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Preface

The present book is the outcome of a seminar organized by the editors, sponsored
by the Gesellschaft fiir Informatik e.V. (GI) and held in Dagstuhl, 13-16 April
2004.

GI-Dagstuhl-Seminars are organized on current topics in computer science
that are not yet well covered in textbooks. Most importantly, this gives young
researchers an opportunity to become actively involved in such topics, and to
produce a book that can provide an introduction for others as well.

The participants of this seminar were assigned subtopics on which they did
half a year of research prior to the meeting. After a week of presentations and
discussion at Schloss Dagstuhl, slightly more than another half-year was spent
on writing the chapters. These were cross-reviewed internally and blind-reviewed
by external experts. Since we anticipate that readers will come from various
disciplines, we would like to emphasize that it is customary in our field to order
authors alphabetically.

The intended audience consists of everyone interested in formal aspects of
network analysis, though a background in computer science on, roughly, the
undergraduate level is assumed. No prior knowledge about network analysis is
required. Ideally, this book will be used as an introduction to the field, a reference
and a basis for graduate-level courses in applied graph theory.

First and foremost, we would like to thank all participants of the seminar
and thus the authors of this book. We were blessed with a focused and deter-
mined group of people that worked professionally throughout. We are grateful
to the GI and Schloss Dagstuhl for granting us the opportunity to organize the
seminar, and we are happy to acknowledge that we were actually talked into
doing so by Dorothea Wagner who was then chairing the GI-Beirat der Uni-
versitdtsprofessor(inn)en. We received much appreciated chapter reviews from
Vladimir Batagelj, Stephen P. Borgatti, Carter Butts, Petros Drineas, Robert
Elséisser, Martin G. Everett, Ove Frank, Seokhee Hong, David Hunter, Sven
O. Krumke, Ulrich Meyer, Haiko Miiller, Philippa Pattison and Dieter Raut-
enbach. We thank Barny Martin for proof-reading several chapters and Daniel
Fleischer, Martin Hoefer and Christian Pich for preparing the index.

December 2004 Ulrik Brandes
Thomas Erlebach
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1 Introduction

Ulrik Brandes and Thomas Erlebach

Many readers will find the title of this book misleading — at least, at first sight.
This is because ‘network’ is a heavily overloaded term used to denote relational
data in so vast a number of applications that it is far from surprising that
‘network analysis’ means different things to different people.

To name but a few examples, ‘network analysis’ is carried out in areas such
as project planning, complex systems, electrical circuits, social networks, trans-
portation systems, communication networks, epidemiology, bioinformatics, hy-
pertext systems, text analysis, bibliometrics, organization theory, genealogical
research and event analysis.

Most of these application areas, however, rely on a formal basis that is fairly
coherent. While many approaches have been developed in isolation, quite a few
have been re-invented several times or proven useful in other contexts as well.
It therefore seems adequate to treat network analysis as a field of its own. From
a computer science point of view, it might well be subsumed under ‘applied
graph theory,” since structural and algorithmic aspects of abstract graphs are the
prevalent methodological determinants in many applications, no matter which
type of networks are being modeled.

There is an especially long tradition of network analysis in the social sci-
ences [228], but a dramatically increased visibility of the field is owed to recent
interest of physicists, who discovered the usefulness of methods developed in
statistical mechanics for the analysis of large-scale networks [15]. However, there
seem to be some fundamental differences in how to approach the topic. For
computer scientists and mathematicians a statement like, e.g., the following is
somewhat problematic.

“Also, we follow the hierarchy of values in Western science: an experi-
ment and empirical data are more valuable than an estimate; an esti-
mate is more valuable than an approximate calculation; an approximate
calculation is more valuable than a rigorous result.” [165, Preface]

Since the focus of this book is on structure theory and methods, the content is
organized by level of analysis rather than, e.g., domain of application or formal
concept used. If at all, applications are mentioned only for motivation or to
explain the origins of a particular method. The following three examples stand
in for the wide range of applications and at the same time serve to illustrate
what is meant by level of analysis.

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 1-6, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 U. Brandes and T. Erlebach

Element-Level Analysis (Google’s PageRank)

Standard Web search engines index large numbers of documents from the Web
in order to answer keyword queries by returning documents that appear relevant
to the query. Aside from scaling issues due to the incredible, yet still growing
size of the Web, the large number of hits (documents containing the required
combination of keywords) generated by typical queries poses a serious problem.
When results are returned, they are therefore ordered by their relevance with
respect to the query.

The success of a search engine is thus crucially dependent on its definition of
relevance. Contemporary search engines use a weighted combination of several
criteria. Besides straightforward components such as the number, position, and
markup of keyword occurrences, their distance and order in the text, or the
creation date of the document, a structural measure of relevance employed by
market leader Google turned out to be most successful.

Consider the graph consisting of a vertex for each indexed document, and a
directed edge from a vertex to another vertex, if the corresponding document
contains a hyperlink to the other one. This graph is called the Web graph and
represents the link structure of documents on the Web. Since a link corresponds
to a referral from one document to another, it embodies the idea that the second
document contains relevant information. It is thus reasonable to assume that a
document that is often referred to is a relevant document, and even more so,
if the referring documents are relevant themselves. Technically, this (structural)
relevance of a document is expressed by a positive real number, and the par-
ticular definition used by Google [101] is called the PageRank of the document.
Figure 1.1 shows the PageRank of documents in a network of some 5,000 Web
pages and 15,000 links. Section 3.9.3 contains are more detailed description of
PageRank and some close relatives.

Note that the PageRank of a document is completely determined by the
structure of (the indexed part of) the Web graph and independent of any query. It
is thus an example of a structural vertex index, i.e. an assignment of real numbers
to vertices of a graph that is not influenced by anything but the adjacency
relation.

Similar valuations of vertices and also of edges of a graph have been proposed
in many application domains, and “Which is the most important element?” or,
more specifically, “How important is this element?” is the fundamental question
in element-level analysis. It is typically addressed using concepts of structural
centrality, but while a plethora of definitions have been proposed, no general,
comprehensive, and accepted theory is available.

This is precisely what made the organization of the first part of the book most
difficult. Together with the authors, the editor’s original division into themes and
topics was revised substantially towards the end of the seminar from which this
book arose. A particular consequence is that subtopics prepared by different par-
ticipants may now be spread throughout the three chapters. This naturally led
to a larger number of authors for each chapter, though potentially with heavily
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Fig. 1.1. PageRank in a network of some 5,000 Web pages containing the keyword
‘java’ (documents with higher value are further to the right; from [93])

skewed workload. To counterbalance this effect, leading authors are identified in
such chapters.

Chapter 3 provides an overview of centrality measures for network elements.
The authors have organized the material from a conceptual point of view, which
is very different from how it is covered in the literature. Algorithms are rarely
discussed in the application-oriented literature, but of central interest in com-
puter science. The underdeveloped field of algorithmic approaches to centrality
is therefore reviewed in Chapter 4. Advanced issues related to centrality are
treated in Chapter 5. It is remarkable that some of the original contributions
contained in this chapter have been developed independently by established re-
searchers [85].

Group-Level Analysis (Political Ties)

Doreian and Albert [161] is an illustrative example of network analysis on the
level of groups. The network in question is made up of influential local politicians
and their strong political ties. This is by definition a difficult network to measure,
because personal variations in perception and political incentives may affect the
outcome of direct questioning. Therefore, not the politicians themselves, but staff
members of the local daily newspaper who regularly report on political affairs
were asked to provide the data shown in Figure 1.2.

Black nodes represent politicians who are members of the city council and
had to vote on the proposed construction of a new jail. The County Executive,
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er

Council Member

Fig. 1.2. Strong political ties between prominent politicians of a county; the two
apparent groups predict the voting pattern of City Council members (black nodes) on
a crucial issue (data from [161])

who was in favor of building the new jail, and the County Auditor were in
strong personal opposition, so that the latter publicly opposed the construction.
While the diagram indicates that the former Council President is structurally
most important (closeness to the center reflects a vertex index called closeness
centrality), it is the group structure which is of interest here.

The voting pattern on the jail issue is predicted precisely by the membership
to one of two apparent groups of strong internal bonds. Members of the group
containing the County Executive voted for the new jail, and those of the group
containing the County Auditor voted against. Note that the entire network is
very homogeneous with respect to gender, race, and political affiliation, so that
these variables are of no influence.

Note also that two council members in the upper right have ties to exactly
the same other actors. Similar patterns of relationships suggest that actors have
similar (structural) ‘roles’ in the network. In fact, the network could roughly
be reduced to two internally tied parties that are linked by the former Council
President.

Methods for defining and finding groups are treated extensively in the second
part of the book. Generally speaking, there are two major perspectives on what
constitutes a group in a network, namely strong or similar linkages.

In the first three chapters on group-level analysis, a group is identified by
strong linkages among its members. These may be based on relatively heavy
induced subgraphs (Chapters 6) or relatively high connectivity between each
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Fig. 1.3. Actors appearing jointly (proving that the co-starring distance of S. Laurel
and A. Schwarzenegger is no larger than 3)

pair of members (Chapter 7). Methods for splitting a network into groups based
on strong linkage are then reviewed in Chapter 8.

Chapters 9 and 10 focus on groups defined by the pattern of relations that
members have. While such groups need not be connected at all, strong internal
combined with weak external linkage can be seen as a special case.

Network-Level Analysis (Oracle of Bacon)

Empirical networks representing diverse relations such as linkages among Web
pages, gene regulation in primitive organisms, sexual contacts among Swedes, or
the power grid of the western United States appear to have, maybe surprisingly,
some statistical properties in common.

A very popular example of a network that evolves over time is the movie
actor collaboration graph feeding the Oracle of Bacon at Virginia.! From all
movies stored in the Internet Movie Database? it is determined which pairs of
actors co-appeared in which movie. The ‘Oracle’ can be queried to determine
(an upper bound on) the co-starring distance of an actor from Kevin Bacon, or
in a variant game between any two actors. Except for fun and anecdotal pur-
poses (exemplified in Figure 1.3), actual links between actors are not of primary
interest. The fascinating characteristics of this data are on the aggregate level. It
turns out, for instance, that Kevin Bacon is on average only three movies apart
from any of the more than half a million actors in the database, and that there
are more than a thousand actors who have the same property.

Many more properties of this data can be studied. A particularly pertinent
observation is, for instance, that in many empirical networks the distribution
of at least some statistic obeys a power-law. But the network could also be
compared to other empirical networks from related domains (like science collab-
oration) or fabricated networks for which a suitable model would be required.

! www.oracleofbacon. org
2 www.imdb.com



6 U. Brandes and T. Erlebach

The focus of network-level analysis in general is on properties of networks as a
whole. These may reflect, e.g., typical or atypical traits relative to an application
domain or similarities occuring in networks of entirely different origin.

Network statistics, reviewed in Chapter 11, are a first indicator of network
similarity, often employed in complex systems analysis. In Chapter 12, more
rigorous methods for detailed structure comparison of equally (or at least com-
paratively) sized networks are discussed. A different line of research is the at-
tempt to understand the governing principles of network formation. Chapter 13
is therefore devoted to models for networks with certain properties. A particu-
larly powerful approach to global network analysis is the utilization of spectral
properties of matrices defined describing the network. These are described in
detail in Chapter 14. The final chapter of this book is devoted to the important
question of how sensitive a network is to the loss of some of its elements.

Despite the wealth of material covered, the scope of this book is necessarily
limited. No matter which personal background, the reader will easily identify
gems from the repertoire of network analysis that have been consciously omitted
or woefully overlooked. We nevertheless hope that the book will serve as a useful
introduction and handy reference for everyone interested in the methods that
drive network analysis.



2 Fundamentals

Ulrik Brandes and Thomas Erlebach

In this chapter we discuss basic terminology and notation for graphs, some fun-
damental algorithms, and a few other mathematical preliminaries.

We denote the set of integers by Z, the set of real numbers by R, the set of
complex numbers by C, and the set of rationals by Q. For a set X of numbers,
X denotes the subset of positive numbers in X, and XJ’ the subset of non-
negative numbers. The set of positive integers is denoted by IN = ZT and the
set of non-negative integers by INg = ZJ .

We use R™ ™ to denote the set of all real-valued matrices with n rows and m
columns. If the entries of the matrix can be complex numbers, we write C"*"™.
The n-dimensional identity matrix is denoted by I,,. The n-dimensional vector
with all entries equal to 1 (equal to 0) is denoted by 1,, (by 0,,).

For two functions f : N — IN and g : N — IN, we say that f is in O(g)
if there are positive constants ng € IN and ¢ € R* such that f(n) < c¢-g(n)
holds for all n > ng. Furthermore, we say that f is in £2(g) if g is in O(f). This
notation is useful to estimate the asymptotic growth of functions. In particular,
running-times of algorithms are usually specified using this notation.

2.1 Graph Theory

We take the term network to refer to the informal concept describing an object
composed of elements and interactions or connections between these elements.
For example, the Internet is a network composed of nodes (routers, hosts) and
connections between these nodes (e.g. fiber cables). The natural means to model
networks mathematically is provided by the notion of graphs.

A graph G = (V,E) is an abstract object formed by a set V of wertices
(nodes) and a set E of edges (links) that join (connect) pairs of vertices. The
vertex set and edge set of a graph G are denoted by V(G) and E(G), respectively.
The cardinality of V' is usually denoted by n, the cardinality of E by m. The two
vertices joined by an edge are called its endvertices. If two vertices are joined by
an edge, they are adjacent and we call them neighbors. Graphs can be undirected
or directed. In undirected graphs, the order of the endvertices of an edge is
immaterial. An undirected edge joining vertices u,v € V is denoted by {u,v}. In
directed graphs, each directed edge (arc) has an origin (tail) and a destination
(head). An edge with origin u € V' and destination v € V is represented by an
ordered pair (u,v). As a shorthand notation, an edge {u, v} or (u,v) can also be

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 7-15, 2005.
© Springer-Verlag Berlin Heidelberg 2005



8 U. Brandes and T. Erlebach

denoted by uv. In a directed graph, wv is short for (u, v), while in an undirected
graph, uv and vu are the same and both stand for {u,v}. For a directed graph
G = (V, E), the underlying undirected graph is the undirected graph with vertex
set V' that has an undirected edge between two vertices u,v € V if (u,v) or
(v,u) is in E. Graphs that can have directed edges as well as undirected edges
are called mized graphs, but such graphs are encountered rarely and we will not
discuss them explicitly in the following.

Multigraphs. In both undirected and directed graphs, we may allow the edge
set F/ to contain the same edge several times, i.e., ' can be a multiset. If an
edge occurs several times in E, the copies of that edge are called parallel edges.
Graphs with parallel edges are also called multigraphs. A graph is called simple,
if each of its edges is contained in F only once, i.e., if the graph does not have
parallel edges. An edge joining a vertex to itself, i.e., an edge whose endvertices
are identical, is called a loop. A graph is called loop-free if it has no loops. We
will assume all graphs to be loop-free unless specified otherwise.

Weighted graphs. Often it is useful to associate numerical values (weights) with
the edges or vertices of a graph G = (V, E'). Here we discuss only edge weights.
Edge weights can be represented as a function w : E — R that assigns each
edge e € F a weight w(e). Depending on the context, edge weights can describe
various properties such as cost (e.g. travel time or distance), capacity, strength
of interaction, or similarity. One usually tries to indicate the characteristics of
the edge weights by the choice of the name for the function. In particular, a
function assigning (upper) capacities to edges is often denoted by wu, especially
in the context of network flow problems (see below). In general, we will mostly
use w to denote edge weights that express costs and other letters to denote edge
weights that express capacities or interaction strengths. For most purposes, an
unweighted graph G = (V, E) is equivalent to a weighted graph with unit edge
weights w(e) =1 for all e € E.

Degrees. The degree of a vertex v in an undirected graph G = (V, E), denoted
by d(v), is the number of edges in E that have v as an endvertex. If G is a
multigraph, parallel edges are counted according to their multiplicity in E. The
set of edges that have v as an endvertex is denoted by I'(v). The set of neighbors
of v is denoted by N (v). In a directed graph G = (V, E), the out-degree of v € V,
denoted by d*(v), is the number of edges in E that have origin v. The in-degree
of v € V, denoted by d~(v), is the number of edges with destination v. For
weighted graphs, all these notions are generalized by summing over edge weights
rather than taking their number. The set of edges with origin v is denoted by
't (v), the set of edges with destination v by I'"(v). The set of destinations
of edges in I'*(v) is denoted by N*(v), the set of origins of edges in I'~(v)
by N~ (v). If the graph under consideration is not clear from the context, these
notations can be augmented by specifying the graph as an index. For example,
d(v) denotes the degree of v in G. The maximum and minimum degree of
an undirected graph G = (V, E) are denoted by A(G) and §(G), respectively.
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The average degree is denoted by d(G) = \‘1/| > vev d(v). An undirected graph
G = (V, E) is called regular if all its vertices have the same degree, and r-regular
if that degree is equal to r.

Subgraphs. A graph G' = (V' E’) is a subgraph of the graph G = (V, E) if
V' CVand E' C E. It is a (vertex-)induced subgraph if E' contains all edges
e € F that join vertices in V’. The induced subgraph of G = (V, E') with vertex
set V! C V is denoted by G[V’]. The (edge-)induced subgraph with edge set
E' C E, denoted by G[E’], is the subgraph G’ = (V', E’) of G, where V' is the
set of all vertices in V' that are endvertices of at least one edge in F’, If C'is a
proper subset of V', then G — C' denotes the graph obtained from G by deleting
all vertices in C' and their incident edges. If F' is a subset of E, G — F' denotes
the graph obtained from G by deleting all edges in F.

Walks, paths and cycles. A walk from z to x in a graph G = (V, E) is an al-
ternating sequence xg, e1, 1, €2, T2, ..., Tk_1, €k, T Of vertices and edges, where
e; = {zi_1,2;} in the undirected case and e; = (z;-1,;) in the directed case.
The length of the walk is defined as the number of edges on the walk. The walk
is called a path, if e; # e; for i # j, and a path is a simple path if x; # x; for
i # j. A path with zo = z, is a cycle. A cycle is a simple cycle if x; # x; for
0<i<j<k-1.

2.2 Essential Problems and Algorithms

2.2.1 Connected Components

An undirected graph G = (V, E) is connected if every vertex can be reached from
every other vertex, i.e., if there is a path from every vertex to every other vertex.
A graph consisting of a single vertex is also taken to be connected. Graphs that
are not connected are called disconnected. For a given undirected graph G =
(V, E), a connected component of G is an induced subgraph G’ = (V' E’) that is
connected and maximal (i.e., there is no connected subgraph G” = (V| E") with
V" > V'). Checking whether a graph is connected and finding all its connected
components can be done in time O(n + m) using depth-first search (DFS) or
breadth-first search (BFS).

A directed graph G = (V, E) is strongly connected if there is a directed path
from every vertex to every other vertex. A strongly connected component of a
directed graph G is an induced subgraph that is strongly connected and maximal.
The strongly connected components of a directed graph can be computed in time
O(n+m) using a modified DFS [542]. A directed graph is called weakly connected
if its underlying undirected graph is connected.

2.2.2 Distances and Shortest Paths

For a path p in a graph G = (V, E) with edge weights w, the weight of the path,
denoted by w(p), is defined as the sum of the weights of the edges on p. A path
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from u to v in G is a shortest path (with respect to w) if its weight is the smallest
possible among all paths from u to v. The length of a shortest path from u to v,
also called the shortest-path distance between u and v, is denoted by dg . (u, v),
where the subscripts G and/or w are usually dropped if no confusion can arise.

The single-source shortest paths problem (SSSP) is defined as follows: Given
agraph G = (V, E) with edge weights w : E — R and a vertex s € V' (the source),
compute shortest paths from s to all other vertices in the graph. The problem is
only well-defined if the graph does not contain a cycle of negative weight. If the
edge weights are non-negative, SSSP can be solved in time O(m + nlogn) using
an efficient implementation of Dijkstra’s algorithm [133]. If the edge weights
are arbitrary, the Bellman-Ford algorithm uses time O(mn) to detect a cycle of
negative length or, if no such cycle exists, solve the problem. For the special case
of unit edge weights, BFS solves the problem in linear time O(n + m).

In the all-pairs shortest paths problem (APSP), one is given a graph G =
(V, E) with edge weights w : E — R and wants to compute the shortest-path
distances for all pairs of nodes. Provided that G does not contain a cycle of
negative length, this problem can be solved by the Floyd-Warshall algorithm in
time O(n?), or by n SSSP computations in time O(nm + n?logn).

These algorithms work for both directed and undirected graphs.

2.2.3 Network Flow

A flow network is given by a directed graph G = (V, E), a function v : £ — R
assigning non-negative capacities to the edges, and two distinct vertices s,t € V
designated as the source and the sink, respectively. A flow f from s to t, or an
s-t-flow for short, is a function f: F — R satisfying the following constraints:

— Capacity constraints: Ve € E: 0 < f(e) < u(e)
— Balance conditions: Vv € V\ {s,t}: 3" cr—(,) fle) = X ccr+(y) fl€)
The value of the flow f is defined as

Yo flo= > fle).
)

eel't(s) eel’' (s

The problem of computing a flow of maximum value is called the maz-flow
problem. The max-flow problem can be solved in time O(nmlog(n?/m)) using
the algorithm of Goldberg and Tarjan [252], for example.

For a given graph G = (V, E), a cut is a partition (5,5) of V into two non-
empty subsets S and S. A cut (S,5) is an s-t-cut, for s,t € V, if s € S and
t € S. The capacity of a cut (S, S) is defined as the sum of the capacities of the
edges with origin in S and destination in S. A minimum s-t-cut is an s-t-cut
whose capacity is minimum among all s-t-cuts. It is easy to see that the value of
an s-t-flow can never be larger than the capacity of a s-t-cut. A classical result
in the theory of network flows states that the maximum value and the minimum
capacity are in fact the same.



2 Fundamentals 11

Theorem 2.2.1 (Ford and Fulkerson [218]). The value of a mazimum s-t-
flow is equal to the capacity of a minimum s-t-cut.

Algorithms for the max-flow problem can also be used to compute a minimum
s-t-cut efficiently. A minimum cut in an undirected graph G = (V, E) with edge
capacities v : E — R is a cut that is an s-t-cut for some vertices s,t € V and
has minimum capacity.

In the min-cost flow problem, one is given a directed graph G = (V| E), a
non-negative capacity function u : £ — R, a cost function ¢ : £ — R, and a
function b : V' — R assigning each vertex a demand/supply value. Here, a flow
is a function f : E — R that satisfies the capacity constraints and, in addition,
the following version of the balance conditions:

Yo eV : Z fle) — Z f(e) =b(v)

eel't(v) ecl'— (v)

The cost of a flow f is defined as c(f) = > . f(e)c(e). The problem of com-
puting a flow of minimum cost can be solved in polynomial time.

2.2.4 Graph k-Connectivity

An undirected graph G = (V, E) is called k-vertez-connected if |V| > k and
G — X is connected for every X C V with | X| < k. Note that every (non-empty)
graph is O-vertex-connected, and the 1-vertex-connected graphs are precisely the
connected graphs on at least two vertices. Furthermore, a graph consisting of a
single vertex is connected and 0-vertex-connected, but not 1-vertex-connected.
The vertez-connectivity of G is the largest integer k such that G is k-vertex-
connected. Similarly, G is called k-edge-connected if |V| > 2 and G — Y is
connected for every Y C F with |Y| < k. The edge-connectivity of G is the
largest integer k such that G is k-edge-connected. The edge-connectivity of a
disconnected graph and of a graph consisting of a single vertex is 0.

The notions of vertex-connectivity and edge-connectivity can be adapted to
directed graphs by requiring in the definitions above that G — X and G — Y,
respectively, be strongly connected.

Consider an undirected graph G = (V,E). A subset C C V is called a
vertex-separator (or verter cutset) if the number of connected components of
G — C' is larger than that of G. If two vertices s and t are in the same connected
component of G, but in different connected components of G—C, then C is called
an s-t-vertex-separator. Edge-separators (edge cutsets) and s-t-edge-separators
are defined analogously. The notion of s-t-separators can be adapted to directed
graphs in the natural way: a set of vertices or edges is an s-t-separator if there
is no more path from s to ¢ after deleting the set from the graph.

Let G = (V, E) be an undirected or directed graph. Two (directed or undi-
rected) paths p; and ps from s € V to t € V are called vertez-disjoint if they do
not share any vertices except s and t. They are called edge-disjoint if they do
not share any edges. By Menger’s Theorem (see Chapter 7 for further details),
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a graph G with at least k + 1 vertices is k-vertex-connected if and only if there
are k vertex-disjoint paths between any pair of distinct vertices, and a graph G
with at least 2 vertices is k-edge-connected if and only if there are at least k
edge-disjoint paths between any pair of distinct vertices.

The number of vertex- or edge-disjoint paths between two given vertices in
a graph can be computed in polynomial time using network flow algorithms.
Therefore, the vertex- and edge-connectivity of a graph can be determined in
polynomial time as well. Special algorithms for these problems will be discussed
in Chapter 7.

2.2.5 Linear Programming

Let A be a real m x m matrix, b a real m-dimensional vector, and ¢ a real
n-dimensional vector. Furthermore, let x = (z1,...,z,) be a vector of n real
variables. The optimization problem

max CTJ?

st. Az <b
x>0

is called a linear program. It asks to find a real vector x that satisfies the con-
straints Az < b and z > 0 (where < is to be understood component-wise)
and maximizes the objective function ¢’z = 2?21 c;x;. Linear programs with
rational coefficients can be solved in time polynomial in the size of the input.

If the variables of a linear program are constrained to be integers, the program
is called an integer linear program. Computing optimal solutions to integer linear
programs is an A/P-hard problem (see the next section), and no polynomial-time
algorithm is known for this problem.

2.2.6 NP-Completeness

It is important to consider the running-time of an algorithm for a given problem.
Usually, one wants to give an upper bound on the running time of the algorithm
for inputs of a certain size. If the running-time of an algorithm is n®™ for inputs
of size n, we say that the algorithm runs in polynomial time. (For graph prob-
lems, the running-time is usually specified as a function of n and m, the number
of edges and vertices of the graph, respectively.) For many problems, however, no
polynomial-time algorithm has been discovered. Although one cannot rule out
the possible existence of polynomial-time algorithms for such problems, the the-
ory of N"P-completeness provides means to give evidence for the computational
intractability of a problem. A decision problem is in the complexity class NP
if there is a non-deterministic Turing machine that solves the problem in poly-
nomial time. Equivalently, for every yes-instance of the problem there is a proof
of polynomial size that can be verified in polynomial time. A decision problem
is N'P-hard if every decision problem in NP can be reduced to it by a poly-
nomial many-one reduction. Problems that are in NP and A'P-hard are called
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NP-complete. An example of an N'P-complete problem is SATISFIABILITY, i.e.,
checking whether a given Boolean formula in conjunctive normal form has a sat-
isfying truth assignment. A polynomial-time algorithm for an A/P-hard problem
would imply a polynomial-time algorithm for all problems in NP—something
that is considered very unlikely. Therefore, N"P-hardness of a problem is con-
sidered substantial evidence for the computational difficulty of the problem. For
optimization problems (where the goal is to compute a feasible solution that
maximizes or minimizes some objective function), we say that the problem is
NP-hard if the corresponding decision problem (checking whether a solution
with objective value better than a given value k exists) is A'P-hard. In order to
solve N'P-hard optimization problems, the only known approaches either settle
with approximate solutions or incur a potentially exponential running-time.

2.3 Algebraic Graph Theory

Two directed graphs Gy = (V1, E1) and Gy = (Va, E2) are isomorphic (written
as G ~ Gy) if there is a bijection ¢ : Vi — Va with

Yu,v € Vi (u,v) € By < (¢(u),p(v)) € Es.

Such a bijection is called an isomorphism. An isomorphism that maps a graph
onto itself is called an automorphism. Usually we consider two graphs to be
the same if they are isomorphic. Isomorphism and automorphism for undirected
graphs are defined analogously.

The incidence matriz (or node-arc incidence matriz) of a directed graph
G = (V,E) with V = {vy,...,v,} and E = {e1,..., e} is a matrix B with n
rows and m columns that has entries b; ; satisfying

—1, if v; is the origin of e;
bij = ¢ 1, if v; is the destination of e;
0, otherwise

The adjacency matriz of a simple directed graph G = (V, E) with V =
{v1,v2,...,v,} is an n x n matrix A(G) = (ai,j)1<i,j<n With

o 1, if (vi,vj)EE
Wij = 0, otherwise

If G is an undirected graph, its adjacency matrix is symmetric and has a; ; =1
if v; and v; are adjacent. For weighted graphs, the non-zero entries are w(v;, v;)
rather than 1.

The Laplacian of an undirected graph G = (V| E) is an n X n matrix defined
by L(G) = D(G) — A(G), where D(G) is the diagonal matrix that has its i-th
diagonal entry equal to dg(v;). Note that L(G) = BBT for any fixed orientation
of the edges of G. The normalized Laplacian of G is the n x n matrix defined by
L(G) = D(G)"Y2L(G)D(G)~*/?, where D(G)~'/? is the diagonal matrix where
the i-th diagonal entry is 0 if dg(v;) = 0 and 1/4/dg(v;) otherwise.
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Let A € C™*" be a matrix. A value A € C is called an eigenvalue of A if
there is a non-zero n-dimensional vector x such that Ax = Az. Such a vector
x is then called an eigenvector of A (with eigenvalue ). The (multi-)set of all
eigenvalues of a matrix is called its spectrum. It is equal to the set of the roots
of the characteristic polynomial of A, where the characteristic polynomial of A
is defined as the determinant of A — X\ - I,,.

If A is a real symmetric matrix, all eigenvalues are real. Therefore, the spec-
tra of the adjacency matrix, the Laplacian, and the normalized Laplacian of an
undirected graph G = (V, E') are multisets containing n real values. The spec-
trum of the adjacency matrix A(G) of a graph G is also called the spectrum
of G. The spectra of the Laplacian and the normalized Laplacian of G are called
the Laplacian spectrum and the normalized Laplacian spectrum of G.

2.4 Probability and Random Walks

A discrete probability space is a pair (§2,Pr), where {2 is a non-empty, finite or
countably infinite set and Pr is a mapping from the power set P(£2) of £2 to the
real numbers satisfying the following:

— Pr[A] >0, for all A C 02

- Pr[] =1

— Pr[Uen Ai] = X Pr[4;], for every sequence (4;);en of pairwise disjoint
sets from P(£2).

We call 2 a sample space. Subsets of (2 are called events. Note that we write
the probability of an event A as Pr[A] (and not as Pr(A)). The conditional
probability of event A given the occurrence of event B is written as Pr[A | B|
and is well-defined by Pr[A N B]/ Pr[B] whenever Pr[B] # 0.

A random variable X is a mapping from the sample space to the real numbers.
The image of X is denoted by Ix = X(£2). The expected value of a random
variable X is defined as E[X] = ) ., X(w)Pr[w]. Note that this definition
implies E[X] =" v ()2 Pr[X =a].

A Markov chain on state set S, where S can be finite or countably infinite,
is given by a sequence (X):ew, of random variables X; with Ix, C S and an
initial distribution g that maps S to Ry and satisfies > ¢ qo(s) = 1. It must
satisfy the Markov condition, i.e. for all t > 0 and all I C {0,1,...,¢t — 1} and
all i, 7, s, € S we must have:

PI'[Xt+1 :] | Xt :Z,Vk el: Xk = Sk] :PI'[Xt+1 :] | Xt = Z]

In words, the probability distribution of the successor state X1 depends only
on the current state Xy, not on the history of how the chain has arrived in the
current state. We interpret X; as the state of the Markov chain at time t. By ¢
we denote the probability distribution on the state set S at time ¢, i.e., ¢; is a
vector whose i-th entry, for ¢ € S, is defined by ¢ (i) = Pr[X; = i].

If Pr[X;41 = j | X¢ = ] is independent of ¢ for all states i, j € S, the Markov
chain is called homogeneous. We consider only homogeneous Markov chains with
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finite state set S in the following. For such Markov chains, the transition matrix
is defined as the |S| x |S| matrix T' = (¢, ;) with ¢, ; = Pr[Xpy1 = j | Xy = 1].
The transition matrix is a stochastic matriz, i.e., a non-negative matrix in which
the entries in each row sum up to 1. Note that the probability distribution ¢;11
on the state set S at time ¢ + 1, viewed as a row vector, can be computed from
the probability distribution ¢; at time ¢t by q41 = ¢ - T, for all ¢ > 0. This
implies that ¢; = qo - T holds for all ¢ > 0.

A Markov chain is called irreducible if for every pair (i, j) of states there exists
a k > 0 such that Pr[Xy, = j | Xo = i] > 0. In other words, a Markov chain
is irreducible if every state can be reached from any given state with positive
probability. The graph of a Markov chain is defined as the directed graph with
vertex set S and edges (i, 7) for all ¢, j with Pr[X,11 = j | X; = 4] > 0. A Markov
chain is irreducible if and only if its graph is strongly connected.

The period of a state s € S of an irreducible Markov chain is the greatest
common divisor of all £ > 0 such that Pr[Xy; = s | Xo = s] > 0. A Markov chain
is aperiodic if all its states have period 1.

For a given Markov chain with state set S and transition matrix 7', a non-
negative row vector m = (7s)ses is called a stationary distribution if ) g ms =1
and 7 - T = m. Every irreducible Markov chain with finite state set S has a
unique stationary distribution. If, in addition, the Markov chain is aperiodic,
the probability distribution on the states converges to the stationary distibution
independently of the initial distribution, i.e., lim; .o gz = 7.

The hitting time of state j starting at state i is the expected number of steps
the Markov chain makes if it starts in state ¢ at time O until it first arrives in
state j at some time ¢ > 1.

A random walk in a simple directed graph G = (V, E) is a Markov chain with
S =V and: )

&+ (u) if (u,v) € E

PriXo =v| Xy =u] = {0 otherwise

In every step, the random walk picks a random edge leaving the current vertex

and follows it to the destination of that edge. The random walk is well-defined

only if d*(v) > 1 for all v € V. In this case, the transition matrix of the random

walk is the stochastic |V| x |V| matrix T' = (¢; ;) with ¢; ; = 1/d* (i) if (i,j) € E

and t; ; = 0 otherwise. Note that the Markov chain given by a random walk in

a directed graph G is irreducible if and only if G is strongly connected.
Random walks in undirected graphs can be defined analogously.

2.5 Chapter Notes

There are many good textbooks for the topics discussed in this chapter. Graph
theory is treated in [145, 67]. An introduction to algorithms can be found in [133].
Network flows are treated in [6]. Linear programming is covered extensively
in [505]. The standard reference for the theory of N’P-completeness is [240]. A
textbook about algebraic graph theory is [247]. An introduction to probability
theory is provided by [498].



3 Centrality Indices

Dirk Koschiitzki,* Katharina Anna Lehmann,* Leon Peeters, Stefan Richter,
Dagmar Tenfelde-Podehl,* and Oliver Zlotowski*

Centrality indices are to quantify an intuitive feeling that in most networks some
vertices or edges are more central than others. Many vertex centrality indices
were introduced for the first time in the 1950s: e.g., the Bavelas index [50, 51],
degree centrality [483] or a first feedback centrality, introduced by Seeley [510].
These early centralities raised a rush of research in which manifold applications
were found. However, not every centrality index was suitable to every application,
so with time, dozens of new centrality indices were published. This chapter will
present some of the more influential, ‘classic’ centrality indices. We do not strive
for completeness, but hope to give a catalog of basic centrality indices with some
of their main applications.

In Section 3.1 we will begin with two simple examples to show how centrality
indices can help to analyze networks and the situation these networks represent.
In Section 3.2 we discuss the properties that are minimally required for a real-
valued function on the set of vertices or edges of a graph to be a centrality index
for vertices and edges, respectively.

In subsequent Sections 3.3-3.9, various families of vertex and edge centrali-
ties are presented. First, centrality indices based on distance and neighborhood
are discussed in Section 3.3. Additionally, this section presents in detail some
instances of facility location problems as a possible application for centrality
indices. Next we discuss the centrality indices based on shortest paths in Sec-
tion 3.4. These are naturally defined for both, vertices and edges. We decided to
present both, vertex and edge centrality indices, in one chapter together since
many families of centrality indices are naturally defined for both and many in-
dices can be easily transformed from a vertex centrality to an edge centrality, and
vice versa. Up to date there have been proposed many more centrality indices for
vertices than for edges. Therefore, we discuss general methods to derive an edge
centrality out of the definition of a vertex centrality in Section 3.5. The general
approach of vitality measures is also applicable to edges and vertices. We will
describe this family in Section 3.6. In Section 3.7, a family of centrality indices
is presented that is derived from a certain analogy between information flow
and current flow. In Section 3.8 centrality indices based on random processes
are presented. In Section 3.9 we present some of the more prominent feedback
centralities that evaluate the importance of a vertex by evaluating the centrality
of its surrounding vertices.

* Lead authors

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 16-61, 2005.
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For many centrality indices it is required that the network at hand be con-
nected. If this is not the case, computing these centralities might be a problem.
As an example, shortest paths based centralities encounter the problem that
certain vertices are not reachable from vertices in a different component of the
network. This yields infinite distances for closeness centrality, and zero shortest-
path counts for betweenness centrality. Section 3.10 of this chapter discusses how
to deal with these problems in disconnected graphs.

Before we close the chapter we want to discuss a topic that spans the bridge
between the analysis of networks on the level of elements and the level of the
whole graph. In Section 3.11, we propose a very general method with which
a structural index for vertices can be transformed into a structural index for
graphs. This is helpful, e.g., in the design of new centrality indices which will be
explained on a simple example. We close this chapter with some remarks on the
history of centrality indices in Section 3.12.

3.1 Introductory Examples

Election of a leader is a frequent event in many social groups and intuitively,
some persons in such an event are more important or ‘central’ than others, e.g.
the candidates. The question is now how centrality indices can help to derive a
measure of this intuitive observation. On this first example we want to illustrate
that different kind of networks can be abstracted from such a social interaction
and we want to show how network analysis with centrality indices may help to
identify important vertices of these networks. A second example illustrates how
the application of an edge centrality index may help to figure out important edges
in a network. Both illustrations underline that there is no centrality index that
fits all applications and that the same network may be meaningfully analyzed
with different centrality indices depending on the question to be answered.

Before we begin the discussion on the examples, it should be noted that the
term ‘centrality’ is by no means clearly defined. What is it that makes a vertex
central and another vertex peripheral? In the course of time there have been
different answers to this question. Each of them serves another intuition about
the notion of centrality. Centrality can be interpreted as - among other things
- ‘influence’, as ‘prestige’ or as ‘control’. For example, a vertex can be regarded
as central if it is heavily required for the transport of information within the
network or if it is connected to other important vertices. These few examples
from a set of dozens other possibilities show that the interpretation of ‘centrality’
is heavily dependent on the context.

We will demonstrate the application of three different interpretations on the
following example: A school class of 30 students has to elect a class representative
and every student is allowed to vote for one other student. We can derive different
graph abstractions from this situation that can later be analyzed with different
centrality indices. We will first look at a network that represents the voting
results directly. In this network vertices represent students and an edge from
student A to student B is established if A has voted for B. In such a situation
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a student could be said to be the more ‘central’ the more people have voted
for him or her. This kind of centrality is directly represented by the number of
edges pointing to the corresponding vertex. The so called ‘in-degree centrality’
is presented in Section 3.3.1.

Another view on the same situation results in another network: In this net-
work an edge between A and B represents that student A has convinced student
B to vote for his or her favorite candidate. We will call this network an ‘influence
network’. Let us assume that the class is mainly split into two big groups X and
Y. Let some person have social relationships to members from both groups. If
this person has a favorite candidate from group X and convinces a big part of
group Y to vote for this candidate, he or she is ‘central’ because he or she me-
diates the most information between both groups. With this argument we can
say that a vertex in the given influence network is the more central the more
it is needed to transport the opinion of others. A family of centrality indices
that tries to capture this intuition of ‘being between groups’ is the family of
betweenness centrality indices, presented in Sections 3.4.2, 3.6.1 and 3.8.2.

In yet another perspective we could view the general social network of the
class: Who is friends with whom? Someone who is a friend of an important
person could be regarded as more important than someone having friends with
low social prestige. The centrality of a vertex in this kind of network is therefore
given by the centrality of adjacent vertices. This kind of ‘feedback centrality’ is
captured by many centrality indices that are presented in Section 3.9.

In analogy to the centrality of vertices, some of the edges in a network can
be viewed as being more important than others. We will illustrate this on a
commonly used network, the Internet. Looking at the backbone of the Internet
it is clear that the cables between servers on different continents are few and
thus very important for the functionality of the system. This importance stems
from the enormous data flow through the intercontinental cables that had to
be redirected if one of these cables was out of service. There are mainly two
different approaches to measure the centrality of an edge in a network: The
first counts the number of substructures like traversal sets or the set of shortest
paths in the graph on which an edge participates. An example for this approach
is the betweenness centrality of edges, presented in Section 3.4.2. The second
approach is based on the idea of measuring how much a certain network param-
eter is changed if the edge is removed. An example for this approach is the flow
betweenness vitality, presented in Section 3.6.1.

We have shown for two examples that very different ideas of centrality can
lead to centrality indices that help to analyze the situation represented by the
given network. It is important to note that none of these measures is superior to
the others. Every one is appropriate for some but not all questions in network
analysis.
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3.2 A Loose Definition

Before presenting any centrality indices, we first have to give a definition for
centrality indices.! Historically there is no commonly accepted definition of what
a centrality index is, and almost everybody introduced his or her centrality
without giving a strict definition for centrality in general. Thus, here we will
just state the least common ground for all centralities presented in the following
sections. In Section 5.4 we will give some classes of centralities that follow much
stricter definitions.

The intuition about a centrality is that it denotes an order of importance on
the vertices or edges of a graph by assigning real values to them. As we have
pointed out in the introduction to this chapter, the notion of ‘importance’ is by
no means unambiguous. Nonetheless, as a minimal requirement we demand that
the result of a centrality index is only depending on the structure of the graph.
This demand is stated in the following definition of a structural index. Every
of the centrality indices presented here is a structural index but it is important
to note that not every structural index will be accepted as a centrality index.
Section 5.4 will also show that to date there is no stricter definition that captures
all of the introduced centrality indices.

Recall, that two graphs G; = (V1,E1) and Gy = (Va, Es) are isomorphic
(G1 ~ G9) if there exists a one-to-one mapping ¢: Vi3 — V5 such that (u,v) is
an edge in B if and only if (¢(u), ¢(v)) is an edge in Ey (cf. Section 2.3).

Definition 3.2.1 (Structural Index). Let G = (V, E) be a weighted, directed
or undirected multigraph and let X represent the set of vertices or edges of G,
respectively. A real-valued function s is called a structural indez if and only if
the following condition is satisfied: Vo € X: G ~ H = sq(x) = su(d(x)),
where sq(x) denotes the value of s(x) in G.

A centrality index c is required to be a structural index and thus induces
at least a semi-order on the set of vertices or edges, respectively. By this order
we can say that z € X is at least as central as y € X with respect to a given
centrality ¢ if ¢(x) > ¢(y). Note that, in general, the difference or ratio of two
centrality values cannot be interpreted as a quantification of how much more
central one element is than the other.

The definition of a structural index expresses the natural requirement that a
centrality measure must be invariant under isomorphisms. In particular, this con-
dition implies that a centrality measure is also invariant under automorphisms.

3.3 Distances and Neighborhoods

In this section we will present centrality indices that evaluate the ‘reachability’
of a vertex. Given any network these measures rank the vertices according to the

! Centrality index will be used synonymously with centrality measure and, shortly,
centrality.
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number of neighbors or to the cost it takes to reach all other vertices from it.
These centralities are directly based on the notion of distances within a graph,
or on the notion of neighborhood, as in the case of the degree centrality. We
start with this very basic index, the degree centrality. Other centralities, like
eccentricity or closeness, will be presented in the light of a special application,
the facility location problem.

3.3.1 Degree

The most simple centrality is the degree centrality cp(v) of a vertex v that is
simply defined as the degree d(v) of v if the considered graph is undirected.
In directed networks two variants of the degree centrality may be appropriate:
the in-degree centrality ¢;p(v) = d~(v) and the out-degree centrality c,p(v) =
dT (v). The degree centrality is, e.g., applicable whenever the graph represents
something like a voting result. These networks represent a static situation and
we are interested in the vertex that has the most direct votes or that can reach
most other vertices directly. The degree centrality is a local measure, because the
centrality value of a vertex is only determined by the number of its neighbors.
In the next section we investigate global centrality measures and consider their
applications in a special set of problems, namely Facility Location Problems.

3.3.2 Facility Location Problems

Facility location analysis deals with the problem of finding optimal locations for
one or more facilities in a given environment. Location problems are classical
optimization problems with many applications in industry and economy. The
spatial location of facilities often take place in the context of a given transporta-
tion, communication, or transmission system, which may be represented as a
network for analytic purposes.

A first paradigm for location based on the minimization of transportation
costs was introduced by Weber [575] in 1909. However, a significant progress
was not made before 1960 when facility location emerged as a research field.

There exist several ways to classify location problems. According to Hakami
[271] who considered two families of location problems we categorize them with
respect to their objective function. The first family consists of those problems
that use a minimax criterion. As an example, consider the problem of determin-
ing the location for an emergency facility such as a hospital. The main objective
of such an emergency facility location problem is to find a site that minimizes
the maximum response time between the facility and the site of a possible emer-
gency. The second family of location problems considered by Hakimi optimizes a
minisum criterion which is used in determining the location for a service facility
like a shopping mall. The aim here is to minimize the total travel time. A third
family of location problems described for example in [524, 527] deals with the lo-
cation of commercial facilities which operate in a competitive environment. The
goal of a competitive location problem is to estimate the market share captured
by each competing facility in order to optimize its location.
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Our focus here is not to treat all facility location problems. The interested
reader is referred to a bibliography devoted to facility location analysis [158].
The aim of this section is to introduce three important vertex centralities by
examining location problems. In the subsequent section we investigate some
structural properties of the sets of most central indices that are given by these
centrality indices.

The definition of different objectives leads to different centrality measures.
A common feature, however, is that each objective function depends on the dis-
tance between the vertices of a graph. In the following we assume that G = (V, E)
is a connected undirected graph with at least two vertices and we suppose that
the distance d(u,v) between two vertices u and v is defined as the length of
the shortest path from u to v (cf. in Section 2.2.2). These assumptions ensure
that the following centrality indices are well defined. Moreover, for reasons of
simplicity we consider G to be an unweighted graph, i.e., all edge weights are
equal to one. Of course, all indices presented here can equally well be applied to
weighted graphs.

Eccentricity. The aim of the first problem family is to determine a location that
minimizes the maximum distance to any other location in the network. Suppose
that a hospital is located at a vertex u € V. We denote the maximum distance
from u to a random vertex v in the network, representing a possible incident, as
the eccentricity e(u) of u, where e(u) = max{d(u,v): v € V}. The problem of
finding an optimal location can be solved by determining the minimum over all
e(u) with w € V. In graph theory, the set of vertices with minimal eccentricity
is denoted as the center of G (cf. Section 3.3.3). The concept is illustrated in
Figure 3.1. The eccentricity values are shown and the most central vertices are
highlighted.

Fig. 3.1. Eccentricity values of a graph. Vertices in the center are colored in grey
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Hage and Harary [278] proposed a centrality measure based on the eccentric-
ity
1 1
= = ) 3.1
cs(u) e(u) max{d(u,v): veV} (8-1)

This measure is consistent with our general notion of vertex centrality, since
e(u)~! grows if the maximal distance of u decreases. Thus, for all vertices u € V
of the center of G: cg(u) > cg(v) for all v € V.

Closeness. Next we consider the second type of location problems — the min-
isum location problem, often also called the median problem or service facility
location problem. Suppose we want to place a service facility, e.g., a shopping
mall, such that the total distance to all customers in the region is minimal. This
would make traveling to the mall as convenient as possible for most customers.

We denote the sum of the distances from a vertex u € V' to any other vertex
in a graph G = (V,E) as the total distance? > vev A(u,v). The problem of
finding an appropriate location can be solved by computing the set of vertices
with minimum total distance. In Figure 3.2 the total distances for all vertices
are shown and the vertices with minimal total distance are highlighted.

Fig. 3.2. Total distances of a graph. Lowest valued vertices are colored in grey. Note,
the vertices v and w are more important with respect to the eccentricity

In social network analysis a centrality index based on this concept is called
closeness. The focus lies here, for example, on measuring the closeness of a person
to all other people in the network. People with a small total distance are consid-
ered as more important as those with a high total distance. Various closeness-
based measures have been developed, see for example [500, 51, 52, 433, 558, 451,
88]. In Section 3.10 we outline a measures developed for digraphs. The most
commonly employed definition of closeness is the reciprocal of the total distance

2 In [273], Harary used the term status to describe a status of a person in an organi-
zation or a group. In the context of communication networks this sum is also called
transmission number.
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1

dus) (3.2)

co(u) =
C( ) ZvEV

In our sense this definition is a vertex centrality, since cc(u) grows with
decreasing total distance of u and it is clearly a structural index.

Before we discuss the competitive location problem, we want to mention the
radiality measure and integration measure proposed by Valente and Foreman
[658]. These measures can also be viewed as closeness-based indices. They were
developed for digraphs but an undirected version is applicable to undirected
connected graphs, too. This variant is defined as

2vev(Ac +1 = d(u,v))

o (3.3)

cr(u) =
where Ag and n denote the diameter of the graph and the number of vertices,
respectively. The index measures how well a vertex is integrated in a network.
The better a vertex is integrated the closer the vertex must be to other vertices.
The primary difference between cc and cp is that cg reverses the distances to
get a closeness-based measure and then averages these values for each vertex.

Centroid Values. The last centrality index presented here is used in competi-
tive settings: Suppose each vertex represents a customer in a graph. The service
location problem considered above assumes a single store in a region. In reality,
however, this is usually not the case. There is often at least one competitor of-
fering the same products or services. Competitive location problems deal with
the planning of commercial facilities which operate in such a competitive envi-
ronment. For reasons of simplicity, we assume that the competing facilities are
equally attractive and that customers prefer the facility closest to them. Consider
now the following situation: A salesman selects a location for his store knowing
that a competitor can observe the selection process and decide afterwards which
location to select for her shop. Which vertex should the salesman choose?

Given a connected undirected graph G of n vertices. For a pair of vertices u
and v, v, (v) denotes the number of vertices which are closer to u than to v, that is
Yu(v) = {w € Vi d(u, w) < d(v,w)}|. If the salesman selects a vertex u and his
competitor selects a vertex v, then he will have v, (v) + 3 (n — vu(v) — 7, (u)) =
s+ 5(vu(v) — 7u(u)) customers. Thus, letting f(u,v) = 7u(v) — 1 (u), the
competitor will choose a vertex v which minimizes f(u,v). The salesman knows
this strategy and calculates for each vertex u the worst case, that is

crp(u) = min{f(u,v): v eV —u}. (3.4)

cr(u) is called the centroid value and measures the advantage of the location
u compared to other locations, that is the minimal difference of the number of
customers which the salesman gains or loses if he selects u and a competitor
chooses an appropriate vertex v different from wu.

In Figure 3.3 an example is shown where the centroid vertex is highlighted.
Notice that for each vertex u € V in graph shown in Figure 3.4 cp(u) < —1.
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Fig. 3.3. A graph with one centroid vertex. Note that v is the vertex with maximal
closeness centrality

Fig. 3.4. All centroid values are negative. There is no profitable location for the
salesman

Here, the salesman loses his advantage to choose as first. The strategy “choose
after the leader has chosen” would be optimal.

Also the centroid measure is a structural index according to Definition 3.2.1.
But in contrast to eccentricity and closeness, centroid values can be negative as
well.

3.3.3 Structural Properties

In this section we will investigate several structural properties for the distance-
based vertex centralities introduced in Section 3.3.2. Using Definition 3.2.1 the
set of maximum centrality vertices S.(G) of G with respect to a given vertex
centrality ¢ is given by

S(G)={ueV:VveVc(u)>cw)} (3.5)

Center of a Graph. In Section 3.3.2 the eccentricity of a vertex u € G was
defined as e(u) = max{d(u,v): v € V}. Recall, that by taking the minimum over
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all e(u) we solve the emergency location problem. In graph theory, this minimum
is called the radius r(G) = min{e(u): v € V'}. Using the radius of G the center
C(Q) of a graph G is

C(G)={ueV:r(G)=ec(u)}. (3.6)

It is easy to show that S.,(G) = C(G). Clearly, every undirected connected
graph has a non-empty center. But where are the vertices of the center located?
A basic result concerning the center of a tree is due to Jordan [336]

Theorem 3.3.1. For any tree, the center of a tree consists of at most two ad-
jacent vertices.

Proof. The result is trivial if the tree consists of at most two vertices. We show
that any other tree T has the same center as the tree T” which is obtained from
T by removing all leaves. For each vertex u of T, only a leaf can be an eccentric
vertex. Aa vertex u is an eccentric vertex of a vertex v if d(u, v) = e(v). Since the
eccentricity of each u € T’ is one less than its eccentricity in T, T and T" have
the same center. If the process of removing leaves is continued, we successively
obtain trees having the same center as T'. Finally, we obtain a subtree of T' which
consists of either one vertex or a pair of adjacent vertices. a

The proof shows that it is possible to determine the center without computing
the vertex eccentricities. The following generalization of Theorem 3.3.1 due to
Harary and Norman [281] deals with the location of the center in a connected
separable graph, i.e., a graph which contains a cut-vertex. Recall, a cut-vertex
of a graph is a vertex whose removal increases the number of components, i.e., if
u is a cut-vertex of a connected graph G, then G — w is disconnected. We call a
graph 2-vertex-connected if G contains no cut-vertices (cf. Section 2.2.4). Note,
each vertex of a graph distinct from a cut-vertex lies in exactly one 2-vertex-
connected subgraph, and each cut-vertex lies in more than one.

Theorem 3.3.2. Let G be a connected undirected graph. There exists a 2-vertex-
connected subgraph in G containing all vertices of C(G).

Proof. Suppose there is no 2-vertex-connected subgraph in G containing all the
vertices of C(G). Then G has a cut-vertex u such that G —u decomposes into the
subgraphs G; and G4 each of them containing at least one vertex of C(G). Let v
be an eccentric vertex of u and P the corresponding shortest path between u and
v of length e(u). Then v must lie in G; or Ga, say Gs. Furthermore there exists
at least one vertex w in G; which does not belong to P. Now, let w € C(G) and
let P’ be a shortest path in G between w and w. Then e(w) > d(w, u)+d(u,v) >
1+ e(u). So w does not belong to the center of G, a contradiction. Thus, there
must be a 2-vertex-connected subgraph containing all vertices of center of G. 0O

Figure 3.1 in Section 3.3.2 shows a graph consisting of fourteen 2-vertex-
connected subgraphs consisting of two vertices and one 2-vertex-connected sub-
graph in the middle containing the two central vertices.
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Median of a Graph. The service facility problem presented in Sect. 3.3.2
was solved by determining the set of vertices with minimum total distance. If
the minimum total distance of G is denoted by s(G) = min{s(u): u € V}, the
median M(G) of G is given by

M(G) ={ueV:s(GQ) =s(u)} . (3.7)

Clearly S..(G) = M(G). Truszczynski [552] studied the location of the me-
dian in a connected undirected graph.

Theorem 3.3.3. The median of a connected undirected graph G lies within a
2-vertex-connected subgraph of G.

Similar to the center of a tree Theorem 3.3.3 implies the existence of at least
one 2-vertex-connected subgraph containing the median of a tree.

Corollary 3.3.4. The median of a tree consists of either a single vertex or a
pair of adjacent vertices.

The graph in Figure 3.2 contains a 2-vertex-connected subgraph of six vertices
containing the median. Moreover, the example illustrates that C(G) NM(G) =
is possible. Let (M(G)) and (C(G)) denote the subgraphs induced by M(G) and
C(G), respectively. The results due to Hendry [293] and Holbert [300] show that
the center and median can be arbitrarily far apart.

Theorem 3.3.5. Let Hy and Hs be two connected undirected graphs. For any
integer k > 0, there exists a connected undirected graph G, such that (M(G)) ~
H,y, (C(G)) ~ Hs, and the distance between M(G) and C(G) is at least k.

This result is not surprising, because the center and the median represent
solution sets of distinct objective functions.

Centroid of a Graph. The computation of the centroid of a graph is a maximin
optimization problem. In Sect. 3.3.2 we have shown the relation to a competitive
location problem. We defined the centroid value for a given vertex u by cp(u) =
min{ f(u,v): v € V—u}. In addition we call the objective function value f(G) =
max{cp(u): u € V} the centroid value of G and denote by

Z2(G) ={ueV: f(G) = cr(u)} (3.8)

the set of vertices representing the centroid of G. With it the set Z(G) consists
of all appropriate locations for the competitive location problem considered in
Section 3.3.2.

We now focus on the location of the centroid in a graph. First we assume the
graph is an undirected tree T' = (V, E). Let u be vertex of T'. A branch of u is
a maximal subtree containing u as a leaf. The number of branches at u is equal
to the degree of u. The branch weight of u is the maximum number of edges
among all branches of u. The vertex u is called a branch weight centroid vertex
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if 4 has minimum branch weight and the branch weight centroid of T consists
of all such vertices. Zenlinka [594] has shown that the branch weight centroid of
T is identical with its median. Slater [524] used this result to show

Theorem 3.3.6. For any tree the centroid and the median are identical.

Theorem 3.3.6 and Corollary 3.3.4 together imply that the centroid of a tree
consists of either a single vertex or a pair of adjacent vertices. Smart and Slater
[527] also studied the relative location of the centroid in a connected undirected
graph. The following Theorem is a generalization of Theorem 3.3.6.

Theorem 3.3.7. For any connected undirected graph, the median and the cen-
troid lie in the same 2-vertex-connected subgraph.

Reconsider the graph in Fig. 3.3. The median and the centroid lie within the
subgraph but Z(G) N M(G) = 0. Let (Z(G)) be the graph induced by Z(G).
Smart and Slater [527] have shown the following.

Theorem 3.3.8. Let Hy and Hs be to connected undirected graphs. For any
integer k > 4, there exists a connected undirected graph G, such that (Z(G)) ~
Hy, (M(G)) ~ Ha, and the distance between Z(G) and M(QG) is at least k.

Furthermore, Smart and Slater [527] proved that the center, the median, and
the centroid can be arbitrarily far apart in a connected undirected graph. In
Fig. 3.5 an example is given where all sets are pairwise distinct. The following
result summarizes Theorems 3.3.5 and 3.3.8.

C% @ T
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Fig. 3.5. C(GQ) = {v1,v2}, M(G) = {w1}, and Z(G) = {w1, w2} are pairwise distinct

Theorem 3.3.9. For three connected undirected graphs Hy, Ho, and Hs, and
any integer k > 4, there exists an undirected connected graph G such that
(C(G)) =~ Hy, (M(G)) ~ Hs, (Z(G)) ~ Hs, and the distances between any
two of them is at least k.
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Some of concepts presented here can be extended to digraphs. Chartrand
et al. [115] showed that the result of Theorem 3.3.5 also holds for digraphs.

3.4 Shortest Paths

This section presents centrality indices that are based on the set of shortest
paths in a graph. Shortest paths are defined on vertices as well as on edges and
such, some centrality indices were first introduced as vertex centralities and later
adapted as edge centralities. In the following, we will sometimes make a general
statement regarding vertices and edges equally. We will call a vertex v or an edge
e (graph) ’element’ and denote the centrality of an element in general by z. The
first two indices, stress and betweenness centrality of an element x, are based
on the (relative) number of shortest paths that contain x. The last centrality
index is only defined on edges and based on traversal sets. All three centrality
indices can be defined on weighted or unweighted and directed or undirected
and simple or multi graphs. For simplification we will discard any information
about the underlying graph in the notation for a given centrality. Thus, cx
might denote the centrality indices of a weighted, undirected graph or any other
combination of weights, direction and edge multiplicity. Note that the set of all
shortest paths has to be computed in a preprocessing step with the appropriate
algorithm, depending on the combination of these graph properties.

3.4.1 Stress Centrality

The first centrality index based on enumeration of shortest paths is stress cen-
trality cg(z), introduced in [519]. The author was concerned with the question
how much ‘work’ is done by each vertex in a communication network. It is clear
that communication or transport of goods will follow different kinds of paths in
a social network. Nonetheless, the author of [519] models the set of paths used
for communication as the set of shortest paths. The assumption is that counting
the number of shortest path that contain an element = gives an approximation
of the amount of ‘work’ or ‘stress’ the element has to sustain in the network.
With this, an element is the more central the more shortest paths run through
it. The formal definition is given by:

cs(v) = Z Z ost(v) (3.9)

s#EvEV t#veV

where 04 (v) denotes the number of shortest paths containing v. The definition
given in [519] is not rigorous, but in analogy to the betweenness centrality all
shortest paths that either start or end in v are not accounted for this centrality
index. The calculation of this centrality index is given by a variant of a simple
all-pairs shortest-paths algorithm that not only calculates one shortest path but
all shortest paths between any pair of vertices. More about the algorithm for
this centrality can be found in Section 4.2.1.
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Although this centrality was designed to measure stress on vertices, the same
definition can be applied for edges:

cs(e) =D oule) (3.10)

seV teV

where o4 (e) denotes the number of shortest paths containing edge e. In both
cases stress centrality measures the amount of communication that passes an
element in an all-to-all scenario. More precisely, it is not only an all-to-all scenario
but every vertex sends as many goods or information units to every other vertex
as there are shortest paths between them and stress centrality measures the
according stress.

We next want to show how the stress centrality value of a vertex v is related
to the stress centrality indices of the edges incident to v.

Lemma 3.4.1 (Relation between cg(v) and cs(e)). In a directed graph
G = (V, E), stress centrality on vertices and edges are related by

CS(U)Z; Z cs(e) — Z Osv — Z Ot (3.11)

eel(v) v#SEV v#£ELEV
forallveV.

Proof. Consider any shortest path connecting a pair s # t € V. It contributes a
value of 1 to the stress of each of its vertices and edges. Summing the contribution
of a path over all edges that are incident to a vertex v thus yields twice its
contribution to v itself if v € V'\ {s,t}, and 1 otherwise. The sum of contributions
of all shortest paths to edges incident to a common vertex v hence satisfies the
above relation, since v is ), Zscv Osv + > Ztev Out times an endvertex of any
shortest path. a

3.4.2 Shortest-Path Betweenness Centrality

Shortest-path betweenness centrality can be viewed as some kind of relative
stress centrality. Here, we will first define it and then discuss the motivation
behind this centrality index: Let ds:(v) denote the fraction of shortest paths
between s and t that contain vertex v:

Sulv) = 7tV (3.12)
Ost
where o4 denotes the number of all shortest-path between s and t. Ratios d4(v)
can be interpreted as the probability that vertex v is involved into any com-
munication between s and ¢. Note, that the index implicitly assumes that all
communication is conducted along shortest paths. Then the betweenness cen-
trality cp(v) of a vertex v is given by:
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ca)= > D dulv) (3.13)

s#EvEV t#veV

As for stress centrality, the shortest paths ending or starting in v are explicitly
excluded. The motivation for this is that the betweenness centrality of a vertex
measures the control over communication between others.

The betweenness centrality index was introduced in [32, 226] and has found
a wide field of applications. In [226] this new centrality index was introduced
because it is problematic to apply the closeness centrality to a disconnected
graph: the distance between two vertices in different components is usually set
to infinity. With this, the closeness centrality (see subsection 3.2) in discon-
nected graphs will give no information because each vertex is assigned the same
centrality value, namely 1/00. We will discuss some resorts to this problem in
Section 3.10.

The betweenness centrality does not suffer from this problem: Any pair of
vertices s and t without any shortest path from s to t just will add zero to the
betweenness centrality of every other vertex in the network.

Betweenness centrality is similar to stress centrality introduced in [519], but
instead of counting the absolute number of shortest paths, the shortest-path
betweenness centrality sums up the relative number of shortest paths for each
pair of endvertices. These are interpreted as the extent to which a vertex v con-
trols the communication between such pairs. Figure 3.6 gives an example why
this might be more interesting than the absolute number of shortest paths. It
shows two tripartite graphs in which the middle layer mediates all communica-
tion between the upper and the lower layer. The stress centrality of vertices in
the middle layer is the same in both graphs but the removal of the middle vertex
on the right would disconnect the whole system whereas in the right graph the
removal of a single vertex would not. This is because the former has full respon-
sibility for the communication in its graph whereas on the left side every vertex
just bears one third of it.

0

Fig. 3.6. cs(u:) = 16 and cp(u;) = §, i = 1,2,3 and cs(v) = 16 but cp(v) = 1. The

graph shows on an example that stress centrality is not designed to evaluate how much
communication control a vertex has

In [32] the shortest-path betweenness centrality — here called ‘rush’ —is viewed
as a flow centrality: “The rush in an element is the total flow through that
element, resulting from a flow between each pair of vertices”. In this sense,
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05t (v) is interpreted as the amount of flow that passes if one unit of flow is sent
from s to t along shortest paths, and with a special division rule. In [32] the
‘rush’ is also defined for edges with d4(e) as the flow over edge e:

5ut(e) = O (3.14)

Ost
For reasons of consistency we will denote the resulting centrality not as ‘rush on
edges’ but as the betweenness centrality cp(e) of edge e:

cp(e) = Z Zést(e) . (3.15)

seVteV

Variants of Shortest-Path Betweenness Centrality. In [111, 580] some
variants of the shortest-path betweenness centrality have been introduced. The
authors generalize the approach of betweenness centrality by changing the set of
paths P(s,t) on which the betweenness centrality is evaluated. Instead of just
using the set of all shortest paths between s and ¢ any other set can be used for
this variant. The general pattern is always the same: For each node pair s and
t compute the fraction of paths in P(s,t) that contain an element from the sum
of all paths between s and t. To get the betweenness centrality cg(P(s,t)) on
a specified path set p sum over the terms for all node pairs. In [580], a number
of possible path sets P(s,t) was defined, as e.g. the set of k-shortest paths, i.e.
the set of all paths not longer than k € IN or the set of k-shortest, node-disjoint
paths. The according betweenness centralities did not get any special name but
for reasons of consistency we will denote them as k-shortest paths and k-shortest
vertex-disjoint paths betweenness centrality.

The authors in [111] were motivated by the fact that the betweenness central-
ity is not very stable in dynamic graphs (see also our discussion of the stability
and sensitivity of centrality indices in Section 5.5). The removal or addition of
an edge might cause great perturbations in the betweenness centrality values.
To eliminate this, P(s,t) was defined to contain all paths between a node pair s
and t that are not longer than (1+¢€)d(s,t). The resulting betweenness centrality
for nodes and edges has been named e-betweenness centrality. The idea behind
this centrality index seems reasonable but analytical or empirical results on the
stability of this index were not given.

Other variants of the general betweenness centrality concept are fundamen-
tally different in their approach and calculation. We will discuss the flow between-
ness centrality in Section 3.6.1 and the random-walk betweenness centrality in
Section 3.8.2.

In the following theorem we state the relation between the edge and vertex
betweenness centrality cg(e) and cp(v) of vertices and edges incident to each
other:

Lemma 3.4.2 (Relation between cg(v) and cg(e)). In a directed graph
G = (V, E), shortest-path betweenness on vertices and edges are related by
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forallveV.

Proof. Consider any shortest path connecting a pair s # t € V. It contributes
exactly ait to the betweenness of its vertices and edges. Summing the contribu-
tion of a path over all incoming (or outgoing) edges of a vertex v thus equals its
contribution to v itself if v € V'\ {s,t}, and Uit otherwise. The sum of contribu-
tions of all shortest paths to edges incident to a common vertex v hence satisfies
the above relation, since v is (n — 1) times the first (last) vertex of paths to some

vertex t (from some vertex s). a

3.4.3 Reach

In 2004, Ron Gutman [266] published a new approach to shortest path com-
putation in hierarchical networks like road maps, for example. It is based on
employing Dijkstras algorithm or the A* algorithm alternatively on a select sub-
set of nodes. More specifically, only nodes having a high reach are considered.
The concept is defined as follows:

Definition 3.4.3. Given

— a directed graph G = (V, E) with a nonnegative distance function m : E — RT,
which is called reach metric

— a path P in G starting at node s and ending at node t

— a node v on P

the reach of v on P is defined as r(v,P) := min{m(s,v, P),m(v,t, P)}, the
minimum of the distance from s to v and the distance from v to t, following path
P according to the reach metric. The reach of v in G, r(v,G) is the mazimum
value of (v, Q) over all least-cost paths Q in G containing v.

When performing a Dijkstra-like shortest-path search towards a target t,
nodes are only enqueued if they pass test(v), where test(v) := r(v, G) > m(P) V
r(v,G) > d(v,t). That is v is only disregarded if its reach is too small for it to
lie on a least-cost path a distance m(P) — denoting the length of the computed
path from the origin s to v at the time v is to be inserted into the priority queue
— from s and at a straight-line distance d(v,t) from the destination. Note that
this requires a distance function that is consistent with reach metric, such that
on a path P from u to v, the path length m(P) = m(u,v, P) must be at least
d(u,v).

At first, this reach centrality does not seem to make sense in order to simplify
computation of shortest paths, since there is no obvious way of computing r(v, G)
for all nodes without solving an all pairs shortest path problem in the first place.
However, Gutman goes on to show that in the above algorithm, even an upper
bound for (v, G) suffices to preserve guaranteed shortest paths. Naturally, using
an upper bound increases the number of nodes that need to be enqueued. The
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author gives a sophisticated algorithm that yields practically useful bounds in a
more feasible time complexity. Unfortunately, both quality and complexity are
only empirically analyzed.

3.4.4 Traversal Sets
For G = (V, E) and an edge e € E we call

T. ={(a,b) € V x V| Ip. p is a shortest path from a to b and contains e}

the edge’s traversal set — the set of source-destination pairs where for every
pair some shortest path contains this edge. Now, the size of the traversal set
would be an obvious measure for the importance of the edge. As claimed by
Tangmunarunkit et al. [540], this simple method may not yield the desired result
in some cases, so they propose the following different counting scheme.?

The traversal set T, can be seen as a set of new edges, connecting those pairs
of vertices that have shortest paths along e in the original graph. These edges
(together with the vertices they connect) naturally constitute a graph, which is
bipartite as we will now see.

TSl z .-~
Se— o7

Fig. 3.7. The traversal set graph is bipartite

Let (a,b) be any edge in the traversal set graph T, of edge e = (y, z). This
means that there is a shortest path p connecting a and b via e (cf. Figure 3.7).

Without loss of generality, assume that p has the foorma —--- —y — 2z —--- —b.
Then, there cannot be an a — z path shorter than the a — y prefix of p, for else
the resulting path alonga — --- — z — - - - — b would be shorter than our shortest

path p. In the other direction, no y — b path may be shorter than our z — b suffix
of p. To summarize, a is closer to y, and b is closer to z. Let ) denote the set of
all vertices closer to y than to z and let Z denote the set of all vertices closer to
z. Thus, Y and Z form a partition of V. No two vertices belonging to the same
set can be connected by an edge in this graph since the shortest path connecting
them can never contain e. Thus, T, is naturally bipartite with regard to ) and
Z.

3 Both ways of counting yield values of different orders of magnitude for certain ex-
ample graphs. However, we have not been able to identify a case where one scheme
differentiates between two situations while the other does not. That is why we can
only rely on the experience of Tangmunarunkit et al (ibid.).
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An edge’s value is then defined as the size of a minimum vertex cover on the
bipartite graph formed by the traversal set:

Cis(e) =min{|H| | H is a vertex cover for T}

Unlike the non-bipartite case, this is computable in polynomial time (less than
O(n?)) using a theorem by Kénig and Egervary [366, 173], which states that
the minimum size of a vertex cover equals the size of a maximum matching on
bipartite graphs.

In [540] this centrality index has been used to characterize a graph with
regard to its hierarchical organization. The authors determine the edge value
pattern of sample paths in the original graph. If a high fraction of paths shows
an up-down pattern of edge values, i.e., a paths begins with edges having a small
value, the value raises along the path and then drops again to low values, the
authors assume that this shows a high level of hierarchical organization of the
underlying graph. An example on which this assumption is intuitively true is
the graph of streets in a country: Some of them are only within cities, others are
connecting smaller suburbs and some are high-speed freeways. Most paths from
one location to another will follow streets that have low values at the beginning,
then the driver will use a freeway and at last will use inner-city streets again at
the end. This example shows that hierarchically organized networks may show
an up-down pattern in the edge value distribution on many paths but the reverse
will be hard to prove. This empirical finding should thus be treated with care.

3.5 Derived Edge Centralities

Historically, centrality indices were developed to analyze social networks. From
this application, the emphasis lay on the analysis of the most central persons in
social networks. This lead to a great number of different centrality indices for
vertices. Most centrality indices for edges, e.g., the shortest path betweenness
centrality, were only developed as a variant of the centrality index for vertices.
Here, we want to discuss two methods with which every given centrality index
for vertices can be transformed into a centrality index for edges.

3.5.1 Edge Centralities Derived from Vertex Centralities

One intuitive idea to derive an edge centrality from a vertex centrality is to apply
the vertex centrality to the edge graph that is corresponding to the network to
be analyzed:

Definition 3.5.1. The edge graph of G = (V,E) is G' = (E, K) where K is
the set of all edges e = ((x,y), (y,2)) where (x,y),(y,z) € E. That is, two
edges have a connection if they are adjacent to the same vertex y (with the first
one in- and the second outbound for directed graphs).

There are biased and unbiased centralities for vertices. Note that methods
that incorporate previous knowledge usually do this by assuming that a subset
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of ‘root vertices’ is especially important. For details on personalization see Sec-
tion 5.2. Unlike the approaches described in there, an application on the edge
graph then needs a description of central edges.

The size of the edge graph may be quadratic in the size of the original graph.
For large graphs and computationally expensive methods this might well be a
hindrance.

There is another caveat. Some of the more advanced techniques for vertices
incorporate weighted edges, a feature that allows for more detailed models. How-
ever, in the edge graph these become weighted vertices, and there is no canonical
way to use this data.

Finally, there is a philosophical point to be made against this approach: The
vertex centralities described so far fall into the categories of degree, closeness
and betweenness centrality. On the edge graph, these concepts translate into
counting incident edges, closeness to other edges and position on paths between
pairs of edges. However, when modeling phenomena using networks, we tend to
have vertices representing entities, while edges describe relationships between
these. Most of the time, these relationships are meaningless without the entities
they connect. Therefore, none of the three mentioned categories seems to make
a lot of sense as a centrality measure for edges.

Fig. 3.8. Edge graph example

As an illustrative instance, look at the evaluation of the stress centrality on
the left example graph in Figure 3.8. For a vertex z it is defined as the number
of shortest paths that use x and do not end in x. The straightforward translation
for an edge, say a, would be the number of shortest paths that use a, adding
up to three in this example. In the middle, you find the corresponding edge
graph. In contrast to the above, no shortest path (except those that end in a)
crosses the vertex a. Obviously, the edge graph does not lead to the natural edge
generalization of stress centrality. However, this natural generalization may be
attained using a different graph translation. We will call this construction the
incidence graph, and there is an illustrative instance on the right hand side of
Figure 3.8: Each edge e is split by a new ‘edge vertex’ that receives the link’s
name.

Definition 3.5.2. The incidence graph of G = (V, E) is
G"=VUE{(vie) | Fw:e= (v,w) € E}U{(e,w) | Fv:e=(v,w) € E}.
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That is, a ‘real vertexr’ and an ‘edge vertexr’ become linked if they are incident in
the original graph.

We can now use a biased version of stress vertex betweenness (see Section 5.2
for details on how to personalize measures), which only takes into account ‘real
vertex’ pairs to measure the importance of ‘edge vertices’. This way, most vertex
measures may be translated into edge measures. As with the original centralities,
it remains to check if the measure we achieve does have a sensible semantics with
respect to the function of the network.

3.6 Vitality

Vitality measures are commonly used to determine the importance of vertices or
edges in a graph. Given an arbitrary real-valued function on G a vitality measure
quantifies the difference between the value on G with and without the vertex or
edge. The main motivation behind this idea is that most networks have some
quality that can be evaluated by a function on G: Imagine a transport network
with different capacities on the edges in which the goal is to transport as much as
possible of some good from some vertex s to another vertex ¢. The functionality
of a network for this goal can be described by the maximal possible flow in it
(see Section 2.2.3). The degree to which this quality is impaired by the loss of
an edge or vertex can be viewed as the extent to which this edge or vertex is
‘central’ for the network. A second example is a graph representing a mobile
communication network in which every vertex should be indirectly connected
to all others over as few switching points as possible. The quality of this graph
could be evaluated by its Wiener index, the sum over all distances in the graph
(see Section 3.6.2). Then, the vitality of a vertex or edge = denotes the loss of
this quality if  was removed from the network. More formally:

Definition 3.6.1 (Vitality Index). Let G be the set of all simple, undirected
and unweighted graphs G = (V,E) and f : G — R be any real-valued function
on G € G. A vitality index V(G, x) is then defined as the difference of the values
of f on G and on G without element x: V(G,z) = f(G) — f(G\{z}).

We will begin with a centrality index that is derived from the field of network
flow problems. After that, a new centrality index, the closeness vitality, is pre-
sented that might be useful for some applications. The next subsection presents
a new centrality index that is not a vitality index in the strict sense but the re-
lationship to vitality indices is strong. The last subsection presents a discussion
in how far the stress centrality presented in Section 3.4.1 can be interpreted as
a vitality index.

3.6.1 Flow Betweenness Vitality

In this subsection we present a vertex centrality based on network flows. More
precisely a measure for max-flow networks is presented which is similar to the
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shortest-path betweenness described in Section 3.4.2 and makes the measure pro-
posed in Freeman et al. [229] concrete.? As Stephenson and Zelen [533] observed,
there is no reason to believe that information in a communication network be-
tween a pair of vertices takes place only on the shortest path. Obviously, there are
applications where the centrality values computed by shortest path betweenness
leads to misleading results. Thus other paths have to be considered instead.

Taking up the example of communication networks, Freeman et al. assumed
information as flow and assigned with each edge a non-negative value repre-
senting the maximum of information that can be passed between its endpoints.
In extending the betweenness model to flow networks, a vertex u will be seen
as standing between other vertices. The goal is to measure the degree that the
maximum flow between those vertices depends on .

Based on this idea we provide a concise definition of a vertex centrality based
on maximum flows. We call this centrality the max-flow betweenness vitality.
Note that the maximum-flow problem between a source vertex s and a target
vertex t was introduced in Section 2.2.3. For reasons of simplicity we further
assume G = (V| E) as a connected undirected network with non-negative edge
capacities. By fs+ we denote the objective function value of a maximum s-t-flow.
The value fg; represents the maximal flow between s and ¢ in G with respect to
the capacity constraints and the balance conditions. As indicated above, we are
now interested in the answer of the questions: How much flow must go over a
vertex u in order to obtain the maximum flow value? And how does the objective
function value change if we remove u from the network?

According to the betweenness centrality for shortest paths we define the
max-flow betweenness for a vertex u € V' by

fst(w)
Cp(W) = Y Ji (3.17)
s,teV st
uts,utt
fst>0

where fq(u) is the amount of flow which must go through u. We determine
fst(u) by fst(w) = fst — fst where fq(u) is the maximal s-t-flow in G \ w. That
is, fst(u) is determined by removing u form G and computing the maximal
s-t-flow in the resulting network G \ u.

It is important to note, that this concept may also be applied to other net-
work flow problems, e.g., the minimum-cost maximum-flow problem (MCMF)
which may be viewed as a generalization of the max-flow problem. In a MCMF
network each edge has a non-negative cost value and a non-negative upper ca-
pacity bound. The objective is to find a maximum flow of minimum cost between
two designated vertices s and t. Applying the idea of measuring the vitality of
each vertex to MCMF networks yields a new meaningful vitality measure. For
further details relating to the MCMF problem see [6].

4 Note that the original definition in [229] is ambiguous, because it neglects that a
max-flow is not unique in general.
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3.6.2 Closeness Vitality

In analogy to the closeness centrality index presented in Section 3.3.2, we will
introduce a new centrality, based on the Wiener Index® [583]. The Wiener Index
I (G) of a graph G is defined as the sum over the distances of all vertex pairs:

Iw(G)=> > dv,w) (3.18)

veV weV

It is easy to see that the Wiener Index can also be written as the sum of the
closeness centrality values cc(v) (see Section 3.2) of all vertices v:

Iw(G)=>_ ! (3.19)

veV CC(U)

We will now define a new centrality called closeness vitality cov (x), defined
on both vertices and edges:

cov(z) = Iw(GQ) — Iw (G \ {z}) (3.20)

Clearly, this new centrality is a vitality, with f(G) = Iw(G). What does
this centrality index measure? Let the distance between two vertices represent
the costs to send a message from s to . Then the closeness vitality denotes
how much the transport costs in an all-to-all communication will increase if the
corresponding element x is removed from the graph. With a small modification
we can also calculate the average distance dy(G) between two vertices:

Iw (G)
n(n—1)

This variant computes how much the costs are increased on average if the
element x is removed from the graph.

There is one pitfall in the general idea of a closeness vitality: If x is a cut-
vertex or a bridge, respectively, the graph will be disconnected after the removal.
Then coy(z) is —oo for this element. We will discuss some ideas to deal with
the calculation of distance based centrality indices in Section 3.10.

dQ/(G) = (3.21)

3.6.3 Shortcut Values as a Vitality-Like Index

Although shortcut values are not a vitality index in the sense of Definition 3.6.1,
they are nevertheless based on the concept of vitality. Thus, we present shortcut
values here as a vitality-like index.

The shortcut value for edge e is defined by the maximum increase in distance
between any two vertices if e = (u, v) is removed from the graph. It is clear that
this maximum increase can only be found between vertices that use e for all of

5 Wiener itself named it ‘path number’ which is misleading. Subsequent articles quoted
it as ‘Wiener Index’ [592]
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their shortest paths. We claim that the increase in path length is maximized for
the pair (u, v). This can easily be seen as follows. Clearly, the increase in distance
for the pair (u,v) equals the difference between the length of ¢ and the length
of the shortest path p from u to v that does not use e. Further, other pair of
vertices will either use their old path with e replaced by p, or use an alternative
that is shorter than that.

Alternatively, the shortcut value can also be defined as the maximum relative
increase in distance when all edge lengths are non-negative. In this case, the
length of a shortest path using e is larger than the length of e, such that the
relative increase is also maximized for the pair (u,v).

The shortcut values for all edges can be computed naively by m = |E| many
calls to a single-source shortest-path routine. Section 4.2.2 introduces a more
efficient algorithm that is as efficient as computing |V| single-source-shortest
paths trees.

The notion of a shortcut value for an edge can be directly generalized to
vertices, as the maximum increase in distance if the vertex is deleted.

3.6.4 Stress Centrality as a Vitality-Like Index

Stress centrality can be viewed as a vitality-like measure: Stress centrality (Sec-
tion 3.4.1) counts the number of shortest paths containing a vertex or an edge
and can thus be interpreted as the number of shortest paths that are lost if the
vertex or edge is removed from the graph.

This sounds like a vitality measure but there is a crucial difference to the
definition of vitality: The number of lost shortest paths has to be measured rel-
atively to the number of shortest paths in the original graph. This is important,
because a simple example shows that the total number of shortest paths can
actually increase if a vertex or edge is removed from a graph (see Figure 3.9).

e

a) b)

Fig. 3.9. The figure shows that the removal of an edge can actually increase the number
of shortest paths in a graph

On the left side of Figure 3.9 (a) a small graph is shown with a total number
of 54 shortest paths, 8 of them containing edge e. After the removal of e we find
64 shortest paths in the resulting graph. Of course, 18 of them are now longer
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than before. When will the removal of an edge lead to an increase in the edge
number? In this example, edge e is a shortcut for some of the paths from or
to the two outermost vertices. As an example, we will take the path from the
left outermost vertex to the right outermost vertex. As soon as e is removed,
the distance between these nodes increases by one. Additionally, the number of
shortest paths between them increases by three because now there are four paths
with length 4 instead of only one with length 3 as before.

To interpret the stress centrality as a vitality measure we have to disregard
shortest paths that have an increased length after the removal of an element.
To formalize this idea we will give a definition of f(G \ {z}) that allows us to
interpret the stress centrality of a vertex or an edge as vitality.

Let f(G) be the number of all shortest paths in G and f(G\{v}) be defined
as following:

FG\{v}) =D oulda(s,t) = de oy (s, 1)] (3.22)

seV teV

The definition is given in Iverson-Notation, first described in [322], adapted by
Knuth in [365]. The term inside the parentheses can be any logical statement.
If the statement is true the term evaluates to 1, if it is false the term is 0. This
notation makes the summation much easier to read than the classical notation in
which logical statements are combined with the index of the sum. The definition
of f(G\ {v}) is thus defined as the sum over the number of all those shortest
paths that have the same length as the distance of s and ¢ in G.
Analogously, let f(G\{e}) be defined as following:

FG\{e}) =D oule)lda(s,t) = da (e (s, )] (3.23)

seV teV

Defined in this way, the stress centrality Cs(x) of an element z is exactly the
difference between f(G) and f(G\{z}). It is important to note that the defini-
tion of f(G \ {z}) does not match the formal definition for a vitality measure.
Nonetheless, the similarity of both is evident and thus we will denote the stress
centrality as a vitality-like centrality index.

3.7 Current Flow

Shortest paths centralities rely on the crucial assumption that the flow of infor-
mation, or the transport of goods in general, takes place along shortest paths.
This section describes the current flow centralities, which are appropriate when
the flow of information or transport does not adhere to this shortest paths as-
sumption, but rather follows the behavior of an electrical current flowing through
an electrical network.

3.7.1 Electrical Networks

Current flow centralities are based on the flow of electrical current in a net-
work. We briefly describe currents in electrical networks below, and refer to [67]
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for an extensive discussion. An electrical network is defined by an undirected,
connected, and simple graph G = (V, E), together with a conductance func-
tion ¢ : E — R. External electrical current enters and leaves this network,
which is specified by a supply function b : V' — R. Positive values of b rep-
resent entering current, negative values represent current that leaves the net-
work, and the amounts of entering and leaving currents are required to be equal:
> wev b(v) = 0. Since it is useful to talk about the direction of a current in the
undirected graph, each edge e € E is arbitrarily oriented to obtain an oriented
edge €, which results in an oriented edge set E.

A function z : E — R is called a (electrical) current in N = (G = (V, E), ¢)

if
Z x(v,w) — Z z(w,v) = b(v) for allv € V
(v,w)eﬁ (w,v)eﬁ
and
Z z(€)=0
ecC

for every cycle C' C FE, that is, for every cycle in the undirected graph G. The
former equation is known as Kirchoff’s current law, and the latter as Kirchoff’s
potential law. Negative values of x are to be interpreted as current flowing against
the direction of an oriented edge.

Alternatively to the current x, an electrical flow can also be represented by
potentials. A function p : V. — R is a (electrical) potential if p(v) — p(w) =
z(v,w)/c(v,w) for all (v,w) € E. As an electrical network N = (G,c) has a
unique current x for any supply b, it also has a potential p that is unique up to
an additive factor [67].

Define the Laplacian matrix L = L(N) of the electrical network N to be

Doesucle) fv=w
Ly = { —c(e) if e = {v,w}
0 otherwise

for v,w € V. Then, a potential p for an electrical network N = (G,¢) and a
supply b can be found by solving the linear system Lp = b.

Finally, for the purpose of stating centralities based on electrical currents,
define a unit s-t-supply bs; as a supply of one unit that enters the network at
s and leaves it at ¢, that is, bs(s) = 1,bs(t) = —1, and bg(v) = 0 for all
veV\{st}

3.7.2 Current-Flow Betweenness Centrality

Newman [443] first considered centrality measures based on electrical currents.
The current-flow betweenness of a vertex represents the fraction of unit s-t-
supplies that passes through that vertex, just as shortest paths betweenness
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counts the fraction of shortest s-t-paths through a vertex. For a fixed s-t pair,
the so-called throughput of a vertex v forms the current-flow equivalent of the
number of shortest paths o (v) through v. More precisely, the throughput of a
vertex v € V' with respect to a unit s-t-supply bs; is defined as

1
()=, <—|bst<v>| 3 |x<?>|> .
esv

Here, the term —|bg(v)| sets the throughput of a vertex with non-zero supply
equal to zero. For the current-flow betweenness, this ensures that a given unit
s-t-supply does not count for the throughput of its source and sink nodes s and
t. Further, the term é adjusts for the fact that the summation counts both the
current into and out of the vertex v.

Using the throughput definition, the current-flow betweenness centrality
cop 1V — R for an electrical network N = (G = (V, E), ¢) is defined as

1
CCB(U) = Z TSt(v)v
(n—1)(n-2) =t
forallv € V, where 1/(n—1)(n—2) is a normalizing constant. Thus, current-flow
betweenness measures the fraction of throughput through vertex v, taken over
all possible s-t pairs. Since an electrical network has a unique current for a given
supply, current-flow betweenness is well defined.

3.7.3 Current-Flow Closeness Centrality

As with betweenness, the concept of closeness can also be extended from shortest
paths to electrical current. For shortest paths, closeness is a measure of the
shortest path distance from a certain vertex to all other vertices. For electrical
current, Brandes and Fleischer [94] propose a closeness centrality that measures
the distance between two vertices v and w as the difference of their potentials
p(v) — p(w). Their current-flow closeness centrality ccc(v) : V' — R is defined
as
n—1

Dt Put (V) = (1)
for all v € V, where (n — 1) is again a normalizing factor. Here, the subscript vt
on the potentials means that the potential stems from a unit v-t-supply b:.

Interestingly, Brandes and Fleischer [94] prove that current-flow closeness
centrality is equal to information centrality. Stephenson and Zelen [533] intro-
duced information centrality to account for information that flows along all paths
in a network, rather than just along shortest paths. Information centrality also
takes into account that certain paths carry a larger amount of information than
others. Mathematically, information centrality ¢; : V' — R is defined by

2
cj(v)*1 = nM,, + trace(M) — o

Cccc (U)

where the matrix M is defined as (L+U)~!, with L being the Laplacian matrix,
and U being a matrix of the same size with all entries equal to one.
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3.8 Random Processes

Sometimes, it may not be possible for a vertex to compute shortest paths be-
cause of a lack of global knowledge. In such a case, shortest paths based cen-
tralities make no sense, and a random-walk model provides an alternative way
of traversing the network. In a random walk something walks from vertex to
vertex, following the edges of the network. Reaching some vertex v, it chooses
one of the edges of v randomly to follow it to the next vertex.

The ‘travel’ of a bank note is a typical example for such a random walk.
Somebody gets a brand new bill from her bank and gives it to someone else she
encounters later on. Normally, nobody has any intention to give the bank note to
someone special and the same bill may get to the same person more than once.
For a marketing study, it could be of interest to find out the person or company
who mediates most of these transactions. In the next section, we will have a
closer look at the so-called random walk betweenness centrality that calculates
the hot spots of mediation in such transactions.

3.8.1 Random Walks and Degree Centrality

In the case of undirected graphs, an observation can be made that relates the
random-walk centrality with its complex definition to the most basic of all cen-
tralities, degree.

In the following theorem we prove that the stationary probabilities in the
canonical random walk on a graph are proportional to the degree of the vertex.

d(i)

Theorem 3.8.1. p;; = 5{% = M= s L dw)

K3

Proof.

o rop — Ziev d(i)pij _ Ziev @ij d(4) —
(WP)j B ZEZV Zp” ZUEV d(v) ZUGV d(v) ZUEV d(’U) !

3.8.2 Random-Walk Betweenness Centrality

The random-walk betweenness centrality introduced in [443] is based on the
following idea. Suppose that vertex s has a message for vertex t but neither s
nor any other vertex knows how to send it to ¢ on a shortest path. Each vertex
that gets the message for vertex ¢t will just send it to any of its adjacent vertices
at random. We assume that the graph is unweighted, undirected and connected.

This so-called random walk is modeled by a discrete-time stochastic process.
At time 0, vertex s sends a message to one of its neighbors. If the message reaches
vertex t at any time it will not be forwarded any further and such be absorbed
by t. More formally, let m;; describe the probability that vertex j sends the
message to vertex ¢ in time k 4 1 if it had it at time k:
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i if j#t¢
=4 d() J 24
i { 0 else (8:24)

where a;; denotes the ij-th element of the adjacency matrix A (see Section 2.3)
and d(7) is the degree of vertex j. The resulting matrix is denoted by M. Let D
be the degree matrix of the graph:

d(i) ifi=3j

dij = { 0 else (3.25)

The inverse D~ of this matrix has the inverted vertex degrees on its diagonal,

and is zero elsewhere. Because of the special behavior of vertex ¢ the matrix

notation M = A- D! is not correct. Removing the t-th row and column of all
matrices yields a correct relation between the three matrices:

M; = A;-D; Y, (3.26)

where the index denotes the missing row and column, respectively.

Random-walk betweenness centrality considers all paths that a random walk
can use, as well as the probabilities that such paths are used. Thus, the question
arises how to compute the set of used paths, and how to compute the probability
of using a single one of these paths. To guide the reader on his way, we first discuss
how many different ¢ — j paths of length r exist in a given graph, where ¢ and
J are arbitrarily chosen vertices. It can easily be seen that the answer is (A7),
where A" denotes the rth power of A. However, we are not interested in the
number of random walks, but in the probability that a random walk of r steps,
that starts at s, ends in vertex j. This is given by the r-th power of M; at row
J, column s, denoted by (M]) js- With this, the probability that the message is
sent to vertex ¢ in step r + 1 is given by:

(M[“)js =m,;! (M{),, (3.27)

Now, we are interested in the probability that vertex j is sending a message
that is starting at s to vertex ¢, summing over all paths, beginning at length 0
to oo.

Note that all entries in any matrix M are values between 0 and 1, and thus
the sum over all paths is convergent (see Theorem 3.9.2):

o0

Y omit (M7) ;= mi [(Ta-1 = M) (3.28)
r=0

where I,,_1 is the identity matrix of dimension n — 1.
Let s be a vector with dimension n — 1 that is 1 at vertex s and 0 else.
Writing equation 3.28 in matrix notation we get:

vt =Dt (I - M) s (3.29)
=(Di—A) s (3.30)
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The vector v®* describes the probability to find the message at vertex i
while it is on its random walk from vertex s to vertex t. Of course, some of
the random walks will have redundant parts, going from vertex a to vertex b
and back again to vertex a. It does not seem reasonable to give a vertex a high
centrality if most of the random walks containing it follow this pattern. Since
the network is undirected every cycle will be accounted for in both directions,
thus extinguishing each other. It is important to note that v*¢ contains only the
net probability that disregards these cycles.

At this point, it becomes clear that random walks are closely related to
current flows in electrical networks, see Section 3.7. Indeed, consider an electrical
network N = (G, ¢) with unit edge weights c(e) = 1 for all e € E. The unit edge
weights yield a Laplacian matrix L(N) = D — A, where D is the degree matrix
and A the adjacency matrix of the graph G. So, a potential ps; in IV for a unit
s-t-supply bs; is a solution to the system Lps; = bg;. The matrix L is not of full
rank, but this problem can be circumvented by fixing one potential, say for vertex
v, since potentials are unique up to an additive factor. Removing the rows and
columns corresponding to the fixed vertex v yields the matrices L,,, D,, and A,,
where L, has full rank and is thus invertible. We conclude that a potential p; for
the unit s-t-supply b is given by ps = Ly 1bs = (D, — Ay) " Lbs. The latter is
equivalent to Equation (3.29) above, which shows the relation between electrical
currents and potentials and random walks. For a more in-depth discussion of
this relation, we refer to [67].

Thus, the random-walk betweenness centrality crywp : V — R that we are
looking for is equivalent to current-flow betweenness, that is, crwp(v) = cop(v)
for all v € V. Newman [443] and Brandes and Fleischer [94] describe this be-
tweenness equivalence in more detail.

3.8.3 Random-Walk Closeness Centrality

The same approach gives a kind of random-walk closeness centrality, where we
look for the mean first passage time (MFPT). A centrality based on MFPT is
introduced as Markov centrality in [580]. The mean first passage time mg; is
defined as the expected number of nodes a particle or message starting at vertex
s has encountered until it encounters vertex ¢ for the first time. It is given by
the following series:

oo
Mgt = ans(tn) (3.31)
n=1

where fq(? ) denotes the probability that t is arrived for the first time after
exactly n steps. Let M denote the MFPT matrix in which my; is given for all
pairs s,t. M can be computed by the following equation:

M = (I — EZq,) D (3.32)

where I denotes the identity matrix, E is a matrix containing all ones, and
S is a diagonal matrix with:
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! if i =j
o= ) (v
Sij = { 6 ) olse (3.33)

7 denotes the stationary distribution of the random walk in the given graph
(see Section 2.4), i.e., the expected relative time a particle will be on vertex v
during the random walk. (This model assumes that the transport of the message
or particle to another nodes takes virtually no time.) The matrix Z,, agrees with
the so called fundamental matrix Z on the diagonal but is 0 everywhere else.
Matrix Z itself is given by:

Z=(I-A-1,x")" (3.34)

where 1,, is a column vector of all ones. The Markov centrality cjs(v) is now
defined as the inverse of the average MFPT for all random walks starting in any
node s with target v (or vice versa):

cm(v) = " 3.35

M (v) Sy ey (3.35)

This centrality can be defined for both directed and undirected networks. In

directed networks the centrality is meaningfully defined for both, the average

MFPT for random walks ending in v or leaving v. The expected number of steps

from v to all other vertices or from all other vertices to v might be interpreted

as a distance from v to all other vertices if a particle or information uses a

random walk. Thus, the Markov centrality of a vertex is a kind of a (averaged)
random-walk closeness centrality.

3.9 Feedback

This section presents centralities in which a node is the more central the more
central its neighbors are. Some of these measures like Katzs status index belong
to the oldest centralities presented in this chapter, others have their roots in the
analysis of social networks. A third group belongs to the big class of analysis
methods for the Web graph that is defined as the set of pages in the WWW
connected by Web links.

Note, that in the following subsections centrality indices will be denoted as
vectors. All feedback centralities are calculated by solving linear systems, such
that the notation as a vector is much more convenient than using a function
expressing the same. We just want to state here that all centrality indices pre-
sented here are fulfilling the definition of a structural index in Definition 3.2.1 if
cx (1) is defined as (cx);.

3.9.1 Counting All Paths — The Status Index of Katz

One of the first ideas with respect to feedback centralities was presented by Leo
Katz [352] in 1953. It is based on the following observation: To determine the
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importance or status of an individual in a social network where directed edges
(7,7) can, for example, be interpreted as “i votes for j”, it is not enough to
count direct votes. If, e.g., only two individuals k£ and [ vote for ¢ but all other
persons in the network vote either for k or for [, then it may be that ¢ is the
most important person in the network — even if she got only two direct votes.
All other individuals voted for her indirectly.

The idea of Katz is therefore to count additionally all indirect votes where
the number of intermediate individuals may be arbitrarily large.

To take the number of intermediate individuals into account, a damping
factor a > 0 is introduced: the longer the path between two vertices i and j is,
the smaller should its impact on the status of j be.

The associated mathematical model is hence an unweighted (i.e. all weights
are 1) directed simple graph G = (V, E) without loops and associated adjacency
matrix A. Using the fact that (4%);; holds the number of paths from j to i with
length & we hence have as status of vertex i

cr(i) =Y aF(4k);

k=1j=1

if the infinite sum converges.
In matrix notation we have

cx =Y af (A7), (3.36)
k=1

(Note that 1,, is the n-dimensional vector where every entry is 1, cf. also Chapter
2)
To guarantee convergence we have to restrict a.

Theorem 3.9.1. If A is the adjacency matriz of a graph G, a > 0, and A\ the
largest eigenvalue of A, then

1 oo
M < = E a* AF converges.
@ k=1

For the proof see, e.g., [208].
Assuming convergence we find a closed form expression for the status index
of Katz:

cK = ia’f(AT)’ﬂn =(I-a4a")" N1,
k=1

or, in another form
(I — aAT)cK = 1n,

an inhomogeneous system of linear equations emphasizing the feedback nature
of the centrality: the value of ¢k (i) depends on the other centrality values cx (j),

j#
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3.9.2 General Feedback Centralities

In this subsection three centralities that are well known in the area of social
network analysis are described.

Bonacich’s Eigenvector Centrality. In 1972 Phillip Bonacich introduced
a centrality measure based on the eigenvectors of adjacency matrices [71]. He
presented three different approaches for the calculation and all three of them
result in the same valuation of the vertices, the vectors differ only in a constant
factor. In the following we assume that the graph G to be analyzed is undirected,
connected, loop-free, simple, and unweighted. As the graph is undirected and
loop-free the adjacency matrix A(G) is symmetric and all diagonal entries are 0.
The three methods of calculation are:

a. the factor analysis approach,
b. the convergence of an infinite sequence, and
c. the solving of a linear equation system

In the following we describe all three approaches and call the results s?, s?,

and s°€.

First, we explain the factor analysis approach. For a better understanding
think of the graph as a friendship network, where an edge denotes friendship
between the persons that are modeled as vertices. We want to define a centrality
that measures the ability to ‘find friends’. Thus, we are interested in a vector
s* € R", such that the i-th entry s should hold the interaction or ‘friendship’
potential of the vertex i. We declare that s{S¢ should be close to a;; and inter-
prete the problem as the minimization of the least squared difference. We are
therefore interested in the vector s® that minimizes the following expression:

n n

DD (st —ay)? (3.37)

i=1 j=1

A second approach presented by Bonacich is based on an infinite sequence.
For a given A1 # 0 we define

br—1 bo
bo

B b 48 kS
s =1, and s*=A4 \ =A )\]f.

According to Theorem 3.9.2, the sequence
sbo
s’ = lim s = lim A"

converges towards an eigenvector s’ of the adjacency matrix A if \; equals
the largest eigenvalue.
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Theorem 3.9.2. Let A € R™*™ be a symmetric matriz and \y the largest eigen-

value of A, then
bo

. S
lim A A
k—oo )\1’

converges towards an eigenvector of A with eigenvalue .

The third approach follows the idea of calculating an eigenvector of a linear
equation system. If we define the centrality of a vertex to be equal to the sum
of the centralities of its adjacent vertices, we get the following equation system:

n
s = Zaijs;‘f resp. 8°= Axs¢ (3.38)

j=1
This equation system has a solution only if det(A—1I) = 0. We solve As = As,
the eigenvalue problem for A, instead. According to Theorem 3.9.3, under the
given conditions for the graph defined above, exactly one eigenvector contains
entries that are either all positive or all negative. Therefore, we use the absolute

value of the entries of this eigenvector as the solution.

Theorem 3.9.3. Let A € R™ ™ be the adjacency matriz of an undirected and
connected graph. Then:

— The largest eigenvalue N\ of A is simple.
— All entries of the eigenvector for A1 are of the same sign and not equal to zero.

We have seen three methods for the calculation of the solution vectors
5%, 8%, s¢. These vectors differ only by a constant factor. The eigenvector cen-
trality is therefore (independently from the solution method) defined by:

In general, whenever one has a graph with multiple, poorly spanned dense
clusters, no single eigenvector will do a satisfactory job of characterizing walk-
based centrality. This is because each eigenvector will tend to correspond to
loadings on a given cluster: Everett and Borgatti [194] explain this behavior via
their core-periphery model, where in the idealized case the core corresponds to
a complete subgraph and the nodes in the periphery do not interact with each
other. To measure how close a graph is to the ideal core-periphery structure (or,
in other words, how concentrated the graph is) they define the p-measure

p=2_aijb
,J

with d;; = c;cj, where a;; are the components of the adjacency matrix and c;
measures the coreness of a node, ¢; € [0,1].

To determine the coreness of the nodes, the authors propose to minimize the
sum of squared distances of a;; and the product c;c;, which is nothing else than
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one approach to compute Bonacich’s Standard Centrality, see 3.37, hence nothing
else then computing the principal eigenvector of the adjacency matrix. Thus, only
the core-vertices get high c-values, nodes in smaller clusters not belonging to the
core will get values near zero.

According to [71], the eigenvector centrality can be applied to disconnected
graphs. In this case several eigenvectors have to be taken into account, one for
every component of the graph.

Hubbell Index. Even earlier than Bonacich, Charles Hubbell [319] suggested
in 1965 a centrality measure based on the solution of a system of linear equations.
His approach uses directed weighted graphs where the weights of the edges may
be real numbers. A graph may contain loops but has to be simple, too. Please
note that the adjacency matrix W (G) of a graph G is asymmetric and contains
real numbers instead of zeros and ones.

The general assumption of Hubbell’s centrality measure is similar to the
idea of Bonacich: the value of a vertex v depends on the sum of the values
of each adjacent vertex w multiplied with the weight of the incident edge e =
(v,w). Therefore, the following equation should hold: e = We. To make the
equation system solvable an additional parameter called the exogenous input or
the boundary condition E has to be added. This is a column vector containing
external information for every vertex. Hubbell suggested that if this boundary
condition is unknown E = 1 may be used.

The final equation is

s=E+Ws (3.40)

Through a simple transformation this equation can be rewritten into s =
(I—-W)~LE. This system has a solution if the matrix (I — W) is invertible. Since
(1 fw) = 220:1 WF holds, this is identical to the problem of the convergence of
the geometric series. According to Theorem 3.9.1, the series converges against
(1 fW) if and only if the largest eigenvalue A; of W is less than one.

The solution S of the equation system 3.40 is called Hubbell centrality cypr,
or Hubbell Index.

Bonacich’s Bargaining Centrality. Both feedback centralities presented so
far follow the idea of positive feedback: the centrality of a vertex is higher if it is
connected to other high-valued vertices. In 1987 Phillip Bonacich [72] suggested
a centrality which is not restricted to this concept. His idea supports both,
the positive influence as seen for example in communication networks, and the
negative influence as seen in bargaining situations. In bargaining situations a
participant is strong if he is connected to individuals having no other options
and are therefore weak.

Bonacich’s bargaining centrality is defined for unweighted and directed
graphs G = (V, E') without loops. Therefore the adjacency matrix is not neces-
sarily symmetric and contains only zeros and ones. The definition is
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Cap(i) = Y (o + B cap(f))ais

Jj=1

or, in matrix notation,

cap=a(l —BA)TAL (3.41)

As can easily be seen from the matrix notation, the parameter « is just a
scaling factor. Bonacich suggests a value such that Y7 | cq,5(i)> = n holds.
Therefore only the second parameter § is of interest. This parameter may be
chosen either positive or negative, covering positive or negative influence, re-
spectively. The choice § = 0 leads to a trivial solution where the centrality
correlates with the degree of the vertices. A negative value for § may lead to
negative values for the centralities of the vertices. Additionally it follows from
the equation that the larger || the higher the impact of the structure of the
network on the centrality index is.

Equation 3.41 is solvable if the inverse of (I — SA) exists. According to
Theorem 3.9.4, this inverse exists if no eigenvalue of A is equal to 1.

Theorem 3.9.4. Let M € R"** be a matriz and A1, ...,\, the eigenvalues of
M.
(I — M) is invertible <= Vi€ {l...n} A\; # 1.

We call ¢, 3 the bargaining centrality cpre.

In this subsection three different approaches to measure feedback centrality
values where presented. They seem very similar but differences are for example
the coverage of weighted versus unweighted edges or positive versus negative
influence networks.

3.9.3 Web Centralities

Many people use the World Wide Web to search for information about interesting
topics. Due to the immense size of the network consisting of Web pages that are
connected by hyperlinks powerful search engines are required. But how does a
search engine decide which Web pages are appropriate for a certain search query?
For this, it is necessary to score the Web pages according to their relevance or
importance. This is partly done by a pure text search within the content of
the pages. Additionally, search engines use the structure of the network to rank
pages and this is where centrality indices come into play.®

In this section we discuss three main representatives of Web-scoring algo-
rithms:

5 Many concepts used for the ‘Web centralities’ are not new, especially the idea of
eigenvectors as a centrality was known long before the Web was established. We
decided to use this headline due to the interest of the last years into this topic.
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— PageRank
— Hubs & Authorities
— SALSA

Whereas PageRank only takes the topological structure into account, the
latter two algorithms combine the ‘textual importance’ of the Web page with its
‘topological importance’. Moreover, Hubs & Authorities (sometimes also called
HITS algorithm) assigns two score values to each Web page, called hub and
authority. The third approach, SALSA, discussed at the end of this section, is
in some sense a combination of the others.

In the following we assume that the Web is represented by a digraph G =
(V, E) with a one-to-one-correspondence between the Web pages and the vertices
v € V as well as between the links and the directed edges (v,w) € E.

The Model of a Random-Surfer. Before defining centrality indices suitable
for the analysis of the Web graph it might be useful to model the behavior of a
Web surfer. The most common model simulates the navigation of a user through
the Web as as a random walk within the Web graph.

In Section 2.4 the concept of random walks in graphs was introduced. The
Web graph G = (V, E) is formally defined as V the set of all Web pages p;
where an edge e = (p;,pj) € E is drawn between two pages if and only if page p;
displays a link to page p;. As the Web graph is usually not strongly connected the
underlying transition matrix 7" is not irreducible and may not even be stochastic
as ‘sinks’ (vertices without outgoing links) may exist. Therefore, the transition
matrix T of the Web graph has to be modified such that the corresponding
Markov chain converges to a stationary distribution.

To make the matrix T' stochastic we assume that the surfer jumps to a random
page after he arrived at a sink, and therefore we set all entries of all rows for
sinks to }l The definition of the modified transition matrix 7" is

t/ — { d*l(i)’ if (27]) er
* }L, if d(i) =0

This matrix is stochastic but not necessarily irreducible and the computation
of the stationary distribution 7/ may not be possible. We therefore modify the
matrix again to get an irreducible version T”. Let E = ilfln be the matrix
with all entries 71L This matrix can be interpreted as a ‘random jump’ matrix.
Every page is directly reachable from every page by the same probability. To
make the transition matrix irreducible we simply add this new matrix F to the
existing matrix T":

T"=aT'"+(1-a)E

Factor « is chosen from the range 0 to 1 and can be interpreted as the
probability of either following a link on the page by using 7" or performing a
jump to a random page by using E. The matrix 7" is by construction stochastic
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and irreducible and the stationary distribution 7/ may be computed for example
with the power method (see Section 4.1.5).

By modifying E, the concept of a random jump may be adjusted for example
more towards a biased surfer. Such modifications leads directly to a personalized
version of the Web centrality indices presented here. For more details on this
topic, see Section 5.2.

PageRank. PageRank is one of the main ingredients of the search engine Google
[101] and was presented by Page et al. in 1998 [458]. The main idea is to score
a Web page with respect to its topological properties, i.e., its location in the
network, but independent of its content. PageRank is a feedback centrality since
the score or centrality of a Web page depends on the number and centrality of
Web pages linking to it

o) =4 32 T 10, (3.42)
qel,

where cpr(q) is the PageRank of page ¢ and d is a damping factor.
The corresponding matrix notation is

cpr = dPcpr + (1 — d)ln R (343)

where the transition matriz P is defined by

Pij = { d+1(j)7 if (]»2)6 E
0, otherwise
This is equivalent to p;; = d+1(j) aj; or P = DT A in matrix notation, where
D denotes the diagonal matrix where the i-th diagonal entry contains the out
degree d* (i) of vertex i.
Mostly, the linear system 3.43 is solved by a simple power (or Jacobi) itera-

tion:
chp = dPcig! + (1 —d)1,. (3.44)

The following theorem guarantees the convergence and a unique solution of
this iteration if d < 1.

Theorem 3.9.5. If 0 < d < 1 then Equ. 8.43 has a unique solution cpp =
(1 —4d)1, —dP)f1 1,, and the solutions of the dynamic system 8.44 satisfy
limy, oo €hp = Chp for any initial state-vector cbp.

A slightly different approach is to solve the following dynamic system

. k-1
chr = dPcpy' + 1,, (3.45)
n
where o1 = ||cEg!|| — ||[dPckERY||. The solutions of this system converge to

C‘:’R , the normalized solution of 3.44.
HCPRH
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Hubs & Authorities. Shortly after the presentation of PageRank, Klein-
berg introduced the idea of scoring Web pages with respect to two different
‘scales’ [359], called hub and authority, where

“A good hub is a page that points to many good authorities”
and
“A good authority is a page that is pointed to by many good hubs”.

In contrast to PageRank, Kleinberg proposed to include also the content of a
Web page into the scoring process. The corresponding algorithm for determining
the hub and authority values of a Web page consists of two phases, where the
first phase depends on the search query and the second phase deals only with
the link structure of the associated network.

Given the search query o, in the first phase of the algorithm an appropriate
subgraph G[V,] induced by a set of Web pages V,, C V is extracted, where

— V, should be comparably small,
— V should contain many pages relevant for the search query o, and
— V5 should contain many important authorities.

This goal is achieved by using algorithm 1 to calculate V,, the set of relevant
Web pages.

Algorithm 1: Hubs & Authorities, 15 Phase
Output: V,, the set of relevant pages

Use a text based search engine for search query o
Let W5 be the list of results
Choose t € N
Let W! C W, contain the t pages ranked highest
Vy =W}
forall i € W/} do
Vo= Vo U (4)
if [I'~(i)] <7 (r is a user-specified bound) then
Vo =V UI'™(3)
else
choose I (i) C I'" (i) such that | (4)
Vo =V UL (@

=r

return V,

The second phase of the Hubs & Authorities algorithm consists of computing
the hub and authority scores for the Web pages in G[V,] which is done by taking
into account the mutual dependence between hubs and authorities. This mutual
dependence can be expressed by

caa-H = Ascha-a assuming cpa.a is known and (3.46)

CHA-A = AZ;CHA_H assuming cga-g is known, (3.47)
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where A, is the adjacency matrix of G[V;].

Algorithm 2: Hubs & Authorities Iteration
Output: Approximations for cua-g and cpa-a

0
CHA-A ‘— ]-n
for k=1...do
k L k—1
CHA-H ‘— AGCHA—A
k ATk
Ciia-A = AsClian

k
ck .— C©HA-H
HA-H = ek,
k
ck . CHA-A
HA-A 7 ekl

Since neither ega.g nor cya.a are known, Kleinberg proposes an iterative
procedure including a normalization step shown in algorithm 2. He shows

Theorem 3.9.6. If A, is the adjacency matriz of G[V,] then klim chaa =

cya-a and klim chag = cua.m, where cya.a (Cua_m) is the first eigenvector of
c— OO
T T
AT A, (A,AT)

Therefore, the given iterative procedure is nothing but solving the eigen-
vector-equations

Aenaa = (AT A, )enaa

Aean = (Ao AD)enan

for the largest eigenvalue by a power iteration, see Section 4.1.5. The vector
cia-a then contains the scores for the vertices with respect to their authority,
whereas cpga-g is the vector of hub scores.

SALSA. In 2000, Lempel and Moran developed the SALSA (Stochastic Ap-
proach for Link Structure Analysis) algorithm [387]. The authors introduced
this new Web-scoring approach to retain on the one hand the intuitive and
appealing idea of hubs and authorities and to provide the index on the other
hand with a higher robustness against the so called ‘TKC effect’. TKC stands
for Tightly-Knit Community, a small set of highly connected Web pages that in
some cases may cause the Hubs & Authorities algorithm to rank the correspond-
ing Web pages high even if they cover only a small (or no) aspect of the query.
To this end Lempel and Moran combined the ideas of PageRank with those of
Hubs & Authorities.

SALSA is a 3-phase algorithm where the first phase is identical to the first
phase of the Hubs & Authorities algorithm: it constructs the graph G[V,] for
a certain search query o (see algorithm 1). In the second phase an artificial
bipartite undirected graph G, = (V/UV2 E) according to the algorithm 3 is
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built. For the third phase of SALSA recall that the PageRank algorithm works
with the transition matrix P which is the transposed adjacency matrix of the
underlying graph with the non-zero columns weighted by their column sums.
The Hubs & Authorities algorithm uses the product of the adjacency matrix A,
of G|V,] with its transpose. For SALSA the following matrices are defined:

P,: A, with each non-zero column weighted by its column sum
R,: A, with each non-zero row weighted by its row sum

Algorithm 3: SALSA, 2"? phase
Output: The bipartite undirected graph G
forall 1 € V, do
if d*(i) > 0 then
create a copy i* of ¢ in V!
if d” (i) > 0 then
create a copy 1% of ¢ in V!
forall e = (i,j) € E(G[V5]) do B
create an undirected edge & = {i", %} in F

Then the indices of the non-zero columns (rows) of R, PI correspond to the
elements in V* and those of PT R, to V2. Define

Al: non-zero rows and columns of R, PT
A2: mnon-zero rows and columns of PT R,

and use power iteration (see Section 4.1.5) to compute the SALSA authority
scores cs.a and the SALSA hub scores cg..

3.10 Dealing with Insufficient Connectivity

Most of the centrality-measures presented so far assume that the underlying
network is connected. If this is not the case, computing these centralities might be
a problem. For local centrality indices, such as degree centrality, this connectivity
assumption has no implications. However, this is not the case in general. In this
section, we investigate how to deal with disconnected undirected graphs and
weakly connected digraphs.

Consider, for example, the centralities based on shortest paths, such as the
measures based on eccentricity or closeness. Both centralities depend on the
knowledge of the shortest paths length d(u,v) between all pairs of vertices u and
v. For a disconnected undirected graph or a weakly connected digraph there are
pairs of vertices for which this length is not defined, and it is not clear how to
deal with them. A very naive approach would be to restrict the computation of
centrality values to subgraphs where the measure is well defined, i.e., to compute
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the centrality measure for a vertex with respect to its component or strong
components in the case of digraphs. This approach is not very reasonable in
most applications. Consider, for example, a (directed) network consisting of two
(strong) components, where one is the complete graph of two vertices, and the
other one is the complete graph with n — 2 vertices, where n is large. Then the
above approach yields a closeness value of 1 for all vertices, but it seems obvious
that the vertices in the large component are much more central than the two
other vertices.

3.10.1 Intuitive Approaches

A common way to deal with this problem is to simply multiply the centrality
values with the size of the component, following the intuition that the vertices
in large components are more important. This seems to be reasonable, but it is
not proper unless the centrality measure behaves proportional to the size of the
network. Computational experiments of Poulin, Boily and Masse [481] indicate
that this is not the case for closeness and eccentricity.

Two other repair mechanisms use inverse path lengths, and arbitrary fixed
values for the distance between unconnected vertices. The latter possibility yields
an approximation of the desired centrality values. However, Botafogo et al. [88]
have shown that the result strongly depends on the fixed value k for the uncon-
nected vertex pairs. They defined a closeness-based measure for digraphs

ZUEV ZwEV d(v’ w)
Zve\/ d(ua ’U)

where the distance d(u,v) between any unconnected vertex pair v and v is set
to k. Clearly, an appropriate value for k is the number of vertices n, since the
maximum distance between any two vertices is at most n — 1. In the digraph of
Fig. 3.10 the vertex reaching all other vertices is w. For k = 2n w becomes the
vertex with highest centrality value but for kK = n the vertex v which does not
reach w has highest value. This example shows that the choice of k will crucially
influence the order of centrality index values assigned to the vertices.

Moreover, the centrality based on the eccentricity does not make sense any-
more in non-connected graphs or in non-strongly connected digraphs. If the
fixed value is large enough, then it dominates all other distances in the graph
and yields centrality values that differ only in a very small range.

The usage of inverse path lengths makes it more difficult to interpret and
compare centrality values. By substituting the path lengths in the closeness
centrality by their inverses, and multiplying the sum of the inverse path length
by (n — 1), we do not obtain the closeness centrality but an entirely different
centrality measure.

cor(u) = (3.48)

3.10.2 Cumulative Nominations

A more sophisticated approach was presented by Poulin, Boily and Masse [481].
Their starting point is a measure that is very similar to Bonacich’s eigenvector
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(a) k=2n b)k=n

Fig. 3.10. The centralities with respect to the measure due to Botafogo et al. are
shown. In each subfigure the vertex with the maximum value is colored grey

centrality. The cumulative number of nominations centrality conn () of vertex i
is defined to be the ith component of the /1-normalized eigenvector correspond-
ing to the largest eigenvalue of A+ I, where A is the adjacency matrix. In other
words, conn is the solution of (A+1—A;I)p = 0 under the restriction ), p; = 1.
Therefore, Bonacich’s centrality and the cumulative number of nominations only
differ by a constant. Poulin, Boily and Masse claim that their measure when com-
puted by an iterative algorithm converges faster and is more stable. Moreover,
their centrality may be applied to bipartite graphs as the graph corresponding
to (A + I) is not bipartite, even if the graph for A is.

Due to the normalization, cony is not independent of the size of the connected
component. The more vertices the component contains, the smaller the absolute
centrality values become. But, using the approach of iteratively solving

Céﬁ\l = (A+ I)cénn,

the authors obtain the cumulative nominations index of centrality
con(i) = cos(i) lim ey (d),
k— o0

where ccg(i) is the size of the component containing vertex i. This cumulative
nominations index assigns a value of 1 to a vertex having an average structural
position in a connected component.

In addition, the cumulated nominations growth rate centrality index of a ver-
tex is defined as

1

. . k(s k(2

cena (i) = kh_{go ZaijCCNN (J) + cénn (@) @]
j CNN

and is the same for each vertex in a connected component.

This growth rate allows a comparison between different connected compo-
nents. To this end, the multi-component cumulated nominations centrality index
cMcen is defined by
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even (i) = eon(i)cona (),

and, to take into account the (relative) size of the components (vertices in larger
components should get a larger centrality score), we get the corrected multi-
component cumulated nominations centrality index

comen (1) = emen (i) ecs (7).

The authors report on computational experiments which indicate that neither
cMeN nor coveN depends on n, hence both are centrality measures well suited
for networks consisting of more than one component.

3.11 Graph- vs. Vertex-Level Indices

This section makes a connection between the analysis of a network on the level
of vertices and on the level of the whole graph: Intuitively, it is clear that some
graphs are more centralized than others, i.e., some graphs are more depending
on the most central nodes than others. The star topology in which only one
vertex v is connected to all others but all other vertices are only connected to
v is a very centralized graph. A clique where every vertex is connected to every
other vertex is not centralized.

Freeman [226] has proposed a very general approach with which the central-
ization cx(G) of a graph G can be calculated in relation to the values of any
vertex centrality index cx :

Yicvex(d)t —ex(i)

ex(@) = n—1

(3.49)
where cx (j)* denotes the largest centrality value associated with any vertex in
the graph under investigation. This approach measures the average difference in
centrality between the most central point and all others. If normalized centralities
in the range of [0, 1] are used, the centralization value will also be in the range
[0, 1] (for further details to the normalization of centrality indices see Section 5.1).
Other obvious possibilities to generate a graph index from the distribution of
centrality indices are to compute the variance of the values or the maximal
difference between centrality values or any other statistics on these values.

On the other hand, also a structural index for graphs like the Wiener Index
(see Section 3.6.2) can be transformed into a structural index for vertices. We
want to formalize this idea by first defining a structural index for graphs.

Definition 3.11.1 (Structural Index for Graphs). Let G = (V,E) be a
weighted, directed or undirected multigraph. A function C: G — R is called
a structural index for graphs if and only if the following condition is satisfied:

VG ~ G = C(G') = C(G)).

Let f : V — R be any structural index on the vertices of a graph and
let (O be an operator on the set of all vertices V, like the summation over
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f(v), the average of all terms f(v), the calculation of the variance of all f(v) or
the maximum/minimum operator. Then (O V =: f(G) defines a graph measure
because all structural indices on vertices are stable under isomorphism. On the
other hand, let f : G < R be a structural index on the whole graph. Let G(v, d)
be the induced subgraph in which all vertices are contained with a hopping
distance to v of no more than d. Le. G(v,d) = (V', E’) is a subset of G = (V, E)
with V' = {w € Vl]d(w,v) < d} and E' = {(z,y) € V' x V'|(x,y) € E}. Then
f(G(d,v)) defines at least a structural index on the vertices of this graph, and
in most cases also a reasonable vertex centrality index.

With this we can for example derive a centrality index from the Wiener Index
by constraining the calculation of it to subgraphs with a small diameter. Such an
approach might be useful in networks, where a message will not be transported
more than k steps before it dies, as it is the case in some peer-to-peer network
protocols. The new centrality index would then measure how well connected a
node is within the subgraph of diameter k. It should be noted, however, that
these subgraphs will be of different sizes in most cases. How centrality index
values can be compared with each other in this case is discussed in the section
about applying centrality indices to disconnected graphs (see Section 3.10).

3.12 Chapter Notes

Many interesting facts and a good overview of centrality indices used in social
network analysis are given in [569]. Hage and Harary carried some of these ideas
to a graph theoretic notation [269).

The notion of ‘centrality’ is very graphic and can be supported by adequate
visualization. An approach to visualizing centrality measures in an intuitive way
is [96] (see also Figure 1.2).

Closeness Centrality. Closeness centrality is often cited in the version of
Sabidussi [500]. Nonetheless, it was also mentioned by Shimbel [519] but not as
a centrality index. He defined the dispersion as the sum of all distances in a
graph. Thus, it is a synonym for the Wiener Index [583] (see also Section 3.6.2).
For directed graphs he defined the accessibility A(i,G) of G from vertex i as
A(i,G) = 3 ey d(i,j) and the accessibility A71(i,GQ) of vertex i from G as
A7Yi,G) = > jev d(j,i). These two values are easily recognized as directed
version of the closeness centrality.

Betweenness Centrality. Betweenness centrality was introduced by Free-
man [226] and, independently, Anthonisse [32]. He was inspired by ideas of Bave-
las [50]. Bavelas was the first who tried to map psychological situations to graphs.
His main interest was the notion of centers (called ‘innermost regions’), but he
additionally discussed the following example: A group of Italian speaking women
is employed in a large garment factory. Only one of them speaks English. Bave-
las states: “It is difficult to imagine that the English speaking member would
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be other than central with respect to communication which had of necessity to
pass through her (...) It is interesting in passing to point out the importance
of the English speaking member with respect to the group’s perception of the
‘outside’. (...)To the extent that policy decisions are based upon information, as
to the state of affairs ‘outside’, withholding information, coloring or distroting
it in transmission, or in other ways misrepresenting the state of the outside will
fundamentally affect these decisions.”

Both edge and vertex betweenness have found many applications in the analy-
sis of social networks (for example [457]), sexual intercourse networks (see [81]),
or terrorist networks (for example [111]). Another interesting application is a
graph clustering algorithm based on edge betweenness centrality [445]. Modern
techniques try to approximate the expected congestion in a communication net-
work using vertex betweenness [522]. According to this, the probability for con-
gestion can be decreased by scaling the bandwidth proportional to betweenness
centrality of a vertex. Nonetheless, betweenness centrality does not always scale
with the expected congestion, as indicated in [304] (see also the introduction to
Chapter 4).

The algorithmic complexity of this index is O(nm) for unweighted networks
and O(nm + n?logn) for weighted networks (for details see Section 4.2. Since
this runtime makes it very hard to compute the betweenness centrality for graphs
bigger than approximately 10,000 vertices, one should consider alternatives. In
Section 4.3.1 we will discuss a way to approximate betweenness centrality. In
Section 5.2.1 a personalized variant of the betweenness centrality is presented.
A directed version of shortest-path betweenness centrality was first discussed
in [32] and reinvented in [578].

Feedback Centralities. As far as we know, the first paper that defined a feed-
back centrality (without actually naming it in this way) was published by Seeley
[510]. The status index of Katz was presented shortly afterwards in 1953 [352].
The index defined by Hubbell [319] and the approach presented by Bonacich [71]
focus on the idea of propagating strength, where a high value vertex influences
all vertices in his vicinity. All of these approaches solely focus on positive feed-
back relations. The first centrality index that covered negative feedback relation
was presented by Bonacich [72].

Web Centralities. We covered three Web centralities: PageRank ([101, 458]),
Hubs & Authorities ([359]) and SALSA ([387]). Especially for PageRank a whole
bunch of papers is available and therefore we just give three references ([61, 378,
379]) which are a good starting point for further investigations of the topic.
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and Dagmar Tenfelde-Podehl

The usefulness of centrality indices stands or falls with the ability to compute
them quickly. This is a problem at the heart of computer science, and much
research is devoted to the design and analysis of efficient algorithms. For example,
shortest-path computations are well understood, and these insights are easily
applicable to all distance based centrality measures. This chapter is concerned
with algorithms that efficiently compute the centrality indices of the previous
chapters.

Most of the distance based centralities can be computed by directly evaluat-
ing their definition. Usually, this naive approach is reasonably efficient once all
shortest path distances are known. For example, the closeness centrality requires
to sum over all distances from a certain vertex to all other vertices. Given a ma-
trix containing all distances, this corresponds to summing the entries of one row
or column. Computing all closeness values thus traverses the matrix once com-
pletely, taking n? steps. Computing the distance matrix using the fastest known
algorithms will take between n? and n? steps, depending on the algorithm, and
on the possibility to exploit the special structure of the network. Thus, comput-
ing the closeness centrality for all vertices can be done efficiently in polynomial
time. Nevertheless, for large networks this can lead to significant computation
times, in which case a specialized algorithm can be the crucial ingredient for an-
alyzing the network at hand. However, even a specialized exact algorithm might
still be too time consuming for really large networks, such as the Web graph. So,
for such huge networks it is reasonable to approximate the outcome with very
fast, preferably linear time, algorithms.

Another important aspect of real life networks is that they frequently change
over time. The most prominent example of this behavior is the Web graph.
Rather than recomputing all centrality values from scratch after some changes,
we prefer to somehow reuse the previous computations. Such dynamic algorithms
are not only valuable in a changing environment. They can also increase per-
formance for vitality based centrality indices, where the definition requires to
repeatedly remove an element from the network. For example, dynamic all-pairs
shortest paths algorithms can be used in this setting.

This chapter not only lists the known results, but also provides the ideas
that make such algorithms work. To that end, Section 4.1 recapitulates some
basic shortest paths algorithms, to provide the background for the more special-

* Lead authors

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 62-82, 2005.
© Springer-Verlag Berlin Heidelberg 2005



4 Algorithms for Centrality Indices 63

ized centrality algorithms presented in Section 4.2. Next, Section 4.3 describes
fast approximation algorithms for closeness centrality as well as for web central-
ities. Finally, algorithms for dynamically changing networks are considered in
Section 4.4.

4.1 Basic Algorithms

Several good text books on basic graph algorithms are available, such as Ahuja,
Magnanti, and Orlin [6], and Cormen, Leiserson, Rivest, and Stein [133]. This
section recapitulates some basic and important algorithmic ideas, to provide a
basis for the specific centrality algorithms in Section 4.2. Further, we briefly
review the running times of some of the algorithms to indicate how computa-
tionally expensive different centrality measures are, especially for large networks.

4.1.1 Shortest Paths

The computation of the shortest-path distances between one specific vertex,
called the source, and all other vertices is a classical algorithmic problem, known
as the Single Source Shortest Path (SSSP) problem.

Dijkstra [146] provided the first polynomial-time algorithm for the SSSP
for graphs with non-negative edge weights. The algorithm maintains a set of
shortest-path labels d(s,v) denoting the length of the shortest path found so-far
between s and v. These labels are initialized to infinity, since no shortest paths
are known when the algorithm starts. The algorithm further maintains a list P
of permanently labeled vertices, and a list T" of temporarily labeled vertices. For
a vertex v € P, the label d(s, v) equals the shortest-path distance between s and
v, whereas for vertices v € T the labels d(s,v) are upper bounds (or estimates)
on the shortest-path distances.

The algorithm starts by marking the source vertex s as permanent and in-
serting it into P, scanning all its neighbors N (s), and setting the labels for the
neighbors v € N(s) to the edge lengths: d(s,v) = w(s,v). Next, the algorithm
repeatedly removes a non-permanent vertex v with minimum label d(s,v) from
T, marks v as permanent, and scans all its neighbors w € N(v). If this scan
discovers a new shortest path to w using the edge (v, w), then the label d(s, w)
is updated accordingly. The algorithm relies upon a priority queue for finding
the next node to be marked as permanent. Implementing this priority queue as
a Fibonacci heap, Dijkstra’s algorithm runs in time O(m + nlogn). For unit
edge weights, the priority queue can be replaced by a regular queue. Then, the
algorithm boils down to Breadth-First Search (BFS), taking O(m + n) time.
Algorithm 4 describes Dijkstra’s algorithm more precisely.

Often, one is not only interested in the shortest-path distances, but also in the
shortest paths themselves. These can be retraced using a function pred(v) € V,
which stores the predecessor of the vertex v on its shortest path from s. Start-
ing at a vertex v, the shortest path from s is obtained by recursively applying
pred(v), pred(pred(v)), ..., until one of the pred() functions returns s. Since



64 R. Jacob et al.

Algorithm 4: Dijkstra’s SSSP algorithm
Input: Graph G = (V, E), edge weights w : E — R, source vertex s € V
Output: Shortest path distances d(s,v) to all v € V
P=0,T=V
d(s,v) = oo for all v € V,d(s,s) = 0,pred(s) =0
while P # V do
v = argmin{d(s,v)|v € T}
P:=PUv,T:=T\v
for w € N(v) do
if d(s,w) > d(s,v) + w(v,w) then
d(s,w) :=d(s,v) + w(v,w)
pred(w) = v

the algorithm computes exactly one shortest path to each vertex, and no such
shortest path can contain a cycle, the set of edges {(pred(v),v) | v € V}, de-
fines a spanning tree of GG. Such a tree, which need not be unique, is called a
shortest-paths tree.

Since Dijkstra’s original work in 1954 [146], many improved algorithms for
the SSSP have been developed. For an overview, we refer to Ahuja, Magnanti,
and Orlin [6], and Cormen, Leiserson, Rivest, and Stein [133].

4.1.2 Shortest Paths Between All Vertex Pairs

The problem of computing the shortest path distances between all vertex pairs
is called the All-Pairs Shortest Paths problem (APSP). All-pairs shortest paths
can be straightforwardly computed by computing n shortest paths trees, one
for each vertex v € V, with v as the source vertex s. For sparse graphs, this
approach may very well yield the best running time. In particular, it yields a
running time of O(nm + n?) for unweighted graphs.

For non-sparse graphs, however, this may induce more work than necessary.
The following shortest path label optimality conditions form a crucial observa-
tion for improving the above straightforward APSP algorithm.

Lemma 4.1.1. Let the distance labels d(u,v),u,v € V, represent the length of
some path from u to v. Then the labels d represent shortest path distances if and
only if
d(u,w) < d(u,v) + d(v,w) for all u,v,w,e V.

Thus, given some set of distance labels, it takes n3 operations to check if these
optimality conditions hold. Based on this observation and a theorem of War-
shall [568], Floyd [217] developed an APSP algorithm that achieves an O(n?)
time bound, see Algorithm 5. The algorithm first initializes all distance labels
to infinity, and then sets the distance labels d(u,v), for {u,v} € E, to the edge
lengths w(u,v). After this initialization, the algorithm basically checks whether
there exists a vertex triple u, v, w for which the distance labels violate the condi-
tion in Lemma 4.1.1. If so, it decreases the involved distance label d(u,w). This
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check is performed in a triple for-loop over the vertices. Since we are looking
for all-pairs shortest paths, the algorithm maintains a set of predecessor indices
pred(u,v) that contain the predecessor vertex of v on some shortest path from
u to v.

Algorithm 5: Floyd-Warshall’s APSP algorithm
Input: Graph G = (V, E), edge weights w: E — R
Output: Shortest path distances d(u,v) between all u,v € V
d(u,v) = oo, pred(u,v) =0 for all u,v € V
d(v,v) =0forallv eV
d(u,v) = w(u,v),pred(u,v) = u for all {u,v} € E
for v € V do

for {u,w} € V xV do
if d(u,w) > d(u,v) + d(v,w) then
d(u,w) = d(u,v) + d(v, w)
pred(u,w) := pred(v,w)

4.1.3 Dynamic All-Pairs Shortest Paths

The dynamic variant of the APSP problem is particularly interesting in the con-
text of network analysis. The dynamic APSP problem consists of maintaining
an optimal set of shortest path distance labels d(u,v),u,v € V, in a graph that
changes by edge insertions and deletions. Typically, one also wants to simulta-
neously maintain the corresponding shortest paths themselves, rather than only
the distances.

Thus, dynamic APSP’s are of importance for vitality related questions, such
as how shortest path distances change upon removing an edge. Since removing
a vertex from a graph results in the removal of its incident edges, vertex vitality
corresponds to sequences of edge removals in a dynamic APSP setting. Further,
the dynamic APSP is clearly applicable in the setting of the changing Web graph.

The challenge for the dynamic APSP problem is to do better than recomput-
ing a set of optimal distance labels from scratch after an update. Recently, Deme-
trescu and Italiano [142] described an algorithm for the dynamic APSP problem
on directed graphs with non-negative real-valued edge weights. Per edge inser-
tion, edge deletion, or edge weight change, their algorithm takes O(n? log® n)
amortized time to maintain the all-pairs shortest path distance labels. As the
algorithm and its analysis are quite involved, their discussion falls outside the
scope of this book. Instead, we refer to Demetrescu and Italiano [142] for details
on the dynamic APSP.

Further, Thorup [549] provides an alternative description of the algorithm,
as well as an improved amortized update time of O(n?(logn + log®(m +n/n))).
Moreover, the improved algorithm allows for negative weights. Roditty and
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Zwick [496] argue that the dynamic SSSP problem on weighted graphs is as
difficult as the static APSP problem. Further, they present a randomized algo-
rithm for the dynamic APSP, returning correct results with very high probability,
with improved amortized update time for sparse graphs.

4.1.4 Maximum Flows and Minimum-Cost Flows

For flow betweenness (see Section 3.6.1), the maximum flow between a des-
ignated source node s and a designated sink node t needs to be computed.
The maximum-flow problem has been studied extensively in the literature, and
several algorithms are available. Some are generally applicable, some focus on
restricted cases of the problem, such as unit edge capacities, and others pro-
vide improvements that may have more theoretical than practical impact. The
same applies to minimum-cost flows, with the remark that minimum-cost flow
algorithms are even more complex.

Again, we refer to the textbooks by Ahuja, Magnanti, and Orlin [6], and
Cormen, Leiserson, Rivest, and Stein [133] for good in-depth descriptions of the
algorithms. To give an idea of flow algorithms’ worst-case running times, and
of the resulting impact on centrality computations in large networks, we briefly
mention the following algorithms. The preflow-push algorithm by Goldberg and
Tarjan [252] runs in O(nmlog(n?/m)), and the capacity scaling algorithm by
Ahuja and Orlin [8] runs in O(nmlogU), where U is the largest edge capac-
ity. For minimum cost flows, the capacity scaling algorithm by Edmonds and
Karp [172] runs in O((mlogU)(m + nlogn)).

Alternatively, both maximum flow and minimum-cost flow problems can be
solved using linear programming. The linear program for flow problems has a
special structure which guarantees an integer optimal solution for any integer
inputs (costs, capacities, and net inflows). Moreover, specialized network simplex
algorithms for flow-based linear programs with polynomial running times are
available.

4.1.5 Computing the Largest Eigenvector

Several centrality measures described in this part of the book are based on the
computation of eigenvectors of a given matrix. This section provides a short in-
troduction to the computation of eigenvectors and eigenvalues. In general, the
problem of computing eigenvalues and eigenvectors is non-trivial, and complete
books are dedicated to this topic. We focus on a single algorithm and sketch
the main idea. All further information, such as optimized algorithms, or algo-
rit