we have:

B(a)
B(n, n, n)

≥ 2e− 1
4 ( 1.557601566 .
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Finally, we consider the values of n and a where some (n, aj), j ≥ 4, is in
the exceptional subset. Of course, the exceptional set is finite and thus we are in
principal done. However, inspecting these values gives as lower bound the ratio
4/3 which is attained for n = 2 and a = (3, 1, 1, 1). ��
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Abstract. Dynamic complexity asks for the effort needed to maintain
the information about properties of a structure under operations chang-
ing the structure. This paper introduces a refined notion of dynamic
problems which takes the initial structure into account. It develops the
basic structural complexity notions accordingly. It also shows that the dy-
namic version of the LOGCFL-complete problem D2LREACH(acyclic)
can be maintained with first-order updates.

1 Introduction

For a set S, the static decision problem asks whether a given input I is an element
of S. Classical static complexity theory studies the inherent computational effort
to answer this question. But often one is not interested only once whether I ∈ S
but I undergoes small changes and information about its membership in S should
be available after each change. E.g., S could contain all triples (G, s, t), where G
is a graph and s and t are nodes such that t is reachable from s in G. Changes
could be insertion and deletion of edges. Another typical example is a view in a
database with tuple insertions and deletions to the base relations.

Of course, in many cases one can expect that if I ′ results from I by apply-
ing a small change, whether I ′ ∈ S might be closely related to whether I ∈ S.
In particular, it should often be simpler to maintain information about mem-
bership in S under small changes than to recompute it from scratch for each
new instance. This might involve auxiliary data structures which are updated
accordingly.

These considerations are the starting point of dynamic complexity theory
which was initiated in [16] and [17]. This theory has been focusing on two lines
of research, structural results about complexity classes of dynamic problems,
including suitable reduction concepts and complete problems and upper bounds
for concrete problems. Both lines consider problems with a very low update com-
plexity, especially with updates expressible in first-order logic (or, equivalently,
by uniform families of constant-depth, polynomial size circuits with unbounded
fan-in, aka AC0). This class is called DynFO in [17].

In [11], low-level reductions for dynamic problems are defined and a complete
problem (CSSCV) for DynFO is presented. Although this was an important
step, there remained some steps to be done. First, as the authors pointed out
themselves, it is still a challenge to find natural complete problems for dynamic

V. Diekert and B. Durand (Eds.): STACS 2005, LNCS 3404, pp. 256–268, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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classes. Second, in the construction of the complete problem a technical diffi-
culty arose that was caused by the role of the initial structure of a dynamic
problem in the setting of [17]. Further, the reductions seem hard to use for more
natural problems. Also, the class DynFO itself does not distinguish between
problems of quite different static complexity, e.g., between LOGSPACE and
PTIME.

Concerning upper bounds, the dynamic versions of many problems inside
NL have been shown to be in DynFO [17], e.g., reachability in directed, acyclic
graphs or in undirected graphs. The technically most demanding result was
that reachability in directed (possibly cyclic) graphs is in DynTC0, i.e., the
corresponding dynamic class with constant-depth threshold circuits [10].

It is natural to ask for the highest complexity of a (static) problem such
that its dynamic version allows for first-order updates. The answer to this ques-
tion has two facets. It was shown in [16, 17] that there are even P-complete
problems in DynFO. Nevertheless, these problems are highly artificial, using
redundant encodings of the form w|w|. Concerning non-redundant problems the
complexity-wise highest problems in DynFO known so far are complete for
NL.

Contributions. This paper contributes to both lines described above. First, by
taking the complexity of the initial instance I into account in a very simple
fashion, we define more refined complexity classes and corresponding reduction
concepts. More precisely, our classes are of the form Dyn(C, C′), where C is the
complexity of computing the auxiliary data structure for the initial input I and
C′ is the complexity of the updates. We show that these classes and reductions be-
have nicely and that the results of [17, 10, 11] translate in a straightforward way.
The new classes allow a more precise classification of problems. We show that
most of the problems mentioned above are in the respective class Dyn(C,FO),
where C is the complexity of the underlying static problem. Nevertheless, opti-
mality w.r.t. the initial input complexity is not automatic, e.g., it is not clear
whether the dynamic reachability problem is in Dyn(NL,TC0).

The technically most difficult result of this paper contributes to the other
line of research. It presents a (non-redundant) LOGCFL-complete problem with
first-order updates, more precisely, in Dyn(LOGCFL,FO).

Related Work. In a series of papers (e.g., [2, 3, 5, 4, 1]) first-order incremen-
tal evaluation systems have been studied, which are basically the analogue of
DynFO for database queries. In [14, 15] SQL was used as update language.
There is a huge body of work on algorithms for dynamic problems, e.g., [12, 18]
and on Online Algorithms [7].

Organization. In Section 2 we define dynamic problems and classes. Some precise
upper bounds are given in Section 3. Reductions are addressed in Section 4,
complete problems in section 5. Connections to static complexity are focused in
Section 6. In Section 7 we exhibit a LOGCFL-complete problem which is in
Dyn(LOGCFL,FO). We conclude in Section 8.
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2 Definitions

In this section, we give the basic definitions on dynamic problems and dynamic
complexity classes. These definitions depart considerably from [17]. Intuitively,
in our view, a dynamic problem D is induced by a static problem S, i.e., a set
of structures and a set of operations. A pair (A,w) consisting of a structure A
and a sequence w of operations is in D if the structure resulting from A after
applying w is in S. As an example, recall the reachability example from Section 1.
Instead of graphs we might consider arbitrary structures, instead of operations
insert and delete we might have other operations as well.

We turn to the formal definitions. We write STRUCn(τ) for the class of struc-
tures with n elements over vocabulary τ , e.g., STRUC5(E) denotes all graphs
with 5 vertices. The universe of a structure is always [n] := {0, . . . , n − 1}. We
only consider vocabularies with relation and constant symbols.

In general, we use operation symbols σ from a finite set Σ with an associated
arity arity(σ). E.g., in the graph example, arity(insert) = arity(delete) = 2.
An operation on a structure A ∈ STRUCn(τ) is simply a tuple σ(a1, . . . , am)
with ai ∈ [n], for i ≤ m and m = arity(σ). We denote the set of operations with
symbols from Σ over structures from STRUCn(τ) by Σn.

The semantics are given by an update function g which maps a pair
(A,σ(a1, . . . , am)) from STRUCn(τ)×Σn to a structure σg(a1, . . . , am)(A) from
STRUCn(τ). We usually write σ(a1, . . . , am)(A) for this structure. For a string
w = w1 · · ·wm of operations and a structure A let w(A) be wm(· · · (w1(A) · · · ).

Definition 1. Let τ be a vocabulary, S a set of τ -structures and Σ a set of
operation symbols. The dynamic problem D(S,Σ) associated with S and Σ is
the set of pairs (A,w), where, for some n > 0, A ∈ STRUCn(τ), w ∈ Σ∗

n and
w(A) ∈ S. We call S the underlying static problem of D.

The computations we want to model are of the following kind. First, from
the input structure A an auxiliary data structure B is computed. Afterwards,
for each operation wi this auxiliary structure is updated in order to reflect the
changes of A and to allow to find out quickly whether w1 · · ·wi(A) is in S. In our
dynamic complexity classes we consider the costs for the initial computation and
the updates separately. We are mainly interested in problems where the costs for
updates are very low. In this case the costs of the initial computation can not
be better than the complexity of S itself. More precisely, Dyn(C, C′) is the class
of problems, for which the initial computation can be done within complexity
class C and the updates within C′.

Definition 2. Let τ be a fixed vocabulary and let C and C′ be complexity
classes. Let Dyn(C, C′) be the class of all dynamic problems D = D(S,Σ) satis-
fying the following conditions:

– There is a vocabulary ρ, a set S′ of ρ-structures, and a C-computable function
f : STRUC[τ ] → STRUC[ρ] such that
• f(A) ∈ STRUCn[ρ] for all A ∈ STRUCn[τ ];
• f(A) ∈ S′ if and only if A ∈ S
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– There is a C′-computable function f ′ mapping tuples (B,σ, a1, · · · , aarity(σ)),
where, for some n, B is from STRUCn[ρ] and σ(a1, · · · , aarity(σ)) ∈ Σn, to
structures in STRUCn[ρ] such that for each n, each A ∈ STRUCn[τ ] and
each operation sequence w ∈ Σ∗

n:

w(A) ∈ S ⇐⇒ f ′(f(A), w) ∈ S′

where f ′ is extended to sequences of operations in the obvious way; and
– S′ ∈ C′.

We are mainly interested in the case where C′ is a very weak complexity class,
AC0. As AC0 contains exactly the problems which can be characterized by first-
order formulas (with built-in arithmetic) and as in the context of mathematical
structures logical formulas are the natural means to express function f ′, we
usually express C′ by its corresponding logic, e.g. in Dyn(C,FO).

Remarks 3. – More abstractly, Definition 2 requires a kind of reduction from
a dynamic problem D to a dynamic problem D′. The computation of the
initial structure is in C, the effect of operations for D′ are computable in
C′ and the underlying static problem of D′ is in C′ as well. Actually, it is a
1-bounded (C, C′)-homomorphism in the notation below.

– Instead of C and C′ it would be more precise to use complexity classes of func-
tions. We only deal with cases with clear connection between the function
class and its language class as, e.g., FP, FL, FNL = FLNL.

– We follow [17] in that we do not allow operations which delete or insert
elements into structures. On the other hand, that the auxiliary structure
f(A) has the same size as A is not a severe restriction, as all auxiliary
structures of polynomial size p(n) can be encoded over the universe of A.

The main difference to the setting of [17, 11] is that they always start with
a fixed initial structure and only distinguish precomputations of the same com-
plexity as the updates (DynC) and polynomial-time precomputations (DynC+).
The relationship to our classes is considered in the following proposition. We call
a dynamic problem polynomially connected, if for each pair A,A′ of structures of
size n there is a polynomial size sequence w of operations such that w(A) = A′.

Proposition 4. If a problem in DynC+ is polynomially connected then it is also
in Dyn(P, C).

Note that the first notion of a problem in this statement refers to [17], i.e.,
it consists of sequences of operations only.

3 Some Precise Upper Bounds

In this section, we show for various dynamic problems membership in Dyn(C,FO)
where the underlying static problem is complete for C. dynREACH is the (di-
rected) reachability problem with operations that insert or delete edges and set
s or t to a new node. All other dynamic graph problems have insertion and
deletion of edges as operations. dyn2SAT has deletion and insertion of clauses.
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Theorem 5. (a) The dynamic PARITY problem dynPARITY, with operations
which set or unset one bit is in Dyn(ACC0[2],FO).

(b) The dynamic deterministic reachability problem dynREACHd, which asks for
a path on which every node has outdegree 1, is in Dyn(LOGSPACE,FO).

(c) dynREACH for undirected graphs is in Dyn(SL,FO).
(d) dynREACH for acyclic graphs is in Dyn(NL,FO).
(e) Dynamic 2-colorability dyn2COL for undirected graphs is in Dyn(SL,FO).

Proof (Sketch). (a) requires only one auxiliary bit, the parity bit itself. For
(b) we use a ternary auxiliary relation containing all triples (x, y, z) such that
there is a deterministic path from x to y via z. (c), (d) and (e) follow directly
by analyzing the proofs in [17, 3].

From [10] we can conclude dynREACH ∈ Dyn(P,TC0), the precise classifi-
cation remains open. From this result one also gets dyn2SAT ∈ Dyn(P,TC0).

4 Reductions

Given a pair (A,w) a reduction from D to D′ has to map A to an initial structure
A′. Further, an operation wi has to be mapped to one or more operations of D′.
The image of wi could depend on the previous operations w1, . . . , wi−1 and on
A. But we follow [11] and require that each wi is mapped independently.

Definition 6. Let D = D(S,Σ) and D′ = D(S′,Σ′) be dynamic problems over
vocabularies τ and τ ′, respectively. A reduction from D to D′ is a pair (f, h) of
mappings with the following properties:

– For each n ∈ N, f maps τ -structures of size n to τ ′-structures of size n′,
where n′ = p(n) for some polynomial p.

– For each n ∈ N, h is a string homomorphism from Σ∗
n to Σ′∗

n′ .
– For each τ -structure A, and each sequence w of operations on A,

(f(A), h(w)) ∈ D′ ⇐⇒ (A,w) ∈ D.

If f and h can be computed in complexity C and C′, respectively, we say that
the reduction is a (C, C′)-reduction. We write D ≤C,C′ D′.

If (f, h) is a reduction from D(S,Σ) to D′ = D(S′,Σ′) then f is a reduction
from S to S′. Also, although we require that h(σ)(f(A)) ∈ D′ if and only if
σ(A) ∈ D, the structures h(σ)(f(A)) and f(σ(A)) need not to be the same. If
(f, h) additionally fulfills h(σ)(f(A)) = f(σ(A)) it is called a homomorphism.1

A reduction is k-bounded, if |h(s)| ≤ k, for each s ∈ ∪n
i=1Σi. It is bounded if

it is k-bounded, for some k. Note, that |h(s)| refers to the number of operations,
not to the length of their encoding. We write ≤b for bounded reductions. We are
mainly interested in the case where C is LOGSPACE or FO and C′ = FO.

1 In [11] the term homomorphism was used for what we call reduction.
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Example 7. dynPARITY ≤b
FO,FO dynREACH: By f a string x = x1 · · ·xn is

mapped to a graph with nodes (i, j), where i ∈ [n + 1] and j ∈ {0, 1}. If xi = 0
there are edges from (i − 1, 0) to (i, 0) and from (i − 1, 1) to (i, 1). Otherwise,
there are edges from (i− 1, 0) to (i, 1) and from (i− 1, 1) to (i, 0). Clearly, x is
in PARITY iff there is a path from (0, 0) to (n, 0). Each operation on the string
is mapped to at most four operations in the graph in a straightforward manner.

The following propositions show that our dynamic reductions and dynamic
complexity classes fit together.

Proposition 8. The relations ≤b
LOGSPACE,FO and ≤b

FO,FO are transitive.

Proposition 9. Let C and C′ be closed under functional composition, FO ⊆ C
and FO ⊆ C′. Then Dyn(C, C′) is closed under bounded (FO,FO)-reductions.

Proposition 9 also holds for bounded (LOGSPACE,FO)-reductions if C is
required to be closed under logspace-reductions.

5 Complete Problems

In [11] a complete problem for DynFO under bounded first-order homomor-
phisms was established. We show next that the problem can be translated into
our setting and, furthermore, it can be adapted to obtain complete problems for
other classes of the type Dyn(C,FO).

The dynamic problem single step circuit value (SSCV) of possibly cyclic
circuits is defined in [11]. They consider operations to change the type of a gate,
“and”, “or”, or “nand”, to add and delete wires between gates, and to set the
current value of a gate. There is also a operation that propagates values one step
through the circuit. Only sequences of these operations are considered in [11].
To translate SSCV in our setting, we have to add an underlying static problem.
The most natural choice would be the set of all such circuits whose gate 0 has
value “1”. But the resulting problem has very low complexity.

Proposition 10. SSCV is complete for Dyn(FO,FO) under bounded
(FO,FO)-homomorphisms.

This follows directly from [11] since no auxiliary data structure is needed to
prove SSCV ∈ DynFO and the circuits they use are first-order definable.

To obtain a dynamic problem complete for a larger class, e.g. Dyn(P,FO),
we have to choose a static problem that is complete for P. We use a modification
of the generic complete problem for P. The set of all tuples (c, x, 1m), such that c
encodes a Turing machine that computes a circuit whose gate 0 has value “1” on
input x within m steps, is complete for P. This problem can be combined with
the operations from above to SSCVP, i.e., we substitute the circuit of SSCV by
instructions to build a circuit. The operations have to change these instructions
accordingly, e.g., the operation and(i) should result in instructions to build the
same circuit except that gate i is an “and” gate.
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Theorem 11. SSCVP is complete for Dyn(P,FO) under bounded (FO,FO)-
homomorphisms.

This result can be transfered to other complexity classes like Dyn(L,FO)
and Dyn(NL,FO) as well as to classes using TC0 circuits to compute updates.

6 Connections to Static Complexity

Now, we establish some connections between static and dynamic problems.
To transfer properties from static problems to dynamic problems, the dy-

namic problems need to depend in a uniform way on their underlying static
problems. The most problems studied in earlier work (e.g., [17, 3, 6, 10]) have
essentially the same operations: insertion and deletion of tuples and setting con-
stants. Therefore, we will now study dynamic problems with these operations.
For a static problem S ⊆ STRUC[τ ] we define the set Σcan(S) of canonical
operations by

Σcan(S) = {insertR, deleteR | for all relation symbols R ∈ τ}
∪ {setc | for all constant symbols c ∈ τ}

We call Dcan(S) := D(S,Σcan(S)) the canonical dynamic problem for S.
An interesting question is the dynamic complexity of NP-problems. One

might assume that if an NP-complete problem has polynomial dynamic com-
plexity (i.e., is in Dyn(C,P), for some class C) then P = NP. Of course, this
holds for C = P, but we can not prove it for more powerful classes C. Never-
theless, we can show the following result which draws a simple but interesting
connection between dynamic and non-uniform complexity.

Theorem 12. Let S be NP-complete. Then NP ⊆ P/poly iff there is a class
F of polynomially size-bounded functions such that Dcan(S) ∈ Dyn(F ,P).

Proof. For the if direction, as P/poly is closed under reductions, it suffices
to show that S is in P/poly if its canonical dynamic version is in Dyn(F ,P).
For each n, let En denote the τ -structure of size n with empty relations and all
constants set to 0. The advice for size n inputs is just the auxiliary structure
for En. For a structure S of size n, an auxiliary structure can be computed by
adding tuples to En and updating the auxiliary structure for En accordingly.
Whether S is accepted can be derived from the final result of this process.

For the only if direction, assuming S ∈ NP ⊆ P/poly, let Cn denote the
polynomial advice for S for inputs of size n. The auxiliary structure for a struc-
ture A simply consists of A itself together with an encoding of Cn. The update
operations only change the A part of the auxiliary structure. Clearly, updates
can be done in polynomial time and checking membership of (A,Cn) is in poly-
nomial time by assumption.

The definition of reductions between dynamic problems already requires that
there is a reduction between the underlying static problems. The following result
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shows that sometimes one can say more about this reduction, if we are starting
from a homomorphism between dynamic problems. In a bounded FO-reduction
(bfo) each tuple of the source structure affects only a bounded number of tuples
in the target structure [17].

Theorem 13. Let S and T be problems. For every bounded (FO,FO)-homo-
morphism (f, h) from Dcan(S) to Dcan(T ), f is a bfo-reduction from S to T .

Proof. By definition f is an FO-reduction from S to T . We have to show that
f is bounded in the above mentioned sense.

Let τ be the signature of S and let A and A′ be two τ -structures which differ
only in a single tuple t, say, A′ = insert(t)(A). Because (f, h) is a homomor-
phism, f(A) and f(A′) differ only in the tuples and constants affected by the
operations in h(insert(t)). The number of these operations is bounded and each
operation affects only one tuple or constant. Since h does not depend on A and
A′, we can conclude that f is bounded and, therefore, a bfo-reduction.

As stated in [11], canonical dynamic problems cannot be complete for dy-
namic complexity classes in our general setting. But their argument fails if we
restrict to classes of canonical dynamic problems. By Theorem 13, problems com-
plete for such classes under bounded (FO,FO)-homomorphisms must be based
on problems complete under bfo-reductions, i.e., dynREACH for acyclic graphs
cannot be complete for Dyn(NL,FO) under bounded (FO,FO)-homomorphisms
because dynREACH is not complete for NL under bfo-reductions [17].

7 A LOGCFL-Complete Problem with First-Order
Dynamic Complexity

In this section we turn to the question of the maximum possible static complexity
of a problem with first-order updates. In dealing with this question one has to
distinguish between “redundant” and “non-redundant” problems.

It was observed in [16, 17] that by blowing up the encoding of a problem
its dynamic complexity can be decreased and that each problem in P has a
padded version in Dyn(P,FO). To be more precise, let, for a (string) problem
S, PAD(S) be its padded version PAD(S) = {w|w| | w ∈ S}. If it is a set
of graphs then instances of PAD(S) consist of n disjoint graphs of n-vertex
graphs. It was shown in [17] that PAD(REACHa), the padded version of the
alternating reachability problem is in Dyn(P,FO). Note that, for graphs with n
nodes it needs n operations to make a significant change, i.e., this result is just a
restatement of the fact that REACHa is in FO[n] [13]. As noted by the authors
in [16], this result is based on a redundant encoding. They defined a notion of
non-redundant problems by completeness under a certain kind of reduction. But
this notion does not seem to be applicable to complexity classes below P.

We are interested in first-order updates to non-redundant problems. The
complexity-wise highest problems known so far to have such updates are com-
plete for NL, e.g., the reachability problem on acyclic graphs.
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In this section we will improve this result by establishing first-order updates
for a non-redundant problem complete for LOGCFL.

The class LOGCFL consists of all problems that are logspace-reducible to a
context free language and is placed between NL and AC1. More on LOGCFL
can be found in [8].

The problem we consider is the canonical dynamic problem for a reachability
problem on labeled, acyclic graphs: D2LREACH(acyclic). The labels are symbols
drawn from Σ = {a, b, ā, b̄}. The problems asks for a path between two nodes
s and t that is labeled by a string in D2, the Dyck language with two types of
parentheses given by the following context free grammar.

D2 : S → aSāS | bSb̄S | ε

Proposition 14. D2LREACH(acyclic) is complete for LOGCFL.

This can be shown by a reduction similar to the one given in [9] for the P-
completeness of D2LREACH.

We represent D2LREACH(acyclic) as a set of structures over vocabulary
〈R2

a, R2
ā, R2

b , R
2
b̄
, s, t〉, i.e., for each symbol σ ∈ Σ there is a binary relation R2

σ

and we allow insertion and deletion of tuples in these relations as well as setting
the constants. We assume that every edge has a unique label, i.e., to change
the label of an edge, it first has to be deleted before it is inserted into another
relation. We also assume that the operations preserve acyclicity. Both conditions
can be checked by a first-order formula.

We can now state the main theorem of this section.

Theorem 15. Dcan(D2LREACH(acyclic)) is in Dyn(LOGCFL,FO).

We will sketch the proof in the remainder of this section. First, we introduce
the auxiliary data structure we are going to use. Insertion and deletion of edges
is considered afterwards.

7.1 An Auxiliary Data Structure

One might be tempted to use as auxiliary structure the set of pairs (u, v) such
that there is a D2-labeled path from u to v. As the example in Figure 1 indicates,
this information is not sufficient. In this example, the data structure would
contain only the tuples (u, u) for u ∈ {0, . . . , 6}. This does not help to recognize
new paths, e.g., the path from 0 to 6 after insertion of an edge (2, 3) labeled a.

0 1 2 3 4 5 6
a b ā b̄ ā

Fig. 1. Example of a labeled graph

A more helpful information is that the concatenation of the labels on the
paths from 0 to 2 and from 4 to 6 is in D2. This is exactly the kind of information
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we are going to store. More precisely, we maintain a relation P of arity four which
contains the tuples (u1, v1, u2, v2) such that there are paths from u1 to v1 labeled
s1 and from u2 to v2 labeled s2 with s1s2 ∈ D2.

We also maintain the transitive closure T of the graph, ignoring the labels.
Therefore, our auxiliary data structure is over vocabulary

τ = 〈R2
a, R2

b , R
2
ā, R2

b̄ , P
4, T 2, s, t〉.

The relation P stores information about concatenations of labels of two paths.
To update P during insertion and deletion of edges, we will need the correspond-
ing information for three or even four paths. Fortunately, this information can
be extracted from P by a first-order formula.

Lemma 16. For every k ≥ 1 there is a first-order formula πk over vocabulary
τ , such that πk(u1, v1, . . . , uk, vk) holds if and only if there are paths from ui to
vi labeled with strings si for i ≤ k, and s1 · · · sk ∈ D2.

7.2 Inserting Edges

To update the relation P after an edge (x, y) was inserted, we have to find paths
that use the new edge. All tuples referring to other paths have been in P before.

A tuple in P talks about two paths. (x, y) be used in both or only in the first
or second path. These three cases are distinct in the following lemma.

Lemma 17. For each σ ∈ Σ there are FO-formulas ϕσ1, ϕσ2 and ϕσ, such that
– ϕσ1(u1, v1, u2, v2, x, y) is true iff there are paths from u1 to x labeled s1, from

y to v1 labeled s2, and from u2 to v2 labeled s3 such that s1σs2s3 is in D2.
– ϕσ2(u1, v1, u2, v2, x, y) is true iff there are paths from u1 to v1 labeled s1, from

u2 to x labeled s2, and from y to v2 labeled s3 such that s1s2σs3 is in D2.
– ϕσ(u1, v1, u2, v2, x, y) is true iff there are paths from u1 to x labeled s1, from

y to v1 labeled s2, from u2 to x labeled s3, and from y to v2 labeled s4 such
that s1σs2s3σs4 is in D2.

Proof (Sketch). We restrict to ϕa1. In the case of ϕa1 we are interested in
tuples(u1, v1, u2, v2) describing paths using the a-labeled edge (x, y) between
u1 and v1. The idea in building ϕa1 is to guess the corresponding edge (z, z′)
labeled ā by existentially quantifying z and z′. Then P is used to check if there
is a correctly labeled path using these two edges. There are two cases: (z, z′)
might be on the path form u1 to v1 behind (x, y) or on the path from u2 to v2.
These considerations lead to the following formula:

ϕa1(u1, v1, u2, v2, x, y) ≡ ∃z, z′(Rā(z, z′) ∧ [(π3(u1, x, z′, v1, u2, v2) ∧ π1(y, z))∨
(P (u1, x, z′, v2) ∧ P (y, v1, u2, z))])

All that remains to update P is to put the old and new tuples together.
Therefore, the update formulas for an operation insertRσ

(x, y), for σ ∈ Σ, are
given by:

P ′(u1, v1, u2, v2) ≡ P (u1, v1, u2, v2) ∨ ϕσ1(u1, v1, u2, v2, x, y) ∨
ϕσ2(u1, v1, u2, v2, x, y) ∨ ϕσ(u1, v1, u2, v2, x, y)

T ′(u, v) ≡ T (u, v) ∨ (T (u, x) ∧ T (x, v))
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7.3 Deleting Edges

Maintaining P and T under deletion of edges is more complicated. We basically
need the following lemma.

Lemma 18. For each σ ∈ Σ there are FO-formulas ψσ1, ψσ2 and ψσ, such that

– ψσ1(u1, v1, u2, v2, x, y) expresses the following implication: If there is an edge
(x, y) labeled σ and ϕσ1(u1, v1, u2, v2, x, y) is true, then there is a path from
u1 to v1 that does not use (x, y) and a path from u2 to v2, so that the
concatenation of their labels is in D2.

– ψσ2(u1, v1, u2, v2, x, y) expresses the following implication: If there is an edge
(x, y) labeled σ and ϕσ2(u1, v1, u2, v2, x, y) is true, then there is a path from
u1 to v1 and a path from u2 to v2 that does not use (x, y), so that the
concatenation of their labels is in D2.

– ψσ(u1, v1, u2, v2, x, y) is the following implication: If there is an edge (x, y)
labeled σ and ϕσ1(u1, v1, u2, v2, x, y) ∧ ϕσ2(u1, v1, u2, v2, x, y) is true, then
there are paths from u1 to v1 and from u2 to v2 that do not use (x, y), so
that the concatenation of their labels is in D2.

Proof (Sketch). Again, we restrict to the first formula. To build ψa1, we have
to describe a path from u1 to v1 not using (x, y). To this end, we make use of a
technique from [17]. Such a path exists if there is an edge (z, z′) different from
(x, y), such that there are a path from u1 to z, a path from z′ to v1 and a path
from z to x but no path from z′ to x. In our context, we also need that the
concatenation of labels along the path from u1 via (z, z′) to v1 and a path from
u2 to v2 is in D2. This can be done by ϕσ1, where σ is the label of (z, z′). Since
we do not know σ, we have to consider all four possibilities.

ψa1(u1, v1, u2, v2, x, y) ≡ (Ra(x, y) ∧ ϕa1(u1, v1, u2, v2, x, y))

→ (∃z, z′[T (u1, z) ∧ T (z, x) ∧ E(z, z′) ∧ ¬T (z′, x) ∧ T (z′, v1) ∧ (z �= x ∨ z′ �= y)∧
((Ra(z, z′) ∧ ϕa1(u1, v1, u2, v2, z, z′))∨ (Rā(z, z′) ∧ ϕā1(u1, v1, u2, v2, z, z′))∨
(Rb(z, z′) ∧ ϕb1(u1, v1, u2, v2, z, z′))∨ (Rb̄(z, z′) ∧ ϕb̄1(u1, v1, u2, v2, z, z′)))])

Here, ϕE(z, z′) expresses that there is an edge from z to z′.

Consequently, the updates necessary for an operation deleteRσ
(x, y) for σ ∈

Σ can be described as follows, what concludes the proof of Theorem 15.

P ′(u1, v1, u2, v2) ≡ P (u1, v1, u2, v2) ∧ ψσ1(u1, v1, u2, v2, x, y) ∧
ψσ2(u1, v1, u2, v2, x, y) ∧ ψσ(u1, v1, u2, v2, x, y)

T ′(u, v) ≡ T (u, v) ∧ (¬T (u, x) ∨ ¬T (y, v) ∨ ∃z, z′[T (u, z) ∧ ϕE(z, z′) ∧
T (z′, v) ∧ T (z, x) ∧ ¬T (z′, x) ∧ (z �= x ∨ z′ �= y)]).

We end this section with the following corollary, which holds because the
auxiliary data structure for the empty graph can be described in first-order.

Corollary 19. Dcan(D2LREACH(acyclic)) is in DynFO.
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8 Conclusion

We have taken a step towards a dynamic complexity theory by presenting a more
robust notion of dynamic problems and complexity classes. This allowed us to
characterize the complexity of several dynamic problems more precisely, thus
clarifying the role of precomputation in dynamic complexity which was an open
problem of [17]. We also gave complete problems for dynamic complexity classes
under a useful kind of reduction. Finally, we presented first-order updates to a
first “non-redundant” LOGCFL-complete problem.

We want to give some directions for further research:
– It remains open if there is a non-redundant problem complete for P that

allows efficient updates. D2LREACH might be a candidate. Note that the
result of [10] can not be applied to D2LREACH in a straightforward way
since one has to consider paths of exponential length.

– As stated in [11], canonical dynamic problems cannot be complete for dy-
namic complexity classes in general. Therefore, it might be interesting to
look for complete problems for classes of canonical dynamic problems.

– A further issue is to establish connections between algorithmic results on
dynamic problems and dynamic complexity theory.
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The landscape changes when we turn our attention towards special graph
classes, e.g., problems on planar graphs [2]. Here, for example, both indepen-
dent set and dominating set are fixed-parameter tractable. In fact, and in
contrast to what was stated above, there are quite many problems for which
both the problem itself and its dual are parameterized tractable.

The beauty of problems which are together with their dual problems fixed-
parameter tractable, is that this constellation allows from an algorithmic stand-
point for a two-sided attack on the original problem. This two-sided attack en-
abled us to derive lower bounds on the kernel size for such problems (under
classical complexity assumptions). For example, we show that unless P = NP,
planar vertex cover does not have a kernel of size smaller than 4k/3, and
planar independent set and planar dominating set do not have kernels
of size smaller than 2k. To the authors’ knowledge, this is the first group of
results establishing lower bounds on the kernel size of parameterized problems.

Whereas the lower bounds on the kernel size for planar vertex cover and
planar independent set come close to the known upper bounds of 2k and
4k on the kernel size for the two problems, respectively, the lower bound derived
for planar dominating set is still very far from the 335k upper bound on the
problem kernel (computable in O(n3) time), which was given by Alber et al. [1].
To bridge this gap, we derive better upper bounds on the problem kernel for
planar dominating set. We improve the reduction rules proposed in [1], and
introduce new rules that color the vertices of the graph enabling us to observe
many new combinatorial properties of its vertices. These properties allow us to
prove a much stronger bound on the number of vertices in the reduced graph.
We show that the planar dominating set problem has a kernel of size 67k
that is computable in O(n3) time. This is a significant improvement over the
results in [1].

2 Preliminaries

A parameterized problem P is a subset of Σ∗ × N, where Σ is a fixed alphabet
and N is the set of all non-negative integers. Therefore, each instance of the
parameterized problem P is a pair (I, k), where the second component k is
called the parameter. The language L(P ) is the set of all YES-instances of P . We
say that the parameterized problem P is fixed-parameter tractable [7] if there is
an algorithm that decides whether an input (I, k) is a member of L(P ) in time
f(k)|I|c, where c is a fixed constant and f(k) is a recursive function independent
of the input length |I|. The class of all fixed parameter tractable problems is
denoted by FPT.

A mapping s : Σ∗ × N → N is called a size function for a parameterized
problem P if:

– 0 ≤ k ≤ s(I, k),
– s(I, k) ≤ |I|, and
– s(I, k) = s(I, k′) for all appropriate k, k′ (independence). Hence, we can also

write s(I) for s(I, k).
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A problem P together with its size function s are denoted (P, s). The dual
problem Pd of P is the problem whose corresponding language (i.e., set of YES-
instances) L(Pd) = {(I, s(I) − k) | (I, k) ∈ L(P )}. The dual of the dual of a
problem (with a given size function) is again the original problem. We give some
examples below.

d-hitting set
Given: A hypergraph G = (V,E) with edge degree bounded by d, i.e., ∀e ∈
E, |e| ≤ d
Parameter: k
Question: Is there a hitting set of size at most k, i.e.,

∃C ⊆ V, |C| ≤ k,∀e ∈ E,C ∩ e = ∅?

The special case in which d = 2 corresponds to the vertex cover prob-
lem in undirected graphs. Let L(d-HS) denote the language of d-hitting set.
Taking as size function s(G) = |V |, it is clear that the dual problem obeys
(G, kd) ∈ L(d-HSd) if and only if G has an independent set of cardinality kd.

dominating set
Given: A (simple) graph G = (V,E)
Parameter: k
Question: Is there a dominating set of size at most k, i.e.,

∃D ⊆ V, |D| ≤ k, ∀v ∈ V \D ∃d ∈ D, (d, v) ∈ E?

Taking as size function s(G) = |V |, it is clear that the dual problem obeys
(G, kd) ∈ L(DSd) if and only if G has a nonblocker set (i.e., the complement of
a dominating set) of cardinality kd.

Generally speaking, it is easy to “correctly” define the dual of a problem for
selection problems as formalized in [3].

A kernelization for a parameterized problem P with size function s is a
polynomial-time computable reduction which maps an instance (I, k) onto (I ′, k′)
such that: (1) s(I ′) ≤ g(k) (g is a recursive function), (2) k′ ≤ k, and (3)
(I, k) ∈ L(P ) if and only if (I ′, k′) ∈ L(P ). I ′ is called the problem kernel of I.
It is known (see [8]) that a parameterized problem is fixed-parameter tractable if
and only if it has a kernelization. Of special interest to us in this paper are prob-
lems with linear kernels in which g(k) = αk for some constant α > 0. Such small
kernels are known, in particular, for graph problems restricted to planar graphs.

3 Lower Bounds on Kernel Size

Practice in the study of parameterized algorithms has suggested that improved
kernelization can lead to improved parameterized algorithms. Many efforts have
been made towards obtaining smaller kernels for well-known NP-hard param-
eterized problems (see for example [1, 5, 8]). A natural question to ask along
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this line of research, is about the limit of polynomial time kernelization. In this
section we develop techniques for deriving lower bounds on the kernel size for
certain well-known NP-hard parameterized problems.

Theorem 1. Let (P, s) be an NP-hard parameterized problem. Suppose that P
admits an αk kernelization, and its dual Pd admits an αdkd kernelization, where
α, αd ≥ 1. If (α− 1)(αd − 1) < 1 then P = NP.

Proof. Suppose that the statement of the theorem is true, and let r(·) denote
the assumed linear kernelization reduction for P . Similarly, let rd(·) be the linear
kernelization reduction for Pd. Consider the following reduction R, which on
input (I, k) of P performs the following:

if k ≤ αd

α+αd
s(I) then compute r(I, k);

else compute rd(I, s(I)− k).

Now if k ≤ αd

α+αd
s(I), then s(I ′) ≤ αk ≤ ααd

α+αd
s(I). Otherwise:

s(I ′) ≤ αdkd

= αd(s(I)− k)

< αd

(
s(I)− αd

α+ αd
s(I)

)

=
ααd

α+ αd
s(I).

Since (α−1)(αd−1) < 1, or equivalently ααd

α+αd
< 1, by repeatedly applying R

(at most polynomially-many times), the problem P can be solved in polynomial
time. This completes the proof.

From the previous theorem, and assuming P = NP, we immediately obtain
the following.

1. Corollary 1. For any ε > 0, there is no (4/3 − ε)k kernel for planar
vertex cover.

Proof. The four-color theorem implies a 4k-kernelization for planar inde-
pendent set, which is the dual problem of planar vertex cover.

2. Corollary 2. For any ε > 0, there is no (2− ε)k kernel for planar inde-
pendent set. This result remains true if we restrict the problem to graphs
of maximum degree bounded by three, or even to planar graphs of maximum
degree bounded by three (both problems are NP-hard).

Proof. The general vertex cover problem, which is the dual of the inde-
pendent set problem, has a 2k-kernelization [5]. This kernelization is both
planarity and bounded-degree preserving.

3. Corollary 3. For any ε > 0, there is no (3/2−ε)k-kernelization for vertex
cover restricted to triangle-free planar graphs (this problem is still NP-
hard [15–Chapter 7]).
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Proof. Based on a theorem by Grötzsch (which can be turned into a
polynomial-time coloring algorithm; see [11]) it is known that planar triangle-
free graphs are 3-colorable. This implies a 3k kernel for independent set
restricted to this graph class, which gives the result. Observe that the 2k-
kernelization for vertex cover on general graphs preserves planarity and
triangle-freeness, which implies that this restriction of the problem has a
2k-kernelization.

4. Corollary 4. For any ε > 0, there is no (335/334 − ε)k kernel for planar
nonblocker.

Proof. A 335k kernel for planar dominating set was derived in [1].

5. Corollary 5. For any ε > 0, there is no (2 − ε)k kernel for planar domi-
nating set. This remains true when further restricting the graph class to
planar graphs of maximum degree three (the problem is still NP-hard).

Proof. In [10], a 2k-kernelization for nonblocker on general graphs which
preserves planarity and degree bounds, was derived (see also [13–Theorem
13.1.3]).

The above results open a new line of research, and prompt us to ask whether
we can find examples of problems such that the derived kernel sizes are optimal
(unless P = NP), and whether we can close the gaps between the upper bounds
and lower bounds on the kernel size more and more. According to our previous
discussion, planar vertex cover on triangle-free graphs is our “best match:”
we know how to derive a kernel of size 2k, and (assuming P = NP) we know
that no kernel smaller than 3k/2 exists. On the other hand, the 335k upper
bound on the kernel size for planar dominating set [1] is very far from the
2k lower bound proved above. In the next section, we improve this upper bound
to 67k in an effort to bridge the huge gap between the upper bound and lower
bound on the kernel size for this problem.

4 Reduction and Coloring Rules for planar dominating
set

In this section we will only consider planar graphs. For a graph G, we denote
by γ(G) the size of a minimum dominating set in G. We present an O(n3)
time preprocessing scheme that reduces the graph G to a graph G′, such that
γ(G) = γ(G′), and such that given a minimum dominating set for G′, a minimum
dominating set for G can be constructed in linear time. We will color the vertices
of the graph G with two colors: black and white. Initially, all vertices are colored
black. Informally speaking, white vertices will be those vertices that we know
for sure when we color them that there exists a minimum dominating set for the
graph excluding all of them. The black vertices are all other vertices. Note that
it is possible for white vertices to be in some minimum dominating set, but the
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point is that there exists at least one minimum dominating set that excludes all
white vertices. We start with the following definitions that are adopted from [1]
with minor additions and modifications.

For a vertex v in G denote by N(v) the set of neighbors of v, and by N [v] the
set N(v)∪{v}. By removing a vertex v from G, we mean removing v and all the
edges incident on v from G. For a vertex v in G, we partition its set of neighbors
N(v) into three sets: N1(v) = {u ∈ N(v) | N(u) − N [v] = ∅}; N2(v) = {u ∈
N(v)−N1(v) | N(u)∩N1(v) = ∅}; and N3(v) = N(v)−(N1(v)∪N2(v)). For two
vertices v and w we defineN(v, w) = N(v)∪N(w) andN [v, w] = N [v]∪N [w]. We
partitionN(v, w) into three sets:N1(v, w) = {u ∈ N(v, w) | N(u)−N [v, w] = ∅};
N2(v, w) = {u ∈ N(v, w) − N1(v, w) | N(u) ∩ N1(v, w) = ∅}; and N3(v, w) =
N(v, w)− (N1(v, w) ∪N2(v, w)).

Definition 1. Let G = (V,E) be a plane graph. A region R(v, w) between two
vertices v and w is a closed subset of the plane with the following properties:

1. The boundary of R(v, w) is formed by two simple paths P1 and P2 in V
which connect v and w, and the length of each path is at most three.

2. All vertices that are strictly inside (i.e., not on the boundary) the region
R(v, w) are from N(v, w).

For a region R = R(v, w), let V [R] denote the vertices in R, i.e.,

V [R] := {u ∈ V | u sits inside or on the boundary of R}.

Let V (R) = V [R]− {v, w}.

Definition 2. A region R = R(v, w) between two vertices v and w is called
simple if all vertices in V (R) are common neighbors of both v and w, that is,
V (R) ⊆ N(v) ∩N(w).

We introduce the following definitions.

Definition 3. A region R = R(v, w) between two vertices v and w is called
quasi–simple if V [R] = V [R′] ∪ R+, where R′ = R′(v, w) is a simple region
between v and w, and R+ is a set of white vertices satisfying the following
conditions:

1. Every vertex of R+ sits strictly inside R′.
2. Every vertex of R+ is connected to v and not connected to w, and is also

connected to at least one vertex on the boundary of R′ other than v.

A vertex in V (R) is called a simple vertex, if it is connected to both v and
w, otherwise it is called non–simple. The set of vertices R+, which consists of
the non-simple vertices in V (R), will be referred to as R+(v, w).

For a vertex u ∈ V , denote by B(u) the set of black vertices in N(u), and
by W (u) the set of white vertices in N(u). We describe next the reduction and
coloring rules to be applied to the graph G. The reduction and coloring rules
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are applied to the graph in the order listed below until the application of any
of them does not change the structure of the graph nor the color of any vertex
in the graph. The first two reduction rules, Rule 1 and Rule 2, are slight
modifications of Rule 1 and Rule 2 introduced in [1]. The only difference is that
in the current paper they are only applied to black vertices, and not to all the
vertices as in [1].

Rule 1 ([1]). If N3(v) = ∅ for some black vertex v, then remove the vertices in
N2(v) ∪N3(v) from G, and add a new white vertex v′ and an edge (v, v′) to G.

Rule 2 ([1]). If N3(v, w) = ∅ for two black vertices v, w, and if N3(v, w) cannot
be dominated by a single vertex in N2(v, w)∪N3(v, w), then we distinguish the
following two cases.

Case 1. If N3(v, w) can be dominated by a single vertex in {v, w} then: (1.1)
if N3(v, w) ⊆ N(v) and N3(v, w) ⊆ N(w), remove N3(v, w) and N2(v, w) ∩
N(v) ∩ N(w) from G and add two new white vertices z, z′ and the edges
(v, z), (w, z), (v, z′), (w, z′) to G; (1.2) if N3(v, w) ⊆ N(v) and N3(v, w) ⊆ N(w),
remove N3(v, w) and N2(v, w) ∩ N(v) from G and add a new white vertex v′

and the edge (v, v′) to G; and (1.3) if N3(v, w) ⊆ N(w) and N3(v, w) ⊆ N(v),
remove N3(v, w) and N2(v, w) ∩ N(w) from G and add a new white vertex w′

and the edge (w,w′) to G.

Case 2. If N3(v, w) cannot be dominated by a single vertex in {v, w}, then
remove N2(v, w) ∪N3(v, w) from G and add two new white vertices v′, w′ and
the edges (v, v′), (w,w′) to G.

Rule 3. For each black vertex v in G, if there exists a black vertex x ∈ N2(v)∪
N3(v), color x white, and remove the edges between x and all other white vertices
in G.

Rule 4. For every two black vertices v and w, if N3(v, w) = ∅, then for every
black vertex x ∈ N2(v, w) ∪ N3(v, w) that does not dominate all vertices in
N3(v, w), color x white and remove all the edges between x and the other white
vertices in G.

Rule 5. For every quasi-simple region R = R(v, w) between two vertices v and
w, if v is black, then for every black vertex x ∈ N2(v, w)∪N3(v, w) strictly inside
R that does not dominate all vertices in N2(v, w) ∪ N3(v, w) strictly inside R,
color x white and remove all the edges between x and the other white vertices
in G.

Rule 6. For every two white vertices u and v, if N(u) ⊆ N(v), and u ∈ N2(w)∪
N3(w) for some black vertex w, then remove v.

Rule 7. For every black vertex v, if every vertex u ∈ W (v) is connected to all
the vertices in B(v), then remove all the vertices in W (v) from G.
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Rule 8. For every two black vertices v and w, let W (v, w) = W (v) ∩W (w).
If |W (v, w)| ≥ 2 and there is a degree-2 vertex u ∈ W (v, w), then remove all
vertices in W (v, w) except u, add a new degree-2 white vertex u′, and connect
u′ to both v and w.

A graph G is said to be reduced if every vertex in G is colored white or black,
and the application of Rules 1–8 leaves the graph G unchanged. That is, the
application of any of the above rules does not change the color of any vertex in
G, nor does it change the structure of G.

Theorem 2. Let G be a graph with n vertices. Then in time O(n3) we can
construct a graph G′ from G such that: (1) G′ is reduced, (2) γ(G′) = γ(G), (3)
there exists a minimum dominating set for G′ that excludes all white vertices of
G′, and (4) from a minimum dominating set for G′ a minimum dominating set
for G can be constructed in linear time.

5 A Problem Kernel for planar dominating set

Let G be a reduced graph, and let D be a minimum dominating set for G con-
sisting of black vertices such that |D| = k. In this section, we will show that
the number of vertices n in G is bounded by 67k. The following definitions are
adopted from [1]. The reader is referred to [1] for more details.

Given any dominating set D in a graph G, a D-region decomposition of G is a
set 0 of regions between pairs of vertices in D such that:

1. For any region R = R(v, w) in 0, no vertex in D is in V (R). That is, a vertex
in D can only be an endpoint of a region in 0.

2. No two distinct regions R1, R2 ∈ 0 intersect. However, they may touch each
other by having common boundaries.

Note that all the endpoints of the regions in a D-region decomposition are
vertices in D. For a D-region decomposition 0, define V [0] =

⋃
R∈� V [R]. A

D-region decomposition is maximal, if there is no region R such that 0′
= 0∪R

is a D-region decomposition with V [0] � V [0′
].

For a D-region decomposition 0, associate a planar graph G�(V�, E�) with
possible multiple edges, where V� = D, and such that there is an edge between
two vertices v and w in G� if and only if R(v, w) is a region in 0. A planar
graph with multiple edges is called thin, if there is a planar embedding of the
graph such that for any two edges e1 and e2 between two distinct vertices v and
w in the graph, there must exist two more vertices which sit inside the disjoint
areas of the plane enclosed by e1 and e2.

Alber et al. [1] showed that the number of edges in a thin graph of n vertices
is bounded by 3n−6. They also showed that for any reduced plane graph G and
a dominating set D of G, there exists a maximal D-region decomposition for G
such that G� is thin. Since the maximal D-region decomposition in [1] starts
with any dominating set D and is not affected by the color a vertex can have,
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the same results in [1] hold true for our reduced graph G whose vertices are
colored black/white, and with a minimum dominating set D consisting only of
black vertices. The above discussion is summarized in the following proposition.

Proposition 1. Let G be a reduced graph and D a dominating set of G consist-
ing of black vertices. Then there exists a maximal D-region decomposition 0 of
G such that G� is thin.

Corollary 1. Let G be a reduced graph with a minimum dominating set D con-
sisting of k black vertices, and let 0 be a maximal D-region decomposition of G
such that G� is thin. Then the number of regions in 0 is bounded by 3k − 6.

Proof. The number of regions in 0 is the number of edges in G�. Since G� has
|D| = k vertices, by [1], the number of edges in G� is bounded by 3k − 6.

In the remainder of this section, 0 will denote a maximal D-region decom-
position of G such that G� is thin. Let u and v be two vertices in G. We say
that u and v are boundary-adjacent if (u, v) is an edge on the boundary of some
region R ∈ 0. For a vertex v ∈ G, denote by N∗(v) the set of vertices that are
boundary-adjacent to v. Note that for a vertex v ∈ D, since v is black, by Rule
3, all vertices in N2(v) ∪N3(v) must be white.

Proposition 2. Let v ∈ D. The following are true.

(a) (Lemma 6, [1]) Every vertex u ∈ N1(v) is in V [0].
(b) The vertex v is an endpoint of a region R ∈ 0. That is, there exists a region

R = R(x, y) ∈ 0 such that v = x or v = y.
(c) Every vertex u ∈ N2(v) which is not in V [0] is connected only to v and to

vertices in N∗(v).

Let x be a vertex in G such that x /∈ V [0]. Then by part (b) in Proposition 2,
x /∈ D. Thus, x ∈ N(v) for some black vertex v ∈ D ⊆ V [0]. By part (a) in
Proposition 2, x /∈ N1(v), and hence, x ∈ N2(v)∪N3(v). By Rule 3, the color of
x must be white. Let R = R(v, w) be a region in V [0] of which v is an endpoint
(such a region must exist by part (b) of Proposition 2). We distinguish two cases.

Case A. x ∈ N3(v). Since v is black, by Rule 1, this is only possible if deg(x) = 1
and N2(v) = ∅ (in this case x will be the white vertex added by the rule). In
such case it can be easily seen that we can flip x and place it inside R without
affecting the planarity of the graph.

Case B. x ∈ N2(v). Note that in this case N3(v) = ∅, and x is only connected to
v and N∗(v) by part (c) in Proposition 2. If deg(x) = 2, by a similar argument
to Case A above, x can be flipped and placed inside R.

According to the above discussion, it follows that the vertices in G can be
classified into two categories: (1) those vertices that are in V [0]; and (2) those
that are not in V [0], which are those vertices of degree larger than two that
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belong to N2(v) for some vertex v ∈ D, and in this case must be connected
only to vertices in N∗(v). To bound the number of vertices in G we need to
bound the number of vertices in the two categories. We start with the vertices
in category (2).

Let O denote the set of vertices in category (2). Note that all vertices in O
are white, and no two vertices u and v in O are such that N(u) ⊆ N(v). To see
why the latter statement is true, note that every vertex in O must be in N2(w)
for some black vertex w ∈ D. So if N(u) ⊆ N(v), then by Rule 6, v would
have been removed from the graph. To bound the number of vertices in O, we
will bound the number of vertices in O that are in N2(v) where v ∈ D. Let us
denote this set by N†(v). Let N∗

† (v) be the set of vertices in N∗(v) that are
neighbors of vertices in N†(v). Note that every vertex in N†(v) has degree ≥ 3,
is connected only to v and to N∗

† (v), and no two vertices x and y in N†(v) are
such that N(x) ⊆ N(y).

Proposition 3. |N†(v)| ≤ 3/2|N∗
† (v)|.

Lemma 1. The number of vertices in category (2) (i.e., the number of vertices
not in V [0]) is bounded by 18k.

Proof. Let v and w be any two distinct vertices in D and observe the following.
First, N†(v) ∩N†(w) = ∅, because if u ∈ N†(v) ∩N†(w) then (v, u, w) would be
a degenerated region with u /∈ V [0] contradicting the maximality of 0. Second,
from the first observation it follows that w /∈ N∗

† (v) and v /∈ N∗
† (w)(in general

no vertex a ∈ D belongs to N∗
† (b) for any vertex b ∈ D); otherwise, there ex-

ists a vertex u ∈ N†(v) that is connected to w, and hence u N †(v) ∩ N†(w),
contradicting the first observation. Third, N∗

† (v) ∩N∗
† (w) = ∅; otherwise, there

exists a vertex u ∈ N∗
† (v) ∩ N∗

† (w) that is connected to a category-(2) vertex
a ∈ N†(v) (or b ∈ N†(w)) and the degenerated region (v, a, u, w) (or (w, b, u, v))
would contain the vertex a /∈ 0 (or b /∈ 0), contradicting the maximality of 0.

Let B be the number of vertices not in D that are boundary-adjacent to ver-
tices in D (i.e., in N∗(v)−D for some v ∈ D). Combining the above observations
with Proposition 3, it follows that the number of category-(2) vertices is

∑
v∈D

|N†(v)| ≤ 3
2

∑
v∈D

|N∗
† (v)| ≤ 3B/2

According to the definition of a region, each region in 0 has at most six
vertices on its boundary two of which are vertices in D. Thus, each region in 0
can contribute with at most four vertices to B. By Corollary 1, the number of
regions in 0 is bounded by 3k − 6. It follows that B ≤ 12k − 24, and hence, the
number of category-(2) vertices is bounded by 18k − 36 < 18k. This completes
the proof.

To bound the number of vertices in category (1), fix a region R(v, w) between
v, w ∈ D. We have the following lemma.
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Lemma 2. Let R = R(v, w) be a region in V [0]. The number of vertices in
V (R) is bounded by 16.

Theorem 3. The number of vertices in the reduced graph G is bounded by 67k.

Proof. By Lemma 1, the number of category-(2) vertices in G is bounded by 18k.
According to the discussion before, if we use the 18k upper bound on the number
of category-(2) vertices, then we can assume that each region in 0 is nice (if this
is not the case we obtain a better upper bound on the total number of vertices in
G). By Corollary 1, the number of regions in 0 is bounded by 3k− 6. According
to Lemma 2, the number of vertices in V (R), where R ∈ 0 is a nice region,
is bounded by 16. It follows that the number of vertices in V (0) is bounded by
48k − 96. Thus, the number of vertices in V [0], and hence, in category (1), is
bounded by 48k − 96 plus the number of vertices in D which are the endpoints
of the regions in 0. Therefore the number of vertices in V [0] is bounded by
49k − 96, and the total number of vertices in G is bounded by 67k − 96 < 67k.
This completes the proof.

Theorem 4. Let G be a planar graph with n vertices. Then in time O(n3), com-
puting a dominating set for G of size bounded by k can be reduced to computing
a dominating set of size bounded by k, for a planar graph G′ of n′ < n vertices,
where n′ ≤ 67k.

Proof. According to Theorem 2, in time O(n3) we can construct a reduced graph
G′ from G where γ(G′) = γ(G), and such that a dominating set for G can be
constructed from a dominating set for G′ in linear time. Moreover, the graph G′

has no more than n vertices. If G has a dominating set of size bounded by k,
then G′ has a dominating set of size bounded by k (since γ(G) = γ(G′)), and by
Theorem 3, we must have n′ ≤ 67k, so we can work on computing a dominating
set for G′. If this is not the case, then G does not have a dominating set of size
bounded by k, and the answer to the input instance is negative. This completes
the proof.

Theorem 4, together with Theorem 1, gives:

Corollary 2. For any ε > 0, there is no (67/66− ε)k kernel for planar non-
blocker.
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Shortest Monotone Descent Path Problem in
Polyhedral Terrain

Sasanka Roy, Sandip Das, and Subhas C. Nandy

Indian Statistical Institute, Kolkata - 700 108, India

Abstract. Given a polyhedral terrain with n vertices, the shortest mono-
tone descent path problem deals with finding the shortest path between
a pair of points, called source (s) and destination (t) such that the path
is constrained to lie on the surface of the terrain, and for every pair
of points p = (x(p), y(p), z(p)) and q = (x(q), y(q), z(q)) on the path,
if dist(s, p) < dist(s, q) then z(p) > z(q), where dist(s, p) denotes the
distance of p from s along the aforesaid path. This is posed as an open
problem in [3]. We show that for some restricted classes of polyhedral
terrain, the optimal path can be identified in polynomial time. We also
propose an elegant method which can return near-optimal path for the
general terrain in polynomial time.

1 Introduction

The geodesic path problem on the surface of a polyhedron is an important area
of research in Geographic Information System. The measures of the quality of a
path include the Euclidean length, maximum altitude along the path, the max-
imum slope of the path, etc. Extensive studies have been made on the shortest
geodesic path problem for both convex and non-convex polyhedral surfaces in
3D. In [13], an O(n3logn) algorithm is proposed for finding the geodesic shortest
path between two points on the surface of a convex polyhedron. The generalized
version of this problem is studied in [5, 8] where the restriction of convexity is
removed; the time complexities of the proposed algorithms are O(n2logn) and
O(n2) respectively. The best known algorithm for producing the optimal solution
runs in O(nlog2n) time [6], where n is the number of vertices of the polyhedron.
In the weighted version of this problem, each face is attached with a positive
weight. Here, the shortest weighted path can be computed in O(n8logn) time
[9]. Efficient approximation algorithms are also available in [2, 7, 11, 12].

Several variations of the path finding problems in polyhedral terrain are stud-
ied in [3]. Given a polyhedral terrain T with n vertices, the proposed algorithm
constructs a linear size data structure in O(nlogn) time and can efficiently an-
swer the following query: given a pair of points s and t on the surface of T , and
an altitude ξ, does there exist a path from s to t such that for each point p on
the path, z(p) ≤ ξ?

We address the problem of computing the shortest among all possible mono-
tone descending paths (if exists) between a pair of points on the surface of a

V. Diekert and B. Durand (Eds.): STACS 2005, LNCS 3404, pp. 281–292, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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polyhedral terrain. This is a long-standing open problem. In [3], it is specifically
mentioned that no bound on the combinatorial or Euclidean length of the shortest
monotone descent path between a pair of points on the surface of a polyhedral ter-
rain can be given. Some interesting observations of the problem lead to efficient
polynomial time algorithm for solving this problem in the following special cases.

P1 the sequence of faces through which the optimum path passes, are in convex
(resp. concave) position (see Section 3), provided such a path exists.

P2 the sequence of faces through which the optimum path passes, have their
boundaries parallel to each other (but the faces are not all necessarily convex
(resp. concave)).

In problem P1, the time and space complexities for preprocessing the faces of
the terrain are O(n2logn) and O(n2) respectively, and the shortest path query
can be answered in O(k+logn) time. In problem P2, if a sequence of k faces are
given whose boundaries are parallel to each other, the problem can be solved in
O(klogk) time. The solution technique of P2 indicates the hardness of handling
the general terrain. Finally, we present an efficient heuristic method for solving
the problem on general terrain; it runs in O(n4logn) time. An upper bound on
the amount of deviation of our result from the optimal solution is also given.

The problem is motivated from the agricultural applications where the ob-
jective is to lay a canal of minimum length from the source of water at the top
of the mountain to the ground for irrigation purpose. In particular, problem P2
finds its another important application in designing of fluid circulation system
in automobiles or refrigerator/air-condition machines.

2 Preliminaries

A terrain T is a polyhedral surface in 3D space with a special property: the ver-
tical line at any point on the XY -plane intersects the surface of T at most once.
Thus, the projections of all the faces of a terrain on the XY -plane are mutually
non-intersecting at their interior. Each vertex p of the terrain is specified by a
triple (x(p), y(p), z(p)). Without loss of generality, we assume that all the faces
of the terrain are triangles, and the source point s is a vertex of the terrain.

Definition 1. [8] Let f and f ′ be a pair of faces of T sharing an edge e. The
planar unfolding of face f ′ onto face f is the image of the points of f ′ when
rotated about the line e onto the plane of f such that the points of f and the
points of f ′ lie in two different sides of the edge e respectively (i.e., faces f ′ and
f do not overlap after unfolding).

Let {f0, f1, . . . , fm} be a sequence of adjacent faces. The edge common to
fi−1 and fi is ei. We define the planar unfolding with respect to the edge sequence
E = {e1, e2, . . . , em−1} as follows: obtain planar unfolding of face fm onto face
fm−1, then get the planar unfolding of the resulting plane onto fm−2, and so on;
finally, get the planar unfolding of the entire resulting plane onto f0. From now
onwards, this event will be referred to as U(E).
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Let π(s, t) be a simple path from a point s to a point t on the surface of
the terrain. The geodesic distance dist(p, q) between a pair of points p and q
on π(s, t) is the length of the simple path from p to q along π(s, t). The path
πgeo(s, t) is said to be the geodesic shortest path if the distance between s and t
along πgeo(s, t) is minimum among all possible simple paths from s to t.

Definition 2. A simple path π(s, t) (z(s) > z(t)) is a monotone descent path
if for every pair of points p, q ∈ π(s, t), dist(s, p) < dist(s, q) implies z(p) ≥ z(q).

We will use πmd(p, q) and δ(p, q) to denote the shortest monotone descent
path from p to q and its length respectively. If πgeo(p, q) corresponds to the
line segment [p, q] in the unfolded plane along an edge sequence and it satisfies
monotone descent property, then πmd(p, q) = [p, q], and q is said to be straight
line reachable from p in unfolded plane. It can be shown that (i) πmd(s, t) is a
simple path from s to t, (ii) it does not pass through any face more than once,
and (iii) the two end-points of each line-segment on this path must lie on two
edges of a face of T . Note that, a monotone descent path between a pair of points
s and t may not exist. Again, if monotone descent path from s to t exists, then
πmd(s, t) may not coincide with πgeo(s, t).

Definition 3. Given a source point s on the surface of the terrain T , the descent
flow region of s (called DFR(s)) is the region on the surface of T such that each
point q ∈ DFR(s) is reachable from s through a monotone descent path.

Theorem 1. Given a polyhedral terrain T of n vertices, and a source vertex
s, one can construct a data structure, called DFR, in O(nlogn) time and O(n)
space, which can answer the existence of a monotone descent path from s to a
query point t on the surface of T in O(logn) time.

3 Shortest Monotone Descent Path on Convex DFR(s)

Let f and f ′ be two adjacent faces of the terrain T sharing an edge e. The faces
f and f ′ are said to be in convex (resp. concave) position if the angle between
f and f ′ inside the terrain is less (resp. greater) than 1800.

Given a terrain T and a source point s, DFR(s) is said to be convex (resp.
concave) if every pair of adjacent faces in DFR(s) is in convex (resp. concave)
position. Before going into the detail, we need the following two results which
hold for arbitrary polyhedral terrain.

Result 1. [8] For a pair of points α and β, if πgeo(α, β) passes through an
edge-sequence E of a polyhedron, then in the planar unfolding U(E), the path
πgeo(α, β) is a straight line segment.

Result 2. Given a vertex s and a pair of points α and β on the terrain T ,
πmd(s, α) and πmd(s, β) can join, bifurcate or intersect at vertices of T . More-
over, if a vertex v is common in both the paths then the length of the subpath
from s to v on both πmd(s, α) and πmd(s, β) are same.
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We now study the properties of a convex terrain, and propose an efficient
algorithm for finding the shortest monotone descent path from s to a given
query point t ∈ DFR(s).

Observation 1. If p1, p2 be two points on a face of T , and p3 is another point
on the line segment [p1, p2], then z(p1) > z(p3) implies z(p2) < z(p3).

Lemma 1. Let f and f ′ be two adjacent faces of a polyhedral terrain which are
in convex position. The edge e = [a, b] separates f and f ′; z(b) > z(a). Consider
a point p on face f , and a point c on the edge e with z(p) = z(c).

(a) Now the edge e can be partitioned into two parts [a, c] and (c, b] such
that there does not exist a monotone descent path from p to the face f ′ passing
through the portion (c, b] but such a path may exist which passes through the
portion [a, c] ∈ e.

(b) Let q be a point in f ′ and q∗ denote the image of the point q in the
planar unfolding of f ′ onto f . Now, (i) if the line segment [p, q∗] intersects the
line segment [a, c] (∈ e) in the unfolded plane, then z(p) > z(q) and the geodesic
shortest path from p to q through the edge e is the shortest monotone descent path
from p to q, and (ii) if [p, q∗] intersects the line segment (c, b] and z(p) > z(q)
then [p, c]+[c, q] will form the shortest monotone descent path from p to q through
the edge e.

Proof: Part (a) of the lemma is trivial. We now prove part (b) of the lemma.
Let πgeo(p, q; e) denote the geodesic shortest path from p to q passing through
the edge e. If the line segment [p, q∗] (in the unfolded plane) intersects e (at a
point, say η) in its interior, then by Result 1, the image of πgeo(p, q; e) in the
unfolded plane coincides with the line segment [p, q∗]. Now, two cases need to
be considered.

z(η) ≤ z(p) : By Observation 1, z(q∗) < z(η). As the two faces f and f ′ are
in convex position, z(q) ≤ z(q∗). Thus both the line segments [p, η] and [η, q] are
monotone descent (see Fig. 1(a)), and part (i) of the lemma follows.

z(η) > z(p) : Here the line segment [p, η] is not monotone descent in the
plane f . Consider any monotone descent path from p to q which intersects the
line segment [a, c] (at a point, say η′). Note that, the length of such a path
remains same as that of its image in the unfolded plane, and it attains minimum
when η′ = c as illustrated in Fig. 1(b). This proves part (ii) of the lemma. ��

Let v be a vertex of T and p be a point in DFR(v) which is reachable
from v through a sequence of edges E = {e1, e2, . . . , em}; the faces fi−1 and fi,
attached to edge ei, are in convex position; v ∈ f0, p ∈ fm. Let R∗ denote the
region obtained by the planar unfolding U(E), which is a polygonal region in the
unfolded plane. By Result 1, we can prove the following lemma:

Lemma 2. If p∗ denotes the image of a point p in R∗, and the line segment
[v, p∗] completely lies inside R∗, then the path π(v, p) on T , whose image in R∗

is the line segment [v, p∗], is the shortest monotone descent path from v to p
through the faces {f0, f1, f2, . . . , fm}.
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Fig. 1. Proof of Lemma 1

Definition 4. If the shortest monotone descent path of a point p from a vertex
v is obtained as in Lemma 2, then the point p is said to be straight-line reachable
from the vertex v.

The above discussions lead to a preprocessing step of DFR(s) similar (but
not exactly the same) to the method described in [8] for the problem of finding
the geodesic shortest path from a fixed point to a given query point on the
surface of a simple polyhedron. It (i) identifies the region Ts ∈ DFR(s) which
is reachable from s through a sequence of faces in convex position, and then (ii)
splits each face f of Ts into homogeneous partitions such that for every point
p in a partition the shortest monotone descent path from s reaches p through
the same edge sequence. Each homogeneous partition is a polygonal region on a
single face and is bounded by the h-segments as defined below.

Definition 5. A segment I = [a, b] on an edge e of Ts is said to be a homo-
geneous segment (or h-segment in short) if for every point α ∈ I, the shortest
monotone descent path from s to α passes through the same edge sequence. The
end-points of an h-segment are referred to as break-points

Definition 6. A point α on a line segment [a, b] (portion of an edge) is said
to be the frontier point with respect to a vertex v if α is straight line reachable
from v through an edge sequence E and it is the closest point of v on the line
segment [a, b]. It is easy to observe that α can be either a or b or the perpendicular
projection of v on the line segment [a, b] in the planar unfolding R∗.

We follow continuous Dijkstra method to construct a hierarchical data struc-
ture HDFR for storing Ts. It uses the break-points and frontier-points as event
points. The leaf nodes of HDFR are the homogeneous partitions of the faces in
Ts, and non-leaf nodes are of two types: (i) h-segments and (ii) vertices of Ts.
The root of HDFR is the vertex s. Each non-root node points to its predecessor
in the hierarchy.

The query with respect to a point t is done by (i) locating a leaf node of HDFR
whose corresponding face contains t using planar point location algorithm of
[10], (ii) then it follows the predecessor links to report the edge sequence through
which the shortest monotone descent path reaches from s to t. Following theorem
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states the complexity results of finding the shortest monotone path of the query
point t from the source point s.

Theorem 2. Given a polyhedral terrain T with n vertices, and a source point
s, our algorithm (i) creates the HDFR data structure in O(n2logn) time and
O(n2) space, and (ii) for a given query point t, it outputs a shortest monotone
descent path from s to t through a sequence of faces in convex position (if exists)
in O(k+logn) time, where k is the number of line segments on the optimal path.

4 Shortest Monotone Descent Path Through Parallel
Edges

In this section, we shall consider a slightly different problem on a general terrain
where each pair of adjacent faces are not restricted to only in convex position.
Here source (s) and destination (t) points are given along with a sequence of faces
F = {f0, f1, . . . , fm}, s ∈ f0, t ∈ fm, and the objective is to find the shortest
monotone descent path through F . This problem in its general form seems to be
difficult, and an efficient heuristic algorithm will be proposed in the next section.
We now develope an efficient algorithm for finding the optimal solution in a
restricted setup of this problem where the edge sequence E = {e1, e2, . . . , em},
separating the consecutive faces in F , are parallel to each other. Note that, here
we are deviating from the assumption that the faces in the terrain are triangular.

4.1 Properties of Parallel Edge Sequence

Lemma 3. Let p and q be two points on two consecutive members ei and ei+1
of E which bound a face f , and z(p) = z(q). Now, if a line � on face f is parallel
to the line segment [p, q], then (i) the length of the portion of � lying in face f
is equal to the length of the line segment [p, q], and (ii) all the points on � have
same z-coordinate.

Lemma 4. Let ei and ei+1 be two edges in E bounding a face f . For a pair of
points p, p′ ∈ ei and a pair of points q, q′ ∈ ei+1, if z(p) > z(p′) and z(q) > z(q′),
then the line segments [p, q] and [p′, q′] do not intersect on face f ; but the line
segments [p, q′] and [p′, q] must intersect on face f .

Theorem 3. Let f1 be a non-horizontal plane bounded by two parallel edges
e1 = [a1, b1] and e2 = [a2, b2] (z(ai) < z(bi), i = 1, 2); the point s appears in its
adjacent face f0 such that f0 and f1 are separated by the edge e1. If there exists
a pair of points p ∈ e1 and q ∈ e2 with z(p) = z(q) < z(s), and s, p, q∗ (q∗ is
the image of the point q in the planar unfolding U(e1)) are collinear, then

(i) for any point α in the interval [q, a2], shortest monotone descent path
along e1 is the inverse-image of the straight line segment [s, α∗] in the unfolded
plane provided [s, α∗] intersects the edge e1 in its interior.

(ii) for any point α in the interval [b2, q], shortest monotone descent path
along e1 is not an inverse-image of the straight line segment [s, α∗] in unfolded
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plane. Here πmd(s, α) will pass through a point β ∈ [b1, p] with z(β) = z(α) in
the original terrain.

Proof: The line segment [p, q] partitions the face f1 into two parts, and the
points b1 and b2 belong to the same side of [p, q] (by Lemma 4). Consider a
point α ∈ [q, a2] on the edge e2 (see Fig. 2(a)). In the planar unfolding U(e1),
the straight line segment [s, α∗] intersects e1 at a point, say β. The line segment
[α, β] is below the line segment [p, q] as shown in Fig. 2(a). Thus, if β is in the
interior of the edge e1 then β ∈ [p, a1]. Let us consider a line segment [β, γ] on
the face f1 which is parallel to [p, q], and γ is on the edge e2. Now consider the
triangle Δsq∗α∗ in the unfolded plane, where the point β lies on [s, α∗]. As the
line segment [β, γ∗] is parallel to [s, q∗], γ lies on [q∗, α∗]. So, z(α) < z(γ) < z(q).
By Lemma 3, z(γ) = z(β). Hence part (i) of the lemma follows.

The proof of part (ii) follows from the following argument. Consider a point
α ∈ [q, b2] (See Fig. 2(b)); the line segment [s, α∗] intersects the edge e1 at γ
in the unfolded plane U(e1). Draw a line segment [α, β] on face f1 which is
parallel to [p, q]. As z(β) = z(α) (by Lemma 3), we have z(γ) < z(α). Thus, the
shortest monotone descent path from s to α can not be the geodesic shortest
path between them. As z(β) = z(α) < z(s), the shortest monotone descent path
from s to α will be the concatenation of line segments [s, β] and [β, α]. ��

We obtain the planar unfolding of the faces F = {f1, f2, . . . , fm} onto face
f0, and use a two dimensional coordinate system for the entire unfolded plane
such that the members in the edge-sequence E = {e1, e2, . . . , em} are ordered
from left to right, and each of them is parallel to the y-axis. Each point in the
unfolded plane is associated with the z-coordinate of the corresponding point
in the original terrain. In this planar unfolding, let us represent an edge ei of
the terrain as [ai, bi], with y(ai) < y(bi). Now, z(a1) ≤ z(b1) then z(ai) ≤ z(bi)
for all i (see Lemma 4). The source s is in f0, then the monotone descent path
passes through the edge sequence E to reach a point t ∈ fm. If a path π(s, t)
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enters into a face fi along a line �i, then the angle of incidence of π(s, t) in face
fi, denoted by θi, is the slope of the line �i in the unfolded plane.

Let e1 and e2 be two parallel boundaries of a face f . The translation event
for face f , denoted by T (f) is a linear translation of e2 on e1 such that the entire
face f is merged to the line e1 as follows:

The points in the unfolded plane lying on the same side of s with respect to e1
remain unchanged.

Each point p lying in the proper interior of the face f is mapped to a point
q ∈ e1 such that z(p) = z(q).

Each point p = (xp, yp) on the edge e2 is mapped to a point q = (xq, yq) on
the edge e1 such that z(p) = z(q). Under this transformation xq = xp + α,
yq = yp + β, where the tuple (α, β) are constant, and they depend on the
slope and width of the face f .

Each point (x, y) in the unfolded plane lying on the other side of s with respect
to e2 is moved to the point (x+ α, y + β).

The slope of the line containing (p, q) is referred to as merging angle of face
f , and is denoted as φ(f). Theorem 3 indicates the following result.

Corollary 3.1. If the slope θ of a line segment � in face f is such that (i)
θ < φ(f) then � is strictly monotone descent, (ii) θ = φ(f) then all points in �
have same z-coordinate, and (iii) θ > φ(f) then � is strictly monotone ascent.

Let π(s, t) be the shortest monotone descent path from s ∈ f0 to t ∈ fm

passing through a sequence of parallel edges {e1, e2, . . . , em−1}. Along this path
there exists a set of faces {fji

, i = 1, 2, . . . , k} such that all the points of the
path π(s, t) in face fji

have same z-coordinate ξji
; the portions of the path in all

other faces are strictly monotone descent. Now, we have the following theorem.

Theorem 4. If the translations T (fj1), T (fj2), . . . , T (fjk
) are applied (in any

order) on the unfolded plane of faces f0, f1, . . . , fm then the shortest monotone
descent path π(s, t) will become a straight line segment from s to t in the trans-
formed plane.

Proof: Let us first assume that k = 1, i.e., π(s, t) passes through a face f
with all points having same z-coordinate. Let fa and fb be its preceding and
succeeding faces with separating edges ea and eb respectively. We also assume
that π(s, t) consists of three consecutive line segments [s, a], [a, b], [b, t] lying
in fa, f and fb respectively. Note that, all the points on [a, b] have same z-
coordinate. If we apply T (f), the points b and t will be mapped to a and t′.
Now, in the transformed plane, the shortest path from s to t′ is the straight line
segment [s, t′]. We argue that [s, t′] will pass through a. On the contrary, assume
that [s, t′] intersect ea at a′, and a′ is the image of b′ ∈ eb under T (f), b′ = b.
Thus, [s, a′] + [a′, t′] < [s, a] + [a, t′], where [p, q] indicates the length of the line
segment [p, q]. Now, applying reverse transformation, [s, a′]+[b′, t] < [s, a]+[b, t].
From Lemma 3, [s, a′] + [a′, b′] + [b′, t] < [s, a] + [a, b] + [b, t]. This leads to a
contradiction.
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Let there exist several faces on the path π(s, t) such that all the points of
π(s, t) in that face have same z-coordinate. If we apply T transformation on one
face at a time, the above result holds. The order of choosing the face for applying
the transformation T is not important due to the following argument: (i) a
point p on the unfolded plane will be affected due to same set of transformation
irrespective of in which order they are applied, and (ii) the effects of all the
transformations affecting on a point are additive. ��
Lemma 5. If the shortest monotone descent path π(s, t) is passing through a
sequence of parallel edges, then all the line segments of π(s, t), which are strictly
monotone descent, are parallel on the unfolded plane of all faces.

Theorem 5. If the line-segments of shortest monotone descent path π(s, t) in
faces f1∗ , f2∗ , . . . , fk∗ are strictly monotone then their slopes are equal. The slope
of the portions of π(s, t) in all other faces are equal to the merging angle of the
corresponding faces.

4.2 Algorithm

Step 1: We compute the planar unfolding where the faces f1, f2, . . . , fm are
unfolded onto face f0 containing s. We assume that the entire terrain is in first
quadrant, and all the edges of T are parallel to the y-axis.
Step 2: We compute the merging angle for all the faces fi, i = 1, 2, . . . ,m, and
store them in an array Φ in ascending order. Each element contains its face-id.
Step 3: (* Merging phase*) Let θ be the slope of the line joining s and t in
the unfolded plane. We sequentially inspect the elements of the array Φ from its
first element onwards until an element Φ[k] > θ is obtained. For each element
Φ[i], i < k, the translation event takes place, and we do the following: Let Φ[i]
correspond to a face f . We transform the entire terrain by merging the two
boundaries of face f , i.e., compute the destination point t under the translation.
The face f is marked. We update θ by joining s with the new position of t.

Compute the optimum path in transformed plane by the line joining s and t.
Step 4: The value θ, after the execution of Step 4, corresponds to the slope of
the path segments which are strictly monotone along πmd(s, t). We start from
the point s at face f0, and consider each face fi, i = 1, 2, . . . ,m in order. If face
fi is not marked, π(s, t) moves in that face along a line segment of slope θ;
otherwise, πmd(s, t) moves along a line-segment of slope Φ[i].
Step 5: Finally, report the optimum path πmd(s, t).

4.3 Correctness and Complexity Analysis of the Algorithm

Given a sequence of m faces of a polyhedral terrain bounded by parallel lines,
and two query points s and t, Steps 1 and 2 of the algorithm computes the
merging angles and sorts them in O(mlogm) time. Step 3 needs O(1) time. Each
iteration of Step 4 needs O(1) time, and we may need O(n) such iterations for
reporting the shortest monotone descent path from s and t. Thus we have the
following theorem stating the time complexity result of our proposed algorithm.
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Theorem 6. Our algorithm correctly computes the shortest monotone descent
path between two query points s and t through a sequence of faces of a polyhedral
terrain bounded by parallel edges in O(mlogm) time.

5 Shortest Monotone Descent Path for General Terrain

Without loss of generality, we assume that for an edge ei = [ai, bi] ∈ T z(ai) ≤
z(bi). In order to ensure a monotone descent path from s to t through an edge
sequence E = {e1, e2, . . . , ek}, z(bi) ≥ z(ai+1) for all 1 ≤ i ≤ k. The following
cases give an intution of the concept of height level map of [3].

z(ai) ≥ z(ai+1) & z(bi) ≥ z(bi+1): Here flow exists from any point of ei on the
edge ei+1. Alternatively, any point of ei+1 is reachable from some point on
ei through a monotone descent path.

z(ai) < z(ai+1): In this case, monotone descent path does not exist from the
edge segment [ai, α) ∈ ei to ei+1 where z(α) = z(ai+1).

z(bi) < z(bi+1): In this case, monotone descent path does not exist from ei to
the edge segment (β, bi+1] ∈ ei+1 where z(β) = z(bi).

The height level map introduces extra vertices (resp. edges) on the edges
(resp. faces) of the terrain. The worst case number of such vertices and edges are
both O(n2) [3]. These extra edges split few faces of the terrain; thus the terrain
does not remain triangulated any more. We further triangulate the resulting
terrain (with at most O(n2) vertices).

Definition 7. A sequence of edges E = {e1, e2, . . . , em} is said to be allowable
if every point on e1 ∈ E is reachable from s using monotone descent path, from
every point on the edge em ∈ E, t is reachable using monotone descent path, and
two consecutive edges in ei = [ai, bi], ei+1 = [ai+1, bi+1] ∈ E (sharing a common
vertex) satisfies one of the following monotone descent properties.

• If z(ai) = z(bi) and bi+1 is shared by ei and ei+1, then z(ai+1) ≤ z(ai).
• If z(ai+1) = z(bi+1) and ai is shared by ei and ei+1, then z(bi) ≥ z(bi+1).
• If z(ai) = z(ai+1) and ai = ai+1, then bi = bi+1.
• If z(bi) = z(bi+1) and bi = bi+1, then ai = ai+1.

Lemma 6. There always exists a monotone descent path from s to t through
any allowable edge sequence.

Result 3. If πa
geo(s, t) denotes the shortest path from s to t considering all pos-

sible allowable edge sequences and πa
md(s, t) is the shortest monotone descent

path through that allowable edge sequence through which πa
geo(s, t) passes, then

πgeo(s, t) ≤ πa
geo(s, t) ≤ πmd(s, t) ≤ πa

md(s, t).

We can obtain πa
geo(s, t) by minor tailoring the algorithm [8] for computing

πgeo(s, t). Next, we obtain a very closed approximation of πa
md(s, t) using the

following heuristic steps. We shall refer it as πa∗
md(s, t).
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Fig. 3. A demonstrative example from [3]

Follow the path πa
geo(s, t) (along the allowable edge sequence E) from s until a

segment of the path is reached which is not monotone descent. From now on-
wards, traverse the remaining members of E maintaining equal height, until t
is reached or a face (bounded by ej and ej+1) is encountered where this path
crosses πa

geo(s, t). In the second case, we reach the point t′ where πa
geo(s, t)

intersects ej+1. From, t′ onwards, again follow πa
geo(s, t) down towards t. If

the earlier situation occurs again, follow the same technique.

We apply the same technique, to compute a monotone ascent path from t
to s, called πa∗

ma(t, s). In Fig. 3, πa∗
md(s, t), π

a∗
ma(t, s) and πa

geo(s, t) are shown
using dashed, dotted and bold polylines respectively. We choose the shorter one
among πa∗

md(s, t) and πa∗
ma(t, s) as the heuristic estimate of πa

md(s, t). The above
algorithm is executed on the example of [3]. The length of πa∗

md(s, t) = 242.5,
πa∗

ma(t, s) = 230.8, and πa
geo(s, t) = 223.7.

Theorem 7. The worst case time complexity of the proposed algorithm is
O(n4logn).

Proof: Follows from the fact that the number of Steiner vertices introduced
by the height level map is O(n2), and (ii) the worst case running time of the
shortest path algorithm in a polyhedral terrain of size n is O(n2logn) [8]. ��

6 Conclusion

We have proposed polynomial time algorithms for finding the shortest monotone
descent path in a polyhedral terrains in two special cases where (i) the path
follows (i) a convex/concave face sequence, and (ii) a set of faces bounded by
parallel edges. Our heuristic method for the general terrain first identifies the
shortest path between the given pair of points (namely πa

geo(s, t)) through an
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allowable edge sequence. Next, it applies the heuristic method to find a monotone
descent shortest path through the edge sequence where the shortest path has
passed. The efficacy of our proposed method follows from the fact that it is very
close to the shortest path between the given pair of points. The general problem is
still unsolved since it is not known whether the actual shortest monotone descent
path will pass through the aforesaid edge sequence. Even the shortest monotone
descent path through an allowable edge sequence is difficult to compute.
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Abstract. We consider the problem of buffering unit value data packets
in multi-queue network switches where each of the switch’s input ports
is equipped with a buffer of limited capacity. At these ports, packets
arrive online and can be stored within the space limitations or must be
discarded. Our objective is the maximization of the number of forwarded
packets where, per time step, at most one packet from the set of buffers
can be transmitted to the output port.

In this paper, we give a technique for transforming any randomized
algorithm for unit buffers into a randomized algorithm for buffers with
arbitrary capacities while maintaining the competitiveness. We present
the first randomized online algorithm that beats the deterministic lower
bound of e/(e−1) ≈ 1.58. It is 3/2-competitive and thus nearly matches
the randomized lower bound of 1.46. For buffers with 2 queues having
large capacities, we show a lower bound of 16/13 ≈ 1.23 for any online
algorithm and prove that the competitive ratio of greedy algorithms is
9/7 ≈ 1.29, improving the best previously known upper bound of 3/2.

1 Introduction

Due to the steady increase of traffic in today’s networking systems, the fast and
correct forwarding of data packets has become of major importance. As a result,
switches that route packets arriving at the input ports to the appropriate output
ports so that the packets can reach their resepective destinations have become
critical elements for the performance of high-speed networks. Since data traffic
may be bursty and packet loss is wished to be kept small, ports are equipped
with buffers for temporary storage of the packets. The limitation of the buffer
capacities entails the importance of effective buffer management strategies to
maximize the throughput at a switch. Thus, the design and analysis of vari-
ous buffer management policies have recently attracted considerable research
interest [1–14].

In this framework, we consider a switch where for a given output port there
are m serving input ports, each equipped with a buffer able to store up to B
packets simultaneously and organized as a queue. At these input ports, new
packets may arrive at any time step and can be appended to the respective
buffers if space permits, otherwise the surplus ones must be dropped. During
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each time step the switch can select one populated queue and pass the packet
at its head through the output port. Our goal is to maximize the throughput ,
i.e. the total number of forwarded packets. We thus consider all packets to be
equally important, i.e. all of them have the same value. This model covers most
current networks, particularly IP networks, for they treat packets from different
data streams equally in their intermediate switches.

Since, usually, information on future packet arrivals is very limited or not
available at all, we investigate an online setting where at any time future packet
arrivals are unknown. Thus, we are interested in online buffer management
strategies that have a provably good performance. Following [15], a deterministic
online algorithm ALG is called c-competitive if c · TALG(σ) ≥ TOPT (σ) for all
packet arrival sequences σ. Here TALG(σ) and TOPT (σ) denote the throughputs
achieved by ALG and, respectively, by an optimal offline algorithm OPT that
knows the entire input σ in advance. If ALG is a randomized algorithm, then
TALG(σ) has to be replaced by the expected throughput E[TALG(σ)].

Previous Work: Azar and Richter [4] showed that any work-conserving algo-
rithm, which serves any non-empty queue, is 2-competitive and that for unit
buffers, i.e. B = 1, no deterministic strategy can be better than (2 − 1

m )-
competitive. They also considered randomization and presented a randomized
algorithm that achieves a competitiveness of e/(e− 1) ≈ 1.58. Recently, Albers
and Schmidt [2] gave a lower bound of 2 for the family of greedy algorithms,
where it does not matter how ties are broken. They developed a variation of the
greedy algorithm and showed that it is 1.89-competitive for B ≥ 2. Moreover,
they gave lower bounds of 1.46 and e/(e− 1) for randomized and deterministic
algorithms, respectively.

A kind of dual problem is the question how much buffer space is needed in
order not to lose any packets. In this context, Bar-Noy et al. [8] and Koga [14]
studied buffer management policies when buffers have unlimited capacity and
one wishes to minimize the maximum queue length. They presented Θ(logm)-
competitive online strategies. Concerning the packet throughput, further results
are known when packets have values and the goal is to maximize the total value
of the transmitted packets. The focus of most of the previous work in this area
has been on the single queue problem, i.e. the maintenance of only one buffer.
Kesselman et al. [10] gave 2-competitive algorithms for various models allowing
preemption. Recently, Bansal et al. [7] presented a 1.75-competitive algorithm
when packets must be transmitted in the order they arrive. Aiello et al. [1]
investigated single queue problems assuming that preemption is not allowed.
For this scenario Andelman et al. [3] showed tight bounds of Θ(logα) where α is
the ratio of the maximum to the minimum packet value.

Azar and Richter [4] presented a technique that transforms any c-competitive
algorithm for a single queue into a 2c-competitive algorithm for m queues.
Using results from [3, 10] they derived 4-competitive preemptive and 2e�lnα�-
competitive non-preemptive algorithms. Recently, Azar and Richter [5] proved
the zero-one principle for switching networks, saying that any comparison based
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algorithm is c-competitive if and only if it is c-competitive for all sequences
whose packet values are restricted to 0 and 1.

Our Contribution: We present a technique for transforming any randomized
algorithm A for unit buffers into a randomized algorithm Ã for multi-packet
buffers while maintaining the competitiveness. If the multi-packet buffer consists
of m queues, each able to buffer B packets, Ã runs a simulation of A in a unit
buffer with mB queues. The queues of the simulated unit buffer are partitioned
into m sets, each consisting of B queues, and each such a set is assigned to one
queue of the multi-packet buffer. The packets arriving at a queue of the multi-
packet buffer are assigned in a round robin manner to the B queues assigned
in the unit buffer. Ã always serves that queue that the queue served by A is
assigned to.

The main contribution of this paper is a new randomized algorithm, called
Random Permutation (RP), for unit buffers that we prove to be 3/2-competitive.
This result shows that randomized algorithms can beat the factor of e/(e− 1) ≈
1.5820, being, as aforementioned, a lower bound for deterministic algorithms.
The new RP algorithm chooses a permutation of the queues due to the uniform
distribution. If there are populated queues, RP always serves that one that has
the highest prority in the chosen permutation, i.e. that one being most to the
front of the permutation vector. By applying the generalization technique de-
scribed above to RP, we get a randomized algorithm R̃P that is 3/2-competitive
for all buffer sizes B.

In the lower bound constructions in previous work [2, 4], the number m of
ports was assumed to be large compared to the buffer queue capacity B whereas,
in practice, the port number is rather small and, thus, the packet capacity sat-
isfies B - m. Moreover, greedy algorithms are very important in practice be-
cause they are fast, use little extra memory and reduce packet loss by always
serving a longest queue. In the last part of the paper, we consider buffers with
m = 2 queues, called bicodal buffers. For this setting, we show a lower bound of
16/13 ≈ 1.2308 for any online algorithm and prove that the competitive ratio of
greedy algorithms is 9/7 ≈ 1.2857, improving the best previously known upper
bound of 2− 1/m = 3/2 shown in [4].

This paper is organized as follows. In Section 2 we develop our generalization
technique for unit buffer algorithms. The new RP algorithm is presented in Sec-
tion 3. The analysis of the greedy algorithm for bicodal buffers is given in Section 4.

2 Generalizing Algorithms Without Loss of
Competitiveness

Theorem 1. If there is a deterministic (randomized) c-competitive algorithm A
for B = 1, then there is a deterministic (randomized) c-competitive algorithm Ã
for all B.

Proof. First, we consider the deterministic case. Let A be a deterministic c-
competitive algorithm for B = 1. We use A in an algorithm Ã for arbitrary B
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and show that the competitiveness of Ã cannot be worse than A’s one. Let ΓB be
a buffer with m queues each able to buffer B packets and let Γ1 be a buffer with
mB queues each able to buffer one packet. We denote the queues in ΓB and Γ1 by
q1, . . . , qm and q1,0, . . . , q1,B−1, . . . , qm,0, . . . , qm,B−1, respectively. Moreover let
Qi = {qi,0, . . . , qi,B−1} for 1 ≤ i ≤ m. Let σ be an arrival sequence for ΓB and
let σit denote the number of packets arriving at qi at time step t. We transform σ
into an arrival sequence σ̃ for Γ1. Let ζit =

∑
τ≤t

σiτ . In σ̃, there arrives one packet

at qi,(k mod B) for each k = ζi,t−1 + 1, . . . , ζit, i.e. the packets arriving at qi are
mapped to packets arriving at the queues in Qi in a round robin manner with
respect to the modulo B function.

Algorithm Ã:
For each time step t do:

– Arrival step:
1. Accept as many packets as possible at each queue.

– Transmission step:
2. Run a simulation of A on sequence σ̃.
3. If, at time step t, A serves a queue in Qi, serve qi.
4. Else if Γ1 is empty, but there are still populated queues in ΓB , serve one

of them arbitrarily chosen.

Let OPT denote an optimal offline algorithm and let TALG(σ) denote the
packet throughput of algorithm ALG when processing sequence σ. We shall
show that

TOPT (σ) ≤ TOPT (σ̃) (1)
TÃ(σ) ≥ TA(σ̃). (2)

This establishes our claim because TOPT (σ) ≤ TOPT (σ̃) ≤ c · TA(σ̃)
≤ c · TÃ(σ).

First, we prove that algorithm Ã is well-defined, i.e. that if the condition in
line 3 is satisfied, then qi is populated. Let Nit and Ñit denote the numbers
of packets buffered by Ã at qi in ΓB and by A at Qi in Γ1, respectively, at the
beginning of time step t. We show by induction on t that the inequality Nit ≥ Ñit

holds for each t. The claim is obvious for t = 1. Let it hold at the beginning of
time step t. If Ã accepts all σit arriving packets, the claim still holds because
A accepts at most σit of them. Otherwise, there are exactly B packets in qi after
the arrival step, and at most B queues in Qi can be populated. If qi is not served
at the transmission step of t, the claim is established for t+1. Otherwise, either
a queue in Qi is served and the number of packets decreases by 1 both in qi
and Qi or Γ1 is completely empty and Ñit = 0. Since line 4 only affects TÃ(σ),
we have inequality (2) as an immediate result.

Now, we consider OPT. We prove by induction on t that there exists a feasible
schedule S for σ̃ such that TS(σ̃) = TOPT (σ), establishing inequality (1) because
TS(σ̃) ≤ TOPT (σ̃). Let bit denote the number of packets buffered by OPT at qi
at the beginning of time step t and let the next packet accepted by OPT at qi
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be mapped to qi,kit
. We show by induction on t that there is a schedule S for σ̃

such that precisely bit queues out of Qi are populated in S at the beginning of
time step t and that these queues form a consecutive (wrt. the modulo B func-
tion) block Bit that ends at qi,((kit−1) mod B), i.e. the populated queues in Qi are
qi,((kit−bit) mod B), . . . , qi,((kit−1) mod B). The claim is obvious for t = 1. Let it
hold at the beginning of time step t. If OPT accepts all σit arriving packets, then
σit ≤ B − bit. Since qi,(kit mod B), . . . , qi,((kit+B−bit−1) mod B) are empty, S ac-
cepts all the σit single packets arriving at qi,(kit mod B), . . . , qi,((kit+σit−1) mod B).
If there is an overflow at qi, then OPT only accepts B − bit packets and these
packets fit in the empty queues in Qi in S. First, we consider the case that
there are less than B packets in qi after the arrival step. The next packet arriv-
ing at qi is accepted by OPT and mapped to qi,((kit+σit) mod B), which is the
first empty queue in Qi beyond Bi,t+1. If OPT serves qi at time step t, then
S serves the queue at the beginning of Bit. Hence, the populated queues in Qi

still form a consecutive block and the claim holds for t + 1. Now, we consider
the case of a buffer overflow. All B queues in Qi are populated. If OPT does
not serve qi at time step t, the claim holds for t + 1 by putting the beginning
of Bi,t+1 to qi,(ki,t+1 mod B). Otherwise, S serves qi,(ki,t+1 mod B), and the claim
is established for t+ 1 as well.

Finally, we consider the randomized case. Let R be a randomized c-competi-
tive algorithm for B = 1. Hence, there is a probability space Ω with distri-
bution P due to which R chooses deterministic algorithms for B = 1 out of
{A(ω) : ω ∈ Ω}. Above, we have shown that for each sequence σ for ΓB we can
construct a sequence σ̃ such that inequalities (1) and (2) are satisfied by each
deterministic algorithm. Let R̃ be the randomized algorithm for buffer size B
that chooses deterministic algorithms for B out of {Ã(ω) : ω ∈ Ω} due to the
same probability distribution P where Ã(ω) is the algorithm obtained by apply-
ing the generalization technique above to A(ω). Since R is c-competitive, there
holds

E[TR(σ̃)] =
∫

Ω

TA(ω)(σ̃)dP ≥ TOPT (σ̃)/c. (3)

By using the fact that R and R̃ choose their underlying deterministic al-
gorithms due to the same probability distribution P and subsequently using
inequalities (2), (3) and (1), we eventually derive that

E[TR̃(σ)] =
∫

Ω

TÃ(ω)(σ)dP ≥
∫

Ω

TA(ω)(σ̃)dP ≥ TOPT (σ̃)/c ≥ TOPT (σ)/c. ��

3 A Random Permutation Algorithm

Algorithm RP : Let P be the set of permutations of {1, . . . ,m}. Choose π ∈ P
according to the uniform distribution and fix it. In each transmission step choose
among the populated queues that one whose index is most to the front in π.
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We call a packet p arriving at queue q a non-initialization packet if p is
the ith, i > B, packet arriving there. Because of the generalization technique in
Section 2, we shall henceforth assume that B = 1 .

Lemma 1. Let there be m queues and B = 1 buffer per queue and let p(m)
j

denote the probability of RP’s accepting the jth non-initialization packet. If i ≤
m, then

p
(m)
i ≥ 1

m!

i∑
j=1

(
i

j

)
(m− j)!(−1)j−1.

Proof. We use the following notation: Let Pi be the ith non-initialization packet
and let Pi arrive at queue qai at time ti. We assume that OPT can accept
each non-initialization packet. Hence OPT must have served qai

before ti. Since
OPT can serve at most one queue per unit of time, OPT can accept at most t
non-initialization packets till time t, yielding ti ≥ i. The earlier Pi arrives, the
greater is the probability that RP has not served qai

since the last packet ar-
rival there. Furthermore, the greater the number of queues where at least one
packet has already arrived, the less is pi. Hence, we can assume –without loss of
generality– that ti = i and that at least one packet has arrived at each queue.
Henceforth, we shall restrict ourselves to arrival sequences σ satisfying this as-
sumption. Since i ≤ m, OPT can either decide ai = aj for some j < i or ai = aj

for all j < i.

The following two lemmata establish that the latter choice is more disadvan-
tageous for RP and are stated without proofs due to space limitation.

Lemma 2. There holds the following invariant: At each time t, there exists
1 ≤ nt ≤ m such that in RP’s configuration the queues qπ1 , . . . , qπnt

are empty
after the transmission step at t, whereas the queues qπnt+1 , . . . , qπm are populated.

We can interpret nt as a separation mark in π, positioned between πnt and
πnt+1, separating the empty queues from the populated ones.

Lemma 3. Let Q = {q1, . . . , qm} be the set of queues. Let I+
j denote the set of

queues where at least one of the first j non-initialization packets has arrived and
let I−

j = Q \ I+
j . For 1 ≤ i ≤ m − 1, let p+

i+1 and p−
i+1 be the probabilities of

RP’s accepting the (i + 1)st non-initialization packet at a queue out of I+
i and

I−
i , respectively. There holds p−

i+1 ≤ p+
i+1 .

So, we shall consider an arrival sequence σ where, after the initial burst of
one packet at each queue, one packet arrives at each unit of time and the first m
non-initialization packets arrive at distinct queues. Without loss of generality,
we may assume that σij = δij (Kronecker symbol) for all 1 ≤ i ≤ m, i.e. at time
step i, there is a single packet arriving at qi. Henceforth, p(m)

i , i ≤ m, denotes
the probability of RP ’s accepting Pi in this special σ.

In order to complete the proof of Lemma 1, we show another useful lemma,
first.
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Lemma 4. There holds the following recursion:

p
(m)
1 =

1
m
, p

(m)
i = p

(m)
i−1 +

1
m

(
1− p(m−1)

i−1

)
for 1 < i ≤ m.

Proof. Let i = 1. p(m)
1 corresponds to the probability that π1 = 1. Since π is

chosen due to the uniform distribution, each queue has the same probability
of leading π, hence p(m)

1 = 1
m . qi is empty at time i if it has been empty at

time i − 1 or it is served at time i. The former probability is given by p
(m)
i−1.

Now we consider the serving of qi at time i. This is the case if and only if the
separation mark n in π is moved on at time i and reaches i. Since i is put to
each position in π with the same probability, n reaches i with probability 1

m ,
given that the mark moves. This move takes place if and only if i− 1 is located
beyond the mark at time i− 1, i.e. qi is preferred to qi−1 in π. Since we fix the
position in π to ni−1, the situation corresponds to a buffer consisting of queues
q1, . . . , qi−1, qi+1, . . . , qm where the first ni−1−1 positions in the permutation are
the same, and the remaining ones except that for i are shifted one position to the
head, i.e. π′

k = πk if k ≤ ni−1−1, and π′
k = πk+1 if k ≥ ni−1. The probability of

i− 1 there being located beyond the separation mark is the counter probability
of i−1 there being served during the first i−1 time steps. Hence, the separation
mark is moved on with probability

(
1− p(m−1)

i−1

)
. ��

Now, we continue to prove Lemma 1. The claim is shown by induction on m.

p
(1)
1 = 1 = 1

1!

1∑
j=1

(1
j

)
(1 − j)!(−1)j−1. Assume that the claim holds for m − 1.

From Lemma 4, we derive p(m)
1 = 1

m = (m−1)!
m! = 1

m!

1∑
j=1

(1
j

)
(m − j)!(−1)j−1.

Assume that the claim holds for p(m)
i−1. If i > 1, we use the recursion formula

from Lemma 4: p(m)
i = p

(m)
i−1 + 1

m

(
1− p(m−1)

i−1

)
= p

(m)
i−1 + 1

m −
1
mp

(m−1)
i−1 . Since the

claim holds for m− 1, we deduce that

p
(m)
i = p

(m)
i−1 + (m−1)!

m! − 1
m

1
(m−1)!

i−1∑
j=1

(
i−1

j

)
((m− 1)− j)!(−1)j−1

= p
(m)
i−1 + 1

m!

i−1∑
j=0

(
i−1

j

)
(m− 1− j)!(−1)j = p

(m)
i−1 + 1

m!

i∑
j=1

(
i−1
j−1

)
(m− j)!(−1)j−1.

Using the claim for p(m)
i−1 gives us

p
(m)
i = 1

m!

i−1∑
j=1

(
i−1

j

)
(m− j)!(−1)j−1 + 1

m!

i∑
j=1

(
i−1
j−1

)
(m− j)!(−1)j−1

= 1
m!

i−1∑
j=1

((
i−1

j

)
+
(

i−1
j−1

))
(m− j)!(−1)j−1 + 1

m!

(
i−1
i−1

)
(m− i)!(−1)i−1.

The application of Pascal’s formula eventually completes our proof:



300 M. Schmidt

p
(m)
i = 1

m!

i−1∑
j=1

(
i
j

)
(m− j)!(−1)j−1 + 1

m!

(
i
i

)
(m− i)!(−1)i−1

= 1
m!

i∑
j=1

(
i
j

)
(m− j)!(−1)j−1. ��

Due to space limitation, the proofs of the following three lemmata are omitted.

Lemma 5. If m ≥ 3, then 5
8 ≤ p

(m)
m ≤ 2

3 .

Lemma 6. If 1 ≤ i ≤ m, then the throughput ratio of RP after i non-
initialization packets is less than 3

2 .

Lemma 7. Let βm =
m∑

i=1
p
(m)
i . There holds βm = (m+ 1)

m+1∑
j=0

(−1)j

j! .

Theorem 2. The competitive ratio of RP is at most 3
2 .

Proof. If m ≤ 2, the claim is obvious because RP is a work-conserving algo-
rithm and each work-conserving algorithm is (2 − 1

m )-competitive, as shown
in [4]. Hence we may assume m ≥ 3. The expected number of hits for RP during
the first m time steps is βm. So, the expected number of faults is m− βm. Since
there cannot be more than m− 1 faults –each fault results in one queue empty
in RP ’s configuration, but populated in OPT ’s configuration–, the expected
number of further faults is at most βm − 1. Let there be n non-initialization
packets. If n ≤ m, our claim follows from Lemma 6. Let n > m. We parti-
tion the arrival sequence into σ0 comprising the initialization packets and the
first m non-initialization packets and σ1 comprising the remaining packets. Let
pm denote p(m)

m . Hence p(m)
i ≥ pm for i > m. Moreover let T0 = E[TRP (σ0)],

T1 = E[TRP (σ1)], L0 = 2m − T0, L1 = n − m − T1, �m = 2m
m+βm

. L0 and L1

are the expected numbers of packets lost by RP when serving σ0 and σ1, re-
spectively, �m is the throughput ratio after m non-initialization packets. Let

sn =
n∑

j=0

(−1)j

j! . Note that p(m)
m = 1− sm. By Lemma 5, 2sm + sm+1 ≥ 3 · 1

3 = 1.

Hence, m < m(2sm + sm+1) + sm+1, yielding 2m(1− sm) < m+ (m+ 1)sm+1.
We derive that

�mpm =
2m(1− sm)

m+ (m+ 1)sm+1
< 1. (4)

There holds r := TOP T (σ)
E[TRP (σ)] = T0+L0+T1+L1

T0+T1
. Note that T0 + L0 ≤ �mT0,

T1 ≥ (n − m)pm, L1 ≤ (1 − pm)(n − m) and L1 ≤ βm − 1, hence
L1 ≤ min{(1− pm)(n−m), βm − 1}. We conclude that

r ≤ �mT0 + T1 + L1

T0 + T1
= �m+

L1 − (�m − 1)T1

T0 + T1
≤ �m+

L1 − (�m − 1)pm(n−m)
m+ βm + pm(n−m)

.

First, we consider n≤m+ βm−1
1−pm

. Then, r≤�m+(1−pm)(n−m)−(m−1)pm(n−m)
m+βm+pm(n−m) =

�m + (1−mpm)(n−m)
m+βm+pm(n−m) , which is increasing in n because 1 − �mpm ≥ 0 due to

inequality (4). Hence
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r ≤ �m +
(1− �mpm)βm−1

1−pm

m+ βm + pm
βm−1
1−pm

.

Now, we consider n ≥ m + βm−1
1−pm

. Then, r ≤ �m + βm−1−(m−1)pm(n−m)
m+βm+pm(n−m) ,

which is decreasing in n. Hence

r ≤ �m +
βm − 1− (�m − 1)pm

βm−1
1−pm

m+ βm + pm
βm−1
1−pm

= �m +
(1− �mpm)βm−1

1−pm

m+ βm + pm
βm−1
1−pm

.

By using the definition of �m, we deduce that in either case

r ≤
�m(m+ βm + pm

βm−1
1−pm

− pm
βm−1
1−pm

) + βm−1
1−pm

m+ βm + pm
βm−1
1−pm

=
�m(m+ βm) + βm−1

1−pm

m+ βm + pm
βm−1
1−pm

=
2m+ βm−1

1−pm

m+ βm + pm
βm−1
1−pm

= 2− βm − 2pm + 1
m(1− pm) + βm − pm

.

Let δn = sn−sn−1. Due to Lemma 5, sm ≥ 0. Hence (m+1)δm+1 +sm ≥ 0 if
δm+1 ≥ 0. Assume that δm+1 < 0. Then, δm+1 = − 1

(m+1)! and, using inequality
|sm− 1

e | ≤
1

m! , (m+1)δm+1+sm = sm− 1
m! ≥ ( 1

e−
1

m! )−
1

m! = 1
e−

2
m! ≥

1
e−

1
3 > 0.

Hence, due to Lemma 7,

βm = (m+ 1)sm+1 = (m+ 1)(sm + δm+1) = msm + (m+ 1)δm+1 + sm ≥ msm.

Since, due to Lemma 5, pm ≤ 2
3 , we derive that βm + 2 ≥ msm + 3pm =

m(1− pm) + 3pm, yielding 2(βm− 2pm + 1) ≥ m(1− pm) + βm− pm. Using this
inequality for r results in

r ≤ 2− βm − 2pm + 1
m(1− pm) + βm − pm

≤ 2− 1
2

=
3
2
. ��

The following theorem is an immediate result of Theorem 1 and Theorem 2.

Theorem 3. Let R̃P be the randomized algorithm resulting from the application
of the generalization technique to algorithm RP. R̃P is 3

2 -competitive for any
buffer size B.

4 Bicodal Buffers

We consider the unit value packet throughput maximization problem for the
case of m = 2 queues each having buffer size B - m.

The following theorem is stated without proof due to space limitation.

Theorem 4. The competitive ratio of each deterministic online algorithm ALG
is at least 16

13 ≈ 1.2308.
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Algorithm Greedy: The greedy algorithm GR always serves the queue currently
having maximum load. Ties are broken arbitrarily.

In our analysis we assign to each request sequence σ the sequence l =
(l1, l2, . . .) of packet losses where li denotes the number of packets lost by GR
during its ith packet loss. We shall deduce lower bounds for the number of pack-
ets transmitted by GR for any loss sequence and thus derive an upper bound
for the competitive ratio by assuming that the optimal offline algorithm OPT
can accept all arriving packets. GR’s transmission schedule can be partitioned in
several phases where each phase ends when all of GR’s queues are empty and the
subsequent phase starts upon the next packet arrival. If we postpone this arrival
until OPT has emptied its queues as well, the competitive ratio does not de-
crease. Since the total throughput ratio is bounded above by the greatest phase
throughput ratio, it is sufficient only to consider sequences σ where not until
σ has terminated does GR’s buffer become unpopulated. Henceforth, σ and l
always denote such an arrival sequence and its loss sequence, respectively. Let

S(l) denote
n∑

i=1
li. Moreover, let TG and TO denote the throughputs of GR and

OPT, respectively.

Due to space limitation, the proof of the following lemma is omitted.

Lemma 8. If σ yields n ≥ 3 losses l1, . . . , ln, we can transform it to σ̃ with
n− 1 losses l̃1, . . . , l̃n−1 such that TO(σ)

TG(σ) ≤
TO(σ̃)
TG(σ̃) .

Corollary 1. It is sufficient to consider sequences with at most 2 losses.

Lemma 9. If there is a unique packet loss l1, then

1. TG ≥ B + 2l1
2. l1 ≤ B/2
3. TO ≤ 5

4TG.

Proof. Wlog. we may assume that the packet loss occurs in q1. Let gk and hk

denote the loads of GR and OPT in qk , k ∈ {1, 2}, just before this loss. From
the imminent packet loss, we derive that g1 = h1 + l1 and, hence, g2 = h2 − l1.
Hence, there are l1 time steps t1 < . . . < tl1 where GR serves q2 while OPT
serves q1. There holds g2,tj

≥ g1,tj
. In each time step after the last different

service, OPT serves the same queue as GR does and the load difference l1 is
kept. We consider tl1 : there holds g1 = h1 + l1, g2 = h2 − l1, g2 ≥ g1. Hence,
g2 ≥ h1 + l1 ≥ l1. Since GR has served q2 at least l1 times before, at least 2l1
packets must have arrived at q2. Due to the packet loss in q1, GR has accepted
at least B packets in q1, establishing claim 1. Claim 2 results from the fact
that B ≥ h2 = g2 + l1 ≥ 2l1, yielding TO

TG
= 1 + l1

TG
≤ 1 + l1

B+2l1
= B+3l1

B+2l1
=

3
2 −

B
2B+4l1

≤ 3
2 −

B
2B+2B = 5

4 . ��

Lemma 10. If there are 2 losses l1 and l2, then TO ≤ 9
7TG.
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Proof. First, we consider the case that the two losses occur in different queues.
Since l2 ≤ (B − l1)/2, there holds r(l) = l1+l2

B+3l1+l2
= 1 − B+2l1

B+3l1+l2
≤

1 − B+2l1
B+3l1+(B−l1)/2 = 1 − 2B+4l1

3B+5l1
= B+l1

3B+5l1
= 1

5 + 2B
15B+25l1

. If l1 ≥ B/3, then
r(l) ≤ 1

5 + 2B
15B+25l1

≤ 1
5 + 6B

45B+25B = 1
5 + 3

35 = 2
7 . Now assume that l1 ≤ B/3.

Since B − l1 − l2 ≤ l1 implies that B ≤ 2l1 + l2 ≤ 2l1 + (B − l1)/2 and, thus,
2B ≤ B + 3l1, we conclude that l1 ≤ B − l1 − l2. Hence 2l1 + l2 ≤ B. Since
l1 + 2l2 ≤ B, we get l1 + l2 ≤ 2

3B, yielding l1+l2
B+2l1+2l2

= 1
2 −

B
2B+4(l1+l2)

≤
1
2 −

B
2B+4· 2

3 B
= 1

2 −
3

6+8 = 7−3
14 = 2

7 . Hence

l1 + l2
B + 2l1 + 2l2

≤ 2
7
. (5)

We distinguish 3 cases:

1. G1 ≤ l1 ≤ B − l1 − l2:
(a) l2 ≤ G1: r(l) = l1+l2

B+3l1+l2
= 1 − B+2l1

B+3l1+l2
≤ 1 − B+2l1

B+4l1
= 2l1

B+4l1
=

1
2 −

B
2B+8l1

≤ 1
2 −

B
2B+ 8

3 B
= 1

2 −
3

6+8 = 7−3
14 = 2

7 .
(b) l2 > G1: Here l2 −G1 additional packets have to be taken into account.

Hence r(l) ≤ l1+l2
(B+3l1+l2)+(l2−G1)

= l1+l2
B+2l1+2l2+(l1−G1)

≤ l1+l2
B+2l1+2l2

≤ 2
7

due to inequality (5).
2. l1 ≤ G1 ≤ B − l1 − l2:

(a) l2 ≤ l1: like Subcase 1a.
(b) l1 ≤ l2 ≤ G1: Here, G1 − l1 additional packets have to be taken into

account. Hence r(l) ≤ l1+l2
(B+3l1+l2)+(G1−l1)

= l1+l2
B+2l1+l2+G1

≤ l1+l2
B+2l1+2l2

≤
2
7 due to inequality (5).

(c) l1 ≤ G1 ≤ l2: Here, (G1−l1)+(l2−G1) = l2−l1 additional packets have to
be taken into account. Hence r(l) ≤ l1+l2

(B+3l1+l2)+(l2−l1)
= l1+l2

B+2l1+2l2
≤ 2

7
due to inequality (5).

3. l1 ≤ B− l1− l2 ≤ G1: Here, G1− l1 ≥ B− l1− l2− l1 = B−2l1− l2 additional
packets have to be taken into account. Hence r(l) ≤ l1+l2

(B+3l1+l2)+(B−2l1−l2)
=

l1+l2
2B+l1

≤ l1+(B−l1)/2
2B+l1

= B+l1
4B+2l1

= 1
2 −

B
4B+2l1

≤ 1
2 −

B
4B+ 2

3 B
= 1

2 −
3

12+2 =
7−3
14 = 2

7 .

Now, we consider the case that the two losses occur in the same queue. If
l1 ≥ B/3, the claim is established as in the different queues case. Hence, we may
assume that l1 ≤ B/3. If G2 > l1, G2− l1 additional packets must be taken into
account. So must l2 −G2 ones if l2 > G2. We distinguish 4 cases:

1. l2 ≤ G2 ≤ l1: like Subcase 1a of different queues.
2. l1 ≤ G2, l2 ≤ G2:

(a) l2 ≤ l1: like Subcase 1a of different queues.
(b) l1 ≤ l2: like Subcase 2b of different queues.

3. G2 ≤ l1, G2 ≤ l2: like Subcase 1b of different queues.
4. l1 ≤ G2 ≤ l2: like Subcase 2c of different queues. ��

Combining Lemma 8, Lemma 9 and Lemma 10 yields the following theorem.
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Theorem 5. GR is 9
7 -competitive.

Theorem 6. The competitive ratio of GR is 9
7 ≈ 1.2857.

Proof. Let t0 = 1, t1 = 1 +B/3, t2 = 1 +B and σt0 = (B/3, 2B/3),σt1 = (B, 0),
σt2 = (0, B), and σt = (0, 0) for all t ∈ {t0, t1, t2}. ��
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Abstract. The subset sum problem (SSP) (given n numbers and a tar-
get bound B, find a subset of the numbers summing to B), is a classic
NP-hard problem. The hardness of SSP varies greatly with the density
of the problem. In particular, when m, the logarithm of the largest input
number, is at least c · n for some constant c, the problem can be solved
by a reduction to finding a short vector in a lattice. On the other hand,
when m = O(log n) the problem can be solved in polynomial time using
dynamic programming or some other algorithms especially designed for
dense instances. However, as far as we are aware, all known algorithms for
dense SSP take at least Ω(2m) time, and no polynomial time algorithm
is known which solves SSP when m = ω(log n) (and m = o(n)).

We present an expected polynomial time algorithm for solving uni-
formly random instances of the subset sum problem over the domain
ZM , with m=O((log n)2). To the best of our knowledge, this is the first
algorithm working efficiently beyond the magnitude bound of O(log n),
thus narrowing the interval of hard-to-solve SSP instances.

1 Introduction

The subset sum problem (SSP), one of the classical NP-hard problems, is defined
as follows: given n numbers and a target bound B, find a subset of the numbers
whose sum equals B.

In this paper, we consider a case arising commonly in cryptographic appli-
cations where the numbers are represented by m-bit integers, and the sums are
computed modulo M , where M is another m-bit integer. In other words, the ad-
dition is performed in ZM . More formally, the subset sum problem of dimensions
n and m is:

Given: n numbers a1, . . . , an, with ai ∈ ZM , and a target B ∈ ZM , where M
is an m-bit integer

Find: a subset S ⊂ {1, . . . , n}, such that
∑
i∈S

ai ≡ B mod M .

V. Diekert and B. Durand (Eds.): STACS 2005, LNCS 3404, pp. 305–314, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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We focus on random instances of the problem, where both the input num-
bers and the bound are picked uniformly at random. Similar random instances
(with different parameters than we will eventually select) were shown by Chvatal
[Chv80] to be hard instances for a class of knapsack algorithms.

The hardness of random SSP instances varies significantly with the choice of
parameters, in particular the magnitude of m as a function of n (cf. [IN96]):

m > n: such instances are “almost 1-1” (each subset has a different sum), and
are efficiently solvable by a reduction to a short vector in a lattice when
m ≥ c · n, for some constant c [LO85, Fri86, CJL+92].

m < n: such instances are “almost onto” (with multiple solutions for most tar-
gets), and are efficiently solvable by various techniques in high-density case,
i.e., for m = O(logn) (e.g., by dynamic programming, or using methods of
analytical number theory [CFG89, GM91]).

Despite various efficient approaches to dense instances, as far as we are aware,
all these algorithms take at least Ω(M) time, and so none of them works in
polynomial time when m = ω(logn).

1.1 Contributions

In this work we propose an expected polynomial time algorithm which solves
uniformly random SSP instances with m up to (logn)2/16. Our algorithm starts
by dividing the input instance into small, efficiently solvable subinstances. The
solutions of subinstances lead to a reduced instance (simpler than the original
input), which we solve recursively. Finally, the solution of the reduced instance
is combined with the solutions of subinstances to yield a solution of the original
instance.

To the best of our knowledge, this is the first algorithm working efficiently
beyond the magnitude bound of O(logn), thus narrowing the interval with hard-
to-solve SSP instances.

1.2 Related Work

Our algorithm bears some similarity to an approach developed by Blum et al.
[BKW03] in the context of computational learning theory. By employing a re-
cursive approach much like ours, they provide an algorithm for learning an XOR
function in the presence of noise.

Beier and Vöcking [BV03] presented an expected polynomial time algorithm
for solving random knapsack instances. Knapsack and subset sum have some
compelling similarities, but the random instances considered there are quite dif-
ferent from ours, and this leads to the development of quite a different approach.

1.3 Notation and Conventions

A tuple (a1, . . . , an;B,M) denotes an instance of SSP with input numbers ai

and target B to be solved over ZM .



Solving Medium-Density Subset Sum Problems 307

For the clarity of presentation we occasionally neglect the discrete nature of
some terms in summations to avoid the use of rounding operations (floors and
ceilings). However, this simplification does not compromise the validity of our
results. All asymptotic notation is with respect to n, we write f(n) ∼ g(n) to
mean f(n)/g(n)→ 1 as n→∞. All logarithms are base 2.

2 The New Algorithm

We begin with a special case, an algorithm applicable when M is a power of 2.
Then we present another special case, an algorithm applicable whenM is odd. In
general, we apply a combination of the two special cases. Given any modulus M
we write M = M̄ ·M ′, with M̄ = 2m̄ and M ′ odd. We use the first algorithm to
reduce the original problem (a1, . . . , an;B,M) to a problem (a′

1, . . . , a
′
n′ ;B′,M ′),

and then use the second algorithm to solve the reduced problem.
In the algorithms below � is a parameter whose value will later be set to

(logn)/2. For simplicity, the description presented below focuses on the core part
of the algorithms, which can fail on some inputs. Later we show that the failures
have sufficiently low probability so that upon failure we can run a dynamic
programming algorithm (which takes exponential time) and obtain an expected
polynomial time algorithm.

2.1 Subset Sum Modulo Power of 2

Given an instance (a1, . . . , an;B,M), with M = 2m and B = 0, we transform
it to an equivalent instance with target zero, i.e., (a1, . . . , an, an+1; 0,M), where
an+1 = M − B and we require that a valid solution contain this additional
element an+1. To solve the target-zero instance we proceed as follows: we find
among the input numbers a maximum matching containing an+1, where two
numbers ai, aj can be matched if the sum (ai + aj) has its � least significant
bits equal to zero, (in other words, if (ai +aj) ≡ 0 mod 2�.) From the matching
we generate a “smaller” instance of SSP, which we solve recursively: given a
matching of size s, ((ai1 , aj1), . . . , (ais

, ajs
)), where wlog. ais

= an+1, we generate
an instance ((ai1+aj1)/2

�, . . . , (ais +ajs)/2
�; 0, 2m−�), and we require that a valid

solution of this instance must contain the last element. Note that the instance to
be solved recursively is indeed smaller. It has at most (n+ 1)/2 input numbers,
and both the modulus and the input numbers are shorter by � bits. When the
recursion reaches the bottom, we extract a solution of the original problem in a
straightforward way. Figure 1 presents the algorithm in pseudocode. Note that
the algorithm returns a set S of disjoint subsets, where the the last subset is a
solution to the input problem, and all remaining subsets sum up to zero modulo
2m. These extra subsets are used in the combined algorithm in Sect. 2.3.

We remark that the above method can be used to solve instances of SSP with
some other moduli, for example when M is a power of small primes, or when
M is “smooth” (meaning the product of small primes). However, the method
does not generalize easily to arbitrary moduli, and in particular gives no obvious
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procedure SSPmod2(a1, . . . , an, B, m, �)
an+1 := −B
S := SSPmod2rec(a1, . . . , an+1, m, �)
/** wlog. S = (S1, . . . , Ss) and (n + 1) ∈ Ss **/
return (S1, . . . , Ss−1, Ss \ {n + 1})

procedure SSPmod2rec(a1, . . . , an+1; m, �)
S := ()
V := {1, . . . , n, n + 1}
E := {(i, j) : (ai + aj) ≡ 0 mod 2�}
E′ := maximum matching in G = (V, E) containing vertex (n + 1)
/** wlog. E′ = (e1, . . . , es), with es containing (n + 1) **/
if E′ is non-empty then

if � < m then
∀ek ∈ E′, ek = (ik, jk), let a′

k := (aik + ajk )/2�

S ′ := SSPmod2rec(a′
1, . . . , a

′
s; m − �, �)

if S ′ is not empty then
/** wlog. S ′ = (S′

1, . . . , S
′
t), with each S′

i ⊆ {1 . . . s}, and s ∈ S′
t **/

∀S′
i ∈ S ′ let Si :=

⋃
ek:k∈S′

i,ek=(ik,jk)
{ik, jk}

S := (S1, . . . St)
else

∀ek ∈ E′, ek = (ik, jk), let Sk := {ik, jk}
S := (S1, . . . Ss)

return S

Fig. 1. The proposed algorithm for solving dense SSP instances modulo a power of 2

way to handle a large prime modulus. In the next section we describe a different
algorithm, which works with high probability for arbitrary odd moduli.

2.2 Subset Sum with an Odd Modulus

The algorithm for SSP with an odd modulus has on a high level the same strategy
as the algorithm from the previous section, i.e., it successively reduces the size
of the numbers by matching them in pairs. However, it differs in one significant
detail. Instead of working on least significant bits, it zeros out the most significant
bits at each step of the recursion.

Given an instance (a1, . . . , an;B,M), with M odd and B = 0, we begin, as
in the previous case, by transforming it to an equivalent instance with target 0.
However, this time we use a different transformation. To each input number we
add the value Δ := (−B/2t) mod M , where t = �log2M/��, so the modified
instance is (a′

1, . . . , a
′
n; 0,M), where a′

i = ai + Δ.
Our motivation for making this transformation becomes clear when we reveal

our plan to make sure that any solution returned by our algorithm contains
exactly 2t elements. Since the sum of the solution of the modified instance is
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zero modulo M , the sum of the corresponding numbers in the original instance
is B, as each number of the solution contributes an extra Δ to the sum and

2t ·Δ ≡ −B mod M.

The fact that M is odd is required to ensure that such a Δ exists.
Now it is convenient to view elements from ZM as numbers from the interval

I = {−(M − 1)/2, . . . , (M − 1)/2}, following the transformation

a→
{
a, if a ≤ (M − 1)/2;
a−M, otherwise.

(1)

Given a target-zero instance (a′
1, . . . , a

′
n; 0,M) withM odd, we find a solution

of cardinality 2t as follows: we find a maximum matching among the input
numbers, where two numbers a′

i, a
′
j can be matched iff there exists an integer k

so that when viewed as elements of the interval I, as in (1), a′
i ∈ [kM/2�+1, (k+

1)M/2�+1] and a′
j ∈ [−(k + 1)M/2�+1,−kM/2�+1]. Again, from the matching

we generate a “smaller” instance of SSP, which we solve recursively. Given a
matching of size s,

((a′
i1 , a

′
j1), . . . , (a

′
is
, a′

js
)),

procedure SSPmodOdd(a1, . . . , an; B, M, �)
t := �log2 M/��
Δ := (−B/2t) mod M
return SSPmodOddRec(a1 + Δ, . . . , an + Δ; M, �, 1)

procedure SSPmodOddRec(a1, . . . , an; M, �, d)
/** we view ai’s as numbers from I = {−(M − 1)/2, . . . , (M − 1)/2} **/
S := {}
V := {1, . . . , n}
E := {(i, j) : ∃k ∈ Z, ai ∈ [kM/2d�+1, (k + 1)M/2d�+1],

aj ∈ [−(k + 1)M/2d�+1, −kM/2d�+1]}
E′ := maximum matching in G = (V, E)
/** wlog. E′ = (e1, . . . , es) **/
if E′ is non-empty then

if d · � < �log2 M� then
∀ek ∈ E′, ek = (ik, jk), let a′

k := (aik + ajk )
S′ := SSPmodOddRec(a′

1, . . . , a
′
s; M, �, d + 1)

if S′ is not empty then
/** S′ ⊆ {1 . . . s} **/

S :=
⋃

ek:k∈S′,ek=(ik,jk)
{ik, jk}

else
S := {i1, j1}, where e1 ∈ E′, e1 = (i1, j1).

return S

Fig. 2. The proposed algorithm for solving dense SSP instances with an odd modulus
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procedure DenseSSP(a1, . . . , an; B, M, �)
S := {}
find M ′ and M̄ = 2m̄ such that M ′ is odd and M = 2m̄ · M ′

S := SSPmod2(a1, . . . , an, B, m̄, �) /** here S = (S1, . . . , Ss), with **/
/**

∑
j∈Si

aj ≡ 0 mod M̄ for i = 1..(s − 1), and **/
/**

∑
j∈Ss

aj ≡ B mod M̄ **/

if S is not empty then
∀i = 1..(s − 1) let a′

i := (
∑

j∈Si
aj)/M̄

B′ := B −
∑

j∈Ss
aj

S′ := SSPmodOdd(a′
1, . . . , a

′
s−1; B′, M ′, �) /** here S′ ⊆ {1, . . . , n′} **/

if S′ is not empty then
S := Ss ∪

(⋃
j∈S′ Sj

)

return S

Fig. 3. The combined algorithm for solving dense SSP instances

we generate an instance ((a′
i1

+ a′
j1

), . . . , (a′
is

+ a′
js

); 0,M). By the property of
the matched numbers, the input numbers of the new instance are smaller in the
sense that they are closer to 0 when viewed as elements of interval I. Figure 2
presents in pseudocode the algorithm for odd moduli.

2.3 Combined Algorithm

As mentioned above, given an instance (a1, . . . , an;B,M), for any (m-bit) mod-
ulus M , we write M = M̄ ·M ′, with M̄ = 2m̄ and M ′ odd, and apply both
algorithms described above, one for M̄ and one for M ′.

First, we solve the instance (a1, . . . , an;B, M̄) using procedure SSPmod2.
As a solution, we obtain a sequence S = (S1, . . . , Ss) of disjoint subsets of
{1, . . . , n}, where for each i = 1..(s − 1) we have

∑
j∈Si

aj ≡ 0 mod M̄ , and∑
j∈Ss

aj ≡ B mod M̄(i.e., the last subset is a solution for target B). From this
solution we generate an instance for the second algorithm, (a′

1, . . . , a
′
n′ ;B′,M ′),

where n′ = s− 1, a′
i = (

∑
j∈Si

aj)/M̄ for i = 1..n′, and B′ = B−
∑

j∈Ss
aj . The

second algorithm returns a solution S′ ⊆ {1, . . . , n′}, from which we derive our
answer

Ss ∪
( ⋃

j∈S′
Sj

)

Figure 3 presents the combined algorithm in pseudocode.

3 Analysis

3.1 Correctness

We need to argue that any non-empty subset returned by the algorithm is a
valid solution.
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First consider computation modulo M̄ which is a power of 2. At each level
of recursion we match pairs of input numbers so that � least significant bits are
zeroed, while respecting the constraint, that the last input number is matched.
Therefore, in recursive call, we have zeroed the least significant bits of the re-
sulting numbers, so it follows by induction that all the subsets returned by
SSPmod2rec sum up to 0 mod M̄ .

Moreover, we need to argue that the last subset returned by SSPmod2rec
determines a solution for the given target B. Indeed, if Ss is the last subset
returned by SSPmod2rec, then (n + 1) ∈ Ss and

∑
i∈Ss

ai ≡ 0 mod M̄ . Since
an+1 = −B, this implies that

∑
i∈S\{n+1} ai ≡ B mod M̄ , as desired.

To prove the correctness of the computation modulo an odd number M ′,
note that the transformation to a target-zero instance gives the desired result:
any solution is created bottom-up, by first matching two input numbers, than
matching two pairs matched previously, and so on, i.e., at each recursion level the
number of the numbers in a solution is doubled, so the size of the solution subset
is equal 2t, where t is the depth of recursion, which, in turn, equals �log2M

′/��.
Therefore, any solution with target zero will have exactly 2t ·Δ ≡ −B mod M ′

of “extra” sum, i.e., the corresponding original numbers sum up to B mod M ′.
Further, since the algorithm matches the numbers which have opposite signs

but “close” magnitudes, at each level of recursion a portion of � most significant
bits is zeroed, while avoiding the problems of overflows and wrap-arounds when
adding the numbers. Hence, by induction, the subset returned by SSPmodOddRec
sums up to 0 mod M ′.

The correctness of the combined argument follows from the above arguments
and from the Chinese Reminder Theorem, since M = M̄ ·M ′, where M̄ and M ′

are relatively prime.

3.2 Success Probability

We consider the cases with magnitudes m up to (logn)2/16 and we set � =
(logn)/2. At a given level in the recursion, in both cases (power of 2 and odd),
the success of the algorithm at that level depends on the number of numbers in
the recursion being “enough”. And, the number of numbers in the recursion at a
given level is equal to the number of edges in the matching at the previous level.
We will argue by induction. Let tk denote the number of numbers available at
the beginning of level k of the recursion, and let sk denote the number of edges
in the matching at level k.

Lemma 1. For sk and tk defined as above, Let Ak denote the event that sk ≥
tk/4. Then

Pr[Ak | A1, . . . ,Ak−1] ≤ exp
(
−n3/4/32

)
.

Proof. If A1, . . . ,Ak−1 occur (meaning, in every previous level of the recursion,
we have managed to keep at least 1/4 of the numbers), then we begin level k with
at least n(1/4)(log n)/8 = n3/4 numbers (since there are at most m/� ≤ (logn)/8
levels of recursion total).
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Lemma 1 is easier to argue when the modulus is a power of 2. Then the
subinstances are formed by zeroing least significant bits, and so the reduced
numbers are independent and uniformly random. When the modulus is an odd,
the reduced numbers are independent but not uniformly random. Fortunately,
they are distributed symmetrically, in the sense that Pr[a′

i = a] = Pr[a′
i = −a].

We argue this by induction: Suppose Pr[ai = a] = Pr[ai = −a] for all i. Then,
since each edge (i, j) ∈ E yields an a′

k = ai + aj , we have

Pr[a′
k = a] =

∑
b

Pr[ai = b] Pr[aj = a− b]

=
∑

b

Pr[ai = −b] Pr[aj = −(a− b)]

= Pr[a′
k = −a].

This symmetry property is all that we need to show sk is very likely to exceed
tk/4. We can pretend the tk input numbers are generated by a two-step process:
first, we pick the absolute value of the numbers constituting the instance, and
then we pick the sign of each number. Since the distribution is symmetric, in the
second step each number in the instance becomes negative with probability 1/2.

Let Ti denote the number of numbers picked in the first step with absolute
value in the interval [(i−1)M/Ld, iM/Ld], where L = 2� and i = 1 . . . L. Then the
number of negative numbers in interval i is a random variable Xi ∼ Bi(Ti, 1/2),
and we can match all but Yi := |Xi − (Ti −Xi)| numbers in interval i. Further,

E[Yi] =
Ti∑

k=1

Pr[Yi ≥ k] =
Ti∑

k=1

Pr[|Xi − Ti/2| ≥ k/2],

and by Azuma’s inequality, this is at most

Ti∑
k=1

2e−k2/(2Ti) ≤
∫ ∞

x=0
2e−x2√

2Tidx =
√

2πTi.

Let Y denote the total discrepancy of all the bins,

Y =
L∑

i=1

Yi.

By linearity of expectation, we have that we expect to match all but

E[Y ] = O(
√
T1 + · · ·+

√
TL)

numbers. This sum is maximized when T1 = · · · = TL, and minimized when
Ti = t for some i (and all other Tj ’s are zero), hence

O(
√
t) ≤ E[Y ] ≤ O(

√
tL) . (2)
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Changing a single number in the instance can change the discrepancy by
at most 2, so we use Azuma’s inequality in a convenient formulation given by
McDiarmiad [McD89] (see also Bollobás [Bol88]) and the fact that L = 2� =

√
n

and t ≥ n3/4.

Pr[s ≤ t/4] = Pr[Y ≥ t/2]
≤ Pr[Y ≥ E[Y ] + t/4]

≤ e−t/32

≤ exp
(
−n3/4/32

)
. �

Then, in the case of an odd modulus, the failure probability is bounded by

Pr[failure] ≤
m/�∑
k=1

Pr[Ak | A1, . . . ,Ak] ≤ (logn) exp−n3/4/32 = O(e−
√

n).

If the modulus is a power of 2, we must also account for the possibility failure
due to not matching the special number an+1 at some stage. Let Bk denote the
event that the special number is not matched at stage k. This type of failure
only occurs if all tk − 1 other numbers are different from the special number.
Since the mod 2 reductions keep the numbers at stage k uniformly distributed

among m − k� possibilities, the probability of Bk given tk is
(
1− 1

m−k�

)tk−1

and if A1, . . . ,Ak−1 hold, this is at most exp
(
−(logn)−2n3/4

)
. So again, the

probability of failure is O(e−
√

n).

3.3 Running Time

The running time of the algorithm above is dominated by the time required to
solve all the subinstances, which is bounded by (n−1)/(�−1) ·O(2�) = O(n3/2).

In the case of failure, we can solve the instance by dynamic programming
in time O(2(log n)2). Since (when n is sufficiently large) the failure probability is
much less than 2−(log n)2 , combining the algorithm above with a dynamic pro-
gramming backup for failures yields a complete algorithm that runs in expected
polynomial time.

3.4 Choice of Parameters

The parameters above are not optimized, but there is a curious feature in the
proof of Lemma 1 that puts a restriction on the range of coefficients c that would
work for m = c(logn)2. Similarly, the range of constants c′ that would work for
� = c′ log n is restricted in a way that does not seem natural. For � = (logn)/2
and m = (logn)2/16, the number of stages of recursion is small enough that each
stage has sufficiently many numbers to succeed with high probability. But for
� = (logn)/2 and m = (logn)2/8, McDiarmid’s version of Azuma’s inequality
will not work in the way we have used it.
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4 Conclusions and Open Problems

We presented an expected polynomial time algorithm for solving uniformly ran-
dom subset sum problems of medium density over ZM , with m bounded by
O((logn)2), where n is the number of the input numbers. As far as we are aware,
this is the first algorithm for dense instances that works efficiently beyond the
magnitude bound of O(logn), thus narrowing the interval with hard-to-solve
SSP instances. A natural open question is whether the bound on the magnitude
can be further extended, e.g. up to (logn)z for some z > 2.

Finally, recall that DenseSSP is a deterministic algorithm which can fail with
non-zero probability. Since this probability is very low, upon failure we can run
a dynamic programming algorithm and still obtain expected polynomial time
in total. A different way of handling failures might be to run DenseSSP again
on randomly permuted input. Note however that such multiple trials are not
fully independent, thus complicating the analysis. It is an interesting problem
to compare this alternative approach with the one we have analyzed.
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Abstract. The constraint satisfaction problem (CSP) is a convenient
framework for modelling search problems; the CSP involves deciding,
given a set of constraints on variables, whether or not there is an as-
signment to the variables satisfying all of the constraints. This paper is
concerned with the quantified constraint satisfaction problem (QCSP),
a more general framework in which variables can be quantified both uni-
versally and existentially. We study the complexity of restricted cases of
the QCSP where the types of constraints that may appear are restricted
by a constraint language. We give a complete complexity classification of
maximal constraint languages, the largest possible languages that can be
tractable. We also give a complete complexity classification of constraint
languages arising from symmetric polymorphisms.

1 Introduction

The constraint satisfaction problem (CSP) is widely acknowledged as a conve-
nient framework for modelling search problems. An instance of the CSP consists
of a set of variables, a domain, and a set of constraints; each constraint consists
of a tuple of variables paired with a relation (over the domain) which contains
permitted values for the variable tuple. The question is to decide whether or not
there is an assignment mapping each variable to a domain element that satisfies
all of the constraints. Alternatively, the CSP may be viewed as the problem of
deciding, given an ordered pair of relational structures, whether or not there ex-
ists a homomorphism from the first structure to the second. Canonical examples
of CSPs include boolean satisfiability and graph coloring problems.

All of the variables in a CSP can be viewed as being implicitly existentially
quantified. A natural and useful generalization of the CSP is the quantified con-
straint satisfaction problem (QCSP), where variables may be both universally
and existentially quantified. An instance of the QCSP can be viewed as a game
between two players which take turns setting variables occurring in a set of
constraints; the question is to decide whether or not a specified player can al-
ways succeed in satisfying all of the constraints, despite the moves of the other
player. While the CSP captures the complexity of deciding whether or not a
combinatorial object of desirable type exists in a large search space, the QCSP

V. Diekert and B. Durand (Eds.): STACS 2005, LNCS 3404, pp. 315–326, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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is a prototypical PSPACE reasoning problem which captures the complexity
of many problems involving interaction among multiple agents. Such problems
arise naturally in a wide variety of domains, for example, combinatorics, logic,
game theory, and artificial intelligence.

In their general formulation, the CSP and QCSP are intractable, being NP-
complete and PSPACE-complete, respectively; however, it is possible to param-
eterize these problems by restricting the constraint language, or the types of
constraints that are permitted in problem instances. This is the form of restric-
tion which was studied by Schaefer in his now classic dichotomy theorem [30],
and has seen intense investigation over the past decade in several different con-
texts. This paper continues the recently initiated study of the complexity of
the QCSP under constraint language restrictions [3, 13, 14]. Our contributions
are the complete classification of maximal constraint languages, as well as the
complete classification of idempotent symmetric polymorphisms.

1.1 Background

Complexity Classification Theorems. In 1978, Schaefer proved that every
constraint language over a two-element domain gives rise to a case of the CSP
that is either in P or is NP-complete [30]. The non-trivial tractable cases given
by this result are 2-SAT, Horn SAT, and XOR-SAT (where each constraint
is a linear equation in the field with two elements). Over the past decade, many
more complexity dichotomy theorems in the spirit of Schaefer’s have been es-
tablished [15], including dichotomies in the complexity of model checking for
circumscription [26], “inverse” satisfiability [24], and computing an assignment
maximizing the number of satisfied constraints [25]. All of these dichotomy the-
orems are for constraint languages over a two-element domain. Particularly rele-
vant here is the dichotomy theorem for QCSP in domain size two [15, 16], which
shows that the only tractable cases in this context are Quantified 2-SAT [1],
Quantified Horn SAT [12], and Quantified XOR-SAT [15], reflecting ex-
actly the non-trivial tractable constraint languages given by Schaefer’s theorem.
All other constraint languages give rise to a PSPACE-complete QCSP.

A considerable limitation of the mentioned classification theorems is that they
only address constraint languages that are over a two-element domain. Exten-
sions of these theorems that classify all constraint languages over finite domains
would be extremely valuable. Such extensions would identify all of the ways
tractability can arise from constraint language restrictions. Given a restricted
case of the QCSP that is a candidate for being tractable, one would have the abil-
ity to immediately identify whether or not tractability of the case can be deduced
from its constraint language; if not, it would follow that other features of the case
need to be utilized in a proof of tractability. Indeed, the tractable and intractable
cases identified by classification theorems give crisp theoretical results constitut-
ing an extremely convenient starting point for performing complexity analysis.

Much attention has recently been directed towards achieving a full classifi-
cation theorem for the CSP, and has resulted in the identification of many new
tractable cases of the CSP; see, for example, the papers [23, 19, 21, 18, 27, 9, 17,
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11, 6, 7]. One spectacular result produced by this line of work is Bulatov’s di-
chotomy theorem on CSP complexity classifying all constraint languages over
a three-element domain [5], which resolved a question from Schaefer’s original
paper [30] that had been open for over two decades.

Algebra and Polymorphisms. A powerful algebraic approach to studying
complexity and the relative expressiveness of constraint languages was intro-
duced in [23, 20] and further studied, for example, in [21, 22, 18, 10, 9, 17, 11, 5,
6, 7]. In this approach, a dual perspective on the various constraint languages
is given by studying the set of functions under which a constraint language is
invariant, called the polymorphisms of a constraint language. In particular, sets
of polymorphisms are linked to constraint languages (which are sets of relations)
via a Galois connection, and two different constraint languages having the same
polymorphisms give rise to cases of the CSP (and QCSP) with exactly the same
complexity. The program of classifying constraint languages as either tractable or
intractable can thus be rephrased as a classification question on polymorphisms;
as it turns out, this rephrasing makes the classification program amenable to
attack by insights and tools from universal algebra. This dual viewpoint was
used heavily by Bulatov to obtain his dichotomy theorem [5], and can also be
used in conjunction with Post’s classification theorem [28, 2] to succinctly derive
Schaefer’s theorem: see, for example, [2].

Quantified Constraint Satisfaction. Recently, the issue of QCSP complexity
based on constraint languages in domains of size greater than two was studied
by Börner, Bulatov, Krokhin and Jeavons [3] and the present author [13, 14].
Both of these works used the algebraic approach in a central manner. The con-
tributions of [3] included development of the algebraic viewpoint for the QCSP,
the identification of some intractable and tractable classes of constraint lan-
guages, and a complete complexity classification theorem for a restricted class
of constraint languages. The main contribution of [13] was general technology
for demonstrating the tractability of constraint languages, while [14] studied the
complexity of 2-semilattice polymorphisms.

1.2 Contributions of This Paper

In this paper, we study QCSP complexity by adopting the approach used to
study CSP complexity in [9, 11, 4, 8]: we seek the most general tractability re-
sults possible by focusing on maximal constraint languages. Maximal constraint
languages are those constraint languages that can express any constraint with the
help of any relation not contained in the language. Because a constraint language
that can express all relations is intractable, maximal constraint languages are
the largest constraint languages that could possibly be tractable. The investiga-
tion of such languages has played a key role in understanding tractability in the
CSP setting: all of the tractability results identified by Schaefer’s theorem apply
to maximal constraint languages, and the investigation of maximal constraint
languages in domains of size larger than two has resulted in the identification of
new tractable cases of the CSP [9, 11, 4, 8].
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Classification of Maximal Constraint Languages. We give a full classifi-
cation theorem on maximal constraint languages, showing that each gives rise
to a case of the QCSP that is either polynomial-time decidable, or intractable
(by which we mean NP-hard or coNP-hard). In order to obtain this theorem, we
make use of a theorem of Rosenberg [29] from universal algebra which yields an
algebraic description of maximal constraint languages, showing that any maxi-
mal constraint language has a polymorphism of one of five types. Most of the
effort in obtaining our classification theorem is concentrated in studying one of
the five types of maximal constraint languages, namely, those having a binary
idempotent polymorphism. We remark that in the CSP setting, a classification
of maximal constraint languages was only recently obtained [8], and there the
difficult case was also this particular type.

Binary Idempotent Polymorphisms. Intriguingly, we show that maximal
constraint languages invariant under a binary idempotent polymorphism give rise
to four modes of behavior in the context of quantified constraint satisfaction. In
our study, we consider such binary polymorphisms in two classes, those that act
as a projection on some two-element domain, and those that do not. Those that
do act as a projection give rise to cases of the QCSP that are either NP-complete
or PSPACE-complete. Those that do not act as a projection can be assumed to
be commutative, and give rise to cases of the QCSP that are either in P or
coNP-hard; our demonstration of this fact generalizes the main result of [14].
We leave the exact complexity analysis of the coNP-hard cases as a fascinating
issue for future research; we conjecture that these cases are contained in coNP,
and are hence coNP-complete.

The fact that the binary polymorphisms investigated here fall into four different
regimes of complexity can be contrasted with complexity results on the CSP, where
all constraint languages that have been studied have been shown to be either in P
or NP-complete. We believe that our results give evidence that, relative to study of
the CSP, study of the QCSP is likely to require the utilization of a greater diversity
of techniques, and be much richer from a complexity-theoretic standpoint.

Symmetric Polymorphisms and Set Functions. Our study of commutative
binary polymorphisms is in fact carried out in a more general setting, that of
idempotent symmetric polymorphisms. We fully classify idempotent symmetric
polymorphisms, showing that for any such polymorphism, the corresponding case
of the QCSP is either reducible to its CSP restriction or is coNP-hard, and that
an algebraic criterion determines which of the two cases holds (Theorem 17).

Significantly, we show that the ideas used to study symmetric polymorphisms
can be deployed to give a full classification of idempotent set functions in the
QCSP. Set functions have been studied in CSP complexity [18] and guarantee
tractability in the CSP setting. As with symmetric polymorphisms, we show
that set functions beget cases of the QCSP that are either P or coNP-hard. This
classification result resolves an open question naturally arising from [18], namely,
to take the class of problems shown therein to be tractable in the CSP, and to
give a complexity classification of these problems in the QCSP.
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Algebra and Complexity. We believe our results to be beautiful examples
of the fascinating interplay between algebra and complexity taking place in the
setting of constraint satisfaction–an interplay that we feel to be deserving of
more attention.

We remark that much of our study concerns idempotent polymorphisms.
Idempotent polymorphisms give rise to constraint languages containing all con-
stant relations, by which we mean arity one relations of size one. Such constraint
languages have the desirable robustness property that for any (QCSP or CSP)
instance over the constraint language, when a variable is instantiated with a
value, the resulting instance is still over the constraint language.

2 Preliminaries

We use the notation [n] to denote the set containing the first n positive integers,
{1, . . . , n}. We use ti to denote the ith coordinate of a tuple t.

2.1 Quantified Constraint Satisfaction

We now set the basic terminology of quantified constraint satisfaction to be used.
Our definitions and notation are fairly standard, and similar to those used in
other papers on (quantified) constraint satisfaction. Throughout, we use D to
denote a domain, which here is a nonempty set of finite size.

Definition 1. A relation (over D) is a subset of Dk. A constraint (over D) is
an expression of the form R(w), where R is a relation over D and w is a tuple
of variables with the same arity as R. A constraint language is a set of relations,
all of which are over the same domain.

Intuitively, a constraint restricts the permissible values that can be given to
a set of variables; the variable tuple specifies the variables that are restricted,
while the corresponding relation specifies the values that the variable tuple
may take on. Formally, we consider an arity k constraint R(w1, . . . , wk) to
be satisfied under an interpretation f defined on the variables {w1, . . . , wk} if
(f(w1), . . . , f(wk)) ∈ R.

Definition 2. A quantified formula is an expression of the form Q1v1 . . . QnvnC
where for all i ∈ [n], Qi is a quantifier from the set {∀,∃} and vi is a variable;
and, C is a constraint network, that is, a finite set of constraints over the same
domain, with variables from {v1, . . . , vn}. A quantified formula is said to be
over a constraint language Γ if every constraint in its constraint network C has
relation from Γ .

Note that, in this paper, we only consider quantified formulas without free
variables. Truth of a quantified formula is defined just as in first-order logic; the
constraint network C is interpreted as the conjunction of constraints it contains.
The QCSP is the problem of deciding, given a quantified formula, whether or not
it is true; the CSP can be defined as the restricted version of the QCSP where
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all quantifiers appearing must be existential. We are interested in the following
parameterized version of the QCSP.

Definition 3. Let Γ be a constraint language. The QCSP(Γ ) decision problem
is to decide, given as input a quantified formula over Γ , whether or not it is
true. We define the CSP(Γ ) decision problem as the restriction of QCSP(Γ ) to
instances having only existential quantifiers.

The present paper is a contribution to the long-term research goal of classi-
fying the complexity of QCSP(Γ ) for all constraint languages Γ .

2.2 Expressibility and Polymorphisms

We now explain how the set of relations expressible by a constraint language,
and the polymorphisms of a constraint language, characterize the complexity
of the constraint language. Our presentation is based on the papers [23, 20], to
which we refer the reader for more information.

Definition 4. (see [20] for details) When Γ is a constraint language over D,
define 〈Γ 〉, the set of relations expressible by Γ , to be the smallest set of relations
containing Γ ∪ {=D} and closed under permutation, extension, truncation, and
intersection. (Here, =D denotes the equality relation on D.)

The more relations that a constraint language Γ can express, the higher in
complexity it is.

Proposition 5. Let Γ1, Γ2 be constraint languages where Γ1 is finite. If 〈Γ1〉 ⊆
〈Γ2〉, then QCSP(Γ1) reduces to QCSP(Γ2).1

From Proposition 5, we can see that two finite constraint languages that ex-
press exactly the same relations are reducible to one another, and hence of the
same complexity. (Up to certain technicalities that are not essential for under-
standing the new results of this paper, all of our discussion also holds for the
case of infinite constraint languages.)

We now introduce the notion of polymorphism. An operation μ of rank k is
a polymorphism of a relation R if, for any choice of k tuples t1, . . . , tk from R,
the tuple obtained by acting on the tuples ti in a coordinate-wise manner by μ,
is also contained in R.

Definition 6. An operation μ : Dk → D is a polymorphism of a relation R ⊆
Dm if for all tuples t1, . . . , tk ∈ R, the tuple (μ(t11, . . . , tk1), . . . , μ(t1m, . . . , tkm))
is in R. An operation μ is a polymorphism of a constraint language Γ if μ is a
polymorphism of all relations R ∈ Γ . When μ is a polymorphism of R (Γ ), we
also say that R (Γ ) is invariant under μ.

1 Note that the only form of reduction we consider in this paper is many-one
polynomial-time reduction.
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We will be interested in the set of all polymorphisms of a constraint language
Γ , as well as the set of all relations invariant under all operations in a given set.

Definition 7. Let OD denote the set of all finite rank operations over D, and
let RD denote the set of all finite arity relations over D.

When Γ ⊆ RD is a set of relations (that is, a constraint language), we define

Pol(Γ ) = {μ ∈ OD | μ is a polymorphism of Γ}.

When F ⊆ OD is a set of operations, we define

Inv(F ) = {R ∈ RD | R is invariant under all operations μ ∈ F}.

When f is a single operation, we use Inv(f) as notation for Inv({f}), and
QCSP(f) (CSP(f)) as notation for QCSP(Inv(f)) (CSP(Inv(f))).

Theorem 8. For any constraint language Γ , it holds that 〈Γ 〉 = Inv(Pol(Γ )).

From Theorem 8, we see that the complexity of a constraint language depends
only on its polymorphisms, since its polymorphisms determine the set of relations
that it can express, which as we have discussed, characterizes its complexity.

Proposition 9. Let Γ1, Γ2 be constraint languages where Γ1 is finite.
If Pol(Γ2) ⊆ Pol(Γ1), then QCSP(Γ1) reduces to QCSP(Γ2). Moreover, if both
Γ1 and Γ2 are finite and Pol(Γ1) = Pol(Γ2), then QCSP(Γ1) and QCSP(Γ2) are
equivalent in that they reduce to one another.

3 Maximal Constraint Languages

We study the most general forms of constraint language restrictions by consider-
ing maximal constraint languages, the largest possible constraint languages that
cannot express all relations.

Definition 10. A constraint language Γ is maximal if 〈Γ 〉 is not the set of all
relations, but for any relation R not contained in Γ , 〈Γ ∪ {R}〉 is the set of all
relations.

A theorem of Rosenberg [29] demonstrates that all maximal constraint lan-
guages are invariant under an operation of one of five particular forms. In
order to state this theorem, we require some new terminology. An operation
f : Dk → D is a majority operation if k = 3 and for all a, a′ ∈ D the equalities
f(a, a, a′) = f(a, a′, a) = f(a′, a, a) = a hold; an affine operation if k = 3 and
for all a1, a2, a3 ∈ D it is the case that f(a1, a2, a3) = a1 ∗ a−1

2 ∗ a3 where ∗ is a
binary operation and −1 is a unary operation such that (D, ∗,−1 ) is an Abelian
group; a projection if there exists i ∈ [k] such that for all a1, . . . , ak ∈ D,
f(a1, . . . , ak) = ai; and a semiprojection if k ≥ 3, f is not a projection, and
there exists i ∈ [k] such that for all a1, . . . , ak ∈ D, |{a1, . . . , ak}| < k implies
f(a1, . . . , ak) = ai.
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Theorem 11. (follows from [29]) If Γ is a maximal constraint language, then
Γ = Inv(f) for an operation f having one of the following five types: a unary
operation which is either a bijection or acts identically on its range, a semipro-
jection, a majority operation, an affine operation, a binary idempotent operation
that is not a projection.

The first two types of operations in Theorem 11 give rise to hard cases of the
QCSP(Γ ) problem.

Theorem 12. Let Γ be a maximal constraint language of the form Inv(f), where
f is a unary operation which is either a bijection or acts identically on its range.
Then QCSP(Γ ) is PSPACE-complete.

Theorem 13. [11] Let Γ be a maximal constraint language of the form Inv(f),
where f is a semiprojection. Then QCSP(Γ ) is NP-hard.

The next two types of operations in Theorem 11 have previously been shown
to be tractable.

Theorem 14. [13, 3] Let Γ be a constraint language invariant under a majority
operation or invariant under an affine operation. Then QCSP(Γ ) is in P.

The following is the statement of our classification theorem on maximal con-
straint languages.

Theorem 15. (Classification of maximal constraint languages) Let Γ be a max-
imal constraint language. One of the following five conditions holds:

– QCSP(Γ ) is in P.
– QCSP(Γ ) is coNP-hard and Γ = Inv(f) for f a binary commutative idempo-

tent operation that is not a projection.
– QCSP(Γ ) is NP-complete.
– QCSP(Γ ) is NP-hard and Γ = Inv(f) for f a semiprojection.
– QCSP(Γ ) is PSPACE-complete.

Proof. For the first four types of maximal constraint languages in Theorem 11,
the result holds by Theorems 12, 13, and 14. Otherwise, consider a maximal
constraint language Γ = Inv(f) for f a binary idempotent operation that is not
a projection. Using a technique similar to that of the proof of [11–Lemma 3], it
can be shown that Γ = Inv(f ′) for f ′ a binary idempotent operation such that,
for every two-element subset {a, b} of D, either f ′(a, b) = f ′(b, a), or f ′ acts as
a projection on {a, b}.
– If there is no two-element subset {a, b} such that f ′ acts as a projection

on {a, b}, the function f ′ is commutative and QCSP(Γ ) either reduces to
CSP(Γ ) or is coNP-hard by Theorem 17 (Section 4). In the former case,
CSP(Γ ), and hence QCSP(Γ ), is in P by [8–Theorem 5].

– Otherwise, there exists at least one two-element subset {a, b} such that
f ′ acts as a projection on {a, b}, and QCSP(Γ ) is either NP-complete or
PSPACE-complete by Theorem 22 (Section 5). ��
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4 Symmetric Polymorphisms

In this section, we develop algebraic theory that permits us to present a complete
classification of idempotent symmetric polymorphisms in the QCSP, as well as a
complete classification of idempotent set functions. We say that a polymorphism
(or function) f : Dk → D is symmetric if for all a1, . . . , ak ∈ D and for all
permutations π : [k] → [k], it holds that f(a1, . . . , ak) = f(aπ(1), . . . , aπ(k)).
Note that in this section, we consider symmetric polymorphisms of all arities,
and not just binary polymorphisms.

Let f : Dk → D be an idempotent symmetric function. We say that an
element a ∈ D can f-hit an element b ∈ D in one step if there exist elements
a1, . . . , ak−1 ∈ D such that f(a, a1, . . . , ak−1) = b. Let us say that a ∈ D can
f -hit b ∈ D (in m steps) if there exist elements d0, . . . , dm ∈ D such that a = d0,
b = dm and for all i = 0, . . . ,m − 1 it holds that di can hit di+1 in one step.
Notice that the “can f -hit” relation is reflexive and transitive.

Define a set C ⊆ D to be coherent with respect to f if it is nonempty and
for all a1, . . . , ak ∈ D, the following holds: if {a1, . . . , ak} \ C is nonempty, then
f(a1, . . . , ak) /∈ C (equivalently, if f(a1, . . . , ak) ∈ C, then a1, . . . , ak ∈ C). When
S ⊆ D is a nonempty set that is not coherent, if {a1, . . . , ak} \ S is nonempty
and f(a1, . . . , ak) ∈ S, we say that (a1, . . . , ak) is a witness to the non-coherence
of S.

Observe that the union of any two coherent sets is also a coherent set. In
addition, when C1, C2 are two coherent sets with a non-trivial intersection, their
intersection C1 ∩ C2 is also a coherent set. We use 〈d〉 to denote the smallest
coherent set containing d.

Lemma 16. All elements of 〈d〉 can hit d.

Let us say that a coherent set is minimal if it is minimal (among coherent
sets) with respect to the subset ⊆ ordering. We show that whether or not an
idempotent symmetric function f has a unique minimal coherent set in fact
determines the complexity of QCSP(f).

Theorem 17. Let f be an idempotent symmetric function. If there is a unique
minimal coherent set with respect to f , then QCSP(f) reduces to CSP(f); other-
wise, QCSP(f) is coNP-hard.

Similar techniques can be used to establish a classification result on idempo-
tent set functions. We consider a set function (on domain D) to be a mapping
from ℘(D) \ {∅} to D, where ℘(D) denotes the power set of D. A set function
f : ℘(D) \ {∅} → D is considered to be idempotent if for all d ∈ D, it holds
that f({d}) = d. We consider a relation R of arity k to be invariant under a
set function f : ℘(D) \ {∅} → D if for any non-empty subset S ⊆ R, it holds
that the tuple (f({t1 : t ∈ S}), . . . , f({tk : t ∈ S})) is in R. Equivalently, R is
invariant under f : ℘(D) \ {∅} → D if it is invariant under all of the functions
fi : Di → D defined by fi(d1, . . . , di) = f({d1, . . . , di}), for i ≥ 1. Set functions
were studied in the context of CSP complexity by Dalmau and Pearson [18];
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among other results, they showed that any problem of the form CSP(f), for f a
set function, is polynomial-time decidable.

We can define notions similar to those in the beginning of this section for set
functions. In particular, when f is a set function, we say that an element a ∈ D
can f-hit an element b ∈ D in one step if there exists a subset A ⊆ D such that
f({a} ∪ A) = b. We define a set C ⊆ D to be coherent with respect to f if it is
nonempty and for all nonempty A ⊆ D, the following holds: if A \C is nonempty,
then f(A) /∈ C. Using these notions, it is possible to give proofs analogous to those
for the previous results of this section, yielding the following classification theorem.

Theorem 18. Let f : ℘(D) \ {∅} → D be an idempotent set function. If there
is a unique minimal coherent set with respect to f , then QCSP(f) reduces to
CSP(f) (and is hence in P by [18]); otherwise, QCSP(f) is coNP-hard.

5 Commutative-Projective Operations

As we have indicated (proof of Theorem 15), all binary operations giving rise to
maximal constraint languages can be seen as having one of two types. The pre-
vious section was concerned with a generalization of the first type, commutative
binary operations; this section studies the second type, commutative-projective
operations.

Definition 19. A commutative-projective operation is a binary idempotent op-
eration f : D2 → D such that for every two-element subset {a, b} of D, either
f(a, b) = f(b, a), or f acts as a projection on {a, b}; and, there exists a two-
element subset {a, b} of D such that f acts as a projection on {a, b}.

Fix a commutative-projective operation f : D2 → D. Based on f , we define
two directed graphs G1, G2 as follows. Both of these graphs have vertex set D.
Let there be an edge from a to b in both G1 and G2 if there exists d ∈ D such
that f(a, d) = f(d, a) = b. In addition, let there be an edge from a to b as well
as an edge from b to a in Gi if on the two-element set {a, b} the operation f acts
as the projection onto the ith coordinate. We have the following results.

Lemma 20. Suppose that there exists d0 ∈ D such that for both i ∈ {1, 2}
and for every d ∈ D, there is a path from d0 to d in Gi. Then, QCSP(f) is
NP-complete.

For each i ∈ {1, 2}, define ≤i to be the partial ordering on strongly connected
components of Gi where C ≤i C

′ if there exist vertices v ∈ C, v′ ∈ C ′ such that
there is a path from v to v′ in Gi. We define a component C to be minimal in
Gi if for all components C ′ such that C ′ ≤i C, it holds that C ′ = C.

Lemma 21. Suppose that one (or both) of the graphs G1, G2 has more than one
minimal component. Then, QCSP(f) is PSPACE-complete.

Theorem 22. Let f : D2 → D be a commutative-projective operation such that
Inv(f) is a maximal constraint language. The problem QCSP(f) is either NP-
complete or PSPACE-complete.
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Abstract. We consider regular languages of ranked labeled trees. We
give an algebraic characterization of the regular languages over such trees
that are definable in first-order logic in the language of labeled graphs.
These languages are the analog on ranked trees of the “locally threshold
testable” languages on strings. We show that this characterization yields
a decision procedure for determining whether a regular collection of trees
is first-order definable: the procedure is polynomial time in the minimal
automaton presenting the regular language.

Keywords: Tree automata, Logic.

1 Introduction

This paper is concerned with the relationship between regularity (acceptance by
an automaton) and definability in first-order logic. Over strings this relationship
is well-understood. A fundamental result in formal language theory [Bc60] states
that a language of strings is regular – that is, equal to the language of strings
accepted by a finite string automaton – exactly when it is definable in monadic-
second-order logic (MSO) over the vocabulary consisting of the successor relation
on strings and the labels. By restricting to first-order logic (FO) rather than
MSO, we can obtain two proper subcollections of the family of regular languages.
The languages that are definable in first-order logic over the transitive closure
of the successor relation and the label predicates, which we denote FO(<), are
exactly the star-free or, equivalently, the aperiodic languages [MP71, Sch65]. The
languages that are definable in first-order logic over the successor relation and
the label predicates, which we denote by FO, correspond to locally threshold
testable languages (see [Tho97]). Using a fundamental result of Thérien and
Weiss [TW85], Beauquier and Pin [BP89] gave an algebraic characterization of
the FO languages. They are exactly the languages for which the corresponding
monoid satisfies one of a family of sets of identities. Put another way, they
show that the monoids corresponding to FO-definable languages form a pseudo-
variety within the collection of all finite monoids. Both the characterization of
FO(<)-definability via aperiodicity and the characterization of FO-definability
of Beauquier and Pin lead to effective algorithms for checking whether a regular
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language is FO(<) (resp. FO) definable. A complete overview of the string case
can be found in [Tho97] or in [Str94].

We now consider the situation over ranked trees – labeled trees with a
fixed bound on branching. Regularity is now defined as acceptance by a (non-
deterministic top-down or deterministic bottom-up) tree automaton, and regu-
larity is shown to be equivalent to definability in monadic-second-order logic in
the vocabulary of labeled graphs [Don70, TW68]. In this context we use FO(<)
to denote first-order logic over the labels and the transitive closure of the graph
relation and FO to denote first-order logic over the graph relation and the la-
bels. The notions of aperiodicity and star-freeness have natural extensions to
the tree context, but here FO(<) is strictly weaker than aperiodicity and star-
freeness [PT93, Heu91, Pot95]. Finding a decidable characterization of FO(<)
within the regular tree languages is a longstanding open problem; partial results
(see below) are given in [EW03, BW04]. As in the string case, FO definability is
known to be strictly weaker than FO(<) definability, but surprisingly an effective
characterization of FO-definability was also lacking. [Wil96] gives an algebraic
characterization and decision procedure for the frontier testable languages, a
subclass of the FO definable languages. [BW04] provides a decision procedure
for two fragments of FO(<) defined using existential path quantification; none of
these fragments exactly matches the expressiveness of FO. [EW03] gives a char-
acterization of the FO(<) definable languages in terms of an algebraic structure
(the “syntactic pre-clone”) associated with the language; this characterization is
not known to be effective.

In this work we settle the issue of effective characterization of FO-definability.
Over trees FO still corresponds to the Local Threshold Testable (LTT) lan-
guages, but this characterization does not yield a decision procedure. Our main
result is an effective characterization of FO within the regular tree languages that
uses equations over an algebra associated with the language. These equations
characterize the algebra of pointed trees associated with the formula, rather
than the monoid that is used to characterize definability in the string case;
this algebraic approach is similar to that proposed in [Wil96]. As strings are
FO definable within trees, our proof yields a new proof of the string char-
acterization of [BP89]. The current proofs of the characterization theorem in
the string case use either fundamental (and difficult) results in the theory of
monoids [BP89] or difficult results within the theory of finite categories [Str94].
Our proof of the characterization theorem for trees uses an alternative approach,
exploiting locality results [Lib04] and an inductive rewriting argument. We be-
lieve that, when restricted to the special case of strings, our proof is much
simpler than the previous above mentioned ones. Nevertheless several of the
technical lemmas remain identical in inspiration if not in notation to the ear-
lier proofs.

Organization: Section 2 gives the formal framework for the main result, and
reviews relevant facts about trees and first-order definability. Section 3 presents
and illustrates the equations that define our algebraic characterization, and
states the main characterization theorem of the paper, while Section 4 is de-
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voted to the proof. Section 5 gives the decision procedure that follows from the
characterization theorem, and analyzes its complexity, while Section 6 gives con-
clusions and open issues. Proofs omitted due to space constraints will appear in
the journal version.

2 Notations

We fix a finite alphabet Σ and a rank k ≥ 2. We denote by tree a rooted
acyclic finite graph with labels in Σ such that each node has at most k children.
The number of children of a node n is denoted deg(n). Trees by default will
also be ordered, which means that each non-root node n has, in addition to its
label, an associated integer i ≤ k, denoted ind(n), where every node n has one
child c with ind(c) = i for each i ≤ deg(n). For trees we can thus speak of the
first/second . . . child of a node. We will also deal with unordered trees, where
there is no such additional integer to distinguish children with the same label.
The set of trees is denoted by T and the set of unordered trees by UT . In this
paper we will prove results for both ordered and unordered trees, but we will
concentrate the exposition on the ordered case; the unordered case requires only
slight modifications. Thus we will often write “tree” for “ordered tree” below.

A pointed tree is a tree with a designated (unlabeled) leaf which acts as a
hole. The concatenation of two pointed trees Δ and Δ′ is denoted by Δ · Δ′

and is the pointed tree constructed from Δ by plugging Δ′ to its hole. The set
of pointed trees is denoted by T 1. A j-pointed tree is a tree with j designated
leaves, while an extended pointed tree is a j-pointed tree for some j. We assume
that the j holes are indexed by 1 . . . j, according to their lexicographical order in
the order tree case, arbitrarily otherwise. For any extended pointed tree Δ and
any (pointed or not) trees t1 · · · tj , Δ[t1 · · · tj ] denotes the (extended pointed)
tree constructed from Δ by plugging t1 in its first hole, t2 in its second hole, etc.
We also denote by Δ ·i t the operation which consists of plugging t in the ith hole
of Δ. The set of j-pointed trees is denoted by T j . We can similarly talk about
pointed and j-pointed unordered trees, defining concatenation and substitution
in the same way on them.

A (deterministic bottom-up) tree automaton is defined in the usual way, con-
sisting of a set of states and a transition function associating a unique state to
any pair (i-tuple of states for i ≤ k,label). The semantics of tree automata, as
well as basic properties, can be found in [Tho97]. A tree automaton defines a
collection of trees, and a tree automaton whose transition function is invari-
ant under permuting the ordering of the states can be considered to define a
collection of unordered trees.

When a tree automaton A is fixed, each pointed tree can be viewed as a
function from states to states associating the state reached by A at its root
when a state is assumed at its hole. We then write Δ ( Δ′ to denote the fact
that the functions associated to the pointed trees Δ and Δ′ are equal. When
A is fixed a pointed tree is said to be idempotent if the function it defines is
idempotent (f2 = f).
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MSO and FO are defined over (ordered) trees in the standard way over the
signature containing one unary predicate Pa per letter a ∈ Σ, the binary tree
successor relation G, and predicates Ci that hold of node n iff n is the ith child of
its parent. Notice that <, the ancestor relation, is not included in the signature,
therefore FO does not have access to it (of course it is definable from G in MSO).
When the trees are unordered the predicates Ci are omitted in the signature. It
is known that the languages defined by MSO formulas are exactly the regular
tree languages, in both the ordered and unordered case. We wish to give a
characterization of languages definable in FO among the regular tree languages.
As mentioned in the introduction, a language L is FO exactly when it is Locally
Threshold Testable (LTT) – this means that there are integers i and d such that
membership of a tree T in L depends only on the number of occurrences of each
i-depth tree as a subtree of T , where the number is calculated only up to d. This
does not give an algorithm, since there are infinitely many i and d to check.

For any formula ϕ ∈ FO, its quantifier rank qr(ϕ) is defined as the nesting
depth of the quantifiers of ϕ as usual. The elementary equivalence up to depth
n is denoted by ≡n: for any two trees t, t′ ∈ T we say that t ≡n t′ if t and t′

satisfy exactly the same FO sentences of quantifier rank less than n.

3 Main Result

Let L be a regular tree language and A be the minimal bottom-up automata for
L. We say that L satisfies (†) if the following holds:

1. Horizontal swap (see the left part of Figure 1). For any Δ ∈ T 2, e ∈ T 1

idempotent and any t, t′ ∈ T
Δ[e · t, e · t′] ∈ L iff Δ[e · t′, e · t] ∈ L

2. Vertical swap (see the right part of Figure 1). For any s, s′, u, v ∈ T 1,
e, f ∈ T 1 idempotents, and t ∈ T

s · e · u · f · s′ · e · v · f · t ∈ L iff s · e · v · f · s′ · e · u · f · t ∈ L
3. Aperiodicity. There exists a l such that for any s, u ∈ T 1 and any t ∈ T

s · ul · t ∈ L iff s · ul+1 · t ∈ L

We want to show the following:

Theorem 1. Let L be a regular tree language. L verifies (†) iff L is definable
in FO. The same holds for L a regular language of unordered trees.

Part 2 and 3 of (†) are the straightforward extensions to trees of the char-
acterization of FO definable string languages among regular string languages
[BP89, Str94]. They are no longer sufficient when dealing with trees.

Proof. of Theorem 1. (⇐) This is a classical locality argument. If e is idempotent,
e can be replaced by em for any m without affecting membership in L. Take
m bigger than the locality rank (see [Lib04] for a definition) of an FO formula
defining L. All right-hand-side and left-hand-side strings considered in part 1 and
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Fig. 1. Swap conditions of (†)

2 of (†) now have the same local neighborhood and thus the same membership
in L. We obtain the same result for part 3 by choosing for l the same m.

The opposite direction follows from the following theorem, which will be quite
involved:

Theorem 2. For any regular language L satisfying (†), there exists a K such
that for any t, t′ ∈ T we have: t ≡K t′ ⇒ t ∈ L iff t′ ∈ L

Before proving Theorem 2 we show how Theorem 1 follows from it. From
Theorem 2 we know that if L satisfies (†), L is a union of equivalence classes of
≡K for some K. Standard arguments of finite model theory ([Lib04]) show that
≡K has only finitely many equivalence classes and that each of them is definable
in FO. Therefore L is definable in FO as a disjunction of such formulas for the
corresponding classes.

4 Proof of Theorem 2

We will prove this in the case of ordered ranked trees, but a simple modification
proves the result in the unordered case. For the rest of the section, we fix a regular
language L and let AL be the minimal deterministic bottom-up tree automaton
recognizing L. We fix l for (†)3, and we refer to the following transformations
corresponding to (†):
1. For any Δ ∈ T 2, e ∈ T 1 idempotent and any t, t′ ∈ T

Δ[e · t, e · t′] � Δ[e · t′, e · t]
2. For any s, s′, u, v ∈ T 1, e, f ∈ T 1 idempotents, and t ∈ T

s · e · u · f · s′ · e · v · f · t � s · e · v · f · s′ · e · u · f · t
3. for any s, u ∈ T 1 and any t ∈ T

s · ul · t � s · ul+1 · t
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By (†), these transformations preserve membership in L. We denote by t ≈ t′

the fact that a tree t can be transformed into the tree t′ using operations of (†).
The proof is divided into two parts. In the first part, we give a canonical

decomposition of a tree t, into skeletal normal form t̄, which consists of a fixed
set of blocks connected by idempotents. We will then use this decomposition
together with the finite rank of trees to show that if two trees t and t′ are such
that t ≡K t′ for some sufficiently big K then t̄ and t̄′ have the same blocks with
the same number of occurrences up to some threshold which increases with K.
Note that this part works for any regular (ranked) tree language L.

In the second part we will show that if the threshold (and therefore K) is
big enough then t̄′ can be transformed into t̄ using only the transformation rules
above. Therefore if L satisfies (†), t̄ ∈ L iff t̄′ ∈ L. By construction of t̄ and t̄′

the latter implies t ∈ L iff t ∈ L′.
We now move to part one. Let x be the number of states of AL. Fix mL

to be an integer bigger than xx. The transformation is based on the following
key lemma (generalizing Lemma B.1.2 of [Str94]), which says that we can insert
idempotents throughout a tree.

Lemma 1. For any tree t ∈ T and any node n in t such that the length of the
path from the root of t to n is equal to mL there exists an idempotent e, a pointed
tree t′ ∈ T 1 and a tree t′′ ∈ T such that t = t′ · t′′, n is in t′′, and t′ ( t′ · e. In
particular, t ( t′ · e · t′′

In particular Lemma 1 shows that, in any tree, if we take a path long enough,
we can break it and insert an idempotent, without affecting membership in L . In
order to obtain a canonical insertion we fix, once and for all, for each idempotent
(viewed as a function) a representative in T 1 and an order among idempotents.
When applying Lemma 1 we will always choose t′ minimal and e minimal. In
other words we will always insert an idempotent as soon as possible and insert
the smallest possible one whenever there is a choice.

The construction of t̄ from t is done as follows. For any subtree t′ of t and
any leaf n of t′ which is at distance bigger than mL from the root, apply Lemma
1 with t′ and n and choose the highest position pt′,n (positions are viewed as
marked nodes in t) in the path from the root of t′ to n and the minimal idem-
potent et′,n that can be inserted at that node. We now define t̄ as t with all
et′,n inserted at the corresponding positions pt′,n. Notice that different n may
lead to the same pt′,n but in this case the corresponding idempotents are equal.
We next claim that if e is inserted at node n in tree t, and t′ is any other tree
containing n, then we cannot insert an idempotent f = e in n for t′. This is
because the insertion of e for t depended only on some path p leading from the
root of t to n. For some other t′, if there is some path p′ to n in t′, then p′ must
either be contained in p or contain p. In the former case, by the choice of the
highest place, we must have inserted f for p, while in the latter case we must
have inserted e for p′.

By induction on the idempotent inserted and using the crucial fact that
t′ ( t′ ·e for all idempotents inserted (and hence the same holds for all supertrees
of t′), it is straightforward to prove the following lemma.
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Lemma 2. t ∈ L iff t̄ ∈ L

Note also that the construction above guarantees that an idempotent is in-
serted at least every mL nodes in a given path. Therefore t̄ can be viewed as
a tree divided into blocks where a block is a finite tree of depth ≤ mL with
an idempotent attached to its root and idempotents attached to some of its
leaves. We call ports the holes of the later idempotents. Thus in t̄, blocks are
connected via their ports and the corresponding idempotents match: a block b1
is connected to the ith port of block b2 if the idempotent of the root of b1 is
equal to the idempotent of the ith port of b2. As the trees are ranked and we
have fixed a representative for each idempotent the number of possible distinct
blocks is finite.

We illustrate the construction of t̄ from t with the following example:

Example 1. Let L be the regular language consisting of all trees containing arbi-
trarily many occurrences of the patterns a

b c
and a

b b
separated by arbitrarily

long paths of nodes labeled with e. An obvious idempotent of L is e.
Figure 2 shows a tree t and its corresponding block decomposition t̄. Note

that b2 and b4 are two different blocks even though their underlying subtrees are
the same ( a

b c
) because b2 and b4 differ in their ports.

Finally note that the construction is local-canonical. By this we mean that the
neighborhoods of depth mL of t determine the blocks of t̄. Indeed we can prove
the following key lemma:

Lemma 3. For each integer d, let Kd be d + kmL+1 then t ≡Kd t′ implies t̄
and t̄′ have exactly the same blocks with the same number of occurrences, up to
threshold d.
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This ends the first part. By Lemma 2 we now have to prove that t ≡K t′ for
some K implies t̄ ∈ L iff t̄′ ∈ L.

Let BT (block-trees) be the set of trees which are formed with blocks. More
formally a block tree is a tree with nodes labeled by blocks (bn is the block
associated to node n) and edges labeled by numbers (we assume a canonical
ordering for the ports of each block) so that the whole structure is consistent
with the block definition and the idempotent attached to each port: if node m
is the ith child of a node n then the idempotent of the root of bm matches the
idempotent of the ith port of bn. The pointed block trees PBT are pointed trees
formed of blocks.

For the second part we make use of the transformations obtained from (†).
These operations, and the equivalence relation t ≈ t′ can also be viewed as
having domain block trees (since a block tree is a tree with additional structure).
In what follows, we will always be re-arranging the blocks given by the original
decomposition that constructs t̄ and t̄′.

If t is in PBT and b is a block, |t|b denotes the number of occurrences of b in
t. As we will count the number of blocks up to some threshold we write t =b

d t′

if for each block b we have |t|b = |t′|b or both |t|b and |t′|b are bigger than d. We
use t =b

∞ t′ if for each block b we have |t|b = |t′|b.
Our plan for the remainder of the proof is as follows. Assuming that t ≡K t′

for large enough K, we want to show that t ∈ L iff t′ ∈ L. By Lemma 3 and
Lemma 2 we have to show that if t̄ =b

d t̄′ for some large enough d then t̄ ∈ L
iff t̄′ ∈ L. In order to show this we will first transform t̄′ into t̄1 – without
affecting membership in L – so that for each block b, |t̄1|b ≥ |t̄|b and t̄ =b

d′ t̄1
for some d′ < d but still big enough. In a second step we will construct t̄2 from
t̄1 without affecting membership in L so that t̄2 is t̄ with extra sections inserted
between successive nodes. We will say that t̄ is pseudo-included in t̄2. We can
do that without changing the number of occurrences of each block: t̄2 =b

∞ t̄1. In
a third step we will show how to remove those extra sections without affecting
membership in L.

The following lemma takes care of the first step. Its proof, is done using a
careful succession of swapping moves followed by a pumping argument.

Lemma 4. For each integer d′ there exists an integer d such that if t and t′

are block trees verifying t =b
d t′ then there exists t′′ such that, for each block b,

|t′′|b ≥ |t|b, t =b
d′ t′′, and t′′ ∈ L iff t′ ∈ L.

A block tree t is pseudo-included in a block tree t′ if there is an injective
mapping h from nodes of t to nodes of t′ such that: (i) bn = bh(n) and (ii) if n is
the ith child of m in t then h(n) is a descendant of ith child of h(m) in t′. In this
case the h-pseudo-tree is the minimum subtree of t′ which contains h(t). The
second step of the proof, showing pseudo-inclusion, is contained in the following
lemma which is proved by induction on t using only the swapping moves of (†).
Lemma 5. Let t ∈ BT and t′ ∈ BT . If for all blocks b occurring in t we have
|t|b ≤ |t′|b then there exists t′′ ≈ t′ such that t is pseudo-included in t′′ and
t′′ =b

∞ t′.



Regular Tree Languages Definable in FO 335

In order to complete the last step of Theorem 2 we need to be able to remove
extra sections. A loop is a pointed block tree which has the same idempotent in
its root and in its hole. To prove the next step we will need the following lemma
which shows that it is possible to remove loops containing only blocks that occur
many times in the rest of the tree. The proof works by re-arranging the loop into
the form ul, then applying (†)3;it is inspired by Lemma B.3.7 of [Str94].

Lemma 6. Let t = t1 · u · t2 ∈ BT such that u is a loop. If for each block b
occurring in u we have |t1 · t2|b ≥ (|u|b ∗ l) + 1 then t ≈ t1 · t2.
Proof of Theorem 2: Let x be the number of states of A and eL be the number
of transition functions of L. Let d′ = keL∗x ∗ l +1. Let d be the number required
in Lemma 4 for d′. Let K be the number Kd required in Lemma 3 for d. We
show that t ≡K t′ implies t ∈ L iff t′ ∈ L. Assume t ≡K t′. From Lemma 3 we
know that t̄ and t̄′ have the same number of occurrences of each block up to d.
Moreover from Lemma 2 t ∈ L iff t̄ ∈ L. Therefore it suffices to show that t̄ ∈ L
iff t̄′ ∈ L. By the choice of K we can apply Lemma 4 and construct t′′ such that
t′′ ∈ L iff t̄′ ∈ L and t′′ =b

d′ t. We can now apply Lemma 5 and obtain t′′′ such
that t′′′ ∈ L iff t′′ ∈ L, t̄ is pseudo-included in t′′′, and t′′′ =b

∞ t′′ =b
d′ t. Therefore

it suffices to prove that t̄ ∈ L iff t′′′ ∈ L.
We construct by induction t1 · · · tn such that: (i) t1 is t′′′, (ii) for all i ti ∈ L

iff ti+1 ∈ L, (iii) for all i ti = vi[ui
1 · · ·ui

ki
] where vi is a prefix of t̄, (iv) for all i

vi is a strict prefix of vi+1, (v) for all i t̄ is pseudo-included in ti by a mapping
sending vi to its copy in ti, and, (vi) tn = t̄. From (i), (ii) and (vi), the desired
equivalence of t̄ ∈ L and t′′′ ∈ L follows.

Assuming we have constructed ti, we show how to construct ti+1 as long as
vi is a strict prefix of t̄. This suffices, since if vi = t̄ then (v) implies that we
have achieved (vi). By the induction hypothesis we know that t̄ = vi[w1 · · ·wki

],
ti = vi[u1 · · ·uki

], and that each wj is pseudo-included in uj . Let (hj)1≤j≤ki
be

the corresponding pseudo-inclusion mappings and hi be the mapping pseudo-
including t̄ in ti. Let (nj)1≤j≤ki

be the roots of wj . If for some j one of the hj

maps nj to the root of uj then we are done as we can immediately extend all
the required properties to vi+1 = vi ∪ {nj}. Otherwise each uj is of the form
u′

j · n′
j [Δj ] where u′

j is a nonempty block tree, n′
j = hj(nj) and Δj is a forest of

block trees. Note that u′
j is a loop.

The crucial fact is that all blocks which occur in ti outside of hi(t̄) have
strictly more occurrences in ti than in t̄. Therefore they occur more than d′

times in t̄. In particular this is the case for all blocks occurring in u′
j .

From ti we construct t′i which decreases the size of u′
j without affecting the

rest. To do this we repeatedly apply the following operation which does not affect
membership in L and does not affect the block structure. Let u be a block tree.
Label each node with the pair (q, e) where e is the idempotent of the root of the
block associated to the node and q is the state reached by the automaton AL

recognizing L at the root of that block. Whenever there is a branch p in u which
contains the same label twice, we prune the section between the top idempotent
and the bottom one (using the standard pumping lemma). This yields a u′′

j whose
depth is bounded by eL∗x. When we have done this we have t′i ∈ L iff ti ∈ L and
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for each block b occurring in u′′
j we have |u′′

j |b ∗ l +1 ≤ d′ ≤ |t̄|b ≤ |ti−u′′
j |b. The

first inequality is by the choice of d′ and the size of u′′
j . The second one is from

the remark in the previous paragraph and the last one is by pseudo-inclusion of
t̄ into ti.

We can therefore apply Lemma 6 with t1 = vi and u = u′′
j to remove u′′

j

obtaining the desired ti+1. This concludes the proof of the theorem.

5 Decidability

By the minimal deterministic automaton for a language, we mean an automaton
A in which (i) for each state q ∈ A there is some tree such that the automaton
run on the tree reaches state q at the root and (ii) if t and t′ are two pointed
trees such that whenever we have that u · t ·v ∈ L iff u · t′ ·v ∈ L for all u, v, then
t ( t′ (that is, they define the same function on states of A). We seek algorithms
for deciding membership in FO that are polynomial in the size of such an A.

In the string case deciding whether a regular language L can be defined in
FO is PTime in the size of the minimal deterministic automaton recognizing L
[Pin96]. That is, it is possible to check in PTime that (†)2 and (†)3 holds. Note
that this is not immediate, as checking (†)3 alone is PSpace-complete [CH91].
It turns out that ideas similar to [Pin96] show that (†) can actually be checked
in PTime.

We first sketch how to check (†)2 and (†)3 together and then we show how
to check for (†)1. These are easy extension to trees of the proof of [Pin96]. The
first idea is to replace (†)3 by the condition (†)3′: there exists l such that for
any s, x, y ∈ T 1, e ∈ T 1 idempotents, and s′ ∈ T s · (e · x · e · y · e)l · s′ ∈
L iff s · (e · x · e · y · e)l · e · x · e · s′ ∈ L.

In [Pin96] it is shown that (†)2 and (†)3 are equivalent to (†)2 and (†)3′. In
fact, [Pin96] shows that in any monoid satisfying e·u·f ·s′ ·e·v·f = e·v·f ·s′ ·e·u·f ,
we have the following are equivalent: a) there is l such that ul = ul+1 holds and
b) there is l such that (e · x · e · y · e)l = (e · x · e · y · e)l · e · x · e holds (where e, f
range over idempotents and x, y, u, v, s′ range over monoid elements). Since the
set of ( classes of pointed trees associated with a regular tree language forms a
monoid, this result can be applied to pointed trees. So we have:

Lemma 7. [Pin96] For any regular tree language L, L verifies (†)2 and (†)3 iff
L verifies (†)2 and (†)3′.

We now fix A to be a minimal bottom-up tree automaton recognizing L. The
set of states of A is denoted by Q and δ is the transition function of A. It turns
out that each of (†)1, (†)2, and (†)3′ can be checked in PTime by means of
forbidden patterns in a graph constructed from A.

For the purposes of this section, a pattern is a graph whose edges are labeled
by variables which range over elements of Γ ∗ for some finite alphabet Γ . In
addition a pattern comes with side conditions stating which nodes of the pattern
should be interpreted as distinct nodes. Let G be a graph whose edges are labeled
in Γ . Such a graph G matches a pattern if there is a mapping m taking each
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variable in the pattern to strings in Γ ∗ and each node of the pattern to a node
of G such that for each side constraint p1 = p2, m(p1) = m(p2), and such
that whenever there is an edge from p1 to p2 in the pattern labeled with v,
there is a path from m(p1) to m(p2) in G whose labels yield the string m(v).
In [CPP93] it is noted that for every fixed pattern, the problem of determining
given a graph, whether the graph matches the pattern, is in PTime. This result
was used to show that FO-definability is in PTime in the string case. From
a minimal automaton A recognizing L one constructs an edge-labeled graph
GA = (VA, EA) as follows. The vertex set VA of GA is the set of states of A. The
transitions EA ⊆ VA × Σ × VA are labeled with letters of the alphabet Σ of L
and correspond to the transitions of A. Let P2 be the pattern depicted in the
left below together with the condition q4 = q6.

q1

q2p q3
q

q4
r

q5r q6q
q6p

u
v u v

v u v

q1 q2

x

y
u

u

Let P3′ be the pattern depicted in the right above together with the condition
q1 = q2.

It has been shown that (i) [Pin96] L verifies (†)2 iff GA does not match P2
and (ii) [CPP93] L verifies (†)3′ iff GA does not match P3′ . Minimality of A is
used in the left to right direction.

This result extends to trees as follows (we show only the case of binary ordered
trees, the extension to arbitrary arity and to unordered trees is immediate). From
an automaton A define G1

A = (V 1
A, E1

A) as follows. The set of vertices V 1
A is Q.

The set of edges E1
A ⊆ V 1

A × Γ × V 1
A where Γ = Σ ×Q× {0, 1} connects a node

p to a node p′ via an edge (a, q, 0) if δ(〈p, q〉, a) = q′ and via an edge (a, q, 1)
if δ(〈q, p〉, a) = q′. That is, an edge represents the inverse of a transition of the
automaton. The same proofs as in [Pin96,CPP93] show that:

Lemma 8. L verifies (†)2 and (†)3′ iff G1
A does not match P2 nor P3′ .

For (†)1 we need a new graph G2
A = (V 2

A, E2
A). V 2

A is now Q ∪ (Q × Q). E2
A is

E1
A together with arrows labeled in (Σ2 ×Q2 × {0, 1}2) ∪Σ connecting: a node

(p1, p2) to a node q via an edge a if δ(〈p1, p2〉, a) = q, a node (p1, p2) to a node
(q1, q2) via an edge (a, b, p, q, 1, 0) if δ(〈p, p1〉, a) = q1 and δ(〈p2, q〉, b) = q2, and
similarly for edges labeled (a, b, p, q, 0, 1),(a, b, p, q, 0, 0), (a, b, p, q, 1, 1).

We extend the notion of pattern to allow nodes in a pattern to be labeled
with either variables or pairs of variables ranging over Q. The notion of matching
is extended in the obvious way. Let P1 be the following pattern together with
q = q′.

q1 (q1, q2) q q2 (q2, q1) q′

x x

u u
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Lemma 9. L verifies (†)1 iff G2
A does not match P1

A simple modification of the argument in [CPP93] shows that matching this
extended notion of pattern is in PTime. From this, using Lemmas 7, 8, and 9,
we have the desired result:

Proposition 1. There is a PTime algorithm that, given a minimal determin-
istic bottom-up tree automaton, checks whether the corresponding language is
definable in FO.

6 Conclusion and Open Issues

The main result presented here is the decidability of FO-definability in ranked
trees. What about unranked trees? We believe that Theorem 1 remains true in
this general case. We also believe that our characterization (and the decidability
results that follow) extends to ω-trees. In addition to giving a decision procedure,
the characterization here has been useful for demonstrating that certain queries
are first-order; for example, it is has been used to prove that order-invariant
first-order queries over trees are first-order expressible.

In the case of strings, replacing the aperiodicity condition in part 3 of (†) with
a periodicity mod q condition (and ignoring the condition in part 1 of (†) ) one
obtains a characterization of FO extended with counting quantifiers allowing to
count modulo q [Str94]. We believe that modifying (†) in the same way should
yield a characterization of FO with counting mod q in the case of ranked trees.
The class LT of languages is defined as for LTT but without the threshold. That
is, one can check the occurrence or absence of a pattern in a string but can
no longer count the number of occurrences. We are considering how to modify
our axioms to characterize LT. In the string case a characterization of this class
is obtained by adding an “idempotent condition” on top of the commutative
condition for blocks separated by identical idempotents. That is, the equation
(e · s · e)2 = e · s · e needs to be added to (†). This does not extend directly to
trees, since additional constraints are necessary to take care of the horizontal
behavior of trees.
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Abstract. We introduce and study Recursive Markov Chains (RMCs),
which extend ordinary finite state Markov chains with the ability to
invoke other Markov chains in a potentially recursive manner. They offer
a natural abstract model for probabilistic programs with procedures, and
are a probabilistic version of Recursive State Machines. RMCs generalize
Stochastic Context-Free Grammars (SCFG) and multi-type Branching
Processes, and are intimately related to Probabilistic Pushdown Systems.
We focus here on termination and reachability analysis for RMCs. We
present both positive and negative results for the general class of RMCs,
as well as for important subclasses including SCFGs.

1 Introduction

We introduce and study Recursive Markov Chains (RMCs), a natural model
for systems involving probability and recursion. Informally, a Recursive Markov
Chain consists of a collection of finite state component Markov chains (MC)
which can call each other in a potentially recursive manner. RMCs are a natural
probabilistic version of Recursive State Machines (RSMs) ([1, 4]), with transi-
tions labeled by probabilities. RSMs and closely related models like Pushdown
Systems (PDSs) have been studied extensively in recent research on model check-
ing and program analysis, because of their applications to verification of sequen-
tial programs with procedures. RMCs offer a natural abstract model for proba-
bilistic procedural programs. Probabilistic models of programs are of interest for
at least two reasons. First, the program may use randomization, in which case
the transition probabilities reflect the random choices of the algorithm. Second,
we may want to model and analyse a program under statistical conditions on
its behaviour (e.g., based on profiling statistics or on statistical assumptions),
and to determine the probability of properties of interest, e.g., that the program
terminates, and/or that it terminates in a certain state.

Recursive Markov chains are an interesting and important model in their
own right. RMCs provide a succinct finite representation for a natural class
of denumerable Markov Chains that generalize other well-studied models, such
as Stochastic Context-Free Grammars (SCFGs) and Multitype Branching Pro-
cesses, and they are intimately related to Probabilistic Pushdown Systems
(pPDSs).
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Single-exit RMCs, the special case where each component MC has exactly 1
exit (terminating state), are in a precise sense “equivalent” to SCFGs. SCFGs
have been studied extensively, especially in the Natural Language Processing
(NLP) community, since the 1970s (see, e.g., [23]). Their theory is directly con-
nected with the theory of multi-type Branching Processes (MT-BPs) initiated
by Kolmogorov and others (see, e.g., [18, 20]). BPs are an important class of
stochastic processes. Their theory dates back to the 19th century and the work
of Galton and Watson on population dynamics. Multi-type BPs and SCFGs
have been applied in a wide variety of stochastic contexts besides NLP, includ-
ing population genetics ([19]), models in molecular biology including for RNA
([27]), and the study of nuclear chain reactions ([13]). Many variants and ex-
tensions of MT-BPs have also been studied. Despite this extensive study, some
basic algorithmic questions about SCFGs and MT-BPs have not been satisfac-
torily answered. For example, is the probability of termination of a given SCFG
(i.e., the probability of its language) or MT-BP (i.e. the so-called probability of
extinction) ≥ p? Is it = 1? Can these questions be decided in polynomial time
in general? What if there are only a constant number of types in the branch-
ing process (non-terminals in the grammar)? RMCs form a natural general-
ization of SCFGs and MT-BPs, however their underlying stochastic processes
appear not to have been studied in their own right in the rich branching process
literature.

Our goal in this paper is to provide efficient algorithms and to determine the
computational complexity of reachability analysis for RMCs. Namely, we are
interested in finding the probability of eventually reaching a given terminating
vertex of the RMC starting from a given initial vertex. As with ordinary Markov
chains, such algorithms are a core building block for model checking and other
analyses of these probabilistic systems. For SCFGs (MT-BPs), this amounts to
an algorithm for determining the probability of termination (extinction).

It turns out reachability probabilities for RMCs are captured by the Least
Fixed Point (LFP) solution of certain monotone systems of nonlinear polynomial
equations. We observe that these solutions can be irrational even for SCFGs, and
not solvable by radicals. Thus we can’t hope to compute them exactly.

By appealing to the deep results on the complexity of decision procedures for
the Existential Theory of Reals (see, e.g., [6]), we show that for general RMCs we
can decide in PSPACE whether the probability is ≤ p, or = p, for some rational
p ∈ [0, 1], and we can approximate the probabilities to within any given number
of bits of precision. For an SCFG where the number of non-terminals is bounded
by a constant (or a MT-BP with a bounded number of types), we can answer
these questions in polynomial time. We show that this holds more generally, for
RMCs where the total number of entries and exits of all components is bounded
by a constant. Furthermore, we show that for single-exit RMCs with an arbitrary
number of components (i.e., for general SCFGs), we can decide if the probability
is exactly 1 in P-time.

The monotone nonlinear systems for RMCs give rise to a natural iterative
numerical algorithm with which to approximate the LFP. Namely, the system
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of equations has the form x = P (x), where x is a vector, such that the vector of
probabilities we are seeking is given by limk→∞ P k(0), where P 1(0) = P (0) and
P k+1(0) = P (P k(0)). We show that this iteration can be very slow to converge.
Remarkably however, we show that a multi-dimensional Newton’s method con-
verges monotonically to the LFP on a decomposed version of the system, and
constitutes a rapid “acceleration” of the standard iteration. Note that in other
contexts, in general Newton’s method is not guaranteed to converge; but when it
does converge, typically it converges very fast. We thus believe that in our con-
text Newton provides an efficient practical method for numerically estimating
these probabilities for all RMCs.

Lastly, for “lower bounds”, we show that one can not hope to improve our
PSPACE upper bounds for RMCs without a major breakthrough, by establish-
ing a connection to a fundamental open problem in the complexity of numerical
computation: the square-root sum problem. This problem is known to be in
PSPACE, but its containment even in NP is a longstanding open problem first
posed in 1976 ([16]), with applications to a number of areas including compu-
tational geometry. We show the square-root sum problem is polynomial-time
reducible to the problem of determining for an SCFG whether the termination
probability is ≤ p for some p ∈ [0, 1], and also to the problem of determining
whether a 2-exit RMC terminates with probability 1.

Due to space limitations, all proofs are omitted. Please see the full paper [15].

Related Work. The work in the verification literature on algorithmic analysis of
pushdown systems is extensive (see, e.g., [3, 10]). Recursive state machines were
introduced in [1, 4] as a more direct graphical model of procedural programs,
and their algorithmic verification questions were thoroughly investigated. A re-
cent work directly related to ours is by Esparza, Kucera, and Mayr [12]. They
consider model checking for probabilistic pushdown systems (pPDSs). pPDSs
and RMCs are intimately related models, and there are efficient P-time trans-
lations from one to the other. As part of their results [12] show decidability of
reachability questions for pPDSs by appealing to results on the theory of reals.
In particular, they derive EXPTIME upper bounds for reachability. Our work
was done independently and concurrently with theirs (a preliminary draft of
our work was made available to the authors of [12] after we learned of their
work). In any case, although their work overlaps briefly with ours, their pri-
mary focus is on decidability (rather than precise complexity) of model checking
problems for a probabilistic branching-time temporal logic, PCTL. Our work
also answers several complexity questions raised in their work. As mentioned
earlier, SCFGs have been studied extensively in the NLP literature (see, e.g.,
[23]). In particular, the problem of consistency of a SCFG (whether it termi-
nates with probability 1) has been studied, and its connection to the extinction
problem for MT-BPs is well known [18, 7, 17, 9]. However, none of the relevant
references provide a complete algorithm and characterization for consistency.
Another work on pPDSs is [2]. They do not address algorithmic questions for
reachability.
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2 Basics

A Recursive Markov Chain (RMC), A, is a tuple A = (A1, . . . , Ak), where each
component graph Ai = (Ni, Bi, Yi, Eni, Exi, δi) consists of:

– A set Ni of nodes.
– A subset of entry nodes Eni ⊆ Ni, and a subset of exit nodes Exi ⊆ Ni.
– A set Bi of boxes. Let B = ∪k

i=1Bi be the (disjoint) union of all boxes of A.
– A mapping Yi : Bi �→ {1, . . . , k} that assigns to every box (the index of) one

of the components, A1, . . . , Ak. Let Y = ∪k
i=1Yi denote the map Y : B �→

{1, . . . , k} which is consistent with each Yi, i.e., Y |Bi = Yi, for 1 ≤ i ≤ k.
– To each box b ∈ Bi, we associate a set of call ports, Callb = {(b, en) | en ∈
EnY (b)}, and a set of return ports, Returnb = {(b, ex) | ex ∈ ExY (b)}.

– A transition relation δi, where transitions are of the form (u, pu,v, v) where:
1. the source u is either a non-exit node u ∈ Ni \ Exi, or a return port
u = (b, ex) ∈ Returnb, where b ∈ Bi.

2. The destination v is either a non-entry node v ∈ Ni \Eni, or a call port
v = (b, en) ∈ Callb, where b ∈ Bi.

3. pu,v ∈ R>0 is the transition probability from u to v. (We assume pu,v is
rational.)

4. Consistency of probabilities: for each u,
∑

{v′|(u,pu,v′ ,v′)∈δi} pu,v′ = 1,
unless u is a call port or exit node, neither of which have outgoing tran-
sitions, in which case by default

∑
v′ pu,v′ = 0.

We will use the term vertex of Ai to refer collectively to its set of nodes, call
ports, and return ports, and we denote this set by Qi, and we let Q =

⋃k
i=1Qi

be the set of all vertices of the RMC A. That is, the transition relation δi is a
set of probability-weighted directed edges on the set Qi of vertices of Ai. Let
δ = ∪iδi be the set of all transitions of A.

An RMC A defines a global denumerable Markov chain MA = (V,Δ) as
follows. The global states V ⊆ B∗×Q of MA are pairs of the form 〈β, u〉, where
β ∈ B∗ is a (possibly empty) sequence of boxes and u ∈ Q is a vertex of A. More
precisely, the states V and transitions Δ are defined inductively as follows:
1. 〈ε, u〉 ∈ V , for u ∈ Q. (ε denotes the empty string.)
2. if 〈β, u〉 ∈ V and (u, pu,v, v) ∈ δ, then 〈β, v〉 ∈ V and (〈β, u〉, pu,v, 〈β, v〉) ∈ Δ
3. if 〈β, (b, en)〉 ∈ V , (b, en) ∈ Callb, then
〈βb, en〉 ∈ V and (〈β, (b, en)〉, 1, 〈βb, en〉) ∈ Δ

4. if 〈βb, ex〉 ∈ V , (b, ex) ∈ Returnb, then
〈β, (b, ex)〉 ∈ V and (〈βb, ex〉, 1, 〈β, (b, ex)〉) ∈ Δ

Item 1 corresponds to the possible initial states, 2 corresponds to a transition
within a component, 3 is when a new component is entered via a box, 4 is when
the process exits a component and control returns to the calling component.

Some states of MA are terminating states and have no outgoing transitions.
These are states 〈ε, ex〉, where ex is an exit node. If we wish to view MA as a
proper Markov chain, we can consider the terminating states as absorbing states
of MA, with a self-loop of probability 1.
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RMCs where the call graph between components forms an acyclic graph are
called Hierarchical Markov Chains (HMCs). In this special case MA is finite, but
can be exponentially larger than the HMC which specifies it.

The Central Reachability Questions. Our goal is to answer termination and
reachability questions for RMCs. Given a vertex u ∈ Qi and an exit ex ∈ Exi,
both in the same component Ai, let q∗

(u,ex) denote the probability of eventually
reaching the terminating state 〈ε, ex〉, starting at the initial state 〈ε, u〉. Com-
puting probabilities q∗

(u,ex) will allow us to efficiently obtain other probabilities.
For a given pair of vertices u, v ∈ Q of the RMC, let [u, v] denote the proba-

bility that starting at state 〈ε, u〉 we will eventually reach a state 〈β, v〉 for some
β ∈ B∗. We can obtain the probabilities [u, v] based on the probabilities q∗

(u,ex).
One way to do this is as follows: add a new special exit ex�

i to every component
Ai of the RMC, remove the out-edges from v ∈ Qj and instead add a transition
v

1→ ex�
j , and add transitions w 1→ ex�

h, for every return port w = (b, ex�
k), where

b ∈ Bh. Now, for u ∈ Qi, [u, v] in the original RMC is equal to q∗
(u,ex�

i ) in the
revised RMC. (Intuitively, when we encounter v we “raise an exception”, pop
the entire call stack, and exit the system.) There is also a more involved way
to obtain the probability [u, v] from the probabilities q∗

(u,ex) without increasing
the number of exits in any component. We can thus focus on finding efficient
algorithms for the following central questions:
(1) Qualitative reachability problem: Is q∗

(u,ex) = 1?
(2) Quantitative reachability problems: Given r ∈ [0, 1], is q∗

(u,ex) ≥ r? Is q∗
(u,ex) =

r? Compute or approximate the exact probabilities q∗
(u,ex).

Single-Exit RMCs and Stochastic Context-Free Grammars. A Stochas-
tic Context-Free Grammars (SCFG) is a tuple G = (T, V,R, S1), where T is a set
of terminal symbols, V = {S1, . . . , Sk} is a set of non-terminals, and R is a set
of rules Si

p→ α, where Si ∈ V , p ∈ [0, 1], and α ∈ (V ∪ T )∗, such that for every
non-terminal Si,

∑
〈pj |(Si

pj→αj)∈R〉
pj = 1. Let p(Sj) denote the probability that

the grammar, started at Sj , will terminate and produce a finite string. SCFGs
are “equivalent” to single-exit RMCs in the following sense.

Proposition 1. Every SCFG G can be transformed to a 1-exit RMC A, such
that |A| ∈ O(|G|), and there is a bijection from non-terminals Sj in G to
components Aj of A, each with a single entry enj and exit exj, such that
p(Sj) = q∗

(enj ,exj), for all j. Conversely, every 1-exit RMC A can be transformed
to a SCFG G of size O(|A|), such that there is a map from vertices u to non-
terminals Su of G, such that if ex is u’s component exit, then q∗

(u,ex) = p(Su).

The System of Nonlinear Equations Associated with an RMC. Consider
the probabilities q∗

(u,ex) as unknowns. We can set up a system of (nonlinear)
polynomial equations, such that these probabilities must be a solution of the
system, and in fact precisely the Least Fixed Point solution (which we define).
Let us use a variable x(u,ex) for each unknown probability q∗

(u,ex). We will often
find it convenient to index the variables x(u,ex) according to a fixed order, so we
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can refer to them also as x1, . . . , xn, with each x(u,ex) identified with xj for some
j. We thus obtain a vector of variables: x = (x1 x2 . . . xn)T .

Definition 1. Given RMC A = (A1, . . . , Ak), we define a system of polynomial
equations, SA, over the variables x(u,ex), where u ∈ Qi and ex ∈ Exi, for 1 ≤ i ≤
k. The system contains one equation of the form x(u,ex) = P(u,ex)(x), for each
variable x(u,ex). Here P(u,ex)(x) denotes a multivariate polynomial with positive
rational coefficients. There are 3 cases to distinguish, based on the “type” of
vertex u:
1. Type I: u = ex. In this case: x(ex,ex) = 1.
2. Type II: either u ∈ Ni \ {ex} or u = (b, ex′) is a return port. In these cases:

x(u,ex) =
∑

{v|(u,pu,v,v)∈δ} pu,v · x(v,ex).

(If u has no outgoing transitions, this equation is by definition x(u,ex) = 0.)
3. Type III: u = (b, en) is a call port. In this case:

x((b,en),ex) =
∑

ex′∈ExY (b)
x(en,ex′) · x((b,ex′),ex)

In vector notation, we denote SA = (xj = Pj(x) | j = 1, . . . , n) by: x = P (x).

Note we can easily construct the system x = P (x) from A in polynomial
time: P (x) has size O(|A||Ex|2), where |Ex| denotes the maximum number of
exits of any component of A. We will now identify a particular solution to the
systems x = P (x), called the Least Fixed Point (LFP) solution, which gives us
precisely the probabilities we are after. For vectors x,y ∈ Rn, define the partial-
order x ' y to mean that xj ≤ yj for every coordinate j. For D ⊆ Rn, we call
a mapping H : Rn �→ Rn monotone on D, if: for all x,y ∈ D, if x ' y then
H(x) ' H(y). Define P 1(x) = P (x), and define P k(x) = P (P k−1(x)), for k > 1.

Recall that q∗
(u,ex) denotes the probability of eventually reaching 〈ε, ex〉 start-

ing at 〈ε, u〉 in MA. Let q∗ ∈ Rn denote the corresponding n-vector of proba-
bilities (using the same indexing as used for x). For k ≥ 0, let qk denote the
n-vector of probabilities where qk

(u,ex) is the probability of reaching 〈ε, ex〉 start-
ing at 〈ε, u〉 in at most k steps of MA, meaning via a path in MA of length at
most k. Let 0 (1) denote the n-vector consisting of 0 (respectively, 1) in every
coordinate. Define x0 = 0, and for k ≥ 1, define xk = P (xk−1) = P k(0).

Theorem 1. Let x = P (x) be the system SA associated with RMC A.
1. P : Rn �→ Rn is monotone on Rn

≥0. Hence, for k ≥ 0, 0 ' xk ' xk+1.
2. For all k ≥ 0, qk ' xk+1.
3. q∗ = P (q∗). In other words, q∗ is a fixed point of the map P .
4. For all k ≥ 0, xk ' q∗.
5. q∗ = limk→∞ xk.
6. For all q′ ∈ Rn

≥0, if q′ = P (q′), then q∗ ' q′.
In other words, q∗ is the Least Fixed Point, LFP(P ), of P : Rn

≥0 �→ Rn
≥0.

We have thus identified q∗ as LFP(P ) = limk→∞ xk. We can (naively) view
Theorem 1 as giving an iterative algorithm to compute LFP(P ), by computing
the iterates xk = P k(0), k →∞, until we think we are “close enough”. (But how
do we know? Please read on.) We now observe several unfortunate properties of
SA that present obstacles for efficiently computing LFP(P ).
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Theorem 2. All following RMCs, except the HMCs in (4), have one component,
one entry en, and one exit ex.

1. Irrational probabilities: there is a RMC, A, such that the probability q∗
(en,ex)

is an irrational number, and is in fact not “solvable by radicals”. Thus,
computing LFP(P ) exactly is not possible in general.

2. Slow convergence: there is a RMC such that it requires an exponential number
of iterations, 2k−3, to gain k bits of precision.

3. Qualitative questions not purely structure-dependent: there are 2 “struc-
turally” identical RMCs, A′ and A′′, that only differ in values of non-zero
transition probabilities, but q∗

(en,ex) = 1 in A′, while q∗
(en,ex) < 1 in A′′.

4. Very small & very large probabilities: There is a HMC, with m+ 1 compo-
nents, and of total size O(m), where component Am has entry enm and two
exits ex′

m and ex′′
m, such that q∗

(enm,ex′
m) = 1

22m and q∗
(enm,ex′′

m) = 1− 1
22m .

These facts illustrate some of contrasts between RMCs and finite Markov
chains (MCs). For example, for finite MCs reachability probabilities are rational
values that are efficiently representable and computable; moreover, qualitative
questions, such as whether a state is reached with probability 1, only depend on
the structure (edges) of the MC, and not on values of transition probabilities.

For RMC A = (A1, . . . , Ak), let θ = maxi∈{1,...,k} min{|Eni|, |Exi|}. Note
that q∗

(u,ex) = 0 iff there is no path in the graph of MA from 〈ε, u〉 to 〈ε, ex〉.
Reachability in RSMs was studied in [1, 4], where it was shown that the problem
can be decided in O(|A|θ2) time, thus:

Theorem 3. (see [1, 4]) Given RMC A, we can determine in time O(|A|θ2),
for all vertices u and exits ex, whether or not q∗

(u,ex) = 0.

3 RMCs and the Existential Theory of Reals

We now show that the central reachability questions for RMCs can be answered
by appealing to algorithms for deciding the Existential Theory of the Reals,
ExTh(R). This consists of sentences in prenex form: ∃x1, . . . , xnR(x1, . . . , xn),
where R is a boolean combination of “atomic predicates” of the form fi(x)Δ0,
where fi is a multivariate polynomial with rational coefficients over the variables
x = x1, . . . , xn, and Δ is a comparison operator (=, =,≥,≤, <,>).

Beginning with Tarski, algorithms for deciding the First-Order Theory of
Reals, Th(R), and its existential fragment ExTh(R), have been deeply investi-
gated. In the current state of the art, it is known that ExTh(R) can be decided
in PSPACE [8, 25, 5]. Furthermore it can be decided in exponential time, where
the exponent depends (linearly) only on the number of variables; thus for a fixed
number of variables the algorithm runs in polynomial time.

Suppose we want to decide whether a rational vector c = [c1, . . . , cn]T is
LFP (P ). Consider the sentence: ϕ ≡ ∃x1, . . . , xn

∧n
i=1 Pi(x1, . . . , xn) = xi ∧∧n

i=1 xi = ci. ϕ is true iff c = P (c). To guarantee that c = LFP(P ), we addition-
ally need: ψ ≡ ∃x1, . . . , xn

∧n
i=1 Pi(x1, . . . , xn) = xi∧

∧n
i=1 0 ≤ xi∧

∨n
i=1 xi < ci.
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ψ is false iff there is no solution z ∈ Rn
≥0 to x = P (x) such that c ' z. Hence, to

decide whether c = LFP(P ), we only need two queries to a decision procedure
for ExTh(R). Namely, we check that ϕ is true, and hence c = P (c), and we
then check that ψ is false, and hence c = LFP(P ). Note that all multi-variate
polynomials in our systems x = P (x) have (multivariate) degree d ≤ 2.

Theorem 4. Given a RMC A and given a vector of rational probabilities c,
there is a PSPACE algorithm to decide whether LFP(P ) = c, as well as to
decide whether q∗

j Δcj, for any comparison operator Δ. Moreover, the running
time of the algorithm is O(|A|O(1) · 2O(n)) where n is the number of variables in
the system x = P (x). Hence the running time is polynomial if n is bounded.

ExTh(R) gives us a way to ask questions like: “Is there a solution to x = P (x)
where a ≤ xi ≤ b ?” for any rational numbers a and b, and if we wish, with either
inequality replaced by strict inequality. Since 0 ' LFP(P ) ' 1, we can use such
queries in a “binary search” to “narrow in” on the value of each coordinate of
LFP(P ). Via simple modifications of sentences like ψ, we can gain one extra bit
of precision on the exact value of ci with each extra query to ExTh(R). So, if
we want j bits of precision for each ci, i = 1, ...n, we need to make j · n queries.
The sizes of the queries do not vary by much: only with an additive factor of at
most j-bits, to account for the constants a and b. This discussion yields:

Theorem 5. Given RMC A, and a number j in unary, there is an algorithm
that approximates the coordinates of LFP(P ) to within j bits of precision in
PSPACE. The running time is O(j · |A|O(1) · 2O(n)), where n is the number of
variables in x.

With a more involved construction we can handle in polynomial time all
RMCs that have a constant number of components, each with a constant number
of entries and exits; the components themselves can be arbitrarily large.

Theorem 6. Given an RMC with a bounded total number of entries and exits,
we can decide in polynomial time whether LFP(P ) = c, or whether q∗

j Δcj, for
any comparison operator Δ, and we can approximate each probability to within
any given number of bits of precision. In particular, this applies to SCFGs with
a bounded number of terminals and MT-BPs with a bounded number of types.

4 RMCs and Newton’s Method

This section approaches efficient numerical computation of LFP(P ), by studying
how a classical numerical solution-finding method performs on the systems x =
P (x). Newton’s method is an iterative method that begins with an initial guess
of a solution, and repeatedly “revises” it in an attempt to approach an actual
solution. In general, the method may not converge to a solution, but when it
does, it is typically fast. For example, for the bad RMC of Theorem 2.2, where the
Iterative algorithm converges exponentially slowly, one can show that Newton’s
method converges exponentially faster, gaining one bit of precision per iteration.
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– Preprocess the system x = P (x), eliminating all variables x(u,ex) where q∗
(u,ex) = 0.

– Construct the DAG of SCCs, H, based on the remaining system of equations.
– While (there is a sink SCC, C, remaining in the DAG H)

• If C is the trivial SCC, C = {1}, then associate the value 1 with this node.
Else, run Newton’s method, starting at 0, on the equations for the set of
variables in C, where these equations are augmented by the values of previously
computed variables.
Stop if a fixed point is reached, or when approximate solutions for C are
considered “good enough”.
Store these final values for the variables in C and substitute these values for
those variables in all remaining equations.

• remove C from the DAG.

Fig. 1. Decomposed Newton’s method

Recall that, given a univariate polynomial f(x) (or more generally, a univariate
differentiable function), and an initial guess x0 for a root of f(x), Newton’s
method computes the sequence x0, x1, . . . , xk, where xk+1 := xk − f(xk)

f ′(xk) . There
is a natural n-dimensional version of Newton’s method (see, e.g, [26] and [24]).
Given a suitably differentiable map F : Rn �→ Rn, we wish to find a solution to
the system F (x) = 0. Starting at some x0 ∈ Rn, the method works by iterating
xk+1 := xk − (F ′(xk))−1F (xk), where F ′(x) is the Jacobian matrix of partial
derivatives. For each c ∈ Rn, F ′(c) is a real-valued matrix whose (i, j) entry is
the polynomial ∂Fi

∂xj
evaluated at c. For the method to be defined, F ′(xk) must be

invertible at each point xk in the sequence. Even when the xk’s are defined and a
solution exists, Newton’s method need not converge, and diverges even for some
univariate polynomials of degree 3. We already know one convergent iterative
algorithm for computing LFP(P ). Namely, computing the sequence xj = P j(0),
j →∞. Unfortunately, we saw in Thm. 2 that this algorithm can be very slow.
The question arises whether Newton’s method, applied to F (x) = P (x)−x, can
guarantee convergence to LFP(P ), and do so faster. That is essentially what we
establish in this section.

We cannot in general obtain convergence of Newton’s method for the entire
system x = P (x) at once, because for instance the condition on invertibility of
the Jacobian may not hold in general. But it turns out that such anomalous
cases can be avoided: we first preprocess the system (in linear time in its size,
by Theorem 3) to remove all variables x(u,ex) where q∗

(u,ex) = 0. Then we form
a graph G whose nodes are the remaining variables xi and the constant 1, and
whose edges are (xi, xj) if xj appears in Pi(x), and edge (xi, 1) if Pi(x) ≡ 1.
We decompose the graph (and the system) into strongly connected components
(SCCs) and apply Newton’s method separately on each SCC bottom-up, as
shown in Fig.1. In Fig.1 we have not specified explicitly how many iterations are
performed. For concreteness in the following theorem, suppose that we perform
k iterations for every SCC. Let xk be the resulting tuple of values.

Theorem 7. In the Decomposed Newton’s Method of Fig. 1, the sequence xk,k→
∞, monotonically converges to q∗. Moreover, for all k ≥ 0, xk 1 P k(0).
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From our proof it actually follows that Newton’s method in general consti-
tutes a rapid “acceleration” of the standard iteration, P k(0), k →∞. In partic-
ular, for finite MCs, which generate linear systems, the decomposed Newton’s
method converges in one iteration to LFP(P ).

5 1-Exit RMCs and Consistency of SCFGs

An SCFG is called consistent if it generates a terminal string with probability 1.
We provide a simple, concrete efficient algorithm to check consistency using the
connection of SCFG’s to 1-exit RMC’s and to multi-type Branching Processes.
MT-BPs model the growth of a population of objects of a number of distinct
types. The probability of extinction of a type in a MT-BP is related to the
probability of the language generated by a SCFG. Using this connection and
classical results on branching processes, one can “characterize” the question of
termination of a SCFG as a question related to eigenvalues of certain matrices
associated with the SCFG (see, e.g., [18] and [7, 17]). These “characterizations”
unfortunately often omit special uncovered cases (and sometimes contain errors,
eg. [7]) and do not give a complete algorithm.

Our algorithm for checking SCFG consistency is outlined in Fig. 2. The ma-
trix B(1) in the algorithm is precisely the Jacobian matrix of the system of
polynomials P (x), from section 4, where we substitute 1 for every variable xi.
To finish the algorithm, we only need to show that we can test in polynomial
time whether the spectral radius of a non-negative rational matrix B(1) is > 1.
There are a number of ways to show this. One is by appealing to the existen-
tial theory of the reals. By the Perron-Frobenius theorem (see [21]), the maxi-
mum magnitude eigenvalue of a non-negative matrix is always real. Recall that
the eigenvalues of a matrix M are the roots of the characteristic polynomial
h(x) = Det(M − xI). This univariate polynomial can be computed in poly-
nomial time, and we can test whether ρ(B(1)) > 1 by testing the 1-variable
sentence in ExTh(R): ∃x(x > 1 ∧ h(x) = 0). More efficiently, for the non-
negative matrices B(1) we can also use Linear Programming to decide whether
ρ(B(1)) > 1. Furthermore, with a more involved algorithm (see [15]) we can
classify in one pass the termination probability of all the nonterminals (and all
vertices of a 1-exit RMC).

Input: A SCFG G, with start non-terminal S1.
1. Remove all nonterminals unreachable from S1.
2. If there is any “useless” nonterminal left (i.e., a nonterminal that does not derive

any terminal string), return NO.
3. For the remaining SCFG, let ρ be the maximum eigenvalue of the matrix B(1)

(the Jacobian matrix of P (x), evaluated at the all 1-vector).
If ρ > 1 then return NO; otherwise (i.e., if ρ ≤ 1) return YES.

Fig. 2. SCFG consistency algorithm
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Theorem 8. Given a 1-exit RMC, A, there is a polynomial time algorithm to
determine, for each vertex u and exit ex, which of the following three cases holds:
(1) q∗

(u,ex) = 0, or (2) q∗
(u,ex) = 1, or (3) 0 < q∗

(u,ex) < 1. In particular,
we can test SCFG consistency in polynomial time.

6 RMCs and the Square-Root Sum Problem

We show that the square-root sum problem is reducible to the SCFG quantitative
reachability problem, and to the general RMC qualitative reachability problem.
Let SQUARE-ROOT-SUM be the following problem: given (d1, . . . , dn) ∈ Nn

and k ∈ N, decide whether
∑n

i=1

√
di ≤ k. The complexity of this problem is

open since 1976. It is known to be contained in PSPACE (e.g., by appeal to
ExTh(R)), however, it is not even known to be contained in NP. It is a major
open problem in the complexity of exact numerical algorithms, with applications
in computational geometry and elsewhere. (See, e.g., [16, 29, 22].)

Let SCFG-PROB be the following problem: given a SCFG (with rational
edge probabilities) and given a rational number p ∈ [0, 1], decide whether the
SCFG terminates (i.e., produces a finite string) with probability ≥ p.

Theorem 9. SQUARE-ROOT-SUM is P-time reducible to SCFG-PROB.

Let 2-EXIT-SURE be the following problem: given a 2-exit RMC with rational
edge probabilities, and an entry-exit pair en and ex of some component, decide
whether q∗

(u,ex) = 1. We can modify the above construction to show:1

Theorem 10. SQUARE-ROOT SUM is P-time reducible to 2-EXIT-SURE.

7 Conclusions

We introduced Recursive Markov Chains, and studied basic algorithmic prob-
lems in their analysis involving termination and reachability. A wide variety of
techniques came into play, from the existential theory of the reals, theory of
branching processes, numerical computing, etc. A number of questions remain
open, both for the problems we have investigated and for further directions.
For example, we proved that Newton’s method converges monotonically, and
dominates the iterative algorithm. We expect that this is the practical way to
approximate the probabilities, and we believe that in fact Newton gains i bits of
precision in a polynomial number of iterations in the unit-cost real RAM model.
Moreover, the reductions from the square-root sum problem to deciding whether
a probability is ≤ p does not preclude the possibility that these probabilities can
be approximated to i bits of precision in P-time without yielding a P-time solu-
tion to the square-root sum problem. Indeed, sum of square-roots itself can be
so approximated using Newton’s method.

1 Theorem 10 has also been observed independently by J. Esparza & A. Kucera ([11])
based on a preliminary draft of this paper which included Theorem 9.
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A number of further directions are worth pursuing, building upon this work.
We have extended our methods to algorithms for the verification of linear time
properties of RMC’s ([14]). Another direction we are pursuing is the analysis of
Recursive Markov Decision Processes and Recursive Stochastic Games.
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Josep Dı́az1, Xavier Pérez1, Maria J. Serna1, and Nicholas C. Wormald2

1 Dept. Llenguatges i Sistemes, Universitat Politecnica de Catalunya
{diaz, xperez, mjserna}@lsi.upc.edu

2 Dept. Combinatorics and Optimization, University of Waterloo
nwormald@uwaterloo.ca

Abstract. We present a mathematical model to analyse the establish-
ment and maintenance of communication between mobile agents. We
assume that the agents move through a fixed environment modelled by
a motion graph, and are able to communicate if they are at distance at
most d. As the agents move randomly, we analyse the evolution in time
of the connectivity between a set of w agents, asymptotically for a large
number N of nodes, when w also grows large, and for different values of
d. The particular topologies of the environment we study in this paper
are the cycle and the toroidal grid.

1 Introduction

Consider a setting in which a large number of mobile agents can perform concur-
rent basic movements: ahead/behind/left/right, determining a grid pattern, or
left/right, describing a line. Each agent can communicate directly with any other
agents which are within a given distance d. This enables communications with
agents at a further distance using several intermediate agents. At each step in
time there is an ad-hoc network defined by the dynamic graph whose vertex set
consists of the agents, with an edge between any two agents iff they are within
the distance d of each other.

In this paper, we study the static and dynamic connectivity characteristics of
communicating agents, in a framework called the walkers model, which we define
as follows. A connected graph G = (V,E) with |V | = N is given, and a number
w of walkers (agents). Also given is a “distance” d. A set W of walkers, with
|W | = w, are placed randomly and independently on the vertices of G (a vertex
may contain more than one walker). Each walker has a range d for communica-
tion; that is, two walkers w1 and w2 can communicate in one hop if the distance,
in G, between the position of the walkers is at most d. Two walkers can commu-
nicate if they can reach each other by a sequence of such hops. In addition, each
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walker takes an independent standard random walk on G, i.e. moves at each
time step to a eighbouring vertex, each neighbour chosen with equal probability.

The interesting features of the walkers model are encapsulated by the graph
of walkers, Gf [W ]. Here f is an random assignment f : W → V of walkers into
the vertices of G. The vertices of Gf [W ] are the vertices in G that contain at
least one walker, two vertices in Gf [W ] being joined by an edge iff they are at
distance at most d in G. We refer to components of Gf [W ] in the usual sense,
and call a component simple if it is formed by only one isolated vertex. We
are interested in the probability of Gf [W ] being connected, or in the number of
components and their sizes, with mild asymptotic restrictions on w and d.

Our primary goal with the walkers model is to characterise the dynamics of
the connectivity of the network. To obtain enough information to do this, we
first examine a variation of the model called the static model. This is a snapshot
of the model at one point in time: there is merely the random function f , and
we are interested in the distribution of the number of components, as well as
other information which helps to answer the dynamic questions.

In the dynamic situation, there is an initial placement of walkers as in the
static case, and at each time step, every walker simultaneously moves one step
to a randomly selected neighbour vertex in G. This gives rise to a random graph
process, where Gft

[W ] denotes the graph of walkers at time t = 0, 1, . . .. We
are interested in studying the birth and death of components, and the sudden
connection and disconnection of Gft

[W ] in a dynamic setting.
We consider a sequence of graphs G with increasing numbers of vertices N ,

for N tending to infinity. The parameters w and d are functions of N . We restrict
to the case w → ∞ in order to avoid considering small-case effects. Of course
we take d ≥ 1. We make further restrictions on w and d in order to rule out
non interesting cases, such as values of the parameters in which the network
is asymptotically almost surely (a.a.s.) disconnected or a.a.s. connected. In this
paper, we study the walkers model for two particular sequences of graphs G:
the cycle of length N and the n × n toroidal grid. (In the case of the grid, we
use the �1 distance, modelling the distance along roads in a city grid, but our
approach is useful for other metrics.) Amongst other things, we determine the
limiting probability of connectedness of the graph for the appropriate range of w
and d, and also the expected time the graph spends in the connected state after
it undergoes a transition from disconnected to connected (and similarly, for the
disconnected state).

Nowadays, the random geometric graph has became the basic network model
to study communication in wireless networks. In this model, the broadcasting
stations (centre of the disk) could be distributed according to a Poisson process
or uniformly at random on a bounded subset of R2, see for example [8]. For
instance, it is known that for a random geometric graphs with n vertices and ra-
dius d (where d is a function of n), a.a.s. the graph is connected if d ≥

√
log n/n

[7]. The theoretical results obtained not only on connectivity but also on other
graph parameters like chromatic number, have help in dealing with more tech-
nological issues as efficient broadcasting algorithms for wireless ad-hoc networks
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or message congestion, using as a basis the static situation. In the present paper,
we obtain much sharper results on the static properties than previously obtained
(albeit with a slightly different model). We give precise characterisations of con-
nectivity for two graphs: the cycle and the toroidal grid with the Manhattan
distance. In particular, given a grid with n2 nodes, where we sprinkle uniformly
at random (u.a.r.) w walkers on the nodes of grid, and given d = o(n), we
give a specific equation for the expected number μ of simple components in the
grid, as the ratio w/n2 tends to 0, c or ∞. From these expressions, we deduce
the connectivity threshold for G[W ], when μ → ∞ (disconnected a.a.s.), when
μ→ Θ(1) (simple components except one isolated component) and when μ→ 0
(connected a.a.s.).

In recent times, the big issue has been the mobility of the agents, where
connections in the network are created and destroyed as the agents move further
apart or closer together. There has been quite a bit of work designing efficient
communication algorithms for motion agents, see [1, 6] for nice surveys. Most of
the work is experimental [9]. Other interesting work deals with a data structure
which is able at time t to decide quickly if two given stations are connected
[5]. However, no theoretical work has been done with the global connectivity
properties of dynamic wireless networks. Again we consider first the case of the
cycle and the toroidal grid. In particular for the toroidal grid, we give firstly
a precise estimation of the probability that, if the walkers are connected, they
become disconnected in the next step (Theorem 8). Then using that result, we
give precise asymptotic estimations on the expected number of steps that the
grid will maintain connected (once it becomes connected) or disconnected, as the
agents perform random movements on the nodes of the grid (Theorem 10). We
believe that the study of the behaviour of multiple, simultaneous random walks
is an important open problem which could have further applications in other
fields of computer science. By lack of space, the proofs as well as the results on
the grid for the l2 norm, are left for the long version.

2 General Definitions and Basic Results

The reader is referred to [3] for the basic definitions and theorems on probability.
As usual, for any integer n, we use [n] = {1, 2, . . . , n} and for any integers n and
m, [n]m = n!/(n−m+ 1)!.

For our specific work, we begin with some definitions and results which are
common for all G. Define K to be the random variable counting the number of
connected components, in Gf [W ], under random assignment f of walkers. Let �
denote the expected number of walkers at a vertex. Then � = w/N . For v ∈ V ,
define hv to be the number of vertices in G at distance at most d from v, and
define h = minv∈V hv. Notice that h is the minimum number of empty vertices
in G around a simple component. (We say that a vertex v is empty if it contains
no walkers, and occupied if it contains at least one.)

By considering the well known coupon-collector’s problem, we observe that if
w = N logN+ω(N) then Gf [W ] is trivially a.a.s. connected due to every vertex
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being occupied. Moreover, for the graphs G which we consider in this paper, if
h ∈ Ω(N/

√
w) then Gf [W ] is a.a.s. connected as well. This last claim will be seen

in Observations 1 and 3. Thus, we consider throughout the paper w < N logN+
O(N) and h = o(N/

√
w). In fact, our proofs will just require h to be o(N).

As a key step in most of our proofs, we often need to compute the probability
of having a certain configuration of walkers at a given time t. For this we apply
Lemma 1 below.

Sometimes we also need the probability of certain configurations of walkers
involving two consecutive time steps, in order to record the event that walkers
jump to the appropriate place at time t. There is a convenient way to view this by
partitioning every vertex v of G into as many sub-vertices as its degree, where
each sub-vertex of v is associated with a different neighbour of v. Any given
walker on one vertex will occupy the sub-vertex corresponding to the neighbour
to which it will move at the next time step. Thus, a walker at v moving to a
neighbour will occupy each of the sub-vertices of v with the same probability.
In this case, we can also apply Lemma 1 with sub-vertices, since these form a
static configuration (even though it encodes a dynamic transition).

Assign size 1 to all vertices in G. For a given sub-vertex in a vertex v with
degree δv, its size will be 1/δv. Given a set A of vertices or sub-vertices, we
define the size of A to be the sum of the sizes of its elements.

The following lemma comes by inclusion-exclusion.

Lemma 1. Let A0, . . . , Am be pairwise disjoint sets of vertices (or sub-vertices)
in G, with sizes S0, . . . , Sm respectively. LetN = |V (G)|. If

∑m
i=0 Si = o(N), then

P

(
A0 empty ∧

m∧
i=1

Ai not empty

)
∼
(

1− S0

N

)w m∏
i=1

(
1− e−Si

)
.

To cover large sizes S (not necessarily o(N)) we need the following variation on
the previous lemma.

Lemma 2. Let A be a set of vertices in G of size S, and v1, . . . , vm vertices not
in A, with m ≥ 1. Assume |V (G)| = N and N − S → ∞. The probability that
no vertex in A is occupied and v1, . . . , vm are all occupied is at most p0p

m−1αw

where p0 = 1− e−/α, α = 1− S/N and

p =

{
1 ifρ/α→∞,
ρ/α ifρ/α = O(1).

3 The Cycle

Let G = CN be the cycle with N nodes.

Observation 1. Notice that for CN , h = 2d. Cover the cycle with � N

d/2�� paths

of �d/2� vertices. If h = Ω(N/
√
w), then the probability that some path is empty

of walkers is at most
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⌈
N

�d/2�

⌉(
1− �d/2�

N

)w

≤ O(
√
w)e−Ω(

√
w) → 0

Thus, a.a.s. each of these paths is occupied by at least one walker, and Gf [W ]
is connected. So we assume for the rest of the section that h = o(N/

√
w), in fact

the assumption d = o(N) is all we require.

To study the connectivity of CN , we introduce the concept of hole. Let us
say there is a hole between two vertices u and v if u and v each contain at least
one walker, but no vertex in the clockwise path from u to v contains a walker.
We say that such a hole follows u, or that u is the start vertex of the hole. The
number of internal vertices in a hole is its size. An s-hole is a hole whose size is
at least s. Notice that at least two d-holes are needed to disconnect the walkers
on CN .

Let H be the random variable counting the number of d-holes, when w walkers
are placed u.a.r. on CN , and let μH = E [H] be its expectation (just μ for short
throughout this section).

Holes are closely related to components: trivially,

K =

{
1 if H = 0, 1,
H if H > 1.

and thus E [K] = P (H = 0) + E [H]. (1)

Static Properties. Here, we study the connectivity of the graph of walkers Gf [W ]
in the static situation, by analysing the behaviour of H. In view of (1), notice
that if μ→ 0 then P (K = 1)→ 1, i.e. Gf [W ] is a.a.s. connected.

Theorem 1. The expected number of holes satisfies

μ ∼ N
(
1− e−

)(
1− d

N

)w

∼

⎧⎪⎨
⎪⎩

w
(
1− d

N

)w
if �→ 0,

N (1− e−)
(
1− d

N

)w
if �→ c,

N
(
1− d

N

)w
if �→∞.

Furthermore, if μ is bounded then H is asymptotically Poisson with mean μ, and
if μ is bounded away from 0 then μ ∼ N (1− e−) e−d.

The proof is done by estimating the factorial moments of H, using indicator
variables.

From the second part of this theorem we can immediately obtain the proba-
bility that Gf [W ] is connected, when w walkers are scattered u.a.r. through the
vertices of CN .

Corollary 1. If w walkers are placed u.a.r. on CN , then P (K = 1) = e−μ(1 +
μ) + o(1).

This implies that Gf [W ] is a.a.s. disconnected if μ→∞, and a.a.s. connected
if μ→ 0. So we may restrict attention to μ = Θ(1).

It is a simple matter determine from this and the first part of Theorem 1 the
threshold value of ρ (or of d) at which the walkers graph becomes connected,
and the probability of connectedness when around the threshold.
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Dynamic Properties. Assume that from an initial random placement f of the
walkers, at each step, every walker moves from its current position to one of its
neighbours, with probability 1/2 of going either way. This is a standard random
walk on the cycle for each walker. To study the connectivity properties of the
dynamic graph of walkers we need to introduce some notation.

A configuration is an arrangement of the w walkers on the vertices of CN .
Consider the graph of configurations, where the vertices are the Nw different
configurations. Any configuration has 2w neighbours, and the dynamic process
can be viewed as a random walk on the graph of configurations, in particular, a
Markov chain M(N,w). If N is odd, then M(N,w) is ergodic. For the purposes
of this extended abstract, we will treat in detail only the case of N odd, if
non-ergodicity causes extra complications.

Observation 2. For any fixed t, we can regard Gft
[W ] as Gf [W ] in the static

case. Hence, by Corollary 1, if μ → 0 or ∞ then, for t in any fixed bounded
time interval, Gft

[W ] is either a.a.s. connected or a.a.s. disconnected. So we
assume μ = Θ(1) for the remaining of the section, since we wish to study only
the nontrivial dynamic situations.

We define H = H(t) to be the random variable that counts the number
of d-holes at time t. Under the assumptions in Observation 2, for t in any fixed
bounded time interval, H(t) is asymptotically Poisson with expectation μ = Θ(1)
as studied in CN .

For the dynamic properties of Gft
[W ], we are interested in the probability

that a new d-hole appears at a given time. Moreover, we require knowledge of
this probability conditional upon the number of d-holes already existing.

If there is a d-hole from u to v at time t and all walkers at u and v move
in the same direction on the next step, a new d-hole may appear following
one of the neighbours of u (provided no new walkers move in to destroy this).
These two d-holes, though being different, are related, and we prefer to think
of them as the same thing. A similar comment applies when the exact size of
a d-hole following u changes in one step. Define a d-hole line to be a maxi-
mal sequence of pairs (h1, t1), . . . , (hl, tl) where hi is a d-hole existing at time
ti for 1 ≤ i ≤ l, and such that ti = ti−1 + 1 and the start vertex of hi is
adjacent to, or equal to, the start vertex of hi−1, for 2 ≤ i ≤ l. Fix two con-
secutive time steps t and t + 1. If t1 = t + 1, we say that the line is born
between t and t + 1, if tl = t the line dies between t and t + 1, and if t = ti,
i ∈ {1, . . . , l− 1} we say that the line survives during the interval [t, t+ 1]. Note
that the time-reversal of the process has a d-hole line born at vertex u between
t + 1 and t iff the d-hole line dies at u between t and t + 1. Define S = S(t),
B = B(t) and D = (t) to be the number of d-hole lines surviving, being born
and dying between t and t + 1. We obviously have D(t) + S(t) = H(t) and
B(t) + S(t) = H(t+ 1).

Theorem 2. For t in any fixed bounded time interval, the random variables
S(t), B(t) and D(t) are asymptotically jointly independent Poisson, with the
expectations
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E [S] ∼

⎧⎪⎨
⎪⎩

μ if �→ 0,
μ− λ if �→ c,

3μe− if �→∞,
and E [B(t)] = E [D(t)] ∼

⎧⎪⎨
⎪⎩

1
2μ� if �→ 0,
λ if �→ c,

μ if �→∞,

where λ =

(
1− 3e− − e− 3

2 

1 + e− 1
2 

)
μ. Here 0 < λ < μ for �→ c.

Under the assumptions in Observation 2 and using this result, we can obtain
several important consequences. The first gives the probability of having no
holes at time t and at least one at time t + 1. Note that more than one hole
is required in CN to disconnect Gft

[W ]. As H(t) = S(t) + D(t), it follows
from the theorem that H(t) and B(t) are asymptotically independent. We can
write P (H(t+ 1) ≥ 1 ∧H(t) = 0) = P (H(t) = 0 ∧B(t) ≥ 1), and immediately
obtain the following.

Corollary 2. Let λ be defined as in Theorem 2. The probability of having no
holes at time t and at least one at time t+ 1 is given by

P
(
H(t+ 1) ≥ 1 ∧H(t) = 0

)
∼

⎧⎪⎨
⎪⎩

1
2μe

−μ� if �→ 0,
e−μ

(
1− e−λ

)
if �→ c,

e−μ(1− e−μ) if �→∞,

We define the lifespan of a d-hole line as the number of time steps for which
the line is alive. For any vertex v and time t, the random variable Lv,t counts
the lifespan of the d-hole line born at vertex v between times t and t+ 1. If this
birth does not take place Lv,t is defined to be 0. Note that the random variables
Lv,t are identically distributed for all v and t. Notice that the expected lifespan
of any given d-hole line is bounded (this bound depending on N).

Theorem 3. Let λ be defined as in Theorem 2. For any vertex v and time t,

E [Lv,t] ∼

⎧⎪⎨
⎪⎩

2�−1 if �→ 0,
μ
λ if �→ c,
1 if �→∞,

The next theorem gives us the probability that there is one component at
time t, but at least two at time t+ 1.

Theorem 4. Let λ be defined as in Theorem 2. The probability that Gft [W ] is
connected and that Gft+1 [W ] is disconnected is given by

P
(
H(t+1) ≥ 2∧H(t) < 2

)
∼

⎧⎪⎨
⎪⎩

1
2μ

2e−μ� if �→ 0,
e−μ

(
1 + μ− (1 + μ+ λ+ λ2)e−λ

)
if �→ c,

(1 + μ)e−μ(1− (1 + μ)e−μ) if �→∞,
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For any time t, let us condition upon Gft
[W ] being disconnected at time t

and becoming connected at t + 1. Let TC be a random variable measuring the
time Gft

[W ] remains connected. Similarly, let us condition upon Gft
[W ] being

connected at time t and becoming disconnected at t + 1. Let TD be a random
variable measuring the time Gft [W ] remains disconnected. Their expectations
do not depend on the chosen time t and are given in the following theorem.

Theorem 5. Let λ be defined as in Theorem 2. The expected time that the graph
of walkers Gft

[W ] will be connected or disconnected (once it becomes so) is

E [TC ] ∼

⎧⎪⎨
⎪⎩

2 1+μ
μ2 �

−1 if �→ 0,
1+μ

1+μ−(1+μ+λ+λ2)e−λ if �→ c,
eμ

eμ−(1+μ) if �→∞.

and E [TD] ∼

⎧⎪⎨
⎪⎩

2 eμ−1−μ
μ2 �−1 if �→ 0,

eμ−1−μ
1+μ−(1+μ+λ+λ2)e−λ if �→ c,
eμ

1+μ if �→∞,

4 The Grid

Let G = TN be the toroidal grid with N = n2 nodes. We can refer to vertices by
using coordinates in Zn×Zn. For the grid we encounter significant new obstacles
as compared to the cycle; see for instance the Geometric Lemma below. In TN ,
we shall express the distance between two vertices as the minimal �1 distance of
their coordinates. (In the long version, similar results are obtained for �2 norm).

Observation 3. For TN , and for d < n/2, the number of vertices at distance
at most d from any given vertex is h = 2d(d + 1). For each i, j < 8n/d, let vij

denote the point with coordinates (�id/8�, �jd/8�). Let Sij denote the set of grid
points closer to vij than any of the other vi′j′ . Then there are Θ(N/d2) disjoint
sets Sij each containing Θ(d2) points. The probability that at least one of these
Sij is empty is at most Θ(N/d2)(1−Θ(d2/N))w = O(

√
w)e−Ω(

√
w) → 0 if h =

Ω(N/
√
w). Thus, a.a.s. each of these pieces is occupied by at least one walker,

and Gf [W ] is connected. So we assume for the rest of the section h = o(N/
√
w),

or merely h = o(N), i.e. d = o(n).

We wish to study the connection and disconnection of Gf [W ] in a similar
way to the cycle. For the grid, the notion of hole does not help, and we deal
directly with components. A major role is played by simple components, and we
shall prove that, for the interesting values of the parameters, a.a.s. there only
exist simple components and one giant one.

Let C be any given component. The edges of C are the straight edges joining
occupied vertices in C at distance at most d. The associated empty area AC is
the set of vertices not in C, but at distance at most d from some vertex in C (i.e.
those vertices which must be free of walkers for C to exist as a component). The
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exterior EC of C is all those vertices not in C ∪AC . We partition EC into external
regions as follows: two vertices belong to the same external region when they
can be joined by a continuous arc not intersecting any edge of C.

Recall that, in the terminology of planar maps, the bounding cycle of a face
is a walk around the boundary of the face. Given an external region EC

i, let C′

be any connected subgraph of C that has no edges crossing and such that no
vertices of C are contained in the face F of C′ which contains EC

i. Such graphs
exist: for instance, take the spanning tree of C whose length (sum of lengths of
edges) has been minimised in �1, and, subject to this, has the shortest Euclidean
length. The bounding cycle of this face F is defined to be a boundary walk β in
C with respect to EC

i. Such a walk is maximal if the face F does not properly
contain a face of some other subgraph of C. We call a (directed) closed walk in
C regular if, for each edge entering a vertex v, the next edge in the walk is the
next edge in the clockwise direction around v.

For i < n, let us call a column of width i any subset of TN defined by
{a, . . . , a+ i− 1} ×Zn. We define a row of height j similarly. Define a rectangle
of width i and height j to be the intersection of a column of width i and a row
of height j. Notice in a rectangle we can compare vertices inside according to
their coordinates, and we shall use statments as v1 is more to the left than v2 or
v3 is the uppermost vertex.

We say that a component C with at least 2 vertices is a rectangular component
(r-component) if all of its vertices, edges and empty area are contained in a
rectangle in the torus of height and width at most n − 1. In particular, this
implies that C contains no nonseparating cycle of the torus. Otherwise, it is an
nr-component. For a given r-component C, we define its origin as the leftmost of
the lower-most vertices of C, with a canonical defintion of left and lower over a
containing rectangle. The outside region of an r-component is the only external
region of the component having points outside any containing rectagle.

Let X, Y and Z be the number of simple components, r-components and nr-
components respectively, and put K = X+Y +Z. Let Z = Z1 +Z2, where Z1 is
the number of nr-components which cannot coexist with another nr-component
and Z2 counts those ones which can. Then E [Z] = P (Z1 = 1) + E [Z2]. Set
μ = μX = E [X], the expected number of simple components.

Static Properties. Let μ denote the expected number of simple components in
the grid. The next theorem gives its value asymptotically.

Theorem 6. The expected number of simple components satisfies

μ ∼ N
(
1− e−

)(
1− h

N

)w

∼

⎧⎪⎨
⎪⎩

w
(
1− h

N

)w
if �→ 0,

N(1− e−)
(
1− h

N

)w
if �→ c,

N
(
1− h

N

)w
if �→∞.

Furthermore, if μ is bounded then X is asymptotically Poisson with mean
μ, whilst if μ is bounded away from 0 then

(
1− h

N

)w ∼ e−h and we have
μ ∼ N (1− e−) e−h.
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The proof, analogous to the proof of Theorem 1, follows from Lemma 1.
From the previous theorem we can immediately obtain the probability of

having no simple components, when w walkers are scattered u.a.r. throughout
the vertices of TN .

Corollary 3. The probability of having no simple components is P (X = 0) =
e−μ + o(1). Furthermore, if h� = O(1) then μ→∞ and Gf [W ] is disconnected
a.a.s.

We may now restrict to the condition h�→∞ in the study of r-components
and nr-components.

The next lemma relates the empty area outside a boundary cycle of compo-
nent with its length, and will play a key role in proving the main results.

Lemma 3 (Geometric Lemma). Let C be a component in TN with β one of
its maximal boundary walks, and l = length(β) its length. Assume that C has
at least two occupied sites. Then the size of the empty area Aβ outside β is
bounded below by |Aβ | ≥ dl/R, for some big enough constant R. Moreover, if
C is rectangular, and β is a maximal boundary walk with respect to the outside
region, we have |Aβ | ≥ h+ dl/R.

Lemma 4. Let C be an nr-component which can coexist with other nr-
components. Then it has a boundary cycle β with length(β) ≥ n− o(n).

This lemma’s proof (omitted) is effected by quantifying the intuitive idea
that such a component must “wrap around” the torus.

The next technical result shows that simple components are predominant
a.a.s. in TN . The proof uses the Geometric Lemma.

Lemma 5. If h�→∞, then E [Y ] = o(E [X]) and E [Z2] = o(E [X]).

The following theorem gives the connectivity of Gf [W ] in the static case,
under various assumptions. The proof follows from Lemma 5, Theorem 6 and
Chebyshev inequality

Theorem 7. • For μ→∞, Gf [W ] is disconnected a.a.s.
• For μ = Θ(1), then K = 1 +X a.a.s., and X is asymptotically Poisson.
• For μ→ 0, Gf [W ] is connected a.a.s.

From the previous theorem we immediately obtain that the probability that
Gf [W ] is connected is e−μ + o(1). Since Gf [W ] is a.a.s. disconnected if μ → ∞,
and a.a.s. connected if μ→ 0, we may restrict attention to μ = Θ(1). In this case,
we only have a.a.s. simple components and the giant one found in the above proof.

Dynamic Properties. With the static results under our belt, the analysis of the
dynamic case is quite similar to that of the cycle (though differing in details and
some of the justifications) so we just state the major results.

By analogy with d-hole lines, we define a simple component line to be a
maximal sequence of pairs (v1, t1), . . . , (vl, tl) where vi is a simple component
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existing at time ti for 1 ≤ i ≤ l, and such that ti = ti−1 + 1 and the vertex vi is
adjacent to vi−1, for 2 ≤ i ≤ l. Birth, death, survival and random variables S,
B, D are the defined analogously to the cycle case.

Theorem 8. For t in any fixed bounded time interval, the random variables
S(t), B(t) and D(t) are asymptotically jointly independent Poisson, with the
expectations

E [S(t)] ∼

⎧⎪⎨
⎪⎩

μ if d�→ 0,
μ− λ if d�→ c,
4 1−e−�/4

1−e−� e−(2d+5/4)μ if d�→∞,
and

E [B(t)] = E [D(t)] ∼

⎧⎪⎨
⎪⎩

2d�μ if d�→ 0,
λ if d�→ c,
μ if d�→∞,

where λ =
(
1− e−2d

)
μ. Here 0 < λ < μ for d�→ c.

Theorem 9. Let λ = λ(�) = μ
(
1− e−2d

)
. The probability that Gft [W ] is

connected and that Gft+1 [W ] is disconnected is asymptotic to 2μe−μd� if d�→ 0,
to e−μ(1− e−λ) if d�→ c, and to e−μ(1− e−μ) if d�→∞.

A sequence of results similar to the case of the cycle yields the following
analogue of Theorem 3.

Theorem 10. The expected life of a simple component line is asymptotic to 1
2d

if �→ 0, to μ
λ if �→ c, and to 1 if �→∞. where λ is defined as in Theorem 9.

As in the case of CN , let TC be a random variable measuring the time Gft [W ]
remains connected from a moment at which it is so, and let TD be a random
variable measuring the time Gft

[W ] remains disconnected, from the moment
at which it is so. The next theorem gives the expected time that the graph of
walkers Gft

[W ] will remain connected or disconnected.

Theorem 11. Let λ be defined as in Theorem 9. Then,

E [TC ] ∼

⎧⎪⎨
⎪⎩

1
2μd if �→ 0,

1
1−e−λ if �→ c,

1
1−e−μ if �→∞,

and E [TD] ∼

⎧⎪⎨
⎪⎩

eμ−1
2μd if �→ 0,
eμ−1
1−e−λ if �→ c,

eμ if �→∞,

5 Conclusions and Open Problems

In this work we have characterised the dynamic connectivity of a very large set
of agents which move through a prescribed real or virtual graph. We believe it
is the first time that this kind of characterisation has been obtained, and could
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open an interesting line of research. We gave characterisations for the cycle and
the grid for the �1 norm, which can be extended without problems to the �2
norm, as applies for instance to robots with movement restricted to orthogonal
N-E-S-W directions but with omni-directional radio-frequency communication.

Currently under way is the extension of the results presented here to the
hypercube, which is interesting from the mathematical point of view, as the
number of neighbours is not constant. Moreover, from the point of view of ad-
hoc networks, an interesting case is the random geometric graph (with the �2
norm), where the walkers can move randomly in any direction taking a step of
some random size. We think the present work constitutes a step in this direction.
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Abstract The dynamic page migration problem [4] is defined in a dis-
tributed network of n mobile nodes sharing one indivisible memory page
of size D. During runtime, the nodes can both access a unit of data from
the page and move with a constant speed, thus changing the costs of
communication. The problem is to compute online a schedule of page
movements to minimize the total communication cost.

In this paper we construct and analyze the first deterministic algo-
rithm for this problem. We prove that it achieves an (up to a constant
factor) optimal competitive ratio O(n ·

√
D). We show that the random-

ization of this algorithm improves this ratio to O(
√

D · log n) (against
an oblivious adversary). This substantially improves an O(n ·

√
D) up-

per bound from [4]. We also give an almost matching lower bound of
Ω(

√
D ·

√
log n) for this problem.

1 Introduction

The page migration problem [1, 2, 5, 7, 10] arises in a distributed network of pro-
cessors which share some global data. Shared variables or memory pages are
stored at the local memory of these processors. If a processor wants to access
(read or write) a single unit of data from a page, and the page is not stored
in its local memory, it has to send a request to the processor holding the page,
and appropriate data is sent back. Such transactions incur a cost which is pro-
portional to the distance between these two processors. To avoid the problem
of maintaining consistency among multiple copies of the page, the model allows
only one copy of the page to be stored in the network. However, to reduce the
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communication cost, the system can migrate the page between processors. The
migration cost is proportional to the cost of sending one unit of data times the
size of the memory page. The problem is to decide, online, when and where to
move the page to minimize the total cost of communication over all sequences of
requests. The performance of the online algorithm is measured by competitive
analysis [9, 6], i.e. by comparing its total cost to the total cost of the optimal
offline algorithm on the same input sequence.

The dynamic page migration (DPM) problem introduced by Bienkowski, Ko-
rzeniowski and Meyer auf der Heide [4] is an extension to this model where the
adversary can change the positions of the nodes during the runtime of the al-
gorithm. This is typical in mobile networks, and also models the dynamics of
networks that are not exclusively dedicated to the page migration problem. Ob-
viously, the movement changes the distances and corresponding costs of sending
data between the processors. The DPM model imposes a basic restriction on
the adversary, i.e. the speed of the network changes has to be bounded. In each
round a new position of each node has to be chosen within a ball of a constant
diameter centered at its previous position. Whereas in the standard models of
page migration [5, 10] the cost is equal to the distance between two processors,
in DPM the cost of accessing one unit of data is defined as the distance between
the requesting node and the node holding the page plus a constant overhead
for communication. The reason for this overhead is twofold. First, this overhead
represents the fact that there are no zero-cost communications, even if nodes are
very close. Second, without the overhead in the definition of cost, the problem
becomes infeasible, i.e. no algorithm could achieve a finite competitive ratio.

The Model. Following [4], we define the DPM problem as follows. The network
is modelled as a set of n nodes (processors) labelled v0, v1, . . . , vn−1 placed in a
metric space (X , d). The distances between the nodes are given by the metric
d, but we extend the notion of the distance between two nodes in the following
way. If vi and vj are the same node, which we denote by vi ≡ vj , then we denote
the distance between them by 0E. Note that this is different from the case where
they just occupy the same point in the space, in which case we write vi = vj

and d(vi, vj) = 0.
We assume discrete time steps t = 1, 2, . . .. We denote the distance between

two nodes vx and vy in time step t as dt(vx, vy). Since the nodes can move, this
distance can change with time. A tuple Ct describing the positions of all nodes
in a time step t is called a configuration at time t.

An input consists of a configuration sequence (Ct) and a request sequence (σt),
both created by an adversary, where σt denotes the node that issues a request
at time t. The basic restriction mentioned above is formalized as follows.

Definition 1. A Δ-restricted adversary is allowed to choose a new position of
each node within a ball of radius Δ, centered at the previous position of this
node.1

1 All adversaries considered in the previous work [4] were 1-restricted.
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For the Δ-restricted adversary and any node vx, its positions xt and xt+1
in two consecutive configurations Ct and Ct+1 cannot be too far apart, i.e.
d(xt, xt+1) ≤ Δ. Furthermore, by λ we denote a maximum distance allowed
between any two nodes at any time step. If we do not impose any such restric-
tion, then λ =∞.

Any two nodes are able to communicate directly with each other. The cost
of sending a unit of data from node vx to node vy at time step t is defined by
a cost function ct(vx, vy) as follows. If vx ≡ vy then ct(vx, vy) = 0. Otherwise
ct(vx, vy) = dt(vx, vy) + 1. We have one shared, indivisible memory page of size
D, initially stored at the node v0. The cost of moving the whole page from vx

to vy in time step t is equal to D · ct(vx, vy).
In time step t ≥ 1, first the positions of the nodes are defined by Ct and

then a request is issued at the node vσt . For clarity, we abuse the notation and
write “node σt” instead of “node vσt

”. In this time step the algorithm has its
page in some node denoted by PALG(t). First, it has to pay ct(PALG(t),σt) for
serving the request. Then it can optionally move the page to a new position
P ′

ALG(t) paying the cost D · ct(PALG(t), P ′
ALG(t)). Sometimes, we will abuse the

notation by writing that an algorithm is at vi or moves to vj , meaning that the
algorithm’s page is at vi or the algorithm moves its page to vj .

We consider only online algorithms, i.e. the ones which make decision in step t
solely on the basis of the initial part of the input up to step t, i.e. on the sequence
C1,σ1, C2,σ2, . . . , Ct,σt. To analyze the performance of online algorithm ALG
we use competitive analysis [9, 6]. We say that a deterministic algorithm ALG
is c-competitive if for all input sequences (σt, Ct) it holds CALG((σt, Ct)) ≤
c ·COPT((σt, Ct)).2 CALG((σt, Ct)) and COPT((σt, Ct)) are the cost of ALG and
the optimal offline algorithm, respectively, run on the input sequence (σt, Ct).
The factor c is called the competitive ratio of the algorithm. For a randomized
algorithm to be c-competitive, we require that its expected cost is not greater
than c times the cost of the optimum. The expected value is taken over all
possible random choices of the algorithm. In this paper we consider only oblivious
adversaries [3], which have no access to the random bits used by the algorithm.

Related Work. For the page migration problem in a static network, Westbrook
[10] gave the first randomized O(1)-competitive algorithms against oblivious and
adaptive adversaries. This result was improved for some network topologies like
trees or uniform graphs by Chrobak et al. [7]. The first constant competitive
deterministic algorithm was Move-To-Min given by Awerbuch, Bartal and Fiat
in [1] and the competitive ratio was subsequently improved by Bartal, Charikar
and Indyk [2].

Bienkowski, Korzeniowski and Meyer auf der Heide [4] defined the DPM
model. Their randomized algorithm ALGDIST achieved a competitive ratio of
O(min{n·

√
D,D, λ}) against an adaptive-online adversary. This ratio was proven

to be up to a constant factor optimal. They also gave two trivial deterministic
algorithms achieving competitive ratios of O(D) and O(λ), respectively. Finally,

2 In literature, this notion is sometimes referred to as strict competitiveness.
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they proved that the competitive ratio of any randomized algorithm against an
oblivious adversary is at least Ω(min{

√
D,λ}).

The deterministic and randomized algorithms presented in this paper use
the marking technique, which bears a resemblance to the Least Recently Used
(LRU) paging algorithm by Sleator and Tarjan [9] and randomized MARK pag-
ing algorithm by Fiat et al. [8], respectively.

Contribution of the Paper. In this paper we improve and extend the results
of [4]. In Sect. 3 we give a first deterministic algorithm, MARK, for the DPM
problem. Our algorithm achieves the competitive ratio of O(n ·

√
D). It can be

combined with two trivial algorithms from [4], yielding an O(min{n·
√
D,D, λ})-

competitive algorithm. The constants hidden in O notation are moderate; in fact
they are much better that the constants from the proof of competitiveness of
ALGDIST in [4].

In Sect. 4 we randomize MARK and get an algorithm R-MARK which is
O(
√
D · log n)-competitive against an oblivious adversary. Again, it can be com-

bined with O(D) and O(λ)-competitive algorithms, resulting in an O(min{
√
D ·

log n,D, λ})-competitive algorithm. In Sect. 5 we prove that this ratio is almost
optimal by showing that the lower bound on competitiveness of any randomized
algorithm against an oblivious adversary is Ω(min{

√
D · log n,D2/3, λ}).

2 Preliminaries

In this paper we consider only 1
2 -restricted adversaries. This assures that the dis-

tance between any two nodes can change only by 1 per time step. The presented
proofs can be extended to any constant-restricted adversary with the Reduction
Lemma proven in the full version of the paper.

Lemma 1 (Reduction Lemma). Assume that there exists a k-competitive
(possibly randomized) algorithm ALGA against an A-restricted adversary. Then
ALGA is k-competitive against a B-restricted adversary for B ≤ A. Additionally,
for any B ≥ A there exists a (randomized) algorithm ALGB which is B

A · k-
competitive against a B-restricted adversary.

Throughout this paper we will use the following notation. OPT denotes the opti-
mal offline algorithm. If ALG is any algorithm and S any sequence of consecutive
time steps, then by CALG(S) we denote the cost of the algorithm ALG on S.
In particular, COPT(S) is the cost of the optimal algorithm on sequence S. By
Creq

ALG(S) we denote the cost of serving requests by ALG, i.e. not counting the
cost of page movements in S.

In the proof of competitiveness of any algorithm ALG we will follow the
following scheme. We take any input sequence (Ct,σt), and we run ALG and
OPT “in parallel” on this sequence. By PALG(t) and POPT(t) we denote the
node holding ALG’s and OPT’s pages, respectively, in the t-th time step. At
each step we will be able to compare the cost paid so far, respectively by ALG
and by OPT.
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Jump Sets. Before we construct and analyze our algorithms for DPM problem,
we prove a useful property of the costs incurred during the runtime. We assume
that

√
D is an integer, and we consider any sequence I of K =

√
D steps,

numbered from 1 to K. We call sequences of such lengths intervals. Let σi be
the node which issues a request in the i-th step of I and di(·), ci(·) be the distance
and cost functions in the i-th step.

Definition 2. A gravity center for I is a vertex v which minimizes the sum∑K
i=1 cK(v,σi). If there is more than one such vertex, then the gravity center is

the one labelled with the smallest index.3

Definition 3. Let I be any interval (of length K) and let vmin be its gravity
center. Then a jump set G(I) consists of all the nodes whose K-th step distance
to vmin is not greater than 9 ·

√
D, i.e. G(I) := {v ∈ V : dK(v, vmin) ≤ 9 ·

√
D}.

Intuitively, the gravity center and the jump set try to approximate a “good”
position to place a page in the last I steps. This intuition is formalized in the
following lemma, whose proof can be found in the full version of the paper.

Lemma 2. Consider any interval I of K requests and corresponding jump set
G(I) with gravity center at vmin. Consider any algorithm ALG which at the end
of the K-th step is in a node PALG /∈ G(I). Then CALG(I) ≥ D/4.

3 A Deterministic Algorithm

In this section we construct and analyze a deterministic algorithm MARK.
MARK divides the requests into intervals of length K. In each interval MARK
remains at one node and serves all the requests issued. Then, at the end of the
interval, it makes its decision, whether and where to move the page.

Intervals are grouped in epochs; the first epoch starting with the beginning
of the input sequence. MARK begins each epoch without any nodes marked.
Subsequently, for each node v we measure the cost incurred by requests issued
so far in the current epoch E , on the algorithm which remains in v and never
moves. We denote this amount by Creq

v (E) and when it reaches D/4, then node
v becomes marked.

MARK waits in one node, denoted PMARK for one or more intervals, and
moves at the end of an interval in which PMARK becomes marked. When MARK
wants to move, it computes a jump set G on the basis of the last interval and
moves to v∗, an arbitrarily chosen node from the not yet marked nodes of G. If
there is no unmarked node in G, then prior to choosing v∗ the algorithm erases
the marks on all the nodes and a new epoch begins.

The pseudocode of MARK is presented in Fig. 1. The algorithm is initialized
by setting E = ∅ and unmarking all the nodes.

Theorem 1. MARK achieves competitive ratio of O(n ·
√
D) for DPM problem.

3 We could apply any tie breaking method here.
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Serve requests in interval I
E := E ∪ I
for each v ∈ V

if Creq
v (E) ≥ D/4 then mark v

if PMARK is marked then
G := G(I)
if all nodes in G are marked then

unmark all nodes from V
E = ∅

Choose any not marked node v∗ from G
Move the page to v∗

Fig. 1. Algorithm MARK for one interval I

Proof. To make the proof concise, we introduce a notion of a phase. A phase is a
sequence of consecutive intervals in which MARK remains at one node. In other
words MARK’s page movement divides each epoch into a sequence of phases.
Lemma 2 implies that after any phase P = (I1, . . . , Ip) for all the nodes v outside
G(Ip) holds Creq

v (P) ≥ Creq
v (Ip) ≥ D/4. Thus, these nodes are already marked,

and, in fact, at the end of P the algorithm chooses an arbitrary node v∗ from
not yet marked nodes.

As an immediate consequence we get the following two properties. First,
each epoch ends exactly when all the nodes are marked. Therefore, although the
division into phases depends on the choices of the algorithm, the division into
epochs depends only on the input sequence. Second, since each epoch begins
with no node marked, and in each phase at least one node becomes marked,
each epoch consists of at most n phases.

For the proof we use amortized analysis and define a potential function Φt in
time step t. Φt = 2 ·D · Lt, where Lt is the t-th step distance between PMARK
and POPT.

If S is some sequence of � steps, numbered from 1 to �, then by Φ0 we denote
the potential just before this sequence and we define ΔΦ(S) as the difference
between the potential after and before phase S, i.e. ΔΦ(S) := Φ� − Φ0. Since in
the beginning of the runtime Φ0 = 0 and Φt is non negative in every time step t, it
is sufficient to prove that for any input sequence S, it holds CMARK(S)+ΔΦ(S) ≤
O(n ·

√
D) · COPT(S).

First, we prove a bound on the cost of MARK in one phase.

Lemma 3. In each phase P of the algorithm MARK, the amortized cost of the
algorithm CMARK(P)+ΔΦ(P) is not greater than O(

√
D)·COPT(P)+O(D·

√
D).

Proof. In this proof we often use the triangle inequality, the inequality ct(x, y) ≤
1 + dt(x, y), and the fact that the adversary is 1/2-restricted and therefore the
distance between two nodes can change by at most K in one interval.

We assume that P consists of p intervals I1, I2, . . . , Ip and that the algorithm
has its page in PMARK throughout the whole phase P. First, we bound the amor-
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tized cost in the intervals (I1, I2, . . . , Ip−1). The algorithm does not move within
these intervals, thus the total cost of serving requests is at most D/4, because
otherwise PMARK would become marked and the phase would be finished earlier.
Therefore, CMARK(I1, . . . , Ip−1) = Creq

MARK(I1, . . . , Ip−1) < D/4. For bounding
the change of the potential in these intervals we use the following lemma, which
is proven in the full version of the paper.

Lemma 4. If the algorithm MARK remains in the same node for a sequence of
requests S and Creq

ALG(S) ≤ D, then ΔΦ(S) ≤ O(
√
D) · COPT(S) +O(D ·

√
D)

In consequence, ΔΦ(I1, . . . , Ip−1) ≤ O(
√
D) ·COPT(I1, . . . , Ip−1)+O(D ·

√
D)

and it is sufficient to bound the amortized cost in the interval Ip.
In the remaining part of the proof of Lemma 3 we use some ideas from the

the proof of 7-competitiveness of Move-To-Min algorithm [1]. However, we have
to take into account the movement of the nodes and shorter interval lengths.

We number the time steps within Ip from 1 to K. Let v∗ be the new node cho-
sen after phase P. We have cK(PMARK, v

∗) ≤ 1+dK(PMARK, vmin)+dK(vmin, v
∗).

Since v∗ ∈ G(Ip), dK(vmin, v
∗) ≤ 9

√
D, and therefore CMARK(Ip) = Creq

MARK(Ip)+
D · cK(PMARK, v

∗) ≤ Creq
MARK(Ip) +D · dK(PMARK, vmin) +O(D ·

√
D).

By ai−1 and ai we denote the position of OPT, respectively at the beginning
and at the end of the i-th step. Therefore, the optimal algorithm’s cost in interval
Ip is equal to COPT(Ip) =

∑K
i=1 (ci(ai−1,σi) +D · ci(ai−1, ai)) We need two

technical lemmas which are proven in the full version of the paper.

Lemma 5. Let Xt =
∑K

i=1 di(at,σi) be the cost of serving all the requests from
node at. Then for all 0 ≤ t ≤ K it holds Xt ≤ COPT(Ip) +D.

Lemma 6. Let Yt = D · dK(at, vmin). Then for all 0 ≤ t ≤ K it holds Yt ≤
O(
√
D) · COPT(Ip) +O(D ·

√
D).

We need to bound the amortized cost of MARK in the interval Ip; this cost
is equal to Creq

MARK(Ip) + D · dK(PMARK, vmin) + O(D ·
√
D) + ΦK − Φ0. The

summands can be bounded as described below. The same bounds can be applied
to any sequence of at most K steps.

Creq
MARK(Ip) =

K∑
i=1

ci(PMARK,σi) ≤
K∑

i=1

(1 + di(PMARK, a0) + di(a0,σi))

≤ K +
K∑

i=1

(K + d0(PALG, a0)) +X0

≤ Φ0/2 + COPT(Ip) +O(D)

(1)

ΦK +D·dK(PMARK, vmin)
≤ 2 ·D · dK(v∗, aK) +D · dK(PMARK, a0) +D · dK(a0, vmin)

≤ 2 · YK +O(D ·
√
D) +D · (d0(PMARK, a0) +K) + Y0

≤ O(
√
D) · COPT(Ip) + Φ0/2 +O(D ·

√
D)

(2)
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Thus, the amortized cost in the interval Ip is bounded by O(
√
D) · COPT(Ip) +

O(D ·
√
D), which finishes the proof of Lemma 3. ��

Closely observing the proof of Lemma 3, we can show that the cost of serving
requests in a phase which is not yet finished, can be either paid from the potential
or is amortized against the cost of the optimal algorithm in this phase.

Lemma 7. Let P ′ be the first � steps of phase P of algorithm MARK. Then
CMARK(P ′) ≤ ΦB +O(

√
D) ·COPT(P ′) +O(D ·

√
D), where ΦB is the potential

at the beginning of the phase P.

Proof. We divide the phase into p intervals, i.e. P ′ = (I1, I2, . . . , Ip), where the
last interval possibly has less than K steps. Let Φ0 be the potential at the
beginning of Ip. From the proof of Lemma 3 follows that CMARK(I1, . . . , Ip−1)+
Φ0 ≤ ΦB +O(

√
D) · COPT(I1, . . . , Ip−1) +O(D ·

√
D). Therefore, it is sufficient

to show that CMARK(Ip) ≤ Φ0 + COPT(Ip) +O(D ·
√
D). This follows from (1)

in the proof of Lemma 3. ��

As shown in Lemmas 3 and 7 we would be able to prove good bounds for
each phase if we could neglect the additive term of O(D ·

√
D). Thus, we have

to find some additional lower bounds on the cost of the optimal algorithm. We
can do this by using a property of our marking scheme.

Lemma 8. The cost of OPT in any finished E is at least Ω(D). Moreover,
OPT’s cost in the first epoch E1 (even if it is unfinished) is either CMARK(E1)
or at least Ω(D).

Proof. First, we consider a finished epoch E . If OPT moves its page within E ,
then its cost is at least D. Otherwise, OPT remains at one node POPT, which
becomes marked at some point of the epoch. Therefore, it must have paid a cost
of at least Creq

POPT
≥ D/4 in this epoch.

Second, we consider E1. If OPT moves within E1, then it pays at least D.
Otherwise, it remains in v0 for the whole E1 and we have two cases. If E1 con-
sists of one unfinished phase only, then COPT(E1) = Creq

v0
(E1) = CMARK(E1).

Otherwise, let P1 be the first (finished) phase of E1. Since v0 becomes marked
at the end of P1, COPT(E1) ≥ COPT(P1) ≥ Creq

v0
≥ D/4.

Therefore, for any sequence S consisting of k epochs, where the last epoch
is possibly unfinished, either COPT(S) = CMARK(S) or COPT(S) ≥ Ω(k ·D). In
the latter case, we combine the result with Lemmas 3 and 7 obtaining

CMARK(S) ≤ O(
√
D) · COPT(S) + k · n · O(D ·

√
D)

≤ O(
√
D) · COPT(S) +O(n ·

√
D) · COPT(S) ,

which finishes the proof of Thm. 1. ��

In [4] two simple deterministic algorithms attaining competitive ratios of
O(D) and O(λ), respectively, were presented. From the analysis of their poten-
tial functions follows that it is possible to combine them with MARK in one
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algorithm which achieves the competitive ratio of O(min{n ·
√
D,D, λ}). We

omit the details here.
This result is up to a constant factor optimal, since the Ω(min{n ·

√
D,D, λ})

lower bound for a randomized algorithm against an adaptive-online adversary
presented in [4] applies also to the deterministic case (see [3] for comparison of
the power of different adversaries).

4 Randomization Against an Oblivious Adversary

In this section we show a direct randomization of MARK which yields an algo-
rithm R-MARK. In the formulation of the algorithm, instead of choosing v∗ in
deterministic fashion from not yet marked nodes of G (see Fig. 1), we choose v∗

uniformly at random from not yet marked nodes of G.

Theorem 2. R-MARK is O(
√
D · log n)-competitive against an oblivious

adversary.

Proof. For the analysis we use the same potential function Φ as for MARK.
Since Lemmas 3 and 7 hold for any choice of v∗ from not yet marked nodes of G,
they hold also in the case when v∗ is chosen randomly. Therefore, for any finished
phase P it holds CR-MARK(P)+ΔΦ(P) ≤ O(

√
D)·COPT(P)+O(D·

√
D). Similar

result holds for an unfinished phase (see Lemma 7). However, for the algorithm
R-MARK we can have a bound better than n (at least on expectation) for the
number of phases in an epoch.

Lemma 9. For any epoch E, the expected number of phases in this epoch is
O(logn). The expectation is taken over all possible random choices of R-MARK.

Proof. Analogously to the proof of Thm. 1 we can forget about the set G and
assume that R-MARK chooses v∗ uniformly at random from all not yet marked
nodes.

Let {bi}n
i=1 be the nodes in the order they are becoming marked in epoch

E . Assume that in a phase P the algorithm is in a node bk. Then at the end of
phase P it chooses a new node v∗ uniformly at random from n − k nodes i.e.
from the set B+

k := {bi : k + 1 ≤ i ≤ n}. Actually, it might happen that some
of nodes from B+

k were also marked at the end of phase P, in which case the
algorithm has even fewer than n− k nodes to choose randomly from.

At the beginning of each epoch, except from the first one, the algorithm
also chooses a place uniformly at random from the whole set V . Let Ti be the
expected number of phases, provided that i nodes are still unmarked. We have
a recursive formula

T0 = 0, Tk = 1 +
k−1∑
i=0

1
k
· Ti ,

where the second equality follows from the linearity of expected value. It can
be proven by induction that Ti = Hi, the i-th harmonic number. In fact, the
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expected number of phases can be even smaller if some nodes get marked con-
currently and R-MARK has fewer nodes to choose from. Tn is the bound on the
expected number of phases in each epoch except the first one, because the very
first node is not chosen randomly. However, this incurs at most one additional
phase after which we have our random process. Therefore, the expected number
of phases in any epoch is at most Tn + 1 = Hn + 1 = O(logn). ��

Since Lemma 8 does not depend on the way of choosing v∗, either, as long
it is chosen from the not yet marked nodes, we have that for any sequence S
consisting of k epochs we have

E[CR-MARK(S)] ≤ O(
√
D) · COPT(S) + k · O(logn) · O(D ·

√
D)

≤ O(
√
D) · COPT(S) +O(logn ·

√
D) · COPT(S) .

This finishes the proof of Thm. 2. ��

It is also possible to combine R-MARK with O(D) and O(λ)-competitive
algorithms obtaining an algorithm which isO(min{

√
D·log n,D, λ})-competitive

against an oblivious adversary. We omit the details.

5 Lower Bound Against an Oblivious Adversary

In this section we show that no online algorithm can achieve a competitive ra-
tio better than Ω(min{

√
D · log n,D2/3, λ}). This improves an Ω(min{

√
D,λ})

lower bound result from [4]. We present two theorems which, combined, imme-
diately give the result.

Theorem 3. If D ≥ log3 n, then no randomized algorithm can achieve better
competitive ratio against an oblivious adversary than Ω(min{

√
D · log n, λ}.

Theorem 4. If D ≤ log3 n, then no randomized algorithm can achieve better
competitive ratio against an oblivious adversary than Ω(min{D2/3, λ}.

The proofs are almost identical, and therefore we present only the first one. The
second one can be found in the full version of the paper.

Proof (of Thm. 3). We construct a probability distribution over inputs and prove
that no deterministic algorithm, which knows this distribution, can have a com-
petitive ratio better than Ω(min{

√
D · log n, λ}). Then one can apply Yao min-

max theorem [11, 6] and Thm. 3 follows immediately.
We assume that n is a power of 2. If it is not the case, then the adversary can

give requests only in the first 2�log n� nodes and put the other nodes exactly in
the same point of space X as v0. Then, for any algorithm ALG, that uses these
additional nodes, there exists an algorithm ALG′ which uses v0 instead and has
cost at most as large as ALG. We can also assume that λ ≥

√
D. Otherwise we

could use the proof from [4] and obtain the lower bound of Ω(λ).
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V 0
i

V 1
i

Bexp=min{
√

D·log n,λ}

Bfix=
√

D/ log n

expanding part main part contracting part

easy requests

hard requests

t

Ri(t)

Fig. 2. Lower bound: The i-th phase of an epoch

We number all nodes from 0 to n− 1. In the following we identify the nodes
with their numbers. For all 1 ≤ i ≤ log n, let V 0

i be the set of all the node
numbers whose bit representation has i-th bit set to 0. V 1

i is the set of all
remaining nodes, i.e. the ones whose bit representation has the i-th bit set to 1.
Let Bmain = D/ log n, Bexp = min{

√
D · log n, λ}, and Bfix =

√
D/ log n.

We divide time into epochs, each epoch containing log n phases, each of length
Bmain + 2 ·Bexp. In the i-th phase we divide the set V into two sets V 0

i and V 1
i .

All the nodes from set V 0
i occupy a certain point in space X ; the same holds for

nodes from V 1
i . Therefore, in step t of phase i, the distance between the sets V 0

i

and V 1
i is well defined and we call it Ri(t).

First, we describe the movement of nodes in the i-th phase. The situation is
depicted in Fig. 2. Each phase consists of an expanding part, which lasts for Bexp
steps, in which the sets V 0

i and V 1
i are moved apart, a main part, lasting for

Bmain steps, and a contracting part also of length Bexp, in which the sets V 0
i and

V 1
i are brought closer. In the j-th step of the expanding part Ri is set to j − 1.

In all the steps of the main part the distance between sets V 0
i and V 1

i is exactly
Bexp. Finally, in the j-th step of the contracting part, Ri is equal to Bexp − j.

The first Bfix requests in the expanding part of a phase and the last Bfix
requests in the contracting part are given always at the node v0. We call these
requests easy. The requests in the remaining steps of a phase are given in one
node — with probability 1/2 all are given at v0 (belonging to V 0

i ), and with
probability 1/2 all are given at node v2i−1 (belonging to V 1

i ). We call these re-
quests hard, and we call the set, whose node issued these requests, a requesting
set. Note that the main part is a (usually proper) subset of a sequence containing
all the hard requests.

Consider any randomly generated logn phases of epoch E . There exists a
node v+ (exactly one) which is in the requesting set for all the phases. As its
distance to hard requests in each phase is 0, the cost incurred is at most 1 per
request, which sums up to logn · (Bmain +2 ·Bexp) = O(D) in total. The optimal
algorithm could move to v+ at the beginning of the epoch, paying D. Finally,
the cost incurred by easy requests is at most 2 ·

∑Bfix
j=1 j = O(D/ log n) in each

phase which accounts for O(D) for all requests in epoch E .
On the other hand, for all i, when hard requests start in the i-th phase, any de-

terministic algorithm ALG has its page in the “wrong” set with probability 1/2.
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At this point Ri(t) = Bfix. If ALG moves its page to the other set within the hard
requests, it pays at least D ·Bfix. Otherwise, it has to pay Bexp for serving each
of Bmain hard requests in the main part of a phase. Therefore, from the linearity
of expectation follows that the expected cost of ALG in the whole epoch E is

E[CALG(E)] = logn · min{D ·Bfix, Bexp ·Bmain}
2

= Ω(min{Dλ,D
√
D log n}) .

Thus, in any epoch the competitive ratio is at least Ω(min{λ,
√
D · logn}).

We can generate an arbitrary number of epochs and the bound on ratio still
holds. Therefore, the theorem follows. ��
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Abstract. We consider data structures and algorithms for preprocess-
ing a labelled list of length n so that, for any given indices i and j we can
answer queries of the form: What is the mode or median label in the se-
quence of labels between indices i and j. Our results are on approximate
versions of this problem. Using O( n

1−α
) space, our data structure can find

in O(log log 1
α

n) time an element whose number of occurrences is at least
α times that of the mode, for some user-specified parameter 0 < α < 1.
Data structures are proposed to achieve constant query time for α =
1/2, 1/3 and 1/4, using storage space of O(n log n), O(n log log n) and
O(n), respectively. Finally, if the elements are comparable, we construct
an O( n

1−α
) space data structure that answers approximate range median

queries. Specifically, given indices i and j, in O(1) time, an element whose
rank is at least α × �|j − i + 1|/2� and at most (2 − α) × �|j − i + 1|/2�
is returned for 0 < α < 1.

1 Introduction

Let A = a1, . . . , an be a list of elements of some data type. We wish to con-
struct data structures on A, such that we can quickly answer range queries.
These queries take two indices i, j with 1 ≤ i ≤ j ≤ n and require computing
F (ai, . . . , aj) = ai ◦ ai+1 ◦ · · · ◦ aj−1 ◦ aj . If the inverse of the operation “◦”
exists, then range queries have a trivial solution of linear space and constant
query time. For example, if “◦” is arithmetic addition (subtraction being its in-
verse), we precompute all the partial sums bi = a1 + · · · + ai, i = 1, . . . , n, and
the range query F (ai, . . . , aj) = ai + · · ·+ aj can be answered in constant time
by computing bj − bi−1. Yao [13] (see also Alon and Schieber [1]) showed that
if “◦” is a constant time semigroup operation (such as maximum or minimum)
for which no inverse operation is allowed, and a ◦ b can be computed in constant
time then it is possible to answer range queries in O(λ(k, n)) time using a data
structure of O(kn) size, for any integer k ≥ 1. Here λ(k, ·) is a slowly growing

� This work is supported in part by NSERC (Natural Sciences and Engineering Re-
search Council of Canada) and MITACS (Mathematics of Information Technology
and Complex Systems) grants.

V. Diekert and B. Durand (Eds.): STACS 2005, LNCS 3404, pp. 377–388, 2005.
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function at the �k/2�-th level of the primitive recursive hierarchy. For example,
λ(2, n) = O(logn), λ(3, n) = O(log log n) and λ(4, n) = O(log∗ n).

Krizanc et al [10] studied the storage space versus query time tradeoffs for
range mode and range median queries. These occur when F is the function that
returns the mode or median of its input. Mode and median are two of the most
important statistics [2, 3, 11, 12]. Given a set of n elements, a mode is an element
that occurs at least as frequently as any other element of the set. If the elements
are comparable (for example, real numbers), the rank of an element is its position
in the sorted order of the input. For example, the rank of the minimum element is
1, and that of the maximum element is n. The φ-quantile is the element with rank
�φn�. The 1/2-quantile is also called the median. Note the trivial solution does
not work for range mode or range median queries as no inverse exists for either
operation. Yao’s approach does not apply either because neither range mode nor
range median is associative and therefore not a semigroup query. Also, given
two sets S1 and S2 and their modes (or medians), the mode (or median) of the
union S1

⋃
S2 cannot be computed in constant time. New data structures are

needed for range mode and range median queries. Krizanc et al [10] gave a data
structure of size O(n2−2ε) that can answer range mode queries in O(nε log n)
time, where 0 < ε ≤ 1/2 is a constant representing storage space-query time
tradeoff. For range median queries, they show that a data structure of size O(n)
can answer range median queries in O(nε) time and a faster O(logn) query time
can be achieved using O( n log2 n

log log n ) space.
In this paper we consider the approximate versions of range mode and range

median queries. We show that if a small error is tolerable, range mode and range
median queries can be answered much more efficiently in terms of storage space
and query time. Given a sublist S = ai, ai+1, . . . , aj , an element is said to be an
approximate mode of S if its number of occurrences is at least α times that of
the actual mode of S, where 0 < α < 1 is a user-specified approximation factor.
If the elements are comparable, the median is the element with rank (relative to
the sublist) �(j − i+ 1)/2�. An α-approximate median of S is an element whose
rank is between α× �(j − i+ 1)/2� and (2− α)× �(j − i+ 1)/2�. Clearly, there
could be several approximate modes and medians.

We show that approximate range mode queries can be answered in
O(log log 1

α
n) time using a data structure of size O(n). We also show that con-

stant query time can be achieved for α = 1/2, 1/3 and 1/4 using storage space
of size O(n log n), O(n log log n) and O(n), respectively. We introduce a constant
query time data structure for answering approximate range median queries. We
also study the preprocessing time required for the construction of these data
structures.

To the best of our knowledge, there is no previous work on approximate range
mode or median queries. Two problems related to range mode and range median
queries are frequent elements and quantile summaries over sliding windows [2, 11].
For many applications, data takes the form of continuous data streams, as op-
posed to finite stored data sets. Examples of such applications include network
monitoring and traffic measurements, financial transaction logs and phonecall
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records. All these applications view recently arrived data as more important
than those a long time back. This preference for recent data is referred to as
the sliding window model [6] in which the queries are answered regarding only
the most recently observed n data elements. Lin et al [11] studied the problem
of continuously maintaining quantile summaries over sliding windows. They de-
vised an algorithm for approximate quantiles with an error of at most εn using
O( log ε2n

ε + 1
ε2 ) space in the worst case for a fixed window size n. For windows

of variable size at most n (such as timestamp-based windows in which the exact
number of arriving elements cannot be predetermined), O( log2 εn

ε2 ) storage space
is required. Arasu and Manku [2] improved both bounds to O( 1

ε log 1
ε log n) and

O( 1
ε log 1

ε log εn log n) respectively. They also proposed deterministic algorithms
for the problem of finding all frequent elements (i.e., elements with a minimum
frequency of εn) using O( 1

ε log2 1
ε ) and O( 1

ε log2 1
ε log εn) worst case space for

fixed- and variable-size windows, respectively.

2 Approximate Range Mode Queries

Given a list of elements a1, . . . , an and an approximation factor 0 < α < 1, the
approximate range mode queries can be specified formally as follows.
INPUT: Two indices i, j with 1 ≤ i ≤ j ≤ n.
OUTPUT: An element x in ai, . . . , aj such that Fx(ai, . . . , aj)≥α×F (ai, . . . , aj),
where Fx(ai, . . . , aj) is the frequency1 of x in ai, . . . , aj and F (ai, . . . , aj)
= maxx Fx(ai, . . . , aj) is the number of occurrences of a mode in ai, . . . , aj .

Our data structure is based on the observation that given a fixed left end i
of a query range, as the right end j of the range increases, the number of times
the approximate mode changes as j varies from i to n is at most log 1

α
(n − i).

This is because the same element can be output as approximate mode as long
as no other element’s frequency exceeds 1/α times that of the current approxi-
mate mode. When the actual mode’s frequency has exceeded 1/α times that of
the approximate mode, the approximate mode is replaced and the actual mode
becomes the new approximate mode.

For example, given the list of 20 elements shown in Figure 1 and approxi-
mation factor α = 1/2, b is an approximate mode of a1, . . . , a9 because b occurs
2 times in the sublist, while the actual mode a occurs 4 times in the same
sublist. But this is no longer true for query a1, . . . , a10, as the number of oc-
currences of b is still 2 while the actual mode a occurs 5 times in the sublist
(Fa(a1, . . . , a10) = 5). In this case, either a or c (Fc(a1, . . . , a10) = 3) is a valid
approximate mode.

Assuming a is chosen to be the new approximate mode, it remains a valid
approximate mode as the right end of the query range increases until j = 19
at which point the actual mode c occurs 11 times (Fc(a1, . . . , a19) = 11). Since

1 We use frequency and the number of occurrences interchangeably throughout the
paper.
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A

      B 1,b 10,a 19,c

b a b a c c a c a a c c c c b c c c c b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 1. α = 1/2. A lookup table of size 3 is used for answering queries a1, . . . , aj ,
j = 1, . . . , 20. For example, a is an approximate mode of a1, . . . , a15 because a occurs
at least 5 times in the query range (Fa(a1, . . . , a15) = 5) while no other element occurs
more than 10 times until j = 19 (Fc(a1, . . . , a19) = 11)

no other element (a or b) occurs more than or equal to half of the actual mode
(Fa(a1, . . . , a19) = 5, Fb(a1, . . . , a19) = 3), c is now the only approximate mode
until j = 20. Since an approximate mode remains valid until another element
occurs more than 1/α times the current approximate mode, the number of ap-
proximate modes that have to be stored is much less than the number of elements
of the original list. As shown in the example of Figure 1, instead of storing the
complete original array of 20 elements, a table of 3 approximate modes is used
to answer all approximate range mode queries a1, . . . , aj , 1 ≤ j ≤ 20.

Given an approximation factor α, all approximate range mode queries with a1
being the left end: a1, . . . , aj (1 ≤ j ≤ n) can be answered using O(log 1

α
n) stor-

age space. The data structure is a lookup table B = ac1 , . . . , acm
(1 ≤ c1 < c2 <

. . . < cm ≤ n) in which we store m approximate modes. The first entry is always
a1 (c1 = 1). The second entry ac2 is the first element in A that occurs �1/α�
times, i.e., Fac2

(a1, . . . , ac2) = �1/α� and Fac2
(a1, . . . , ac2) > Fai(a1, . . . , ac2) for

∀i = c2. In general, the kth entry in the table is the first element in A that occurs
�1/αk−1� times in the sublist as the right end of the query range increases. Note
that ack

is an approximate mode of a1, . . . , aj for any ck ≤ j < ck+1 since ack
oc-

curs at least �1/αk−1� times in a1, . . . , aj (Fack
(a1, . . . , aj) ≥ Fack

(a1, . . . , ack
) =

�1/αk−1�), while no other element occurs more than 1/αk times in the same
range (Fx(a1, . . . , aj) < Fck+1(a1, . . . , ack+1) = �1/αk�).

The last approximate mode in the table, acm
, occurs at least �1/αm−1� times

in a1, . . . , an. It follows immediately that the number of approximate modes
stored in the lookup table m is at most log 1

α
n+ 1.

To answer approximate range mode queries in the range a1, . . . , aj , binary
search is used to find in O(log log 1

α
n) time the largest ck that is less than or

equal to j and output ack
as the answer.

Lemma 1. There is a data structure of size O(log 1
α
n) that can answer approx-

imate range mode queries in the range a1, . . . , aj (1 ≤ j ≤ n) in O(log log 1
α
n)

time.

An immediate application of Lemma 1 is a data structure for answering ap-
proximate range mode queries with arbitrary ends. The data structure is a collec-
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tion of n lookup tables (Ti, i = 1, . . . , n), one table for each left end. An auxiliary
array of n pointers is used to locate a table in O(1) time. A query ai, . . . , aj can
be answered by first locating table Ti in O(1) time, and then searching in Ti to
find the approximate mode of ai, . . . , aj , which takes O(log log 1

α
n) time since Ti

contains at most O(log 1
α
(n− i)) = O(log 1

α
n) approximate modes.

Corollary 1. There is a data structure of size O(n log 1
α
n) that can answer

approximate range queries in O(log log 1
α
n) time.

2.1 An Improvement Based on Persistent Search Trees

We have seen that by maintaining a lookup table Ti of size O(log 1
α
n) for each

left end i (1 ≤ i ≤ n) and using O(n log 1
α
n) total storage space, any approximate

range mode query in the range ai, . . . , aj can be answered in O(log log 1
α
n) time.

Given a fixed left end i, storing an answer for each right end j is not necessary
since the answer to the query changes less frequently as j varies. The approximate
modes of two query ranges with adjacent right ends are unlikely to be different.
In this section, we pursue this idea and show that storage of a complete lookup
table for each left end is not necessary because of the similarity between two
tables with adjacent left ends.

To see how the approximate range mode changes gradually as the two ends
of a query range move, we need a systematic way to keep track of the range
within which the current approximate mode remains a valid approximation of
the actual mode and its number of occurrences in that range. As the query range
changes, the frequency of the current approximate mode may also change. Once
it drops below a predetermined threshold value (flow, the calculation of which
will be discussed next), a new approximate mode is chosen and the query range
updated.

As shown in Table 1, each entry in the lookup table is a 5-tuple (flowr
, fhighr

,
qr, ansr, fansr

). Given an approximation factor α, [flowr
, fhighr

] are precom-
puted for r = 1, . . . , 2�log 1

α
n� and remain the same for all tables.

As noted before, the ith table Ti corresponds to all the range queries with the
same left end i. A counter is set for each element to keep track of its frequency
as the right end j varies. Given the fixed left end i, as the right end j proceeds,

Table 1. flow1 = 1, fhigh1 = 1, flowr+1 = fhighr
+ 1, fhighr+1 = �flowr /α� + 1,

F (ai, . . . , aqr ) = fhighr
, fansr = Fansr (ai, . . . , aqr ), flowr ≤ fansr ≤ fhighr

Frequency Range Query Range Answer

...
[flowr, fhighr

] qr (ansr, fansr )
[flowr+1, fhighr+1 ] qr+1 (ansr+1, fansr+1)

...
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ansr is the first element whose frequency in ai, . . . , aj reaches fhighr
, and qr+1

is the rightmost point up to which ansr remains a valid approximate mode, i.e.,
no other element has a frequency higher than fhighr

/α. Given a query ai, . . . , aj

with qr ≤ j < qr+1, ansr is a valid approximate mode since its frequency is
at least fhighr while no other element has a frequency higher than or equal to
fhighr+1 − 1 = �flowr

/α�. To see how the subsequent tables are built based on
Ti with minimum number of changes, the right end of the query range is fixed,
as the left end of the query range proceeds, ansr’s frequency may decrease, but
it remains a valid approximate mode as long as fansr

≥ flowr
and it is copied

to the next table along with a possibly smaller fansr
(Note that fansr

is needed
only for bookkeeping purposes). The only time that ansr must change for a table
is when its frequency drops below flowr . At this point we update ansr and the
new approximate mode is the first element whose frequency reaches fhighr with
respect to the current left end of query range. The query range qr is also updated
to reflect the change on the approximate mode (Fansr

(ai, . . . , aqr
) = fhighr

).
Table 2 shows the data structure for answering approximate range mode

queries on the same list as in Figure 1. For example, to look up the approximate
mode of a4, . . . , a12, we search in T4 and find the entry with the largest qr
that is smaller than 12: {[4, 5], 10, (a, 4)}. This tells us that, in the sequence of
a4, . . . , a12, a occurs at least 4 times (Fa(a4, . . . , a12) ≥ Fa(a4, . . . , a10) = 4) and
no element occurs more than 8 times (Fx(a2, . . . , a12) ≤ F (a2, . . . , a17)− 1 = 8).

After T1 is built, Ti (i ≥ 2) is built based on Ti−1 with necessary updates.
The number of updates made is given by the following lemma.

Lemma 2. If the rth row of the table is updated in Ti, then it does not need to
be updated in Tk for any i < k < i+ 1/α�r/2�.

Proof. When the rth row is updated in Ti, we set ansr to be the first element
such that Fansr (ai, . . . , aqr ) = fhighr . Its frequency fansr is initially fhighr in Ti.
Although fansr

may decrease as i increases, ansr does not need to be updated
again until fansr

drops below flowr
, which takes at least fhighr

− (flowr
− 1) =

fhighr
− fhighr−1 = 1/α�r/2� steps.

Note that there are no more than 2�log 1
α
n� rows in a table and every time

we build a new table, the first row needs to be updated. Lemma 2 shows that
the rth (r ≥ 2) row changes no more than α�r/2�n times during the construction
of all n tables. The total number of updates we have to make is given by the
following theorem.

Theorem 1. The total number of updates we have to make is O(n/(1− α)).

Proof. Total number of updates ≤ n+
∑2
log 1

α
n�

r=2 α�r/2�n = O( n
1−α ).

Theorem 1 says that, the majority of the table entries can be reconstructed by
referring to other tables. In other words, although n lookup tables are needed to
answer approximate range mode queries, many of them share common entries. A
persistent search tree [8] is used to store the tables efficiently. It has the property
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Table 2. An example showing the data structure for answering 1/2-approximate range
mode queries on a list of 20 elements. Updates are in bold

Ti T1 T2 T3 T4 T5

ai b a b a c
[1, 1] 1, (b, 1) 2, (a, 1) 3, (b, 1) 4, (a, 1) 5, (c, 1)
[2, 3] 7, (a, 3) 7, (a, 3) 7, (a, 2) 7, (a, 2) 8, (c, 3)
[4, 5] 10, (a, 5) 10, (a, 5) 10, (a, 4) 10, (a, 4) 12, (c, 5)
[6, 9] 17, (c, 9) 17, (c, 9) 17, (c, 9) 17, (c, 9) 17, (c, 9)

[10, 13] 20, (c, 11) 20, (c, 11) 20, (c, 11) 20, (c, 11) 20, (c, 11)

Ti T6 T7 T8 T9 T10

ai c a c a a
[1, 1] 6, (c, 1) 7, (a, 1) 8, (c, 1) 9, (a, 1) 10, (a, 1)
[2, 3] 8, (c, 2) 10, (a, 3) 10, (a, 2) 10, (a, 2) 13, (c, 3)
[4, 5] 12, (c, 4) 14, (c, 5) 14, (c, 5) 14, (c, 4) 14, (c, 4)
[6, 9] 17, (c, 8) 17, (c, 7) 17, (c, 7) 17, (c, 6) 17, (c, 6)

[10, 13] 20, (c, 10) — — — —

Ti T11 T12 T13 T14 T15

ai c c c c b
[1, 1] 11, (c, 1) 12, (c, 1) 13, (c, 1) 14, (c, 1) 15, (b, 1)
[2, 3] 13, (c, 3) 13, (c, 2) 16, (c, 3) 16, (c, 2) 18, (c, 3)
[4, 5] 14, (c, 4) 17, (c, 5) 17, (c, 4) 19, (c, 5) 19, (c, 4)
[6, 9] 17, (c, 6) 19, (c, 7) 19, (c, 6) — —

[10, 13] — — — — —

Ti T16 T17 T18 T19 T20

ai c c c c b
[1, 1] 16, (c, 1) 17, (c, 1) 18, (c, 1) 19, (c, 1) 20, (b, 1)
[2, 3] 18, (c, 3) 18, (c, 2) 19, (c, 2) — —
[4, 5] 19, (c, 4) — — — —
[6, 9] — — — — —

[10, 13] — — — — —

that the query time is O(logm) where m is the number of entries in each table,
and the storage space is O(1) per update. In the case of approximate range
mode queries, although each table can have as many as 2�log 1

α
n� entries, many

tables share the same entries and the number of different nodes in the persistent
tree is O(n/(1 − α)), one for each update, and the query time for a node is
O(log log 1

α
n).

To build the search tree, we need to keep track of the frequency of each
element as query range varies. The idea presented in [7] leads to an algorithm
that maintains a counter for each element and the total preprocessing time is
O(n log 1

α
n+ n log n).
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Theorem 2. There exists a data structure of size O(n/(1−α)) that can answer
approximate range mode queries in O(log log 1

α
n) time, and can be constructed

in O(n log 1
α
n+ n log n) time.

2.2 Lower Bounds

Next we show there is no faster worst case algorithm to compute the approximate
mode for any fixed approximation factor α. To see this, let A be a list of n/�1/α�
elements and B = A . . . A = b1, . . . , bn is a list of length n obtained by repeating
A �1/α� times. The problem of testing whether there exist two identical elements
in A (also called element uniqueness) can be reduced to asking if the mode of
B occurs more than �1/α� times. In the case of approximate range mode query,
the answer to query b1, . . . , bn is an element whose frequency is greater than 1
if and only if the actual mode of B occurs more than �1/α� times.

In the algebraic decision tree model of computation, the running time of
determining whether all the elements of A are unique is known to have a com-
plexity of Ω(n log n) [4]. However, this problem can also be solved by doing a
single approximate range mode query b1, . . . , bn after preprocessing B, which
implies the same lower bound holds for approximate range mode queries.

Theorem 3. Let P (n) and Q(n) be the preprocessing and query times, respec-
tively, of a data structure for answering approximate mode queries, we have
P (n) +Q(n) = Ω(n log n).

On the other hand, Ω(n) storage space is required by any data structure
that supports approximate range mode queries since the original list can be
reconstructed by doing queries (a1, a1), (a2, a2), . . . , (an, an), regardless of what
value α is.

2.3 Constant Query Time

Yao [13] (see also Alon et al [1]) showed that if a query ai, . . . , aj can be answered
by combining answers of queries ai, . . . , ax and ax+1, . . . , aj in constant time,
then Θ(nλ(k, n)) time and space is both necessary and sufficient to answer range
queries in at most k steps. We adapt the same approach to develop constant
query time data structures for some special cases of approximate range mode
queries. Namely, the approximation factor α = 1/k where k is some positive
integer.

The following lemma says that, if we can partition the range ai, . . . , aj into
k intervals and we know the mode of each interval, then one of these is an
approximate mode, for α = 1/k.

Lemma 3. If {B1, . . . , Bk} is a partition of ai, . . . , aj then maxpF (Bp) ≥
F (ai, . . . , aj)/k.

Proof. By contradiction. Otherwise for any element x we have Fx(ai, . . . , aj) =∑k
p=1 Fx(Bp) ≤ k ×maxpF (Bp) < F (ai, . . . , aj).
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Yao [13] and Alon et al [1] gave an optimal scheme of using a minimum set
of intervals such that any range ai, . . . , aj can be covered by at most k such
intervals.

Lemma 4. (Yao [13], Alon et al [1]) There exists a set of O(nλ(k, n)) intervals
such that any query range ai, . . . , aj can be partitioned into at most k of these
intervals. Furthermore, given i and j, these intervals can be found in O(k) time.

Given Lemma 3 and Lemma 4, we immediately obtain a constant query time
solution to approximate range mode queries with approximation factor 1/k. By
precomputing the mode of each interval, a query can be answered by first fetching
the partition of the query range, which is a set of at most k intervals, and then
outputting the one with the highest frequency among k modes of these intervals.

Theorem 4. There exists a data structure of size O(nλ(k, n)) that can answer
approximate range mode in O(k) time, for α = 1/k.

The results in Theorem 4 can be further improved using a table lookup
trick for k ≥ 4. We partition the list into n/ log n blocks of size log n, Bi =
a(i−1) log n+1, . . . , ai log n, i = 1, . . . , n/ log n. By Lemma 4, there exists a set of
O((n/ log n)λ(2, n/ log n)) = O(n) intervals such that any range with both ends
at the boundaries of the blocks can be covered with at most 2 of these intervals.
The exact modes of these intervals are precomputed. Inside every block, exact
modes of 2 intervals are precomputed for each element, one interval is between
the element and the beginning of the block and the other interval between the
element and the end of the block. Any query range that spans more than one
block can be partitioned into at most 4 intervals. The first one is the (possibly
partial) block in which the range starts; the last one is the the (possibly partial)
block in which the range ends and the other (at most) two intervals in between
cover all the remaining blocks (if any). Of these intervals the modes are all pre-
computed, and the one with the highest frequency is a 1/4-approximation of the
actual mode.

It remains to show that a query within a block can also be answered in O(1)
time. This is done by recursively partitioning the logn block into logn/ log log n
blocks of size log log n. The same method above is used to preprocess these
blocks, and the result is a data structure of O(n) size that can answer any query
that spans more than one log log n-block in O(1) time.

To answer queries within a log logn-block, a standard data structure trick
[9] of canonical subproblems is used. Note that we can normalize each block by
replacing each element with the index of its first occurrence within the block.
Because such index is a non-negative integer that is at most log log n and each
block consists of log logn such values, there are at most (log log n)log log n different
blocks. Among all n/ log log n blocks of size log log n, many are of the same
type. Thus, preprocessing of each block is unnecessary, and storage space can be
reduced by preprocessing a block once and reusing the results for all blocks of
the same type. The data structure used is a log log n× log log n matrix that can
answer range mode query in constant time. All the queries in blocks of the same
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type are done in the same matrix. There are at most (log logn)log log n possible
matrices which require O((log logn)log log n(log log n)2) = o(n) storage space.

Theorem 5. There exists a data structure of size O(n) that can answer approx-
imate range mode queries in O(1) time, for α = 1/4.

3 Approximate Range Median Queries

In this section, we consider approximate range median queries on a list of com-
parable elements A = a1, . . . , an. Given an approximation factor 0 < α < 1, our
task is to preprocess A so that, given indices 1 ≤ i ≤ j ≤ n, we can quickly
return an element of ai, . . . , aj whose rank is between α × �(j − i + 1)/2� and
(2− α)× �(j − i+ 1)/2�.

To simplify the presentation we assume n = 2d for some integer d ≥ 1.
Generalization to arbitrary n is straightforward. As shown in Figure 2, d levels
of partitions are used. In level i, the list is partitioned into 2i non-overlapping
blocks of size n/2i. Exact medians of sublists with both ends at the boundaries
of the blocks (up to 2�2α/(1 − α)� blocks away) are precomputed. The idea
behind our algorithm is that, if a query ai, . . . , aj spans many blocks, then the
contribution of the first and last block is minimal and can be ignored. Instead,
we could simply answer the (precomputed) median of the union of the internal
blocks. On the other hand, since we are using many different block sizes, we
can choose a partition level so that ai, . . . , aj spans just enough blocks for the
strategy above to give a valid approximation. This ensures that we do not have
to precompute too many medians.

At the lowest level, a1, . . . , an is partitioned into n blocks each consisting of a
single element. We precompute for each i = 1, . . . , n all the medians of ai, . . . , aj ,
for i ≤ j ≤ i+ 2�2α/(1−α)�− 1. This enables us to answer queries of length no
more than 2�2α/(1−α)� inO(1) time usingO(n/(1−α)) space. To answer queries
of length greater than �2α/(1−α)�−1, we search in a higher level where the query
spans at least �2α/(1 − α)� but no more than 2�2α/(1 − α)� complete blocks.
Suppose the query spans �2α/(1− α)� ≤ c ≤ 2�2α/(1− α)� complete blocks in
level i, let l denote the length of the query, we have cn/2i ≤ l < (c+2)n/2i. The
median of the union of these c blocks is precomputed and its rank in the query
range is at least cn/2i+1 ≥ αl/2 and at most cn/2i+1 +(l− cn/2i) ≤ (2−α)l/2,
in other words, it is an α-approximate median of the query range.

In the subsequent subsections we give the preprocessing time, storage space
and query time of our data structure for answering approximate range median
queries.

3.1 O(n log n/(1 − α)2) Preprocessing Time

We preprocess A = a1, . . . , an and build d lookup tables as follows. To build Ti

(1 ≤ i ≤ d), we partition A into 2i blocks each of size n/2i: Bij = a(j−1)×n/2i+1,
. . . , aj×n/2i , j = 1, . . . , 2i. Ti has 2i entries (Tij , j = 1, 2, . . . , 2i), each corre-
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 12 11 101 15 2 6 13 7 14 16 8 5

6,8 8Level 1

7,8 8Level 2

Level 3

Level 4

6,7,8

4,9,8 14,8 5

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

3,3,10,6

11,6,7,8

1,10,6,710,6,7,7 2,6,6,7 7,7,9,8

9 4

Fig. 2. α = 1/2. For each block up to 2�2α/(1−α)� = 4 medians are precomputed. For
example, associated with the 2nd block in level 3 are 4 medians, each corresponds to a
union of up to 4 consecutive blocks: 1 = Median(B32); 10 = Median(B32

⋃
B33);

6 = Median(B32

⋃
. . .
⋃

B34); 7 = Median(B32

⋃
. . .
⋃

B35). Note that a 1/2-
approximate range median query that spans more than 4 complete blocks also spans
at least 2 complete blocks in the next higher level and therefore can be answered in
a higher level with sufficient accuracy. Range median queries are answered by look-
ing in the level where the query range spans just enough number of complete blocks.
For example, query a2, . . . , a11 spans 4 complete level 3 blocks (B32

⋃
. . .
⋃

B35) but
only 1 complete level 2 block (B22). Therefore, the 4th entry in the 2nd level 3 block
(T32(4) = Median(B32

⋃
. . .
⋃

B35) = 7, whose rank in a2, . . . , a11 is 4) is output as
the approximate median, while the rank of the actual median is 5 in the sublist of 10
elements

sponds to a block Bij and contains a pointer to a list of 2�2α/(1 − α)� ele-
ments of A: Tij

(k) = Median(Bij

⋃
. . .
⋃
Bij+k−1), k = 1, . . . , 2�2α/(1 − α)�.

Median(Bij

⋃
. . .
⋃
Bij+k−1) is the median of Bij

⋃
. . .
⋃
Bij+k−1 , which can be

computed in O(kn/2i) time [5]. There are logn tables to be computed. It follows

that the total preprocessing time is
∑log n

i=1
∑2i

j=1
∑2
 2α

1−α �
k=1 O(kn

2i ) = O
(

n log n
(1−α)2

)
.

3.2 O(n/(1 − α)) Storage Space

The data structure for answering approximate range median queries is a set of
log n lookup tables. Each table Ti (1 ≤ i ≤ log n) has O(2i) entries and each
entry is a list of at most 2�2α/(1 − α)� precomputed range medians, the total
space needed to store all log n tables is

∑log n
i=1 O(2iα/(1− α)) = O(nα/(1−α)) =

O(n/(1− α)).

3.3 O(1) Query Time

Next we show how to compute an approximate range median of ai, . . . , aj .

1. Compute the length of the query l = j− i+ 1, then locate table Tp in which
to continue the search: p = �log 2αn

(1−α)l�.
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2. Compute bi = � i2p

n � and bj = � j2p

n �. Since p = �log 2αn
(1−α)l� < log 2αn

(1−α)l +1 =

log 4α
(1−α)l , we have 2p < 4αn

(1−α)l and bj − bi = � j2p

n � − �
i2p

n � ≤
(j−i)2p

n ≤
4(j−i)α
(1−α)l ≤

4α
1−α . In other words, Median(Bpbi

⋃
. . .
⋃
Bpbj

) is stored in a list
to which a pointer is stored in Tpbi

.
3. Output Tpbi

(bj − bi) = Median(Bpbi

⋃
. . .
⋃
Bpbj

) as the answer.

Because each of the three steps above takes O(1) time, the time required for
answering the approximate range median query is O(1).

Theorem 6. There exists a data structure of size O(n/(1−α)) that can answer
approximate range median queries in O(1) time, and can be built in O(n log n/(1−
α)2) time.
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Abstract. We give here a new, topological, definition of automata that
extends previous definitions of probabilistic and quantum automata. We
then prove in an unified framework that deterministic or non-
deterministic probabilistic and quantum automata with an isolated
threshold recognize only regular languages.

Keywords: Finite Automata, Formal Languages, Probabilistic
Automata, Quantum Automata.

1 Introduction

A result in probabilistic automata theory states that any language accepted with
an isolated threshold λ (no word is accepted with a probability falling in some
fixed neighborhood of λ) is a regular language [1]. The same fact also surprisingly
holds for quantum automata [2, 3].

In fact, the two proofs are very similar, and it is tempting to generalize them
to many others models of automata. Bozapalidis [4] gives such a generalization,
considering automata as vector spaces on which the monoid Σ� acts linearly.
This work allows him to give a unified proof of the fact that the two previous
models of automata recognize only regular languages when limited to isolated
threshold. However, no result about non-deterministic automata has been ob-
tained in this way.

We will provide here a new way to define automata, based on some topo-
logical considerations, which will extend naturally quantum and probabilistic
automata. We will then prove how some properties about topological spaces
(mainly compactness and spaces with finitely many components) ensure that lan-
guages accepted by separation, the topological equivalent on an isolated thresh-
old, are regular.

The beauty of topological spaces is that the notion of non-deterministic au-
tomata can be defined naturally, and the determinization process of classical
finite automata is easy to transpose: instead of non-empty sets, which have no
special properties for topological spaces, we will use non-empty compact sets. We
will then see that the fundamental property is also true for non-deterministic
quantum or probabilistic automata: they accept only regular languages when
limited to isolated threshold. This result is new for quantum automata, and
provide an easier proof than [5] for probabilistic automata.
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2 Topological Automata

We will assume that the reader is familiar with the classical theory of formal
languages and finite automata, in particular the Myhill-Nerode theorem. We
refer the reader to [6] for more details. The empty word will be denoted by ε.

Many models of automata behave in the same way: from an initial configura-
tion, the automata flows through configurations by reading letters. When the last
letter is read, we decide if the word is accepted by observing the configuration.
We translate here this procedure in a topological fashion.

2.1 Definitions

Definition 1. A class of automata is a tuple (O, C,M) where

– O is a topological monoid : O is a metric space and also a monoid for which
the multiplication ◦ is a continuous map. O is called the set of operators.

– C is a metric space; O right acts continuously on C. The set C is called the
set of configurations. The action will be denoted �.

– M is a set of continuous maps from C to R. M is called the set of measures.
Furthermore, for each m ∈M, and each operator o ∈ O, the map c �→ m(c�o)
is in M.

We will now see how the classical definitions of automata fit in this framework

– The class of (deterministic) finite automata with n states is defined by :
• The set of configurations is C = {1 . . . n} also written Q.
• The set of operators O is the set of maps from Q to Q. O is a monoid

for the multiplication (f ◦ g) : c �→ g (f (c)).
O right acts canonically on C : � : (c, f) �→ f(c)

• The set of measures M is the set of characteristic functions of (non-
empty) subsets of Q.

All the sets are used with the discrete topology. As all the metric spaces
defined are finite, all maps are obviously continuous.

– The class of probabilistic automata with n states is defined as follows
• The set of configurations is the set of row n × 1 real vectors vT with

positive coefficients and such that
∑

vi = 1
• The set of operators is the set of n× n stochastic matrices. O right acts

canonically on C : � : (vT ,M) �→ vTM
• The set of measures M is the set of maps vT �→ vT w for all column

vectors w with coefficients in [0, 1].
All involved spaces are naturally used with the underlying topology from Rn

and Rn2
, so that all previously defined maps are continuous.

– We define exactly in the same manner the class of (Measure-Once) quantum
automata [2] with n states : C is the set of n×1 vectors of euclidean norm 1,
O is the set of n× n unitary matrices, M is the set of maps vT �→ ‖vTP‖2
for all projection matrices P.

The definition of an automaton is now natural :
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Definition 2. A deterministic automaton of a class (O, C,M) over an alphabet
Σ is given by :
– A configuration c0 of C called the initial configuration
– An operator Xi ∈ C for each i ∈ Σ
– A measure m ∈M

Definition 3. Given an automaton A = (c0, (Xi)i ,m), the value of a word ω
is V alA(ω) = m (c0 �Xω), where Xω denotes Xω1 ◦ · · · ◦ Xω|ω| (Xε is the unit
of O)

These definitions are coherent in the sense that the value of a (probabilis-
tic/quantum) finite automaton is precisely its probability acceptance.

An automaton of a class does in fact not depend on all the class : The set
of configurations A may visit is the set {c0Xω,ω ∈ Σ�} which may be not all
the configurations. This may be the case even for some finite automaton where
some states cannot be reached. We now define the purged automaton :

Definition 4. Given an automaton A = (c0, (Xi)i ,m) of a class (O, C,M), the
domain of A, denoted by Dom(A) is the class defined by

– The set of operators Ô is the closure of the set {Xω,ω ∈ Σ�} with the induced
topology from O

– The set of configurations Ĉ is the closure of c0 � Ô with the induced topology
from C.

– The set of measures M̂ is given by the maps c �→ m(c � o) for o ∈ Ô

The purge of A is the automaton Â = (c0, (Xi)i ,m
′) of the class Dom(A)

where m′ is the restriction of m to Ĉ.

The class Dom(A) is important as every property about the automata A will
depend on Dom(A) rather than on its class. Note that we use in the definition
the closure of the sets rather than the sets themselves. This is done so that
the various topological spaces preserve some properties : if C is compact (resp.
complete), this is also the case of Ĉ. Note also that for a purged automaton, the
set {Xu, u ∈ Σ�} is by construction dense in Ô. This fact will be useful later.

2.2 Recognized Languages

We may now define numerous definitions for recognizing languages , based on
the usual definitions for probabilistic and quantum automata :

Definition 5. Let L be a language and A be an automaton.

– L is said to be recognized by A with strict threshold λ if L is the set of words
accepted with a value strictly greater than λ : ω ∈ L ⇐⇒ V alA(ω) > λ.

– L is said to be recognized by A with threshold λ if L is the set of words
accepted with a value greater than λ : ω ∈ L ⇐⇒ V alA(ω) ≥ λ.

– L is said to be recognized by separation by A if there exists two disjoints
closed sets A and A� such that
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• ω ∈ L =⇒ V alA(ω) ∈ A,
• ω ∈ L =⇒ V alA(ω) ∈ A�,

– If the sharper condition ∀x ∈ A∀y ∈ A�, |x − y| > ε is verified for some
ε > 0, then L is said to be recognized by A with (bounded) error ε.

The very definition of a class of automata permits us to state some closure
properties for these languages.

Lemma 1. Let A be an automaton of a class C. Then

– For all words u ∈ Σ�, there exists an automaton B of the class C such that
V alB(ω) = V alA(uω)

– For all words v ∈ Σ�, there exists an automaton B of the class C such that
V alB(ω) = V alA(ωv)

– For every alphabet Δ and every morphism h from Δ� to Σ�, there exists an
automaton B of C such that V alB(ω) = V alA(h(ω))

Proof. Write A = (c0, (Xi)i∈Σ ,m) and consider the automata

– B = (c0 �Xu, (Xi)i∈Σ ,m),
– B = (c0, (Xi)i∈Σ ,m

′) with m′(x) = m(x �Xv)
– B = (c0, (Yi)i∈Δ,m) with Yi = Xh(i). ��

Corollary 1. The class of languages recognized (with one of the previous defi-
nitions) by a class of automata is closed by quotients and inverse morphism.

Furthermore, it is trivial to see that the class of languages recognized by
separation or separation with error ε is closed by complementation.

2.3 Regular Languages

We will now give sufficient conditions for a language accepted by a topologi-
cal automaton to be regular. The separating condition will be in this context
precious. We have indeed the first theorem :

Theorem 2. Let L be a language recognized by separation by an automaton
A = (c0, (Xi)i ,m). If {Xi, i ∈ Σ�} has finitely many connected components then
L is regular.

{Xi, i ∈ Σ�} stands for the closure of {Xi, i ∈ Σ�}.

Proof. We can always change A into Â. In this context,

– {Xi, i ∈ Σ�} is dense in O, so that for all o ∈ O,m(c0 � o) ∈ A ∪A�.
– O has finitely many connected components.

We will show that L has finitely many left quotients u−1L = {v|uv ∈ L}.
For every X ∈ O, set M(X) = {o|m(c0 �X � o) ∈ A}. It is easy to see that if

M(Xu) = M(Xw) then u−1L = w−1L. It is then sufficient to prove that M(X)
can take only finitely many values.
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Now, M(X) is closed as the preimage of a closed set by a continuous map.
However, M(X) is also open as its complementary is by separation the set
{o|m(c0 �X � o) ∈ A} = {o|m(c0 �X � o) ∈ A�}. The set M(X) is then a clopen
set, hence a union of connected components. As there are finitely many compo-
nents, this concludes the proof. ��

As any compact group has finitely many components, this gives an alternative
proof of the fact that Measure-Once quantum automata recognize only regular
languages with an isolated threshold.

However, the following theorem will be in practice more useful

Theorem 3. Let L be a language recognized by separation by an automaton
A = (c0, (Xi)i ,m). If {Xi, i ∈ Σ�} is compact (that is the monoid generated by
the Xi is relatively compact), then L is regular.

Proof. For compact sets, separation is the same as separation with some error ε.
We will use this alternate formulation.

We might use the same ideas, but we will here rather proceed differently to
capture precisely the role of ε. This will give bounds in the next theorem.

We will use the Myhill-Nerode theorem[6] and show that the relation

uRv ⇐⇒ (∀t, ut ∈ L ⇐⇒ vt ∈ L)

has finitely many classes.
We again change A into Â. The hypothesis then implies that C and O are

compact.
Now consider the family of functions from C to R {fx : c �→ m(c � x), x ∈ O}.

As O is compact, this family is equicontinuous, and even uniformly equicontin-
uous, as C is compact : For every ε > 0 there exists δ such that the property
∀c, c′ ∈ C,∀x ∈ O, d(c, c′) ≤ δ =⇒ |m(c � x)−m(c′ � x)| ≤ ε holds.

We use this assertion with the ε given by the fact that L is recognized in an
isolated way.

Now, let u et v be two words such that u R v. There exists t such that
ut ∈ L, and vt ∈ L, or conversely. Then |m(c0 �Xut)−m(c0 �Xvt)| > ε, that is
|m((c0 �Xu) �Xt)−m((c0 �Xv) �Xt)| > ε. Hence we have d(c0 �Xu, c0 �Xv) > δ.

We now just have obtained the following result : If u et v are not in the same
class, then d(c0 �Xu, c0 �Xv) > δ.

Now, by compactness, we cover C with finitely many balls of radius δ/2. Then
if u et v are such that c0 �Xu and c0 �Xv are in the same ball, they must be in
the same class. Therefore there are finitely many classes. ��

A closer look at the proof shows that we can have a somehow stronger result:

Theorem 4. Let (O, C,M) be a class of automata. If O and C are compact and
M is equicontinuous, then for every ε there exists a p such that any language
accepted by separation with error ε by an automaton of this class is regular and
its minimal automaton has less than p states.
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Indeed, we now have that the family of functions from C to R given by {c �→
m(c � x) : x ∈ C,m ∈M} is uniformly equicontinuous; given δ, we can thus set
p to be the cardinal of a minimal covering of C by balls of radius δ/2.

This stronger property is verified by classical, probabilistic and quantum
automata with n states. We can furthermore show that we can take p(n, ε) = n
for classical automata, p(n, ε) = �(2/ε)n� for probabilistic automata. A similar
bound has been obtained for quantum automata [7].

We will give here an example to explain why the hypotheses are necessary.
Take the class of automata given byO = R, where the multiplication operator

◦ is the usual addition over R, C = R where O acts naturally over C by addition,
and the set of measures is the set of continuous maps from R to R. Now, let
A be the automaton defined by Xa = 1, Xb = −1, c0 = 0, m : x �→ x. Note
that {Xi}� = Z is not relatively compact and has infinitely many connected
components.

Obviously, V alA(ω) = |ω|a − |ω|b, where for i ∈ Σ, |ω|i is the number of
occurrences of i in ω. L = {ω : |ω|a = |ω|b} is therefore recognized by separation
by A but is not regular.

3 Non-deterministic Automata

We will see how non-deterministic automata fit in our framework, and how the
proof that the recognized languages are regular can be easily obtained by means
of the Hausdorff metric on compact sets.

3.1 Definition

As it is the case for classical finite automata, we can now define many notions
of non-determinism :

– We may add so-called E-transitions.
– Instead of having just one operator per letter, we may have several ones.

We will show that adding E-transitions still produces regular languages. This
is still true for the second notion of non-determinism, and the proof is very
similar to the proof given here.

Let us define precisely this notion.

Definition 6. A non-deterministic automaton A over Σ of a class of automata
is given by a deterministic automaton B over Σ ∪{E} where the value of a word
ω ∈ Σ is now defined as :

V alA(ω) = suph(u)=ω V alB(u)
where h is the morphism that maps x ∈ Σ to x and E to the empty word ε.

We can express it intuitively in the following way : the automaton acts as a
normal automaton, except E-transition can occur at every step; The value of a
word is then the supremum of all values we can obtain.

We can also define the value in the following manner :
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Proposition 1. Define recursively

◦ Kε = c0 � {XE}� =
{
c0 � x : x ∈ {XE}�}

◦ for i ∈ Σ, Kvi = Kv �Xi � {XE}� =
{
c �Xi � x : x ∈ {XE}�

, c ∈ Kv

}

Then V alA(ω) = supm(Kω).

It can easily be shown that we can replace {XE}� by {XE}�. Indeed, if we
call Jω the sets obtained this way, then Kω ⊆ Jω ⊆ Kω, so that supm(Kω) =
supm(Jω).

We will now prove that if {Xi}�
i∈Σ∪{E} is relatively compact and L recognized

by separation, then L is regular.
Please note that, as the language over Σ ∪ {E} is not necessarily separated,

we can not use directly the results from the previous section.
We will in fact determinize the automaton. For classical automata, this in-

volves sets of configurations. The natural, topological equivalent will be compact
sets of configurations.

3.2 Hausdorff Metric

Unless specified, all compact sets will be taken non-empty.
There exists a natural topology on compact sets of a metric space, given by

the Hausdorff metric :

Definition 7. Given a metric space (E, d), and two non-empty compact sets K1
and K2 of E, the Hausdorff distance is defined by

dH(K1,K2) = max
x1,x2∈K1×K2

max {d(x1,K2), d(x2,K1)}

where d(x,K) is the distance of x from K : d(x,K) = miny∈Kd(x, y)

dH is a metric over the set of non-empty compact sets of E, denoted by E. This
space is called the Hausdorff metric space induced by E.

This metric extends naturally the metric d. In fact, we can “lift” the func-
tions :

Proposition 2. Let (E, d) and (F, d′) be two metric spaces, and (E, dH), (F, d′
H)

their induced Hausdorff metric spaces.
Let f : E → F be a continuous map.

Then f :
E → F
K �→ f(K) is continuous.

Similar results of this kind will be used in the following section. We will only
prove this fact, but the proof contains in substance all the other results.

Proof. First note that f takes values in F, so that f is well defined.
Let K be a compact of E and ε > 0.
For every x ∈ K, there exists δx > 0 such that if y ∈ E and d(x, y) ≤ δx,

then d′(f(x), f(y)) ≤ ε. Covering K with balls of center x and radius δx/2, we
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see by compactness that there exists δ > 0 such that if x ∈ K and y ∈ E verify
d(x, y) ≤ δ, then d′(f(x), f(y)) ≤ 2ε (Please note that we have obtained y ∈ E
and not y ∈ K).

Now, let N be a compact such that dH(N,K) ≤ δ.
Let x ∈ N . There exists y ∈ K such that d(x, y) ≤ δ, so that we obtain

d′(f(x), f(y)) ≤ 2ε. Then d′(x, f(K)) ≤ 2ε.
Let y ∈ K. There exists n ∈ N such that d(x, y) ≤ δ, so that we have

d′(f(x), f(y)) ≤ 2ε. Then d′(y, f(N)) ≤ 2ε.
Hence d′

H(f(K), f(N)) ≤ 2ε.
We have shown that for every ε > 0, there exists δ > 0 such that for every

N such that dH(N,K) ≤ δ, we have d′
H(f(K), f(N)) ≤ 2ε. ��

Now, the next important result we need is the following, whose proof can be
found in [8].

Theorem 5. The set of compact sets of a compact metric space is compact with
respect to the Hausdorff metric.

3.3 Determinization

We now have all we need to determinize our automata.
Given a class θ = (C,O,M) of automata, we define the class of θ-determinized

automata by :

– C′ are the compact sets of C with the Hausdorff metric.
– O′ are the compact sets of O with the Hausdorff metric. O′ is a monoid

for the multiplication X ◦ Y = {x ◦ y, x ∈ X, y ∈ Y } which is well defined.
O′ acts naturally over C′ : C �X = {c � x, c ∈ C, x ∈ X}. Using variants of
proposition 2, we can show easily that the multiplication and the action are
continuous maps.

– M′ is the set of functions C �→ supc∈C m(c) for m ∈ M. Again, we may
prove that these functions are continuous by similar arguments.

Given a non-deterministic automaton A = {c0, {Xi}i∈Σ , XE ,m) of the class
θ, where K = {Xi, i ∈ {E}�} is compact, we define the deterministic automaton
B of the class of θ-determinized automata by

– the initial configuration is C0 = c0 �K = {c � k, k ∈ K}
– the operators are X ′

i = Xi ◦K = {Xi ◦ k, k ∈ K}
– the measure is now m′ : C �→ supc∈C m(c)

Proposition 3. For any word ω, V alA(ω) = V alB(ω).

Proof. This is obvious using the previous definition of B and the
proposition 1. ��

We denote by ΣE the set Σ ∪ {E}. We can now conclude :

Theorem 6. Let L be a language recognized in an isolated way by a non-
deterministic automaton A = (c0, (Xi)i , XE ,m).

If {Xi, i ∈ Σ�
E} is compact, then L is regular.
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Proof. As K = {Xi, i ∈ {E}�} is compact and stable by multiplication, we can
define B, the deterministic automata corresponding to A.

Now, it suffices to show that M = {X ′
i, i ∈ Σ�} is relatively compact.

Let note E = {Xi, i ∈ Σ�
E}.

Using theorem 5, we see that E, the set of compacts of E is compact with
respect to the Hausdorff metric. Every element of M is in E, so that M is a
subset of E, hence M is compact. ��

We have in particular proven that non-deterministic probabilistic and quan-
tum automata accept only regular languages when limited to isolated acceptance.
These results are new for quantum automata; This also gives an alternative to
the proof from [5] for probabilistic automata.

Finally note that if we can cover a compact C with n balls of radius δ, it is
easy to show that we can cover the set of non-empty compact sets of C with
2n−1 balls of radius δ. We can then obtain a constructive proof of the statement.
We have proven for deterministic automata of a certain class that the number
of states is bounded by the number of balls of the set of configurations of radius
δ, where δ depends on ε. A detailed analysis of the previous proof shows that
in fact we have the same dependency over ε. That is : the number of states for
languages recognized by non-deterministic topological automata is bounded by
the number of balls of C′ of radius δ for the same δ. This is summed up in the
following theorem:

Theorem 7. Let (O, C,M) be a class of automata. If O and C are compact and
M is equicontinuous, then for every ε there exists a p such that
– any language accepted by separation with error ε by an automaton of this

class is regular and its minimal automaton has less than p states.
– any language accepted by separation with error ε by a non-deterministic au-

tomaton of this class is regular and its minimal automaton has less than
2p − 1 states.
Furthermore we can take p(n, ε) = n for classical automata, p(n, ε) = �(2/ε)n�

for probabilistic automata, where n is the number of internal states.

It would be interesting to simulate non-deterministic probabilistic or quan-
tum automata by their deterministic counterpart, and show how efficient (in term
of states) this simulation is. However, languages accepted by non-deterministic
quantum automata cannot always be accepted by deterministic quantum au-
tomata, so that this simulation is not always possible.

4 Conclusion

We have given a new definition of automata which extends the notions of classi-
cal, probabilistic or quantum automata, and have shown how some properties of
the languages they accept are just a consequence of topological properties mainly
compactness. This framework also gives us a way to deal with non-deterministic
automata, for which we have proven that they accept only regular languages by
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separation provided some compactness condition for the set of operators. This
gives an alternative simpler proof of the fact that non-deterministic probabilistic
automata recognize only regular languages by separation.

It would be interesting to see how other topological concepts fit in this frame-
work and how some may correspond to other classes of languages. A good can-
didate is locally compact spaces. However there are not that many classes of
languages which have as good characterizations as regular languages : A charac-
terization in terms of machinery is not easy to use in the context of topological
spaces.
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Abstract. We show inapproximability results concerning minimization
of nondeterministic finite automata (nfa’s) as well as regular expres-
sions relative to given nfa’s, regular expressions or deterministic finite
automata (dfa’s). We show that it is impossible to efficiently minimize
a given nfa or regular expression with n states, transitions, resp. sym-
bols within the factor o(n), unless P = PSPACE. Our inapproximability
results for a given dfa with n states are based on cryptographic assump-
tions and we show that any efficient algorithm will have an approxima-
tion factor of at least n

poly(log n) . Our setup also allows us to analyze the
minimum consistent dfa problem.

Classification: Automata and Formal Languages, Computational Com-
plexity, Approximability.

1 Introduction

Among the most basic objects of formal language theory are regular languages
and their acceptance devices, finite automata and regular expressions. Regular
expressions describe lexical tokens for syntactic specifications, textual patterns
in text manipulation systems and they are the basis of standard utilities such
as scanner generators, editors or programming languages (perl, awk, php). In-
ternally regular expressions are converted to (nondeterministic) finite automata
and the succinctness of this representation crucially determines the running time
of the applied algorithms.

Contrary to the problem of minimizing dfa’s, which is efficiently possible, it
is well known that nfa or regular expression minimization is computationally
hard, namely PSPACE-complete [10]. Jiang and Ravikumar [7] show moreover
that the minimization problem for nfa’s or regular expressions remains PSPACE-
complete, even when specifying the regular language by a dfa.

We consider the problem of approximating a minimal nfa or a minimal reg-
ular expression. In [3] it is shown that unary nfa’s are hard to approximate
and in particular efficient approximation algorithms require an approximation
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factor of at least
√

n
ln n for given nfa’s or regular expressions of size n, provided

P = NP . On the other hand, there are several approaches to nfa minimization
[1, 4, 5, 9] without approximation guarantees or running in at least exponential
time. This article explains why such guarantees cannot be expected for efficient
algorithms.

We investigate the approximation problem in two scenarios. In the first sce-
nario the language is specified by a dfa which makes proofs of inapproximability
hard, since the input is not specified concisely and thus more time compared
to concise inputs such as nfa’s or regular expressions is available. Jiang and
Ravikumar [7] ask to determine the approximation complexity of converting
dfa’s into nfa’s, and in particular ask whether efficient approximation algo-
rithms with a polynomial approximation factor exist. Corollary 1 shows that
such an approximation is at least as hard as factoring Blum integers and there-
fore efficient approximation algorithms with polynomial approximation factor
are unlikely.

We show in Theorem 1 that efficient approximation algorithms determine
regular expressions of length at least k

poly(log k) for a given dfa of size k, even if op-
timal regular expressions of length poly(log k) exist. We have to assume however
that strong pseudo-random functions exist in non-uniform NC1. The concept of
a strong pseudo-random function is introduced by Razborov and Rudich [14].
Naor and Reingold [11] show that strong pseudo-random functions exist even in
TC0, provided factoring Blum integers requires time 2Ω(nε) (for some ε > 0).

We show similar results for approximating nfa’s in Corollary 1, but now
relative to the assumption that strong pseudo-random functions exist in non-
uniform Logspace. We also apply our technique to the minimum consistent dfa
problem [8, 12] in which a dfa of minimum size, consistent with a set of classified
inputs, is to be determined.

Thus in the first scenario we follow the cryptographic approach of Kearns
and Valiant [8] when analyzing the complexity of approximation, but work
with pseudo-random functions instead of one-way functions. In the second sce-
nario we assume that the language is specified by either an nfa or a regu-
lar expression. For the unary case we improve in Theorem 3 the approxima-
tion factor from

√
n

ln n [3] to n1−δ for every δ > 0, provided P = NP and
provided we require the approximation algorithm to determine a small equiv-
alent nfa or regular expression, opposed to just determining the number of
states.

Furthermore we show a PSPACE-completeness result for approximating the
minimal size of general nfa’s or regular expressions. Specifically Theorem 4 shows
that it is impossible to efficiently minimize a given nfa or regular expression
with n states, n transitions resp. n symbols within the factor o(n), unless P =
PSPACE. The proof of Theorem 4 is based on the PSPACE-completeness of the
“regular expression non-universality” problem.

We introduce strong pseudo-random functions in section 2 and investigate
the complexity of approximating minimal regular expressions or nfa’s, relative
to a given dfa, in subsections 2.1 and 2.2. The minimum consistent dfa problem is
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considered in subsection 2.3. Finally the complexity of approximately minimizing
unary resp. general nfa’s or regular expressions, relative to a given nfa or regular
expression, is determined in section 3.

2 Pseudo-Random Functions and Approximation

We consider the question of computing small equivalent nfa’s or regular ex-
pressions for given dfa’s. Inapproximability results seem to be hard to prove,
since, intuitively, it takes large dfa’s to specify hard inputs and consequently
the allowed running time increases. Therefore we investigate the approximation
complexity for minimum nfa’s or regular expressions when given the truth table
of a function f : {0, 1}n → {0, 1} and utilize the natural proof setup of Razborov
and Rudich [14]. In particular, we utilize the concept of strong pseudo-random
functions, but replace circuits by probabilistic Turing machines and require only
a constant probability of separating pseudo-randomness from true randomness.
Obviously strong pseudo-random functions exist in our setting, provided strong
pseudo-random functions exist in the sense of Razborov and Rudich.

Definition 1. Let fn = (fs
n)s∈S be a function ensemble with functions fs

n :
{0, 1}n → {0, 1} for a seed s ∈ S and let (ri

n)i∈{1,...,22n} be the ensemble of
all n-bit boolean functions. We call fn a strong pseudo-random ensemble with
parameter ε iff for any randomized algorithm A

|prob[A(fn) = 1]− prob[A(rn) = 1]| < 1
3
,

provided A runs in time 2O(nε) and has access to fs
n, resp. ri

n, via a membership
oracle. The probability is defined by the random choices of A and the uniform
sampling of s from S, resp. the uniform sampling of i from {1, . . . , 22n}.

It is widely believed that there is some ε > 0, such that any algorithm running
in time 2O(nε) cannot factor Blum integers well on average. Naor and Reingold
[11] construct TC0 functions which are strong pseudo-random functions, pro-
vided factoring Blum integers requires time 2Ω(nε) for some ε.

Definition 2. Bn is the set of all n-bit boolean functions. We define the com-
pression km : Bn → Bm for m < n by (km(f))(x) = f(0n−mx) for x ∈ {0, 1}m.

We say, that a functional G = (Gn)n with Gn : Bn → IN separates a function
class C from random functions with thresholds t1(·) and t2(·) iff Gn(f) < t1(n)
holds for every function f ∈ C ∩ Bn, whereas Gn(ρ) > t2(n) for most functions
in Bn, i.e., |{ρ ∈ Bn|Gn(ρ) ≤ t2(n)}| = o(|Bn|) holds. Moreover we require that
Gm(km(f)) ≤ t1(n) · poly(n) for any function f ∈ C ∩Bn and any m < n.

It is not surprising that a functionalG, which separates a function class C con-
taining pseudo-random functions from random functions, cannot be efficiently
approximated. We allow randomized approximation algorithms which may even
underestimate the minimum.
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Definition 3. Let |x| be the length of input x. We say that a randomized algo-
rithm App : X → IN with approximation factor μ(|x|) for a minimization problem
opt has overestimation error ε+ = supx∈X prob[App(x) > μ(|x|) ·opt(x)] and un-
derestimation error ε− = supx∈X prob[App(x) < opt(x)]. The probabilities are
defined by the random choices of App.

We state a generic lemma for approximation algorithms on compressed inputs
allowing us to replace oracle access by truth table presentation.

Lemma 1. Assume that the functional G separates C from random functions
with thresholds t1, t2 and suppose that C contains a strong pseudo-random en-
semble with parameter ε.

Let App be a randomized approximation algorithm that approximately deter-
mines Gm(hm), when given the truth table of a function hm ∈ Bm. Then for all
l ≥ 1, if App runs in time 2O(ml) with errors ε+ + ε− < 2

3 , then App can only
achieve an approximation factor μm ≥ t2(m)

t1(ml/ε)poly(ml/ε) .

Proof. By assumption C contains strong pseudo-random functions with param-
eter ε. Let App be an algorithm which approximates Gm(fm) when given the
truth table of fm (with running time 2O(ml) for some l ≥ 1, approximation
factor 1 ≤ μm < t2(m)

t1(ml/ε)poly(ml/ε) and errors ε+ + ε− < 2
3 ). We construct an al-

gorithm A which uses App to distinguish n-bit functions in C from n-bit random
functions. We set m = �nε/l�.

A has oracle access to the input hn ∈ Bn and builds the truth table for the
restriction km(hn). Then A runs App on km(hn) and accepts (i.e. A(hn) = 1), if
App(km(hn)) ≤ t2(m), and rejects (i.e. A(hn) = 0) otherwise. So |prob[A(fn) =
1] − prob[A(rn) = 1]| = |prob[App(km(fn)) ≤ t2(m)] − prob[App(km(rn)) ≤
t2(m)]| holds, where probabilities are taken over the probabilistic choices of App
as well as the random sampling of seeds for fn, respectively the uniform random
sampling of functions rn ∈ Bn.

G separates C from random functions and hence we have Gm(km(fn)) ≤
t1(n) ·poly(n) for fn ⊆ C. Finally observe that μm · t1(n) ·poly(n) < t2(m) holds
by assumption on μm.

prob[App(km(fn)) ≤ t2(m)] ≥ prob[App(km(fn)) ≤ μm · t1(n) · poly(n)]
= 1− prob[App(km(fn)) > μm · t1(n) · poly(n)]
≥ 1− prob[App(km(fn)) > μm ·Gm(km(fn))]

and prob[App(km(fn)) ≤ t2(m)] ≥ 1 − ε+ follows. We utilize that a uniformly
sampled function rn from Bn leads to a uniformly sampled restriction from Bm.

prob[App(km(rn)) ≤ t2(m)] ≤ prob[Gm(km(rn)) ≤ t2(m)] + ε−

=
|{ρm|Gm(ρm) ≤ t2(m)}|

|Bm|
+ ε− = ε− + o(1).
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Thus |prob[App(km(fn)) ≤ t2(m)]− prob[App(km(rn)) ≤ t2(m)]| ≥ 1− ε+ −
ε−−o(1) > 1

3 holds for sufficiently largem. SinceA runs in timeO(2m)+2O(ml) =
2O(nε) this contradicts the assumption that C contains a strong pseudo-random
ensemble with parameter ε. ��

In our first applications of Lemma 1, G(f) will be the minimum length of
regular expressions, respectively the minimum size of nfa’s that accept, for some
T , the complement of

LT (f) = {xT |f(x) = 1}.

2.1 Regular Expressions and Logarithmic Formula Depth

Definition 4. A formula is a binary tree with ∧ and ∨ gates as interior nodes;
leaves are marked by labels from {x1, x1, . . . , xi, xi, . . .}. For a formula f let �(f)
be the length, i.e., the number of leaves of f . The length �(R) of a regular expres-
sion R is the number of symbols from the alphabet Σ appearing in R. The rpn-
length of a regular expression R is the number of symbols from Σ ∪{+, ◦,∗ , ε, ∅}
appearing in R, when R is written in reverse Polish notation.

Naor and Reingold [11] show that NC1 contains a strong pseudo-random
ensemble for some parameter ε > 0, provided factoring Blum integers is suffi-
ciently hard. More precisely there is some constant c and a hard pseudo-random
ensemble C1 with formula depth at most c · logm for functions in C1 ∩Bm. Thus
all functions in C1 ∩Bm have formula length at most T1(m) = mc.

We define the functional G(1) by setting G
(1)
m (fm) to equal the minimum

length of a regular expression for the complement of LT1(fm) = {xT1 |fm(x) = 1}.
We associate regular expressions with formulae and show that the length of

the regular expression is exponentially related to the depth of the formula.

Definition 5. Let f be a formula for a function f : {0, 1}m → {0, 1}. We define
the regular expression R(f) recursively as follows:

– If f = xi, then R(f) := (0 + 1)i−1 1 (0 + 1)m−i.
– If f = xi, then R(f) := (0 + 1)i−1 0 (0 + 1)m−i.
– If f = f1 ∧ f2, then R(f) := R(f1) ◦R(f2).
– If f = f1 ∨ f2, then R(f) := R(f1) ◦ (0 + 1)m·�(f2) + (0 + 1)m·�(f1) ◦R(f2).

Lemma 2. Let W = {w|∃x ∈ {0, 1}m ∧ w ∈ {x}∗} be the language of repeated
inputs of length m.

(a) L(R(f)) ∩W = {x�(f)|f(x) = 1} = L�(f)(f).
(b) For a given formula f of depth k there is a regular expression Rf which

describes the complement of L(R(f)) ∩ W . Rf has length O(4km) and can be
constructed in time poly(4km).

(c) In particular, LT1(fm) has regular expressions of length t(1)1 = O(m2c+1)
for any fm ∈ C1 ∩Bm.
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Proof. (a) can be shown by an induction on the structure of formula f .
(b) Moreover, such an induction shows that for a given formula f of depth k

the regular expression R(f) has length at most 2 ·4km and can be constructed in
time poly(4km). Observe that L(R(f)) ∩W = L(R(f)) ∪W . We check whether
the input does not consist of repetitions with the regular expression(

(0 + 1)∗ 1 (0 + 1)m−1 0 (0 + 1)∗) +
(
(0 + 1)∗ 0 (0 + 1)m−1 1 (0 + 1)∗)

and cover words of wrong length by (0+1+ε)m·�(f)−1 + (0+1)m·�(f)+1(0+1)∗.
We negate f with DeMorgan and observe that depth does not increase.

(c) Since all functions in C1∩Bm have formula depth at most c·logm, we may
assume that all these functions have formulae of depth exactly c·logm and length
exactly T1(m) = mc. Thus with part (a) LT1(fm) coincides with L(R(f)) ∩W
and, with part (b), LT1(fm) has regular expressions of length O(4c log mm) =
O(m2c+1). ��

Thus we know that (strong pseudo-random) functions of formula depth at
most c · logm have short regular expressions of length at most t1(m) = poly(m),
whereas we show next that most m-bit functions have only regular expressions
of length at least Ω(2m).

Lemma 3. The number of languages described by regular expressions of length
at most t(1)2 (m) = 2m

40 is bounded by
√

22m = o(|Bm|).

Proof. A regular expression of length at most t has rpn-length at most 6t [5].
At any position in the regular expression in reverse Polish notation there may
be one of the seven distinct symbols 0, 1,+, ◦,∗ , ε, ∅. Thus we can have at most∑

j≤6t 7j ≤ 77t ≤ 220t distinct regular expressions of rpn-length at most 6t. The

claim follows, since 220t2(m) = 220 2m

40 = 22m−1
. ��

G
(1)
m (km(fn)) ≤ t

(1)
1 (n) holds for functions fn ∈ C1 ∩ Bn, because a formula

for fn can be transformed into a formula for km(fn) of same depth. Hence as a
consequence of Lemma 2 and Lemma 3, G(1) separates C1 from random functions
with thresholds t(1)1 (m) = O(m2c+1) and t(1)2 (m) = 2m

40 .
Thus we may apply the generic Lemma 1 and obtain that efficient algorithms

approximating the length of a shortest regular expression for LT1(f) do not exist.
However we have to specify the input not by a truth table but by a dfa.

Proposition 1. Let f ∈ Bm and let T be some function of m, then there is a
dfa DT (f) with O(2m · T ) states that accepts LT (f).

Proof. The dfa DT (f) consists of a binary tree of depth m rooted at the initial
state. A leaf that corresponds to a word x with f(x) = 0 gets a self loop, a
leaf that corresponds to a word x with f(x) = 1 is starting point of a path of
length (T − 1)m that can only be followed by inputs with T − 1 repetitions of
x. Each such path leads to a rejecting state and any wrong letter on this path,
resp. any word longer than (T − 1)m (measured on the path only) leads to an
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accepting trap state. Each state is accepting, except for those already described
as rejecting. The dfa DT (f) has O(2m · T ) states. ��

Thus our first main result is now an immediate consequence of Lemma 1.

Theorem 1. Suppose that strong pseudo-random functions with parameter ε
and formula depth bounded by c · logm exist for some c.

Let App be a randomized approximation algorithm that approximately deter-
mines the length of a shortest equivalent regular expression, when given a dfa with
k states. Then for all l ≥ 1, if App runs in time 2O((log k)l) with ε+ + ε− < 2

3 ,
then App can only achieve an approximation factor μ ≥ k

poly((log k)l/ε) .

The argument shows that there are always dfa’s with optimal nfa’s of size
poly(log k), such that an “efficient” approximation algorithm can only determine
nfa’s of size k

poly(log k) . Thus the original question of Jiang and Ravikumar [7]
phrased for regular expressions instead of nfa’s, namely whether it is possible to
approximate within a polynomial, has a negative answer modulo cryptographic
assumptions.

2.2 NFA’s and Two-Way Automata of Polynomial Size

Here we use the functionals G(2) and G(3) defined by G(2)
m (fm), resp. G(3)

m (fm),
to equal the minimum number of states, resp. transitions, of an nfa recognizing
LT1(fm). We choose T1 as defined in the previous section and define t(2)1 = t

(1)
1 ,

t
(3)
1 =

(
t
(1)
1

)2
. We observe that the number of states of a minimum nfa is not

larger than the length � of an equivalent regular expression and the number of
transitions is at most quadratic in �. Thus all functions in C1 have nfa’s of “size”
at most t(2)1 , resp. t(3)1 . Moreover all but a negligible fraction of languages require
nfa’s with at least t(2)2 (m) = 2

m
2 −1 states, resp. t(3)2 (m) = 2m

20m transitions.

Lemma 4. (a) The number of languages accepted by nfa’s with at most
t
(2)
2 (m) = 2

m
2 −1 states is bounded by

√
2m+2m = o(|Bm|).

(b) The number of languages accepted by nfa’s with at most t(3)2 (m) = 2m

20m

transitions is bounded by
√

22m = o(|Bm|).

Proof. (a) Let N(k) be the number of distinct languages accepted by nfa’s with
at most k states over a two-letter alphabet. Then N(k) ≤ 2k ·22·k2

[2] and hence

N(t(2)2 (m)) ≤ 2
2 · 2

m
2 · 22·

(
2

m
2 /2
)2

= 2
m
2 · 2 2

4 ·(2(m/2))2

= 2
m
2 · 2 2m

2 =
√

2m+2m .
(b) We show that there are at most M(k) = k10k languages accepted by nfa’s

with at most k transitions over a two-letter alphabet. This establishes the claim,

if we set t(3)2 (m) = 2m

20m , since M(t(3)2 (m)) =
( 2m

20m

)10 2m

20m ≤ 210m· 2m

20m =
√

22m .
For any nfa N with s states and k transitions there is an equivalent nfa N ′

with s+ 1 states, at most 2k transitions and exactly one final state. Just add a
final state f , make every other state non-final and for every transition in N that
leads to a final state in N , add a transition to f and keep every other transition.
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There are at most
((s+1)2

2k

)2
·s2 ≤ s8k+2 distinct languages over {0, 1} accepted

by nfa’s with s states and k transitions, since this is an upper bound for the
number of possibilities to place 2k transitions for each letter of the alphabet
{0, 1} and the number of choices for the initial and the final state.

We can assume that the number of states is bounded by the number of
transitions and hence we have at most k8k+2 ≤ k10k distinct languages. ��

We apply Lemma 1 again and obtain:

Corollary 1. Suppose that strong pseudo-random functions with parameter ε
and formula depth bounded by c · logm exist for some c.

Let App be a randomized approximation algorithm that approximately deter-
mines the number of states (resp. number of transitions) of a minimum equiva-
lent nfa, when given a dfa with k states. Then for all l ≥ 1, if App runs in time
2O((log k)l) with ε+ +ε− < 2

3 , then App can only achieve an approximation factor
μ ≥

√
k

poly((log k)l/ε) (resp. μ ≥ k
poly((log k)l/ε)).

We finally mention that the assumption of strong pseudo-random functions
with small formula depth can be replaced by the weaker assumption of strong
pseudo-random functions with two-way dfa’s of polynomial size. (Observe that
two-way dfa’s of polynomial size have the power of non-uniform Logspace, which
is at least as powerful as non-uniform NC1.) We show that two-way dfa’s can
be simulated efficiently by nfa’s after repeating the input suitably often.

Lemma 5. Let m, k ∈ IN and let Am be a two-way deterministic finite automa-
ton with at most mk states. Then there is a polynomial T (m) and an nfa Nm

with O(T (m)) states that accepts the complement of

LT (Am) := {xT (m) | x ∈ {0, 1}m ∧Am accepts x }.

Proof. Obviously Am runs for at most T (m) = m ·mk steps, since no cell can
be visited twice in the same state. As shown in [13], Am on input x ∈ {0, 1}m

can be simulated by a dfa Dm with T (m) states working on input xT (m). The
nfa Nm decides nondeterministically to run Dm (with final and non-final states
interchanged) or to check whether the input is syntactically incorrect, i.e., ver-
ifying inequality or incorrect length. Nm has t1(m) = poly(m) states, resp.
transitions. ��

When applying Lemma 1, we have to first redefine the number of repetitions
to make sure that a class C2 of pseudo-random functions can be recognized by
two-way dfa’s of size mk. We therefore set T2(m) = mk+1 and are guaranteed to
find an equivalent nfa recognizing LT2(fm) (for fm ∈ C2 ∩ Bm) with t

(2)
1 (m) =

t
(3)
1 (m) = O(T2(m)) states, resp. transitions.

2.3 The Minimum Consistent DFA Problem

In the minimum consistent dfa problem, sets POS,NEG ⊆ {0, 1}∗ with POS ∩
NEG = ∅ are given. The goal is to determine the minimum size of a dfa D such
that POS ⊆ L(D) and NEG ∩ L(D) = ∅.
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We again work with T2(m) repetitions and define G
(4)
m (fm) as the mini-

mum size of a dfa accepting POS = {xT2 |fm(x) = 1} and rejecting NEG =
{xT2 |fm(x) = 0}. Observe that for any function fm∈ C2∩Bm we haveG(4)

m (fm) ≤
t
(4)
1 (m) := mk+1, since any two-way dfa with mk states can be simulated by a

dfa with mk+1 states, if the input x ∈ {0, 1}m is repeated T2(m) = mk+1 times.
(See the proof of Lemma 5).

Lemma 6. G(4)
m (fm) ≤ t

(4)
2 (m) = 2m

6m holds for at most
√

22m = o(|Bm|) func-
tions in Bm.

Proof. Let K(s) be the number of distinct languages accepted by dfa’s with
at most s states over a two-letter alphabet. Then K(s) ≤ s3s [2] and hence

K(t(4)2 (m)) ≤
( 2m

6m

)3 2m

6m ≤ 23m 2m

6m =
√

22m . The claim holds, since different
functions fm have different consistent dfa’s. ��

Thus G(4)
m separates C2 from random functions with thresholds t(4)1 , t

(4)
2 and

we obtain the following Theorem.

Theorem 2. Suppose that strong pseudo-random functions with parameter ε
and two-way dfa’s with at most mk states exist for some k.

Let App be a randomized approximation algorithm that approximately de-
termines the number of states of a minimum consistent dfa. For input length
N =

∑
x∈POS∪NEG |x| and for all l ≥ 1, if App runs in time 2O((log N)l)

with ε+ + ε− < 2
3 , then App can only achieve an approximation factor μ ≥

N
poly((log N)l/ε) .

Efficient approximation algorithms determine, for d ≤ N examples, consistent
dfa’s of size N

poly(log N) , whereas optimal dfa’s have size opt = poly(logN). Thus

upper bounds have as many as 2opt
1
l ·dβ states, where β < 1 and l is sufficiently

large. This result is stronger than the result of at least optα · dβ due to Kearns
and Valiant [8]. The stronger result is a consequence of our use of pseudo-random
functions instead of one-way functions. (See also Naor and Reingold [11].)

3 Minimizing NFA’s or Regular Expressions

We now assume that the language is specified concisely, i.e., as an nfa or a
regular expression and prove in this scenario strong inapproximability results. We
begin by investigating unary languages, i.e., languages over a one-letter alphabet,
and show that no significant approximation is achievable, provided P = NP .
This statement holds for size interpreted as number of states, transitions, resp.
symbols.

Efficient approximations for state minimization within the factor
√

m
ln m are

known not to exist, if P = NP [3]. This result remains true for the number
of transitions (resp. number of symbols in regular expressions), since the nfa
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(resp. regular expression) built by the transformation in the proof [3, 15] has
as many states as transitions (resp. symbols), and the number of states is a
lower bound for the number of transitions of a minimal equivalent nfa (resp.
symbols of a minimal equivalent regular expression). We can improve the in-
approximability result, if we require the construction of a small nfa or regular
expression.

Theorem 3. Let A be an arbitrary unary nfa or regular expression of size m.
Let opt be the size of a minimal equivalent nfa, resp. regular expression. For any
δ > 0, if P = NP , then no efficient algorithm can determine an nfa or regular
expression A′ equivalent to A with size at most opt ·m1−δ.

Proof. Let A be an nfa (regular expression) constructed in the NP-completeness
proof [3, 15]. A has the property that either opt = 1 or opt >

√
m

ln m and it is
NP-complete to distinguish the two cases.

Suppose that there is a constant δ > 0 and an efficient algorithm M that
computes an nfa (regular expression) M(A) equivalent to A with size(M(A)) ≤
opt · size(A)1−δ. If we apply M on its output again, then size(M(M(A))) ≤
opt · size(M(A))1−δ ≤ opt2 · size(A)(1−δ)2 . If we repeat this process k times, then
size(Mk(A)) ≤ optk · size(A)(1−δ)k

. So for k ≥ −2
log(1−δ) , we have size(Mk(A)) ≤

optk · size(A)
1
4 , hence for m large enough, size(Mk(A)) ≤

√
m

ln m if opt = 1 and
size(Mk(A)) ≥ opt >

√
m

ln m otherwise. ��

Our negative results for general alphabets are based on the well known proof
[10] of the PSPACE-completeness of “regular expression non-universality”: Given
a regular expression R, is L(R) = Σ∗? The PSPACE-completeness of regular
expression non-universality implies the PSPACE-completeness of the exact min-
imization of nfa’s and regular expressions.

The proof of [10] shows, that for an arbitrary language L ∈ PSPACE there is a
(generic) polynomial time transformation T such that w ∈ L⇔ L(T (w)) = Σ∗,
where L(T (w)) is the language described by the nfa, resp. regular expression
T (w). We restrict ourselves to languages L ∈ L where L is the class of lan-
guages that can be accepted by deterministic in-place Turing machines1. Our
inapproximability result utilizes the following observation.

Lemma 7. For any given language L ∈ L there is a deterministic in-place
Turing machine ML recognizing L with a single accepting state. ML runs for at
least 2n steps on every input w ∈ L of length n.

Proof. Let M be some deterministic in-place Turing machine which accepts L
and has only one accepting state qf . We construct a Turing machine ML that
has all the states and transitions M has. However, whenever ML enters qf ,
it counts in binary from 0n to 1n, changes to a new state q′

f , when reaching

1 L coincides with DSPACE(O(n)), but considering only Turing machines that work
in-place simplifies the proof.
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1n, and stops. q′
f is the only state in which ML accepts and q′

f causes ML to
stop. ��

Assume that M is a Turing machine with the properties stated in Lemma
7 which recognizes the PSPACE-complete language L(M). (A padding argu-
ment shows that L contains PSPACE-complete languages.) We reduce the word
problem for L(M) to the minimization problem for nfa’s. In particular for
an input w of M , we construct an nfa Aw, which accepts exactly all words
which are not concatenations of consecutive legal configurations starting from
configuration q0w leading to the unique accepting state. The exact descrip-
tion of the construction of Aw is omitted. It shows that Aw has m = O(|w|)
states.

If M rejects w, then L(Aw) coincides with Σ∗. However, if M accepts w,
then the configuration sequence x corresponding to the accepting computation
is rejected by Aw and it is the only rejected word.

We show that Σ∗ \ {x} requires nfa’s with at least |w| states. Any accepting
computation has length at least 2|w|, since M is a Turing-Machine as described
in Lemma 7. Every dfa which excludes a single word of length at least 2|w| needs
at least 2|w| states, thus every equivalent nfa needs at least |w| states. Hence,
if L(Aw) = Σ∗ \ {x} for some x with |x| ≥ 2|w|, then every nfa which accepts
L(Aw) needs at least |w| states.

Thus, if w ∈ L(M), then L(Aw) can be recognized by an nfa with one state,
whereas for w ∈ L(M), nfa’s with at least |w| states are required. Since Aw has
m = O(|w|) states, we have found the desired gap.

The inapproximability result for the number of transitions of nfa’s and the
number of symbols in regular expressions follows along the same lines.

Theorem 4. Unless P = PSPACE, it is impossible to efficiently approximate
the size of a minimal nfa or regular expression describing L(A) within an ap-
proximation factor of o(m) when given an nfa or a regular expression A with m
states, transitions or symbols respectively.

Standard encoding arguments show that this PSPACE-completeness result
is true for regular expressions or nfa’s over any alphabet Σ with |Σ| ≥ 2.

4 Conclusions and an Overview

We have been able to verify inapproximability of nfa’s or regular expressions
either for given nfa’s or regular expressions (utilizing P = NP , resp. P =
PSPACE) or for given dfa’s (assuming the existence of strong pseudo-random
functions in NC1, resp. Logspace).

The most notably open problem is a negative result for given dfa’s utiliz-
ing only P = NP . Furthermore, what is the approximation complexity, when
specifying a regular language L ⊆ {0, 1}n by a truth table? Below we list our
results and additionally mention nfa minimization for a given unary dfa as a
third important open problem.
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NFA Minimization
Instance: An nfa N with k states over a bi-

nary alphabet.
Solution: The size of a smallest nfa equivalent

with N .
Measure: Number of transitions or number of

states.
Bad News: Not approximable within o(k).

Assumption: P �= PSPACE.
Reference: Theorem 4

Regular Expression Minimization
Instance: A regular expression R with k sym-

bols over a binary alphabet.
Solution: The size of a smallest regular ex-

pression equivalent with R.
Measure: Number of symbols.

Bad News: Not approximable within o(k).
Assumption: P �= PSPACE.
Reference: Theorem 4

The same is true for nfa → regular expression minimization and vice versa.
Unary NFA Minimization

Instance: An nfa N with k states over a unary
alphabet.

Solution: The size of a smallest nfa equivalent
with N .

Measure: Number of transitions or number of
states.

Bad News: Not approximable within
√

k
ln k .

Assumption: P �= NP .
Reference: [3]

Constructive Unary NFA Minimization
Instance: An nfa N with k states over a unary

alphabet.
Solution: A smallest nfa equivalent with N .
Measure: Number of transitions or number of

states.
Bad News: Not approximable within k1−δ for

any δ.
Assumption: P �= NP .
Reference: Theorem 3

DFA → NFA Minimization (States)
Instance: A dfa D with k states over a binary

alphabet.
Solution: The size of a smallest nfa equivalent

with D.
Measure: Number of states.

Bad News: Not approximable within√
k

poly(log k) .
Assumption: Strong pseudo-random functions in

Logspace.
Reference: Corollary 1

DFA → NFA Minimization (Transitions)
Instance: A dfa D with k states over a binary

alphabet.
Solution: The size of a smallest nfa equivalent

with D.
Measure: Number of transitions.

Bad News: Not approximable within
k

poly(log k) .
Assumption: Strong pseudo-random functions in

Logspace.
Reference: Corollary 1

Unary DFA → NFA Minimization
Instance: A dfa D with k states over a unary

alphabet.
Solution: The size of a smallest nfa equivalent

with D.
Measure: Number of states or transitions.

Bad News: Optimal solution cannot be deter-
mined efficiently.

Assumption: NP �⊆ DTIME(nO(log n))
Good News: Cyclic case can be approximated

within 1 + ln k.
Reference: [6], [3]

DFA → Regular Expression Minimization
Instance: A dfa D with k states over a binary

alphabet.
Solution: The size of a smallest regular ex-

pression equivalent with D.
Measure: Number of symbols.

Bad News: Not approximable within
k

poly(log k) .
Assumption: Strong pseudo-random functions in

NC1.
Reference: Theorem 1

Minimum Consistent DFA
Instance: Two finite sets P, N of binary strings.
Solution: The minimal size of a dfa accepting all strings in P and rejecting all strings in N .
Measure: Number of states in the automaton.

Bad News: Not approximable within |P |+|N|
poly(log(|P |+|N|)) .

Assumption: Strong pseudo-random functions in Logspace.
Reference: Theorem 2
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1 Introduction

How much do we have to change a string to increase its Kolmogorov complexity?
We show that we can increase the complexity of any non-random string of length
n by flipping O(

√
n) bits and some strings require Ω(

√
n) bit flips. For a given

m, we also give bounds for increasing the complexity of a string by flipping m
bits.

By using constructible expanding graphs we give an efficient algorithm that
given any non-random string of length n will give a small list of strings of the
same length, at least one of which will have higher Kolmogorov complexity.
As an application, we show that BPP is contained in P relative to the set of
Kolmogorov random strings. Allender, Buhrman, Koucký, van Melkbeek and
Ronneberger [2] building on our techniques later improved this result to show
that all of PSPACE reduces to P with an oracle for the random strings.

2 Increasing Complexity by Flipping Bits

Using the notation of Li and Vitányi, we use CU (x) to represent the size of the
smallest program p such that U(p) = x. We fix a universal reference computer
U and let C(x) = CU (x).

Assume we are given a binary string x. How much we can increase its com-
plexity by flipping at most m bits of x? Let Nm(x) denote the set of all strings

� The work was done while visiting CWI; also supported in part by the RFBR grant
02-01-22001.
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with Hamming distance at most m from x. Let Nm(A) stand for the union of
Nm(x) over x ∈ A.

We use the notation O(1), c, c1, . . . for constants depending on the reference
machine U and d, d1, . . . for absolute constants. The following, rather general
theorem, asserting that the complexity of any ‘typical’ string in a set can be
increased by flipping m bits to the expected log |Nm(A)| is an immediate impli-
cation of the ‘cardinality’ lower bound for Kolmogorov complexity.

Theorem 1. Let k,m, a ≤ n be such that the following condition hold
(*) for every set A ⊆ {0, 1}n with |A| > 2a, Nm(A) ≥ 2k for k < n, or

Nm(A) ≥ 2n(1− 1/c2) for k = n.
Then, there are constants c1, c2 depending on the reference computer such that

for every string x of complexity at least C(x|n) ≥ a+ 2C(k,m|n, a) + c1 there is
a string y obtained from x by flipping at most m bits such that C(y|n) ≥ k.

Proof. Consider the following set

B = {x ∈ {0, 1}n | C(y|n) < k for all y ∈ Nm(x)}.

As the Kolmogorov complexity of all strings in Nm(B) is less than k we
have |Nm(B)| < 2k. In the case n = k we may upper bound |Nm(B)| better.
Recall the following lower bound for the number of random strings (for the proof
see [5]): for appropriate choice of c2 for every n the number of strings y of length
n with C(y|n) ≥ n is more than 2n/c2. Therefore in the case k = n we have
|Nm(B)| < 2n(1− 1/c2).

In both cases we thus obtain |B| ≤ 2a. The set B may be enumerated given
k,m, n. Therefore every string x ∈ B can be described by m,n, k and its index
in B of bit length a. Thus C(x|n) < a+ 2C(k,m|n, a) + c1 for all x ∈ B, where
c1 is a constant depending on the reference computer. In other words, for every
x such that the last inequality is false there is y ∈ Nm(x) with C(y|n) ≥ k.

Theorem 1 is rather general and applies to any graph rather just the Boolean
cube, when we replace ‘flipping bits’ with going to neighbors. This will be dis-
cussed in Section 3.

We now want to apply Theorem 1. For this we need to analyze the expanding
properties of the Boolean cube. The complete analysis is given by the following
theorem. We first introduce a notation. Let b(n, l) denote the binomial sum:
b(n, l) =

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
l

)
.

Theorem 2 (Harper). Let J ≤ 2n. Take all the strings with less than l ones
and take the J − l first strings with l ones in lexicographical order, where l is
chosen so that b(n, l − 1) < J ≤ b(n, l). Then the resulting set has the least
|N1(A)| among all sets A with |A| = J − l.

We will use the following corollary of Harper’s theorem.

Corollary 1. If |Nm(A)| ≤ b(n, l) and l < n then |A| ≤ b(n, l − m) and
|Nm(A)|

|A| > (n−l
l )m.
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We note that the second bound is very weak and becomes trivial for l > n/2.
It will be sufficient though for our applications.

Proof. It is enough to prove the theorem in the case m = 1. For m > 1 we can
use induction where inductive step is due to the case m = 1.

The first statement immediately follows from Harper’s theorem. Let us prove
the second one assuming that l ≤ n/2. Let J = |A|. It suffices to establish the
inequality assuming that A is the worst case set defined in the Harper’s theorem.
We have

(
n

0

)
+
(
n

1

)
+ · · ·+

(
n

l′ − 1

)
< |A| = J ≤

(
n

0

)
+
(
n

1

)
+ · · ·+

(
n

l′

)

for some l′. We claim that l′ < l. Indeed, otherwise |A| > b(n, l−1) and therefore
A has a string with l ones, thus N(A) has a string with l+1 ones hence |N(A)| >
b(n, l), a contradiction. For the worst case set A we will prove that |Δ(A)|/|A| ≥
(n− l′)/(l′ +1) ≥ (n− l+1)/l where Δ(A) stands for the set of strings obtained
from strings in A by changing a 0 to 1 (but not vice verse). (Actually Δ(A) and
N(A) differ by only one string, 00 . . . 0.)

Let B consist of all strings with less than l′ ones thus B ⊂ A. Obviously, Δ(A)
and Δ(B−A) do not intersect, as every string in the first set has at most l′ ones
and every string in the second set has l′ + 1 ones. Therefore it suffices to prove
that |Δ(B)|/|B| ≥ (n− l′)/(l′ + 1) and |Δ(B −A)|/|B −A| ≥ (n− l′)/(l′ + 1).

The first inequality is proved as follows: Δ(B) is the set of all strings with
at most l′ ones except 00 . . . 0, so |Δ(B)| =

(
n
1

)
+
(
n
2

)
+ · · · +

(
n
l′
)
. And |B| =(

n
0

)
+
(
n
1

)
+ · · ·+

(
n

l′−1

)
. The ratio of ith term the first sum and ith term in the

second sum is
(
n
i

)
/
(

n
i−1

)
= (n− i+ 1)/i ≥ (n− l′ + 1)/l′ ≥ (n− l′)/(l′ + 1).

Let us prove the second inequality. Let x be a string with l′ ones and let Cx

denote the set of all strings with l′ ones that are less than or equal to x. We claim
|Δ(Cx)|/|Cx| is a non-increasing function in x. To prove this claim it suffices to
show that |Δ(Cx ∪ {x′}) − Δ(Cx)| is a non-increasing function in x where x′

denotes the successor of x. The set Δ(Cx ∪ {x′})−Δ(Cx) consists of all strings
obtained by flipping all zeros in x′ preceding the leading 1 (all other flips result
in strings that are already in Δ(Cx)). Hence Δ(Cx ∪ {x′}) −Δ(Cx) is equal to
the number of zeros preceding the leading 1 in x′. And the latter number does
not increases as x′ increases.

For x equal to the last string with l′ ones we have that |Δ(Cx)|/|Cx| =(
n

l′+1

)
/
(

n
l′
)

= (n− l′)/(l′ + 1) so we are done.

As a result we obtain the following triplets of k,m, a for which condition (*)
and hence Theorem 1 hold.

Theorem 3. There is a constant c3, such that for every k ≤ n, m and a string
x of complexity at least C(x|n) ≥ a+2C(m|n, a)+c3, there is a string y obtained
from x by flipping at most m bits such that C(y|n) ≥ k. Here a = k−�m log((n−
l)/l)� where l is the least number such that 2k ≤ b(n, l).
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Proof. Let l be as above and let c1 be the constant from Theorem 1. We first note
that the conditions of Theorem 1 hold for a, k,m. Indeed, assume that |Nm(A)| <
2k, then by the definition of l, |Nm(A)| <

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
l

)
and by Corollary 1

we have |A| < |Nm(A)|((n− l)/l)−m < 2k((n− l)/l)−m ≤ 2a. Hence, Theorem 1
asserts that for every string x with C(x|n) ≥ a + 2C(k,m|n, a) + c1 there is a
string y obtained from x by flipping at most m bits such that C(y|n) ≥ k.

It suffices to prove that C(k,m|n, a) ≤ C(m|n, a) + O(1) ≤ logm + O(1).
To this end we will prove that k can be retrieved from m,n, a. By definition l
is a function of n, k and a is a function of n, k,m. The function l(n, k) is non-
decreasing in k hence the function a(n, k,m) = k − �(m + 1) log((n − l)/l)� is
also non-decreasing in k, as the sum of two non-decreasing functions. Moreover,
the first term increases by 1 as k increments by 1. This implies that k can be
retrieved from m,n, a hence C(k,m|n, a) ≤ C(m|n, a) +O(1).

For p ∈ (0, 1) let H(p) = −p log p− (1−p) log(1−p) be the Shannon Entropy
function. Note that for every α ∈ [0; 1) there are two different β1, β2 such that
h(β1) = h(β2) = α; they are related by the equality β1 + β2 = 1. Let H−1(α)
stand for the least of them. The function H−1(α) increases in the range (0, 0.5)
as so does H.

Theorem 4. For all α < 1 and i > 0 there is m(α, i) (depending also on the
reference computer) such that for all large enough n the following holds: For all
x of length n with C(x|n) ≤ αn there is y obtained from x by flipping at most
m(α, i) bits such that C(y|n) ≥ C(x|n) + i. For any fixed i there is a positive α
such that m(α, i) = 1.

Proof. Fix α and i and let x be such that C(x|n) ≤ αn and let k = C(x|n) + i.
Let l be the least number such that b(n, l) ≥ 2k. We first prove that l ≤ βn for
some constant β < 1/2, for large enough n. This means that b(n, βn) ≥ 2k for
some constant β < 1, for large enough n. Let β be any number in the interval
(H−1(α); 1/2) As α < 1, the interval is not empty. Then, b(n, βn) ≥

(
n

βn

)
≥

2nH(β)(1+o(1)) (where the last inequality is standard, see e.g. [7]). Plugging
in the definition of β can continue the inequality: b(n, βn) ≥ 2nH(β)(1+o(1)) ≥
2nα+i ≥ 2k for large enough n.

Define now a = k − �m log((n − l)/l)�. Applying Theorem 3, with a, k, l as
above, we get that for every x there is y obtained from x by flipping at most m
bits such that C(y|n) ≥ k, as needed, provided that

C(x|n) ≥ a+ 2C(m|n, a) + c3. (1)

To show that (1) holds, note that C(m|n, a) ≤ logm. Plugging this, along
with the definition of a, k, in (1) we get that it is enough to show that C(x|n) ≥
C(x|n) + i− �m log((n− l)/l)�+ 2 logm+ c3.

Using that l ≤ βn and the appropriate bound on β we get that it is enough
to have �m log((1 − β)/β)� > i + 2 logm + c3. Note that the definition of β
implies that β < 1/2 hence 1−β

β > 1. Therefore for large enough m we will have
�m log((1− β)/β)� > i+ 2 logm+ c3.
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Finally, let m = 1. Note that log((1 − β)/β) tends to infinity as β tends to
0. Therefore for any fixed i there is a positive β such that �m log((1− β)/β)� >
i+ 2 logm+ c3. Let α be equal to any positive real such that H(α) < β.

Remark 1. We note that Theorem 4 works for fixed i, with respect to n, while
m depends on i and α for fixed α or could be fixed when α gets small enough.
One could ask whether it might be true that i could be a function of n, e.g,
could the following strengthening of Theorem 4 be true: For any α (or even for
some α) the complexity of a string x that is bounded by αn could be increased
to αn+ i(n) by changing only one bit. It is obvious that we cannot expect such
a strengthening for i(n) > log n, as given x the complexity of any y that differs
form it in one place is at most C(x|n) + logn. Other lower bounds on m vs.
the amount of increase in complexity, and the relation to α are developed in
Theorem 6 and Theorem 7.

Let us estimate how many bits we need to flip to increase complexity from
k − 1 to k when k is close to n, say for k = n.

Theorem 5. For every x with C(x|n) < n by flipping at most c3
√
n bits of x

we can increase its complexity (by at least 1).

Proof. Assume first that C(x|n) ≤ n− 3. Let k = C(x|n) + 1 ≤ n− 2 and m =
c4
√
n for a constant c4 to be defined later. Apply Theorem 3. As 2k ≤ 2n/4 we

have l ≤ n/2−d2
√
n and (n−l)/l ≥ (n/2+d2

√
n)/(n/2−d2

√
n) ≥ 1+2d3/

√
n ≥

2d4/
√

n for large enough n. This implies that a ≤ k − c4d4. By Theorem 3 for
every x with C(x|n) ≥ k − c4d4 + 2C(m|a, n) + c3 there is y obtained from x
by flipping at most m bits with C(y|n) ≥ k. Obviously C(m|a, n) ≤ log c4 + c5.
Therefore if c4 is large enough we have k − c4d4 + 2C(m|a, n) + c1 ≤ k − 1 and
we are done.

Assume now that C(x|n) ≥ n− 2. Let us prove that by flipping O(
√
n) bits

we can increase the complexity of x up to n. This time we will apply Theorem 1
and Corollary 1 directly. For some c3 for l = n/2 + c3

√
n we have b(n, l) ≥

2n(1− 1/c2), where c2 is the constant from Theorem 1. Let m = c3
√
n+ c4

√
n,

where c4 is chosen so that b(n, l −m) ≤ 2n−c5 , and c5 will be chosen later. Let
a = n−c5 and k = n. By Corollary 1 the conditions of Theorem 1 are fulfilled. As
a+2C(k,m|n)+c1 ≤ n−c5 +2 log c5 +c6 ≤ n−2 if c5 was chosen appropriately,
we are done.

Now we proceed to the lower bounds of the number of flipped bits. We will
show that for every m there is α such that the complexity of some strings of
complexity αn cannot be increased by flipping at most m bits. And there are
strings for which we need to flip Ω(

√
n) bits.

Theorem 6. For every m, k ≥ 1 there is a θ(k,m) < 1 such that for every
α > θ(k,m), for almost all n there is a string x of length n such that C(x|n) ≤ αn
and C(y|n) < C(x|n) + k for every string y obtained from x by flipping at most
m bits.
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Proof. Let θ(k,m) = H(1/(1 + 2k/m)), and let θ(k,m) < α. As k > 0 we note
that 1/(1 + 2k/m) < 1/2. Hence θ(k,m) < 1. Without loss of generality assume
that α < 1.

Pick any β in the interval (1/(1+2k/m);H−1(α)). Again by the bound above,
and using the fact that H is monotone in the interval (0; 0.5), the interval for β
is non empty. Let l = βn+ c2m for a constant c2 to be defined later.

We first prove that every string x having at most l ones satisfies the inequality
C(x|n) < αn, for large enough n. Indeed, the number of such strings is equal to
b(n, l) and hence is at most 2nH(l/n)(1+o(1)) [7] (as l < n/2). Therefore C(x|n) <
nH(β)(1 + o(1)) + O(1) < nα for large enough n, where the constant O(1)
depends on β, c2,m and the reference computer.

So we need to show that there is a string x having at most l ones and satisfying
the second statement of the theorem. Assume that this is not the case. Let then
x0 be a random string having at most βn ones, that is, C(x0|n) ≥ log(b(n, βn)).
If x0 satisfies the statement then we are done. Otherwise there is x1 having at
most βn +m ones such that C(x1|n) ≥ C(x0|n) + k. Repeating this argument
c2 times we either find a string satisfying the statement or obtain a string xc2

with C(xc2 |n) ≥ C(x0|n) + c2k having at most βn + c2m = l ones. Hence
C(xc2 |n) ≥ log(b(n, βn)) + c2k. On the other hand, C(xc2 |n) ≤ log(b(n, l)) +
2C(l|n) + c1 ≤ log(b(n, l)) + 2 log c2 + c3, where c3 depends on k,m, α and the
reference computer. To obtain the contradiction we have to show that the upper
bound of C(xc2 |n) is less than the lower bound. The ratio of

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
l

)
and

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n

βn

)
can be is bounded using the following

Lemma 1. If j ≥ s ≥ 0 and j + s ≤ n/2 then

b(n, j + s)
b(n, j)

≤ 1 +
(n− j + s

j − s+ 1

)s

.

Proof.

b(n, j + s)
b(n, j)

≤ 1 +
s

max
i=1

(
n

j + i

)
/

(
n

j + i− s

)

≤ 1 +
s

max
i=1

(n− j − i+ s

j + i− s+ 1

)s

≤ 1 +
(n− j + s

j − s+ 1

)s

.

By Lemma 1 we have b(n,l)
b(n,βn) ≤ 2

(
1−β

β

)c2m

. Thus, to achieve contradiction
it is enough to choose c2 so that

1 + c2m log((1− β)/β) + 2 log c2 + c3 < c2k. (2)

Indeed, by the choice of β we have m log((1−β)/β) < k. Hence the left hand
side of (2) as a function of c2 grows slowly than the right hand side and for large
enough c2 the inequality holds.

We will show now that sometimes we need to flip Ω(
√
n) bits of x to increase

its complexity even by 1.
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Theorem 7. There is a constant c such that for almost all n there is a string x
of length n and complexity at most n− 1, and such that the following holds: For
every string y obtained from x by flipping at most

√
n/c bits, C(y|n) ≤ C(x|n).

Proof. For every c1 there is c2 such the set of strings with at most n/2− c2
√
n

ones has cardinality less than 2n−c1 and therefore the complexity of every such
string is less than n−c1+2 log c1+c3. Pick c1 so that n−c1+2 log c1+c3 ≤ n−1.

Let x0 be a random string with at most l = n/2− (c2 + 1)
√
n ones. Assume

that for some x1 we have C(y|n) ≥ C(x|n) + 1 and x1 differs from x0 in at most√
n/c bits. In this case apply the same argument to x1 and so on, c times. Either

we will obtain xi differing from x0 in at most i
√
n/c bits satisfying the statement

of the theorem, or xc such that C(xc|n) ≥ C(x|n) + c. In the first case xi has at
most n/2− (c2 + 1)

√
n+

√
n = n/2− c2

√
n ones hence C(xi|n) ≤ n− 1 and we

are done.
Let us show now that the second case is impossible. We have C(xc|n) ≥

log
∑l

i

(
n
i

)
+ c and C(xc|n) ≤ log

∑l+
√

n
i

(
n
i

)
+ 2 log c+ c4. By Lemma 1 we can

upper bound the ratio
∑l+

√
n

i

(
n
i

)
/
∑l

i

(
n
i

)
by

1 +
(n− l +√n

l −
√
n

)√
n

= 1 +
(n/2 + (c2 + 2)

√
n

n/2− (c2 + 2)
√
n

)√
n

≤ c5

for some constant c5 for large enough n. Therefore we will have a contradiction
if log c5 + 2 log c+ c4 < c.

3 Increasing Kolmogorov Complexity via Expanders

In this section we will use, in place of Boolean cubes, graphs that have stronger
expansion properties. Recall the theorem of Margulis [6] on explicit expanders.

Theorem 8 (Margulis). Let k be an integer and G = (V,E) be the graph with
vertices V = {0, . . . , k − 1}2 where a vertex (x, y) is adjacent to vertices (x, y),
(x+ 1, y), (x, y+ 1), (x, x+ y), and (−y, x) (all operations are mod k). There is
a positive ε such that for every A ⊂ V the set N(A) of all neighbors of vertices
in A has at least (1 + ε(1− |A|/|V |))|A| elements.

Let k = 2l. We will identify strings of length n = 2l and nodes of the Margulis’
expander G. Let Nd(u) denote the set of all nodes at the distance at most d from
u in the graph G. Let Nd(A) stand for the union of Nd(u) over u ∈ A.

Theorem 9. There is a constant c2 such that for every node u in G with
C(u|n) < n there is a node v ∈ N c2(u) with C(u|n) > C(v|n).

Proof. Let c be a constant to be specified later. Let c1 be the constant such that
for every n the number of strings y of length n with C(y|n) ≥ n is more than
2n/c1. Let c2 be a constant such that (1 + εc1)c2 ≥ 2c.
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Assume that the statement of the theorem is false for some node u. Let us
exhibit a small set containing u. Let

Ai = {u′ ∈ V | ∀v ∈ N i(u′) C(v|n) ≤ C(u|n)}

where i = 0, . . . , c2. Obviously, Ai−1 = N(Ai) and therefore we have A0 ⊃ A1 ⊃
· · · ⊃ Ac2 . By definition, all strings in Ac2 have Kolmogorov complexity at most
C(u|n) < n. Therefore we can upper bound |A0| in two ways: |A0| ≤ 2C(u|n)+1

and |A0| ≤ 2n − 2n/c1. By expansion property we have

|A0| ≥ (1 + εc1)|A1| ≥ · · · ≥ (1 + εc1)c2 |Ac2 | ≥ 2c|Ac2 |.

Hence Ac2 is small, |Ac2 | ≤ 2−c|A0| ≤ 2C(u|n)+1−c. Since u is in Ac2 and
Ac2 can be enumerated given l and C(u|n), we can describe u by its index in
the enumeration of Ac2 of length C(u|n) + 1 − c and by c (and C(u|n) can be
computed from the length of the index and c). Hence C(u|n) ≤ (C(u|n) + 1 −
c) + 2 log c+O(1). If c is large then this is a contradiction.

Using Theorem 9 we can design a polynomial time algorithm that having
access to the oracle R̃ = {x | C(x | |x|) ≥ |x|} for every even length 2l finds a
string in R̃ of length 2l.

Theorem 10. There is an algorithm that having access to the oracle R̃ = {x |
C(x | |x|) ≥ |x|} for every even length 2l in time poly(l) finds a string in R̃ of
length 2l.

Proof. We will find strings u0, . . . , ul such that |ui| = 2i and ui ∈ R̃. Let u0 be
the empty string. Certainly u0 ∈ R̃.

To find ui given ui−1 append first 00 to ui−1 and let u be the resulting string.
As C(ui−1|2(i− 1)) ≥ 2(i− 1) we have C(ui|2i) ≥ 2i− c3 for some constant c3.
By Theorem 9 there is a string v at in N c3c2(u) such that v ∈ R̃. Making at
most 5c3c2 queries to the oracle R̃ we find the first such v and let ui = v.

Remark 2. The same argument applies as well to every set of the form {x |
C(x | |x|) ≥ f(|x|)} where f(n) ≤ n and f(n + 1) ≤ f(n) + O(logn) for all
n. In this case we search for v in N (c3+O(log n))c2(u) in place of N c3c2(u). As
N (c3+O(log n))c2(u) still has polynomial size the algorithm runs in polynomial
time. Note that the algorithm need no information about f other than the con-
stant hidden in O(logn).

Remark 3. The argument applies also to find random strings of odd lengths, but
that requires more technical details. Given a string u of even length n = 2l with
C(u|n) ≥ n we need to find a string v of odd length n = 2l+1 with C(v|n) ≥ n.
To this and we can use Margulis’ expander for the largest k such that k2 ≤ 22l+1.
Obviously k2 ≥ 22l and we may identify strings of length 2l + 1 ending with 0
with the first 22l nodes of the graph, and the other nodes with the first remaining
strings of length 2l+1. Again we have C(u0|2l+1) ≥ 2l+1−c3 for a constant c3.
For large enough l the difference between 22l+1 and k2 is less than 22l+1/(2c1)
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where c1 is a constant such that the number of random strings of length 2l + 1
is at least 22l+1/c1. Therefore at least k2/(2c1) nodes in the graph are random
and we can apply the arguments from the proof of Theorem 9 with 2c1 in place
of c1.

Corollary 2. BPP ⊂ P R̃

Proof. Let M be a probabilistic machine recognizing a language A. Let n be
the length of input to M . We can assume that the probability that M errs on
at least one string of length n is at most 2−n. Let nd be the length of random
strings used by M on inputs of length n.

Here is the deterministic algorithm with oracle R̃ to recognize A: Find a
string r ∈ R̃ of length nd and run M on the input x using r as the sequence of
random bits for M (we use the same string r for all inputs x). Then output the
result of M .

If for some string of length n the answer is incorrect then the string r falls into
a set of cardinality 2nd−n that is identified by n andM and hence C(r|nd) ≤ nd−
n+O(1) < nd for n large enough, which is a contradiction. Thus our polynomial
time algorithm with oracle R̃ is correct for almost all inputs. Hardwiring the
table of answers for small inputs we obtain a polynomial time algorithm with
oracle R̃ that recognizes A (on all inputs).

Let us turn to the unconditional Kolmogorov complexity C(x). Let R =
{x | C(x) ≥ |x|}. We will show that Theorem 10, the next two remarks and
Corollary 2 generalize to R. As to Theorem 9, we can prove only a weaker
version:

Theorem 11. There is a constant c2 such that for every node u in G with
C(u) < n there is a node v ∈ N c2 log n+c2(u) with C(u) > C(v).

Proof. Essentially the same proof, as for Theorem 9 but this time we need to
choose c2 so that (1 + εc1)c2 log n+c2 ≥ 2c+2 log n. In place of inequality C(u|n) ≤
C(u|n) + 1 − c + 2 log c + O(1) we have the inequality C(u) ≤ C(u) + 1 − c −
2 logn+ 2 log c+ 2 log l+O(1). The term 2 logn is needed as this time we have
to identify the length of u.

However, to prove the analog of Theorem 10 we need only to increase Kol-
mogorov complexity of strings u with C(u) ≥ |u| − O(1). For that special case
we have

Theorem 12. For every constant c3 there is a constant c4 such that for every
node u in G with n > C(u) ≥ n−c3 there is a node v ∈ N c4(u) with C(u) > C(v).

Proof. Again the same proof but in place of inequality C(u|n) ≤ C(u|n) + 1 −
c + 2 log c + O(1) we have the inequality C(u) ≤ C(u) + 1 − c + 2 log c + O(1).
This time we can find the length of u from the length C(u) + 1− c of the index
of u in Ac4 and from c, as C(u) and |u| are close to each other.

Therefore Theorem 10, the next two remarks and Corollary 2 generalize to
the unconditional Kolmogorov complexity.
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Abstract. One of the major open problems in the field of effective
randomness is whether Martin-Löf randomness is the same as
Kolmogorov-Loveland (or KL) randomness, where an infinite binary se-
quence is KL-random if there is no computable non-monotonic betting
strategy that succeeds on the sequence in the sense of having an un-
bounded gain in the limit while betting successively on bits of the se-
quence. Our first main result states that every KL-random sequence has
arbitrarily dense, easily extractable subsequences that are Martin-Löf
random. A key lemma in the proof of this result is that for every effec-
tive split of a KL-random sequence at least one of the halves is Martin-
Löf random. We show that this splitting property does not characterize
KL-randomness by constructing a sequence that is not even computably
random such that every effective split yields subsequences that are 2-
random, hence are in particular Martin-Löf random.

A sequence X is KL-stochastic if there is no computable non-
monotonic selection rule that selects from X an infinite, biased sequence.
Our second main result asserts that every KL-stochastic sequence has
constructive dimension 1, or equivalently, a sequence cannot be KL-
stochastic if it has infinitely many prefixes that can be compressed by a
factor of α < 1 with respect to prefix-free Kolmogorov complexity. This
improves on a result by Muchnik, who has shown a similar implication
where the premise requires that such compressible prefixes can be found
effectively.

1 Introduction

In 1998, Muchnik, Semenov, and Uspensky [11] combined non-monotonic se-
lection rules in the sense of Kolmogorov and Loveland with the concept of
computable betting strategies. The resulting concept of non-monotonic betting
strategies is a generalization of the concept of monotonic betting strategies,
used by Schnorr to define a randomness notion nowadays known as computable
randomness. Schnorr’s motivation behind this randomness concept was his crit-
icism of Martin-Löf randomness [7] as not being a completely effective notion of
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randomness, since the sets used in Martin-Löf tests only have to be uniformly
enumerable.

An infinite binary sequence against which no computable non-monotonic bet-
ting strategy succeeds is called Kolmogorov-Loveland random, or KL-random,
for short. Muchnik, Semenov, and Uspensky [11] showed that Martin-Löf ran-
domness implies KL-randomness. Muchnik et al. [11] and others [1] raised the
question whether the two concepts are different. This is now a major open prob-
lem in the area. A proof that both concepts are the same would give a striking
argument against Schnorr’s criticism of Martin-Löf randomness.

Most researchers conjecture the notions are different. However, a result of
Muchnik [11] indicates that KL-randomness is rather close to Martin-Löf ran-
domness.

Recall that it is possible to characterize Martin-Löf randomness as incom-
pressibility with respect to prefix-free Kolmogorov complexity K: A sequence A
is random if and only if there is a constant c such that the K-complexity of the
length n prefix A � n of A is at least n− c. It follows that a sequence A cannot
be Martin-Löf random if there is a function h such that

K(A � h(c)) ≤ h(c)− c for every c. (1)

On the other hand, by the result of Muchnik [11] a sequence A cannot be
KL-random if (1) holds for a computable function h. So, the difference between
Martin-Löf randomness and KL-randomness appears, from this viewpoint, rather
small. Not being Martin-Löf random means that for any given constant bound
there are infinitely many initial segments for which the compressibility exceeds
this bound. If, moreover, we are able to detect such initial segments effectively
(by means of a computable function), then the sequence cannot even be KL-
random.

In this paper we continue the investigations by Muchnik, Semenov, and Us-
pensky, and give additional evidence that KL-randomness behaves similar to
Martin-Löf randomness.

In Section 3 we refine the splitting technique that Muchnik used in order
to obtain the result mentioned above. We show that if A is KL-random and Z
is a computable, infinite and co-infinite set of natural numbers, either the bits
of A whose positions are in Z or the remaining bits form a Martin-Löf random
sequence. In fact both do if A is Δ0

2. Moreover, in that case, for each computable,
nondecreasing, and unbounded function g and almost all n, K(A � n) ≥ n−g(n).

We construct counterexamples that show that two of the implications men-
tioned in the preceding paragraph cannot be extended to equivalences. First,
there is a sequence that is not computably random all whose “parts” in the
sense above (i.e., which can be obtained through a computable splitting) are
Martin-Löf random. Second, there is a sequence A that is not even stochastic
such that for all g as above and almost all n, K(A � n) ≥ n − g(n); moreover,
the sequence A can be chosen to be left-c.e. if viewed as the binary expansion of
a real.

In the last two sections we consider KL-stochasticity. A sequence is KL-
stochastic if there is no computable non-monotonic selection rule that selects
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from the given sequence a sequence that is biased in the sense that the frequencies
of 0’s and 1’s do not converge to 1/2. First we give a more direct construction of
a KL-stochastic sequence that is not even weakly 1-random. Next we consider
constructive dimension. Muchnik [11] demonstrates, by an argument similar to
his proof that a sequence A cannot be KL-random if there is a computable
function that satisfies (1), that a sequence A cannot be KL-stochastic if there is
a computable, unbounded function h and a rational α < 1 such that

K(A � h(i)) ≤ αh(i) for every i, (2)

i.e., if we can effectively find arbitrarily long prefixes of A that can be compressed
by a factor of α in the sense that the prefix-free Kolmogorov complexity of the
prefix is at most α times the length of the prefix. Theorem 22 below states that
KL-stochastic sequences have constructive dimension 1. This is equivalent to the
assertion that in the second mentioned result of Muchnik it is not necessary to
require that the function h be computable, i.e., it suffices to require the mere
existence of arbitrarily long prefixes of A that can be compressed by a factor of α.

In the remainder of the introduction we gather some notation that will be
used throughout the text. Unless explicitly stated otherwise, the term sequence
refers to an infinite binary sequence and a class is a set of sequences. Sequences
are denoted by capital letters like A,B, . . . , R, S, . . . .

We will often deal with generalized joins and splittings. Assume that Z is an
infinite and co-infinite set of natural numbers. The Z-join A0⊕ZA1 of sequences
A0 and A1 is the result of merging the sequences using Z as a guide. Formally,

A0 ⊕Z A1(n) =

{
A0(|Z ∩ {0, . . . , n− 1}|) if Z(n) = 0,
A1(|Z ∩ {0, . . . , n− 1}|) if Z(n) = 1.

On the other hand, given a sequence A and a set Z ⊆ ω one can obtain a
new sequence (string) A�Z by picking the positions that are in Z. Let pZ denote
the principal function of Z, i.e. pZ(n) is the (n+ 1)st element of Z (where this
is undefined if no such element exists). Formally,

A�Z (n) = A(pZ(n)), where pZ(n) = μx[|Z ∩ {0, . . . , x}| ≥ n+ 1].

If Z is infinite, A �Z will yield a new infinite sequence, otherwise we define
A �Z to be the string of length |Z| extracted from A via Z. Note that this
notation is consistent with the usual notation of initial segments in the sense
that A �n= A �{0,...,n−1}. Observe that A = A0 ⊕Z A1 if and only if A �Z= A1
and A�Z= A0.

Due to space considerations, several proofs are omitted. These proofs can be
found in the full version of this paper [10].

2 Random and Stochastic Sequences

In this section, we give a brief and informal review of the concepts of effective
randomness and stochasticity that are used in the following, for further details
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and formal definitions we refer to the surveys and monographs cited in the
bibliography [11, 1, 5, 9, 19].

Intuitively speaking, a non-monotonic betting strategy defines a process that
place bets on bits of a given sequence X. More precisely, the betting strategy
determines a sequence of mutually distinct places n0, n1, . . . at which it bets
a certain portion of the current capital on the value of the respective bit of X
being 0 or 1. (Note that, by betting none of the capital, the betting strategy may
always choose to “inspect” the next bit only.) The place ni+1 and the bet which
is to be placed depends solely on the previously scanned bits X(n0) through
X(ni). Payoff is fair in the sense that the stake is double in case the guess on
the next bit was correct and is lost otherwise. For a betting strategy b that
is applied with a certain initial capital c, we write dA

b (n) for the capital that
has been accumulated after the first n bets on the bits of a sequence A while
betting according to b; the function db is called the corresponding payoff function
or martingale.

A non-monotonic betting strategy b succeeds on a sequence A if

lim sup
n→∞

dA
b (n) =∞ .

A sequence A is KL-random if there is no partial computable non-monotonic
betting strategy that succeeds on A. The concept of KL-randomness remains
the same if one uses in its definition computable instead of partial computable
non-monotonic betting strategies [9].

One can modify the concept of a betting strategy in that, instead of spec-
ifying a bet on every next bit to be scanned, the strategy simply determines
whether the next bit should be selected or not. Such a strategy is called a se-
lection rule. The sequence selected from X is then the sequence of all bits that
are selected, in the order of selection. A sequence X is called stochastic with re-
spect to a given class of admissible selection rules if no selection rule in the class
selects from X an infinite sequence that is biased in the sense that the frequen-
cies of 0’s and 1’s do not converge to 1/2. A sequence is Kolmogorov-Loveland
stochastic or KL-stochastic, for short, if the sequence is stochastic with respect
to the class of partial computable non-monotonic selection rules; again, this con-
cept remains the same if one replaces “partial computable” by “computable”. A
sequence is Mises-Wald-Church stochastic or MWC-stochastic, for short, if the
sequence is stochastic with respect to the class of partial computable monotonic
selection rules.

Furthermore, we consider Martin-Löf random sequences [7]. Let W0,W1, ...
be a standard enumeration of the computably enumerable sets.

Definition 1. A Martin-Löf test is a uniformly computably enumerable sequence
(An : n ∈ ω) of sets of strings such that for every n,

λ ({Y : Y has a prefix in An}) ≤ 2−(n+1),

where λ denotes Lebesgue measure on Cantor space.
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A sequence X is covered by a Martin-Löf test (An : n ∈ ω) if for every n the
set An contains a prefix of X. A sequence is Martin-Löf random if it cannot be
covered by any Martin-Löf test.

A Martin-Löf test is called a Schnorr test if the Lebesgue measure of the set
{Y : Y has a prefix in An} is computable in n (in the usual sense that the mea-
sure can be approximated effectively to any given precision strictly larger than 0);
a sequence is called Schnorr-random if it cannot be covered by a Schnorr test.

Remark 2. Let b be a computable non-monotonic betting strategy that on every
sequence scans all places of the sequence. Then there is a monotonic betting
strategy that succeeds on every sequence on which b succeeds. This follows from
results of Buhrman, Melkebeek, Regan, Sivakumar and Strauss [2].

One can use this fact to infer the following proposition.

Proposition 3. The class of computably random sequences is closed under com-
putable permutations of the natural numbers.

3 Splitting Properties of KL-Random Sequences

KL-random sequences bear some properties which make them appear quite
“close” to Martin-Löf random sequences. One of them is a splitting property,
which stresses the importance of non-monotonicity in betting strategies.

Proposition 4. Let Z be a computable, infinite and co-infinite set of natural
numbers, and let A = A0 ⊕Z A1. Then A is KL-random if and only if

A0 is KLA1-random and A1 is KLA0-random. (3)

Theorem 5. Let Z be a computable, infinite and co-infinite set of natural num-
bers. If the sequence A = A0⊕ZA1 is KL-random, then at least one of A0 and A1
is Martin-Löf random.

Proof. Suppose neither A0 nor A1 is Martin-Löf random. Then there are Martin-
Löf tests (U0

n : n ∈ ω) and (U1
n : n ∈ ω) with U i

n = {σi
n,0,σ

i
n,1, . . . }, that cover

A0 and A1, respectively.
Define functions f0, f1 by fi(n) = μk σi

n,k � Ai. Obviously there must be an
i ∈ {0, 1} such that there are infinitely many m for which fi(m) ≥ f1−i(m). We
define a new Martin-Löf test {Vn} by Vn =

⋃
m>n

⋃fi(m)
k=0 [σ1−i

n,k ]. Then {Vn} is a
Schnorr test relative to the oracle Ai (a SchnorrAi-test) and covers A1−i, so A1−i

is not SchnorrAi-random. Since KL-randomness implies Schnorr-randomness (for
relativized versions, too), it follows that A1−i is not KLAi-random, contradicting
Theorem 4. ��

An interesting consequence of (the relativized form of) Theorem 5 is stated
in Theorem 8; in the proof of this theorem we will use Remark 6, due to van
Lambalgen [20] (also see [4] for a proof). For KL-randomness, the closest one
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can presently come to van Lambalgen’s result is Proposition 4. Note the subtle
difference: in the case of Martin-Löf randomness, one merely needs A0 to be
random, not random relative to A1.

Remark 6. Let Z be a computable, infinite and co-infinite set of natural num-
bers. The sequence A = A0 ⊕Z A1 is Martin-Löf random if and only if A0 is
Martin-Löf random and A1 is Martin-Löf random relative to A0. (Furthermore,
this equivalence remains true if we replace Martin-Löf randomness by Martin-Löf
randomness relative to some oracle.)

Definition 7. A set Z has density α if limm→∞
|Z∩{0,...,m−1}|

m = α .

Theorem 8. Let R be a KL-random sequence and let α < 1 be a rational. Then
there is a computable set Z of density at least α such that R �Z is Martin-Löf
random.

Proof. For a start, we fix some notation for successive splits of the natural num-
bers. Let {Nw}w∈{0,1}∗ be a uniformly computable family of sets of natural
numbers such that for all w,

(i) Nε = ω , (ii) Nw = Nw0∪̇Nw1 , (iii) Nw has density
1

2|w| ,

where ∪̇ denotes disjoint union.
By (iii), for any word w the complement Nw of Nw has density 1 − 1/2|w|,

thus it suffices to show that there are words w1 & w2 & . . . such that for all i,

(iv) |wi| = i and (v) Ri = R�Nwi
is Martin-Löf random .

The wi are defined inductively. For a start, observe that by Theorem 5
for r1 = 0 or for r1 = 1 the sequence R �Nr1

is Martin-Löf random; pick r1
such that the latter is true and let w1 = 1 − r1. For i > 1, let wi be defined as
follows. By Proposition 4 the sequence R �Nwi

is KL-random relative to Ri−1,
hence by (ii) and by a relativized version of Theorem 5, for ri = 0 or for ri = 1
the sequence R�Nwri

is Martin-Löf random relative to Ri; pick ri such the latter
is true and let wi = w(1− ri).

Now (iv) follows for all i by an easy induction argument, using van Lambal-
gen’s result from Remark 6. ��

The functions fi in the proof of Theorem 5 can be viewed as a modulus for a
certain type of approximation to the sequences under consideration. The tech-
nique of comparing two given moduli can also be applied to other types of moduli,
e.g., to a modulus of convergence of an effectively approximable sequence.

Theorem 9. Let Z be a computable, infinite and co-infinite set of natural num-
bers and let A = A0 ⊕Z A1 be KL-random where A1 is in Δ0

2. Then A0 is
Martin-Löf random.
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By applying Theorem 9 to the set Z and its complement, the following Corol-
lary is immediate.

Corollary 10. Let Z be a computable, infinite and co-infinite set of natural
numbers and let A = A0 ⊕Z A1 be KL-random and Δ0

2. Then A0 and A1 are
both Martin-Löf random.

The next example shows that splitting properties like the one considered in
Corollary 10 do not necessarily imply Martin-Löf randomness.

Theorem 11. There is a sequence A which is not computably random such
that for each computable infinite and co-infinite set V , A�V is 2-random, i.e. is
Martin-Löf random relative to ∅′.

A function g is an order if g is computable, nondecreasing, and unbounded.

Corollary 12. Suppose A is in Δ0
2 and is KL-random. Then for each order g

and almost all n, K(A � n) ≥ n− g(n).

Remark 13. In the full version of this article it will be shown that there is a
left-c.e. real A which is not MWC-stochastic, but satisfies K(A � n) ≥+ n−g(n)
for each order g and almost all n. Thus even for left-c.e. reals, the conclusion of
Corollary 12 is not equivalent to Martin-Löf randomness.

4 Kolmogorov-Loveland Stochasticity

There are two standard techniques for constructing KL-random sequences. The
first one is a probabilistic construction due to van Lambalgen [20]. The second
one is to construct directly a Martin-Löf random sequence, e.g., by diagonaliz-
ing against a universal left-computable martingale. Theorem 14 is demonstrated
by a further technique that allows to construct KL-stochastic sequences with
certain additional properties that could not be achieved by the mentioned stan-
dard methods.

A sequence X is weakly 1-random (also called Kurtz-random) if X is con-
tained in every c.e. open class of uniform measure 1. Note that Schnorr random-
ness implies weak 1-randomness, but not conversely.

Theorem 14. There is a non-empty Π0
1 class P of KL-stochastic sequences

such that no X ∈ P is weakly 1-random.

The proof of Theorem 14 is omitted due to space considerations. By the usual
basis theorems [12], the following corollary is immediate.

Corollary 15. There is a left-c.e., not weakly 1-random KL-stochastic sequence.
There is a low, not weakly 1-random, KL-stochastic sequence. There is a not
weakly 1-random KL-stochastic sequence that is of hyperimmune-free degree.
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5 The Dimension of KL-Stochastic Sequences

There exists an interesting connection between the asymptotic complexity of
sequences and Hausdorff dimension. Hausdorff dimension is defined via Hausdorff
measures, and similar to Lebesgue measure, one can define effective versions
of them. This leads to the concept of constructive dimension, first introduced
by Lutz [6], which can equivalently defined in terms of prefix-free Kolmogorov
complexity K.

Theorem 16. The constructive dimension dim1A of a sequence A is given by

dim1A = lim inf
n→∞

K(A�n)
n

. (4)

Note that C, plain Kolmogorov complexity, and K differ by at most log(|x|),
so in Theorem 16 one can replace K by C. Theorem 16 was proven in the
presented form by Mayordomo [8], but much of it was already implicit in earlier
work by Ryabko [14, 15], Staiger [17, 18], and Cai and Hartmanis [3]. For more
on constructive dimension see Reimann [13].

Muchnik [11] refuted a conjecture by Kolmogorov (who asserted that there
exists a KL-stochastic sequence A such that K(A �n) = O(logn)) by showing
that, if A is KL-stochastic, then lim supn→∞K(A �n)/n = 1. In the following,
we are going to strengthen this result by showing that dim1A = 1 for any
KL-stochastic sequence A.

This relates to a result of Ryabko [16], who observed that the probabilistic ar-
gument for the construction of KL-stochastic sequences yields with probability 1
a sequence that has constructive dimension 1.

The proof of Theorem 22 bears some similarities to the proof of Theorem 8,
where it has been shown that any KL-random sequence has arbitrarily dense
subsequences that are Martin-Löf random. We will need the following Proposi-
tion, which is a slightly generalized version of a corresponding result by Muchnik
et al. [11]. The proof of the proposition is omitted.

Proposition 17. For any rational α < 1 there is a natural numbers kα and a
rational εα > 0 such that the following holds. Given an index for a computable
martingale d with initial capital 1, we can effectively find indices for computable
monotonic selection rules s1, . . . , s2kα

such that for all words w where

d(w) ≥ 2(1−α)|w| (5)

there is an index i such that the selection rule si selects from w a finite sequence
of length at least εα|w| such that the ratio of 0’s and the ratio of 1’s in this finite
sequence differ by at least εα.

Definition 18. Let α be a rational. A word w is called α-compressible if K(w)
≤ α|w|.



430 W. Merkle et al.

Remark 19. Given a rational α < 1 and a finite set D of α-compressible words,
we can effectively find an index for a computable martingale d with initial capi-
tal 1 such that for all w ∈ D we have d(w) ≥ 2(1−α)|w|.

For a proof, let dw be the martingale that starts with initial capital 2−α|w| and
plays a doubling strategy along w, i.e., always bets all its capital on the next bit
being the same as the corresponding bit of w; then we have in particular dw(w) =
2(1−α)|w|.

Let d be the sum of the martingales dw over all words w ∈ D, i.e., betting
according to d amounts to playing in parallel all martingales dw where w ∈ D.
Obviously d(v) ≥ dw(v) for all words v and all w ∈ D, so it remains to show that
the initial capital of d does not exceed 1. The latter follows because every w ∈ D
is α-compressible, i.e., can be coded by a prefix-free code of length at most α|w|,
hence the sum of 2−α|w| over all w ∈ D is at most 1.

Lemma 20. Let A = A1 ⊕A2 be KL-stochastic. Then one of the sequences A1
and A2 has constructive dimension 1.

Proof. For a proof by contradiction, assume that the consequence of the lemma
is false, i.e., that there is some rational number α0 < 1 such that A1 and A2
both have constructive dimension of at most α0. Pick rational numbers α1 and α
such that α0 < α1 < α < 1. By Theorem 16, for r = 1, 2, there are arbitrarily
large prefixes w of Ar that are α1-compressible, i.e., K(w) ≤ α1|w|. We argue
next that for any m there are arbitrarily large intervals I with min I = m such
that the restriction w of Ar to I is α-compressible.

Let w0, w1, . . . be an effective enumeration of all α-compressible words w. For
the scope of this proof, say a word w is a subword of X at m if

w = X(m)X(m+ 1) . . . X(m+ |w| − 1) .

Let εα be the constant from Proposition 17.

Claim 1. For r = 1, 2, the function gr defined by

gr(m) = min{i : wi is a subword of Ar at m and |wi| >
2
ε2α
m}

is total.

Proof. There are infinitely many α1-compressible prefixes v of Ar. Given any
such prefix of length at least m, let u and w be the words such that v = uw
and |u| = m. Then we have

K(v) ≤+ K(w) + 2 logm ≤ α1|v|+ 2 logm = α|w|
(
α1

α

|v|
|w| +

2 logm
α|w|

)
,

where the expression in brackets goes to α1/α < 1 when the length of w goes to
infinity. As a consequence, we have K(w) ≤ α|w| for all such words w that are
long enough, hence by assumption on A for any m and t there is a word wi and
an index i as required in the definition of gr(m). ��
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Let m0 = 0 and for all t > 0, let

mt+1 = mt + max{|wi| : i ≤ max{g1(mt), g2(mt)}} .

In the following, we assume that there are infinitely many t where

g1(mt) ≤ g2(mt) ; (6)

we omit the essentially identical considerations for the symmetric case where
there are infinitely many t such that g1(mt) ≥ g2(mt). Let

Dt = {w0, w1, . . . , wg2(mt)}

Claim 2. There are infinitely many t such that some word in Dt is a subword
of A1 at mt.

Proof. By definition of g1(mt), the word wg1(mt) is a subword of A1 at mt, where
this word is in Dt for each of the infinitely many t such that g1(mt) is less than
or equal to g2(mt). ��

Claim 3. Given Dt and mt, we can compute an index for a monotonic com-
putable selection rules s(t) that scans only bits of the form

A1(mt), A1(mt + 1), . . . , A1(mt+1 − 1)

of A such that for infinitely many t the selection rule s(t) selects from these bits
a finite sequence of length at least 2mt/εα where the ratios of 0’s and of 1’s in
this finite sequence differ by at least εα.

Proof. By Proposition 17 and Remark 19, from the set Dt we can compute in-
dices for monotonic computable selection rules s1, . . . , s2kα

such that for each w ∈
Dt there is an index i such that the selection rule si selects from w a finite se-
quence of length at least εα|w| such that the ratio of 0’s and 1’s in this finite
sequence differ by at least εα. Any word w ∈ Dt has length of at least 2mt/ε

2
t ,

hence the selected finite sequence has length of at least 2mt/εα. Furthermore,
by Claim 2, there are infinitely many t such that some w ∈ Dt is a subword
of A1 at mt, and among the corresponding indices i some index i0 between 1
and 2kα must appear infinitely often. So it suffices to let for any t the selection
rule s(t) be equal to the i0th selection rule from the list of selection rules com-
puted from Dt. ��

Now we construct an non-monotonic computable selection rule s that wit-
nesses that A is not KL-stochastic. The selection rule s works in stages t =
0, 1, . . . and scans during stage t the bits of A that correspond to bits of the form

A1(y) and A2(y), where mt ≤ y < mt+1 .

At the beginning of stage t, the value of g2(mt) and the set Dt is computed
as follows. Successively for i = 0, 1, . . . , check whether wi is a subword of A2
at mt by scanning all the bits

A2(mt), . . . , A2(mt + |wi| − 1)
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of A that have not been scanned so far, until eventually the index i equal
to g2(mt) is found, i.e., until we find some minimum i such that wi is a subword
of A2 at mt. Observe that by definition of mt+1, the index i is found while scan-
ning only bits of the form A2(y) where y < mt+1. Next the selection rule s scans
and selects the bits A1(mt), A1(mt + 1), . . . according to the selection rule si0

as in Claim 3; recall that this selection rule can be computed from Dt. Finally,
stage t is concluded by computing mt+1 from g1(t) and g2(t), where g1(t) is
obtained like g2(t), i.e., in particular, the computation of mt+1 only requires to
scan bits of the form Ar(y) where y < mt+1.

By Claim 2 there are infinitely many t such that some w ∈ Dt is a subword
of A1 at mt. By choice of s(t) and definition of s, for each such t the selection
rule s selects during stage t a finite sequence of length at least 2mt/εα where the
ratios of 0’s and 1’s in this finite sequence differ by at least εα. Consequently,
the at most mt bits of A that might have been selected by s before stage t are at
most a fraction of εα/2 of the bits selected during stage t, hence with respect to
all the bits selected up to stage t the ratios of 0’s and 1’s differ by at least εα/2.
This contradicts the fact that A is KL-stochastic, hence our assumption that A1
and A2 both have constructive dimension strictly less than 1 is wrong. ��

Lemma 21. If Z ⊆ ω is computable, infinite, co-infinite, with density δ = δZ .
Then it holds for any sequences A,B,

dim1B ⊕Z A ≥ δ dim1A+ (1− δ) dimA
1 B. (7)

The proof of Lemma 21 is omitted due to space considerations.

Theorem 22. If R is KL-stochastic, then dim1R = 1.

Proof. The proof is rather similar to the proof of Theorem 8, in particular,
we use the notation Nw from there. It suffices to show that there are words
w1 & w2 & . . . such that for all i, we have |wi| = i and

dim1Ri = 1 , where Ri = R�Nwi
;

the theorem then follows by Lemma 21 and because for any word w, the set Nw

has density 1− 1/2|w|.
The wi are defined inductively. For a start, observe that by Lemma 20 for r1 =

0 or for r1 = 1 the sequence R �Nr
has constructive dimension 1; pick r1 such

that the latter is true and let w1 = 1− r1. For i > 1, let wi be defined as follows.
By an argument similar to the proof of Proposition 4, the sequence R�Nw

is KL-
stochastic relative to Ri−1, hence by a relativized version of Lemma 20, for ri = 0
or for ri = 1 the sequence R �Nwr has constructive dimension 1 relative to Rw;
pick ri such the latter is true and let wi = w(1− ri).

It remains to show by induction on i that all the sequences Ri have construc-
tive dimension 1. For i = 1, this is true by construction, while the induction step
follows according to the choice of the wi and due to Lemma 21 by an argument
similar to the corresponding part of the proof of Theorem 8; details are left to
the reader. ��
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Abstract. In general property testing, we are given oracle access to
a function f , and we wish to randomly test if the function satisfies a
given property P , or it is ε-far from having that property. In a more
general setting, the domain on which the function is defined is equipped
with a probability distribution, which assigns different weight to different
elements in the distance function. This paper relates the complexity of
testing the monotonicity of a function over the d-dimensional cube to the
Shannon entropy of the underlying distribution. We provide an improved
upper bound on the property tester query complexity and we finetune
the exponential dependence on the dimension d.

1 Introduction

In general property testing [4,7,9,13], we are given oracle access to a function f ,
and we wish to randomly test if the function satisfies a given property P , or it is
ε-far from having that property. By ε-far we mean, that any function g that has
the property P differs from f in at least ε-fraction places. We allow the property
tester to err with at most constant probability, say 1/3 (in this paper we assume
only one-sided error). In many interesting cases, this relaxation allows the tester
to query only a sublinear portion of the input f , which is crucial when the input
is a giant dataset.

The query complexity of the property is the minimal number of f -queries
performed by a tester for that property (although the classical “number of op-
erations” quantity can be considered too). A query to a function can be viewed
as a quantity of information, which gives rise to the relation between property
testing and information complexity [4], which will be made more precise in what
follows.

An interesting ramification of property testing problems [4,5, 10] generalizes
the definition of distance between two functions: Instead of defining the distance
between f and g as the fractional size of the set {x | f(x) = g(x)}, we attach a
probability distribution D to the function domain, and define

dist(f, g) = Pr({x | f(x) = g(x)}).
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The “old” definition reduces to the case D = U (the uniform distribution).
This definition allows assignment of importance weights to domain points. It
also allows property testers to deal with functions defined on infinite domains,
though it may be necessary to assume additional structure (for example, mea-
surability of f). Such functions arise when dealing with natural phenomena, like
the temperature as a function of location and time. Of course in these cases we
couldn’t read the entire input even if we had unlimited resources.

The distribution should not be considered as part of the problem, but rather
as a parameter of the problem. Fischer [4] distinguishes between the case where D
is known to the tester, and the case where it is not known. The latter is known
as the “distribution-free” case [10]. In the distribution-free case, the property
tester is allowed to sample from the distribution (but it does not know the
probabilities). The main techniques developed in this work will be used for the
distribution-known case, but we will also show an application to the distribution-
free case.

The following question motivated the results in this paper: what happens
when the distribution D is uniform on a strict subset S of the domain, and zero
outside S? Intuitively, the “effective” domain is smaller, and therefore testing the
property should be simpler. For general distributions, a natural measure of the
“size” of the effective domain is the Shannon entropy H of D. In this paper we
show a connection between the quantity H and the query complexity, which fur-
ther supports the connection between property testing and information theory.

One interesting, well-studied property is monotonicity [2, 3, 4, 6, 8, 10, 11, 12].
A real function f over a poset P is monotone if any x, y ∈ P such that x ≤ y
satisfy f(x) ≤ f(y). In this paper we assume that P is the d-dimensional cube
[n]d, with the order: (x1, . . . , xd) ≤ (y1, . . . , yd) if xi ≤ yi for all i = 1, . . . , d.

Halevy and Kushilevitz [10] describe a property tester with query complexity
O( 2d logd n

ε ) in the distribution-free case. In [11] they show a property tester with

query complexity O(d4d log n
ε ), for the special case of known uniform distribution

(D = U). If d is fixed, this result improves a result by Dodis et al. [2], who
describe a property tester with query complexity O(d2 log2 n

ε ) (For large d, n
must be doubly-exponential in d for Halevy-Kushilevitz’s result to be better
than that of Dodis et al.). The main result of our paper is as follows:

Theorem 1. Let D be a (known) distribution on [n]d with independent marginal
distributions (in other words, D is a product D1 × · · · × Dd of distributions Di

on [n]). Let H be the Shannon entropy of D. Then there exists a property tester
for functions over ([n]d,D) with expected query complexity O( 2dH

ε ).

In the special case D = U , this theorem improves Halevy and Kushilevitz’s
result by replacing the 4d with 2d (because then H = d log n). It also general-
izes previous work to any product distribution and gives a first evidence of the
connection between property testing and the Shannon entropy of the underlying
distribution.

Although this paper discusses mainly the known distribution case, the tech-
niques developed here can be used to show the following:
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Theorem 2. Let D be an (unknown) distribution on [n]d with independent
marginal distributions. Then there exists a property tester for functions over
([n]d,D) with query complexity O(d2d log n

ε ).

Note that although Theorem 2 assumes that the distribution D is unknown,
it will in fact be implicitly assumed by the property tester that D is a product
of d marginal distributions. This is a relaxation of the notion of distribution-
free property testing: the distribution is assumed to belong to some big family
of distributions. This improves Halevy and Kushilevitz’s O( logd n2d

ε ) property
tester [10] for this relaxed version (in their result, however, nothing is assumed
about the distribution D).

The rest of the paper is organized as follows: Section 2 starts with prelimi-
naries and definitions, Section 3 proves Theorem 1 for the case ([n],D), Section 4
proves Theorem 1 for the case ([n]d,U), and Section 5 completes the proof of
Theorem 1. In Section 6 we prove Theorem 2. In Sections 7 and 8 we prove two
important technical lemmas. Section 9 discusses future work and open problems.

2 Preliminaries

Let f be a real valued function on the domain [n]d, with a probability distribution
D = D1×· · ·×Dd. Assume thatDi assigns probability pi

j to j ∈ [n], and therefore
D assigns probability

∏d
k=1 p

k
ik

to (i1, i2, . . . , id).

Definition 1. The distance of f from monotonicity, denoted by ε, is defined as
min PrD({f = g}), where the minimum is over all monotone functions g.

Definition 2. The i-th axis-parallel order ≤i on [n]d is defined as
(x1, . . . , xd) ≤i (y1, . . . , yd) if xi ≤ yi and xj = yj for j = i.

Definition 3. The i-th axis-parallel distance of f to monotonicity, denoted by
εi, is min PrD({f = g}), where the minimum is over all functions g that are
monotone with respect to ≤i.

It is a simple observation that f is monotone on [n]d if and only if it is
monotone with respect to ≤i for each i = 1, . . . , d.

Definition 4. An integer pair 〈i, j〉 (for i, j ∈ [n]d, i ≤ j) is a violating pair
if f(i) > f(j). We say that “j is in violation with i” or “i is in violation with
j” in this case.

Although this work deals with the finite domain case, it will be useful in what
follows to consider the continuous cube Id, where I = {x ∈ R | 0 ≤ x < 1}. The
probability distribution is the Lebesgue measure, denoted by μ. The distance
between two measurable functions α, β : Id → R is μ({α = β}) (the set {α = β}
is measurable). The distance of α from monotonicity is inf dist(α, β) where the
infimum is over all monotone functions β.
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For i = 1, . . . , d, consider the following sequence of subintervals covering I:

Δi
1 = [0, pi

1),Δ
i
2 = [pi

1, p
i
1 + pi

2), . . . ,Δ
i
n = [1− pi

n, 1).

For a number x ∈ I, define inti(x) = j if x ∈ Δi
j , that is, x belongs to the

j-th interval induced by Di. If d = 1 we omit the superscript and simply write
Δj and int(x). It is obvious that if x is distributed uniformly in I, then inti(x)
is distributed according to Di.

For a given f : [n]d → R, denote by f̃ : Id → R the function

f̃(x1, . . . , xd) = f(int1(x1), int2(x2), . . . , intd(xd)).

The function f̃ is constant on rectangles of the form Δ1
i1
× · · · ×Δd

id
, for any

i1, . . . , id ∈ [n]. Moreover, any function α : Id → R which is constant on these
rectangles can be viewed as a function over [n]d. The following lemma formalizes
an intuitive connection between ([n]d,D) and (Id,U). The proof is postponed to
Section 7.

Lemma 1. The distance ε̃ of f̃ from monotonicity in Id (with respect to the
Lebesgue measure) equals the distance ε of f from monotonicity in [n]d (with
respect to D). This is also true with respect to the axis-parallel orders ≤i.

Finally, we give a precise definition of a property tester:

Definition 5. An ε-property tester for monotonicity (or, ε-monotonicity tester)
is a randomized algorithm that, given f : [n]d → R, outputs “ACCEPT” with
probability 1 if f is monotone, and “REJECT” with probability at least 2/3 if f
is ε-far from being monotone w.r.t. a fixed distribution D. In the distribution-
known case, the probabilities of D are known. In the distribution-free case they
are unknown, but the property tester can sample from D.

3 A Property Tester for ([n], D)

The algorithm is a generalization of an algorithm presented in [10]. Let
f : [n]→ R be the input function. We need a few definitions and lemmas.

Definition 6. For a violating pair 〈i, j〉 we say that i is active if

Pr( in violation with i | [i+ 1, j]) ≥ 1/2.

Similarly, j is active if Pr( in violation with j | [i, j − 1]) ≥ 1/2.
In other words, an active integer in a violating pair 〈i, j〉 is also in violation

with an abundance of elements in the interval [i, j].

Definition 7. For a violating pair 〈i, j〉, we say that i is strongly active if it is
active and pi ≤ Pr([i + 1, j]). Similarly, j is strongly active if it is active and
pj ≤ Pr([i, j − 1]).
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Lemma 2. If 〈i, j〉 is a violating pair, then either i is strongly active or j is
strongly active.

Proof. It is immediate that for any i < k < j, either 〈i, k〉 or 〈k, j〉 is a violating
pair. So either i or j is in violation with at least half the weight of the integers
[i + 1, j − 1]. This proves that either i or j is active. So assume i is active but
not strongly active. This means that pi > Pr([i + 1, j]). But this would imply
that j is strongly active. Indeed, pi is greater than half of Pr([i, j − 1]), and i is
in violation with j, so j is active. But pj < pi so j is strongly active. �

Lemma 3. Let J be the collection of strongly active integers from all violating
pairs of f . Then Pr(J) ≥ ε.

Proof. Actually, any collection J of at least one integer from each violating pair
has this property. Proof of this simple fact can be found in [10]. �

To describe the algorithm, we need another piece of notation. For x ∈ I, let
left(x) denote the left endpoint of the interval Δint(x), and similarly let right(x)
denote its right endpoint.

The following algorithm is an ε-property tester for monotonicity of f , with
expected query complexity O(H+1

ε ). We show how to eliminate the added 1/ε
shortly.

monotonicity-test (f,D, ε)

1 repeat O(ε−1) times
2 choose random x ∈ I

set δ ← pint(x)
3 set r ← right(x)
4 while r + δ ≤ 2
5 choose random y ∈U [r,min{r + δ, 1}]
6 if f(int(x)) > f(int(y))
7 then output REJECT

δ ← 2δ
set δ ← pint(x)
set l← left(x)

8 while l − δ ≥ −1
choose random y ∈U [max{l − δ, 0}, x]
if f(int(y)) > f(int(x))

then output REJECT
set δ ← 2δ

output ACCEPT

We first calculate the expected running time of monotonicity-test. The
number of iterations of the internal while loops (lines 4,8) is clearly at most
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log(2/pint(x)) (all the logarithms are taken in base 2 in this paper). Clearly,
Ex∈U I [log(2/pint(x))] = Ei∈D[log(2/pi)] = H + 1. We prove correctness of the
algorithm. Obviously, if f is monotone then the algorithm returns “ACCEPT”.
Assume that f is ε-far from being monotone. By lemma 3, with probability
at least ε, the random variable x chosen in line 2 satisfies int(x) ∈ J . This
means that i = int(x) is strongly active with respect to a violating pair 〈i, j〉
or 〈j, i〉. Assume the former case (a similar analysis can be done for the lat-
ter). So i is in violation with at least half the weight of [i + 1, j], and also
pi ≤ Pr([i+ 1, j]). Consider the intervals [r, r+ pi2t] for t = 0, 1, 2, . . . with r as
in line 3. For some t, this interval “contains” the corresponding interval [i+1, j]
(i.e. Δi+1∪· · ·∪Δj), but pi2t is at most twice Pr([i+1, j]). The latter by virtue
of i being strongly active. For this t, with probability at least 1/2 the y chosen
in line 5 is in [i + 1, j]. In such a case, the probability of y being a witness of
nonmonotonicity in lines 6-7 is at least 1/2, by virtue of i being active. Summing
up, we get that the probability of outputting “REJECT” in a single iteration
of the loop in line 1 is at least ε/4. Repeating O(ε−1) times gives a constant
probability.

We note that the additive constant 1 in the query complexity can be elim-
inated using a simple technical observation. Indeed, notice that, for x chosen
in line 2, if pint(x) > 1/2 then x cannot be strongly active by definition, and
therefore that iteration can be aborted without any query. If pint(x) ≤ 1/2 then
we can eliminate one iteration from the while loops by initializing δ = 2pint(x)
instead of δ = pint(x) and by slightly decreasing the probability of success in each
iteration of the repeat loop. This gets rid of the additive constant, and concludes
the proof of Theorem 1 in the ([n],D) case.

4 A Property Tester for ([n]d, U)

Let f : [n]d → U denote the input function. For a dimension j ∈ [d] and inte-
gers i1, . . . , ı̂j , . . . , id ∈ [n], let f j

i1,...,îj ,...,id
denote the one-dimensional function

obtained by restricting f to the line {i1}×· · ·×{ij−1}× [n]×{ij+1}×· · ·×{id}.

highdim-mon-uniform-test (f, ε)

repeat O(ε−1d2d) times
1 choose random dimension j ∈ [d]
2 choose random i1, . . . , îj , . . . , id ∈ [n]
3 run one iteration of repeat loop of

monotonicity-test(f j

i1,...,îj ,...,id
,U , ∗)

output ACCEPT
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To prove that the above algorithm is an ε-monotonicity tester for f , we will
need the following lemma. It is an improved version of a theorem from [11], with
2d replacing the 4d on the right hand side. Recall Definition 2 of εi.

Lemma 4.
∑d

i=1 εi ≥ ε/2d+1.

The correctness of highdim-mon-uniform-test is a simple consequence of
Lemma 4. If f is monotone, then the algorithm returns “ACCEPT” with prob-
ability 1. So assume f is ε-far from monotonicity. By Lemma 4, the restricted
one-dimensional function f j

i1,...,̂ıj ,...,id
chosen in line 3 has expected distance of

at least γ = 1
d

∑
εi ≥ 1

dε/2
d+1 from monotonicity, in each iteration of the repeat

loop. A single iteration of monotonicity-test has an expected success probabil-
ity of Ω(γ) by the analysis of the previous section. Repeating O(ε−1d2d) times
amplifies the probability of success to any fixed constant. As for the query com-
plexity, line 3 makes O(logn) queries, which is the entropy of the uniform distri-
bution on [n]. So the entire query complexity is O(ε−12dd log n) = O(ε−12dH),
as required. It remains to prove Lemma 4:

Proof. For i = 1, . . . , d, let Bi denote a minimal subset of [n]d such that f can be
changed on Bi to get a monotone function with respect to ≤i. So |Bi| = ndεi. Let
B = ∪d

i=1Bi. So |B| ≤
∑
εi[n]d. Let χB : [n]d → {0, 1} denote the characteristic

function of B: χB(x) = 1 if x ∈ B, otherwise 0. We define operators ΨL and ΨR

on {0, 1} functions over [n] as follows:

(ΨLv)(i) =

{
1 if there exists j ∈ [1, i] s.t.

∑i
k=j v(k) ≥ (i− j + 1)/2

0 otherwise

(ΨRv)(i) =

{
1 if there exists j ∈ [i, n] s.t.

∑j
k=i v(k) ≥ (j − i+ 1)/2

0 otherwise

Given a {0, 1}-function over [n]d, we define operators Ψ
(i)
L (resp. Ψ

(i)
R ) for

i = 1, . . . , d by applying ΨR (resp. ΨL) independently on one-dimensional lines
of the form {x1}×· · ·×{xi−1}× [n]×{xi+1}×· · ·×{xd}. Finally, for i = 1, . . . , d
we define the functions ϕ(i)

L , ϕ
(i)
R : [n]d → {0, 1} as follows:

ϕ
(i)
L =

(
Ψ

(i)
L ◦ Ψ

(i+1)
L ◦ · · · ◦ Ψ

(d)
L

)
χB , ϕ

(i)
R =

(
Ψ

(i)
R ◦ Ψ

(i+1)
R ◦ · · · ◦ Ψ

(d)
R

)
χB

(1)

Note that ϕ(i)
L = Ψ

(i)
L ϕ

(i+1)
L and ϕ(i)

R = Ψ
(i)
R ϕ

(i+1)
R . We claim that outside the

set {ϕ(1)
L = 1} ∪ {ϕ(1)

R = 1} ⊆ [n]d the function f is monotone. Indeed, choose
x, y ∈ [n]d such that x ≤ y and ϕ

(1)
L (y) = ϕ

(1)
R (x) = 0. We want to show that

f(x) ≤ f(y).

Claim 3. Any b ∈ B satisfies ϕ(i)
L (b) = ϕ

(i)
R (b) = 1 for i = 1, . . . , d.
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By the above Claim, x, y /∈ B. Now consider the two line segments:
SR = [x1, y1]×{x2}×· · ·×{xd}, SL = [x1, y1]×{y2}×· · ·×{yd}. By definition
of Ψ

(1)
R (resp. Ψ

(1)
L ), the average value of ϕ(2)

R (resp. ϕ(2)
L ) on SR (resp. SL) is less

than 1/2. Therefore, there exists z1 ∈ [x1, y1] such that ϕ(2)
R (z1, x2, . . . , xd) +

ϕ
(2)
L (z1, y2, . . . , yd) < 1. Since these values are in {0, 1}, we get that

ϕ
(2)
R (z1, x2, . . . , xd) = ϕ

(2)
L (z1, y2, . . . , yd) = 0. (2)

Denote x(1) = (z1, x2, . . . , xd) and y(1) = (z2, y2, . . . , yd). By Claim 3 and (2),
both x(1) and y(1) are outside B. Since x ≤1 x

(1) we get that f(x) ≤ f(x(1)).
A similar argument shows that f(y(1)) ≤ f(y). We use an inductive argument,
using the functions ϕ(2)

L and ϕ
(2)
R to show that f(x(1)) ≤ f(y(1)). The general

inductive step generates points x(i) ≤ y(i) that agree in the first i coordinates,
and such that ϕ(i+1)

R (x(i)) = ϕ
(i+1)
L (y(i)) = 0 (consequently, x(i), y(i) /∈ B). In

the base step we will end up with x(d−1) and y(d−1) that differ in their last
coordinate only. Therefore, they are ≤d-comparable and f(x(d−1)) ≤ f(y(d−1))
because x(d−1), y(d−1) /∈ B. It remains to bound the size of the set {ϕ(1)

L = 1}. A
similar analysis can be applied to {ϕ(1)

R = 1}. We claim that |{ϕ(1)
L = 1}| ≤ |B|2d.

This is a simple consequence of the following lemma.

Lemma 5. Let v ∈ {0, 1}n. Then the number of 1’s in ΨLv is at most twice the
number of 1’s in v. A similar result holds for ΨR.

To prove this, imagine walking on the domain [n] from 1 to n, and marking
integers according to the following rule (assume on initialization that all domain
points are unmarked and a counter is set to 0):

If the value of v on the current integer i is 1, then mark i. Also, in this case
increase the counter by 1. If v(i) = 0 and the counter is > 0, then mark integer
i and decrease the counter by 1. Otherwise do nothing.

It is obvious that the number of marked integers is at most twice the number
of 1’s in v. It is also not hard to show that (ΨLv)(i) = 1 only if i is marked.
Indeed, if (ΨLv)(i) = 1, then for some j ≤ i, vector v on integer segment [j, i]
has at least as many 1’s as 0’s. This implies that either v(i) = 1 or the counter
at i is positive, therefore i is marked. This proves the lemma.

We conclude that the combined size of {ϕ(1)
L = 1} and {ϕ(1)

R = 1} is at most
|B|2d+1. This means that f is monotone on a subset of [n]d of size at least
nd − |B|2d+1. It is a simple fact that any monotone function on a subset of [n]d

can be completed to a monotone function on the entire domain (see Lemma 1 [6]).
So the distance ε of f from monotonicity is at most 2d+1∑ εi, as required. �

5 A Property Tester for ([n]d, D)

Let f : [n]d → R be the input function, where [n]d is equipped with a (known)
distribution D = D1×· · ·×Dd. The following algorithm is a monotonicity tester
for f .



442 N. Ailon and B. Chazelle

highdim-monotonicity-test (f,D, ε)

1 repeat O(ε−1d2d) times
2 choose random dimension j ∈ [d]
3 choose random (i1, . . . , id) ∈D [n]d

4 run one iteration of repeat loop of

monotonicity-test(f j
i1,...,ı̂j ,...,id

,Dj , ∗)
output ACCEPT

Clearly, for D = U highdim-monotonicity-test is equivalent to highdim-
mon-uniform-test.

We start with the query complexity analysis. The call to monotonicity-test
in line 4 has query complexityO(Hj) (the entropy ofDj). Therefore, the expected
query complexity in each iteration of the repeat loop is 1

d

∑d
j=1O(Hj) = 1

dO(H)
(we use the well known identity that the entropy of a product of independent
variables is the sum of the individual entropies). Therefore the total running
time is O(ε−12dH), as claimed.

We prove correctness. Clearly, if f is monotone then highdim-monotonicity-
test outputs “ACCEPT” with probability 1. Assume f is ε-far from monotone.
In order to lower bound the success probability (outputting “REJECT”) of line
4, we want to lower bound the average axis-parallel distances to monotonicity of
f , similarly to Lemma 4. In order to do that, we consider the continuous case.
Recall the definition of the function f̃ : Id → R from Section 2. Let ε̃ be its
distance from monotonicity w.r.t. the Lebesgue measure, and ε̃i its correspond-
ing axis-parallel distances. We need the following lemma, which is a continuous
version of Lemma 4.

Lemma 6.
∑d

i=1 ε̃i ≥ ε̃/2d+1.

Proof. The proof is basically as that of Lemma 4, with a redefinition ofBi, B, χB ,
ΨL,ΨR,Ψ

i
L,Ψ

i
R, ϕ

(i)
L , ϕ

(i)
R . We pick an arbitrarily small δ > 0, and define the set

Bi ⊆ Id as the set {f = g} for some ≤i-monotone g with distance at most
ε̃i + δ from f (so ε̃i ≤ μ(Bi) ≤ ε̃i + δ). Let χB be the characteristic function of
B = ∪Bi. Obviously, μ(B) ≤

∑
ε̃i + δd. We then define the following continu-

ous versions of ΨL,ΨR, which are now operators on measurable {0, 1} functions
over I:

(ΨLv)(x) =

{
1 v(x) = 1 or there exists y ∈ [0, x) s.t.

∫ x

y
v(t)dt ≥ 1

2 (x− y)
0 otherwise

(ΨRv)(x) =

{
1 v(x) = 1 or there exists y ∈ (x, 1] s.t.

∫ y

x
v(t)dt ≥ 1

2 (y − x)
0 otherwise
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The operator Ψ i
L (resp. Ψ i

R) on functions of Id applies ΨL (resp. ΨR) on all lines
of the form {x1}×· · ·×{xi−1}×I×{xi+1}×· · ·×{xd} . The functions ϕ(i)

L and
ϕ

(i)
R are defined as in (1). The main observation is that μ({ϕ(1)

L = 1}) ≤ 2dμ(B)
(similarly, for ϕ(1)

R ). This is a simple consequence of the following lemma, which
is a continuous version of Lemma 5.

Lemma 7. Let v be a measurable {0, 1} function defined on I. Then∫ 1
0 (ΨLv)(t)dt ≤ 2

∫ 1
0 v(t)dt . A similar result holds for ΨR.

The mostly technical proof of Lemma 7 can be found in Section 8. The rest of
the proof of Lemma 6 continues very similar to that of Lemma 4 and by taking
δ → 0. �

As a result of Lemmas 6 and 1, we have:
∑
εi ≥ ε/2d+1. This means that

the expected one-dimensional distance from monotonicity of f j

i1,...,îj ,...,id
in line

4 (w.r.t. the marginal distribution Dj) is at least γ = 1
dε/2

d+1. By the anal-
ysis of monotonicity-test, we know that the probability of outputting “RE-
JECT” in a single iteration of the repeat loop is Ω(γ). Therefore, by repeating
O(1/γ) times we get constant probability of success. This completes the proof of
Theorem 1. ��

6 The Distribution-(Almost) Free Case

We prove Theorem 2. Let f : [n]d → R be the input function, where [n]d is
equipped with a distribution D = Di × · · · × Dd, and the marginal distributions
Di are unknown.

We cannot simply run highdim-monotonicity-test on f , because that al-
gorithm expects the argumentD to be the actual probabilities of the distribution.
In the distribution-free case, we can only pass an oracle[D], which is a distribu-
tion sampling function. Therefore our new algorithm, highdim-monotonicity-
test-distfree will take f, oracle[D] and ε as input.

highdim-monotonicity-test1 (f, oracle[D], ε)

1 repeat O(ε−1d2d) times
2 choose random dimension j ∈ [d]
3 choose random (i1, . . . , ı̂j , . . . , id) ∈D [n]d−1

4 run one iteration of repeat loop of

monotonicity-test1(f j
i1,...,ı̂j ,...,id

, oracle[Dj ], ∗)
output ACCEPT
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Note that oracle[Dj ] in line 4 is obtained by projecting the output of oracle[D].
Algorithm monotonicity-test1 is defined to be exactly Halevy-Kushilevitz’s 1-
dimensional distribution-free monotonicity tester1 [10]. We omit its description
here and refer the reader to [10]. The running time of a single iteration of the
repeat loop of monotonicity-test1 is O(logn), and the total running time is
O(ε−1d2d log n), as required.

Let f ′ denote the one dimensional function f j
i1,...,ı̂j ,...,id

, as chosen in line 4
of highdim-monotonicity-test1, and let ε′ be its distance from monotonicity
w.r.t.Dj . In [10] it is proven that a single repeat-loop iteration of monotonicity-
test1 (f, oracle[Dj ], ∗) outputs “REJECT” with probability Ω(ε′). But we
showed in Section 5 that E[ε′] ≥ 1

dε/2
d+1. Repeating lines 2-4 O(ε−1d2d) times

amplifies this to a constant probability. This concludes the proof of
Theorem 2. ��

7 Proof of Lemma 1

The direction ε̃ ≤ ε is clear. It remains to show that ε ≤ ε̃. Pick an arbitrarily
small δ > 0, and let g̃ be some monotone function on Id with distance at most
ε̃+ δ to f̃ . We are going to replace g̃ with a monotone function g over [n]d with
distance at most ε̃+ 2δ to f . To do this, we will make it constant on tiles of the
form Δ1

i1
×Δ2

i2
× · · · ×Δd

id
, paying a price of at most one extra δ. We will do

this one dimension at a time.
We show how to do this for the first dimension, and the rest is done sim-

ilarly. Our goal is to replace g̃ with a monotone function g̃(1) that has dis-
tance at most ε̃ + δ(1 + 1/d) from f̃ , with the property that it is constant
on any line segment of the form Δ1

i × {x2} × · · · × {xd}, for any i ∈ [n] and
x2, . . . , xd ∈ I. For every i ∈ [n], do the following: For every x1 ∈ Δ1

i , consider
the restriction of the function g̃ to the d − 1 dimensional cube {x1} × Id−1.
Denote this function by g̃x1(x2, . . . , xd). Let ε̃x1 denote the distance between
g̃x1 and f̃x1 (where f̃x1 is defined similarly to g̃x1). Let γ = infx1∈Δ1

i
ε̃x1 .

Pick x1 such that ε̃x1 is at most γ + δ/d. We now “smear” the value of g̃ at
(x1, x2, . . . ., xd) to Δ1

i × {x2} × · · · × {xd}, for all x2, . . . , xd. Doing this for
all i = 1, . . . , n produces the function g̃(1). It is not hard to see that the dis-
tance between g̃(1) and f is at most ε̃ + δ(1 + 1/d), and the function g̃(1) is
monotone.

After obtaining g̃(j), we obtain g̃(j+1) by repeating the above process for the
(j + 1)-th dimension. It is easy to verify that for j < d: (1) If g̃(j) is monotone
then so is g̃(j+1). (2) If g̃(j) is constant on Δ1

i1
×Δ2

i2
×· · ·×Δj

ij
×{xj+1}×· · ·×{xd}

for all i1, . . . , ij and xj+1, . . . , xd, then g̃(j+1) is constant on Δ1
i1
×Δ2

i2
× · · · ×

Δj+1
ij+1

×{xj+2}×· · ·×{xd} for all i1, . . . , ij+1 and xj+2, . . . , xd. (3) If the distance
between g̃(j) and f̃ is at most ε̃+ jδ/d, then the distance between g̃(j+1) and f̃
is at most ε̃+ (j + 1)δ/d.

1 It is called Algorithm-monotone-1-dimD(f, ε) there.
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Therefore, g̃(d) is monotone, and it is defined over [n]d (because it is con-
stant over Δ1

i1
× · · · ×Δd

id
). Denote the equivalent function over ([n]d,D) by g.

The monotone function g has distance at most ε̃+ 2δ from f . The set of possi-
ble distances between functions over ([n]d,D) is finite, therefore by choosing δ
small enough we obtain a function g which has distance exactly ε̃ from f . This
concludes the proof. �

8 Proof of Lemma 7

Let B denote the set {x|v(x) = 1}, and C denote {x|(ΨLv)(x) = 1}. We want
to show that μ(C) ≤ 2μ(B). It suffices to show that for any ε > 0, μ(C) ≤
(2 + ε)μ(B).

For y < x, define ρ(y, x) =
∫ x

y
v(t)dt

y−x = μ(B∩[y,x])
μ([y,x]) . That is, ρ(y, x) is the

measure of the set {v = 1} conditioned on [y, x].
Pick an arbitrary small ε > 0. Let Cε be the set of points x ∈ I such that

there exists y < x with ρ(y, x) > 1/2 − ε. For x ∈ Cε, we say that y is an
ε-witness for x if ρ(y, x) > 1/2− ε. We say that y is a strong ε-witness for x if
for all z : y < z ≤ x, ρ(y, z) > 1/2− ε.

We claim that if x ∈ Cε, then there exists a strong ε-witness y for x. Assume
otherwise. Let y be any ε-witness for x. Since y is not a strong ε-witness for x,
there exists z : y < z < x such that ρ(y, z) ≤ 1/2 − ε. Let z0 be the supremum
of all such z. Clearly, y < z0 < x (z0 cannot be x because then by continuity of
ρ we would get ρ(y, x) ≤ 1/2 − ε). We claim that z0 is a strong witness for x.
Indeed, if for some z′ : z0 < z′ < x we had ρ(z0, z′) ≤ 1/2 − ε, then it would
imply ρ(y, z′) ≤ 1/2− ε, contradicting our choice of the supremum.

For all x ∈ Cε, let y(x) be the infimum among all strong ε-witnesses of x.
We claim that for x = x′, the intervals [y(x), x) and [y(x′), x′) are either dis-
joint, or y(x) = y(x′). Otherwise, we would have, without loss of generality,
y(x) < y(x′) with both x, x′ > y(x′). But then any strong ε-witness for x that is
strictly between y(x) and y(x′) (which exists) is a strong ε-witness for x′, con-
tradicting the choice of y(x′). Therefore, the set Y = y(Cε) (the image of y(·))
is countable, and for any y0 ∈ Y there exists an x(y0) > y0 which is the supre-
mum over all x : x > y0 such that y(x) = y0. For two distinct y1, y2 ∈ Y ,
the intervals [y1, x(y1)) and [y2, x(y2)) are disjoint. Let D = ∪y∈Y [y, x(y)).
Clearly, by continuity of ρ, for all y ∈ Y , μ([y, x(y))) ≤ μ([y,x(y))∩B)

1/2−ε . There-

fore μ(D) ≤ μ(D∩B)
1/2−ε . We also have that μ(D̄) = μ(D) (where D̄ is the closure

of D), because D is a union of countably many intervals. Therefore, μ(D̄) ≤
μ(D̄∩B)
1/2−ε . By our previous claim Cε ⊆ D̄, therefore μ(Cε) ≤ μ(D̄∩B)

1/2−ε , and thus

μ(Cε ∪ (B\D̄)) ≤ μ(B)
1/2−ε . We claim that up to a set of measure zero, C is con-

tained in Cε ∪ (B\D̄). We omit the proof of this simple fact. We conclude that
μ(C) ≤ μ(B)

1/2−ε . �
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9 Future Work

1. Lower bounds: The best known lower bound for the one-dimensional uni-
form distribution property tester [3] is Ω(ε−1 log n) . For arbitrary distribu-
tion it is possible, using Yao’s minimax principal, to show a lower bound of
Ω(ε−1 log(ε/pmax)), where pmax is the maximal probability in the distribu-
tion. Note that log(1/pmax) can be arbitrarily smaller than H. It would be
interesting to close the gap, as well as generalize for higher dimension.

2. High-dimensional monotonicity: It is not known if Lemma 4 is tight. Namely,
is there a high dimensional function that has axis-parallel distances from
monotonicity exponentially (in d) smaller than the global distance to mono-
tonicity? We note that even if the exponential dependence is tight in the
inequality, it would not necessarily mean that the property testing query
complexity should be exponential in d (other algorithms that are not based
on axis-parallel comparisons might do a better job).

3. Other posets and distributions: It would be interesting to generalize the re-
sults here to functions over general posets [6] as well as arbitrary distributions
(not necessarily product distributions).

4. More information theory in property testing: It would be interesting to see
how the entropy or other complexity measures of D affect the query com-
plexity of other interesting property testing problems.

Acknowledgements. We would like to thank Shirley Halevy and Eyal Kushilevitz
for enlightening discussions.
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Abstract. In this paper we investigate the problem in which an all-
optical network provider must determine suitable payment functions for
non-cooperative agents wishing to communicate so as to induce routings
in Nash equilibrium using a low number of wavelengths. We assume three
different information levels specifying the local knowledge that agents
may exploit to compute their payments. While under complete informa-
tion of all the agents and their routing strategies we show that functions
can be determined that perform how centralized algorithms preserving
their time complexity, knowing only the used wavelengths along con-
necting paths (minimal level) or along the edges (intermediate level) the
most reasonable functions either do not admit equilibria or equilibria
with a different color assigned to each agent, that is with the worst pos-
sible ratio between the Nash versus optimum performance, also called
price of anarchy. However, by suitably restricting the network topology,
a price of anarchy 25.72 has been obtained for chains and 51.44 for rings
under the minimal level, and further reduced respectively to 3 and 6
under the intermediate level, up to additive factors converging to 0 as
the load increases. Finally, again under the minimal level, a price of an-
archy logarithmic in the number of agents has been determined also for
trees.

1 Introduction

All-optical networks are widely considered to be the future of the state of the
art communication networks due to the possibility of managing thousand of
users, covering wide areas and providing a bandwidth which is orders of mag-
nitude faster than traditional networks. Such high performances elect optical as
the leading technology in many applications such as video conferencing, scien-
tific visualization and high-speed distributed computing. The high bandwidth
provided by all-optical networks can be partitioned by means of the wavelength-
division multiplexing (WDM) [4] in order to obtain a large number of parallel
high speed channels along a same optical fiber (see [2, 8] for a survey of the main
related results).

V. Diekert and B. Durand (Eds.): STACS 2005, LNCS 3404, pp. 448–459, 2005.
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The problem of investigating the existence and performance of Nash equilibria
in all-optical networks has been first considered in [3]. In such a setting, a service
provider has to satisfy a given set of point-to-point communication requests,
charging each of them a cost depending on its wavelength and on the wavelengths
of the other requests met along its path in the network. Each request is issued
by a non-cooperative agent who is interested only in the minimization of his own
cost. Under this assumption any request is willing to be rerouted each time it may
be served by a cheaper path in the network and the evolution of the network can
be modelled as a multi-player game. A routing solution, that is an assignment
of paths and colors to the requests, in which no request can lower its cost by
choosing a different strategy is said to be a pure Nash equilibrium. In [3] four
different reasonable payment functions for the agents have been presented and
shown either to induce equilibria with the worst possible global performance, that
is with a different color assigned to each request, or not yielding the convergence
of the agents to an equilibrium. However, the existence of Nash equilibria for
such non-convergent functions has been left open.

Several other games [5, 6, 7, 12, 13, 14, 15, 18] have been shown to possess pure
Nash equilibria or to converge to a pure Nash equilibrium independently from
their starting state. In [10] the loss of the global performance of Nash equilibria
due to the lack of cooperation among the agents has been expressed as the
ratio between the cost of the worst Nash equilibrium and that of an optimal
centralized solution, also called price of anarchy or coordination ratio. Bounding
the price of anarchy of selfish routing in different models is now arising as one
of the most interesting research areas lying on the boundary between Computer
Science and Game Theory, see for example [11, 16].

In this paper we are interested in the problem of determining suitable pay-
ment functions for the non-cooperative agents of an all-optical network that
induce Nash equilibria using a low number of wavelengths. We assume differ-
ent information levels specifying the local knowledge that agents may exploit to
compute their payments. In particular, each agent has knowledge of all the other
agents and their routing strategies under the complete information level, of the
wavelengths used along any given edge under the intermediate level, and finally
of the wavelengths used along any given path connecting its source and desti-
nation under the minimal level. We first show that under the complete level,
functions can be determined that perform how centralized algorithms for the
problem, that is preserving both their approximation ratio and their time com-
plexity. We then prove that the most reasonable functions under the remaining
two levels either do not admit equilibria or have the worst possible price of an-
archy, that is with a different color assigned to each agent. However, by suitably
restricting the network topology, a price of anarchy 25.72 has been obtained for
chains and 51.44 for rings under the minimal level, and further reduced respec-
tively to 3 and 6 under the intermediate level, up to additive factor converging to
0 as the load increases. Finally, again under the minimal level, a price of anarchy
logarithmic in the number of agents has been determined for trees.
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The paper is organized as follows. In the next section we give the basic
definitions and notation. In Section 3 we present the above mentioned results
concerning the complete information level and we introduce suitable classes of
payment functions useful for characterizing convergent games with the worst
possible price of anarchy. In Section 4 we present the general results concerning
the reasonable payment functions for the minimal and intermediate levels. In
Section 5, we present the results for specific networks, that is chains, rings and
trees, and finally, in Section 6, we give some conclusive remarks and discuss some
open questions.

2 The Model

We model an all-optical network as an undirected graph G = (V,E) where nodes
in V represent sites and undirected edges in E bidirectional optical fiber links
between the sites.

Given any two nodes x, y ∈ V , we denote a communication request between
x and y as {x, y}. A communication instance in G is a multiset of requests I
eventually containing multiple requests between the same pairs of nodes. A path
system P for an instance I in G is a set of paths containing a distinguished
simple connecting path in G for each request in I. A solution R(G, I) for an
instance I in G, R for short, is a pair (PR, cR) in which PR is a path system
for I and cR : I → W (with W = IN+ being the set of wavelengths) is a
function associating a wavelength or color to each request in I. Let pR({x, y}) ∈
PR denote the path connecting {x, y} in R and |pR({x, y})| be its length in
terms of number of edges. A solution R is feasible or is a routing for I in G if
cR({x1, y1}) = cR({x2, y2}) for any two requests {x1, y1} ∈ I and {x2, y2} ∈ I
whose connecting paths pR({x1, y1}) and pR({x2, y2}) share an edge in G, i.e.,
the associated colors are different.

Let ωR(G, I) be the number of colors used by the routing R for I in G and
ω(G, I) = minR ωR(G, I) be the minimum number of colors used by any routing
for I. Analogously, let πR(G, I) = maxe∈E |{p ∈ PR|e ∈ p}| be the maximum
load of an edge in G induced by the routing R and π(G, I) = minR πR(G, I)
be the minimum maximum load of the routings for I in G, also called load of I
in G. Clearly, since all the requests sharing an edge must have different colors,
ωR(G, I) ≥ πR(G, I) for every R and thus ω(G, I) ≥ π(G, I).

Since the optical spectrum is a scarce resource, an interesting optimization
all-optical routing problem arises consisting in the determination of routings
using a number of wavelengths close to the minimum one, i.e., ω(G, I).

In order to model our non-cooperative environment, we assume that each
communication request {x, y} ∈ I is issued and handled by an agent α that
for the sake of simplicity we consider as coincident with the request, that is
α = {x, y}. A payment function priceR : I → IR+ is a function associating
to each agent α ∈ I the price he has to pay to the network provider in order
to obtain the asked service if the routing R is adopted. Let price denote the
collection of the functions priceR for all the possible routings R. With abuse
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of notation, in the following we often identify the functions priceR with the
collection price.

In order to represent the increasing cost incurred by the network provider
to implement a routing using up to a given wavelength and to give to our pay-
ment functions a higher degree of generality, we assume the existence of a non-
decreasing function f : W → IR+ associating a (positive) cost to every color.

A routing R is at Nash equilibrium if and only if for any agent α and routing
R′ differing from R only for the path and/or the color associated to α, it holds
priceR(α) ≤ priceR′(α).

A game G = (G, I, price) among the |I| agents belonging to I on the network
G induced by the collection of pricing functions price is defined as the set of
agents’ strategies Pα ×W , where Pα is the set of connecting paths for α and
the utility function u(α) = −p(α). Denoted as N the set of the routings at Nash
equilibrium, the coordination ratio or price of anarchy of the game G is defined
as ρ(G) = supR∈N

ωR(G,I)
ω(G,I) .

The evolution of the game G is a sequence of moves
(α, pold, colorold, pnew, colornew), where α is an agent and (pold, colorold) ∈
Pα ×W and (pnew, colornew) ∈ Pα ×W are the old and the new strategy of α,
respectively. The Nash dynamics of the game G is the directed graph (Φ,M)
where Φ is the set of the possible routings for G and I and there exists an
arc (R1,R2) ∈ M if there exists a selfish move from R1 to R2. If the Nash
dynamics is acyclic for every G and I, the game G is said to be convergent.
Analogously, any payment function price inducing only convergent games is
said to be convergent.

Proposition 1. Any convergent game G admits at least one Nash equilibrium.

It is worth noting that even if the Nash dynamics is not acyclic the game
might admit a Nash equilibrium.

Before concluding the section, we finally observe that the payment function
priceR, in a strongly distributed non-cooperative environment, must be com-
puted by each single agent requiring the communication service. However, the
level of global information they have can be limited by technological constraints
as well as privacy policies carried out by the service provider or simply enforced
by the law. Therefore, in general priceR is not computed starting from the in-
stance I and the routing R, but on a more restricted set of information induced
by them. In order to better specify this aspect, we introduce the concepts of
states and levels of information.

The edge state (resp. path state) of the network G induced by a routing R
for I is a function σR : E → 2W (resp. σ̄R : P → 2W where P is the set of all
the simple paths in G) associating to every edge e ∈ E (resp. path p ∈ P) the
set of the wavelengths used along e (resp. p).

It is then possible to distinguish among three basic levels of information:

Minimal. Each agent α = {x, y} knows the available wavelengths along any
given path connecting x to y, that is the function priceR can be computed
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even knowing only the restriction of the path state σ̄R(α) on the set of the
paths from x to y.

Intermediate. Each agent information knows the wavelengths available along
any given edge, that is the function priceR can be computed even knowing
only the edge state σR.

Complete. Each agent α = {x, y} knows the instance I and the routing R,
that is the function price is not restricted.

Clearly, even if not explicitly mentioned, in any level of information, for each
agent α, priceR(α) can depend also on the wavelength c(α) and the path p(α)
assigned to α in R. Notice also that even with a minimal information any agent
is always able to compute a valid wavelength for the chosen path so as to not
interfere with any other agent and thus not compromising the feasibility of the
solution.

For ease of notation, when clear from the context, in the following we will
drop the index R from the notation, thus for instance writing price(α), p(α),
c(α), σ(e) and σ̄(p) in place of priceR(α), pR(α), cR(α), σR(e) and σ̄R(p).

3 Preliminaries

In this section we first prove that, under complete information, any centralized
algorithm A for the all-optical routing problem can be suitably used in a non-
cooperative environment for achieving a price of anarchy either equal to 1 or k
according to whether A is optimal or k-approximating, respectively.

Theorem 1. Let A be any k-approximation algorithm for the all-optical routing
problem (k = 1 if A is optimal). Then there exists a payment function yielding
a game G converging in at most 3|I| steps and having price of anarchy equal to
k. Moreover, the time complexity of the computation of the function is at most
the same of A.

Starting from the above theorem, in the sequel we will only focus on the
minimal and intermediate information levels. Before proceeding with the pre-
sentation of our results, let us first introduce two families of payment functions
that provide a useful characterization of the class of convergent games with the
worst possible price of anarchy.

Given a generic move μ performed by an agent α from Rold to Rnew, let
A be the set of agents sharing at least one edge with α in Rold and no edges
with α in Rnew and B be the set of agents sharing at least one edge with α in
Rnew. We denote with Π the set of payment functions satisfying the following
conditions:

∀β ∈ A, priceRnew
(β) ≤ priceRold

(β) (1)

∀β ∈ B, priceRnew(β) > priceRold
(β)⇒ priceRnew(β) ≤ priceRnew(α) (2)
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Theorem 2. All the payment functions belonging to Π are convergent.

As it can be easily seen, the number of steps needed to converge to an equi-
librium may not be polynomial in the dimensions of the instance.

We now define a subclass of Π of payment functions inducing games G having
a price of anarchy ρ = |I|

ω(G,I) , which is clearly the worst possible since any
feasible solution for the problem uses at most |I| colors while ω(G, I) is the
optimal solution.

We denote as Ξ = Ξ ′ ∪Ξ ′′ the class of payment functions satisfying at least
one of the following conditions:
Subclass Ξ ′: ∀α ∈ I, price(α) depends only on the color c(α) and c(α) ≥

c′(α)⇒ priceR(α) ≥ priceR′(α) for any R and R′, that is the cost for each
agent depends only on his own color in the routing and any other agent α
never gets a benefit in performing a move (α, pold, colorold, pnew, colornew)
where colornew ≥ colorold.

Subclass Ξ ′′: ∀α ∈ I, price(α) = maxe∈p(α)g(σ(e)) where g : 2W → IR is such
that for any sets of colors A and B, A \ {d} ⊆ B ⇒ g(A) ≤ g(B ∪{d′}) with
d ∈ A, d′ ≥ d and d′ /∈ B. In other words, the image g(B ∪ {d′}) according
to g of a set B ∪{d′} containing all the elements of another set A except for
at most one element (d) which has to be replaced in the first set by a strictly
greater element d′, cannot be smaller than the image g(A) of the second set.

Theorem 3. Ξ ⊆ Π, that is any function price ∈ Ξ is convergent. Moreover,
all the payment functions belonging to Ξ induce games G = (G, I, price) having
a price of anarchy ρ = |I|

w(G,I) .

4 Minimal and Intermediate Payment Functions

Even though the results obtained in the case of complete information are fully
satisfactory, it must be stressed that the assumption that each agent has the
full knowledge of the instance and the routing is very strong and in real world
networks might not be true either due to technological or privacy policies reasons.
Therefore, in the sequel we will focus on payment functions based on a more
restricted level of information.

Let us first define a complete set of payment functions that can be computed
under a minimal or intermediate information level.

Given a routing R, we first propose suitable cost functions defined on the
edges that will be used as building blocks for the definition of the mentioned
payment functions:

• col(e, α) = f(c(α)): the amount charged to α on the edge e is the cost,
according to f , of the color he uses.

• max(e, α) = maxk∈σR(e) f(k): the amount charged to α on the edge e is the
cost of the highest color used along e (considering also the other agents).

• sum(e, α) =
∑

k∈σR(e) f(k): the amount charged to α on the edge e is the
sum of the costs of all the colors used along e.
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• avmax(e, α) = maxk∈σR(e)
f(k)

|σR(e)| : the amount charged to α on the edge e
is the cost of the highest color used along e, averaged or shared among all
the agents traversing e.

• avsum(e, α) =
∑

k∈σR(e)
f(k)

|σR(e)| : the amount charged to α on the edge e is
the sum of the costs of all the colors used along e, averaged on all the agents
traversing e.

Starting from any edge cost function cost, it is possible to define the following
payment functions:

• max− cost(α) = maxe∈p(α) cost(e, α): the price asked to α is the maximum
cost, according to cost, of an edge used by α.

• sum − cost(α) =
∑

e∈p(α) cost(e, α): the price asked to α is the sum of the
costs of the edges used by α.

The combination of the introduced edge cost functions with the above two
strategies, that is maximization or summation, gives rise to ten possible payment
functions. In all the cases, since the function f is non decreasing, agents have an
incentive to choose small colors so as to possibly minimize the overall number
of used colors.

The functions max− col, max−max, sum −max and sum − avmax have
been considered in [3], where max− col and max−max have been shown to be
convergent even if inducing games G = (G, I, price) with the worst possible price
of anarchy ρ = |I|

w(G,I) , while sum−max and sum− avmax have been shown to
be non convergent, even if the existence of Nash equilibria in the corresponding
games was left open.

Notice that all the ten introduced payment functions are computable under
an intermediate information level. Moreover, max− col, sum − col and max−
max require only the minimal level, as max − col(α) = maxe∈p(α) col(e, α) =
f(c(α)), sum−col(α) =

∑
e∈p(α) col(e, α) = |p(α)|·f(c(α)) andmax−max(α) =

maxe∈p(α) maxk∈σ(e) f(k) = maxk∈σ̄(p(α)) f(k).
In particular, the following lemma, leading to the same consequences of [3],

shows how the families of functions defined in the previous section nicely char-
acterize their class of games.

Lemma 1. The payment functions max − col and max − max belong to the
class Ξ.

Moreover, a similar result holds for sum− col.

Theorem 4. The payment function sum−col belongs to Π, that is it is conver-
gent, but induces games G = (G, I, price) having a price of anarchy ρ = |I|

w(G,I) .

Therefore, even if convergent, all the three minimal level functions yield the
worst possible price of anarchy. Unfortunately, the following results show that
also the remaining seven payment functions for the intermediate information
level either are not convergent or yield the worst possible price of anarchy.
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Theorem 5. The payment function max− sum belongs to the class Ξ.

Proof. We show that max−sum belongs to the subclass Ξ ′′ of Ξ. To this aim, it
suffices to show that g(σ(e)) = sum(e, α) =

∑
k∈σ(e) f(k) satisfies, for any sets

of colors A and B, the property A \ {d} ⊆ B ⇒ g(A) ≤ g(B ∪ {d′}) with d ∈ A,
d′ ≥ d and d′ /∈ B. Since A \ {d} ⊆ B and f is positive and non decreasing, we
have g(B ∪ {d′}) = f(d′) +

∑
k∈B f(k) ≥ f(d) +

∑
k∈A\{d} f(k) = g(A). ��

Theorem 6. No Nash equilibria exist for the games induced by the payment
functions

1. sum−max when the pricing function f is unbounded;
2. max− avmax and sum− avmax when f is such that ∃k : f(k) > 2f(1);
3. max− avsum and sum− avsum when the f is such that ∃k : f(k) > f(1),

that is f is non constant.

Finally, we have the following theorem concerning sum− sum.

Theorem 7. The payment function sum − sum is not convergent when the
pricing function f is such that ∃k : f(k) > f(1) + f(2).

According to the above results, an interesting left open question for the mini-
mal and intermediate information levels is the determination of suitable payment
functions able to induce convergent games with a price of anarchy better than
the worst possible one.

5 Results for Specific Topologies

Since the results obtained for generic networks are not fully satisfactory when the
level of information is not complete, in this section we focus on networks having
specific topologies, like chains (nodes connected along a line), rings (cycles of
nodes) and trees.

Let us first consider the minimal information level.
Any strictly increasing payment function computable under this level, like

price(α) = c(α), induces games in which a routing R at Nash equilibrium can
be seen as a solution of the classical First-Fit algorithm for the all-optical routing
problem that assigns to each request the smallest available color. In particular,
such a solution is the one returned by First-Fit when requests are considered in
non decreasing order of color in R. Therefore, the induced price of anarchy is
bounded by the approximation ratio of First-Fit.

Concerning the above mentioned topologies, for any instance I, First-Fit
uses a number of colors that is at most 25.72π(G, I) in chains [9] and at most
O((log |I|)π(G, I)) in trees [1].

Recalling that ω(G, I) ≥ π(G, I), the following theorem holds.

Theorem 8. The payment function price(α) = c(α) induces games with a
price of anarchy 25.72 in chains and ρ = O(log |I|) in trees, both converging
in ωR(G, I)2 steps from any initial routing R.
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For rings, it is possible to use the result of [9] by routing requests on the chain
obtained deleting an edge e ∈ E of the ring. In fact, denoted as P the path system
containing all such connecting paths, for any routing R with PR = P it results
πR(G, I) ≤ 2π(G, I). In other words, this at most doubles the induced load.

The following payment function forces Nash equilibria using the set of
paths P :

price(α) =
{

1 if e ∈ p(α)
1− 1

c(α) otherwise

Since the payment function belongs to Π and restricted to the routings R
with PR = P is strictly increasing, that is each agent has an incentive in choos-
ing the smallest available color, by the doubling of the load the following theo-
rem holds.

Theorem 9. The above payment function in rings induces games with price of
anarchy 51.44 converging in ωR(G, I)2 steps from any initial routing R.

In the remaining part of the section we show how, raising the level of informa-
tion to the intermediate one, it is possible to further reduce the price of anarchy
for chains and rings. We first focus on ring topologies, as the corresponding
results can be directly extended to chains.

Our purpose is to force the agents to simulate the behavior of the online
algorithm proposed by Slusarek [17]. In such an algorithm, the path system P
is fixed and the optical spectrum is divided in shelves, numbered consecutively
starting from 1. The color assigned to an arriving agent α is the lowest available
one in the minimal shelf i such that the load induced on the edges of α by all the
agents up to shelf i is at most i. More precisely, denoted as sh(w) the shelf of a
given wavelength w, the load l(α,R) of an agent α according to a routing R is

l(α,R) = max
e∈p(α)

|{w|w ∈ σ(e) ∧ sh(w) ≤ sh(c(α))}|.

Clearly, any routing R such that PR = P has the same load πR(G, I) and in
the routing R returned by the algorithm at most πR(G, I) shelves are used to
allocate all the agents. Moreover, as shown in [17], during all the execution of
the algorithm the first shelf contains only one color and the other ones no more
than three colors, thus yielding ωR(G, I) ≤ 3 · πR(G, I) − 2 colors, that is at
most 3 times above the optimum.

In devising a payment function that mimic Slusarek’s algorithm it is necessary
to cope with several problems. First of all, it is necessary to fix a path system
with a low induced load. This is obtained by incentiving agents to use shortest
paths, as in any routing R satisfying such a property πR(G, I) ≤ 2π(G, I), that
is the induced load is at most doubled. Moreover, the convergence of the game
is an issue since the move of an agent might compromise the minimality of the
payments of the agents in his shelf and in the above ones. Finally, in order for an
agent to always find a proper shelf during the evolution of the game, we have to
allow an unlimited number of colors to be contained in each shelf. Since however
Nash equilibria will use only one wavelength of the first shelf and at most three
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in the other ones, we have to choose the function sh associating colors to shelves
trying to minimize, for each i, the maximum third color of all the shelves up
to i. To this aim, we partition the set of wavelengths W in two subsets W1
and W2 in which W2 = {2i|i = 0, 1, 2, . . .} is the set of the slack wavelengths.
Each shelf has an infinite number of wavelengths and the first one of shelf 1 and
the first three ones of all the other shelves correspond consecutively to small
colors in W1, while the other ones to slack colors in W2, assigned to the different
shelves according to a dove-tail technique in such a way that, for every i ≥ 1
and j > 3, there exist a finite wavelength w ∈ W2 that corresponds to the j-th
color of shelf i.

As it can be easily checked, while the first color of shelf 1 is 3, the third color
of each shelf i > 1 is at most 3i+ �log2 3i�+ 3.

Assuming that the function sh realizes the above mapping of colors and that
n is the number of nodes in the ring, the payment function priceR charges to
agent α

min

{⌊n
2

⌋
, |p(α)|+ nmax{0, l(α,R)− sh(c(α))} − 1

2 + sh(c(α))− 1
2c(α)

}
.

Intuitively, a routing R is at Nash equilibrium if and only if each request
uses a shortest path and the color that Slusarek’s algorithm assigns to him when
agents arrive in non decreasing order of color in R, clearly not using colors in
W2.

Theorem 10. The game induced by price in rings converges and has a price
of anarchy ρ = 6 +O( log(π(G,I))

π(G,I) ).

Proof. Let us consider any evolution of the game starting from any given con-
figuration and let us show that it converges to a Nash equilibrium in a finite
number of agent moves. At any intermediate configuration, let us partition I
into two sets A and B such that A contains all the agents that in the sequel
of the game will never perform a move to a higher shelf. We show that, after a
finite number of moves, a new agent will enter in A, so that in a finite number
of steps it will finally result A = I. This proves the convergence of the game,
since starting from such final configuration the agents can not perform an infinite
number of moves without raising their shelf.

First of all we note that, since by construction the number of wavelengths in
each shelf is infinite, each agent α can always perform a move leading him in a
feasible shelf i, that is such that i ≥ l(α,R). Moreover, the moves leading α on
a shortest path and in a feasible shelf are the only ones which can make α’s cost
strictly smaller than �n

2 �. Finally, an agent routing a shortest path and lying in
a feasible shelf, maintaining his connection path decreases his cost if he moves
to a lower feasible shelf or to a smaller color of its shelf.

Consider a move of agent α1 to a shelf i1. The proof proceeds by cases: after
the move
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1. α1 will never perform a move increasing his shelf.
In this case α1 is entered in A.

2. At a certain point of the game, α1 performs a move increasing his shelf.
This is due to another agent α2 who has performed a move to a shelf i2 ≤ i1.
However, it cannot be i2 = i1, as α2 increases α1’s load to i1 + 1 and would
have the same load i1 + 1 in shelf i1 (i.e., i1 is not feasible for α2), thus not
decreasing his cost. We can then continue applying the same analysis to α2.
Since the number of shelves in which agents can move is bounded by π(G, I),
we must finally arrive to an agent αj with j ≤ π(G, I) for which the first
case holds.

As already observed, any routing R at Nash equilibrium corresponds to the
output of Slusarek’s algorithm without using colors inW2 when the agents arrive
in non decreasing order of color in R. Thus, the maximum used color in R is
at most the third one of shelf π(G, I) if π(G, I) > 1 while it is equal to the
first one of shelf 1 otherwise. This shows that the maximum used color is at
most 3πR(G, I) + �log2 3πR(G, I)�+ 3. Since R uses shortest paths, πR(G, I) ≤
2πR(G, I) and the resulting price of anarchy is ρ = 6 +O( log(πR(G,I))

πR(G,I) ). ��

Clearly, a similar function price′ defined as

min

{
n, 1 + 2nmax{0, load(α,R)− sh(c(α))} − 1

2 + sh(c(α))− 1
2c(α)

}

can be used also in chains, for which connection paths are unique and thus no
doubling of the load occurs.

Theorem 11. The game induced by price′ in chains converges and has a price
of anarchy ρ = 3 +O( log(π(G,I))

π(G,I) ).

6 Conclusion

We have considered the problem of determining suitable payment functions for
the non-cooperative agents of an all-optical network to induce Nash equilibria
using a low number of wavelengths.

While the complete information level has been fully understood, under the
lower levels the main left open question is the determination of functions that
on every topology yield Nash equilibria with a performance better than the
worst possible one assigning a different color to each agent. Moreover, still under
incomplete information, it would be also nice to improve and extend our results
on specific topologies.

Finally, our results outline nice connections between payment functions and
online algorithms, that allow to cope with the arbitrary order of the moves of
the agents. It would be nice to understand the conditions and eventual system-
atic methods allowing to get converging payment functions preserving online
algorithms performances under uncomplete information.
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Abstract. We consider speed scaling algorithms to minimize device
temperature subject to the constraint that every task finishes by its
deadline. We assume that the device cools according to Fourier’s law. We
show that the optimal offline algorithm proposed in [18] for minimizing
total energy (that we call YDS) is an O(1)-approximation with respect
to temperature. Tangentially, we observe that the energy optimality of
YDS is an elegant consequence of the well known KKT optimality con-
ditions. Two online algorithms, AVR and Optimal Available, were pro-
posed in [18] in the context of energy management. It was shown that
these algorithms were O(1)-competitive with respect to energy in [18]
and [2]. Here we show these algorithms are not O(1)-competitive with
respect to temperature. This demonstratively illustrates the observation
from practice that power management techniques that are effective for
managing energy may not be effective for managing temperature. We
show that the most intuitive temperature management algorithm, run-
ning at such a speed so that the temperature is constant, is surprisingly
not O(1)-competitive with respect to temperature. In contrast, we show
that the online algorithm BKP, proposed in [2], is O(1)-competitive with
respect to temperature. This is the first O(1)-competitiveness analysis
with respect to temperature for an online algorithm.

1 Introduction

In May Intel abruptly announced that it had scrapped the development of two
new computer chips (code named Tejas and Jayhawk) for desktops/servers in
order to rush to the marketplace a more efficient chip technology more than a
year ahead of schedule. Analysts said the move showed how eager the world’s
largest chip maker was to cut back on the heat its chips generate. Intel’s method
of cranking up chip speed was beginning to require expensive and noisy cool-
ing systems for computers [17]. (Current estimates are that cooling solutions
are rising at $1 to $3 per watt of heat dissipated [15].) This demonstrates that
exponentially growing device power consumption, the power densities in micro-
processors have doubled every three years [15], has reached the critical point
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where power management, and in particular temperature management, is one of
the main criteria driving device design.

There is an extensive literature on power management in computing devices,
see for example [4, 12, 16]. However, the vast majority of this literature focuses
on power management to conserve energy, and not on power management to
reduce temperature. Temperature and energy are different physical entities with
quite different properties. Bluntly, if the processor in your mobile device exceeds
its energy bound, your battery is exhausted; If your processor exceeds it thermal
threshold, the processor dies. Power management schemes for conserving energy
focus on reducing cumulative power, while power management schemes for re-
ducing temperature must focus more on instantaneous power. Therefore power
management schemes designed to conserve energy may not perform as well when
the goal is to reduce temperature. In fact, many low-power techniques are re-
ported to have little or no effect on temperature [15]. Temperature aware design
is therefore a distinct, albeit related, area of study to energy aware design [15].

Both in academic research and practice, dynamic voltage/frequency/speed
scaling is the dominant technique for power management. Speed scaling involves
dynamically changing the speed of the processor. Current microprocessors from
AMD, Intel and Transmeta allow the speed of the microprocessor to be set dy-
namically. Some modern processors already are able to sense their own temper-
ature, and thus can be slowed down or shut down so the processor temperature
will stay below its thermal threshold [15]. In this paper we study speed scaling
strategies to manage temperature.

1.1 Problem Formulation

We need to model the cooling behavior of a device. Cooling is a complex phe-
nomenon that can not be modeled completely accurately by any simple model [14].
Still we require some first order simple approximation. We assume that the rate
of cooling follows Fourier’s Law, which states that the rate of cooling is pro-
portional to the difference in temperature between the object and the ambient
environment temperature. We assume that the environment has a fixed temper-
ature, and that temperature is scaled so that the ambient temperature is zero.
A first order approximation for rate of change T ′ of the temperature T is then
T ′ = aP − bT , where P is the supplied power, and a, b are constants [14].

We make the standard assumption that if the processor is run at speed s,
then the power consumption is P (s) = sα for some constant α > 1 [4, 2, 11, 1].
For CMOS based devices, which will likely remain the dominant technology for
the near term future, the well known cube-root rule is that the speed s is roughly
proportional to the cube-root of the power P , or equivalently, P (s) = s3, i.e.,
the power is proportional to the cube of the speed [4].

The input is a collection of tasks, where each task i has a release time ri
when it arrives into the system, an amount of work wi that must be performed
to complete the task, and a deadline di for completing this work. In the online
version of the problem, the scheduler learns about a task only at its release
time; at this time, the scheduler also learns the exact work requirement and



462 N. Bansal and K. Pruhs

the deadline of the task. In some settings, for example, the playing of a video
or other multimedia presentation, there may be natural deadlines for the var-
ious tasks imposed by the application. In other settings, the system may im-
pose deadlines to better manage tasks [5]. A schedule specifies which task to
run at each time, and at what speed that task should be run. The work per-
formed on a job is the integral over time of the speed that this job is run at
that time. The schedule must be feasible, that is, wi units of work must be
performed on task i during the time interval [ri, di]. This is always possible
since the processor can run at any speed. Preemption is allowed, that is, the
scheduler may suspend a task and then later restart the task from the point of
suspension.

Energy is power integrated over time. In the energy problem, the goal is to
find a feasible schedule that minimizes the total energy used. In the temperature
problem, the goal is to find a feasible schedule that minimizes the the maximum
temperature that the device reaches over the whole history of the schedule.
That is, we want to determine the least thermal threshold that will allow us to
complete these tasks. We assume that the initial temperature of the device is
the ambient temperature, although this assumption is not crucial.

A schedule is c-competitive for a particular objective function if the value of
that objective function on the schedule is at most c times the value of the objec-
tive function on the optimal schedule. A scheduling algorithm is c-competitive
if its output is c-competitive for all instances.

1.2 Results

Theoretical investigations into speed scaling techniques to manage energy were
initiated in [18]. They showed that there is a simple greedy offline algorithm,
which we call YDS, that generates the feasible schedule (for all α) that uses
minimum energy. We describe the algorithm YDS in section 2. [18] also proposed
two online algorithms Average Rate (AVR), and Optimal Available (OA). The
algorithm Average Rate (AVR) runs each task i at a rate of wi/(di − ri). The
algorithm Optimal Available (OA) at any point of time schedules the unfinished
work optimally (say using YDS) under the assumption that no more tasks will
arrive. AVR and OA were proved O(1)-competitive with respect to energy in
[18] and [2], respectively. In [2] another online algorithm, which we call BKP,
was proposed, and shown to be O(1)-competitive with respect to energy. The
motivation for introducing BKP was that it has a lower competitive ratio, with
respect to energy, than do AVR or OA when α is large. We postpone a description
of the BKP algorithm until section 4.

Theoretical investigations into speed scaling techniques to manage tempera-
ture were initiated in [2]. In [2] it was shown that in principle the offline problem
can be solved in polynomial time (modulo numerical stability issues) using the
Ellipsoid algorithm. The Ellipsoid algorithm is useful for establishing theoreti-
cal results, but it is practically inefficient for moderate sized problems. Due to
the complicated nature of Fourier’s law, it seems unlikely that one can easily
compute the optimal temperature schedule.
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In section 2 we show that while the YDS schedule may not be optimal for tem-
perature, it is an O(1)-approximate schedule with respect to temperature. Thus,
this constructively shows that there are schedules that are O(1)-approximate
with respect to both of the dual criteria: temperature and energy. In some sense,
this is the best result possible, as even for some 1 job instances it is not to dif-
ficult to see that there does not exist a schedule that is (1 + ε)-approximate for
both energy and temperature (see Lemma 5 for details).

In section 3 we show that that online algorithms OA and AVR, proposed
in [18] in the context of energy management, are not O(1)-competitive with
respect to temperature. Recall that there algorithms are O(1)-competitive with
respect to energy. This demonstratively illustrates the observation from practice
that power management techniques that are effective for managing energy may
not be effective for temperature. We also show that an intuitive temperature
management algorithm, running at such a speed so that the temperature is
constant, is surprisingly not O(1)-competitive with respect to temperature.

In section 4 we give our main result. We show that the online speed scaling
algorithm, that we call BKP, proposed in [2] in the context of energy manage-
ment, is O(1)-competitive with respect to temperature. This is the first O(1)-
competitiveness analysis with respect to temperature for an online algorithm.
Another way to interpret this result is that if BKP exceeds the thermal thresh-
old Tmax of the device then every other feasible schedule causes the device to
reach a temperature of Ω(Tmax). Our temperature analysis of the online algo-
rithm BKP compares BKP to YDS, and thus our temperature analysis of YDS
is also necessary component to our temperature analysis of BKP.

At first inspection it seems difficult to reason about temperature because of
the exponential decay nature of Fourier’s law. All of our temperature analyses use
the observation that the maximum temperature can be approximated within a
constant by a times the maximum energy used over an interval of length Θ(1/b).
We believe that this observation nicely explains the different natures of energy
and temperature management, greatly simplifies the task of reasoning about
temperature, and will surely be useful in future investigations in algorithmic
issues in temperature management.

The paper [18] did not contain a proof that the YDS algorithm produces
the most energy efficient feasible schedule. And to the best of our knowledge,
no such proof has appeared in the literature. We show in section 5 that the
correctness of YDS is an elegant consequence of the well-known KKT optimality
conditions. This illustrates the utility of the KKT optimality conditions in power
management problems. As another example, KKT optimality conditions can be
used to simply some proofs in [13].

1.3 Further Related Results

The YDS schedule also minimizes the maximum speed, over all times in the
schedule, that the processor runs at that time [18]. The BKP online algorithm
is optimally (among deterministic online algorithms) e-competitive for this ob-
jective function [2].
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[10] studies online speed scaling algorithms to minimize energy usage in a set-
ting where the device also has a sleep state, and gives an offline polynomial-time
2-approximation algorithm. [10] also gives an O(1)-competitive online algorithm,
which uses as a subroutine an algorithm for pure dynamic speed scaling. These
results have been extended to the case of multiple slow-down states in [1].

[13] give an efficient algorithm for the problem of minimizing the average flow
time of a collection of dynamically released equi-work processes subject to the
constraint that a fixed amount of energy is available.

2 YDS Temperature

Our goal is to show that the energy optimal YDS schedule produced by the YDS
algorithm is 20-competitive with respect to temperature. We first start with a
description of the YDS algorithm. We then show in Lemma 1 that the optimal
maximum temperature of a schedule is within a factor of 4 of the a times the
maximum energy expended of an interval of length c = ln 2

b . We call such an
interval a c-interval. Thus it is sufficient to show that YDS is 5-competitive with
respect to the maximum energy expended over any c-interval.

YDS Algorithm: Let w(t1, t2) denote the work that has release time ≥ t1 and
has deadline ≤ t2. The intensity of the interval [t1, t2] is then w(t1, t2)/(t2− t1).
The YDS algorithm repeats the following steps: Let [t1, t2] be the maximum
intensity interval. The processor will run at speed w(t1, t2)/(t2 − t1) during
[t1, t2]. Then the instance is modified as if the times [t1, t2] didn’t exist. That is,
all deadlines di > t1 are reduced to max(t1, di − (t2 − t1)), and all release times
ri > t1 are reduced to max(t1, ri− (t2− t1)), and the process is repeated. Given
the speed as a function of time as determined by this procedure, YDS always
runs the released, unfinished task with the earliest deadline.

Note that the YDS schedule has the property that each task is run at a fixed
rate when the task is run. This rate is fixed with respect to time, but may be
different for different tasks.

Lemma 1. For any schedule, if E denotes a times the maximum energy in a
c-interval, then E/2 ≤ Tmax ≤ 2E.

Proof. Let P (t) be the power at time t. We rewrite Fourier’s Law as

d(ebtT ) = aebtP (t)dt (1)

Let k = cb = ln 2. Define Tmax to be the maximum temperature reached for
the schedule, and E be defined to be a times the maximum energy used any c-
interval. We first show that Tmax is at most twice E. Suppose that temperature
Tmax is achieved at time t0. Then integrating equation 1 from t0−k/b = t0−c to
t0, we get T (t0)ebt0−T (t0−k/b)ebt0−k = a

∫ t0
t0−k/b

ebtP (t)dt. As ebt is increasing

in t, the term
∫ t0

t0−k/b
ebtP (t)dt is at most ebt0

∫ t0
t0−k/b

P (t)dt. Thus, T (t0) ≤
T (t0 − k/b)e−k + a

∫ t0
t0−k/b

P (t)dt. As T (t0 − k/b) ≤ T (t0) = Tmax, it follows
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that Tmax(1 − e−k) ≤ a
∫ t0

t0−k/b
P (t)dt ≤ E, and hence Tmax ≤ E

1−e−k = 2E, as
k = ln 2.

We now want to show Tmax is at least half of E. Let [t0 − k/b, t0] be a c-
interval where the maximum amount of energy is used. Integrating equation 1
gives T (t0)ebt0 − T (t0 − k/b)ebt0−k = a

∫ t0
t0−k/b

ebtP (t)dt. Using the fact that
T (t0 − k/b) ≥ 0, and that ebt is an increasing function of t, and the definition
of E, it follows that T (t0)ebt0 ≥ a

∫ t0
t0−k/b

ebtP (t)dt ≥ aebt0−k
∫ t0

t0−k/b
P (t)dt =

ebt0−kE. Thus, Tmax ≥ T (t0) ≥ e−kE = E/2.

Note that YDS is not optimal for minimizing the maximum temperature,
or for minimizing the total energy in a c-interval. The fact that YDS is not
optimal for temperature can be seen on 1 job instances where the in the optimal
temperature schedule must run at a speed that follows some non-constant Euler
curve [2] (see Lemma 5 for more details). The fact that YDS is not optimal for
minimizing energy used in a c-interval can be seen from the following instance.
Consider for example, an instance with 2 tasks with work 1 each, both of them
arrive at time 0 and have deadlines c/2 and 3c/2 respectively.

For the rest of this section we only consider the objective of minimizing the
maximum energy in any c-interval. This will culminate in Lemma 3, which states
that the YDS schedule is 5 approximate with respect to this objective.

We first require some preliminary definitions and observations. Let I denote a
problem instance. Let Y DS(I) be the YDS schedule on input I. Let Y (I) denote
the maximum energy used in any c-interval in Y DS(I). Let Opt(I) denote the
optimum value of the maximum energy used in any c-interval, over all feasible
schedules. Let X(I) denote a c-interval in Y DS(I) that uses energy Y (I). Let
r0 = (εY (I)/c)1/α. The value of ε will be fixed later. Call a task in I, slow , if it
runs at rate strictly less than r0 in Y DS(I). This notion is well defined because
a task runs at constant rate in the YDS schedule. The rest of the tasks are called
fast. Define I ′ to consist of exactly the fast tasks in I. Let r′(t) denote the rate
at time t in Y DS(I ′), and r(t) denote the rate at time t in Y DS(I).

Define an island to be a maximal interval of time where r′(t) > 0. The
following two claims easily follow from the nature of the YDS algorithm.

Claim. For all times t, r′(t) = r(t) if r ≥ r0 and r′(t) = 0 otherwise.

Claim. Each task in the instance I ′ is totally contained inside an island. That
is, for each task i ∈ I ′, the interval [ri, di] does not overlap with any time where
r′(t) = 0.

Thus, we can view the instance I ′ as a collection of disjoint intervals (islands),
and each task is contained in an island. For an instance Ĩ we define its support
to be (maxi∈Ĩ di−mini∈Ĩ ri), that is, all task in an instance are contained in an
interval of length equal to the support of the instance. By the energy optimality
of YDS, we trivially have that,

Claim. For an instance Ĩ that has support no more than c, Y (Ĩ) = Opt(Ĩ).

As most of the energy in X(I) is contained is fast tasks, we have that
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Lemma 2. Let I and I ′ be as defined above. Then (1− ε)Y (I) ≤ Y (I ′) ≤ Y (I).

We omit a formal proof of Lemma 2 due to space constraints.
We now sketch the proof that YDS is 5-competitive with respect to minimiz-

ing the maximum energy used over any c-interval.

Lemma 3. For any instance I, Opt(I) ≥ min(εY (I)/2, (1−ε)Y (I)/3). Choosing
ε = 2/5, it follows that Opt(I) ≥ Y (I)/5.

Proof. As it is clear that Opt(I ′) ≤ Opt(I), it suffices to show that Opt(I ′)
≥ min(εY (I)/2, (1− ε)Y (I)/3).

Consider an island G of I ′ and let t be the length of G. At the YDS schedule
for I ′ has rate at least r0 during G, the total energy consumed by YDS and hence
by any schedule for G is at least trα

0 . If t ≥ c, then, by an averaging argument,
for any schedule for G, there is some c-interval that has energy at least rα

0 t/�t/c�
which is at least (1/2)crα

0 = εY (I)/2. Thus, Opt(I ′) ≥ εY (I)/2 if t ≥ c.
If all the islands have length no more than c, then consider the islands that

intersect X(I). If some such island G has energy at least (1−ε)Y (I)/3, the result
follows by Claim 2. In the case that all islands that intersect X(I) have energy
less than (1 − ε)Y/3. By Lemma 2 we know that in Y DS(I ′) the total energy
during X(I) is at least (1 − ε)Y (I). As at most two islands can lie partially in
X(I), at least (1− ε)Y (I)/3 energy is in islands that are totally contained inside
X(I), and hence the result follows by Claim 2.

The following theorem is then a direct consequence of Lemmas 1 and 3.

Theorem 1. The energy optimal algorithm YDS is 20-competitive with respect
to maximum temperature.

3 Online Algorithms That Are ot O(1)-Competitive

We show that AV R, OA and the constant temperature algorithm are not O(1)-
competitive.

Lemma 4. The online algorithms AV R, OA are not O(1)-competitive with re-
spect to temperature. More precisely, the competitive ratio of these algorithms
must depend on either the number of jobs, or the cooling rate b.

Proof. We use a variation of an instance from [18]. Let ri = 1 − 1/i, wi = 1/i
and di = 1 for 1 ≤ i ≤ n. For instances with a common deadline, as is the case
here, AVR and OA behave identically. Let c = 1/n. The YDS schedule runs jobs
at a constant rate of 1. Using Lemma 1 it is sufficient to show that there is some
c-interval where the energy used by OA and AVR is ω(c). In particular, during
the c-interval [1− 1/n, 1] it is the case that AVR and OA are running at a rate
of Ω(logn), and hence the energy used during this c-interval is Ω(c logα n).

In the reasonable case that the thermal threshold Tmax of the device is known,
the most obvious temperature management strategy is to run at a rate that leaves

N
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the temperature fixed at Tmax. We call such a strategy O(1)-competitive if on
any instance I on which this constant temperature algorithm missed a deadline,
every feasible schedule causes a temperature of Ω(Tmax).

Lemma 5. The speed scaling algorithm that runs at such a speed that the tem-
perature remains constant at the thermal threshold Tmax is not O(1)-competitive.

Proof. Suppose at time 0 a task with work x (which will be specified later) and
deadline ε arrives. We will think of ε as going to 0. Suppose that the temperature
at time 0 is 0. We choose x such that it is equal to the maximum work that the
adversary can get done by time ε while keeping the temperature below Tmax/k.
Using equations from [2] for the case that α = 3, which probably are too in-
volved to repeat here, x = Θ(( bTmax

ka )1/3ε2/3). The crucial fact in the term above
is that the maximum work that the adversary can do depends on ε as ε2/3. On
the other hand, the constant temperature algorithm at temperature Tmax has
power P = bTmax/a and hence speed (bTmax/a)1/3 and work Θ((bTmax/a)1/3ε),
which depends linearly on ε. Thus, for any constant k, the ratio of the work
completed the adversary over the work completed by online goes to infinity as
ε goes to 0.

4 The Online BKP Algorithm

In this section we first introduce some notation, then state the BKP algorithm,
and then show in Theorem 2 that BKP is O(1)-competitive with respect to
temperature. Theorem 2 compares the maximum energy used in a c-interval by
BKP to the maximum energy used in a c-interval by YDS. Thus our analysis
of YDS is a component of our analysis of BKP. It was shown in [2] that BKP
always produces a feasible schedule. We assume without loss of generality that
all release times and deadlines are integers.

Let w(t, t1, t2) denote amount of work that has arrived by time t, that has
release time ≥ t1 and deadline ≤ t2. Let k(t) be the maximum over all t′ > t of
(w(t, et−(e−1)t′, t′))/(e(t′−t)). Note that w(t, t1, t2) and k(t) may be computed
by an online algorithm at time t.

BKP Algorithm Description: At time t, work at rate ek(t) on the unfinished
job with the earliest deadline.

Theorem 2. The online algorithm BKP is 20eα2α−1(6( α
α−1 )α + 1)-competitive

with respect to temperature.

Proof. By Theorem 1, it is sufficient to show that BKP uses at most factor of
eα2α−1(6( α

α−1 )α + 1) times as much energy over any c-interval as does YDS.
Again let Y be the maximum energy used by YDS in any c-interval.

Let w(t1, t2) denote the work that has release time ≥ t1 and has deadline
≤ t2. Let y(t) denote the rate of work of the algorithm YDS at time t. Let q(t)
be the maximum over all t1 and t2, such that t1 < t < t2, of w(t1, t2)/(t2 − t1).
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For purposes of analysis, we will assume BKP always runs at a rate q(t)
≥ k(t), even if there is no work to do. It is obvious that q(t) ≥ k(t) for all t. We
can then assume that in the input instance it is the case that y(t) amount of
work arrives with release time t and deadline t+ 1. Under this transformation,
the YDS schedule remains the same, and q(t) will not decrease. The fact that
q(t) will not decrease follows from the definition of q(t).

Let X be an arbitrary c-interval. Let Xk
− (respectively Xk

+) denote the kth,
c-interval immediately to the left ( respectively right) of X. That is, the left
endpoint of Xk

− is kc units to the left of X. Let the interval Z be defined to be
X ∪X1

− ∪X1
+. We now show that the energy used by BKP during X is at most

eα2α−1(6( α
α−1 )α+1)Y . As X is an arbitrary c-interval, this will imply the result.

We decompose the original instance as follows: Let w1(t) = y(t) if t ∈ Z and
0 at all other times. Let w2(t) = y(t)− w1(t) for all t. Let

q1(t) = max
t′<t≤t′′

∑t′′

x=t′ w1(t)
t′′ − t′ and q2(t) = max

t′<t≤t′′

∑t′′

x=t′ w2(t)
t′′ − t′

Note that q(t) ≤ q1(t) + q2(t) since y(t) = w1(t) + w2(t) for all each t. By
convexity of the speed to power function P (s), it follows that q(t)α ≤ (q1(t)
+q2(t))α ≤ 2α−1(q1(t)α + q2(t)α) and thus

∑
t∈X q(t)α ≤ 2α−1(

∑
t∈X q1(t)α

+
∑

t∈X q2(t)α).
We now wish to upper bound the sum

∑
t∈X q1(t)α. We follow the method

used in [2]. Since X ⊆ Z, it is the case that
∑

t∈X q1(t)α ≤
∑

t∈Z q1(t)
α. Let l(t)

be the maximum over all t1, such that t1 < t, of
∑t

x=t1
w1(x)/(t− t1). Similarly,

let r(t) be the maximum over all t2, such that t ≤ t2, of
∑t2

x=t w1(x)/(t2 −
t). Clearly, q(t) ≤ max(l(t), r(t)), and hence q(t)α ≤ l(t)α + r(t)α. We will
show that both

∑∞
t=−∞ l(t)α, and

∑∞
t=−∞ r(t)α, are at most ( α

α−1 )α
∑

t>0 y(t)
α

= ( α
α−1 )α

∑
t∈Z w1(t)α. This implies

∑
t∈Z q1(t)

α ≤ 2
(

α
α−1

)α∑
t∈Z w1(t)α.

The following result was first proved by Hardy and Littlewood in [8] and later
simplified by Gabriel [6]. It can also be found in [9–Theorem 393 and 394].

Fact: If y(1), . . . , y(n) are arbitrary non-negative integers, let l(t) be the max-
imum over all v, such that 1 ≤ v ≤ t, of

∑t
k=v y(k)/(t − v + 1). Let s(y) be a

positive increasing function of y. Let ȳ(1), . . . ȳ(n) denote the sequence of y(i)
in decreasing sorted order. Then

∑n
k=1 s(l(k)) ≤

∑n
k=1 s(

∑k
j=1 ȳ(j)/k).

We now apply this fact. We rescale time so that these times in Z are 1, . . . , 3c.
We set y(i) equal to w1(i) in the fact above. Further, we set s(y) = yα. Note that
since w1(t) = 0 for t /∈ Z, no other work affects l(t) other than the y(t)’s for t ∈ Z.
Thus the definition of l(t) in the fact is identical to the previous definition of l(t).
We can then conclude that

∑
t∈Z l(t)

α is maximized if for all i, y(i) ≥ y(i+ 1).

In this case, l(t) =
∑t

k=1 y(k)/t. Thus,
∑

t∈Z l(t)
α ≤

∑
t∈Z

(∑t
i=1 y(i)/t

)α

.
Hardy showed [7] as a special case of Hilbert’s theorem (see [9–Theorem

326]), that
∑

t

(∑t
i=1 y(i)/t

)α

≤ ( α
α−1 )α

∑
t y(t)

α. Note that in these inequali-
ties the y(i)’s may be arbitrary, and all that is required of α is that α > 1. Thus
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it follows that
∑

t∈Z l(t)
α ≤

(
α

α−1

)α∑
t∈Z w1(t)α. A similar analysis of r(t)

shows that
∑

t∈Z r(t)
α ≤

(
α

α−1

)α∑
t∈Z w1(t)α. Thus,

∑
t∈Z q1(t)

α ≤ 2
(

α
α−1

)α

∑
t∈Z w1(t)α. Finally by the definition of w1(t) and y(t), we have that∑
t∈Z w1(t)α =

∑
t∈Z y(t)

α ≤ 3Y . Thus
∑

t∈X q1(t)α ≤ 6
(

α
α−1

)α

Y .
We now bound the term

∑
t∈X q2(t)α. Note that w2(t) = 0 at all times t ∈ Z.

By the definition of Y , any c-interval contains at most c(Y/c)1/α amount of work
in the YDS schedule. Thus, any c-interval Xk

+ or Xk
− for k ≥ 2 contains at most

c(Y/c)1/α work in w2(t), it follows that q2(t) ≤ (Y/c)1/α. Thus

∑
t∈X

q2(t)α ≤
∑
t∈X

(
(
Y

c
)1/α

)α

=
∑
t∈X

Y

c
= Y

Combining the above, we have that for any c-interval X
∑
t∈X

k(t)α ≤
∑
t∈X

2α−1(q1(t)α + q2(t)α) ≤ 2α−1(6(
α

α− 1
)α + 1)Y

Since the BKP algorithm works at rate at most ek(t), the energy used during
the c-interval X is at most eα2α−1(6( α

α−1 )α + 1)Y .

5 Using KKT to Prove YDS Correct

We show that the energy optimality of the YDS schedule follows as a direct
consequence of the well known KKT optimality conditions for convex programs.
We start by stating the KKT conditions. We then show how to express the
energy problem as a convex program. And then show the result of applying the
KKT conditions to this convex program.

Consider a convex program

min f0(x)
fi(x) ≤ 0 i = 1, . . . , n

Assume that this program is strictly feasible, that is, there is some point x where
where fi(x) < 0 for i = 1, . . . , n. Assume that the fi are all differentiable. Let λi,
i = 1, . . . , n be a variable (Lagrangian multiplier) associated with the function
fi(x). Then a necessary and sufficient KKT conditions for solutions x and λ to
be primal and dual feasible are [3]:

fi(x) ≤ 0 i = 1, . . . , n (2)
λi ≥ 0 i = 1, . . . , n (3)

λifi(x) = 0 (4)

∇f0(x) +
n∑

i=1

λi∇fi(x) = 0 (5)
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To state the energy minimization problem as a convex program, we break time
into intervals t0, . . . tm at release times and deadlines of the tasks. Let J(i) be the
tasks that can feasibly be executed during the time interval Ii = [ti, ti+1], and
J−1(j) be intervals during which task j can be feasibly executed. We introduce
a variable wi,j , for j ∈ J(i), that represents the work done on task j during time
[ti, ti+1]. Our (interval indexed) mathematical program P is then:

min E (6)

wj ≤
∑

i∈J−1(j)

wi,j j = 1, . . . , n (7)

m∑
i=1

(∑
j∈J(i) wi,j

ti+1 − ti

)α

(ti+1 − ti) ≤ E (8)

wi,j ≥ 0 i = 1, . . . ,m j ∈ J(i) (9)

We now apply the KKT conditions to this convex program. We associate a
dual variable δj with equation j in line 7, a dual variable β with the equation in
line 8, and a dual variable γi,j with equation i, j in line 9. We now evaluate line
5 of the KKT conditions for our convex program. Looking at the component of
equation 5 corresponding to the variable E, we get that β = 1. Looking at the
component of equation 5 corresponding to the variable wi,j , we get that

− δj + βp

(∑n
k∈J(i) wi,k

ti+1 − ti

)α−1

− γi,j = 0 (10)

Consider a wi,j such that wi,j > 0. We know that by complementary slackness
(equation 4) that it must be the case that γi,j = 0. Hence,

δj = α

(∑
k∈J(i) wi,k

ti+1 − ti

)α−1

(11)

Hence, the interpretation of the dual variable δj is α times the speed at which
the processor runs during interval i raised to the power of (α−1). This quantity,
and hence the speed of the processor, must be the same for each interval i during
which task j is run. Now consider a wi,j such that wi,j = 0. Rearranging equation
10 we find that

γi,j = α

(∑
k∈J(i) wi,k

ti+1 − ti

)α−1

− δj (12)

Then γi,j will be non-negative if the processor is running faster during interval
i than during the intervals where task j is run.

Thus we can conclude that a sufficient condition for a primal feasible solution
to be optimal is that:

– For each task j, the processor runs at the same speed, call is sj in the
intervals i in which task j is run.

– And the processor runs at speed no less than sj during intervals i, such that
j ∈ J(i), in which task j is not run.
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The solution produced the the YDS algorithm clearly has these properties
and hence is optimal.
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Abstract. In this paper we first examine the computational complexity
of the problem LCON defined as follows: given a matrix A and a column
vector b over Z, determine if Ax = b is a feasible system of linear
equations over Zq. Here q is also given as part of the input by its prime
factorization q = pe1

1 pe2
2 . . . p

ek
k , such that each pei

i is tiny (i.e. given
in unary). In [MC87] an NC3 algorithm is given for this problem. We
show that in fact the problem can be solved in randomized NC2. More
precisely, we show that LCON is in the nonuniform class LGapL/poly.
Combined with the hardness of LCON for LGapL, we have a fairly tight
characterization of the complexity of LCON in terms of logspace counting
classes. We prove the same upper bound results for the problem of testing
feasibility of Ax = b over finite rings R with unity, where R is given as
part of the input as a table.

1 Introduction

We study the computational complexity of the following problem LCON (for
linear congruences):

Given as input a triple (A,b, q), where A is an integer matrix, b is an integer
column vector, and q is a positive integer, determine if Ax = b is a feasible
system of linear equations over Zq. Here q is given by its prime factorization
q = pe1

1 p
e2
2 · · · pek

k , and it is assumed to satisfy the additional property that each
pei

i is tiny (i.e. given in unary).
It has been a rich and fruitful line of research in the last decade to clas-

sify problems with efficient parallel algorithms using logarithmic space-bounded
classes, and specifically, logspace counting classes. A well-known example is the
problem of computing the determinant over integers [Tod91, Vin91] that is cap-
tured exactly by the complexity class GapL. Computing determinants over finite
fields of characteristic p is captured by the class ModpL [BDHM92]. Furthermore,
the results of [ABO99] classify important linear algebraic problems like checking
feasibility of a system linear equations over rationals, verifying if the rank of a
matrix is r, and several other problems using logspace counting classes.

The problem LCON is defined1 and studied in [MC87], and it plays a piv-
otal role in placing a number of abelian permutation group problems in the

1 It is also mentioned in [Dic92] from a number-theoretic perspective.

V. Diekert and B. Durand (Eds.): STACS 2005, LNCS 3404, pp. 472–484, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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complexity class NC (NC is the class of problems that can be solved in polylog-
arithmic time with polynomially many processors). Both LCON and the related
problem of finding a solution to Ax = b (mod q) are shown to be in NC3 in
[MC87]. The basic idea used there is to solve Ax = b (mod pj

i ), by first solv-
ing Ax = b (mod pi) and then “lifting” the solution (essentially Hensel lifting)
repeatedly to solutions modulo pj

i for increasing values of j, until a solution to
Ax = b (mod pei

i ) is obtained. The solutions for different prime powers pei can
then be combined using the Chinese remainder theorem.

In the present paper we will describe a randomized parallel algorithm that
avoids the lifting process mentioned above, and hence places the problem in
randomized NC2. Alternatively, we can use the logspace counting class GapL,
which is the class of functions f : Σ∗ −→ Z such that for some nondeterministic
logspace-bounded Turing machine M , the function f(x) = accM (x) − rejM (x)
for every x ∈ Σ∗, to argue that LCON is in LGapL/poly. We have shown
in [AV04] that LCON is hard for LGapL. These upper and lower complexity
bounds will carry over to certain abelian permutation group problems as ex-
plained in [AV04].

We first notice that, by the Chinese remainder theorem, Ax = b (mod q) is
feasible if and only if Ax = b (mod pei

i ) is feasible for 1 ≤ i ≤ k, where q =
∏
pei

i

is the prime factorization of q and pei
i are tiny (i.e. given in unary).

Thus, we can focus on the problem of testing if the system Ax = b (mod pe)
is feasible, where p is a prime and pe is tiny. In other words, we are testing if
Ax = b has a solution in the finite ring Zpe . We first transform the problem to
solving a system of linear Diophantine equations in the following proposition.

Proposition 1. Let A be an m × n integer matrix, b be an m integer column
vector, and p be a prime and e a positive integer. The system of linear equations
Ax = b (mod pe) is feasible (in the finite ring Zpe) if and only if Ax + pey = b
has a solution in Z.

Proof. Clearly, if Ax+pey = b has a solution x′,y′ in Z, then Ax′ = b (mod pe).
Conversely, if x′ is a solution to Ax = b (mod pe), then Ax′ must be of the form
b+pey′ for some integral vector y′. Consequently, (x′,−y′) is an integral solution
to Ax + pey = b.

Remark 1. Polynomial time algorithms for solving linear Diophantine equations
are well known (see e.g. [Sch98]). However, the problem is not known to be in
NC. It is observed in [ABO99], that testing existence of integral solutions to
Ax = b is RNC reducible to checking if gcd(a1, a2, . . . , an) = gcd(b1, . . . , bm) for
integers ai and bj . It is a long standing open problem if the latter problem is in
NC (even randomized NC).

However, the system Ax + pey = b of linear diophantine equations has a
form whose structure we will be able to exploit and avoid computation of the
gcd of integers.
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We consider the following ring Z(p) (contained in Q):

Z(p) = {a
b
| a,b,∈ Z : (a,b) = 1 and (p,b) = 1}.

It is the ring of rational numbers a/b such that the denominator is not divisible
by the prime p.

Lemma 1. Let A be an m × n integer matrix, b be an m × 1 integer column
vector, p be a prime and e a positive integer. The system Ax + pey = b has a
solution in Z if and only if Ax + pey = b has a solution in the ring Z(p).

Proof. If Ax + pey = b has a solution in Z then obviously that solution lies in
Z(p) as well.

Conversely, suppose Ax+ pey = b has a solution x′,y′ in Z(p). Each entry of
x′ and y′ is a rational number. Let α ∈ Z be the least common multiple of the
denominators of the entries in x′,y′. Let x′′ = αx′ and y′′ = αy′. Both x′′ and
y′′ are integral vectors and it follows that

Ax′′ + pey′′ = αb.

Since x′,y′ is a solution in Z(p), it follows that (α, p) = 1. Thus there are integers
s, t ∈ Z such that spe+tα = 1. Consequently, we have tAx′′+tpey′′ = (1−spe)b.
Rearranging terms, we obtain tAx′′ +pe(sb+ ty′′) = b, yielding a solution in Z.

We observe one further property of the linear system Ax + pey = b. We can
rewrite it as Bz = b. Notice that the matrix B = (A; peI) is an m × (m + n)
matrix of rank m and z = (x,y).

Proposition 2. Ax + pey = b is a system of linear equations with coefficient
matrix [A; peI] of full row rank.

Let B be anm×n integer matrix of full row rank, and b be an integral column
vector. The theory of linear diophantine equations precisely characterizes when
the system of linear equations Bz = b has an integral solution. We state the
following useful characterization from [Sch98–pp. 51] and [Dic92–pp. 82].

Theorem 1. [Sch98–pp. 51] Let B be an m×n integer matrix of full row rank,
and b be an integral column vector. The system of linear equations Bz = b
has an integral solution for z if and only if2 the gcd of all the nonzero m ×m
subdeterminants of B equals the gcd of all the nonzero m ×m subdeterminants
of the augmented matrix [B;b].

Intuitively, this follows from the fact that the gcd of the m × m subdeter-
minants of B is the volume of fundamental parallelepiped in the integral lattice

2 Our statement is slightly different but equivalent to that in [Sch98]. For, the gcd of
the m × m subdeterminants of the augmented matrix [B;b] will in any case divide
the gcd of all the nonzero m × m subdeterminants of B.
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generated by the columns of B, and the gcd of the m ×m subdeterminants of
[B;b] is the volume of fundamental parallelepiped in the integral lattice gen-
erated by the columns of [B;b]. Bz = b is feasible if and only if b lies in the
lattice of B and the vector b will lie in this lattice if and only if the volume
of the fundamental parallelepiped in the lattice generated by columns of [B;b]
equals the volume of the fundamental parallelepiped in the lattice generated by
the columns of B.

Based on the above theorem, we now give a similar characterization for the
feasibility of the linear equationsBz = b over Z(p). This will be useful for proving
our new upper bound result. For a positive integer d, let ordp(d) be the largest
nonnegative integer e such that pe divides d.

Theorem 2. Let B be an m × n integer matrix of full row rank, and b be an
integral column vector. Let r denote the gcd of all the nonzero m×m subdeter-
minants of B, and s denote the gcd of all the nonzero m ×m subdeterminants
of the augmented matrix [B;b]. The system of linear equations Bz = b has a
solution in Z(p) if and only if ordp(r) = ordp(s).

Proof. Firstly, notice that s is a factor of r for any integer matrix B of full row
rank and any column vector b (simply because B is a submatrix of [B;b]), where
s and r are defined in the statement above. Thus, we can write r = ds, for some
integer d.

Now, suppose Bz = b is feasible over Z(p). Then, by clearing denominators of
the solution, it follows that there is a positive integer α ∈ Z such that (α, p) = 1
and Bz = αb is feasible over Z. Let t denote the gcd of all nonzero m × m
subdeterminants of [B;αb]. Applying Theorem 1 to the system Bz = αb, it
follows that r = t. Thus, t = r = ds. It is clear that d must divide α, as the
only difference between [B;b] and [B;αb] is the factor α. Now, since α and p
are relatively prime, it follows that ordp(r) = ordp(s).

Conversely, suppose ordp(r) = ordp(s). Since B has full row rank m, the
linear system Bz = b has a rational solution z′. Let peα be the l.c.m. of the
denominators of entries in z′. Multiplying by peα on both sides of the equation
Bz′ = b, we get Bz′′ = peαb, where z′′ has integer entries. Let t denote the
gcd of all m ×m subdeterminants of [B; peαb]. By Theorem 1, applied to the
system Bz = peαb, it follows that r = t. Thus, r = t = ds. But p � d as
ordp(s) = ordp(r). It follows that the gcd of all m ×m subdeterminants of the
matrix [B;αb] is also r. Again, by Theorem 1 applied to Bz = αb, it follows
that Bz = αb has an integral solution (call it z0). As (α, p) = 1, it follows that
1
αz0 is a Z(p) solution to Bz = b. This completes the proof.

2 The Upper Bound Result

The algorithm that we are going to describe for LCON is based on the ideas
and results of Giesbrecht [Gi95, Gi97]. Specifically, we use results from [Gi95],
in which a randomized polynomial time algorithm is described to compute the
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Smith Normal Form of an integer matrix. We recall some definitions. Details can
be found in [Sch98–Chapter 4].

A square integer matrix M is unimodular if det(M) is ±1. Any m×n integer
matrix A is equivalent under unimodular transformations to a unique m × n
integer matrix S = (D; 0), where D is an m×m integer diagonal matrix. More
precisely, there are unimodular integer matrices P and Q of appropriate sizes
such that S = PAQ. The matrix S is called the Smith Normal Form of A. If r is
the rank of A, then the diagonal matrix D has diagonal diag(s1 , . . . , sr , 0 , . . . , 0 )
where si �= 0 for 1 ≤ i ≤ r, such that si|si+1 for each i. Furthermore, if dk denotes
the gcd of all k × k minors of A, for 1 ≤ k ≤ r, then s1 = d1 and sk = dk/dk−1
for 2 ≤ k ≤ r. The number dk is the kth determinantal divisor of A, 1 ≤ k ≤ r,
and sk are the invariant factors of A.

We can now give a straightforward reformulation of the characterization of
Theorem 2 for the feasibility of Bz = b over Z(p) in terms of determinantal
divisors.

Theorem 3. Let B be an m × n integer matrix of full row rank, and b be an
integral column vector of length m. Let dm be the mth determinantal divisor
of B and d′

m be the mth determinantal divisor of the augmented matrix [B;b].
The system of linear equations Bz = b has a solution in the ring Z(p) if and
only if ordp(dm) = ordp(d′

m).

Thus the problem of testing feasibility of Bz = b over the ring Z(p) is equiv-
alent to checking if ordp(dm) = ordp(d′

m), where dm be the mth determinantal
divisor of B and d′

m be the mth determinantal divisor of the matrix [B;b].
We will use the following result of Giesbrecht [Gi95] to design a random-

ized algorithm to test if ordp(dm) = ordp(d′
m), without actually computing the

numbers dm and d′
m.

Recall that the content cont(f ) of a multivariate polynomial f (over any
Euclidean Domain, in particular integers) is the gcd of all the coefficients of f .

Theorem 4. [Gi95–Theorem 2.1] Let B be an m× n integer matrix of rank r.
Let X = (Xij) be an r×m matrix and Y = (Ylk) be an n× r matrix of distinct
indeterminates Xij and Ylk, 1 ≤ i, k ≤ r, 1 ≤ j ≤ m, and 1 ≤ l ≤ n. Then the
content of the determinant of the tth leading minor of the r × r matrix XBY
equals the tth determinantal divisor dt, 1 ≤ t ≤ r.

In particular, it is clear from Theorems 3 and 4 that dm = cont(det(XBY ))
and d′

m = cont(det(X [B ;b]Z ), where Z is an (n + 1) × r matrix of distinct
indeterminates. Thus we have the following.

Lemma 2. Let B be an m×n integer matrix of full row rank, and b be an inte-
gral column vector of length m. The system of linear equations Bz = b has a so-
lution in Z(p) if and only if ordp(cont(det(XBY ))) = ordp(cont(det(X [B ;b]Z )),
where X,Y, Z are matrices of indeterminates.
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We now focus on the problem of computing ordp(cont(det(XBY ))), where B
is an m × n integer matrix of rank m. Notice that we cannot directly compute
det(XBY ) as there are exponentially many terms. Instead, following Giesbrecht
[Gi95] and analogous to the Schwartz-Zippel test, the idea is to compute the
determinant det(XBY ), where the indeterminates in X and Y are randomly
picked from a suitable domain (over which computing the determinant will be
easy). We will use the following variant of the Schwartz-Zippel test (as stated in
Giesbrecht [Gi95]).

Lemma 3. [Gi95–Lemma 2.2] Let g ∈ D[z1, z2, . . . , zs] be a nonzero polyno-
mial, where D is an integral domain. Let W be a finite subset of D. Sup-
pose elements a1, . . . , as are picked independently at random from W such that
each ai is assigned to any one element of W with probability at most ε. Then
Prob[g(a1, . . . , as) = 0; ai ∈W ] ≤ εdeg(g), where deg(g) is the total degree of g.

For ease of notation in the sequel, we denote the multivariate polynomial
det(XBY ) by f(z1, . . . , zs) ∈ Z[z1, . . . , zs], where indeterminates in X and Y
have been renamed as the zi’s. Our goal is to compute ordp(cont(f )). By factor-
ing out the content of f , we can write f(z1, . . . , zs) = c · g(z1, z2, . . . , zs), where
cont(g) = 1 . We are interested in computing ordp(c).

Now, suppose we substitute for zi a univariate polynomial ai(x) ∈ Z[x],
1 ≤ i ≤ s. We claim that ordp(c) = ordp(cont(f (a1 (x ), . . . , as(x )))) if and only
if g(a1(x), . . . , as(x)) �= 0 (mod p).

It follows because ordp(c) ≤ ordp(cont(f (a1 (x ), . . . , as(x )))), and ordp(c) <
ordp(cont(f (a1 (x ), . . . , as(x )))) if and only if cont(g(a1 (x ), . . . , as(x ))) is divis-
ible by p.

Now, we define the following finite subset W of Z[x] from which we will
randomly pick the polynomials ai, and argue that with high probability we have
g(a1(x), . . . , as(x)) �= 0 (mod p). Choose β = 2p+ 1, and let L = {1, . . . , β}. Let
deg(g) = t. Define W = {a(x) | deg(a) ≤ t− 1 and coefficient of a are in L}.

We now state a lemma that is a slightly modified version of [Gi95–Lemma
2.6]. For the sake of completeness, we give a proof.

Lemma 4. [Gi95] Let g be a polynomial in Z[z1, . . . , zs] of degree t and cont(g) =
1 . If (a1, . . . , as) are s elements chosen uniformly and independently at random
from W then

Prob[g(a1, . . . , as) = 0 (mod p)] ≤ t(4/5)t.

Proof. Let Γ be an irreducible polynomial of degree t modulo p. Consider the
domain D of Lemma 3 to be the finite field Z[x]/(p, Γ ) of size pt. Notice that we
can consider g to be a nonzero polynomial in D[z1, . . . , zs] (g is surely nonzero
modulo p as its content is 1).

Likewise, we wish to consider the set W as a subset Ŵ of D: an element a
of W is already a polynomial of degree at most t − 1, and the coefficients of a
have to be reduced modulo p to get the corresponding element in Ŵ . Now, if we
pick an element a ∈ W uniformly at random we wish to bound the probability
that it is equal to a specific element a′ ∈ Ŵ modulo p. Each coefficient of a,
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when reduced modulo p, takes any specific value in Zp with probability at most
�β

p �·1/β ≤ (1/p+1/β) ≤ 4/5. It follows that Proba∈W [a = a′ (mod p)] ≤ (4/5)t.
Now, applying Lemma 3 to the polynomial g ∈ D[z1, . . . zs], we immediately

get the desired probability bound.

We have the following corollary.

Corollary 1. Let B be an m× n integer matrix of rank m. In the matrices X
and Y , let each indeterminate be picked independently and uniformly at random
from the set W , and let X ′ and Y ′ be the resulting matrices thus obtained. Then

Prob[ordp(cont(det(XBY ))) = ordp(cont(det(X ′BY ′)))] ≥ 1 − 2m(4/5 )2m .

Proof. Notice that the degree of det(XBY ) is 2m. Thus, setting g = det(XBY )
and t = 2m in Lemma 3 we obtain the probability bound immediately.

Now we return to the problem of LCON. Let Ax = b (mod q) be an in-
stance of LCON, where q is given by its prime factorization that is a prod-
uct of tiny factors. By Chinese remainder theorem, we can assume that q is
a tiny prime power pe. By applying Proposition 1, Lemma 1, and Theorem 3,
we can easily (in logspace) transform the input to a system of linear equa-
tions Bz = b, where B and b are integral and B is full row rank. Now,
by Lemma 2 we can further transform this into the problem of checking if
ordp(cont(det(XBY ))) = ordp(cont(det(X [B ;b]Z )). In order to do this, we ap-
ply Corollary 1. More precisely, in order to compute ordp(cont(det(XBY ))), we
pick values for the indeterminates in X and Y from the set W to obtain cor-
responding random matrices X ′ and Y ′. It is easy to see that det(X ′BY ′) is a
polynomial in x of degree 2m(t−1). Let

∑2m(t−1)
i=0 μix

i be this polynomial. Now,
each coefficient μi of this polynomial can be computed with a GapL oracle (see
e.g. [ABO99]). An LGapL algorithm can keep track of the largest power of p that
divides μ0, . . . , μi. When the coefficient μi+1 is computed, the algorithm can also
update the highest power of p that divides μ0, . . . , μi, μi+1. Since p is small, this
can done by carried out by a logspace machine with access to the GapL ora-
cle. Thus, we can compute ordp(cont(det(X ′BY ′))), which is correct with high
probability by Corollary 1. We can similarly compute ordp(cont(det(X [B ;b]Z )).
Clearly, if we fix the random bits the rest of the computation is an LGapL com-
putation. Thus the problem LCON is in RNC2. Now, after amplifying the success
probability by standard methods, we can fix the random bits to get a suitable
advice that will work for all inputs of a given length. It follows that LCON is
also in LGapL/poly. We have proved our main theorem.

Theorem 5. The problem LCON is in RNC2, and also in the nonuniform class
LGapL/poly.

We can obtain a conditional derandomization of the above upper bound for
LCON by exactly following the same arguments as in Allender et al [ARZ99,
Theorem 5.5], which is based on the results from Klivans and Melkebeek [KM99].
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Theorem 6. If there is a set A in DSPACE(n) and an ε > 0 such that no
circuit of size smaller than 2εn accepts exactly strings of length n in A, then
LCON is in LGapL.

3 Linear Equations ver a Finite Ring

We now study the complexity of the following general problem:
Given as input a finite ring R with unity and a system of linear equations

Ax = b, where A is an m× n matrix and b is an m-dimensional column vector
over R, test if there is a solution for x over R. Here we assume that R is given
by its addition (denoted by +) and multiplication (denoted by concatenation)
tables. Furthermore, we assume that the additive abelian group (R,+), denoted
R+ is given as a direct sum C1 ⊕ · · · ⊕ Cr, where each Ci is a cyclic group of
prime power order.3

Notice that the ring R is small as its size can be encoded in unary in the
size of the input. The above problem generalizes the problem of solving Ax = b
modulo pe, where pe is tiny, as we can set R = Zpe . In this section we show
that the above problem is logspace reducible to the problem of solving Ax = b
modulo composites q (with tiny prime-power factors). Thus we show that the
above problem is also in the class LGapL/poly.

Remark 2. Notice that the ring R is not assumed to be commutative. The fol-
lowing example indicates how our claimed reduction is going to work and also
motivates our approach: Let R = Mk(Fq), the ring of k × k matrices over the
finite field Fq. Now, consider linear equations Ax = b over Mk(Fq), where A is
an m×n matrix and b an m-vector over Mk(Fq). By expanding each entry of x
into a k×k block of variables (that will take values in Fq), and likewise treating
A as an mk×nk matrix and b as an m×k matrix, both over Fq, we can consider
the equations Ax = b as a system of linear equations over Fq. Now, applying
ideas from [ABO99], we can easily see that testing feasibility of this system is
in LGapL.

We proceed to show that the idea in the above remark can be extended to
handle any finite ring R with unity, and reduce it to LCON.

Let |R| = n and n = pe1
1 p

e2
2 · · · pek

k be the prime factorization of n. As R is
an abelian group under addition, by the fundamental theorem of finite abelian
groups, (R,+) can be written as a direct sum of its Sylow subgroups. Let Ri

denote the pi-Sylow subgroup of R, 1 ≤ i ≤ k. Decomposing the additive group
(R,+) into its Sylow subgroups Ri we can write

R = R1 ⊕R2 ⊕ · · · ⊕Rk.

3 By the fundamental theorem of finite abelian groups, such a decomposition exists.
Indeed, for (R, +) we can compute it in time polynomial in |R|.

o
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Now, let x ∈ R and a ∈ Ri. Notice that the (additive) order4 of xamust divide
pei

i as pei
i xa can be written as x(pei

i a), and pei
i a = 0 since a ∈ Ri. Since (R,+) is

an abelian group, Ri is the set of all elements of R whose order is a power of pi.
Thus, xa ∈ Ri. Similarly, ax ∈ Ri. Therefore, each Ri is a two-sided ideal of R.
Since R has unity, it follows that RRi = RiR = Ri for each i. Furthermore, it is
easy to see that for i �= j, RiRj = 0. This follows because RiRj is contained in
Ri ∩Rj which contains only the additive identity 0. Putting it together, we can
see that the Ri’s actually yield a ring decomposition R = R1 ⊕ R2 ⊕ · · · ⊕ Rk.
Thus, we can express each x ∈ R uniquely as x = x1 + · · ·+ xk, where xi ∈ Ri.

There is another crucial property of Ri. Since R has unity 1, the above ring
decomposition gives a unique expression for 1 as 1 = a1 + a2 + · · ·+ ak, ai ∈ Ri.

We claim that ai �= 0. Furthermore, we also claim that ai is not a zero divisor
in the subring Ri. To see this, consider any y ∈ Ri. We can write y = y · 1 =
y(a1 + · · · + ak) = ya1 + · · · + yak. Now, since y ∈ Ri, for any j �= i it holds
that yaj = 0. Thus, ai = 0 forces y = 0 for all y ∈ Ri which is a contradiction
as Ri is a pi-Sylow subgroup of R. By the same argument, ai cannot be a zero
divisor of Ri. For, if yai = 0 for y ∈ Ri then the above equation forces y = 0.
We summarize our observations below.

Lemma 5. Let R be a finite ring with unity. Then R has the ring decomposition
R = R1 ⊕R2 ⊕ · · · ⊕Rk, where each Ri is a Sylow subgroup of R. Furthermore,
each Ri has at least one nonzero element which is not a zero-divisor of Ri.

Since R = R1 ⊕R2 ⊕ · · · ⊕Rk is a direct sum decomposition, it is clear that
we can decompose A and b in the linear system into Ai and bi (which are the
components of the entries of A and b in Ri) for each i. Thus, it follows easily
that Ax = b is feasible over R if and only if Aix = bi is feasible over Ri for each
i. Since R is given by its addition table, we can find the ring decomposition of
R even in logspace. Thus, the above reduction can be carried out it logspace.

We can henceforth assume that R is of size pe and we have to test feasibility
of Ax = b over R. Notice that R need not have unity. However, by Lemma 5 we
can assume that R has at least one element which is not a zero-divisor(namely,
the element ai in Ri where 1 =

∑k
i=1 ai).

We now give a suitable matrix representation to a finite ring R which has an
element that is not a zero divisor where |R| is a prime power pe. This will be an
important step in the reduction of feasibility testing of linear equations over R
to linear equations over Zpe .

In the sequel, we denote the additive abelian group (R,+) by R+. By the
fundamental theorem of finite abelian groups, the abelian p-group R+ can be
expressed as a direct sum of cyclic groups: R+ = C1 ⊕ · · · ⊕ Cr, where each
|Ci| = pei , such that e1 ≥ e2 ≥ · · · ≥ er, and e =

∑r
i=1 ei. The tuple (e1, . . . , er)

characterizes the abelian p-group up to isomorphism.

4 When we talk of order of an element a ∈ R, we shall mean the order of a as an
element of the additive group (R, +). In other words, it is the least positive integer
t such that ta = 0.
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We are interested in describing the endomorphisms of the group R+ (an
endomorphism of R+ is a group homomorphism from R+ to R+). The following
theorem [Sho28] shows that each endomorphism of R+ can be given a matrix
representation. To see this we first note that R+ can be expressed as the direct
sum C1 ⊕ · · · ⊕ Cr, we can choose an independent generating set for R+ by
picking a generator gi for each cyclic group Ci in the above direct sum. Thus,
the elements of R+ are of the form

∑r
i=1 xigi, where xi is an integer modulo pei

for each i. Hence, R+ can be identified with the set of integer column vectors
(x1, x2, . . . , xr)T , where xi is an integer modulo pei , and addition of these vectors
is done coordinate-wise, where addition in the ith coordinate is modulo pei .

Therefore, an endomorphism ψ of R+ can be described by writing down ψ(gi)
for each i as a linear combination

∑r
j=1 hijgj . The r × r matrix with integral

entries hij will describe an endomorphism. The following theorem [Sho28] char-
acterizes the integral matrices that define endomorphisms of R+ (The original
paper writes ψ(gi) as a row vector, whereas we write it as a column vector).

Theorem 7. [Sho28, Satz1] Let A be an abelian p-group of order pe of type
(e1, . . . , er). I.e. A = C1 ⊕ · · · ⊕ Cr with |Ci| = pei for each i. For 1 ≤ i, j ≤ r,
define integers μij as follows: μij = 1 for i ≥ j and μij = pei−ej for i < j.

Then an r× r integral matrix M = (mij) describes an endomorphism of A if
and only if mij = μijhij, for some integer hij, where mij is an integer computed
modulo pei for 1 ≤ i, j ≤ r.

As explained in [Sho28], the set of integral matrices defined by Theorem 7
forms a ring End(A) (the endomorphism ring). The addition and multiplication
of two matrices in End(A) is defined as the usual matrix operation where the
entries are computed with the modulo operation prescribed by Theorem 7: the
ijth entry is computed modulo pei . It is easy to verify that End(A) is a ring
under these operations.

Now we show that the ring R can be embedded inside End(R+). Thus, R is
essentially a subring of End(R+), which means that we can view the elements
of R as r × r integral matrices.

To every element a ∈ R, we associate the endomorphism Ta ∈ End(R+)
defined as Ta(x) = ax for x ∈ R+. We claim that Ta defines the zero element of
End(R+) if and only if a = 0. To see this, recall that:R has an element a0 which is
not a zero divisor. Thus, if Ta defines the zero endomorphism, Ta(a0) = aa0 = 0.
Since a0 is not a zero divisor, we have a = 0. As an immediate consequence, we
have the following lemma (that R can be seen as a subring of End(R+)).

Lemma 6. The homomorphism ψ : R −→ End(R+) defined by ψ(a) = Ta, for
a ∈ R is an embedding (i.e. ψ has trivial kernel and is thus 1-1).

Given R as input by its addition and multiplication tables, we can construct
a logspace machine that converts every a ∈ R into the matrix Ta ∈ End(R+):
it follows essentially from the assumption that the decomposition R+ = C1 ⊕
· · · ⊕ Cr is given as part of the input. Let gi be a generator for Ci for each i.
Thus, we can identify any element y ∈ R with the corresponding integer vector
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y = (x1, . . . , xr), where y =
∑
xigi and xi is computed modulo pei . Now, given

a ∈ R, it is easy to see that the jth column of the matrix Ta is the vector agj .
Now, a logspace machine can compute y for any given y ∈ R. Thus, a logspace
machine can compute Ta, given a.

Therefore, without loss of generality, we can assume that the ring R is already
given by r×r matrices denoting elements of End(R+), where the additive abelian
group R+ is given by decomposition R+ = C1 ⊕ · · · ⊕ Cr.

Now, consider the system of linear equations Ax = b over R, where each
entry of A and b is an r× r integer matrix, and each entry of the column vector
x is an indeterminate that will take values in R. As we did earlier with matrices
in Mn(Fq), we can convert Ax = b into a system of linear equations modulo
prime powers (the main difference is that different equations may be computed
modulo different powers of p):

We replace each variable xi of x by the linear combination
∑

a∈R yaiTa,
where yai ∈ Zpe . This ensures that xi will take values only in R. Thus, A is
now an mr × nr matrix with integer entries. Now, notice that b is an mr × r
matrix, where the (i, j)th entry in each r×r block is evaluated modulo pei . Thus,
corresponding to each entry of the mr × r matrix b, if it is the (i, j)th entry
of an r × r block, we get a linear equation modulo pei . It will assume the form∑nr

k=1 αjzj = β (mod pei), where the indeterminates zj are actually appropriate
yaj ’s and αj are from the appropriate entries of A. As pei ≤ pe, the above linear
equation is equivalent to

∑nr
k=1 p

e−eiαjzj = pe−eiβ (mod pe).
Thus, we have reduced the feasibility of Ax = b over R to an instance of

LCON (modulo a tiny prime power pe). We can now derive the following.

Theorem 8. The problem of testing feasibility of linear equations Ax = b over a
finite R with unity is in LGapL/poly, where R is given as input by its addition
(denoted by +) and multiplication (denoted by concatenation) tables, and the
additive abelian group (R,+), denoted R+ is given as a direct sum C1⊕· · ·⊕Cr,
where each Ci is a cyclic group of prime power order.

4 Concluding Remarks

In [AV04] we had claimed that LCON is in the uniform class LGapL. This was
based on an observation in [ABO99] about computing ranks of matrices over
general commutative rings. Subsequently, it was pointed out to us by Allender
and McKenzie that the notion of rank over rings( such as Zq, for composite q)
is not well defined. Unlike the case of linear equations over fields, there does not
seem to be a notion of rank for rings that can be used to test feasibility of linear
equations over rings. In this paper we find a different approach to the problem,
but succeed in proving only the weaker upper bound of LGapL/poly.

It is remarked in [ABO99], based on the results of [Gi95], that solving linear
diophatine equations is randomized NC reducible to computing the gcd of a
list of integers. With this as a starting point, we have explored the problem of
feasibility of linear equations modulo composites. We also consider the feasibility
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of linear equations over arbitrary rings with unity. Surprisingly, it turns out that,
by giving a suitable matrix representation to elements of the arbitrary ring, we
can reduce this problem to solving linear equations modulo prime powers.

Specifically, we have show in this paper that the problem LCON of testing
the feasibility of linear equations modulo composites q (with tiny prime power
factors) is in the class LGapL/poly. Indeed, under a hardness assumption, it is
in LGapL. Using the approach based on the isolation lemma, as explained in our
previous paper [AV04], we can easily show that finding a solution to an instance
of LCON is in the function class FLGapL/poly (which can also be derandomized
under the same hardness assumption as used in Theorem 6). As we show in
Section 3, it turns out that over arbitrary (even noncommutative) rings with
unity, the same upper bound holds for the feasibility problem.

We leave open the question if the upper bounds can be improved to LGapL

without the hardness assumption.

Acknowledgment. For discussions and comments on this work, and for bringing
to our notice the problems with using a notion of rank to test the feasibility of
linear equations modulo composites, we are very grateful to Eric Allender and
Pierre McKenzie. We also thank the referees for useful remarks.
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Abstract. It is shown that computing the coefficients of the product of
two degree-n polynomials over a q-element field by means of a quadratic

algorithm requires at least (3 + (q − 1)2

q5 + (q − 1)3
)n − o(n) multiplications,

whereas the best lower bound known from the literature is 3n − o(n).

1 Introduction

In infinite fields it is possible to compute the coefficients of the product of two
polynomials of degree n in 2n+1 non-scalar multiplications. It is known from [14]
that each algorithm for computing the product in 2n + 1 non-scalar multiplica-
tions must evaluate the multiplicands at 2n+1 distinct points (possibly including
∞), multiply the samples, and interpolate the result. However in finite fields this
method fails, if 2n exceeds the number of the field elements. Thus, in general,
the 2n + 1 tight bound cannot be achieved in finite fields.

Let μF (n) denote the number of multiplications required to compute the
coefficients of the product of a polynomial of degree n and a polynomial of
degree n − 1 over field F by means of quadratic algorithms1 and let Fq denote
the q-element field. For q ≥ 3, the best lower bound on μFq

(n) known from
the literature is 3n − o(n), see [8] and [5–Theorem 18.10] and, for sufficiently
large n, μF2(n) > 3.52n, see [3]. On the other hand, if q ≥ 3, computing the
coefficients of the minimal degree residue of the product of two polynomials of
degree n modulo a fixed irreducible polynomial of degree n + 1 over Fq2 can be
done in 2(1 + 1

q − 3)n + o(n) multiplications, see [6] and [12]. Thus, for q ≥ 3,

μFq2 (n) ≤ 4(1 + 1
q − 3)n + o(n). This small difference between the upper and

the lower bounds motivates a further search for better (both upper and lower)

� Supported by the Technion V.P.R. fund.
1 A straightforward substitution argument shows that the number of multiplications

required to compute the coefficient of the product of two polynomials of degree n
over F exceeds μF (n) by at least 1.

V. Diekert and B. Durand (Eds.): STACS 2005, LNCS 3404, pp. 485–495, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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bounds on the complexity of polynomial multiplications. Also, apart from being
of interest in their own right, algorithms for polynomial multiplication over finite
fields are tightly connected to error-correcting codes, see [2, 3, 6, 7, 9, 10].

In our paper we prove the following lower bound on μFq
(n).

Theorem 1. We have

μFq
(n) ≥ (3 +

(q − 1)2

q5 + (q − 1)3
)n− o(n).

The proof of Theorem 1 is based on a novel combination of two known tech-
niques. One technique is the analysis of Hankel matrices representing bilinear
forms defined by linear combinations of the coefficients of the polynomial prod-
uct, see [8]. The other technique is a counting argument from the coding theory,
see [10].

The reason for combining these two techniques is that the Hankel matrix
approach uses very few properties of finite fields and the coding approach does
not at all use a very special structure of bilinear forms defined by linear combi-
nations of the coefficients of the polynomial product. In fact, our paper indicates
that the Hankel matrix approach is, in some sense, richer than Baur’s technique,
see [5–Proof of Theorem 18.10].

We end this section with the note that if a set of quadratic forms over an
infinite field can be computed by a (general) straight-line algorithm in t multi-
plications/divisions, then it can be computed in t multiplications by a quadratic
algorithm whose total number of operations differs from that of the original one
by a factor of a small constant, see [13]. It is unknown whether a similar result
holds for finite fields, cf. [4]. However, the proof in [13] easily extends to finite
fields, if for some input that belongs to the underlying finite field the original
straight-line algorithm does not divide by zero. Therefore, in the case of mul-
tiplication of polynomials over Fq, our lower bound applies to all straight-line
algorithm which compute the coefficients of the product of at least one pair of
polynomials whose all coefficients belong to Fq. Finally, one can easily prove that
quadratic algorithms for computing a set of bilinear forms are optimal within
the class of algorithms without divisions, and all algorithms for polynomial mul-
tiplication over finite fields known from the literature are quadratic (and even
bilinear).

This extended abstract is organized as follows. In the next section we gather
the definitions and some basic results known from the literature. Then, in Sec-
tion 3, we indicate some limitations of the known tools and present an example
on which we develop the technique used for the proof of Theorem 1. The proof
itself is sketched in Section 4.

2 Notation, Definitions, and Auxiliary Results

First we define the notion of a quadratic algorithm. Then we introduce nota-
tion and definitions from linear recurring sequence theory and state the major
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auxiliary technical lemmas. We conclude this section with some some basic cal-
culations from the coding theory and an example that will be used for the proof
of Theorem 1.

2.1 Quadratic Algorithms for Polynomial Multiplication

Let s be a set of indeterminates. We remind the reader that a quadratic algorithm
over field F for computing a set Q of quadratic forms of the elements of s is a
straight-line algorithm whose non-scalar multiplications are of the form L′ ∗L′′,
where L′ and L′′ are linear forms of the elements of s over F and each form
in Q is a linear combination of these products. The minimal number of such
multiplications is called the quadratic complexity of Q over F and is denoted by
μF (Q).

Let Q = {xTHy : H ∈ S}, where S is a set of matrices. That is the quadratic
(in fact, bilinear) forms in Q are defined by the elements of S.

In what follows we identify Q with S and often write μF (S) instead of μF (Q).
Also, we identify a quadratic algorithm with the corresponding set
of pairs of linear forms.

Now, let x = (x0, x1, . . . , xn) and y = (y0, y1, . . . , yn−1). We have to com-
pute zk =

∑
i+j=k

xiyj , k = 0, . . . , 2n − 1. Let z = (z0, z1, . . . , z2n−1). Assume

that μF (n) = t. That is, there exist t linear forms L′
1, . . . , L

′
t and t linear forms

L′′
1 , . . . , L′′

t such that each zk is a linear combination of products L′
1L

′′
1 , . . . , L′

tL
′′
t .

Let p = (L′
1L

′′
1 , . . . , L′

tL
′′
t ). Then there exists a 2n × t matrix U such that

zT = UpT . Since the components of z are linearly independent, rank(U) = 2n.
Therefore, permuting the components of p, we may assume that the first 2n
columns of U are linearly independent. Hence there exist a 2n × 2n matrix W
and a 2n× (t− 2n) matrix V such that

WzT = (I2n, V )pT , (1)

where I2n denotes the 2n× 2n identity matrix.
Let WzT = (xD1y

T ,xD2y
T , . . . ,xD2nyT )T and D = {D1,D2, . . . , D2n}.

Proposition 1 below immediately follows from the above notation.

Proposition 1. (Cf. [1–Proposition 1].) Let D′ ⊆ D. Then

μF (n)(= μF (D)) ≥ 2n + μF (D′)− |D′|.2

We apply Proposition 1 for the proof of Theorem 1 in a standard manner,
see [1],[5–Proof of Theorem 18.10],[4], and [8]. Namely, we prove that there exists

a subset D′ of D of cardinality o(n) such that μFq
(D′) ≥ (1+ (q − 1)2

q5 + (q − 1)3
)n−

o(n), cf. [5–Proof of Theorem 18.10] and [8]. For this purpose we refine the
technique developed in [8].

2 For a set X, we denote by |X| the number of elements of X.
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2.2 Linear Recurring Sequences and Hankel Matrices

Let k be a positive integer and let a0, . . . , ak−1 belong to a field F . A sequence
σ = s0, s1, . . . , s� of elements of F satisfying the relation

sm+k = ak−1sm+k−1 + ak−2sm+k−2 + · · ·+ a0sm, m = 0, 1, . . . , �− k

is called a (finite k-th-order homogeneous) linear recurring sequence in F . The
terms s0, s1, . . . , sk−1 are called initial values. The polynomial

f(α) = αk − ak−1α
k−1 − ak−2α

k−2 − · · · − a0 ∈ F [α]

is called a characteristic polynomial of σ.
Proposition 2 below shows that “sufficiently long” finite linear recurring se-

quences behave like the infinite ones.

Proposition 2. ([8–Proposition 1]) Let σ and f(α) be as above, and let fσ(α)
be a characteristic polynomial of σ of the minimal degree. If deg fσ(α)+deg f(α)
≤ � + 1, then fσ(α) divides f(α).

A uniquely determined monic polynomial fσ(α) ∈ F [α] given by Proposi-
tion 2 is called the minimal polynomial of σ.

For a sequence σ = s0, s1, . . . , s2n−1 we define the (n + 1)× n Hankel matrix
H(σ) by

H(σ) =

⎛
⎜⎜⎜⎝

s0 s1 · · · sn−1
s1 s2 · · · sn

...
...

...
sn sn+1 · · · s2n−1

⎞
⎟⎟⎟⎠ .

The proof of Theorem 1 is based on the fact that linear combinations of the
coefficients of the polynomial product are defined by Hankel matrices and vice
versa.

Let Hi(σ) denote the (i + 1)th row of H(σ) and let k be the minimal integer
for which there exist a0, a1, . . . , ak−1 ∈ F such that

k−1∑
i=0

aiH
i(σ) = Hk(σ).

We define sequence σ̃ = s̃0, s̃1, . . . , s̃2n−1 by the linear recurrence

s̃i+k = ak−1s̃i+k−1 + ak−2s̃i+k−2 + · · ·+ a0s̃i,

with initial values s̃i = si, i = 0, 1, . . . , k − 1.

Let fH̃(σ)(α) = αk −
k−1∑
i=0

aiα
i. Then fH̃(σ)(α) is the minimal polynomial of

σ̃, see [8–Section 3]. We define the (integral) divisor fH(σ)(α) by fH(σ)(α) =
fH̃(σ)(α)(α−∞)rank(H(σ−σ̃)).
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For Lemmas 1 and 2 below we need the following notation.
For a set S of (n+1)×n Hankel matrices we denote lcm{fH(α) : H ∈ S} by

fS(α), where, as usual, lcm is an abbreviation for “the least common multiple.”
Next, for a vector space V and a subset V ′ of V , we denote by [V ′] the linear

subspace of V spanned by the elements of V ′.
Finally, we denote the maximal possible number of distinct factors of a

polynomial of degree n over Fq by iq(n). It well-known that for q ≥ 3, iq(n)
< n

lgq n− 3 , see [8–Appendix 1].

Lemma 1. ([8–Lemma 2] and [4–Lemma 1]) Let S be a set of (n+1)×n Hankel
matrices over a field F such that deg fS(α) ≥ n + 1. Then μF (S) ≥ n + 1.

Lemma 2. ([8–Lemma 4]) Let S be a set of (n+1)×n Hankel matrices over Fq.
Then for each m ≤ dim([S]) there exists a subset S′ of S such that |S′| ≤ iq(m)
and deg fS′(α) ≥ m.

Example 1. ([8–Theorem 1].) Let D be as in the end of the previous section.
Then dim(D) = 2n and, by Lemma 2, there is a subset D′ of D of cardinality not
exceeding iq(n+1) such that deg fD′(α) ≥ n+1. By Lemma 1, μFq

(D′) ≥ n+1.
Thus, by Proposition 1, μFq

(n) = 3n− o(n).

2.3 Bounds from the Coding Theory

The most basic notion of the coding theory is the weight of a vector v, denoted
wt(v), that is the number of non-zero components of v. We need the following
corollaries to [11–Problem 3.6, p. 73].

Proposition 3. Let U be a 2× t matrix over Fq without zero columns. Then

t =

wt((0, 1)U) +
∑
v∈Fq

wt((1, v)U)

q
.

Proposition 4. (Cf. [10–Proof of Theorem 1].) Let S be a set of k linearly
independent (n + 1)× n Hankel matrices over Fq. Then

μFq
(S) ≥

∑
H∈[S]

deg fH(α)

qk − qk−1 .

Example 2. Let D be as in the end of Section 2.1 and let

εq =
q4

q5 + (q − 1)3
. (2)
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If there exists a subset D′ of D such that |D′| ≤ �lgq lgq n − lgq lgq lgq n� and
for each H ∈ [D′], deg fH(α) ≥ (1− εq)n, then

μFq
(n) ≥ (3 +

(q − 1)2

q5 + (q − 1)3
)n− o(n).

That is, Theorem 1 is true in this degenerate case. Indeed, by Proposition 4,

μFq
(D′) ≥

∑
H∈[D′]

deg fH(α)

q�lgq lgq n−lgq lgq lgq n� − q�lgq lgq n−lgq lgq lgq n�−1

≥ (q�lgq lgq n−lgq lgq lgq n� − 1)(1− εq)n
q�lgq lgq n−lgq lgq lgq n� − q�lgq lgq n−lgq lgq lgq n�−1

≥ (1 +
1

q − 1
)(1− εq)n−

(1− εq)n lgq lgq n

lgq n

and the desired inequality follows from (2) and Proposition 1.

3 Limitations of Lemma 1 and Its Extension

The proof of Example 1 does not use much of the finiteness of the underlying
field, because Lemma 1 holds for any field. In addition the proof uses only “a
half” of dim([D])(= 2n). Therefore, a better bound might be achieved, if we
succeed to extend Lemma 1 “beyond n + 1” (just in the case of a finite field),
which would allow us to use a “bigger portion of dim([D]).” Indeed, as shows
Theorem 2 in this section, Lemma 1 can be extended and in Section 4 we apply
its extension for the proof of Theorem 1.

We illustrate Theorem 2 by Example 3 below that is based on the following
lemma.

Lemma 3. Let H ′ and H ′′ be (n + 1)× n Hankel matrices over Fq and let α ∈
Fq2 \Fq. Then each quadratic algorithm over Fq that computes x(H ′ + αH ′′)yT

also computes {xH ′yT ,xH ′′yT }.

Example 3. Let n be odd and let M,M ′, and M ′′ be (n+1)×n Hankel matrices
over Fq such that fM (α), fM ′(α), and fM ′′(α) are pairwise coprime polynomials
of degree n + 1

2 . We shall prove that μFq
({M,M ′,M ′′}) ≥ (1 + 1

2q2 )(n + 1),

whereas Lemma 1 gives us μFq
({M,M ′,M ′′}) ≥ n + 1, only.

Let {(L′
i, L

′′
i )}i=1,2,...,t be a quadratic algorithm over Fq that computes the

bilinear forms defined by those three matrices and let p = (L′
1L

′′
1 , . . . , L′

tL
′′
t ).

Then this algorithm also computes the bilinear forms over Fq2 defined by M +
αM ′ and M ′′, where α ∈ Fq2 \Fq is as in Lemma 3. That is, there exists a 2× t
matrix U over Fq2 such that

(
x(M + αM ′)yT

xM ′′yT

)
= UpT .
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Therefore, xM ′′yT = (0, 1)UpT , implying

wt((0, 1)U) ≥ μFq
({M ′′}) (3)

and for u, v ∈ Fq,

x((M + uM ′′) + α(M ′ + vM ′′))yT = (1, u + αv)UpT ,

implying, by Lemma 3,

wt((1, u + αv)U) ≥ μFq
({M + uM ′′,M ′ + vM ′′}). (4)

Now, combining (3) and (4) with Proposition 3 we obtain

t ≥

μFq
({M ′′}) +

∑
u,v∈Fq

μFq
({M + uM ′′,M ′ + vM ′′})

q2 . (5)

Since μFq
({M ′′}) = deg fM ′′(α) = n + 1

2 and, by Lemma 1, μFq
({M +

uM ′′,M ′ + vM ′′}) ≥ n + 1, the desired inequality t ≥ (1 + 1
2q2 )(n + 1) follows

from (5).

Theorem 2 below generalizes Example 3 by extending Lemma 1 “beyond
n + 1.” To state the theorem we need the following notation.

Let S be a set of (n + 1)× n Hankel matrices. We denote min{deg fH(α) �=
0 : H ∈ [S]} and min{deg fS′(α) : [S′] = [S]} by ‖S‖ and deg S,3 respectively.

Theorem 2. Let M be a set of three linearly independent (n + 1) × n Hankel
matrices over Fq such that deg fM (α) > n. Then

μFq
(M) ≥ n + 1 +

min(deg M − n− 1, ‖M‖)
q2 .

Thus, we shall search for a subset D′ of D of cardinality o(n) such that
[D′] includes a set M of three linearly independent (n + 1)×n Hankel matrices
satisfying

min(deg M − n− 1, ‖M‖) ≥ (q − 1)2

q2 εqn. (6)

3 Note the difference between deg S and deg fS(α). Whereas the latter refers to a
particular set of Hankel matrices S, the former is the minimum of deg fS′(α). over
all sets S′ which span [S]. Nevertheless, they are equal, if either of them is less than
n + 1.
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4 Sketch of the Proof of Theorem 1

Let εq be as in (2) and let D = {D1,D2, . . . , D2n} be the set of Hankel matrices
defining the components of WzT in (1). In view of Example 2, we may assume
that the linear closure of each subset of D of cardinality �lgq lgq n− lgq lgq lgq n�
contains an element H such that deg fH(α) < (1− εq)n. Under this assumption

we shall construct a subset D′ of D of cardinality at most
(1 + εq)n lgq lgq n

lgq((1 + εq)n)
whose linear closure includes a subset M = {M,M ′,M ′′} that satisfies (6),
which together with Theorem 2 and Proposition 1 (and Example 2, of course)
will prove Theorem 1.

Lemma 4. Assume that the linear closure of each subset of D of cardinality
�lgq lgq n − lgq lgq lgq n� contains a matrix H such that deg fH(α) < (1 − εq)n.

Then there exists a subset D′ of D of cardinality at most
(1 + εq)n lgq lgq n

lgq((1 + εq)n)
and a subset H of [D′] such that deg H ≥ (1 + εq)n and for each H ∈ H,
deg fH(α) < (1− εq)n.

A set M = {M,M ′,M ′′} that satisfies (6) is, actually, chosen from [H] as
follows. First we construct Hankel matrices M and M ′, M,M ′ ∈ [H], such that

deg fM (α),deg fM ′(α) ≤ (1− (q − 1)2

q2 εq)n, (7)

deg f{M,M ′}(α) ≥ (1− (q − 1)2

q2 εq)n, (8)

and

‖{M,M ′}‖ ≥ (q − 1)2

q2 εqn. (9)

Then we complete {M,M ′} to M . For this we need the following technical
notation.

Let H = {H1,H2, . . . ,Hk} and let fH(α) =
�∏

i=1

pdi
i (α) be the decomposition

of fH(α) into irreducible factors. Then for each H ∈ H and each i = 1, 2, . . . , �
there is the unique matrix H|i – the pi(α)-component of H – such that fH|i

divides pdi
i (α) and H =

�∑
i=1

H|i.

The set {H|i : H ∈ H} of all pi(α)-components of the elements of H will be
denoted by H|i.

Also, we denote by H and H|i, i = 1, 2, . . . , �, the column vectors of the
elements of H and H|i, respectively. That is, H = (H1,H2, . . . ,Hk)T and H|i =
(H1|i,H2|i, . . . ,Hk|i)T , say.

Next, for a vector v = (v1, v2, . . . , vk) ∈ F k
q we denote by fvC(H)(α) the

divisor f{vH|i:i=1,2,...,�}(α). That is, fvC(H)(α) is the product of the divisors
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associated with the summands vH|i, i = 1, 2, . . . , �, of vH =
k∑

i=1

vH|i. In

particular, if fHi
(α) is the minimal polynomial of an infinite linear recurring

sequence σi, i = 1, 2, . . . , �, then fvC(H)(α) is the minimal polynomial of
k∑

i=1

viσi.

Remark 1. Note the difference between fvH(α) and fvC(H)(α). The degree of
the former is at most n, whereas the degree of the latter can exceed it. The
divisors are equal if and only if deg fvC(H)(α) ≤ n.

The following proposition is an easy corollary to the definition of fvC(H)(α)
and Remark 1.

Proposition 5. Let v′,v′′ ∈ F k
q . Then

deg lcm{fv′C(H)(α),fv′′C(H)(α)} ≥ deg fv′+v′′C(H)(α).

The proof of Proposition 6 below is based on a counting argument from the
coding theory.

Proposition 6. Let H = {H1,H2, . . . ,Hk}. Then, for each divisor f(α),
∑

v∈F k
q

(deg lcm{f(α),fvC(H)(α)} − deg f(α))

≥ (qk − qk−1)(deg fH(α)− deg f(α)).

Example 4. Let H be as above. Assume that for all v ∈ F k
q , deg fvC(H)(α) ≤ n.

Then

μFq
(H) ≥

∑
v∈F k

q

deg fvH(α)

qk − qk−1 =

∑
v∈F k

q

deg fvC(H)(α)

qk − qk−1 ≥ deg fH(α),

where the first inequality is by Proposition 4 (because [H] = {vH : v ∈ F k
q }),

the equality is by Remark 1, and the last inequality follows from Proposition 6
with f(α) = 1.

Since deg fH(α) ≥ (1+εq)n, by Example 4, we may assume that there exists
a vector v = (v1, v2, . . . , vk) ∈ F k

q such that deg fvC(H)(α) ≥ n. We also assume
that v is the minimum weight vector such that deg fvC(H)(α) ≥ n and fix it till
the end of Section 4.1.

Roughly speaking, M and M ′ are appropriate subsums of vH and M ′′ is
defined by the quotient vector space [H]/[{M,M ′}]. We shall distinguish between
the cases of

min{deg fH(α) : H ∈ H} <
(q − 1)2

q2 εqn (10)
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and

min{deg fH(α) : H ∈ H} ≥ (q − 1)2

q2 εqn

and use the following notation.
For I ⊆ {1, 2, . . . , k}, we define a k-dimensional vector vI = (vI

1 , vI
2 , . . . , vI

k)
by

vI
i =

{
vi, if i ∈ I
0, otherwise i = 1, 2, . . . , k.

4.1 The Case of min{deg fH(α) : H ∈ H} < (q−1)2

q2 εqn

Let I be a maximal (with respect to inclusion) subset {1, 2, . . . , k} such that

deg fvIC(H)(α) <
(q − 1)2

q2 εqn

and let I ′ be a minimal (with respect to inclusion) subset of {1, 2, . . . , k}\I such
that

deg lcm{fvIC(H)(α),fvI′ C(H)(α)} ≥ (1− (q − 1)2

q2 εq)n. (11)

The existence of I ′ follows from (10) and Proposition 5.
We put M and M ′ be vIH and vI′

H, respectively. Then (7) – (9) follow
from (10),(11), Proposition 5, and Remark 1. In addition, by (10),(11), and
Remark 1,

deg f{M,M ′}(α) < n. (12)

Now we construct M ′′. Proposition 6 implies that for some v′′ ∈ F k
q ,

deg lcm{f{M,M ′}(α),fv′′C(H)(α)} − deg f{M,M ′}(α)

≥ (1− 1
q )(deg fH(α)− deg f{M,M ′}(α))

and we put M ′′ be v′′H.
Using the properties of H provided by Lemma 4, we can prove that

deg{M,M ′,M ′′} ≥ (1 +
(q − 1)2

q2 εq)n (13)

and it remains to show that

‖{M,M ′,M ′′}‖ ≥ (q − 1)2

q2 εqn. (14)

For the proof, assume to the contrary that for some matrix H ∈ [{M,M ′,

M ′′}], deg fH(α) <
(q − 1)2

q2 εqn. By (9),H �∈ [{M,M ′}], which implies [{M,M ′,

H}] = [{M,M ′,M ′′}]. Since

deg f{M,M ′,H}(α) ≤ deg f{M,M ′}(α) + deg fH(α) < (1 +
(q − 1)2

q2 εq)n,

where the right inequality follows from (12), our assumption contradicts (13).
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4.2 The Case of min{deg fH(α) : H ∈ H} ≥ (q−1)2

q2 εqn

The construction of M is similar to that in the previous case using appropriate
maximal subsets of {1, 2, . . . , k} and the above vector v′′. The only difference is
that (9) and (12) do not necessarily hold and, consequently, we cannot guaran-
tee (14) either.

To overcome this obstacle we start with a basis {H1,H2, . . . ,Hk} of [H]
satisfying deg fHi

(α) ≤ (1−εq)n and containing the maximal number of elements
H such that

deg fH(α) <
(q − 1)2

q2 εqn. (15)

Then, if (14) does not hold, we can find a basis of H with more elements H
satisfying (15), in contradiction with the above maximality property of the basis
{H1,H2, . . . ,Hk}.
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Abstract. We characterize the languages in TC0 = L(Maj[<, Bit])
and L(Maj[<]) as inverse morphic images of certain groups. Necessarily
these are infinite, since nonregular sets are concerned. To limit the power
of these infinite algebraic objects, we equip them with a finite type set
and introduce the notion of a finitely typed (infinite) monoid. Following
this approach we investigate type respecting mappings and construct a
new type of block product, which is more adequate to deal with infinite
monoids. We exhibit two classes of finitely typed groups which exactly
characterize TC0 and L(Maj[<]) via inverse morphisms.

1 Introduction

There are very close relations between families of regular languages and low
level complexity classes ([1, 2]). In particular the class AC0 corresponds to the
family of star-free regular languages, the class ACC0 to the family of solvable
regular languages, and NC1 to the family of all regular languages. Unfortunately,
the class TC0 is not treatable in the framework of regular languages unless it
coincides with ACC0 or NC1.

These connections between families of regular languages and low level com-
plexity classes are exhibited in the unifying framework of logic, where their
difference is expressed by being allowed to use the BIT predicate or not. The
class TC0 is expressible as the family of all languages acceptable by formulae
built of first-order and majority quantifiers using order and the BIT predicate
([1]), hence a natural candidate for a formal language counterpart of TC0 is the
family L(Maj[<]) of all languages represented by majority formulae using only
the order predicate and not the BIT predicate. The various families of regular
languages can be characterized algebraically, e.g. the star-free regular sets are
those recognizable by aperiodic finite monoids using inverse morphisms. It was
the original starting point of this work to exhibit monoids which recognize by
inverse morphisms exactly the languages in L(Maj[<]).

When characterizing languages recognized by various classes of finite monoids
in terms of certain formula classes the crucial point is to exhibit algebraic objects
which correspond to logic operators. For instance, the application of a modular
counting quantifier is characterized by building the block product with a finite
cyclic group, and in the same way, first-order quantifiers are expressed by the
block product with the two-element monoid U1 ([2]). It seems natural to relate

V. Diekert and B. Durand (Eds.): STACS 2005, LNCS 3404, pp. 496–507, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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majority (and counting and threshold quantifiers as well) to the block product
with the group Z of the integers. Unfortunately, for infinite monoids M and N
the set of all functions from N×N to M is uncountable, thus the ordinary block
product M �N ∼= MN×N ∗ ∗N is too powerful and it wouldn’t be possible to
simulate these monoids by logical formulae. Hence we need a new, more restricted
version of the algebraic approach. We obtain this in two steps: First, we introduce
the notion of a finitely typed monoid, that is a monoid which is the finite disjoint
union of subsets called types. When recognizing languages with such a monoid,
the inverse morphism is in some sense not allowed to distinguish between the
elements inside a type. In a second step we restrict the set of all functions from
N ×N to M to the set V of all so-called type respecting functions, i.e. functions
compatible with the types of N , and define a restricted version of the block
product as the bilateral semidirect product of V with N . Building on that we
construct two families M<,Sq and M< of finitely typed infinite groups, such
that TC0 (resp. L(Maj[<])) coincides precisely with the family of languages
recognized by the elements of M<,Sq (resp. M<).

The paper is organized as follows: Section 2 collects the needed prelimi-
naries. The following two sections define the new block product and use it to
construct families of infinite groups which are related to the classes TC0 and
L(Maj[<]). Section 5 summarizes our main results which are proven in the final
two sections.

2 Preliminaries

In the following we denote by Z the integers, by Z+ the positive integers, by
Z−

0 the nonpositive integers, by S the positive quadratic numbers, and by S its
complement. As usual 2d stands for {0, 1}d for d ∈ Z+, whereas 2V denotes the
set of all subsets of V. We use eM to denote the neutral element of a monoid M .

Logic Formulae Over Words. Throughout this paper we consider languages
defined by logical formulae. We use essentially the notation as it is presented in
the book of Straubing [2]. In general, i, j, k, n will denote positive integers, while
x, y, z will denote position variables with positive integer values. Thus, variables
will range over {1, 2, . . . , |w|}. The predicate Qa(x) expresses that the position
a variable x is pointing to contains the symbol a.

As usual, a formula φ with set V of free variables is interpreted over words
as structures w = (a1,V1)(a2,V2) · · · (an,Vn) such that V is the union of the Vi

and that the Vi are pairwise disjoint. Words of this kind are called V-structures.
A letter (a, ∅) is simply denoted by a. We denote the set of all V-structures over
Σ by Σ∗ ⊗ V whereas (Σ × 2V)∗ contains also words with multiple occurrences
of a variable. The set of V-structures modeling φ is denoted by Lφ,V . If φ is a
sentence, then Lφ := Lφ,∅ = {w ∈ Σ∗ | w |= φ}. We call this the set of words
defined by φ.

If w = (a1,V1)(a2,V2) · · · (an,Vn) ∈ Σ∗ ⊗ V and x �∈ V then wx=i denotes
(a1,V1) · · · (ai−1,Vi−1)(ai,Vi∪{x})(ai+1,Vi+1) · · · (an,Vn) ∈ Σ∗⊗ (V ∪{x}). As



498 A. Krebs, K.-J. Lange, and S. Reifferscheid

abbreviation for wx=i |= φ we often write w |= φ(x = i), or, if x is understood,
w |= φ(i). We abbreviate the sequence φ1, . . . , φd by 'φ, and w |= 'φ denotes the
boolean vector w |= φ1, . . . , w |= φd.

Let Q be a set of quantifier types (e.g. first-order) and X a set of numerical
predicates (not necessarily containing the order predicate <). We denote byQ[X ]
the set of all formulae built over the elements of X ∪ Qa(·) as atomic formulae
by conjunction, negation and quantification using quantifier types from Q. By
L(Q[X ]) we denote the class of all languages definable by Q[X ] formulae.

Formulae not using the Qa(·) predicates are numerical predicates. In the
presence of the order predicate first-order quantifiers can define addition and
multiplication by use of the BIT predicate and vice versa. A very comprehensive
treatment of related results is given by Schweikardt [3].

We will use Majx to denote the majority quantifier. w |= Majx φ is fulfilled
iff the number of all 1 ≤ i ≤ |w| such that wx=i |= φ is larger than |w|/2. The
majority quantifier rejects in case of a draw.

Ruhl [4] proved that L(Maj[<,+, ∗]) is not contained in L(Maj[<,+]). Later
Lautemann et al. [5] extended this result in showing that all numerical predicates
definable by Maj[<]-formulae are even definable by FO[+] formulae.

The (unary) counting quantifier is denoted by ∃=yx, thus wy=j |= ∃=y x φ is
fulfilled iff there are exactly j positions 1 ≤ i ≤ |w| such that wx=i,y=j |= φ where
j is the numerical value of variable y. The counting quantifier can take values
in the range {0, 1, . . . , n} which is one more than there are positions available in
inputs of size n. If we take care of the case y = 0 by the formula ∀x¬φ and only
treat the case y ≥ 1 it is possible to show:

Lemma 1 ([6]). The counting quantifier is definable in Maj[<].

For the ease of handling we will use the counting quantifier without this
restriction and note that more formally in all formulae using the counting quan-
tifier the exception handling of the case y = 0 should be added.

Circuits. The reader is assumed to be acquainted with language classes defined
by uniform circuits as they are presented by Barrington et al. [1]. In particular
we will use the relation

TC0 = L(FO +Maj[<,+, ∗]).

TC0 and the Square Predicate. Let square(x) denote the numerical predi-
cate that the position number the variable x is pointing to is a positive square
number. It is well known, that with respect to first-order quantifiers addition
and multiplication are equivalent to addition and the square predicate (see e.g.
[3][Theorem 2.3.f]). Combined with results in [6] this yields TC0 = L(Maj[<
, square]).

We will use Sqx to denote the square quantifier. w |= Sqx φ is fulfilled iff the
number of all 1 ≤ i ≤ |w| such that wx=i |= φ is a positive square number. It is
easy to show that the square predicate square is definable in FO+Sq[<] logic. On
the other hand, the square quantifier can be simulated by the counting quantifier
in connection with the square predicate. Hence we have TC0 = L(Maj+Sq[<]).
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3 Finitely Typed Monoids

We call a monoid M finitely typed with type set M = {Mi | i ∈ I} iff M =⋃̇
i∈IMi for a finite set I. The pairwise disjoint sets Mi, i ∈ I, are called the

types of M . We call the elements of B(M), (the boolean algebra generated by
M), extended types of M . If the type set M of M is understood we often simply
write M instead of (M,M).

Let (M,M), (N,N) be finitely typed monoids. We call φ := (φM , φM) :
(M,M) → (N,N) a type morphism iff (i) φM : M → N is a monoid morphism
(ii) φM : B(M) → B(N) is a lattice morphism and (iii) φM (M) = φM(M) ∩
φM (M) for all extended types M of M . A type morphism φ = (φM , φM) is called
injective (resp. surjective) iff φM , φM are injective (resp. surjective). The image
φM (M) of a finitely typed monoid (M,M) under a type morphism φ = (φM , φM)
is equipped with the type set φM (M) given by the set B({φM (M) | M ∈ M}).

Remark 2. Let M be a monoid and let M1, M2 be type sets such that M1 is
coarser than M2 (that is, B(M1) ⊆ B(M2)). Then φ = (φM , φM1) : (M,M1) →
(M,M2) with φM , φM1 the identities, is an injective type morphism.

We call a monoid (U,U) a submonoid of (M,M) ((U,U) ≤ (M,M)) iff there
exists an injective type morphism φ : (U,U) → (M,M). Analogously, we call
a monoid (N,N) a quotient of (M,M) iff there is a surjective type morphism
φ : (M,M) → (N,N). Finally we define the direct product (M,M) × (N,N)
of finitely typed monoids (M,M) and (N,N) as the usual Cartesian product
equipped with M×N := {M×N | M ∈ M, N ∈ N}.

Let (M,M), (N,N) be finitely typed monoids. Recall that the ordinary
block product of M with N is defined as the bilateral semidirect product of
MN×N with N , where the right (resp. left) action of N on MN×N is given by
(f · n) (n1, n2) := f(n1, nn2)(resp. (n · f) (n1, n2) := f(n1n, n2)), n, n1, n2 ∈
N, f ∈ MN×N . As mentioned above, this structure would be too powerful
for our purposes, so in order to define a more restricted version of the block
product we introduce two kinds of functions compatible with the type struc-
ture. We call a function f : N × N → M strongly type respecting iff f |N1×N2

is constant for all N1, N2 ∈ N. The second kind of functions are the type
dependent functions: Assign to each N ∈ N an element mN ∈ M and de-
note this collection by mN = (mN )N∈N. Then for c ∈ N we denote the type
dependent function fmN

c : N × N → M by fmN
c (n1, n2) = mN iff n1 · c ·

n2 ∈ N .

Definition 3 (Block product). Let (M,M), (N,N) be finitely typed monoids.
The finitely typed block product (W,W):=(M,M) � (N,N) of (M,M) with
(N,N) is defined as the bilateral semidirect product V ∗ ∗ N of V with N (with
respect to the action given above) where V is the monoid generated by V (1) and
V (2) with

– V (1) = {fs,t : N ×N →M | s · f · t is strongly type respecting , s, t ∈ N}
– V (2) = {f : N ×N →M | f is type depending }.
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We call the elements of V type respecting (w.r.t. N and M). The type set W
of W consists of all types WM = {(f, n) ∈W | f(eN , eN ) ∈M}, where M∈ M.

Remark 4. (a) As usual we write the operation in V additively to provide a
more readable notation. Note that this does not imply that V is commutative.
By definition of the bilateral semidirect product we have

(f1, n1) . . . (fr, nr) = (
r∑

i=1

n1 . . . ni−1 · fi · ni+1 . . . nr, n1 . . . nr).

The neutral element of (M,M) � (N,N) is (e, eN ) where e is the function
mapping all elements to the neutral element of M . If M , N are groups, then
(M,M) � (N,N) is a group as well and (f, n)−1 = (−n−1 · f · n−1, n−1).
(b) The range of f is finite for every f ∈ V .
(c) For f ∈ V there is a finite set {fj | j ∈ J} ⊆ V (1) ∪ V (2) with f =

∑
j∈J fj .

Using the notation above we have fj = fsj ,tj
iff fj ∈ V (1) and fj = f

mj
N

cj iff fj ∈
V (2). Thus we can determine f(n1, n2) by determining types Nj1 , Nj2 , Nj3 ∈ N
such that (i) n1 · sj ∈ Nj1 for fj ∈ V (1) (ii) tj · n2 ∈ Nj2 for fj ∈ V (1) and
(iii) n1 · cj · n2 ∈ Nj3 for fj ∈ V (2).

Definition 5. A finitely typed monoid (M,M) is said to accept a language
L ⊆ Σ∗ iff there is a morphism h : Σ∗ → M and a subset {M1, . . .Mk} ⊆ M

of types of M such that L = h−1(
⋃k

i=1Mi). If the type set M of M is fixed we
simply say that M accepts L.

Let M be a class of finitely typed monoids. We denote the set of all languages
accepted by some element of M with H−1(M).

Remark 6. If a language L is accepted by a submonoid or a quotient of M , then
M accepts L as well.

4 The Class

Let Z be a type set of Z. We define the class MZ as the smallest class of finitely
typed groups containing the group (Z,Z) and being closed under forming finite
direct products and block products. Let M be a class of finitely typed monoids
closed under forming finite direct products. We denote by M the smallest class
C of finitely typed monoids containing M such that C is closed under forming
submonoids and under forming quotients. As usual (see for instance [7]), the
following can be shown:

Remark 7. (a) M is the class of all finitely typed monoids (G,G) such that there
exists (H,H) ∈ M, a submonoid (U,U) of (H,H) and a surjective type morphism
φ : (U,U) → (G,G).

MZ
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(b) M is closed under forming finite direct products.
(c) For a partition Z of Z we have H−1(MZ) = H−1(MZ).
(d) Let Z1, Z2 be partitions of Z such that Z1 is coarser than Z2. Then MZ1 ⊆
MZ2. In particular, H−1(MZ1) ⊆ H−1(MZ2).

Lemma 8. Let Z1, Z2 be type sets of Z. Then MZ1 ×MZ2 = MZ1∩Z2, where
Z1∩Z2 = {Z1∩Z2 | Zi ∈ Zi, i = 1, 2}, and MZ1×MZ2 = {M1×M2 |Mi ∈ MZi

}.

Definition 9. In the following we denote by M< the class MZ for Z = Z< =
{Z+,Z−

0 } and by M<,Sq the class MZ for Z = Z<,Sq = {S,Z+ \ S,Z−
0 }.

5 Main Results

The central result of this work is the characterization of the languages in
L(Maj[<]) and in TC0 as inverse morphic images of groups in M< and M<,Sq.
We prove this in two parts. Theorem 10 covers the direction from logic to groups.
The more difficult direction from groups to logic is done in theorem 11.

Theorem 10. Let φ be a formula of Maj[<] ( resp. Maj + Sq[<]) and V be
a set of first-order variables containing the free variables of φ. Then there is a
group (G,G) ∈ M< (resp. M<,Sq) and a monoid morphism h : (Σ × 2V)∗ → G
fulfilling Lφ,V = h−1(G) ∩ (Σ∗ ⊗ V) for some extended type G ∈ B(G).

Theorem 11. Let (G,G) ∈ M< (resp. M<,Sq), V be a set of variables and
let h : (Σ × 2V)∗ → G be a monoid morphism. Then there is for each G ∈ G
a Maj[<]-formula (resp. Maj + Sq[<]-formula) with free variables in V that
defines the language L = h−1(G) ∩ (Σ∗ ⊗ V).

Corollary 12. L(Maj[<]) = H−1(M<) and TC0 = H−1(M<,Sq).

6 Proof of Theorem 10

This proof is done by induction on the term structure of φ.
(1) φ is Qa(x) for some a ∈ Σ: We recognize the set L := {(a1, S1) . . . (an, Sn)

∈ (Σ × 2V)∗ | at position x there is an a} by (Z ,Z<) with the morphism

h : (Σ × 2V)∗ → Z, (α, S) �→
{

1 if α = a and x ∈ S,
0 otherwise.

Then L = h−1(Z+), thus Lφ,V = h−1(Z+) ∩ (Σ∗ ⊗ V).
(2) φ is x < y: We recognize the set L of all words in (Σ×2V)∗ such that x is

positioned before y by the finitely typed block product (G,G)
= (Z,Z<) � (Z,Z<) = V ∗∗Z. We use the morphism h : (Σ×2V)∗ → G given by

h(a, S) :=

⎧⎨
⎩

(e, 0) if {x, y} ∩ S = ∅
(e, 1) if x ∈ S and y �∈ S
(f>, 0) if y ∈ S,
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where e(m1,m2) = 0 for all m1,m2 ∈ Z, and f> denotes the characteristic func-
tion on Z+ × Z. Obviously f> ∈ V (1) ⊆ V .
Set G := {(f, n) ∈ V ∗ ∗Z | f(0, 0) ∈ Z+}. Then L = h−1(G), thus Lφ,V
= h−1(G) ∩ (Σ∗ ⊗ V).

(3) φ is φ1 ∧φ2: By induction Lφi,V = h−1
i (Gi)∩ (Σ∗⊗V), for suitable hi,Gi

and i = 1, 2, hence Lφ,V = h−1(G)∩ (Σ∗ ⊗V) where h = h1 × h2, G = G1 ×G2
and G = G1 × G2.

(4) φ is ¬ψ: By induction Lψ = h−1(G) ∩ (Σ∗ ⊗ V), h, G suitable. Hence
Lφ,V = h−1(G) ∩ (Σ∗ ⊗ V) where G = G \ G.

(5) φ is Majx ψ: By induction there exist (Gψ,Gψ) and a monoid morphism
hψ : (Σ × 2V∪{x})∗ → Gψ with Lψ,V∪{x} = h−1

ψ (Gψ) ∩ (Σ∗ ⊗ V ∪ {x}) for a
suitable extended type Gψ ∈ B(Gψ).
We set (G,G) := (Z,Z<) � (Gψ,Gψ) = V ∗ ∗Gψ and define a morphism h :
(Σ × 2V)∗ → G by h(a, S) := (f(a,S), hψ(a, S)) where

f(a,S)(m1,m2) =
{

1 if m1 · hψ(a, S ∪ {x}) ·m2 ∈ Gψ,
−1 otherwise.

Then f(a,S) is in V (2) ⊆ V . By assumption, an input word (a1, S1) · · · (an, Sn) ∈
Σ∗ ⊗ V is a model for φ iff the number of positions 1 ≤ i ≤ n fulfilling
hψ((a1, S1) · · · (ai−1, Si−1)(ai, Si ∪ {x})(ai+1, Si+1) · · · (an, Sn)) ∈ Gψ is larger
than that of nonfulfilling positions. Hence by definition of f(a,S)

π1(h((a1, S1) · · · (an, Sn)))(eGψ
, eGψ

) =
∑

i fulfilling ψ
1−

∑

i not fulfilling ψ
1

and consequently Lφ,V = h−1(G) ∩ (Σ∗ ⊗ V) for G := {(f,m) ∈ V ∗ ∗Gψ |
f(eGψ

, eGψ
) > 0}.

(6) φ is Sqx ψ: We define the morphism h as for Majx ψ , but now mapping
nonfulfilling positions to 0 instead of −1. Thus we simply count the number of
satisfying positions and ignore the unsatisfying ones. Hence Lφ,V = h−1(S) ∩
(Σ∗ ⊗ V).

An Example

The following example demonstrates how to simulate modular counting by groups
in M<. We deal with the formula χ := Majx Maj y x ≤ y which accepts the
set of all words of odd length. Since we do not use Qa(·)-predicates, let’s simply
take Σ := {a} to be a singleton. The syntactic monoid of Lχ is the cyclic group
with two elements.

As a first step, we simulate the formula ψ = (x ≤ y) with the set of free
variables V := {x, y}. We begin with the group (Gψ,Gψ) = (Z,Z<) � (Z,Z<) =
Vψ ∗ ∗Z. Since we simulate ≤ (and not <), we define hψ : ({a} × 2V)∗ → Gψ by

hψ(a, S) :=

⎧⎪⎪⎨
⎪⎪⎩

(e1, 0) if S = ∅
(e1, 1) if S = {x}
(f>, 0) if S = {y}
(e1, 1)(f>, 0) = (1 · f>, 1) if S = {x, y}
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where f> denotes the the characteristic function on Z+×Z, and e1 is the constant
zero mapping from Z×Z to Z. As acceptance type we use the set Gψ := {(f, n) |
f(0, 0) > 0}. Then the set of all V-structures contained in h−1

ψ (Gψ) is precisely
the set of words where variable x is not positioned after variable y.

In the second step we simulate the formula φ := Maj y ψ which has the set of
free variable V ′ := {x}. We set (Gφ,Gφ) := (Z,Z<) � (Gψ,Gψ) = Vφ ∗ ∗Z, and
define maps g(a,∅) and g(a,{x}) from Gψ ×Gψ to Z by

g(a,∅)((f1, n1), (f2, n2)) :=
{

+1 if (f1, n1)hψ(a, {y})(f2, n2) ∈ Gψ

−1 otherwise

g(a,{x})((f1, n1), (f2, n2))) :=
{

+1 if (f1, n1)hψ(a, {y, x})(f2, n2) ∈ Gψ

−1 otherwise .

Define hφ : ({a} × 2{x})∗ → Gφ by hφ(a, ∅) := (g(a,∅), (e1, 0)) and hφ(a, {x})
:= (ga,{x}, (e1, 1)) and set Gφ := {(g, (f, n)) | g((e1, 0), (e1, 0)) > 0}. Then the
set of all {x}-structures lying in h−1

φ (Gφ) is exactly the set of words where the
variable x is positioned in the first half of the word and this is the language
accepted by formula φ.

In the final step we simulate the whole formula χ which is Majx φ and has
no free variables. We set (Gχ,Gχ) := (Z,Z<) � (Gφ,Gφ) = Vχ ∗ ∗Z and define
hχ : {a}∗ → Gχ by hχ(a, ∅) = (F(a,∅), hφ(a,∅)) where F(a,∅) : Gφ × Gφ → Z is
given as

F(a,∅)(m1,m2) =
{

1 if m1 · hφ(a, {x}) ·m2 ∈ Gφ

−1 otherwise

Further set Gχ := {(F, (g, (f, n))) ∈ Vχ ∗ ∗Gφ | F ((e2, (e1, 0)), (e2, (e1, 0))) >
0} where e2 denotes the constant zero mapping from Gψ × Gψ to Z. Since
π1(hχ(an))(eGχ

, eGχ
) = �n+1

2 � − n+ �n+1
2 �, we have h−1(Gχ) = (aa)∗a which is

the language accepted by formula χ.

Remark 13. For an arbitrary natural number k the language L = {an | n ≡ 1
mod (k+1)} can be essentially recognized as above but now setting the positive
value of g(a,∅) to k and the negative value of F(a,∅) to −k.

7 Proof of Theorem 11

Group quantifiers turn out to be a key ingredient to prove the converse.

Definition 14 (Group quantifier). Let (G,G) be a finitely typed group, and
let G be an extended type of G. Further let d ∈ N, φ1(x), . . . , φd(x) be formulae
and m : 2d → G be a function such that eG ∈ im(m).

Then ΓG,G,m x 〈φ1(x), . . . , φd(x)〉 is also a formula, which is modeled by w
iff (

n∏
i=1

m(w |= φ1(i), . . . , w |= φd(i))

)
∈ G.

In this context we identify false with 0 and true with 1.
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This definition is an extension of the group quantifier over finite groups [1].
The difference between this and the finite case is that the map m does not need
to be surjective and the accepting set cannot be a single element but has to be a
type. We add the map m to the notation of the group quantifier since it strongly
influences its power. The requirement eG ∈ im(m) is only for technical reasons
and is not substantial as seen in example 17.

Definition 15. (G,G) is definable in Q[X ] (denoted by: (G,G) DQ[X ]) iff
∀d ∈ N, ∀m : 2d → G and ∀G ∈ G: ΓG,G,m is definable in Q[X ].

Example 16. We can write the ∃ quantifier as a group quantifier over Z.

∃xφ(x) = ΓZ,Z+,m x 〈φ(x)〉

where m(false) = 0 and m(true) = 1.

Example 17. We can write the Maj quantifier as a group quantifier over Z.

Majx φ(x) = ΓZ,Z+,m x 〈φ(x)〉

where m(false) = −1 and m(true) = 1. This does not quite meet the definition
since 0 �∈ im(m), but we could easily extend the definition to:

Majx φ(x) = ΓZ,Z+,m′
x 〈φ(x), false〉

where m′(false, false) = −1 and m′(true, false) = 1 and to meet the definition
m′(false, true) = m′(true, true) = 0.

Definition 18 (Relative group quantifier). Let the notation be as in defi-
nition 14 and let p, q be two free variables. Then the formula ΓG,G,m

p,q x 〈'φ(x)〉 is

modeled by the word wp=k,q=l iff
(∏l

i=k m(wp=k,q=l |= 'φ(i)
)
∈ G.

Lemma 19. If a group quantifier is definable in Q[<,X ] then the relative group
quantifier is definable in Q[<,X ] as well.

Proof. We simply map all values outside the relevant interval to the identity. �
If the group quantifier is definable in a logic Q[X ] then all inverse morphic

images of this group belong to L(Q[X ]):

Lemma 20. (G,G) DQ[X ] implies that for each morphism h : Σ∗ → G, h−1(G) ∈
L(Q[X ]) for all G ∈ G.

Proof. Let h and G be as above, Σ = {α1, . . . , αr} and set φi(x) = Qαi
(x) for

i = 1, . . . , r. We define a mapping m : 2|Σ| → G by

m(false, . . . , false, true, false, . . . , false) := h(αi)

where i is the position of true. Then w |= ΓG,G,m〈'φ(x)〉 iff h(w) ∈ G for every
w ∈ Σ∗. �
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We prove by induction on the block structure that the elements of M< and
M<,Sq are definable in Maj[<] and Maj + Sq[<].

Proposition 21. (Z, {Z+,Z−
0 }) DMaj[<].

Proof. Since the group quantifier has only a finite map in the group, we only
have to deal with linear bounded sums in this case. We use extended arithmetic
as described in [3] and extend counting quantifiers from lemma 1 to the linear
case. Then we can compute the value in Z. �

Proposition 22. (Z, {S,S}) DMaj + Sq[<].

Proof. Similar to the previous proof. We compute the value in Z and use an
extended Sq quantifier to check if the value is a square. �

This combined with lemma 8 yields:

Corollary 23. (Z, {S,Z+ \ S,Z−
0 }) DMaj + Sq[<].

We now start with the induction. First, we simulate Cartesian products. This
simply reduces to propositional conjunction:

Proposition 24. Let Q[X ] be any logic. Assume (G,G), (H,H) DQ[X ], then
(G,G)× (M,M) DQ[X ].

Proof. Let A = G×H be a type of G×H, m : 2d → G×H, v �→ (mG(v),mH(v)),
and φ1(x), . . . , φd(x) be formulae in Q[X ]. Then ΓG×H,A,m x 'φ(x) is true iff
ΓG,G,mG x 'φ(x) ∧ ΓH,H,mH x 'φ(x) is true. �

Finally we show that groups constructed by the block product also belong to
Maj[<] respectively Maj + Sq[<].

Theorem 25. Let Q[X ] be any logic.
Assume (G,G), (H,H) DQ[X ], then (G,G) � (H,H) DQ[X ].

Proof. Set (W,W) = (G,G) � (H,H) and let W ∈ W and d, m : 2d → W ,
φ1(x), . . . , φd(x) as in definition 14. We need to show that ΓW,W,mx 'φ(x) is
definable in Q[X ].

For an arbitrary but fixed input w of length n we have m('φ(·)) : {1, . . . , n} →
W , i �→ m(w |= φ1(i), . . . , w |= φd(i)) =: (fi, hi). W is a type of W, thus
W = {(f, h) ∈W | f(eH , eH) ∈ G} for a suitable type G of G.

w |= ΓW,W,mx 'φ(x) ⇔
n∏

i=1

m(w |= 'φ(i)) ∈ W

⇔ π1

(
n∏

i=1

m(w |= 'φ(i))

)
(eH , eH) ∈ G

⇔
n∑

i=1

fi(h1 · · ·hi−1, hi+1 · · ·hn) ∈ G
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In the following we need to show that we can construct formulae 'ψ(y) and
a mapping m′ : 2d′ → G such that m′(wy=i |= 'ψ) = fi(h1 · · ·hi−1, hi+1 · · ·hn).
Then we can use the group quantifier for G and get:

ΓG,G,m′
y 'ψ(y) iff ΓW,W,mx 'φ(x).

We already have the mapping π1 ◦m that determines together with 'φ(x) the
function fi at any position. There are only finitely many different functions fi

since the image of π1 ◦m is finite. So let’s fix a function fi. By remark 4(c) we
have fi =

∑
j∈Ji

fi,j for fi,j ∈ V (1) ∪ V (2) and we can determine the value of fi

if we have formulae for cases (i)-(iii) of remark 4(c):
(i) Let s ∈ {sj | j ∈ Ji} and H ∈ H. We define φd+1(x) as x = y and
m′′

s ('v, false) := π2 ◦m('v) and m′′
s ('v, true) := s then

wp=1,y=i |= Γ
H,H,m′′

s
1,y x 〈'φ(x), φd+1(x)〉 iff h1 · · ·hi−1 · s ∈ H

Hence we can construct a finite number of formulae to determine the case of
clause (i).
(ii) Similar to case (i).
(iii) With the same definitions as above:

wy=i |= ΓH,H,m′′
s x 〈'φ(x), φd+1(x)〉 iff h1 · · ·hi−1 · s · hi+1 · · ·hn ∈ H

Hence we can determine the arguments of fi up to an equivalence class that
results in the same value of fi and use a finite case differentiation to build the
formulae 'ψ(x) and the mapping m′. This completes the proof of theorem 11. �

8 Discussion

We characterized the languages in L(Maj[<]) and TC0 as inverse morphic im-
ages of the elements of the group classes M< and M<,Sq. As is easily seen, every
element of these classes, and consequently every morphic image of a subgroup
of such an element, is solvable. Thus, in order to conclude that languages with
nonsolvable syntactic monoid (as for example A5) are not recognizable by ele-
ments of M<, it would be sufficient to show that the image of Σ∗ under the
recognizing morphism is a subgroup of the accepting finitely typed group. Un-
fortunately, this is not true in general, since, in contrast to the finite case, a
submonoid of an infinite group is not necessarily a group; on the contrary, it is
not hard to see that every finitely generated free monoid emerges as submonoid
of the (restricted) block product Z � Z.

The example in section 6 demonstrates that all finite cyclic groups are divisors
of groups in M< of (block) depth four. It can indeed be shown that depth three is
sufficient to accept all finite cyclic groups, and, moreover, that any finite solvable
group G with solvable length d can be recognized by a finitely typed group of
depth 2d+1 . On the other hand, it is not possible to recognize any finite group
by a group (M,M) in M< of depth two or less, since, in this case, there is for
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each element m ∈ M a positive integer k such that mk has the same type as
mk+l for an arbitrary l ∈ Z+. (Observe that this does not hold for M<,Sq.)
Finitely typed groups with this property might be called pseudo-aperiodic and
it should be interesting to investigate their properties.

The algebraic representations of L(Maj[<]) and TC0 led to the families of
groups M< and M<,Sq. A corresponding characterization is possible for the
complexity classes AC0 or ACC0 both in the case of FO[<,BIT ] (or equivalently
FO[+, square]) uniformity and in the case of FO[+] uniformity. We only have
to provide specific groups simulating the addition and the square predicates as
initial building blocks which are not allowed to be used in the induction step
when simulating quantifiers. It should be remarked that the resulting algebraic
families don’t enjoy the same closure properties as M< and M<,Sq do.

The next step should be to prove lower bounds. This should be possible for
classes like L(Maj[<]) or FO[+] uniform ACC0 where separation results are
not known to have severe and surprising consequences. Here the representation
in terms of groups might be helpful: when transforming a circuit class into a
logical class of the form L(Q(X )) we often lose a reasonable notion of depth.
For example, we know that Maj[<] can do counting modulo k for each fixed k,
but the depth of the corresponding formula seems inherently to increase with
growing k. This is not the case when using groups in M<. Thus it might be a
reasonable task to try to correlate the block depth notion of a group or monoid
to the depth of a circuit.
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Abstract. Let S be a set of points in R
d. Given a geometric spanner

graph, G = (S, E), with constant stretch factor t, and a positive con-
stant ε, we show how to construct a (1 + ε)-spanner of G with O(|S|)
edges in time O(|E| + |S| log |S|). Previous algorithms require a prelim-
inary step in which the edges are sorted in non-decreasing order of their
lengths and, thus, have running time Ω(|E| log |S|). We obtain our re-
sult by designing a new algorithm that finds the pair in a well-separated
pair decomposition separating two given query points. Previously, it was
known how to answer such a query in O(log |S|) time. We show how a
sequence of such queries can be answered in O(1) amortized time per
query, provided all query pairs are from a polynomially bounded range.

1 Introduction

Complete graphs represent ideal communication networks, but they are expen-
sive to build; sparse spanners represent low cost alternatives. The number of
edges of the spanner network is a measure of its sparseness; other sparseness
measures include the weight, the maximum degree and the number of Steiner
points. Spanners for complete Euclidean graphs as well as for arbitrary weighted
graphs find applications in robotics, network topology design, distributed sys-
tems, design of parallel machines, and many other areas, and have been the
subject of considerable research [1, 2, 6, 7, 15].

Consider a set S of n points in Rd. Throughout this paper, we will assume
that d is constant. A network on S can be modelled as an undirected graph G
with vertex set S and with edges e = (u, v) of weight wt(e). In this paper we
consider geometric networks, where the weight of the edge e = (u, v) is equal
to the Euclidean distance |uv| between its two endpoints u and v. Let δG(p, q)
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denote the length of a shortest path in G between p and q. Then, G is a t-spanner
for S, if δG(p, q) 	 t · |pq| for any two points p and q of S. The minimum value t
such that G is a t-spanner for S is called the stretch factor of G. A subgraph G′

of G is a t′-spanner of G, if δG′(p, q) 	 t′ · δG(p, q) for any points p and q of S.
Many algorithms are known that compute t-spanners with useful properties

such as linear size (O(n) edges), bounded degree, small spanner diameter (i.e.,
any two points are connected by a t-spanner path consisting of only a small
number of edges), low weight (i.e., the total length of all edges is proportional to
the weight of a minimum spanning tree of S), and fault-tolerance; for example,
see [1, 2, 3, 4, 6, 7, 8, 10, 14, 15, 17, 19], and the surveys [9, 18]. All these algorithms
compute t-spanners for any given constant t > 1. However, all these algorithms
either start with a point set, or with a spanner that has a linear number of edges.

We consider the problem of efficiently pruning a given t-spanner, even if it
has a superlinear number of edges. That is, given a geometric graph G = (S,E)
in Rd with n points and constant stretch factor t, and a positive constant ε, we
consider the problem of constructing a (1 + ε)-spanner of G with O(n) edges.
Thus the resulting subgraph of G is guaranteed to be a (t(1 + ε))-spanner of
S. The greedy algorithm of [7, 10] can be used to compute a (1 + ε)-spanner
G′ of G. However, the greedy algorithm starts by sorting the edges and, thus,
has running time Ω(|E| log n). In [11], an algorithm was presented with run-
ning time O(|E| log n), that produces a (1 + ε)-spanner G′ of G with O(n)
edges.

In this paper, we show how the running time can be improved to O(|E| +
n log n) time. Furthermore, using the results in [10], we show that with the same
time complexity, we can compute a (1 + ε)-spanner of G with O(n) edges and
with total weight O(wt(MST (S))).

In a series of papers by Gudmundsson et al. [11, 12, 13], it was shown that ap-
proximate shortest path queries can be answered in constant time using
O(|E| log n) preprocessing, provided that the given graph is a t-spanner. The
time complexity of the preprocessing depends on the time to prune the graph,
which was shown to be O(|E| log n). Using the pruning algorithm presented
here, we improve the preprocessing time of the data structure in [11, 12, 13]
to O(|E| + n log n). We also improve the time complexity in [16] for com-
puting a (1 + ε)-approximation to the stretch factor of a geometric graph to
O(|E|+n log n), provided we know in advance that the stretch factor is bounded
from above by a constant. In Section 5 we consider several other applications.

Our model of computation is the traditional algebraic computation tree model
with the added power of indirect addressing.

2 Preliminaries

In the next sections, we will show how to prune a graph. Our construction uses
the well-separated pair decomposition of Callahan and Kosaraju [5]. We briefly
review this decomposition below.
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If X is a bounded subset of Rd, then we denote by R(X) the smallest axes-
parallel d-dimensional rectangle that contains X. We call R(X) the bounding
box of X. Let l(R(X)), or l(X), be the length of the longest side of R(X).

Definition 1. Let s > 0 be a real number, and let A and B be two finite sets of
points in Rd. We say that A and B are well-separated with respect to s, if there
are two disjoint d-dimensional balls CA and CB, having the same radius, such
that (i) CA contains the bounding box R(A) of A, (ii) CB contains the bounding
box R(B) of B, and (iii) the minimum distance between CA and CB is at least
s times the radius of CA.

The parameter s will be referred to as the separation constant.

Lemma 1 ([5]). Let A and B be two finite sets of points that are well-separated
w.r.t. s, let x and p be points of A, and let y and q be points of B. Then (i)
|xy| 	 (1 + 4/s) · |pq|, and (ii) |px| 	 (2/s) · |pq|.

Definition 2 ([5]). Let S be a set of n points in Rd, and let s > 0 be a real
number. A well-separated pair decomposition (WSPD) for S with respect to s
is a sequence of pairs of non-empty subsets of S, {A1, B1}, . . . , {Am, Bm}, such
that
1. Ai ∩Bi = ∅, for all i = 1, . . . ,m,
2. for any two distinct points p and q of S, there is exactly one pair {Ai, Bi}

in the sequence, such that (i) p ∈ Ai and q ∈ Bi, or (ii) q ∈ Ai and p ∈ Bi,
3. Ai and Bi are well-separated w.r.t. s, for all i = 1, . . . ,m.

Callahan and Kosaraju showed that the fair split tree T can be computed in
O(n log n) time, and that, given T , a WSPD of size m = O(n) can be computed
in O(n) time. Each pair {Ai, Bi} in this WSPD is represented by two nodes ui

and vi of T , i.e., we have Ai = Sui
and Bi = Svi

. We end this section with two
lemmas that will be used later on.

Lemma 2. Let u and u′ be two nodes in the fair split tree T such that u′ is in
the subtree of u and the path between them contains at least d edges. Then the
length of the longest side of the bounding box of u′ is at most half the length of
the longest side of the bounding box of u.

Lemma 3. Let A and B be two sets of points in Rd that are well-separated with
respect to s, and let p and q be points in A and B, respectively. The length of
each side of the bounding boxes of A and B is at most (2/s)|pq|.

3 A General Pruning Approach

Recall that we are given a set S of n points in Rd, a t-spanner G = (S,E) for
some real constant t > 1 and a real constant ε > 0.

Our goal is to compute a sparse (1 + ε)-spanner G′ of G. Suppose that there
exists a set pairs of points, P = {{a1, b1}, . . . , {am, bm}}, with the property that
for each edge (p, q) in E, there is an index i such that for some real number s,
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1. |pai| 	 (2/s)|aibi| and |qbi| 	 (2/s)|aibi|, or
2. |pbi| 	 (2/s)|aibi| and |qai| 	 (2/s)|aibi|.

In other words, for each edge (p, q) in E, the set P contains a “close approx-
imation”. Then, we show below that, if s = 1

ε ((1 + ε)(8t+ 4) + 4), there exists a
(1+ε)-spanner of G with at most m edges. As the keen reader may have guessed,
we will show later that the set P can be easily constructed from a WSPD of S.

To prove the existence of the subgraph G′ as a (1+ε)-spanner of G, we prune
G with respect to the set P of pairs as follows. Let Ci, 1 	 i 	 m, be m lists
that are initially empty. For each edge (p, q) in E, pick any index i for which
condition 1. or 2. above is satisfied, and add the edge (p, q) to the list Ci. We
define G′ to be the graph (S,E′), where the edge set E′ contains exactly one
edge from each non-empty list Ci, 1 	 i 	 m.

Lemma 4. The graph G′ = (S,E′) is a (1 + ε)-spanner of G.

The above process essentially prunes G using set P as a “guide”. Each edge
of G is “mapped” to a pair in P , and in the pruned subgraph, for each pair in
P , we retain one edge that is mapped to it (if any). In order to apply the above
general result, we need algorithms that do the following:

1. Compute P = {ai, bi}1�i�m, with m = O(n).
2. For each edge (p, q) in E, compute an index i such that the condition for the

set P holds.

A straight-forward approach for step 1, which appears already in [11], is as
follows. Compute the WSPD with separation constant s = ((1+ε)(8t+4)+4)/ε,
see Section 2. Given this WSPD, define the set P as follows. For each well-
separated pair {Ai, Bi}, choose a pair consisting of an arbitrary point in Ai and
an arbitrary point in Bi; see Fig 1. Using Lemma 1, the properties that are
needed for P are satisfied, thus we can apply Lemma 4.

As for step 2, Arya et al. [3] showed that, after an O(n log n)-time prepro-
cessing of the fair split tree, the index i can be computed in O(logn) time, for
any edge (p, q) in E. Hence, the entire graph G′ can be computed in O((n +
|E|) logn) = O(|E| log n) time. We have proved the following result.

Theorem 1. [11] Given a geometric graph G = (S,E) with n vertices, which
is a t-spanner for S, for some real constant t > 1, and a real constant ε >
0 we can compute a (1 + ε)-spanner of G having O(n) edges in O(|E| log n)
time.

Bi
BiAi Ai

Fig. 1. Pruning the spanner graph using the WSPD
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4 An Improved Algorithm

Above we showed that the time-complexity of the algorithm can be written as
O(n log n+ |E| · τ(n)), where τ(n) is the time needed to find the pair {ai, bi} in
P , given a query (p, q), such that the condition mentioned at the beginning of
Section 3 holds. Below, we show a stepwise refinement of the basic scheme.

4.1 Improvements for a Restricted Case – Bounded Aspect Ratio

Let T be the fair split tree for S, and let {Ai, Bi}, 1 	 i 	 m, be the well-
separated pair decomposition of S obtained from T , with separation constant
s > 0. Let L > 0 be a real number, let c 
 1 be an integer constant, and let F
be a set of k pairs of points in S such that L/nc 	 |xy| 	 L holds for each pair
{x, y} ∈ F . We say that F has polynomially bounded aspect ratio.

In this section, we show how to compute, for every {x, y} ∈ F , the corre-
sponding well-separated pair, i.e., the index i for which x ∈ Ai and y ∈ Bi or
x ∈ Bi and y ∈ Ai. Recall that every node of T stores the bounding box of the
set of all points stored in its subtree. Let α = 2/(

√
d(s + 4)). For each point

x ∈ S, we define the following nodes in T :

ux: the highest node on the path from the leaf storing x to the root, such that
its bounding box has sides of length at most (2/s)L.

u′
x: the highest node on the path from the leaf storing x to the root, such that

its bounding box has sides of length at most αL/nc.

Moreover, for each pair e = {x, y} ∈ F , we define the following nodes in T .

uex: the highest node on the path from the leaf storing x to the root, such that
its bounding box has sides of length at most (2/s)|xy|.

u′
ex: the highest node on the path from the leaf storing x to the root, such that

its bounding box has sides of length at most α|xy|.

Observation 5. By traversing T , all nodes ux and u′
x, x ∈ S, can be computed

in O(n) time.

Because of the polynomially bounded aspect ratio assumption, the path from
u′

x to ux contains all nodes whose subsets contain x and are involved in well-
separated pairs corresponding to pairs in F . In particular, the path from u′

ex to
uex contains the node whose subset is Ai. This is formalized in the lemma below.

Lemma 6. Let e = {x, y} be a pair in F , and let i be the index such that
x ∈ Ai and y ∈ Bi. Let vi and wi be the nodes of T that represent Ai and Bi,
respectively. Then,
1. if we walk in T from the leaf storing x to the root, then we will encounter

the nodes, u′
x, u

′
ex, vi, uex, and ux, in this order;

2. the path in T between u′
x and ux contains O(logn) nodes; and,

3. the path in T between u′
ex and uex contains O(1) nodes.
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Lemma 7. Let e = {x, y} be a pair in F , and let i be the index such that
x ∈ Ai and y ∈ Bi. Let vi and wi be the nodes of T that represent Ai and Bi,
respectively. Given pointers to the nodes uex and uey, the nodes vi and wi can
be computed in O(1) time.

The original problem has now been reduced to finding, for each query pair
e = {x, y} in F , the nodes uex and uey in T , where uex and uey correspond
to nodes whose bounding boxes are of size close to (2/s)|xy|. A simple solution
would be as follows. For each point x in S, let Tx be a balanced binary search
tree storing the nodes on the path in T between u′

x and ux, which by Lemma 6.2
has only O(logn) nodes. The key value for these nodes is the length of a longest
side of the bounding box.

Lemma 8. Let e = {x, y} be a vertex pair in F . Using the trees Tx and Ty, the
nodes uex and uey can be computed in O(log log n) time.

As a result, we have shown that our restricted problem can be solved in
O(n log n + k log log n) time. Each tree uses O(logn) space. Thus, the amount
of space used is O(n log n). Next we will show that the size can be reduced to
O(n) by observing that all queries are known in advance.

4.2 Achieving Linear Space

Let x1, . . . , xn be the vertices stored in the leafs of T , ordered from left to right.
Note that a query pair e = {x, y} in F asks for uex and uey. This can be viewed
as two different queries, i.e., (x, y) and (y, x).

We process the queries in batches. Initially we set i = 1. Build Tx1 in linear
time. For each query in F of the form e = (x1, xj), return uex1 . A pointer to
uex1 is stored together with x1 in the query pair (x1, xj) in F . When all queries
involving x1 have been answered, i is incremented.

In a generic step we build the binary tree Txi
from Txi−1 by first deleting

the nodes in T that lie on the path between uxi−1 and u′
xi−1

, but not on the
path between uxi and u′

xi
; and then inserting all nodes in T that lie on the path

between uxi and u′
xi

, but not on the path between uxi−1 and u′
xi−1

. Since each
node in T is inserted and removed at most once, the total time complexity of
building the trees T1, . . . , Tn is O(n log log n).

After Txi
has been constructed, all queries involving xi are solved, and the

answers are stored together with the pairs in F . The process continues until all
queries have been answered. At all times exactly one tree Txi is active, thus the
total space complexity is dominated by the fair-split tree and the number of
edges in F , which is bounded by O(k + n). We obtain the following lemma.

Lemma 9. Given the k query pairs {ei = {pi, qi}}1�i�k in F , one can compute
ueipi and ueiqi for each 1 	 i 	 k in total O(n log n + k log log n) time using
O(k + n) space.
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4.3 Improving the Running Time

In this section we will improve the running time in Lemma 9 to O(k + n log n);
instead of using the tree Tx for answering the queries we will use a different data
structure, namely an array Ax [0.. �log (2nc)�]. Recall that s = 1

ε ((1 + ε)(8t +
4) + 4). Each entry Ax[j] stores a pointer to the highest node on the path in T
between u′

x and ux whose bounding box has sides of length at most 2jL
snc .

Lemma 10. Let e = {x, y} be a pair in F , let j =
⌊
log

( 2nc

L |xy|
)⌋

, and let Ax[j]
point to node uA

ex. Then the path between uex and uA
ex contains O(1) nodes.

Since node uA
ex is close to uex, we can show the following lemma, which is

similar to Lemma 7.

Lemma 11. Let e = {x, y} be a pair in F , and let i be the index such that
x ∈ Ai and y ∈ Bi. Let vi and wi be the nodes of T that represent Ai and Bi,
respectively, and let j be as in Lemma 10. Given Ax[j] and Ay[j], the nodes vi

and wi can be computed in O(1) time.

The above lemma assumes that the index j, defined by j =
⌊
log

( 2nc

L |xy|
)⌋

can be easily determined. We will refer to this index as the index of two points
x and y in Rd. It remains to prove how k index queries can be answered in total
time O(k + n log n).

4.4 Answering Index Queries Efficiently

Next we consider how to “bucket” distances in constant time, without using the
floor function since the floor function is a non-algebraic function. This problem
was considered in [11], but there it was only shown for the special case when
the points in the set lie in a polynomially bounded interval, see Fact 14. We ex-
tend the result to hold for any point set for which the queries have polynomially
bounded aspect ratio. The idea is to scale the point set and then partition it
into subsets such that each subset consists of points in a polynomially bounded
interval. Furthermore, for every pair in F it will be shown that the two corre-
sponding points in the scaled set will belong to the same subset. Consequently,
one may apply the results from [11] to each subset.

The aim of this section is to show the following theorem.

Theorem 2. Let S be a set of n points in Rd, let L > 0 be a real number, and
let c be a positive constant. We can preprocess S in O(n log n) time, such that
for any two points x and y in S with L/nc 	 |xy| 	 L, we can compute the
quantity

⌊
log

( 2nc

L |xy|
)⌋

in constant time, using only algebraic operations and
indirect addressing.

For each x ∈ S, define x′ = 2nc

L x. This gives a set V = {x′ : x ∈ S}
of scaled points. Let F ′ be the set of scaled query pairs {x′, y′}, where {x, y}
ranges over all pairs in F . If {x, y} ∈ F , then L/nc 	 |xy| 	 L and, hence,
2 	 |x′y′| 	 2nc 	 nc+1. Furthermore,

⌊
log

( 2nc

L |xy|
)⌋

= �log |x′y′|�.
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V1 V2 V3 V4

x′
1 x′

j1
x′

j2
x′

j3 x′
nx′

j1+1 x′
j2+1 x′

j3+1

Fig. 2. Illustrating how V is divided into the sets V1, . . . , V4. The gap between two sets
is larger than nc+1

The One-Dimensional Case. We will assume that V is a set of n points on the
real line. First the algorithm partitions V into groups V1, . . . , V�, in O(n log n)
time as follows. Sort the points of V in increasing order x′

1, x
′
2, . . . , x

′
n. Let j1 <

j2 < . . . < j�−1 be all the indices such that x′
j1+1 > x′

j1
+ nc+1, x′

j2+1 >

x′
j2

+ nc+1, . . . , x′
j�−1+1 > x′

j�−1
+ nc+1. In other words, the gaps following

x′
j1
, x′

j2
, . . . , x′

j�−1
are greater than nc+1. Then we define V1 = {x′

1, . . . , x
′
j1
},

V� = {x′
j�−1+1, . . . x

′
n}, and Vi = {x′

ji−1+1, . . . , x
′
ji
} for 2 	 i 	 � − 1; this is

illustrated by an example in Fig. 2. The following observation about the sequence
V1, . . . , V� follows immediately from the above partitioning algorithm.

Observation 12. Let i and j be two positive integers, such that i < j 	 �.
Then, the following statements hold:

1. If x′ ∈ Vi and y′ ∈ Vj, then |x′y′| > nc+1.
2. If x′, y′ ∈ Vi, then |x′y′| 	 nc+2.
3. Vi ∩ Vj = ∅, and V = V1 ∪ . . . ∪ V�

The following lemma gives properties of the scaled queries in F ′.

Lemma 13. Consider the sets V1, . . . , V� and F ′ as defined above. Then,

1. For each i with 1 	 i 	 � there exists a real number Di such that the set Vi

is contained in the interval [Di, Di + nc+2].
2. For every pair {x, y} in F , there exists an i, such that both x′ and y′ are

contained in Vi. Moreover, the pair {x′, y′} in F ′ satisfies

2 	 |x′y′| 	 nc+1, and
⌊
log

(
2nc

L
|xy|

)⌋
= �log |x′y′|�.

Fact 14 (Theorem 2.1 in [11]) . Let X be a set of n real numbers that are
contained in the interval [D,D+nk], for some real number D and some positive
integer constant k. We can preprocess X in O(n log n) time, using O(n) space,
such that for any two points p and q of X, with |pq| 
 β, where β > 0 is a
constant, we can compute �log |pq|� in constant time.

In [11], Fact 14 was only proved for the case when D = 0. By translating the
points, and observing that this does not change distances, it is clear that Fact 14
holds for any real number D. As a result of Lemma 13, it follows that Fact 14
can be applied to every subset Vi. Furthermore, according to Lemma 13, F ′ has
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polynomially bounded aspect ratio, thus every query pair in F ′ can be answered
in constant time according to Fact 14. Note that, for each point x, we need to
store a pointer to the subset Vi of the partition that it belongs to. As a result,
we have proved Theorem 2 for the one-dimensional case.

The d-Dimensional Case. This is inspired by the algorithm in [11]. Now
assume that V is a d-dimensional set of points, where d is a constant. Let p =
(p1, p2, . . . , pd) and q = (q1, q2, . . . , qd) be any two points of V with |pq| 
 β,
for some constant β > 0, let j be such that |pj − qj | is maximum, and let
i = �log |pj − qj |�. Since |pj − qj | 	 |pq| 	

√
d|pj − qj |, we have i 	 �log |pq|� 	

1
2 log d+i. This suggests the following solution. For each �, 1 	 � 	 d, we build the
data structure above for the one-dimensional case for the set of �-th coordinates
of all points of V . Given two distinct points p and q of V , we compute the index
j such that |pj − qj | is maximum. Then we use the one-dimensional algorithm to
compute the integer i = �log |pj−qj |�. Note that this algorithm also gives us the
value 2i. Given i and 2i, we then compute �log |pq|� in O(log log d) time. Observe
that we can indeed apply the one-dimensional case, since |pj − qj | 
 β/

√
d. This

concludes the proof of Theorem 2.
We say that an edge {x, y} belongs to a well-separated pair {Ai, Bi} if and

only if x ∈ Ai and y ∈ Bi, or vice versa. Our results can be stated as follows:

Theorem 3. Let S be a set of n points in Rd, let F be a set of pairs of points in
S having polynomially bounded aspect ratio, let T be the fair split tree for S, and
let {Ai, Bi}, 1 	 i 	 m, be the corresponding well-separated pair decomposition
of S. In O(n log n+ |F |) time, we can compute, for every {x, y} ∈ F , the index
i such that {x, y} belongs to the pair {Ai, Bi}.

Since we have an off-line problem, we can use the approach of Section 4.2 to
reduce the space requirement to O(n+ |F |).

4.5 The General Case – Unbounded Aspect Ratio

As a result of the previous section it holds that a t-spanner can be pruned
efficiently in the case when the “aspect ratio” of the edge set is polynomially
bounded. To generalize this result we will use the following technical theorem
that is implicit in [13].

Theorem 4. Given a set S of n points in Rd and an integer constant c 
 7 we
can compute a data structure D(S) in O(n log n) time consisting of:

1. a sequence L1, L2, . . . , L� of real numbers, where � = O(n), and
2. a sequence S1, S2, . . . , S� of subsets of S such that

∑�
i=1 |Si| = O(n),

such that the following holds. For any two distinct points p and q of S, we can
compute in O(1) time an index i with 1 	 i 	 � and two points x and y in Si

such that
a. Li/n

c+1 	 |xy| < Li, and
b. both |px| and |qy| are less than |xy|/nc−2.
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Algorithm PruneGraph(G = (S, E), t, ε)
Step 1: Compute the data structure D(S) with c = 7, according to Thm. 4.
Step 2: For each 1 � i � �, set Fi := ∅.
Step 3: For each edge (p, q) ∈ E, compute (i, xp, yq), according to

Thm. 4, and add {xp, yq} to Fi.
Step 4: For i := 1 to � do
Step 4a. Compute the fair split tree Ti for Si.
Step 4b. Compute the well-separated pair decomposition of Si,

Wi(Si) := {{Ai
1, B

i
1}, . . . , {Ai

mi
, Bi

mi
}}, using separation

constant 2s, where s = ((1 + ε)(8t + 4) + 4)/ε.
Step 4c. For each {x, y} ∈ Fi, compute the pair {Ai

j , B
i
j} that it belongs to.

Step 5: For each 1 � i � � and each 1 � j � mi, set Ci
j := ∅

Step 6: For each edge (p, q) ∈ E, add (p, q) to Ci
j , where j

is the index such that {xp, yq} belongs to {Ai
j , B

i
j}.

Step 7: Output G′ = (S, E′), where E′ contains exactly one edge from each
non-empty set Ci

j .

Fig. 3. Algorithm PruneGraph

Figure 3 shows the complete algorithm, referred to as algorithm Prune-
Graph. Recall that the input to algorithm PruneGraph is a t-spanner G =
(S,E) and a positive real value ε.

Theorem 5. Algorithm PruneGraph runs in O(|E| + n log n) time and re-
quires O(|E|) space.

Theorem 6. The graph G′ = (S,E′) computed by algorithm PruneGraph(G =
(S,E), t, ε) is a (1 + ε)-spanner of the t-spanner G = (S,E) such that E′ ⊆ E
and |E′| = O(n).

Proof. For each 1 	 i 	 � and each 1 	 j 	 mi, consider the j-th well-separated
pair {Ai

j , B
i
j} in the i-th length partition. Let ai

j be an arbitrary point in Ai
j and

let bij be an arbitrary point in Bi
j . Define P := {{ai

j , b
i
j} : 1 	 i 	 �, 1 	 j 	 mi}.

First, observe that

|P | =
�∑

i=1

mi = O
(

�∑
i=1

|Si|
)

= O(n).

We will show that the set P satisfies the premises of the general framework
of Section 3. This will imply that the graph G′ is obtained by pruning G with
respect to P , as described in the beginning of Section 3, and, therefore, by
Lemma 4, G′ is a (1 + ε)-spanner of G.

Let (p, q) be an arbitrary edge of E. By Theorem 4, there exists an index i,
and two points x and y in Si, such that |px| < |xy|/n5 and |qy| < |xy|/n5. By
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the definition of the WSPD, there exists an index j such that (i) x ∈ Ai
j and

y ∈ Bi
j or (ii) x ∈ Bi

j and y ∈ Ai
j . We may assume that (i) holds.

Consider the point ai
j in the set Ai

j and the point bij in the set Bi
j . Since we

chose the separation ratio for the WSPD to be 2s, we know from Lemma 1 that
|xai

j | 	 |ai
jb

i
j |/s and |xy| 	 (1 + 2/s)|ai

jb
i
j |. It follows that |pai

j | 	 |px|+ |xai
j | 	

|xy|/n5 + |ai
jb

i
j |/s 	

(
(1 + 2/s)/n5 + 1/s

)
|ai

jb
i
j | 	 (2/s)|ai

jb
i
j |, where the last

inequality assumes that n is sufficiently large. In exactly the same way, it can
be shown that |qbij | 	 (2/s)|ai

jb
i
j |.

This completes the proof of the theorem. � 
The above theorem can be combined with results in [10] to prove the following

corollary.
Corollary 1. Given a geometric t-spanner G = (S,E) of the set S of n points
in Rd, for some constant t > 1, and given a positive real constant ε′ > 0, we can
compute in O(n log n+ |E|) time, a (1+ε′)-spanner of G having O(n) edges and
whose weight is O(wt(MST (S))).

5 Applications

The tool presented in this paper for pruning a spanner graph is important as
a preprocessing step in many situations. We briefly mention a few. In [11], the
algorithm to approximate the length of the shortest path between two query
points in a given geometric spanner has a preprocessing time of O(|E| log n).
The results here reduce the preprocessing time to O(|E|+ n log n). As a second
application, a similar improvement can be achieved for the algorithm to com-
pute an approximation to the stretch factor of a spanner graph [11, 16]. Using
this result, an approximate stretch factor can be computed in O(|E| + n log n)
time, provided the stretch factor is bounded by a constant. Finally, similar im-
provements are achieved for several variants of the closest pair problem. In the
monochromatic version, a given geometric spanner G = (V,E) (with n vertices
corresponding to n points in Rd) is to be preprocessed, in order to answer clos-
est pair queries for a query subset S ⊆ V where distances between points are
defined as the length of the shortest path in G. In the bichromatic version, the
graph G is to be preprocessed, in order to answer closest pair queries between
two given query subsets X,Y ⊆ V . Using this result, the preprocessing can be
done in O(|E|+ n log n) time instead of O(|E| log n).

In all the above cases, the idea is to first prune the spanner using the al-
gorithm in this paper to obtain a spanner graph with approximately the same
stretch factor, but with only a linear number of edges, consequently speeding up
the previously designed algorithms.

6 Conclusions

Given a t-spanner G = (S,E), where S is a set of n points in Rd, we have shown
how to compute, in O(|E| + n log n) time, a (1 + ε)-spanner of G having O(n)
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edges. The interesting fact about this result is that it shows that the pruning
problem can be solved without sorting the edges of E. We leave open the problem
of pruning a spanner in O(|E|) time.
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Abstract. Given a class of graphs G, a graph G is a probe graph of G if
its vertices can be partitioned into two sets P (the probes) and N (non–
probes), where N is an independent set, such that G can be embedded
into a graph of G by adding edges between certain vertices of N. We show
that the recognition problem of probe interval graphs, i.e., probe graphs
of the class of interval graphs, is in P.

Classification: Algorithms and Data Structures, Algorithms for Com-
putational Biology.

1 Introduction

Probe interval graphs, PIGs, were introduced in [17, 19, 20] to model certain prob-
lems in physical mapping of DNA. The application in molecular biology is the
problem of reconstructing the arrangement of fragments of DNA taken from mul-
tiple copies of the same genome. The results of laboratory tests tell us which pairs
of fragments occupy intersecting intervals of the genome. The genetic informa-
tion is physically organized in a linear arrangement, and, when full information
is available, an arrangement of intervals can be created in linear time [3].

More recently, a variant that makes more efficient use of laboratory resources
has been studied. A subset of the fragments is designated as probes, and for each
probe one may test all non–probe fragments for intersection with the probe.
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In graph–theoretic terms, the input to the problem is a graph G and a subset
of probe vertices. The other vertices, the non–probes, form an independent set
in G. The objective is to add edges between certain non–probe vertices such that
the graph becomes an interval graph. This problem has been solved successfully
by Johnson and Spinrad [15] in O(n2) time (where n is the number of vertices of
the graph). Soon after, using modular decomposition, McConnell and Spinrad
showed that this could be improved to O(n + m log n) time (where m is the
number of edges of the graph) [16].

In contrast, the problem of recognizing PIGs when the partition of the vertex
set is not part of the input remained until now an open problem [2]. It was also
mentioned as an interesting problem in [15] whether there would be a change in
the complexity when we are given only the graph and must decide if there is an
assignment of vertices as probes or non–probes such that the result is a probe
interval graph. In this paper we give evidence that this is not the case.

Some attempts to gain a better understanding of the structure of these graphs
were made by Golumbic and Lipshteyn by introducing and analyzing probe
chordal graphs [11]. In the paper polynomial time recognition algorithms were
given for the family of probe chordal graphs1 both in the case when a fixed
partition is given and when no partition is given in advance. Further results in
this direction were obtained by Berry et al. [1, 2].

In this paper we give the first polynomial time recognition algorithm for the
class of unpartitioned probe interval graphs, PIGs for short.

2 Preliminaries

The graphs in this paper are undirected and finite. A graph G is a pair G = (V, E),
where the elements of V are called the vertices of G and where E is a family of
two-element subsets of V, called the edges. We write n = |V | for the number of
vertices and m = |E| for the number of edges.

For two sets A and B of elements of a common universe, we write A + B and
A − B instead of A∪ B and A \ B respectively. For a set A and an element x we
write A − x instead of A \ {x} and A + x instead of A ∪ {x}.

For a graph G = (V, E) and a subset S ⊆ V of vertices, we write G[S] for the
subgraph of G induced by S. For a subset W ⊆ V of vertices of a graph G = (V, E)
we write G − W for the graph G[V − W], i.e., the subgraph induced by V − W.
For a vertex x we write G − x rather than G − {x}. For other conventions on
graph–related notations we refer to any standard textbook. For graph classes
not defined here we refer to [5, 9].
Definition 1. A graph G = (V, E) is an interval graph if there exists a one-to-
one correspondence between V and a family F of intervals of the real line such
that two vertices in V are adjacent if and only if their corresponding intervals in
F overlap.

1 In [11] these graphs were called chordal probe graphs. We were told that this swap
took place because of the abbreviation PIG.
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Definition 2. A graph G = (V, E) is an (unpartitioned) probe interval graph,
a PIG, if its vertices can be partitioned into two sets, the probes P and the non–
probes N, where N is an independent set, such that G can be embedded in an
interval graph by adding edges between certain pairs of non–probes.

This paper deals with the recognition problem of unpartitioned PIGs and in
this section we review some of the background and structural properties of this
graph class.

Probe interval graph were introduced by Zhang in [19]. Recently an O(n2)
recognition algorithm was proposed for partitioned PIGs which uses PQ–trees [15].
A continuance of this research was presented in [16], and lead to an improved
complexity of O(n+m log n) using modular decomposition. Until now, the recog-
nition of PIGs when the partition is not part of the input was an open problem.

Theorem 1. A probe AT–free graph G cannot have chordless cycles of length
more than 6. Furthermore, every chordless 6–cycle has exactly two non–probes
at distance 3 in the cycle.

Proof. Consider a chordless cycle C. Consider the set of probes in C. There can
be at most two components in C−N, otherwise there is an AT in any embedding.
Hence, if the length of C is more than 5, there must be exactly two components
in C − N. Furthermore, each component must be a single vertex of an edge,
otherwise there still will be an AT in any embedding. Since the set of non–
probes is independent, there must be exactly two non–probes, otherwise there
are more than two components in C − N. Hence C must have length 6, and the
non–probes must be at distance 3. � 

The following theorem was also shown in [10, 17].

Theorem 2. Probe interval graphs are weakly chordal.

Proof. Notice that PIGs are probe AT–free. Hence, according to Theorem 1, there
can be no cycles of length more than 6. Also, a chord in a C6 would leave a C4.
Golumbic and Lipschteyn showed in [11] that probe chordal graphs cannot have
an induced Ck for k ≥ 5. � 

Definition 3. Let G be a PIG. An embedding of G = (V, E) is an interval graph
H = (V, E′) together with a partition of V into probes P and non–probes N such
that all edges of E′ − E are edges between non–probes.

Recall, from, e.g., [5, 8, 9], that a graph is an interval graph if and only if
the maximal cliques of G can be linearly ordered such that for each vertex x,
the maximal cliques that contain x occur consecutively. Such an ordering of the
maximal cliques is called a consecutive clique arrangement [8].

Definition 4. Let G be a PIG. A crammed embedding H of G is an embedding
with the minimum number of non-probes, and, among these, with the minimum
number of maximal cliques. Finally, among these embeddings we take one with
a minimum number of edges.
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Let D = [D1, . . . , Dt] be a consecutive clique arrangement of a crammed
embedding H [5, 9]. The objective of this paper is to find such a sequence of
subsets. In the rest of this paper we call two vertices adjacent if they are adjacent
in G.

Recall [7] that a splitgraph G = (C, S) is a graph with a given partition of its
vertices into a clique C and an independent set S. It is easy to see that splitgraphs
can be recognized in linear time [12].

Definition 5. A tight split is a splitgraph such that every vertex of the inde-
pendent set is adjacent to all vertices of the clique.

Remark 1. In [19] these tight splits were called quasi-cliques. The set of probes
in a quasi-clique is called the core. In his paper [19], Zhang calls a maximal
quasi-clique a quasi-maximal clique.

We refer to an induced tight split M in G simply as a tight split in G. Notice
that, unless M is a clique, the partition into an independent set and clique is
unique. If M is a clique, then there can be at most one non–probe, since the
non–probes form an independent set.

Clearly, each maximal clique Di of H is a tight split in G. Let Ci ⊆ Di and
Si ⊆ Di be the set of probes and non–probes in Di respectively. Then (Ci, Si)
is a tight split in G.

Lemma 1
∀1≤i≤t Ci �= ∅ ∧ ∀1≤i<t Ci �= Ci+1

Proof. Since the embedding is crammed. � 
Remark 2. It is conceivable that, if we could list all the (maximal) induced tight
splits in polynomial time, i.e., if the number of these were polynomial, that this
could simplify our job. However, even for interval graphs, the number of maximal
induced tight splits can be exponential as shown by a collection of n−1

2 disjoint
edges and a ‘central’ vertex c which is adjacent to all other vertices.2 It is easy
to see that this graph is an interval graph with at least 2

n−1
2 + n−1

2 maximal
induced tight splits.

3 The Shape of the Separators

Our main tool to recognize whether a graph G is an unpartitioned PIG are the
inclusion minimal separators in G. In this section we analyze the structure of
the minimal separators in an unpartitioned PIG. Assume throughout that G is
connected.

Definition 6. A set Ω ⊆ V is an x, y-separator for non–adjacent vertices x and
y not in Ω if x and y are in different components of G − Ω. An x, y-separator
Ω is a minimal x, y-separator if no proper subset of Ω is an x, y-separator. A

2 Sometimes this graph is called a windmill.
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subset Ω is a minimal separator if there exist a pair of non–adjacent vertices x

and y such that Ω is a minimal x, y-separator.

Remark 3. A weakly chordal graph, and therefore also a probe interval graph,
has O(n2) minimal separators and a complete list of them can be obtained in
polynomial time [4].

Theorem 3. Assume G is a PIG equipped with a crammed embedding H. Let
D = [D1, . . . , Dt] be a consecutive clique arrangement for H. Let Ω be a minimal
separator in G. Then

1. there exists an index i such that Ω = Di ∩Di+1, or
2. there exist indices i ≤ j such that Ω = Ci + · · ·+ Cj, or
3. there exist indices i ≤ j such that Ω = Ci + · · ·+ Cj + (Si−1 ∩ Sj+1).

Proof. Assume Ω is a minimal x, y-separator for x, y ∈ N. The other cases are
similar. If N(x) ⊆ N(y) or N(y) ⊆ N(x) then the only minimal x, y-separator is
either N(x) or N(y). (Of course, all common neighbors of x and y must be in
Ω.) In this case Ω agrees with the second format.

Assume x is in consecutive subsets Da, . . . , Db with a ≤ b and y is in subsets
Dp, . . . , Dq with p ≤ q. Assume neither N(x) nor N(y) is contained in Ω and
assume a < p. Let x′ /∈ Ω be a vertex in the last Ck that contains such a
vertex with a ≤ k ≤ min(p, b) and let y′ /∈ Ω be a vertex in the first set C� that
contains such a vertex with max(p, b) ≤ � ≤ q. If � = k+1 then Ω = Dk∩Dk+1,
since this is a separator that contains the common neighbors of x′ and y′. In
this case Ω agrees with the first format.

Let x∗ ∈ Sk − Ω, possibly x∗ = x, be a vertex with an inclusion maximal
neighborhood in Dk+1 + · · ·+ Dt, i.e., we take x∗ ∈ Sk − Ω such that |N(x∗) ∩
(Dk+1 + · · ·+ Dt)| is maximal. Notice that x∗ is adjacent at least to all vertices
of Ck + · · ·+ Cb, but not to y′.

Clearly, Ci ⊆ Ω for k < i ≤ b. Also, Cj ⊆ Ω for p ≤ j < �. Notice that x and
x∗ are in the same component of G − Ω. Hence, by induction we may assume
x∗ = x.

We may assume also that there is no path from x′ to any vertex in Cb+1

outside Ω otherwise we can apply induction showing that all minimal x′, y-
separators are of a prescribed form. Hence Ω = Ck+1 + · · ·+ Cb + (Sk ∩ Sb+1),
i.e., Ω is in agreement with the third format.

The other cases, i.e., other than x, y ∈ N, are similar. � 

Remark 4. The Theorem 3’s Type 1 is the only minimal separator that could
have no probes, i.e., is an independent set. If G is an interval graph then all
minimal separators are of Type 1 and, in this case, they are cliques.

Corollary 1. A PIG has O(n2) minimal separators. See also Remark 3.

Definition 7. An inclusion minimal separator, an IMS, Ω is a set of vertices
such that G − Ω is disconnected and every vertex of Ω has at least one neighbor
in every component of G − Ω.
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Lemma 2. Every graph G which is not a clique has an IMS, and such an IMS
can be found in polynomial time.

Proof. For example, consider the neighborhood of a vertex that is not adjacent
to all other vertices. Repeatedly, remove vertices from this neighborhood that
do not have neighbors in all components. � 

Remark 5. In our algorithm we do not use Lemma 2. Instead we make a list of
all the minimal separators and collect those that are inclusion minimal.

4 Arrangement of an IMS and Its Components

Assume G is a PIG equipped with a crammed embedding H and let D be a
consecutive clique arrangement for H. Let Ω be an IMS of G. This separator can
occur at a number of places in D.

Definition 8. An occurrence of Ω in D is a maximal interval i ≤ j such that
Ω is of one of the types mentioned in Theorem 3.

Remark 6. A separator Ω can occur at various places in D. If G is an interval
graph, then this can happen only with Type 1.

Notice that different occurrences of the same minimal separator Ω are disjoint
and that there is at least one probe vertex �∈ Ω between them. (If there is no
probe vertex between ‘two’ occurrences of Ω then this is considered as one
occurrence.) Clearly, if a component of G − Ω has more than one vertex then it
must contain a probe vertex. Also notice that every Di between two occurrences
of Ω must contain Ω by definition of a consecutive clique arrangement.

Lemma 3. If Ω occurs more than once in D then Ω induces a tight split.

Proof. Since D is a consecutive clique arrangement of H. � 

If Ω occurs more than once, then consider the last occurrence. Since the
embedding is crammed we may assume that there is at least one probe to the
right of this occurrence. A similar argument shows that there is at least one
probe �∈ Ω to the left of the first occurrence of Ω.

Since Ω is inclusion minimal, every vertex of Ω has at least one neighbor
in every component. Hence, if a component contains only one vertex x, then it
must be adjacent to all of Ω and if Ω has at least one non–probe then x must
be a probe. A fortiori , if Ω has at least one non–probe, then every component
of G − Ω must have a probe.

Theorem 4. Assume Ω is not a tight split. Then G has at most two components
that contain a probe. Hence there are at most two components with at least two
vertices. If, furthermore, there are components with a single vertex then Ω must
be of Theorem 3’s Type 2 and these singleton components are non–probes.
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Proof. Assume Ω not a tight split, hence it is of Theorem 3’s Type 2 or Type 3.
Then it occurs only once in D by Lemma 3. If a component has at least two
vertices then it must contain a probe p. Clearly p can appear only on one side
of Ω. If there are three components with a probe then these probes are non–
adjacent. Hence one of these probes, say p1 ‘separates’ Ω from another probe
p2. The component of p2 must have a non–probe adjacent to a vertex of Ω, but
this is impossible unless p1 and p2 are in one component.

Assume Ω is of Type 3 with at least one non–probe. A singleton component
cannot be a probe, since it can appear only on one side of Ω and then it cannot
be adjacent to all vertices of Ω. But if a component consists of a single non–
probe, then this cannot be adjacent to any non–probe of Ω. Since Ω is inclusion
minimal, this is a contradiction. � 
Theorem 5. Assume Ω is not a tight split. Then there exists a polynomial
time algorithm to decide if Ω is of Theorem 3’s Type 2 or Type 3. The algorithm
produces the unique set of non–probes.

Proof. By Theorem 4 we may assume that there are exactly two components
in G − Ω with at least a probe. Let A be one of these two components. For a
maximal clique C of Ω, let NA(C) = {x ∈ A | C ⊆ N(x)}. If there is a non–probe
in Ω, then there is at least one maximal clique C such that NA(C) = ∅, namely,
a maximal clique that is not ‘the one that is closest to A’.3

Consider the complement Ω of Ω. The tight split that is the intersection
of all sets of Ω is a clique component (the non–probes), and a set of isolated
vertices in Ω. We may try all clique components N of Ω and choose the one
such that NA(C − N) �= ∅ for every clique C of Ω. It is easy to verify that N

must be unique. � 

5 Determination of End–Cliques

In this section we determine the tight splits at the end of an IMS Ω. In case Ω

is of Type 1, we let these ends coincide with Ω itself.

Definition 9. Let Ω be an IMS. For each maximal clique C of Ω and for each
component A of G − Ω define NA(C) = {x ∈ A | C ⊆ N(x)}.

Theorem 6. Assume that for every component A and for every maximal clique
C of Ω, NA(C) �= ∅ then Ω ⊆ P or Ω is contained in some (at least one) tight
split set of D.

Proof. Let A be a component that contains a probe. Let N be the set of non-
probes of Ω. If Ω − N has more than one maximal clique in some occurrence of
Ω in D, then consider a clique C which is not the closest to A. Then N = ∅,
otherwise NA(C+N) = ∅. Hence, either N = ∅ or Ω−N has only one maximal
clique. This maximal clique must appear somewhere in D together with N. � 

3 Since Ω is not a tight split, there are at least two maximal cliques.
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5.1 The Thinning Procedure

Assume ∃A∃CNA(C) = ∅. for some maximal clique C of Ω and some com-
ponent A of G − Ω. Then A has more than one vertex and Ω has at least one
non–probe. Hence Ω is of Type 1 or Type 3. Consider the complement Ω of Ω.
Then the set of non-probes forms a clique component in Ω.

If Ω is a tight split then we guess a clique component in Ω as a set of
non–probes N.4 Otherwise choose the unique clique component N such that
NA(C − N) �= ∅ for every maximal clique C in Ω. The set N is the set of
non–probes in Ω and Ω − N is an interval graph.

Consider the maximal clique CA of Ω − N such that NA(CA) is inclusion
maximal . If there is more than one possible choice, then use another component B

with at least two vertices and choose CA such that NB(CA) is inclusion minimal.

Assume CA �= CB. Take a vertex x ∈ NA(CB). Clearly x is a non-probe.
Assume N(x) ∩NA(CA) �= ∅. Then define

ΔA = {z ∈ NA(CA) | N(z) ∩ (Ω − N − CA) �= ∅}

Otherwise, define ΔA = NA(CA).

Lemma 4. ΔA ⊆ N.

Proof. In the first case this is obvious. In the second case, let Di, . . . , Dj be
an occurrence of Ω and assume that A has a probe on the left side of this
occurrence. If ΔA contains a probe z, then z + CA is a clique. Hence CA is
contained in Di−1. A non–probe of A that has no neighbors in Ω − CA, is
not in Di, since the embedding is crammed and, hence, the number of edges is
minimal. � 

Define
ΩA = CA + N + ΔA

Define ΩB similarly.

Assume CA = CB. If Ω has a non–probe x such that N(x) ∩ NA(CA) �= ∅

then Ω is of type 1. Define ΩA = ΩB = Ω. Otherwise, NA(CA) contains only
non–probes. Define ΩA = Ω +NA(CA). Similarly define ΩB.

Assume ∀A∀CNA(C) �= ∅. By Theorem 6 either Ω ⊆ P or Ω is contained in
a tight split set of D. We first guess that Ω has a non–probe, i.e., we guess a
clique component in Ω. Like above determine CA and CB. In this case we must
have CA = CB, since Ω is contained in a split set of D. Let ΩA = ΩB = Ω.

Finally assume that Ω ⊆ P. Then Ω is an interval graph. Determine the
end–cliques CA and CB. If CA �= CB, then determine ΩA and ΩB as above.

If Ω ⊆ P is a clique then let ΩA = ΩB = Ω.

4 In this case we try all possible clique components in Ω.
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6 Recognition of PIGs

In this section, we offer the following algorithm for the recognition of PIGs. We
describe a procedure PIG(Ω1,W,Ω2) where W ⊆ V is a subset of vertices and
Ωi ⊆ W, i = 1, 2, are tight splits, possibly empty. The procedure determines
whether G[W] is a probe interval graph that can be embedded with Ω1 and Ω2

as the tight split sets or the Type 1 separators at the two ends of D.
In the algorithm we fix two vertices at maximum distance in G. During the

course of the algorithm described below these end–points are thought of as being
completely connected to the two end–splits Ω1 and Ω2 respectively. If there is an
embedding, the procedure returns the possible partitions into probes and non–
probes of Ω1 and Ω2. The algorithm tries all possible pairs of fixed end–points
until it finds an embedding or finds that the graph is not a probe interval graph.

The recursive calls in the description below are replaced by memoization,
or dynamic programming. In this way every minimal separator of the graph is
visited only a linear number of times. Thus the algorithm can be implemented
to run in polynomial time.

Procedure PIG(Ω1,W,Ω2); Try to find a minimal separator in G that sepa-
rates Ω1 and Ω2. Find a minimal separator Ω in G that is contained in W

such that Ω1 − Ω is with one fixed end–point in one component of G − Ω

and Ω2 − Ω is with the other fixed end–point in another component.5 If
there is no minimal separator for Ω1 and Ω2, then Ω1 and Ω2 must be
consecutive separators of Theorem 3’s Type 1, i.e., W is a tight split set of
D, or W = Ω1 ⊇ Ω2, or W = Ω2 ⊇ Ω1. Take all possible partitions of W

and restrict these to Ω1 and Ω2.
Otherwise, let Ω be an IMS in W separating Ω1 and Ω2.
Assume ∃A∃CNA(C) = ∅. If Ω is a tight split, then guess a non–empty

set of non–probes, otherwise determine the unique set of non–probes.
Determine CA, CB, ΩA, and ΩB.
call PIG(ΩA, A + ΩA,Ω1);
call PIG(ΩB, B + ΩB,Ω2);6

If CA �= CB, then use the algorithm of [16] to test if [ΩA + Ω + ΩB] is
a partitioned probe interval graph with an embedding with ΩA on one
side and ΩB on the other.
If Ω is a tight split, then for each other component Q, the partition is
induced by the non–probes of Ω. Use the algorithm of [16] to test of
[Ω + Q + Ω] is a partitioned probe interval graph and can be embedded
with Ω on both sides.

Assume ∀A∀CNA(C) �= ∅. By Theorem 6 Ω ⊆ P or Ω is contained in a
tight split set of D. Assume first that Ω has a non-probe and guess a
non–probe set N. Determine ΩA = ΩB.

5 It is possible that Ω1 = Ω2 . Then Ω ⊇ Ω1 is just any minimal separator of G

contained in W .
6 Using memoization techniques or dynamic programming these calls are replaced by

a table look–up every secondary visit.
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call PIG(ΩA, A + ΩA,Ω1);
call PIG(ΩB, B + ΩB,Ω2);

For other components Q use the algorithm of [16] to check if there is an
embedding with Ω on both sides.
If Ω ⊆ P, then Ω is an interval graph. Determine the end–cliques CA

and CB, and ΩA and ΩB. If CA �= CB, then use the algorithm of [16]
to test if [ΩA + Ω + ΩB] is a partitioned probe interval graph with an
embedding with ΩA on one side and ΩB on the other.
call PIG(ΩA, A + ΩA,Ω1);
call PIG(ΩB, B + ΩB,Ω2);

The only other components are singletons which are non–probes.
If CA = CB, then ΩA = ΩB = Ω, and the same recursive calls as above
are made. In this case, if there are other components Q, also
call PIG(Ω,Q,Ω)

end.

Theorem 7. There exists a polynomial time algorithm to check if a graph is an
unpartitioned PIG.

Proof. A call PIG(∅, V, ∅) does the job. Using memoization, the algorithm can
be implemented such that every minimal separator of G is visited at most n

times. A call PIG(Ω1,W,Ω2) returns with at most n possible partitions for Ω1

and for Ω2. By Remark 3, a weakly chordal graph has O(n2) minimal separators
and this proves that the algorithm can be implemented to run in polynomial
time. � 

7 Concluding Remarks

In this paper we presented the first polynomial time recognition algorithm for
unpartitioned probe interval graphs. It remains an open problem to find a more
efficient recognition algorithm. For the partitioned case, we expect that a sim-
ple linear time algorithm is in demand and we expect that it is attainable. As
shown in Remark 2, the number of induced tight splits could well be exponential,
however, we conjecture that the number of those that are minimal separators is
only linear. Finding those and ordering them linearly, using a PQ–tree algorithm,
seems a possible approach at the present.

For the unpartitioned case, many more intriguing questions remain. One of
those is to find a list of forbidden induced subgraphs (if it exists).

We started the investigation of other probe graph classes, such as (unparti-
tioned) probe cographs, splitgraphs, and classes with few P4’s. For these classes
we were able to design polynomial time recognition algorithms. For the case of
trees, Sheng gives characterizations by forbidden induced subgraphs, for both
the partitioned and the unpartitioned case [10, 18]. From an algorithmic and
graph–theoretical point of view it would be interesting to research the recogni-
tion problem for other classes such as probe permutation graphs.
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Another line of research is taken on where the set of non–probes engages
another shape than that of an independent set. Some research in this direction
was done in [1], for the class of probe chordal graphs. In this paper the set of
non–probes is not assumed to be a stable set.

Research into graph classes that are “close to” well-behaving classes, such as
chordal graphs with small clique number or a small number of edges, or that are
in some way close to interval graphs (like AT–free graphs) have proved often to
be of great practical significance in a wide area of applications. This we judge is
a proper justification for further study into probe graph classes.
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Abstract. We consider variations of two well-known centrality mea-
sures, betweenness and closeness, with a different model of information
spread. Rather than along shortest paths only, it is assumed that in-
formation spreads efficiently like an electrical current. We prove that
the current-flow variant of closeness centrality is identical with another
known measure, information centrality, and give improved algorithms for
computing both measures exactly. Since running times and space require-
ments are prohibitive for large networks, we also present a randomized
approximation scheme for current-flow betweenness.

1 Introduction

Centrality measures are an important tool in network analysis [6]. In social,
biological, communication, and transportation networks alike, it is important to
know the relative structural prominence of nodes or links to identify key elements
in the network. The structure of a network is represented by a graph, so we will
speak of vertices and edges in the following.

In social network analysis [22], the two most frequently used measures are ver-
tex betweenness and vertex closeness centrality. They are based on the assump-
tion that information (or whatever else is the content of linkages) is transmitted
along shortest paths. While betweenness centrality measures the degree to which
a vertex is between pairs of other vertices, i.e. on shortest paths connecting them,
closeness is just the inverse of the average distance to other vertices.

A common criticism for shortest-paths based measures is that they do not
take into account spread along non-shortest paths, and are thus not appropri-
ate in cases where link content distribution is governed by other rules [4]. A
betweenness measure based on network flow has been proposed in [10], and re-
cently a variation of betweenness based on the flow of electrical current has
raised considerable attention [18].

We here generalize closeness in the latter spirit and proof that the resulting
measure is exactly what is already known under the name of information central-
ity. Despite its wide recognition, information centrality is not frequently utilized
because its foundations are not very intuitive and therefore hard to understand
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by substantively oriented social scientists. Our new derivation thus provides an
intuition that builds on well-known concepts and should therefore find easier
reception.

Moreover, we give improved algorithms for computing current-flow based
measures and describe a probabilistic approach for approximating them in large
networks. The performance of the latter algorithm is evaluated on real-world
and random instances.

2 Preliminaries

In this section, we recall basic definitions and facts about electrical networks
(see, e.g., [3]). Throughout the paper, we only consider graphs G = (V,E) that
are simple, undirected, connected and have n ≥ 3 vertices. An electrical network
N = (G; c) is such a graph together with positive edge weights c : E → IR>0
indicating the conductance or strength of an edge. Equivalently, the network
can be defined in terms of positive edge weights r : E → IR>0 indicating the
resistance or length of an edge, where conductance and resistance are related by
c(e) = 1/r(e) for all e ∈ E.

We are interested in how current flows through an electrical network. A vector
b : V → IR called supply defines where current externally enters and leaves the
network. A vertex v ∈ V with b(v) �= 0 is called an outlet ; it is called a source, if
b(v) > 0, and a sink otherwise. Since there should be as much current entering
the network as leaving it,

∑
v∈V b(v) = 0 is required. Actually, we will only

consider the case in which a unit current enters the network at a single source
s ∈ V and leaves it at a single sink t ∈ V \ {s}, i.e. we consider unit st-supplies

bst(v) =

⎧⎪⎨
⎪⎩

1 v = s,

−1 v = t,

0 otherwise .

To account for the directionality of flow, each edge is given an arbitrary
orientation. While the actual choice of orientation is of no importance, we denote
by −→e the directed edge corresponding to the orientation of e ∈ E, and by

−→
E the

set of all oriented edges.

Definition 1. Let N = (G; c) be an electrical network with supply b. A vector
x :

−→
E → IR is called (electrical) current, if it satisfies

1. Kirchhoff’s Current Law (KCL)
∑

(v,w)∈−→
E

x(v, w)−
∑

(u,v)∈−→
E

x(u, v) = b(v) for all v ∈ V ,

2. Kirchhoff’s Potential Law (KPL)
k∑

i=1

x(−→ei ) = 0 for every cycle e1, . . . , ek in G .
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Lemma 1. For an electrical network N = (G; c) and any supply b, there is a
unique current x :

−→
E → IR.

A value x(−→e ) > 0 is interpreted as current flowing in the direction of −→e ,
whereas x(−→e ) < 0 denotes current flowing against the direction of −→e . For an
st-supply, the corresponding current is called an st-current and denoted by xst.

Currents are related to potential differences (or voltages) p̂ :
−→
E → IR by

Ohm’s Law, p̂(−→e ) = x(−→e )/c(e) for all e ∈ E. A vector p : V → IR is said to
assign absolute potentials if p̂(v, w) = p(v)− p(w) for all (v, w) ∈ −→E .

Lemma 2. Let N = (G; c) be an electrical network with supply b. For any
fixed vertex v1 ∈ V and constant p1 ∈ IR, there are unique absolute potentials
p : V → IR with p(v1) = p1.

Again, we use p̂st and pst to indicate that the potential differences and abso-
lute potentials are based on an st-supply. Potentials are easily computed from a
given current and vice versa.

Absolute potentials can be computed directly using the Laplacian matrix
L = L(N) of N = (G; c) defined by

Lvw =

⎧⎪⎨
⎪⎩

∑
e : v∈e c(e) if v = w

−c(e) if e = {v, w}
0 otherwise

for all v, w ∈ V . Note that the rows of L correspond to the left-hand side of
KCL.

Lemma 3. The absolute potentials of an electrical network N = (G; c) with
supply b are exactly the solutions of Lp = b.

Since G is connected, the rank of L is n − 1 with a kernel spanned by 1 =
(1, . . . , 1)T. This implies that any two assignments of absolute potentials differ
only by an additive constant. Let there be a fixed vertex ordering v1, . . . , vn

defining matrices and vectors. For brevity, we sometimes use i as an index instead
of vi. A way to choose an absolute potential is to fix, say, p(v1) = 0, so that we
obtain a restricted system

L̃p̃ = b̃ ,

where L̃ ∈ IRn−1×n−1 is the matrix obtained from L by omitting the row and
column of v1, and p̃ and b̃ are obtained from p and b by omitting the entry of
v1. Since L̃ is positive definite, and in particular regular, we get

p =
(

0 0T

0 L̃−1

)

︸ ︷︷ ︸
=: C

· b . (1)

Matrix C will play a crucial role in computing centralities.
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3 Current-Flow Measures of Centrality

Two of the most widely used centrality measures are based on a model of non-
splitting information transmission along shortest paths. Note that in the follow-
ing, distances may well be defined in terms of an edge length (or resistance)
r : V → IR>0.

(Shortest-path) betweenness centrality [1, 9] cB : V → IR≥0 is defined by

cB(v) =
1
nB

∑
s,t∈V

σst(v)
σs,t

where σs,t denotes the number of shortest paths from s to t, σst(v) denotes
the number of shortest paths from s to t with v as an inner vertex, and nB =
(n− 1)(n− 2) is a normalizing constant (nB = n(n− 1) if v may also be a start
or end vertex). It thus measures the degree to which a vertex is participating in
the communication between pairs of other vertices.

(Shortest-path) closeness centrality [2] cC : V → IR>0 is defined by

cC(v) =
nC∑

t�=v

dG(v, t)

where dG(v, w) denotes the length of a shortest path between v and w and
nC = n − 1 is a normalizing constant. It thus measures the degree to which a
vertex is close to other vertices (on average).

Both measures assume that information (or whatever else is being modeled)
flows along shortest paths, and does not split. We next describe two alternative
measures that build on the same intuition, but let information flow and split like
current in an electrical network.

3.1 Current-Flow Betweenness Centrality

In electrical networks, the analog of the fraction of shortest st-paths passing
through a vertex (or an edge) is the fraction of a unit st-current flowing through
that vertex (or edge). Given a supply b, we therefore define the throughput of a
vertex v ∈ V to be

τ(v) =
1
2

(
−|b(v)|+

∑
e:v∈e

|x(−→e )|
)
,

where the term −|b(v)| accounts for the fact that only inner vertices are consid-
ered in the definition of shortest-path betweenness centrality. To include start
and end vertex, it should be replaced by +|b(v)|. Accordingly, the throughput
of an edge e ∈ E is defined as

τ(e) = |x(−→e )| .

Let τst denote the throughput in case of an st-current.
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Definition 2 ([18]). Let N = (G; c) be an electrical network. Current-flow
betweenness centrality cCB : V → IR≥0 is defined by

cCB(v) =
1
nB

∑
s,t∈V

τst(v) for all v ∈ V ,

where nB = (n− 1)(n− 2).

Current-flow betweenness is well-defined because of Lemma 1. For the follow-
ing reason, it is also called random-walk betweenness. A simple random st-walk
is a random walk that starts at s, ends in t and continues at vertex v �= t by
picking an incident edge e ∈ E with probability c(e)/

∑
e′:v∈e′ c(e′). Then, given

an st-current, the amount of current flowing through a particular edge −→e equals
the expected difference of the number of times that the simple random st-walk
passes edge −→e along and against its orientation (see, e.g., [3]).

3.2 Current-Flow Closeness Centrality

Similar to the above variation of betweenness centrality, we utilize the analog of
shortest-path distance in electrical networks to introduce a variant of closeness
centrality.

Definition 3. Let N = (G; c) be an electrical network. Current-flow closeness
centrality cCC : V → IR>0 is defined by

cCC(s) =
nC∑

t�=s

pst(s)− pst(t)
for all s ∈ V .

Current-flow closeness centrality is well-defined, because by Lemma 2 any two
absolute potentials differ only by an additive constant. Since we only consider
unit st-currents, the term pst(s)− pst(t) corresponds to the effective resistance,
which can be interpreted as an alternative measure of distance between s and t.

Though not derived in the same fashion, it turns out that current-flow close-
ness has actually been considered before. Information centrality cI : V → IR>0
is defined by

cI(s)−1 = nCI
ss + trace(CI)− 2

n
, (2)

where CI = (L+J)−1 with Laplacian L and J = 11T [20]. Information centrality
is often referred to, but not frequently used; most likely because its underlying
intuition is not widely understood.

Theorem 1. Current-flow closeness centrality equals information centrality.

Proof. We first note that Eq. (2) can be rewritten in terms of matrix elements
only,

cI(s)−1 =
∑
t∈V

CI
ss + CI

tt − CI
st − CI

ts . (3)
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On the other hand, current-flow closeness can be rewritten into the same
form, though with matrix C introduced in Eq. (1),

cCC(s)−1 =
∑
t�=s

pst(s)− pst(t) =
∑
t�=s

Css − Cst − (Cts − Ctt)

=
∑
t∈V

Css + Ctt − Cst − Cts .

We show that these terms are actually equal using a matrix D with CI =
C +D that contributes zero to the common summation scheme.

For i = 1, . . . , n let ei = (0, . . . , 0, 1, 0, . . . , 0)T, with 1 in the ith position,
and let C•i and CI

•i denote the ith column of the corresponding matrix. The
columns of C are uniquely determined by

LC•i = ei − e1 and C1i = 0

and those of CI satisfy
(L+ J)CI

•i = ei (4)

by definition. Projecting Eq. (4) onto the kernel of L, i.e. multiplying both sides
with 1

n11T from the left, yields

JCI
•i = (1TCI

•i)1 =
1
n
1 .

Eq. (4) is therefore equivalent to

LCI
•i = ei −

1
n
1 and 1TCI

•i =
1
n
.

Now let q be a vector with Lq = L(CI
•i − C•i) = e1 − 1

n1. Then we have
CI

•i = C•i + q + di1 for some constants di (choosing q such that q1 = 0 yields
di = CI

1i). In matrix notation we thus obtain CI = C +D with

D =

⎛
⎜⎝
q1+d1 q1+d2 · · ·
q2+d1 q2+d2 · · ·

...
...

. . .

⎞
⎟⎠ .

It is easily verified that D contributes zero when subjected to the summation
scheme of (3). � 

4 Improved Exact Computation

For comparison note that shortest-path betweenness and closeness can be com-
puted in O(nm + n2 log n) time and O(n + m) space using an efficient imple-
mentation of Dijkstra’s algorithm [5].
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For current-flow betweenness centrality, matrix C defined in Eq. (1) is de-
termined by inverting the reduced Laplacian. Since pst = Cbst and x(v, w) =
(p(v)− p(w)) · c({v, w}), we can use the incidence matrix B = B(N) ∈ IRn×m,
defined by

Bve =

⎧⎪⎨
⎪⎩

c(e) if −→e = (v, w) for some w
−c(e) if −→e = (u, v) for some u
0 otherwise ,

to compute st-currents xst = BCbst. From the entries of current-flow matrix
F = BC the centrality scores are then determined via

cCB(v) =
1
nB

∑
s,t∈V

τst(v)

=
1
nB

∑
s,t∈V

1
2

(
−|bst(v)|+

∑
e : v∈e

|xst(−→e )|
)

=
1

2− n +
1
nB

∑
s,t∈V

∑
e : v∈e

1
2
|Fes − Fet|

=
1

2− n +
1
nB

∑
s<t∈V

∑
e : v∈e

|Fes − Fet| ,

where vi < vj if and only if i < j (recall that we assume a fixed vertex ordering).
The total time to compute current-flow betweenness is thus in O(I(n − 1) +
mn2) [18], where I(n) ∈ O(n3) is the time required to compute the inverse of
an n× n-matrix. Note that I(n) ∈ Ω(n2 log n) for arbitrary real matrices.

This can be improved as follows (see Alg. 1).

Theorem 2. Current-flow betweenness can be computed in O(I(n−1)+mn log n)
time.

Proof. We refer to Alg. 1. We can compute cCB(v) by summing up only the
inflows, i.e. positive current on an edge directed to v or negative current on an
edge leaving v, as follows. Note that for every non-outlet the inflow is equal to
the outflow by KCL. We will later take care of the outlets. The total inflow τin
into v equals

τin(v) =
1
nB

∑

(v,w)∈−→
E

∑
s<t:

Fes<Fet

|Fes − Fet|+
1
nB

∑

(w,v)∈−→
E

∑
s<t:

Fes>Fet

|Fes − Fet|

=
1
nB

∑

(v,w)∈−→
E

n∑
i=1

(i− pos({v, w}, vi)) · Fevi

+
1
nB

∑

(w,v)∈−→
E

n∑
i=1

(n+ 1− i− pos({w, v}, vi)) · Fevi .
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Algorithm 1: Current-flow betweenness
Input: electrical network N = (G; c) with vertices v1, . . . , vn

Output: current-flow betweenness cCB : V → IR≥0

begin
cCB ← 0
C ←

(
0 0T

0 L̃−1

)

for e ∈ E do
Fe• ← (BC)e•
sort row Fe• in non-increasing order1.1

pos(e, v) ← rank of Fev in sorted row Fe•
for i = 1, . . . , n do

increase cCB(source(−→e )) by (i − pos(e, vi)) · Fevi

increase cCB(target(−→e )) by (n + 1 − i − pos(e, vi)) · Fevi

for i = 1, . . . , n do
cCB(vi) ← (cCB(vi) − i + 1) · 2/nB1.2

end

Inflows include the vanishing unit current whenever v is the sink. In the summa-
tion over all pairs s < t this will be the case i−1 times, namely when v = vi. Note
that the inflow of the source is always zero. Subtracting the vanishing currents
from the total inflow yields half of the current-flow betweenness. The relation

cCB(vi) = 2(τin(vi)− i+ 1) ,

is accounted for in Line 1.2 of the algorithm.
The computational bottleneck after determining C by matrix inversion is

the sorting of rows in Line 1.1, which takes O(mn log n) time. Note that F
is computed by multiplying C with an incidence matrix, so that it takes only
O(mn) time. � 

Information centrality can be computed by determining matrix CI defined in
the previous section and evaluating Eq. (2) [20]. The total running time is thus
O(I(n) + n).

Using the new interpretation as current-flow closeness centrality, we see that
it can also be determined from C rather than CI (see Alg. 2). Thus sparseness
is preserved and only one matrix inversion is required to compute both close-
ness and betweenness, which corresponds nicely to the fact that shortest-path
betweenness and closeness can be computed during the same traversals.

A straightforward approach for matrix inversion uses Gaussian elimination,
leading to a computation time of O(n3). For networks from many application
areas, however, sparse matrix techniques are appropriate. Since L̃ is symmetric
and positive definite, the conjugate gradient method (CGM) can be used with an
incomplete LU -decomposition as a preconditioner. This yields a running time of
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O(mn
√
κ), where κ is the condition number of L̃ times its approximate inverse

obtained by applying the preconditioner. A rough estimate for the condition
number is κ ∈ Θ(n) [12], leading to a running time of O(mn1.5) which is faster
than the subsequent summation before its improvement to O(mn log n).

The inverse of L̃ can be computed column-by-column as needed in Line 2.1
of the algorithm for closeness centrality. Its memory requirement is in O(m).

For betweenness centrality, O(n2) memory is required in the worst case.
Here it is the current-flow matrix F that is processed row-by-row, implying that
columns of L̃−1 corresponding to vertices u and w with {u,w} ∈ E are needed
simultaneously. Therefore, the column v ∈ V needs to be determined only when
the first row Fe• with v ∈ e is encountered, and it can be dropped from memory
when the last such row has been processed.

To reduce the memory requirements of Alg. 1, we therefore seek an ordering
that minimizes the maximal number of columns that have to be kept in memory
at the same time. That is, we would like to determine a one-to-one mapping
π : V → {1, . . . , n} where

δ(π) = max
1≤i≤n

|{u ∈ V : ∃ w ∈ V, {uw} ∈ E with π(u) ≤ i < π(w)}| ≤ n

is minimum. Unfortunately, this is an NP-hard problem known as vertex sepa-
ration [17], or, equivalently [15], minimum pathwidth.

Heuristically, we can find a good ordering π∗ by using algorithms for
bandwidth- and envelope-reduction of matrices, since the bandwidth (of the
Laplacian matrix of N ordered by π∗) is an upper bound for δ(π). Algorithm 1
is easily modified to use any precomputed ordering. The proven reverse Cuthill-
McKee heuristic [7]) does not increase the asymptotic running time, while it
reduces the memory requirement to O(δ(π∗)n). Note that it can also be em-
ployed in the inversion of L̃.

Algorithm 2: Current-flow closeness
Input: electrical network N = (G; c)
Output: current-flow closeness cCC : V → IR>0

begin
cCC ← 0
for v ∈ V do

C•v ←
(

0 0T

0 L̃−1

)
•v

2.1

for w ∈ V do
increase cCC(v) by Cvv − 2Cwv

increase cCC(w) by Cvv

for v ∈ V do
cCC(v) ← 1/cCC(v)

end
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5 Probabilistic Approximation

In large networks, both running time and space requirements of the algorithm
for current-flow betweenness are prohibitive. Note that shortest-path closeness
can be approximated quickly [21].

We show that a similar approach can be used to reduce not only the running
time, but also the space requirements of (approximate) current-flow betweenness
computations. For large data sets, this is often even more important.

The basic idea is that the betweenness of a vertex, i.e. the throughput over
all st-currents, can be approximated using a small fraction of all pairs s �= t ∈ V .
A fully polynomial randomized approximation scheme is given in Alg. 3.

Theorem 3. There is a randomized algorithm that, in O( 1
ε2m

√
κ log n) time

and O(m) space, approximates current-flow betweenness to within an absolute
error of ε with high probability.

Proof. Let X(1)
v , . . . , X

(k)
v be independent random variables that return τst(v),

for a pair s �= t ∈ V , picked uniformly at random. With c∗ = n(n− 1)/nB ,

E

(
c∗

k

k∑
i=1

X(i)
v

)
= c∗E(X(1)

v ) =
1
nB

∑
s∈V

∑
t�=s

τst(v) = cCB(v) ,

i.e. the scaled expected throughput of k st-currents is equal to the current-flow
betweenness. Since 0 ≤ τst(v) ≤ 1, Hoeffding’s bound [14] gives

IP

(∣∣∣∣∣
c∗

k

k∑
i=1

Xv
i − cCB(v)

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−2(ε/c∗)2k

)
≤ 2
n2�

when choosing k = � · �(c∗/ε)2 log n� pairs for arbitrary �.
For each selected pair s �= t ∈ V , the restricted system in Line 3.1 of Alg. 3

can be solved in O(m
√
κ) time and O(m) space using CGM. � 

Algorithm 3: Randomized approximation scheme for current-flow betweenness
Input: electrical network N = (G; c), threshold ε > 0, constant �
Output: current-flow betweenness approximation c′CB : V → IR≥0

begin
c′CB ← 0 and k ← � · �(c∗/ε)2 log n	
for i=1,. . . k do

select s 
= t ∈ V uniformly at random and solve L̃p̃ = b̃st

for v ∈ V \ {s, t} do3.1
for e = {v, w} ∈ E do increase c′CB(v) by c(e) · |p̃(v) − p̃(w)| · c∗/2k

end
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6 Discussion

Current-flow betweenness and closeness are variants of (shortest-path) between-
ness and closeness centrality for an alternative model of information spreading.
In particular, we introduced current-flow closeness and proved that it is equal
to information centrality, the original definition of which is rather unintuitive.

There is one and only one path between each pair of vertices in a tree, and
the length of this path equals its resistance. We thus have the following result.

Theorem 4. The two shortest-path and current-flow measures agree on trees.

Corollary 1. Betweenness and closeness can be computed in O(n) time and
space on trees.

Proof. A bottom-up followed by a top-down traversal similar to [19]. � 

Finally, we want to remark that there is a straightforward extension of
shortest-path betweenness to edges (simply replace the numerators by the num-
ber of shortest st-paths that use the edge) [1]. A similar extension of current-flow
betweenness, that can be computed by slight modification of Alg. 1, is given by

cCB(e) =
1
nB

∑
s �=t∈V

τst(e) for all e ∈ E .
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A Experimental Evaluation

We provide empirical evidence that the proposed algorithms for (approximate)
computation of current-flow betweenness is practical. It has been implemented in
Java using the yFiles1 graph data structure and the JMP2 linear algebra package.
All experiments were performed on a regular PC with 2.4 GHz clock-speed and
3 GB main memory. Constant � = 1 for the approximation. See Fig. 1.

Fig. 1. Comparison of total running time for current-flow betweenness on random
graphs with average degree 6, 8, . . . , 20 and maximum error of approximation on 6 ran-
dom and 6 AS graphs with approximately 9000 vertices and 20000 edges each

1 www.yworks.de
2 www.math.uib.no/˜bjornoh/jmp/index2.html
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Abstract. Decipherability conditions for codes are investigated by using
the approach of Guzmán, who introduced in [7] the notion of variety of
codes and established a connection between classes of codes and varieties
of monoids. The class of Uniquely Decipherable (UD) codes is a special
case of variety of codes, corresponding to the variety of all monoids.

It is well known that the Kraft inequality is a necessary condition for
UD codes, but it is not sufficient, in the sense that there exist codes that
are not UD and that satisfy the Kraft inequality. The main result of the
present paper states that, given a variety V of codes, if all the elements of
V satisfy the Kraft inequality, then V is the variety of UD codes. Thus,
in terms of varieties, Kraft inequality characterizes UD codes.

1 Introduction

The theory of uniquely decipherable (UD) codes, born in the context of infor-
mation theory, has been later developed, as an independent subject, using both
combinatorial and algebraic methods. This theory is now a part of theoretical
computer science and is strongly related to combinatorics on words, automata
theory and formal languages (cf [1], and also [6], [10]).

UD codes are formal languages with special combinatorial properties, which
are exploited in information processing. A set C of words is a UD code if any
word over the same alphabet admits at most one factorization in elements of
C. Hence, when a source message is encoded using a UD code, the deciphering
process will recover the original message in its entirety.

Unique decipherability imposes some quantitative constraints on the size of
code words, settled by the famous Kraft inequality, that keeps the words of a UD
code from getting too short. This inequality is at the basis of well known limi-
tations on the efficiency of the encoding process. Remark that Kraft inequality
is, in a strict sense, a necessary but not sufficient condition for unique decipher-
ability. Indeed there exist sets of words that satisfy Kraft inequality and that
are not UD codes.
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Motivated by special problems in information transmission, decipherability
conditions weaker than UD have been introduced. Indeed, there are situations
when it is not desirable or necessary to recover the whole original message, but
only part of the information embedded in it. In these cases something weaker
than unique decipherability is the appropriate property for a code to have. One
of these weaker concepts is that of multiset decipherability, MSD for short, in-
troduced by Lempel in [9]. As stressed by Lempel “in certain applications it is
desired to communicate a description of a sequence of events where the infor-
mation of interest is which of the set of possible events have occurred, including
multiplicity, but where the order of occurrence is irrelevant”. MSD codes are
such that, given a finite message, every possible parsing of the message into
code words must yield the same multiset of code words. In [7] Guzmán intro-
duced the notion of a set decipherable (SD) code. In set decipherability, it is the
set of code words that is the relevant information, so the order and the multi-
plicity of words are immaterial. The decidability of multiset decipherability and
set decipherability, and other related properties, have been studied in [8] and [2].

A very general approach to the study of decipherability conditions weaker
than UD has been initiated by Guzmán in [7], introducing the notion of variety
of codes. The approach is based on the concept of decipherability of a code in
a monoid and then on a correspondence between varieties of monoids and some
classes of codes, called varieties of codes. The classes of UD, MSD and SD
codes appears respectively, in such approach, as very special cases of varieties of
codes. Moreover Guzmán in [7] shows that there exists an infinite hierarchy of
varieties of codes different from those of UD, MSD and SD codes, respectively.

Although the study of decipherability conditions weaker than UD originates
in concrete problems of information transmission, it gives rise to several inter-
esting questions in the areas of combinatorics on words, formal languages and
the theory of semigroups.

In this paper we investigate the quantitative constraints that the new de-
cipherability conditions impose on the length of code words. In particular we
approach the problem to characterize those varieties of codes where the Kraft
inequality is satisfied. Lempel [9] firstly posed the question whether there exist
MSD codes whose Kraft sum exceeds unity. A positive answer was given in [11].
The resulting shorter average length of such codes is then a welcome trade-off for
the relaxed decipherability conditions. The problem is here approached for an
arbitrary variety of codes. The main result of the paper states, generalizing [11],
that, given a variety V of codes, if all the codes in V satisfy the Kraft inequality,
then V is the variety of UD codes. Thus we can assert that, in terms of varieties,
Kraft inequality characterizes UD codes. From the point of view of information
theory, the result leaves open the possibility that there may exist situations in
which codes, that are not UD, can provide greater efficiency, in terms of word
lengths, than UD codes.

In order to prove the main theorem, we develop some complementary results
concerning codes which are maximal in a variety. We extend to varieties some
well known relationships, between maximality and completeness, that hold for
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UD codes. In particular, we derive that, given two varieties V1 and V2 of codes,
such that V1 ⊆ V2 ⊆ SD, if a code C is maximal in V1, then it is also maximal in
V2. This extends a result of [11], originally conjectured by Lempel [9], asserting
that no MSD code contains a maximal UD code as a proper subcode.

An important tool in the proof of our main result is a construction, introduced
by Ehrenfeucht and Rozenberg in [5] (cf. also [1]), for embedding a regular UD
code in a complete and regular UD code. Here we extend such a construction to
an arbitrary variety of codes.

The paper is organized as follows. In Section 2 we report some basic defini-
tions and results on UD codes, that are useful in the sequel. The notion of a
variety of codes is introduced in Section 3. The relationships between maximality
and completeness in a variety of codes, and the extension of the construction of
Ehrenfeucht and Rozenberg to an arbitrary variety of codes are given in Section
4. Section 5 contains the proof of the main result. Some open problems are finally
posed in the last section of the paper.

2 Uniquely Decipherable Codes

Let A be a finite alphabet. Let A∗ denote the free monoid generated by A, i.e.
the set of words over the alphabet A, and let A+ = A∗\{ε}.

A code C over A is a subset of A+. The words of C are called code words,
the elements of C∗ messages, where C∗ denotes the submonoid of A∗ generated
by C, i.e. the set of words obtained concatenating elements of C.

A code C is said to be uniquely decipherable (UD) if every message has an
unique factorization into codewords, i.e. the equality

x1x2 · · ·xn = y1y2 · · · ym,

x1, x2, . . . , xn, y1, y2, . . . , ym ∈ C, implies n = m and x1 = y1, . . . , xn = yn.
The theory of UD codes has been widely developed, and it is closely related

also to problems in automata theory, combinatorics on words, formal languages
and semigroup theory. A complete treatment of such theory can be found in [1].

The notions of maximality and completeness play an important role in this
theory. A UD code over the alphabet A is maximal (full) if it is not a proper
subset of another UD code over A. In order to introduce the notion of complete-
ness we need the following definitions. If u and v are words of A∗, we say that
u is factor of v if there exist words s, t ∈ A∗ such that v = sut. Let F (v) denote
the set of factors of the word v, and for any subset L ⊆ A∗, let F (L) denote
the set of factors of words in L. A subset C of A∗ is complete if any word of
A∗ is factor of some word of C∗. In our notation, C is complete if and only if
F (C∗) = A∗.

Recall that a subset L ⊆ A∗ is regular if it is recognized by a finite state
automaton. The following result of Schutzenberger (cf [1]) relates completeness
and maximality of UD codes.
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Theorem 1. A maximal UD code is complete. Conversely a regular and com-
plete UD code is maximal.

For any code C over A, with card(A) = d, the Kraft sum for C is given by

K(C) =
∑
c∈C

d−|c|

where |c| is the length of the word c.
It is well known (cf [1]) that every UD code C satisfies

K(C) ≤ 1.

This is known as the Kraft Inequality and it keeps the words of a UD code
from getting too short.

Remark 1. Let us remark that Kraft Inequality provides only a necessary con-
dition for unique decipherability. However it is not sufficient, as shown by very
simple examples. Consider, for instance the code C = {ab, ba, a}. C is not UD.
Indeed the message aba has two factorizations in elements of C: (a)(ba) and
(ab)(a). However K(C) = 1.

The Kraft sum is also related to the completeness of the code, as shown by
the following theorem (cf [1]).

Theorem 2. If C is a regular and complete code, then K(C) ≥ 1.

Next theorem ([3], cf also [1]) provides a stronger relationship between unique
decipherability, completeness and the Kraft sum.

Theorem 3. Let C be a regular code. Any two among the following three con-
ditions imply the third:

• C is UD
• K(C) = 1
• C is complete

3 Varieties of Codes

When a source message is encoded using a UD code, the deciphering process
will recover the original message in its entirety. There are situations, however,
when it is not necessary to recover the whole message but only part of the orig-
inal information embedded in it. In these cases, something weaker than unique
decipherability is the appropriate property for a code to have.

The investigation on decipherability conditions weaker than UD was initiated
in [9] by Lempel, who introduced the notion of multiset decipherable (MSD)
codes. Here the information of interest is the multiset of codewords used in the
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encoding process so that the order in which transmitted words are received is
immaterial. In a more formal way, a code C is a MSD code if the equality

x1x2 · · ·xn = y1y2 · · · ym,

x1, x2, . . . , xn, y1, y2, . . . , ym ∈ C, implies the equality of the two multisets
{x1, x2, . . . , xn} and {y1, y2, . . . , ym}.

In [7] Guzmán considers also the notion of set decipherable (SD) codes. In
this case the original message is recovered up to commutativity and actual count
of occurrences, i.e. two factorizations of the same message yield the same set of
codewords. Denote by UD, MSD and SD the classes of UD, MSD and SD
codes, respectively. It is clear that

UD ⊆MSD ⊆ SD

and has been shown that the two inclusions are strict. The code

C1 = {110, 101, 11011, 01110101}

shows that the first inclusion is strict. In fact the message

(110)(11011)(101)(01110101) = (11011)(01110101)(110)(101)

has two distinct factorizations into codewords and in [9] is shown to be MSD.
The code

C2 = {0, 010, 11011, 101101}

shows the strictness of the second inclusion. In fact the message

(0)(101101)(101101)(11011)(010) = (010)(11011)(0)(11011)(101101)(0)

has two distinct factorizations with the same set of codewords, but distinct
multisets of codewords and in [7] is shown to be SD.

In the same paper [7] Guzmán introduces a very general concept of decipher-
ability using varieties of monoids. Unique decipherability, multiset decipherabil-
ity and set decipherability then appear as very special cases of such general
concept.

The intuitive idea in introducing decipherability conditions weaker than UD
is the following: since, in certain coding applications, distinct sequences of words
can carry the “same” information, one has to specify a set of possible identities
such that the information of interest is invariant with respect to transformations
induced by such identities. This idea can be formalized by introducing the notion
of decipherability in monoids and then considering classes of monoids satisfying
certain identities, i.e. varieties of monoids.

Let C be a code and let M be a monoid. We say that C is decipherable in M
if every map f : C →M extends to a (unique) homomorphism f : C∗ →M .

The following proposition can be easily proved (cf [7]).
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Proposition 1. Let C be a code. One has:

• C is UD if and only if C is decipherable in every monoid.
• C is MSD if and only if C is decipherable in every commutative monoid.
• C is SD if and only if C is decipherable in every semilattice i.e. a monoid

that is commutative and idempotent.

Let N be a class of monoids. Denote by C(N ) the class of codes C which are
decipherable in every M ∈ N . Conversely, let K be a class of codes. Denote by
M(K) the class of monoids M such that every C ∈ K is decipherable in M .

Previous definitions lead in a natural way to take into account classes of
monoids having special algebraic properties, i.e. varieties of monoids (cf [4]).
Indeed we have the following proposition(cf Prop 1.3 of [7]).

Proposition 2. If K is a class of codes, then M(K) is a variety of monoids.

We can now introduce our basic definition.
A class V of codes is a variety of codes if V = C(M(V)).
Remark that not any class of codes is a variety, and that the previous def-

inition establishes a correspondence between varieties of codes and varieties of
monoids.

From Proposition 1, one can derive that:

• UD is the variety of codes corresponding to the variety of all monoids.
• MSD is the variety of codes corresponding to the variety of commutative

monoids.
• SD is the variety of codes corresponding to the variety of semilattices.

Remark 2. Observe that, by definition, UD is the smallest variety of codes, i.e.,
for any variety V of codes, UD ⊆ V. Moreover the classification of decipherability
conditions of codes in terms of varieties is not trivial. Indeed in [7] it is shown
that there exist an infinite hierarchy of varieties V of codes such that MSD ⊂ V.

Remark 3. Let C1 and C2 be codes and let ψ : C∗
1 → C∗

2 be an isomorphism
such that ψ(C1) = C2. Then, for every monoid M , C1 is decipherable in M if
and only if C2 is decipherable in M . Therefore C1 and C2 belong to the same
variety.

Next lemma will be useful in the sequel. In order to state the lemma we need
some supplementary definitions.

Let X,Y be codes such that X+ ∩ Y + = ∅ and denote by Z their union:
Z = X ∪ Y . Consider a word w ∈ Z+.

An expression of the type z1z2 · · · zn is said to be an (X,Y )-factorization of
w if

• w = z1z2 · · · zn

• zi ∈ X+ ∪ Y +, for i = 1, . . . , n
• if n > 1, zi ∈ X+ ⇔ zi+1 ∈ Y +, for i = 1, . . . , n− 1
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Remark 4. (X,Y )-factorization of a word w may be not unique. The fact that
(X,Y )-factorization is not unique is independent from the fact that X and Y
are UD. Consider, for instance, X = {0}, Y = {01, 10} and the word w = 010.
One has: w = (0)(10) = (01)(0) thought X and Y are UD. Otherwise, consider,
for instance, X = {00, 000} and Y = {11, 111}. All words w ∈ (X ∪ Y )+ have a
unique (X,Y )-factorization, though X and Y are not UD.

Lemma 1. Let V be a variety of codes. Let X,Y ∈ V be codes such that X+ ∩
Y + = ∅, and consider their union Z = X ∪Y . If every w ∈ Z+ admits a unique
(X,Y )-factorization, then Z ∈ V.

Proof. Let N be the variety of monoids associated to the variety V of codes. We
have to show that for all monoids M ∈ N , Z is decipherable in M . Let M ∈ N ,
and let f : Z →M be a map from Z to M . Denote by g1 and g2 the restrictions
of f to X and Y respectively: g1 := f |X , g2 := f |Y . Since X,Y are decipherable
in M , g1 extends to g1 : X∗ →M and g2 extends to g2 : Y ∗ →M . Let w ∈ Z+

and suppose, without loss of generality, that its unique (X,Y )-factorization is
w = x1y1 · · ·xnyn. Then, putting f(w) := g1(x1)g2(y1) · · · g1(xn)g2(yn), we get
the unique homomorphism extending f and so Z is decipherable in M .

4 Maximality and Completeness

Let V be a variety of codes and consider a code C ∈ V over the alphabet A. C
is called a V-code. C is a maximal V-code if it is no proper subset of another
V-code over the same alphabet.

The following theorem generalizes to an arbitrary variety of codes a result
stated for UD codes (cf Theorem 1).

Theorem 4. Let V be a variety of codes and let C be a code in the variety V.
If C is a maximal V-code, then it is complete.

Proof. Let C be a V-code over the alphabet A, with card(A) ≥ 2 (the case
card(A) < 2 is trivial). We will prove that, if C is not complete, then there
exists a word w ∈ A∗ \ C such that C ∪ {w} is a V-code. Indeed, if C is not
complete, there exists a word v ∈ A∗ such that v does not belong to F (C∗).
Let a be the first letter of v and let b ∈ A such that b �= a. Consider the word
w = vab|v|. By construction, w is unbordered, i.e. no proper prefix of w is a suffix
of w. Since v does not belong to F (C∗), we have that also w does not belong
to F (C∗).

Let us first remark that C+ ∩ {w}+ = ∅ and that the one word set {w}
is trivially a UD code (and then it is a V-code). We now prove that every
word t ∈ (C ∪ {w})∗ admits a unique (C, {w})-factorization. Indeed, since w is
unbordered, we can uniquely distinguish all occurrences of w in t, i.e. t has a
unique factorization of the form

t = u1wu2w · · ·wun,
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with n ≥ 1 and ui ∈ C∗, for i = 1, . . . , n. From this factorization we obtain a
unique (C, {w})-factorization of t. Therefore, by Lemma 1, C ∪ {w} is a code in
the variety V. This concludes the proof.

The converse of previous theorem does not hold in general. We need, as
supplementary hypothesis, that the code C is regular (as in the case of Theorem
1) and, moreover, that the variety V is included in the variety SD.

Theorem 5. Let V be a variety of codes included in the variety SD, i.e. V ⊆
SD, and let C ∈ V be a regular code. If C is complete, then it is a maximal
V-code.

As a consequence of Theorem 4 and Theorem 5 we obtain the following
corollary.

Corollary 1. Let V1 and V2 be varieties of codes such that V1 ⊆ V2 ⊆ SD,
and let C ∈ V1 be a regular code. If C is maximal in the variety V1, then it is
maximal in the variety V2.

This corollary extends to arbitrary varieties a result of [11], originally con-
jectured by Lempel [9], asserting that no MSD code contains a maximal UD
code as a proper subcode.

The proof of Theorem 5 is based on the following lemma, due to Schutzen-
berger (cf the proof of Theorem 7.4 in [6]).

Lemma 2. Let C ⊆ A∗ be a regular and complete code. Then, for any word w ∈
A∗ there exist a word v ∈ C∗ and a positive integer m such that (vwv)m ∈ C∗.

Proof. Since C is a regular set, C∗ is a regular set too. Let

A = (A,Q, δ, i, F )

be a finite state automaton recognizing C∗. For any set of states S ⊆ Q and
for any word u ∈ A∗, denote by Su the set {δ(q, u); q ∈ S} of states reached by
paths having label u and starting at any state of S. Let n = inf card(Qu) with
u ranging over A∗, and choose u such that n = card(Qu). Since C is complete,
we have xuy = v ∈ C∗ for some x, y ∈ A∗. Since Qxu ⊆ Qu, it follows that
card(Qv) ≤ card(Qu). Thus, by minimality, card(Qv) = n. Let P = Qv. Since
Pv = Qvv ⊆ Qv = P , it follows from the minimality of n that Pv = P and
thus v defines a permutation of P . Thus, replacing v by a suitable power of v,
we may assume that pv = p for all p ∈ P . Consider now a word w ∈ A∗ and
let z = vwv. Again we have Qz ⊆ Qv, and thus Qz = P = Pz. Thus again, for
some power zm, m ≥ 1, we have pzm = p for all p ∈ P . To prove that

zm = (vwv)m ∈ C∗,

it suffices to show that qzm = qv for all q ∈ Q. Since qvv = qv, it follows that
qz = qvwv = qvvwv = qvz and therefore that qzm = qvzm. Since Qv = P , we
have that qvzm = qv. Thus qzm = qv as required. This complete the proof.
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Proof of Theorem 5. Let C ⊆ A∗ be a regular and complete code in the variety
V ⊆ SD. We have to prove that, for any w ∈ A∗ \ C, C ∪ {w} does not belong
to the variety V. By Lemma 2, for any word w ∈ A∗ there exist words u, v ∈ C∗

and a positive integer m such that (vwv)m = u. This means that we have the
equality (vwv)m = u between elements of (C∪{w})∗, where the word w appears
only on the left side of the equality. As a consequence, C ∪ {w} /∈ SD, and
therefore C ∪ {w} does not belong to the variety V. This concludes the proof.

The following theorem, which has an independent interest, is essential for the
proof of the main result in next section.

Theorem 6. Let V be a variety of codes and let C ∈ V be a regular code. Then
there exists a regular and complete code Y such that C ⊆ Y and Y ∈ V.

Proof. In the proof we make use of a construction, introduced by Ehrenfeucht
and Rozenberg in [5] (cf also [1]), for embedding a regular UD code in a complete
and regular UD code. The kernel of the proof is to show that the construction
works also for an arbitrary variety.

If C is complete there is nothing to prove. Assume that C is not complete.
Then, as in the proof of Theorem 4, there exists an unbordered word w such that
w /∈ F (C∗). Let

U := (C∗)c ∩ (A∗wA∗)c,

where Lc denotes the complement of a set L ⊆ A∗. Consider now the code

T := w(Uw)∗ = {wu1wu2 · · ·unw | n ≥ 0, ui /∈ C∗, w /∈ F (ui), i = 1, . . . , n}

and the code Y := C ∪ T . We will prove that:

1) T ∈ UD
2) Y is regular and complete
3) Y ∈ V

The proofs of 1) and 2) are very close to Ehrenfeucht and Rozenberg’s proof.
1) Since w is unbordered, any word s ∈ T ∗ has a unique representation of the
form s = wv1wv2 · · ·wvkw, with w /∈ F (vi), for i = 1, . . . , k, that is, we can
uniquely distinguish all occurrences of w in s. By construction, for i = 1, . . . , n,
either vi = ε (the empty word), or vi ∈ U . The values of i such that vi = ε
corresponds to the parsing lines in the factorization of s in elements of T and
this proves that s admits a unique factorization in elements of T , i.e. that T is
a UD code.
2) By construction Y is obtained by regular operations on regular languages so
it is regular. Let us now prove that Y is complete. Actually we show that, for
any word u ∈ A∗, wuw ∈ Y ∗. Since w is unbordered, the word u has a unique
representation of the form

u = v1wv2w · · ·wvn,
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with n ≥ 1 and w /∈ F (vi), for i = 1, . . . , n. Let vi1 , . . . , vik
, with k ≥ 0, 1 ≤ ij ≤

n be the elements, among the vi’s, belonging to C∗. Then the word wuw can be
(uniquely) factorized as follows:

wuw=(wv1w · · ·wvi1−1w)vi1(wvi1+1w · · ·wvi2−1w)vi2 · · · vik
(wvik+1w · · ·wvnw).

The elements in the factorization between parenthesis belong to T and the
other ones belong to C∗. Therefore wuw ∈ (C ∪ T )∗ = Y ∗.
3) We first prove that all words u ∈ Y + = (C ∪ T )+ admit a unique (C, T )-
factorization.

As before u has a unique representation of the form

u = v1wv2w · · ·wvn,

with n ≥ 1 and w /∈ F (vi), for i = 1, . . . , n. Let vi1 , . . . , vik
, with 1 ≤ ij ≤

n, 1 ≤ j ≤ k ≤ n be the elements, among the vi’s, belonging to C∗. Since
u ∈ (C ∪ T )+ and by definition of T we have i1 = 1 and ik = n. Then the word
u can be uniquely factorized as follow:

u = v1(wv2 · · ·wvi2−1w)vi2 · · · vik−1(wvik−1+1w · · · vik−1w)vn.

The values of j such that vij
�= ε give the elements in the (C, T )-factorization

of u belonging to C+, the elements between parenthesis, or their concatenations,
give the elements belonging to T+.

We have then proved that all words u ∈ Y + = (C ∪ T )+ admit a unique
(C, T )-factorization. Now, since T ∈ UD and UD ⊆ V, by Lemma 1, we have
that Y ∈ V.

5 Main Result

In [9] Lempel conjectured that every MSD code satisfies Kraft inequality. How-
ever, in [11] it is shown that there exist MSD codes C such that K(C) > 1. An
interesting question is to characterize those varieties V of codes where the Kraft
inequality is satisfied. The answer is given by the following theorem.

Theorem 7. Let V be a variety of codes. If K(C) ≤ 1 for every C ∈ V, then
V = UD.

Proof. Assume, by contradiction, that V �= UD. Then there exists a code C ∈ V
such that C /∈ UD.

Suppose first that C is finite. Then C is regular and, by Theorem 6, there
exists a regular and complete code Y ∈ V such that C ⊆ Y . By hypothesis,
K(Y ) ≤ 1. By Theorem 2, K(Y ) ≥ 1, hence K(Y ) = 1. As a consequence of
Theorem 3, we have that Y ∈ UD. Since C is a subset of Y , one has that
C ∈ UD, a contradiction.

Suppose now that C is not finite. Since C /∈ UD, then exists a word w ∈ C+

having two distinct factorizations:

w = c1 · · · cs = cs+1 · · · cn , ci ∈ C , i = 1, . . . , n.
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Put C ′ := {c1, c2, . . . , cn}. One has that C ′ ∈ V , C ′ /∈ UD and C ′ is finite. So
we are brought back to the previous case (C finite) and the proof is concluded.

Remark 5. It is well known that the Kraft inequality is a necessary condition for
UD codes, but it is not sufficient (cf Remark 1). However, by previous theorem,
we can assert that, in terms of varieties, Kraft inequality characterizes UD codes.

From the proof of Theorem 6 we also derive the following theorem which
states that, even if the Kraft sum of a code C ∈ V, with V �= UD, can exceed the
unity, however there exists a complete codes in V whose Kraft sum is arbitrarily
close to the unity.

Theorem 8. Let V be a variety of codes such that V �= UD. Then, for any
ε > 0, there exists a complete (and regular) code Y ∈ V such that

1 < K(Y ) < 1 + ε.

Proof. Let C be a finite code over the alphabet A, with card(A) = d, such that
C ∈ V and C /∈ UD. Let C = {c1, . . . , cn} and let m(C) denotes the minimal
length of words in C. For any ε > 0, let r be a positive integer such that

nd−rm(C) < ε.

Given a word u = a1 · · · at, ai ∈ A, i = 1, . . . , t, denote by u(r) = ar
1 · · · ar

t

be the word obtained from u by substituting each letter a occurring in u with
the word ar, i.e. the letter a repeated r times. By construction, |u(r)| = r|u|.
Consider now the code

C(r) = {c(r)1 , . . . , c(r)n }.
It is easy to verify that the mapping ψr : C → C(r) defines an isomorphism

between the submonoids generated by C and C(r), respectively. Therefore, by
Remark 3, one has that C(r) ∈ V. Moreover one has:

K(C(r)) =
∑

c∈C(r)

d−|c| =
∑
c∈C

d−r|c| ≤
∑
c∈C

d−rm(C) = nd−rm(C) < ε.

As in the proof of Theorem 6, consider the code T corresponding to the code
C(r) ∈ V and the code Y = T ∪ C(r), which is again a code in the variety V.
Since Y is complete and it is not UD, as a consequence of Theorem 3 one has
that K(Y ) > 1. Moreover, since T is UD, one has K(T ) ≤ 1, and then:

1 < K(Y ) = K(T ∪ C(r)) = K(T ) +K(C(r)) < 1 + ε.

This concludes the proof.

6 Open Problems and Concluding Remarks

There are some problems, which are still open, concerning varieties of codes and
Kraft inequality. A first natural question is, given a variety V of codes, whether
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there exists a constant ΓV such that all the codes C ∈ V satisfy a generalized
Kraft inequality K(C) ≤ ΓV . Such inequalities would express, in a quantitative
way, a trade-off between the relaxed decipherability conditions and the efficiency
of the encoding process. Tight upper bounds to the Kraft sum are known for the
extremal varieties: indeed ΓV = 1 for V = UD, which is the smallest variety of
codes, and, trivially, ΓV = ∞ if V is the variety of all codes. For the intermediate
cases the problem is open.

Let us further remark that, by Theorem 8, in variety V �= UD, the Kraft sum
can exceed the unity, but if V ⊆ SD, by Theorem 5 we can have codes, maximal
in the variety V, such that their Kraft sum is arbitrarily close to the unity. As a
consequence, whereas in the variety UD all maximal codes have the same Kraft
sum (which is equal to the unity), on the contrary, given a variety V �= UD such
that V ⊆ SD, distinct maximal elements in the variety have, in general, different
Kraft sums. This provides a further characterization of the variety UD, in terms
of the Kraft sum.
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Improving the Alphabet-Size in High Noise,
Almost Optimal Rate List Decodable Codes
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Abstract. We revisit the construction of high noise, almost optimal
rate list decodable code of Guruswami [1]. Guruswami showed that if
one can explicitly construct optimal extractors then one can build an
explicit (1 − ε, O( 1

ε
)) list decodable codes of rate Ω( ε

log 1
ε

) and alphabet

size 2O( 1
ε
·log 1

ε
). We show that if one replaces the expander component in

the construction with an unbalanced disperser, then one can dramatically
improve the alphabet size to 2O(log2 1

ε
) while keeping all other parameters

the same.

1 Introduction

Error correcting codes were built to deal with the task of correcting errors in
transmission over noisy channels. Formally, an (N,n, d)q

1 error correcting code
over alphabet Σ, where |Σ| = q, is a subset C ⊆ ΣN of cardinality qn in which
every two elements are distinct in at least d coordinates. n is called the dimension
of the code, N the block length of the code, and d the distance of the code. If C is
a linear subspace of [IFq]N , where Σ is associated with some finite field IFq we say
that C is a linear code, and denote it [N,n, d]q code. From the definition we see
that one can uniquely identify a codeword in which at most d−1

2 errors occurred
during transmission. Moreover, since two codewords from ΣN can differ in at
most N coordinates, the largest number of errors from which unique decoding
is possible is N/2.

This motivates the list decoding problem, first defined in [2]. In list decoding
we give up unique decoding, allowing potentially more than N/2 errors, and re-
quire that there are only few possible codewords having some modest agreement
with any received word. Formally, we say that an (N,n, d)q code C is (p,K)-list
decodable, if for every r ∈ ΣN , |{c ∈ C|Δ(r, c) ≤ pN}| ≤ K, where Δ(x, y) is
the number of coordinates in which x and y differ. That is, the number of code-
words which agree with r on at least (1 − p)N coordinates is smaller than K.
We call the ratio n/N the rate of the code, and p the error rate.

1 We will use n to denote the dimension of a code to avoid confusion with with the
min–entropy parameter of extractors and dispersers, for which k is usually reserved.

V. Diekert and B. Durand (Eds.): STACS 2005, LNCS 3404, pp. 557–568, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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We can demonstrate the difference between unique decoding and list decoding
with Reed-Solomon codes. Reed-Solomon codes are linear [N,n,N−n+1]q codes,
defined for every q such that IFq is a finite field, and n ≤ N ≤ q. Every (N,n, d)q

code is (
√

1− d/N, qN)-list decodable (see, [3], Lecture 8). For Reed-Solomon
codes there exists an efficient list decoding algorithm [4]. Thus, unique decoding
is possible with at most N/2 errors, while by [4] list decoding is possible with
up to N −

√
Nn errors, and the number of all possible decodings is small.

We focus on the high noise regime, where p = 1 − ε, for ε > 0 being very
small. A simple probabilistic argument shows that (1 − ε, O( 1

ε ))-list decodable
codes with rate = Ω(ε), and |Σ| = O( 1

ε2 ) exist. Also the rate must be O(ε), and
|Σ| = Ω( 1

ε ). Until recently, the best known explicit constructions only achieved
rate of ε2. Recently, Guruswami in [1], used an expander based construction to
give the first explicit construction of rate Ω( ε

logO(1) 1
ε

). However, the alphabet
size and the decoding list size in this construction are huge.

Although Guruswami’s result suffers the drawbacks of huge decoding list
size and huge alphabet size it is interesting as it improves our understanding
of the relationships between extractors, expanders and codes. Specifically, it
gives motivation for explicitly constructing better extractors which will yield
better codes.

1.1 Our Results

The relationship that [1] has found between strong extractors2 and high noise
list decodable codes is given in the following theorem:

Theorem 1 (Old connection between strong extractors and L.D.C.).
Let K = K(N) be arbitrary. If a family of (K, 1/4)-strong extractors f : [N ] ×
[D] → [M ] with degree D = O(logN) and entropy loss O(1) can be explicitly
constructed, then one can explicitly construct (1− ε, O(1/ε))-list decodable codes
of rate Ω( ε

log(1/ε) ) over an alphabet size 2O(ε−1log(1/ε))

We show:

Theorem 2 (New connection between strong extractors and L.D.C.).
Let K = K(N) be arbitrary. If a family of (K, 1/4)-strong extractors f : [N ] ×
[D] → [M ] with degree D = O(logN) and entropy loss O(1) can be explicitly
constructed, then one can explicitly construct (1− ε, O(1/ε))-list decodable codes

of rate Ω( ε
log(1/ε) ) over an alphabet size 22polyloglog( 1

ε
)
.3

Note that all parameters are the same as in [1], except the significantly smaller
alphabet size. Using the best explicit construction of strong extractors we have
today [1] has shown:

2 The definition of strong extractors and dispersers is given in Sect. 1.2.
3 If we further assume an optimal disperser then the alphabet size can be reduced to

2O(log2 1
ε
).



Improving the Alphabet-Size in High Noise 559

Theorem 3 (Old connection between explicit strong extractors and
L.D.C.). For every constant ε > 0, there is a polynomial time constructible
family of (1 − ε, 2O(

√
n log n))-list decodable codes of rate Ω( ε

polylog(1/ε) ) over an

alphabet of size 2O(ε−1 log(1/ε)), where n is the dimension of the code.

Again, we show that the alphabet size can be improved:

Theorem 4 (New connection between explicit strong extractors and
L.D.C.). For every constant ε > 0, there is a polynomial time constructible
family of (1 − ε, 2O(

√
n log n))-list decodable codes of rate Ω( ε

polylog(1/ε) ) over an

alphabet of size 22polyloglog( 1
ε
)
, where n is the dimension of the code.

1.2 The Technique

In order to understand our technical contribution we first need to understand
what Guruswami did in [1].

Introducing the Basic Objects

Strong Extractors. An extractor is a function which extracts randomness from a
weak random source. A weak random source is a distribution which might be far
form uniform but still has some randomness in it. A standard measure for the
amount of randomness contained in a source is its min–entropy. A distribution
X over {0, 1}n has k min–entropy, denoted H∞(X) = k, if ∀x, X(x) ≤ 2−k.
If H∞(X) = k we say that X has k bits of min–entropy. An example of a
weak random source is a uniform distribution over some subset of 2k elements
from {0, 1}n.

A simple fact is that randomness extraction from a weak source cannot be
done without additional randomness independent of the source. This leads to
the following definition:

Definition 1. f : [N ] × [D] → [M ] is a (K, ζext)-strong extractor if for every
X distributed over [N ] with H∞(X) ≥ logK, the distribution y ◦ f(x, y) is
ζext-close to U[D]×[M ], where x is drawn from X and y is taken uniformly at
random from [D]. The entropy loss of the strong extractor is K

M . ζext is called
the extractor error. The strong extractor is explicit if f(x, y) can be computed in
time polynomial in the input length, i.e., polynomial in logN + logD.

That is the extractor gets an input from some unknown distribution X that
is guaranteed to have at least logK min–entropy and uses some additional logD
truly random bits, called the seed of the extractor, to extract logM random bits
that together with the seed are close to uniform. An extractor (not necessarily
strong) is one where we only require that the logM output bits are close to
uniform.
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Dispersers. A disperser is the one-sided variant of an extractor. Instead of re-
quiring that the output is ε-close to the uniform distribution, we require that
the disperser’s output covers at least a 1− ε fraction of the target set.

Definition 2. g : [L]× [T ] → [D] is a (H, ζdisp)-disperser if for every X ⊆ [L]
with |X| ≥ H we have |{g(l, j)|l ∈ X, j ∈ [T ]}| ≥ (1− ζdisp)D. The entropy loss
of the disperser is HT

D . The disperser is explicit if g(x, y) can be computed in
time polynomial in the input length, i.e., polynomial in logL+ log T .

In definition 1 we defined a strong extractor, while in definition 2 we defined
a (not necessarily strong) disperser. This is due to the way we use these objects
later on.

Extractor Codes. [5] observed a simple connection between strong extractors and
list decodable codes. Given a strong extractor f : [N ] × [D] → [M ], we define
a code C : [N ] → [M ]D as follows: ∀x ∈ [N ], C(x)i = f(x, i). By definition
the rate of the code is log N

D log M . The connection is summarized by the following
lemma:

Lemma 1. If f : [N ] × [D] → [M ] is a (K, ζext)-strong extractor then the
extractor code C(x) is (1− ( 1

M + ζext),K)-list decodable code.

Also observed by [5] is that extractor codes meet a property stronger than list
decoding, known as list recovering [6]. List recovering deals with the situation
where the ith symbol of the received word is only known to be in some set Si ⊆ Σ.
The goal is to find a code C ⊆ ΣN such that for every given S1, . . . SN ⊆ Σ
describing a received word, there are not to many codewords C(x) with C(x)i ∈
Si for many indices i. List decoding is the case where all sets Si are of size 1.

Error Amplification Using Expanders. The technique of code amplification using
expanders was introduced in [7], where it is used to amplify Justesen code.
Justesen code rate vanishes as the error rate grows. [7] take Justesen code of
constant error rate and amplify it using an expander to get a code with large
distance and constant rate over a large alphabet. Looking back, the amplification
in [7] can be done using any disperser (a good expander is just a special case).

Here is how the amplification is done: Assume C : Σn → ΣD is a (p,K)-
list decodable code. Let g : [L] × [T ] → [D] be a (H, ζdisp)-disperser. Define a
code Cg : Σn → [ΣT ]L. For x ∈ Σn let C(x) be its encoding using C. Given
C(x) ∈ ΣD, we put its symbols along the output of g, such that the i′th symbol
of the codeword is matched with the i′th output element of g. We now look at
the input elements in [L], each such element has T neighbors each matched with
a symbol from Σ. For each input element we collect the symbols of its neighbors
and get a symbol in ΣT . Altogether, we get a code Cg : Σn → [ΣT ]L. A simple
argument shows:

Lemma 2. If ζdisp ≤ p, then Cg(x) is (1− H
L ,K)-list decodable.
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[N] [M] [D] [D]

D

y1y2

yD

y1y2y3

yD

(K,1/4 )-Strong Extractor
f:[N]  [D]    [M]

  -regular balanced
expander

zd=(zd, 1 ,…, zd,  )  [M]
x  [N]

Fig. 1. The strong extractor on the left has a constant error, giving an extractor code
with 3

4 − 1
M

error rate. The code produced by the extractor is then amplified using
the balanced expander on the right. The balanced expander used is equivalent to some
(εD, ζdisp)-disperser g : [D] × [Δ] → [D]

Guruswami’s Construction. Lemma 1 shows that an extractor code already
has a good error rate. However, the lower bound of Ω( 1

ζ2
ext

) on the extractor
degree (see Sect. 2.1) implies an upper bound of O(ζ2

ext) on the extractor code’s
rate. To overcome this obstacle, Guruswami uses a strong extractor with a con-
stant error and amplifies it using a balanced expander, see figure 1. As shown
in Section 3, the construction takes advantage of the list recovering property of
extractor codes.

Our Improvement. What we do is replace the expander component in [1]
with a good unbalanced disperser. Studying the problem we discover that what
is needed is a disperser for the high min–entropy rate, that has optimal entropy
loss and a surprisingly small degree. Fortunately, an explicit construction of such
a graph was given recently [8]. Using such a graph, our improvement over the
construction in [1] can be made explicit. For every code built using Guruswami’s
scheme, the expander component can be replaced with the explicit disperser
and improve the alphabet size. As the disperser is explicit, the decoding scheme
mentioned in [1] and the time it takes does not change.

2 Preliminaries

We need the following standard definitions: A probability distribution X over
Ω is a function X : Ω → [0, 1], such that

∑
x∈Ω X(x) = 1. Un is the uniform

distribution over {0, 1}n. The statistical distance between two probability distri-
butions X, Y distributed over Ω, denoted |X − Y |, is 1

2

∑
x∈Ω |X(x)− Y (x)| =

maxS⊆Ω |X(S)− Y (S)|. X, Y are ε-close if |X − Y | ≤ ε.
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2.1 Bounds of the Parameters Achievable for Extractors and
Dispersers

Ta-Shma and Radhakrishnan [9] show that a (K, ζext)-strong extractor f : [N ]×
[D] → [M ] must have degree D = Ω( 1

ζ2
ext

log N
K ), and entropy loss K

M = O( 1
ζ2

ext
).

Also shown in [9] are matching implicit upper bounds. The degree lower bound
gives the minimal true randomness needed for extracting randomness from a
weak source. The entropy loss lower bound gives the amount of randomness
lost by the process. [9] also give matching lower bounds and non-explicit upper
bounds for dispersers. Specifically, a (H, ζdisp)-disperser g : [L]× [T ] → [D] must
have T = Ω( 1

ζdisp
log L

H ), and entropy loss HT
D = Ω(log 1

ζdisp
).

2.2 The Mixing Property

An important property of extractors is mixing (see, [10], Chap 9). We introduce
some notation. For x ∈ [N ] we define Γf (x) to be the ordered neighbors of x.
Formally,

Γf (x) = {(i, f(x, i)|i ∈ [D]} . (1)

The mixing property says that:

Fact 5 If f : [N ] × [D] → [M ] is a (K, ζext)-strong extractor, then for every
S ⊆ [D]× [M ], there are at most K elements x ∈ [N ] satisfying

|Γf (x) ∩ S|
D

− |S|
D ·M ≥ ζext . (2)

3 A Better Connection Between Strong Extractors and
L.D.C.

The connection shown below is basically Guruswami’s, except that Guruswami
uses a balanced, good expander and we use a slightly unbalanced good disperser.
Let: f : [N ]×[D] → [M ] be a (K, ζext)-strong extractor, and let g : [L]×[T ] → [D]
be a (H, ζdisp)-disperser. We define the code Cf,g : [N ] → [MT ]L as follows:

1. Given x ∈ [N ], denote by y = (y1, . . . , yD) ∈ [M ]D where yi = f(x, i).
2. Put the symbols (y1, . . . , yD) ∈ [M ]D along g’s range [D]. Each element
� ∈ [L] has T neighbors in [D]. Collect from each neighbor the symbol that
was put along it. I.e., for each � ∈ [L] define w� = (w�,1, . . . , w�,T ) ∈ [M ]T ,
where w�,t = yg(�,t).

3. The encoding of x is defined to be

Cf,g(x) = (w1, . . . , wL) . (3)

See figure 2 for an illustration of the construction. We claim:

Lemma 3. If the extractor f and the disperser g are as above, and if M ·D ≥
L·T

1−ζext−ζdisp
, then Cf,g is (1− H

L ,K)-list decodable.
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An eye on figure 2 might be helpful while reading the proof.

Proof. Let z = (z1, . . . , zL) ∈ [MT ]L be an arbitrary word in [MT ]L. From z we
build a set S as follows. For each 1 ≤ � ≤ L, we look at z� = z�,1, . . . , z�,T and
we build the set S� ⊆ [D]× [M ] by:

S� = {(g(�, t), z�,t)|1 ≤ t ≤ T} . (4)

S� represents what z� thinks y1, . . . , yD are in locations g(�, 1), . . . , g(�, T ).
We define the set S of z = (z1, . . . , zL) to be

⋃L
�=1 S�.

Suppose a codeword Cf,g(x) ∈ [MT ]L agrees with z on a set H ⊆ [L] of size
at least H. Now, if � ∈ H then (i, f(x, i)) ∈ S� for every i ∈ [D] such that i is
a neighbor of l in g (because the lth coordinate is the concatenation of all the
symbols along the neighbors of � in g). Since g is a (H, ζdisp)-disperser, the set
of neighbors of H has at least (1− ζdisp)D elements. Hence, |Γf (x) ∩ S| ≥ (1−
ζdisp)D. Noting that |S| ≤ L ·T , and using the assumption M ·D ≥ L·T

1−ζext−ζdisp
,

we see that |S|
MD ≤ 1− ζext − ζdisp and together

|Γf (x) ∩ S|
D

− |S|
MD

≥ ζext . (5)

By Fact 5 we conclude that there are at most K x’s for which Cf,g(x) agrees
with z on at least H coordinates. Hence the code is (1−H

L ,K)-list decodable. � 

3.1 What Makes the Difference

First, let us have a second look at Guruswami’s construction. A strong extractor
gives a list decodable code that can correct 1 − α noise with α2 penalty in the
rate, and so we do not lose much when α is a constant. Indeed, on the left of
figure 2 we use a strong extractor for a constant error rate.

We are then left with the task of amplifying the error. For that Guruswami
uses a balanced expander. The property that we need from the expander, is that
every set (of relatively small cardinality H) on the right hand side (of figure 2)
sees almost all of the vertices on the left hand side as its neighbors (more precisely
1− ζdisp of them).

Taking a balanced expander does the job, but at the cost of enlarging the
disperser degree T . This is because H vertices can have at most HT neighbors,
and so if H is small and HT is almost D, we must have a disperser with a large
degree T . On the other hand, if we take a larger right hand side L (such that
H is roughly D) we can use a much smaller degree T and still have the same
property.

To see how the parameters behave, we notice that the size of the alphabet is
determined by T (and so we get a much smaller alphabet size) and the rate is
determined by L·T and L should be H/ε (to provide the necessary amplification).
The fact that L is larger does not translate to an inferior rate, because T is
smaller and so L ·T stays exactly as in Guruswami’s construction. We thus keep
the rate while dramatically reduce the alphabet size.
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[N] [M]=O(K) [D] [L]

D

y1
y2

yD

g(l,1)

T

Cf,g(x)=w1 ,…, wL

(K,  ext )-Strong Extractor
f:[N]  [D]    [M]

(H,  disp)-Disperser
g:[L]  [T]    [D]

zl=(zl, 1 ,…, zl, T)  [M]T
x  [N]

z1

zL

.  .  .
.  .  .

g(l,2)

g(l,T)

y1
y2

yD

w1

wL

.  .  .
.  .  .

wl

Fig. 2. The neighbors of x ∈ [N ] on the left: (y1, . . . , yD) are ”put” along the
disperser’s output [D], defining for each l ∈ [L] an ordered vector of its neighbors
wl = (wl,1, . . . , wl,T ) ∈ [M ]T . The vector wl is the lth symbol in the codeword Cf,g(x).
z = (z1, . . . , zL) is an arbitrary word in [MT ]L. zl ∈ [M ]T is the lth coordinate of z

and g(l, 1), . . . , g(l, T ) are the neighbors of l ∈ [L] in g. Each neighbor g(l, t) of l is
associated with zl,t ∈ [M ], the tth element of zl. The pairs {(g(l, t), zl,t)}t=1,...,T form
the set Sl ⊂ [D] × [M ]. An agreement between zl and wl implies that yt = zl,t for all
1 ≤ t ≤ T , i.e. agreement on t out of the D symbols (y1, . . . , yD). An agreement between
z and Cf,g(x) on H coordinates will thus translate to an agreement on (1 − ζdisp)D of
the symbols (y1, . . . , yD)

For this to work we need a good disperser that works for the high min–
entropy setting (where H is very close to L) and tiny degree (the optimal is
O(log(L/H)). Luckily, the recent Zig-Zag construction [8] explicitly constructs
such a graph.

3.2 Analyzing the Parameters

We now find out the parameters of the extractor and disperser to be used in
the construction, so as to get a (1− ε, O( 1

ε ))-list decodable code. These param-
eters must not violate the lower bounds of the extractor and disperser, and the
condition of Lemma 3. Since the components’ lowers bounds have matching non-
explicit upper bounds, the parameters we find give a non-explicit construction
for the desired code.

The Constraints. First, we write down all the constraints. The bounds we give
are both lower bounds, and achievable by non-explicit constructions. We have:
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D = Ω

(
1
ζ2
ext

· log
N

K

)
. (6)

M = O
(
Kζ2

ext

)
. (7)

T = Ω

(
1

ζdisp
· log

L

H

)
. (8)

D = O

(
HT

log 1
ζdisp

)
. (9)

M ·D ≥ L · T
1− ζext − ζdisp

. (10)

The first two equations are the degree and entropy loss of the extractor, the
third and fourth are the degree and entropy loss of the disperser, and the fifth
is the construction bound that guarantees that the set S is small in [D]× [M ].

A Specific Choice of Parameters. We now choose parameters. We first set
ζext, ζdisp to be small constants, say we set both to be 1

4 . In order to get a
(1− ε, O( 1

ε ))-list decodable code we set K to be K = Θ( 1
ε ). With these choices

we have D = Θ(log(N)), and M = Θ(K) = Θ( 1
ε ). We also set H

L = ε. This
implies that T = Θ(log( L

H )) = Θ(log 1
ε ). To satisfy Equation (9) we need to take

H = Θ(D
T ) = Θ( log(N)

log 1
ε

) which implies that L = H
ε = Θ( log(N)

ε·log( 1
ε ) ). Finally, we

check Equation (10). We see that M ·D = Θ( log(N)
ε ) and L · T = Θ( log(N)

ε ), so
with the proper choice of constants the equation holds. We let N = 2n and ε > 0
be our basic parameters. We summarize all other parameters as functions in n
and ε. We have,

K = Θ

(
1
ε

)
. (11)

D = Θ (n) . (12)

M = Θ

(
1
ε

)
. (13)

L = Θ

(
n

ε · log(1
ε )

)
. (14)

H = Θ

(
n

log(1
ε )

)
. (15)

T = Θ

(
log

1
ε

)
. (16)

Thus, rate = log N
L·T log M is Θ

(
ε

log( 1
ε )

)
, and the alphabet size |Σ| = MT is

2O(log2( 1
ε )). This proves that using the best implicit disperses one gets the pa-

rameters stated in footnote of Theorem 2.
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4 Explicit Constructions

We now make the construction explicit by plugging in explicit disperser and
explicit strong extractor. Naturally, the parameters deteriorate. As before, we
set the extractor and disperser errors to be constants, say ζext = ζdisp = 1

4 . We
note that (10) now becomes, L · T ≤ 1

2 ·M ·D

4.1 Using Explicit High Min–entropy Optimal Loss Disperser

As suggested by the parameters chosen in 3.2, the construction requires a high
min–entropy disperser with optimal entropy loss. Such a disperser is given by
[8] in the extractors’ analogue of the Zig-Zag construction. Specifically:

Fact 6 ([8]) For every L and ε > 1√
L
, there exists an explicit construction

of (εL, 1
4 )-disperser g : [L]× [T ] → [D], with T = 2polyloglog( 1

ε ), and entropy loss
εL·T

D = O(1).

We now prove Theorem 2:

Proof. The disperser from Fact 6 has Θ(1) entropy loss. Let C1, C2 be the
constants which bound this entropy loss from below and from above accordingly.
Let C3 be the constant behind the extractor degree O(·) notation from the
assumption, where D = O(logN).

Let ε > 0, and T = 2polyloglog( 1
ε ) as in Fact 6. We let M = 2·C2

ε , N >

2
2T

ε·C3(C1+C2) , D = C3 logN , L = C1+C2
2 · D

εT and K = Θ(M). By the choice of
N , we have that ε > 1√

L
. Thus, by Fact 6 there is an explicit construction of

(εL, 1
4 )-disperser g : [L]× [T ] → [D] and by the assumption there is a (K, 1/4)-

strong extractor f : [N ]× [D] → [M ]. Finally, by the choice of M , LT ≤ 1
2MD,

and we satisfy constraint (10). Lemma (3) now gives the desired list decodable
code. � 

4.2 Using an Explicit Extractor

As mentioned in [1], and shown in Sect. 5, in order to keep the rate strictly
greater than zero, we need an extractor with degree D = O(logN). The best
explicit construction to date of a strong extractor, which achieves the required
degree is due to [11].

Fact 7 ([11]). For Every m =m(n), k = k(n) and ζ= ζ(n) such that
3m

√
n log(n/ζ) ≤ k ≤ n, there is an explicit family of (k, ζ)-strong extractors

En : {0, 1}n × {0, 1}d → {0, 1}m with d = logn+O(log m
ζ ).

Denoting N = 2n, K = 2k, D = 2d, and M = 2m, Plugging the above
extractor in the construction, we prove Theorem 4:

Proof. Let ε > 0, T = 2polyloglog( 1
ε ) as in Fact 6. Let C1, C2 be as in the proof

of Theorem 2. Let C3 be the constant behind the extractor degree O(·) notation
from Fact 7, where d = logn+O(log m

ζ ).
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Let M = 2·C2
ε , N > 2

2T

ε·(C1+C2)·22·C3 ·(log M)C3 , such that 2
√

log N
log log N > M6. Let

K = M6
√

log N log log N , D = 22·C3 logN(logM)C3 and L = C1+C2
2 · D

εT . By Fact
7 and by the choice of N , K and M there is an explicit (K, 1

4 )-strong extractor
f : [N ]× [D] → [M ]. By the choice of N , 1√

L
< ε and there is an explicit (εL, 1

4 )
disperser g : [L]× [T ] → [D]. Finally, by the choice of M we have LT ≤ 1

2MD,
and constraint (10) is satisfied. Applying Lemma 3 gives the desired code.

Encoding an element x ∈ [N ] is consisted of finding Γf (x), and finding
Γg(l) = {g(l, j)|j ∈ [T ]} for each l ∈ [L]. Thus, the explicitness of the code
is straightforward from the explicitness of the disperser g and the extractor f
above. � 

5 On the Optimality of the Parameters Choice

We now take a closer look at the parameters. Specifically, we show that the
parameters chosen in Sect. 3.2, which give good but sub optimal rate and alpha-
bet size w.r.t. the non explicit construction, are the best possible in the above
construction. The following claim summarizes the various relations between the
parameters and their optimality.

Lemma 4. In the construction given in Sect. 3, for any choice of parameters
satisfying error rate of 1− ε the following holds:

1. Decoding list size of O( 1
ε ) and rate bounded away from zero implies that the

rate and alphabet size cannot be better (up to constant factor) than those in
Sect. 3.2.

2. Decoding list size of O( 1
ε ) implies disperser and extractor with optimal en-

tropy loss (namely, HT
D = O(1) and K

M = O(1)).
3. An almost optimal rate of O( ε

log 1
ε

) implies extractor’s degree D = O(logN).

4. Almost optimal rate of O( ε
log 1

ε

) and |Σ| = 2O(log2 1
ε ) imply an optimal en-

tropy loss disperser (namely, H·T
D = O(1)).

For lack of space we give only the proof of 1.

Proof. Having an error rate of 1−ε, we have H = εL. We first show that M must
be Θ( 1

ε ): Decoding list of size 1
ε implies that K = 1

ε , and by (7) M = O(K) =
O( 1

ε ). By (10) M ≥ L·T
D . Since L = H

ε , and since (9) implies T = Ω(D
H ), we

have M ≥ L·T
D = Ω( 1

ε ). Altogether M = Θ( 1
ε ). By the construction, rate =

log N
L·T log M , (10) implies L · T ≤ M · D, and so rate ≥ log N

M ·D log M = Θ( ε log N
D log 1

ε

).
Thus, in order to bound the rate away from zero, we must take D = O(logN),
which gives rate = Ω( ε

log 1
ε

). As for the alphabet size |Σ| = MT . M = Ω( 1
ε ),

and by (8) T = Ω(log 1
ε ), thus, |Σ| = ( 1

ε )Ω(log 1
ε ) � 
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The Power of Commuting with Finite
Sets of Words
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Abstract. We show that one can construct a finite language L such that
the largest language commuting with L is not recursively enumerable.
This gives a negative answer to the question raised by Conway in 1971
and also strongly disproves Conway’s conjecture on context-freeness of
maximal solutions of systems of semi-linear inequalities.

1 Introduction

In this paper we address the question whether the largest solution of any lan-
guage equation of the form XL = LX is regular provided L is a finite or regular
language. It is known that in several algebraic structures related to algebras of
formal languages, two elements commute if and only if they can be generated
by the same element. For instance, two words commute if and only if they are
powers of the same word (due to the defect theorem) and such a characteriza-
tion was proved valid also for polynomials and formal series in non-commuting
variables over a field (in particular, for multisets of words) by Bergman [2] and
Cohn [4], respectively. But in the case of languages the situation is completely
different.

Systems of language equations and inequalities were intensively studied es-
pecially in connection with context-free languages since these languages can be
elegantly described as components of least solutions of systems of explicit poly-
nomial equations, i.e. equations with the operations of union and concatenation.
Much less attention was devoted to implicit language equations and particularly
to their maximal solutions. Such issues were first addressed by Conway [5], who
observed that inequalities of the form E ⊆ L, where E is a regular function
of variables and L is a regular language, possess only finitely many maximal
solutions, all of them are regular and computable. In particular, this leads to
an algorithm for calculating best approximations of a given regular language by
other given languages.
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Regular solutions of systems of inequalities generalizing regular grammars
were studied for example by Leiss [11]. Baader and Küsters [1] used largest
solutions of systems of linear equations, i.e. equations of the form

K0 ∪K1X1 ∪ · · · ∪KnXn = L0 ∪ L1X1 ∪ · · · ∪ LnXn ,

where K0, . . . ,Kn, L0, . . . , Ln are regular languages, for dealing with unification
of concept descriptions; they proved that the largest solution of each such system
is regular and its computation is an ExpTime-complete problem. In [9] well
quasi-orders of free monoids were used by the author to prove that all maximal
solutions are regular for a large class of systems of inequalities where all constants
are languages recognizable by finite simple semigroups. An attempt to initiate
development of a unified theory of general language equations has been made
by Okhotin; in particular, he considered maximal solutions of standard systems
of equations defining context-free languages and related classes [14] and proved
that recursive (recursively enumerable, co-recursively enumerable) languages are
exactly languages definable as unique (smallest, largest) solutions of systems of
implicit language inequalities using concatenation and all Boolean operations [13]
and that each such language can be encoded even in a single explicit equation
and precisely defined by a system of two explicit equations [15].

The problem of regularity of the largest language commuting with a given
regular language was formulated already by Conway [5–p. 55 and 124] in 1971.
There are actually two variants of the problem depending on whether we allow
the resulting language to contain the empty word or not. The largest solution
of the equation XL = LX is denoted C(L) and its largest solution without the
empty word is denoted C+(L). The languages C(L) and C+(L) are in general
different and no direct relation between them (except for the obvious inclusion
C+(L) ⊆ C(L)) has been found yet. The problem was recently studied in several
articles (e.g. [16, 3, 6]), but affirmative answers were given only for regular prefix
codes [16] and at most ternary sets of words [6]. Moreover, it even remained an
open problem whether the largest language commuting with a given finite set
of words is recursive. On the other hand, as observed in [6], the complements of
languages C(L) and C+(L) are recursively enumerable provided the language L
is recursive (actually, this is a special case of a general result about systems of
language equations due to Okhotin [13]). A summary of known results concern-
ing commutation of languages and some examples can be found in the recent
survey [8].

In this paper we give the most negative possible answer to Conway’s problem
by showing that there exists a finite language L such that C(L) is not recursively
enumerable. More precisely, we show that the complement of the language com-
puted by an arbitrary Minsky machine can be encoded into a solution of a com-
mutation equation. This contrasts with the fact that the largest solution of the
inequality XK ⊆ LX is regular provided the language L is regular, as demon-
strated in [9]. We formulate our results for the case of languages C+(L) too and
further we show that for a regular language L, the difference C(L) \ C+(L) also
need not be recursively enumerable, which answers a question posed in [7]. In
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addition, our results disprove Conway’s conjecture [5–p. 129] stating that every
maximal solution of a system of so-called semi-linear inequalities is context-free.

The aim of this extended abstract is to demonstrate the ideas used in con-
structing a finite language L such that C(L) is not recursively enumerable. In
Section 3 we deal with a simpler situation where L is only required to be a star-
free language. First, we give an example of a star-free language L such that C(L)
is non-regular and then we describe how the construction can be improved to
show that C(L) even need not be recursively enumerable. Let us mention that
this is in accord with the results obtained in [9]: complicated cases arise for star-
free languages (or equivalently, languages recognizable by aperiodic monoids),
whereas maximal solutions of such equations over languages recognizable by
finite groups are always regular. Section 4 is devoted to the case of finite lan-
guages; by encoding the example from the beginning of Section 3 into finitely
many words, we show that the language C(L) can be non-regular even for a fi-
nite language L. The techniques of Sections 3 and 4 can then be combined to
obtain a finite set of words L such that C(L) is not recursively enumerable. The
final construction, which is not included in this presentation, as well as detailed
proofs of the results can be found in the full version of the paper [10].

Basic notions employed in our considerations are recalled in the following
section. For a more comprehensive introduction to formal languages the reader
is referred to [17].

2 Preliminaries

We denote the sets of positive and non-negative integers by IN and IN0, respec-
tively. Throughout the paper we consider a finite alphabet A. As usual, we write
A+ for the set of all non-empty finite words over A, and A∗ for the set obtained
from A+ by adding the empty word ε. A word u ∈ A∗ is called a factor of v ∈ A∗

if v = wuŵ for some words w, ŵ ∈ A∗; it is called a prefix (suffix ) of v if v = uw
(v = wu, respectively) for some w ∈ A∗.

Languages over the alphabet A are arbitrary subsets of A∗ and we say that
a language L ⊆ A∗ is ε-free if ε /∈ L. The basic operation on languages is
concatenation defined by the rule K · L = {uv | u ∈ K, v ∈ L} and we use the
standard notation L+ =

⋃
m∈IN L

m and L∗ = L+ ∪ {ε}. Regular languages are
languages definable by finite automata, or equivalently, by rational expressions.
The basic tool for proving non-regularity of languages is the well-known pumping
lemma (see e.g. [17]). A language L ⊆ A∗ is called star-free if it can be obtained
from finite languages using the operations of finite union, complementation and
concatenation; in particular, for every B ⊆ A, the languages B+ and B∗ are
star-free.

For every language L over A we denote by C(L) the largest language over A
which commutes with L and by C+(L) the largest ε-free language over A which
commutes with L. Such languages C(L) and C+(L) certainly exist for every
language L since the union of arbitrarily many languages commuting with L
commutes with L as well. We clearly always have C+(L) ⊆ C(L), L∗ ⊆ C(L) and
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L+ ⊆ C+(L). Further, the languages C(L) and C+(L) are easily seen to be closed
under concatenation and so they form a submonoid and a subsemigroup of the
free monoid A∗, respectively. Another interesting property of the languages C(L)
and C+(L) is that they remain unchanged when we replace L with its closure
under concatenation, i.e. C(L) = C(L+) and C+(L) = C+(L+).

3 Star-Free Languages

The aim of this section is to construct a star-free language L such that the
largest solution of the equation XL = LX is not recursively enumerable. This is
achieved by encoding an arbitrary Minsky machineM into a star-free language L
in such a way that C(L) ∩ uv∗w = {uvnw | n /∈ L(M)}, where u, v and w are
certain words and L(M) ⊆ IN0 is the set computed by the machine M. Because
the construction is rather technical, let us first present it in a simplified form
which shows that the largest language commuting with a given star-free language
need not be regular.

Example 1. Let us take the alphabet A = {a, b, c, e, ê, f, f̂ , g, ĝ}. We consider
auxiliary languages

M = efga+ba∗ ∪ ga∗ba∗ĝf̂ ∪ a∗ba∗ĝf̂ ê ∪ fga∗ba∗ĝ ,

L0 = (A \ {c})∗b(A \ {c})∗ \ ({efg, fg, g, ε} · a∗ba∗ · {ε, ĝ, ĝf̂ , ĝf̂ ê})

and define a star-free language

L = {c, ef, ga, e, fg, f̂ ê, aĝ, ê, ĝf̂ , fgbaĝ} ∪A∗bA∗bA∗ ∪ L0 ∪ cM ∪Mc .

With the aim of verifying that the language C(L) is not regular, let us first
observe that fgambanĝf̂ /∈ C(L) for every m,n ∈ IN0. Indeed, assuming the
converse, we obtain c2fgambanĝf̂ ∈ L2·C(L) = C(L)·L2, which is a contradiction
because this word has no suffix belonging to L2.

Now we are going to show that efgamban /∈ C(L) for every m,n ∈ IN0
satisfying m < n. We proceed by induction on m. If m = 0 then the con-
verse of this fact implies cefgban ∈ L · C(L) = C(L) · L, which is impossi-
ble as no suffix of the word cefgban lies in L. Let m ≥ 1 and suppose we
already know that efgam−1ban−1 /∈ C(L) holds. By way of contradiction, as-
sume efgamban ∈ C(L). Then efgambanĝf̂ ∈ C(L) · L = L · C(L). Since
there are just two prefixes of efgambanĝf̂ which belong to L, we have either
fgambanĝf̂ ∈ C(L) or gambanĝf̂ ∈ C(L). Due to our initial observation, the for-
mer case is false. From the latter one we deduce gambanĝf̂ ê ∈ C(L)·L = L·C(L).
This immediately gives am−1banĝf̂ ê ∈ C(L) and therefore fgam−1banĝf̂ ê ∈
L · C(L) = C(L) · L. The word fgam−1banĝf̂ ê has exactly two suffixes from L
and repeating the previous argument we get fgam−1banĝ ∈ C(L). Consequently
efgam−1banĝ ∈ L · C(L) = C(L) · L, and since we have n ≥ 2, this finally leads
to efgam−1ban−1 ∈ C(L), contradicting our assumption.
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On the other hand, the language

K = L∗ ∪ {efganban, ganbanĝf̂ , an−1banĝf̂ ê, fgan−1banĝ | n ∈ IN}

commutes with L because one can easily calculate that both products KL and
LK are equal to the language

L+ ∪ {efganbanĝf̂ , ganbanĝf̂ ê, fgan−1banĝf̂ ê, efgan−1banĝ | n ∈ IN} ;

notice that this holds due to the fact efgbaĝ ∈ L2. Therefore the word efganban

belongs to C(L) for all n ∈ IN.
Altogether, we have demonstrated both efganban ∈ C(L) for n ∈ IN and

efgamban /∈ C(L) for m < n, hence the language C(L) cannot be regular due to
the pumping lemma.

Notice that in the previous example we have in fact encoded into the lan-
guage L two counters (as powers of a) and the operation of simultaneous decre-
mentation of both counters together with testing whether both counters are
equal to zero. The following construction of a language L such that C(L) is not
recursively enumerable is based essentially on the same idea.

Theorem 1. There exists a star-free language L such that

(i) the largest language commuting with L is not recursively enumerable.
(ii) the difference between the largest language commuting with L and the

largest ε-free language commuting with L is not recursively enumerable.

Sketch of the proof. Let M be a Minsky machine [12] which computes a non-
recursive set of non-negative integers. The machine consists of two counters and
a finite set of states Q, which is a disjoint union

Q = T1 ∪ T2 ∪ I1 ∪ I2 ∪D1 ∪D2 ∪ {1} ,

where 1 is the terminal state. We assume that the initial state 0 of M belongs
to I1. A configuration of the machine is a triple (i,m, n), where i ∈ Q and
m,n ∈ IN0 are the values stored in the counters. The step performed by the
machine in a given state is determined by the instruction associated with this
state:

– From the state i ∈ Tk, k ∈ {1, 2}, the machine goes to the state τ0(i) if
the counter number k is empty and to the state τ1(i) otherwise, where
τ0(i) �= i and τ1(i) �= i are distinct states.

– When the machine is in the state i ∈ Ik (or i ∈ Dk), it increments (decre-
ments, respectively) the counter number k and goes to the state τ(i) �= i.

– When the machine reaches the state 1, the computation stops.

Initial configurations of M are configurations of the form (0, 0, n), n ∈ IN0. The
machine computes the set L(M) ⊆ IN0 of all numbers n such that the machine
stops in the configuration (1, 0, n) starting from some initial configuration. Since
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we have chosen M such that L(M) is not recursive, its complement IN0 \L(M)
is not recursively enumerable. In addition, let us assume that the initial state 0
of M cannot be reached from the other states and if for some i, j ∈ Q either
τ(i) = j or τ0(i) = j or τ1(i) = j, then neither τ(j) = i nor τ0(j) = i nor
τ1(j) = i, i.e. given the two states involved in one step of a computation, it is
uniquely determined which of these steps is the original one and which is the
resulting one.

Consider the alphabet

A = {a, b, c} ∪ {di | i ∈ Q} ∪ {ei, fi, gi | i ∈ I1 ∪ I2 ∪D1 ∪D2} .

Every configuration (i,m, n) of the machine will be represented by the word
am+1ban+1d2

i . If a configuration is reachable from some initial configuration,
then the corresponding word should not belong to C(L). Since in our encoding
using commutation of languages we have no means of directing a computation,
the same will hold also for all configurations from which some configuration
reachable from an initial configuration is eventually obtained.

In order to construct the language L, we introduce several auxiliary languages
first. For each state i ∈ Q, we consider a language Mi which can be used to
move occurrences of the letter di from one side of a word to the other and in
this way enables us to link steps of a computation modifying different counters:
let M ′

0 = a+aba+d2
0 and for i ∈ Q \ {0} let

M ′
i = d2

i a
+ba+ ∪ dia

+ba+di ∪ a+ba+d2
i ;

then define Mi = cM ′
i ∪M ′

ic for every i ∈ Q.
The following languages Ni describe words appearing during manipulations

corresponding to performing the instruction associated with the state i; in the
case of i ∈ I1 ∪ I2 ∪D1 ∪D2, there are also four short words whose addition and
removal transforms one of these words into another.

For i ∈ T1 ∪ T2 let

N ′
i = diaba

+dτ0(i) ∪ dia
+aba+dτ1(i)

and define

Ni = cN ′
i ∪N ′

ic ∪A∗dia
+aba+dτ0(i)A

∗ ∪A∗diaba
+dτ1(i)A

∗ .

For i ∈ I1 ∪ I2 let

N ′
i = gia

+ba+di ∪ eifigia
+ba+ ∪ figia

+ba+dτ(i)

and define

Ni = cN ′
i ∪N ′

ic ∪ {eifi, gia, ei, figi}
∪ figia

+ba+d2
i ∪ gia

+ba+d2
τ(i) ∪ ba+d2

i .

And dually, for i ∈ D1 ∪D2 let

N ′
i = gia

+ba+dτ(i) ∪ eifigia
+ba+ ∪ figia

+ba+di
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and define

Ni = cN ′
i ∪N ′

ic ∪ {eifi, gia, ei, figi}
∪ figia

+ba+d2
τ(i) ∪ gia

+ba+d2
i ∪ ba+d2

τ(i) .

The next language describes possible consecutive states:

L′ =
⋃
{{d2

i , di, ε} · a∗ba∗ · {ε, di, d
2
i } | i ∈ Q, i �= 0}

∪
⋃
{{d2

i , di, ε} · a∗ba∗ · {ε, dτ1(i), d
2
τ1(i), dτ0(i), d

2
τ0(i)} | i ∈ T1}

∪
⋃
{{d2

τ0(i), dτ0(i), d
2
τ1(i), dτ1(i), ε} · a∗ba∗ · {ε, di, d

2
i } | i ∈ T2}

∪
⋃
{{eifigi, figi, gi, ε} · a∗ba∗ · {ε, dτ(i), d

2
τ(i), di, d

2
i } | i ∈ I1 ∪D1}

∪
⋃
{{d2

i , di, d
2
τ(i), dτ(i), ε} · a∗ba∗ · {ε, gi, gifi, gifiei} | i ∈ I2 ∪D2} .

Finally we define a star-free language

L = {di | i ∈ Q} ∪ {c} ∪A∗bA∗bA∗

∪ (A \ {c})∗b(A \ {c})∗ \ L′

∪
⋃
{Mi | i ∈ Q}

∪
⋃
{Ni | i ∈ T1 ∪ I1 ∪D1}

∪
⋃
{rev(Ni) | i ∈ T2 ∪ I2 ∪D2} ,

where rev(Ni) denotes the reverse of the language Ni.
Let us briefly sketch out how computations of the Minsky machine are sim-

ulated by manipulations of words from A+. If some word u obtained during our
manipulations is multiplied from some side (say from the left) by a word v ∈ L,
one usually gets a word from L with just few exceptions corresponding to correct
computations of the machine. Such exceptional products vu then usually have
only one suffix v′ belonging to L whose removal does produce a word u′ which
can potentially belong to C(L). In this way we achieve that u lies in C(L) if and
only if u′ lies in C(L). Therefore every computation of the machine M preserves
the properties that the word corresponding to a configuration belongs, or does
not belong, to C(L).

For instance, starting from a word u = am+1ban+1d2
i corresponding to the

state i ∈ I1, we can multiply this word by gia ∈ L from the left and then by
removing the word di ∈ L from the right we get the word u′ = gia

m+2ban+1di,
which is in C(L) if and only if u is in C(L). Now the first counter is already in-
cremented in the word u′ and the occurrence of the letter gi on the left ensures
that the following manipulations of u′ either return us back to u (if we multiply
by di from the right) or continue with simulating the step of M performed in
the state i by adding the word eifi to the left, removing the remaining occurrence
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of di on the right, and then multiplying by dτ(i) from the right, eventually
reaching the word am+2ban+1d2

τ(i).
The language L′ describes which words are allowed to occur during these

manipulations. Each of these words consists of one occurrence of b in the middle
surrounded by several occurrences of a and a block of letters corresponding to
some state of M on each side; notice that on each side of a word all letters have
the same indices. Those words which do not correspond to a correct computation
of M, but can be obtained from such a word by concatenating with a word
from L, are included in L.

On the other hand, concatenating with the word c ∈ L can be used to show
that the only eligible results of removing a suffix or a prefix belonging to L
are words from the languages M ′

i and N ′
i . In particular, the letter c serves for

proving that all words corresponding to initial configurations do not belong to
C(L), which is consequently true also for all configurations reachable from initial
configurations; this is achieved by not including the words from the language
aba+d2

0 into M ′
0.

Restating the previously described ideas formally, in order to show that both
sets C(L) and C(L)\C+(L) are not recursively enumerable, it is enough to verify
that the equivalences

n /∈ L(M) ⇐⇒ aban+1d2
1 ∈ C(L) ⇐⇒ aban+1d2

1 ∈ C(L) \ C+(L) (1)

hold for every non-negative integer n ∈ IN0.
First notice that if some word of the form aban+1d2

1 belongs to C+(L), then

aban+1d2
1c ∈ C+(L) · L = L · C+(L) ,

which is impossible since aban+1d2
1c /∈ LA+. Therefore the second condition

of (1) is equivalent to the third one.
The verification of the equivalence of the first two conditions of (1) pro-

ceeds similarly to Example 1. The converse implication is obtained by proving
am+1ban+1d2

i /∈ C(L) for every configuration (i,m, n) reachable from some initial
configuration, which is achieved by induction with respect to the length of a run
of M reaching (i,m, n) from an initial configuration.

In order to verify the direct implication, we consider the set C of all config-
urations (i,m, n) of M such that there is no computation of M transforming
(i,m, n) to a configuration reachable from some initial configuration. We use this
set to construct a language K which commutes with L and contains the word
aban+1d2

1 for all n /∈ L(M). In the definition of K we employ the same auxiliary
languages as in the definition of L. For m,n ∈ IN0, we denote

Km,n = (A \ {a})∗am+1ban+1(A \ {a})∗

and define

K = L∗ ∪
⋃
{M ′

i ∩Km,n | (i,m, n) ∈ C}

∪
⋃
{N ′

i ∩Km,n | i ∈ T1 ∪D1, (i,m, n) ∈ C}
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∪
⋃
{N ′

i ∩Km,n | i ∈ I1, (τ(i),m, n) ∈ C}

∪
⋃
{rev(N ′

i) ∩Km,n | i ∈ T2 ∪D2, (i,m, n) ∈ C}

∪
⋃
{rev(N ′

i) ∩Km,n | i ∈ I2, (τ(i),m, n) ∈ C} .

Because the languages K and L can be proved to commute, we have K ⊆ C(L).
And since aban+1d2

1 ∈ M ′
1 ∩ K0,n ⊆ K holds for every n /∈ L(M), we can

immediately deduce aban+1d2
1 ∈ C(L). � 

The following lemma establishes a connection between largest solutions and
largest ε-free solutions of commutation equations. Namely, we construct for each
language L a language L̂ such that the largest language commuting with L can
be easily reconstructed from the largest ε-free language commuting with L̂. The
proof of the lemma consists of a direct verification and therefore it is omitted.

Lemma 1. Let L be an arbitrary ε-free language over an alphabet A and let
# /∈ A be a new letter. Consider the alphabet Â = A ∪ {#} and injective homo-
morphisms λ, ρ : A∗ → Â∗ defined by the rules λ(a) = #a and ρ(a) = a# for
every a ∈ A. Then the language

L̂ = λ(L) ∪ ρ(L) ∪ {#} ∪ Â∗ ·#2 · Â∗

over Â satisfies
C+(L̂) = λ(C(L)) ·# ∪ L̂+ .

In particular, since L̂+ ∩ λ(A∗) ·# = λ(L∗) ·#, this implies

C+(L̂) ∩ λ(A∗) ·# = λ(C(L)) ·# .

Now we apply this lemma to the language L constructed in Theorem 1 in
order to obtain a star-free language L̂ such that C+(L̂) is not recursively enu-
merable.

Theorem 2. There exists a star-free language L̂ such that the largest ε-free
language commuting with L̂ is not recursively enumerable.

Proof. Theorem 1 provides us with a star-free language L such that C(L) is
not recursively enumerable. Let L̂ be the language obtained from L by means
of Lemma 1. Then a word u ∈ A∗ belongs to C(L) if and only if the word
λ(u)# belongs to C+(L̂). This implies that the language C+(L̂) is not recursively
enumerable. And since the image of any star-free language under an injective
homomorphism is star-free, it is clear that L̂ is star-free as required. � 

4 Finite Languages

In this section we show how the construction described in the previous section
can be improved to obtain a finite set of words L such that both languages C(L)
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and C+(L) are not recursively enumerable. Because the techniques needed in the
case of finite languages are more complicated, we present here only a construction
demonstrating that C(L) and C+(L) need not be regular.

Theorem 3. There exists a finite language L such that neither the largest lan-
guage commuting with L nor the largest ε-free language commuting with L is
regular.

Sketch of the proof. The basic idea of the proof is to encode the language L
defined in Example 1 into a finite set of words. We achieve this by introducing
a new letter s to be used for encoding states of a finite automaton recognizing
the language cM ∪ Mc of Example 1. With this aim, consider the alphabet
A = {a, â, b, c, e, ê, f, f̂ , g, ĝ, s} and let us denote by B its subset A\{s}. Further,
let ϕ : B∗ → A∗ be the homomorphism defined by the formula ϕ(x) = sxs17 for
all x ∈ B.

First we define an auxiliary language

L′
9 = {ef, fg, ga, aa, ab, bâ, ââ, âĝ, ĝf̂ , f̂ ê} ,

which describes pairs of neighbouring letters in the language

{efg, fg, g, ε} · a+bâ+ · {ε, ĝ, ĝf̂ , ĝf̂ ê}

similar to the one used in Example 1. Let L̂ = s≤18 · B · s≤18 ∪ s≤18, where
s≤18 = {ε, s, s2, . . . , s18}, and let the language L be the union of the following
languages Lk for k = 0, . . . , 14:

L0 = ϕ({c, ef, ga, e, fg, f̂ ê, âĝ, ê, ĝf̂ , fgabâ2ĝ}) ,
L1 = {scs18es18fs18gs18as18as16, s2as16, s2bs15, s3âs15, s3âs17} ,
L2 = {scs18gs14, s4as14, s4bs13, s5âs13, s5ĝs18f̂ s17} ,
L3 = {scs18as12, s6as12, s6bs11, s7âs11, s7ĝs18f̂ s18ês17} ,
L4 = {scs18fs18gs10, s8as10, s8bs9, s9âs9, s9ĝs17} ,
L5 = {ses18fs18gs18as18as8, s10as8, s10bs7, s11âs7, s11âs18cs17} ,
L6 = {sgs6, s12as6, s12bs5, s13âs5, s13ĝs18f̂ s18cs17} ,
L7 = {sas4, s14as4, s14bs3, s15âs3, s15ĝs18f̂ s18ês18cs17} ,
L8 = {sfs18gs2, s16as2, s16bs, s17âs, s17ĝs18cs17} ,
L9 = L̂ · {xs18y | x, y ∈ B \ {c}, xy /∈ L′

9} · L̂ ,

L10 = L̂ · (B \ {c}) · s18cs18 · (B \ {c}) · L̂ ,

L11 = L̂ · s19 · L̂ ,

L12 = L̂ ·B · s≤17 ·B · L̂ ,

L13 = (s≤18 ·B)2 ∪ (s≤18 ·B)3 ,

L14 = (B · s≤18)2 ∪ (B · s≤18)3 .
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In essence, instead of the words that we used in Example 1, we work here
with their ϕ-images. The languages L11 through L14 ensure that the language
L+ contains all words which do not belong to ϕ(B+)∪s≤18, i.e. which are neither
of the form sb1s

18b2s
18 · · · s18bks17, for k ∈ IN and b1, . . . , bk ∈ B, nor si, for

0 ≤ i ≤ 18. More precisely, every word which possesses a factor belonging to one
of the languages L11 and L12 lies in L+ because this factor can be multiplied
by appropriate words from the languages L13 from the left and L14 from the
right (possibly with some words from L11 inserted in order to build blocks of
occurrences of s of length more than 18). In this way we include in L+ all words
containing more than 18 consecutive occurrences of s and all words with less
than 18 occurrences of s between two letters from B. Similarly, we deal with
certain sequences of letters from B: factors corresponding to the pairs described
by the set L′

9 are determined by the language L9 and the language L10 serves
for dealing with occurrences of c between letters from B \ {c}.

Notice that both languages L13 and L14 contain only words with at least two
occurrences of letters from B. This enables us to apply the same argument that
we used in Example 1 where certain words were proved not to belong to C(L) by
concatenating with c ∈ L; the role of this letter is played by the word ϕ(c) in our
encoding and the argument works well only if we ensure that multiplication by
ϕ(c) on one side of a word u cannot be compensated by removing a word of the
same length as ϕ(c) from the other side of u. This restriction on the languages
L13 and L14 is also the reason for introducing the language L̂ to both sides of
the languages L9 through L12; this language takes care of those words where the
factor under consideration is too close to a margin of the word.

The finite set of words from the definition of the language L in Example 1 is
encoded in L0 simply by taking the ϕ-images. And for each part of the language
cM ∪Mc of Example 1, all of its elements are decomposed into finitely many
common segments. Then we ensure that these segments can be put together only
in the appropriate order by choosing in the definition of languages L1 through L8
several different powers of s; if incompatible segments are concatenated, a block
of occurrences of s of length different from 18 is produced and the resulting word
cannot belong to ϕ(B+).

Finally, the reason why the language C+(L) is also non-regular is that every
word u ∈ C(L) \ L∗ used in the proof is long enough to guarantee that the
languages L · u and u ·L contain no words from L and so the empty word is not
essential in C(L). � 

Theorems 1 and 3 state that there exist a star-free language L such that
C(L) is not recursively enumerable and a finite language L such that C(L) is not
regular, respectively. Actually, the constructions of Theorems 1 and 3 can be
combined to prove that even for a finite language L, none of the languages C(L)
and C+(L) need to be recursively enumerable:

Theorem 4. There exists a finite language L such that neither the largest lan-
guage commuting with L nor the largest ε-free language commuting with L is
recursively enumerable.
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Abstract. It is well-known that no classical algorithm can solve ex-
actly (i.e., in bounded time without error) the leader election prob-
lem in anonymous networks. This paper gives two quantum algorithms
that, when the parties are connected by quantum communication links,
can exactly solve the problem for any network topology in polynomial
rounds and polynomial communication/time complexity with respect to
the number of parties. Our algorithms work well even in the case where
only the upper bound of the number of parties is given.

1 Introduction

Quantum computation and communication are turning out to be much more
powerful than the classical equivalents in various computational tasks. Perhaps
the most exciting developments in quantum computation would be polynomial-
time quantum algorithms for factoring integers and computing discrete loga-
rithms [14], and the most remarkable ones in quantum communication would
be quantum key distribution protocols [5, 4] that have been proved to be un-
conditionally secure [12, 15, 16]. Many other algorithms and protocols have been
proposed to show the strength of quantum computation and communication,
such as cryptographic results (e.g., [9, 8, 1]) and communication complexity re-
sults (e.g., [13, 7, 3]). This paper sheds light on another significant superiority
of quantum computing over the classical equivalent in the setting of traditional
distributed computing.

The leader election problem is a core problem in traditional distributed com-
puting in the sense that, once it is solved, it becomes possible to efficiently
solve many substantial problems in distributed computing (see, e.g., [11]). The
goal of the leader election problem is to elect a unique leader from among dis-
tributed parties. Obviously, it is possible to deterministically elect the unique
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leader when each party has a unique identifier, and many classical deterministic
algorithms with this assumption have been proposed. As the number of parties
grows, however, it becomes difficult to preserve the uniqueness of the identifiers.
Thus, other studies have examined the cases wherein each party is anonymous,
i.e., each party has the same identifier [2, 10, 17, 18], as an extreme case. In this
setting, no classical exact algorithm (i.e., an algorithm that runs in bounded
time and solves the problem with zero error) exists for a broad class of network
topologies including regular graphs, even if the network topology (and thus the
number of parties) is known to each party prior to algorithm invocation [17].
Moreover, to the best of our knowledge, no zero-error probabilistic algorithm is
known that works for any topology and runs in time/communication expected
polynomial in the number of parties. Here, and throughout this paper, we de-
note by time complexity the maximum number of steps, including steps for
the local computation, necessary for each party to execute the protocol, where
the maximum is taken over all parties. In synchronous networks, the number
of simultaneous message passing is also an important measure. Each turn of
simultaneous message passing is referred to as a round.

This paper considers the model in which the network is anonymous and
consists of quantum links, and proposes two exact quantum algorithms both
of which elect a unique leader from among n parties in polynomial time for
any topology of synchronous networks. Our first algorithm is simple and runs in
O(n3) time. The total communication complexity of this algorithm is O(n4), but
this includes the quantum communication of O(n4) qubits. To reduce the quan-
tum communication complexity, our second algorithm incurs O(n6(logn)2) time
complexity, but demands the quantum communication of only O(n2 log n) qubits
(plus classical communication of O(n6(logn)2) bits). While our first algorithm
needs Θ(n2) rounds of quantum communication, our second algorithm needs
only one round of quantum communication at the beginning of the protocol to
share sufficient amount of entanglement, and after the first round, the protocol
performs only local quantum operations and classical communications (LOCCs)
of O(n log n) rounds. Both algorithms are easily modified to support their use in
asynchronous networks. Furthermore, both algorithms can be easily modified so
that they work well even when each party initially knows only the upper bound
of the number of parties. This implies that the exact number of parties can be
computed when its upper bound is given. No classical zero-error algorithm exists
in such cases for any topology that has a cycle as its subgraph [10].

2 Preliminaries

A distributed system (or network) is composed of multiple parties and bidirec-
tional classical communication links connecting parties. In a quantum distributed
system, every party can perform quantum computation and communication and
each adjacent pair of parties has a bidirectional quantum communication link
between them. When the parties and links are viewed as nodes and edges, respec-
tively, the topology of the distributed system is expressed by an undirected con-



Exact Quantum Algorithms for the Leader Election Problem 583

nected graph, say, G = (V,E). In what follows, we may identify each party/link
with its corresponding node/edge in the underlying graph for the system, if it
is not confusing. Every party has ports corresponding one-to-one to communi-
cation links incident to the party. Every port of party l has a unique label i,
(1 ≤ i ≤ dl), where dl is the number of parties adjacent to l. More formally, G
has a port numbering, which is a set σ of functions {σ[v] | v ∈ V } such that, for
each node v of degree dv, σ[v] is a bijection from the set of edges incident to v to
{1, 2, . . . , dv}. It is stressed that each function σ[v] may be defined independently
of the others. Just for ease of explanation, we assume that port i corresponds
to the link connected to the ith adjacent party of l. In our model, each party
knows the number of its ports and the party can appropriately choose one of its
ports whenever it transmits or receives a message.

Initially, every party has local information, such as its internal state, and
global information, such as the number of nodes in the system (or its upper
bound). Every party runs the same algorithm, which has local and global infor-
mation as its arguments. If all parties have the same local and global information
except for the number of ports the parties have, the system is said to be anony-
mous. This is essentially equivalent to the situation in which every party has the
same identifier since we can regard the local/global information of the party as
his identifier. If message passing is performed synchronously, such a distributed
system is called synchronous. The unit interval of synchronization is called a
round (see [11] for more detailed descriptions).

Next we define the leader election (LE) problem. Suppose that there is a
distributed system and each party in the system has a variable initialized to 0.
The task is to set the variable of exactly one of the parties to 1 and the variables
of all the other parties to 0. In the case of anonymous networks, Yamashita
and Kameda [17] proved that, if the “symmetricity” (defined in [17]) of the
network topology is more than one, LE cannot be solved exactly (more rigorously
speaking, there are some port numberings for which LE cannot be solved exactly)
by any classical algorithm even if all parties know the topology of the network
(and thus the number of nodes). In fact, for a broad class of graphs such as
regular graphs, the “symmetricity” is more than one. When the parties initially
know only the upper bound of the number of the parties, the result by Itai and
Rodeh [10] implies that LE cannot be solved with zero error by any classical
algorithm (including the one that may not always halt).

3 Quantum Leader Election Algorithm I

For simplicity, we assume that the network is synchronous and each party knows
the number n of parties prior to the algorithm invocation. It is easy to generalize
our algorithm to the asynchronous case and to the case where only the upper bound
N of the number of parties is given, as will be discussed at the end of this section.

Initially all parties are eligible to become the unique leader. The key to solving
the leader election problem in an anonymous network is to break symmetry, i.e.,
to have exactly one party possess a certain state coressponding to the leader.
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First we introduce the concept of consistent and inconsistent strings. Sup-
pose that each party l has a c-bit string xl. That is, the n parties share cn-
bit string x = x1x2 · · ·xn. For convenience, we may consider that each xl ex-
presses an integer, and identify string xl with the integer it expresses. Given a
set E ⊆ {1, . . . , n}, string x is said to be consistent over E if xl has the same
value for all l in E. Otherwise x is said to be inconsistent over E. We also say
that a cn-qubit pure state |ψ〉 =

∑
x αx|x〉 shared by the n parties is consistent

(inconsistent) over E if αx �= 0 only for x that is consistent (inconsistent) over
E. Further, for a positive integer m, we denote the state that is of the form of
(|0m〉+ |1m〉)/

√
2, by the m-cat state.

3.1 The Algorithm

The algorithm repeats one procedure exactly (n− 1) times, each of which is
called a phase. In each phase, the number of eligible parties either decreases or
remains the same, but never increases or becomes zero. After (n− 1) phases the
number of eligible parties becomes one with certainty.

Each phase has a parameter denoted by k, whose value is (n− i+ 1) in the
ith phase. In each phase i, let Ei ⊆ {1, . . . , n} be the set of all ls such that party
l is still eligible. First, each eligible party prepares the state (|0〉+ |1〉)/

√
2, while

each ineligible party prepares the state |0〉. Next every party calls Subroutine A,
followed by partial measurement. This transforms the system state into either
the cat state (|0|Ei|〉+ |1|Ei|〉)/

√
2 shared only by eligible parties, or a state that

is inconsistent over Ei. In the former case, each eligible party calls Subroutine B.
If k equals |Ei|, Subroutine B always succeeds in transforming the |Ei|-cat state
into a state that is inconsistent over Ei. Now, each eligible party l measures his
qubits in the computational basis to obtain (a binary expression of) some integer
zl. Parties then compute the maximum value of zl over all eligible parties l, by
calling Subroutine C. Finally, parties with the maximum value remain eligible,
while the other parties become ineligible. More precisely, each party l performs
Algorithm I described below with parameters “eligible,” n, and dl. The party
who obtains the output “eligible” is the unique leader.

Subroutine A: Subroutine A is essentially for the purpose of checking the con-
sistency of each string that is superposed to a quantum state shared by parties.
We use a commute operator “◦” over a set S = {0, 1, ∗,×} whose operations are
summarized in Table 1. Intuitively, “0” and “1” represent the possible values
all eligible parties will have when the string finally turns out to be consistent;
“∗” represents “don’t care,” which means that the corresponding party has no
information about the values any of eligible parties have; and “×” represents
“inconsistent,” which means that the corresponding party already knows that
the string is inconsistent. Subroutine A is precisely described below.

As one can see from the description of Algorithm I, the content of S is ini-
tially “consistent” whenever Subroutine A is called. Therefore, after every party
finishes Subroutine A, the state shared by parties in their R0s is decomposed
into a consistent state for which each party has the content “consistent” in his
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Algorithm I
Input: a classical variable status, integers n, d
Output: a classical variable status
1. Prepare one-qubit quantum registers R0, R1, and S.
2. For k := n down to 2, do the following:

2.1 If status = “eligible,” prepare the states (|0〉 + |1〉)/
√

2 and |“consistent”〉 in
R0 and S, otherwise prepare the states |0〉 and |“consistent”〉 in R0 and S.

2.2 Perform Subroutine A with R0, S, status, n, and d.
2.3 Measure the qubit in S in the {|“consistent”〉, |“inconsistent”〉} basis.

If it results in |“consistent”〉 and status = “eligible,” prepare the state |0〉 in
R1 and perform Subroutine B with R0, R1, and k.

2.4 If status = “eligible,” measure the qubits in R0 and R1 in the {|0〉, |1〉} basis
to obtain a nonnegative integer z expressed by the two bits; otherwise let
z := −1.

2.5 Perform Subroutine C with z, n, and d to know the maximum value zmax of z
over all parties.
If z 
= zmax, let status := “ineligible.”

3. Output status.

Table 1. The definitions of commute operator “◦”

x y x ◦ y x y x ◦ y x y x ◦ y x y x ◦ y

0 0 0 1 0 × ∗ 0 0 × 0 ×
0 1 × 1 1 1 ∗ 1 1 × 1 ×
0 ∗ 0 1 ∗ 1 ∗ ∗ ∗ × ∗ ×
0 × × 1 × × ∗ × × × × ×

S, and an inconsistent state for which each party has the content “inconsistent”
in his S. Steps 4 and 5 are performed so that the output quantum registers R0

and S are disentangled from work quantum registers X(t)
i s.

Subroutine B: Suppose k parties are still eligible and share the k-cat state
(|0k〉+ |1k〉)/

√
2. Subroutine B has purpose of changing the k-cat state to a

superposition of inconsistent strings, if k is given. Subroutine B is precisely
described as follows, where {Uk} and {Vk} are two families of unitary operators,

Uk = 1√
2

(
1 e−i π

k

−ei π
k 1

)
, Vk = 1√

Rk+1

⎛
⎜⎜⎜⎝

1/
√

2 0
√
Rk ei π

k /
√

2
1/
√

2 0 −
√
Rke

−i π
k e−i π

k /
√

2
√
Rk 0 e−i π

2k Ik

i
√

2R2k
−
√
Rk

0
√
Rk + 1 0 0

⎞
⎟⎟⎟⎠ ,

where Rk and Ik are the real and imaginary parts of ei π
k , respectively.

The point is that the amplitudes of the states |00〉⊗k, |01〉⊗k, |10〉⊗k, and
|11〉⊗k shared by k eligible parties in their registers R0 and R1 are simultaneously
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Subroutine A
Input: one-qubit quantum registers R0,S, a classical variable status, integers n, d
Output: one-qubit quantum registers R0,S
1. Prepare two-qubit quantum registers X(1)

0 , . . . ,X(1)
d , . . . ,X(n−1)

0 , . . . ,X(n−1)
d ,X(n)

0 .
If status = “eligible,” copy the content of R0 to X(1)

0 , otherwise set the content of
X(1)

0 to “∗.”
2. For t := 1 to n − 1, do the following:

2.1 Copy the content of X(t)
0 to each of X(t)

1 , . . . ,X(t)
d .

2.2 Exchange the qubit in X(t)
i with the party connected via port i for 1 ≤ i ≤ d

(i.e., the original qubit in X(t)
i is sent via port i, and the qubit received via

that port is newly set in X(t)
i ).

2.3 Set the content of X(t+1)
0 to x

(t)
0 ◦ x

(t)
1 ◦ · · · ◦ x

(t)
d , where x

(t)
i denotes the con-

tent of X(t)
i for 0 ≤ i ≤ d.

3. If the content of X(n)
0 is “×,” turn the content of S over (i.e., if initially the content

of S is “consistent,” it is flipped to “inconsistent,” and vice versa).
4. Invert every computation and communication in Step 2.
5. Invert every computation in Step 1.
6. Output quantum registers R0 and S.

Subroutine B
Input: one-qubit quantum registers R0,R1, an integer k
Output: one-qubit quantum registers R0,R1

1. If k is even, apply Uk to the qubit in R0; otherwise perform CNOT controlled by
the qubit in R0 to that in R1, and then apply Vk to the qubits in R0 and R1.

2. Output quantum registers R0 and R1.

zero after each eligible party applies Subroutine B with parameter k, if the
particles in R0s of all eligible parties form the k-cat state.

Subroutine C: Subroutine C is a classical algorithm that computes the maxi-
mum value over parties. The procedure is very similar to Subroutine A. In fact,
Subroutines A and C can be merged into one subroutine, although they are sep-
arately explained for simplicity. Subroutine C is precisely described as follows.

3.2 Complexity Analysis

First we state the complexity of Algorithm I without proof.

Theorem 1. Let |E| and D be the number of edges and the maximum degree
of the underlying graph, respectively. Given the number n of parties, Algorithm
I exactly elects a unique leader in Θ(n2) rounds and O(Dn2) time. The total
communication complexity over all parties is Θ(|E|n2).

If each party initially knows only the upper boundN of the number of parties,
each party has only to perform Algorithm I with N instead of n. The complexity
in this case is described simply by replacing every n by N in Theorem 1.
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Subroutine C
Input: integers z, n, d
Output: an integer zmax

1. Let zmax := z.
2. For t := 1 to n − 1, do the following:

2.1 Let y0 := zmax.
2.2 Send y0 via port i for 1 ≤ i ≤ d.

Set yi to the value received via port i for 1 ≤ i ≤ d.
2.3 Let zmax := max0≤i≤d yi.

3. Output zmax.

Furthermore, Algorithm I is easily modified so that it works well even in the
asynchronous settings. Note that all parties receive messages via each port at
each round. Now, let each party wait to perform the operations of the (i+ 1)st
round until he finishes receiving all messages that are supposed to be received
at the ith round. This modification enables us to simulate synchronous behavior
in asynchronous networks. In order to know at which round the received mes-
sage was originally sent, we tag every message. This modification increases the
communication and time complexity by the multiplicative factor logn.

4 Quantum Leader Election Algorithm II

To reduce the amount of quantum communication, our second algorithm make
use of a classical technique, called view, which was introduced by Yamashita and
Kameda [17]. However, a näıve application of view exponentially increases the
classical time/communication complexity. To reduce this complexity, this paper
introduces the new technique of folded view, with which the algorithm still runs
in time/communication polynomial with respect to the number of parties.

4.1 View and Folded View

First, we briefly review the classical technique, view. Let G = (V,E) be the un-
derlying network topology and let n = |V |. Suppose each party corresponding to
node v ∈ V has a value xv ∈ S for some set S, and consider a mappingX : V → S
defined by X(v) = xv. For each v and port numbering σ, the view TG,σ,X(v)
is a labeled, rooted tree with infinite depth defined recursively as follows: (1)
TG,σ,X(v) has the root w with label X(v), corresponding to v, (2) for each ver-
tex vi adjacent to v inG, TG,σ,X(v) has vertex wi labeled withX(vi), and an edge
from root w to wi with label l(v, vi) given by l(v, vi) = (σ[v](v, vi),σ[vi](v, vi)),
and (3) wi is the root of TG,σ,X(vi). It should be stressed that v, vi, w, and wi

are not identifiers of parties and are introduced just for definition. For simplic-
ity, we often use TX(v) instead of TG,σ,X(v), because we usually discuss views
of some fixed network with some fixed port numbering. The view of depth h is
the subtree of TX(v) of depth h with the same root as is that of TX(v), which is
denoted by Th

X(v). For any value x ∈ S, the number of parties having x can be
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computed from T
2(n−1)
X (v) [17]. Each party v can construct Th

X(v) as follows. In
the first round, each party v constructs T 0

X(v), i.e., the root of TX(v). For each
party v, if v has T i−1

X (v) in the ith round, v can construct T i
X(v) in the (i+1)st

round by exchanging T i−1
X (v) with his neighbors. By induction, in the (h+ 1)st

round, each party v can construct Th
X(v).

Note that the size of Th
X(v) is exponential in h, which results in expo-

nential time/communication complexity when we construct it. To reduce the
time/communication complexity to something bounded by a polynomial, we
introduce the new technique called folded view by generalizing the OBDD-
reduction algorithm [6]. A folded view (f-view) of depth h, denoted by T̃h

X(v),
is a vertex- and edge-labeled directed acyclic multigraph obtained by merging
nodes at the same level in Th

X(v) into one node if the subtrees rooted at them are
isomorphic. The number of nodes in each level of an f-view is obviously bounded
by n, and thus the total number of nodes in an f-view of depth h is at most
hn. Actually, an f-view of depth (h + 1) can be efficiently constructed from a
given f-view of depth h without unfolding it. Here we state without proof that
every f-view of depth h is constructed in O(h2n3(logn)2) time for each party
and with O(|E|h2n2 log n) bits of classical communication. Once T̃ 2(n−1)

X (v) is
constructed, each party can count without communication the number of parties
having a value x in O(n6 log n) time.

4.2 The Algorithm

As in the previous section, we assume that the network is synchronous and
each party knows the number n of parties prior to the algorithm. Again our
algorithm is easily generalized to the asynchronous case. Although it needs a
bit more elaboration, which is not mentioned in this version, it is also possible
to modify our algorithm to work well even if only the upper bound N of the
number of parties is given.

The algorithm consists of two stages, which we call Stages 1 and 2 hereafter.
Stage 1 aims to have the n parties share a certain type of entanglement, and
thus, this stage requires the parties to exchange quantum messages. In Stage
1, each party performs Subroutine Q s = �log n� times in parallel to share s
pure quantum states |φ(1)〉, . . . , |φ(s)〉 of n qubits. Here, each |φ(i)〉 is of the form
(|x(i)〉+ |x(i)〉)/

√
2 for an n-bit string x(i) and its bitwise negation x(i), and the

lth qubit of each |φ(i)〉 is possessed by the lth party. It is stressed that only one
round of quantum communication is necessary in Stage 1.

In Stage 2, the algorithm decides a unique leader among the n parties only
by local quantum operations and classical communications with the help of the
shared entanglement prepared in Stage 1. This stage consists of at most s phases,
each of which reduces the number of eligible parties by at least half. In each phase
i, let Ei ⊆ {1, . . . , n} be the set of all ls such that party l is still eligible. First
every party runs Subroutine Ã to decide if state |φ(i)〉 is consistent or inconsistent
over Ei. If state |φ(i)〉 is consistent, every party performs Subroutine B̃, which
first transforms |φ(i)〉 into the |Ei|-cat state (|0|Ei|〉+ |1|Ei|〉)/

√
2 shared only by

eligible parties and then calls Subroutine B described in the previous section to
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Algorithm II
Input: a classical variable status, integers n, d
Output: a classical variable status

Stage 1:

Let s := �log n	 and prepare one-qubit quantum registers R(1)
0 , . . . ,R(s)

0 and
R(1)

1 , . . . ,R(s)
1 , each of which is initialized to the |0〉 state.

Perform s attempts of Subroutine Q in parallel, each with R(i)
0 and d for 1 ≤ i ≤ s,

to obtain each y(i) and to share each |φ(i)〉 = (|x(i)〉 + |x(i)〉)/
√

2 of n qubits.
Stage 2:

Let k := n.
For i := 1 to s, repeat the following:
1. Perform Subroutine Ã with status, n, d, and y(i) to obtain its output

consistency.
2. If consistency = “consistent,” perform Subroutine B̃ with R(i)

0 , R(i)
1 , status,

k, n, and d.
3. If status = “eligible,” measure the qubits in R(i)

0 and R(i)
1 in the {|0〉, |1〉}

basis to obtain a nonnegative integer z; otherwise set z := −1.
Perform Subroutine C̃ with status, z, n, and d to compute nonnegative inte-
gers zminor and czminor .

4. If z 
= zminor, let status := “ineligible.”
Let k := czminor .

5. If k = 1, terminate and output status.

obtain an inconsistent state. Now each party l measures his qubits to obtain a
label xl and performs Subroutine C̃ that reduces the number of eligible parties
by at least half via minority voting.

More precisely, each party l performs Algorithm II described below with
parameters “eligible,” n, and dl. The party who obtains output “eligible” is the
unique leader.

Subroutine Q: Subroutine Q is mainly for the purpose of sharing a cat-like
quantum state |φ〉 = (|x〉+ |x〉)/

√
2. It also outputs a classical string, which

is used in Stage 2 for each party to obtain the information on |φ〉 via just
classical communication. This subroutine can be performed in parallel by tagging
messages, and thus Stage 1 involves only one round of quantum communication.
The precise description of Subroutine Q is found below. Step 6 is necessary to
disentangle the qubit in output register R0 from that in every R′

i.

Subroutine Ã: Suppose |φ〉 = (|x〉+ |x〉)/
√

2 is shared by the n parties. Let
xl be the lth bit of x and let X and X be mappings defined by X(vl) = xl and
X(vl) = xl for each l, respectively, where vl is the node corresponding to the
lth party. Similar to Subroutine A in the previous section, Subroutine Ã checks
the consistency of |φ〉. Hereafter v denotes the node corresponding to the party
invoking the subroutine. The output y of Subroutine Q is useful to construct
f-view T̃n−1

X (v) or T̃n−1
X

(v), which can replace quantum communications in the
consistency check. The precise description of Subroutine Ã is found below.
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Subroutine Q
Input: a one-qubit quantum register R0, an integer d
Output: a one-qubit quantum register R0, a string y of length d

1. Prepare 2d one-qubit quantum registers R′
1, . . . ,R

′
d and S1, . . . ,Sd, each of which

is initialized to the |0〉 state.
2. Create the (d + 1)-cat state (|0d+1〉 + |1d+1〉)/

√
2 in registers R0, R′

1, . . . ,R
′
d.

3. Exchange the qubit in R′
i with the party connected via port i for 1 ≤ i ≤ d (i.e.,

the original qubit in R′
i is sent via port i, and the qubit received via that port is

newly set in R′
i).

4. Set the content of Si to x0 ⊕ xi, for 1 ≤ i ≤ d, where x0 and xi denote the contents
of R0 and R′

i, respectively.
5. Measure the qubit in Si in the {|0〉, |1〉} basis to obtain a bit yi, for 1 ≤ i ≤ d.

Set y := y1 · · · yd.
6. Clear the content of R′

i by using yi, for 1 ≤ i ≤ d.
7. Output R0 and y.

Subroutine Ã
Input: a classical variable status, integers n, d, a string y of length d
Output: a classical variable consistency
1. Set T̃ 0

Y (v) to the node labeled with (0, status), where Y is either X or X.
2. For i := 1 to (n − 1), do the following:

2.1 Send T̃ i−1
Y (v) and receive T̃ i−1

Y (vj) via port j, for 1 ≤ j ≤ d, where vj is the
node corresponding to the party connected via port j.

2.2 If the jth bit yj of y is 1, negate the first element of every node label in
T̃ i−1

Y (vj), for 1 ≤ j ≤ d.
2.3 Set the root of T̃ i

Y (v) to the node labeled with (0, status).
Set the jth child of the root of T̃ i

Y (v) to T̃ i−1
Y (vj), for 1 ≤ j ≤ d.

For every level of T̃ i
Y (v), merge nodes at that level into one node if the f-views

rooted at them are isomorphic.
3. If both label (0, “eligible”) and label (1, “eligible”) are found among the

node labels in T̃ n−1
Y (v), let consistency := “inconsistent”; otherwise let

consistency := “consistent.”
4. Output consistency.

Subroutine B̃: Suppose |φ〉 = (|x〉+ |x〉)/
√

2 shared by the n parties is con-
sistent over the set E of eligible parties. After every ineligible party per-
forms Step 2 in Subroutine B̃, the state shared by the eligible parties is either
±(|0|E|〉+ |1|E|〉)/

√
2 or ±(|0|E|〉 − |1|E|〉)/

√
2. The state ±(|0|E|〉 − |1|E|〉)/

√
2

is shared if and only if the number of ineligible parties that measured |−〉 in
Step 1 is odd, where |+〉 = (|0〉+ |1〉)/

√
2 and |−〉 = (|0〉 − |1〉)/

√
2, respectively.

Steps 3 and 4 are for the purpose of having the eligible parties always share
±(|0|E|〉+ |1|E|〉)/

√
2. Again let v denote the node corresponding to the party

that invoked the subroutine, and define the family {Wk} of unitary transforma-

tions by Wk =
(

1 0
0 ei π

k

)
. The precise description of Subroutine B̃ is found below.
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Subroutine B̃
Input: one-qubit quantum registers R0,R1, a classical variable status, integers k, n, d
Output: one-qubit quantum registers R0,R1

1. Let w := 0.
2. If status = “ineligible,” measure the qubit in R0 in the {|+〉, |−〉} basis.

If this results in |−〉, let w := 1.
3. Construct f-view T̃

(2n−1)
W (v) to count the number p of parties with w = 1, where

W is the underlying mapping naturally induced by the w values of all parties.
4. If p is odd and status = “eligible,” apply Wk to the qubit in R0.
5. Perform Subroutine B with R0, R1 and k.
6. Output quantum registers R0 and R1.

Subroutine C̃
Input: integers z, n, d
Output: integers zminor, czminor

1. Construct f-view T̃
(2n−1)
Z (v), where Z is the underlying mapping naturally induced

by the z values of all parties.
2. For i := 0 to 3, count the number ci of parties having a value z = i using T̃

(2n−1)
Z (v).

If ci = 0, let ci := n.
3. Let zminor ∈ {m | cm = min0≤i≤3 ci}.
4. Output zminor and czminor .

Subroutine C̃: Suppose each party l has value zl. Subroutine C is a classi-
cal algorithm that computes value zminor such that the number of parties with
value zminor is nonzero and the smallest among all possible z values. The precise
description of Subroutine C̃ is found below.

4.3 Complexity Analysis

Here we only give the complexity of Algorithm II without proof.

Theorem 2. Let |E| and D be the number of edges and the maximum degree of
the underlying graph, respectively. Given the number n of parties [the upper bound
N of it], Algorithm II exactly elects a unique leader in O(n log n) [O(N logN)]
rounds and O(n6(logn)2) [O(N7(logN)2)] time of which only the first round
requires quantum communication. The total communication complexity over all
parties is O(|E|n4(logn)2) [O(|E|N5(logN)2)] which includes only O(|E| log n)
[O(|E|N logN)] qubits of quantum communication.
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8. C. Crépeau, D. Gottesman, and A. D. Smith. Secure multi-party quantum com-
putation. In Proc. of 34th ACM STOC, pages 643–652.

9. P. Dumais, D. Mayers, and L. Salvail. Perfectly concealing quantum bit commit-
ment from any quantum one-way permutation. In Proc. of EUROCRYPT 2000,
volume 1807 of Lecture Notes in Computer Science, pages 300–315, 2000.

10. A. Itai and M. Rodeh. Symmetry breaking in distributed networks. Inf. Comput.,
88(1):60–87, 1990.

11. N. A. Lynch. Distributed Algorithms. Morgan Kaufman Publishers, 1996.
12. D. Mayers. Unconditional security in quantum cryptography. J. ACM, 48(3):351–

406, 2001.
13. R. Raz. Exponential separation of quantum and classical communication complex-

ity. In Proc. of 31st ACM STOC, pages 358–367, 1999.
14. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-

arithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.
15. P. W. Shor and J. Preskill. Simple proof of security of the BB84 quantum key

distribution protocol. Phys. Rev. Lett., 85(2):441–444, 2000.
16. K. Tamaki, M. Koashi, and N. Imoto. Unconditionally secure key distribution

based on two nonorthogonal states. Phys. Rev. Lett., 90(16):167904, 2003.
17. M. Yamashita and T. Kameda. Computing on anonymous networks: Part I –

characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst., 7(1):69–89,
1996.

18. M. Yamashita and T. Kameda. Computing on anonymous networks: Part II –
decision and membership problems. IEEE Trans. Parallel Distrib. Syst., 7(1):90–
96, 1996.



Robust Polynomials and Quantum Algorithms

Harry Buhrman1,2,�, Ilan Newman3,��, Hein Röhrig4, and Ronald de Wolf1

1 CWI, Amsterdam, the Netherlands
2 ILLC, University of Amsterdam, the Netherlands

3 Dept. of Computer Science, Haifa University, Israel
4 Dept. of Computer Science, University of Calgary, Canada

Abstract. We define and study the complexity of robust polynomials for
Boolean functions and the related fault-tolerant quantum decision trees,
where input bits are perturbed by noise. We show that, in contrast to the
classical model of Feige et al., every Boolean function can be computed
by O(n) quantum queries even in the model with noise. This implies,
for instance, the somewhat surprising result that every Boolean function
has robust degree bounded by O(n).

1 Introduction

In the last two decades, polynomials of many varieties have been used to good
effect in complexity theory. We study a variety here that is tailored to analyzing
algorithms with noisy input.

Robust Polynomials. A robust polynomial for a Boolean function f : {0, 1}n →
{0, 1} is a real multivariate polynomial p(z1, . . . , zn) such that for every x =
(x1, . . . , xn) ∈ {0, 1}n and every z = (z1, . . . , zn) ∈ Rn, if ∀i : |xi − zi| ≤ 1/3
then |f(x) − p(z)| ≤ 1/3 (the 1/3 in both cases can be changed to any other
constant). The robust degree of f is the smallest degree of a robust polynomial
for f ; note that we do not require robust polynomials to be multilinear.

The motivation behind the definition of robust polynomials is twofold: First
it can be viewed as a strengthening (restriction) of the notion of approximating
polynomials. An approximating polynomial for f is a multivariate real polyno-
mial q that approximates f within an additive term of 1/3 for each Boolean
input. Approximating polynomials for Boolean functions are of interest in them-
selves and have been the object of study for a while. Their minimal degree is
tightly related to the decision tree complexity of f [9, 2]. Indeed, this “polynomial
method” [2] is one of the main tools for obtaining lower bounds on the number
of queries in quantum algorithms. One difficulty, however, is that approximat-
ing polynomials do not directly compose; if f(x1, . . . , xn) is a Boolean function
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with an approximating polynomial pf and g(y1, . . . , ym) is a Boolean function
with an approximating polynomial pg, then the polynomial on n · m variables
pf (pg, . . . , pg), which is obtained by plugging in a copy of pg for each appearance
of yi, is not necessarily an approximating polynomial for the composed function
f(g, . . . , g) on n ·m variables. This difficulty is avoided with robust polynomi-
als; if pf , pg are robust for f, g respectively, then their composition is a robust
polynomial (and thus also approximating) for the composed function.

Another motivation is the study of quantum decision trees that can toler-
ate noise in their inputs. We show that a natural quantum analogue of classical
fault-tolerant decision trees can be defined. As a result, it will follow that every
such algorithm (and in fact every classical noisy decision tree algorithm as well)
implies the existence of a robust degree-2q polynomial for the function, where q
is the number of queries. This relates the robust degree to fault-tolerant compu-
tation in exactly the same way that approximating polynomials are related to
bounded-error quantum algorithms. Surprisingly, our results imply robust quan-
tum algorithms with a linear number of queries, as well as robust polynomials
of linear degree, for any Boolean function. This should be contrasted with the
result of Feige et al. [3] who proved that for most Boolean functions an overhead
factor of Ω(logn) on the number of queries is needed in the noisy case compared
to the non-noisy case. In particular, consider the parity function on n variables.
This function can be decided trivially by an n-query decision tree, and hence
can be represented exactly by an n-degree real multilinear polynomial (which is
just the single monomial containing all variables in the {−1, 1} representation).
Feige et al. [3] prove that in the noisy decision tree any algorithm for Parity
needs Ω(n log n) queries. Using standard amplification techniques, this yields a
O(n log n)-degree robust polynomial for Parity. Can one do better? Our results
imply that there is a robust polynomial for Parity of degree O(n). However,
we only have an indirect description of this polynomial by means of a quantum
algorithm, and do not know how to construct such a polynomial directly.

Noisy Quantum Queries. We now discuss in more detail the model of noisy-
decision trees in the quantum world. The notion of a “noisy query” in the quan-
tum case is not obvious and natural as in the classical case since one application
of a quantum query can address many different xi’s in superposition. A first
proposal would be that for each quantum query, each of the bits is flipped in-
dependently with probability ε. Each such quantum query introduces a lot of
randomness and the algorithm’s state after the query is a mixed quantum state
rather than a pure state. In fact, this model is a concrete (and very destruc-
tive) form of decoherence; the effects of various forms of decoherence on oracle
algorithms like Grover’s have been studied before, see e.g., [8, 10].

A second model, which we will adopt here, is to assume that we have n
quantum procedures, A1, . . . , An, such that Ai outputs xi with probability at
least 1 − ε. Such a coherent-noise model is not unreasonable. For instance, it
could be the case that the input bits are actually computed for us by subroutines.
Such algorithms can always be made coherent by pushing measurements to the
end, which means that we can apply and reverse them at will. To enable us
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to apply the Ai’s in superposition, we assume we have a black box that maps
A : |i〉|0〉 �→ |i〉Ai|0〉. One application of this will count as one query.

A third model, which we will call the multiple-noisy-copies model, was studied
by Szegedy and Chen [11]. Here, instead of xi, the algorithm can only query
“perturbed” copies yi,1, . . . , yi,m of xi. The yi,j are independent Boolean random
variables with Pr[xi = yi,j ] ≥ 1 − ε for each i = 1, . . . , n and j = 1, . . . ,m. In
contrast to the first proposal, this model leaves the queries perfectly reversible,
since the perturbed copies are fixed at the start of the algorithm and the same
yi,j can be queried more than once. The assumption of this model is also stronger
than the second model, since we can construct a 1-query Ai that just outputs
a superposition of all yi,j . If m is sufficiently large, this Ai will compute xi

with high success probability, satisfying the assumption of the second model
(see Section 4.2 for details).

Robust Quantum Algorithms. Assuming the second model and some fixed ε, we
call a quantum algorithm robust if it computes f with bounded error probability
on inputs of n bits given by bounded-error algorithms A1, . . . , An, respectively. A
first observation is that every T -query non-robust algorithm can be made robust
at a multiplicative cost of O(log T ). With O(log T ) queries, a majority gate, and
an uncomputation step, we can construct a unitary Ũx that approximates an
exact quantum query Ux : |i〉|b〉 �→ |i〉|b⊕ xi〉 very well: ‖Ux − Ũx‖ ≤ 1/100T .
Since errors add linearly in a quantum algorithm, replacing Ux by Ũx in a non-
robust algorithm gives a robust algorithm with almost the same final state. In
some cases better constructions are possible. For instance, a recent result by
Høyer et al. [5] implies a quantum algorithm that robustly computes Or with
O(
√
n) queries. This is only a constant factor worse than the noiseless case,

which is Grover’s algorithm [4]. In fact, we do not know of any function where
the robust quantum query complexity is more than a constant factor larger than
the non-robust complexity.

Our main result about quantum computing (made precise in Theorem 2) is
the following:

There exists a quantum algorithm that outputs x1, . . . , xn, with high
probability, using O(n) invocations of the Ai algorithms (i.e., queries).

As already mentioned, this result implies that every n-bit function f can be
robustly quantum computed with O(n) queries. This contrasts with the classical
Ω(n log n) lower bound for Parity. It is quite interesting to note that quantum
computers, which usually are more fragile than classical computers, are actually
more robust in the case of computing Parity with noisy inputs. The result for
Parity can be extended to every symmetric function f : for every such function,
the optimal quantum algorithm can be made robust with only a constant factor
overhead (see Section 4.1).

Our result has a direct bearing on the direct-sum problem, which is the ques-
tion how the complexity of computing n independent instances of a function
scales with the complexity of one instance. One would expect that computing n
instances with bounded-error takes no more than n times the complexity of one
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instance. However, since we want all n instances to be computed correctly simul-
taneously with high probability, the only known general method in the classical
world is to compute each instance with error probability reduced to O(1/n). This
costs another factor of O(logn). In fact, it follows from the Ω(n log n) bound
for Parity that this factor of logn is optimal if we can only run algorithms for
individual instances in a black-box fashion. In contrast, our result implies that
in the quantum world, the bounded-error complexity of n instances is at most
O(n) times the bounded-error complexity of one instance. This is a very gen-
eral result. For example, it also applies to communication complexity [7–Section
4.1.1]. If Alice and Bob have a bounded-error protocol for a distributed func-
tion f , using c bits (or qubits) of communication, then there is a bounded-error
quantum protocol for n instances of f , using O(n(c + log n)) qubits of com-
munication. The additive logn is because Alice and Bob need to communicate
(possibly in superposition) the index of the instance that they are computing.
In contrast, the best known general classical solution uses Θ(cn log n) bits of
communication.

Note About Related Work. In a recent manuscript, Iwama et al. [6] study a
similar but slightly weaker setting. There, the error probability for each input
variable is exactly ε. If ε is known, then one can use a version of exact amplitude
amplification to “rotate off” the error using O(1) queries and hence make the
algorithm robust. If ε unknown, it can be estimated very well using quantum
amplitude estimation, after which amplitude amplification can be used as if ε
was known. Iwama et al. derive from this that any quantum algorithm can be
made robust (in their model) with only a constant factor overhead. Their model
has the disadvantage that it does not cover the subroutine-scenario, where each
input bit xi is computed for us by an algorithm or subroutine Ai whose error we
can only upper bound. Our model does not need the assumption that the error
is the same for all input bits, and hence does not have this disadvantage.

2 Robust Polynomials — Preliminaries

In this section we study robust polynomials of two different but essentially equiv-
alent types. The first type arises from the multiple-noisy-copies model, the second
type is what we discussed in the introduction. For brevity, we omit the proofs
of the lemmas presented in this section.

Definition 1. An (ε,m) perturbation of x ∈ {0, 1}n is a matrix y of n × m
independent binary random variables yi,j so that Pr[yi,j = xi] ≥ 1 − ε for each
1 ≤ j ≤ m.

Definition 2. A type-1 (ε,m)-robust polynomial for the Boolean function f :
{0, 1}n → {0, 1} is a real polynomial p in nm variables yi,j (with 1 ≤ i ≤ n
and 1 ≤ j ≤ m) so that for every x ∈ {0, 1}n and y an (ε,m) perturbation of
x, Pr[|p(y) − f(x)| ≥ 1/3] ≤ 1/3. Moreover, for every v ∈ {0, 1}nm, we require
−1/3 ≤ p(v) ≤ 4/3.
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Note that since y2
i,j = yi,j for a bit yi,j , we can restrict attention to multilinear

polynomials here.
The approximation “quality” of a type-1 robust polynomial can be boosted

at constant multiplicative cost in the degree. Analogously we can improve the
parameters to other constants:

Lemma 1. If there is a type-1 (ε,m)-robust polynomial of degree d for f , then
for some m′ = O(m) there exists a type-1 (ε,m′)-robust polynomial p of degree
O(d) so that x ∈ {0, 1}n and y an (ε,m′) perturbation of x, Pr[|p(y) − f(x)| ≥
1/9] ≤ 1/9. Moreover, for any v ∈ {0, 1}nm′

, −1/9 ≤ p(v) ≤ 10/9.

The second kind of robust polynomial is the following:

Definition 3. For a Boolean function f : {0, 1}n → {0, 1}, we call q a type-2
ε-robust polynomial for f if q is a real polynomial in n variables so that for every
x ∈ {0, 1}n and every z ∈ [0, 1]n we have |q(z)− f(x)| ≤ 1/3 if |zi − xi| ≤ ε for
all i ∈ [n]. If ε = 0, then q is called an approximating polynomial for f .

A minimal-degree type-2 robust polynomial for f need not be multilinear,
in contrast to the type-1 variety. Note that we restrict the zi’s to lie in the set
[0, ε]∪ [1−ε, 1] rather than the less restrictive [−ε, ε]∪ [1−ε, 1+ε]. This facilitates
later proofs, because it enables us to interpret the zi’s as probabilities. However,
with some extra work we could also use the less restrictive definition here.

Definition 4. For f : {0, 1}n → {0, 1}, let rdeg1(f) denote the minimum degree
of any type-1 (1/3, 5 logn)-robust polynomial for f , rdeg2(f) be the minimum
degree of any type-2 1/3-robust polynomial approximating f , and d̃eg(f) be the
minimum degree among all approximating polynomials for f .

We characterize the relation of type-1 and type-2 robust polynomials as fol-
lows:

Theorem 1. For every type-2 ε-robust polynomial of degree d for f there is
a type-1 (ε/2,O(log(n)/(1/2 − ε)2))-robust polynomial of degree d for f . Con-
versely, for every type-1 (ε,m)-robust polynomial of degree d for f there is a
type-2 ε-robust polynomial of degree O(d) for f .

Proof. Let p be a type-2 ε-robust polynomial of degree d for f . We choose m =
O(log(n)/(1/2 − ε)2). If each yi,j is wrong with probability ≤ ε/2, then with
probability at least 2/3, the averages yi will satisfy |yi − xi| ≤ ε for all i ∈ [n].
Hence the polynomial p(y1, . . . , yn) will be a type-1 (ε/2,O(log(n)/(1/2− ε)2))-
robust polynomial of degree d for f .

For the other direction, consider a type-1 (ε,m)-robust polynomial of degree
d for f . Using Lemma 1, we boost the approximation parameters to obtain a
type-1 (ε,m′)-robust polynomial p of degree O(d), with m′ = O(m), so that for
any x ∈ {0, 1}n and (ε,m′) perturbation y of x, Pr[|p(y) − f(x)| ≥ 1/9] ≤ 1/9.
For z ∈ Rn with 0 ≤ zi ≤ 1 for all i, let yi,j (i ∈ [n], j ∈ [m′]) be independent
random variables, where yi,j = 1 with probability zi. Define q(z) := E[p(y)]. This
q is a polynomial in z, because E[p(y)] = p(E[y]) and E[yi,j ] = zi. Moreover, if
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for z there exists x ∈ {0, 1}n with |zi − xi| ≤ ε for all i, then y is an (ε,m′)
perturbation of x. Therefore V := {v : |p(v) − f(x)| ≤ 1/9} has probability
Pr[y ∈ V ] ≥ 8/9 and

|f(x)− q(z)| ≤
∣∣∣∣∣
∑
v∈V

Pr[y = v] (f(x)− p(v))
∣∣∣∣∣ +

∣∣∣∣∣
∑
v/∈V

Pr[y = v]
(

1 +
1
9

)∣∣∣∣∣ <
1
3
.

This means that q(z) is a type-2 ε-robust polynomial for f of degree O(d). � 

Note that in Definition 2 we require for type-1 polynomials p that for any
Boolean assignment v ∈ {0, 1}nm to the (possibly real) variables, the polynomial
value p(v) lies between −1/3 and 4/3. Because of this totality requirement, the
following corollary is given for total Boolean f only.

Corollary 1. rdeg1(f) = Θ(rdeg2(f)) for every (total) Boolean function f :
{0, 1}n → {0, 1}.

Robust quantum algorithms provide one way to construct robust polynomi-
als:

Lemma 2. Let f : {0, 1}n → {0, 1} be a Boolean function. Let Q be a quantum
algorithm that makes at most q queries on inputs from {0, 1}n×m. If for every
x ∈ {0, 1}n and y an (ε,m) perturbation of x, we have that Pr[Q(y) = f(x)] ≥
29/30, then there exists a degree-2q type-1 (ε,m)-robust polynomial for f .

3 Quantum Robust Input Recovery

In this section we prove our main result, that we can recover an n-bit string
x using O(n) invocations of algorithms A1, . . . , An where Ai computes xi with
bounded error.

Theorem 2. Given ε-error algorithms A1, . . . , An for the bits x1, . . . , xn, there
is a quantum algorithm that recovers x = x1 . . . xn with probability 2/3 using
O(n/(1/2− ε)2) queries (invocations of the Ai).

We assume that ε > 0 and that Ai is a unitary transformation

Ai : |0t〉 �→ αi|0〉|ψ0
i 〉+

√
1− α2

i |1〉|ψ1
i 〉

for some αi ≥ 0 such that |αi|2 ≤ ε if xi = 1 and |αi|2 ≥ 1− ε if xi = 0; |ψ0
i 〉 and

|ψ1
i 〉 are arbitrary (t− 1)-qubit norm-1 quantum states. It is standard that any

quantum algorithm can be expressed in this form by postponing measurements
(i.e., unitarily write the measurement in an auxiliary register without collapsing
the state); any classical randomized algorithm can be converted into this form
by making it reversible and replacing random bits by states (|0〉 + |1〉)/

√
2.

By applying a NOT to the first qubit after the execution of Ai, we can easily
implement

Āi : |0t〉 �→ αi|1〉|ψ0
i 〉+

√
1− α2

i |0〉|ψ1
i 〉 ,
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Procedure RobustFind(n, A, ε, β, γ, δ)
n ∈ N, A : n quantum algorithms, ε, β, γ, δ > 0
Output: i ∈ [n] ∪ {⊥} with the following properties:

1. if A is ε-close to x ∈ {0, 1}n and |x| ≥ βn, then i 
=⊥ with probability ≥ 1 − δ
2. if A is ε-close to x ∈ {0, 1}n and if i 
=⊥, then xi = 1 with probability ≥ 1 − γ

Complexity: O
(

1

( 1
2−ε)2

·
√

1
β

· log 1
γδ

)
invocations of the Ai

Procedure AllInputs(n, A, ε)
n ∈ N, A : n algorithms, ε > 0
1: for i ← to n do
2: run Ai

3: x̃i ← result of Ai

4: for k ← 1 to log(ε(log n)2) do
5: ε′ ← ε/2k−1

6: for � ← 1 to 1.7ε′n do
7: i ← RobustFind(n, A(x̃), ε, 0.3ε′, 1

8 , 1
8 )

8: if i 
=⊥ then
9: x̃i ← 1 − x̃i

10: for m ← n/(log n)2 down to 1 do
11: i ← RobustFind(n, A(x̃), ε, m

n
, 1

20n
, 1

20n
)

12: if i 
=⊥ then
13: x̃i ← 1 − x̃i

14: return x̃

which operates like Ai but outputs 1 when Ai would have output 0 and vice
versa. Define Ai(b) by Ai(0) := Ai and Ai(1) = Āi. If we plug the right bit xi

into Ai, then for all Ai we expect output 0: for the unique good x ∈ {0, 1}n,
A(x) := (A1(x1), . . . , An(xn)) is ε-close to 0n by the following notion of closeness:

Definition 5. For ε < 1/2 and decision algorithms A = (A1, . . . , An), we say
A is ε-close to x ∈ {0, 1}n if Pr[Ai outputs xi] ≥ 1− ε for all i ∈ [n].

Our algorithm builds on a robust quantum search algorithm by Høyer, Mosca,
and de Wolf [5], which we call RobustFind. This subroutine takes a vector A of
n quantum algorithms and in the good case returns an index i so that the “high
probability” output of Ai is 1. This allows us to verify a purported solution
x̃ ∈ {0, 1}n by running RobustFind on A(x̃) to find differences with the real
input x. In fact, adjusting the parameters to RobustFind as we move closer and
closer to a good solution, AllInputs (as defined by the pseudo code on page 599)
manages to construct the unique x with high probability. Note that RobustFind
is the only quantum component of our otherwise classical algorithm.

The first step of our algorithm (Lines 1–3) is to classically sample each i
once and to store this initial approximation into a variable x̃i. We call i ∈ [n]
a bad index if xi �= x̃i. The following rounds of the algorithm (Lines 4–9) use
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RobustFind with error probabilities γ = δ = 1/8 and a decreasing estimate of
the number of bad indices, β. This way we refine x̃ until we have fewer than
n/(logn)2 bad indices. At that point, we can afford to set γ and δ to very small
values to eliminate all remaining bad indices with high probability.

Success Probability. Let B0 denote the random variable counting the number of
bad indices after Line 3 and let Bk denote the random variable of the number of
bad indices after the iteration k of the for loop in Lines 4–9. By Gk we denote
the event Bk ≤ nε/2k−1. We have

Pr [Gkmax ] ≥ Pr [G0]
kmax∏
k=1

Pr [Gk|Gk−1] . (1)

We now show that Pr[Gk|Gk−1] is large by means of Chernoff bounds on the
number of bad indices that we find in round k and the number of errors we make.
For k = 0, we know that E[B0] ≤ εn and thus Pr[B0 ≤ 2εn] ≥ 0.9. In round k,
we want to reduce the upper bound on the number of bad indices from 2nε/2k−1

to nε/2k−1. Let Ek denote the random variable of the number of errors that we
make in round k, i.e., the number of wrongly identified bad indices. Similarly, let
Ck denote the random variable of the number of correctly identified bad indices.
Then Bk = Bk−1 − Ck + Ek, so

Pr [Gk|Gk−1] ≥ Pr [Ek ≤ 1.1γr| Gk−1] · Pr
[
Ck ≥ Bk−1 −

nε

2k−1 + 1.1γr
∣∣∣Gk−1

]

(2)
We choose the number of repetitions of RobustFind to be r := 1.7nε/2k−1

and our lower bound on the fraction of bad indices to be β := 0.3ε/2k−1. Then
E[Ek|Gk−1] ≤ γr and Pr [Ek ≤ 1.1γr| Gk−1] ≥ 1− e−Ω(r). To bound the second
factor in (2), we need to take into account that we have no guarantee on the
success probability of a single RobustFind invocation if the number of bad indices
falls below βn. However, if this happens, then Ck ≥ Bk−1 − βn ≥ Bk−1 −
nε/2k−1 + 1.1γr, i.e., the second factor in (2) is trivially 1. Therefore it is safe
to assume that each invocation of RobustFind has success probability at least
(1− γ)(1− δ). Hence,

E [Bk−1 − Ck + 1.1γr| Gk−1] ≤ 2
nε

2k−1 − (1− γ)(1− δ)r + 1.1γr ≤ 0.9
nε

2k−1

and Pr
[
Bk−1 − Ck + 1.1γr ≤ nε

2k−1

∣∣∣Gk−1

]
≥ 1− e−Ω(r) .

Altogether, this establishes Pr [Gk|Gk−1] ≥ 1− e−Ω(r).
Substituting this bound into (1) we obtain, with kmax = log(ε(logn)2) and

r = 1.7nε/2k−1 = Ω(n/(logn)2),

Pr[Gkmax ] ≥ Pr[G0]
(
1− e−Ω(r)

)kmax

≥ 0.9
(

1− log(ε(logn)2)
eΩ(n/(log n)2)

)
= 0.9− o(1).

Hence, for large n with probability 0.8 we have at most n/(logn)2 bad in-
dices at the end of the for loop in Lines 4–9. In this case, we will find with
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constant probability all bad indices by making the individual error probability
in RobustFind so small that we can use a union bound: we determine each of
the remaining bad indices with error probability 1/(10n). This implies an overall
success probability ≥ 0.8 · 0.9 > 2/3.

Complexity. We bound the number of queries to f in Lines 4–9 as follows:

kmax∑
k=1

nε/2k−1∑
�=1

C
1( 1

2 − ε
)2

√
1

ε/2k
≤ C ′

√
ε( 1

2 − ε
)2n

∞∑
k=1

1
2k/2 = O

(
n( 1

2 − ε
)2

)

for some constants C,C ′. Lines 10–13 result in

O

⎛
⎝

n/(log n)2∑
m=1

1( 1
2 − ε

)2

√
n

m
log n

⎞
⎠ = O

(
n( 1

2 − ε
)2

)

many queries. Therefore, the total query complexity of AllInputs is
O(n/(1/2− ε)2).

4 Making Quantum Algorithms Robust

4.1 Inputs Computed by Quantum Algorithms

Here we state a few corollaries of Theorem 2. First, once we have recovered the
input x we can compute any function of x without further queries, hence

Corollary 2. For every f : {0, 1}n → {0, 1}, there is a robust quantum algo-
rithm that computes f using O(n) queries.

In particular, Parity can be robustly quantum computed with O(n) queries
while it takes Ω(n log n) queries classically [3].

Second, in the context of the direct-sum problem, the complexity of quantum
computing a vector of instances of a function scales linearly with the complexity
of one instance.

Corollary 3 (Direct Sum). If there exists a T -query bounded-error quantum
algorithm for f , then there is an O(Tn)-query bounded-error quantum algorithm
for n independent instances of f .

As mentioned, the best classical upper bound has an additional factor of
log n, and this is optimal in a classical black-box setting.

Thirdly, all symmetric functions can be computed robustly on a quantum
computer with the same asymptotic complexity as non-robustly. A function is
symmetric if its value only depends on the Hamming weight of the input. Let
Γ (f) := min{|2k − n + 1| : f changes value if the Hamming weight of the
input changes from k to k+1}. The non-robust algorithm for computing f with
O(

√
n(n− Γ (f))) queries [1–Theorem 4.10] can be made robust by a similar

algorithm as the one used in the proof of our Theorem 2, giving:

Theorem 3. For every symmetric function f , there is a robust quantum algo-
rithm that computes f using O(

√
n(n− Γ (f))) quantum queries.
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4.2 Multiple Noisy Copies

As mentioned in the introduction, the assumption that we have a bounded-error
algorithm Ai for each of the input bits xi also covers the model of [11] where we
have a sequence yi,1, . . . , yi,m of noisy copies of xi. These we can query by means
of a mapping |i〉|j〉|0〉 �→ |i〉|j〉|yi,j〉. Here we spell out this connection in some
more detail. First, by a Chernoff bound, choosing m := O(log(n)/ε2) implies
that the average yi :=

∑m
j=1 yi,j/m is close to xi with very high probability:

Pr[|yi− xi| ≥ 2ε] ≤ 1/(100n). By the union bound, with probability 99/100 this
closeness will hold for all i ∈ [n] simultaneously. Assuming this is the case, we
implement the following unitary mapping using one query: Ai : |0log(m)+1〉 �→

1√
m

∑m
j=1 |j〉|yi,j〉. Measuring the last qubit of the resulting state gives xi with

probability at least 1− 2ε. Hence, we can run our algorithm from Section 3 and
recover x using O(n) queries to the yi,j . Similarly, all consequences mentioned
in Section 4.1 hold for this multiple-noisy-copies model as well.

5 Making Approximating Polynomials Robust

Theorem 4. rdeg1,2(f) = O(n) for every f : {0, 1}n → {0, 1}.

Proof. By Corollary 2 and the discussion in Section 4.2, f has an O(n)-query
robust quantum algorithm in the multiple-noisy-copies model that operates on
O(logn) copies. By Lemma 2 this induces a type-1 robust polynomial for f of
degree O(n). And finally, by Corollary 1 there also exists a degree-O(n) type-2
robust polynomial for f . � 

In particular, this shows that for functions with approximate degree Θ(n) we
can make the approximating polynomial robust at only constant factor overhead
in the degree. This case includes explicit functions like Parity and Majority,
but also random (hence almost all) functions. It is open whether approximating
polynomials can always be made robust at only a constant overhead in the
degree. The best we can do is show that a non-robust degree-d approximating
polynomial can be made robust at a cost of a factor O(log d). Our proof makes
use of the well known notion of certificate complexity.

Definition 6. An assignment C : S → {0, 1} of values to some subset S ⊆ [n]
of the n variables is consistent with x ∈ {0, 1}n if xi = C(i) for all i ∈ S.
For b ∈ {0, 1}, a b-certificate for f is an assignment C such that f(x) = b
whenever x is consistent with C. The size of C is |S|, the cardinality of S. The
certificate complexity Cx(f) of f on x is the size of a smallest f(x)-certificate
that is consistent with x. The certificate complexity of f is C(f) = maxx Cx(f).

Lemma 3. Let p be an ε-approximating polynomial for f : {0, 1}n → {0, 1},
and c = C(f) be the certificate complexity of f . If x ∈ {0, 1}n and z ∈ [0, 1]n

satisfy |xi − zi| ≤ 1/10c for all i ∈ [n], then |p(z)− f(x)| ≤ ε + 2/15.

Proof. Consider a certificate C for x of size c. We will use xC and xC to denote
the parts of x corresponding to C and to its complement, respectively, and write
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x = xCxC . If y ∈ {0, 1}n is chosen according to the z-distribution (yi = 1 with
probability zi), then

p(z) = Ey[p(y)] =
∑

yCyC

Pr[yC ] Pr[yC ]p(yCyC) =
∑

yC

Pr[yC ] · EyC [p(yCyC)] .

Now consider the expectation EyC [p(yCyC)], where yC ∈ {0, 1}n−c is fixed,
while the yC-bits are still chosen according to the z-distribution. Consider the c-
variate polynomial obtained from p by fixing the bits in yC . Since the “error” in
the zC-variables is at most 1/10c, we have Pr[yC = xC ] ≥ (1−1/10c)c ≥ 9/10, so
|EyC [p(yCyC)]−p(xCyC)| ≤ (1/10)(4/3) = 2/15. But f(xCyC) = f(x), because
the input xCyC satisfies the same certificate as x. Hence

|EyC [p(yCyC)]−f(x)| ≤ |EyC [p(yCyC)]−p(xCyC)|+|p(xCyC)−f(x)| ≤ 2/15+ε,

and also |p(z)− f(x)| ≤ ε + 2/15. � 

This lemma implies that we can make a non-robust approximating polynomial
robust at the cost of a factor of O(logC(f)) in the degree (replace each variable
by a O(logC(f))-degree error-reducing polynomial). Since C(f) and d̃eg(f) are
polynomially related (C(f) = O(d̃eg(f)4), see [2]), we obtain:

Theorem 5. rdeg1,2(f) = O(d̃eg(f) · log d̃eg(f)).

6 Summary and Open Problems

The main results of this paper are as follows:

– For every n-bit Boolean function f there is an n-variate polynomial p of
degree O(n) that robustly approximates it, i.e., p(x) remains close to f(x) if
we slightly vary the n inputs.

– There is an O(n)-query quantum algorithm that robustly recovers n noisy
input bits. Hence every n-bit function can be quantum computed with O(n)
queries in the presence of noise. This contrasts with the classical case, where
most functions need Θ(n log n) queries.

Note that the use of the robust Or algorithm by [5] is not necessary for re-
covering the whole input. It would suffice to use Grover’s algorithm, that runs in
time

√
n/t when there are t marked items. When we know an estimate of t, like

in our logn rounds algorithm, we can make the error of a single query as small as
1/

√
n/t at the cost of a log (n/t) multiplicative factor. Standard analysis shows

that in this case Grover’s algorithm behaves as the robust Or algorithm. How-
ever this way we would not obtain the results about every symmetric function
(Theorem 3).

We mention some open problems. First, in contrast to the classical case
(Parity) we do not know of any function where making a quantum algorithm
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robust costs more than a constant factor. Such a constant overhead suffices in the
case of symmetric functions and functions whose approximate degree is Ω(n). It
is conceivable that quantum algorithms (and polynomials) can always be made
robust at a constant factor overhead. Proving or disproving this would be very
interesting. We are not aware of a direct “closed form” or other natural way to
describe a robust degree-n polynomial for the parity of n bits, but can only infer
its existence from the existence of a robust quantum algorithm. Given the sim-
plicity of the non-robust representing polynomial for Parity, one would hope
for a simple closed form for robust polynomials for Parity as well.

Finally, we have chosen our model of a noisy query such that we can co-
herently make a query and reverse it. It is not clear to what extent non-robust
quantum algorithms can be made resilient against decohering queries, since the
usual transformations to achieve fault-tolerant quantum computation do not
immediately apply to the query gate, which acts on a non-constant number of
quantum bits simultaneously.

Acknowledgments. We thank Peter Høyer for inspiring initial discussions that
led to our main result, and Michele Mosca for sending us a version of [6].
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Quantum Interactive Proofs
with Competing Provers

Gus Gutoski and John Watrous
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Abstract. This paper studies quantum refereed games, which are quan-
tum interactive proof systems with two competing provers: one that tries
to convince the verifier to accept and the other that tries to convince the
verifier to reject. We prove that every language having an ordinary quan-
tum interactive proof system also has a quantum refereed game in which
the verifier exchanges just one round of messages with each prover. A key
part of our proof is the fact that there exists a single quantum measure-
ment that reliably distinguishes between mixed states chosen arbitrarily
from disjoint convex sets having large minimal trace distance from one
another. We also show how to reduce the probability of error for some
classes of quantum refereed games.

1 Introduction

A refereed game consists of a conversation between a computationally bounded
verifier and two computationally unbounded provers regarding some input string
x. The two provers use their unbounded computational power to compete with
each other: one prover, called the yes-prover, attempts to convince the verifier
to accept x, while the other prover, called the no-prover, attempts to convince
the verifier to reject x. At the end of the interaction, the verifier decides whether
to accept or reject the input x, effectively deciding which of the provers wins
the game. Such games represent games of incomplete information; the messages
exchanged between one prover and the verifier are considered to be hidden from
the other player.

A language L is said to have a refereed game with error ε if there is a
polynomial-time verifier satisfying the the following conditions. For each string
x ∈ L, there exists a yes-prover that can always convince the verifier to accept
x with probability at least 1− ε, regardless of the no-prover’s strategy, and for
each x �∈ L, there exists a no-prover that can always convince the verifier to
reject x with probability at least 1− ε, regardless of the yes-prover’s strategy. A
turn for one of the provers consists of a message from the verifier to that prover,
followed by a response from that prover back to the verifier. One may consider
the case where the provers turns are played sequentially or in parallel.

The refereed games model is based on the interactive proof system model
[1, 2, 3, 4], which has a rich history that we will not survey here. The refer-
eed games model, and variations on this model, were considered in the classi-
cal case in Refs. [5, 6, 7, 8, 9, 10], among others. Much of what is known about
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the complexity-theoretic aspects of the classical refereed games model is due to
Feige and Kilian [10]. The class of languages having classical refereed games in
which the provers may play any polynomial number of turns coincides with EXP
(deterministic time 2p(n) for some polynomial p). The simulation of EXP by a
polynomial-turn refereed game is due to Feige and Kilian [10], and is based on
arithmetization technique developed by Lund, Fortnow, Karloff and Nisan [11]
and used in proofs of IP = PSPACE [12, 13]. The containment of this class in
EXP is due to Koller and Megiddo [8]. On the other hand, the class of languages
having games in which the provers play precisely one turn each, with the turns
played in parallel, coincides with PSPACE [10]. Apparently little is known about
the expressive power of classical refereed games intermediate between these two
extremes. For instance, games with a constant number of prover turns may cor-
respond to PSPACE, EXP, or some complexity class between the two.

Similar to the classical case, quantum refereed games are based on the quan-
tum interactive proof system model [14, 15]. Quantum refereed games differ from
classical ones in that the provers and the verifier may perform quantum compu-
tations and exchange quantum messages. Our two main motives for considering
the quantum refereed games model are to better understand the power of quan-
tum interactive proof systems and to examine the effect of quantum information
on the complexity of finding strategies for two-player games.

The main result of this paper establishes that any language having a quantum
interactive proof system also has a quantum refereed game with exponentially
small probability of error wherein each prover plays just one turn (with the
yes-prover playing first). An interesting fact about the resulting game from the
point of view of understanding quantum interactive proofs is that entanglement
between the provers and the verifier does not play any role in this game, and
may without loss of generality be assumed not to exist. More specifically, the
game we define has the following general form: the yes-prover sends the verifier
a mixed quantum state, the verifier processes this state and sends some state to
the no-prover, and the no-prover measures the state and sends a classical result
to the verifier. The verifier checks the result of the measurement and accepts or
rejects.

A key ingredient for our result is an information-theoretic assertion stating
that there exists a quantum measurement that can reliably distinguish between
states chosen from two disjoint convex sets of quantum states. This assertion gen-
eralizes a well-known fact about the relation between the trace distance between
two states and their distinguishability, and may be viewed as a quantitative ver-
sion, from the point of view of quantum information theory, of the fact from
convex analysis that disjoint convex sets are separated by some hyperplane.

The remainder of this paper is organized as follows. We begin by defining
quantum refereed games in Sect. 2. In Sect. 3 we prove the fact concerning
measurements distinguishing convex sets mentioned previously. Using this fact,
we then prove in Sect. 4 that a two-turn quantum refereed game exists for any
language L having a quantum interactive proof system. In Sect. 5 we describe
a method for error reduction in two-turn quantum refereed games. The paper
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concludes with Sect. 6, which mentions some open problems about quantum
refereed games.

2 Definitions

In this section we define the quantum refereed games model and some complexity
classes based on this model. Throughout the paper we assume all strings are over
the alphabet Σ = {0, 1}. For x ∈ Σ∗, |x| denotes the length of x. We let poly
denote the set of polynomial-time computable functions f : N → N \ {0} for
which there exists a polynomial p such that f(n) ≤ p(n) for all n. We also
let 2−poly denote the set of polynomial-time computable functions ε such that
ε(n) = 2−f(n) for all n for some f ∈ poly .

The model for quantum computation that provides a basis for quantum ref-
ereed games is the quantum circuit model, with which we assume the reader is
familiar. As mentioned in Sect. 1, a quantum refereed game has a verifier V and
two competing provers Y and N . Each of V , Y , and N is defined by a mapping
on input strings x ∈ Σ∗ where V (x), Y (x), and N(x) are each sequences of
quantum circuits. The circuits in these sequences are assumed to be composed
only of gates taken from some universal set of quantum gates. Thus, each of
the circuits implements a unitary operation on its input qubits. However, we
lose no generality by allowing only unitary operations because arbitrary admis-
sible quantum operations, including measurements, can be simulated by unitary
circuits as described in Ref. [16].

For each prover, the qubits upon which that prover’s circuits act are parti-
tioned into two sets: one set of qubits is private to that prover and the other is
shared with the verifier. These shared qubits act as a quantum channel between
the verifier and that prover. No restrictions are placed on the complexity of
the provers’ circuits, which captures the notion that the provers’ computational
power is unbounded—each of the provers’ circuits can be viewed as an arbitrary
unitary operation.

The qubits on which the verifier’s circuits act are partitioned into three sets:
one set is private to the verifier and two sets are shared with each of the provers.
One of the verifier’s private qubits is designated as the output qubit. At the end
of the game, acceptance is dictated by a measurement of the output qubit in the
computational basis. We also require that the verifier’s sequence of circuits V (x)
be generated by a polynomial-time Turing machine on input x. This uniformity
constraint captures the notion that the verifier’s computational power is limited.

In addition to the verifier and provers, a quantum refereed game consists of a
protocol that dictates the number and order of turns taken by the provers. The
circuits in the verifier’s and provers’ sequences are applied to the initial state in
which each qubit is in state |0〉 in such a way as to implement the protocol of
the game.

The games we study in this paper have the following protocol: a message from
the yes-prover to the verifier, a message from the verifier to the no-prover, and a
message from the no-prover the the verifier. Quantum refereed games that follow



608 G. Gutoski and J. Watrous

this protocol will be called short quantum games. We note that entanglement
between the provers and the verifier is immaterial in games of this form—each
prover takes only one turn, and thus has no need to remember anything after his
turn ends. Thus, when convenient, we may assume that the provers do not have
private qubits but instead may perform arbitrary admissible quantum operations
(i.e., completely positive trace-preserving maps) on their message qubits.

We now define the complexity class SQG based on short quantum games of
the type just described. For c, s : N → [0, 1], the set SQG(c, s) consists of all
languages L ⊆ Σ∗ for which there exists a verifier V for a short quantum game
such that the following conditions hold: (i) there exists a yes-prover Y such
that, for all no-provers N and all x ∈ L, Y (x) convinces V (x) to accept x with
probability at least 1− c(|x|), and (ii) there exists a no-prover N such that, for
all yes-provers Y and all x �∈ L, N(x) convinces V (x) to reject x with probability
at least 1 − s(|x|). The functions c and s are called the completeness error and
soundness error, respectively. We define SQG

(
2−poly , 2−poly

)
to be the set of all

languages L ⊆ Σ∗ such that L ∈ SQG(ε, ε) for every ε ∈ 2−poly . Let us also
write SQG as shorthand for SQG

(
2−poly , 2−poly

)
.

The class QIP contains all problems having single-prover quantum interactive
proof systems as in Ref. [15]. The main complexity-theoretic result of the present
paper states that QIP ⊆ SQG. We prove this result by exhibiting a short quantum
game that solves a promise problem called the close-images problem, which is
known to be complete for QIP [15]. It is convenient for us to use the formulation
of this problem based on the one found in Ref. [17].

The promise problem close-images is defined for any desired ε ∈ 2−poly

as follows. Given are descriptions of two mixed state quantum circuits Q0 and
Q1, which both implement some admissible (i.e., completely positive and trace-
preserving) transformation from n qubits to m qubits. The promise is that either
(i) there exist n-qubit mixed states ρ0 and ρ1 such that Q0(ρ0) = Q1(ρ1), or
(ii) for all n-qubit mixed states ρ0 and ρ1, the states Q0(ρ0) and Q1(ρ1) have
fidelity squared at most ε(n). In other words, the images of Q0 and Q1 are either
overlapping or are far apart. The goal is to accept when case (i) holds and reject
when case (ii) holds.

3 Distinguishing Convex Sets of Quantum States

We motivate discussion in this section by pointing out that, for any mixed-state
quantum circuit Q, the image A = {Q(ρ) : ρ a mixed state} of the admissible
transformation associated with Q is a compact, convex set of mixed states. If
the images of two circuits Q0 and Q1 are far apart, then one could reasonably
hope that there is a quantum measurement that reliably distinguishes between
outputs Q0(ρ0) and Q1(ρ1) of these transformations, with the measurement de-
pending only on Q0 and Q1, and not on the choice of input states ρ0 and ρ1.
In this section we prove that indeed there always exists such a measurement.
More generally, we prove that given any two disjoint convex sets of mixed quan-
tum states, there exists a single measurement that distinguishes states drawn
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arbitrarily from one set from the other with success probability determined by
the minimal trace distance between the sets. The short quantum game for the
close-images problem we define in Sect. 4 relies heavily upon the existence of
such a measurement.

Let us first begin with some notation. Given a finite dimensional Hilbert
space H, let L(H) denote the set of all linear operators on H, let H(H) denote
the set of all Hermitian operators on H, let Pos(H) denote the set of all positive
semidefinite operators on H, and let D(H) denote the set of all density operators
(i.e., unit trace positive semidefinite operators) on H. For A,B ∈ L(H), define
〈A,B〉 = trA†B. This is an inner product on L(H) that is sometimes called the
Hilbert-Schmidt inner product.

For a vector |ψ〉 ∈ H, ‖|ψ〉‖ denotes the Euclidean norm of |ψ〉, and for an
operator A ∈ L(H), ‖A‖ denotes the operator norm of A. The trace norm of A,
denoted ‖A‖tr is defined by ‖A‖tr = tr

√
A†A. The trace norm and the operator

norm are dual to one another with respect to the Hilbert-Schmidt inner product,
meaning that the following fact holds.

Fact 1. For every A ∈ L(H),

‖A‖ = max {|〈B,A〉| : B ∈ L(H), ‖B‖tr ≤ 1} ,

‖A‖tr = max {|〈B,A〉| : B ∈ L(H), ‖B‖ ≤ 1} .

See, for instance, Bhatia [18] for a proof of this fact.
The trace norm characterizes the distinguishability of a given pair of density

matrices ρ0, ρ1 ∈ D(H) in the following sense. There exists a binary-valued
quantum measurement such that if ρ ∈ {ρ0, ρ1} is chosen uniformly at random,
then the measurement correctly determines which of ρ0 or ρ1 was given with
probability 1

2 + 1
4‖ρ0−ρ1‖tr. Furthermore, such a measurement is optimal in the

sense that no other quantum measurement can possibly distinguish between ρ0
and ρ1 with a higher success rate. An immediate corollary of this fact is that
for a given pair ρ0 and ρ1, there exists a measurement that correctly identifies a
chosen state ρ ∈ {ρ0, ρ1} with probability of correctness at least 1

2 ‖ρ0 − ρ1‖tr,
even if ρ is chosen by an adversary that knows the measurement.

Consider the following variant of the distinguishability problem: We are given
ρ ∈ D(H) chosen from one of two disjoint convex sets of density operators
A0,A1 ⊆ D(H), and we are asked to determine the set from which ρ was chosen.
For simplicity we will assume A0 and A1 are closed sets. Under this assumption,
it is meaningful to define the trace distance dist(A0,A1) between A0 and A1
as the minimum of the quantity ‖ρ0 − ρ1‖tr over all choices of ρ0 ∈ A0 and
ρ1 ∈ A1. We prove that there exists a single measurement with the property
that if an arbitrary ρ is chosen from A0 with probability 1/2, and otherwise
ρ is chosen from A1, then the measurement correctly determines which set ρ
was chosen from with probability at least 1

2 + 1
4 dist(A0,A1). This fact therefore

generalizes the fact concerning a single pair of quantum states mentioned above,
as singleton sets are of course closed and convex. As above, this fact implies
that if ρ is chosen from A0 ∪A1 in an arbitrary manner, even depending on the
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measurement itself, then the measurement will correctly determine from which
of A0 or A1 the state ρ was chosen with probability at least 1

2 dist(A0,A1).
The proof of this fact begins with a well-known result from convex analysis,

which informally states that there exists a separating hyperplane between any
two disjoint convex sets. Typically, the separation result is stated in terms of
the vector space Rn, but it translates to H(H) for a given space H without
complications, as H(H) may be identified with the vector space Rm2

, for m =
dim(H). Here we state a restricted variant of this fact that is most convenient for
our purposes—see Rockafellar [19], for instance, for a more general statement.

Fact 2. Let A,B ⊆ H(H) be disjoint convex sets with A compact and B open.
Then there exists a Hermitian operator H ∈ H(H) and a real number a ∈ R

such that 〈H, X〉 ≥ a > 〈H, Y 〉 for all X ∈ A and Y ∈ B.

We are now ready to state and prove the main result of this section.

Theorem 1. Let A0,A1 ⊆ D(H) be closed convex sets of density operators.
Then there exist measurement operators E0, E1 ∈ Pos(H) with E0 + E1 = I
such that the following holds. For every pair ρ0 ∈ A0 and ρ1 ∈ A1, if ρ is
chosen uniformly from {ρ0, ρ1} and measured via the measurement {E0, E1}, the
measurement will correctly determine whether ρ ∈ A0 or ρ ∈ A1 with probability
at least 1

2 + 1
4 dist(A0,A1).

Proof. Let d = dist(A0,A1). If d = 0, the theorem is trivially satisfied by the
measurement defined by E0 = E1 = 1

2I (which is equivalent to a random coin-
flip), so assume that d > 0. Let A = A0 − A1 = {ρ0 − ρ1 : ρ0 ∈ A0, ρ1 ∈ A1}.
Then A is a compact convex set of Hermitian operators and ‖X‖tr ≥ d for every
X ∈ A. Let B = {Y ∈ H(H) : ‖Y ‖tr < d} denote the open ball of radius d in
H(H) with respect to the trace norm. The sets A and B satisfy the conditions
of Fact 2, and therefore there exists a Hermitian operator H ∈ H(H) and a real
number a ∈ R such that 〈H, X〉 ≥ a > 〈H, Y 〉 for all X ∈ A and Y ∈ B. Because
Y ∈ B if and only if −Y ∈ B for every Y , it follows that −a < a, and therefore
a > 0.

Let K = d
aH. We therefore have that 〈K,X〉 ≥ d for every X ∈ A and

〈K, 1
dY 〉 < 1 for every Y ∈ B. As 1

dY ranges over all Hermitian operators
with trace norm smaller than 1, this implies ‖K‖ ≤ 1 by Fact 1. Now, let
K+,K− ∈ Pos(H) denote the positive and negative parts of K, meaning that
they satisfy K = K+ − K− and 〈K+,K−〉 = 0. As ‖K‖ ≤ 1 it follows that
K+ +K− ≤ I.

At this point we define E0, E1 ∈ Pos(H) as follows:

E0 = K+ +
1
2
(I −K+ −K−) and E1 = K− +

1
2
(I −K+ −K−) .

The operators E0 and E1 are both positive semidefinite and satisfy E0 +E1
= I, and therefore represent a binary-valued POVM.

Now suppose ρ0 ∈ A0 and ρ1 ∈ A1 are chosen arbitrarily, and ρ is chosen
uniformly from the set {ρ0, ρ1}. Let C denote the event that the measurement
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{E0, E1} correctly determines which of ρ0 and ρ1 was selected. We have Pr[C] =
1
2 〈E0, ρ0〉+ 1

2 〈E1, ρ1〉, and therefore

Pr[C]− Pr[¬C] =
1
2
〈E0 − E1, ρ0 − ρ1〉 =

1
2
〈K, ρ0 − ρ1〉 ≥

d

2
,

with the inequality following from the fact that ρ0 − ρ1 ∈ A. Consequently the
measurement is correct with probability at least 1

2 + d
4 as required. � 

As before, it follows from this theorem that the measurement {E0, E1} will
correctly identify an arbitrary choice of ρ ∈ A0 ∪ A1 with probability at least
1
2 dist(A0,A1).

4 A Short Quantum Game for QIP

In this section, we prove that any language with a quantum interactive proof
system also has a short quantum game by solving the QIP-complete problem
close-images from Sect. 2.

First, let us recall that the fidelity F (ρ, ξ) between two quantum states ρ, ξ ∈
D(H) is defined as F (ρ, ξ) =

∥∥√ρ
√
ξ
∥∥

tr. The following fact gives one relationship
between the fidelity and the trace norm.

Fact 3 ([20]). Let ρ, ξ ∈ D(H). Then

1− 1
2
‖ρ− ξ‖tr ≤ F (ρ, ξ) ≤

√
1− 1

4
‖ρ− ξ‖tr .

We are now ready to state and prove the main result of this section.

Theorem 2. QIP ⊆ SQG
(
1/2, 2−poly

)
.

Proof. It suffices to show that close-images is in SQG(1/2, 2−poly). Suppose
the input encodes mixed state quantum circuits Q0 and Q1, each mapping n
qubits to m qubits. Let H and K be Hilbert spaces with dimensions 2n and
2m corresponding to the n input qubits and m output qubits respectively. We
may view Q0 and Q1 as corresponding to admissible transformations Q0, Q1 :
D(H) → D(K). Let Ai = {Qi(ρ) : ρ ∈ D(H)} ⊆ D(K) denote the image of Qi

for i = 0, 1. The sets A0 and A1 are closed, convex sets of density operators.
Consider the following verifier for a short quantum game:

1. Receive n-qubit registers X0 and X1 from the yes-prover.
2. Choose i ∈ {0, 1} uniformly at random and apply Qi to register Xi. Let

the output be contained in an m-qubit register Y, which is then sent to the
no-prover.

3. Receive a classical bit b from the no-prover. Accept if b �= i and reject if
b = i.
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If (Q0, Q1) is a “yes” instance of close-images then there exist ρ0, ρ1 ∈
D(H) such that Q0(ρ0) = Q1(ρ1). The strategy for the yes-prover is to prepare
the registers X0 and X1 in states ρ0 and ρ1, respectively, and to send them to
the verifier in step 1 of the verifier’s protocol. Because Q0(ρ0) = Q1(ρ1), the
state contained in the register Y is independent of i, so the no-prover can do no
better than randomly guessing in step 3. The verifier will therefore accept with
probability 1/2 in this case.

If (Q0, Q1) is a “no” instance of close-images then for any desired ε ∈ 2−poly

we are promised that

√
ε(n) ≥ max

ξ0,ξ1∈D(H)
{F (Q0(ξ0), Q1(ξ1))} ≥ 1− 1

2
dist(A0,A1) .

It follows that dist(A0,A1) ≥ 2− 2
√
ε(n).

Regardless of the state of the registers X0 and X1 sent to the verifier by the
yes-prover, we must have that the reduced state of the register Y sent to the
no-prover is given by some state ξ ∈ A0 ∪ A1, and moreover that Pr[ξ ∈ A0] =
Pr[ξ ∈ A1] = 1/2. By Theorem 1 there exists a quantum measurement {E0, E1}
that correctly determines whether ρ ∈ A0 or ρ ∈ A1 with probability at least

1
2

+
1
4

dist(A0,A1) ≥ 1−
√
ε(n)
2

.

The strategy for the no-prover is to perform the quantum measurement
{E0, E1} and send the result to the verifier in step 3. This causes the veri-
fier to reject with probability at least 1−

√
ε(n)/2. As this argument holds for

every ε ∈ 2−poly , we have that the soundness error is 2−poly as required. � 

5 Error Reduction

Suppose that both the completeness and soundness error c and s of a refereed
game are bounded below 1/2 by an inverse polynomial. Then it follows from
Chernoff bounds that these error probabilities can be made exponentially close
to zero by repeating the game a polynomial number of times in succession and
taking a majority vote. Of course, sequential repetition necessarily increases the
number of turns in the game and so it is natural to ask if error reduction can be
achieved without affecting the turn complexity of the game.

A natural approach to this task is to run many copies of the refereed game
in parallel and to accept or reject based on the outcomes of the repetitions. This
technique is purely classical and has been successfully applied to classical single-
and multi-prover interactive proof systems (see for example Ref. [21] and the
references therein). A potential problem with this technique is that the provers
need not treat each repetition independently—they might try to correlate the
parallel repetitions (or entangle them in the quantum case) in some devious
way such that the completeness and/or soundness error does not decrease as
desired.
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In the quantum setting, the general case of this problem has not been com-
pletely solved. But for three-message single-prover quantum interactive proof
systems with zero completeness error, Ref. [15] proves that parallel repetition
followed by a unanimous vote does indeed achieve the exponential reduction in
soundness error that one might expect, regardless of any possible entanglement
by the prover among the parallel copies.

In this section, we prove that parallel repetition followed by a unanimous
vote can be used to improve the error bounds for short quantum games by
reducing the problem to error reduction for single-prover quantum interactive
proof systems with three or fewer messages. The reduction is achieved by fixing
a yes- or no-prover P that is guaranteed to win with a certain probability. By
viewing the verifier-prover pair (V, P ) as a new composite verifier, we are left
with what is now effectively a one- or two-message quantum interactive proof
system in which the opposing prover is the lone prover. We define a verifier-prover
pair (V ′, P ′) that runs many copies of (V, P ) in parallel and accepts based on a
unanimous vote. We can then employ the error reduction result of Ref. [15] to
prove that the error of the new game decreases exponentially in the number of
repetitions.

We formalize this argument shortly, but first we require additional notation.
Given finite-dimensional Hilbert spaces H and K, let L(H,K) denote the set
of all linear operators mapping H to K and let T(H,K) denote the set of all
linear operators mapping the vector space L(H) to L(K). The trace norm can
be extended to T(H,K) as follows. For T ∈ T(H,K),

‖T ‖tr = sup
X∈L(H)\{0}

‖T (X)‖tr
‖X‖tr

.

Let L be a Hilbert space with dim(L) = dim(H) and let IL(L) denote the iden-
tity transformation on L(L). Then for T ∈ T(H,K), the diamond norm ‖T ‖� of
T is given by ‖T ‖� =

∥∥T ⊗ IL(L)
∥∥

tr. Further information on the diamond norm
may be found in Kitaev, Shen, and Vyalyi [22]. The diamond norm satisfies sev-
eral nice properties that the trace norm (extended to T(H,K)) does not. For
example, the diamond norm is multiplicative with respect to tensor products:
‖T1 ⊗ T2‖� = ‖T1‖� ‖T2‖� for any choice of transformations T1 and T2.

We are now prepared to give the main result of this section, whose proof is
based on the proof of Theorem 6 of Ref. [15].

Theorem 3. SQG(c, s) ⊆ SQG(kc, sk) ∩ SQG(ck, ks) for any choice of c, s :
N → [0, 1] and k ∈ poly.

Proof. We first prove that SQG(c, s) ⊆ SQG(kc, sk). Let L ∈ SQG(c, s) and let
V (x) = (V (x)1, V (x)2) be a verifier witnessing this fact. For the remainder of
this proof, we assume that the input x ∈ Σ∗ is fixed. For brevity we drop the
argument and write V = (V1, V2) and use similar notation for the provers.

Let V ′ = (V ⊗k
1 , V ⊗k

2 ) be a verifier that runs k copies of the protocol of V in
parallel and accepts if and only if every one of the k copies accepts. We must
show that V ′ has completeness error at most kc and soundness error at most sk.
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First consider the case x ∈ L. Let Y = (Y1) be a yes-prover that always
convinces V to accept with probability at least 1 − c. Let Y ′ = (Y ⊗k

1 ) be a
yes-prover that runs k independent copies of the protocol of Y in parallel. Then
no no-prover can win any one of the k copies with probability greater than c
and so by the union bound we know that the completeness error of the repeated
game is at most kc.

Next consider the case x �∈ L. Let N = (N1) be a no-prover that always
convinces V to reject with probability at least 1 − s. Let N ′ = (N⊗k

1 ) be a no-
prover that runs k independent copies of the protocol of N in parallel. We now
show that no yes-prover can win against N ′ using verifier V ′ with probability
greater than sk.

Let Πinit denote the projection of the entire system onto the all-|0〉 initial
state. Then the projection Π ′

init = Π⊗k
init corresponds to the initial state of the

repeated game. Let Πacc denote the projection onto the states for which the
output qubit belonging to V is 1. Then the projection Π ′

acc = Π⊗k
acc corresponds

to the accepting state of V ′. Let VN denote the Hilbert space corresponding
to the private qubits of V and the private and message qubits of N and let
MY denote the Hilbert space corresponding to the yes-prover’s message qubits.
Define TN ∈ T(VN ⊗MY ,MY ) as TN (X) = trVN

(Πinit)X(ΠaccV2N1V1).
As mentioned earlier, we may view (V,N) as a new composite verifier and the

yes-prover as the lone prover for some one-message quantum interactive proof
system (i.e., a message from the prover to (V,N)). In this context, Lemma 7
of Ref. [15] asserts that the maximum probability with which any prover could
convince the verifier (V,N) to accept x is precisely ‖TN ‖2� . Because (V,N) has
soundness error at most s, we have ‖TN ‖2� ≤ s.

Define a similar transformation T ′
N ∈ T((VN ⊗MY )⊗k,M⊗k

Y ) using V ′, N ′,
Π ′

init, and Π ′
acc. It follows that T ′

N = T⊗k
N . From the multiplicativity of the

diamond norm, it follows that the maximum probability with which any prover
could convince (V ′, N ′) to accept x is ‖T ′

N ‖
2
� =

∥∥T⊗k
N

∥∥2

� = ‖TN ‖2k
� ≤ sk, which

establishes the desired result.
Due to the symmetric nature of quantum refereed games, we can modify

the above proof to show that SQG(c, s) ⊆ SQG(ck, ks). In particular, define the
verifier V ′′ so that he rejects if and only if all k copies reject. For the case x �∈ L,
the proof that V ′′ has soundness error ks is completely symmetric to the proof
that V ′ has completeness error kc.

For the case x ∈ L, we let Y and Y ′ be yes-players as above. Define the
Hilbert spaces VY and MN and the projections Πrej and Π ′

rej in the appropriate
symmetric manner as per the above proof. The transformation TY ∈ T(VY ⊗
MN ,MN ) is defined as TY (X) = trVY

(V1Y1Πinit)X(ΠrejV2).
As before, we may view (V, Y ) as a new composite verifier and the no-prover

as the lone prover for some quantum interactive proof system. The differences
here are that the quantum interactive proof is now a two-message proof instead
of a one-message proof (i.e., a message from (V, Y ) to the prover followed by
the prover’s reply to (V, Y )) and that the prover’s goal is now to convince the
verifier (V, Y ) to reject x instead of to accept x.
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Fortunately, it is still straightforward to apply Lemma 7 of Ref. [15] to this
quantum interactive proof system and so we may claim that the maximum prob-
ability with which any prover could convince the verifier (V, Y ) to reject x is
precisely ‖TY ‖2� . That V ′′ has completeness error ck follows as before. � 

The proof of Theorem 3 can be extended to allow for the slightly more general
protocol wherein the verifier sends a message to the yes-prover (via some circuit
Vinit) before the short quantum game commences. This extension follows from the
fact that we can apply Lemma 7 of Ref. [15] to the augmented transformations

TN (X) = trVN
(VinitΠinit)X(ΠaccV2N1V1) ,

TY (X) = trVY
(V1Y1VinitΠinit)X(ΠrejV2) .

Combining Theorems 2 and 3 we obtain the following corollary, which is the
main result of this paper.

Corollary 1. QIP ⊆ SQG.

Proof. Given a desired error bound 2−p where p ∈ poly , choose ε ∈ 2−poly so
that pε ≤ 2−p. We have QIP ⊆ SQG (1/2, ε) ⊆ SQG (2−p, 2−p) . � 

6 Conclusion

We introduced in this paper the quantum refereed game model of computation
and gave a short quantum game with exponentially small error for languages
with single-prover quantum interactive proof systems. However, we have only
scratched the surface of the quantum games model, and many questions about
it remain unanswered. Some examples follow.

– The two-turn game presented in this paper has an asymmetric protocol. Is
there also a two-turn quantum refereed game for QIP in which the no-prover
sends the first message, or in which the provers play one turn in parallel?

– It is known that QIP ⊆ EXP. How does SQG relate to EXP?
– We mentioned in Sect. 1 that classical refereed games characterize EXP [10],

which implies that many-turn quantum refereed games are at least as pow-
erful as EXP. What upper bounds can be proved on the power of refereed
quantum games?

– We demonstrated that parallel repetition followed by a unanimous vote can
reduce error for short quantum games. Is there a way to reduce the error
in any quantum refereed game without affecting the number of turns in the
game?
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Abstract. A problem arising in integer linear programming is to trans-
form a solution of a linear system to an integer one which is “close”. The
customary model to investigate such problems is, given a matrix A and
a [0, 1] valued vector x, to find a binary vector y such that ‖A(x − y)‖∞
(the violation of the constraints) is small. Randomized rounding and
the algorithm of Beck and Fiala are ways to compute such solutions y,
whereas linear discrepancy is a lower bound measure.

In many applications one is looking for roundings that, in addition
to being close to the original solution, satisfy some constraints without
violation. The objective of this paper is to investigate such problems in
a unified way. To this aim, we extend the notion of linear discrepancy,
the theorem of Beck and Fiala and the method of randomized rounding
to this setting.

Whereas some of our examples show that additional hard constraints
may seriously increase the linear discrepancy, the latter two sets of results
demonstrate that a reasonably broad notion of hard constraints may be
added to the rounding problem without worsening the obtained solution
significantly.

Of particular interest might be our results on randomized rounding.
We provide a simpler way to randomly round fixed weight vectors (cf.
Srinivasan, FOCS 2001). It has the additional advantage that it can be
derandomized with standard methods.

1 Introduction and Results

1.1 Rounding Problems, Randomized Rounding and Linear
Discrepancy

Solving integer linear programs (ILPs) is NP–hard, solving linear programs with-
out integrality constraints is easy (in several respects). Therefore a natural and
widely used technique is to solve the linear relaxation of the ILP and then trans-
form (typically by rounding) its solution into an integer one.

In doing so, one usually has to accept that the constraints are violated to
some extent. There are several ways to deal with such violations, including simply
accepting them, repairing them and preventing them by solving a linear program
with stricter constraints in the first step. We do not want to go into detail here,
but note that in any case the central theme is rounding the solution of the

V. Diekert and B. Durand (Eds.): STACS 2005, LNCS 3404, pp. 617–628, 2005.
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relaxation in such a way that the constraints are violated not too much. The
underlying theoretical concept is the one of linear discrepancy.

Definition 1 (Linear Discrepancy Problem). Given a matrix A ∈ Rm×n

and a vector x ∈ [0, 1]n, find a y ∈ {0, 1}n such that ‖A(x− y)‖∞ is small. We
write

lindisc(A, x) := min
y∈{0,1}n

‖A(x− y)‖∞,

lindisc(A) := max
x∈[0,1]n

lindisc(A, x).

Thus lindisc(A, x) is the rounding error inflicted by an optimal rounding of
x. It is known that this can be quite high. Spencer [Spe87] gives an example of
a binary n× n matrix A such that lindisc(A) = Ω(

√
n).

Whereas linear discrepancies provide bounds on how good roundings can
possibly be, there are a number of positive results. A very general approach is
the one of randomized rounding introduced in Raghavan and Thompson [RT87,
Rag88]. Here the integer vector y is obtained from the solution x of the relaxation
by rounding each component j independently with probabilities derived from yj .
In particular, if x ∈ [0, 1]n, we have Pr(yj = 1) = xj and Pr(yj = 0) = 1 − xj

for all j.
Since the components are rounded independently, the deviation (A(x − y))i

in constraint i is a sum of independent random variables. Thus it is highly con-
centrated around its mean, which by choice of the probabilities is zero. Large
deviation bounds like the Chernoff inequality allow to quantify such violations.
Derandomizations transform this randomized approach into a deterministic al-
gorithm (see [Rag88, SS96]).

Another well-known rounding result is due to Beck and Fiala [BF81].
They give a polynomial time algorithm computing a rounding y such that
‖A(x − y)‖∞ < ‖A‖1, where ‖A‖1 = maxj∈[n]

∑m
i=1 |aij |. This result is par-

ticularly useful for sparse matrices. A one-sided version was proven by Karp et
al. [KLR+87] and applied to a global routing problem.

1.2 Hard Constraints

The notion of linear discrepancy prices all violations of constraints the same.
This is feasible if all constraints are of the same kind. There are, however, a
number of problems where this is definitely not the case. We sketch a simple one
that carries most of the typical structure we are interested in.

Raghavan and Thompson [RT87] investigate the following routing problem.
Given an undirected graph and several source–sink pairs (si, ti), we are looking
for paths fi from si to ti such that the maximum edge congestion is minimized.
Solving the non-integral relaxation and applying path stripping (cf. [GKR+99]),
we end up with this rounding problem: Round the solution (xP )P of the linear
system
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Minimize W s. t.
∑
P�e

xP ≤W, ∀e

∑
P∈Pi

xP = 1, ∀i

xP ≥ 0, ∀P

to an integer one such that the first set of constraints is violated not too much
and the second one is satisfied without any violation.

The first group of constraints ensures that W is the maximum congestion
of an edge. Here a rounding error just enlarges the congestion (our objective
value). The second kind of constraints is different. It ensures that each request
is satisfied exactly once. Here no violation can be tolerated — it would result in
demands satisfied more than once or not at all.

Further examples of rounding problems with hard constraints include
other routing applications ([RT91, Sri01]), many flow problems ([RT87, RT91,
GKR+99]), partial and capacitated covering problems ([GKPS02]), the assign-
ment problem with extra constraints ([AFK02]) and the linear discrepancy prob-
lem for hypergraphs in more than two colors ([DS03]).

1.3 Prior Work

For linear programs with right hand side of the hard constraints equal to one and
hard constraints depending on disjoint sets of variables, Raghavan and Thomp-
son [RT87] presented an easy solution. In the example above, for each i they pick
one P ∈ Pi with probability xP and set yP = 1 and yP ′ = 0 for all P ′ ∈ Pi\{P}.

The general case of the integer splittable flow problem, however, seems to
require a more complicated random experiment. In the integer splittable flow
problem, each source–sink pair has associated an integral demand di and the
task is to find an integer flow fi from si to ti having value di. Using the approach
sketched in the previous subsection, we would end up with the same rounding
problem with the 1 replaced by di in the second set of constraints. Note that for
this rounding problem, the ideas of Raghavan and Thompson (and all promising
looking simple extensions) fail. Guruswami et al. [GKR+99] state on the integral
splittable flow problem (ISF) in comparison to the unsplittable flow problem that
“standard roundings techniques are not as easily applied to ISF”.

On FOCS 2001, Srinivasan [Sri01] presented a way to compute randomized
roundings that respect the constraint that the sum of all variables remains un-
changed (cardinality constraint) and fulfill some negative correlation properties
(that imply Chernoff bounds). Among other results, this yields a randomized
algorithm for the integer splittable flow problem.

The deterministic “pipage rounding” algorithm of Ageev and Sviridenko [AS]
allows to round edge weights of in a bipartite graph in such a way that the sum of
weights incident with a vertex changes by less than one (“degree preservation”).
This yields improved approximation algorithms for maximum coverage problems
and max-cut problems with given sizes of parts. Ageev and Sviridenko note that
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their ideas could be used in a randomized way, but “the resulting algorithm will
be too sophisticated to admit derandomization”.

The ideas of [AS] and [Sri01] were combined in Gandhi, Khuller,
Parthasarathy and Srinivasan [GKPS02] to obtain randomized roundings of edge
weights in bipartite graphs that are degree preserving and fulfill negative cor-
relation properties on sets of edges incident with a common vertex. This again
yields improved randomized approximation algorithms for several problems as
well as some nice per-user fairness properties.

1.4 Our Contribution

As can be seen from the previous subsection, there is now a decent amount of
knowledge on rounding problems with hard constraints. However, most of these
results focus rather on a particular application than on the common theme of
respecting hard constraints. While still having an eye on the application, the
main aim of this paper is to investigate rounding problems with hard constraints
in a unified way.

To this end, we introduce the corresponding linear discrepancy notion and ex-
tend previous rounding results to deal with hard constraints. Though we find ex-
amples showing that the linear discrepancy can increase unexpectedly by adding
hard constraints (Theorem 8), our algorithmic results show that reasonable hard
constraints can be added without seriously worsening the optima.

We show that for constraints on disjoint sets of variables, a rounding error
of 2‖A‖1 can be achieved, which is twice the bound of Beck and Fiala. For
constraints of type By = Bx, where B is an arbitrary totally unimodular m×n
matrix, we have a bound of (1 +m)‖A‖1.

We provide a way to generate randomized roundings that satisfy hard con-
straints as in [Sri01]. They satisfy the key properties of the ones given there
(hence our roundings yield all his results as well), but seem to be conceptually
much simpler. This allows to derandomize them with respect to large deviation
results. Our approach can be extended to the setting of [GKPS02], but we will
not discuss this here.

We have to defer detailed descriptions to the remainder of the paper. In simple
words though, our results show that many known rounding results (in particular,
randomized rounding and its derandomizations) still work when suitable hard
constraints are added. For reasons of space, many proofs are omitted in the paper.

2 Definitions and Notation

For a number r write [r] := {n ∈ N |n ≤ r}. For a matrix A ∈ Rm×n let
‖A‖1 := maxj∈[n]

∑
i∈[m] |aij | denote the operator norm induced by the L1 norm.

For matrices A and vectors x we write A|I×J and x|J to denote the restrictions
(submatrices or subvectors) on the index sets I × J and J respectively.

Throughout the paper let A ∈ RmA×n, B ∈ RmB×n and x ∈ [0, 1]n such that
Bx ∈ ZmB . We call the problem to find a y ∈ {0, 1}n such that Bx = By and
‖A(x− y)‖∞ is small a rounding problem with hard constraints.
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Definition 2 (Linear Discrepancy with Hard Constraints). Let A ∈
RmA×n, B ∈ RmB×n and x ∈ [0, 1]n such that Bx ∈ ZmB . Put E(B, x) =
{y ∈ {0, 1}n |Bx = By}. Then

lindisc(A,B, x) := min
y∈E(B,x)

‖A(x− y)‖∞,

lindisc(A,B) := max
x∈[0,1]n

Bx∈Z
mB

lindisc(A,B, x).

If E(B, x) = ∅, we have lindisc(A,B, x) = ∞. Of course, the interesting case
for our problem is that E(B, x) is not empty. Therefore, we will assume that B
is totally unimodular. This is justified by the following corollary of the theorems
of Hoffman and Kruskal [HK56] and Ghouila-Houri [GH62].

Theorem 1. The following properties are equivalent:

(i) B is totally unimodular.
(ii) For all x ∈ Rn there is a y ∈ Zn such that ‖x−y‖∞ < 1 and ‖B(x−y)‖∞ < 1.

3 Sparse Matrices

In this section, we extend the theorem of Beck and Fiala (cf. Section 1.1) to
include hard constraints.

Theorem 2. Let B be totally unimodular. Then

a) lindisc(A,B) < (1 +mB)‖A‖1.
b) If ‖B‖1 = 1, then lindisc(A,B) < 2‖A‖1 independent of mB.

Proof (Theorem 2). Set Δ := ‖A‖1. Set y = x. Successively we will round y to a
0, 1 vector. Let δ > 0 to be determined later. We repeat the following rounding
process:

Put J := {j ∈ [n] | yj /∈ {0, 1}}, and call these columns floating (the others
fixed). Set IA := {i ∈ [mA] |

∑
j∈J |aij | > δ} and IB := {i ∈ [mB ] |

∑
j∈J |bij | >

0}, and call these rows active (the others ignored). We will ensure that during
the rounding process the following conditions are fulfilled (this is clear for the
start, because y = x):

(i) (A(x− y))|IA
= 0,

(ii) (B(x− y))|IB
= 0,

(iii) y ∈ [0, 1]n.

If there is no floating column, that is, J = ∅, then our rounding process
terminates with y ∈ {0, 1}n. Hence assume that there are still floating columns.
We consider the system of equations

A|IA×J z|J = 0, B|IB×J z|J = 0, z|[n]\J = 0. (1)
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We have |J |Δ ≥
∑

j∈J

∑
i∈IA

|aij | =
∑

i∈IA

∑
j∈J |aij | > |IA| δ, hence |J | >

|IA|δ/Δ.
Case 1: IA �= ∅. The system (1) consists of at most |IA| + |IB | + (n − |J |)

equations. We will determine δ later in such a way the system (1) is under-
determined. Then it has a non-trivial solution z.

By definition of J and (iii), there is a λ > 0 such that at least one component
of y + λz becomes fixed and still y ∈ [0, 1]n. Note that y + λz instead of y also
fulfills (i) and (ii). Set y := y + λz. Since (i) to (iii) are fulfilled for this new
y and also no previously fixed yj becomes floating again (due to (iii)), we can
continue this rounding process until all yj ∈ {0, 1}.

Case 2: IA = ∅. Since B|IB×J x|J is integral and B (and thus B|IB×J) is
totally unimodular, there is a z ∈ {0, 1}J such that B|IB×J z = B|IB×J x|J (cf.
e.g. Theorem 1). Define ỹ ∈ {0, 1}n by ỹj = zj for j ∈ J and ỹj = yj else. Note
that this implies B(x − ỹ) = 0. Since ỹ ∈ {0, 1}n we end the rounding process
with result ỹ.

We show ‖A(x − y)‖∞ < δ for the resulting y. Let i ∈ [mA]. Denote by
y(0) and J (0) the values of y and J when the row i first became ignored. We
have y(0)

j = yj for all j /∈ J (0) and |y(0)
j − yj | < 1 for all j ∈ J (0). Note that∑

j∈J(0) |aij | ≤ δ, since i is ignored. Thus

|(A(x− y))i| = |(A(x− y(0)))i + (A(y(0) − y))i| = |0 +
∑

j∈J(0)

aij(y
(0)
j − yj)| < δ.

It remains to determine δ in such a way that the linear systems regarded are
under-determined.

Part a) For the general case, put δ = (1 + mB)Δ. Since IA �= ∅ in Case 1,
|IB | ≤ mB and |J | > |IA|δ/Δ, we have

|IA|+ |IB |+ (n− |J |) < |IA|+ |IB |+ n− |IA|(1 +mB) ≤ n.

Part b) Assume now that ‖B‖1 = 1, that is, the constraints encoded in
B belong to disjoint sets of variables. Then |J | ≥ 2|IB | holds throughout the
rounding process: If a constraint from B is active, it depends on at least two
variables not yet fixed — simply because B|IB×J y|J = B|IB×J x|J is integral
and B ∈ {−1, 0, 1}mB×n. Therefore, δ = 2Δ suffices. We then have |IA|+ |IB |+
(n− |J |) ≤ |IA|+ n− 1

2 |J | < n. � 

The dependence on mB in Part a) is of the right order, as the first example
in Section 5 shows. In particular, a bound like lindisc(A,B, x) ≤ (1+‖B‖1)‖A‖1
as could be conjectured from a) and b), does not hold. Let us also remark that
the rounding algorithms of Karp et al. [KLR+87] admits similar extensions. We
omit the details.

4 Randomized Rounding

In this section, we modify the approach of randomized rounding to respect hard
constraints. The particular problem is to design a random experiment that at
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the same time respects the hard constraints and generates “independent look-
ing”randomized roundings (satisfying Chernoff bounds for example). Our ran-
dom experiment is different from the one in [Sri01], which enables us to de-
randomize it. However, it also satisfies the main properties (A1) to (A3) of his
approach. To ease reading, we describe our result in its simplest version in the
following section and sketch possible extensions in the second one.

4.1 Randomized Construction and Derandomization

In this section, we only treat the case that B ∈ {0, 1}mB×n and ‖B‖ = 1.
Hence, we only regard so-called cardinality constraints that contain disjoint sets
of variables.

Randomized construction: Assume first that all xj are in {0, 1
2 , 1}. Since∑

j∈[n] bijxj ∈ Z for all i ∈ [mB ] by assumption, we conclude that all Ei := {j ∈
[n] |xj = 1

2 , bij = 1} have even cardinality. Now partitioning each Ei into pairs1

(j1, j2) and independently flipping a coin to decide whether (yj1 , yj2) = (1, 0) or
(yj1 , yj2) = (0, 1) solves the problem in a randomized way (variables xj with j
contained in no Ei can be rounded independently at random).

For xj having finite binary expansion, we iterate this procedure digit by
digit: If x has binary length �, write x = x′ + 2−l+1x′′ with x′′ ∈ {0, 1

2}n and
x′ ∈ [0, 1]n having binary length �− 1. Compute y′′ as rounding of x′′ as above.
Put x := x′ + 2−l+1y′′. Note that x now has binary length � − 1. Repeat this
procedure until a binary vector is obtained. For each x having finite binary
expansion, this defines a probability distribution D(B, x) on {0, 1}n.

Theorem 3. Let y = (y1, . . . , yn) be a sample from D(B, x). Then it holds:

(A1) y is a randomized rounding of x: For all j ∈ [n], Pr(yj = 1) = xj.
(A2) D(B, x) is distributed on E(B, x): Pr(By = Bx) = 1.
(A3) For all S ⊆ [n] and b ∈ {0, 1}, Pr(∀j ∈ S : yj = b) ≤

∏
j∈S Pr(yj = b).

Proof. (A1): Let j ∈ [n]. If xj ∈ {0, 1}, the claim is trivial. Let xj therefore have
binary length � ≥ 1. Let x̃j be the outcome of the first random experiment (i.e.,
x̃j is a random variable having binary length at most �− 1). By induction,

Pr(yj = 1) =
∑

ε∈{−1,1}
Pr(x̃j = xj + ε2−�) Pr(yj = 1 | x̃j = xj + ε2−�)

=
∑

ε∈{−1,1}

1
2 (xj + ε2−�) = xj .

(A2): By definition of D(B, x), in each rounding step the sum of the values
with index in Ei is unchanged for all i ∈ [mB ]. Hence (By)i =

∑
j∈Ei

yj =∑
j∈Ei

xj = (Bx)i.

1 As we will see, the particular choice of this partition is completely irrelevant. Assume
therefore that we have fixed some deterministic way to choose it (e.g., greedily in
the natural order of [n]).



624 B. Doerr

(A3): Let S ⊆ [n]. We show the claim for b = 1. Again, if x ∈ {0, 1}n, there
is nothing to show. Let x therefore have binary length � ≥ 1. Let x̃ be the
outcome of the first rounding step. This is a random variable, that is uniformly
distributed on the set R(x) of possible outcomes (which is determined by x and
the way we choose the partition into pairs). Note that for each z ∈ R(x), also
z̄ := 2x − z ∈ R(x). Note also that

∏
j∈S zj +

∏
j∈S z̄j ≤ 2

∏
j∈S xj . Hence by

induction

Pr(∀j ∈ S : yj = 1) =
∑

z∈R(x)

Pr(x̃ = z) Pr((∀j ∈ S : yj = 1) | x̃ = z)

=
1

|R(x)|
∑

z∈R(x)

∏
j∈S

zj ≤
1

|R(x)| (
1
2 |R(x)| · 2

∏
j∈S

xj) =
∏
j∈S

xj =
∏
j∈S

Pr(yi = 1).

� 

As shown in [PS97], (A3) implies the usual Chernoff-Hoeffding bounds on
large deviations.

We build on the following theorem of Raghavan [Rag88], which is a deran-
domization of the (independent) randomized rounding technique.

Theorem 4 (Raghavan (1988)). For any A ∈ {0, 1}m×n and x ∈ [0, 1]n a
y ∈ {0, 1}n can be computed in O(mn) time such that ‖A(x − y)‖∞ ≤ (e −
1)
√
s ln(2m), where s = max{‖Ax‖∞, ln(2m)}.

Noting that the pairing trick in a single iteration allows us to write Ay in
the form “matrix times vector of independent random variables”, we prove the
following result.

Theorem 5. Let A ∈ {0, 1}mA×n and B ∈ {0, 1}mB×n such that ‖B‖1 = 1.

a) Let x ∈ [0, 1]n such that Bx ∈ ZmB . Then for all � ∈ N, a binary vector y
such that Bx = By and

‖A(x− y)‖∞ ≤ 52
√

max{‖Ax‖∞, ln(4mA)} ln(4mA) + n2−�

can be computed in time O(mn�).
b) lindisc(A,B) ≤ 5

√
n ln(4mA).

4.2 Extensions

(1) We always assumed that Bx is integral. A trivial reduction (by adding
dummy variables) extends our results to arbitrary Bx. We then have:

(A2+) For all i ∈ [mB ], (By)i is a randomized rounding of (Bx)i.

In particular, (By)i ∈ {�(Bx)i� , �(Bx)i�} with probability one.
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(2) Raghavan [Rag88] also obtains the bound ‖A(x − y)‖∞ ≤
e ln(2m)/ ln(e ln(2m)/‖Ax‖∞) for the case that ‖Ax‖∞ ≤ ln(2m). This is
strongest for constant ‖Ax‖∞, where it yields a bound of O( log m

log log m ) instead of
our bound of O(logm). Since the typical application of randomized rounding
seems to be that ‖Ax‖∞ is large, we do not try to improve our result in this
direction.

(3) One subtle aspect in derandomizing Chernoff bounds lies in the computation
of the involved pessimistic estimators. There is no problem if one works in a
model that allows exact computations of real numbers. In the more realistic
RAM model, things are more complicated. Raghavan’s derandomization then
only works for 0, 1 matrices A. Srivastav and Stangier [SS96] gave a solution
that works for matrices having arbitrary entries in [0, 1]∩Q, though has a higher
time complexity of O(mn2 log(mn)).

Here again the simplicity of our approach pays off. Since we only need to de-
randomize Chernoff type large deviation bounds, we can plug in any algorithmic
version of the underlying large deviation inequality.

(4) If B ∈ {−1, 0, 1}, one can modify the definition of ỹ in the proof above in
such a way that Bỹ = 0. An extension to further values, however, is not possible
as we might run into the problem that no integral solution exists at all. For
example, the single constraint

∑
i∈[3]

4
5xi = 2 is satisfied by xi = 5

6 , but clearly
no 0, 1 solution exists.

(5) The constant of 52 is not the full truth. Things become much better, if
‖Ax‖∞ % ln(4mA). In this case, the constant reduces to less than 6.

4.3 Applications

In this subsection, we sketch two applications. Note that — and this is one
advantage of the results presented above — our results in simple words just
state that randomized rounding and the corresponding derandomizations work
as before even if a few hard constraints are added to the problem. This seems to
be particularly useful for real-world application, which usually lack the plainness
of problems regarded in theoretical sciences.

We start with derandomizing Srinivasan’s [Sri01] solution for the integral
splittable flow problem (cf. Subsection 1.2 and 1.3). Note that for most of the
other randomized results in [Sri01], deterministic algorithms of same quality have
already been given earlier by Ageev and Sviridenko [AS].

The integral splittable flow problem extends the unit flow version of Ragha-
van and Thompson [RT87]. From the problem formulation, it is clear that The-
orem 3 and 5 can be applied: The hard constraints depend on disjoint sets of
variables, namely the paths obtained from applying the path stripping procedure
to the flow satisfying a particular demand. Analogous to the result of Raghavan
and Thompson for unit flows and derandomizing Srinivasan [Sri01] (with larger
constants), we obtain the following.
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Theorem 6. A solution of the relaxation with objective value W ≥ ln(4|E|)
can efficiently be transformed into an integer solution with objective value W +
52

√
W ln(4mA).

As a second example, let us consider the packing problem

max ctx such that Ax ≤ k, x ∈ {0, 1}n.

We may view this as a scheduling problem. We want to select a set of jobs
maximizing our profit in such a way that all m machines are busy for at most k
time units. Using an additional scaling trick, Raghavan [Rag88] showed that for
k = Ω(logmA), approximations with additive error exist.

In a real world scenario, additional constraints often are present (or show up
while a first solution is analyzed). Here, one may assume that different parties
have a particular interest in some jobs to be scheduled. In this case, we have
disjoint sets F1, . . . , F� of jobs favored by party i ∈ [�], and a fairness condition
might impose that from each set Fi, at least a given number of r jobs has to be
scheduled.

Note that r can (and usually will) be small compared to k. Hence large
deviation bounds will not be applicable. However, the following easily solves
the problem: (i) Solve the relaxation with additional constraints

∑
j∈Fi

xj

≥ r, i ∈ [�]. Denote the solution by x̂. (ii) Apply randomized rounding or its
derandomization on x̂ with the additional hard constraints that

∑
j∈Fi

yj is a
randomized rounding of

∑
j∈Fi

x̂j for all i ∈ [�] (cf. the extensions subsection for
a remark on these dependencies). We thus obtain an integer solution of similar
quality as Raghavan’s that also satisfies our fairness requirements.

4.4 Comparison to the Approach of Srinivasan

In Srinivasan [Sri01], randomized roundings satisfying hard constraints as in
Theorem 3 were generated. His approach is to repeat regarding two variables
only, and fixing one to an integer value and propagating the other with an
updated probability distribution.

This sequential rounding approach seems to be much harder to work with.
We currently do not see how this algorithm can be derandomized. Also, we feel
that proving the properties (A1) to (A3) must be quite complicated (proofs are
omitted in [Sri01]).

Note that the complexity of both approaches is very similar. Working with
real numbers in [Sri01] hides part of complexity that is present in the bit-wise
model used in this paper.

5 Examples and Lower Bounds

The following simple example shows that hard constraints may increase the
rounding error significantly. It also shows that the dependence on mB in part a)
of Theorem 2 is of the right order.
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Example 1: Let n be a multiple of 4. Let A = (1 0 1 0 . . .) ∈ R1×n, mB = n− 1
and B ∈ {0, 1}mB×n such that bij = 1 if and only if j ∈ {i, i+ 1}. Let x = 1

21n.
Then

lindisc(A, x) = 0,
lindisc(A, x′) ≤ 1

2 for all x′ ∈ [0, 1]n,
lindisc(A,B, x) = 1

4n (= 1
4 (1 +mB)‖A‖1).

Example 2: The linear discrepancy problem for hypergraphs is to compute for
a given mixed coloring (each vertex receives a weighted mixture of colors) a pure
coloring in such a way that each hyperedges in total contains (roughly) the same
amount of each color with respect to both colorings.

Definition 3 (Linear Discrepancy Problem for Hypergraphs). Let
c ∈ N≥2. Let H = (V, E) be a hypergraph. A mapping p : V → [0, 1]c such
that

∑
d∈[c] p(v)d = 1 for all v ∈ V is called mixed coloring of H. It is called

pure coloring, if for all v ∈ V there is a (unique) d ∈ [c] such that p(v)d = 1. In
this case, we say that v has color d and write p̂(v) = d.

The discrepancy of two mixed colorings p, q is disc(H, p, q) =
maxd∈[c] maxE∈E

∣∣∑
v∈E p(v)d −

∑
v∈E q(v)d

∣∣. The objective in the linear
discrepancy problem for hypergraphs is to find for given hypergraph H
and mixed coloring p a pure one q such that disc(H, p, q) is small. Put
lindisc(H, c) := maxp minq disc(H, p, q).

A hypergraph is called totally unimodular, if its incidence matrix is totally
unimodular. It is well known that totally unimodular hypergraph behave nicely
in linear discrepancy problems.

Theorem 7. Let H = (V, E) be a totally unimodular hypergraph.

a) De Werra [dW71]: For all numbers c of colors, the combinatorial discrep-
ancy lindisc(H, 1

c1V ) is less than 1.
b) Hoffman, Kruskal [HK56]: The linear discrepancy lindisc(H, 2) of H in

2 colors is less than 1.

The constant in b) was recently [Doe01] improved to the sharp bound of
|V |/(|V | + 1). Contrary to what one might expect, a combination of a) and b)
is not true:

Theorem 8. For all c ≥ 3 there is a totally unimodular hypergraph H such that
lindisc(H, c) ≥ ln(c + 1) − 1. In consequence, the bound lindisc(H, c) < 1 for
totally unimodular hypergraphs holds only in the case c = 2.
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Abstract. We settle a long-standing open question, namely whether it
is possible to sort a sequence of n elements stably (i.e. preserving the
original relative order of the equal elements), using O(1) auxiliary space
and performing O(n log n) comparisons and O(n) data moves. Munro and
Raman stated this problem in [J. Algorithms, 13, 1992] and gave an in-
place but unstable sorting algorithm that performs O(n) data moves and
O(n1+ε) comparisons. Subsequently [Algorithmica, 16, 1996] they pre-
sented a stable algorithm with these same bounds. Recently, Franceschini
and Geffert [FOCS 2003] presented an unstable sorting algorithm that
matches the asymptotic lower bounds on all computational resources.

1 Introduction

In the comparison model the only operations allowed on the totally ordered
domain of the input elements are the comparison of two elements and the transfer
of an element from a cell of memory to another. Therefore, in this model it is
natural to measure the efficiency of an algorithm with three metrics: the number
of comparisons it requires, the number of element moves it performs and the
number of auxiliary memory cells it uses, besides the ones strictly necessary for
the input elements. It is well known that in order to sort a sequence of n elements,
at least n log n − n log e comparisons have to be performed in the worst case.
Munro and Raman [13] set to �3/2n� the lower bound for the number of moves.
In the general case of input sequences with repeated elements, an important
requirement for a sorting algorithm is to be stable: the relative order of equal
elements in the final sorted sequence is the same found in the original one.

The sorting problem is fundamental in computer science and has been widely
studied from the very beginning. The Heapsort [16] is the first space-optimal sort-
ing algorithm performing O(n log n) comparisons in the worst case. However, this
algorithm is unstable and the number of element moves performed in the worst
case is O(n log n). The existence of a sorting algorithm that is stable, compar-
ison and space optimal was proven by Pardo [14]. Concerning the partition-
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based approach, the ordinary Quicksort [3] is only space optimal. An unstable,
comparison and space optimal sorting can be derived using an in-place selec-
tion algorithm like [9]. Katajainen and Pasanen [6] presented an unstable sort-
ing requiring o(n log n) moves in the worst case while guaranteeing in-placeness
and O(n log n) comparisons. That algorithm performs O(n log n/ log log n) data
moves in the worst case.

Concerning the sorting algorithms with optimal number of data moves, the
classical selection sort operates in-place, and performs O(n) moves in the worst
case but it is not stable and performs O(n2) comparisons in the worst case. An
improvement in the number of comparisons came from Munro and Raman [11]
with a generalization of the heapsort performing O(n1+ε) comparisons in the
worst case while maintaining the unstability. Finally, a stable algorithm with
these same bounds was presented in [12].

If the space optimality is given up, the address-table sort [7] performs an
optimal number of comparisons and moves but requiring O(n) auxiliary cells of
memory. It can be easily modified to achieve the stability. The space requirement
has been reduced to O(nε) by a variant of samplesort [11].

Recently, Franceschini and Geffert [1] presented an unstable sorting algorithm
that matches the asymptotic lower bounds on all the computational resources,
space, comparisons and data moves.

Our Result. In this paper we settle a long-standing open question explicitly
stated by Munro and Raman in [11], namely whether it is possible to sort a
sequence of n elements stably, using O(1) auxiliary space, performing O(n log n)
comparisons and O(n) data moves. So far, the best known algorithm for stable
in-place sorting with O(n) moves was the one presented by Munro and Raman
in [12], performing O(n1+ε) comparisons in the worst case.

Two basic techniques are very common when space-efficiency of algorithms
and data structures in the comparison model is the objective. The first one is
the bit stealing [10]: a bit of information is encoded in the relative order of a
pair of distinct input elements. The second common technique is the internal
buffering [8], in which some of the input elements are used as placeholders in
order to simulate a working area and permute the other elements at less cost. It
is easy to understand how disruptive the internal buffering is when the stability
of the algorithm is an objective: if the placeholders are not distinct, the original
order of identical placeholders can be lost using the simulated working area. As
witness of the clash between stability and internal buffering technique, we can
cite the difference in complexity between the first in-place linear time merging
algorithm, due to Kronrod [8], and the first stable one by Pardo [14].

Our strategy for the development of a stable sorting algorithm matching the
asymptotic lower bounds on all the computational resources can be synthesized
in four major points. Let n and d be, respectively, the number of input elements
and the number of distinct elements in the sequence to be sorted.

First (Section 2), we show how to extract from the input sequence O(n/ log n)
pairs of distinct elements to be used for encoding purposes with the basic tech-
nique of bit-stealing.
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Second (Section 3), we show how to extract b = O(min(d, n/ log2 n)) distinct
elements from the sequence, stably and within our computational bounds.

Third (Section 4), we show how to deal with a sequence with Ω(n/ log2 n)
distinct elements. We divide our sorting problem in O(log2 n) sub-problems of
size O(n/ log2 n) and show how to solve those sub-problems assuming the avail-
ability of a sufficient number of distinct elements to be used as placeholders,
that is in case b = Θ(n/ log2 n). After that, we show how to fuse the O(log2 n)
sorted sub-sequences with a multi-way stable merging technique requiring a very
limited amount of placeholders to deliver a sorted sequence of O(n) elements.

Fourth (Section 5), we show how to deal with the hardest case, namely a
sequence with b = o(n/ log2 n) distinct elements. First, we partition the sequence
in three zones C ′Y C ′′ around a pivot element (the occurrences of the pivot will
be in zone Y ). Then we show how to group the identical elements laying in
sub-zones of size O(b log2 n) and how to acquire and encode by bit-stealing a
linked structure traversing the groups in sorted order. Finally, we show how to
use the groups and the encoded linked structure to permute first C ′ using Y C ′′

as working zone and then C ′′ using C ′Y without disrupting the (sorted) order of
C ′. This is a major and crucial difference with other unstable sorting algorithms
like [6] or [1] where the internal buffering process is iterated O(logn) times until
the sub-problem becomes directly tractable without internal buffering.

2 Stealing Bits

With the bit-stealing technique [10] the value of a bit is encoded in the relative
order of two distinct elements (e.g. the increasing order for 0). In this section
we show how to collect O(n/ log n) pairs of distinct elements, stably and within
our computational bounds.

The rank of an element xi belonging to a sequence S = x1 . . . xt is the car-
dinality of the multiset {xj ∈ S | xj < xi or (xj = xi and j ≤ i)}. The rank of
an element x in a set S is the rank of x in any sequence S of the elements
in S. Let r = �n/ log n� and let π′ and π′′ be, respectively, the element with
rank r and the element with rank n − r + 1 in the input sequence. We want
to partition stably and in-place the input sequence in five zones A′P ′AP ′′A′′

such that, for each a′ ∈ A′, p′ ∈ P ′, a ∈ A, p′′ ∈ P ′′ and a′′ ∈ A′′, we have
that a′ < p′ = π′ < a < p′′ = π′′ < a′′. That can be done in O(n) compar-
isons and O(n) moves using the stable in-place selection and the stable in-place
partitioning of Katajainen and Pasanen [4, 5].

Zones A′ and A′′ can be sorted stably and in-place in O(n) time simply using
the stable in-place mergesort (e.g. [15]). If there are no elements in A, we are
done since the input sequence is already sorted. Otherwise we are left with the
unsorted subsequence A and with a set M of r = O(n/ log n) pairs of distinct
elements, that is M = {(Q′[1], Q′′[1]), (Q′[2], Q′′[2]), . . . , (Q′[r], Q′′[r])}, where
Q′ = A′P ′ and Q′′ = P ′′A′′.

The starting addresses of Q′ and Q′′ can be maintained in two locations of
auxiliary memory (we can use O(1) auxiliary locations) and so, for any i, we
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can retrieve the addresses of the elements of the i-th pair in O(1) operations.
Therefore, we can view M as a sequence of encoding words of t bits each, for any
t. We have to pay attention to the costs of using encoding bits or encoding words,
though: reading an encoding word of t bits takes t comparisons, changing it costs
t comparisons and O(t) data moves in the worst case. Moreover, we could have
chosen the ranks of π′ and π′′ as cr and n−cr+1 for any constant c, so that the
number of encoded bits would be cr without changing the asymptotical bounds
of the algorithm. Let m be the size of A, we can make the following assumption:

Assumption 1. We can use an auxiliary encoding memory M consisting
of O( r

log m ) words of �logm� encoding bits each and with the following cost
model. For any word w, for any q ≤ �logm� and for any group g of q bits of w:
– retrieving the values of all the bits in g requires q comparisons;
– changing the values of all the bits in g requires Θ(q) moves.

If we are able to solve the following problem over the sequence A, we are able
to solve the original problem.

Problem 1. Under Assumption 1, sort the sequenceA ofm (< n) elements stably,
using O(1) locations of auxiliary memory, performing O(m logm) comparisons
and O(m) data moves.

In the following sections, we will use the auxiliary encoding memory M as
normal auxiliary memory (of course each use of M must be correctly accounted
in the complexity analysis). We will declare explicitly any new auxiliary data
(indices, pointers. . . ) stored in M.

3 Extracting a Set of Distinct Elements

Let d be the number of distinct elements in A. In this section we show how to
go from A to CB such that:
Property 1.
(a) B contains b = min(d, �r/ logm�) elements,
(b) each x ∈ B is the rightmost occurrence of its kind in A (and therefore the

elements in B are distinct),
(c) C is the sequence that can be obtained from A simply removing the elements

in B.
The elements in B will be used in Sections 4 and 5 as in the technique of

internal buffering ([8]). Basically, some of the elements are used as placeholders to
simulate a working area in which the other elements can be permuted efficiently.
If the placeholders are not distinct, the stability of the algorithm become a
difficult task since the original order of identical placeholders can be lost using
the simulated working area. The elements in B are distinct so we do not have to
worry, as long as we can sort O(m) elements with o(m) placeholders (Section 4).
However, as we will see in Section 5, if |B| is too small, we have to deal with
bigger buffers whose internal order has to be preserved entirely, not only the
relative order of equal elements.
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Main Cycle of the Buffer Extraction. We first present the main cycle of the
algorithm for the creation of B. Before we start, let us recall a basic technique
for space-efficient block exchange. From a block X = x1 . . . xt of t consecutive
elements we can obtain the reverse XR = xt . . . x1 in linear time and in-place
simply exchanging x1 with xt, x2 with xt−1 and so forth. Two consecutive blocks
X and Y , possibly of different sizes, can be exchanged in-place and linear time
with three block reversals, since Y X = (XRY R)R.

We will denote the evolving sequence using the identifier of the original se-
quence A until the end of the algorithm. There are three phases.

First Phase. We maintain two indices i and j initially set, respectively, to 1 and
m. Moreover, we allocate an array I of �r/ logm� words in M. The following
steps are repeated until i > �r/ logm� or j < i:

1. Search(A[j], A[1 . . . i− 1]).
2. If A[j] is not in A[1 . . . i − 1], exchange A[j] and A[i], Process(A[1 . . . i]),

set I[i] = j and increase by one i.
3. Decrease by one j.

At the end of this first phase, we have collected the b = min(d, �r/ logm�)
buffer elements in A[1 . . . b]. This set of elements respects point (b) and, obvi-
ously, point (a) in Property 1. At the end of this section we will explain how
the procedures Search and Process can be defined in order to stay within the
target bounds.

Second Phase. We have to collect all the b elements in A[b+ 1 . . .m] that have
been exchanged in the execution of step 2 in the first phase. We know where
they are because, for each exchange, we stored the value of j in the array I. Let
s1, . . . , sb be the elements we have to collect, indexed from the leftmost to the
rightmost in A[b+ 1 . . .m]. The position of si is stored in I[|I| − i+ 1]. We have
to extract them maintaining their relative order and the relative order of the
other m− 2b elements in A[b+ 1 . . .m]. Let A1, . . . , Ab be the sub-sequences of
A[b+1 . . .m] that separate s1, . . . , sb, that is A[b+1 . . .m] = A1s1A2s2, . . . Absb

(some of them can be void). We collect s1, . . . , sb in a sub-sequence S starting
from the position of s1. During the process, S slides toward the right end of
A[b + 1 . . .m]. Let Z be an array of b − 1 words stored in M. Let S = s1 and
i = 2. The following steps are repeated until i > b:

1. If |S| ≤ I[|I| − i + 1] − I[|I| − i] − 1, do a block exchange between the two
adjacent blocks S and Ai (I[|I| − i+ 1]− I[|I| − i]− 1 is the size of Ai) and
set Z[i− 1] = 0.

2. Otherwise, let S = S′S′′ with |S′| = I[|I|− i+1]− I[|I|− i]−1, exchange S′

with Ai (obvious exchange of two non adjacent but equal sized blocks) and
set Z[i− 1] = |S′|. After that S = S′′S′.

3. In both cases, now S is adjacent to si; let S = Ssi and increase i by one.
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Third Phase. At the end of the first two phases we have that B = A[1 . . . b]
precedes C = A1A2, . . . Ab−1AbS. Moreover, the order of the elements A1, . . . , Ab

has been preserved. This may not be true for the elements in S because of step 2
of the second phase. Therefore, C does not respect point (c) in Property 1.

First, we have to recover the order of the elements in S holding within the first
and the second phase. Basically, this can be done in-place, using the information
stored in Z to “un-roll” all the rotations (from S = S′S′′ to S = S′′S′) executed
with step 2 of the second phase. Let i = b. The following steps are repeated until
i = 1:

1. If Z[i− 1] > 0, exchange the blocks S[1 . . . i− Z[i− 1]− 1] and S[i− Z[i−
1] . . . i− 1].

2. Decrease i by one.

Finally, we reverse S, recovering the original order holding before the first
phase, and we exchange S with B. After that the sequence CB respects all the
points in Property 1.

Lemma 1. Under Assumption 1, the buffer extraction algorithm operates in-
place, Property 1 holds for the sequence CB, and the comparisons and moves
performed are, respectively, O(mXs +Xp +m) and O(Yp +m), where

– Xs upper bounds the number of comparisons of each invocation of Search
in step 1,

– Xp and Yp are, respectively, the total number of comparisons and moves
performed by the b invocations of Process in step 2.

Managing a Growing Set of Distinct Elements Compactly. We are left
with the task of performing efficiently the operations Search and Process in
steps 1 and 2 of the first phase of the buffer extraction algorithm. We have to
solve the following problem.

Problem 2. Under Assumption 1, we have to handle the growth of a set B of at
most �r/ logm� = O(m/log2m) distinct elements so that the following properties
hold:

– At any time, B is stored in |B| contiguous memory locations.
– At any time, B can be searched with O(logm) comparisons.
– When B is complete, the total number of comparisons and moves performed

is O(|B| log2m).

This subproblem can be easily solved with any implicit dictionary supporting
search and insertion operations respectively in O(log |B|) and O(log2 |B|) time,
where the bound for insertion can also be in amortized sense. For this purpose
we can use the implicit dictionary in [2] (as a matter of fact, such structure is
excessively powerful for Problem 2; in the full paper we will give a self-contained,
ad-hoc solution). Therefore, by Lemma 1, we have that:

Theorem 1. Under Assumption 1, a sequence CB having Property 1 can be
obtained from A, stably, using O(1) cells of auxiliary memory, performing O(m)
moves and O(m logm) comparisons in the worst case.
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4 Sorting with Many Distinct Elements

In this section we show how to sort a sequence CB satisfying Property 1 and
with b = |B| = �r/ logm�. The two-level technique used in [1] can be easily
adapted to sort stably b consecutive elements using the b buffer elements in B,
the stolen bits in M and O(1) auxiliary space. We have that:

Lemma 2. Under Assumption 1, b elements can be sorted stably, using O(1)
auxiliary space and another set of b distinct elements as placeholders, with O(b)
moves and O(b logm) comparisons.

Assuming that, we are able to show how to sort CB using a multi-way stable
merging technique requiring a very limited amount of placeholders.

We want to solve the following problem.

Problem 3. We have s ≤ log m
log log m sorted sequences E1, . . . , Es of k ≤ m

s elements
each and a set U of s(�logm�)2 distinct elements. Under the Assumption 1,
we want to sort the sk elements, stably, using O(1) auxiliary locations, with
O(sk logm) comparisons and O(sk) moves.

Each sorted sequence is divided into γ = k/(�logm�)2 fragments of (�logm�)2
contiguous elements each (for simplicity, let us suppose (�logm�)2 divides k).
Starting from the fragment with the largest element, we will denote the j-th
fragment of the sequence Ei with F j

i . The fragments of Ei are linked in a bidirec-
tional list following the reverse sorted order of Ei. The fragment with the largest
element of a sequence is the head of the list. For each list we need 2k/(�logm�)2
words of �logm� bits to store the pointers; for that, we use M in the usual way.
One of the basic events in the process we are about to describe is the exchange
of fragments (possibly belonging to two different sorted sequences). From now
on we will assume that, when a fragment is moved, the pointers of its successor
and its predecessor (if any) in its linked list are updated.

Let us denote the whole sequence of elements with P and with Pi the i-th
fragment of P from the left end, for i = 1, . . . , s. The initial configuration is
P = E1E2 . . . Es−1EsU , where Ei = F γ

i F
γ−1
i . . . F 2

i F
1
i and U contains the set U

in some order. First, we exchange F 1
1 with F γ

1 , F 1
2 with F γ−1

1 and so forth until
the s heads are the first s fragments of P (P1 = F 1

1 , P2 = F 1
2 . . . ).

For i = 1, . . . , s the fragment Pi is associated with a small integer pi of
O(log logm) bits with the index (in Pi) of the first (from the right end) element
of Pi not in U . Two more indices num and last are maintained: num stores the
current number of merged elements and last stores the address of the rightmost
(in the whole P ) fragment. All the pi are stored in M while num and last are
in stored in two normal cells of memory. Initially all the small indices are set to
(�logm�)2, num is set to 0 and last to |P | − |U | − (�logm�)2 + 1.

Then the merging phase begins.

1. The largest element among P1[p1], P2[p2], . . . , Ps[ps] is found (for the stabil-
ity, in case of equal elements the one in the fragment of the sorted sequence
with the largest index is chosen). Let it be Pi[pi].
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2. Pi[pi] is exchanged with P [|P | − num], pi is decreased by one and num is
increased by one.

3. If Pi contains only elements of U , that is pi = 0, then let ν be the address
of the next fragment of Ei. Pi is exchanged with the fragment starting at ν
and then the fragment starting at ν is exchanged with the one starting at
last. Finally, we set last = last− (�logm�)2 and repeat until num = sk.

After the execution P = US, where in U we have the elements of U in some
order and in S we have the stably sorted sequence of the sk elements. The wanted
bounds can be proved easily. We highlight a central part in the account of the
number of moves: with each iteration, decreasing by one the selected pi costs
O(log logm) moves in the worst case but only O(1) moves in amortized sense
leading to the wanted linear bound for the total number of moves.

With the fragmented multi-way merging technique we have just introduced,
the sequence CB can be sorted in the following way (when b = |B| = �r/ logm�).
1. C is logically divided into t = �|C| /b� sub-sequences C1C2 . . . Ct−1Ct of b

elements each. Every Ci is sorted using a variation of the two-level technique
in [1] with B as internal buffer.

2. The resulting sequence C ′
1C

′
2 . . . C

′
t−1C

′
t is sorted running a constant number

of iterations of the multi-way mergesort using the fragmented multi-way
merging with s = log m

log log m .
3. B is sorted with the stable in-place mergesort ([15]) and C and B are merged

in-place stably ([15]).

Therefore, by Lemma 2 and by the solution to Problem 3, we can conclude
that:

Theorem 2. Under Assumption 1, a sequence CB with Property 1 and |B| =
�r/ logm� can be sorted stably, using O(1) auxiliary cells, performing O(m logm)
comparisons and O(m) moves in the worst case.

5 Sorting with Few Distinct Elements

In this section we show how to sort a sequence CB satisfying Property 1 and
with b = |B| < �r/ logm�, that is, when the number d of distinct elements in
CB is less than �r/ logm�.

The first step consists in solving the following abstract problem.

Problem 4. We have two sequences V and G of t ≤ m elements each and a set
D of d′ < �r/ logm� elements. V has d′′ ≤ d′ distinct elements. We are given
an O(1) time boolean function belongs to V (x) that, at any time, returns true
if and only if x belongs to the set of elements originally contained in V .

We want to go from sequence V GD to sequence V ′GD′ where V ′ contains
the elements in V sorted stably and D,D′ contain the elements in D in any
order. Under Assumption 1, we have to use O(1) auxiliary locations and perform
O(t logm) comparisons and O(t) moves.

Our solution to Problem 4 has three phases.
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First Phase. V is logically divided into |V |
d′(�log m�)2 contiguous blocks V1V2 . . . of

d′(�logm�)2 elements each. We want to sort any block Vi, stably, using O(1)
auxiliary locations, O(|Vi| logm) comparisons and O(|Vi|) moves. This can be
accomplished the same way we sorted the sequence C in Section 4. First, each
sub-block of d′ contiguous elements of Vi is sorted using the d′ elements of D as
placeholders (as in Section 4).

Then, the (�logm�)2 sorted sub-blocks of Vi are merged with a constant
number of iterations of the multi-way mergesort using the multi-way merging
technique (Section 4). We have to distinguish two cases, though. If |D| = d′ ≥
(�log m�)3
log log m , we can apply the solution to Problem 3 we presented in Section 4.

If, on the other hand, |D| = d′ < (�log m�)3
log log m we may not have a sufficient num-

ber of distinct elements for the set U in Problem 3. However, if d′ < (�log m�)3
log log m

then |Vi| = d′(�logm�)2 = polylog(m). Therefore, we can use the same multi-way
merging technique in Section 4 but with fragments of size O(log logm) instead of
O(log2m). That reduces the size of the set U fromO(s log2m) toO(s log logm). If
we choose s = log m

(log log m)2 , the number of iterations of the s-way mergesort needed

to sort the whole block Vi is still a constant but the size of U isO( log m
log log m ). There-

fore, the elements in U do not have to be distinct anymore because we can maintain
in a single word of (real) auxiliary memory the whole permutation to bring them
back to their original order when the fragmented s-way merging process is done.

Second Phase. After the first phase, each block Vi of V is sorted and divided
into at most d′′ ≤ d′ runs of equal elements. Since |Vi| = d′(�logm�)2, the total
number tr of runs in V is less than or equal to t/(�logm�)2. For any run, let the
first element be the head and the rest of the run be the tail.

First, each block Vi is divided into two sub-blocks Hi and V ′
i . Hi contains

the heads of all the runs of Vi and V ′
i contains all the tails. Both Hi and V ′

i are
in sorted order. This subdivision can be easily accomplished with the same tech-
nique used in the second phase of the buffer extraction algorithm in Section 3.
Since the elements we are extracting (the heads of the runs of a single block Vi)
are distinct, we do not have to store their original order: we simply sort them
when they are finally collected at the left end of Vi.

Second, some information about runs and blocks is collected and stored inM.
An array IH with |V |

d′(�log m�)2 entries of two words each is stored in M. For any i,
the first word of IH [i] contains |Hi| and the second word contains the index of the
first run of Vi (the index is between 1 and tr, from the leftmost run in V to the
rightmost). An array IR with tr entries of four words each is stored inM. For any
i, the first word of IR[i] is initially set to i, the second one contains the address of
the head of the i-th (in V ) run, the third one contains the starting address of the
tail of the i-th run and the fourth one contains the size of the i-th run. Finally, an
array IR−1 with tr entries of two words each is stored inM. For any i, the first word
of IR−1 [i] is initially set to i and the second word of IR−1 [i] is initially set to 1. All
this information can be obtained simply by scanning V . In general, for any array
I of multi-word entries, we will denote the p-th word of the i-th entry with I[i][p].
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Third, IR−1 is sorted stably by head, that is, at any time of the sorting
process, the sorting key for the two-word value in the i-th entry of IR−1 is
V [IR[IR−1 [i][1]][2]]. The sorting algorithm used is mergesort with a linear time
in-place stable merging (e.g. [15]). During the execution of the algorithm, every
time the two-word value in the i-th entry of IR−1 is moved to the j-th entry,
the corresponding entry in IR is updated, that is IR[IR−1 [j][1]][1]] is set to j.
We remark that only the entries of the encoded array IR−1 are moved (where
any abstract move of an encoded value causes O(logm) actual moves of some
elements contained in zones Q′ and Q′′ of Section 2). In this process, none of
the elements in V are moved.

Fourth, for i = 2 to tr, let IR−1 [i][2] be IR−1 [i− 1][2] + IR[IR−1 [i][1]][4] (that
is, if we had the elements in V sorted stably into another sequence V ′, IR−1 [i][2]
would be the starting address in V ′ of the i-th run in the stable sorted order).

Third Phase. After the second phase we are able to evaluate the function αV :
{1, . . . , t} → {1, . . . , t} such that αV (j) is the rank of the element V [j] in the
sequence V , performing O(logm) comparisons.

1. Let Vi be the block of V [j]. We know where Hi starts and ends, in fact
Hi = V [si . . . si + IH [i][1]− 1] where si = (i− 1)d′(�logm�)2 + 1. Therefore,
we can perform a binary search for V [j] in Hi and find the index pj in Vi of
the run to which V [j] belongs.

2. The index p′
j in V of the run of V [j] is IH [i][2] + pj − 1.

3. Using the array IR, we can find the position kj of V [j] in its run. If j =
IR[p′

j ][2] then kj = 1 (V [j] is the head of its run). Otherwise, kj = j −
IR[p′

j ][3] + 2 (V [j] belongs to the tail of its run).
4. Finally, we have that αV (j) = IR−1 [IR[p′

j ][1]][2] + kj − 1.

Using this algorithm and the given function belongs to V (x) to discern be-
tween the elements originally contained in V and the ones originally in G, it is
possible to sort the elements in V efficiently, using G as internal buffer while
preserving the original order of its elements.

Before the formal description of this last phase is given, a short outline is
needed. The algorithm has two nested iterations. The outer iteration scans the
elements of V following the sorted order (we know the order of the runs from the
previous phase, therefore the elements can be scanned in sorted order easily).
During the scan, three kinds of elements can be found: heads of runs, elements
belonging to the tails of their runs, and buffer elements from G (as we will see,
the inner iteration is responsible for the presence in these elements). If a buffer
element is found (recognized using the given function belongs to V (x)), there is
nothing to do: the element of V previously stored in this position has already
reached its final destination. If a head is found, nothing can be done since the
heads are the cornerstones of the algorithm used to find the rank of an element in
V . As we will see, their treatment is delayed until the very end of the algorithm.
Finally, if an element x of a tail is found, the inner iteration starts. The purpose
of the inner iteration is to scan the cycle (of the permutation that disposes the
elements of V in sorted order) to which the element belongs. During the scan of
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the cycle of x two kinds of elements can be found: heads of runs and tail elements
(the first found is obviously x). Again, the heads are left in their position. On the
other hand, any tail element y is ranked (with αV ), let its rank in V be ry, and
is exchanged with the element in G corresponding to its rank, that is by = G[ry].
Then, there can be two cases: if V [ry] is a head, it cannot be moved and then by
is left in the position in V previously occupied by y and treated in a special way;
if V [ry] is a tail element, we immediately exchange V [ry] with by, recovering the
correct position for by. Therefore, the next element of the cycle is in the position
previously occupied by y. After the two nested iterations, a final simple iteration
performs tr exchanges that bring the heads in their final positions.

1: for i = 1 to tr and j = 2 to IR[IR−1 [i][1]][4] do
2: start ← IR[IR−1 [i][1]][3] + j − 1
3: if belongs to V (V [start]) then
4: next ← αV (start)
5: while next �= start do
6: Exchange V [start] and G[next]
7: if is head(next) then
8: next ← αV (next)
9: else

10: next tmp ← next
11: next ← αV (next)
12: Exchange V [start] and V [next tmp]
13: for i = 1 to tr do
14: head ← IR[IR−1 [i][1]][2]
15: Exchange V [head] and G[IR−1 [i][2]]
16: Exchange G and V

The function is head(x) returns true if V [x] is the head of its run. It can
be calculated in the very same way the rank of an element in V is (with the
exclusion of the fourth step).

With the solution to the abstract Problem 4, we can finally sort the sequence
CB when b = |B| < �r/ logm�.

1. C is partitioned into three sub-sequences C ′UC ′′, where U contains all the
elements equal to the element cm of rank �|C| /2� in C, and C ′, C ′′ contain all
the elements of C, respectively, less than and greater than cm. This partition
can be easily obtained using the stable in-place selection and the stable in-
place partitioning in [4, 5].

2. To sort C ′ and C ′′ we can apply the solution to Problem 4. First, we set
V = C ′, G = (UC ′′)[1 . . . |C ′|], D = B, belongs to V (x) = (x < cm) and sort
C ′. Then we set V = C ′′, G = (C ′U)[1 . . . |C ′′|], D = B, belongs to V (x) =
(cm < x) and sort C ′′. (obviously there can be extreme situations in which
C ′ or C ′′ are void)

3. B is sorted with the normal mergesort using a linear time in-place stable
merging (e.g. [15]) and the two sequences are merged (again with [15]).

We have that:
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Theorem 3. Under Assumption 1, a sequence CB that satisfies Property 1 with
|B| < �r/ logm� can be sorted, stably, using O(1) cells of auxiliary memory,
performing O(m logm) comparisons and O(m) moves in the worst case.

By Theorems 1, 2 and 3 we can conclude that Problem 1 is solved and state the
main result of the paper.

Theorem 4. Any sequence of n elements can be sorted stably, using O(1) aux-
iliary locations of memory, performing O(n log n) comparisons and O(n) moves
in the worst case.
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Abstract. Cycle covering is a well-studied problem in computer science.
In this paper, we develop approximation algorithms for variants of cycle
covering problems which bound the size and/or length of the covering
cycles. In particular, we give a (1+ ln 2)-approximation for the lane cov-
ering problem [3, 4] in weighted graphs with metric lengths on the edges
and an O(ln k) approximation for the bounded cycle cover problem [9]
with cycle-size bound k in uniform graphs. Our techniques are based on
interpreting a greedy algorithm (proposed and empirically evaluated by
Ergun et al. [3, 4]) as a dual-fitting algorithm. We then find the approx-
imation factor by bounding the solution of a factor-revealing non-linear
program. These are the first non-trivial approximation algorithms for
these problems. We show that our analysis is tight for the greedy algo-
rithm, and change the process of the dual-fitting algorithm to improve
the factor for small cycle bounds. Finally, we prove that variants of the
cycle cover problem which bound cycle size or length are APX-hard.

1 Introduction

Given a graph and a subset of marked elements (nodes, edges, or some combi-
nation thereof), a cycle cover problem seeks to find a minimum length set of
cycles whose union contains all marked elements. Many practically important
problems in routing and navigation can be formulated as cycle cover problems
with additional constraints on the set of cycles in the solution.

One commonly studied cycle cover problem is the Chinese postman problem,
first introduced in 1962 by Guan [8], in which the objective is to cover every edge
at least once by one (not necessarily simple) cycle of minimum length. Besides
its obvious application to mail delivery in China, this problem finds application
in a variety of routing problems such as robot navigation and city snow plowing
planning.

In many applications of a similar nature, the objective is to find several cov-
ering cycles with an additional constraint on the size or length of the cycles. For
example, a group of companies might want to design a set of trucking routes (cy-
cles) of minimum cost that satisfy all their shipping requirements (i.e., traverses
a set of given edges) and obey union regulations which limit the driving time
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and number of stops each trucker can make [3, 4]. In graph theoretic terms, this
translates to covering all or some of the edges of a given graph with cycles, with
an upper bound on the size (i.e., number of edges) or length (i.e., total distance)
of each covering cycle. Another application arises in the design of fault-tolerant
optical networks. In this application, studied by Hochbaum and Olinick [9], the
objective is to find a backup path for every edge of the network, so that when a
link of the optical network fails, the network can route traffic around the fault
without increasing the size (and hence the errors) of the transmission by more
than a bounded amount. This reduces to covering the graph with short cycles
with an additional constraint that the cycles should be simple.

Although the Chinese postman problem is polynomially solvable in directed
and undirected graphs, any variant which allows multiple covering cycles but
places a constant upper bound on the size or length of the covering cycles is
NP-hard [4]. In fact, we will show that these variants are APX-hard.

In this paper, we study approximation algorithms for the problem of finding
cycles of bounded size that cover a subset of the edges of a graph. We usually as-
sume the edge lengths of the graph form a metric. This problem is also known as
the lane covering problem [3, 4]. To the best of our knowledge, the only approxi-
mation algorithm known for this problem is a trivial 2-approximation algorithm
that covers each edge with a cycle of size 2. We show that a greedy heuristic
proposed and empirically evaluated by Ergun et al. [3, 4] can be interpreted as
a dual-fitting algorithm in which edges grow their dual variables at rate propor-
tional to their length (see [12] for a discussion of the technique of dual-fitting).
We use this fact, and a factor-revealing non-linear program (see [12]) to show
that this algorithm achieves an approximation factor of 1+(k−1)(1+2−1/(k−1))
for constant k, and 1 + ln(2) ≈ 1.69 if k is given as part of the input. This is the
first approximation algorithm that provably beats the trivial 2-approximation
algorithm. Using the factor-revealing program, we show that our analysis is tight
for this greedy algorithm. For small values of k, we show how the approximation
factor of the algorithm can be improved by increasing dual variables at a rate
that non-linearly depends on the length of the edges. In particular, for k = 3 we
show that the approximation factor can be improved to 1.54 from 3−

√
2 ≈ 1.59.

We also explore several variants of the problem and show how our algorithm
extends to these variants. One problem that we will consider is the lane covering
problem with a constraint on the length, as well as the size of the cycles. We show
that for this problem our algorithm gives the approximation factor 1 + ln 2 + ε
for any ε > 0. Another problem, called the bounded cycle cover problem, has the
additional restriction that cycles should be simple as well as of bounded size [9].
For this problem, our approach gives the first O(ln k)-approximation algorithm.

We also prove that cycle cover problems which place a bound on the size or
length of the cycles is APX-hard. Our proof uses a construction of Holyer [10].

Related Works. Cycle cover problems in graphs have been studied extensively
from a combinatorial standpoint. The book of Zhang [20] reviews much of this
literature. The Chinese postman problem was first introduced by Guan [8]. Ed-
monds and Johnson [2] gave the first polynomial time algorithms for the problem
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in undirected graphs. Papadimitriou [15] proved that the problem is NP-hard in
mixed graphs. Raghavachari and Veerasamy [16] gave a 3/2-approximation for
this instance of the problem. A variant of the Chinese postman problem, the
minimum weight cycle cover problem, adds the restriction that covering cycles
must be simple. This problem was shown to be NP-hard by Thomassen [18].
Itai et al. [11] proved an upper bound on the length of such a cycle cover in
2-connected graphs and gave an algorithm to find it. The bounded cycle cover
problem, which constrains cycles to be of bounded size as well as simple, was
introduced by Hochbaum and Olinick [9] to solve an optical network design prob-
lem. They presented a heuristic for the problem along with an empirical analysis.
Ring covering, a related optical network design problem with a slightly different
objective was proposed by Slevinsky et al. [17]. Kennington et al. [13] present
a heuristic to solve the problem. The lane covering problem was introduced by
Ergun et al. [3, 4], who gave a heuristic for the problem along with an empirical
analysis. A variant on the cycle covering problem which imposes a lower bound
on the size of each cycle has been studied as well [1]. Other covering problems
include covering a graph by cliques [7].

Structure of the Paper. In Section 2, we give a formal statement of the lane cov-
ering problem. In Section 3 we present a natural greedy algorithm and analyze it
in Section 4. In Section 5, we present a method that improves the approximation
factor of our algorithm for 3 ≤ k ≤ 5. In Section 6, we discuss two related cycle
covering problems to which we can apply our techniques. Finally, in Section 7,
we present our APX-hardness result.

2 Problem Statement

Let G = (V,E) be a complete bidirected graph. A nonnegative length �e is
assigned to each edge e ∈ E. These lengths are symmetric (i.e., �uv = �vu for
every u, v ∈ V ) and satisfy the triangle inequality (i.e., �uv ≤ �uw + �wv for
every u, v, w ∈ V ). In the lane covering problem [3, 4], we are given a subset L of
directed edges of G called lanes and an integer k ≥ 3. The objective is to find a
collection of (not necessarily disjoint nor simple) cycles that cover all edges of L,
each containing at most k edges, with minimum total length. In another variant
of the lane covering problem, the length-constrained lane covering problem [3, 4],
we are also given a bound B on the length of each covering cycle. The goal is to
find a minimum length cycle cover of L of cycles of length at most B and size
at most k. Except where noted, in this paper, we will focus on the lane covering
problem. However, as shown in Section 6, our algorithmic techniques and lower
bounds also apply to the more general length-constrained lane covering problem.

3 The Greedy Algorithm

In this section we present a natural greedy algorithm for the lane covering prob-
lem that was first proposed and analyzed empirically by Ergun et al. [4]. This
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min
∑
C∈C

�CxC

s.t. ∀e ∈ L :
∑

C: e∈C

xC ≥ 1

∀C ∈ C : xC ≥ 0

(a) Primal program

max
∑
e∈L

�eαe

s.t. ∀C ∈ C :
∑

e∈L∩C

�eαe ≤ �C

∀e ∈ L : αe ≥ 0

(b) Dual program

Fig. 1. Linear programming relaxation

algorithm relies on a notion of the cost effectiveness of a cycle C, similar to the
one used in the greedy set cover algorithm. We define the cost effectiveness of a
cycle C as the ratio of the total length of edges in C ∩ L to the total length of
the edges in C. Using this notation, the algorithm can be stated as follows.

Algorithm 1

– While there is an edge in L, do the following
• Find the most cost-effective cycle C in the graph consisting of at most
k edges. If there is more than one such cycle, pick one arbitrarily.

• Pick C and remove its edges from L.

When k is a constant, the number of cycles of size k is at most a polynomial
in the size of the graph, and therefore Algorithm 1 can clearly be implemented
in polynomial time. However, when k is part of the input, it is not clear how
to implement this algorithm efficiently. More precisely, in order to establish a
polynomial running time for Algorithm 1, we need to show that it is possible to
find the most cost-effective cycle in polynomial time. This is done in the following
lemma, the proof of which is deferred to the full version of the paper.

Lemma 1. There is a polynomial time algorithm that given a graph G, a non-
negative length �e for every e ∈ E(G), a set L ⊆ E of lanes, and a parameter k
computes the most cost-effective cycle in G of size at most k.

Here we present a different formulation of Algorithm 1, that allows us to
analyze it using the method of dual fitting. Before stating the algorithm, we
present an LP relaxation of the problem (see Figure 1(a)). In the LP relaxation
of the problem, C denotes the collection of all cycles with at most k edges in
G, and for a cycle C, �C denotes

∑
e∈C �e. The dual of this program can be

written as shown in Figure 1(b). Notice that the dual variable corresponding to
the first inequality in the primal program is �eαe. We are now ready to describe
the restatement of Algorithm 1 in terms of the dual variables αe:

Algorithm 2

– Initialize αe’s to zero for all e ∈ L.
– Increase all αe’s at the same rate until one of the following events occur. If

two events happen at the same time, break the tie arbitrarily.
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• For a cycle C ∈ C, sum of �eαe for all e ∈ L∩C becomes equal to �C (In
other words, the edges in L ∩ C can pay for the cycle C with their dual
variables). In this case, pick C, freeze the value of αe for e ∈ L∩C, and
remove these edges from L (i.e., these edges will not contribute to other
cycles any more).

As shown in the next section, the above formulation of the greedy algorithm
enables us to use the technique of dual-fitting in combination with a factor-
revealing program to analyze the algorithm.

4 Analysis

The idea behind primal-dual algorithms is that the algorithm computes a solu-
tion for the problem (the primal solution), together with a feasible solution for
the dual linear program, so that the ratio of the cost of the two solutions can be
bounded by a factor λ. Since by LP duality every feasible solution of the dual
LP is a lower bound on the cost of the optimal primal solution, this would imply
that the algorithm has an approximation factor of λ.

Algorithm 2 computes a solution for the problem, and a solution αe for the
dual LP such that the cost of the primal solution is equal to the cost of the
dual solution (

∑
e∈L �eαe). However, αe’s do not necessarily constitute a feasible

solution for the dual. The idea of dual-fitting [19] is to find a value λ such that
when we divide all αe’s by λ, we obtain a feasible dual solution. Since this feasible
dual solution has cost equal to the cost of the primal solution divided by λ and
is also a lower bound on the optimal value, this proves that the algorithm is a
λ-approximation.

In order to find the best λ for which the above analysis works, we use the
technique of factor-revealing programs [12]. This technique consists of proving
several inequalities between various parameters in the instance of the problem
and writing them as a maximization program whose solution bounds the worst
value for λ. We call this maximization program a factor-revealing program. Un-
like [12], the factor-revealing program that we get is non-linear. The final step
of the analysis is to bound the solution of this program.

For a cycle C ∈ C, denote the edges of L ∩ C by e1, e2, . . . , ep and their
corresponding αe’s and �e’s by α1, . . . , αp and �1, . . . , �p, and let �C denote the
total length of edges in C (i.e., sum of �i’s plus the length of the edges in
C \ L). We would like to find a constant λ so that for all cycles C ∈ C, we have
1
λ

∑p
i=1 �iαi ≤ �C . The smallest such constant is equal to the maximum of the

ratio (
∑p

i=1 �iαi) /�C , where the maximum is taken over all cycles C ∈ C in all
instances of the lane covering problem.

The idea is to prove several inequalities between αi’s, �i’s, and �C , and write
them as the constraints of a factor-revealing program (treating αi’s, �i’s and �C
as variables) with (

∑p
i=1 �iαi) /�C as the objective function. The solution of this

maximization program gives us an upper bound on the smallest feasible value
of λ. We start by assuming, without loss of generality, that
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α1 ≤ α2 ≤ · · · ≤ αp (1)

This means that Algorithm 2 first covers e1 at time α1, then covers e2 at time
α2, and so on. Consider the time t = αi, just before the algorithm covers ei. At
this moment, all of the edges ei, ei+1, . . . , ep are not covered yet, and therefore
they are contributing toward the cycle C. The total value of this contribution
is t

∑
j≥i �j . This value cannot be greater than the length of C, since otherwise

we would have picked C earlier in the algorithm. Thus, for every i we have the
following inequality:

αi

∑
j≥i

�j ≤ �C . (2)

Furthermore, each edge e is contained in a cycle of size two of length 2�e,
and it can pay for this cycle at time 2. Thus, Algorithm 2 never increases an αe

beyond 2. So, for every i,
αi ≤ 2. (3)

The last inequality is the metric inequality: for every edge ei in the cycle, the
length of this edge is at most the cost of the path between the endpoints of ei

that uses the other edges of the cycle. Therefore, for every i,

�i ≤ �C − �i (4)

Summarizing all the above inequalities, we get the following lemma.

Lemma 2. Fix a cycle C with p edges in L, and scale all �i’s so that �C = 1.
Let λk := max1≤p≤k{zp}, where zp denotes the solution of the following maxi-
mization program.

maximize
p∑

j=1

�jαj (5)

subject to α1 ≤ α2 ≤ · · · ≤ αp (6)

∀i : αi ≤
1∑

j≥i �j
(7)

∀i : αi ≤ 2 (8)

∀i : �i ≤
1
2

(9)
p∑

j=1

�j ≤ 1 (10)

∀i : �i ≥ 0 (11)

Then Algorithm 2 is a λk-approximation algorithm.

Proof. By the above argument, for every cycle C with p edges in L, the values
of �i’s (scaled by lC) and αi’s constitute a feasible solution of the maximization
program (5). Thus, (

∑p
j=1 �jαj) ≤ zp ≤ λk. Therefore, if we scale down all αe’s
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by a factor of λk, they will satisfy the constraints of the dual program (1(b)).
This means that 1

λk

∑
e∈L �eαe is a lower bound on the value of the optimal

solution. On the other hand, it is clear from the description of Algorithm 2 that
the cost of the solution is precisely

∑
e∈L �eαe. Thus, Algorithm 2 always outputs

a solution whose cost is at most λk times the cost of the optimal solution.

All that remains is to prove an upper bound on the value of λk.

Lemma 3. For every k, the value λk defined by the factor-revealing program (5)
in Lemma 2 is at most 1 + (k − 1)

(
1− 2−1/(k−1)

)
.

Proof. Let βi := 1∑
j≥i �j

. Since �i’s are nonnegative, βi’s are nondecreasing.
Thus, there exists an index r, 0 ≤ r ≤ p, such that βi < 2 for all i = 1, . . . , r,
and βi ≥ 2 for i = r + 1, . . . , p. On the other hand, for every i, we have �i =
1
βi
− 1

βi+1
. Using this and inequalities (7) and (8), the objective function of the

above program can be bounded in terms of βi’s as follows:

p∑
j=1

�jαj ≤
r∑

j=1

�jβj +
p∑

j=r+1

2�j

=
r∑

j=1

(
1
βj
− 1
βj+1

)βj +
2

βr+1

= r −
(
β1

β2
+
β2

β3
+ · · ·+ βr

βr+1

)
+

2
βr+1

By definition of r, βr ≤ 2. Therefore, the above expression is a decreasing
function of βr+1. On the other hand, by the definition of r, βr+1 ≥ 2. Thus, the
above expression can be bounded by:

p∑
j=1

�jαj ≤ r −
(
β1

β2
+
β2

β3
+ · · ·+ βr

2

)
+ 1

≤ r − r
(
β1

2

)1/r

+ 1,

where the last inequality follows from the inequality between geometric and
arithmetic means. By inequality (10), β1 ≥ 1, and hence the above expression is
at most 1 + r

(
1− 2−1/r

)
. It is straightforward to see that this is an increasing

function of r. By inequality (9), βp ≥ 2 and therefore r ≤ k − 1. Thus, the
objective function of the maximization program can be bounded by

1 + (k − 1)
(
1− 2−1/(k−1)

)
.

These results can be summarized in the following theorem.
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Theorem 1. For every fixed k, Algorithm 1 is a polynomial-time approximation
algorithm for the lane covering problem with an approximation ratio at most
1 + (k − 1)

(
1− 2−1/(k−1)

)
. If k is part of the input, the approximation ratio of

this algorithm is at most 1 + ln(2).

Proof. The theorem follows from Lemmas 2, 3, and 1, and the fact that for every
k, the value 1 + (k − 1)

(
1− 2−1/(k−1)

)
is less than 1 + ln(2) < 1.69, and tends

to 1 + ln(2) as k tends to infinity.

4.1 A Tight Example

The factor-revealing program (5) suggests how one can find a tight example for
the algorithm. In this section, we use this approach to show that the approxi-
mation guarantee given by Theorem 1 is asymptotically tight. We construct an
example in which the cycles of the optimal solution consist entirely of edges in
L, but the algorithm still returns a sub-optimal solution. The idea is to place
the cycles of the optimal solution close together so that non-optimal cycles go
tight as well, confusing the greedy algorithm.

Theorem 2. For every ε > 0 there is an instance of the lane covering problem
such that the ratio of the cost of the solution found by Algorithm 1 to the optimal
solution is at least 1 + ln 2− ε.

Proof Sketch. Let k be even and consider a (k/2)-regular bipartite graph H
with girth at least 2k (for existence of such graphs, see for example [14]). By
Konig’s theorem, H is (k/2)-edge-colorable. Below, we construct a new graph
G by replacing each vertex of H with a cycle and adding edges between cycles
corresponding to adjacent vertices in H. Cycles corresponding to the vertices of
H will give an optimal cycle cover for G, while Algorithm 2 (which is equivalent
to Algorithm 1) will only pick cycles corresponding to the edges of H.

Each vertex of H is replaced by a directed cycle consisting of k arcs of length
1/k. Let B denote the set of such cycles. The arcs of cycles in B form the set
L. Fix a (k/2)-edge-coloring of H with colors from Σ := {1, . . . , k/2}. For each
vertex v in H, color the arcs of the cycle corresponding to v with colors in Σ∪{0}
such that every other arc in the cycle is colored with 0 and every color in Σ is
used exactly once in this cycle. We would like to add non-lane edges between
these cycles so that Algorithm 2 covers every color-i arc e ∈ L at time

αi =
{
k/(k − i+ 1) if i ≥ 1
2 if i = 0.

To achieve this, for every edge uv of color i in H, we add two parallel non-lane
edges between the endpoints of the color-i arcs in the cycles corresponding to u
and v. More precisely, if the color-i arcs in these two cycles are aubu and avbv
we add two non-lane edges, one between bu and av, and one between bv and au,
each of length i−1

k(k−i+1) . This creates a cycle aubuavbv. Let Ai denote the set of

such cycles. The length of a cycle aubuavbv in Ai is 2
k + 2(i−1)

k(k−i+1) = 2
k−i+1 , so
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Fig. 2. A local view of the construction for k = 6

Algorithm 2 picks this cycle at time k/(k − i + 1), assuming neither arc aubu
nor avbv is covered at an earlier time. Thus, color-i arcs are covered by time
k/(k − i + 1). Let G denote the resulting graph. See Figure 2 for an example
when k = 6. An instance of the lane covering problem is obtained by setting the
length of all edges to the length of the shortest path between their endpoints in
the underlying undirected graph of G.

We now sketch a proof of the fact that the only cycles picked by Algorithm 2
at any time before 2 in the above instance are those in ∪k/2

i=1Ai. For the sake
of contradiction, assume there is a cycle outside ∪k/2

i=1Ai that is picked by the
algorithm at a time before 2 and let C be the first such cycle. Let c1, . . . , cm be
the cycles of B which intersect C in at least one vertex. These cycles correspond
to some vertices of H. The proof considers the subgraph H ′ of H induced by
these vertices and argues that, due to the large girth of H and the assumed
bound on α, H ′ must be a single vertex. This essentially implies that the only
cycles Algorithm 2 can pick at a time earlier than 2 are cycles in Ai and cycles
in B. One can further show that whenever the algorithm can choose a cycle
in B, it also has a valid choice in ∪k/2

i=1Ai. Therefore, some implementation of
Algorithm 2 buys all cycles in ∪k/2

i=1Ai along with a bunch of cycles with two
edges and spends

∑k/2
i=1

αi

k + k
2 ·

α0
k per cycle in B, whereas the optimal solution

spends 1 per cycle in B. Thus, the greedy solution costs λ times more than the
optimal solution, where λ is λ =

∑k/2
i=1

1
k−i+1 + 1 = 1 + Hk − Hk/2. This tends

to 1 + ln 2 as k tends to infinity.

Theorem 2 shows that our analysis is asymptotically tight. For the case of
k = 3, our analysis is also tight. Again, we can use the factor-revealing program
to construct an example and prove that factor 3−

√
2 is tight for this algorithm.

The example is deferred to the full version of the paper.

5 Covering with Small Cycles

As claimed in the previous section, the approximation factor of Algorithm 1
can be as bad as 3 −

√
2 ≈ 1.59 when k = 3. In this section, we show how to

improve this factor. The idea is to grow the budget of each edge e in Algorithm 2
at a rate proportional to �re, for some r > 1, instead of growing it at a rate
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proportional to �e, and then optimize over r. Similar to the previous section, we
can derive a factor-revealing program that computes the approximation ratio of
this algorithm.

For r = 1.18, numerical results indicate that the approximation factor of the
resulting algorithm for k = 3 is at most 1.54, and thus it performs better than
Algorithm 1 in the worst-case. For k = 4 and k = 5, the approximation factor
improves to 1.59 and 1.62 from 1.61 and 1.63, respectively.

In the tight example given in Theorem 2, the length of all lane edges are equal,
so this algorithm can not improve upon the approximation factor of Algorithm 1
when k is not a constant.

6 Extensions

In this section, we show that our algorithmic ideas can be adapted to solve related
covering problems as well. In fact, we can solve any variant of our problem that
allows cycles of size two so long as the subproblem of finding the most cost-
effective cycle can be solved in polynomial time. As we will see, it is sufficient
to have an approximation algorithm for this subproblem (the approximation
factor of the subproblem will affect the final approximation factor). We study
two problems in particular: the length-constrained lane covering problem, and
the cycle cover problem with simple short cycles.

6.1 Length-Constrained Lane Covering Problem

Recall that in the length-constrained lane covering problem, an additional input
B is given, and the objective is to cover the lanes with cycles with at most k
edges and total length at most B. The following theorem shows that although
finding the most cost-effective cycle is as hard as the NP-hard shortest weight-
constrained path problem [6], Algorithm 1 gives a (1 + ln 2 + ε)-approximation
for this problem for every ε > 0.

Theorem 3. For every ε > 0, Algorithm 1 is a polynomial-time (1 + ln 2 + ε)-
approximation algorithm for the length-constrained lane covering problem.

Proof Sketch. In order to use Algorithm 1, we need to find the most cost effective
cycle of length at most B. Similar to the proof of Lemma 1, for a given R we
need to check if the cost effectiveness of a cycle in G is greater than R or not. We
construct a new graph H whose edges have the same lengths as in G. We set the
cost of an edge e ∈ E(H) to be c(e) = R�e for e ∈ E(H)\L and c(e) = (R− 1)�e
for e ∈ L. In order to check if there is a cycle of length at most B with cost
effectiveness R in G, we need to check if there is a cycle of length at most B
with negative cost in H, or, equivalently, find cheapest length-constrained paths
in H. If costs are from polynomially bounded integer numbers, we can solve this
problem optimally using dynamic programming. Thus, by rounding the costs
to multiples of δ we can check if there exists a path of cost at most nδ with
length at most B (where n is the number of vertices in the graph). Similar
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to the proof of Lemma 1, we use binary search to find the maximum value of
R for which there is cycle of length at most B and cost at most nδ. We can
find such a cycle in polynomial time. Using this method of finding the most
cost-effective cycle, instead of inequality 2 in the factor-revealing program, we
have αi

∑
j≥i �j ≤ �C + nδ. Simple calculations prove that the approximation

factor of this polynomial-time algorithm is at most (1 + ln 2 + ε) for δ small
enough.

6.2 Cycle Cover with Simple Short Cycles

Our techniques also give results on the bounded cycle cover problem [9]. In the
bounded cycle cover problem, we look for cycles of size at most k with the
added restriction that the cycles are simple, i.e., do not repeat any edge. We
show that an algorithm similar to Algorithm 1 gives an O(ln k)-approximation
for the bounded cycle cover problem in the special case of uniform graphs. To
the best of our knowledge, this is the first approximation known for this prob-
lem.

Given a graph G, our algorithm first checks that the instance is feasible (i.e.,
that every edge is in a cycle of size at most k). Then it greedily selects the most
cost-effective feasible cycle and iterates until all edges are covered by a cycle in
the solution set. As in Lemma 1, this can be done in polynomial time, even with
the added restriction that cycles be simple.

We follow the analysis in Section 4. First, we derive inequalities for the factor-
revealing program. Fix a cycle C of the optimal solution. Our input graph is no
longer a complete bidirected graph, so we no longer have the inequality αi ≤ 2.
However, by the feasibility of the instance, we know that each edge is in a cycle
of size at most k. Therefore, αi ≤ k. Furthermore, the graph is uniform, so
after scaling �i = 1

p where p is the size of the cycle C. Thus, αi

∑
j≥i �i ≤ 1

implies αi ≤ p
p−i+1 . From these inequalities, it is easy to see that

∑p
i=1 �iαi ≤∑p

i=1
1
p min( p

p−i+1 , k) =
∑s

i=1
p

p−i+1 +
∑p

i=s
k
p = H(p+1)−H( p

k )+1 = O(ln k)
where s = 1 + (k−1

k )p and H is the harmonic series.

7 Lower Bounds

In this section, we prove two results regarding the hardness of approximating
the lane covering problem. Our first result shows the APX-hardness of the lane
covering problem via a reduction from a version of the maximum satisfiability
problem, 5-OCC-MAX-3SAT. In our reduction, all edges of the graph whose
lengths are not given by the underlying path metric are lane edges, and so this
result actually proves that any variant of the Chinese postman problem which
constrains the size or length of covering cycles, such as the bounded cycle cover
problem mentioned in the introduction, is APX-hard.

Our reduction is based on a reduction used by Holyer [10] to prove NP-
hardness of some edge-partitioning problems. Given a satisfiability formula,
Holyer constructs a series of graphs for every variable and clause. By gluing
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Fig. 3. Integrality gap examples

these graphs together in a structure as dictated by the satisfiability formula,
Holyer guarantees that if the formula is unsatisfiable, then the resulting graph
will have no triangle partitioning. We adapt this proof to work for our setting,
using the maximum satisfiability problem 5-OCC-MAX-3SAT in order to prove
an APX-hardness result. In an instance of the 5-OCC-MAX-3SAT problem, we
are given a CNF formula with n variables and m = 5n

3 clauses of exactly three
literals in which each variable occurs exactly five times, and we want to find a
truth assignment satisfying the maximum number of clauses. Fiege [5] proved
that it is NP-hard to distinguish between a 5-OCC-MAX-3SAT instance in which
all the clauses can be satisfied and one in which at most a b fraction of the clauses
can be satisfied for some constant b. We prove a relationship between the num-
ber of satisfiable clauses in a 5-OCC-MAX-3SAT formula and the cost of an
optimal lane covering in our corresponding construction. This means that an
algorithm with a suitably small approximation factor can be used to distinguish
between the types of 5-OCC-MAX-3SAT formulas mentioned above. The proof
is deferred to the full version of the paper.

Theorem 4. The lane covering problem is APX-hard for any constant k.

Our second result addresses the effectiveness of LP-based approaches for the
lane covering problem. Although Theorem 2 shows that Algorithm 2 is asymp-
totically tight, there might be a better LP-based rounding algorithm for the
set cover LP formulation. We can lower bound the approximation ratio of any
such algorithm by analyzing the integrality gap of the set cover LP, LP 1(a) For
k = 3, consider the union of two cycles of size 7 with edge lengths as specified
in Figure 3(a). It is not hard to check that the optimal fractional solution of
the LP for this example is 61.25 and optimal integral solution is 67. Thus, the
integrality gap is 67

61.25 ≈ 1.09. We achieve our best lower bound of 1.15 for the
integrality gap when k = 4. In this case, the example is the union of squares
and triangles such that every edge is in exactly two cycles of size at most 4
(Figure 3(b)).

Acknowledgements. We would like to thank Ozlem Ergun for introducing us to
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Abstract. We consider the problem of computing a minimum cycle ba-
sis in a directed graph G with m arcs and n vertices. The arcs of G have
non-negative weights assigned to them. We give an Õ(m4n) algorithm,
which is the first polynomial time algorithm for this problem. We also
present an Õ(m3n) randomized algorithm. The problem of computing
a minimum cycle basis in an undirected graph has been well-studied.
However, it is not known if an efficient algorithm for undirected graphs
automatically translates to an efficient algorithm for directed graphs.

1 Introduction

1.1 The Problem

Let G = (V,A) be a directed graph with vertex set V and arc set A (no self-
loops). We will consider cycles in the underlying undirected graph and assign
each such cycle C a vector in {−1, 0, 1}|A|. This incidence vector, also called C,
is defined as follows. For each arc a ∈ A

C(a) =

⎧⎪⎨
⎪⎩

1 if C traverses a in forward direction
−1 if C traverses a in backward direction
0 if a /∈ C

The cycle space of G is the vector space over Q that is spanned by these
incidence vectors. The cycle space of a connected digraph has dimension d =
m − n + 1, where |A| = m and |V | = n. A cycle basis of G is a set of cycles
C1, ..., Cd whose incidence vectors permit a unique linear combination of the
incidence vector of any cycle of G.

We assume that there is a weight function w : A → R+, i.e., the arcs of G
have non-negative weights assigned to them. The weight of a cycle is the sum
of the weights of its arcs. The weight of a cycle basis is the sum of the weights
of its cycles. A minimum cycle basis of G is a cycle basis with minimum weight,
that is, a cycle basis B such that

∑
C∈B

∑
a∈C w(a) is minimum. We consider

the problem of computing a minimum cycle basis in a given digraph.
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1.2 Background

The importance of the problem of computing a minimum cycle basis lies in its use
as a preprocessing step in several algorithms. That is, a cycle basis is generally
not wanted for its own sake, but to be used as an input for a later algorithm. And
the importance of a minimum cycle basis is to reduce the amount of work that
has to be done by this later algorithm. In the problem of computing a minimum
cycle basis of an undirected graph U = (N,E), with each cycle we associate a
{0, 1} vector x, indexed on E, where xe = 1 if e is an edge of C, xe = 0 otherwise.
The vector space over GF(2) generated by these vectors is called the cycle space
of U . A minimum cycle basis of U is a set of linearly independent (over GF(2))
cycles that span the cycle space of U and whose sum of weights is minimum.
The problem of computing a minimum cycle basis in undirected graphs has been
well-studied [2, 5, 7, 8, 9, 10] and the current fastest algorithm for computing a
minimum cycle basis in an undirected graph with m edges and n vertices runs
in O(m2n+mn2 log n) time [10].

In many cases the network graphs of interest are intrinsically directed. For a
directed graph G, we obtain the underlying undirected graph of G by removing
the directions from the arcs. A set of cycles C1, ..., Cd of G projects onto an undi-
rected cycle basis, if by removing the orientations of the arcs in the cycles, we ob-
tain a cycle basis for the underlying undirected graph. It was shown by Liebchen
and Peeters in [11] that if C = {C1, ..., Cd} is a set of cycles in a directed graph
G that projects onto an undirected cycle basis, then C is a cycle basis of G. But
the the converse is not true. Similarly, a minimum cycle basis of a digraph need
not project onto a cycle basis of the underlying undirected graph. The books by
Deo [6] and Bollobás [3] have an in-depth coverage of the subject of cycle bases.

Our Results. In this paper we give an an Õ(m3n) randomized algorithm and
an Õ(m4n) deterministic algorithm to compute a minimum cycle basis in a
digraph G = (V,A) where |A| = m and |V | = n. Very recently, Liebchen and
Rizzi [12] have also given an Õ(m4n) deterministic algorithm to compute a
minimum cycle basis in a directed graph. They adapt Horton’s greedy approach
[9] and using fast matrix multiplication, their algorithm can be implemented
in Õ(mω+1n) time, where ω is the best exponent of matrix multiplication. Our
approach is complementary to theirs. Our algorithms use simple linear algebra
and elementary number theory and are in the domain of arithmetical algorithms.
The techniques used here might be of independent interest.

2 The Algorithm

Our algorithm is broadly based on the approach used in [5, 2, 10] for computing
a minimum cycle basis in an undirected graph. The basic idea is to have an
iterative algorithm that computes a new cycle Ci of the minimum cycle basis in
the i-th iteration. There is no loss of generality in assuming that the underlying
undirected graph of G is connected. Then d = m−n+ 1 is the dimension of the
cycle space of G. We can assume that m ≥ 2.
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2.1 The Basic Idea

Recall that each cycle in G is encoded as a {−1, 0, 1} vector in Qm. Let 〈S,C〉 =∑m
i=1 sici denote the standard inner product between S = (s1, ..., sm) and C =

(c1, ..., cm), which are vectors in the space Qm. A high-level description of our
algorithm is as follows.

For i = 1, ..., d do:

1. let Si ∈ Qm be a non-zero vector such that 〈Si, Cj〉 = 0 for all j where j < i.
2. compute Ci to be a shortest cycle in G such that 〈Si, Ci〉 �= 0.

That is, Si is a non-zero vector orthogonal to the cycles computed in the
first i− 1 iterations. And the shortest cycle which is not orthogonal to Si is Ci.
Before we get into the details of how to implement these steps, let us first check
if this approach gives us what we seek.

Theorem 1. The set {C1, . . . , Cd} is a minimum cycle basis of G.

Proof. It is easy to see that Ci is linearly independent of {C1, ..., Ci−1}. Si is a
witness of this linear independence since 〈Si, Cj〉 = 0 for all j < i, so the inner
product of Si with any linear combination of C1, . . . , Ci−1 has to be zero but
〈Si, Ci〉 �= 0. Hence the whole set {C1, . . . , Cd} is linearly independent.

Suppose {C1, . . . , Cd} does not form a minimum cycle basis. Then there exists
a minimal i such that {C1, . . . , Ci} �⊆ any minimum cycle basis. So {C1, . . . , Ci−1}
⊆ some minimum cycle basis B. Then

Ci = λ1B1 + λ2B2 + · · ·+ λlBl where each λt ∈ Q and each λt �= 0,

for some {B1, . . . , Bl} ⊆ B . Since 〈Si, Ci〉 �= 0,∃Bk ∈ {B1, ..., Bl} such that
〈Si, Bk〉 �= 0. Then by the very definition of Ci, it follows that weight(Bk) ≥
weight(Ci). Hence B′ = B ∪ {Ci} \ {Bk} is also a minimum cycle basis. The
cycle Bk that has been omitted from B′ cannot be one of C1, ..., Ci−1 since the
inner product of each of C1, ..., Ci−1 with Si is zero whereas 〈Si, Bk〉 �= 0. Hence,
{C1, ..., Ci} ⊆ B′, which is a minimum cycle basis - a contradiction. � 

So our basic idea works. Let us now consider how to implement the two steps
in the basic idea.

2.2 Implementation

Computing a shortest cycle Ci such that 〈Si, Ci〉 �= 0 for Si ∈ Qm can be reduced
to computing a shortest cycle Ci such that 〈Si, Ci〉 �= 0 for Si ∈ Zm. So let us
look at the following implementation. More specifically, in the i-th iteration:

Step 1. Compute Si ∈ Zm such that Si is a nontrivial solution to the set of
equations:

〈x, Cj〉 = 0 ∀j < i.

We will show that we can find an Si with ‖Si‖∞ ≤ 2f(i), where f(i) is
O(i log i).
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Step 2. Compute f(i) + 1 distinct primes p0, ..., pf(i), where each pt ≥ m.
For t = 0, ..., f(i) do:
– compute a shortest cycle Bt such that 〈Si, Bt〉 �= 0 (modpt).
– Now we have a list (probably, a multiset) of cycles (B0, . . . , Bf(i)).

Ci := min(B0, . . . , Bf(i)).

That is, Ci is assigned to be that cycle which has the least weight in
this list. If there is more than one cycle with the same least weight, then
Ci can be any one of such cycles.

Lemma 1. Ci is a shortest cycle in G such that 〈Si, Ci〉 �= 0.

Proof. Suppose there is a shorter cycleDi. SinceDi is not in the list(B0, ..., Bf(i)),
it must be the case that 〈Si, Di〉 = 0 (modp0), (modp1), · · · , (modpf(i)). This
forces 〈Si, Di〉 to be a multiple of Πtpt since all the pt’s are distinct primes.
Since each pt ≥ m, Πtpt > mf(i)+1.

Since ‖Si‖∞ ≤ 2f(i) and Di is a vector in {−1, 0, 1}m, we have

|〈Si, Di〉| ≤ m2f(i) ≤ mf(i)+1 < Πtpt.

So the only way 〈Si, Di〉 can be a multiple of Πtpt is that 〈Si, Di〉 = 0.
Hence, any cycle Di with a lesser weight than Ci necessarily has to obey

〈Si, Di〉 = 0. � 

A question that needs to be answered is why should there always be some
cycle Ci such that 〈Ci, Si〉 �= 0. We will show that the Si that we compute has
the property that such a cycle always exists.

2.3 Computing Si

Let us first order the arcs in the arc set A so that ad+1, ..., am form the edges of
a spanning tree T of the underlying undirected graph. This means that in the
incidence vector representation of cycles, the first d coordinates correspond to
arcs a1, . . . , ad which are outside the tree T and the last n − 1 coordinates are
the arcs of T .

This will enable us to maintain the invariant that each Si is of the form
(si1, . . . , sii, 0, . . . , 0) with sii �= 0. So only the first i coordinates of Si can be
non-zero and sii has to be non-zero. The fundamental cycle Fi formed by the
adding the arc ai to the edges of the spanning tree T has the incidence vector
(0, . . . , 0, 1, 0, . . . , 0, ∗, . . . , ∗). That is, in the first d coordinates only Fi(ai) �= 0
and the ∗’s, which take {−1, 0, 1} values, are in the last n − 1 coordinates.
〈Fi, Si〉 = sii �= 0. Hence, there is always at least one cycle whose inner product
with Si is non-zero.

In the first iteration, S1 is any non-zero vector. So we assign S1 to be the
vector (1, 0, . . . , 0). Thus S1 satisfies our invariant. In the i-th iteration we need
to find a nontrivial solution to the set of equations 〈x, Cj〉 = 0 ∀j < i. We do
this as follows.
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– compute a vector (r1, ..., ri−1, 1, 0, ...0) ∈ Qm that is orthogonal to Cj for
each j < i.

Let the j-th cycle Cj have the incidence vector (cj1, ..., cjm). Since the vector
(r1, ..., ri−1, 1, 0, ...0) is orthogonal to Cj ,

i−1∑
k=1

cjkrk = −cji, for 1 ≤ j ≤ i− 1.

Let C̃j = (cj1, ...cj(i−1)) be the restriction of Cj to its first i− 1 coordinates.
So (r1, ..., ri−1) is a solution to the set of equations:

C̃j · (x1, ..., xi−1) = −cji for j = 1, ..., i− 1.

A solution always exists to the above set of equations because C̃1, . . . , C̃i−1
are linearly independent. Suppose the linear combination

i−1∑
j=1

αjC̃j = 0 (1)

and not all αj are 0. Then consider the largest k such that αk �= 0 and take
the inner product of both sides of Equation (1) with that S̃k, where S̃k is the
restriction of the vector Sk to its first i−1 coordinates. (Note that S̃k has all the
non-zero entries of Sk for each 1 ≤ k ≤ i− 1. So 〈C̃j , S̃k〉 = 〈Cj , Sk〉.) Then the
left hand side is

∑k
j=1 αj〈Cj , Sk〉 = αk〈Ck, Sk〉 since 〈Cj , Sk〉 = 0 for all j < k.

Since αk and 〈Ck, Sk〉 are non-zero while the right hand side is zero, we get a
contradiction. Hence each αj = 0 for 1 ≤ j ≤ i− 1.

Thus the (i− 1)× (i− 1) matrix of C̃’s which has C̃1, . . . , C̃i−1 as its rows is
invertible and so there exists a unique solution to the set of equations:

⎛
⎜⎝

C̃T
1
...

C̃T
i−1

⎞
⎟⎠x =

⎛
⎜⎝

−c1i

...
−c(i−1)i

⎞
⎟⎠ (2)

Let (r1, . . . , ri−1) be the solution to the above set of equations. Then S′
i =

(r1, . . . , ri−1, 1, 0, ..., 0) is a vector in Qm that is orthogonal to C1, ..., Ci−1.
By Cramer’s rule, each rj is of the form rj = yj/k, where k is the determinant

of the matrix of C̃’s (call this matrixMi) and yj is the determinant of the matrix
obtained by replacing the j-th column of Mi by the vector on the right hand side
of Equation (2). In order to get an integral vector Si from S′

i, we multiply S′
i with

k. So Si = kS′
i = (y1, ..., yi−1, k, 0, ..., 0) is an integral vector that is orthogonal

to all the cycles C1, ..., Ci−1. And we have also maintained our invariant that Si

has non-zero entries in only its first i coordinates and its i-th coordinate is non-
zero. Equivalently, (y1, ..., yi−1) is the (integral) solution to the set of equations:

C̃j · x = −kcji for j = 1, ..., i− 1. (3)
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Let us now bound the L∞ norm of Si. Since k is the determinant of an
(i−1)× (i−1) matrix whose entries are −1, 0 or 1, using Hadamard’s inequality
we get

|k| ≤ Πi−1
j=1‖C̃j‖ ≤ Πi−1

j=1

√
i ≤ 2(i log i)/2.

Similarly, each |yj | ≤ 2(i log i)/2. Hence max{y1, . . . , yj , . . . , k} ≤ 2(i log i)/2.
Thus we have shown that ‖Si‖∞ ≤ 2f(i), where f(i) = (i log i)/2.

The vector (y1, . . . , yi−1) can be obtained by Gaussian elimination, or by
multiplying the matrix M−1

i with the column vector (−kc1i, . . . ,−kc(i−1)i).
These computations can be implemented in O(iω) steps, where ω is the best
exponent of matrix multiplication. We also need to account for the cost of per-
forming arithmetic operations, since we do arithmetic on large numbers. As-
suming that arithmetic on O(� log �) bits takes O(�) time, we have the following
lemma.

Lemma 2. A nontrivial vector Si ∈ Zm such that 〈Si, Cj〉 = 0 ∀j < i and
‖Si‖∞ ≤ 2f(i) can be computed in O(mω+1) time.

3 Computing Bt

In order to compute a shortest cycle whose inner product with Si is non-zero
modulo pt, we build an undirected graph Ui,t using the given directed graph G,
the vector Si and the number pt. The graph Ui,t can be visualised as pt levels
of the digraph G. Call these levels as level 0,. . ., level (pt − 1). Each level has
a copy of every vertex v ∈ V . Let vj be the copy of vertex v in level j. The
edge set of Ui,t also consists of pt copies of each arc a ∈ A. The edges corre-
sponding to arc a = (u, v) are (uj , vk) where k = (j + Si(a)) modulo pt for each
j = 0, 1, . . . , pt − 1.

That is, the edge in Ui,t that corresponds to copy j (for j = 0, . . . , pt − 1) of
the arc a = (u, v) of G goes from the copy of vertex u in level j to the copy of
vertex v in level (j + Si(a)) mod pt. Also, each edge (uj , vk) in Ui,t inherits the
weight of its corresponding arc (u, v) of G.

Thus there is a well-defined map from the vertex set of Ui,t to the vertex set
V of G and from the edge set of Ui,t to the arc set A of G. We can extend this
map to paths of Ui,t. So given any path q in Ui,t, we can map q to a chain1 in
G by mapping the vertices and edges of q to their images in G.

Lemma 3 captures the essence of the graph Ui,t and Lemma 4 gives us an
efficient way of computing the desired cycle. These lemmas are simple to show
and their proofs will be included in the full version of the paper.

Lemma 3. Any (vr, vs) path in Ui,t, whose edges map to distinct arcs of G,
maps to a cycle C in G. The incidence vector of such a cycle C satisfies 〈C, Si〉 =
±(s− r)(modpt).

1 A chain is an alternating sequence of vertices and arcs (x0, a1, x1, a2, ..., ar, xr) such
that either ak = (xk−1, xk) or ak = (xk, xk−1).
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Relabel the arcs of G so that ad+1, . . . , am are the arcs of a spanning tree of the
underlying undirected graph.
Compute distinct primes p0, . . . , pf(m), where each prime ≥ m. {This can be done
by a sieving algorithm.}
for i = 1, . . . , d do

Compute Si = (si1, . . . , sii, 0, . . . , 0) ∈ Z
m such that sii 
= 0 and 〈Si, Cj〉 = 0 for

all j < i.
for t = 0, . . . , f(i) do

Compute the graph Ui,t from G using Si and pt (as described in Section 3).
Let q = minv min��=0 shortest (v0, v�) path in Ui,t. Let Bt be the cycle in G that
the path q corresponds to.

end for
Ci = min(B0, . . . , Bf(i)).

end for
Return {C1, . . . , Cd}.

Fig. 1. Algorithm-MCB: Algorithm to compute a minimum cycle basis in a digraph

Lemma 4. Let q = minv min� �=0 shortest (v0, v�) path2 in the graph Ui,t. Then
q corresponds to a shortest cycle Bt in G such that 〈Bt, Si〉 �= 0 (modpt).

Remark. Whenever Si mod pt is not the zero vector, then there is always a path
in Ui,t between v0 and v� for some v ∈ V and � �= 0. If Si mod pt is the zero
vector, then q does not exist and so there would be no cycle Bt in the list
(B0, . . . , Bf(i)). Indeed, there can be no cycle in G whose inner product with Si

is non-zero modulo pt, given that Si mod pt is the zero vector.

Cost of Computing Bt. Computation of the path q can be accomplished by
a shortest paths computation in the graph Ui,t from each vertex v0 in level 0
and taking the shortest (v0, v�), � �= 0 path over all v ∈ V . This can be done in
O(n(ptm+ptn log ptn)) time since one single-source shortest paths computation
in Ui,t would take O(ptm+ ptn log ptn) time by Dijkstra’s algorithm.

The value of π(r), the number of primes less than r, is given by r/6 log r ≤
π(r) ≤ 8r/log r [1]. So each of the primes pt can be bounded from above by
O(f(m) logm). Hence we have shown the following lemma.

Lemma 5. We can compute a shortest cycle Bt such that 〈Bt, Si〉 �= 0 ( mod pt)
in Õ(nmf(m)) time.

3.1 The Entire Algorithm

A summary of our algorithm to compute a minimum cycle basis in G = (V,A) is
given in Fig. 1. The correctness of the algorithm follows from Lemmas 1, 3, 4 and
Theorem 1. Lemmas 2 and 5 ensure polynomial running time of the algorithm.

2 In case of many paths tied for the minimum, choose q to be any of these paths that
has the least number of edges.
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Running Time. Recall that the cost of computing Si isO(mω+1) (by Lemma 2).
This is o(m3n) since ω < 2.376 [4]. The limiting factor in the running time of
the i-th iteration is the computation of the cycles B0, . . . , Bf(i). Since each of
them can be computed in Õ(nmf(m)) time (by Lemma 5), the time required to
compute Ci is Õ(nmf(m)f(i)). Since f(i) is O(i log i), the i-th iteration takes
Õ(m3n) time. Thus Theorem 2 immediately follows.

Theorem 2. Algorithm-MCB computes a minimum cycle basis of G in Õ(m4n)
time.

4 An Õ(m3n) Randomized Algorithm

In this section we present a Monte Carlo algorithm to compute a minimum cycle
basis in G. The underlying ideas are the same as in Algorithm-MCB, except that
we will use the primes p0, . . . , pf(m) more sparingly now.

Let us call a prime p ∈ {p0, . . . , pf(i)} a witness of Ci if 〈Si, Ci〉 �= 0 (modp).
Lemma 1 shows that since ‖Si‖∞ ≤ 2f(i), there is at least one witness of Ci in
{p0, . . . , pf(i)}. We can easily extend this idea to get the following lemma.

Lemma 6. If p1, . . . , p2f(i) are distinct primes where each prime ≥ m, then Ci

has at least f(i) witnesses in {p1, . . . , p2f(i)}.

So a prime p chosen uniformly at random from {p1, . . . , p2f(i)} has proba-
bility ≥ 1/2 of being a witness of Ci. So instead of computing f(i) + 1 cycles
B0, . . . , Bf(i) and taking their minimum as Ci, we could first sample a few primes
with uniform distribution from {p0, . . . , p2f(i)} and compute the cycles corre-
sponding only to these few sampled primes. We will call the minimum of these
cycles as Ci. If the number of sampled primes is poly(logm), then we spend only
Õ(m2n) time to compute Ci now. But of course, we have introduced some error.
So this Ci need not always be the cycle that we seek, however we can bound the
error probability.

The more difficult problem is to efficiently compute Si = (si1, . . . , sii, 0, . . . , 0)
in Zm where sii �= 0 and 〈Si, Cj〉 = 0 for all j < i. We can no longer afford to
spend Θ(mω+1) time to compute Si now.

4.1 Computing Si More Efficiently

The important observation is that we do not really need Si, what we need
is Si mod pt, that is, the vector (si1 mod pt, . . . , sii mod pt, 0, . . . , 0) in order
to compute Bt. If q0, . . . , qr are the few sampled primes of iteration i, then
Si mod q0, . . . , Si mod qr are the vectors that we need. We had computed Si as
(y1, . . . , yi−1, k, 0, . . . , 0) where (y1, ..., yi−1) is the (integral) solution to the set
of equations:

C̃j · x = −kcji for j = 1, ..., i− 1

(this is Equation (3) from Section 2.3). The integer k = det(Mi), where Mi

denotes the matrix of C̃’s on the left of the above equation. Now we want
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– Compute 3f(m) distinct primes p1, . . . , p3f(m), where each prime ≥ m.
– For i = 1, . . . d do:

1. initialize Q = ∅.
2. For j = 1, . . . , �log2 m� do:

• let rj be a random element of {p1, . . . , p3f(m)}\{r1, . . . , rj−1} picked with
uniform distribution.

• if det(Mi) 
= 0 (modrj), then Q = Q ∪ rj .
(Mi is the (i − 1) × (i − 1) matrix discussed above. M1 is the empty
matrix; let its determinant be ∞.)

3. if |Q| ≤ �log m	, then declare failure and exit the program.
4. For each qt ∈ Q

• compute in the field Zqt : �i = det(Mi) and (�1, . . . , �i−1) = M−1
i b.

• set Si mod qt = (�1, . . . , �i, 0, . . . , 0). (And when i = 1, we set S1 mod qt =
(1, 0, . . . , 0).)

• compute Bt = shortest cycle such that 〈Bt, Si mod qt〉 
= 0 (modqt).
5. Ci = min(B1, . . . , B|Q|).

– Return {C1, . . . , Cd}.

Fig. 2. Randomized-MCB: Randomized algorithm to compute a minimum cycle basis
in a digraph

to determine Si mod p directly, where p is a sampled prime. Let Si mod p =
(�1, . . . , �i, 0, . . . , 0). It follows from Equation (3) that (�1, . . . , �i−1) satisfies the
set of equations:

C̃j · x = −�icji for j = 1, ..., i− 1 in the field Zp (4)

where �i = det(Mi)(modp). Whenever �i �= 0, M−1
i b (modp) is the unique

solution of Mix = b in Zp, where b denotes the column vector of −�icji’s of
Equation (4). Then we can determine Si mod p directly by computing det(Mi)
and M−1

i b in the field Zp.
We know that det(Mi) �= 0 and that |det(Mi)| ≤ 2f(i) from Hadamard’s

inequality (see Section 2.3). So, by exactly the same argument as in the proof of
Lemma 1, we can show the following lemma.

Lemma 7. If p1, . . . , pf(i) are distinct primes, then for at least one prime p in
{p1, . . . , pf(i)}, det(Mi) �= 0(modp).

Call such a prime p a witness of Mi. Again we can extend this argument
as in Lemma 6 to show that if p1, . . . , p3f(m) are distinct primes, then Mi has
at most f(i)− 1 non-witnesses in {p1, . . . , p3f(m)}. So if we take a sample P of
�log2m� elements from {p1, . . . , p3f(m)}, each choice made uniformly at random
(without replacement), then we can show that with high probability, there are
at least �logm� witnesses for Mi in P . For each of these witnesses p, we can
compute Si mod p in O(mω) time because arithmetic in Zp takes O(1) time. So
the total time spent to compute Si mod p for all the elements in P is O(mω|P |)
or Õ(mω). This is o(m2n).
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Based on these ideas, we have the Monte Carlo algorithm presented in Fig. 2.
In some runs Randomized-MCB declares “failure” and does not return any set
of cycles. In other runs it returns a set of cycles {C1, . . . , Cd}. It is easy to see
that these cycles are always linearly independent, but they may not always be
a minimum cycle basis. Call iteration i a “success” if in iteration i, the cycle Ci

that Randomized-MCB computes is indeed a shortest cycle whose inner product
with Si is non-zero. Let Ai denote the event that iteration i is a success. When
the event A1 ∩ · · · ∩ Ad occurs, then Randomized-MCB remains faithful to the
basic idea (Section 2.1) and so the cycle basis {C1, . . . , Cd} computed by the
algorithm is indeed a minimum cycle basis. So the probability that Randomized-
MCB outputs a minimum cycle basis is Pr(A1 ∩ · · · ∩Ad).

Lemma 8. For each 1 ≤ i ≤ d, Pr[Ai|(A1 ∩ · · · ∩Ai−1)] ≥ 1− 1/m.

Proof. For iteration i to begin, it must be the case that in the first i−1 iterations,
the algorithm did not declare “failure” and exit the program. The event A1∩· · ·∩
Ai−1 ensures that this is indeed the case. So iteration i begins and iteration i is a
success whenever the random sample of �log2m� primes, that we pick in iteration
i, has at least �logm� + 1 witnesses of Mi and among these witnesses of Mi,
there is at least one witness of Ci. We can bound from below the probability that
this event occurs by upper bounding the complement event. The complement is
the union of two events: (i) the event that |Q| ≤ �logm� and (ii) the event that
Q has no witnesses of Ci given that |Q| ≥ �logm�+ 1.

Let us look at the first of these two events. We know that there are at most
f(i)−1 non-witnesses of Mi in {p1, . . . , p3f(m)}. In iteration i, when we pick the
first random element r1, the probability that r1 is not a witness of Mi is at most
(f(i)− 1)/(3f(m)). The j-th random element rj is chosen uniformly at random
from {p1, . . . , p3f(m)}\{r1, . . . , rj−1}. The probability that rj is a witness of Mi

depends on how many of {r1, . . . , rj−1} are witnesses of Mi. But we do not need
this exact value. We can easily see that for each j = 1, . . . , �log2m�

Pr[rj is not a witness for Mi] ≤
f(i)− 1

3f(m)− j + 1
≤ m

3m− logm
≤ 1

2

So the probability that there are exactly �logm� witnesses of Mi in Q is
at most

( log2 m
�log m�

)
· (1/2)�log2 m�−�log m�. Hence the probability that there are at

most �logm� witnesses of Mi in Q is upper bounded by �logm�+ 1 times this
number. This value is at most

(�logm�+ 1)(log2m)�log m� 4
mlog m−1 <

1
2m

∀m ≥ some constant m0.

(Also, we will modify Randomized-MCB so that for small m, i.e. when m < m0,
we do no random sampling - so Randomized-MCB is identical to our determin-
istic algorithm for small m.)

Let us now look at the second event that contributes to the failure of iteration
i. Given that |Q| > �logm�, we would like to upper bound the probability that
Q has no witnesses of Ci. There are at least 3f(m)− f(i) ≥ 2f(m) witnesses of
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Ci in {p1, . . . , p3f(m)}. Mi also has at least 2f(m) witnesses in {p1, . . . , p3f(m)}.
So at least half the witnesses of Mi are also witnesses of Ci. So the probability
that a random subset Q of witnesses of Mi contains no witness of Ci is at most
(1/2)|Q| ≤ 1/2m since |Q| ≥ logm+ 1.

So the total error probabilityis atmost1/2m+1/2m = 1/m. Hence Pr[Ai|(A1∩
· · · ∩Ai−1)] ≥ 1− 1/m, for each 1 ≤ i ≤ d. � 

Since Pr(A1 ∩ · · · ∩ Ad) = Πd
i=0 Pr[Ai|(A1 ∩ · · · ∩ Ai−1)], Lemma 8 shows

that the success probability of Randomized-MCB is at least (1 − 1/m)d >
(1 − 1/m)m ≈ 1/e. Hence, by running Randomized-MCB a constant number
of times and taking the cycle basis whose weight is the least, we can make the
error probability less than δ for any given constant δ > 0. The running time of
the algorithm follows from the discussion at the beginning of Section 4. Hence
Theorem 3 follows.

Theorem 3. A minimum cycle basis can be computed with high probability in
Õ(m3n) time.

5 Further Analysis

In this section we would like to prove that any minimum cycle basis from the
set of all minimum cycle bases of G has a chance to be returned as {C1, . . . , Cd}
by a variant of Algorithm-MCB (Fig. 1). First, fix any spanning tree T of the
underlying undirected graph of G and let {a1, . . . , ad} be the arcs of G \ T . Let
{D1, . . . , Dd} be some minimum cycle basis of G. Let us assume that these cycles
are sorted by their weights. So we have weight(D1) ≤ · · · ≤ weight(Dd). Let us
form the d×dmatrix D whose i-th column is the incidence vector of Di restricted
to the arcs {a1, . . . , ad}. It is simple to show that D is a nonsingular matrix. The
next observation is that the rows of D can be permuted so that for each i, the
i× i submatrix consisting of the first i rows and first i columns is nonsingular.
Alternately, the LUP decomposition of D gives us a permutation matrix P such
that PD has this property. Permuting the rows of D is just renumbering the arcs
a1, . . . , ad.

Let us now describe the slight variation in Algorithm-MCB so that we can
claim that {D1, . . . , Dd} can be returned by our algorithm. The variation is
that we do an extra step, right at the beginning, where we permute the or-
der of the arcs in G \ T . That is, we generate a random permutation σ on
{1, . . . , d} and the order of coordinates in the incidence vectors of cycles will
be aσ(1), . . . , aσ(d), ad+1, . . . , am. After this step, the rest of the algorithm is the
same as Algorithm-MCB (Fig. 1). In the case of a tie while computing a shortest
path or shortest cycle, let us assume that the algorithm breaks ties randomly so
that each of the candidate cycles tied as the shortest cycles has a chance to be
picked.

Our algorithm has a tree of possible executions and we want to show that
there is at least one execution where {D1, . . . , Dd} is computed as a minimum
cycle basis. In the first step let us assume that the permutation π was generated,
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where π is the permutation corresponding to the permutation matrix P in the
LUP decomposition of D. Using the special property of the d × d matrix PD,
that is, for each i, its leading i × i submatrix is nonsingular, we can show that
for 1 ≤ i ≤ d, there is a vector Li = (�i1, . . . , �ii, 0, . . . , 0) in Qm such that
(i) 〈Li, Dj〉 = 0 for all j where j < i and (ii) Di is a shortest cycle such that
〈Li, Di〉 �= 0.

The above statement is the crux of the argument and Theorem 4 follows
directly from this. The details will be given in the full version of the paper.

Theorem 4. The minimum cycle basis {D1, . . . , Dd} can be returned by the
modified Algorithm-MCB.

Acknowledgment. We thank Jaikumar Radhakrishnan for his helpful comments.
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Abstract. Let G(V, E) be an unweighted undirected graph on |V | = n
vertices. Let δ(u, v) denote the shortest distance between vertices u, v ∈
V . An algorithm is said to compute all-pairs t-approximate shortest-
paths/distances, for some t ≥ 1, if for each pair of vertices u, v ∈ V ,
the path/distance reported by the algorithm is not longer/greater than
t · δ(u, v).

This paper presents two randomized algorithms for computing all-
pairs nearly 2-approximate distances. The first algorithm takes expected
O(m2/3n log n+n2) time, and for any u, v ∈ V reports distance no greater
than 2δ(u, v) + 1. Our second algorithm requires expected O(n2 log3/2)
time, and for any u, v ∈ V reports distance bounded by 2δ(u, v) + 3.

This paper also presents the first expected O(n2) time algorithm to
compute all-pairs 3-approximate distances.

1 Introduction

All-pairs shortest path problem is undoubtedly one of the most fundamental
algorithmic graph problem. Given a graph G(V,E) on n(= |V |) vertices and
m(= |E|) edges, the problem requires computation of shortest-paths/distances
between each pair of vertices. There are various versions of this problem de-
pending on whether the graph is directed or undirected, edges are weighted or
unweighted, weights are positive or negative. In its most generic version, that is,
for directed graph with real edge-weights, the best known algorithm [6] for this
problem requires O(mn+n2 log log n) time. However, for graphs withm = θ(n2),
this algorithm has a running time of θ(n3) which matches that of the old and
classical algorithm of Floyd and Warshal. The best known upper bound on the
time complexity of this problem is O(n3√log log n/ log n) due to Zwick [10],
which is marginally sub-cubic.

In the recent past, there has been a growing interest in designing efficient
(sub-cubic running time) and simple algorithms for all-pairs approximate shortest-
paths, and successful attempts have been made for undirected graphs. Zwick [9]

V. Diekert and B. Durand (Eds.): STACS 2005, LNCS 3404, pp. 666–679, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



All-Pairs Nearly 2-Approximate Shortest-Paths in O(n2 polylog n) Time 667

provides an excellent survey on algorithms for computing approximate shortest
paths. An algorithm is said to compute all-pairs t-approximate distances, if for
any pair of vertices u, v ∈ V , the distance δ∗(u, v) reported by the algorithm
satisfies 1 ≤ δ∗(u,v)

δ(u,v) ≤ t. In the following paragraph, we provide a very brief
summary of the current state-of-the-art algorithms for all-pairs t-approximate
shortest paths.

Cohen and Zwick [2], building upon the work of Dor et al. [3], designed
an algorithm that given any undirected weighted graph with n vertices and m
edges, computes all-pairs 2-approximate shortest paths in O(n3/2√m) time and
all-pairs 3-approximate shortest paths in just O(n2 log n) time. For unweighted
graphs, given arbitrarily small ζ, ε, ρ > 0, Elkin [4] designed an algorithm that
requires O(mnρ + n2+ζ) time, and for any pair of vertices u, v ∈ V , reports
distance δ∗(u, v) satisfying the inequality :

δ(u, v) ≤ δ∗(u, v) ≤ (1 + ε)δ(u, v) + β

where β is a function of ζ, ε, ρ. If the two vertices u, v ∈ V are separated by
sufficiently long distances in the graph, the stretch δ∗(u,v)

δ(u,v) ensured by Elkin’s
algorithm is quite close to (1 + ε). But the stretch factor may be quite huge for
short paths since β depends on ζ as (1/ζ)log 1/ζ , depends inverse exponentially
on ρ and inverse polynomially on ε. Thorup and Zwick [7] introduced a remark-
able data-structure called approximate distance oracle, that requires sub-cubic
preprocessing time and sub-quadratic space, and yet answers an approximate-
distance query in constant time (hence the name oracle). For a given integer
k ≥ 2, the space of the approximate distance oracle is O(kn1+1/k) and it reports
any (2k − 1)-approximate distance query in O(k) time. The preprocessing time
for (2k − 1)-approximate distance oracle is O(mn1/k) which has been improved
to O(min(mn1/k, n2 log n)) for unweighted graphs in [1]. Thorup and Zwick [7]
also show that for any t < 3, a data-structure that answers any t-approximate
distance query in constant time must occupy θ(n2) space. This implies a lower
bound of Ω(n2) on space as well as on time complexity of any algorithm that an-
swers any 2-approximate distance query in constant time. As mentioned above,
the algorithm of Cohen and Zwick [2] establishes an upper bound of O(n3/2√m)
on time complexity of all-pairs 2-approximate shortest path problem.

1.1 Our Contribution

As an important contribution of this paper, we show that we can, in time
O(n2 polylogn), compute all-pairs nearly 2-approximate shortest paths for un-
weighted undirected graphs.

1. We first design a data-structure that, given any u, v ∈ V , requires constant
time to report distance bounded by 2δ(u, v) + 1, that is, an additive error
of one unit over the 2-approximate distance. The expected preprocessing
time required to build this data-structure is O(m2/3n log n + n2). In this
way, our new algorithm, at the expense of introducing an additive error of
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just one unit, achieves a significant improvement in the running time over
the previous best algorithm [2] for all-pairs 2-approximate distances. The
improvement is by a factor of at-least n1/6 for the range m > n3/2, whereas
for m < n3/2, the new algorithm takes expected O(n2) time.

2. We further reduce the expected preprocessing time to O(n2 log3/2 n) at the
expense of increasing the additive error to 3, that is, given any pair of vertices
u, v ∈ V , the distance δ∗(u, v) reported by our data-structure satisfies

δ(u, v) ≤ δ∗(u, v) ≤ 2δ(u, v) + 3

As would become clear subsequently from the paper, the additive error shows
up only in some restricted worst case only. In general, the algorithm will
behave very much like a 2-approximate shortest path algorithm.

3. As an additional and final contribution, this paper shows that it takes ex-
pected O(n2) time to compute 3-approximate distance oracle of size O(n3/2).

Without any modifications, all our data-structures for reporting approximate
distances can also be used to report approximate shortest-paths in optimal time.

2 A New Scheme for 2-Approximate Shortest Paths

Let G(V,E) be an unweighted graph. The basic construct of our scheme is a
restricted breadth-first-search (BFS) tree defined as Ball as follows.

Definition 1. For a vertex u and a set R ⊂ V of vertices, Ball(u,R) denotes
the set of vertices of the graph, such that the distance from u to these vertices is
less than the distance from u to the nearest vertex of the set R.

New scheme for approximate distance

Let R ⊂ V be a set of vertices. Let nu denote the vertex from the set R nearest
to u.

1. Global distance information
For each vertex s ∈ R, keep a BFS tree storing distance to all the vertices
in the graph.

2. Local distance information
For each vertex u ∈ V \R, compute distance to all the vertices of Ball(u,R)
and its nearest vertex nu.

3. Keep a data-structure to determine, in constant time, whether any two
Balls overlap (share a common vertex) or not.

The above scheme may appear similar to 3-approximate distance oracle of
Thorup and Zwick [7] except the third step. It is this step that proves to be
crucial in achieving 2-approximate distances.

Now we shall describe how our scheme can be used to answer a distance query
with stretch 2.
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Answering distance query using new scheme

Q(u, v) : We answer a distance query between u and v in the following order.

– If v ∈ Ball(u,R) or u ∈ Ball(v,R) :

report δ(u, v)

– Else if Ball(u,R) and Ball(v,R) overlap :

report δ(u,w) + δ(v, w) for some w ∈ Ball(u,R) ∩Ball(v,R)

– Else :

report minimum of (δ(u, nu) + δ(nu, v)) and (δ(v, nv) + δ(nv, u))

The query Procedure Q(u, v) explores all the three possible cases in the fixed
order. In the first two cases, we manage to report distance using only the local
distance information stored at vertices u and v. In the final and the third case,
when the two Balls are non-overlapping, we use the global distance information
stored at nu and nv.

Lemma 1. Given a graph G(V,E) and any two vertices u, v ∈ V , the approx-
imate distance between u and v as reported by the query procedure Q(u, v) is
bounded by 2δ(u, v) + 1.

Case−1 Case−2

Case−3

a

a + 1

b
b + 1

uu

u v

v

vw

nu

nunu

nv

nv

x vertex of set R

Fig. 1. Three cases in reporting distance between u and v
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Proof. Let a and b be the radii of Ball(u,R) and Ball(v,R) respectively. The
approximation factor associated with the distance reported by Q(u, v) depends
on which of the three steps, we report the distance at. So we analyze the three
cases as follows:
Case 1 : The distance is reported in the first step of Q(u, v).
In this case, either u or v lie in the Ball of the other. Without loss of generality,
let us assume that v lies in Ball(u,R) (see Fig. 1, Case-1). Here we report the
exact distance between u and v.
Case 2 : The distance is reported in the second step of Q(u, v).
Note that since the query procedure failed to report the distance in the first step,
therefore, the distance between u and v is more than the radius of Ball(u,R)
and Ball(v,R). In other words, δ(u, v) is more than a and b. (see Fig. 1, Case-2).

Let w be a vertex lying in bothBall(u,R) andBall(v,R). Clearly, δ(u,w) ≤ a
and δ(v, w) ≤ b. Therefore, the distance reported in this step is bounded by a+b,
which is no more than 2δ(u, v) as explained above.
Case 3 : The distance is reported in the third step of Q(u, v).
Since the query procedure failed to report the distance in the second step,
Ball(u,R) and Ball(v,R) are separated by distance x ≥ 1. So the shortest
path between u and v can be viewed as consisting of three sub-paths : the first
subpath is the portion of the path lying inside Ball(u,R) and has length a, the
second sub-path is the portion of the path lying outside the two Balls and has
length x, and the third sub-path is the portion of the path lying inside Ball(v,R)
and has length b. Hence, the distance between u and v is a+x+b for some x ≥ 1.
(see Fig. 1, Case-3).

In the third step, we report the minimum of (δ(u, nu)+δ(nu, v)) and (δ(v, nv)+
δ(nv, u)). It can be noted that δ(u, nu) = a + 1 and δ(v, nv) = b + 1. Now con-
sidering the path from nu to v passing through u, we can observe that δ(nu, v)
is bounded by 2a+x+ b+ 1. Similarly, analyzing the path from nv to u passing
through v, we can observe that δ(nv, u) is bounded by 2b+x+ a+1. Therefore,
the distance reported by Q(u, v) is bounded as follows.

min((δ(u, nu) + δ(nu, v)) , (δ(v, nv) + δ(nv, u)))
≤ min(3a+ x+ b+ 2, 3b+ x+ a+ 2)
= min(3a+ b, 3b+ a) + x+ 2
= 3b+ a+ x+ 2 {wlog assume that a ≥ b}
≤ 2a+ 2b+ x+ 2 {since a ≥ b}
≤ 2(a+ x+ b) + 1 {since x ≥ 1}
= 2δ(u, v) + 1

Hence, the distance between u, v as reported by Q(u, v) is bounded by
2δ(u, v) + 1.

Remark: It is worth noting that the distance between any two vertices u, v ∈ V ,
as reported by Q(u, v), is bounded by 2δ(u, v) even in the Case-3, if at-least
one of the following conditions hold:
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tree edge

sampled vertex

u

r(u) − 1
r(u) − 2

Fig. 2. To compute Ball(u, Rp), we need to explore adjacency list of vertices lying in
inner-shaded shell (of radius r(u) − 2) only

(i) x > 1, that is, the two Balls are separated by a path longer than one edge.
(ii) a �= b, that is, the radii of the two Balls differs.

3 Efficient Sub-routines for Realization of the New
Scheme

3.1 An Efficient Algorithm for Computing Balls

Let Rp be a set formed by selecting each vertex independently with probability
p < 1. We shall now present an algorithm for computing Ball(u,Rp), for all
u ∈ V \Rp.

Let r(u) denote the distance from u to nu. It follows from Definition 1 that
the vertices of Ball(u,Rp) and their distance from u can be computed by build-
ing a BFS tree at u up to level (distance) r(u) − 1. Therefore, prior to the
computation of Ball(u,Rp), we compute r(u). In fact, the following procedure
shows that it requires just a single BFS traversal to compute r(u) and nu, for
all u ∈ V \Rp.

Add a dummy vertex y to the given graph and connect it to all the vertices
of set Rp. Compute a full BFS tree rooted at y. If a vertex u lies at level � (hence
at distance � from y) in this BFS tree, it is at distance � − 1 from nu, that is,
r(u) = �−1. In addition to r(u), we can also compute nu for each vertex u from
this BFS tree.

If r(u) = 1, then Ball(u,Rp) consists of vertex u only and we are done. For
the case when r(u) ≥ 2, we build a BFS tree upto level r(u) − 1 to compute
Ball(u,Rp), and the computation time required in doing so is of the order of
the number of edges explored. Since the graph is undirected, an edge will be
explored at-most twice (once by each of its end-point), and we would charge
the cost of exploring an edge to that end-point, which explores it first. Let
v1(= u), v2, · · · , vn be the sequence of vertices of the given graph arranged in
non-decreasing order of their distance from u. Note that computing BFS tree
upto level r(u) − 1 requires exploring the adjacency list of vertices up to level
r(u)− 2 only (see Fig. 2). Therefore, in the computation of Ball(u,Rp), we shall
explore adjacency list of vi if the following two events happen:
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E i
1 : There is no vertex in the set {vj |j < i} which is selected in the sample Rp.
E i
2 : There is no vertex from {vj |j > i} that is adjacent to vi and also a sampled

vertex.
The events E i

1 and E i
2 are independent (since the vertices are sampled in-

dependently). Following our charging scheme mentioned above, exploring adja-
cency list of vertex vi would contribute O(d′(vi)) to the computation time of
Ball(u,Rp), where d′(vi) is the number of edges incident on vi from vertices
{vj |j > i}. So the expected cost of computing Ball(u,Rp) is

n∑
i=1

(
Pr(E i

1) · Pr(E i
2) · d′(vi)

)
=

n∑
i=1

(
(1− p)i−1(1− p)d′(vi)d′(vi)

)

≤
n∑

i=1

⎛
⎝(1− p)i−1

d′(vi)∑
j=1

(1− p)j−1

⎞
⎠

≤
n∑

i=1

(
(1− p)i−1 1

p

)
≤ 1
p

n∑
i=1

(1− p)i−1 ≤ 1
p2 .

Theorem 1. Given an unweighted graph G(V,E), and p < 1, let Rp be a set
formed by selecting each vertex independently with probability p. There exists
an algorithm for computing Ball(u,Rp), for all u ∈ V \Rp in expected time
O(m+ n

p2 ).

In a similar way, it can be shown that the expected number of vertices in
Ball(u,Rp) is O(1/p) (observe that for vertex vi to belong to Ball(u,Rp), the
event E i

1 must happen).

Lemma 2. Given an unweighted graph G(V,E), a uniformly random sample
R ⊂ V of size

√
n induces a bound of

√
n on expected size of Ball(u,R).

It follows from Definition 1 that Ball(u,X) ⊂ Ball(u, Y ), for all Y ⊂ X ⊂ V .
Therefore, our algorithm would require less time to compute Ball(u,X) than to
compute Ball(u, Y ). So we can state the following corollary based on Theorem 1.

Corollary 1. Given an unweighted graph G(V,E) and p < 1, let Rp be a set
formed by selecting each vertex independently with probability p < 1. For any
set R ⊃ Rp, it takes expected O(m + n

p2 ) time to compute Ball(u,R), for all
u ∈ V \R.

3.2 Computing Overlap Matrix O
To determine, for a pair of vertices u, v ∈ V , whether there exists a vertex
common to both Ball(u,R) and Ball(v,R), we keep a matrix O such that O[u, v]
is null if Ball(u,R) ∩ Ball(v,R) = ∅, otherwise O[u, v] stores a vertex that
belongs to both the Balls. To build the matrixO efficiently, we form the following
sets,

C(v,R) = {u ∈ V |v ∈ Ball(u,R)}.
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It is easy to observe that we can form the sets {C(v,R)|v ∈ V } by a single
scan of the sets {Ball(u,R)|u ∈ V }. Now once we have C(v,R),∀v ∈ V , we can
compute the matrix O as follows.

Algorithm for computing overlap matrix O
For each v ∈ V \R do

For each u ∈ C(v,R) do
For each w ∈ C(v,R) do

O[u,w] ← v

The running time of the above algorithm for computing the overlap matrix O
is of the order of

∑
v∈V |C(v,R)|2 + n2. In order to compute the overlap matrix

O in O(n/p2+n2) time (which also matches the time required to compute Balls),
we would need a set R ⊂ V which would ensure that |C(v,R)| = O(1/p), for
all v ∈ V . We shall employ the random sampling scheme given by Thorup and
Zwick [8] to compute the desired sample R as follows.

Procedure for computing the sample set R

Procedure sample(G, p) {
R = ∅; V ′ = V ;
While (V ′ �= ∅)

Add a uniform sample of size np from V ′ to R;
For every u ∈ V \R do

Compute Ball(u,R);
For every v ∈ V \R do

C(v,R) ← {u ∈ V | v ∈ Ball(u,R)};
V ′ ← {v ∈ V | |C(v,R)| > 4/p};

Return R;
}

For the first iteration, R is a uniform sample from V , that is, R = Rp. So
using Theorem 1, the first iteration requires expected O(m + n/p2) time. Note
that in each subsequent iteration, the sample R only grows. Hence it follows from
Corollary 1 that each subsequent iteration will also require expected O(m+n/p2)
time. It is shown in [8] that in every iteration, the size of V ′ decreases by a factor
of 2 with probability at-least 1/2. Hence after expected logn iterations, V ′ would
be reduced to ∅. Thus, the expected size of the final sample R would be np log n
and C(v,R) will be bounded by O( 1

p ), for each v ∈ V .

Theorem 2. Given an unweighted graph G(V,E) and p < 1, a set R ⊂ V of
size O(np log n) can be computed in expected O(m log n+ n

p2 log n) time ensuring
that
• It takes a total of O(m+ n/p2) time to compute Ball(u,R),∀u ∈ V \R.
• It takes O(n2 + n

p2 ) time to build the overlap matrix O.
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4 Algorithms for Nearly 2-Approximate Shortest Paths

4.1 Algorithm I

Our first algorithm for computing nearly 2-approximate distances is a realization
of the scheme mentioned in Sect. 2.

Algorithm I

Preprocessing
Let R be the set of vertices as defined by Theorem 2.

1. For each u ∈ V \R, compute Ball(u,R).
2. Compute overlap matrix O.
3. For each v ∈ R, build a full BFS tree rooted at v in the graph.

Reporting distance between u, v ∈ V
Q(u, v)

Computing BFS tree from vertices of the set R requires O(m|R|)
= O(mnp log n) expected time. Hence applying Theorem 2, it follows that the
total expected time for preprocessing the graph in Algorithm I is given by

m log n+ n2 +
n

p2 log n+mnp log n = n2 +m2/3n log n { for p = 1
3√m

}.

Theorem 3. An unweighted graph G(V,E) can be preprocessed in O(m2/3n log n
+n2) expected time to output a data-structure of size O(n2) that, given any
u, v ∈ V , requires constant time to report distance δ∗(u, v) satisfying

δ(u, v) ≤ δ∗(u, v) ≤ 2δ(u, v) + 1.

The previous best known algorithm [2] for computing 2-approximate dis-
tances requires O(n3/2√m) running time. Thus, in the worst case, we have been
able to improve the running time by a factor of O(n1/6) at the expense of intro-
ducing an additive error of just one unit.

4.2 Algorithm II

The preprocessing time of the first two steps in Algorithm I described above
can be bounded by O(n2 log n) with a suitable choice of p. The third step that
computes BFS trees from vertices of set R requires O(m|R|) time, which is
certainly not O(n2 log n) when the graph is dense. To improve its preprocessing
time to (n2 polylogn), one idea is to perform BFS from R on a spanner (having
o(n2) edges) of the original graph. A spanner is a subgraph that is sparse but
still preserves approximate distance between vertices in the graph.

Definition 2. Given α ≥ 1, β ≥ 0, a subgraph G(V,E′), E′ ⊂ E is said to be
an (α, β)-spanner of G(V,E) if for each pair of vertices u, v ∈ V , the distance
δs(u, v) in the spanner is bounded by αδ(u, v) + β.
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The sparsity of a spanner comes along with the stretching of the distances in
the graph. So one has to be careful in employing an (α, β)-spanner (with α > 1)
in the third step, lest one should end up computing nearly 2α-approximate dis-
tances instead of nearly 2-approximate distances. To explore the possibility of
using spanner in our algorithm, let us revisit our distance reporting scheme
Q(u, v). The full BFS trees rooted at the vertices of set R serve to provide
global distance information in the scheme Q(u, v) and they are required, only
when u and v belong to non-overlapping Balls. In the analysis of this case,
we partitioned the shortest path between u and v into three sub-paths (see
Fig. 1,Case-3): the sub-paths of lengths a and b covered by Ball(u,R) and
Ball(v,R) respectively, and the sub-path of length x lying between the two
Balls and not covered by either Ball. We showed that the distance δ∗(u, v) as
reported by Q(u, v) is bounded by 2a+ 2b+ x+ 2. A comparison of this expres-
sion of δ∗(u, v) with δ(u, v) = a + x + b suggests that there is a possibility of
stretching the uncovered sub-path (of length x) between the Balls by a factor
of 2 and still keeping the distance reported to be nearly 2-approximate. So we
may employ an (α, β)-spanner in the third step of our algorithm, provided α
(the multiplicative stretch) is not greater than 2 and more importantly, for each
vertex u ∈ V \R, the shortest path from nu to u as well as the shortest paths
from u to all the vertices of Ball(u,R) are preserved in the spanner. To ensure
these additional features, we shall employ the parameterized spanner introduced
in [1].

Parameterized (2,1)-Spanner [1]
Given a graph G(V,E), and a parameter X ⊂ V , a subgraph G(V,E′) is said
to be a parameterized (2, 1)-spanner with respect to X if
(i) G(V,E′) is a (2, 1)-spanner.
(ii) All those edges whose at-least one endpoint is not adjacent to any vertex
from

the set X are surely present in the spanner too.

An O(m) time algorithm has been presented in [1] to compute a parameterized
(2, 1)-spanner for a given X ⊂ V (as a parameter). To ensure that the span-
ner is a parameterized (2, 1)-spanner, the algorithm establishes the following
lemma.

Lemma 3. [1] For an edge e(u, v) not present in the spanner, there is a vertex
x ∈ X adjacent to u in the spanner such that there is a path from x to v in
the spanner of length no more than 2.

The feature (ii) of the parameterized (2, 1)-spanner suggests that if we choose
R as the parameter, all the edges lying inside a Ball are present in the param-
eterized spanner, and hence all the shortest paths that lie within a Ball are
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preserved too. Now observe that the shortest path from nu to u lies fully inside
Ball(u,R) except the first edge of this path which is incident on nu. So to ensure
that the shortest path from nu to u is also preserved, it would suffice if we aug-
ment the spanner with all the edges in the original graph that are incident on nu.

Algorithm II

Preprocessing
Let R be the set of vertices as defined by Theorem 2.

1. For each u ∈ V \R, compute Ball(u,R).
2. Compute overlap matrix O.
3. (a) Let G(V,E′) be a parameterized (2, 1)-spanner with respect to R for

the given graph G(V,E).
(b) For each v ∈ R, compute a full BFS tree rooted at v in G(V,E′∪E(v)).

(E(v) denotes the edges incident on v in the original graph G(V,E))

Reporting distance between u, v ∈ V
Q(u, v)

From the discussion above, it follows that for any pair of vertices u, v ∈ V ,
the distance reported in Case-3 by Q(u, v) will be

δ∗(u, v) ≤ 2(a+ b)+ (2x+1)+2 {since x is stretched to 2x+1 }
= 2(a+ x+ b) + 3 = 2δ(u, v) + 3.

To analyze the running time of Algorithm II, observe that we perform BFS
on a (2, 1)-spanner. Therefore, a bound on the size of the spanner is required.
We shall use the following lemma from [1].

Lemma 4. [1] Let Rp be a set formed by selecting each vertex independently
with probability p. For any set R ⊃ Rp, the expected size of parameterized (2, 1)-
spanner will be O(|R|n+ n/p).

Lemma 4 implies that the size of (2, 1)-spanner with parameter R (as deter-
mined in Sect. 3.2) would be O(n/p+nnp log n). Hence the expected preprocess-
ing time of Algorithm II will be of the order of

m log n+
n

p2 log n+np log n
(
n

p
+ n2p log n

)
=O(n2 log

3
2 n) {for p=

1√
n 4
√

log n
}

Theorem 4. An unweighted graph G(V,E) can be preprocessed in O(n2 log3/2 n)
expected time to output a data-structure of size O(n2) that, given any u, v ∈ V ,
requires constant time to report distance δ∗(u, v) satisfying

δ(u, v) ≤ δ∗(u, v) ≤ 2δ(u, v) + 3.
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5 Algorithm for 3-Approximate Shortest Paths

Algorithm 3-approx

Preprocessing
Let R be a set formed by picking each vertex with probability 1/

√
n.

1. For each u ∈ V \R, compute Ball(u,R).
2. (a) Let G(V,E′) be a parameterized (2, 1)-spanner with respect to R.

(b) For each v ∈ R, compute a full BFS tree rooted at v in G(V,E′∪E(v)).

Reporting distance between vertices u, v ∈ V
If v ∈ Ball(u,R) or u ∈ Ball(v,R),

report δ(u, v)
Else

report minimum of (δ(u, nu) + δs(nu, v)) and (δ(v, nv) +
δs(nv, u))
(note that δs(x, y) denotes distance between x and y in the underlying spanner.)

Lemma 5. The Algorithm 3-approx reports all-pairs 3-approximate distance.

Proof. Let neither u ∈ Ball(v,R) nor v ∈ Ball(u,R). We have two cases now.

Case 1: Ball(u,R) = {u}
Let v0(= u), v1, · · · , vl(= v) be the shortest path between u and v. Since
Ball(u,R) consists of vertex u only, u must be adjacent to nu. Also by Lemma 3,
there is a path of length at-most 2 units between nu and v1 in the parameterized
spanner. Furthermore, the distance δs(v1, vl) between v1 and vl in the spanner
is no greater than 3(l − 1). Hence δs(nu, v) ≤ 3(l − 1) + 2. Since δ(u, nu) = 1,
the distance reported by the Algorithm 3-approx is no more than 3l.

Case 2: Ball(u,R) �= {u}
Consider Ball(v,R). Let its radius be a ≥ 0. The vertex u lies outside this Ball.
The shortest path from v to u can be visualized as consisting of two segments
(see Fig. 3) : the sub-path Pvw of length a lying inside the Ball and the sub-path
Pwu of length x ≥ 1 outside the Ball. Let the length of path Pwu be stretched
to x′ in the parameterized spanner. Since the parameterized spanner preserves

uu′v
a

nv

x
w

Pvw Pwu

Fig. 3. Analyzing the path from v to u when Ball(u, R) 
= {u}
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all-paths within a Ball, therefore, the distance (δ(v, nv) + δs(nv, u)) reported by
the algorithm would be 3a + 2 + x′. To ensure that this distance is no more
than three times the actual distance δ(u, v) = a + x, all we need to show is
that x′ ≤ 3x − 2. Let e(u′, u) be the last edge of the path Pwu. Now observe
that Ball(u,R) �= {u} implies that Ball(u,R) has radius at-least one. So the
edge e(u′, u) must be present in the spanner (see feature (ii) of the parameter-
ized spanner). Now the part of the path Pwu excluding the edge e(u′, u) is of
length x−1, and can’t be stretched to more than 3(x−1) in the spanner. Hence
x′ ≤ 3(x− 1) + 1 = 3x− 2, and we are done.

The set R used in the Algorithm 3-approx is a uniform random sample of√
n vertices. Hence using Theorem 1, it follows that a total of O(n2) expected

time is required to compute Ball(u,R),∀u ∈ V \R. Also Lemma 4 implies that
the number of edges in (2, 1)-spanner with parameter R is O(n

√
n). So the

expected time required for building full BFS trees on all the vertices of R in the
(2, 1)-spanner is O(n2). Hence the expected preprocessing time of the Algorithm
3-approx is O(n2).

Space Requirement: Keeping distance information from each x ∈ R to all the
other vertices requires a total of O(n3/2) storage. For each vertex u ∈ V \R, we
can store the vertices belonging to Ball(u,R) along with their distance from u in
a 2-level hash table of [5] with optimal size O(|Ball(u,R)|). Using this hash table,
it can be determined whether v ∈ Ball(u,R) or not in worst case constant time.
So the space requirement of the data-structure of our algorithm (3-approximate
distance oracle) given above is O(n3/2), which is optimal as shown in [7].

Theorem 5. An unweighted graph G(V,E) can be preprocessed in expected O(n2)
time to output a data-structure of size O(n3/2) that can answer any 3-approximate
distance query in constant time.

6 Conclusion and Open Problems

Given an undirected unweighted graph G(V,E) on |V | = n vertices, we can
compute all-pairs 3-approximate distances in O(n2) time. More importantly, we
can compute nearly 2-approximate distances in O(n2 polylogn) time. This upper
bound is quite close to the Ω(n2) lower bound on computing 2-approximate
distances. It would be quite interesting to remove the additive error from our
algorithm completely or to prove an Ω(n2+ε) lower bound for computing all-pairs
2-approximate distances.
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Abstract. In this paper we determine some limit distributions of pat-
tern statistics in rational stochastic models, defined by means of nonde-
terministic weighted finite automata. We present a general approach to
analyse these statistics in rational models having an arbitrary number
of connected components. We explicitly establish the limit distributions
in the most significant cases; these ones are characterized by a family of
unimodal density functions defined by polynomials over adjacent inter-
vals.

Keywords: Automata and Formal Languages, Limit Distributions, Non-
negative Matrices, Pattern Statistics, Rational Formal Series.

1 Introduction

This work presents some results on the limit distribution of pattern statistics.
The major problem in this context is to estimate the frequency of pattern oc-
currences in a random text. This is a classical problem that has applications in
several research areas of computer science and biology: for instance, it is consid-
ered in connection with the search of motifs in DNA sequences [6, 14] while the
earlier motivations are related to code synchronization [10] and approximated
pattern-matching [12, 18, 5]. In the usual setting, established in the seminal pa-
per [11] and developed in many subsequent works (see for instance [15, 13, 3]),
one considers a finite alphabet Σ, a set of patterns R ⊆ Σ∗, a probabilistic
source P generating words at random in Σ∗, and studies the number Xn of
occurrences of elements of R in a word of length n generated by P . Typical
goals are the asymptotic evaluation of the moments of Xn, its limit distribution
(also in the local sense) and the corresponding large deviations. These results
depend in particular on the stochastic model P , which is usually assumed to be
a Bernoulli or a Markovian model.

A rather general result is presented in [13], where Gaussian limit distributions
are obtained, for any regular set of patterns R and any Markovian source P ,
under a primitivity hypothesis on the associated stochastic matrix. This result
is extended in [2] to the so-called rational stochastic model, where the text is
generated at random according to a probability distribution defined by means
of a rational formal series in noncommutative variables. In particular cases, this
is simply the uniform distribution over the set of words of given length in an
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arbitrary regular language. For this reason, results for this model are also related
to the analysis of additive functions over strings [9].

The rational stochastic model properly extends the Markovian models in the
following sense: the frequency problem of regular patterns in a text generated in
the Markovian model (as studied in [13]) is a special case of the frequency prob-
lem of a single symbol in a text over a binary alphabet generated in the rational
stochastic model; it is also known that the two models are not equivalent [2]. We
recall that extensions of the Markovian models have already been considered in
the literature [3]. Furthermore, finding results under more general probabilistic
assumptions is of interest since, for some applications, the Markovian models
seem to be too restrictive.

Also in the rational stochastic models, Gaussian limit distributions are ob-
tained under a primitive hypothesis, i.e. when the matrix associated with the
rational formal series (counting the transitions between states) is primitive [2].
A complete study of the limit distributions is given in [4] in the bicomponent
models, that is when the previous matrix has two primitive components.

In this paper we present a general approach to the analysis of multicompo-
nent rational models, explicitly establishing the limit distribution in the most
significant cases. The paper is organized as follows. In Section 2 we give the
definition and the main properties of rational models. In Section 3 we show how
this model can be decomposed and we introduce the notions of main chain and
simple model. Under a special assumption on the main chain, in Section 4 we
determine the limit distributions of pattern statistics for simple models. They
are characterized by an interesting family of unimodal density functions defined
by polynomials over adjacent intervals. Finally in Section 5 we extend the results
to all simple models and also provide a natural method to determine the limit
distribution in the general case.

2 Rational Models for Pattern Statistics

In this section we recall some basic notions on rational formal series [16, 1] and
the corresponding stochastic models to study the number of symbol occurrences
in words chosen at random.

Let R+ be the semiring of all nonnegative real numbers and consider a finite
alphabet Σ. A formal series over Σ with coefficients in R+ is a function r :
Σ∗ −→ R+, usually represented in the form r =

∑
ω∈Σ∗(r,ω) · ω, where (r,ω)

denotes the value of r at ω ∈ Σ∗. Moreover, r is called rational if it admits a
linear representation, that is a triple (ξ, μ, η) where, for some integer m > 0, ξ
and η are (column) vectors in Rm

+ and μ : Σ∗ −→ Rm×m
+ is a monoid morphism,

such that (r,ω) = ξTμ(ω) η holds for each ω ∈ Σ∗. Observe that considering
such a triple (ξ, μ, η) is equivalent to defining a (weighted) nondeterministic
automaton, where the state set is given by {1, 2, . . . ,m} and the transitions, the
initial and the final states are assigned weights in R+ by μ, ξ and η, respectively.
To avoid redundancy it is convenient to assume that (ξ, μ, η) is trim (meaning
that all indices are used to define the series), i.e. for every index i there are two
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indices p, q and two words x, y ∈ Σ∗ such that ξpμ(x)pi �= 0 and μ(y)iqηq �= 0.
We say that (ξ, μ, η) is primitive if M =

∑
σ∈Σ μ(σ) is a primitive matrix, that

is for some n ∈ N all entries of Mn are strictly positive. We also recall that
a matrix M ∈ Rm×m

+ is called irreducible if for every pair of indices p, q there
exists n ∈ N such that Mn

pq > 0.
Any formal series can define a stochastic model for studying the frequency of

occurrences of a letter in a word of given length. Consider the binary alphabet
{a, b} and, for any n ∈ N, let {a, b}n denote the set of all words of length n
in {a, b}∗. Consider a formal series r : {a, b}∗ −→ R+ and let n be a positive
integer such that (r, x) �= 0 for some x ∈ {a, b}n. A probability measure over
{a, b}n can be defined by setting

Pr{ω} =
(r, ω)∑

x∈{a,b}n(r, x)
(ω ∈ {a, b}n). (1)

In particular, if r is the characteristic series χL of a language L ⊆ {a, b}∗, then
Pr is just the uniform probability function over L ∩ {a, b}n. Then, we define
the random variable (r.v. for short) Yn : {a, b}n → {0, 1, . . . , n} such that
Yn(ω) = |ω|a for every ω ∈ {a, b}n. For every j = 0, 1, . . . , n, we have

Pr{Yn = j} =

∑
|ω|=n,|ω|a=j(r, ω)∑

x∈{a,b}n(r, x)
.

If r = χL for some L ⊆ {a, b}∗, then Yn represents the number of occurrences
of a in a word chosen at random in L ∩ {a, b}n under uniform distribution.

When r is rational, the probability space given by (1) defines a stochastic
model we call rational stochastic model. It is a generalization of the Markovian
models in the sense that the r.v.’s Yn for rational r represent, in special cases, the
number of occurrences of patterns from an arbitrary regular language in words
generated at random by Markovian processes [2–Section 2.1].

Let (ξ, μ, η) be a linear representation for the rational series r and set A =
μ(a), B = μ(b), M = A+B. To study the behaviour of the random variables Yn

and in particular their limit distribution, it is useful to introduce the sequence
of functions {rn(z)}n in one complex variable z defined by

rn(z) =
∑

x∈{a,b}n

(r, x) · ez|x|a = ξT (Aez + B)nη.

Indeed, it is immediate to see that the characteristic function of Yn satisfies the
relation

ΨYn(t) = E(eitYn) =
rn(it)
rn(0)

(2)

for t ∈ R. We recall that a sequence of random variables Xn converges in dis-
tribution to a random variable X if and only if the sequence of characteristic
functions ΨXn

(t) pointwise converges to ΨX(t) [7].
Now consider the generating function of {rn(z)}n. Note that

∑∞
n=0 rn(z)wn

= ξT H(z, w)η, where H(z, w) is the matrix function defined by

H(z, w) =
∞∑

n=0

(Aez + B)nwn = (I − w(Aez + B))−1 . (3)
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If M is irreducible, by the Perron–Frobenius Theorem (see [17–Theorem 1.5])
it has a nonnegative real eigenvalue λ of maximum modulus. Moreover, if M is
primitive, then all other eigenvalues have modulus strictly lower than λ. If further
A �= 0 �= B, then there are two constants β ∈ (0, 1), γ > 0, both depending on
the matrix M and its eigenvectors (see [2] for details), such that, as n tends to
infinity, the following relations hold:

E(Yn) = βn + O(1) , Var(Yn) = γn + O(1) . (4)

For sake of brevity we say that β and γ are the mean constant and the variance
constant of the primitive matrix M, respectively. Under the same hypothesis,
one can also prove [2] that the distribution of Yn−βn√

γn converges to the normal
distribution of mean value 0 and variance 1.

3 Decomposition of a Rational Model

Up to now, the properties of Yn have been studied only in the primitive models
[2] and in the case of two primitive components [4]. Here we present a general
approach to deal with an arbitrary rational model. To this aim, we describe the
construction of the reduced graph of the strongly connected components of the
corresponding linear representation. This is a usual approach in the analysis of
counting problems on regular languages (see for instance [8] for an application
concerning trace languages).

Let (ξ, μ, η) be a linear representation over the alphabet {a, b} with coeffi-
cients in R+. As in the previous section, set A = μ(a), B = μ(b), M = A+B and
consider the directed graph defined by M, where the set of nodes is {1, 2, . . . ,m}
and (p, q) is an (oriented) edge if and only if Mpq �= 0. Then, let C1, C2, . . . , Cs

be the strongly connected components of the graph and define Ci initial (resp.
final) if ξp �= 0 (resp. ηp �= 0) for some p ∈ Ci. The reduced graph of (ξ, μ, η) is
then defined as the directed acyclic graph G where C1, C2, . . . , Cs are the ver-
tices and any pair (Ci, Cj) is an edge if and only if i �= j and Mpq �= 0 for some
p ∈ Ci and some q ∈ Cj .

Up to a permutation of indices, the matrix M can be represented as a trian-
gular block matrix of the form

M =

⎛
⎜⎜⎝

M1 M12 M13 · · · M1s

0 M2 M23 · · · M2s

· · ·
0 0 0 · · · Ms

⎞
⎟⎟⎠

where each Mi corresponds to the strongly connected component Ci and every
Mij corresponds to the transitions from vertices of Ci to vertices of Cj in the
original graph of M. Also A, B, ξ and η admit similar decompositions: we define
the matrices Ai, Aij , Bi, Bij and the vectors ξi, ηi in the corresponding way and
we say that the component Ci degenerates if Ai = 0 or Bi = 0. Since each Mi is
either irreducible or null, by the Perron–Frobenius Theorem it has a nonnegative
real eigenvalue λi of maximum modulus. We call main eigenvalue of M the value
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λ = max{λi | i = 1, 2, . . . , s} and we say that Ci is a dominant component if
λi = λ. Observe that λi = 0 only if Ci reduces to a loopless single node and
hence from now on we assume λ > 0. If further Mi is primitive, we say that Ci

is a primitive component.
The block decomposition of M also induces a decomposition of the matrix

H(z, w) defined in (3). More precisely, the blocks under the diagonal are all
null, while the upper triangular part is composed by a family of matrices, say
Hij(z, w), 1 ≤ i ≤ j ≤ s. Note that the bivariate generating function ξT H(z, w)η,
which is the main tool of our investigation, is now given by

ξT H(z, w)η =
∞∑

n=0

ξT (Aez + B)nη · wn =
∑

1≤i≤j≤s

ξT
i Hij(z, w)ηj . (5)

Setting Mij(z) = Aije
z +Bij and reasoning by induction on j− i, one can prove

that, for each 1 ≤ j ≤ s, the following equality holds

Hjj(z, w) = (I − w(Aje
z + Bj))−1 =

Adj(I − w(Aje
z + Bj))

det(I − w(Ajez + Bj))
, (6)

while for each 1 ≤ i ≤ j ≤ s we have

Hij(z, w) =
∑
∗

Hi1i1(z, w)Mi1i2(z)Hi2i2(z, w) · · · Mi�−1i�(z)Hi�i�(z, w) · w�−1, (7)

where the sum (∗) is extended over all sequences of integers (i1, i2, . . . , i�), � ≥ 2
such that i1 = i, it < it+1 for each t = 1, . . . , �− 1 and i� = j.

The previous equation suggests us to introduce the notion of chain of the
reduced graph G associated with (ξ, μ, η). A chain is a simple path in G, i.e.
any sequence of distinct components κ = (Ci1 , Ci2 , . . . , Ci�

), � ≥ 1, such that
Mijij+1 �= 0 for every j = 1, 2, . . . , � − 1. We say that � is the length of κ while
the order of κ is the number of its dominant components. Let Γ denote the
family of all chains in G starting with an initial component and ending with a
final component. We say that a chain κ is a main chain if κ ∈ Γ and its order
is maximal in Γ . We denote by Γm the set of all main chains in G.

In Section 3.1 we illustrate the role of main chains, which leads us to study
the simple but representative case when the model has just one main chain, say
κ. We first determine the limit distribution of Yn when all dominant components
of κ are primitive, non-degenerate and have distinct mean constants. A similar
approach can be developed when the above mean constants are partially or
totally coincident.

For this reason we introduce the notion of simple model. Formally, we say that
(ξ, μ, η) is a simple linear representation, or just a simple model, if Γm contains
only one chain κ and, for every dominant component Ci in κ, Mi primitive and
Ai �= 0 �= Bi. Note that, for such a matrix Mi, the mean constant βi and the
variance constants γi can be defined as in (4), 0 < βi < 1 and γi > 0.

In simple models the limit distribution of Yn first depends on the order k of
κ, i.e. the number of its dominant components. If k ≤ 2 the limit distribution is
known and derives from the analysis of the bicomponent models given in [4]:
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– If κ has only one dominant component Ci then the limit distribution of
Yn−βin√

γin
is a Gaussian distribution of mean value 0 and variance 1;

– If κ has two dominant components Ci, Cj then we have the following three
subcases:
1. If βi �= βj then Yn/n converges in law to a random variable uniformly

distributed in the interval [b1, b2], where b1 = min{βi, βj} and b2 =
max{βi, βj};

2. If βi = βj = β but γi �= γj then the limit distribution of Yn−βn√
n

is a
mixture of normal distributions of mean value 0 and variance uniformly
distributed in the interval [c1, c2], where c1 = min{γi, γj} and c2 =
max{γi, γj}. In other words, Yn−βn√

n
converges in law to a random variable

with density function

f(x) =
1

c2 − c1

∫ c2

c1

e−x2/(2v)

√
2πv

dv ;

3. If βi = βj = β and γi = γj = γ then the distribution of Yn−βn√
γn again

converges to a Gaussian distribution of mean value 0 and variance 1.

In Section 4 we determine the limit distribution for simple models having
main chain (of arbitrary order) with distinct mean constants of the dominant
components; this result generalizes point 1) above. In Section 5, we extend these
results to all simple models (with partially or totally coincident mean constants
of dominant components) and also to all models whose main chains are simple
(i.e. with primitive, non-degenerate dominant components).

We observe that the only cases not covered by our analysis concern the ra-
tional models where some dominant component of main chain is either non-
primitive or degenerate. In the first case periodicity phenomena occur while in
the second one a large variety of possible behaviours can be obtained even in
bicomponent models [4].

3.1 The Role of Main Chains

In this section we show how the main chains determine the limit distribution of
the sequence {Yn} associated with the linear representation (ξ, μ, η). Intuitively,
this is a consequence of two facts. First, by equation (2) the characteristic func-
tion of (a normalization of) Yn depends on the sequences {rn(z)} for z near 0,
and hence on the generating function ξT H(z, w)η. Second, by (5), this function
is a sum of products of the form given in (7), each of which is identified by a
chain.

Thus, let us examine such terms. First consider the case i = j and hence
the terms of the form ξT

j Hjj(z, w)ηj . Relation (6) implies that, as z tends to
0, the singularities of each of its entries approach the inverses of eigenvalues of
Mj . Then, we can distinguish three cases according whether Mj is dominant
and primitive, dominant but non-primitive, or non-dominant. In each of these
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cases, the Perron–Frobenius theory gives us the necessary information on the
eigenvalues of Mj , that allows us to analyse the singularities of ξT

j Hjj(z, w)ηj

in a neighbourhood of z = 0.
The results of this analysis can be applied to functions ξT

i Hij(z, w)ηj where
i �= j. Recalling (7), we consider an arbitrary chain κ = (Ci1 , Ci2 , . . . , Ci�

) with
� ≥ 2 and we define the sequence {rn(κ)(z)} by setting

∞∑

n=0

r
(κ)
n (z)wn = ξ

T
i1

Hi1i1 (z, w)Mi1i2 (z)Hi2i2 (z, w) · · · Mi�−1i�
(z)Hi�i�

(z, w)ηi�
· w

�−1
. (8)

Then one can prove that for z = c/n, c ∈ C, the terms corresponding to the
main chains have singularities of smallest modulus with the largest degree, and
hence they yield the main asymptotic contribution to the associated sequence
{rn(c/n)}. Formalizing the previous intuitive argument, one gets the following
result.

Theorem 1. If all dominant components of the main chains are primitive and
non-degenerate then, for every constant c ∈ C, we have

rn(c/n) =
∑

κ∈Γm

r(κ)
n (c/n) (1 + O(1/n)) = Θ(λnnk−1)

where k is the order of the main chains.1

We observe that Theorem 1 may not hold if the main chains admit non-
primitive dominant components.

4 Main Results

In this section we determine the limit distribution of Yn in the simple models
that satisfy the following additional property: the dominant components of the
main chain have (pairwise) distinct mean constants. This is related to a special
family of distribution functions we call polynomial.

Consider a tuple b = (b1, b2, . . . , bk) of k ≥ 2 real numbers such that 0 < b1 <
b2 < · · · < bk < 1 and let fb : R −→ R be the function defined by

fb(x) =

⎧
⎨
⎩

0 if x < b1

(k − 1)
∑k

j=r cj(bj − x)k−2 if br−1 ≤ x < br for some 1 < r ≤ k

0 if x ≥ bk

(9)

where cj =
∏

i �=j(bj − bi)−1 for every j = 1, 2, · · · , k. In the following we say
that a random variable X is a polynomial r.v. of parameters b if fb is its density
function. Note that if k = 2 then fb is the uniform density function over the
interval (b1, b2).

1 In this work, for any pair of sequences {fn}, {gn} ⊆ C, the expression fn = Θ(gn)
means that there exist two positive constants a, b such that a|gn| ≤ |fn| ≤ b|gn|
holds for every n large enough.
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Theorem 2. Let Yn be defined in a simple model of main chain κ having order
k and let β = (β1, . . . , βk) be the tuple of mean constants of dominant compo-
nents in κ in non-decreasing order. If k ≥ 2 and all βj’s are distinct then Yn/n
converges in law to a polynomial random variable of parameters β.

Sketch of the proof. First consider rn(it/n). Theorem 1 allows us to focus on
the contribution of rn(κ)(it/n) corresponding to the main chain κ. Then, by the
singularity analysis of its generating function (the right handside of equation
(8)), one can show that for every t ∈ R

rn

(
it

n

)
=

k−1∑
h=0

Sh

(
it

n

)
λn−hDh

(
it

n

)
· (1 + O(1/n)) as n → +∞,

where, for each h, the function Sh(z) is analytic at z = 0 and Dh is defined by

Dh(it/n) =
k∑

j=1

(1 + itβj/n)n−h+k−1
∏

��=j(itβj/n − itβ�/n)
if t 
= 0, Dh(0) =

(
n − h + k − 1

k − 1

)
.

Recalling that the characteristic function ΨYn/n(t) equals rn(it/n)/rn(0), one
can show that, as n tends to infinity, ΨYn/n(t) converges to

Φβ(t) =
(k − 1)!
(it)k−1

k∑
j=1

eiβjt

∏
��=j(βj − β�)

.

Finally, one can prove that fβ(x) is a density function such that Φβ(t) is its
characteristic function (for details see Proposition 7). �

The properties of the family of polynomial distributions, together with the
most relevant parts of the proof of Theorem 2, are all based on the convolutions
of sequences defined by powers of complex numbers. In the following section we
illustrate such properties and give some details of the proof sketched above.

4.1 Polynomial Distributions

Let us first consider the function Ga(w) = wk−1 ·
∏k

i=1(1 − aiw)−1 where the
tuple a = (a1, a2, . . . , ak) has k ≥ 2 nonnull complex components. Then Ga is
the generating function of the convolution of the sequences {an

1}n, {an
2}n, . . . ,

{an
k}n shifted of k−1 indices. More precisely, at the point w = 0 such a function

admits the power series expansion Ga(w) =
∑

n≥0 ga(n)wn such that

ga(n) =

⎧
⎨
⎩

0 if 0 ≤ n ≤ k − 2∑
∗

ai1
1 ai2

2 · · · aik
k if n ≥ k − 1 (10)

where the sum (*) is extended over all k-tuples (i1, . . . , ik) ∈ Nk such that
i1 + · · · + ik = n − k + 1. When all aj ’s are distinct, the following proposition
allows us to express the terms of the sequence {ga(n)}n≥0 in a useful form and
provides us an important relationship among the aj ’s.
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Proposition 3. Let a = (a1, a2, . . . , ak) be a tuple of k ≥ 2 distinct nonnull
complex numbers and let the sequence {ga(n)}n be defined by (10). Then, for
every n ∈ N, we have

ga(n) =
k∑

j=1

cj an
j

where cj =
∏

i �=j(aj − ai)−1 for every j = 1, 2, · · · , k. Moreover, the polynomial∑
j cj(aj − x)s is identically null for each 0 ≤ s ≤ k − 2 and in particular∑
j cja

s
j = 0. Finally we have

∑
j cja

k−1
j = 1 .

The application of the previous proposition yields the following results on fb.

Proposition 4. If k ≥ 3 then fb is continuously differentiable all over R up
to the order k − 3. Moreover the (k − 2)-th derivative of fb is well defined in
R\{b1, . . . , bk} and is constant in each of the intervals (bi, bi+1), i = 1, · · · , k−1.

Lemma 5. Let f : R → R be a function admitting j-th derivative all over R

for some j ≥ 1. Also assume that, for some reals a < b, f has m zeros in (a, b)
and f(x) = 0 for each x ≤ a or x ≥ b. Then, for every i = 1, . . . , j, the i-th
derivative of f admits at least m+ i zeros in (a, b).

Proof. We reason by induction on i = 1, . . . , j. If i = 1, then consider the m+ 1
intervals determined by the zeros of f in [a, b]. For each of them, say (x1, x2),
Rolle’s Theorem guarantees that f ′(x) = 0 for some x ∈ (x1, x2).

Now assume 1 < i < j and consider the i-th derivative of f , that is g = f (i).
By the properties of f , we have g(a) = g(b) = 0 and by the inductive hypotheses
g admits m+ i zeros in (a, b). Therefore, by applying the previous argument to
g, one proves that g′ = f (i+1) admits m+ i+ 1 zeros in (a, b). �

Proposition 6. For every k ≥ 3, the function fb is nonnegative and admits a
unique maximum all over R.

Proof. If k = 3 the property follows by a direct inspection of the function, which
is linear and nonnull in the intervals (b1, b2) and (b2, b3). If k ≥ 4, let us consider
the (k−3)-th derivative fb

(k−3)(x) of fb(x). It is immediate to see that fb
(k−3)(x)

is linear with respect to x in each of the k− 1 intervals (bi, bi+1), i = 1, . . . k− 1.
Moreover, by Proposition 3, it does not vanish in (b1, b2) ∪ (bk−1, bk). Thus,
fb

(k−3) has at most k − 3 many zeros in (b1, bk).
Now, assume by contradiction that fb is not unimodal. Then its derivative

f ′
b vanishes in at least 3 points in the interval (b1, bk) and hence f ′

b satisfies
the hypotheses of Lemma 5 with i = k − 4 and m = 3. As a consequence,
fb

(k−3) admits at least k − 1 zeros in (b1, bk), which contradicts the previous
property. �

Fig.1 and Fig.2 show the graphics of the functions fb having parameters
b = (0.1, 0.3, 0.4, 0.8) and b = (0.008, 0.95, 0.96, 0.97, 0.98, 0.99), respectively. In
each figure the first picture represents the entire curve, while the others show the
details of the function in some subintervals. The vertical bars indicate the values
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Fig. 1. Graphics of the function fb(x), where b1 = 0.1, b2 = 0.3, b3 = 0.4, b4 = 0.8.
The vertical bars indicate the values of bj ’s
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Fig. 2. Graphics of the function fb(x), where b1 = 0.008, b2 = 0.95, b3 = 0.96, b4 =
0.97, b5 = 0.98, b6 = 0.99. The vertical bars indicate the values of bj ’s

of bj ’s. Note that if k = 4 the maximum necessarily lays in the intermediate
interval (b2, b3). On the contrary, if k > 4 the maximum can lay in any interval
between b2 and bk−1. For instance in Fig. 2, due to the asymmetric position of
the points bj ’s, it lays in the second interval (b2, b3).

Proposition 7. For every b = (b1, b2, . . . , bk) ∈ Rk such that 0 < b1 < b2 <
· · · < bk < 1 and k ≥ 2, fb(x) is a density function and Φb(t) is its characteristic
function.

Proof. Using Proposition 3, one can show that limt→0 Φb(t) = 1 by a direct
computation. Therefore, it suffices to show that

∫ +∞
−∞ fb(x)eitxdx = Φb(t) for

every t ∈ R. We prove this equality by using Proposition 3 again. Set I(t) =∫ ∞
−∞ fb(x)eitxdx and cj =

∏
i �=j(bj − bi)−1 for every j = 1, . . . , k. Observe that

I(t) = (k − 1)
k∑

r=2

k∑
j=r

cj

∫ br

br−1

(bj − x)k−2eitxdx .

Integrating by parts one can verify that for t �= 0 the function eitx(c−x)p admits
the antiderivative

eitx

it

p∑
s=0

p! (c − x)p−s

(p − s)! (it)s
.

Hence we can write I(t) =
∑k

r=2
∑k

j=r cj(Ar,j −Ar−1,j) where

Ar,j = eitbr

k−2∑
s=0

(k − 1)! (bj − br)k−2−s

(k − 2 − s)! (it)s+1 and in particular Ar,r =
(k − 1)!
(it)k−1 eitbr .

Now set Br =
∑k

j=r cjAr,j and Cr =
∑k

j=r cjAr−1,j . For each 2 ≤ r ≤ k − 1 we
have Br − Cr+1 = crAr,r and moreover Bk = ckAk,k. Finally, by Proposition 3
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we have C2 =
∑k

j=1 cjA1,j − c1A1,1 = −c1A1,1. As a consequence we get the
result, since the integral can be computed as follows

I(t) =
k∑

r=2

(Br − Cr) =
k∑

j=1

cjAj,j =
(k − 1)!
(it)k−1

k∑
j=1

cje
itbj = Φb(t) . ��

5 Further Developments

The analysis presented in the previous section can be extended to all simple
models, also when the mean constants βj ’s (associated with the dominant com-
ponents of the main chain) are partially or totally coincident. The limit dis-
tributions of our statistics in this more general case are defined extending the
notion of polynomial density function given in (9) by allowing multiplicities in
the associated tuple b and proving an analogue of Proposition 3 for convolutions
with multiplicities.

To state these results precisely we only have to introduce the following char-
acteristic function. Let b = (b1, b2, . . . , br) be a tuple of r ≥ 2 distinct real
numbers lying in the interval (0, 1) and let m = (m1,m2, . . . ,mr) ∈ Nr be a
tuple of multiplicities, where mj ≥ 1 for each j and m1 + . . . + mr = k. Then
define the function

Φb,m(t) = (k − 1)!
r∑

j=1

mj∑
s=1

cj,s · eitbj

(it)k−s(s − 1!)

where cj,s = (−1)mj−s
∑

∑
� 
=j h�=mj−s

∏
��=j

(
m� + h� − 1

m� − 1

)
· 1
(bj − b�)m�+h�

.

One can prove that this is a characteristic function and the corresponding density
function can be obtained from (9) by a continuity argument. The main difference
is that the new density may be non-continuous at the points x = bj such that
mj > 1, j = 1, . . . , k.

Now, let Yn be defined in a simple model having main chain κ of order k. Let
β1, . . . , βk and γ1, . . . , γk be, respectively, the mean and variance constants of
the dominant components in κ. We also denote by β and γ the tuples of distinct
βj ’s and γj ’s in increasing order and by u and v the tuples of the corresponding
multiplicities. Clearly, if β1, . . . , βk are pairwise distinct then Theorem 2 applies.
Otherwise we have the following cases:

– If β1, . . . , βk are partially but not totally coincident (i.e. βi = βj and βs �= βt

for some indices i, j, s, t, i �= j), then Yn/n converges in distribution to a
random variable of characteristic function Φβ,u(t);

– If βj = β1 for all j = 2, . . . , k and all γj ’s are pairwise distinct, then Yn−β1n√
n

converges in distribution to a random variable of characteristic function
Φγ(−t2/(2i));
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– If βj = β1 for all j = 2, . . . , k and γ1, . . . , γk are partially but not totally
coincident, then Yn−β1n√

n
converges in distribution to a random variable of

characteristic function Φγ,v(−t2/(2i));
– If βj = β1 and γj = γ1 for all j = 2, . . . , k, then Yn−β1n√

γ1n converges in
distribution to a normal random variable of mean 0 and variance 1.

The previous results can be further extended by a standard conditioning
argument (already used in [4]) to all rational models (ξ, μ, η) whose main chains
are “simple”, i.e. for every κ ∈ Γm all dominant components in κ are primitive
and non-degenerate. In this case, by equation (8), for every κ ∈ Γm one can
easily see that

r(κ)
n (z) = sκ(z)λnnk−1 + O(λnnk−2)

where k is the degree of κ and sκ(z) is a nonnull analytic function at z = 0.
Then, by Theorem 1, we have

rn(0) = Rλnnk−1 + O(λnnk−2)

where R =
∑

κ∈Γm
sκ(0). We can also associate each κ ∈ Γm with the probability

value pκ, given by pκ = sκ(0)/R. Note that the values {pκ}κ∈Γm
define a discrete

probability measure and they can be explicitly computed from the triple (ξ, μ, η).
Moreover, each κ ∈ Γm defines a simple rational model in its own right, with

an associate sequence of random variables {Yn
(κ)} having its own limit distribu-

tion according to Theorem 2 and list items above. In particular, Yn
(κ)/n always

converges in distribution to a random variable of distribution function Fκ(x)
defined according to the previous results. Note that if all constants βj ’s are here
equal, then Fκ(x) reduces to the degenerate distribution of mass point β1. Now
it is not difficult to see that the overall statistics Yn/n converges in distribution
to a r.v. of distribution function F (x) defined by F (x) =

∑
κ∈Γm

Fκ(x)pκ.
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Abstract. A structure is said to be computable if its domain can be
represented by a set which is accepted by a Turing machine and if its
relations can then be checked using Turing machines. Restricting the
Turing machines in this definition to finite automata gives us a class
of structures with a particularly simple computational structure; these
structures are said to have automatic presentations. Given their nice
algorithmic properties, these have been of interest in a wide variety of
areas.

An area of particular interest has been the classification of automatic
structures. One of the prime examples under consideration has been the
class of groups. We give a complete characterization in the case of finitely
generated groups and show that such a group has an automatic presen-
tation if and only if it is virtually abelian.

1 Introduction

In this paper we will be concerned with “structures”; we first explain what this
means. A structure A = (A,R1, . . . Rn) consists of:

– a set A, called the domain (or universe) of A;
– for each i with 1 	 i 	 n, there exists ri 
 1 such that Ri is a subset of Ari ;
ri is called the arity of Ri.

For example, a group can be viewed as a structure (G, ◦, e, −1), where ◦
has arity 3, e has arity 1, and −1 has arity 2. A natural area of research is to
consider which structures are computable. Taking the Turing machine as our
computational paradigm, a computable structure is one for which there exist
Turing machines which ‘check’ the relations in the structure. More formally, a
structure A = (A,R1, . . . Rn) is said to be computable if:

– the domain A of A is recognized by a Turing machine;
– for each relation Ri in A, there is a decision-making Turing machine that,

on input (a1, . . . , ari), outputs true if (a1, . . . , ari) ∈ Ri and false otherwise.

When we say that A is recognized by a Turing machine, we mean that there
is a set of symbols I such that A is a recursively enumerable subset of I∗. In fact,
when we consider automatic presentations (see Section 2), we allow a mapping
from a subset of I∗ onto A; in this case we will also need an automaton to check

V. Diekert and B. Durand (Eds.): STACS 2005, LNCS 3404, pp. 693–704, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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when two words in I∗ represent the same element of A. In general, the way that
elements of A are represented in I∗ is clearly important.

Khoussainov and Nerode have introduced [12] a very interesting restriction
of that general idea, to automatic structures, i.e. those structures whose domain
and relations can be checked by finite automata as opposed to Turing machines.
A structure isomorphic to an automatic structure is said to have an automatic
presentation. Given their nice algorithmic properties and the diversity of natural
examples of such structures, these have been of interest in a variety of areas.

The general idea of using finite automata to read structures is not entirely
new; for example, in group theory, a group is said to be automatic if, when we
code elements of the group as strings of generators, there is a regular subset
L of the set of all strings of generators such that there are finite automata to
check multiplication of words in L by generators. This concept was introduced
in [6], motivated by work in hyperbolic manifolds as well as a general interest
in computing with groups. The considerable success of the theory of automatic
groups gives one motivation to have a general notion of automatic structures.
See also [17, 20].

However, there are other motivations for a general study of automatic struc-
tures, most importantly, perhaps, the decidability properties that come with
finite automata. In particular, the first-order theory of an automatic structure is
decidable. Another motivation for the study of automatic presentations is that
of extending some of the techniques of finite model theory to infinite structures
that have finite presentations; see [2, 3] for example.

One interesting result presented in [12] is that all finitely generated abelian
groups have automatic presentations. Some natural questions follow from this:

– How far can this be extended - are there other (finitely generated) groups
with automatic presentations?

– What are the necessary or sufficient conditions for a (finitely generated)
group to have an automatic presentation?

– How does the class of finitely generated groups with automatic presentations
compare with that of automatic groups?

These questions are the main incentive for the work presented here. Note
that, while an automatic group is finitely generated (this is essentially part of
the definition), a group with an automatic presentation need not be finitely
generated (such as the Prüfer group Qp/Z; see [13]). However, we will only be
concerned with finitely generated groups here and we give a complete answer to
these questions in that case (see Theorems 8 and 9 below). In particular, we show
that a finitely generated group has an automatic presentation if and only if it is
virtually abelian, and hence that a finitely generated group with an automatic
presentation is necessarily automatic (but the converse is false).

Classifying structures with automatic presentations is clearly of significant
interest and we see this characterization of finitely generated groups with such
presentations as part of this general programme. There are some other important
classifications such as that of the ordinals with automatic presentations in [5]
and the Boolean algebras with automatic presentations in [13].
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2 Automatic Presentations

Before we present the definition of an automatic presentation, we need to intro-
duce the idea of a “convolution” (see [12] for example).

If I is an alphabet, we define the convolution of (x1, x2, . . . , xn) ∈ (I∗)n,
where xi = x1

ix
2
i . . . x

pi

i (xj
i ∈ I), to be

conv(x1, . . . , xn) = (x̄1
1, x̄

1
2, . . . , x̄

1
n)(x̄2

1, x̄
2
2, . . . , x̄

2
n) . . . (x̄p

1, x̄
p
2, . . . , x̄

p
n),

where p = max{pi : 1 	 i 	 n} and, for some � /∈ I,

x̄j
i =

{
xj

i 1 	 j 	 pi

� pi < j 	 p
.

These elements conv(x1, . . . , xn) are words over the alphabet

In
� = ((I ∪ {�})× (I ∪ {�})× . . .× (I ∪ {�})) \ {(�,�, . . . ,�)}.

The symbol � is a padding symbol which is not in the original alphabet I.
We now have our definition of an automatic presentation:

Definition 1. A structure A = (A,R1, . . . Rn) has an automatic presentation
(over an alphabet I) if

1. there is a language L over I and a map c : L→ A such that c is surjective;
2. L is accepted by a finite automaton over I;
3. L= = {conv(x, y) : c(x) = c(y), x, y ∈ L} is accepted by a finite automaton

over I2
�;

4. for each relation Ri in A, the language

LRi
= {conv(x1, . . . , xri

) : (c(x1), . . . , c(xri
)) ∈ Ri}

is accepted by a finite automaton over Iri

� .

The tuple (I, L, c, L=, (LRi)1�i�n) is called an automatic presentation forA.
The presentation is called injective if c is injective and binary if |I| = 2. It is
clear that all structures with a finite domain have an automatic presentation (as
finite languages are regular); on the other hand, we see that the domain of such a
structure must be countable. These facts will be implicitly assumed throughout.

3 Properties

In this section we list some properties of structures with automatic presentations.
We start with two useful facts from [2] and [12]:

Proposition 1. Let A be a structure with an automatic presentation; then:
1. A has a binary automatic presentation.
2. A has an injective automatic presentation.
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Remark 1. The proof that, if we have an automatic presentation

(I, L, c, L=, (LRi
)1�i�n),

then we have an injective automatic presentation (J, K, c′, K=, (KRi)1�i�n),
uses the same alphabet and constructs a subset K of L; so we may put the two
parts of Proposition 1 together and say that every structure with an automatic
presentation has an injective binary automatic presentation. � 

A common (and useful) way of working with finite automata is to use pred-
icate calculus. This arises from the closure of regular languages under (finite)
union and intersection, complementation, and the definability of the existential
and universal quantifiers. As such, if R1 and R2 are relations recognised by fi-
nite automata, then R1 ∧ R2, R1 ∨ R2, ¬R1, ∃x(R1) and ∀x(R1) are also all
recognised by finite automata; see [6] for details. The proofs are all constructive,
which gives the following results from [12]:

Theorem 1. Let A be a structure with an automatic presentation; then:

1. if P is a first-order definable relation on A then P is decidable;
2. the first-order theory of A is decidable.

Remark 2. For future reference we note that the point about the proof of The-
orem 1 is that, if A = (A, R1, . . . , Rn) is a structure with an automatic
presentation, then any relation S built from the Ri using first-order constructs
is also recognizable by a finite automaton; as a result, we would also have an
automatic presentation for the structure B = (A, R1, . . . , Rn, S). � 

Theorem 1 has been extended further. Let ∃∞ be the quantifier “there exist
infinitely many” and let FO denote first-order logic; we then have [2, 3]:

Theorem 2. Let A be a structure with an automatic presentation; then the
FO(∃∞) theory of A is decidable.

For more information about decidability results (and model-theoretic results
in general) see [2].

We now come to “interpretations”. Let A and B be structures; then an
(n-dimensional) interpretation I of B in A consists of:

– a formula δI(x1, . . . , xn) in A; this is called the domain formula of I;
– for each unnested atomic formula φ(y1, . . . , ym) of B, a formula φI(x̄1, . . . , x̄m)

of A, where the x̄i are disjoint n-tuples of distinct variables; these are called
the defining formulae of I;

– a surjective map fI : δI(An) → B; this is called the coordinate map of I.

In addition we insist that, for all unnested atomic formulae of A and all
āi ∈ δI(An), we have:

B |= φ(fI(ā1), . . . , fI(ām)) ⇔ A |= φI(ā1, . . . , ām).
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If there is an interpretation of B in A where all the formulae are first-order
then we say that B is interpretable in A and that B is a subinterpretation of A.
If we fix a particular logic L, then we get L-interpretations. See [11] for more
details.

The following model-theoretic result [2, 3], as well as being useful in its own
right, has many interesting consequences:

Proposition 2. Let A be a structure and B be a structure with an automatic
presentation; if A is FO(∃ω)-interpretable in B, then A has an automatic pre-
sentation.

4 Results on Groups

Before presenting our results on groups with automatic presentations, it is worth
commenting on the form of the structure for groups.

We asserted above that groups could be considered as having structure (G, ◦,
e, −1). However, it is common to view groups just as having a single binary
operation, and so we would have a structure (G, ◦). Which is correct?

In a sense, the answer depends on how you are considering the structures.
As noted in [11], the main difference is that of substructures: the substruc-
tures of groups as structures (G, ◦) need only be subsemigroups, whereas, with
(G, ◦, e, −1), they must be subgroups. For our purposes, we need not be too
worried by this distinction. It is clear that, for the structure (G, ◦), the prop-
erties of having an identity and having inverses are both first-order definable;
so, if a group as a structure (G, ◦) has an automatic presentation, then (as in
Remark 2) this same presentation may be expanded to one for the structure
(G, ◦, e, −1). With this in mind, we need only concentrate on (G, ◦) in what
follows, and we now have:

Definition 2. A group (G, ◦) is said to have an automatic presentation (over
an alphabet I) if

1. there is a language L over I and a map c : L→ G such that c is surjective;
2. L is accepted by a finite automaton over I;
3. {conv(x, y) : c(x) = c(y)} is accepted by a finite automaton over I2

�;
4. {conv(x1, x2, x3) : c(x1) ◦ c(x2) = c(x3)} is accepted by a finite automaton

over I3
�.

The following result from [12] sums up much of what is already known con-
cerning finitely generated groups with automatic presentations:

Proposition 3. Finitely generated abelian groups have automatic presentations.

We now need another definition. Let χ be a group property (such as being
abelian); then a group G is said to be virtually (or almost) χ if G contains a
subgroup of finite index with the property χ. We then have:
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Theorem 3. Finitely generated virtually abelian groups have automatic presen-
tations.

Proof. Let G be a finitely generated group with an abelian subgroup A of finite
index; then G is FO-interpretable in A (see [1] for example). The result follows
from Propositions 2 and 3. � 

Remark 3. We make a note before continuing. Suppose that G is a finitely gen-
erated virtually abelian group, so that G has an abelian subgroup A of finite
index. Then A is finitely generated and hence is a direct product C1×C2× . . . Ck

of cyclic groups. If we consider the subgroup B of A generated by the infinite
groups Ci (i.e. ignore the Ci which are finite cyclic groups), then B has finite
index in A, and hence has finite index in G.

Now B is a free abelian group isomorphic to Zn = Z×Z× . . .×Z for some n;
so every finitely generated virtually abelian group has a free abelian subgroup
of finite index. Moreover, if H is a subgroup of finite index in a group G, then
there is a normal subgroup N of G contained in H with N also of finite index
in G; see Proposition 3.35 of [21] for example (or, for a proof couched in terms of
finite automata, Proposition 1.5 of [10]). As a subgroup of a free abelian group
is free abelian, we have that every finitely generated virtually abelian group has
a normal free abelian subgroup of finite index. � 

Remark 4. It is also possible to prove Theorem 3 from first principles by con-
structing appropriate automata. We give an outline of the proof here.

Let G be a finitely generated virtually abelian group. As in Remark 3, let
A = 〈x1, x2, . . . , xn〉 be a normal subgroup of G of finite index isomorphic to Zn

and then let T = {t1, t2, . . . , tk} be a set of coset representatives for A in G. The
coding of the elements of G is fairly straightforward: we have a symbol tj for the
coset representative, a symbol for an n-tuple of +’s and −’s, and then symbols
for n-tuples of 1’s and 0’s.

The point is that any element g of G can be expressed in the form tja
with a ∈ A, and then a can be written in the form xε1m1

1 xε2m2
2 . . . xεnmn

n with
εi ∈ {1,−1} and mi ∈ N (if mi = 0 we take εi = 1). We then represent g as
tj (ε1, ε2, . . . , εn) conv(m1,m2, . . . ,mn), where mi is the representation of mi in
reverse order binary notation. Since A is normal in G, each xitj is of the form
tjx

u1,i,j

1 x
u2,i,j

2 . . . x
un,i,j
n for some uh,i,j ∈ Z; so multiplication in G is given by

tix
a1
1 . . . xan

n .tjx
b1
1 . . . xbn

n = titjx
a′
1+b1

1 . . . x
a′

n+bn
n

where a′
i =

∑n
k=1 akui,k,j . Now let tk and c1, c2, . . . , cn be such that titj =

tkx
c1
1 . . . xcn

n ; then

titjx
a′
1+b1

1 . . . x
a′

n+bn
n = tkx

a′
1+b1+c1

1 . . . x
a′

n+bn+cn
n .

Given all this, we first create different transitions in our automaton for each
possible pair of ti’s, and then, from these different transitions, for each possible
combination of + and −s. Then, based on the binary addition of n-tuples and
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taking into account the u1,i,j and ci, we construct the rest of the automaton.
The states, roughly, represent the current value of the carry in the addition. As
the total amount carried at each stage is bounded by n − 1 we have a finite
automaton. � 

5 Growth

Currently there are not many techniques for showing that a structure does not
have an automatic presentation. One such method follows from Theorem 2: if
a structure has undecidable FO(∃ω) theory then it does not have an automatic
presentation; for further conditions see [13, 15, 19] for example.

Another important method involves “growth”. Let A be a structure with
domain A and an automatic presentation, and choose an injective automatic
presentation for A; then, for x ∈ A, let l(x) denote the length of the coding of x
in this presentation. We have the following result from [2]:

Theorem 4. Let f : An → A be a first-order definable function on A; then
there exists a constant N such that

∀a ∈ An, l(f(a)) 	 max{l(a0), . . . , l(an−1)}+N.

In particular, this result has the following consequence for groups:

Corollary 1. Let G be a group with an injective automatic presentation; then
there is a constant N such that, for all g0, g1, g2 ∈ G:

g0g1 = g2 ⇒ l(g2) 	 max{l(g0), l(g1)}+N.

There is a corresponding notion of growth in group theory. Let G be a group
with a finite generating set Δ, and assume that Δ is closed under taking inverses.
(To be precise, when we say “generating set”, we are assuming that the set
generates G as a semigroup, although this distinction will not be particularly
significant in this paper.) Now let δ(g) be the minimum n ∈ N such that g =
a1a2 . . . an (ai ∈ Δ). The growth function of G is then defined to be

γ(n) = |{g ∈ G : δ(g) 	 n}|.

The nature of this function (in the sense of its being bounded above by a
polynomial function, below by an exponential function, or neither of these), is
independent of which particular finite generating set we choose. As such, the
nature of the growth function (in this sense) is a property solely of the group (as
opposed to a property of the group together with a choice of finite generating set).
In the three cases we have mentioned, the group is said to have (respectively)
polynomial growth, exponential growth or intermediate growth; see [8] for a survey
on growth in groups. We now prove the following result:

Theorem 5. If a group G has an automatic presentation then G has polynomial
growth.

Before we do this, we first prove a useful proposition:
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Proposition 4. With notation as above, let R = max{l(a) : a ∈ Δ}; then there
is a constant N such that, for all m 
 1, we have

max{l(a1 . . . am) : ai ∈ Δ} 	 R+ �log2m�N.

Proof. Let N be the constant of Corollary 1. We proceed by induction on m.
We first consider the case m = 1. Here we clearly have

max{l(a1) : a1 ∈ Δ} = R = R+ �log2 1�N.

Now assume the result holds for 1 	 m 	 k. We split our proof into two
cases.

Case one: k is odd, say k = 2r − 1. Then, using Corollary 1, we have

max{l(a1 . . . ak+1) : ai ∈ Δ} = max{l(a1 . . . a2r) : ai ∈ Δ}
	 max{l(a1 . . . ar), l(ar+1 . . . a2r) : ai ∈ Δ}+N

	 max{R+ �log2 r�N, R+ �log2 r�N}+N

= R+ �log2(k + 1)�N

as required.

Case two: k is even, say k = 2r. This time we have

max{l(a1 . . . ak+1) : ai ∈ Δ} = max{l(a1 . . . a2r+1) : ai ∈ Δ}
	 max{l(a1 . . . ar), l(ar+1 . . . a2r+1) : ai ∈ Δ}+N

	 max{R+ �log2 r�N, R+ �log2(r + 1)�N}+N

= R+ �log2(r + 1)�N +N.

We split our consideration of this case into two subcases.

Subcase one: r is not of the form 2x with x 
 1.

If r ∈ N, r > 0 and r �= 2x, then �log2(r + 1)� = �log2 r�. This gives

R+ �log2(r + 1)�N +N = R+ �log2 r�N +N = R+ �log2 2r�N
= R+ �log2(2r + 1)�N = R+ �log2(k + 1)�N.

Subcase two: r = 2x (x 
 1).

Note first that �log2(k + 1)� = �log2(2r + 1)� = �log2(2x+1 + 1)� = x + 2.
Now

R+�log2(r+1)�N+N = R+�log2 2(r+1)�N = R+(x+2)N = R+�log2(k+1)�N

as required. � 

Given Proposition 4, we can now prove Theorem 5:



Automatic Presentations for Finitely Generated Groups 701

Proof. By Remark 1 we may assume that the presentation for G is injective and
binary. Then, as

max{l(a1 . . . am) : ai ∈ Δ} 	 R+ �log2m�N

by Proposition 4, the number of possible codes for words of the form a1 . . . am is

2R+�log2 m�N 	 2R(2log2 m+1)N = kmN

where k = 2R2N is a constant. So we have at most kmN possible elements g in
G with δ(g) = m; as a result, we have

γ(n) = |{g ∈ G : δ(g) 	 n}| 	 k.1N + k.2N + . . .+ k.nN 	 k.nN+1.

So G has polynomial growth as required. � 

6 Classification

We now quote two substantial known theorems which enable us to give a com-
plete classification as to which finitely generated groups have an automatic pre-
sentation (to some extent solving a problem of [14]). We first need some more
definitions from group theory; these are standard concepts (see [21] for example).

If G is a group and if H and K are subsets of G, then we let [H,K] denote
the set of all elements of G of the form h−1k−1hk with h ∈ H and k ∈ K. If H
and K are subgroups of G, then [H,K] is a subgroup of G and if, in addition, H
and K are normal in G, then [H,K] is a normal subgroup of G. We now define
the following chains of normal subgroups of G:

G(0) = G; G(1) = [G,G]; G(2) = [G(1), G(1)]; G(3) = [G(2), G(2)]; . . .
γ0(G) = G; γ1(G) = [γ0(G), G]; γ2(G) = [γ1(G), G]; γ3(G) = [γ2(G), G]; . . .

Note that G 
 G(1) 
 G(2) 
 . . . and that G 
 γ1(G) 
 γ2(G) 
 . . .. A group
G is said to be solvable if G(r) = {e} for some r ∈ N and nilpotent if γr(G) = {e}
for some r ∈ N; in the first case we call r the derived length of G and, in the
second case, r is called the nilpotency class of G. In addition, a nilpotent group
G is polycyclic (i.e. there is a chain of subgroups G 
 G1 
 G2 
 . . . 
 Gn = {e}
with each Gi+1 normal in Gi and each Gi/Gi+1 cyclic) and a polycyclic group
is solvable (though the reverse implications are false).

Given all this, we can now state Gromov’s classification [9] of groups with
polynomial growth:

Theorem 6. If a finitely generated group has polynomial growth then it is vir-
tually nilpotent.

Eršov showed [7] that a nilpotent group has decidable first-order theory if
and only if it is virtually abelian. This was generalized by Romanovskii [18] to
virtually polycylic groups and then by Noskov [16], who showed that a virtually
solvable group has decidable first-order theory if and only if it is virtually abelian.
We need the result for virtually nilpotent groups which is a special case of
Romanovskii’s theorem:
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Theorem 7. Let G be a finitely generated virtually nilpotent group with decid-
able first-order theory; then G is virtually abelian.

These two results enable us to prove:

Theorem 8 (Classification). Let G be a finitely generated group; then G has
an automatic presentation if and only if G is virtually abelian.

Proof. Assume that G has an automatic presentation. By Theorem 5, G has
polynomial growth, and so, by Theorem 6, G is virtually nilpotent. By Theo-
rem 1, G has decidable first-order theory, and so, by Theorem 7, G is virtually
abelian.

The converse follows from Theorem 3. � 

7 Automatic Groups

The theory of automatic groups (see [6] for example) was mentioned in the intro-
duction as being one of the motivations for studying structures with automatic
presentations. Naturally the connections between the two notions have been re-
marked upon elsewhere; see [3] for example. We make some further comments
on the relationship between these concepts here.

Given a group (G, ◦) with a finite set of generators X = {a1, . . . , an}, we
form a new structure G = (G, R1, . . . , Rn) where Ri(g, h) if and only if g◦ai = h;
this new structure is called the Cayley graph of G with respect to X. If G is an
automatic group then we have an encoding of the elements of G as words in X∗

such that there are automata recognizing multiplication by elements of X; we
see that this gives an automatic presentation for G.

This connection has been observed before; see [12], for example, and the
comments following Proposition 2.11 (which we have quoted as Proposition 3
above) there. The point is that the proof in [6] that a finitely generated abelian
group is automatic is constrained (by definition) to using encodings of elements
as words in the generators, but only needs to produce automata representing
multiplication by generators; on the other hand, the proof in [12] that such a
group has an automatic presentation permits a different encoding of the elements
but needs an automaton recognizing multiplication of any two elements in the
group.

We have a similar issue with automatic groups and automatic presentations
for Cayley graphs. As we mentioned above, if G is an automatic group, then we
have an automatic presentation for the Cayley graph G of G where the encodings
of the elements are again words in the generators of G; however, an automatic
presentation for G need not use such an encoding.

This distinction is significant. For example, let H be the Heisenberg group,
i.e. the group of matrices

⎧⎨
⎩

⎛
⎝

1 x z
0 1 y
0 0 1

⎞
⎠ : x, y, z ∈ Z

⎫⎬
⎭ .
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It is noted in [3] that the Cayley graph of H has an automatic presentation, but
that H is not an automatic group. As H is not virtually abelian, it also does not
have an automatic presentation (as a group) by Theorem 8.

We also note that the choice of generating set for the group is not significant
when considering whether Cayley graphs have automatic presentations:

Proposition 5. If G is a group with finite generating sets X and Y , then the
Cayley graph of G with respect to X has an automatic presentation if and only
if the Cayley graph of G with respect to Y has an automatic presentation.

Proof. If X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}, then we have a se-
quence of finite generating sets

X, X ∪ {y1}, X ∪ {y1, y2}, . . . , X ∪ Y, {x1, x2, . . . , xm−1} ∪ Y,
{x1, x2, . . . , xm−2} ∪ Y, . . . , {x1} ∪ Y, Y

for G. Note that we have only added or deleted one generator at a time.
It is easy to see that deleting a redundant generator does not affect the exis-

tence of an automatic presentation for a Cayley graph; we are simply omitting
one of the relations in our structure. On the other hand, if we have a generating
set A = {a1, . . . , ak} and we add a new generator b, then we may express b as
a word ai(1)ai(2) . . . ai(k) in A+, and the new relation S we have introduced is
the composition Ri(1)Ri(2) . . . Ri(k). Since each of the Ri are recognized by finite
automata, the new relation S is recognized by a finite automaton as well. � 

Restricting ourselves to finitely generated groups, let AutoPres represent
the class of groups with automatic presentations, Automatic represent the class
of automatic groups, and CayleyAutoPres represent the class of groups whose
Cayley graphs have automatic presentations. We have

Theorem 9. AutoPres � Automatic � CayleyAutoPres.

Proof. All virtually abelian groups are automatic, but there are plenty of groups
(such as free groups) that are automatic but do not have automatic presentations;
this gives the first (proper) inclusion. As mentioned above, the automata required
for automatic groups give automatic presentations for the Cayley graphs of these
groups; however, the Cayley graph of the Heisenberg group has an automatic
presentation, but the Heisenberg group is not automatic. This gives the second
(proper) inclusion. � 
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18. N. S. Romanovskĭı, On the elementary theory of an almost polycyclic group (Rus-
sian), Math. Sb. 111 (1980), 135–143; English translation Math. USSR Sb. 39
(1981).

19. S. Rubin, Finite automata and well ordered sets, in S. Yeates (ed.), Third New
Zealand Computer Science Research Students’ Conference, Hamilton, New Zealand
(University of Waikato, 1999), 86–93.

20. G. Sénizergues, Definability in weak monadic second-order logic of some infinite
graphs, in K. Compton, J.-E. Pin & W. Thomas (eds), Automata Theory: Infinite
Computations (Dagstuhl Seminar 9202, Wadern, Germany, 1992), 16.

21. G. C. Smith and O. M. Tabachnikova, Topics in Group Theory (Springer-Verlag,
2000).



Author Index

Agrawal, Manindra, 1
Ailon, Nir, 434
Andelman, Nir, 69
Arvind, V., 472
Azar, Yossi, 69

Bansal, Nikhil, 460
Baswana, Surender, 666
Benedikt, Michael, 327
Berenbrink, Petra, 231
Berwanger, Dietmar, 97
Bienkowski, Marcin, 365

Bodirsky, Manuel, 110
Bose, Prosenjit, 377
Bousquet-Mélou, Mireille, 18

Brázdil, Tomáš, 145
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Pérez, Xavier, 353
Peng, Sheng-Lung, 521

Poupet, Victor, 133
Pruhs, Kirk, 460
Przydatek, Bartosz, 305
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