

Lecture Notes in Computer Science 3418
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ulrik Brandes Thomas Erlebach (Eds.)

Network
Analysis

Methodological Foundations

13

Volume Editors

Ulrik Brandes
University of Konstanz
Department of Computer and Information Science
Box D 67, 78457 Konstanz, Germany
E-mail: ulrik.brandes@uni-konstanz.de

Thomas Erlebach
University of Leicester
Department of Computer Science
University Road, Leicester, LE1 7RH, U.K.
E-mail: t.erlebach@mcs.le.ac.uk

Library of Congress Control Number: 2005920456

CR Subject Classification (1998): G.2, F.2.2, E.1, G.1, C.2

ISSN 0302-9743
ISBN 3-540-24979-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Markus Richter, Heidelberg
Printed on acid-free paper SPIN: 11394051 06/3142 5 4 3 2 1 0

Preface

The present book is the outcome of a seminar organized by the editors, sponsored
by the Gesellschaft für Informatik e.V. (GI) and held in Dagstuhl, 13–16 April
2004.

GI-Dagstuhl-Seminars are organized on current topics in computer science
that are not yet well covered in textbooks. Most importantly, this gives young
researchers an opportunity to become actively involved in such topics, and to
produce a book that can provide an introduction for others as well.

The participants of this seminar were assigned subtopics on which they did
half a year of research prior to the meeting. After a week of presentations and
discussion at Schloss Dagstuhl, slightly more than another half-year was spent
on writing the chapters. These were cross-reviewed internally and blind-reviewed
by external experts. Since we anticipate that readers will come from various
disciplines, we would like to emphasize that it is customary in our field to order
authors alphabetically.

The intended audience consists of everyone interested in formal aspects of
network analysis, though a background in computer science on, roughly, the
undergraduate level is assumed. No prior knowledge about network analysis is
required. Ideally, this book will be used as an introduction to the field, a reference
and a basis for graduate-level courses in applied graph theory.

First and foremost, we would like to thank all participants of the seminar
and thus the authors of this book. We were blessed with a focused and deter-
mined group of people that worked professionally throughout. We are grateful
to the GI and Schloss Dagstuhl for granting us the opportunity to organize the
seminar, and we are happy to acknowledge that we were actually talked into
doing so by Dorothea Wagner who was then chairing the GI-Beirat der Uni-
versitätsprofessor(inn)en. We received much appreciated chapter reviews from
Vladimir Batagelj, Stephen P. Borgatti, Carter Butts, Petros Drineas, Robert
Elsässer, Martin G. Everett, Ove Frank, Seokhee Hong, David Hunter, Sven
O. Krumke, Ulrich Meyer, Haiko Müller, Philippa Pattison and Dieter Raut-
enbach. We thank Barny Martin for proof-reading several chapters and Daniel
Fleischer, Martin Hoefer and Christian Pich for preparing the index.

December 2004 Ulrik Brandes
Thomas Erlebach

List of Contributors

Andreas Baltz
Mathematisches Seminar
Christian-Albrechts-Platz 4
University of Kiel
24118 Kiel, Germany

Nadine Baumann
Department of Mathematics
University of Dortmund
44221 Dortmund, Germany

Michael Baur
Faculty of Informatics
University of Karlsruhe
Box D 6980
76128 Karlsruhe, Germany

Marc Benkert
Faculty of Informatics
University of Karlsruhe
Box D 6980
76128 Karlsruhe, Germany

Ulrik Brandes
Computer & Information Science
University of Konstanz
Box D 67
78457 Konstanz, Germany

Michael Brinkmeier
Automation & Computer Science
Technical University of Ilmenau
98684 Ilmenau, Germany

Thomas Erlebach
Department of Computer Science
University of Leicester
University Road
Leicester LE1 7RH, U.K.

Marco Gaertler
Faculty of Informatics
University of Karlsruhe
Box D 6980
76128 Karlsruhe, Germany

Riko Jacob
Theoretical Computer Science
Swiss Federal Institute
of Technology Zürich
8092 Zürich, Switzerland

Frank Kammer
Theoretical Computer Science
Faculty of Informatics
University of Augsburg
86135 Augsburg, Germany

Gunnar W. Klau
Computer Graphics & Algorithms
Vienna University of Technology
1040 Vienna, Austria

Lasse Kliemann
Mathematisches Seminar
Christian-Albrechts-Platz 4
University of Kiel
24118 Kiel, Germany

VIII List of Contributors

Dirk Koschützki
IPK Gatersleben
Corrensstraße 3
06466 Gatersleben, Germany

Sven Kosub
Department of Computer Science
Technische Universität München
Boltzmannstraße 3
D-85748 Garching, Germany

Katharina A. Lehmann
Wilhelm-Schickard-Institut
für Informatik
Universität Tübingen
Sand 14, C108
72076 Tübingen, Germany

Jürgen Lerner
Computer & Information Science
University of Konstanz
Box D 67
78457 Konstanz, Germany

Marc Nunkesser
Theoretical Computer Science
Swiss Federal Institute
of Technology Zürich
8092 Zürich, Switzerland

Leon Peeters
Theoretical Computer Science
Swiss Federal Institute
of Technology Zürich
8092 Zürich, Switzerland

Stefan Richter
Theoretical Computer Science
RWTH Aachen
Ahornstraße 55
52056 aachen, Germany

Daniel Sawitzki
Computer Science 2
University of Dortmund
44221 Dortmund, Germany

Thomas Schank
Faculty of Informatics
University of Karlsruhe
Box D 6980
76128 Karlsruhe, Germany

Sebastian Stiller
Institute of Mathematics
Technische Universität Berlin
10623 Berlin, Germany

Hanjo Täubig
Department of Computer Science
Technische Universität München
Boltzmannstraße 3
85748 Garching, Germany

Dagmar Tenfelde-Podehl
Department of Mathematics
Technische Universität
Kaiserslautern
67653 Kaiserslautern, Germany

René Weiskircher
Computer Graphics & Algorithms
Vienna University of Technology
1040 Vienna, Austria

Oliver Zlotowski
Algorithms and Data Structures
Univeristät Trier
54296 Trier, Germany

Table of Contents

Preface . V

List of Contributors . VII

1 Introduction
U. Brandes and T. Erlebach . 1

2 Fundamentals
U. Brandes and T. Erlebach . 7
2.1 Graph Theory . 7
2.2 Essential Problems and Algorithms . 9
2.3 Algebraic Graph Theory . 13
2.4 Probability and Random Walks . 14
2.5 Chapter Notes . 15

Part I Elements

3 Centrality Indices
D. Koschützki, K.A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-
Podehl, and O. Zlotowski . 16
3.1 Introductory Examples . 17
3.2 A Loose Definition . 19
3.3 Distances and Neighborhoods . 19
3.4 Shortest Paths . 28
3.5 Derived Edge Centralities . 34
3.6 Vitality . 36
3.7 Current Flow . 40
3.8 Random Processes . 43
3.9 Feedback . 46
3.10 Dealing with Insufficient Connectivity . 56
3.11 Graph- vs. Vertex-Level Indices . 59
3.12 Chapter Notes . 60

X Table of Contents

4 Algorithms for Centrality Indices
R. Jacob, D. Koschützki, K.A. Lehmann, L. Peeters, and D. Tenfelde-
Podehl . 62
4.1 Basic Algorithms . 63
4.2 Centrality-Specific Algorithms . 67
4.3 Fast Approximation . 72
4.4 Dynamic Computation . 80

5 Advanced Centrality Concepts
D. Koschützki, K.A. Lehmann, D. Tenfelde-Podehl, and O. Zlotowski 83
5.1 Normalization . 84
5.2 Personalization . 87
5.3 Four Dimensions of a Centrality Index . 92
5.4 Axiomatization . 96
5.5 Stability and Sensitivity . 104

Part II Groups

6 Local Density
S. Kosub . 112
6.1 Perfectly Dense Groups: Cliques . 114
6.2 Structurally Dense Groups . 126
6.3 Statistically Dense Groups . 131
6.4 Chapter Notes . 140

7 Connectivity
F. Kammer and H. Täubig . 143
7.1 Fundamental Theorems . 144
7.2 Introduction to Minimum Cuts . 147
7.3 All-Pairs Minimum Cuts . 148
7.4 Properties of Minimum Cuts in Undirected Graphs 149
7.5 Cactus Representation of All Minimum Cuts 157
7.6 Flow-Based Connectivity Algorithms . 158
7.7 Non-flow-based Algorithms . 165
7.8 Basic Algorithms for Components . 169
7.9 Chapter Notes . 176

8 Clustering
M. Gaertler . 178
8.1 Quality Measurements for Clusterings . 180
8.2 Clustering Methods . 196
8.3 Other Approaches . 209
8.4 Chapter Notes . 215

Table of Contents XI

9 Role Assignments
J. Lerner . 216
9.1 Structural Equivalence . 218
9.2 Regular Equivalence . 223
9.3 Other Equivalences . 238
9.4 Graphs with Multiple Relations . 244
9.5 The Semigroup of a Graph . 246
9.6 Chapter Notes . 251

10 Blockmodels
M. Nunkesser, D. Sawitzki . 253
10.1 Deterministic Models . 256
10.2 Stochastic Models . 275
10.3 Chapter Notes . 290

Part III Networks

11 Network Statistics
M. Brinkmeier and T. Schank . 293
11.1 Degree Statistics . 294
11.2 Distance Statistics . 295
11.3 The Number of Shortest Paths . 300
11.4 Distortion and Routing Costs . 301
11.5 Clustering Coefficient and Transitivity . 302
11.6 Network Motifs . 306
11.7 Types of Network Statistics . 307
11.8 Chapter Notes . 316

12 Network Comparison
M. Baur and M. Benkert . 318
12.1 Graph Isomorphism . 319
12.2 Graph Similarity . 332
12.3 Chapter Notes . 340

13 Network Models
N. Baumann and S. Stiller . 341
13.1 Fundamental Models . 342
13.2 Global Structure Analysis . 350
13.3 Further Models of Network Evolution . 364
13.4 Internet Topology . 368
13.5 Chapter Notes . 372

XII Table of Contents

14 Spectral Analysis
A. Baltz and L. Kliemann . 373
14.1 Fundamental Properties . 373
14.2 Numerical Methods . 385
14.3 Subgraphs and Operations on Graphs . 388
14.4 Bounds on Global Statistics . 393
14.5 Heuristics for Graph Identification . 406
14.6 Chapter Notes . 415

15 Robustness and Resilience
G.W. Klau and R. Weiskircher . 417
15.1 Worst-Case Connectivity Statistics . 417
15.2 Worst-Case Distance Statistics . 422
15.3 Average Robustness Statistics . 424
15.4 Probabilistic Robustness Statistics . 432
15.5 Chapter Notes . 435

Bibliography . 439

Index . 467

1 Introduction

Ulrik Brandes and Thomas Erlebach

Many readers will find the title of this book misleading – at least, at first sight.
This is because ‘network’ is a heavily overloaded term used to denote relational
data in so vast a number of applications that it is far from surprising that
‘network analysis’ means different things to different people.

To name but a few examples, ‘network analysis’ is carried out in areas such
as project planning, complex systems, electrical circuits, social networks, trans-
portation systems, communication networks, epidemiology, bioinformatics, hy-
pertext systems, text analysis, bibliometrics, organization theory, genealogical
research and event analysis.

Most of these application areas, however, rely on a formal basis that is fairly
coherent. While many approaches have been developed in isolation, quite a few
have been re-invented several times or proven useful in other contexts as well.
It therefore seems adequate to treat network analysis as a field of its own. From
a computer science point of view, it might well be subsumed under ‘applied
graph theory,’ since structural and algorithmic aspects of abstract graphs are the
prevalent methodological determinants in many applications, no matter which
type of networks are being modeled.

There is an especially long tradition of network analysis in the social sci-
ences [228], but a dramatically increased visibility of the field is owed to recent
interest of physicists, who discovered the usefulness of methods developed in
statistical mechanics for the analysis of large-scale networks [15]. However, there
seem to be some fundamental differences in how to approach the topic. For
computer scientists and mathematicians a statement like, e.g., the following is
somewhat problematic.

“Also, we follow the hierarchy of values in Western science: an experi-
ment and empirical data are more valuable than an estimate; an esti-
mate is more valuable than an approximate calculation; an approximate
calculation is more valuable than a rigorous result.” [165, Preface]

Since the focus of this book is on structure theory and methods, the content is
organized by level of analysis rather than, e.g., domain of application or formal
concept used. If at all, applications are mentioned only for motivation or to
explain the origins of a particular method. The following three examples stand
in for the wide range of applications and at the same time serve to illustrate
what is meant by level of analysis.

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 1–6, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 U. Brandes and T. Erlebach

Element-Level Analysis (Google’s PageRank)

Standard Web search engines index large numbers of documents from the Web
in order to answer keyword queries by returning documents that appear relevant
to the query. Aside from scaling issues due to the incredible, yet still growing
size of the Web, the large number of hits (documents containing the required
combination of keywords) generated by typical queries poses a serious problem.
When results are returned, they are therefore ordered by their relevance with
respect to the query.

The success of a search engine is thus crucially dependent on its definition of
relevance. Contemporary search engines use a weighted combination of several
criteria. Besides straightforward components such as the number, position, and
markup of keyword occurrences, their distance and order in the text, or the
creation date of the document, a structural measure of relevance employed by
market leader Google turned out to be most successful.

Consider the graph consisting of a vertex for each indexed document, and a
directed edge from a vertex to another vertex, if the corresponding document
contains a hyperlink to the other one. This graph is called the Web graph and
represents the link structure of documents on the Web. Since a link corresponds
to a referral from one document to another, it embodies the idea that the second
document contains relevant information. It is thus reasonable to assume that a
document that is often referred to is a relevant document, and even more so,
if the referring documents are relevant themselves. Technically, this (structural)
relevance of a document is expressed by a positive real number, and the par-
ticular definition used by Google [101] is called the PageRank of the document.
Figure 1.1 shows the PageRank of documents in a network of some 5,000 Web
pages and 15,000 links. Section 3.9.3 contains are more detailed description of
PageRank and some close relatives.

Note that the PageRank of a document is completely determined by the
structure of (the indexed part of) the Web graph and independent of any query. It
is thus an example of a structural vertex index, i.e. an assignment of real numbers
to vertices of a graph that is not influenced by anything but the adjacency
relation.

Similar valuations of vertices and also of edges of a graph have been proposed
in many application domains, and “Which is the most important element?” or,
more specifically, “How important is this element?” is the fundamental question
in element-level analysis. It is typically addressed using concepts of structural
centrality, but while a plethora of definitions have been proposed, no general,
comprehensive, and accepted theory is available.

This is precisely what made the organization of the first part of the book most
difficult. Together with the authors, the editor’s original division into themes and
topics was revised substantially towards the end of the seminar from which this
book arose. A particular consequence is that subtopics prepared by different par-
ticipants may now be spread throughout the three chapters. This naturally led
to a larger number of authors for each chapter, though potentially with heavily

1 Introduction 3

 www.phy.syr.edu/courses/java-suite/crosspro.html

 physics.syr.edu

 www.gamelan.com

java.sun.com

 www.china-contact.com/java/
www.javafile.com

 www.stat.duke.edu/sites/java.html

 www.nep.chubu.ac.jp/~nepjava/

 tacocity.com.tw/java/

www.w3.org

 www.auscomp.com

 home.interlink.or.jp/~ichisaka/

 www.sun.com

 www.sikasenbey.or.jp/~ueshima/

Fig. 1.1. PageRank in a network of some 5,000 Web pages containing the keyword
‘java’ (documents with higher value are further to the right; from [93])

skewed workload. To counterbalance this effect, leading authors are identified in
such chapters.

Chapter 3 provides an overview of centrality measures for network elements.
The authors have organized the material from a conceptual point of view, which
is very different from how it is covered in the literature. Algorithms are rarely
discussed in the application-oriented literature, but of central interest in com-
puter science. The underdeveloped field of algorithmic approaches to centrality
is therefore reviewed in Chapter 4. Advanced issues related to centrality are
treated in Chapter 5. It is remarkable that some of the original contributions
contained in this chapter have been developed independently by established re-
searchers [85].

Group-Level Analysis (Political Ties)

Doreian and Albert [161] is an illustrative example of network analysis on the
level of groups. The network in question is made up of influential local politicians
and their strong political ties. This is by definition a difficult network to measure,
because personal variations in perception and political incentives may affect the
outcome of direct questioning. Therefore, not the politicians themselves, but staff
members of the local daily newspaper who regularly report on political affairs
were asked to provide the data shown in Figure 1.2.

Black nodes represent politicians who are members of the city council and
had to vote on the proposed construction of a new jail. The County Executive,

4 U. Brandes and T. Erlebach

County
Prosecutor

Former
Council Member

Sheriff

County Auditor

County Executive

Council President

City Mayor

Former
Council President

Fig. 1.2. Strong political ties between prominent politicians of a county; the two
apparent groups predict the voting pattern of City Council members (black nodes) on
a crucial issue (data from [161])

who was in favor of building the new jail, and the County Auditor were in
strong personal opposition, so that the latter publicly opposed the construction.
While the diagram indicates that the former Council President is structurally
most important (closeness to the center reflects a vertex index called closeness
centrality), it is the group structure which is of interest here.

The voting pattern on the jail issue is predicted precisely by the membership
to one of two apparent groups of strong internal bonds. Members of the group
containing the County Executive voted for the new jail, and those of the group
containing the County Auditor voted against. Note that the entire network is
very homogeneous with respect to gender, race, and political affiliation, so that
these variables are of no influence.

Note also that two council members in the upper right have ties to exactly
the same other actors. Similar patterns of relationships suggest that actors have
similar (structural) ‘roles’ in the network. In fact, the network could roughly
be reduced to two internally tied parties that are linked by the former Council
President.

Methods for defining and finding groups are treated extensively in the second
part of the book. Generally speaking, there are two major perspectives on what
constitutes a group in a network, namely strong or similar linkages.

In the first three chapters on group-level analysis, a group is identified by
strong linkages among its members. These may be based on relatively heavy
induced subgraphs (Chapters 6) or relatively high connectivity between each

1 Introduction 5

Babes in Toyland To Be or Not To Be

Terminator III

Stan Laurel

Henry Brandon

Earl Boen

Arnold Schwarzenegger

Fig. 1.3. Actors appearing jointly (proving that the co-starring distance of S. Laurel
and A. Schwarzenegger is no larger than 3)

pair of members (Chapter 7). Methods for splitting a network into groups based
on strong linkage are then reviewed in Chapter 8.

Chapters 9 and 10 focus on groups defined by the pattern of relations that
members have. While such groups need not be connected at all, strong internal
combined with weak external linkage can be seen as a special case.

Network-Level Analysis (Oracle of Bacon)

Empirical networks representing diverse relations such as linkages among Web
pages, gene regulation in primitive organisms, sexual contacts among Swedes, or
the power grid of the western United States appear to have, maybe surprisingly,
some statistical properties in common.

A very popular example of a network that evolves over time is the movie
actor collaboration graph feeding the Oracle of Bacon at Virginia.1 From all
movies stored in the Internet Movie Database2 it is determined which pairs of
actors co-appeared in which movie. The ‘Oracle’ can be queried to determine
(an upper bound on) the co-starring distance of an actor from Kevin Bacon, or
in a variant game between any two actors. Except for fun and anecdotal pur-
poses (exemplified in Figure 1.3), actual links between actors are not of primary
interest. The fascinating characteristics of this data are on the aggregate level. It
turns out, for instance, that Kevin Bacon is on average only three movies apart
from any of the more than half a million actors in the database, and that there
are more than a thousand actors who have the same property.

Many more properties of this data can be studied. A particularly pertinent
observation is, for instance, that in many empirical networks the distribution
of at least some statistic obeys a power-law. But the network could also be
compared to other empirical networks from related domains (like science collab-
oration) or fabricated networks for which a suitable model would be required.

1 www.oracleofbacon.org
2 www.imdb.com

6 U. Brandes and T. Erlebach

The focus of network-level analysis in general is on properties of networks as a
whole. These may reflect, e.g., typical or atypical traits relative to an application
domain or similarities occuring in networks of entirely different origin.

Network statistics, reviewed in Chapter 11, are a first indicator of network
similarity, often employed in complex systems analysis. In Chapter 12, more
rigorous methods for detailed structure comparison of equally (or at least com-
paratively) sized networks are discussed. A different line of research is the at-
tempt to understand the governing principles of network formation. Chapter 13
is therefore devoted to models for networks with certain properties. A particu-
larly powerful approach to global network analysis is the utilization of spectral
properties of matrices defined describing the network. These are described in
detail in Chapter 14. The final chapter of this book is devoted to the important
question of how sensitive a network is to the loss of some of its elements.

Despite the wealth of material covered, the scope of this book is necessarily
limited. No matter which personal background, the reader will easily identify
gems from the repertoire of network analysis that have been consciously omitted
or woefully overlooked. We nevertheless hope that the book will serve as a useful
introduction and handy reference for everyone interested in the methods that
drive network analysis.

2 Fundamentals

Ulrik Brandes and Thomas Erlebach

In this chapter we discuss basic terminology and notation for graphs, some fun-
damental algorithms, and a few other mathematical preliminaries.

We denote the set of integers by , the set of real numbers by , the set of
complex numbers by , and the set of rationals by . For a set X of numbers,
X+ denotes the subset of positive numbers in X , and X+

0 the subset of non-
negative numbers. The set of positive integers is denoted by = + and the
set of non-negative integers by 0 = +

0 .
We use n×m to denote the set of all real-valued matrices with n rows andm

columns. If the entries of the matrix can be complex numbers, we write n×m.
The n-dimensional identity matrix is denoted by In. The n-dimensional vector
with all entries equal to 1 (equal to 0) is denoted by 1n (by 0n).

For two functions f : → and g : → , we say that f is in O(g)
if there are positive constants n0 ∈ and c ∈ + such that f(n) ≤ c · g(n)
holds for all n ≥ n0. Furthermore, we say that f is in Ω(g) if g is in O(f). This
notation is useful to estimate the asymptotic growth of functions. In particular,
running-times of algorithms are usually specified using this notation.

2.1 Graph Theory

We take the term network to refer to the informal concept describing an object
composed of elements and interactions or connections between these elements.
For example, the Internet is a network composed of nodes (routers, hosts) and
connections between these nodes (e.g. fiber cables). The natural means to model
networks mathematically is provided by the notion of graphs.

A graph G = (V,E) is an abstract object formed by a set V of vertices
(nodes) and a set E of edges (links) that join (connect) pairs of vertices. The
vertex set and edge set of a graphG are denoted by V (G) and E(G), respectively.
The cardinality of V is usually denoted by n, the cardinality of E by m. The two
vertices joined by an edge are called its endvertices. If two vertices are joined by
an edge, they are adjacent and we call them neighbors. Graphs can be undirected
or directed. In undirected graphs, the order of the endvertices of an edge is
immaterial. An undirected edge joining vertices u, v ∈ V is denoted by {u, v}. In
directed graphs, each directed edge (arc) has an origin (tail) and a destination
(head). An edge with origin u ∈ V and destination v ∈ V is represented by an
ordered pair (u, v). As a shorthand notation, an edge {u, v} or (u, v) can also be

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 7–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

8 U. Brandes and T. Erlebach

denoted by uv. In a directed graph, uv is short for (u, v), while in an undirected
graph, uv and vu are the same and both stand for {u, v}. For a directed graph
G = (V,E), the underlying undirected graph is the undirected graph with vertex
set V that has an undirected edge between two vertices u, v ∈ V if (u, v) or
(v, u) is in E. Graphs that can have directed edges as well as undirected edges
are called mixed graphs, but such graphs are encountered rarely and we will not
discuss them explicitly in the following.

Multigraphs. In both undirected and directed graphs, we may allow the edge
set E to contain the same edge several times, i.e., E can be a multiset. If an
edge occurs several times in E, the copies of that edge are called parallel edges.
Graphs with parallel edges are also called multigraphs. A graph is called simple,
if each of its edges is contained in E only once, i.e., if the graph does not have
parallel edges. An edge joining a vertex to itself, i.e., an edge whose endvertices
are identical, is called a loop. A graph is called loop-free if it has no loops. We
will assume all graphs to be loop-free unless specified otherwise.

Weighted graphs. Often it is useful to associate numerical values (weights) with
the edges or vertices of a graph G = (V,E). Here we discuss only edge weights.
Edge weights can be represented as a function ω : E → that assigns each
edge e ∈ E a weight ω(e). Depending on the context, edge weights can describe
various properties such as cost (e.g. travel time or distance), capacity, strength
of interaction, or similarity. One usually tries to indicate the characteristics of
the edge weights by the choice of the name for the function. In particular, a
function assigning (upper) capacities to edges is often denoted by u, especially
in the context of network flow problems (see below). In general, we will mostly
use ω to denote edge weights that express costs and other letters to denote edge
weights that express capacities or interaction strengths. For most purposes, an
unweighted graph G = (V,E) is equivalent to a weighted graph with unit edge
weights ω(e) = 1 for all e ∈ E.

Degrees. The degree of a vertex v in an undirected graph G = (V,E), denoted
by d(v), is the number of edges in E that have v as an endvertex. If G is a
multigraph, parallel edges are counted according to their multiplicity in E. The
set of edges that have v as an endvertex is denoted by Γ (v). The set of neighbors
of v is denoted by N(v). In a directed graph G = (V,E), the out-degree of v ∈ V ,
denoted by d+(v), is the number of edges in E that have origin v. The in-degree
of v ∈ V , denoted by d−(v), is the number of edges with destination v. For
weighted graphs, all these notions are generalized by summing over edge weights
rather than taking their number. The set of edges with origin v is denoted by
Γ+(v), the set of edges with destination v by Γ−(v). The set of destinations
of edges in Γ+(v) is denoted by N+(v), the set of origins of edges in Γ−(v)
by N−(v). If the graph under consideration is not clear from the context, these
notations can be augmented by specifying the graph as an index. For example,
dG(v) denotes the degree of v in G. The maximum and minimum degree of
an undirected graph G = (V,E) are denoted by Δ(G) and δ(G), respectively.

2 Fundamentals 9

The average degree is denoted by d̄(G) = 1
|V |

∑
v∈V d(v). An undirected graph

G = (V,E) is called regular if all its vertices have the same degree, and r-regular
if that degree is equal to r.

Subgraphs. A graph G′ = (V ′, E′) is a subgraph of the graph G = (V,E) if
V ′ ⊆ V and E′ ⊆ E. It is a (vertex-)induced subgraph if E′ contains all edges
e ∈ E that join vertices in V ′. The induced subgraph of G = (V,E) with vertex
set V ′ ⊆ V is denoted by G[V ′]. The (edge-)induced subgraph with edge set
E′ ⊆ E, denoted by G[E′], is the subgraph G′ = (V ′, E′) of G, where V ′ is the
set of all vertices in V that are endvertices of at least one edge in E′, If C is a
proper subset of V , then G−C denotes the graph obtained from G by deleting
all vertices in C and their incident edges. If F is a subset of E, G − F denotes
the graph obtained from G by deleting all edges in F .

Walks, paths and cycles. A walk from x0 to xk in a graph G = (V,E) is an al-
ternating sequence x0, e1, x1, e2, x2, . . . , xk−1, ek, xk of vertices and edges, where
ei = {xi−1, xi} in the undirected case and ei = (xi−1, xi) in the directed case.
The length of the walk is defined as the number of edges on the walk. The walk
is called a path, if ei �= ej for i �= j, and a path is a simple path if xi �= xj for
i �= j. A path with x0 = xk is a cycle. A cycle is a simple cycle if xi �= xj for
0 ≤ i < j ≤ k − 1.

2.2 Essential Problems and Algorithms

2.2.1 Connected Components

An undirected graphG = (V,E) is connected if every vertex can be reached from
every other vertex, i.e., if there is a path from every vertex to every other vertex.
A graph consisting of a single vertex is also taken to be connected. Graphs that
are not connected are called disconnected. For a given undirected graph G =
(V,E), a connected component of G is an induced subgraph G′ = (V ′, E′) that is
connected and maximal (i.e., there is no connected subgraphG′′ = (V ′′, E′′) with
V ′′ ⊃ V ′). Checking whether a graph is connected and finding all its connected
components can be done in time O(n + m) using depth-first search (DFS) or
breadth-first search (BFS).

A directed graph G = (V,E) is strongly connected if there is a directed path
from every vertex to every other vertex. A strongly connected component of a
directed graphG is an induced subgraph that is strongly connected and maximal.
The strongly connected components of a directed graph can be computed in time
O(n+m) using a modified DFS [542]. A directed graph is called weakly connected
if its underlying undirected graph is connected.

2.2.2 Distances and Shortest Paths

For a path p in a graph G = (V,E) with edge weights ω, the weight of the path,
denoted by ω(p), is defined as the sum of the weights of the edges on p. A path

10 U. Brandes and T. Erlebach

from u to v in G is a shortest path (with respect to ω) if its weight is the smallest
possible among all paths from u to v. The length of a shortest path from u to v,
also called the shortest-path distance between u and v, is denoted by dG,ω(u, v),
where the subscripts G and/or ω are usually dropped if no confusion can arise.

The single-source shortest paths problem (SSSP) is defined as follows: Given
a graphG = (V,E) with edge weights ω : E → and a vertex s ∈ V (the source),
compute shortest paths from s to all other vertices in the graph. The problem is
only well-defined if the graph does not contain a cycle of negative weight. If the
edge weights are non-negative, SSSP can be solved in time O(m+n logn) using
an efficient implementation of Dijkstra’s algorithm [133]. If the edge weights
are arbitrary, the Bellman-Ford algorithm uses time O(mn) to detect a cycle of
negative length or, if no such cycle exists, solve the problem. For the special case
of unit edge weights, BFS solves the problem in linear time O(n+m).

In the all-pairs shortest paths problem (APSP), one is given a graph G =
(V,E) with edge weights ω : E → and wants to compute the shortest-path
distances for all pairs of nodes. Provided that G does not contain a cycle of
negative length, this problem can be solved by the Floyd-Warshall algorithm in
time O(n3), or by n SSSP computations in time O(nm+ n2 logn).

These algorithms work for both directed and undirected graphs.

2.2.3 Network Flow

A flow network is given by a directed graph G = (V,E), a function u : E →
assigning non-negative capacities to the edges, and two distinct vertices s, t ∈ V
designated as the source and the sink, respectively. A flow f from s to t, or an
s-t-flow for short, is a function f : E → satisfying the following constraints:

– Capacity constraints: ∀e ∈ E : 0 ≤ f(e) ≤ u(e)
– Balance conditions: ∀v ∈ V \ {s, t} :

∑
e∈Γ−(v) f(e) =

∑
e∈Γ+(v) f(e)

The value of the flow f is defined as∑
e∈Γ+(s)

f(e) −
∑

e∈Γ−(s)

f(e) .

The problem of computing a flow of maximum value is called the max-flow
problem. The max-flow problem can be solved in time O(nm log(n2/m)) using
the algorithm of Goldberg and Tarjan [252], for example.

For a given graph G = (V,E), a cut is a partition (S, S̄) of V into two non-
empty subsets S and S̄. A cut (S, S̄) is an s-t-cut, for s, t ∈ V , if s ∈ S and
t ∈ S̄. The capacity of a cut (S, S̄) is defined as the sum of the capacities of the
edges with origin in S and destination in S̄. A minimum s-t-cut is an s-t-cut
whose capacity is minimum among all s-t-cuts. It is easy to see that the value of
an s-t-flow can never be larger than the capacity of a s-t-cut. A classical result
in the theory of network flows states that the maximum value and the minimum
capacity are in fact the same.

2 Fundamentals 11

Theorem 2.2.1 (Ford and Fulkerson [218]). The value of a maximum s-t-
flow is equal to the capacity of a minimum s-t-cut.

Algorithms for the max-flow problem can also be used to compute a minimum
s-t-cut efficiently. A minimum cut in an undirected graph G = (V,E) with edge
capacities u : E → is a cut that is an s-t-cut for some vertices s, t ∈ V and
has minimum capacity.

In the min-cost flow problem, one is given a directed graph G = (V,E), a
non-negative capacity function u : E → , a cost function c : E → , and a
function b : V → assigning each vertex a demand/supply value. Here, a flow
is a function f : E → that satisfies the capacity constraints and, in addition,
the following version of the balance conditions:

∀v ∈ V :
∑

e∈Γ+(v)

f(e) −
∑

e∈Γ−(v)

f(e) = b(v)

The cost of a flow f is defined as c(f) =
∑

e∈E f(e)c(e). The problem of com-
puting a flow of minimum cost can be solved in polynomial time.

2.2.4 Graph k-Connectivity

An undirected graph G = (V,E) is called k-vertex-connected if |V | > k and
G−X is connected for every X ⊂ V with |X | < k. Note that every (non-empty)
graph is 0-vertex-connected, and the 1-vertex-connected graphs are precisely the
connected graphs on at least two vertices. Furthermore, a graph consisting of a
single vertex is connected and 0-vertex-connected, but not 1-vertex-connected.
The vertex-connectivity of G is the largest integer k such that G is k-vertex-
connected. Similarly, G is called k-edge-connected if |V | ≥ 2 and G − Y is
connected for every Y ⊆ E with |Y | < k. The edge-connectivity of G is the
largest integer k such that G is k-edge-connected. The edge-connectivity of a
disconnected graph and of a graph consisting of a single vertex is 0.

The notions of vertex-connectivity and edge-connectivity can be adapted to
directed graphs by requiring in the definitions above that G − X and G − Y ,
respectively, be strongly connected.

Consider an undirected graph G = (V,E). A subset C ⊂ V is called a
vertex-separator (or vertex cutset) if the number of connected components of
G−C is larger than that of G. If two vertices s and t are in the same connected
component of G, but in different connected components of G−C, then C is called
an s-t-vertex-separator. Edge-separators (edge cutsets) and s-t-edge-separators
are defined analogously. The notion of s-t-separators can be adapted to directed
graphs in the natural way: a set of vertices or edges is an s-t-separator if there
is no more path from s to t after deleting the set from the graph.

Let G = (V,E) be an undirected or directed graph. Two (directed or undi-
rected) paths p1 and p2 from s ∈ V to t ∈ V are called vertex-disjoint if they do
not share any vertices except s and t. They are called edge-disjoint if they do
not share any edges. By Menger’s Theorem (see Chapter 7 for further details),

12 U. Brandes and T. Erlebach

a graph G with at least k + 1 vertices is k-vertex-connected if and only if there
are k vertex-disjoint paths between any pair of distinct vertices, and a graph G
with at least 2 vertices is k-edge-connected if and only if there are at least k
edge-disjoint paths between any pair of distinct vertices.

The number of vertex- or edge-disjoint paths between two given vertices in
a graph can be computed in polynomial time using network flow algorithms.
Therefore, the vertex- and edge-connectivity of a graph can be determined in
polynomial time as well. Special algorithms for these problems will be discussed
in Chapter 7.

2.2.5 Linear Programming

Let A be a real m × n matrix, b a real m-dimensional vector, and c a real
n-dimensional vector. Furthermore, let x = (x1, . . . , xn) be a vector of n real
variables. The optimization problem

max cTx

s.t. Ax ≤ b
x ≥ 0

is called a linear program. It asks to find a real vector x that satisfies the con-
straints Ax ≤ b and x ≥ 0 (where ≤ is to be understood component-wise)
and maximizes the objective function cTx =

∑n
i=1 cixi. Linear programs with

rational coefficients can be solved in time polynomial in the size of the input.
If the variables of a linear program are constrained to be integers, the program

is called an integer linear program. Computing optimal solutions to integer linear
programs is an NP-hard problem (see the next section), and no polynomial-time
algorithm is known for this problem.

2.2.6 NP-Completeness

It is important to consider the running-time of an algorithm for a given problem.
Usually, one wants to give an upper bound on the running time of the algorithm
for inputs of a certain size. If the running-time of an algorithm is nO(1) for inputs
of size n, we say that the algorithm runs in polynomial time. (For graph prob-
lems, the running-time is usually specified as a function of n and m, the number
of edges and vertices of the graph, respectively.) For many problems, however, no
polynomial-time algorithm has been discovered. Although one cannot rule out
the possible existence of polynomial-time algorithms for such problems, the the-
ory of NP-completeness provides means to give evidence for the computational
intractability of a problem. A decision problem is in the complexity class NP
if there is a non-deterministic Turing machine that solves the problem in poly-
nomial time. Equivalently, for every yes-instance of the problem there is a proof
of polynomial size that can be verified in polynomial time. A decision problem
is NP-hard if every decision problem in NP can be reduced to it by a poly-
nomial many-one reduction. Problems that are in NP and NP-hard are called

2 Fundamentals 13

NP-complete. An example of an NP-complete problem is Satisfiability, i.e.,
checking whether a given Boolean formula in conjunctive normal form has a sat-
isfying truth assignment. A polynomial-time algorithm for an NP-hard problem
would imply a polynomial-time algorithm for all problems in NP—something
that is considered very unlikely. Therefore, NP-hardness of a problem is con-
sidered substantial evidence for the computational difficulty of the problem. For
optimization problems (where the goal is to compute a feasible solution that
maximizes or minimizes some objective function), we say that the problem is
NP-hard if the corresponding decision problem (checking whether a solution
with objective value better than a given value k exists) is NP-hard. In order to
solve NP-hard optimization problems, the only known approaches either settle
with approximate solutions or incur a potentially exponential running-time.

2.3 Algebraic Graph Theory

Two directed graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic (written
as G1 � G2) if there is a bijection φ : V1 → V2 with

∀u, v ∈ V : (u, v) ∈ E1 ⇔ (φ(u), φ(v)) ∈ E2 .

Such a bijection is called an isomorphism. An isomorphism that maps a graph
onto itself is called an automorphism. Usually we consider two graphs to be
the same if they are isomorphic. Isomorphism and automorphism for undirected
graphs are defined analogously.

The incidence matrix (or node-arc incidence matrix) of a directed graph
G = (V,E) with V = {v1, . . . , vn} and E = {e1, . . . , em} is a matrix B with n
rows and m columns that has entries bi,j satisfying

bi,j =

⎧⎨
⎩

−1, if vi is the origin of ej
1, if vi is the destination of ej
0, otherwise

The adjacency matrix of a simple directed graph G = (V,E) with V =
{v1, v2, . . . , vn} is an n× n matrix A(G) = (ai,j)1≤i,j≤n with

ai,j =
{

1, if (vi, vj) ∈ E
0, otherwise

If G is an undirected graph, its adjacency matrix is symmetric and has ai,j = 1
if vi and vj are adjacent. For weighted graphs, the non-zero entries are ω(vi, vj)
rather than 1.

The Laplacian of an undirected graph G = (V,E) is an n×n matrix defined
by L(G) = D(G) − A(G), where D(G) is the diagonal matrix that has its i-th
diagonal entry equal to dG(vi). Note that L(G) = BBT for any fixed orientation
of the edges of G. The normalized Laplacian of G is the n×n matrix defined by
L(G) = D(G)−1/2L(G)D(G)−1/2, where D(G)−1/2 is the diagonal matrix where
the i-th diagonal entry is 0 if dG(vi) = 0 and 1/

√
dG(vi) otherwise.

14 U. Brandes and T. Erlebach

Let A ∈ n×n be a matrix. A value λ ∈ is called an eigenvalue of A if
there is a non-zero n-dimensional vector x such that Ax = λx. Such a vector
x is then called an eigenvector of A (with eigenvalue λ). The (multi-)set of all
eigenvalues of a matrix is called its spectrum. It is equal to the set of the roots
of the characteristic polynomial of A, where the characteristic polynomial of A
is defined as the determinant of A− λ · In.

If A is a real symmetric matrix, all eigenvalues are real. Therefore, the spec-
tra of the adjacency matrix, the Laplacian, and the normalized Laplacian of an
undirected graph G = (V,E) are multisets containing n real values. The spec-
trum of the adjacency matrix A(G) of a graph G is also called the spectrum
of G. The spectra of the Laplacian and the normalized Laplacian of G are called
the Laplacian spectrum and the normalized Laplacian spectrum of G.

2.4 Probability and Random Walks

A discrete probability space is a pair (Ω,Pr), where Ω is a non-empty, finite or
countably infinite set and Pr is a mapping from the power set P(Ω) of Ω to the
real numbers satisfying the following:

– Pr[A] ≥ 0, for all A ⊆ Ω
– Pr[Ω] = 1
– Pr

[⋃
i∈ Ai

]
=
∑

i∈ Pr[Ai], for every sequence (Ai)i∈ of pairwise disjoint
sets from P(Ω).

We call Ω a sample space. Subsets of Ω are called events. Note that we write
the probability of an event A as Pr[A] (and not as Pr(A)). The conditional
probability of event A given the occurrence of event B is written as Pr[A | B]
and is well-defined by Pr[A ∩B]/Pr[B] whenever Pr[B] �= 0.

A random variableX is a mapping from the sample space to the real numbers.
The image of X is denoted by IX = X(Ω). The expected value of a random
variable X is defined as [X] =

∑
ω∈Ω X(ω) Pr[ω]. Note that this definition

implies [X] =
∑

x∈X(Ω) xPr[X = x].
A Markov chain on state set S, where S can be finite or countably infinite,

is given by a sequence (Xt)t∈ 0 of random variables Xt with IXt ⊆ S and an
initial distribution q0 that maps S to +

0 and satisfies
∑

s∈S q0(s) = 1. It must
satisfy the Markov condition, i.e. for all t > 0 and all I ⊆ {0, 1, . . . , t − 1} and
all i, j, sk ∈ S we must have:

Pr[Xt+1 = j | Xt = i,∀k ∈ I : Xk = sk] = Pr[Xt+1 = j | Xt = i]

In words, the probability distribution of the successor state Xt+1 depends only
on the current state Xt, not on the history of how the chain has arrived in the
current state. We interpret Xt as the state of the Markov chain at time t. By qt
we denote the probability distribution on the state set S at time t, i.e., qt is a
vector whose i-th entry, for i ∈ S, is defined by qt(i) = Pr[Xt = i].

If Pr[Xt+1 = j | Xt = i] is independent of t for all states i, j ∈ S, the Markov
chain is called homogeneous. We consider only homogeneous Markov chains with

2 Fundamentals 15

finite state set S in the following. For such Markov chains, the transition matrix
is defined as the |S| × |S| matrix T = (ti,j) with ti,j = Pr[Xt+1 = j | Xt = i].
The transition matrix is a stochastic matrix, i.e., a non-negative matrix in which
the entries in each row sum up to 1. Note that the probability distribution qt+1

on the state set S at time t+ 1, viewed as a row vector, can be computed from
the probability distribution qt at time t by qt+1 = qt · T , for all t ≥ 0. This
implies that qt = q0 · T t holds for all t ≥ 0.

A Markov chain is called irreducible if for every pair (i, j) of states there exists
a k > 0 such that Pr[Xk = j | X0 = i] > 0. In other words, a Markov chain
is irreducible if every state can be reached from any given state with positive
probability. The graph of a Markov chain is defined as the directed graph with
vertex set S and edges (i, j) for all i, j with Pr[Xt+1 = j | Xt = i] > 0. A Markov
chain is irreducible if and only if its graph is strongly connected.

The period of a state s ∈ S of an irreducible Markov chain is the greatest
common divisor of all k > 0 such that Pr[Xk = s | X0 = s] > 0. A Markov chain
is aperiodic if all its states have period 1.

For a given Markov chain with state set S and transition matrix T , a non-
negative row vector π = (πs)s∈S is called a stationary distribution if

∑
s∈S πs = 1

and π · T = π. Every irreducible Markov chain with finite state set S has a
unique stationary distribution. If, in addition, the Markov chain is aperiodic,
the probability distribution on the states converges to the stationary distibution
independently of the initial distribution, i.e., limt→∞ qt = π.

The hitting time of state j starting at state i is the expected number of steps
the Markov chain makes if it starts in state i at time 0 until it first arrives in
state j at some time t ≥ 1.

A random walk in a simple directed graph G = (V,E) is a Markov chain with
S = V and:

Pr[Xt+1 = v | Xt = u] =
{ 1

d+(u) , if (u, v) ∈ E
0, otherwise

In every step, the random walk picks a random edge leaving the current vertex
and follows it to the destination of that edge. The random walk is well-defined
only if d+(v) ≥ 1 for all v ∈ V . In this case, the transition matrix of the random
walk is the stochastic |V |× |V | matrix T = (ti,j) with ti,j = 1/d+(i) if (i, j) ∈ E
and ti,j = 0 otherwise. Note that the Markov chain given by a random walk in
a directed graph G is irreducible if and only if G is strongly connected.

Random walks in undirected graphs can be defined analogously.

2.5 Chapter Notes

There are many good textbooks for the topics discussed in this chapter. Graph
theory is treated in [145, 67]. An introduction to algorithms can be found in [133].
Network flows are treated in [6]. Linear programming is covered extensively
in [505]. The standard reference for the theory of NP-completeness is [240]. A
textbook about algebraic graph theory is [247]. An introduction to probability
theory is provided by [498].

3 Centrality Indices

Dirk Koschützki,∗ Katharina Anna Lehmann,∗ Leon Peeters, Stefan Richter,
Dagmar Tenfelde-Podehl,∗ and Oliver Zlotowski ∗

Centrality indices are to quantify an intuitive feeling that in most networks some
vertices or edges are more central than others. Many vertex centrality indices
were introduced for the first time in the 1950s: e.g., the Bavelas index [50, 51],
degree centrality [483] or a first feedback centrality, introduced by Seeley [510].
These early centralities raised a rush of research in which manifold applications
were found. However, not every centrality index was suitable to every application,
so with time, dozens of new centrality indices were published. This chapter will
present some of the more influential, ‘classic’ centrality indices. We do not strive
for completeness, but hope to give a catalog of basic centrality indices with some
of their main applications.

In Section 3.1 we will begin with two simple examples to show how centrality
indices can help to analyze networks and the situation these networks represent.
In Section 3.2 we discuss the properties that are minimally required for a real-
valued function on the set of vertices or edges of a graph to be a centrality index
for vertices and edges, respectively.

In subsequent Sections 3.3–3.9, various families of vertex and edge centrali-
ties are presented. First, centrality indices based on distance and neighborhood
are discussed in Section 3.3. Additionally, this section presents in detail some
instances of facility location problems as a possible application for centrality
indices. Next we discuss the centrality indices based on shortest paths in Sec-
tion 3.4. These are naturally defined for both, vertices and edges. We decided to
present both, vertex and edge centrality indices, in one chapter together since
many families of centrality indices are naturally defined for both and many in-
dices can be easily transformed from a vertex centrality to an edge centrality, and
vice versa. Up to date there have been proposed many more centrality indices for
vertices than for edges. Therefore, we discuss general methods to derive an edge
centrality out of the definition of a vertex centrality in Section 3.5. The general
approach of vitality measures is also applicable to edges and vertices. We will
describe this family in Section 3.6. In Section 3.7, a family of centrality indices
is presented that is derived from a certain analogy between information flow
and current flow. In Section 3.8 centrality indices based on random processes
are presented. In Section 3.9 we present some of the more prominent feedback
centralities that evaluate the importance of a vertex by evaluating the centrality
of its surrounding vertices.

∗ Lead authors

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 16–61, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

3 Centrality Indices 17

For many centrality indices it is required that the network at hand be con-
nected. If this is not the case, computing these centralities might be a problem.
As an example, shortest paths based centralities encounter the problem that
certain vertices are not reachable from vertices in a different component of the
network. This yields infinite distances for closeness centrality, and zero shortest-
path counts for betweenness centrality. Section 3.10 of this chapter discusses how
to deal with these problems in disconnected graphs.

Before we close the chapter we want to discuss a topic that spans the bridge
between the analysis of networks on the level of elements and the level of the
whole graph. In Section 3.11, we propose a very general method with which
a structural index for vertices can be transformed into a structural index for
graphs. This is helpful, e.g., in the design of new centrality indices which will be
explained on a simple example. We close this chapter with some remarks on the
history of centrality indices in Section 3.12.

3.1 Introductory Examples

Election of a leader is a frequent event in many social groups and intuitively,
some persons in such an event are more important or ‘central’ than others, e.g.
the candidates. The question is now how centrality indices can help to derive a
measure of this intuitive observation. On this first example we want to illustrate
that different kind of networks can be abstracted from such a social interaction
and we want to show how network analysis with centrality indices may help to
identify important vertices of these networks. A second example illustrates how
the application of an edge centrality index may help to figure out important edges
in a network. Both illustrations underline that there is no centrality index that
fits all applications and that the same network may be meaningfully analyzed
with different centrality indices depending on the question to be answered.

Before we begin the discussion on the examples, it should be noted that the
term ‘centrality’ is by no means clearly defined. What is it that makes a vertex
central and another vertex peripheral? In the course of time there have been
different answers to this question. Each of them serves another intuition about
the notion of centrality. Centrality can be interpreted as - among other things
- ‘influence’, as ‘prestige’ or as ‘control’. For example, a vertex can be regarded
as central if it is heavily required for the transport of information within the
network or if it is connected to other important vertices. These few examples
from a set of dozens other possibilities show that the interpretation of ‘centrality’
is heavily dependent on the context.

We will demonstrate the application of three different interpretations on the
following example: A school class of 30 students has to elect a class representative
and every student is allowed to vote for one other student. We can derive different
graph abstractions from this situation that can later be analyzed with different
centrality indices. We will first look at a network that represents the voting
results directly. In this network vertices represent students and an edge from
student A to student B is established if A has voted for B. In such a situation

18 D. Koschützki et al.

a student could be said to be the more ‘central’ the more people have voted
for him or her. This kind of centrality is directly represented by the number of
edges pointing to the corresponding vertex. The so called ‘in-degree centrality’
is presented in Section 3.3.1.

Another view on the same situation results in another network: In this net-
work an edge between A and B represents that student A has convinced student
B to vote for his or her favorite candidate. We will call this network an ‘influence
network’. Let us assume that the class is mainly split into two big groups X and
Y. Let some person have social relationships to members from both groups. If
this person has a favorite candidate from group X and convinces a big part of
group Y to vote for this candidate, he or she is ‘central’ because he or she me-
diates the most information between both groups. With this argument we can
say that a vertex in the given influence network is the more central the more
it is needed to transport the opinion of others. A family of centrality indices
that tries to capture this intuition of ‘being between groups’ is the family of
betweenness centrality indices, presented in Sections 3.4.2, 3.6.1 and 3.8.2.

In yet another perspective we could view the general social network of the
class: Who is friends with whom? Someone who is a friend of an important
person could be regarded as more important than someone having friends with
low social prestige. The centrality of a vertex in this kind of network is therefore
given by the centrality of adjacent vertices. This kind of ‘feedback centrality’ is
captured by many centrality indices that are presented in Section 3.9.

In analogy to the centrality of vertices, some of the edges in a network can
be viewed as being more important than others. We will illustrate this on a
commonly used network, the Internet. Looking at the backbone of the Internet
it is clear that the cables between servers on different continents are few and
thus very important for the functionality of the system. This importance stems
from the enormous data flow through the intercontinental cables that had to
be redirected if one of these cables was out of service. There are mainly two
different approaches to measure the centrality of an edge in a network: The
first counts the number of substructures like traversal sets or the set of shortest
paths in the graph on which an edge participates. An example for this approach
is the betweenness centrality of edges, presented in Section 3.4.2. The second
approach is based on the idea of measuring how much a certain network param-
eter is changed if the edge is removed. An example for this approach is the flow
betweenness vitality, presented in Section 3.6.1.

We have shown for two examples that very different ideas of centrality can
lead to centrality indices that help to analyze the situation represented by the
given network. It is important to note that none of these measures is superior to
the others. Every one is appropriate for some but not all questions in network
analysis.

3 Centrality Indices 19

3.2 A Loose Definition

Before presenting any centrality indices, we first have to give a definition for
centrality indices.1 Historically there is no commonly accepted definition of what
a centrality index is, and almost everybody introduced his or her centrality
without giving a strict definition for centrality in general. Thus, here we will
just state the least common ground for all centralities presented in the following
sections. In Section 5.4 we will give some classes of centralities that follow much
stricter definitions.

The intuition about a centrality is that it denotes an order of importance on
the vertices or edges of a graph by assigning real values to them. As we have
pointed out in the introduction to this chapter, the notion of ‘importance’ is by
no means unambiguous. Nonetheless, as a minimal requirement we demand that
the result of a centrality index is only depending on the structure of the graph.
This demand is stated in the following definition of a structural index. Every
of the centrality indices presented here is a structural index but it is important
to note that not every structural index will be accepted as a centrality index.
Section 5.4 will also show that to date there is no stricter definition that captures
all of the introduced centrality indices.

Recall, that two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic
(G1 � G2) if there exists a one-to-one mapping φ : V1 → V2 such that (u, v) is
an edge in E1 if and only if (φ(u), φ(v)) is an edge in E2 (cf. Section 2.3).

Definition 3.2.1 (Structural Index). Let G = (V,E) be a weighted, directed
or undirected multigraph and let X represent the set of vertices or edges of G,
respectively. A real-valued function s is called a structural index if and only if
the following condition is satisfied: ∀x ∈ X : G � H =⇒ sG(x) = sH(φ(x)),
where sG(x) denotes the value of s(x) in G.

A centrality index c is required to be a structural index and thus induces
at least a semi-order on the set of vertices or edges, respectively. By this order
we can say that x ∈ X is at least as central as y ∈ X with respect to a given
centrality c if c(x) ≥ c(y). Note that, in general, the difference or ratio of two
centrality values cannot be interpreted as a quantification of how much more
central one element is than the other.

The definition of a structural index expresses the natural requirement that a
centrality measure must be invariant under isomorphisms. In particular, this con-
dition implies that a centrality measure is also invariant under automorphisms.

3.3 Distances and Neighborhoods

In this section we will present centrality indices that evaluate the ‘reachability’
of a vertex. Given any network these measures rank the vertices according to the

1 Centrality index will be used synonymously with centrality measure and, shortly,
centrality.

20 D. Koschützki et al.

number of neighbors or to the cost it takes to reach all other vertices from it.
These centralities are directly based on the notion of distances within a graph,
or on the notion of neighborhood, as in the case of the degree centrality. We
start with this very basic index, the degree centrality. Other centralities, like
eccentricity or closeness, will be presented in the light of a special application,
the facility location problem.

3.3.1 Degree

The most simple centrality is the degree centrality cD(v) of a vertex v that is
simply defined as the degree d(v) of v if the considered graph is undirected.
In directed networks two variants of the degree centrality may be appropriate:
the in-degree centrality ciD(v) = d−(v) and the out-degree centrality coD(v) =
d+(v). The degree centrality is, e.g., applicable whenever the graph represents
something like a voting result. These networks represent a static situation and
we are interested in the vertex that has the most direct votes or that can reach
most other vertices directly. The degree centrality is a local measure, because the
centrality value of a vertex is only determined by the number of its neighbors.
In the next section we investigate global centrality measures and consider their
applications in a special set of problems, namely Facility Location Problems.

3.3.2 Facility Location Problems

Facility location analysis deals with the problem of finding optimal locations for
one or more facilities in a given environment. Location problems are classical
optimization problems with many applications in industry and economy. The
spatial location of facilities often take place in the context of a given transporta-
tion, communication, or transmission system, which may be represented as a
network for analytic purposes.

A first paradigm for location based on the minimization of transportation
costs was introduced by Weber [575] in 1909. However, a significant progress
was not made before 1960 when facility location emerged as a research field.

There exist several ways to classify location problems. According to Hakami
[271] who considered two families of location problems we categorize them with
respect to their objective function. The first family consists of those problems
that use a minimax criterion. As an example, consider the problem of determin-
ing the location for an emergency facility such as a hospital. The main objective
of such an emergency facility location problem is to find a site that minimizes
the maximum response time between the facility and the site of a possible emer-
gency. The second family of location problems considered by Hakimi optimizes a
minisum criterion which is used in determining the location for a service facility
like a shopping mall. The aim here is to minimize the total travel time. A third
family of location problems described for example in [524, 527] deals with the lo-
cation of commercial facilities which operate in a competitive environment. The
goal of a competitive location problem is to estimate the market share captured
by each competing facility in order to optimize its location.

3 Centrality Indices 21

Our focus here is not to treat all facility location problems. The interested
reader is referred to a bibliography devoted to facility location analysis [158].
The aim of this section is to introduce three important vertex centralities by
examining location problems. In the subsequent section we investigate some
structural properties of the sets of most central indices that are given by these
centrality indices.

The definition of different objectives leads to different centrality measures.
A common feature, however, is that each objective function depends on the dis-
tance between the vertices of a graph. In the following we assume thatG = (V,E)
is a connected undirected graph with at least two vertices and we suppose that
the distance d(u, v) between two vertices u and v is defined as the length of
the shortest path from u to v (cf. in Section 2.2.2). These assumptions ensure
that the following centrality indices are well defined. Moreover, for reasons of
simplicity we consider G to be an unweighted graph, i.e., all edge weights are
equal to one. Of course, all indices presented here can equally well be applied to
weighted graphs.

Eccentricity. The aim of the first problem family is to determine a location that
minimizes the maximum distance to any other location in the network. Suppose
that a hospital is located at a vertex u ∈ V . We denote the maximum distance
from u to a random vertex v in the network, representing a possible incident, as
the eccentricity e(u) of u, where e(u) = max{d(u, v) : v ∈ V }. The problem of
finding an optimal location can be solved by determining the minimum over all
e(u) with u ∈ V . In graph theory, the set of vertices with minimal eccentricity
is denoted as the center of G (cf. Section 3.3.3). The concept is illustrated in
Figure 3.1. The eccentricity values are shown and the most central vertices are
highlighted.

55 4 4

66

4

4

3

3

Fig. 3.1. Eccentricity values of a graph. Vertices in the center are colored in grey

22 D. Koschützki et al.

Hage and Harary [278] proposed a centrality measure based on the eccentric-
ity

cE(u) =
1
e(u)

=
1

max{d(u, v) : v ∈ V } . (3.1)

This measure is consistent with our general notion of vertex centrality, since
e(u)−1 grows if the maximal distance of u decreases. Thus, for all vertices u ∈ V
of the center of G: cE(u) ≥ cE(v) for all v ∈ V .

Closeness. Next we consider the second type of location problems – the min-
isum location problem, often also called the median problem or service facility
location problem. Suppose we want to place a service facility, e.g., a shopping
mall, such that the total distance to all customers in the region is minimal. This
would make traveling to the mall as convenient as possible for most customers.

We denote the sum of the distances from a vertex u ∈ V to any other vertex
in a graph G = (V,E) as the total distance2

∑
v∈V d(u, v). The problem of

finding an appropriate location can be solved by computing the set of vertices
with minimum total distance. In Figure 3.2 the total distances for all vertices
are shown and the vertices with minimal total distance are highlighted.

36

222426 32

32

36

26 24 22

v

w

Fig. 3.2. Total distances of a graph. Lowest valued vertices are colored in grey. Note,
the vertices v and w are more important with respect to the eccentricity

In social network analysis a centrality index based on this concept is called
closeness. The focus lies here, for example, on measuring the closeness of a person
to all other people in the network. People with a small total distance are consid-
ered as more important as those with a high total distance. Various closeness-
based measures have been developed, see for example [500, 51, 52, 433, 558, 451,
88]. In Section 3.10 we outline a measures developed for digraphs. The most
commonly employed definition of closeness is the reciprocal of the total distance
2 In [273], Harary used the term status to describe a status of a person in an organi-

zation or a group. In the context of communication networks this sum is also called
transmission number.

3 Centrality Indices 23

cC(u) =
1∑

v∈V d(u, v)
. (3.2)

In our sense this definition is a vertex centrality, since cC(u) grows with
decreasing total distance of u and it is clearly a structural index.

Before we discuss the competitive location problem, we want to mention the
radiality measure and integration measure proposed by Valente and Foreman
[558]. These measures can also be viewed as closeness-based indices. They were
developed for digraphs but an undirected version is applicable to undirected
connected graphs, too. This variant is defined as

cR(u) =
∑

v∈V (ΔG + 1 − d(u, v))
n− 1

(3.3)

where ΔG and n denote the diameter of the graph and the number of vertices,
respectively. The index measures how well a vertex is integrated in a network.
The better a vertex is integrated the closer the vertex must be to other vertices.
The primary difference between cC and cR is that cR reverses the distances to
get a closeness-based measure and then averages these values for each vertex.

Centroid Values. The last centrality index presented here is used in competi-
tive settings: Suppose each vertex represents a customer in a graph. The service
location problem considered above assumes a single store in a region. In reality,
however, this is usually not the case. There is often at least one competitor of-
fering the same products or services. Competitive location problems deal with
the planning of commercial facilities which operate in such a competitive envi-
ronment. For reasons of simplicity, we assume that the competing facilities are
equally attractive and that customers prefer the facility closest to them. Consider
now the following situation: A salesman selects a location for his store knowing
that a competitor can observe the selection process and decide afterwards which
location to select for her shop. Which vertex should the salesman choose?

Given a connected undirected graph G of n vertices. For a pair of vertices u
and v, γu(v) denotes the number of vertices which are closer to u than to v, that is
γu(v) = |{w ∈ V : d(u,w) < d(v, w)}|. If the salesman selects a vertex u and his
competitor selects a vertex v, then he will have γu(v) + 1

2 (n− γu(v) − γv(u)) =
1
2n + 1

2 (γu(v) − γv(u)) customers. Thus, letting f(u, v) = γu(v) − γv(u), the
competitor will choose a vertex v which minimizes f(u, v). The salesman knows
this strategy and calculates for each vertex u the worst case, that is

cF (u) = min{f(u, v) : v ∈ V − u}. (3.4)

cF (u) is called the centroid value and measures the advantage of the location
u compared to other locations, that is the minimal difference of the number of
customers which the salesman gains or loses if he selects u and a competitor
chooses an appropriate vertex v different from u.

In Figure 3.3 an example is shown where the centroid vertex is highlighted.
Notice that for each vertex u ∈ V in graph shown in Figure 3.4 cF (u) ≤ −1.

24 D. Koschützki et al.

1

-3 -3

-5

-3 -3

-5

-3 -3

-5

-1
-11 -11

v

Fig. 3.3. A graph with one centroid vertex. Note that v is the vertex with maximal
closeness centrality

-9 -9 -1 -1

-1

-11

-11

-11-1-1-9-9

-1

Fig. 3.4. All centroid values are negative. There is no profitable location for the
salesman

Here, the salesman loses his advantage to choose as first. The strategy “choose
after the leader has chosen” would be optimal.

Also the centroid measure is a structural index according to Definition 3.2.1.
But in contrast to eccentricity and closeness, centroid values can be negative as
well.

3.3.3 Structural Properties

In this section we will investigate several structural properties for the distance-
based vertex centralities introduced in Section 3.3.2. Using Definition 3.2.1 the
set of maximum centrality vertices Sc(G) of G with respect to a given vertex
centrality c is given by

Sc(G) = {u ∈ V : ∀v ∈ V c(u) ≥ c(v)}. (3.5)

Center of a Graph. In Section 3.3.2 the eccentricity of a vertex u ∈ G was
defined as e(u) = max{d(u, v) : v ∈ V }. Recall, that by taking the minimum over

3 Centrality Indices 25

all e(u) we solve the emergency location problem. In graph theory, this minimum
is called the radius r(G) = min{e(u) : u ∈ V }. Using the radius of G the center
C(G) of a graph G is

C(G) = {u ∈ V : r(G) = e(u)}. (3.6)

It is easy to show that ScE (G) = C(G). Clearly, every undirected connected
graph has a non-empty center. But where are the vertices of the center located?
A basic result concerning the center of a tree is due to Jordan [336]

Theorem 3.3.1. For any tree, the center of a tree consists of at most two ad-
jacent vertices.

Proof. The result is trivial if the tree consists of at most two vertices. We show
that any other tree T has the same center as the tree T ′ which is obtained from
T by removing all leaves. For each vertex u of T , only a leaf can be an eccentric
vertex. Aa vertex u is an eccentric vertex of a vertex v if d(u, v) = e(v). Since the
eccentricity of each u ∈ T ′ is one less than its eccentricity in T , T and T ′ have
the same center. If the process of removing leaves is continued, we successively
obtain trees having the same center as T . Finally, we obtain a subtree of T which
consists of either one vertex or a pair of adjacent vertices. ��

The proof shows that it is possible to determine the center without computing
the vertex eccentricities. The following generalization of Theorem 3.3.1 due to
Harary and Norman [281] deals with the location of the center in a connected
separable graph, i.e., a graph which contains a cut-vertex. Recall, a cut-vertex
of a graph is a vertex whose removal increases the number of components, i.e., if
u is a cut-vertex of a connected graph G, then G− u is disconnected. We call a
graph 2-vertex-connected if G contains no cut-vertices (cf. Section 2.2.4). Note,
each vertex of a graph distinct from a cut-vertex lies in exactly one 2-vertex-
connected subgraph, and each cut-vertex lies in more than one.

Theorem 3.3.2. Let G be a connected undirected graph. There exists a 2-vertex-
connected subgraph in G containing all vertices of C(G).

Proof. Suppose there is no 2-vertex-connected subgraph in G containing all the
vertices of C(G). Then G has a cut-vertex u such that G−u decomposes into the
subgraphs G1 and G2 each of them containing at least one vertex of C(G). Let v
be an eccentric vertex of u and P the corresponding shortest path between u and
v of length e(u). Then v must lie in G1 or G2, say G2. Furthermore there exists
at least one vertex w in G1 which does not belong to P . Now, let w ∈ C(G) and
let P ′ be a shortest path in G between w and u. Then e(w) ≥ d(w, u)+d(u, v) ≥
1 + e(u). So w does not belong to the center of G, a contradiction. Thus, there
must be a 2-vertex-connected subgraph containing all vertices of center of G. ��

Figure 3.1 in Section 3.3.2 shows a graph consisting of fourteen 2-vertex-
connected subgraphs consisting of two vertices and one 2-vertex-connected sub-
graph in the middle containing the two central vertices.

26 D. Koschützki et al.

Median of a Graph. The service facility problem presented in Sect. 3.3.2
was solved by determining the set of vertices with minimum total distance. If
the minimum total distance of G is denoted by s(G) = min{s(u) : u ∈ V }, the
median M(G) of G is given by

M(G) = {u ∈ V : s(G) = s(u)} . (3.7)

Clearly ScC (G) = M(G). Truszczyński [552] studied the location of the me-
dian in a connected undirected graph.

Theorem 3.3.3. The median of a connected undirected graph G lies within a
2-vertex-connected subgraph of G.

Similar to the center of a tree Theorem 3.3.3 implies the existence of at least
one 2-vertex-connected subgraph containing the median of a tree.

Corollary 3.3.4. The median of a tree consists of either a single vertex or a
pair of adjacent vertices.

The graph in Figure 3.2 contains a 2-vertex-connected subgraph of six vertices
containing the median. Moreover, the example illustrates that C(G)∩M(G) = ∅
is possible. Let 〈M(G)〉 and 〈C(G)〉 denote the subgraphs induced by M(G) and
C(G), respectively. The results due to Hendry [293] and Holbert [300] show that
the center and median can be arbitrarily far apart.

Theorem 3.3.5. Let H1 and H2 be two connected undirected graphs. For any
integer k > 0, there exists a connected undirected graph G, such that 〈M(G)〉 �
H1, 〈C(G)〉 � H2, and the distance between M(G) and C(G) is at least k.

This result is not surprising, because the center and the median represent
solution sets of distinct objective functions.

Centroid of a Graph. The computation of the centroid of a graph is a maximin
optimization problem. In Sect. 3.3.2 we have shown the relation to a competitive
location problem. We defined the centroid value for a given vertex u by cF (u) =
min{f(u, v) : v ∈ V −u}. In addition we call the objective function value f(G) =
max{cF (u) : u ∈ V } the centroid value of G and denote by

Z(G) = {u ∈ V : f(G) = cF (u)} (3.8)

the set of vertices representing the centroid of G. With it the set Z(G) consists
of all appropriate locations for the competitive location problem considered in
Section 3.3.2.

We now focus on the location of the centroid in a graph. First we assume the
graph is an undirected tree T = (V,E). Let u be vertex of T . A branch of u is
a maximal subtree containing u as a leaf. The number of branches at u is equal
to the degree of u. The branch weight of u is the maximum number of edges
among all branches of u. The vertex u is called a branch weight centroid vertex

3 Centrality Indices 27

if u has minimum branch weight and the branch weight centroid of T consists
of all such vertices. Zenlinka [594] has shown that the branch weight centroid of
T is identical with its median. Slater [524] used this result to show

Theorem 3.3.6. For any tree the centroid and the median are identical.

Theorem 3.3.6 and Corollary 3.3.4 together imply that the centroid of a tree
consists of either a single vertex or a pair of adjacent vertices. Smart and Slater
[527] also studied the relative location of the centroid in a connected undirected
graph. The following Theorem is a generalization of Theorem 3.3.6.

Theorem 3.3.7. For any connected undirected graph, the median and the cen-
troid lie in the same 2-vertex-connected subgraph.

Reconsider the graph in Fig. 3.3. The median and the centroid lie within the
subgraph but Z(G) ∩ M(G) = ∅. Let 〈Z(G)〉 be the graph induced by Z(G).
Smart and Slater [527] have shown the following.

Theorem 3.3.8. Let H1 and H2 be to connected undirected graphs. For any
integer k ≥ 4, there exists a connected undirected graph G, such that 〈Z(G)〉 �
H1, 〈M(G)〉 � H2, and the distance between Z(G) and M(G) is at least k.

Furthermore, Smart and Slater [527] proved that the center, the median, and
the centroid can be arbitrarily far apart in a connected undirected graph. In
Fig. 3.5 an example is given where all sets are pairwise distinct. The following
result summarizes Theorems 3.3.5 and 3.3.8.

w1

w2

u1 v1

v2

Fig. 3.5. C(G) = {v1, v2}, M(G) = {u1}, and Z(G) = {w1, w2} are pairwise distinct

Theorem 3.3.9. For three connected undirected graphs H1, H2, and H3, and
any integer k ≥ 4, there exists an undirected connected graph G such that
〈C(G)〉 � H1, 〈M(G)〉 � H2, 〈Z(G)〉 � H3, and the distances between any
two of them is at least k.

28 D. Koschützki et al.

Some of concepts presented here can be extended to digraphs. Chartrand
et al. [115] showed that the result of Theorem 3.3.5 also holds for digraphs.

3.4 Shortest Paths

This section presents centrality indices that are based on the set of shortest
paths in a graph. Shortest paths are defined on vertices as well as on edges and
such, some centrality indices were first introduced as vertex centralities and later
adapted as edge centralities. In the following, we will sometimes make a general
statement regarding vertices and edges equally. We will call a vertex v or an edge
e (graph) ’element’ and denote the centrality of an element in general by x. The
first two indices, stress and betweenness centrality of an element x, are based
on the (relative) number of shortest paths that contain x. The last centrality
index is only defined on edges and based on traversal sets. All three centrality
indices can be defined on weighted or unweighted and directed or undirected
and simple or multi graphs. For simplification we will discard any information
about the underlying graph in the notation for a given centrality. Thus, cX
might denote the centrality indices of a weighted, undirected graph or any other
combination of weights, direction and edge multiplicity. Note that the set of all
shortest paths has to be computed in a preprocessing step with the appropriate
algorithm, depending on the combination of these graph properties.

3.4.1 Stress Centrality

The first centrality index based on enumeration of shortest paths is stress cen-
trality cS(x), introduced in [519]. The author was concerned with the question
how much ‘work’ is done by each vertex in a communication network. It is clear
that communication or transport of goods will follow different kinds of paths in
a social network. Nonetheless, the author of [519] models the set of paths used
for communication as the set of shortest paths. The assumption is that counting
the number of shortest path that contain an element x gives an approximation
of the amount of ‘work’ or ‘stress’ the element has to sustain in the network.
With this, an element is the more central the more shortest paths run through
it. The formal definition is given by:

cS(v) =
∑

s�=v∈V

∑
t�=v∈V

σst(v) (3.9)

where σst(v) denotes the number of shortest paths containing v. The definition
given in [519] is not rigorous, but in analogy to the betweenness centrality all
shortest paths that either start or end in v are not accounted for this centrality
index. The calculation of this centrality index is given by a variant of a simple
all-pairs shortest-paths algorithm that not only calculates one shortest path but
all shortest paths between any pair of vertices. More about the algorithm for
this centrality can be found in Section 4.2.1.

3 Centrality Indices 29

Although this centrality was designed to measure stress on vertices, the same
definition can be applied for edges:

cS(e) =
∑
s∈V

∑
t∈V

σst(e) (3.10)

where σst(e) denotes the number of shortest paths containing edge e. In both
cases stress centrality measures the amount of communication that passes an
element in an all-to-all scenario. More precisely, it is not only an all-to-all scenario
but every vertex sends as many goods or information units to every other vertex
as there are shortest paths between them and stress centrality measures the
according stress.

We next want to show how the stress centrality value of a vertex v is related
to the stress centrality indices of the edges incident to v.

Lemma 3.4.1 (Relation between cS(v) and cS(e)). In a directed graph
G = (V,E), stress centrality on vertices and edges are related by

cS(v) =
1
2

∑
e∈Γ (v)

cS(e) −
∑

v �=s∈V

σsv −
∑

v �=t∈V

σvt (3.11)

for all v ∈ V .

Proof. Consider any shortest path connecting a pair s �= t ∈ V . It contributes a
value of 1 to the stress of each of its vertices and edges. Summing the contribution
of a path over all edges that are incident to a vertex v thus yields twice its
contribution to v itself if v ∈ V \{s, t}, and 1 otherwise. The sum of contributions
of all shortest paths to edges incident to a common vertex v hence satisfies the
above relation, since v is

∑
v �=s∈V σsv +

∑
v �=t∈V σvt times an endvertex of any

shortest path. ��

3.4.2 Shortest-Path Betweenness Centrality

Shortest-path betweenness centrality can be viewed as some kind of relative
stress centrality. Here, we will first define it and then discuss the motivation
behind this centrality index: Let δst(v) denote the fraction of shortest paths
between s and t that contain vertex v:

δst(v) =
σst(v)
σst

(3.12)

where σst denotes the number of all shortest-path between s and t. Ratios δst(v)
can be interpreted as the probability that vertex v is involved into any com-
munication between s and t. Note, that the index implicitly assumes that all
communication is conducted along shortest paths. Then the betweenness cen-
trality cB(v) of a vertex v is given by:

30 D. Koschützki et al.

cB(v) =
∑

s�=v∈V

∑
t�=v∈V

δst(v) (3.13)

As for stress centrality, the shortest paths ending or starting in v are explicitly
excluded. The motivation for this is that the betweenness centrality of a vertex
measures the control over communication between others.

The betweenness centrality index was introduced in [32, 226] and has found
a wide field of applications. In [226] this new centrality index was introduced
because it is problematic to apply the closeness centrality to a disconnected
graph: the distance between two vertices in different components is usually set
to infinity. With this, the closeness centrality (see subsection 3.2) in discon-
nected graphs will give no information because each vertex is assigned the same
centrality value, namely 1/∞. We will discuss some resorts to this problem in
Section 3.10.

The betweenness centrality does not suffer from this problem: Any pair of
vertices s and t without any shortest path from s to t just will add zero to the
betweenness centrality of every other vertex in the network.

Betweenness centrality is similar to stress centrality introduced in [519], but
instead of counting the absolute number of shortest paths, the shortest-path
betweenness centrality sums up the relative number of shortest paths for each
pair of endvertices. These are interpreted as the extent to which a vertex v con-
trols the communication between such pairs. Figure 3.6 gives an example why
this might be more interesting than the absolute number of shortest paths. It
shows two tripartite graphs in which the middle layer mediates all communica-
tion between the upper and the lower layer. The stress centrality of vertices in
the middle layer is the same in both graphs but the removal of the middle vertex
on the right would disconnect the whole system whereas in the right graph the
removal of a single vertex would not. This is because the former has full respon-
sibility for the communication in its graph whereas on the left side every vertex
just bears one third of it.

0

0

ui

0

0

v

Fig. 3.6. cS(ui) = 16 and cB(ui) = 1
3
, i = 1, 2, 3 and cS(v) = 16 but cB(v) = 1. The

graph shows on an example that stress centrality is not designed to evaluate how much
communication control a vertex has

In [32] the shortest-path betweenness centrality – here called ‘rush’ – is viewed
as a flow centrality: “The rush in an element is the total flow through that
element, resulting from a flow between each pair of vertices”. In this sense,

3 Centrality Indices 31

δst(v) is interpreted as the amount of flow that passes if one unit of flow is sent
from s to t along shortest paths, and with a special division rule. In [32] the
‘rush’ is also defined for edges with δst(e) as the flow over edge e:

δst(e) =
σst(e)
σst

(3.14)

For reasons of consistency we will denote the resulting centrality not as ‘rush on
edges’ but as the betweenness centrality cB(e) of edge e:

cB(e) =
∑
s∈V

∑
t∈V

δst(e) . (3.15)

Variants of Shortest-Path Betweenness Centrality. In [111, 580] some
variants of the shortest-path betweenness centrality have been introduced. The
authors generalize the approach of betweenness centrality by changing the set of
paths P (s, t) on which the betweenness centrality is evaluated. Instead of just
using the set of all shortest paths between s and t any other set can be used for
this variant. The general pattern is always the same: For each node pair s and
t compute the fraction of paths in P (s, t) that contain an element from the sum
of all paths between s and t. To get the betweenness centrality cB(P (s, t)) on
a specified path set p sum over the terms for all node pairs. In [580], a number
of possible path sets P (s, t) was defined, as e.g. the set of k-shortest paths, i.e.
the set of all paths not longer than k ∈ or the set of k-shortest, node-disjoint
paths. The according betweenness centralities did not get any special name but
for reasons of consistency we will denote them as k-shortest paths and k-shortest
vertex-disjoint paths betweenness centrality.

The authors in [111] were motivated by the fact that the betweenness central-
ity is not very stable in dynamic graphs (see also our discussion of the stability
and sensitivity of centrality indices in Section 5.5). The removal or addition of
an edge might cause great perturbations in the betweenness centrality values.
To eliminate this, P (s, t) was defined to contain all paths between a node pair s
and t that are not longer than (1+ε)d(s, t). The resulting betweenness centrality
for nodes and edges has been named ε-betweenness centrality. The idea behind
this centrality index seems reasonable but analytical or empirical results on the
stability of this index were not given.

Other variants of the general betweenness centrality concept are fundamen-
tally different in their approach and calculation. We will discuss the flow between-
ness centrality in Section 3.6.1 and the random-walk betweenness centrality in
Section 3.8.2.

In the following theorem we state the relation between the edge and vertex
betweenness centrality cB(e) and cB(v) of vertices and edges incident to each
other:

Lemma 3.4.2 (Relation between cB(v) and cB(e)). In a directed graph
G = (V,E), shortest-path betweenness on vertices and edges are related by

32 D. Koschützki et al.

cB(v) =
∑

e∈Γ+(v)

cB(e) − (n− 1) =
∑

e∈Γ−(v)

cB(e) − (n− 1) (3.16)

for all v ∈ V .

Proof. Consider any shortest path connecting a pair s �= t ∈ V . It contributes
exactly 1

σst
to the betweenness of its vertices and edges. Summing the contribu-

tion of a path over all incoming (or outgoing) edges of a vertex v thus equals its
contribution to v itself if v ∈ V \ {s, t}, and 1

σst
otherwise. The sum of contribu-

tions of all shortest paths to edges incident to a common vertex v hence satisfies
the above relation, since v is (n−1) times the first (last) vertex of paths to some
vertex t (from some vertex s). ��

3.4.3 Reach

In 2004, Ron Gutman [266] published a new approach to shortest path com-
putation in hierarchical networks like road maps, for example. It is based on
employing Dijkstras algorithm or the A* algorithm alternatively on a select sub-
set of nodes. More specifically, only nodes having a high reach are considered.
The concept is defined as follows:

Definition 3.4.3. Given

– a directed graph G = (V,E) with a nonnegative distance function m : E → R+,
which is called reach metric

– a path P in G starting at node s and ending at node t
– a node v on P

the reach of v on P is defined as r(v, P) := min{m(s, v, P),m(v, t, P)}, the
minimum of the distance from s to v and the distance from v to t, following path
P according to the reach metric. The reach of v in G, r(v,G) is the maximum
value of r(v,Q) over all least-cost paths Q in G containing v.

When performing a Dijkstra-like shortest-path search towards a target t,
nodes are only enqueued if they pass test(v), where test(v) := r(v,G) ≥ m(P) ∨
r(v,G) ≥ d(v, t). That is v is only disregarded if its reach is too small for it to
lie on a least-cost path a distance m(P) – denoting the length of the computed
path from the origin s to v at the time v is to be inserted into the priority queue
– from s and at a straight-line distance d(v, t) from the destination. Note that
this requires a distance function that is consistent with reach metric, such that
on a path P from u to v, the path length m(P) = m(u, v, P) must be at least
d(u, v).

At first, this reach centrality does not seem to make sense in order to simplify
computation of shortest paths, since there is no obvious way of computing r(v,G)
for all nodes without solving an all pairs shortest path problem in the first place.
However, Gutman goes on to show that in the above algorithm, even an upper
bound for r(v,G) suffices to preserve guaranteed shortest paths. Naturally, using
an upper bound increases the number of nodes that need to be enqueued. The

3 Centrality Indices 33

author gives a sophisticated algorithm that yields practically useful bounds in a
more feasible time complexity. Unfortunately, both quality and complexity are
only empirically analyzed.

3.4.4 Traversal Sets

For G = (V,E) and an edge e ∈ E we call

Te = {(a, b) ∈ V × V | ∃p. p is a shortest path from a to b and contains e}

the edge’s traversal set – the set of source-destination pairs where for every
pair some shortest path contains this edge. Now, the size of the traversal set
would be an obvious measure for the importance of the edge. As claimed by
Tangmunarunkit et al. [540], this simple method may not yield the desired result
in some cases, so they propose the following different counting scheme.3

The traversal set Te can be seen as a set of new edges, connecting those pairs
of vertices that have shortest paths along e in the original graph. These edges
(together with the vertices they connect) naturally constitute a graph, which is
bipartite as we will now see.

a b

y z

Fig. 3.7. The traversal set graph is bipartite

Let (a, b) be any edge in the traversal set graph Te of edge e = (y, z). This
means that there is a shortest path p connecting a and b via e (cf. Figure 3.7).
Without loss of generality, assume that p has the form a− · · · − y − z − · · · − b.
Then, there cannot be an a− z path shorter than the a− y prefix of p, for else
the resulting path along a− · · · − z − · · · − b would be shorter than our shortest
path p. In the other direction, no y− b path may be shorter than our z− b suffix
of p. To summarize, a is closer to y, and b is closer to z. Let Y denote the set of
all vertices closer to y than to z and let Z denote the set of all vertices closer to
z. Thus, Y and Z form a partition of V . No two vertices belonging to the same
set can be connected by an edge in this graph since the shortest path connecting
them can never contain e. Thus, Te is naturally bipartite with regard to Y and
Z.
3 Both ways of counting yield values of different orders of magnitude for certain ex-

ample graphs. However, we have not been able to identify a case where one scheme
differentiates between two situations while the other does not. That is why we can
only rely on the experience of Tangmunarunkit et al (ibid.).

34 D. Koschützki et al.

An edge’s value is then defined as the size of a minimum vertex cover on the
bipartite graph formed by the traversal set:

Cts(e) = min{|H | | H is a vertex cover for Te}

Unlike the non-bipartite case, this is computable in polynomial time (less than
Θ(n3)) using a theorem by Kőnig and Egerváry [366, 173], which states that
the minimum size of a vertex cover equals the size of a maximum matching on
bipartite graphs.

In [540] this centrality index has been used to characterize a graph with
regard to its hierarchical organization. The authors determine the edge value
pattern of sample paths in the original graph. If a high fraction of paths shows
an up-down pattern of edge values, i.e., a paths begins with edges having a small
value, the value raises along the path and then drops again to low values, the
authors assume that this shows a high level of hierarchical organization of the
underlying graph. An example on which this assumption is intuitively true is
the graph of streets in a country: Some of them are only within cities, others are
connecting smaller suburbs and some are high-speed freeways. Most paths from
one location to another will follow streets that have low values at the beginning,
then the driver will use a freeway and at last will use inner-city streets again at
the end. This example shows that hierarchically organized networks may show
an up-down pattern in the edge value distribution on many paths but the reverse
will be hard to prove. This empirical finding should thus be treated with care.

3.5 Derived Edge Centralities

Historically, centrality indices were developed to analyze social networks. From
this application, the emphasis lay on the analysis of the most central persons in
social networks. This lead to a great number of different centrality indices for
vertices. Most centrality indices for edges, e.g., the shortest path betweenness
centrality, were only developed as a variant of the centrality index for vertices.
Here, we want to discuss two methods with which every given centrality index
for vertices can be transformed into a centrality index for edges.

3.5.1 Edge Centralities Derived from Vertex Centralities

One intuitive idea to derive an edge centrality from a vertex centrality is to apply
the vertex centrality to the edge graph that is corresponding to the network to
be analyzed:

Definition 3.5.1. The edge graph of G = (V,E) is G′ = (E,K) where K is
the set of all edges e = ((x, y), (y, z)) where (x, y), (y, z) ∈ E. That is, two
edges have a connection if they are adjacent to the same vertex y (with the first
one in- and the second outbound for directed graphs).

There are biased and unbiased centralities for vertices. Note that methods
that incorporate previous knowledge usually do this by assuming that a subset

3 Centrality Indices 35

of ‘root vertices’ is especially important. For details on personalization see Sec-
tion 5.2. Unlike the approaches described in there, an application on the edge
graph then needs a description of central edges.

The size of the edge graph may be quadratic in the size of the original graph.
For large graphs and computationally expensive methods this might well be a
hindrance.

There is another caveat. Some of the more advanced techniques for vertices
incorporate weighted edges, a feature that allows for more detailed models. How-
ever, in the edge graph these become weighted vertices, and there is no canonical
way to use this data.

Finally, there is a philosophical point to be made against this approach: The
vertex centralities described so far fall into the categories of degree, closeness
and betweenness centrality. On the edge graph, these concepts translate into
counting incident edges, closeness to other edges and position on paths between
pairs of edges. However, when modeling phenomena using networks, we tend to
have vertices representing entities, while edges describe relationships between
these. Most of the time, these relationships are meaningless without the entities
they connect. Therefore, none of the three mentioned categories seems to make
a lot of sense as a centrality measure for edges.

a

b c

a

b c

a

b c

Fig. 3.8. Edge graph example

As an illustrative instance, look at the evaluation of the stress centrality on
the left example graph in Figure 3.8. For a vertex x it is defined as the number
of shortest paths that use x and do not end in x. The straightforward translation
for an edge, say a, would be the number of shortest paths that use a, adding
up to three in this example. In the middle, you find the corresponding edge
graph. In contrast to the above, no shortest path (except those that end in a)
crosses the vertex a. Obviously, the edge graph does not lead to the natural edge
generalization of stress centrality. However, this natural generalization may be
attained using a different graph translation. We will call this construction the
incidence graph, and there is an illustrative instance on the right hand side of
Figure 3.8: Each edge e is split by a new ‘edge vertex’ that receives the link’s
name.

Definition 3.5.2. The incidence graph of G = (V,E) is

G′′ = (V ∪ E, {(v, e) | ∃w : e = (v, w) ∈ E} ∪ {(e, w) | ∃v : e = (v, w) ∈ E}.

36 D. Koschützki et al.

That is, a ‘real vertex’ and an ‘edge vertex’ become linked if they are incident in
the original graph.

We can now use a biased version of stress vertex betweenness (see Section 5.2
for details on how to personalize measures), which only takes into account ‘real
vertex’ pairs to measure the importance of ‘edge vertices’. This way, most vertex
measures may be translated into edge measures. As with the original centralities,
it remains to check if the measure we achieve does have a sensible semantics with
respect to the function of the network.

3.6 Vitality

Vitality measures are commonly used to determine the importance of vertices or
edges in a graph. Given an arbitrary real-valued function on G a vitality measure
quantifies the difference between the value on G with and without the vertex or
edge. The main motivation behind this idea is that most networks have some
quality that can be evaluated by a function on G: Imagine a transport network
with different capacities on the edges in which the goal is to transport as much as
possible of some good from some vertex s to another vertex t. The functionality
of a network for this goal can be described by the maximal possible flow in it
(see Section 2.2.3). The degree to which this quality is impaired by the loss of
an edge or vertex can be viewed as the extent to which this edge or vertex is
‘central’ for the network. A second example is a graph representing a mobile
communication network in which every vertex should be indirectly connected
to all others over as few switching points as possible. The quality of this graph
could be evaluated by its Wiener index, the sum over all distances in the graph
(see Section 3.6.2). Then, the vitality of a vertex or edge x denotes the loss of
this quality if x was removed from the network. More formally:

Definition 3.6.1 (Vitality Index). Let G be the set of all simple, undirected
and unweighted graphs G = (V,E) and f : G → be any real-valued function
on G ∈ G. A vitality index V(G, x) is then defined as the difference of the values
of f on G and on G without element x: V(G, x) = f(G) − f(G\{x}).

We will begin with a centrality index that is derived from the field of network
flow problems. After that, a new centrality index, the closeness vitality, is pre-
sented that might be useful for some applications. The next subsection presents
a new centrality index that is not a vitality index in the strict sense but the re-
lationship to vitality indices is strong. The last subsection presents a discussion
in how far the stress centrality presented in Section 3.4.1 can be interpreted as
a vitality index.

3.6.1 Flow Betweenness Vitality

In this subsection we present a vertex centrality based on network flows. More
precisely a measure for max-flow networks is presented which is similar to the

3 Centrality Indices 37

shortest-path betweenness described in Section 3.4.2 and makes the measure pro-
posed in Freeman et al. [229] concrete.4 As Stephenson and Zelen [533] observed,
there is no reason to believe that information in a communication network be-
tween a pair of vertices takes place only on the shortest path. Obviously, there are
applications where the centrality values computed by shortest path betweenness
leads to misleading results. Thus other paths have to be considered instead.

Taking up the example of communication networks, Freeman et al. assumed
information as flow and assigned with each edge a non-negative value repre-
senting the maximum of information that can be passed between its endpoints.
In extending the betweenness model to flow networks, a vertex u will be seen
as standing between other vertices. The goal is to measure the degree that the
maximum flow between those vertices depends on u.

Based on this idea we provide a concise definition of a vertex centrality based
on maximum flows. We call this centrality the max-flow betweenness vitality.
Note that the maximum-flow problem between a source vertex s and a target
vertex t was introduced in Section 2.2.3. For reasons of simplicity we further
assume G = (V,E) as a connected undirected network with non-negative edge
capacities. By fst we denote the objective function value of a maximum s-t-flow.
The value fst represents the maximal flow between s and t in G with respect to
the capacity constraints and the balance conditions. As indicated above, we are
now interested in the answer of the questions: How much flow must go over a
vertex u in order to obtain the maximum flow value? And how does the objective
function value change if we remove u from the network?

According to the betweenness centrality for shortest paths we define the
max-flow betweenness for a vertex u ∈ V by

cmf (u) =
∑

s,t∈V
u�=s,u�=t

fst>0

fst(u)
fst

(3.17)

where fst(u) is the amount of flow which must go through u. We determine
fst(u) by fst(u) = fst − f̃st where f̃st(u) is the maximal s-t-flow in G \ u. That
is, f̃st(u) is determined by removing u form G and computing the maximal
s-t-flow in the resulting network G \ u.

It is important to note, that this concept may also be applied to other net-
work flow problems, e.g., the minimum-cost maximum-flow problem (MCMF)
which may be viewed as a generalization of the max-flow problem. In a MCMF
network each edge has a non-negative cost value and a non-negative upper ca-
pacity bound. The objective is to find a maximum flow of minimum cost between
two designated vertices s and t. Applying the idea of measuring the vitality of
each vertex to MCMF networks yields a new meaningful vitality measure. For
further details relating to the MCMF problem see [6].

4 Note that the original definition in [229] is ambiguous, because it neglects that a
max-flow is not unique in general.

38 D. Koschützki et al.

3.6.2 Closeness Vitality

In analogy to the closeness centrality index presented in Section 3.3.2, we will
introduce a new centrality, based on the Wiener Index5 [583]. The Wiener Index
IW (G) of a graph G is defined as the sum over the distances of all vertex pairs:

IW (G) =
∑
v∈V

∑
w∈V

d(v, w) (3.18)

It is easy to see that the Wiener Index can also be written as the sum of the
closeness centrality values cC(v) (see Section 3.2) of all vertices v:

IW (G) =
∑
v∈V

1
cC(v)

(3.19)

We will now define a new centrality called closeness vitality cCV (x), defined
on both vertices and edges:

cCV (x) = IW (G) − IW (G \ {x}) (3.20)

Clearly, this new centrality is a vitality, with f(G) = IW (G). What does
this centrality index measure? Let the distance between two vertices represent
the costs to send a message from s to t. Then the closeness vitality denotes
how much the transport costs in an all-to-all communication will increase if the
corresponding element x is removed from the graph. With a small modification
we can also calculate the average distance d�◦(G) between two vertices:

d�◦(G) =
IW (G)
n(n− 1)

(3.21)

This variant computes how much the costs are increased on average if the
element x is removed from the graph.

There is one pitfall in the general idea of a closeness vitality: If x is a cut-
vertex or a bridge, respectively, the graph will be disconnected after the removal.
Then cCV (x) is −∞ for this element. We will discuss some ideas to deal with
the calculation of distance based centrality indices in Section 3.10.

3.6.3 Shortcut Values as a Vitality-Like Index

Although shortcut values are not a vitality index in the sense of Definition 3.6.1,
they are nevertheless based on the concept of vitality. Thus, we present shortcut
values here as a vitality-like index.

The shortcut value for edge e is defined by the maximum increase in distance
between any two vertices if e = (u, v) is removed from the graph. It is clear that
this maximum increase can only be found between vertices that use e for all of

5 Wiener itself named it ‘path number’ which is misleading. Subsequent articles quoted
it as ‘Wiener Index’ [592]

3 Centrality Indices 39

their shortest paths. We claim that the increase in path length is maximized for
the pair (u, v). This can easily be seen as follows. Clearly, the increase in distance
for the pair (u, v) equals the difference between the length of e and the length
of the shortest path p from u to v that does not use e. Further, other pair of
vertices will either use their old path with e replaced by p, or use an alternative
that is shorter than that.

Alternatively, the shortcut value can also be defined as the maximum relative
increase in distance when all edge lengths are non-negative. In this case, the
length of a shortest path using e is larger than the length of e, such that the
relative increase is also maximized for the pair (u, v).

The shortcut values for all edges can be computed näıvely by m = |E| many
calls to a single-source shortest-path routine. Section 4.2.2 introduces a more
efficient algorithm that is as efficient as computing |V | single-source-shortest
paths trees.

The notion of a shortcut value for an edge can be directly generalized to
vertices, as the maximum increase in distance if the vertex is deleted.

3.6.4 Stress Centrality as a Vitality-Like Index

Stress centrality can be viewed as a vitality-like measure: Stress centrality (Sec-
tion 3.4.1) counts the number of shortest paths containing a vertex or an edge
and can thus be interpreted as the number of shortest paths that are lost if the
vertex or edge is removed from the graph.

This sounds like a vitality measure but there is a crucial difference to the
definition of vitality: The number of lost shortest paths has to be measured rel-
atively to the number of shortest paths in the original graph. This is important,
because a simple example shows that the total number of shortest paths can
actually increase if a vertex or edge is removed from a graph (see Figure 3.9).

e

a) b)

Fig. 3.9. The figure shows that the removal of an edge can actually increase the number
of shortest paths in a graph

On the left side of Figure 3.9 (a) a small graph is shown with a total number
of 54 shortest paths, 8 of them containing edge e. After the removal of e we find
64 shortest paths in the resulting graph. Of course, 18 of them are now longer

40 D. Koschützki et al.

than before. When will the removal of an edge lead to an increase in the edge
number? In this example, edge e is a shortcut for some of the paths from or
to the two outermost vertices. As an example, we will take the path from the
left outermost vertex to the right outermost vertex. As soon as e is removed,
the distance between these nodes increases by one. Additionally, the number of
shortest paths between them increases by three because now there are four paths
with length 4 instead of only one with length 3 as before.

To interpret the stress centrality as a vitality measure we have to disregard
shortest paths that have an increased length after the removal of an element.
To formalize this idea we will give a definition of f(G \ {x}) that allows us to
interpret the stress centrality of a vertex or an edge as vitality.

Let f(G) be the number of all shortest paths in G and f(G\{v}) be defined
as following:

f(G\{v}) =
∑
s∈V

∑
t∈V

σst[dG(s, t) = dG\{v}(s, t)] (3.22)

The definition is given in Iverson-Notation, first described in [322], adapted by
Knuth in [365]. The term inside the parentheses can be any logical statement.
If the statement is true the term evaluates to 1, if it is false the term is 0. This
notation makes the summation much easier to read than the classical notation in
which logical statements are combined with the index of the sum. The definition
of f(G \ {v}) is thus defined as the sum over the number of all those shortest
paths that have the same length as the distance of s and t in G.

Analogously, let f(G\{e}) be defined as following:

f(G\{e}) =
∑
s∈V

∑
t∈V

σst(e)[dG(s, t) = dG\{e}(s, t)] (3.23)

Defined in this way, the stress centrality CS(x) of an element x is exactly the
difference between f(G) and f(G\{x}). It is important to note that the defini-
tion of f(G \ {x}) does not match the formal definition for a vitality measure.
Nonetheless, the similarity of both is evident and thus we will denote the stress
centrality as a vitality-like centrality index.

3.7 Current Flow

Shortest paths centralities rely on the crucial assumption that the flow of infor-
mation, or the transport of goods in general, takes place along shortest paths.
This section describes the current flow centralities, which are appropriate when
the flow of information or transport does not adhere to this shortest paths as-
sumption, but rather follows the behavior of an electrical current flowing through
an electrical network.

3.7.1 Electrical Networks

Current flow centralities are based on the flow of electrical current in a net-
work. We briefly describe currents in electrical networks below, and refer to [67]

3 Centrality Indices 41

for an extensive discussion. An electrical network is defined by an undirected,
connected, and simple graph G = (V,E), together with a conductance func-
tion c : E → . External electrical current enters and leaves this network,
which is specified by a supply function b : V → . Positive values of b rep-
resent entering current, negative values represent current that leaves the net-
work, and the amounts of entering and leaving currents are required to be equal:∑

v∈V b(v) = 0. Since it is useful to talk about the direction of a current in the
undirected graph, each edge e ∈ E is arbitrarily oriented to obtain an oriented
edge −→e , which results in an oriented edge set

−→
E .

A function x :
−→
E → is called a (electrical) current in N = (G = (V,E), c)

if ∑
(v,w)∈−→

E

x(v, w) −
∑

(w,v)∈−→
E

x(w, v) = b(v) for all v ∈ V

and ∑
e∈C

x(−→e) = 0

for every cycle C ⊆ E, that is, for every cycle in the undirected graph G. The
former equation is known as Kirchoff’s current law, and the latter as Kirchoff’s
potential law. Negative values of x are to be interpreted as current flowing against
the direction of an oriented edge.

Alternatively to the current x, an electrical flow can also be represented by
potentials. A function p : V → is a (electrical) potential if p(v) − p(w) =
x(v, w)/c(v, w) for all (v, w) ∈ −→

E . As an electrical network N = (G, c) has a
unique current x for any supply b, it also has a potential p that is unique up to
an additive factor [67].

Define the Laplacian matrix L = L(N) of the electrical network N to be

Lvw =

⎧⎪⎨
⎪⎩
∑

e
v c(e) if v = w
−c(e) if e = {v, w}
0 otherwise

for v, w ∈ V . Then, a potential p for an electrical network N = (G, c) and a
supply b can be found by solving the linear system Lp = b.

Finally, for the purpose of stating centralities based on electrical currents,
define a unit s-t-supply bst as a supply of one unit that enters the network at
s and leaves it at t, that is, bst(s) = 1, bst(t) = −1, and bst(v) = 0 for all
v ∈ V \ {s, t}.

3.7.2 Current-Flow Betweenness Centrality

Newman [443] first considered centrality measures based on electrical currents.
The current-flow betweenness of a vertex represents the fraction of unit s-t-
supplies that passes through that vertex, just as shortest paths betweenness

42 D. Koschützki et al.

counts the fraction of shortest s-t-paths through a vertex. For a fixed s-t pair,
the so-called throughput of a vertex v forms the current-flow equivalent of the
number of shortest paths σst(v) through v. More precisely, the throughput of a
vertex v ∈ V with respect to a unit s-t-supply bst is defined as

τst(v) =
1
2

(
−|bst(v)| +

∑
e
v

|x(−→e)|
)
.

Here, the term −|bst(v)| sets the throughput of a vertex with non-zero supply
equal to zero. For the current-flow betweenness, this ensures that a given unit
s-t-supply does not count for the throughput of its source and sink nodes s and
t. Further, the term 1

2 adjusts for the fact that the summation counts both the
current into and out of the vertex v.

Using the throughput definition, the current-flow betweenness centrality
cCB : V → for an electrical network N = (G = (V,E), c) is defined as

cCB(v) =
1

(n− 1)(n− 2)

∑
s,t∈V

τst(v),

for all v ∈ V , where 1/(n−1)(n−2) is a normalizing constant. Thus, current-flow
betweenness measures the fraction of throughput through vertex v, taken over
all possible s-t pairs. Since an electrical network has a unique current for a given
supply, current-flow betweenness is well defined.

3.7.3 Current-Flow Closeness Centrality

As with betweenness, the concept of closeness can also be extended from shortest
paths to electrical current. For shortest paths, closeness is a measure of the
shortest path distance from a certain vertex to all other vertices. For electrical
current, Brandes and Fleischer [94] propose a closeness centrality that measures
the distance between two vertices v and w as the difference of their potentials
p(v) − p(w). Their current-flow closeness centrality cCC(v) : V → is defined
as

cCC(v) =
n− 1∑

t�=v pvt(v) − pvt(t)

for all v ∈ V , where (n− 1) is again a normalizing factor. Here, the subscript vt
on the potentials means that the potential stems from a unit v-t-supply bvt.

Interestingly, Brandes and Fleischer [94] prove that current-flow closeness
centrality is equal to information centrality. Stephenson and Zelen [533] intro-
duced information centrality to account for information that flows along all paths
in a network, rather than just along shortest paths. Information centrality also
takes into account that certain paths carry a larger amount of information than
others. Mathematically, information centrality cI : V → is defined by

cI(v)−1 = nMvv + trace(M) − 2
n
,

where the matrixM is defined as (L+U)−1, with L being the Laplacian matrix,
and U being a matrix of the same size with all entries equal to one.

3 Centrality Indices 43

3.8 Random Processes

Sometimes, it may not be possible for a vertex to compute shortest paths be-
cause of a lack of global knowledge. In such a case, shortest paths based cen-
tralities make no sense, and a random-walk model provides an alternative way
of traversing the network. In a random walk something walks from vertex to
vertex, following the edges of the network. Reaching some vertex v, it chooses
one of the edges of v randomly to follow it to the next vertex.

The ‘travel’ of a bank note is a typical example for such a random walk.
Somebody gets a brand new bill from her bank and gives it to someone else she
encounters later on. Normally, nobody has any intention to give the bank note to
someone special and the same bill may get to the same person more than once.
For a marketing study, it could be of interest to find out the person or company
who mediates most of these transactions. In the next section, we will have a
closer look at the so-called random walk betweenness centrality that calculates
the hot spots of mediation in such transactions.

3.8.1 Random Walks and Degree Centrality

In the case of undirected graphs, an observation can be made that relates the
random-walk centrality with its complex definition to the most basic of all cen-
tralities, degree.

In the following theorem we prove that the stationary probabilities in the
canonical random walk on a graph are proportional to the degree of the vertex.

Theorem 3.8.1. pij = aij

d(i) =⇒ πi = d(i)

v∈V d(v)

Proof.

(πP)j =
∑
i∈V

πipij =
∑

i∈V d(i)pij∑
v∈V d(v)

=
∑

i∈V aij∑
v∈V d(v)

=
d(j)∑

v∈V d(v)
= πj

��

3.8.2 Random-Walk Betweenness Centrality

The random-walk betweenness centrality introduced in [443] is based on the
following idea. Suppose that vertex s has a message for vertex t but neither s
nor any other vertex knows how to send it to t on a shortest path. Each vertex
that gets the message for vertex t will just send it to any of its adjacent vertices
at random. We assume that the graph is unweighted, undirected and connected.

This so-called random walk is modeled by a discrete-time stochastic process.
At time 0, vertex s sends a message to one of its neighbors. If the message reaches
vertex t at any time it will not be forwarded any further and such be absorbed
by t. More formally, let mij describe the probability that vertex j sends the
message to vertex i in time k + 1 if it had it at time k:

44 D. Koschützki et al.

mij =
{ aij

d(j) if j �= t

0 else
(3.24)

where aij denotes the ij-th element of the adjacency matrix A (see Section 2.3)
and d(j) is the degree of vertex j. The resulting matrix is denoted by M . Let D
be the degree matrix of the graph:

dij =
{
d(i) if i = j
0 else (3.25)

The inverseD−1 of this matrix has the inverted vertex degrees on its diagonal,
and is zero elsewhere. Because of the special behavior of vertex t the matrix
notation M = A ·D−1 is not correct. Removing the t-th row and column of all
matrices yields a correct relation between the three matrices:

Mt = At ·D−1
t , (3.26)

where the index denotes the missing row and column, respectively.
Random-walk betweenness centrality considers all paths that a random walk

can use, as well as the probabilities that such paths are used. Thus, the question
arises how to compute the set of used paths, and how to compute the probability
of using a single one of these paths. To guide the reader on his way, we first discuss
how many different i − j paths of length r exist in a given graph, where i and
j are arbitrarily chosen vertices. It can easily be seen that the answer is (Ar)ij ,
where Ar denotes the rth power of A. However, we are not interested in the
number of random walks, but in the probability that a random walk of r steps,
that starts at s, ends in vertex j. This is given by the r-th power of Mt at row
j, column s, denoted by (M r

t)js. With this, the probability that the message is
sent to vertex i in step r + 1 is given by:(

M r+1
t

)
js

= m−1
ij (M r

t)js (3.27)

Now, we are interested in the probability that vertex j is sending a message
that is starting at s to vertex i, summing over all paths, beginning at length 0
to ∞.

Note that all entries in any matrix M r
t are values between 0 and 1, and thus

the sum over all paths is convergent (see Theorem 3.9.2):

∞∑
r=0

m−1
ij (M r

t)js = m−1
ij [(In−1 −Mt)−1]js (3.28)

where In−1 is the identity matrix of dimension n− 1.
Let s be a vector with dimension n − 1 that is 1 at vertex s and 0 else.

Writing equation 3.28 in matrix notation we get:

vst = D−1
t · (I −Mt)−1 · s (3.29)

= (Dt −At)−1 · s (3.30)

3 Centrality Indices 45

The vector vst describes the probability to find the message at vertex i
while it is on its random walk from vertex s to vertex t. Of course, some of
the random walks will have redundant parts, going from vertex a to vertex b
and back again to vertex a. It does not seem reasonable to give a vertex a high
centrality if most of the random walks containing it follow this pattern. Since
the network is undirected every cycle will be accounted for in both directions,
thus extinguishing each other. It is important to note that vst contains only the
net probability that disregards these cycles.

At this point, it becomes clear that random walks are closely related to
current flows in electrical networks, see Section 3.7. Indeed, consider an electrical
network N = (G, c) with unit edge weights c(e) = 1 for all e ∈ E. The unit edge
weights yield a Laplacian matrix L(N) = D − A, where D is the degree matrix
and A the adjacency matrix of the graph G. So, a potential pst in N for a unit
s-t-supply bst is a solution to the system Lpst = bst. The matrix L is not of full
rank, but this problem can be circumvented by fixing one potential, say for vertex
v, since potentials are unique up to an additive factor. Removing the rows and
columns corresponding to the fixed vertex v yields the matrices Lv, Dv, and Av,
where Lv has full rank and is thus invertible. We conclude that a potential pst for
the unit s-t-supply bst is given by pst = L−1

v bst = (Dv −Av)−1bst. The latter is
equivalent to Equation (3.29) above, which shows the relation between electrical
currents and potentials and random walks. For a more in-depth discussion of
this relation, we refer to [67].

Thus, the random-walk betweenness centrality cRWB : V → that we are
looking for is equivalent to current-flow betweenness, that is, cRWB(v) = cCB(v)
for all v ∈ V . Newman [443] and Brandes and Fleischer [94] describe this be-
tweenness equivalence in more detail.

3.8.3 Random-Walk Closeness Centrality

The same approach gives a kind of random-walk closeness centrality, where we
look for the mean first passage time (MFPT). A centrality based on MFPT is
introduced as Markov centrality in [580]. The mean first passage time mst is
defined as the expected number of nodes a particle or message starting at vertex
s has encountered until it encounters vertex t for the first time. It is given by
the following series:

mst =
∞∑

n=1

n · f (n)
st (3.31)

where f (n)
st denotes the probability that t is arrived for the first time after

exactly n steps. Let M denote the MFPT matrix in which mst is given for all
pairs s, t. M can be computed by the following equation:

M = (I − EZdg)D (3.32)

where I denotes the identity matrix, E is a matrix containing all ones, and
S is a diagonal matrix with:

46 D. Koschützki et al.

sij =
{ 1

π(v) if i = j
0 else

(3.33)

π denotes the stationary distribution of the random walk in the given graph
(see Section 2.4), i.e., the expected relative time a particle will be on vertex v
during the random walk. (This model assumes that the transport of the message
or particle to another nodes takes virtually no time.) The matrix Zdg agrees with
the so called fundamental matrix Z on the diagonal but is 0 everywhere else.
Matrix Z itself is given by:

Z =
(
I −A− 1nπT

)−1
(3.34)

where 1n is a column vector of all ones. The Markov centrality cM (v) is now
defined as the inverse of the average MFPT for all random walks starting in any
node s with target v (or vice versa):

cM (v) =
n∑

s∈V msv
(3.35)

This centrality can be defined for both directed and undirected networks. In
directed networks the centrality is meaningfully defined for both, the average
MFPT for random walks ending in v or leaving v. The expected number of steps
from v to all other vertices or from all other vertices to v might be interpreted
as a distance from v to all other vertices if a particle or information uses a
random walk. Thus, the Markov centrality of a vertex is a kind of a (averaged)
random-walk closeness centrality.

3.9 Feedback

This section presents centralities in which a node is the more central the more
central its neighbors are. Some of these measures like Katzs status index belong
to the oldest centralities presented in this chapter, others have their roots in the
analysis of social networks. A third group belongs to the big class of analysis
methods for the Web graph that is defined as the set of pages in the WWW
connected by Web links.

Note, that in the following subsections centrality indices will be denoted as
vectors. All feedback centralities are calculated by solving linear systems, such
that the notation as a vector is much more convenient than using a function
expressing the same. We just want to state here that all centrality indices pre-
sented here are fulfilling the definition of a structural index in Definition 3.2.1 if
cX(i) is defined as (cX)i.

3.9.1 Counting All Paths – The Status Index of Katz

One of the first ideas with respect to feedback centralities was presented by Leo
Katz [352] in 1953. It is based on the following observation: To determine the

3 Centrality Indices 47

importance or status of an individual in a social network where directed edges
(i, j) can, for example, be interpreted as “i votes for j”, it is not enough to
count direct votes. If, e.g., only two individuals k and l vote for i but all other
persons in the network vote either for k or for l, then it may be that i is the
most important person in the network – even if she got only two direct votes.
All other individuals voted for her indirectly.

The idea of Katz is therefore to count additionally all indirect votes where
the number of intermediate individuals may be arbitrarily large.

To take the number of intermediate individuals into account, a damping
factor α > 0 is introduced: the longer the path between two vertices i and j is,
the smaller should its impact on the status of j be.

The associated mathematical model is hence an unweighted (i.e. all weights
are 1) directed simple graph G = (V,E) without loops and associated adjacency
matrix A. Using the fact that (Ak)ji holds the number of paths from j to i with
length k we hence have as status of vertex i

cK(i) =
∞∑

k=1

n∑
j=1

αk(Ak)ji

if the infinite sum converges.
In matrix notation we have

cK =
∞∑

k=1

αk(AT)k1n. (3.36)

(Note that 1n is the n-dimensional vector where every entry is 1, cf. also Chapter
2.)

To guarantee convergence we have to restrict α.

Theorem 3.9.1. If A is the adjacency matrix of a graph G, α > 0, and λ1 the
largest eigenvalue of A, then

λ1 <
1
α

⇐⇒
∞∑

k=1

αkAk converges.

For the proof see, e.g., [208].
Assuming convergence we find a closed form expression for the status index

of Katz:

cK =
∞∑

k=1

αk(AT)k1n =
(
(I − αAT)−1

)
1n

or, in another form
(I − αAT)cK = 1n,

an inhomogeneous system of linear equations emphasizing the feedback nature
of the centrality: the value of cK(i) depends on the other centrality values cK(j),
j �= i.

48 D. Koschützki et al.

3.9.2 General Feedback Centralities

In this subsection three centralities that are well known in the area of social
network analysis are described.

Bonacich’s Eigenvector Centrality. In 1972 Phillip Bonacich introduced
a centrality measure based on the eigenvectors of adjacency matrices [71]. He
presented three different approaches for the calculation and all three of them
result in the same valuation of the vertices, the vectors differ only in a constant
factor. In the following we assume that the graph G to be analyzed is undirected,
connected, loop-free, simple, and unweighted. As the graph is undirected and
loop-free the adjacency matrix A(G) is symmetric and all diagonal entries are 0.

The three methods of calculation are:

a. the factor analysis approach,
b. the convergence of an infinite sequence, and
c. the solving of a linear equation system

In the following we describe all three approaches and call the results sa, sb,
and sc.

First, we explain the factor analysis approach. For a better understanding
think of the graph as a friendship network, where an edge denotes friendship
between the persons that are modeled as vertices. We want to define a centrality
that measures the ability to ‘find friends’. Thus, we are interested in a vector
sa ∈ n, such that the i-th entry sa

i should hold the interaction or ‘friendship’
potential of the vertex i. We declare that sa

i Sa
j should be close to aij and inter-

prete the problem as the minimization of the least squared difference. We are
therefore interested in the vector sa that minimizes the following expression:

n∑
i=1

n∑
j=1

(sa
i sa

j − aij)2 (3.37)

A second approach presented by Bonacich is based on an infinite sequence.
For a given λ1 �= 0 we define

sb0 = 1n and sbk = A
sbk−1

λ1
= Ak sb0

λk
1

.

According to Theorem 3.9.2, the sequence

sb = lim
k→∞

sbk = lim
k→∞

Ak sb0

λk
1

converges towards an eigenvector sb of the adjacency matrix A if λ1 equals
the largest eigenvalue.

3 Centrality Indices 49

Theorem 3.9.2. Let A ∈ n×n be a symmetric matrix and λ1 the largest eigen-
value of A, then

lim
k→∞

Ak sb0

λk
1

converges towards an eigenvector of A with eigenvalue λ1.

The third approach follows the idea of calculating an eigenvector of a linear
equation system. If we define the centrality of a vertex to be equal to the sum
of the centralities of its adjacent vertices, we get the following equation system:

sc
i =

n∑
j=1

aijs
c
j resp. sc = A ∗ sc (3.38)

This equation system has a solution only if det(A−I) = 0. We solve λs = As,
the eigenvalue problem for A, instead. According to Theorem 3.9.3, under the
given conditions for the graph defined above, exactly one eigenvector contains
entries that are either all positive or all negative. Therefore, we use the absolute
value of the entries of this eigenvector as the solution.

Theorem 3.9.3. Let A ∈ n×n be the adjacency matrix of an undirected and
connected graph. Then:

– The largest eigenvalue λ1 of A is simple.
– All entries of the eigenvector for λ1 are of the same sign and not equal to zero.

We have seen three methods for the calculation of the solution vectors
sa, sb, sc. These vectors differ only by a constant factor. The eigenvector cen-
trality is therefore (independently from the solution method) defined by:

cEV =
|sc|
||sc|| (3.39)

In general, whenever one has a graph with multiple, poorly spanned dense
clusters, no single eigenvector will do a satisfactory job of characterizing walk-
based centrality. This is because each eigenvector will tend to correspond to
loadings on a given cluster: Everett and Borgatti [194] explain this behavior via
their core-periphery model, where in the idealized case the core corresponds to
a complete subgraph and the nodes in the periphery do not interact with each
other. To measure how close a graph is to the ideal core-periphery structure (or,
in other words, how concentrated the graph is) they define the ρ-measure

ρ =
∑
i,j

aijδij

with δij = cicj , where aij are the components of the adjacency matrix and ci
measures the coreness of a node, ci ∈ [0, 1].

To determine the coreness of the nodes, the authors propose to minimize the
sum of squared distances of aij and the product cicj , which is nothing else than

50 D. Koschützki et al.

one approach to compute Bonacich’s Standard Centrality, see 3.37, hence nothing
else then computing the principal eigenvector of the adjacency matrix. Thus, only
the core-vertices get high c-values, nodes in smaller clusters not belonging to the
core will get values near zero.

According to [71], the eigenvector centrality can be applied to disconnected
graphs. In this case several eigenvectors have to be taken into account, one for
every component of the graph.

Hubbell Index. Even earlier than Bonacich, Charles Hubbell [319] suggested
in 1965 a centrality measure based on the solution of a system of linear equations.
His approach uses directed weighted graphs where the weights of the edges may
be real numbers. A graph may contain loops but has to be simple, too. Please
note that the adjacency matrix W (G) of a graph G is asymmetric and contains
real numbers instead of zeros and ones.

The general assumption of Hubbell’s centrality measure is similar to the
idea of Bonacich: the value of a vertex v depends on the sum of the values
of each adjacent vertex w multiplied with the weight of the incident edge e =
(v, w). Therefore, the following equation should hold: e = We. To make the
equation system solvable an additional parameter called the exogenous input or
the boundary condition E has to be added. This is a column vector containing
external information for every vertex. Hubbell suggested that if this boundary
condition is unknown E = 1 may be used.

The final equation is

s = E +Ws (3.40)

Through a simple transformation this equation can be rewritten into s =
(I−W)−1E. This system has a solution if the matrix (I−W) is invertible. Since

I
(I−W) =

∑∞
k=1W

k holds, this is identical to the problem of the convergence of
the geometric series. According to Theorem 3.9.1, the series converges against

I
(I−W) if and only if the largest eigenvalue λ1 of W is less than one.

The solution S of the equation system 3.40 is called Hubbell centrality cHBL

or Hubbell Index.

Bonacich’s Bargaining Centrality. Both feedback centralities presented so
far follow the idea of positive feedback: the centrality of a vertex is higher if it is
connected to other high-valued vertices. In 1987 Phillip Bonacich [72] suggested
a centrality which is not restricted to this concept. His idea supports both,
the positive influence as seen for example in communication networks, and the
negative influence as seen in bargaining situations. In bargaining situations a
participant is strong if he is connected to individuals having no other options
and are therefore weak.

Bonacich’s bargaining centrality is defined for unweighted and directed
graphs G = (V,E) without loops. Therefore the adjacency matrix is not neces-
sarily symmetric and contains only zeros and ones. The definition is

3 Centrality Indices 51

cα,β(i) =
n∑

j=1

(α+ β ∗ cα,β(j))aij

or, in matrix notation,

cα,β = α(I − βA)−1A1 (3.41)

As can easily be seen from the matrix notation, the parameter α is just a
scaling factor. Bonacich suggests a value such that

∑n
i=1 cα,β(i)2 = n holds.

Therefore only the second parameter β is of interest. This parameter may be
chosen either positive or negative, covering positive or negative influence, re-
spectively. The choice β = 0 leads to a trivial solution where the centrality
correlates with the degree of the vertices. A negative value for β may lead to
negative values for the centralities of the vertices. Additionally it follows from
the equation that the larger |β| the higher the impact of the structure of the
network on the centrality index is.

Equation 3.41 is solvable if the inverse of (I − βA) exists. According to
Theorem 3.9.4, this inverse exists if no eigenvalue of A is equal to 1.

Theorem 3.9.4. Let M ∈ n×x be a matrix and λ1, . . . , λn the eigenvalues of
M .

(I −M) is invertible ⇐⇒ ∀i ∈ {1 . . . n} λi �= 1 .

We call cα,β the bargaining centrality cBRG.
In this subsection three different approaches to measure feedback centrality

values where presented. They seem very similar but differences are for example
the coverage of weighted versus unweighted edges or positive versus negative
influence networks.

3.9.3 Web Centralities

Many people use the World Wide Web to search for information about interesting
topics. Due to the immense size of the network consisting of Web pages that are
connected by hyperlinks powerful search engines are required. But how does a
search engine decide which Web pages are appropriate for a certain search query?
For this, it is necessary to score the Web pages according to their relevance or
importance. This is partly done by a pure text search within the content of
the pages. Additionally, search engines use the structure of the network to rank
pages and this is where centrality indices come into play.6

In this section we discuss three main representatives of Web-scoring algo-
rithms:

6 Many concepts used for the ‘Web centralities’ are not new, especially the idea of
eigenvectors as a centrality was known long before the Web was established. We
decided to use this headline due to the interest of the last years into this topic.

52 D. Koschützki et al.

– PageRank
– Hubs & Authorities
– SALSA

Whereas PageRank only takes the topological structure into account, the
latter two algorithms combine the ‘textual importance’ of the Web page with its
‘topological importance’. Moreover, Hubs & Authorities (sometimes also called
HITS algorithm) assigns two score values to each Web page, called hub and
authority. The third approach, SALSA, discussed at the end of this section, is
in some sense a combination of the others.

In the following we assume that the Web is represented by a digraph G =
(V,E) with a one-to-one-correspondence between the Web pages and the vertices
v ∈ V as well as between the links and the directed edges (v, w) ∈ E.

The Model of a Random-Surfer. Before defining centrality indices suitable
for the analysis of the Web graph it might be useful to model the behavior of a
Web surfer. The most common model simulates the navigation of a user through
the Web as as a random walk within the Web graph.

In Section 2.4 the concept of random walks in graphs was introduced. The
Web graph G = (V,E) is formally defined as V the set of all Web pages pi

where an edge e = (pi, pj) ∈ E is drawn between two pages if and only if page pi

displays a link to page pj . As the Web graph is usually not strongly connected the
underlying transition matrix T is not irreducible and may not even be stochastic
as ‘sinks’ (vertices without outgoing links) may exist. Therefore, the transition
matrix T of the Web graph has to be modified such that the corresponding
Markov chain converges to a stationary distribution.

To make the matrix T stochastic we assume that the surfer jumps to a random
page after he arrived at a sink, and therefore we set all entries of all rows for
sinks to 1

n . The definition of the modified transition matrix T ′ is

t′ij =
{ 1

d+(i) , if (i, j) ∈ E
1
n , if d+(i) = 0

This matrix is stochastic but not necessarily irreducible and the computation
of the stationary distribution π′ may not be possible. We therefore modify the
matrix again to get an irreducible version T ′′. Let E = 1

n1T
n1n be the matrix

with all entries 1
n . This matrix can be interpreted as a ‘random jump’ matrix.

Every page is directly reachable from every page by the same probability. To
make the transition matrix irreducible we simply add this new matrix E to the
existing matrix T ′:

T ′′ = αT ′ + (1 − α)E

Factor α is chosen from the range 0 to 1 and can be interpreted as the
probability of either following a link on the page by using T ′ or performing a
jump to a random page by using E. The matrix T ′′ is by construction stochastic

3 Centrality Indices 53

and irreducible and the stationary distribution π′′ may be computed for example
with the power method (see Section 4.1.5).

By modifying E, the concept of a random jump may be adjusted for example
more towards a biased surfer. Such modifications leads directly to a personalized
version of the Web centrality indices presented here. For more details on this
topic, see Section 5.2.

PageRank. PageRank is one of the main ingredients of the search engine Google
[101] and was presented by Page et al. in 1998 [458]. The main idea is to score
a Web page with respect to its topological properties, i.e., its location in the
network, but independent of its content. PageRank is a feedback centrality since
the score or centrality of a Web page depends on the number and centrality of
Web pages linking to it

cPR(p) = d
∑

q∈Γ−
p

cPR(q)
d+(q)

+ (1 − d) , (3.42)

where cPR(q) is the PageRank of page q and d is a damping factor.
The corresponding matrix notation is

cPR = dPcPR + (1 − d)1n , (3.43)

where the transition matrix P is defined by

pij =
{ 1

d+(j) , if (j, i) ∈ E
0, otherwise

This is equivalent to pij = 1
d+(j)aji or P = D+A in matrix notation, where

D+ denotes the diagonal matrix where the i-th diagonal entry contains the out
degree d+(i) of vertex i.

Mostly, the linear system 3.43 is solved by a simple power (or Jacobi) itera-
tion:

ck
PR = dPck−1

PR + (1 − d)1n. (3.44)

The following theorem guarantees the convergence and a unique solution of
this iteration if d < 1.

Theorem 3.9.5. If 0 ≤ d < 1 then Equ. 3.43 has a unique solution c∗PR =
(1 − d) (In − dP)−1 1n and the solutions of the dynamic system 3.44 satisfy
limk→∞ ck

PR = c∗PR for any initial state-vector c0
PR.

A slightly different approach is to solve the following dynamic system

ck
PR = dPck−1

PR +
αk−1

n
1n , (3.45)

where αk−1 = ‖ck−1
PR ‖ − ‖dPck−1

PR ‖. The solutions of this system converge to
c∗
PR

‖c∗
PR‖ , the normalized solution of 3.44.

54 D. Koschützki et al.

Hubs & Authorities. Shortly after the presentation of PageRank, Klein-
berg introduced the idea of scoring Web pages with respect to two different
‘scales’ [359], called hub and authority, where

“A good hub is a page that points to many good authorities”

and

“A good authority is a page that is pointed to by many good hubs”.

In contrast to PageRank, Kleinberg proposed to include also the content of a
Web page into the scoring process. The corresponding algorithm for determining
the hub and authority values of a Web page consists of two phases, where the
first phase depends on the search query and the second phase deals only with
the link structure of the associated network.

Given the search query σ, in the first phase of the algorithm an appropriate
subgraph G[Vσ] induced by a set of Web pages Vσ ⊆ V is extracted, where

– Vσ should be comparably small,
– Vσ should contain many pages relevant for the search query σ, and
– Vσ should contain many important authorities.

This goal is achieved by using algorithm 1 to calculate Vσ, the set of relevant
Web pages.

Algorithm 1: Hubs & Authorities, 1st Phase

Output: Vσ, the set of relevant pages

Use a text based search engine for search query σ
Let Wσ be the list of results
Choose t ∈
Let W t

σ ⊂ Wσ contain the t pages ranked highest
Vσ := W t

σ

forall i ∈ W t
σ do

Vσ := Vσ ∪ Γ+(i)
if |Γ−(i)| ≤ r (r is a user-specified bound) then

Vσ := Vσ ∪ Γ−(i)

else
choose Γ−

r (i) ⊆ Γ−(i) such that |Γ−
r (i)| = r

Vσ := Vσ ∪ Γ−
r (i)

return Vσ

The second phase of the Hubs & Authorities algorithm consists of computing
the hub and authority scores for the Web pages in G[Vσ] which is done by taking
into account the mutual dependence between hubs and authorities. This mutual
dependence can be expressed by

cHA-H = AσcHA-A assuming cHA-A is known and (3.46)
cHA-A = AT

σ cHA-H assuming cHA-H is known, (3.47)

3 Centrality Indices 55

where Aσ is the adjacency matrix of G[Vσ].

Algorithm 2: Hubs & Authorities Iteration

Output: Approximations for cHA-H and cHA-A

c0
HA-A := 1n

for k = 1 . . . do
ck
HA-H := Aσck−1

HA-A

ck
HA-A := AT

σ ck
HA-H

ck
HA-H :=

ck
HA-H

‖ck
HA-H‖

ck
HA-A :=

ck
HA-A

‖ck
HA-A‖

Since neither cHA-H nor cHA-A are known, Kleinberg proposes an iterative
procedure including a normalization step shown in algorithm 2. He shows

Theorem 3.9.6. If Aσ is the adjacency matrix of G[Vσ] then lim
k→∞

ck
HA-A =

cHA-A and lim
k→∞

ck
HA-H = cHA-H, where cHA-A (cHA-H) is the first eigenvector of

AT
σAσ (AσA

T
σ)

Therefore, the given iterative procedure is nothing but solving the eigen-
vector-equations

λcHA-A = (AT
σAσ)cHA-A

λcHA-H = (AσA
T
σ)cHA-H

for the largest eigenvalue by a power iteration, see Section 4.1.5. The vector
cHA-A then contains the scores for the vertices with respect to their authority,
whereas cHA-H is the vector of hub scores.

SALSA. In 2000, Lempel and Moran developed the SALSA (Stochastic Ap-
proach for Link Structure Analysis) algorithm [387]. The authors introduced
this new Web-scoring approach to retain on the one hand the intuitive and
appealing idea of hubs and authorities and to provide the index on the other
hand with a higher robustness against the so called ‘TKC effect’. TKC stands
for Tightly-Knit Community, a small set of highly connected Web pages that in
some cases may cause the Hubs & Authorities algorithm to rank the correspond-
ing Web pages high even if they cover only a small (or no) aspect of the query.
To this end Lempel and Moran combined the ideas of PageRank with those of
Hubs & Authorities.

SALSA is a 3-phase algorithm where the first phase is identical to the first
phase of the Hubs & Authorities algorithm: it constructs the graph G[Vσ] for
a certain search query σ (see algorithm 1). In the second phase an artificial
bipartite undirected graph Ḡσ = (V h

σ ∪̇V a
σ , Ē) according to the algorithm 3 is

56 D. Koschützki et al.

built. For the third phase of SALSA recall that the PageRank algorithm works
with the transition matrix P which is the transposed adjacency matrix of the
underlying graph with the non-zero columns weighted by their column sums.
The Hubs & Authorities algorithm uses the product of the adjacency matrix Aσ

of G[Vσ] with its transpose. For SALSA the following matrices are defined:

Pσ: Aσ with each non-zero column weighted by its column sum
Rσ: Aσ with each non-zero row weighted by its row sum

Algorithm 3: SALSA, 2nd phase

Output: The bipartite undirected graph Ḡσ

forall i ∈ Vσ do
if d+(i) > 0 then

create a copy ih of i in V h
σ

if d−(i) > 0 then
create a copy ia of i in V a

σ

forall e = (i, j) ∈ E(G[Vσ]) do
create an undirected edge ē = {ih, ja} in Ē

Then the indices of the non-zero columns (rows) of RσP
T
σ correspond to the

elements in V h
σ and those of PT

σ Rσ to V a
σ . Define

Ah
σ: non-zero rows and columns of RσP

T
σ

Aa
σ: non-zero rows and columns of PT

σ Rσ

and use power iteration (see Section 4.1.5) to compute the SALSA authority
scores cS-A and the SALSA hub scores cS-H.

3.10 Dealing with Insufficient Connectivity

Most of the centrality-measures presented so far assume that the underlying
network is connected. If this is not the case, computing these centralities might be
a problem. For local centrality indices, such as degree centrality, this connectivity
assumption has no implications. However, this is not the case in general. In this
section, we investigate how to deal with disconnected undirected graphs and
weakly connected digraphs.

Consider, for example, the centralities based on shortest paths, such as the
measures based on eccentricity or closeness. Both centralities depend on the
knowledge of the shortest paths length d(u, v) between all pairs of vertices u and
v. For a disconnected undirected graph or a weakly connected digraph there are
pairs of vertices for which this length is not defined, and it is not clear how to
deal with them. A very naive approach would be to restrict the computation of
centrality values to subgraphs where the measure is well defined, i.e., to compute

3 Centrality Indices 57

the centrality measure for a vertex with respect to its component or strong
components in the case of digraphs. This approach is not very reasonable in
most applications. Consider, for example, a (directed) network consisting of two
(strong) components, where one is the complete graph of two vertices, and the
other one is the complete graph with n− 2 vertices, where n is large. Then the
above approach yields a closeness value of 1 for all vertices, but it seems obvious
that the vertices in the large component are much more central than the two
other vertices.

3.10.1 Intuitive Approaches

A common way to deal with this problem is to simply multiply the centrality
values with the size of the component, following the intuition that the vertices
in large components are more important. This seems to be reasonable, but it is
not proper unless the centrality measure behaves proportional to the size of the
network. Computational experiments of Poulin, Boily and Mâsse [481] indicate
that this is not the case for closeness and eccentricity.

Two other repair mechanisms use inverse path lengths, and arbitrary fixed
values for the distance between unconnected vertices. The latter possibility yields
an approximation of the desired centrality values. However, Botafogo et al. [88]
have shown that the result strongly depends on the fixed value k for the uncon-
nected vertex pairs. They defined a closeness-based measure for digraphs

cC′(u) =
∑

v∈V

∑
w∈V d(v, w)∑

v∈V d(u, v)
(3.48)

where the distance d(u, v) between any unconnected vertex pair u and v is set
to k. Clearly, an appropriate value for k is the number of vertices n, since the
maximum distance between any two vertices is at most n− 1. In the digraph of
Fig. 3.10 the vertex reaching all other vertices is w. For k = 2n w becomes the
vertex with highest centrality value but for k = n the vertex v which does not
reach w has highest value. This example shows that the choice of k will crucially
influence the order of centrality index values assigned to the vertices.

Moreover, the centrality based on the eccentricity does not make sense any-
more in non-connected graphs or in non-strongly connected digraphs. If the
fixed value is large enough, then it dominates all other distances in the graph
and yields centrality values that differ only in a very small range.

The usage of inverse path lengths makes it more difficult to interpret and
compare centrality values. By substituting the path lengths in the closeness
centrality by their inverses, and multiplying the sum of the inverse path length
by (n − 1), we do not obtain the closeness centrality but an entirely different
centrality measure.

3.10.2 Cumulative Nominations

A more sophisticated approach was presented by Poulin, Boily and Mâsse [481].
Their starting point is a measure that is very similar to Bonacich’s eigenvector

58 D. Koschützki et al.

11.0

w

v

6.64.52.5

7.6

(a) k = 2n

6.4

w

v

6.44.82.9

7.3

(b) k = n

Fig. 3.10. The centralities with respect to the measure due to Botafogo et al. are
shown. In each subfigure the vertex with the maximum value is colored grey

centrality. The cumulative number of nominations centrality cCNN(i) of vertex i
is defined to be the ith component of the l1-normalized eigenvector correspond-
ing to the largest eigenvalue of A+ I, where A is the adjacency matrix. In other
words, cCNN is the solution of (A+I−λ1I)p = 0 under the restriction

∑
i pi = 1.

Therefore, Bonacich’s centrality and the cumulative number of nominations only
differ by a constant. Poulin, Boily and Mâsse claim that their measure when com-
puted by an iterative algorithm converges faster and is more stable. Moreover,
their centrality may be applied to bipartite graphs as the graph corresponding
to (A+ I) is not bipartite, even if the graph for A is.

Due to the normalization, cCNN is not independent of the size of the connected
component. The more vertices the component contains, the smaller the absolute
centrality values become. But, using the approach of iteratively solving

ck+1
CNN = (A+ I)ckCNN,

the authors obtain the cumulative nominations index of centrality

cCN(i) = cCS(i) lim
k→∞

ckCNN(i),

where cCS(i) is the size of the component containing vertex i. This cumulative
nominations index assigns a value of 1 to a vertex having an average structural
position in a connected component.

In addition, the cumulated nominations growth rate centrality index of a ver-
tex is defined as

cCNG(i) = lim
k→∞

⎡
⎣
⎛
⎝∑

j

aijc
k
CNN(j) + ckCNN(i)

⎞
⎠ 1
ckCNN(i)

⎤
⎦ ,

and is the same for each vertex in a connected component.
This growth rate allows a comparison between different connected compo-

nents. To this end, the multi-component cumulated nominations centrality index
cMCN is defined by

3 Centrality Indices 59

cMCN(i) = cCN(i)cCNG(i),

and, to take into account the (relative) size of the components (vertices in larger
components should get a larger centrality score), we get the corrected multi-
component cumulated nominations centrality index

cCMCN(i) = cMCN(i)cCS(i).

The authors report on computational experiments which indicate that neither
cMCN nor cCMCN depends on n, hence both are centrality measures well suited
for networks consisting of more than one component.

3.11 Graph- vs. Vertex-Level Indices

This section makes a connection between the analysis of a network on the level
of vertices and on the level of the whole graph: Intuitively, it is clear that some
graphs are more centralized than others, i.e., some graphs are more depending
on the most central nodes than others. The star topology in which only one
vertex v is connected to all others but all other vertices are only connected to
v is a very centralized graph. A clique where every vertex is connected to every
other vertex is not centralized.

Freeman [226] has proposed a very general approach with which the central-
ization cX(G) of a graph G can be calculated in relation to the values of any
vertex centrality index cX :

cX(G) =
∑

i ∈ V cX(j)∗ − cX(i)
n− 1

(3.49)

where cX(j)∗ denotes the largest centrality value associated with any vertex in
the graph under investigation. This approach measures the average difference in
centrality between the most central point and all others. If normalized centralities
in the range of [0, 1] are used, the centralization value will also be in the range
[0, 1] (for further details to the normalization of centrality indices see Section 5.1).
Other obvious possibilities to generate a graph index from the distribution of
centrality indices are to compute the variance of the values or the maximal
difference between centrality values or any other statistics on these values.

On the other hand, also a structural index for graphs like the Wiener Index
(see Section 3.6.2) can be transformed into a structural index for vertices. We
want to formalize this idea by first defining a structural index for graphs.

Definition 3.11.1 (Structural Index for Graphs). Let G = (V,E) be a
weighted, directed or undirected multigraph. A function C : G → is called
a structural index for graphs if and only if the following condition is satisfied:
∀G′ � G : =⇒ C(G′) = C(G)).

Let f : V → be any structural index on the vertices of a graph and
let

⊙
be an operator on the set of all vertices V , like the summation over

60 D. Koschützki et al.

f(v), the average of all terms f(v), the calculation of the variance of all f(v) or
the maximum/minimum operator. Then

⊙
V =: f(G) defines a graph measure

because all structural indices on vertices are stable under isomorphism. On the
other hand, let f : G← be a structural index on the whole graph. Let G(v, d)
be the induced subgraph in which all vertices are contained with a hopping
distance to v of no more than d. I.e. G(v, d) = (V ′, E′) is a subset of G = (V,E)
with V ′ = {w ∈ V |d(w, v) ≤ d} and E′ = {(x, y) ∈ V ′ × V ′|(x, y) ∈ E}. Then
f(G(d, v)) defines at least a structural index on the vertices of this graph, and
in most cases also a reasonable vertex centrality index.

With this we can for example derive a centrality index from the Wiener Index
by constraining the calculation of it to subgraphs with a small diameter. Such an
approach might be useful in networks, where a message will not be transported
more than k steps before it dies, as it is the case in some peer-to-peer network
protocols. The new centrality index would then measure how well connected a
node is within the subgraph of diameter k. It should be noted, however, that
these subgraphs will be of different sizes in most cases. How centrality index
values can be compared with each other in this case is discussed in the section
about applying centrality indices to disconnected graphs (see Section 3.10).

3.12 Chapter Notes

Many interesting facts and a good overview of centrality indices used in social
network analysis are given in [569]. Hage and Harary carried some of these ideas
to a graph theoretic notation [269].

The notion of ‘centrality’ is very graphic and can be supported by adequate
visualization. An approach to visualizing centrality measures in an intuitive way
is [96] (see also Figure 1.2).

Closeness Centrality. Closeness centrality is often cited in the version of
Sabidussi [500]. Nonetheless, it was also mentioned by Shimbel [519] but not as
a centrality index. He defined the dispersion as the sum of all distances in a
graph. Thus, it is a synonym for the Wiener Index [583] (see also Section 3.6.2).
For directed graphs he defined the accessibility A(i, G) of G from vertex i as
A(i, G) =

∑
j∈V d(i, j) and the accessibility A−1(i, G) of vertex i from G as

A−1(i, G) =
∑

j∈V d(j, i). These two values are easily recognized as directed
version of the closeness centrality.

Betweenness Centrality. Betweenness centrality was introduced by Free-
man [226] and, independently, Anthonisse [32]. He was inspired by ideas of Bave-
las [50]. Bavelas was the first who tried to map psychological situations to graphs.
His main interest was the notion of centers (called ‘innermost regions’), but he
additionally discussed the following example: A group of Italian speaking women
is employed in a large garment factory. Only one of them speaks English. Bave-
las states: “It is difficult to imagine that the English speaking member would

3 Centrality Indices 61

be other than central with respect to communication which had of necessity to
pass through her (...) It is interesting in passing to point out the importance
of the English speaking member with respect to the group’s perception of the
‘outside’. (...)To the extent that policy decisions are based upon information, as
to the state of affairs ‘outside’, withholding information, coloring or distroting
it in transmission, or in other ways misrepresenting the state of the outside will
fundamentally affect these decisions.”

Both edge and vertex betweenness have found many applications in the analy-
sis of social networks (for example [457]), sexual intercourse networks (see [81]),
or terrorist networks (for example [111]). Another interesting application is a
graph clustering algorithm based on edge betweenness centrality [445]. Modern
techniques try to approximate the expected congestion in a communication net-
work using vertex betweenness [522]. According to this, the probability for con-
gestion can be decreased by scaling the bandwidth proportional to betweenness
centrality of a vertex. Nonetheless, betweenness centrality does not always scale
with the expected congestion, as indicated in [304] (see also the introduction to
Chapter 4).

The algorithmic complexity of this index is O(nm) for unweighted networks
and O(nm + n2 logn) for weighted networks (for details see Section 4.2. Since
this runtime makes it very hard to compute the betweenness centrality for graphs
bigger than approximately 10,000 vertices, one should consider alternatives. In
Section 4.3.1 we will discuss a way to approximate betweenness centrality. In
Section 5.2.1 a personalized variant of the betweenness centrality is presented.
A directed version of shortest-path betweenness centrality was first discussed
in [32] and reinvented in [578].

Feedback Centralities. As far as we know, the first paper that defined a feed-
back centrality (without actually naming it in this way) was published by Seeley
[510]. The status index of Katz was presented shortly afterwards in 1953 [352].
The index defined by Hubbell [319] and the approach presented by Bonacich [71]
focus on the idea of propagating strength, where a high value vertex influences
all vertices in his vicinity. All of these approaches solely focus on positive feed-
back relations. The first centrality index that covered negative feedback relation
was presented by Bonacich [72].

Web Centralities. We covered three Web centralities: PageRank ([101, 458]),
Hubs & Authorities ([359]) and SALSA ([387]). Especially for PageRank a whole
bunch of papers is available and therefore we just give three references ([61, 378,
379]) which are a good starting point for further investigations of the topic.

4 Algorithms for Centrality Indices

Riko Jacob,∗ Dirk Koschützki, Katharina Anna Lehmann, Leon Peeters,∗

and Dagmar Tenfelde-Podehl

The usefulness of centrality indices stands or falls with the ability to compute
them quickly. This is a problem at the heart of computer science, and much
research is devoted to the design and analysis of efficient algorithms. For example,
shortest-path computations are well understood, and these insights are easily
applicable to all distance based centrality measures. This chapter is concerned
with algorithms that efficiently compute the centrality indices of the previous
chapters.

Most of the distance based centralities can be computed by directly evaluat-
ing their definition. Usually, this näıve approach is reasonably efficient once all
shortest path distances are known. For example, the closeness centrality requires
to sum over all distances from a certain vertex to all other vertices. Given a ma-
trix containing all distances, this corresponds to summing the entries of one row
or column. Computing all closeness values thus traverses the matrix once com-
pletely, taking n2 steps. Computing the distance matrix using the fastest known
algorithms will take between n2 and n3 steps, depending on the algorithm, and
on the possibility to exploit the special structure of the network. Thus, comput-
ing the closeness centrality for all vertices can be done efficiently in polynomial
time. Nevertheless, for large networks this can lead to significant computation
times, in which case a specialized algorithm can be the crucial ingredient for an-
alyzing the network at hand. However, even a specialized exact algorithm might
still be too time consuming for really large networks, such as the Web graph. So,
for such huge networks it is reasonable to approximate the outcome with very
fast, preferably linear time, algorithms.

Another important aspect of real life networks is that they frequently change
over time. The most prominent example of this behavior is the Web graph.
Rather than recomputing all centrality values from scratch after some changes,
we prefer to somehow reuse the previous computations. Such dynamic algorithms
are not only valuable in a changing environment. They can also increase per-
formance for vitality based centrality indices, where the definition requires to
repeatedly remove an element from the network. For example, dynamic all-pairs
shortest paths algorithms can be used in this setting.

This chapter not only lists the known results, but also provides the ideas
that make such algorithms work. To that end, Section 4.1 recapitulates some
basic shortest paths algorithms, to provide the background for the more special-

∗ Lead authors

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 62–82, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

4 Algorithms for Centrality Indices 63

ized centrality algorithms presented in Section 4.2. Next, Section 4.3 describes
fast approximation algorithms for closeness centrality as well as for web central-
ities. Finally, algorithms for dynamically changing networks are considered in
Section 4.4.

4.1 Basic Algorithms

Several good text books on basic graph algorithms are available, such as Ahuja,
Magnanti, and Orlin [6], and Cormen, Leiserson, Rivest, and Stein [133]. This
section recapitulates some basic and important algorithmic ideas, to provide a
basis for the specific centrality algorithms in Section 4.2. Further, we briefly
review the running times of some of the algorithms to indicate how computa-
tionally expensive different centrality measures are, especially for large networks.

4.1.1 Shortest Paths

The computation of the shortest-path distances between one specific vertex,
called the source, and all other vertices is a classical algorithmic problem, known
as the Single Source Shortest Path (SSSP) problem.

Dijkstra [146] provided the first polynomial-time algorithm for the SSSP
for graphs with non-negative edge weights. The algorithm maintains a set of
shortest-path labels d(s, v) denoting the length of the shortest path found so-far
between s and v. These labels are initialized to infinity, since no shortest paths
are known when the algorithm starts. The algorithm further maintains a list P
of permanently labeled vertices, and a list T of temporarily labeled vertices. For
a vertex v ∈ P , the label d(s, v) equals the shortest-path distance between s and
v, whereas for vertices v ∈ T the labels d(s, v) are upper bounds (or estimates)
on the shortest-path distances.

The algorithm starts by marking the source vertex s as permanent and in-
serting it into P , scanning all its neighbors N(s), and setting the labels for the
neighbors v ∈ N(s) to the edge lengths: d(s, v) = ω(s, v). Next, the algorithm
repeatedly removes a non-permanent vertex v with minimum label d(s, v) from
T , marks v as permanent, and scans all its neighbors w ∈ N(v). If this scan
discovers a new shortest path to w using the edge (v, w), then the label d(s, w)
is updated accordingly. The algorithm relies upon a priority queue for finding
the next node to be marked as permanent. Implementing this priority queue as
a Fibonacci heap, Dijkstra’s algorithm runs in time O(m + n logn). For unit
edge weights, the priority queue can be replaced by a regular queue. Then, the
algorithm boils down to Breadth-First Search (BFS), taking O(m + n) time.
Algorithm 4 describes Dijkstra’s algorithm more precisely.

Often, one is not only interested in the shortest-path distances, but also in the
shortest paths themselves. These can be retraced using a function pred(v) ∈ V ,
which stores the predecessor of the vertex v on its shortest path from s. Start-
ing at a vertex v, the shortest path from s is obtained by recursively applying
pred(v), pred(pred(v)), . . . , until one of the pred() functions returns s. Since

64 R. Jacob et al.

Algorithm 4: Dijkstra’s SSSP algorithm

Input: Graph G = (V, E), edge weights ω : E → , source vertex s ∈ V
Output: Shortest path distances d(s, v) to all v ∈ V

P = ∅, T = V
d(s, v) = ∞ for all v ∈ V, d(s, s) = 0, pred(s) = 0
while P
= V do

v = argmin{d(s, v)|v ∈ T}
P := P ∪ v, T := T \ v
for w ∈ N(v) do

if d(s,w) > d(s, v) + ω(v,w) then
d(s, w) := d(s, v) + ω(v,w)
pred(w) = v

the algorithm computes exactly one shortest path to each vertex, and no such
shortest path can contain a cycle, the set of edges {(pred(v), v) | v ∈ V }, de-
fines a spanning tree of G. Such a tree, which need not be unique, is called a
shortest-paths tree.

Since Dijkstra’s original work in 1954 [146], many improved algorithms for
the SSSP have been developed. For an overview, we refer to Ahuja, Magnanti,
and Orlin [6], and Cormen, Leiserson, Rivest, and Stein [133].

4.1.2 Shortest Paths Between All Vertex Pairs

The problem of computing the shortest path distances between all vertex pairs
is called the All-Pairs Shortest Paths problem (APSP). All-pairs shortest paths
can be straightforwardly computed by computing n shortest paths trees, one
for each vertex v ∈ V , with v as the source vertex s. For sparse graphs, this
approach may very well yield the best running time. In particular, it yields a
running time of O(nm+ n2) for unweighted graphs.

For non-sparse graphs, however, this may induce more work than necessary.
The following shortest path label optimality conditions form a crucial observa-
tion for improving the above straightforward APSP algorithm.

Lemma 4.1.1. Let the distance labels d(u, v), u, v ∈ V, represent the length of
some path from u to v. Then the labels d represent shortest path distances if and
only if

d(u,w) ≤ d(u, v) + d(v, w) for all u, v, w,∈ V.
Thus, given some set of distance labels, it takes n3 operations to check if these
optimality conditions hold. Based on this observation and a theorem of War-
shall [568], Floyd [217] developed an APSP algorithm that achieves an O(n3)
time bound, see Algorithm 5. The algorithm first initializes all distance labels
to infinity, and then sets the distance labels d(u, v), for {u, v} ∈ E, to the edge
lengths ω(u, v). After this initialization, the algorithm basically checks whether
there exists a vertex triple u, v, w for which the distance labels violate the condi-
tion in Lemma 4.1.1. If so, it decreases the involved distance label d(u,w). This

4 Algorithms for Centrality Indices 65

check is performed in a triple for-loop over the vertices. Since we are looking
for all-pairs shortest paths, the algorithm maintains a set of predecessor indices
pred(u, v) that contain the predecessor vertex of v on some shortest path from
u to v.

Algorithm 5: Floyd-Warshall’s APSP algorithm

Input: Graph G = (V, E), edge weights ω : E → R
Output: Shortest path distances d(u, v) between all u, v ∈ V

d(u, v) = ∞, pred(u, v) = 0 for all u, v ∈ V
d(v, v) = 0 for all v ∈ V
d(u, v) = ω(u, v), pred(u, v) = u for all {u, v} ∈ E
for v ∈ V do

for {u, w} ∈ V × V do
if d(u, w) > d(u, v) + d(v, w) then

d(u, w) := d(u, v) + d(v, w)
pred(u,w) := pred(v,w)

4.1.3 Dynamic All-Pairs Shortest Paths

The dynamic variant of the APSP problem is particularly interesting in the con-
text of network analysis. The dynamic APSP problem consists of maintaining
an optimal set of shortest path distance labels d(u, v), u, v ∈ V , in a graph that
changes by edge insertions and deletions. Typically, one also wants to simulta-
neously maintain the corresponding shortest paths themselves, rather than only
the distances.

Thus, dynamic APSP’s are of importance for vitality related questions, such
as how shortest path distances change upon removing an edge. Since removing
a vertex from a graph results in the removal of its incident edges, vertex vitality
corresponds to sequences of edge removals in a dynamic APSP setting. Further,
the dynamic APSP is clearly applicable in the setting of the changing Web graph.

The challenge for the dynamic APSP problem is to do better than recomput-
ing a set of optimal distance labels from scratch after an update. Recently, Deme-
trescu and Italiano [142] described an algorithm for the dynamic APSP problem
on directed graphs with non-negative real-valued edge weights. Per edge inser-
tion, edge deletion, or edge weight change, their algorithm takes O(n2 log3 n)
amortized time to maintain the all-pairs shortest path distance labels. As the
algorithm and its analysis are quite involved, their discussion falls outside the
scope of this book. Instead, we refer to Demetrescu and Italiano [142] for details
on the dynamic APSP.

Further, Thorup [549] provides an alternative description of the algorithm,
as well as an improved amortized update time of O(n2(logn+ log2(m+ n/n))).
Moreover, the improved algorithm allows for negative weights. Roditty and

66 R. Jacob et al.

Zwick [496] argue that the dynamic SSSP problem on weighted graphs is as
difficult as the static APSP problem. Further, they present a randomized algo-
rithm for the dynamic APSP, returning correct results with very high probability,
with improved amortized update time for sparse graphs.

4.1.4 Maximum Flows and Minimum-Cost Flows

For flow betweenness (see Section 3.6.1), the maximum flow between a des-
ignated source node s and a designated sink node t needs to be computed.
The maximum-flow problem has been studied extensively in the literature, and
several algorithms are available. Some are generally applicable, some focus on
restricted cases of the problem, such as unit edge capacities, and others pro-
vide improvements that may have more theoretical than practical impact. The
same applies to minimum-cost flows, with the remark that minimum-cost flow
algorithms are even more complex.

Again, we refer to the textbooks by Ahuja, Magnanti, and Orlin [6], and
Cormen, Leiserson, Rivest, and Stein [133] for good in-depth descriptions of the
algorithms. To give an idea of flow algorithms’ worst-case running times, and
of the resulting impact on centrality computations in large networks, we briefly
mention the following algorithms. The preflow-push algorithm by Goldberg and
Tarjan [252] runs in O(nm log(n2/m)), and the capacity scaling algorithm by
Ahuja and Orlin [8] runs in O(nm logU), where U is the largest edge capac-
ity. For minimum cost flows, the capacity scaling algorithm by Edmonds and
Karp [172] runs in O((m logU)(m+ n logn)).

Alternatively, both maximum flow and minimum-cost flow problems can be
solved using linear programming. The linear program for flow problems has a
special structure which guarantees an integer optimal solution for any integer
inputs (costs, capacities, and net inflows). Moreover, specialized network simplex
algorithms for flow-based linear programs with polynomial running times are
available.

4.1.5 Computing the Largest Eigenvector

Several centrality measures described in this part of the book are based on the
computation of eigenvectors of a given matrix. This section provides a short in-
troduction to the computation of eigenvectors and eigenvalues. In general, the
problem of computing eigenvalues and eigenvectors is non-trivial, and complete
books are dedicated to this topic. We focus on a single algorithm and sketch
the main idea. All further information, such as optimized algorithms, or algo-
rithms for special matrices, are available in textbooks like [256, 482]. Further-
more, Section 14.2 (chapter on spectral analysis) considers the computation of
all eigenvalues of the matrix representing a graph.

The eigenvalue with largest absolute value and the corresponding eigenvector
can be computed by the power method, which is described by Algorithm 6. As
input the algorithm takes the matrix A and a start vector q(0) ∈ n with
||q(0)||2 = 1. After the k-th iteration, the current approximation of the largest

4 Algorithms for Centrality Indices 67

eigenvalue in absolute value and the corresponding eigenvector are stored in the
variables λ(k) and q(k), respectively.

Algorithm 6: Power method for computating the largest eigenvalue

Input: Matrix A ∈ n×n and vector ||q(0)||2 = 1

Output: Largest eigenvalue λ(k) in absolute value
and corresponding eigenvector q(k)

k := 1
repeat

z(k) := Aq(k−1)

q(k) := z(k)/||z(k)||2
λ(k) := (q(k))T Aq(k)

k := k + 1
until λ(k) and q(k) are acceptable approximations

The power method is guaranteed to converge if the matrix A ∈ n×n has
a dominant eigenvalue, i.e., |λ1| > |λi| for i ∈ {2 . . . n}, or, alternatively, if the
matrix A ∈ n×n is symmetric. The ratio |λ2|

|λ1| of the second largest and the
largest eigenvalues determines the rate of convergence, as the approximation
error decreases with O((|λ2|

|λ1|)
k). Further details on the power method can be

found in many textbooks on linear algebra, e.g., Wilkinson [587].
As the power method only requires matrix-vector multiplication, it is par-

ticularly suited for large matrices. For one iteration, it suffices to scan over the
matrix once. So, the power method can be reasonably efficient, even without
storing the complete matrix in main memory.

4.2 Centrality-Specific Algorithms

As already mentioned, most centrality indices can be computed reasonably
fast by directly following their definition. Nevertheless, improvements over this
straightforward approach are possible. This section elaborates on two algorith-
mic ideas for such an improvement.

4.2.1 Betweenness Centrality

Recall the definition of the betweenness centrality of a vertex v ∈ V :

cB(v) =
∑

s�=v �=t∈V

σst(v)
σst

,

with σst being the number of shortest paths between vertices s and t, and σst(v)
the number of those paths passing through vertex v. A straightforward idea
for computing cB(v) for all v ∈ V is the following. First compute tables with

68 R. Jacob et al.

the length and number of shortest paths between all vertex pairs. Then, for
each vertex v, consider all possible pairs s and t, use the tables to identify the
fraction of shortest s-t-paths through v, and sum these fractions to obtain the
betweenness centrality of v.

For computing the number of shortest paths in the first step, one can adjust
Dijkstra’s algorithm as follows. From Lemma 4.1.1, observe that a vertex v is on a
shortest path between two vertices s and t if and only if d(s, t) = d(s, v)+d(v, t).
We replace the predecessor vertices by predecessor sets pred(s, v), and each time
a vertex w ∈ N(v) is scanned for which d(s, t) = d(s, v) + d(v, t), that vertex is
added to the predecessor set pred(s, v). Then, the following relation holds:

σsv =
∑

u∈pred(s,v)

σsu.

Setting pred(s, v) = s for all v ∈ N(s), we can thus compute the number of
shortest paths between a source vertex s and all other vertices. This adjustment
can easily be incorporated into Dijkstra’s algorithm, as well as in the BFS for
unweighted graphs.

As for the second step, vertex v is on a shortest s-t-path if d(s, t) = d(s, v)+
d(v, t). If this is the case, the number of shortest s-t-paths using v is computed
as σst(v) = σsv · σvt. Thus, computing cB(v) requires O(n2) time per vertex v
because of the summation over all vertices s �= v �= t, yielding O(n3) time in
total. This second step dominates the computation of the length and the number
of shortest paths. Thus, the straightforward idea for computing betweenness
centrality has an overall running time of O(n3).

Brandes [92] describes a specific algorithm that computes the betweenness
centrality of all vertices in a graph in O(nm+n2 logn) time for weighted graphs,
and O(nm) time for unweighted graphs. Note that this basically corresponds
to the time complexity for the n SSSP computations in the first step of the
straightforward idea. We describe this betweenness algorithm below.

The pair-dependency of a vertex pair s, t ∈ V on an intermediate vertex v is
defined as δst(v) = σst(v)/σst, and the dependency of a source vertex s ∈ V on
a vertex v ∈ V as

δs•(v) =
∑
t∈V

δst(v).

So, the betweenness centrality of a vertex v can be computed as cB(v) =∑
s�=v∈V δs•(v).
The betweenness centrality algorithm exploits the following recursive rela-

tions for the dependencies δs•(v).

Theorem 4.2.1 (Brandes [92]). The dependency δs•(v) of a source vertex s ∈
V on any other vertex v ∈ V satisfies

δs•(v) =
∑

w:v∈pred(s,w)

σsv

σsw
(1 + δs•(w)).

4 Algorithms for Centrality Indices 69

Proof. First, extend the variables for the number of shortest paths and for the
dependency as follows. Define σst(v, e) as the number of shortest paths from s
to t that contain both the vertex v ∈ V and the edge e ∈ E. Further, define
the pair-dependency of a vertex pair s, t on both a vertex v and an edge e as
δst(v, e) = σst(v, e)/σst. Using these, we write

δs•(v) =
∑
t∈V

δst(v) =
∑
t∈V

∑
w:v∈pred(s,w)

δst(v, {v, w}).

Consider a vertex w for which v ∈ pred(s, w). There are σsw shortest paths from
s to w, of which σsv go from s to v and then use the edge {v, w}. Thus, given
a vertex t, a fraction σsv/σsw of the number of shortest paths σst(w) from s to
t �= w using w also uses the edge {v, w}. For the pair-dependency of s and t on
v and {v, w}, this yields

δst(v, {v, w}) =

⎧⎪⎨
⎪⎩
σsv

σsw
if t = w,

σsv

σsw
· σst(w)
σst

if t �= w.

Exchanging the sums in the above summation, and substituting this relation for
δst(v, {v, w}) gives

∑
w:v∈pred(s,w)

∑
t∈V

δst(v, {v, w}) =
∑

w:v∈pred(s,w)

⎛
⎝ σsv

σsw
+

∑
t∈V \w

σsv

σsw
· σst(w)
σst

⎞
⎠

=
∑

w:v∈pred(s,w)

σsv

σsw
(1 + δs•(w)).

��
The betweenness centrality algorithm is now stated as follows. First, compute

n shortest-paths trees, one for each s ∈ V . During these computations, also
maintain the predecessor sets pred(s, v). Second, take some s ∈ V , its shortest-
paths tree, and its predecessor sets, and compute the dependencies δs•(v) for
all other v ∈ V using the dependency relations in Theorem 4.2.1. For vertex s,
the dependencies can be computed by traversing the vertices in non-increasing
order of their distance from s. In other words, start at the leaves of the shortest-
paths tree, work backwardly towards s, and afterwards proceed with the next
vertex s. To finally compute the centrality value of vertex v, we merely have to
add all dependencies values computed during the n different SSSP computations.
The resulting O(n2) space usage can be avoided by immediately adding the
dependency values to a ‘running centrality score’ for each vertex.

This algorithm computes the betweenness centrality for each vertex v ∈ V ,
and requires the computation of one shortest-paths tree for each v ∈ V . More-
over, it requires a storage linear in the number of vertices and edges.

Theorem 4.2.2 (Brandes [92]). The betweenness centrality cB(v) for all v ∈
V can be computed in O(nm+n2 logn) time for weighted graphs, and in O(nm)
time for unweighted graphs. The required storage space is O(n+m).

70 R. Jacob et al.

Other shortest-path based centrality indices, such as closeness centrality,
graph centrality, and stress centrality can be computed with similar shortest-
paths tree computations followed by iterative dependency computations. For
further details on this, we refer to Brandes [92].

4.2.2 Shortcut Values

Another algorithmic task is to compute the shortcut value for all edges of a
directed graph G = (V,E), as introduced in Section 3.6.3. More precisely, the
task is to compute the shortest path distance from vertex u to vertex v in
Ge = (V,E \ {e}) for every directed edge e = (u, v) ∈ E. The shortcut value for
edge e is a vitality based centrality measure for edges, defined as the maximum
increase in shortest path length (absolute, or relative for non-negative distances)
if e is removed from the graph.

The shortcut values for all edges can be näıvely computed bym = |E| calls to
a SSSP routine. This section describes an algorithm that computes the shortcut
values for all edges with only n = |V | calls to a routine that is asymptotically as
efficient as a SSSP computation. To the best of our knowledge this is the first
detailed exposition of this algorithm, which is based on an idea of Brandes.

We assume that the directed graph G contains no negative cycles, such that
d(i, j) is well defined for all vertices i and j. To simplify the description we
assume that the graph contains no parallel edges, such that an edge is identified
by its endpoints.

The main idea is to consider some vertex u, and to execute one computation
to determine the shortcut values for all edges starting at u. These shortcut
values are defined by shortest paths that start at vertex u and reach an adjacent
vertex v, without using the edge (u, v). To compute this, define αi = d(u, i)
to be the length of a shortest path from u to i, the well known shortest path
distance. Further, let the variable τi ∈ V denote the second vertex (identifying
the first edge of the path) of all paths from u to i with length αi, if this is unique,
otherwise it is undefined, τi = ⊥. Thus, τi = ⊥ implies that there are at least
two paths of length αi from u to i that start with different edges. Finally, the
value βi is the length of the shortest path from u to i that does not have τi as
the second vertex, ∞ if no such path exists, or βi = αi if τi = ⊥.

Assume that the values αv, τv, and βv are computed for a neighbor v of u.
Then, the shortcut value for the edge (u, v) is αv if τv �= v, i.e., the edge (u, v)
is not the unique shortest path from u to v. Otherwise, if τv = v, the value βv is
the shortcut value for (u, v). Hence, it remains to compute the values αi, τi, βi

for i ∈ V . The algorithm exploits that the values αi, τi, βi obey some recursions.
At the base of these recursions we have:

αu = 0, τu = ∅, βu = ∞
The values αj obey the shortest paths recursion:

αj = min
i:(i,j)∈E

(
αi + ω(i, j)

)

4 Algorithms for Centrality Indices 71

To define the recursion for τj , it is convenient to consider the set of incoming
neighbors Ij of vertices from which a shortest path can reach j,

Ij = {i | (i, j) ∈ E and αj = αi + ω(i, j)} .

It holds that

τj =

⎧⎪⎨
⎪⎩
j if Ij = {u},
a if a = τi for all i ∈ Ij(all predecessors have first edge (u, a)),
⊥ otherwise.

The value τj is only defined if all shortest paths to vertex j start with the same
edge, which is the case only if all τi values agree on the vertices in Ij . For the
case τj = ⊥ it holds that βj = αj , otherwise

βj = min

⎧⎪⎨
⎪⎩ min

i:(i,j)∈E,
τi=τj

βi + ω(i, j) , min
i:(i,j)∈E,

τi �=τj

αi + ω(i, j)

⎫⎪⎬
⎪⎭ .

To see this, consider the path p that achieves βj , i.e., a shortest path p from
u to j that does not start with τj . If the last vertex i of p before j has τi = τj ,
the path p up to i does not start with τj , and this path is considered in βi and
hence in βj . If instead the path p has as the next to last vertex i, and τi �= τj ,
then one of the shortest paths from u to i does not start with τj , and the length
of p is αi + ω(i, j).

With the above recursions, we can efficiently compute the values αi, τi, βi.
For the case of positive weights, any value αi depends only on values αj that
are smaller than αi, so these values can be computed in non-decreasing order
(just as Dijkstra’s algorithm does). If all edge weights are positive, the directed
graph containing all shortest paths (another view on the sets Ij) is acyclic, and
the values τi can be in topological order. Otherwise, we have to identify the
strongly connected components of G, and contract them for the computation
of τ . Observe that βi only depends upon βj if βj ≤ βi. Hence, these values
can be computed in non-decreasing order in a Dijkstra-like algorithm. In the
unweighted case, this algorithm does not need a priority queue and its running
time is only that of BFS.

If there are negative edge weights, but no negative cycles, the Dijkstra-
like algorithm is replaced by a Bellman-Ford type algorithm to compute the
α values. The computation of τ remains unchanged. Instead of computing βi,
we compute β′i = βi − αi, i.e., we apply the shortest-paths potential to
avoid negative edge weights. This replaces all ω(i, j) terms with terms of the
form ω(i, j)−αj +αi ≥ 0, and hence the β′i values can be set in increasing order,
and this computes the βi values as well.

Note that the above method can be modified to also work in networks with
parallel edges. There, the first edge of a path is no longer identified by the
second vertex of the path, such that this edge should be used instead. We can
even modify the method to compute the shortcut value of the vertex v, i.e.,

72 R. Jacob et al.

the two neighbors of v whose distance increases most if v is deleted from the
network. To achieve this, negate the length and direction of the incoming edges,
run the above algorithm, and subtract the length of the outgoing edges from the
resulting βi values on the neighbors of v. In this way, for all pairs of neighbors
that can reach each other through v the difference between the direct connection
and the shortest alternative are computed.

Summarizing, we showed that in the above mentioned types of graphs all
shortcut values can be computed in the time of computing n times a SSSP.

4.3 Fast Approximation

Most of the centralities introduced in Chapter 3 can be computed in polynomial
time. Although this is a general indication that such computations are feasible, it
might still be practically impossible to analyze huge networks in reasonable time.
As an example, it may be impossible to compute betweenness centrality for large
networks, even when using the improved betweenness algorithm of Section 4.2.1.
This phenomenon is particularly prominent when investigating the web graph.
For such a huge graph, we typically do not want to invest more than a small
number of scans over the complete input.

With this limited computational investment, it might not be possible to de-
termine exact centrality values. Instead, the focus should be on approximate
solutions and their quality. In this setting, approximation algorithms provide a
guaranteed compromise between running time and accuracy.

Below, we describe an approximation algorithm for the calculation of close-
ness centrality, and then adapt this algorithm to an approximative calculation
for betweenness centrality. Next, Section 4.3.2 discusses approximation methods
for the computation of web centralities.

4.3.1 Approximation of Centralities Based on All Pairs Shortest
Paths Computations

We have argued above that the calculation of centrality indices can require a
lot of computing time. This also applies to the computation of all-pairs shortest
paths, even when using the algorithms discussed in Section 4.1.2. In many ap-
plications, it is valuable to instead compute a good approximate value for the
centrality index, if this is faster. With the random sampling technique intro-
duced by Eppstein and Wang [179], the closeness centrality of all vertices in a
weighted, undirected graph can be approximated in O(log n

ε2 (n logn+m)) time.
The approximated value has an additive error of at most εΔG with high proba-
bility, where ε is any fixed constant, and ΔG is the diameter of the graph. We
adapt this technique for the approximative calculation of betweenness central-
ity, yielding an approximation of the betweenness centrality of all vertices in a
weighted, directed graph with an additive error of (n − 2)ε, and with the same
time bound as above.

4 Algorithms for Centrality Indices 73

The following randomized approximative algorithm estimates the closeness
centrality of all vertices in a weighted graph by picking K sample vertices and
computing single source shortest paths (SSSP) from each sample vertex to all
other vertices. Recall the definition of closeness centrality of a vertex v ∈ V :

cC(v) =

∑
x∈V

d(v, x)

n− 1
. (4.1)

The centrality cC(v) can be estimated by the calculation of the distance of v to
K other vertices v1, . . . , vK as follows

ĉC(v) =
n

K · (n− 1)

K∑
i=1

d(v, vi). (4.2)

For undirected graphs, this calculates the average distance from v to K other
vertices, then scales this to the sum of distances to/from all other n vertices,
and divides by n−1. As both cC and ĉC consider average distances in the graph,
the expected value of ĉC(v) is equal to cC(v) for any K and v. This leads to the
following algorithm:

1. Pick a set of K vertices {v1, v2, . . . , vK} uniformly at random from V .
2. For each vertex v ∈ {v1, v2, . . . , vK}, solve the SSSP problem with that

vertex as source.

3. For each vertex v ∈ V , compute ĉC(v) =
n

K · (n− 1)

K∑
i=1

d(v, vi)

We now recapitulate the result from [179] to compute the required number of
sample vertices K that suffices to achieve the desired approximation. The result
uses Hoeffding’s Bound [299]:

Lemma 4.3.1. If x1, x2, . . . , xK are independent with ai ≤ xi ≤ bi, and μ =
E[
∑
xi/K] is the expected mean, then for ξ > 0

Pr

{∣∣∣∣∣
∑K

i=1 xi

K
− μ

∣∣∣∣∣ ≥ ξ
}

≤ 2 · e−2K2ξ2/ K
i=1(bi−ai)

2
. (4.3)

By setting xi to n·d(vi,u)
n−1 , μ to cC(v), ai to 0, and bi to nΔ

n−1 , we can bound
the probability that the error of estimating cC(v) by ĉC(v), for any vertex, is
more than ξ:

Pr

{∣∣∣∣∣
∑K

i=1 xi

K
− μ

∣∣∣∣∣ ≥ ξ
}

≤ 2 · e−2K2ξ2/ K
i=1(bi−ai)

2
(4.4)

= 2 · e−2K2ξ2/K(nΔ
n−1)2 (4.5)

= 2 · e−Ω(Kξ2/Δ2) (4.6)

74 R. Jacob et al.

If we set ξ to ε · Δ and use Θ(log n
ε2) samples, the probability of having an

error greater than ε ·Δ is at most 1/n for every estimated value.
The running time of an SSSP algorithm is O(n +m) in unweighted graphs,

and O(m + n logn) in weighted graphs, yielding a total running time of O(K ·
(n + m)) and O(K(m + n logn)) for this approach, respectively. With K set
to Θ(log n

ε2), this results in running times of O(log n
ε2 (n + m)) and O(log n

ε2 (m +
n logn)).

We now adapt this technique to the estimation of betweenness centrality in
weighted and directed graphs. As before, a set of K sample vertices is randomly
picked from V . For every source vertex vi, we calculate the total dependency
δvi•(v) (see Section 3.4.2) for all other vertices v, and sum them up. The esti-
mated betweenness centrality ĉB(v) is then defined as

ĉB(v) =
K∑

i=1

n

K
δvi•(v). (4.7)

Again, the expected value of ĉB(v) is equal to cB(v) for all K and v. For this
new problem, we set xi to n · δvi•, μ to cB(v), and ai to 0. The total dependency
δvi•(v) can be at most n − 2 if and only if v is the only responsible vertex
for all shortest paths leaving vi. Thus, we set bi to n(n − 2). Using the bound
(4.3.1), it follows that the probability that the difference between the estimated
betweenness centrality ĉB(v) and the betweenness centrality cB(v) is more than
ξ is

Pr {|ĉB(v) − cB(v)| ≥ ξ} ≤ 2e−2K2ξ2/K·(n(n−2))2 (4.8)

= 2 · e−2Kξ2/(n(n−2))2 (4.9)

Setting ξ to ε(n(n−2)), and the number of sample vertices K to Θ(log n/ε2),
the difference between the estimated centrality value and the correct value is at
most εn(n − 1) with probability 1/n. As stated above, the total dependency
δvi•(v) of a vertex vi can be calculated in O(n +m) in unweighted graphs and
in O(m + n logn) in weighted graph. With K set as above, this yields running
times of O(log n

ε2 (n + m)) and O(log n
ε2 (m + n logn)), respectively. Hence, the

improvement over the exact betweenness algorithm in Section 4.2.1 is the factor
K which replaces a factor n, for the number of SSSP-like computations.

Note that this approach can be applied to many centrality indices, namely
those that are based on summations over some primitive term defined for each
vertex. As such, those indices can be understood as taking a normalized average,
which makes them susceptible to random vertex sampling.

4.3.2 Approximation of Web Centralities

Most of the approximation and acceleration techniques for computing Web-
centralities are designed for the PageRank method. Therefore, in the following
we concentrate on this method. A good short overview of existing acceleration
PageRank techniques can be found in [378]. We distinguish the following accel-
eration approaches:

4 Algorithms for Centrality Indices 75

– approximation by cheaper computations, usually by avoiding matrix multipli-
cations,

– acceleration of convergence,
– solving a linear system of equations instead of solving an eigenvector problem,
– using decomposition of the Web-graph, and
– updating instead of recomputations.

We discuss these approaches separately below.

Approximation by Cheaper Computations. In [148] and [149], Ding et al.
report on experimental results indicating that the rankings obtained by both
PageRank and Hubs & Authorities are strongly correlated to the in-degree of
the vertices. This especially applies if only the top-20 query results are taken into
consideration. Within the unifying framework the authors propose, the ranking
by in-degree can be viewed as an intermediate between the rankings produced by
PageRank and Hubs & Authorities. This result is claimed to also theoretically
show that the in-degree is a good approximation of both PageRank and Hubs &
Authorities. This seems to be true for graphs in which the rankings of PageRank
and Hubs & Authorities are strongly related. However, other authors performed
computational experiments with parts of the Web graph, and detected only little
correlation between in-degree and PageRank, see, e.g., [463]. A larger scale study
confirming the latter result can be found in [380].

Acceleration of Convergence. The basis for this acceleration technique is
the power method for determining the eigenvector corresponding to the largest
eigenvalue, see Section 4.1.5.

Since each iteration of the power-method consists of matrix multiplication,
and is hence very expensive for the Web graph, the goal is to reduce the number
of iterations. One possibility was proposed by Kamvar et al. [340] and extended
by Haveliwala et al. [292]. In the first paper the authors propose a quadratic
extrapolation that is based on the so-called Aitken Δ2 method. The Aitken ex-
trapolation assumes that an iterate x(k−2) can be written as a linear combination
of the first two eigenvectors u and v. With this assumption, the next two iterates
are linear combinations of the first two eigenvectors as well:

x(k−2) = u + αv

x(k−1) = Ax(k−2) = u + αλ2v

x(k) = Ax(k−1) = u + αλ2
2v.

By defining

yi =

(
x

(k−1)
i − x(k−2)

i

)2

x
(k)
i − 2x(k−1)

i + x(k−2)
i

and some algebraic reductions (see [340]) we get y = αv and hence

76 R. Jacob et al.

u = x(k−2) − y. (4.10)

Note that the assumption that x(k−2) can be written as a linear combination of
u and v is only an approximation, hence (4.10) is also only an approximation
of the first eigenvector, which is then periodically computed during the ordinary
power method.

For the quadratic extrapolation the authors assume that an iterate x(k−2)

is a linear combination of the first three eigenvectors u, v and w. Using the
characteristic polynomial they arrive at an approximation of u only depending
on the iterates:

u = β2x
(k−2) + β1x

(k−1) + β0x
(k).

As in the Aitken extrapolation, this approximation is periodically computed
during the ordinary power method. The authors report on computational ex-
periments indicating that the accelerated power method is much faster than the
ordinary power method, especially for large values of the damping factor d, for
which the power method converges very slowly. As we discuss in Section 5.5.2,
this is due to the fact that d equals the second largest eigenvalue (see [290]),
hence a large value for d implies a small eigengap.

The second paper [292] is based on the ideas described above. Instead of
having a linear combination of only two or three eigenvector approximations, the
authors assume that x(k−h) is a linear combination of the first h+ 1 eigenvector
approximations. Since the corresponding eigenvalues are assumed to be the h-th
roots of unity, scaled by d, it is possible to find a simple closed form for the first
eigenvector. This acceleration step is used as above.

Kamvar et al. [338] presented a further idea to accelerate the convergence,
based on the observation that the speed of convergence in general varies consid-
erably from vertex to vertex. As soon as a certain convergence criteria is reached
for a certain vertex, this vertex is taken out of the computation. This reduces the
size of the matrix from step to step and therefore accelerates the power method.

The Linear System Approach. Each eigenvalue problem

Ax = λx

can be written as homogeneous linear system of equations

(A− λI)x = 0n.

Arasu et al. [33] applied this idea to the PageRank algorithm and conducted
some experiments with the largest strongly connected component of a snapshot
of the Web graph from 1998. The most simple linear system approach for the
PageRank system

(I − dP) cPR = (1 − d)1n

is probably the Jacobi iteration. But, as was mentioned in the description of the
PageRank algorithm, the Jacobi iteration is very similar to the power method,
and hence does not yield any acceleration.

4 Algorithms for Centrality Indices 77

Arasu et al. applied the Gauss-Seidel iteration defined by

c
(k+1)
PR (i) = (1 − d) + d

∑
j<i

pijc
(k+1)
PR (j) + d

∑
j>i

pijc
(k)
PR(j).

For d = 0.9, their experiments on the above described graph are very promising:
the Gauss-Seidel iteration converges much faster than the power iteration. Arasu
et al. then combine this result with the fact that the Web graph has a so-called
bow tie structure. The next paragraph describes how this structure and other
decomposition approaches may be used to accelerate the computations.

Decomposition Techniques. Since the Web graph is very large, and grows
larger every day, some researchers propose to decompose the graph. So, it is
possible to determine centrality values in smaller components of the Web in a
first step, and to adjust them to the complete Web graph in the second step, if
necessary. As noted above, Arasu et al. [33] exploit the observation of Broder
et al. [102] that the Web graph has a so-called bow tie structure, see Figure 4.1
and Section 15.3.2. Note that the Web crawl of Broder et al. was carried out in
1999, and it is not clear whether the web structure has changed since.

Fig. 4.1. Bow tie structure of the Web graph (from http://www9.org/w9cdrom/160/
160.html)

This structure may be used for the power method, but the authors claim that
it is especially well suited for the linear system approach, since the corresponding
link-matrix has the block upper triangular form:

78 R. Jacob et al.

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

P11 P12 P13 . . . P1K

0 P22 P23 . . . P2K

...
. . . P33 . . . P3K

...
. . .

. . .
...

0 0 PKK

⎞
⎟⎟⎟⎟⎟⎟⎠ .

By partitioning cPR in the same way, the large problem may be solved by the
following sequence of smaller problems

(I − dPKK) cPR,K = (1 − d)1nK

(I − dPii) cPR,i = (1 − d)1ni + d
K∑

j=i+1

PijcPR,j

A second approach was proposed by Kamvar et al. [339]. They investigated,
besides a smaller partial Web graph, a Web crawl of 2001, and found the following
interesting structure:

1. There is a block structure of the Web.
2. The individual blocks are much smaller than the entire Web.
3. There are nested blocks corresponding to domains, hosts and sub-

directories within the path.

Algorithm 7: PageRank exploiting the block structure: BlockRank

1. For each block I ,
compute the local PageRank scores cPR(I)(i) for each vertex i ∈ I

2. Weight the local PageRank scores
according to the importance of the block the vertices belongs to

3. Apply the standard PageRank algorithm
using the vector obtained in the first two steps

Based on this observation, the authors suggest the three-step-algorithm 7. In
the first and third step the ordinary PageRank algorithm can be applied. The
question is how to formalize the second step. This is done via a block graph B
where each block I is represented by a vertex, and an edge (I, J) is part of the
block graph if there exists an edge (i, j) in the original graph satisfying i ∈ I
and j ∈ J , where (i, j) may be a loop. The weight ωIJ associated with an edge
(I, J) is computed as the sum of edge weights from vertices i ∈ I to j ∈ J in the
original graph, weighted by the local PageRank scores computed from Step 1:

ωIJ =
∑

i∈I,j∈J

aijcPR(I)(i).

4 Algorithms for Centrality Indices 79

If the local PageRank vectors are normalized using the 1-norm, then the
weight matrix Ω = (ωIJ) is a stochastic matrix, and the ordinary PageRank
algorithm can be applied to the block graph B to obtain the block weights bI .

The starting vector for Step 3 is then determined by

c
(0)
PR(i) = cPR(I)(i)bI ∀ I,∀ i ∈ I.

Another decomposition idea was proposed by Avrachenkov and Litvak [367]
who showed that if a graph consists of several connected components (which
is obviously true for the Web graph), then the final PageRank vector may be
computed by determining the PageRank vectors in the connected components
and combining them appropriately using the following theorem.

Theorem 4.3.2.

cPR =
(
|V1|
|V | cPR(1),

|V2|
|V | cPR(2), . . . ,

|VK |
|V | cPR(K),

)
,

where Gk = (Vk, Ek) are the connected components, k = 1, . . . ,K and cPR(k) is
the PageRank vector computed for the kth connected component.

Finally, we briefly mention the 2-step-algorithm of Lee et al. [383] that is
based on the observation that the Markov chain associated with the PageRank
matrix is lumpable.

Definition 4.3.3. If L = {L1, L2, . . . , LK} is a partition of the states of a
Markov chain P then P is lumpable with respect to L if and only if for any
pair of sets L,L′ ∈ L and any state i in L the probability of going from i to L′

doesn’t depend on i, i.e. for all i, i′ ∈ L

Pr[Xt+1 ∈ L′|Xt = i] =
∑
j∈L′

pij = Pr[Xt+1 ∈ L′|Xt = i′] =
∑
j∈L′

pi′j .

The common probabilities define a new Markov chain, the lumped chain PL with
state space L and transition probabilities pLL′ = Pr[Xt+1 ∈ L′|Xt ∈ L].

The partition the authors use is to combine the dangling vertices (i.e., ver-
tices without outgoing edges) into one block and to take all dangling vertices
as singleton-blocks. This is useful since the number of dangling vertices is of-
ten much larger than the number of non-dangling vertices (a Web crawl from
2001 contained 290 million pages in total, but only 70 million non-dangling ver-
tices, see [339]). In a second step, the Markov chain is transformed into a chain
with all non-dangling vertices combined into one block using a state aggregation
technique.

For the lumped chain of the first step, the PageRank algorithm is used for
computing the corresponding centrality values. For the second Markov chain,
having all non-dangling vertices combined, the authors prove that the algorithm
to compute the limiting distribution consists of only three iterations (and one
Aitken extrapolation step, if necessary, see Section 4.3.2). The vectors obtained
in the two steps are finally concatenated to form the PageRank score vector of
the original problem.

80 R. Jacob et al.

4.4 Dynamic Computation

In Section 4.3.2, several approaches for accelerating the calculation of page im-
portance were described. In this section, we focus on the ‘on the fly’ computation
of the same information, and on the problem of keeping the centrality values up-
to-date in the dynamically changing Web.

4.4.1 Continuously Updated Approximations of PageRank

For the computation of page importance, e.g. via PageRank, the link matrix has
to be known in advance. Usually, this matrix is created by a crawling process.
As this process takes a considerable amount of time, approaches for the ‘on the
fly’ computation of page importance are of interest. Abiteboul et al. [1] describe
the ‘On-line Page Importance Computation’ (OPIC) algorithm, which computes
an approximation of PageRank, and does not require to store the possibly huge
link matrix.

The idea is based on the distribution of ‘cash.’ At initialization, every page
receives an amount of cash and distributes this cash during the iterative compu-
tation. The estimated PageRank can then be computed directly from the current
cash distribution, even while the approximation algorithm is still running.

Algorithm 8 describes the OPIC algorithm. The array c holds the actual
distribution of cash for every page, and the array h holds the history of the cash
for every page. The scalar g is just a shortcut for

∑n
i=1 h[i].

An estimate of the PageRank of page i is given by cPRapprox(i) = h[i]+c[i]
g+1 . To

guarantee that the algorithm calculates a correct approximation of PageRank,
the selection of the vertices is crucial. Abiteboul et al. discuss three strategies:
random, greedy, and circular. The strategies ‘randomly select a page’ and ‘cir-
cularly select all pages’ are obvious. Greedy selects the page with the highest
cash. For the convergence of the computation, the selection of the vertices has
to be fair, and this has to be guaranteed in all selection strategies.

After several iterations the algorithm converges towards the page impor-
tance information defined by the eigenvector for the largest eigenvalue of the
adjacency matrix of the graph. To guarantee the convergence of the calculation
similar concepts as for the random surfer (see Section 3.9.3) have to be applied.
These are, for example, the inclusion of a ‘virtual page’ that every page links
upon. The original work contains an adaptive version that covers link additions
and removals, and in some parts vertex additions and removals. This modified
adaptive OPIC algorithm is not discussed here, and can be found in [1].

4.4.2 Dynamically Updating PageRank

An interesting approach to accelerate the calculation of page importance lies
in the recomputation of the PageRank for the ‘changed’ part of the network
only. In case of the Web these changes are page additions and removals and link
additions and removals. For this idea, Chien et al. [124] described an approach
for link additions.

4 Algorithms for Centrality Indices 81

Algorithm 8: OPIC: On-line Page Importance Computation

Input: The graph G
Output: c and h: arrays for cash and history, g: sum of the history values

Initialization
for i ← 1 to n do

c[i] ← 1/n
h[i] ← 0

g ← 0

repeat
choose a vertex i from G
See text for vertex selection strategies

Update the history of i
h[i] ← h[i] + c[i]

Distribute the cash from i to children
for each child j of i do

c[j] ← c[j] + c[i]/d+[i]

Update the global history value
g ← g + c[i]

Reset cash for i
c[i] ← 0

until hell freezes over

The idea is founded on an observation regarding the perturbation of the
probability matrix P of the PageRank Markov chain for the Web graphW . This
perturbation, stemming from link additions, can be modeled by the relation
P = P̃ + E, where E is an error matrix and P̃ is the perturbed matrix. For
a single edge addition1, E contains only changes in some row i. Therefore, the
matrix P̃ differs from the original matrix P only in this row. Chien et al. observed
that the recomputation of PageRank is required for a small area around the
perturbation to achieve a good approximation for the modified Web graph W ′.
This small area is defined by the graph structure and can be extracted from
the original Web graph W . The extraction yields a graph G that contains the
new edge between i and j, and further every vertex and edge which are ‘near’
to the new edge. Additionally, the graph G contains a ‘supervertex’ that models
all vertices from the graph W that are not in G. A transition matrix T for the
graph G is constructed, and its stationary distribution τ is calculated.

For all vertices of the graph G (except for the supervertex), the stationary
distribution π̃ of the perturbed matrix P̃ can, therefore, be approximated by
the stationary distribution τ of the matrix T . For the vertices in W that are
not covered by G, the stationary distribution π̃ of P̃ is simply approximated by
the stationary distribution π of the matrix P . Several experiments showed that

1 In the original work a description for the single edge case is given and extended
towards multiple edge changes. We only cover the single edge case here.

82 R. Jacob et al.

this approach gives a good approximation for the modified Web graph W ′, and
that the computation time decreases due to the computation of the stationary
distribution of the smaller matrix T instead of P̃ .

5 Advanced Centrality Concepts

Dirk Koschützki,∗ Katharina Anna Lehmann,∗ Dagmar Tenfelde-Podehl,
and Oliver Zlotowski

The sheer number of different centrality indices introduced in the literature, or
even only the ones in Chapter 3, is daunting. Frequently, a new definition is
motivated by the previous ones failing to capture the notion of centrality of
a vertex in a new application. In this chapter we will discuss the connections,
similarities and differences of centralities. The goal of this chapter is to present an
overview of such connections, thus providing some kind of map of the existing
centrality indices. For that we focus on formal descriptions that hold for all
networks. However, this approach has its limits.

Usually such approaches do not consider the special structure of the network
that might be known for a concrete application, and it might not be able to
convey the intuitive appeal of certain definitions in a concrete application. Nev-
ertheless we consider such an approach appropriate to investigate the abstract
definitions of different centrality indices. This is in a certain contrast to some of
the literature, that only intuitively justifies a new definition of a centrality index
on small example graphs.

Such connection between different definitions have been studied before,
though usually not in a mathematical setting. One typical example is the work
by Holme [304]. He considers a connection of betweenness centrality and con-
gestion of a simulated particle hopping network. The particles are routed along
shortest paths, but two particles are not allowed to occupy the same vertex. He
investigates two policies of dealing with this requirement, namely that a particle
waits if the next scheduled vertex is occupied, thus creating the possibility of
deadlocks. Alternatively the particles can be allowed to continue their journey
on a detour. He finds that such a prediction is only possible if the total number
of particles in the network is small. Thus shortest-path betweenness for the ap-
plication of the particle hopping model is the wrong choice, as it fails to predict
congestion. In retrospect this is not really surprising because the definition of
betweenness does not account for one path being blocked by another path, thus
assuming that the particles do not interfere with each other. In particular the
possibility of spill-backs as a result of overcrowded vertices is well known for car
traffic flow on road networks, as for example addressed by the traffic-simulation
presented by Gawron in [242]. Nagel [437] gives a more general overview of traffic
considerations.

∗ Lead authors

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 83–111, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

84 D. Koschützki et al.

Unfortunately, the only general lesson to be learned from this is that it does
matter which precise definition of centrality one uses in a concrete application.
This sheds another light on our attempts to classify centrality indices, namely
to help identify the ‘right’ centrality index for a particular application. This
is perhaps not possible in general, just because we have no idea what kind of
applications might be of interest, and how the network is constructed. However,
for a concrete application the considerations here might give valuable ideas on
how to model the situation precisely or as a reasonable approximation.

In Section 5.1 we start with some general approaches to normalize centrality
indices. Many of these techniques are so general that they can be applied to all
indices presented in Chapter 3. We will differentiate between approaches that
facilitate the comparison of centrality values within the same graph and between
different graphs.

We then consider the possibility to modify a centrality index by letting it
focus on a certain subset of vertices. This set can, e.g., be a subset of Web
pages that a Web surfer is most interested in. With such a subset a ranking
can be personalized to the interests of an user. This idea of personalization is
explained in more detail in Section 5.2. As in the case of normalization some
of the techniques are virtually applicable to all centrality indices presented in
Chapter 3, whereas others are designed especially for only one centrality index.

An informal approach to structure the wide field of centrality indices pre-
sented in this book is given in Section 5.3. For that we dissect these indices into
different components, namely a basic term, a term operator, personalization,
and normalization and thereby we define four categories of centrality indices.
This approach finally leads to a flow chart that may be used to ‘design’ a new
centrality index.

Section 5.4 elaborates on fundamental properties that any general or applica-
tion specific centrality index should respect. Several such properties are proposed
and discussed, resulting in different sets of axioms for centrality indices.

Finally, in Section 5.5 we discuss how centrality indices react on changes
on the structure of the network. Typical examples are experimentally attained
networks, where a new experiments or a new threshold changes the valuation or
even existence of elements, or the Web graph, where the addition of pages and
links happens at all times. For this kind of modifications the question of stability
of ranking results is of interest and we will provide several examples of centrality
indices and their reactions on such modifications.

5.1 Normalization

In Chapter 3 we saw different centrality concepts for vertices and edges in a
graph. Many of them were restricted to the nonnegative reals, and some to the
interval [0, 1], such as the Hub- & Authority-scores which are obtained using
normalization with respect to the Euclidean norm.

The question that arises is what it means to have a centrality of, say, 0.8 for
an edge or vertex? Among other things, this strongly depends on the maximum

5 Advanced Centrality Concepts 85

centrality that occurs in the graph, on the topology of the graph, and on the
number of vertices in the graph. In this section we discuss whether there are
general concepts of normalization that allow a comparison of centrality scores
between the elements of a graph, or between the elements of different graphs.
Most of the material presented here stems from Ruhnau [499] and Möller [430].

In the following, we restrict our investigations to the centrality concepts of
vertices, but the ideas can be carried over to those for edges.

5.1.1 Comparing Elements of a Graph

We start by investigating the question how centrality scores, possibly produced
by different centrality concepts, may be compared in a given graph G = (V,E)
with n vertices. To simplify the notation of the normalization approaches we
will use here a centrality vector instead of a function. For any centrality cX ,
where X is a wildcard for the different acronyms, we will define the vector cX

where cX i = cX(i) for all vertices i ∈ V . Each centrality vector cX may then
be normalized by dividing the centrality by the p-norm of the centrality vector

‖cX‖p =

{
(
∑n

i=1 |cX i|p)1/p
, 1 ≤ p <∞

maxi=1,...,n{|cX i|}, p = ∞

to produce centrality scores cX i ≤ 1.
The main difference between the p-norm for p <∞ and p = ∞ (the maximum

norm) is that, when normalizing using p = ∞, the maximum centrality score
in the graph is 1, and this value is attained for at least one vertex. Therefore,
the normalization using the maximum norm yields a ‘relative’ centrality for each
vertex in a graph. Note that this normalization is not appropriate for comparing
vertices in different graphs, since the value of 1 (or −1, if negative values are
allowed) is attained in each graph, independent of its topology.

For p < ∞, the centrality concepts that may produce negative centrality
scores (e.g. Bonacich’s bargaining centrality, see Section 3.9.2) have to be treated
in a special way. Möller [430] proposes to separate the negative and positive
components:

c′
X i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cX i/
(∑

j:cX j>0 |cX j |p
)1/p

, cX i > 0,

0, cX i = 0,

cX i/
(∑

j:cX j<0 |cX j |p
)1/p

, cX i < 0.

Taking p = 1, this means (for non-negative centralities) that each of the vertices
is assigned their associated percentage of centrality within a graph. It might
be worth discussing whether a similar approach is reasonable when using the
maximum norm – or whether one should normalize using the maximum value
instead of the maximum absolute value. The latter would have the advantage
that in each graph we would obtain a 1 as the maximal normalized centrality
value.

86 D. Koschützki et al.

A normalization with the p-norm is in general not appropriate for comparing
vertices of different graphs. We will see that the Euclidean norm (p = 2) forms
an exception for eigenvector centralities in that the maximal value that can be
attained is independent of the number of vertices, see the end of Section 5.4.2.

5.1.2 Comparing Elements of Different Graphs

When vertices in different graphs have to be compared, the varying size of the
graphs can be problematic. Let Gn be the set of connected graphs G = (V,E)
with n vertices. Freeman [227] proposed to define the point-centrality

c′′
X i =

cX i

c∗
X

, (5.1)

where c∗
X = maxG∈Gn maxi∈V (G) cX i is the maximum centrality value that a

vertex can obtain taken over all graphs with n vertices.
Using the point-centrality c′′

X i, the maximum value 1 is always attained by at
least one vertex in at least one graph of size n. Thus, a comparison of centrality
values in different graphs is possible. Unfortunately, this is often only possible in
theory, since the determination of c∗

X is not trivial in general, and even impossi-
ble for some centrality concepts. Consider, for example, the status-index of Katz
(see Section 3.9.1), where the centrality scores are related to the chosen damping
factor. Theorem 3.9.1 states that the damping factor α is itself strongly related
to the maximum eigenvalue λ1 of the adjacency matrix. Hence, it is not clear
that a feasible damping factor for the graph under investigation is also feasible
for all other graphs of the same size.

Möller provides a nice example with the following two adjacency matrices:

A1 =
(

0 1
0 0

)
, A2 =

(
0 1
1 0

)
.

Since Ak
1 is the zero matrix for k ≥ 2, convergence is guaranteed for any α ∈

]0, 1]. If we choose the maximum possible value α = 1, then the infinite sum∑∞
k=1 α

kAk
2 does not converge, since it is equal to limK→∞

∑K
k=1 121T

2 . This
example shows that it is not clear which damping factor to choose in order to
determine the value c∗

K (especially if we have to do that for different n).
Nevertheless, there are centrality concepts that allow the computation of c∗

X .
A very simple example is the degree centrality. It is obvious that in a simple,
undirected graph with n vertices the maximum centrality value a vertex can
obtain (with respect to degree centrality) is n−1. Another example is the shortest
paths betweenness centrality (s. Section 3.4.2): The maximum value any vertex
can obtain is given in a star with a value of n2−3n+2

2 [227].
Further, the minimum total distance from a vertex i to all other vertices is

attained when i is incident to all other vertices, that is, when i has maximum
degree. So, it is clear that for the closeness centrality (see Section 3.2) we have
c∗

C = (n− 1)−1.

5 Advanced Centrality Concepts 87

Möller shows that, in addition, the eccentricity centrality as well as the Hubs
& Authorities centrality allow the calculation of the value c∗

X . For the eccentric-
ity centrality we just note that a vertex with maximum degree has an eccentricity
value of 1 and all other vertices have smaller eccentricity values, hence c∗

E = 1.
Similarly, the maximum values for hub- and authority centrality values (central-
ity vectors are assumed to be normalized using the Euclidean norm) are 1 and
they are attained by the center of a star (either all edges directed to the center
of the star or all edges directed away from the center).

Shortest-path betweenness centrality and the Euclidean normalized eigen-
vector centrality provide other, more sophisticated, examples, see, e.g., Ruhnau
[499]: These two centralities have the additional property that the maximum
centrality score of 1 is attained exactly for the central vertex of a star. This
property is useful when comparing vertices of different graphs, and is explained
in more detail in the Section 5.4.2.

Finally we note that Everett, Sinclair and Dankelmann found an expression
for the maximum betweenness in bipartite graphs, see [195].

5.2 Personalization

The motivation for a personalization of centrality analysis of networks is easily
given: Imagine that you could configure your favorite Web search engine to order
the WWW according to your interests and liking. In this way every user would
always get the most relevant pages for every search, in an individualized way.

There are two major approaches to this task: The first is to change weights
on the vertices (pages) or edges (links) of the Web graph with a personalization
vector v. The weights on vertices can describe something like the time spent
each day on the relevant page and a weight on the edge could describe the
probability that the represented link will be used. With this, variants of Web-
centrality algorithms can be run that take these personal settings into account.
The other approach is to choose a ’rootset’ R ⊆ V of vertices and to measure
the importance of other vertices and edges relative to this rootset.

We will see in Section 5.3 that these two approaches can be used as two
operators. The first approach changes the description of the graph itself and the
corresponding operator is denoted by Pv . Then the corresponding term for each
vertex (or edge) is evaluated on the resulting graph. The second personalization
approach chooses a subset of all terms that is given by the rootset R. This
operator is denoted by PR.

We will first discuss personalization approaches for distance and shortest
paths based centralities and then discuss approaches for Web centralities.

5.2.1 Personalization for Distance and Shortest Paths Based
Centralities

All centralities that were presented in Chapter 3 rank every vertex relative to
all other vertices in the graph. In this subsection we will be concerned with

88 D. Koschützki et al.

variants of these centralities that determine the relative importance of vertices
with respect to a set R of root vertices. R is chosen such that the vertices in R
are assumed to be important and the question is how all other vertices should
be ranked in importance with respect to R. The approach presented by White
and Smith in [580] is very general and deserves some attention.

Let c(v) be some centrality index on vertices. Then, c(v|R) denotes the rel-
ative importance of vertex v with respect to the given rootset R. Let P (s, t)
denote any well defined set of paths between vertex s and t. The authors suggest
different kinds of path sets:

– a set of shortest paths
– a set of k-shortest paths, defined as the set of all paths with length smaller

than a given k
– a set of k-shortest vertex-disjoint paths1

The set of shortest paths is used e.g. in the shortest-path betweenness cen-
trality (see Section 3.4.2). The relative betweenness centrality cRBC(v) can be
defined in three ways. In the first variant we define a vertex v as important
if the fraction of shortest paths leaving a vertex r from R contains v. We will
denote this source relative betweenness centrality by

csRBC(v) =
∑
r∈R

∑
t∈V

δrt(v) . (5.2)

If an element v is important if it is contained in a large fraction of short-
est paths ending in a vertex r of R we denote the target relative betweenness
centrality as

ctRBC(v) =
∑
s∈V

∑
r∈R

δsr(v) . (5.3)

In the last case, an element is supposed to be important if it is contained in
a large fraction of shortest paths leading from R to R, denoted by

cRBC(v) =
∑
rs∈R

∑
rt∈R

δrsrt(v) . (5.4)

If any other set of paths P (s, t), e.g. the set of k-shortest paths, is chosen,
then the definition of δst(v) has to be changed, denoted by

δst|P (v) =
σst(v)
|P (s, t)| (5.5)

where σst(v) denotes the number of paths p ∈ P (s, t) that contain vertex v.
This example demonstrates the general idea behind this kind of personaliza-

tion. It can be easily expanded to all centralities that are based on distance.
1 We just want to note that this set of paths is not unique in most graphs. For a

deterministic centrality it is of course important to determine a unique path set, so
this last path set should only be used on graphs where there is only one set for each
vertex pair.

5 Advanced Centrality Concepts 89

5.2.2 Personalization for Web Centralities

Consider again the random surfer model (see Section 3.9.3) for Web centralities
and assume the random surfer arrived at a page where there is no outlink or
where the existing out links are not relevant. The original assumption in this case
is a jump to a random page where each page has equal probability. It is obvious
that the assumption of equal probability is not very realistic: some surfers prefer
Web pages about sports if they get stuck in a sink, others continue with a news-
page etc. The question at hand is hence how to model the many different types
of Web users.

A very intuitive approach is to replace 1n (cf. Equation 3.44) by a personal-
ization vector v satisfying vi > 0 ∀ i and

∑
i vi = 1. White and Smyth [580], for

example, proposed to score the vertices relative to a kernel set R using

vi =

{
1−ε
|R| , i ∈ R

ε
n−|R| , i �∈ R

,

where 0 < ε << 1.
They also proposed a very similar approach for the Hubs & Authorities al-

gorithm. Instead of applying the iterative procedure given in Algorithm 2 on
page 55 they added in each step a portion of the personalization vector and
obtained the following modified equations:

ck
HA-H = dAσck−1

HA-A + (1 − d)v
ck
HA-A = dAT

σ ck
HA-H + (1 − d)v

ck
HA-H = ck

HA-H
‖ck

HA-H‖

ck
HA-A = ck

HA-A
‖ck

HA-A‖ ,

where d ∈ [0, 1] is chosen to control the influence of v.
Going back to the PageRank algorithm it is clear that as long as all elements

of v are positive and v is a stochastic vector, the associated Markov chain is still
irreducible hence the convergence of the PageRank algorithm is not touched.
Thus, at a first glance, this approach seems to be appealing. But there is one big
disadvantage: As already known the computations of PageRank vectors for the
non-personalized version is very time consuming, there is, at least at the moment,
no chance to compute PageRank centralities for many different types of Web
users. Nevertheless there are some promising approaches to obtain personalized
PageRank vectors in an adequate amount of time.

To this end we give a general approach of personalization for PageRank,
taken from Haveliwala et al. [291]. As noted above the personalized PageRank
vector is given as the solution of the following equation

cPR = dP T cPR + (1 − d)v.

Since
(
I − dP T

)
is a strictly diagonally dominant matrix, it is invertible and

hence

90 D. Koschützki et al.

cv
PR := cPR = (1 − d)

(
I − dP T

)−1
v =: Qv. (5.6)

(We write cv
PR to emphasize the dependence of cPR on v.)

If we choose v to be the ith unit vector v = ei, then cei

PR = Q·j, hence the
set of columns of Q may be seen as a basis for the personalized PageRanks.

The Problem that occurs is that the determination of Q needs to invert
a matrix which is very time consuming if the matrices are large. To reduce
the computational complexity Q is approximated by Q̂ ∈ n×K and hence we
consider only a subset of K basis vectors (independent columns of Q) taking a
convex combination to obtain an estimate for

cw
PR = Q̂w

where w ∈ K is a stochastic vector, wi > 0 ∀ i.
Haveliwala et al. show that the following three personalization approaches

can be subsumed under the general approach described above:

– Topic sensitive PageRank [289],
– Modular PageRank [326],
– BlockRank [339].

They only differ in how the approximation is conducted. We describe these
approaches briefly in the following subsections.

Topic Sensitive PageRank. Haveliwala [289] proposes to proceed in a com-
bined offline-online algorithm where the first phase (offline) consists of the fol-
lowing two steps

1. Choose the K most important topics t1, . . . , tK and define vk
i to be the

(normalized) degree of membership of page i to topic tk, i = 1, . . . , n, k =
1, . . . ,K.

2. Compute Q̂·k = cvk

PR, k = 1, . . . ,K

The second phase that is run online is as follows

1. For query σ compute (normalized) topic-weights wσ
1 , . . . , w

σ
K

2. Combine the columns of Q̂ with respect to the weights to get

cσ
PR =

K∑
k=1

wσ
k Q̂·k.

Note that to apply this approach it is important that

– K is small enough (e.g. K = 16) and
– the range of topics is broad enough.

5 Advanced Centrality Concepts 91

Modular PageRank. A second approach was proposed by Jeh and Widom
[326]. Their algorithm consists of an offline and an online step. In the offline step
K pages i1, . . . , iK with high rank are chosen. These high-ranked pages form the
set of hubs.

Using personalization vectors eik , the associated PageRank vectors called
basis vectors or hub vectors ceik

PR are computed. By linearity for each personal-
ization vector v that is a convex combination of ei1 , . . . ,eiK the corresponding
personalized PageRank vector can be computed as a convex combination of the
hub vectors. But if K gets larger, it is neither possible to compute all hub vec-
tors in advance nor to store them efficiently. To overcome this deficiency, Jeh
and Widom propose a procedure using partial vectors and a hubs skeleton. They
are able to show that in contrast to the hub vectors it is possible to compute and
store the partial vectors efficiently. These partial vectors together with the hubs
skeleton are enough to compute all hub vectors and hence (by transitivity) the
final personalized PageRank. Essentially the idea is to reduce the computations
to the set of hubs, which is much smaller than the Web graph (but K ≥ 104

is possible). Note that the larger K may be chosen, the better the Q-matrix is
represented.

The online step then consists of determining a personalization vector vσ =∑K
k=1 α

σ
keik and the corresponding PageRank vector

cσ
PR =

K∑
k=1

c
ασ

k eik

PR

(again by using partial vectors and the hubs skeleton).

BlockRank. This approach of Kamvar et al. [339] was originally invented for
accelerating the computation of PageRank, see Section 4.3.2. It consists of a 3-
phase-algorithm where the main idea is to decompose the Web graph according
to hosts. But, as already proposed by the authors, this approach may also be
applied to find personalized PageRank scores: In the second step of the algorithm
the host-weights have to be introduced, hence the algorithm is the following:

1. (offline) Choose K blocks (hosts) and let vk
i be the local PageRank of page

i in block k, i = 1, . . . , n, k = 1, . . . ,K. Compute Q̂·k = cvk

PR (the authors
claim that K ≥ 103 is possible if the Web structure is exploited).

2. (online) For query σ find appropriate host-weights to combine the hosts.
3. (online) Apply the (standard) PageRank algorithm to compute the associ-

ated centralities. Use as input the local PageRank scores computed in the
first step, weighted by the host-weights of step 2.

Both, the concept of personalization from this section and normalization from
the previous section will be rediscussed in the following two sections to introduce
the four dimensions of centrality indices.

92 D. Koschützki et al.

5.3 Four Dimensions of a Centrality Index

In this section we present a four dimension approach which is an attempt to
structure the wide field of different centrality measures and related personaliza-
tion and normalization methods presented so far. The idea to this model emerged
from the observation that there is currently no consistent axiomatic schema that
captures all the centrality measures considered in Chapter 3, for more details
see Section 5.4. But it is important to note, that the following contribution does
not constitute a formal approach or even claims completeness. Nevertheless, we
believe that it may be a helpful tool in praxis.

The analysis of the centrality measures in Chapter 3 has led to the idea
of dividing the centralities into four categories according to their fundamental
computation model. Each computation model is represented by a so-called basic
term. Given a basic term, a term operator (e.g. the sum or the maximum), and
several personalization and normalization methods may be applied to it. In the
following we want to discuss the idea in more detail. At the end of this section we
provide a scheme based on our perception that helps to classify new centrality
measures, or helps to customize existing ones.

Basic Term. The classification of the centrality measures into four categories
and the representation of each category by a basic term constitutes the first
dimension of our approach. Once again, we want to mention that this classifi-
cation is only a proposal which emerged form the analysis of existing measures
described so far.

Reachability. The first category of centrality measures is based on the notion of
’reachability’. A vertex is supposed to be central if it reaches many other vertices.
Centrality measures of this category are the degree centrality (cf. Section 3.3.1),
the centrality based on eccentricity and closeness (cf. Section 3.3.2), and the ran-
dom walk closeness centrality (cf. Section 3.8.3). All of these centralities rely on
the distance concept d(u, v) of two vertices u and v. In the degree centrality, for
example, we count the number of vertices that can be reached within distance 1.
The closeness of a vertex u is measured by the reciprocal of the sum over the
distances to all other vertices v. The same is true for the centrality based on
eccentricity, where the maximum is taken instead of the total distance. In the
case of the random walk closeness centrality the notion of distance is equivalently
given as the mean first passage time from vertex u to all other vertices v in a
random walk.

Amount of flow. The second category of centrality measures is based on the
amount of flow fst(x) from a vertex s to a vertex t that goes through a vertex
or an edge x. This can be easily seen at centrality measures based on current
flow processes (cf. Section 3.7) and random walks as described in Section 3.8.1
and 3.8.2. But also measures based on the enumeration of shortest paths belong
to this category. The stress centrality presented in Section 3.4.1 may also be

5 Advanced Centrality Concepts 93

interpreted as measuring the amount of flow going through an element x if every
vertex s sends to every other vertex t one unit flow along each shortest path
connecting them. In the same context, the shortest-path betweenness centrality
introduced in Section 3.4.2 measures the expected fraction of times a unit flow
goes through the element if every vertex s sends one unit flow consecutively to
every other vertex t, and each time choosing one of all shortest paths connect-
ing them uniformly, independently at random. The basic term covering these
measures is fst(x).

Vitality. A third category of centrality measures is based on the vitality as
defined in Section 3.6. Here, the centrality value of an element x is defined as
the difference of a real-valued function f on G with and without the element.
Recall, a general vitality measure was denoted by V(G, x) = f(G) − f(G\{x}).
The maximum flow betweenness vitality presented in Sect. 3.6.1 belongs to this
category.

Feedback. A fourth category of centrality measures is based on a implicit def-
inition of a centrality (cf. Section 3.9). These measures might be subsumed by
the abstract formula c(vi) = f(c(v1), . . . , c(vn)), where the centrality value of a
certain vertex vi depends on the centrality values of all vertices v1, . . . , vn.

Term Operator. The second dimension is represented by the term operator.
Consider the first three categories: here we observed that often a set of suitable
operators can be applied to a basic term to obtain meaningful centrality mea-
sures. We want to illustrate this idea on some centrality measures: If we have
carefully defined the distance for a given application, we can choose whether the
centrality index is given by the maximum of all distances from u to any other
vertex v (as in the eccentricity), or the sum over all distances (as in the close-
ness centrality), or the average distance to all other vertices (as a normalized
closeness centrality). In some cases even a special operator as the variance of
all the distance might led a meaningful centrality index. Thus, for all centrality
indices of the first three categories, it makes sense to separate the choice of a
term operator from the basic term.

Personalization. The third dimension is given by the methods that help to
personalize centrality measures. In Section 5.2 we differentiate two variants of
personalization. The first approach, denoted by Pv , is applicable to all centrality
measure that can deal with vertex or edge weights. This personalization applies
a weight vector v to V , E, or to the transition matrix of the random surfer model
in the case of the Web centralities. The second personalization method, denoted
by PR, considers a subset of vertices, the so called rootset R. The centrality of
a vertex is measured with respect to this rootset. This method is applicable to
all distance based centrality indices. Both personalization methods and all other
approaches to personalization build the third dimension.

94 D. Koschützki et al.

Normalization. All of the centrality measures presented in this book can be
normalized. Thus, the normalization forms a fourth dimension. Recall, a common
normalization applicable to most centrality measures is to divide every value by
the maximum centrality value. In Section 5.1 several normalization methods
were considered.

Independence of the Dimensions. All of these four dimensions: basic term,
term operator, personalization, and normalization are independent of each other
and we have outlined that the centrality measures presented in this book can be
meaningfully dissected into them. Of course, we cannot claim that all centrality
indices ever published will fall into one of these categories or can be dissected as
demonstrated. Moreover, since we lack any strict definition of centrality indices,
we cannot ensure that every possible combinations will result in meaningful
centrality index. Our aim is to provide a model that helps to structure the design
of a suitable centrality index according to our four-dimensional approach.

Designing a Centrality Index. The diagram in Figure 5.1 shows an approach
that demonstrates how an appropriate centrality can be found or adapted for a
given application. The first step in choosing an appropriate centrality index is to
find the question that should be answered by the centrality measure. That deter-
mines the category and the corresponding basic term. In general, however, the
basic term refers only to an abstract concept. The distance between two vertices,
for example, could be measured by the mean first passage time in a random walk
or by the classic definition of distance on shortest paths. Thus a concrete com-
putational model must be developed for the chosen basic term. After this step, a
first personalization might be applied. This personalization leads to a personal-
ized graph with modified or added weights on the vertices or edges, respectively.
Afterwards, a second personalization might be applicable by choosing a ’rootset’
if the basic term corresponds to one of the categories reachability, amount of
flow or vitality. The centrality of a vertex is then measured with respect to this
rootset. If the resulting term belongs to the first three categories, ’reachability’,
’amount of flow’, or ’vitality’, we have to chose a term operator which will be
applied to the term with respect to the personalized graph. We want to mention
here as examples the maximum-operator or the summation over all terms.

If the chosen centrality index is a feedback centrality a personalization with
a rootset is not always applicable. Thus, the route through the diagram follows a
special path for these indices. The next step here is to determine the appropriate
linear equation system and to solve it.

In all four categories the resulting centrality values might be normalized, as
discussed in Section 5.1. Usually this normalization is performed by a multipli-
cation with a scalar.

As a tool for describing, structuring, and developing centrality measures our
four dimension approach provides a flexible alternative to classical approaches
even though more formalization and refinement is needed. In the next section

5 Advanced Centrality Concepts 95

Application

Network

Aspect to be evaluated by centrality index:

Amount

of Flow

d(u, v) fst(x) V(G, x) c(vi) = f (. . .)

Determine the set

to be solved

of Linear Equations

Centrality index

Normalization

Term Operator

with personalized weight

Personalization Pv

vector v

Personalization PR

with personalized

rootset R

FeedbackReachability Vitality

Fig. 5.1. A flow chart for choosing, adapting or designing an appropriate centrality
measure for a given application

96 D. Koschützki et al.

we consider several classical approaches which may also be used to characterize
centrality measures.

5.4 Axiomatization

In Chapter 3, we saw that there are many different centrality indices fitting for
many different applications. This section discusses the question whether there
exist general properties a centrality should have.

We will first cover two axiomatizations of distance-based approaches of cen-
trality indices and in a second subsection discuss two aximatisations for feedback
centralities.

5.4.1 Axiomatization for Distance-Based Vertex Centralities

In the fundamental paper of Sabidussi [500], several axioms are defined for a
vertex centrality of an undirected connected graph G = (V,E). In the following
we restate these in a slightly modified way. Sabidussi studied two operations on
graphs:

Adding an edge (u, v): Let u and v be distinct vertices ofG where (u, v) /∈ E(G).
The graphH = (V,E∪{(u, v)}) is obtained fromG by adding the edge (u, v).

Moving an edge (u, v): Let u, v, w be three distinct vertices of G such that
(u, v) ∈ E(G) and (u,w) /∈ E(G). The graph H = (V, (E \ {(u, v)}) ∪
{(u,w)}) is obtained by removing (u, v) and inserting (u,w). Moving an
edge must be admissible, i.e., the resulting graph must still be connected.

Let Gn be the class of connected undirected graphs with n vertices. Fur-
thermore, let c : V → +

0 be a function on the vertex set V of a graph
G = (V,E) ∈ Gn which assigns a non-negative real value to each vertex v ∈ V .
Recall, in Section 3.3.3 we denoted by Sc(G) = {u ∈ V : ∀v ∈ V c(u) ≥ c(v)}
the set of vertices of G of maximum centrality with respect to a given vertex
centrality c.

Definition 5.4.1 (Vertex Centrality (Sabidussi [500])). A function c is
called a vertex centrality on G ∈ G′

n ⊆ Gn, and G′
n is called c-admissible, if

and only if the following conditions are satisfied:

1. G′
n is closed under isomorphism, i.e., if G ∈ G′

n and H is isomorphic to G
then also H ∈ G′

n.
2. If G = (V,E) ∈ G′

n, u ∈ V (G), and H is obtained from G by moving an
edge to u or by adding an edge to u, then H ∈ G′

n, i.e., G′
n is closed under

moving and adding an edge.
3. Let G �φ H, then cG(u) = cH(φ(u)) for each u ∈ V (G).2

2 By cG(u) and cH(u) we denote the centrality value of vertex u in G and H , respec-
tively.

5 Advanced Centrality Concepts 97

4. Let u ∈ V (G), and H be obtained from G by adding an edge to u, then
cG(u) < cH(u) and cG(v) ≤ cH(v) for each v ∈ V .

5. Let u ∈ Sc(G), and H be obtained from G either by moving an edge to u or
by adding an edge to u, then cG(u) < cH(u) and u ∈ Sc(H).

The first two conditions provide a foundation for Condition 3 and 5. Note
that certain classes of graphs fail to satisfy Condition 2, e.g., the class of all trees
is closed under moving of edges, but not under addition of edges. Condition 3
describes the invariance under isomorphisms, also claimed in Definition 3.2.1.
The idea behind Condition 4 is that adding an edge increases the degree of
centralization of a network. Condition 5 is the most significant one. If an edge
is moved or added to a vertex u ∈ Sc(G), then the centrality of u should be
increased and it should contained in Sc(H), i.e., u must have maximal centrality
in the new graph H .

For the degree centrality introduced in Section 3.3.1, it is easy to verify that
the axioms are satisfied. Thus, the degree centrality is a vertex centrality in
terms of Sabidussi’s definition.

We shall now see that the vertex centrality cE(u) based on the eccentricity
e(u) introduced in Section 3.1 is not a vertex centrality according to Sabidussi’s
definition. In Figure 5.2 two graphs are shown where the eccentricity value for
each vertex is indicated. The first graph is a simple path with one central vertex
u5. After adding the edge (u5, u9) the new central vertex is u4. Thus, adding
an edge according to Condition 5 does not preserve the center of a graph. Note,
also Condition 4 is violated.

8 7 6 5 4 5 6 7 8

6 5 4 3 4 5 6 6 5
u4 u5

u5 u9

u9

Fig. 5.2. The eccentricity e(u) for each vertex u ∈ V is shown. The example illustrates
that the eccentricity centrality given by cE(u) = e(u)−1 is not a vertex centrality
according to Sabidussi’s definition (see Definition 5.4.1)

In Section 3.2 the closeness centrality of a vertex was defined by cC(u) =
s(u)−1. Kishi [357] showed that this centrality is not a vertex centrality respect-
ing Sabidussi’s definition. An example is given in Figure 5.3, where the value
of the total distance for each vertex is indicated. The median M(G) = {u ∈
V : s(G) = s(u)} of the left graph G consists of the vertices u, u′, and u′′. The
insertion of edge (u, v) yields a graph H with M(H) ∩M(G) = ∅.

98 D. Koschützki et al.

81

5666

87

87

62
62

60

75

55

99

66

87

6267

87

87

62
62

70

75

63

107

67

7482

u

u′

u′′ w

v

u

Fig. 5.3. The total distance s(u) for each vertex u ∈ V is shown. The example depicts
that the closeness centrality defined by cC(u) = s(u)−1 is not a vertex centrality
according to Sabidussi’s definition (see Definition5.4.1)

Kishi [357] provides a definition for distance-based vertex centralities relying
on Sabidussi’s definition. Let c be a real valued function on the vertices of a
connected undirected graph G = (V,E), and let u and v be two distinct non-
adjacent vertices of G. The insertion of (u, v) leads to a graph H = (V,E ∪
{(u, v)}) where the difference of the centrality values is measured by Δuv(w) =
cH(w) − cG(w) for each vertex w ∈ G.

Definition 5.4.2 (Vertex Centrality (Kishi [357])). The function c is
called a vertex centrality if and only if the following conditions are satisfied

1. Δuv(u) > 0, i.e., cG(u) < cH(u).
2. For each w ∈ V with d(u,w) ≤ d(v, w) it holds that Δuv(u) ≥ Δuv(w) for

any pair of non-adjacent vertices u and v.

The conditions of Definition 5.4.2 are quite similar to Condition 4 and 5 of
Sabidussi’s definition 5.4.1. Therefore, it is not surprising that the eccentricity
is not a vertex centrality according to Kishi’s definition. To see that, reconsider
Figure 5.2 where vertex u5 violates the Condition 2 of Kishi’s definition. However,
Kishi [357] showed that the closeness centrality is a vertex centrality with respect
to Definition 5.4.2.

As these two examples show, it will still be a challenge to find minimal
requirements which can be satisfied by a distance-based centrality index. In
Section 3.2 we claimed that the centrality index only depends on the structure
of the graph (cf. Def. 3.2.1). But as mentioned already, not every structural index
will be accepted as a centrality index.

Finally, we want to note that there are also attempts to define requirements
for a vertex centrality of an weakly connected directed graphs, see e.g. Nieminen
[451].

5 Advanced Centrality Concepts 99

5.4.2 Axiomatization for Feedback-Centralities

Up to now, we mainly discussed sets of axioms that defined and admitted cen-
tralities that are based either on shortest path distances or on the degree of the
vertex. This section reviews axiomatizations that lead to feedback centralities or
feedback-like centralities.

Far from being complete we want to give two examples of how an axioma-
tization could work. To our knowledge there are several approaches concerning
axiomatization, but up to now there is a lack of structure and generality: Many
properties a centrality should have are proposed in the literature, but those sets
of properties in most cases depend very much on the application the authors
have in mind and exclude known and well-established centralities.

We start with a paper by van den Brink and Gilles [563], which may serve as
a bridge between degree-based and feedback-like centralities. This is continued
by presenting results of Volij and his co-workers that axiomatically characterize
special feedback-centralities.

From Degree to Feedback. In [563], van den Brink and Gilles consider di-
rected graphs. In the main part of their paper the graphs are unweighted, but
the axiomatic results are generalized to the weighted case. We only review the
results for the unweighted case - the weighted case is strongly related but much
more complicated with respect to notation.

The goal is to find an axiomatic characterization of centralities, or, to be
more specific, of what they call relational power measures which assign to each
directed network with n vertices an n-dimensional vector of reals such that the
ith component of the vector is a measure of the relational power (or dominance)
of vertex i.

The first measure is the β-measure, that was developed by the same authors
[562] for hierarchical economic organizations. It measures the potential influence
of agents on trade processes.

Let Gn be the set of unweighted directed graphs having n vertices. For a
directed edge (i, j) ∈ E, vertex i is said to dominate vertex j.

Definition 5.4.3. Given a set of vertices V with |V | = n, the β-measure on V
is the function β : Gn → n given by

βG(i) =
∑

j∈N+
G (i)

1
d−G(j)

∀ i ∈ V, G ∈ Gn

(Remember that d−(j) is the in-degree of vertex j andN+(i) is the set of vertices
j for which a directed edge (i, j) exists.)

This β-measure may be viewed as a feedback centrality, since the score for
vertex i depends on properties of the vertices in its forward neighborhood.

A set of four axioms uniquely determines the β-measure. To state the four
axioms, let f : Gn → n be a relational power measure on V . Moreover, we need
the following definition:

100 D. Koschützki et al.

Definition 5.4.4. A partition of G ∈ Gn is a subset {G1, . . . , GK} ⊆ Gn such
that

–
⋃K

k=1 Ek = E and
– Ek ∩El = ∅ ∀ 1 ≤ k, l ≤ K, k �= l .

The partition is called independent if in addition

|
{
k ∈ {1, . . . ,K} : d−Gk

(i) > 0
}
| ≤ 1 ∀ i ∈ V,

i.e., if each vertex is dominated in at most one directed graph of the partition.

Which properties should a centrality have in order to measure the relational
power or dominance of a vertex?

First of all it would be good to normalize the measure in order to compare
dominance values of different vertices - possibly in different networks. Due to
the domination structure of their approach van den Brink and Gilles propose to
take the number of dominated vertices as the total value that is distributed over
the vertices according to their relational power:

Axiom 1: Dominance normalization For every G ∈ Gn it holds that∑
i∈VG

fG(i) = |
{
j ∈ VG : d−G(j) > 0

}
|.

The second axiom simply says that a vertex that does not dominate any other
vertex has no relational power and hence gets the value zero:

Axiom 2: Dummy vertex property For every G ∈ Gn and i ∈ V satisfying
N+

G (i) = ∅ it holds that fG(i) = 0.

In the third axiom the authors formalize the fact that if two vertices have the
same dominance structure, i.e. the same number of dominated vertices and the
same number of dominating vertices, then they should get the same dominance-
value:

Axiom 3: Symmetry For every G ∈ Gn and i, j ∈ V satisfying d+G(i) = d+G(j)
and d−G(i) = d−G(j) it holds that fG(i) = fG(j).

Finally, the fourth axiom addresses the case of putting together directed
graphs. It says that if several directed graphs are combined in such a way that
a vertex is dominated in at most one directed graph (i.e. if the result of the
combination may be viewed as an independent partition), then the total domi-
nance value of a vertex should simply be the sum of its dominance values in the
directed graphs.

Axiom 4: Additivity over independent partitions For every G ∈ Gn and every
independent partition {G1, . . . , GK} of G it holds

fG =
K∑

k=1

fGk
.

5 Advanced Centrality Concepts 101

Interestingly, these axioms are linked to the preceding sections on degree-
based centralities: If the normalization axiom is changed in a specific way, then
the unique centrality score that satisfies the set of axioms is the out-degree
centrality. The authors call this score-measure. Note that an analogous result
also holds for the weighted case.

In more detail, after substituting the dominance normalization by the score
normalization (see Axiom 1b below), the following function is the unique rela-
tional power measure that satisfies Axioms 2 – 4 and 1b:

σG(i) = d+G(i) ∀ i ∈ V, G ∈ Gn

Instead of taking the number of dominated vertices as the total value that is
distributed over the vertices according to their dominance, the total number of
relations is now taken as a basis for normalization:

Axiom 1b: Score normalization For every G ∈ Gn it holds that∑
i∈V

fG(i) = |E|.

Above, we presented a set of axioms that describe a certain measure that has
some aspects of feedback centralities but also links to the preceding section via
its strong relation to the score measure. We now pass over to feedback centralities
in the narrower sense.

Feedback Centralities. In terms of citation networks, Palacios-Huerta and
Volij [460] proposed a set of axioms for which a centrality with normalized influ-
ence proposed by Pinski and Narin [479] is the unique centrality that satisfies all
of them. This Pinski-Narin-centrality is strongly related to the PageRank score
in that it may be seen as the basis (of PageRank) that is augmented by the
addition of a stochastic vector that allows for leaving the sinks.

To state the axioms properly we need some definitions. We are given a di-
rected graph G = (V,E) with weights ω on the edges and weights α on the
vertices. In terms of citation networks V corresponds to the set of journals and
(i, j) ∈ E iff journal i is cited by journal j. The weight ω(i, j) is defined to be the
number of citations to journal i by journal j if (i, j) ∈ E and 0 otherwise, while
the vertex weight α(i) corresponds to the number of articles published in jour-
nal i. The authors consider strongly connected subgraphs with the additional
property that there is no path from a vertex outside the subgraph to a vertex
contained in it. (Note that they allow loops and loop weights.) Palacios-Huerta
and Volij call such subgraphs a discipline, where a discipline is a special com-
munication class (a strongly connected subgraph) which itself is defined to be
an equivalence class with respect to the equivalence relation of communication.
Two journals i and j communicate, if either i = j or if i and j impact each other,
where i impacts j if there is a sequence of journals i = i0, i1, . . . , iK−1, iK = j
such that il−1 is cited by il, that is, if there is a path from i to j.

102 D. Koschützki et al.

Define the (|V | × |V |)-matrices

W = (ω(i, j)) , Dω = diag(ω(·j)) with ω(·j) =
∑
i∈V

ω(i, j),

and set WD−1
ω to be the normalized weight matrix, and Dα = diag (α(i)). Then

the ranking problem 〈V, α,W 〉 is defined for the vertex set V of a discipline,
the associated vertices weights α and the corresponding citation matrix W , and
considers the ranking (a centrality vector) cPHV ≥ 0 that is normalized with
respect to the l1-norm: ‖cPHV‖1 = 1.

The authors consider two special classes of ranking problems:

1. ranking problems with all vertex weights equal, α(i) = α(j) ∀ i, j ∈ V
(isoarticle problems) and

2. ranking problems with all reference intensities equal, ω(·i)
α(i) = ω(·j)

α(j) ∀ i, j ∈ V
(homogeneous problems).

To relate small and large problems, the reduced ranking problem Rk for a ranking
problem R = 〈V, α,W 〉 with respect to a given vertex k is defined as Rk =
〈V \ {k}, (α(i))i∈V \{k}, (ωk(i, j))(i,j)∈V \{k}×V \{k}〉, with

ωk(i, j) = ω(i, j) + ω(k, j)
ω(i, k)∑

l∈V \{k} ω(l, k)
∀ i, j ∈ V \ {k}.

Finally, consider the problem of splitting a vertex j of a ranking problem
R = 〈V, α,W 〉 into |Tj | sets of identical vertices (j, tj) for tj ∈ Tj . For V ′ =
{(j, tj) : j ∈ V, tj ∈ Tj}, the ranking problem resulting from splitting j is denoted
by

R′ = 〈V ′, (α′((j, tj)))j∈J,tj∈Tj , (ω
′((i, ti)(j, tj)))((i,ti)(j,tj))∈V ′×V ′〉,

with
α′((j, tj)) =

α(j)
|Tj|

, ω((i, ti)(j, tj)) =
ω(i, j)
|Ti||Tj |

.

Note that the latter two definitions of special ranking problems are needed
to formulate the following axioms.

A ranking method Φ assigning to each ranking problem a centrality vector
should then satisfy the following four axioms (at least the weak formulations):

Axiom 1: invariance with respect to reference intensity
Φ is invariant with respect to reference intensity if

Φ(〈V, α,WΓ 〉) = Φ(〈V α,W 〉)

for all ranking problems 〈V, α,W 〉 and every Matrix Γ = diag(γj)j∈V with
γj > 0 ∀ j ∈ V .

Axiom 2: (weak) homogeneity

5 Advanced Centrality Concepts 103

a) Φ satisfies weak homogeneity if for all two-journal problems R = 〈{i, j},
α,W 〉 that are homogeneous and isoarticle, it holds that

Φi(R)
Φj(R)

=
ω(i, j)
ω(j, i)

. (5.7)

b) Φ satisfies homogeneity if (Equation 5.7) holds for all homogeneous prob-
lems.

Axiom 3: (weak) consistency
a) Φ satisfies weak consistency if for all homogeneous, isoarticle problems
R = 〈V, α,W 〉 with |V | > 2 and for all k ∈ V

Φi(R)
Φj(R)

=
Φi(Rk)
Φj(Rk)

∀ i, j ∈ V \ {k}. (5.8)

b) Φ satisfies consistency if (Equation 5.8) holds for all homogeneous prob-
lems.

Axiom 4: invariance with respect to the splitting of journals
Φ is invariant to splitting of journals, i.e. for all ranking problems R and
for all splittings R′ of R holds

Φi(R)
Φj(R)

=
Φ(i,ti)(R

′)
Φ(j,tj)(R′)

∀i, j ∈ V, ∀ i ∈ Ti, ∀ j ∈ Tj.

Palacios-Huerta and Volij show that the ranking method assigning the Pinski-
Narin centrality cPN given as the unique solution of

D−1
α WD−1

W Dαc = c

is the only ranking method that satisfies

– invariance to reference intensity (Axiom 1),
– weak homogeneity (Axiom 2a),
– weak consistency (Axiom 3a), and
– invariance to splitting of journals (Axiom 4).

Slutzki and Volij [526] also consider the axiomatization of ranking problems,
which they call scoring problems. Although their main field of application is
shifted from citation networks to (generalized) tournaments, it essentially con-
siders the same definitions as above, excluding the vertex weights α. Further,
they consider strongly connected subgraphs (not necessarily disciplines), and set
ω(i, i) = 0 for all i ∈ V , meaning that there are no self-references, i.e. no loops
in the corresponding graph. For this case, the Pinski-Narin centrality may be
characterized by an alternative set of axioms, and again it is the only centrality
satisfying this set.

104 D. Koschützki et al.

The Link to Normalization. Above, we saw that normalization is a question
when dealing with axiomatizations. Either it is explicitly stated as an axiom (see
the centralities of van den Brink and Gilles) or the normalization is implicitly
assumed when talking about centralities (see the papers of Volij and his cowork-
ers). The topic of normalization was already investigated in Section 5.1. Here,
we report on investigations of Ruhnau [499] about normalizing centralities.

Her idea is based on an intuitive understanding of centrality, already formu-
lated by Freeman in 1979 [227]:

“A person located in the center of a star is universally assumed to be
structurally more central than any other person in any other position in any

other network of similar size.”

She formalizes this in the definition of a vertex-centrality for undirected con-
nected graphs G = (V,E).

Definition 5.4.5 (Ruhnau’s vertex centrality axioms). Let G = (V,E) be
an undirected and connected graph with |V | = n and let cV : V → . cV is called
a vertex-centrality if

1. cV(i) ∈ [0, 1] for all i ∈ V and
2. cV(i) = 1 if and only if G is a star with n vertices and i the central vertex

of it.

(Note: Ruhnau calls this a node centrality. For consistency with the rest of the
chapter we used the equivalent term vertex centrality here.)

The property of being a vertex-centrality may be very useful when comparing
vertices of different graphs. To see this, compare the central vertex of a star of
order n with any vertex in a complete graph of order n. Both have a degree of
n − 1, but intuitively the central vertex of a star has a much more prominent
role in the graph than any of the vertices in a complete graph.

Freeman [226] showed that the betweenness centrality satisfies the conditions
of the above definition. Due to the fact that the eigenvector centrality normalized
by the Euclidean norm has the property that the maximal attainable value is
1/

√
2 (independent of n), and that it is attained exactly at the center of a star

(see [465]), it is also a vertex-centrality (multiplied by
√

2). For more information
about normalization, see Section 5.1.

5.5 Stability and Sensitivity

Assume that a network is modified slightly for example due to the addition of a
new link or the inclusion of a new page in case of the Web graph. In this situation
the ‘stability’ of the results are of interest: does the modification invalidate the
computed centralities completely?

In the following subsection we will discuss the topic of stability for distance
based centralities, i.e., eccentricity and closeness, introduce the concept of stable,

5 Advanced Centrality Concepts 105

quasi-stable and unstable graphs and give some conditions for the existence of
stable, quasi-stable and unstable graphs.

A second subsection will cover Web centralities and present results for the
numerical stability and rank stability of the centralities discussed in Section 3.9.3.

5.5.1 Stability of Distance-Based Centralities

In Section5.4.1 we considered the axiomatization of connected undirected graphs
G = (V,E) and presented two definitions for distance-based vertex centralities.
Moreover, we denoted by Sc(G) = {u ∈ V : ∀v ∈ V c(u) ≥ c(v)} the set of
maximum centrality vertices of G with respect to a centrality c and we studied
the change of the centrality values if we add an edge (u, v) between two distinct
non-adjacent vertices in G. In this section we focus on the stability of the center
Sc(G) with respect to this graph operation (cf. Condition 5 of Definition 5.4.1).

Let u ∈ Sc(G) be a central vertex with respect to c, and (u, v) /∈ G. Then
the insertion of an edge (u, v) to G yields a graph H = (V,E∪(u, v)). Regarding
Sc(H) two cases can occur, either

Sc(H) ⊆ Sc(G) ∪ {v} (5.9)

or

Sc(H) �⊆ Sc(G) ∪ {v} (5.10)

for every vertex v ∈ V . Kishi [357] calls a graph for which the second case
(Equation 5.10) occurs an unstable graph with respect to c. Figures 5.2 and 5.3
in Section 5.4.1 show unstable graphs with respect to the eccentricity and the
closeness centrality. The first case (Equation 5.9) can be further classified into

Sc(H) ⊆ Sc(G) and u ∈ Sc(H) (5.11)

and

Sc(H) �⊆ Sc(G) or u /∈ Sc(H) (5.12)

A graph G is called a stable graph if the first case (Equation 5.11) occurs,
otherwise G is called a quasi-stable graph. The definition of stable graphs with
respect to c encourages Sabidussi’s claim [500] that an edge added to a central
vertex u ∈ Sc(G) should strengthen its position.

In Figure 5.4 an example for a quasi-stable graph with respect to closeness
centrality is shown. For each vertex the status value s(u) =

∑
v∈V d(u, v) is

indicated. Adding the edge (u, v) leads to a graph with a new central vertex v.
In [357] a more generalized form of closeness centrality is presented by Kishi:

The centrality value cGenC(u) of a vertex u ∈ V is

cGenC(u) =
1∑∞

k=1 aknk(u)
(5.13)

106 D. Koschützki et al.

42

v

40

39

27

48

26

33

34

u

44

v

40

39

29

48

33

32

34

u

Fig. 5.4. A quasi-stable graph with respect to the closeness centrality. The values
indicate the total distances s(u). After inserting the edge (u, v) the new median is
vertex v

where nk(u) is the number of vertices whose distance from u is k and each ak is
a real constant. With ak = k it is easy to see that

1∑∞
k=1 aknk(u)

=
1∑

v∈V d(u, v)
= cC(u).

Kishi and Takeuchi [358] have shown under which conditions there exists
a stable, quasi-stable, and unstable graph for generalized centrality functions
cGenC of the form in Equation 5.13:

Theorem 5.5.1. For any generalized vertex centrality cGenC of the form in
Equation 5.13 holds:

1. if a2 < a3, then there exists a quasi-stable graph, and
2. if a3 < a4, then there exists an unstable graph.

Theorem 5.5.2. Any connected undirected graph G is stable if and only if the
generalized vertex centrality cGenC given in Equation 5.13 satisfies a2 = a3.
Moreover, G is not unstable if and only if cGenC satisfies a3 = a4.

Sabidussi has shown in [500] that the class of undirected trees are stable
graphs with respect to the closeness centrality.

Theorem 5.5.3. If an undirected graph G forms a tree, then G is stable with
respect to the closeness centrality.

5.5.2 Stability and Sensitivity of Web-Centralities

First, we consider stability with respect to the centrality values, later on we
report on investigations on the centrality rank. We call the former numerical
stability and the latter rank stability.

5 Advanced Centrality Concepts 107

Numerical Stability. Langville and Meyer [378] remark that it is not reason-
able to consider the linear system formulation of, e.g., the PageRank approach
and the associated condition number3, since it may be that the solution vector of
the linear system changes considerable but the normalized solution vector stays
almost the same. Hence, what we are looking for is to consider the stability of the
eigenvector problem which is the basis for different Web centralities mentioned
in Section 3.9.3.

Ng et al. [449] give a nice example showing that an eigenvector may vary con-
siderably even if the underlying network changes only slightly. They considered
a set of Web pages where 100 of them are linked to algore.com and the other
103 pages link to georgewbush.com. The first two eigenvectors (or, in more de-
tail, the projection onto their nonzero components) are drawn in Figure 5.5(a).
How the scene changes if five new Web pages linking to both algore.com and
georgewbush.com enter the collection is then depicted in Figure 5.5(b).

Gore(100)0

0 1

1
Bush(103)

(a)

Bush(103)

0

1

0 1

Gore(100)

Bush&Gore(5)

(b)

Fig. 5.5. A small example showing instability resulting from perturbations of the
graph. The projection of the eigenvector is shown and the perturbation is visible as a
strong shift of the eigenvector

Regarding the Hubs & Authorities approach Ng et al. the authors give a
second example, cf. Figs 5.6(a) and 5.6(b). In the Hubs & Authorities algorithm
the largest eigenvector for S = ATA is computed. The solid lines in the figures
represent the contours of the quadratic form xTSix for two matrices S1, S2 as
well as the contours of the slightly (but equally) perturbed matrices. In both
figures the associated eigenvectors are depicted. The difference (strong shift in
the eigenvectors in the first case, almost no change in the eigenvectors in the

3 cond(A) = ‖A‖‖A−1‖ (for A regular)

108 D. Koschützki et al.

second case) between the two figures consists of the fact that S1 has an eigengap4

δ1 ∼ 0 whereas S2 has eigengap δ2 = 2. Hence in the case that the eigengap is
almost zero, the algorithm may be very sensitive about small changes in the
matrix whereas in case the eigengap is large the sensitivity is small.

(a) (b)

Fig. 5.6. A simple example showing the instability resulting from different eigengaps.
The position of the eigenvectors changes dramatically in the case of a small eigengap
(a)

Ng et al. also show this behavior theoretically

Theorem 5.5.4. Given S = ATA, let cHA-A be the principal eigenvector and
δ the eigengap of S. Assume d+(i) ≤ d for every i ∈ V and let ε > 0. If the
Web graph is perturbed by adding or deleting at most k links from one page, k <(√
d+ α−

√
d
)2

, α = εδ
4+

√
2ε

then the perturbed principal eigenvector c̃HA-A of

the perturbed matrix S̃ satisfies ‖cHA-A − c̃HA-A‖2 ≤ ε.

Theorem 5.5.5. If S is a symmetric matrix with eigengap δ, then there exists
a perturbed version S̃ of S with ‖S − S̃‖F = O(δ) that causes a large (Ω(1))
change in the principal eigenvector.

(Note that ‖X‖F =
(∑

i

∑
j(x

2
ij)
)1/2

denotes the Frobenius norm.)

If we consider the PageRank algorithm, then the first fact that we have to
note is that for a Markov chain having transition matrix P the sensitivity of the
principal eigenvector is determined by the difference of the second eigenvalue
to 1. As shown by Haveliwala and Kamvar [290] the second eigenvalue for the
PageRank-matrix with P having at least two irreducible closed subsets satisfies

4 Difference between the first and the second largest eigenvalue.

5 Advanced Centrality Concepts 109

λ2 = d. This is true even in the case that in Formula 3.43 the vector 1n is
substituted by any stochastic vector v, the so-called personalization vector, cf.
Section 5.2 for more information about the personalization vector.

Therefore a damping factor of d = 0.85 (this is the value proposed by the
founders of Google) yields in general much more stable results than d = 0.99
which would be desirable if the similarity of the original Web graph with its
perturbed graph should be as large as possible.

Ng et al. [449] proved

Theorem 5.5.6. Let U ⊆ V be the set of pages where the outlinks are changed,
cPR be the old PageRank score and cU

PR be the new PageRank score corresponding
to the perturbed situation. Then

‖cPR − cU
PR‖1 ≤ 2

1 − d
∑
i∈U

cPR(i).

Bianchini, Gori and Scarselli [61] were able to strengthen this bound. They
showed

Theorem 5.5.7. Under the same conditions as given in Theorem 5.5.6 it holds

‖cPR − cU
PR‖1 ≤ 2d

1 − d
∑
i∈U

cPR(i).

(Note that d < 1.)

Rank Stability. When considering Web centralities, the results are in general
returned as a list of Web pages matching the search-query. The scores attained
by the Web pages are in most cases not displayed and hence the questions that
occurs is whether numeric stability also implies stability with respect to the rank
in the list (called rank-stability). Lempel and Moran [388] investigated the three
main representatives of Web centrality approaches with respect to rank-stability.

To show that numeric stability does not necessarily imply rank-stability they
used the graph G = (V,E) depicted in Figure 5.7. Note that in the graph any
undirected edge [u, v] represents two directed edges (u, v) and (v, u). From G two
different graphs Ga = (V,E ∪ {(y, ha)}) and Gb = (V,E ∪ {(y, hb)}) are derived
(they are not displayed). It is clear that the PageRank vector ca

PR corresponding
to Ga satisfies

0 < caPR(xa) = caPR(y) = caPR(xb),

and therefore caPR(ha) > caPR(hb).
Analogously in Gb we have

0 < cbPR(xa) = cbPR(y) = cbPR(xb),

hence cbPR(ha) < cbPR(hb).
Concluding we see that by shifting one single outlink from a very low-ranking

vertex y induces a complete change in the ranking:

110 D. Koschützki et al.

xa y xb

ha hb

a1 a2 an b1b2bn

c

Fig. 5.7. The graph G used for the explanation of the rank stability effect of PageRank.
Please note that for Ga a directed edge from y to ha is added and in the case of Gb

from y to hb

caPR(ai) > caPR(bi) and cbPR(ai) < cbPR(bi) ∀ i.

To decide whether an algorithm is rank-stable or not we have to define the
term rank-stability precisely. Here we follow the lines of Borodin et al. [87] and
[388]. Let G be a set of directed graphs and Gn the subset of G where all directed
graphs have n vertices.

Definition 5.5.8. 1. Given two ranking vectors r1 and r2, associated to a
vertex-set of order n, the ranking-distance between them is defined by

dr(r1, r2) =
1
n2

n∑
i,j=1

lr
1,r2

ij

where lr
1,r2

ij =
{

1, r1i < r
1
j and r2i > r

2
j

0, otherwise

2. An algorithm A is called rank-stable on G if for each k fixed we have

lim
n→∞

max
G1,G2∈Gn

de(G1,G2)≤k

dr (A(G1),A(G2)) −→ 0,

where de(G1, G2) = |(E1 ∪ E2) \ (E1 ∩ E2)|.

Hence an algorithm A is rank-stable on G if for each k the effect on the
ranking of the nodes of changing k edges vanishes if the size of the node-set of
a graph tends to infinity.

Borodin et al. were able to show that neither the Hubs & Authorities algo-
rithm nor the SALSA method are rank-stable on the set of all directed graphs Ḡ.

However, they obtained a positive result by considering a special subset of
Ḡ, the set of authority connected directed graphs Gac:

5 Advanced Centrality Concepts 111

Definition 5.5.9. 1. Two vertices p, q ∈ V are called co-cited, if there is a
vertex r ∈ V satisfying (r, p), (r, q) ∈ E.

2. p, q are connected by a co-citation path if there exist vertices p = v0, v1, . . . ,
vk−1, vk = q such that (vi−1, vi) are co-cited for all i = 1, . . . , k.

3. A directed graph G = (V,E) is authority connected if for all p, q satisfying
d−(p), d−(q) > 0 there is a co-citation path.

Lempel and Moran argue that it is reasonable to restrict the stability inves-
tigations to this subset of directed graphs due to the following observation:

– if p, q are co-cited then they cover the same subject,
– the relevance of p and q should be measured with respect to the same bar,

and
– there is no interest in answering questions like “is p a better geography resource

that q is an authority on sports?”

For authority connected subgraphs it holds that

– SALSA is rank-stable on Gac,
– The Hubs & Authorities algorithm is not rank-stable on Gac, and
– PageRank is not rank-stable on Gac.

Note that the latter two results were obtained by Lempel and Moran [388].
With this result we finish the discussion of sensitivity and stability of Web

centralities. Interested readers are directed to the original papers shortly men-
tioned in this section.

6 Local Density

Sven Kosub

Actors in networks usually do not act alone. By a selective process of establish-
ing relationships with other actors, they form groups. The groups are typically
founded by common goals, interests, preferences or other similarities. Standard
examples include personal acquaintance relations, collaborative relations in sev-
eral social domains, and coalitions or contractual relationships in markets. The
cohesion inside these groups enables them to influence the functionality of the
whole network.

Discovering cohesive groups is a fundamental aspect in network analysis. For
a computational treatment, we need formal concepts reflecting some intuitive
meaning of cohesiveness. At a general level, the following characteristics have
been attributed to cohesive groups [569]:

– Mutuality: Group members choose each other to be included in the group. In
a graph-theoretical sense, this means that they are adjacent.

– Compactness: Group members are well reachable for each other, though not
necessarily adjacent. Graph-theoretically, this comes in two flavors: being well
reachable can be interpreted as having short distances or high connectivity.

– Density: Group members have many contacts to each other. In terms of graph
theory, that is group members have a large neighborhood inside the group.

– Separation: Group members have more contacts inside the group than outside.

Depending on the network in question, diverse concepts can be employed, in-
corporating cohesiveness characteristics with different emphases. Notions where
density is a dominant aspect are of particular importance.

Density has an outstanding relevance in social networks. On the one hand, re-
cent studies have found that social networks show assortative mixing on vertices
[441, 444, 446], i.e, they tend to have the property that neighbors of vertices with
high degree have also high degree. Assortative mixing is an expression of the typ-
ical observation that social networks are structured by groups of high density.1

On the other hand, there are several mathematical results demonstrating that
high density implies the other characteristics of cohesiveness. For instance, one
classical result [431] says that if each member of a group shares ties with at least
1 Assortativity is now considered as one statistical criterion separating social networks

and non-social networks [446]. For instance, some experimental analyses have shown
that in the Internet at the level of autonomous systems, the mean degree of the
neighbors of an autonomous system with k neighbors is approximately k−1/2 [468].
At this level, the Internet is disassortatively mixed.

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 112–142, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

6 Local Density 113

a 1
k -fraction of the other members of the group, then the tie distance within the

group is at most k. Results comparable to that can be proven for connectivity
as well. Here, however, the dependency from density is not as strong as in the
case of distances (see Chapter 7).

In this chapter, we survey computational approaches and solutions for dis-
covering locally dense groups. A graph-theoretical group property is local if it
is definable over subgraphs induced by the groups only. Locality does not cor-
respond to the above-mentioned separation characteristic of cohesiveness, since
it neglects the network outside the group. In fact, most notions that have been
defined to cover cohesiveness have a maximality condition. That is, they require
for a group to be cohesive with respect to some property Π , in addition to
fulfilling Π , that it is not contained in any larger group of the network that sat-
isfies Π as well. Maximality is non-local. We present the notions on the basis of
their underlying graph-theoretical properties and without the additional max-
imality requirements. Instead, maximality appears in connection with several
computational problems derived from these notions. This is not a conceptual
loss. Actually, it emphasizes that locality reflects an important hidden aspect of
cohesive groups: being invariant under network changes outside the group. Inte-
rior robustness and stability is an inherent quality of groups. Non-local density
notions and the corresponding algorithmic problems and solutions are presented
in Chapter 8. A short list of frequently used non-local notions is also discussed
in Section 6.4.

The prototype of a cohesive group is the clique. Since its introduction into
sociology in 1949 [401], numerous efforts in combinatorial optimization and al-
gorithms have been dedicated to solving computational problems for cliques.
Therefore, the treatment of algorithms and hardness results for clique problems
deserves a large part of this chapter. We present some landmark results in detail
in Section 6.1. All other notions that we discuss are relaxations of the clique
concept. We make a distinction between structural and statistical relaxations. A
characteristic of structural densities is that all members of a group have to satisfy
the same requirement for group membership. These notions (plexes, cores) ad-
mit strong statements about the structure within the group. Structurally dense
groups are discussed in Section 6.2. In contrast, statistical densities average over
members of a group. That is, the property that defines group membership needs
only be satisfied in average (or expectation) over all group members. In general,
statistically dense groups reveal only few insights into the group structure. How-
ever, statistical densities can be applied under information uncertainty. They are
discussed in Section 6.3.

All algorithms are presented for the case of unweighted, undirected simple
graphs exclusively. Mostly, they can be readily translated for directed or weighted
graphs. In some exceptional cases where new ideas are needed, we mention these
explicitly.

114 S. Kosub

6.1 Perfectly Dense Groups: Cliques

The graph with perfect cohesion is the clique [401].

Definition 6.1.1. Let G = (V,E) be an undirected graph. A subset U ⊆ V is
said to be a clique if and only if G[U] is a complete graph.

In a clique, each member has ties with each other member. A clique U is a
maximal clique in a graph G = (V,E) if and only if there is no clique U ′ in G
with U ⊂ U ′. A clique is a maximum clique in graph G if and only if it has
maximum cardinality among all cliques in G.

The striking reasons for perfectness of cliques as cohesive structures are ob-
vious:

1. Cliques are perfectly dense, i.e., if U is a clique of size k, then δ(G[U]) =
d̄(G[U]) = Δ(G[U]) = k − 1. A higher degree is not possible.

2. Cliques are perfectly compact, i.e., diam(G[U]) = 1. A shorter distance
between any two vertices is not possible.

3. Cliques are perfectly connected, i.e., if U is a clique of size k, then U is
(k− 1)-vertex-connected and (k− 1)-edge-connected. A higher connectivity
is not possible.

The structural properties of a clique are very strong. In real-world settings,
large cliques thus should be rarely observable. The famous theorem of Turán
[554] gives precise sufficient conditions for the guaranteed existence of cliques of
certain sizes with respect to the size of the entire network.

Theorem 6.1.2 (Turán, 1941). Let G = (V,E) be an undirected graph. If
m > n2

2 · k−2
k−1 , then there exists a clique of size k within G.

An immediate consequence of this theorem is that a network itself needs to
be dense in order to surely possess a large clique. However, as social networks
are usually sparse, we have no a priori evidence for the existence of a clique.
Identifying cliques becomes an algorithmic task. Note that, as we will see below,
even if we knew that there is a clique of a certain size in a network, we would
not be able to locate it in reasonable time.

Maximal cliques do always exist in a graph. In fact, there are many of them
and they tend to overlap, i.e., in general it can be the case that maximal cliques
U1 and U2 exist satisfying U1 �= U2 and U1 ∩U2 is non-empty. Another classical
result due to Moon and Moser [432] gives a tight estimation of the number of
maximal cliques:

Theorem 6.1.3 (Moon and Moser, 1965). Every undirected graph G
with n vertices has at most 3�

n
3 � maximal cliques.

In reality, the expected enormous number of maximal cliques leads to the serious
problem of how to identify the more important ones among them. There are
only few algorithmic techniques available providing helpful interpretation of the

6 Local Density 115

maximal-clique collection. Prominent examples for methods are based on the
co-membership matrix or the clique overlap centrality [192].

The family of all cliques of a certain graph shows some structure:

1. Cliques are closed under exclusion, i.e., if U is a clique in G and v ∈ U , then
U − {v} is also a clique.2

2. Cliques are nested, i.e., each clique of size n contains a clique of size n − 1
(even n cliques of size n− 1). Though this is an immediate consequence of
the closure under exclusion, it is a property to be proved for related notions
that are not closed under exclusion.

Distance-based cliques. There is a number of approaches to generalize the notion
of a clique that are relevant in several settings of social-network theory. We list
some of them [400, 14, 429]. Let G = (V,E) be an undirected graph, let U be a
vertex subset of V , and let N > 0 be any natural number.

1. U is said to be an N -clique if and only if for all u, v ∈ U , dG(u, v) ≤ N .
2. U is said to be an N -club if and only if diam(G[U]) ≤ N .
3. U is said to be an N -clan if and only if U is a maximal N -clique and

diam(G[U]) ≤ N .

N -cliques are based on non-local properties, as the distance between vertices
u and v is measured with respect to graph G, and not with respect to G[U].
An immediate consequence is that N -cliques need not be connected for N > 1.
Though clubs and clans are local structures (except the maximality condition),
they are of minor interest in our context, since they emphasize distances rather
than density. Moreover, there has been some criticism of distance-based cliques,
which was sparked off by at least two facts (cf., e.g., [514, 189]). First, in many
cases real-world networks have globally a small diameter, thus, the distance is
a rather coarse measure to identify meaningful network substructures. Second,
distance-based cliques are in general neither closed under exclusion nor nested.

6.1.1 Computational Primitives

In many respects, cliques are simple objects, easily manageable from an algo-
rithmic point of view. We have fast algorithms with run-time O(n+m) at hand
for several computational primitives:

1. Determine if a given set U ⊆ V of vertices is a clique in G. We simply test
whether each pair of vertices of U is an edge in G. Note that these are up
to

(
n
2

)
pairs, but even if we have much fewer edges, after testing m pairs we

are done in any case.
2. Determine if a given clique U ⊆ V is maximal in G. We simply test whether

there exists a vertex in V − U which is adjacent to all vertices in U . Again,
after testing m edges we are done in the worst case.

2 In graph theory, a property Π is called hereditary if and only if, whenever a graph
satisfies Π , so does every induced subgraph. Being a clique is a hereditary property
of graphs.

116 S. Kosub

Another efficiently computable primitive is finding some maximal clique. For
later use, we state this in a more general form. Suppose that the vertex set V
of a graph G = (V,E) is ordered. We say that a set U ⊆ V is lexicographically
smaller than a set U ′ ⊆ V if and only if the first vertex that is not in both U
and U ′ belongs to U . Our third primitive is the following:

3. Compute the lexicographically smallest maximal clique containing some clique
U ′. We start with setting U := U ′, iterate over all v ∈ V − U in increasing
order, and test for each v whether U ⊆ N(v); if this is the case then add ver-
tex v to U . After completing the iteration, U is a maximal clique containing
U ′. This works in time O(n+m).

Algorithmic difficulties appear only when we are interested in finding cliques
of certain sizes or maximum cliques. For these problems, no algorithms with
running times comparable to the one above are known (and, probably, no such
algorithms exist).

6.1.2 Finding Maximum Cliques

We discuss several aspects of the maximum clique problem. Of course, it is easy
to compute a clique of maximum size, if we do not care about time. The obvious
approach is exhaustive search. In an exhaustive search algorithm, we simply
enumerate all possible candidate sets U ⊆ V and examine if U is a clique. We
output the largest clique found. A simple estimation gives a worst-case upper
bound O(n2 · 2n) on the time complexity of the algorithm.

Computational hardness. The problem arises whether we can improve the ex-
haustive search algorithm significantly with respect to the amount of time.
Unfortunately, this will probably not be the case. Computationally, finding a
maximum clique is an inherently hard problem. We consider the corresponding
decision problem:

Problem: Clique
Input: Graph G, Parameter k ∈
Question: Does there exist a clique of size at least k within G?

Let ω(G) denote the size of a maximum clique of a graph G. Note that if we have
an algorithm that decides Clique in time T (n) then we are able to compute
ω(G) in time O(T (n) · logn) using binary search. The other way around, any
T (n) algorithm for computing ω(G), gives a T (n) algorithm for deciding Clique.
Thus, if we had a polynomial algorithm for Clique, we would have a polyno-
mial algorithm for maximum-clique sizes, and vice versa. However, Clique was
among the first problems for which NP-completeness was established [345].

Theorem 6.1.4. Clique is NP-complete.

6 Local Density 117

Proof. Note that testing whether some guessed set is a clique is possible in
polynomial time. This shows the containment in NP . In order to prove the
NP-hardness, we describe a polynomial-time transformation of Satisfiability
into Clique. Suppose we are given a Boolean formula H in conjunctive normal
form consisting of m clauses C1, . . . , Ck. For H we construct a k-partite graph
GH where vertices are the literals of H labeled by their clause, and where edges
connect literals that are not negations of each other. More precisely, define GH =
(VH , EH) to be the following graph:

VH =def

{
(L, i)

∣∣ i ∈ {1, . . . , k} and L is a literal in clause Ci

}
EH =def

{
{(L, i), (L′, j)}

∣∣ i �= j and L �= ¬L′ }
Clearly, the graph GH can be computed in time polynomial in the size of the
formula H . We show that H is satisfiable if and only if the graph GH contains
a clique of size k.

Suppose that H is satisfiable. Then there exists a truth assignment to vari-
ables x1, . . . , xn such that in each clause at least one literal is true. Let L1, . . . , Lk

be such literals. Then, of course, it must hold that Li �= ¬Lj for i �= j. We thus
obtain that the set {(L1, 1), . . . , (Lk, k)} is a clique of size k in GH .

Suppose now that U ⊆ VH is a clique of size k in graph GH . Since GH is
k-partite, U contains exactly one vertex from each part of VH . By definition of
set VH , we have that for all vertices (L, i) and (L′, j) of U , L �= ¬L′ whenever
i �= j. Hence, we can assign truth values to variables in such a way that all
literals contained in U are satisfied. This gives a satisfying truth assignment to
formula H . ��

So, unless P = NP , there are no algorithms with a running time polynomial
in n for solving Clique with arbitrary clique size or computing the maximum
clique. On the other hand, even if we have a guarantee that there is a clique of
size k in graph G, then we are not able to find it in polynomial time.

Corollary 6.1.5. Unless P = NP, there is no algorithm running in polynomial
time to find a clique of size k in a graph which is guaranteed to have a clique of
size k.

Proof. Suppose we have an algorithm A that runs in polynomial time on each
input (G, k) and outputs a clique of size k, if it exists, and behaves in an arbitrary
way in the other cases. A can be easily modified into an algorithmA′ that decides
Clique in polynomial time. On input (G, k), run algorithm A, if A produces no
output, then reject the instance. If A outputs a set U , then test whether U is
a clique. If so, accept, otherwise reject. This procedure is certainly polynomial
time. ��

Note that the hardness of finding the hidden clique does not depend on the size
of the clique. Even very large hidden cliques (of size (1−ε)n for ε > 0) cannot be
found unless P = NP (see, e.g., [308, 37]). The situation becomes slightly better
if we consider randomly chosen graphs, i.e., graphs where each edge appears

118 S. Kosub

with probability 1
2 . Suppose we additionally place at random a clique of size k

in such a random graph of size n. How fast can we find this clique? It has been
observed that, if k = Ω(

√
n logn), then almost surely the k vertices with highest

degree form the clique [374]. This gives a trivial O((n + m) logn) algorithm
(which can be improved to an O(n+m) algorithm with a technique discussed in
Theorem 6.2.7). For k = Ω(

√
n), algorithms based on spectral techniques have

been proven to find hidden cliques of size k in polynomial time [22] (even in
some weaker random graph models [202]). However, many natural algorithmic
techniques do not achieve the goal of finding hidden cliques of size k = o(

√
n)

[328].

Better exponential algorithms. Even though we will probably never have a
polynomial-time algorithm for finding maximum cliques, we can try to design
fast, super-polynomial algorithms. Exhaustive search gives the upper bound
O(n2 · 2n), or O∗(2n) when omitting polynomial factors. Our goal is to de-
sign algorithms having running times O∗(βn) with β as small as possible. The
following theorem that can be found in [590] shows that we can do better than
exhaustive search.

Theorem 6.1.6. There exists an algorithm for computing a maximum clique in
time O∗(1.3803n).

Sketch of Proof. We use a backtracking scheme with pruning of the recursion
tree. Let G be a graph having n vertices and m edges. Let v ∈ V be any
vertex of minimum degree. If δ(G) ≥ n− 3 then the graph misses collections of
pairwise disjoint cycles and paths, for being a complete graph. In this case, it
is fairly easy to compute a maximum clique in O(n +m).3 Assume that there
is a vertex v with degree dG(v) ≤ n− 4. Every maximum clique either contains
v or not. Corresponding to these two cases, a maximum clique of G is either
{v} combined with a maximum clique of the induced subgraph G[N(v)] or a
maximum clique of the induced subgraph G[V − {v}]. We recursively compute
maximum cliques in both subgraphs and derive from them a solution for G
(breaking ties arbitrarily). The worst-case time T (n) essentially depends on the
following recursive inequality:

T (n) ≤ T (n− 4) + T (n− 1) + c · (n+m) for some c > 0

Using standard techniques based on generating functions, we calculate that T (n)
is within a polynomial factor of βn where β ≈ 1.3803 is the largest real zero of
the polynomial β4 − β3 − 1. ��

3 It might be easier to think of independent sets rather than cliques. An independent
set in a graph G is a set U of vertices such that G[U] has no edges. A clique in graph

G corresponds to an independent set in graph G, where in G exactly those vertices
are adjacent that are not adjacent in G. Independent sets are a little bit easier to
handle, since we do not have to reason about edges that are not in the graph. In
fact, many algorithms in the literature are described for independent sets.

6 Local Density 119

The intuitive algorithm in the theorem captures the essence of a series of fast
exponential algorithms for the maximum clique problem. It started with an
O∗(1.286n) algorithm [543] that follows essentially the ideas of the algorithm
above. This algorithm has been subsequently improved to O∗(1.2599n) [545],
by using a smart and tedious case analysis of the neighborhood around a low-
degree vertex. The running time of the algorithm has been further improved
to O∗(1.2346n) [330], and, using combinatorial arguments on connected regular
graphs, to O∗(1.2108n) [495]. Unfortunately, the latter algorithm needs expo-
nential space. This drawback can be avoided: there is a polynomial-space algo-
rithm with a slightly weaker O∗(1.2227n) time complexity [54]. A non-trivial
lower bound on the basis of the exponential is still unknown (even under some
complexity-theoretic assumptions).

6.1.3 Approximating Maximum Cliques

Since we are apparently not able to compute a maximum clique in moderate time,
we could ask up to what size we can recognize cliques in justifiable time. Recall
that ω(G) denotes the size of the largest clique in G. We say that an algorithm
approximates ω(G) within factor f(n) if and only if the algorithm produces,
on input G, a clique U in G such that ω(G) ≤ f(n) · |U |. Note that, since a
maximum clique consists of at most n vertices, we can trivially approximate
maximum clique within factor O(n), simply by outputting some edge, if there
is one in the graph. With a lot of work and combinatorial arguments, we arrive
at the next theorem [79], which is unfortunateley not very much better than the
trivial ratio.

Theorem 6.1.7. There exists a polynomial-time algorithm whose output, for
graph G with n vertices, is a clique of size within factor O

(
n

(log n)2

)
of ω(G).

The approximation ratio stated in the theorem is the best known. The follow-
ing celebrated result [287] indicates that in fact, there is not much space for
improving over that ratio.

Theorem 6.1.8. Unless NP = ZPP,4 there exists no polynomial-time algo-
rithm whose output for a graph G with n vertices is a clique of size within factor
n1−ε of ω(G) for any ε > 0.

The complexity-theoretic assumption used in the theorem is almost as strong as
P = NP . The inapproximability result has been strengthened to subconstant
values of ε, first to O

(
1√

log log n

)
[177] and further to O

(
1

(log n)γ

)
[353] for some

γ > 0. These results are based on much stronger complexity assumptions – es-
sentially, that no NP-complete problem can be solved by randomized algorithms
with quasi-polynomial running time, i.e., in time 2(log n)O(1)

. Note that the ratio
4 ZPP is the class of all problems that can be solved with randomized algorithms

running in expected polynomial time while making no errors. Such algorithms are
also known as (polynomial-time) Las Vegas algorithms.

120 S. Kosub

n
(log n)2 is expressible as Ω

(
log log n

log n

)
in terms of ε. The gap between the lower

bound and the upper bound for approximability is thus pretty close.
Also many heuristic techniques for finding maximum cliques have been pro-

posed. They often show reasonable behavior, but of course, they cannot improve
over the theoretical inapproximability ratio. An extensive discussion of heuristics
for finding maximum cliques can be found in [70].

In the random graph model, we known that, with high probability, ω(G)
is either (2 + o(1)) log n rounded up or rounded down, for a random graph of
size n (see, e.g., [24]). There are several polynomial-time algorithms producing
cliques of size (1+o(1)) log n, i.e., they achieve an approximation ratio of roughly
two [263]. However, it is conjectured that there is no polynomial-time algorithm
outputting a clique of size at least (1 + ε) logn for any ε > 0 [328, 347].

6.1.4 Finding Fixed-Size Cliques

In many cases, it might be appropriate to search only for cliques of bounded
sizes. Technically that is, we consider the clique size not as part of the input.
For instance, exhaustive search has running time Θ(nk) when the clique size k
is fixed. A nice trick helps us to obtain an algorithm for detecting cliques of size
three (triangles) faster than O(n3). The idea to the algorithm in the following
theorem can be found in [321].

Theorem 6.1.9. There exists an algorithm for testing a graph for triangles that
runs in time O(n2.376).

Proof. Let G be any graph with n vertices. Let A(G) denote the adjacency
matrix of G, i.e., entry aij of A(G) is one if vertices vi and vi are adjacent, and
zero otherwise. Consider the matrix A(G)2 = A(G) · A(G) where · is the usual
matrix multiplication. The entry bij of the matrix A(G)2 is exactly the number
of walks of length two between vi and vj . Suppose there exists an entry bij ≥ 1.
That is, there is at least one vertex u ∈ V different to vi and vj which is adjacent
to both vi and vj . If the graph G has an edge {vi, vj}, then we know that G
contains the triangle {vi, vj , u}. Thus, an algorithm for triangle-testing simply
computes A(G)2 and checks whether there exists an edge {vi, vj} for some non-
zero entry bij in A(G)2. Since fast square matrix multiplication can be done in
time O(nα) where α < 2.376 [132], the algorithm runs in time O(n2.376). ��

Note that for sparse graphs there is an even faster algorithm running in time
O(m

2α
α+1) = O(m1.41) for finding triangles which makes use of the same technique

[26] (see also Section 11.5).
Once we have reached this point, we would like to apply the matrix-

multiplication technique to come up with algorithms for clique size larger than
three as well. However, the direct argument does not work for some reasons. For
instance, there exists always a walk of length three between adjacent vertices.
This makes the matrix A(G)3 and all higher powers ambiguous. We need a more
sophisticated approach [174, 440].

6 Local Density 121

Theorem 6.1.10. For every k ≥ 3 there exists an algorithm for finding a clique
of size k in a graph with n vertices that runs in time O(nβ(k)) where β(k) =
α(k/3!, "(k− 1)/3#, "k/3#) and multiplying an nr × ns-matrix with an ns × nt-
matrix can be done in time O(nα(r,s,t)).

Proof. Let k1 denote k/3!, let k2 denote "(k−1)/3#, and let k3 denote the value
"k/3#. Note that k = k1+k2+k3. LetG be any graph with n vertices andm edges.
We first construct a tripartite auxiliary graph G̃ as follows: the vertex set Ṽ is
divided into three sets Ṽ1, Ṽ2, and Ṽ3 where Ṽi consists of all cliques of size ki inG.
Define two vertices U ∈ Ṽi and U ′ ∈ Ṽj to be adjacent in G̃ if and only if i �= j and
U∪U ′ is a clique of size ki+kj in G. The algorithm now tests the auxiliary graph
G̃ for triangles. If there is such a triangle {U1, U2, U3}, then the construction of
G̃ implies that U1 ∪ U2 ∪ U3 is a clique of size k in G. Testing the graph G̃ for
triangles can be done by matrix multiplication as described in Theorem 6.1.9.
However, we now have to multiply an nk1 × nk2 adjacency matrix, representing
edges between Ṽ1 and Ṽ2, with an nk2 ×nk3 adjacency matrix, representing edges
between Ṽ2 and Ṽ3. This step can be done in time O(nβ(k)). Computing the
three matrices needs in the worst case O(nmax{k1+k2,k1+k3,k2+k3}) = O(n�

2k
3 �),

which is asymptotically dominated by the time for the fast rectangular matrix
multiplication [318]. ��

We give an impression of the algorithmic gain of using matrix multiplication
(see, e.g., [260]).

Clique size Exhaustive search Matrix multiplication
3 O(n3) O(n2.376)
4 O(n4) O(n3.376)
5 O(n5) O(n4.220)
6 O(n6) O(n4.751)
7 O(n7) O(n5.751)
8 O(n8) O(n6.595)

The theorem has a nice application to the membership counting problem for
cliques of fixed size. The following result is due to [260].

Theorem 6.1.11. For every k ≥ 3, there exists an algorithm that counts the
number of cliques of size k to which each vertex of a graph on n vertices belongs,
in time O(nβ(k)) where β(k) is the same function as in Theorem 6.1.10.

Proof. The theorem is based on the observation that for the case k = 3 (see
Theorem 6.1.9), it is not only easy to check whether two vertices vi and vj
belong to some triangle in G, but also to compute in how many triangles they
lie: if the edge {vi, vj} exists in G, then the number is just the entry bij in
the square of the adjacency matrix A(G). In general, we apply this observation
to the auxiliary graph G̃. For any vertex v ∈ V , let Ck(v) denote the number
of different cliques of size k in G in which v is contained. Similarly, let C̃3(U)
denote the number of triangles to which node U of G̃ belongs. Notice that U is a
clique in G of size smaller than k. Clearly, cliques of G of size k may have many

122 S. Kosub

representations in graph G̃. The exact number is the number of partitionings of
a set of cardinality k into sets of cardinalities k1, k2, and k3, i.e.,

(
k

k1,k2,k3

)
where

k1, k2, and k3 are defined as in the proof of Theorem 6.1.10. Without loss of
generality, let k1 be the minimum of these three parameters. Let U(v) be the set
of all cliques U of size k1 in G such that v ∈ U . We then obtain the following
equation: ∑

U∈U(v)

C̃3(U) =
(

(k − 1)
(k1 − 1), k2, k3

)
· Ck(v) (6.1)

Clearly, using Theorem 6.1.10, the left-hand side of this equation can be com-
puted in time O(nβ(k)) (first, compute the matrices and second, search entries
for all U containing v). We now easily calculate Ck(v) from Equation 6.1. ��

A recent study of the corresponding decremental problem [260], i.e., the scenario
where starting from a given graph vertices and edges can be removed, has shown
that we can save roughly n0.8 time compared to computing the number of size-k
cliques to which the vertices belong each time from the scratch. For example,
the problem of counting triangles in a decremental setting now takes O(n1.575).

Fixed-parameter tractability. A way to study which time bounds we might ex-
pect for fixed-parameter clique problems is parameterized complexity [168]. The
goal here is to figure out which input parameter makes a problem computation-
ally hard. We say that a parameterized problem (with parameter k) is fixed-
parameter tractable if and only if there is an algorithm for the problem that
needs time polynomial in input size n, if k is fixed, and which is asymptotically
independent of k. More precisely, the time complexity of the algorithm has the
form O(f(k) · p(n)) where p is some polynomial independent of k and f is an
arbitrary function independent of n. Note that the algorithm above does not
satisfy such a bound. A good bound would be, e.g., O(kk · n2). However, we
are far from proving such bounds, and in fact, we should not even expect to
obtain such algorithms. Let FPT denote the class of fixed-parameter tractable
problems. We know that parameterized Clique is complete for the class W [1],
a superclass of FPT [167]. However, it is widely believed that FPT �= W [1],
which would imply both P �= NP and Clique is not fixed parameter tractable.

6.1.5 Enumerating Maximal Cliques

Enumerative algorithms for the clique problem have some tradition (cf., e.g.,
[70]), with probably the first appearing already in 1957 [284]. Several other,
now classical, algorithms were proposed (e.g., [473, 103]). Most recently, also
algorithms for the dynamic graph setting have been investigated [534].

We are interested in having efficient algorithms for enumerating maximal
cliques. There are some gradations in the meaning of ‘efficient.’ Most of the in-
teresting combinatorial problems have an exponential number of configurations;
in our case indicated by the 3�

n
3 � matching upper bound for the number of max-

imal cliques. A typical requirement for an enumerative algorithm to be efficient

6 Local Density 123

is polynomial total time. That is, the algorithm outputs all C possible configu-
rations in time bounded by a polynomial in C and the input size n. Exhaustive
search is not polynomial total time. In contrast, one of the classical algorithms
[473] first runs O(n2C) steps with no output and then outputs all C maximal
cliques all at once. However, an algorithm for the enumeration of all maximum
cliques that runs in polynomial total time does not exist, unless P = NP [382].

We next review enumerative algorithms for maximal cliques with polynomial
total time having some further desirable properties.

Polynomial delay. An algorithm fulfilling this condition generates the configu-
rations, one after the other in some order, in such a way that the delay until
the first output, the delay between any two consecutive configurations, and the
delay until it stops after the last output is bounded by a polynomial in the input
size. For maximal cliques we know such algorithms that in addition, require only
linear space [553].

Theorem 6.1.12. There is an algorithm enumerating all maximal cliques of a
graph with polynomial delay O(n3) using only O(n+m) space.

Proof. We construct a binary tree with n levels and leaves only at level n. Each
level is associated with a vertex, i.e., at level i we consider vertex vi. The nodes
of the tree at level i are all maximal cliques of G[{v1, . . . , vi}]. It immediately
follows that the leaves are exactly the maximal cliques of G. Fix level i and
maximal clique U in G[{v1, . . . , vi}]. We want to determine the children of U at
level i+ 1. We have two main cases:

1. Suppose all vertices of U are adjacent to vi+1 in G. Then U ∪ {vi+1} is
maximal clique in G[{v1, . . . , vi, vi+1}]. Note that this is the only way to
obtain a maximal clique of G[{v1, . . . , vi, vi+1}] that contains U . In this case
U has only one child in the tree.

2. Suppose there is a vertex in U not adjacent to vi+1 in G. Here, we can
obtain maximal cliques in G[{v1, . . . , vi, vi+1}] in two different ways: U itself
is certainly a maximal clique, and another clique is (U −N(vi+1))∪ {vi+1},
where N(vi+1) are all vertices of G not adjacent to vi+1. If the latter set
is a maximal clique, U would have two children. However, as the set (U −
N(vi+1))∪{vi+1} is potentially a child of several sets, we define it to be the
child of the lexicographically smallest set U , if it is maximal.

By this definition, we have a tree where all internal nodes have one or two
children, thus a binary tree, and all leaves are at level n.

Our enumerative algorithm now simply traverses the tree using a depth-first
search and outputs all leaves. All we need to be able to perform the computation,
given a node U of the tree at level i, is the following:

– Parent(U, i): According to the definition of the tree, the parent node of U is
the lexicographically smallest maximal clique in G[{v1, . . . , vi−1}] containing
the clique U − {vi}. This is one of our efficiently computable primitives: the
set can be computed in time O(n+m).

124 S. Kosub

– LeftChild(U, i): If U ⊆ N(vi+1) (the first case above), then the left child is
U ∪ {vi+1}. If U �⊆ N(vi+1) (one part of the second case above), then the left
child is U . Checking which case has to be applied needs O(n+m) time.

– RightChild(U, i): If U ⊆ N(vi+1), then there is no right child defined.If U �⊆
N(vi+1), then the right child of U is (U −N(vi+1))∪{vi+1} if it is a maximal
clique and U = Parent((U −N(vi+1))∪{vi+1}, i+1), otherwise the right child
is not defined. Note that we only need O(n+m) processing time.

The longest path between any two leaves in the tree is 2n − 2 passing through
2n− 1 nodes. For each node we need O(n +m) time. Since any subtree of our
tree has a leaf at level n, this shows that the delay between outputs is O(n3).
Note that the algorithm only needs to store while processing a node, the set U ,
the level i, and a label indicating whether it is the left or the right child. Hence,
the amount of space is O(n+m). ��

Specified order. A more difficult problem is generating maximal cliques in a
specific order, such as lexicographic order. If we only insist in polynomial total
time, this is obviously not a restriction, since we need only collect all outputs
and sort them for outputting in lexicographic order. Considering orders is only
interesting in the case of polynomial delay. Note that the DFS-based polynomial-
delay algorithm in Theorem 6.1.12 does not produce its outputs in lexicographic
order. Another DFS-based algorithm [395] has been proposed that produces the
outputs in lexicographic order but is not polynomial delay. We first observe that
it is not obvious how to break the tradeoff.

Theorem 6.1.13. Deciding for any given graph G and any maximal clique U
of G, whether there is a maximal clique U ′ lexicographically larger than U , is
NP-complete.

The theorem is proven by a polynomial transformation from Satisfiability
[334]. It has some immediate consequences, e.g., it rules out polynomial-delay
algorithms with respect to inverse lexicographic order.

Corollary 6.1.14. 1. Unless P = NP, there is no algorithm that generates
for any given graph G and any maximal clique U in G the lexicographically
next maximal clique in polynomial time.

2. Unless P = NP, there is no algorithm that generates for any given graph
all maximal cliques in inverse lexicographic order with polynomial delay.

It might seem surprising that algorithms exist generating all maximal cliques
in lexicographic order, with polynomial delay. The idea of such an algorithm
is simply that while producing the current output, we invest additional time
in producing lexicographically larger maximal cliques. We store these cliques
in a priority queue Q. Thus, Q contains a potentially exponential number of
cliques and requires potentially exponential space. The following algorithm has
been proposed in [334] and uses in a clever way the tree structure employed in
Theorem 6.1.12.

6 Local Density 125

Algorithm 9: Lexicographic enumeration of maximal cliques [334]

Input: Graph G = (V, E)
Output: Sequence of maximal cliques of G in lexicographic order

Let U0 be the lexicographically first maximal clique;
Insert U0 into priority queue Q;
while Q is not empty do

U :=ExtractMin(Q);
Output U ;
foreach vertex vj of G not adjacent to some vertex vi ∈ U with i < j do

Uj := U ∩ {v1, . . . , vj};
if (Uj − N(vj)) ∪ {vj} is a maximal clique in G[{v1, . . . , vj}] then

Let T be the lexicographically smallest maximal clique which
contains (Uj − N(vj)) ∪ {vj};
Insert T into Q

Theorem 6.1.15. Algorithm 9 enumerates all maximal cliques of a graph with
n vertices in lexicographic order, and with delay O(n3).

Proof. For the correctness of the algorithm, first observe that the set T being
inserted into Q when considering U is lexicographically greater than U . Thus,
we store only sets into the queue that have to be output after U . Hence, the
sequence of maximal cliques we produce is indeed lexicographically ascending.
We also have to show that all maximal cliques are in the sequence. We do this
by proving inductively: if U is the lexicographically first maximal clique not yet
output, then U is in Q.

Base of induction: Suppose U = U0. Then the statement is obviously true.
Step of induction: Suppose U is lexicographically greater than U0. Let j be

the largest index such that Uj = U ∩ {v1, . . . , vj} is not a maximal clique in the
graph restricted to vertices v1, . . . , vj . Such an index must exist, since otherwise
we would have U = U0. Moreover, we have that j < n, since U is a maximal
clique in the whole graph G. By maximality of j, we must have vj+1 ∈ U . There
exists a non-empty set S such that Uj ∪S is a maximal clique in G[{v1, . . . , vj}].
Again, by maximality of j, the vertex vj+1 is not adjacent to all vertices in S.
We conclude that there is a maximal clique U ′ containing Uj ∪S but not vertex
vj+1. Note that U ′ is lexicographically smaller than U , since they differ on set S.
By induction hypothesis, U ′ has already been output. At the time when U ′ was
output, the vertex vj+1 was found not to be adjacent to some vertex vi in U ′ with
index i < j + 1. Clearly, we have (U ′

j+1 − N(vj+1)) ∪ {vj+1} = Uj+1 and Uj+1

is a maximal clique in G[{v1, . . . , vj+1}]. So the lexicographically first maximal
clique T containing Uj+1 was inserted into Q. Once more by maximality of j,
U and T coincide on the first j + 1 vertices. Assume that U �= T . Let k be the
first index such that U and T disagree on vk. It follows that k > j + 1. Since T
is lexicographically less than U , we have vk ∈ T and vk /∈ U . Hence, Uk is not a
maximal clique in G[{v1, . . . , vk}], a contradiction to maximality of j. Therefore,
U = T and so U is in Q. This proves the induction step.

126 S. Kosub

For the time bound, the costly operations are the extraction of the lexi-
cographically smallest maximal clique from Q (which needs O(n logC)), the n
computations of maximal cliques containing a given set (which takes O(n+m) for
each set), and attempting to insert a maximal clique into Q (at costs O(n logC)
per clique). Since C ≤ 3�

n
3 �, the total delay is O(n3) in the worst case. ��

Counting complexity. We conclude this section with some remarks on the com-
plexity of counting the number of maximal cliques. An obvious way to count
maximal cliques is to enumerate them with some of the above-mentioned al-
gorithms and increment a counter each time a clique is output. This, however,
would take exponential time. The question is whether it is possible to compute
the number more directly and in time polynomial in the graph size. To study
such issues the class #P has been introduced [559], which can be considered
as the class of all functions counting the number of solutions of instances of
NP-problems. It can be shown that counting the number of maximal cliques
is #P-complete (with respect to an appropriate reducibility notion) [560]. An
immediate consequence is that if there is a polynomial-time algorithm for com-
puting the number of maximal cliques, then Clique is in P , and thus, P = NP .
Note that in the case of planar, bipartite or bounded-degree graphs there are
polynomial-time algorithms for counting maximal cliques [557].

6.2 Structurally Dense Groups

We review two relaxations of the clique concept based on minimal degrees [515,
514, 513]. Both relaxations are structural, as they impose universal constraints
on individuals in a group.

6.2.1 Plexes

We generalize the clique concept by allowing members in a group to miss some
ties with other group members, but only up to a certain number N ≥ 1. This
leads to the notion of an N -plex [514, 511].

Definition 6.2.1. Let G = (V,E) be any undirected graph and let N ∈
{1, . . . , n − 1} be a natural number. A subset U ⊆ V is said to be an N -plex
if and only if δ(G[U]) ≥ |U | −N .

Clearly, a clique is simply a 1-plex, and an N -plex is also an (N + 1)-plex. We
say that a subset U ⊆ V is a maximal N -plex if and only if U is an N -plex
and it is not strictly contained in any larger N -plex of G. A subset U ⊆ V is a
maximum N -plex if and only if U has a maximum number of vertices among all
N -plexes of G.

It is easily seen that any subgraph of an N -plex is also an N -plex, that is,
N -plexes are closed under exclusion. Moreover, we have the following relation
between the size of an N -plex and its diameter [514, 189, 431].

6 Local Density 127

Proposition 6.2.2. Let N ∈ {1, . . . , n−1} be a natural number. Let G = (V,E)
be any undirected graph on n vertices.

1. If V is an N -plex with N < n+2
2 , then diam(G) ≤ 2 and, if additionally

n ≥ 4, G is 2-edge-connected.
2. If V is an N -plex with N ≥ n+2

2 and G is connected, then diam(G) ≤
2N − n+ 2.

Proof. 1. Suppose N < n+2
2 . Let u, v ∈ V be vertices such that u �= v. If u and

v are adjacent, the distance between them is one. Now, suppose u and v are not
adjacent. Assume that the distance between u and v is at least three, i.e., with
respect to neighborhoods it holds N(u) ∩N(v) = ∅. We obtain

n− 2 ≥ |N(u) ∪N(v)| ≥ 2δ(G) ≥ 2(n−N) > 2
(
n− n+ 2

2

)
= n− 2,

a contradiction. Thus, the distance between u and v is at most two. Hence,
diam(G) ≤ 2. To verify that for n ≥ 4, G is 2-edge-connected, assume to the
contrary that there is a bridge, i.e., an edge e such that after removing it, G−{e}
consists of two connected components V1 and V2. Obviously, every shortest path
from a vertex in V1 to a vertex in V2 must use that bridge. Since diam(G) ≤ 2,
one component is a singleton. This implies that the vertex in this component
has degree one. However, as V is an N -plex with n ≥ 4 vertices, we obtain for
the degree of this vertex n−N > n− (n+2)/2 = (n−2)/2 ≥ 1, a contradiction.
Thus, a bridge cannot exist in G.

2. Suppose N ≥ n+2
2 . Let {v0, v1, . . . , vr} be the longest shortest path of

G, i.e., a path that realizes the diameter r. We may suppose that r ≥ 4. Since
there is no shorter path between v0 and vr, we have that vi is not adjacent to
v0, . . . , vi−2, vi+2, . . . , vr for all i ∈ {0, . . . , r} (where vertices with negative index
do not exist). Furthermore, there cannot exist a vertex adjacent to both v0 and
v3. Thus, the following inclusion is true:

{v0} ∪ {v2, v3, . . . , vr} ∪ (N(v3) − {v2, v4}) ⊆ N(v0)

Note that we have a disjoint union on the left-hand side. We thus obtain the
inequality 1 + (r − 1) + dG(v3) − 2 ≤ N . It follows r + n −N − 2 ≤ N . Hence,
diam(G) = r ≤ 2N − n+ 2. ��

From a computational point of view, finding maximum plexes is not easier than
finding maximum cliques. This is immediate when we consider the variable de-
cision problem for plexes, where the problem instance consists of graph G, the
size parameter k, and the plex parameter N . Since Clique appears as instances
of the form (G, k, 1), the problem is NP-complete. We discuss the complexity
of finding N -plexes of certain sizes for fixed N . For any natural number N > 0,
we define the following decision problem:

Problem: N -Plex
Input: Graph G, Parameter k ∈
Question: Does there exist an N -plex of size at least k within G?

128 S. Kosub

As 1-Plex = Clique, and thus 1-Plex is NP-complete, it is not surprising
that finding maximum N -plexes is NP-hard for all N > 0 as well.

Theorem 6.2.3. N -Plex is NP-complete for all natural numbers N > 0.

Proof. It suffices to consider the case N > 1. There is a generic proof of the
theorem which is based on the fact that being an N -plex is a hereditary graph
property (see, e.g., [240]). We give a direct proof in order to demonstrate the
structural similarity between cliques and plexes. We describe a polynomial trans-
formation of Clique into N -Plex. Let (G, k) be any instance of the clique prob-
lem. We construct a new graph G′ in the following way: we take N − 1 copies of
each vertex of G, connect them to each other by an edge, and all new vertices to
the vertices of G except to the original one. More specifically, let G′ = (V ′, E′)
be the graph defined as follows:

V ′ =def V × {0, 1, . . . , N − 1}
E′ =def

{
{(u, 0), (v, 0)} | {u, v} ∈ E

}
∪

∪
{

{(u, i), (v, j)} | u, v ∈ V and i, j > 0
}

∪
∪
{

{(u, 0), (v, i)} | u, v ∈ V with u �= v and i > 0
}

The graph G′ can certainly be computed in time polynomial in the size of G. A
crucial observation is that copy vertices, i.e., vertices in V × {1, . . . , N − 1} are
adjacent to all vertices in V ′ except one. We will show that G contains a clique
of size k if and only if G′ contains an N -plex of size k + (N − 1)n.

Suppose there exists a clique U ⊆ V of size exactly k in G. Let U ′ denote the
vertex set in G′ consisting of all original vertices of U and all copies of vertices
of V , i.e., U ′ = U × {0} ∪ V × {1, . . . , N − 1}. Notice that U ′ has cardinality
k + (N − 1)n. Each vertex with label i ∈ {1, . . . , N − 1} is directly connected
to each other vertex in U ′ except one vertex with label zero, thus has degree
|U ′| − 2 = k + (N − 1)n− 2. Each vertex (u, 0) is adjacent to all vertices in U ′

except (u, i) with i > 0. That is, (u, 0) has degree k + (N − 1)n− 1 − (N − 1).
Hence, U ′ is an N -plex.

Suppose there is no clique of size k in G. Thus, any induced subgraph of G
having k′ ≥ k vertices has minimal degree at most k′ − 2. Let U ⊆ V ′ be any
vertex set with k + (N − 1)n vertices. Then there is another set U ′ ⊆ V ′ on
k + (N − 1)n vertices such that δ(G′[U ′]) ≥ δ(G′[U]) and U ′ contains all copy
vertices of G′, i.e., U ′ ⊇ V ×{1, . . . , N−1}. This follows from the fact that there
is always a vertex in U0 = U∩(V ×{0}) that is not adjacent to some other vertex
in U0 (otherwise U0 would induce a clique of size |U0| ≥ k in G). Remembering
the observation above, we are now allowed to recursively exchange such vertices
by vertices of V ×{1, . . . , N−1} as long as possible, without decreasing minimum
degrees. We end up with a desired set U ′ ⊆ V ′. Since we have no size-k clique in
G, we may conclude δ(G′[U]) ≤ δ(G′[U ′]) ≤ k+ (N − 1)n− 2− (N − 1). Hence,
there is no N -plex in G′. ��

6 Local Density 129

6.2.2 Cores

A concept dual to plexes is that of a core. Here, we do not ask how many edges
are missing in the subgraph for being complete, but we simply fix a threshold
in terms of a minimal degree for each member of the subgroup. One of the
most important things to learn about cores is that there exist polynomial-time
algorithms for finding maximum cores. Cores have been introduced in [513].

Definition 6.2.4. Let G = (V,E) be any undirected graph. A subset U ⊆ V is
said to be an N -core if and only if δ(G[U]) ≥ N .

The parameter N of an N -core is the order of the N -core. A subset U ⊆ V is a
maximal N -core if and only if U is an N -core and it is not strictly contained in
any larger N -core of G. A subset U ⊆ V is a maximum N -core if and only if U
has maximum number of vertices among all N -cores of G. Maximum cores are
also known as main cores.

Any (N +1)-core is an N -core and any N -core is an (n−N)-plex. Moreover,
if U and U ′ are N -cores, then U ∪U ′ is an N -core as well. That means maximal
N -cores are unique. However, N -cores are not closed under exclusion and are in
general not nested. As an example, a cycle is certainly a 2-core but any proper
subgraph has at least one vertex with degree less than two. N -cores need not
be connected. The following proposition relates maximal connected N -cores to
each other.

Proposition 6.2.5. Let G = (V,E) be any undirected graph and let N > 0
be any natural number. Let U and U ′ be maximal connected N -cores in G with
U �= U ′. Then there exists no edge between U and U ′ in G.

Proof. Assume there is an edge {u, v} with u ∈ U and v ∈ U ′. It follows that
U ∪ U ′ is an N -core containing both U and U ′. Furthermore, it is connected,
since U and U ′ are connected. ��

Some immediate consequences of the proposition are the following: the unique
maximum N -core of a graph is the union of all its maximal connected N -cores,
the maximum 2-core of a connected graph is connected (notice that the internal
vertices of a path have degree two), and a graph is a forest if and only if it
possesses no 2-cores. The next result is an important algorithmic property of
N -cores, that was exhibited in [46].

Proposition 6.2.6. Let G = (V,E) be any undirected graph and let N > 0 be
any natural number. If we recursively remove all vertices with degree strictly less
than N , and all edges incident with them, then the remaining set U of vertices
is the maximum N -core.

Proof. Clearly, U is an N -core. We have to show that it is maximum. Assume
to the contrary, the N -core U obtained is not maximum. Then there exists a
non-empty set T ⊆ V such that U ∪ T is the maximum N -core, but vertices of
T have been removed. Let t be the first vertex of T that has been removed. At
that time, the degree of t must have been strictly less than N . However, as t has

130 S. Kosub

at least N neighbors in U ∪ T and all other vertices have still been in the graph
when t was removed, we have a contradiction. ��

The procedure described in the proposition suggests an algorithm for computing
N -cores. We extend the procedure for obtaining auxiliary values which provide
us with complete information on the core decomposition of a network. Define
the core number of a vertex v ∈ V to be the highest order N of a maximum
N -core vertex v belongs to, i.e.,

ξG(v) =def max{ N | there is an N -core U in G such that v ∈ U }.

A method, according to [47], for computing all core numbers is shown in Algo-
rithm 10. The algorithm is correct due to the following reasons: any graph G is
certainly a δ(G)-core, and each neighbor of vertex v having lower degree than v
decrements the potential core number of v. A straightforward implementation of
the algorithm yields a worst-case time bound of O(mn logn) – the most costly
operations being sorting vertices with respect to their degree. A more clever
implementation guarantees linear time [47].

Algorithm 10: Computing core numbers [47]

Input: Graph G = (V, E)
Output: Array ξG containing the core numbers of all vertices in G

Compute the degrees of all vertices and store them into D;
Sort V in increasing degree-order D;
foreach v ∈ V in sorted order do

ξG(v):=D[v];
foreach vertex u adjacent to v do

if D[u] > D[v] then
D[u] := D[u] − 1;
Resort V in increasing degree-order of D

Theorem 6.2.7. There is an implementation of Algorithm 10 that computes
the core numbers of all vertices in a given graph G = (V,E) having n vertices
and m edges in time O(n+m).

Proof. To reduce the running time of the algorithm, we have to speed up the
sorting operations in the algorithm. This can be achieved by two techniques.

1. Since the degree of a vertex lies in the range {0, . . . , n − 1}, we do sorting
using n buckets, one for each vertex degree. This gives us an O(n) time
complexity for initially sorting the vertex-set array V .

2. We can save resorting entirely, by maintaining information about where in
the array V , which contains the vertices in ascending order of their degree, a
new region with higher degree starts. More specifically, we maintain an array

6 Local Density 131

J where entry J [i] is the minimum index j such that for all r ≥ j, vertex
V [r] has degree at least i. We can now replace the ‘resort’-line in Algorithm
10 by the following instructions:

if u
= vertex w at position J [D[u] + 1] then swap vertices u and w in V ;
Increment J [D[u] + 1]

Resorting the array V in order to maintain the increasing order of degrees
now takes O(1) time. Notice that the array J can initially be computed in
time O(n).

For the total running time of Algorithm 10, we now obtain O(n) for initializing
and sorting and O(m) for the main part of the algorithm (since each edge is
handled at most twice). This proves the O(n+m) implementation. ��

Corollary 6.2.8. For all N > 0, the maximum N -core for a graph with n
vertices and m edges can be computed in time O(n +m), which is independent
of N .

6.3 Statistically Dense Groups

In general, statistical measures over networks do not impose any universal struc-
tural requirements on individuals. This makes them more flexible than structural
measures but usually harder to analyze. We turn to statistical measures for den-
sities of graphs.

6.3.1 Dense Subgraphs

The natural notion of density of a graph is the following. Let G = (V,E) be
any undirected graph with n vertices and m edges. The density �(G) of G is the
ratio defined as

�(G) =def
m(
n
2

) .
That is, the density of a graph is the percentage of the number of edges of a
clique, observable in a graph. We are interested in subgraphs of certain densities.

Definition 6.3.1. Let G = (V,E) be an undirected graph and let 0 ≤ η ≤ 1 be
a real number. A subset U ⊆ V is said to be an η-dense subgraph if and only if
�(G[U]) ≥ η.
In an η-dense subgraph, the interpretation is that any two members share with
probability (or frequency) at least η a relationship with each other. It is, however,
immediate that even graphs of fairly high density are allowed to have isolated
vertices.

A clique, as the subgraph with highest density, is a 1-dense subgraph. An
N -plex has density 1 − N−1

n−1 . Thus, for n approaching infinity, the density of
an N -plex approaches one. A little bit more exactly, for all N > 0 and for all

132 S. Kosub

0 ≤ η ≤ 1, an N -plex of size at least N−η
1−η is an η-dense subgraph. But evidently,

not every (1 − N−1
n−1)-dense subgraph (when allowing non-constant densities) is

an N -plex. An N -core is an N
n−1 -dense subgraph, which can have a density

arbitrarily close to zero for large n.
In general, η-dense subgraphs are not closed under exclusion. However, they

are nested.

Proposition 6.3.2. Let 0 ≤ η ≤ 1 be real number. An η-dense subgraph of size
k in a graph G contains an η-dense subgraph of size k − 1 in G.

Proof. Let U be any η-dense subgraph of G, |U | = k. LetmU denote the number
of edges in G[U]. Let v be a vertex with minimal degree in G[U]. Note that
δ(G[U]) ≤ d̄(G[U]) = 2mU

k = �(G[U])(k − 1). Consider the subset U ′ obtained
by excluding vertex v from U . Let mU ′ denote the number of edges of U ′. We
have

mU ′ = mU − δ(G[U]) ≥ �(G[U])
(
k

2

)
− �(G[U])(k − 1) = �(G[U])

(
k − 1

2

)

Hence, �(G[U ′]) ≥ �(G[U]) ≥ η. Thus, U ′ is an η-dense subgraph. ��

The proposition suggests a greedy approach for obtaining η-dense graphs: recur-
sively deleting a vertex with minimal degree until an η-dense subgraph remains.
However, this procedure can fail drastically. We will discuss this below.

Walks. The density averages over edges in subgraphs. An edge is a walk of length
one. A generalization of density can involve walks of larger length. To make this
more precise, we introduce some notations. Let G = (V,E) be any undirected
graph with n vertices. Let � ∈ be any walk-length. For a vertex v ∈ V , we
define its degree of order � in G as the number of walks of length � that start in
v. Let d�

G(v) denote v’s degree of order � in G. We set d0G(v) = 1 for all v ∈ V .
Clearly, d1G(v) is the degree of v in G. The number of walks of length � in a graph
G is denoted by W�(G). We have the following relation between the degrees of
higher order and the number of walks in a graph.

Proposition 6.3.3. Let G = (V,E) be any undirected graph. For all � ∈ and
for all r ∈ {0, . . . , �}, W�(G) =

∑
v∈V d

r
G(v) · d�−r

G (v).

Proof. Any walk of length � consists of vertices v0, v1, . . . , v�. Fix an arbitrary
r ∈ {0, . . . , �}. Consider the element vr. Then the walk v0, v1, . . . , vr contributes
to the degree of order r of vr, and the walk vr, vr+1, . . . , v� contributes to the
degree of order � − r of vr. Thus, there are dr

G(vr) · d�−r
G (vr) walks of length �

having vertex vr at position r. Summing over all possible choices of a vertex at
position r shows the statement. ��

It is clear that the maximum number of walks of length � in a graph with n
vertices is n(n− 1)�. We thus define the density of order � of a graph G as

6 Local Density 133

��(G) =def
W�(G)
n(n− 1)�

.

Note that �1(G) = �(G) as in W1(G) each edge counts twice. We easily conclude
the following proposition.

Proposition 6.3.4. It holds ��(G) ≤ ��−1(G) for all graphs G and all natural
numbers � ≥ 2.

Proof. Let G = (V,E) be any undirected graph with n vertices. By Proposition
6.3.3,W�(G) =

∑
v∈V d

1
G(v)·d�−1

G (v) ≤ (n−1)
∑

v∈V d
�−1
G (v) = (n−1)·W�−1(G).

Now, the inequality follows easily. ��

For a graph G = (V,E) we can define a subset U ⊆ V to be an η-dense subgraph
of order � if and only if ��(G[U]) ≥ η. From the proposition above, any η-dense
subgraph of order � is an η-dense subgraph of order �− 1 as well. The η-dense
subgraphs of order � ≥ 2 inherit the property of being nested from the η-dense
subgraphs. If we fix a density and consider dense subgraphs of increasing order,
then we can observe that they become more and more similar to cliques. A
formal argument goes as follows. Define the density of infinite order of a graph
G as

�∞(G) =def lim
�→∞

��(G).

The density of infinite order induces a discrete density function due to the fol-
lowing zero-one law [307].

Theorem 6.3.5. Let G = (V,E) be any undirected graph.

1. It holds that �∞(G) is either zero or one.
2. V is a clique if and only if �∞(G) = 1.

The theorem says that the only subgroup that is η-dense for some η > 0 and for
all orders, is a clique. In a sense, the order of a density functions allows a scaling
of how important compactness of groups is in relation to density.

Average degree. One can easily translate the density of a graph with n vertices
into its average degree (as we did in the proof of Proposition 6.3.2): d̄(G) =
�(G)(n − 1). Technically, density and average degree are interchangeable (with
appropriate modifications). We thus can define dense subgraphs alternatively
in terms of average degrees. Let N > 0 be any rational number. An N -dense
subgraph of a graph G = (V,E) is any subset U ⊆ V such that d̄(G[U]) ≥ N .
Clearly, an η-dense subgraph (with respect to percentage densities) of size k is
an η(k − 1)-dense subgraph (with respect to average degrees), and an N -dense
subgraph (with respect to average degrees) of size k is an N

k−1 -dense subgraph
(with respect to percentage densities). Any N -core is an N -dense subgraph. N -
dense subgraphs are neither closed under exclusion nor nested. This is easily seen
by considering N -regular graphs (for N ∈). Removing some vertices decreases
the average degree strictly below N . However, average degrees allow a more
fine-grained analysis of network structure. Since a number of edges quadratic

134 S. Kosub

in the number of vertices is required for a graph to be denser than some given
percentage threshold, small graphs are favored. Average degrees avoid this pitfall.

Extremal graphs. Based upon Turán’s theorem (see Theorem 6.1.2), a whole new
area in graph theory has emerged which has been called extremal graph theory
(see, e.g., [66]). It studies questions like the following: how many edges may a
graph have such that some of a given set of subgraphs are not contained in the
graph? Clearly, if we have more edges in the graph, then all these subgraphs
must be contained in it. This has been applied to dense subgraphs as well. The
following classical theorem due to Dirac [156] is a direct strengthening of Turán’s
theorem.

Theorem 6.3.6 (Dirac, 1963). Let G = (V,E) be any undirected graph. If
m > n2

2 · k−2
k−1 , then G contains subgraphs of size k + r having average degree at

least k + r − 1 − r
k+r for all r ∈ {0, . . . , k − 2} and n ≥ k + r.

Notice that the case r = 0 corresponds to the existence of size-k cliques as
expressed by Turán’s theorem. In many cases, only asymptotic estimations are
possible. For example, it can be shown that, for a graph G = (V,E) on n vertices
and m edges, if m = ω

(
n2−

√
2

d·k
)
, then G has a subgraph with k vertices and

average degree d [368, 262]. It follows that to be sure that there are reasonably
dense subgraphs of sizes not very small, the graph itself has to be reasonably
dense. Some more results are discussed in [262].

6.3.2 Densest Subgraphs

We review a solution for computing a densest subgraph with respect to average
degrees. Let γ∗(G) be the maximum average degree of any non-empty induced
subgraph of G, i.e.,

γ∗(G) =def max{ d̄(G[U]) | U ⊆ V and U �= ∅ }.

As in the case of N -cores, the maximal subgraph realizing γ∗(G) is uniquely
determined. We consider the following problem:

Problem: Densest Subgraph
Input: Graph G
Output: A vertex set of G that realizes γ∗(G)

This problem can be solved in polynomial time using flow techniques [477, 248,
239]; our proof is from [248].

Theorem 6.3.7. There is an algorithm for solving Densest Subgraph on
graphs with n vertices and m edges in time O(mn(log n)(log n2

m)).

6 Local Density 135

Proof. We formulate Densest Subgraph as a maximum flow problem depend-
ing on some parameter γ ∈ +. Let G = (V,E) be any undirected graph with n
vertices and m edges. Consider a flow network consisting of graph G′ = (V ′, E′)
and capacity function uγ : E′ → + given as follows. Add to V a source s and a
sink t; replace each edge of G (which is undirected) by two directed edges of ca-
pacity one each; connect the source to all vertices of V by an edge of capacitym;
and connect each vertex v ∈ V to the sink by an edge of capacity m+γ−dG(v).
More specifically, the network is defined as

V ′ =def V ∪ {s, t}
E′ =def {(v, w) | {v, w} ∈ E} ∪ {(s, v) | v ∈ V } ∪ {(v, t) | v ∈ V }

and for v, w ∈ V ′ the capacity function uγ is defined as

uγ(v, w) =def

⎧⎪⎪⎨
⎪⎪⎩

1 if {v, w} ∈ E
m if v = s
m+ γ − dG(v) if w = t
0 if (v, w) /∈ E′

We consider capacities of cuts in the network. Let S, T be any partitioning of
V ′ into two disjoint vertex sets with s ∈ S and t ∈ T , S+ = S − {s} and
T+ = T − {t}. Note that S+ ∪ T+ = V . If S+ = ∅, then the capacity of the cut
is c(S, S) = m|V |. Otherwise we obtain:

c(S, T) =
∑

v∈S,w∈T

uγ(v, w)

=
∑

w∈T+

uγ(s, w) +
∑

v∈S+

uγ(v, t) +
∑

v∈S+,w∈T+

uγ(v, w)

= m|T+| +
(
m|S+| + γ|S+| −

∑
v∈S+

dG(v)
)

+
∑

v∈S+,w∈T+
{v,w}∈E

1

= m|V | + |S+|

⎛
⎜⎝γ − 1

|S+|

(∑
v∈S+

dG(v) −
∑

v∈S+,w∈T+
{v,w}∈E

1
)⎞⎟⎠

= m|V | + |S+|(γ − d̄(G[S+])) (6.2)

It is clear from this equation that γ is our guess on the maximum average degree
of G. We need to know how we can detect whether γ is too big or too small. We
prove the following claim.

Claim. Let S and T be sets that realize the minimum capacity cut, with respect
to γ. Then we have the following:

1. If S+ �= ∅, then γ ≤ γ∗(G).
2. If S+ = ∅, then γ ≥ γ∗(G).

136 S. Kosub

The claim is proven by the following arguments.

1. Suppose S+ �= ∅. Since c({s}, V ′ −{s}) = m|V | ≥ c(S, T), we have |S+|(γ−
d̄(G[S+])) ≤ 0. Hence, γ ≤ d̄(G[S+]) ≤ γ∗(G).

2. Suppose S+ = ∅. Assume further to the contrary, that γ < γ∗(G). Let
U ⊆ V be any non-empty vertex subset satisfying d̄(G[U]) = γ∗(G). By
Equation 6.2, we obtain

c(U ∪ {s}, U ∪ {t}) = m|V | + |U |(γ − γ∗(G)) < m|V | = c(S, T),

a contradiction to the minimality of the cut capacity c(S, T). Thus, γ ≥
γ∗(G).

The claim suggests an algorithm for finding the right guess for γ by binary
search. Notice that γ∗(G) can have only a finite number of values, i.e.,

γ∗(G) ∈
{

2i
j

∣∣∣ i ∈ {0, . . . ,m} and j ∈ {1, . . . , n}
}
.

It is easily seen that the smallest possible distance between two different points
in the set is 1

n(n−1) . A binary search procedure for finding a maximum average
degree subgraph is given as Algorithm 11.

Algorithm 11: Densest subgraph by min-cut and binary search [248]

Input: Graph G = (V, E))
Output: A set of k vertices of G

Initialize l := 0, r := m, and U := ∅;
while r − l ≥ 1

n(n−1)
do

γ := l+r
2

;
Construct flow network (V ′, E′, uγ);
Find minimum cut S and T of the flow network;
if S = {s} then

r := γ

else
l := γ;
U := S − {s}

Return U

For a time bound, note that we execute the iteration "log((m+1)n(n−1))# =
O(log n) times. Inside each iteration we have to run an algorithm which finds
a minimum capacity cut. If we use, e.g., the push-relabel algorithm [252] for
max-flow computations, we can do this in time O(nm log n2

m) in a network with
n vertices and m edges. Out network has n+2 vertices and 2m+2n edges. This
does not change the complexity of the max-flow algorithm asymptotically. We
thus obtain the overall time bound O(nm(log n)(log n2

m)). ��

6 Local Density 137

Parametric maximum flow algorithms [239, 6] have been employed to improve
the time bound to O(nm log n2

m) [239]. In [113], Densest Subgraph has been
solved by linear programming. This gives certainly a worse upper bound for the
time complexity, but has some extensions to the case of directed graphs.

Directed graphs. There is no obvious way to define the notion of density in
directed graphs. Since average in-degree and average out-degree in a directed
graph are always equal, both measures are not sensitive to orientedness. One
approach followed in the literature [342, 113] is based on considering two vertex
sets S and T , which are not necessarily disjoint, to capture orientations. For any
directed graph G = (V,E) and non-empty sets S, T ⊆ V , let E(S, T) denote the
set of edges going from S to T , i.e., E(S, T) = {(u, v) | u ∈ S and v ∈ T }. We
define an average degree of the pair (S, T) in the graph as [342]:

d̄G(S, T) =def
|E(S, T)|√
|S| · |T |

.

This notion was introduced to measure the connectedness between hubs and
authorities in web graphs. The set S is understood as the set of hubs, and the
set T is understood as the set of authorities in the sense of [359], or fans and
centers in the sense of [376]. If S = T then d̄G(S, T) is precisely the average
degree of G[S] (i.e., the sum of the average in-degree and the average out-degree
of G[S]). The maximum average degree for a directed graphG = (V,E) is defined
as

γ∗(G) =def max{ d̄G(S, T) | S, T ⊆ V and S �= ∅, T �= ∅ }.
Densest Subgraph on directed graphs can be solved in polynomial time by
linear programming [113]. To do so, we consider the following LP relaxations
LPγ , where γ ranges over all possible ratios |S|/|T |:

max
∑

(u,v)∈E x(u,v)

s.t. x(u,v) ≤ su for all (u, v) ∈ E
x(u,v) ≤ tv for all (u, v) ∈ E∑

u∈V su ≤ √
γ∑

v∈V tv ≤ 1√
γ

x(u,v), su, tv ≥ 0 for all u, v ∈ V and (u, v) ∈ E

It can be shown that the maximum average degree for G is the maximum of
the optimal solutions for LPγ over all γ. Each linear program can be solved in
polynomial time. Since there are O(n2) many ratios for |S|/|T | and thus for γ,
we can now compute the maximum average degree for G (and a corresponding
subgraph as well) in polynomial time by binary search.

6.3.3 Densest Subgraphs of Given Sizes

The densest subgraph of a graph is highly fragile, as a graph with some average
degree need not possess a subgraph with the same average degree. We are thus

138 S. Kosub

not able to deduce easily information on the existence of subgraphs with certain
average degrees and certain sizes, from a solution of Densest Subgraph. We
discuss this problem independently. For an undirected graph G = (V,E) and
parameter k ∈ , let γ∗(G, k) denote the maximum value of the average degrees
of all induced subgraphs of G having k vertices, i.e.,

γ∗(G, k) =def max{ d̄(G[U]) | U ⊆ V and |U | = k }.

The following optimization problem has been introduced in [201]:

Problem: Dense k-Subgraph
Input: Graph G, Parameter k ∈
Output: A vertex set of G that realizes γ∗(G, k)

In contrast to Densest Subgraph, this problem is computationally difficult.
It is clear that Dense k-Subgraph is NP-hard (observe that the instance
(G, k, k− 1) to the corresponding decision problem means searching for a clique
of size k in G). The best we may hope for is a polynomial algorithm with moder-
ate approximation ratio. A natural approach for approximating γ∗(G, k) is based
on greedy methods. An example of a greedy procedure due to [201] is given as
Algorithm 12.

Algorithm 12: Greedy procedure

Input: Graph G = (V, E) and even parameter k ∈ (with |V | ≥ k)
Output: A set of k vertices of G

Sort the vertices in decreasing order of their degrees;
Let H be the set of k

2
vertices of highest degree;

Compute NH(v) = |N(v) ∩ H | for all vertices v ∈ V − H ;
Sort the vertices in V − H in decreasing order of the NH -values;
Let R be the set of k

2
vertices of V − H of highest NH -values;

Return H ∪ R

Theorem 6.3.8. Let G be any graph with n vertices and let k ∈ be an even
natural number with k ≤ n. Let A(G, k) denote the average degree of the subgraph
of G induced by the vertex set that is the output of Algorithm 12. We have

γ∗(G, k) ≤ 2n
k

·A(G, k).

Proof. For subsets U,U ′ ⊆ V , let E(U,U ′) denote the set of edges consisting
of one vertex of U and one vertex of U ′. Let mU denote the cardinality of the
edge set E(G[U]). Let dH denote the average degree of the k

2 vertices of G with
highest degree with respect to G. We certainly have, dH ≥ γ∗(G, k). We obtain

|E(H,V −H)| = dH · |H | − 2mH ≥ dH · k
2

− 2mH ≥ 0.

6 Local Density 139

By the greedy rule, at least the fraction of

|R|
|V −H | =

k

2n− k >
k

2n

of these edges has been selected to be in G[H ∪ R]. Hence, the total number of
edges in G[H ∪R] is at least(

dH · k
2

− 2mH

)
· k
2n

+mH ≥ dH · k2

4n
.

This proves the inequality for the average degree. ��

The greedy procedure is the better the larger k is in relation to n. It is an appro-
priate choice if we want to find large dense regions in a graph. However, for very
small parameters, e.g., for k = O(1), it is almost as bad as any trivial procedure.
An approximation ratio O(n

k) has been obtained by several other approximation
methods, e.g., by greedy methods based on recursively deleting vertices of mini-
mal degree [38] or by semidefinite programming [204, 531]. However, to overcome
the connection between n and k, we need complementary algorithms that work
well on smaller values of k. In the light of the following theorem [201], this seems
possible for up to k = O(n

2
3).

Theorem 6.3.9. Dense k-Subgraph can be approximated in polynomial time
within ratio O(n

1
3−ε) for some ε > 0.

No better bound for the general problem is known. In special graph classes, how-
ever, approximation can be done within better ratio. For instance, on families of
dense graphs, i.e., graphs with Ω(n2) edges, there exist polynomial-time approx-
imation algorithms with ratio arbitrary close to one [35, 137]. A drawback here is
that most of the social networks are sparse, not dense. As to lower bounds on the
approximation ratio, it has recently been proven that an approximation ratio of
1 + ε for all ε > 0 cannot be achieved unless all NP problems can be simulated
by randomized algorithms with double-sided error and sub-exponential running
time (more specifically, in time O(2nε

) for all ε > 0)[354]. Moreover, it is even
conjectured that there is no polynomial-time algorithm with approximation ratio
O(nε) for all ε > 0 [201].

6.3.4 Parameterized Density

As we have argued, the decision version of Dense k-Subgraph is NP-complete.
In contrast to this variable decision problem (note that the density parameter is
part of the input), we are now interested in studying the fixed-parameter version.
A function γ : → + is a density threshold if and only if γ is computable
in polynomial time and γ(k) ≤ k − 1 for all k ∈ . For any density threshold
γ, a γ-dense subgraph of a graph G = (V,E) is any subset U ⊆ V such that
d̄(G[U]) ≥ γ(|U |). We consider the following problem:

140 S. Kosub

Problem: γ-Dense Subgraph
Input: Graph G, Parameter k ∈
Question: Does there exist γ-dense subgraph of size k within G?

Clearly, on the one hand, if we choose γ(k) = k − 1 for all k ∈ , then we
obtain γ-Dense Subgraph = Clique, and thus an NP-complete problem. On
the other hand, if we choose γ(k) = 0, then any choice of k vertices induces a
γ-dense subgraph and thus γ-Dense Subgraph is solvable in polynomial time.
The question is: which choices of γ do still admit polynomial-time algorithms
and for which γ does the problem become NP-complete? This problem has been
studied by several authors [204, 37, 308]. The following theorem due to [308] gives
a sharp boundary, which also shows that a complexity jump appears very early.

Theorem 6.3.10. Let γ be any density threshold.

1. If γ = 2 + O
(

1
k

)
, then γ-Dense Subgraph is solvable in polynomial time.

2. If γ = 2 + Ω
(

1
k1−ε

)
for some ε > 0, then γ-Dense Subgraph is NP-

complete.

A direct application of the theorem gives the following result for the case of
constant density functions.

Corollary 6.3.11. Finding a k-vertex subgraph with average degree at least two
can be done in polynomial time. However, there is no algorithm for finding a k-
vertex subgraph with average degree at least 2+ε for any ε > 0, unless P = NP.

This result should be contrasted with the corresponding result forN -cores, where
detecting N -cores of size k can be done in linear time in the graph size, even
for all N > 0. This demonstrates a drastic computational difference between
statistical and structural density.

Results similar to Theorem 6.3.10 have been proven for the case of special net-
work classes with real-world characteristics, in particular, for power-law graphs
and general sparse graphs [306].

6.4 Chapter Notes

In this chapter, we studied computational aspects of notions of local densities,
i.e., density notions defined over induced subgraphs only, consequently suppress-
ing network structure outside a subgroup. We considered structural (N -plexes,
N -cores) and statistical relaxations (η-dense subgraphs) of the clique concept,
which is the perfectly cohesive subgroup. Although many algorithmic problems
for these notions are computationally hard, i.e., we do not know polynomial
algorithms for solving them, there are several cases where fast algorithms exist
producing desirable information on the density-based cohesive structure of a net-
work, e.g., the number of small cliques in graphs, core numbers, or the maximum
average degree reachable by a subgroup in a directed and undirected network.

6 Local Density 141

An observation coming up from the presented results is that there is a seem-
ingly hard tradeoff between mathematical soundness and meaningfulness of these
notions and their algorithmic tractability. This is evident from the following table
summarizing properties of our main notions:

subgroup closed under nested tractable
exclusion

clique + + –
N -plex (for N ∈) + + –
N -core (for N ∈) – – +
η-dense subgraph (for η ∈ [0, 1]) – + –

Here, we see that nestedness, as a meaningful structure inside a group, excludes
fast algorithms for computing subgroups of certain sizes. This exclusion is also
inherited by some further relaxations. However, we have no rigorous proof for this
observation in case of general locally definable subgroups. On the other hand,
a similar relation is provably true for closure under exclusion and efficiently de-
tecting subgroups of a given size: we cannot achieve both with an appropriate
notion of density (see, e.g., [240, GT21,GT22]).

We conclude this chapter with a brief discussion of a selection of non-local
concepts of cohesive subgroups that have attracted interest in social network
analysis. Since non-locality emphasizes the importance for a cohesive subgroup
to be separated from the remaining network, such notions play an important role
in models for core/periphery structures [84, 193]. An extensive study of non-local
density notions and their applications to network decomposition problems can
be found in Chapter 8 and Chapter 10.

LS sets (Luccio-Sami sets). The notion of an LS set has been introduced in
[399, 381]. An LS set can be seen as a network region where internal ties are
more significant than external ties. More specifically, for a graph G = (V,E)
a vertex subset U ⊆ V is said to be an LS set if and only if for all proper,
non-empty subsets U ′ ⊂ U , we have

|E(U ′, V − U ′)| > |E(U, V − U)|.

Trivially, V is an LS set. Also the singleton sets {v} are LS sets in G for each
v ∈ V . LS sets have some nice structural properties. For instance, they do
not non-trivially overlap [399, 381], i.e., if U1 and U2 are LS sets such that
U1 ∩ U2 �= ∅, then either U1 ⊆ U2 or U2 ⊆ U1. Moreover, LS sets are rather
dense: the minimum degree of a non-trivial LS set is at least half of the number
of outgoing edges [512]. Note that the structural strength of LS sets depends
heavily on the universal requirement that all proper subsets share more ties
with the network outside than the set U does (see [512] for a discussion of this
point). Some relaxations of LS sets can be found in [86].

142 S. Kosub

Lambda sets. A notion closely related to LS sets is that of a lambda set. Let
G = (V,E) be any undirected graph. For vertices u, v ∈ V , let λ(u, v) denote
the number of edge-disjoint paths between u and v in G, i.e., λ(u, v) measures
the edge connectivity of u and v in G. A subset U ⊆ V is said to be a lambda
set if and only if

min
u,v∈U

λ(u, v) > max
u∈U,v∈V −U

λ(u, v).

In a lambda set, the members have more edge-disjoint paths connecting them to
each other than to non-members. Each LS set is a lambda set [512, 86]. Lambda
sets do not directly measure the density of a subset. However, they have some
importance as they allow a polynomial-time algorithm for computing them [86].
The algorithm essentially consists of two parts, namely computing the edge-
connectivity matrix for the vertex set V (which can be done by flow algorithms
in time O(n4) [258]) and based on this matrix, grouping vertices together in a
level-wise manner, i.e., vertices u and v belong to the same lambda set (at level
N) if and only if λ(u, v) ≥ N . The algorithm can also be easily extended to
compute LS sets.

Normal sets. In [285], a normality predicate for network subgroups has been
defined in a statistical way over random walks on graphs. One of the most
important reasons for considering random walks is that typically the resulting
algorithms are simple, fast, and general. A random walk is a stochastic process
by which we go over a graph by selecting the next vertex to visit at random
among all neighbors of the current vertex. We can use random walks to capture
a notion of cohesiveness quality of a subgroup. The intuition is that a group is
the more cohesive the higher the probability is that a random walk originating at
some group member does not leave the group. Let G = (V,E) be any undirected
graph. For d ∈ and α ∈ +, a subset U ⊆ V is said to be (d, α)-normal if and
only if for all vertices u, v ∈ U such that dG(u, v) ≤ d, the probability that a
random walk starting at u will reach v before visiting any vertex w ∈ V −U , is at
least α. Though this notion is rather intuitive, we do not know how to compute
normal sets or decomposing a network into normal sets. Instead, some heuristic
algorithms, running in linear time (at least on graphs with bounded degree),
have been developed producing decompositions in the spirit of normality [285].

7 Connectivity

Frank Kammer and Hanjo Täubig

This chapter is mainly concerned with the strength of connections between ver-
tices with respect to the number of vertex- or edge-disjoint paths. As we shall
see, this is equivalent to the question of how many nodes or edges must be re-
moved from a graph to destroy all paths between two (arbitrary or specified)
vertices. For basic definitions of connectivity see Section 2.2.4.

We present algorithms which

– check k-vertex (k-edge) connectivity,
– compute the vertex (edge) connectivity, and
– compute the maximal k-connected components

of a given graph.
After a few definitions we present some important theorems which summarize

fundamental properties of connectivity and which provide a basis for understand-
ing the algorithms in the subsequent sections.

We denote the vertex-connectivity of a graph G by κ(G) and the edge-
connectivity by λ(G); compare Section 2.2.4. Furthermore, we define the local
(vertex-)connectivity κG(s, t) for two distinct vertices s and t as the minimum
number of vertices which must be removed to destroy all paths from s to t. In
the case that an edge from s to t exists we set κG(s, t) = n− 1 since κG cannot
exceed n − 2 in the other case1. Accordingly, we define λG(s, t) to be the least
number of edges to be removed such that no path from s to t remains. Note,
that for undirected graphs κG(s, t) = κG(t, s) and λG(s, t) = λG(t, s), whereas
for directed graphs these functions are, in general, not symmetric.

Some of the terms we use in this chapter occur under different names in
the literature. In what follows, we mainly use (alternatives in parentheses): cut-
vertex (articulation point, separation vertex), cut-edge (isthmus, bridge), com-
ponent (connected component), biconnected component (non-separable compo-
nent, block). A cut-vertex is a vertex which increases the number of connected
components when it is removed from the graph; the term cut-edge is defined sim-
ilarly. A biconnected component is a maximal 2-connected subgraph; see Chap-
ter 2. A block of a graph G is a maximal connected subgraph of G containing
no cut-vertex, that is, the set of all blocks of a graph consists of its isolated

1 If s and t are connected by an edge, it is not possible to disconnect s from t by
removing only vertices.

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 143–177, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

144 F. Kammer and H. Täubig

4

6

2

3

5

1

7

8

9

10

11

(a) A graph. We consider the connectivity between the vertices 1 and 11.

4

6

2

3

5

1

7

8

9

10

11

(b) 2 vertex-disjoint paths and a
vertex-cutset of size 2.

4

6

2

3

5

1

7

8

9

10

11

(c) 3 edge-disjoint paths and an
edge-cutset of size 3.

Fig. 7.1. Vertex-/edge-disjoint paths and vertex-/edge-cutsets

vertices, its cut-edges, and its maximal biconnected subgraphs. Hence, with our
definition, a block is (slightly) different from a biconnected component.

The block-graph B(G) of a graph G consists of one vertex for each block
of G. Two vertices of the block-graph are adjacent if and only if the correspond-
ing blocks share a common vertex (that is, a cut-vertex). The cutpoint-graph
C(G) of G consists of one vertex for each cut-vertex of G, where vertices are
adjacent if and only if the corresponding cut-vertices reside in the same block
of G. For the block- and the cutpoint-graph of G the equalities B(B(G)) = C(G)
and B(C(G)) = C(B(G)) hold [275]. The block-cutpoint-graph of a graph G is
the bipartite graph which consists of the set of cut-vertices of G and a set of ver-
tices which represent the blocks of G. A cut-vertex is adjacent to a block-vertex
whenever the cut-vertex belongs to the corresponding block. The block-cutpoint-
graph of a connected graph is a tree [283]. The maximal k-vertex-connected (k-
edge-connected) subgraphs are called k-vertex-components (k-edge-components).
A k-edge-component which does not contain any (k + 1)-components is called a
cluster [410, 470, 411, 412].

7.1 Fundamental Theorems

Theorem 7.1.1. For all non-trivial graphs G it holds that:

κ(G) ≤ λ(G) ≤ δ(G)

7 Connectivity 145

Proof. The incident edges of a vertex having minimum degree δ(G) form an edge
separator. Thus we conclude λ(G) ≤ δ(G).

The vertex-connectivity of any graph on n vertices can be bounded from
above by the connectivity of the complete graph κ(Kn) = n− 1.

Let G = (V,E) be a graph with at least 2 vertices and consider a minimal
edge separator that separates a vertex set S from all other vertices S̄ = V \S. In
the case that all edges between S and S̄ are present in G we get λ(G) = |S|·|S̄| ≥
|V | − 1. Otherwise there exist vertices x ∈ S, y ∈ S̄ such that {x, y} /∈ E, and
the set of all neighbors of x in S̄ as well as all vertices from S \ {x} that have
neighbors in S̄ form a vertex separator; the size of that separator is at most the
number of edges from S to S̄, and it separates (at least) x and y. ��

The following is the graph-theoretic equivalent of a theorem that was pub-
lished by Karl Menger in his work on the general curve theory [419].

Theorem 7.1.2 (Menger, 1927). If P and Q are subsets of vertices of an
undirected graph, then the maximum number of vertex-disjoint paths connecting
vertices from P and Q is equal to the minimum cardinality of any set of vertices
intersecting every path from a vertex in P to a vertex in Q.

This theorem is also known as the n-chain or n-arc theorem, and it yields as a
consequence one of the most fundamental statements of graph theory:

Corollary 7.1.3 (Menger’s Theorem). Let s, t be two vertices of an undi-
rected graph G = (V,E). If s and t are not adjacent, the maximum number of
vertex-disjoint s-t-paths is equal to the minimum cardinality of an s-t-vertex-
separator.

The analog for the case of edge-cuts is stated in the next theorem.

Theorem 7.1.4. The maximum number of edge-disjoint s-t-paths is equal to
the minimum cardinality of an s-t-edge-separator.

This theorem is most often called the edge version of Menger’s Theorem although
it was first explicitely stated three decades after Menger’s paper in publications
due to Ford and Fulkerson [218], Dantzig and Fulkerson [141], as well as Elias,
Feinstein, and Shannon [175].

A closely related result is the Max-Flow Min-Cut Theorem by Ford and
Fulkerson (see Theorem 2.2.1, [218]). The edge variant of Menger’s Theorem can
be seen as a restricted version where all edge capacities have a unit value.

The following global version of Menger’s Theorem was published by Hassler
Whitney [581] and is sometimes referred to as ‘Whitney’s Theorem’.

Theorem 7.1.5 (Whitney, 1932). Let G = (V,E) be a non-trivial graph and
k a positive integer. G is k-(vertex-)connected if and only if all pairs of distinct
vertices can be connected by k vertex-disjoint paths.

The difficulty in deriving this theorem is that Menger’s Theorem requires the
nodes to be not adjacent. Since this precondition is not present in the edge ver-
sion of Menger’s Theorem, the following follows immediately from Theorem 7.1.4:

146 F. Kammer and H. Täubig

Theorem 7.1.6. Let G = (V,E) be a non-trivial graph and k a positive integer.
G is k-edge-connected if and only if all pairs of distinct vertices can be connected
by k edge-disjoint paths.

For a detailed review of the history of Menger’s Theorem we refer to the
survey by Schrijver [506].

Beineke and Harary discovered a similar theorem for a combined vertex-
edge-connectivity (see [55]). They considered connectivity pairs (k, l) such that
there is some set of k vertices and l edges whose removal disconnects the graph,
whereas there is no set of k − 1 vertices and l edges or of k vertices and l − 1
edges forming a mixed vertex/edge cut set.

Theorem 7.1.7 (Beineke & Harary, 1967). If (k, l) is a connectivity
pair for vertices s and t in graph G, then there are k + l edge-disjoint paths
joining s and t, of which k are mutually non-intersecting.

The following theorem gives bounds on vertex- and edge-connectivity (see [274]).

Theorem 7.1.8. The maximum (vertex-/edge-) connectivity of some graph on
n vertices and m edges is⌊

2m
n

⌋
, if m ≥ n− 1

0 , otherwise.
The minimum (vertex-/edge-) connectivity of some graph on n vertices and

m edges is
m−

(
n−1

2

)
, if

(
n−1

2

)
< m ≤

(
n
2

)
0 , otherwise.

A further proposition concerning the edge connectivity in a special case has
been given by Chartrand [114]:

Theorem 7.1.9. For all graphs G = (V,E) having minimum degree δ(G) ≥
 |V |/2!, the edge-connectivity equals the minimum degree of the graph: λ(G) =
δ(G)

For more bounds on graph connectivity see [28, 62, 390, 63, 182, 523].
The following theorems deal with the k-vertex/edge-components of graphs.

The rather obvious facts that two different components of a graph have no vertex
in common, and two different blocks share at most one common vertex, have been
generalized by Harary and Kodama [279]:

Theorem 7.1.10. Two distinct k-(vertex-)components have at most k − 1 ver-
tices in common.

While k-vertex-components might overlap, k-edge-components do not.

Theorem 7.1.11 (Matula, 1968). For any fixed natural number k ≥ 1 the
k-edge-components of a graph are vertex-disjoint.

Proof. The proof is due to Matula (see [410]). Consider an (overlapping) decom-
position G̃ = G1∪G2∪. . .∪Gt of a connected subgraph G̃ ofG. Let C = (A, Ā) be
a minimum edge-cut of G̃ into the disconnected parts A and Ā. To skip the trivial

7 Connectivity 147

case, assume that G̃ has at least 2 vertices. For each subgraph Gi that contains
a certain edge e ∈ C of the min-cut, the cut also contains a cut for Gi (otherwise
the two vertices would be connected in Gi \C and G̃\C which would contradict
the assumption that C is a minimum cut). We conclude that there is a Gi such
that λ(G̃) = |C| ≥ λ(Gi), which directly implies λ(G̃) ≥ min1≤i≤t{λ(Gi)} and
thereby proves the theorem. ��

Although we can see from Theorem 7.1.1 that k-vertex/edge-connectivity
implies a minimum degree of at least k, the converse is not true. But in the case
of a large minimum degree, there must be a highly connected subgraph.

Theorem 7.1.12 (Mader, 1972). Every graph of average degree at least 4k
has a k-connected subgraph.

For a proof see [404].
Several observations regarding the connectivity of directed graphs have been

made. One of them considers directed spanning trees rooted at a node r, so
called r-branchings :

Theorem 7.1.13 (Edmonds’ Branching Theorem [171]). In a directed
multigraph G = (V,E) containing a vertex r, the maximum number of pairwise
edge-disjoint r-branchings is equal to κG(r), where κG(r) denotes the minimum,
taken over all vertex sets S ⊂ V that contain r, of the number of edges leaving S.

The following theorem due to Lovász [396] states an interrelation of the
maximum number of directed edge-disjoint paths and the in- and out-degree of
a vertex.

Theorem 7.1.14 (Lovász, 1973). Let v ∈ V be a vertex of a graph G =
(V,E). If λG(v, w) ≤ λG(w, v) for all vertices w ∈ V , then d+(v) ≤ d−(v).

As an immediate consequence, this theorem provided a proof for Kotzig’s con-
jecture:

Theorem 7.1.15 (Kotzig’s Theorem). For a directed graph G, λG(v, w)
equals λG(w, v) for all v, w ∈ V if and only if the graph is pseudo-symmetric,
i.e. the in-degree equals the out-degree for all vertices: d+(v) = d−(v).

7.2 Introduction to Minimum Cuts

For short, in an undirected weighted graph the sum of the weights of the edges
with one endpoint in each of two disjoint vertex sets X and Y is denoted by
w(X,Y). For directed graphs, w(X,Y) is defined in nearly the same way, but
we only count the weight of edges with their origin in X and their destination in
Y . A cut in a weighted graph G = (V,E) is a set of vertices ∅ ⊂ S ⊂ V and its
weight is w(S, V \S). In an unweighted graph, the weight of a cut is the number
of edges from S to V \ S.

Definition 7.2.1. A minimum cut is a cut S such that for all other cuts T ,

w(S, V \ S) ≤ w(T, V \ T).

148 F. Kammer and H. Täubig

Observation 7.2.2. A minimum cut in a connected graph G with edge weights
greater than zero induces a connected subgraph of G.

An algorithm that computes all minimum cuts has to represent these cuts. A
problem is to store all minimum cuts without using too much space. A suggestion
was made in 1976 by Dinitz et al. [153]. They presented a data structure called
cactus that represents all minimum cuts of an undirected (weighted) graph. The
size of a cactus is linear in the number of vertices of the input graph and a cactus
allows us to compute a cut in a time linear in the size of the cut.

Karzanov and Timofeev outlined in [351] a first algorithm to construct a
cactus for unweighted, undirected graphs. Their algorithm consists of two parts.
Given an arbitrary input graph G, the first part finds a sequence of all minimum
cuts in G and the second constructs the cactus CG from this sequence. The
algorithm also works on weighted graphs, as long as all weights are positive.

If negative weights are allowed, the problem of finding a minimum cut is
NP-hard [345]. Moreover, no generalization for directed graphs is known. An
unweighted graph can be reduced to a weighted graph by assigning weight 1
to all edges. In the following, we will therefore consider the problem of finding
minimum cuts only for undirected connected graphs with positive weights.

Consider a network N defined by the directed graph G = (V,E), a ca-
pacity function uN , a source s, a sink t and a flow f (Chapter 2). A resid-
ual network Rf consists of those edges that can carry additional flow, be-
yond what they already carry under f . Thus Rf is defined on the graph
GRf

:=
(
V,
{
(u, v)

∣∣((u, v) ∈ E ∨ (v, u) ∈ E) ∧ uRf
((u, v)) > 0

})
with the same

source s and sink t and the following capacity function

uRf
((a, b)) :=

⎧⎨
⎩
c (a, b) − f (a, b) + f (b, a) if (a, b) ∈ E ∧ (b, a) ∈ E

c (a, b) − f (a, b) if (a, b) ∈ E ∧ (b, a) /∈ E
f (b, a) if (a, b) /∈ E ∧ (b, a) ∈ E

Let Rfmax be the residual network of N and fmax, where fmax is a maximum
s-t-flow in N . As a consequence of Theorem 2.2.1 on page 11, the maximum flow
saturates all minimum s-t-cuts and therefore each set S ⊆ V \ t is a minimum
s-t-cut iff s ∈ S and no edges leave S in Rfmax .

7.3 All-Pairs Minimum Cuts

The problem of computing a minimum cut between all pairs of vertices can, of
course, easily be done by solving n(n− 1)/2 flow problems. As has been shown
by Gomory and Hu [257], the computation of n− 1 maximum flow problems is
already sufficient to determine the value of a maximum flow / minimum cut for
all pairs of vertices. The result can be represented in the equivalent flow tree,
which is a weighted tree on n vertices, where the minimum weight of any edge on
the (unique) path between two vertices s and t equals the maximum flow from s
to t. They furthermore showed that there always exists an equivalent flow tree,

7 Connectivity 149

where the components that result from removing the minimum weight edge of
the s-t-path represent a minimum cut between s and t. This tree is called the
Gomory-Hu cut tree.

Gusfield [265] demonstrated how to do the same computation without node
contractions and without the overhead for avoiding the so called crossing cuts.
See also [272, 344, 253].

If one is only interested in any edge cutset of minimum weight in an undi-
rected weighted graph (without a specified vertex pair to be disconnected), this
can be done using the algorithm of Stoer and Wagner, see Section 7.7.1.

7.4 Properties of Minimum Cuts in Undirected Graphs

There are 2|V | sets and each of them is possibly a minimum cut, but the number
of minimum cuts in a fixed undirected graph is polynomial in |V |. To see this, we
need to discuss some well-known facts about minimum cuts. These facts also help
us to define a data structure called cactus . A cactus can represent all minimum
cuts, but needs only space linear in |V |.

For short, for a graph G, let in this chapter λG always denote the weight of
a minimum cut. If the considered graph G is clear from the context, the index
G of λG is omitted.

Lemma 7.4.1. Let S be a minimum cut in G = (V,E). Then, for all ∅ �= T ⊂
S : w(T, S \ T) ≥ λ

2 .

Proof. Assume w(T, S\T) < λ
2 . Since w (T, V \ S)+w (S \ T, V \ S) = λ, w.l.o.g.

w (T, V \ S) ≤ λ
2 (if not, define T as S \ T). Then w (T, V \ T) = w(T, S \ T) +

w (T, V \ S) < λ. Contradiction. ��

Lemma 7.4.2. Let A �= B be two minimum cuts such that T := A ∪ B is also
a minimum cut. Then

w
(
A, T̄

)
= w

(
B, T̄

)
= w (A \B,B) = w (A,B \A) =

λ

2
.

Proof. As in the Figure 7.2, let a = w
(
A, T̄

)
, b = w

(
B, T̄

)
, α = w (A,B \A)

and β = w (B,A \B). Then w
(
A, Ā

)
= a + α = λ, w

(
B, B̄

)
= b + β = λ and

w
(
T, T̄

)
= a + b = λ. We also know that w

(
A \B,B ∪ T̄

)
= a + β ≥ λ and

w
(
B \A,A ∪ T̄

)
= b + α ≥ λ. This system of equations and inequalities has

only one unique solution: a = α = b = β = λ
2 . ��

Definition 7.4.3. A pair 〈S1, S2〉 is called crossing cut, if S1, S2 are two min-
imum cuts and neither S1 ∩ S2, S1 \ S2, S2 \ S1 nor S̄1 ∩ S̄2 is empty.

Lemma 7.4.4. Let 〈S1, S2〉 be crossing cuts and let A = S1 ∩ S2, B = S1 \ S2,
C = S2 \ S1 and D = S̄1 ∩ S̄2. Then

a. A, B, C and D are minimum cuts

150 F. Kammer and H. Täubig

T

A B : a
b:

: a
: b

Sum of the weights
of edges that cross

Fig. 7.2. Intersection of two minimum cuts A and B

b. w(A,D) = w(B,C) = 0
c. w(A,B) = w(B,D) = w(D,C) = w(C,A) = λ

2 .

Proof. Since we know that S1 and S2 are minimum cuts, we can conclude

w
(
S1, S̄1

)
= w(A,C) + w(A,D) + w(B,C) + w(B,D) = λ

w
(
S2, S̄2

)
= w(A,B) + w(A,D) + w(B,C) + w(C,D) = λ

and since there is no cut with weight smaller than λ, we know that

w
(
A, Ā

)
= w(A,B) + w(A,C) + w(A,D) ≥ λ

w
(
B, B̄

)
= w(A,B) + w(B,C) + w(B,D) ≥ λ

w
(
C, C̄

)
= w(A,C) + w(B,C) + w(C,D) ≥ λ

w
(
D, D̄

)
= w(A,D) + w(B,D) + w(C,D) ≥ λ

Summing up twice the middle and the right side of the first two equalities
we obtain

2 ·w(A,B)+2 ·w(A,C)+4 ·w(A,D)+4 ·w(B,C)+2 ·w(B,D)+2 ·w(C,D) = 4 ·λ

and summing up both side of the four inequalities we have

2 ·w(A,B)+2 ·w(A,C)+2 ·w(A,D)+2 ·w(B,C)+2 ·w(B,D)+2 ·w(C,D) ≥ 4 ·λ

Therefore w(A,D) = w(B,C) = 0. In other words, there are no diagonal
edges in Figure 7.3.

For a better imagination, let us assume that the length of the four inner line
segments in the figure separating A,B,C and D is proportional to the sum of
the weights of all edges crossing this corresponding line segments. Thus the total
length l of both horizontal or both vertical lines, respectively, is proportional to
the weight λ.

Let us assume the four line segments have different length, in other words,
the two lines separating the sets S1 from S̄1 or S2 from S̄2, respectively, do not
cross each other exactly in the midpoint of the square, then the total length of
the separating line segments of one vertex set Δ = A,B,C or D is shorter then
l. Thus w(Δ, Δ̄) < λ. Contradiction.

As a consequence, w(A,B) = w(B,D) = w(D,C) = w(C,A) = λ
2 and

w
(
A, Ā

)
= w

(
B, B̄

)
= w

(
C, C̄

)
= w

(
D, D̄

)
= λ. ��

7 Connectivity 151

A B

C D

: S1

: S2

Fig. 7.3. Crossing cuts 〈S1, S2〉 with S1 := A ∪ B and S2 := A ∪ C

A crossing cut in G = (V,E) partitions the vertex set V into exactly four
parts. A more general definition is the following, where the vertex set can be
divided in three or more parts.

Definition 7.4.5. A circular partition is a partition of V into k ≥ 3 disjoint
sets V1, V2, . . . , Vk such that

a. w (Vi, Vj) =
{
λ/2 : |i− j| = 1 mod k
0 : otherwise

b. If S is a minimum cut, then
1. S or S̄ is a proper subset of some Vi or
2. the circular partition is a refinement of the partition defined by the min-

imum cut S. In other words, the minimum cut is the union of some of
the sets of the circular partition.

Let V1, V2, . . . , Vk be the disjoint sets of a circular partition, then for all
1 ≤ a ≤ b < k, S :=

(
∪b

i=aVi

)
is a minimum cut. Of course, the complement of

S containing Vk is a minimum cut, too. Let us define these minimum cuts as
circular partition cuts. Especially each Vi, 1 ≤ i ≤ k, is a minimum cut (property
a. of the last definition).

Consider a minimum cut S such that neither S nor its complement is con-
tained in a set of the circular partition. Since S is connected (Observation 7.2.2),
S or its complement are equal to ∪b

i=aVi for some 1 ≤ a < b < k.
Moreover, for all sets Vi of a circular partition, there exists no minimum cut

S such that 〈Vi, S〉 is a crossing cut (property b. of the last definition).

Definition 7.4.6. Two different circular partitions P := {U1, . . . , Uk} and Q :=
{V1, . . . , Vl} are compatible if there is a unique r and s, 1 ≤ r, s ≤ k, such that
for all i �= r : Ui ⊆ Vs and for all j �= s : Vj ⊆ Ur.

Lemma 7.4.7 ([216]). All different circular partitions are pairwise compatible.

Proof. Consider two circular partitions P and Q in a graph G = (V,E). All sets
of the partitions are minimum cuts. Assume a set S ∈ P is equal to the union of
more than one and less than all sets of Q. Exactly two sets A,B ∈ Q contained
in S are connected by at least an edge to the vertices V \ S. Obtain T from S
by replacing A ⊂ S by an element of Q connected to B and not contained in S.
Then 〈S, T 〉 is a crossing cut, contradiction.

152 F. Kammer and H. Täubig

ak

ar

ar 1+

a1

ar-1

bl

bs

bs 1+

b1

bs-1

Fig. 7.4. Example graph G = ({a1 . . . ar, b1 . . . bs} , E) shows two compatible partitions
P, Q defined as follows:

P := {{a1}, . . . , {ar−1}, {ar, b1, . . . bl}, {ar+1}, . . . {ak}}

Q := {{b1}, . . . , {bs−1}, {bs, a1, . . . ak}, {bs+1}, . . . {bl}}

Therefore each set of P or its complement is contained in some set of Q.
Assume two sets of P are contained in two different sets of Q. Since each

complement of the remaining sets of P cannot be contained in one set of Q,
each remaining set of P must be contained in one subset of Q. Thus, P = Q.
Contradiction.

Assume now all sets of P are contained in one set Y of Q. Then Y = V .
Again a contradiction.

Since the union of two complements of sets in P is V and Q contains at least
three sets, only one complement can be contained in one set of Q. Thus, there
is exactly one set X of P that is not contained in Y of Q, but X̄ ⊂ Y . ��

Lemma 7.4.8. If S1, S2 and S3 are pairwise crossing cuts, then

S1 ∩ S2 ∩ S3 = ∅.

Proof. Assume that the lemma is not true. As shown in Figure 7.5, let

a = w
(
S3 \ (S1 ∪ S2) , S1 ∩ S2 ∩ S3

)
b = w ((S2 ∩ S3) \ S1, S2 \ (S1 ∪ S3))

c = w (S1 ∩ S2 ∩ S3, (S1 ∩ S2) \ S3)

d = w ((S1 ∩ S3) \ S2, S1 \ (S2 ∪ S3))

On one hand S1 ∩ S2 is a minimum cut (Lemma 7.4.4.a.) so that c ≥ λ
2

(Lemma 7.4.1). On the other hand c+b = c+d = λ
2 (Lemma 7.4.4.c.). Therefore

b = d = 0 and (S1 ∩ S3) \ S2 = (S2 ∩ S3) \ S1 = ∅.
If we apply Lemma 7.4.4.b. to S1 and S2, then S1∩S2∩S3 and S3 \(S1 ∪ S2)

are not connected. Contradiction. ��

7 Connectivity 153

S3

S1 S2

b
c

d

a

Fig. 7.5. Three pairwise crossing cuts S1,S2 and S3

Lemma 7.4.9. If S1, S2 and T are minimum cuts with S1 ⊂ S2, T �⊂ S2 and
〈S1, T 〉 is a crossing cut, then A := (S2 \ S1) \ T , B := S1 \ T , C := S1 ∩ T and
D := (S2 \ S1) ∩ T are minimum cuts, w(A,B) = w(B,C) = w(C,D) = λ

2 and
w(A,C) = w(A,D) = w(B,D) = 0.

Proof. Since 〈S1, T 〉 and therefore 〈S2, T 〉 is a crossing cut,

w(A ∪B,C ∪D) =
λ

2
(1), w(B,C) =

λ

2
(2),

w (A,B) + w
(
B,S1 ∪ S2

)
= w

(
B,A ∪ S1 ∪ S2

)
=
λ

2
(3) and

w
(
A,S1 ∪ S2

)
+ w

(
B,S1 ∪ S2

)
= w

(
A ∪B,S1 ∪ S2

)
=
λ

2
(4).

All equalities follow from Lemma 7.4.4.c.. Moreover w (A, T \ S2) = 0,
w
(
D,S1 ∪ S2

)
= 0 (7.4.4.b.) and B,C are minimum cuts. Since (1), (2) and

w(A ∪B,C ∪D) = w(A,C) + w(A,D) + w(B,C) + w(B,D),

we can conclude that w(A,C) = w(A,D) = w(B,D) = 0.
A consequence of (3) and (4) is w

(
A,S1 ∪ S2

)
= w (A,B). Moreover,

w (A,B) ≥ λ
2 (Lemma 7.4.1) and w

(
A,S1 ∪ S2

)
≤ w

(
A,S1 ∪ S2

)
= λ

2 . There-
fore w

(
A,S1 ∪ S2

)
= w(A,B) = λ

2 and A is a minimum cut.
With a similar argument we can see, w(C,D) = λ

2 and D is a minimum cut.
Therefore, the general case shown in Figure 7.6(a) can always be transformed
into the Figure 7.6(b). ��

For short, given some sets S1, . . . , Sk, let

Fα1,...,αk

S1,...Sk
=

k⋂
i=1

{
Si if αi = 1
Si if αi = 0

}
and

154 F. Kammer and H. Täubig

: S1 : S2 : T

A D

B C

(a)

A B C D

(b)

Fig. 7.6. Intersection of three minimum cuts

F{S1,...,Sk} =

⎛
⎝ ⋃

α1,...,αk∈{0,1}k

F α1,...,αk

{S1,...,Sk}

⎞
⎠ \ {∅} .

Lemma 7.4.10. Let 〈S1, S2〉 be a crossing cut and A ∈ F{S1,S2}. Choose B ∈
F{S1,S2} such that w (A,B) = λ

2 . For all crossing cuts 〈B, T 〉:

w (A,B ∩ T) =
λ

2
or w

(
A,B ∩ T̄

)
=
λ

2

Proof. W.l.o.g. A = S1 ∩ S2 (if not, interchange S1 and S̄1 or S2 and S̄2),
B = S1 \ S2 (if not, interchange S1 and S2). Let C = S2 \ S1 and D = S̄1 ∩ S̄2.
Then (∗) : w(B,C) = 0 (Lemma 7.4.4.b.). Consider the following four cases:

T ⊂ (A ∪ B) (Figure 7.7(a)) : w (A,B ∩ T) = λ
2 (Lemma 7.4.9)

T ∩ D �= ∅ : Because 〈S1, T 〉 is a crossing cut,

w (A \ T,A ∩ T) + w (A \ T,B ∩ T) + w (B \ T,A ∩ T) + w (B \ T,B ∩ T)

= w ((A \ T) ∪ (B \ T) , (A ∩ T) ∪ (B ∩ T))

= w (S1 \ T, S1 ∩ T) =
λ

2
.

Together with w(B \ T,B ∩ T) ≥ λ
2 (Lemma 7.4.1), we can conclude

– w(A \ T,A ∩ T) = 0 and therefore A ∩ T = ∅ or A \ T = ∅,
– w(A \ T,B ∩ T) = 0 (1) and
– w(A ∩ T,B \ T) = 0 (2).

Note that w(A,B) = λ
2 . If A∩T = ∅, w(A,B∩T)

(1)
= 0 and w(A,B \T) = λ

2 .

Otherwise A \ T = ∅, w(A,B \ T)
(2)
= 0 and w(A,B ∩ T) = λ

2 .

7 Connectivity 155

T �⊂ (A ∪ B) and T ∩ D = ∅ (3) and (A ∪ C) ⊂ T (4) (Figure 7.7(b)) :

w (A, T ∩B)
(∗)
= w (A ∪ C, T ∩B)

(3),(4)
= w ((A ∪C) ∩ T, T \ (A ∪ C)) ≥ λ

2
,

since (A ∪ C) is a minimum cut (Lemma 7.4.1). Using the fact w(A,B) = λ
2 ,

we get w (A, T ∩B) = λ
2 .

T �⊂ (A ∪ B) and T ∩ D = ∅ (5) and (A ∪ C) �⊂ T (Figure 7.7(c)) :

w (A, T ∩B)
(∗)
= w (A ∪ C, T ∩B)

(5)
= w (A ∪ C, T \ (A ∪ C)) =

λ

2
,

since 〈A ∪ C, T 〉 is a crossing cut.

This concludes the proof. ��

: S1 : S2 : T

A B

C D
(a)

A B

C D
(b)

A B

C D
(c)

Fig. 7.7. A minimum cut T and a crossing cut 〈S1, S2〉

Corollary 7.4.11. The intersection of a crossing cut partitions the vertices of
the input graph into four minimum cuts. Lemma 7.4.4.c. guarantees us that
for each of the four minimum cuts A there exist two of the three remaining
minimum cuts B,C such that w (A,B) = w (A,C) = λ

2 . Although set B or C
may be divided in smaller parts by further crossing cuts, there are always exactly
two disjoint minimum cuts X ⊆ B and Y ⊆ C with w (A,X) = w (A, Y) = λ

2 .

Proof. Assume the corollary is not true. Let 〈S,X1&2〉 be the first crossing cut
that divides the set X1&2 with w (A,X1&2) = λ

2 into the two disjoint sets X1, X2

with w (A,X1) , w (A,X2) ≥ 0. But then 〈S,B〉 or
〈
S̄, B

〉
is also a crossing

cut, which divides B into B1 and B2 with X1 ⊆ B1 and X2 ⊆ B2. Thus,
w (A,B1) , w (A,B2) ≥ 0. This is a contradiction to Lemma 7.4.10. ��

156 F. Kammer and H. Täubig

Different crossing cuts interact in a very specific way, as shown in the next
theorem.

Theorem 7.4.12 ([63, 153]). In a graph G = (V,E), for each partition P of
V into 4 disjoint sets due to a crossing cut in G, there exists a circular partition
in G that is a refinement of P .

Proof. Given crossing cut 〈S1, S2〉, choose the set

Λ :=
{
S1 ∩ S2, S1 \ S2, S2 \ S1, S1 ∪ S2

}
as a starting point.

As long as there is a crossing cut 〈S, T 〉 for some T �∈ Λ and S ∈ Λ, add T
to Λ. This process terminates since we can only add each set T ∈ P(V) into Λ
once. All sets in Λ are minimum cuts. Definition 7.4.5.b. is satisfied for Λ.

The disjoint minimum cuts F(Λ) give us a partitioning of the graph. All sets
in F(Λ) can be built by crossing cuts of minimum cuts in Λ. Therefore, each set in
F(Λ) has exactly two neighbors, i.e., for each set X ∈ F(Λ), there exist exactly
two different sets Y, Z ∈ F(Λ) such that w(X,Y) = w(X,Z) = λ

2 (Corollary
7.4.11). For all other sets Z ∈ F(Λ), w(X,Z) = 0. Since G is a connected graph,
all sets in F(Λ) can be ordered, so that Definition 7.4.5.a. holds. Observe that
Definition 7.4.5.b. is still true, since splitting the sets in Λ into smaller sets still
allows a reconstruction of the sets in Λ. ��

Lemma 7.4.13 ([63, 153]). A graph G = (V,E) has O
((|V |

2

))
many mini-

mum cuts and this bound is tight. This means that a graph can have Ω
((|V |

2

))
many minimum cuts.

Proof. The upper bound is a consequence of the last theorem. Given a graph
G = (V,E), the following recursive function Z describes the number of minimum
cuts in G:

Z (|V |) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑k
i=1 (Z (|Vi|)) +

(
k
2

) A circular partition
V1, . . . , Vk exists in G

Z (|S|) + Z (|V − S|) + 1 No circular partition, but a
minimum cut S exists in G

0 otherwise

It is easy to see that this function achieves the maximum in the case where
a circular partition W1, . . . ,W|V | exist. Therefore Z (|V |) = O

((|V |
2

))
.

The lower bound is achieved by a simple cycle of n vertices. There are Ω
((

n
2

))
pairs of edges. Each pair of edges defines another two minimum cuts S and S̄.
These two sets are separated by simply removing the pair of edges. ��

7 Connectivity 157

7.5 Cactus Representation of All Minimum Cuts

In the following, a description of the cactus is given. First consider a graph
G = (V,E) without any circular partitions. Then due to the absence of all
crossing cuts, all minimum cuts of G are laminar.

A set S of sets is called laminar if for every pair of sets S1, S2 ∈ S, either
S1 and S2 are disjoint or S1 is contained in S2 or vice versa. Therefore each
set T ∈ S contained in some S1, S2, . . . ∈ S has a unique smallest superset.
For clarity, we say that a tree has nodes and leaves, while a graph has vertices.
Each laminar set S can be represented in a tree. Each node represents a set
in S; the leaves represent the sets in S that contain no other sets of S. The
parent of a node representing a set T represents the smallest superset of T . This
construction ends with a set of trees called forest. Add an extra node r to the
forest and connect all roots of the trees of the forest by an edge to this new
node r, which is now the root of one big tree. Therefore, the nodes of one tree
represent all sets of S, and the root of the tree represents the entire underlying
set, i.e. the union of all elements of all S ∈ S. If this union has n elements, then
such a tree can have at most n leaves and therefore at most 2n− 1 nodes.

Since all minimum cuts G are laminar, these can be represented by a tree
TG defined as follows. Consider the smaller vertex set of every minimum cut.
Denote this set of sets as Λ. If the vertex sets of a minimum cut are of same
size, take one of these sets. Represent each set of Λ by a single node. Two nodes
corresponding to minimum cuts A and B in G are connected by an edge if A ⊂ B
and there is no other minimum cut C such that A ⊂ C ⊂ B. The roots of the
forest represent the minimum cuts in Λ that are contained in no other minimum
cut in Λ. Again, connect all roots of the forest by an edge to a single extra node
that we define as root of the tree.

Because removing one edge in the tree separates a subtree from the rest of the
tree, let us define the following mapping: each vertex of the graph G is mapped
to the node of the tree TG that corresponds to the smallest cut containing this
vertex. All vertices that are contained in no node of TG are mapped to the root
of TG.

For each minimum cut S of G, the vertices of S are then mapped to some set
of nodes X such that there is an edge and removing this edge separates the nodes
X from the rest of the tree. Conversely, removing one edge from TG separates
the nodes of the tree into two parts such that the set of all vertices mapped into
one part is a minimum cut.

If G has no circular partitions, the tree TG is the cactus CG for G. The
number of nodes of a cactus is bounded by 2 |V | − 1.

Consider a graph G = (V,E) that has only one circular partition V1, . . . Vk.
The circular partition cuts can be represented by a circle of k nodes. For 1 ≤
i ≤ k, the vertices of each part Vi are represented by one node Ni of the circle in
such a way that two parts Vi and Vi+1 are represented by two adjacent nodes.

Now we make use of the fact that for each minimum cut S that is no circular
partition cut, either S or S̄ is a proper subset of a Vi. Therefore, we can construct
the tree T(Vi,E) for all minimum cuts that are a subset of Vi, but now with the

158 F. Kammer and H. Täubig

restriction that only the vertices of Vi are mapped to this tree. The root of
T(Vi,E) corresponds exactly to the set Vi. Thus we can merge node Ni of the
circle and the root of T(Vi,E) for all 1 ≤ i ≤ k. This circle connected with all
the trees is the cactus CG for G. The number of nodes is equal to the sum of
all nodes in the trees T(Vi,E) with 1 ≤ i ≤ k. Therefore, the number of nodes of
the cactus is bounded by 2 |V | − 1 and again, there is a 1 − 1 correspondence
between minimum cuts in G and the separation of CG into two parts.

Now consider a graph G = (V,E) with the circular partitions P1, . . . , Pz .
Take all circular partitions as a set of sets. Construct a cactus CG representing
the circular partition cuts of G in the following way.

The vertices of each set F ∈ FP1∪...∪Pz are mapped to one node and two
nodes are connected, if for their corresponding sets F1 and F2, w (F1, F2) > 0.
Then each circular partition creates one circle in CG. Since all circular partitions
are pairwise compatible, the circles are connected by edges that are not part of
any circle. The cactus CG is now a tree-like graph (Figure 7.8).

After representing the remaining minimum cuts that are not part of a circular
partition, we get the cactus TC for G. As before, the number of nodes of the
cactus is bounded by 2 |V | − 1.

P P1 2

3
P

5
P

4
P

6
P

Fig. 7.8. A cactus representing the circular partition cuts of 6 circular partitions

7.6 Flow-Based Connectivity Algorithms

We distinguish algorithms that check k-vertex/edge-connectivity of a graph G
for a given natural number k, and algorithms that compute the vertex/edge-
connectivity κ(G) or λ(G) respectively. (A third kind of algorithms computes
the maximal k-vertex/edge-connected subgraphs (k-components), which is the
subject of discussion in Section 7.8.)

7 Connectivity 159

Most of the algorithms for computing vertex- or edge-connectivities are based
on the computation of the maximum flow through a derived network. While the
flow problem in undirected graphs can be reduced to a directed flow problem of
comparable size [220], for the other direction only a reduction with increased ca-
pacities is known [478]. There were several algorithms published for the solution
of (general) flow problems, see Table 7.1.

Table 7.1. The history of max-flow algorithms

1955 Dantzig & Fulkerson [231, 141]
Network simplex method O(n2mU) [140, 139]

1956 Ford & Fulkerson [218, 219]
Augmenting path / Labeling O(nmU) [220]

1969 Edmonds & Karp [172]
Shortest augmenting path O(nm2) [593]
Capacity scaling O(m2 log U)

1970 Dinitz [150]
Layered network / blocking flow O(n2m)

1973 Dinitz [151, 234]
Capacity scaling O(nm log U)

1974 Karzanov [350]
Preflow-push / layered network O(n3)

1977 Cherkassky O(n2√m) [122, 123]
1978 Malhotra, Kumar, Maheshwari O(n3) [406]

1978 Galil O(n5/3m2/3) [236]
1979 Galil & Naamad / Shiloach O(nm(log n)2) [238, 518]
1980 Sleater & Tarjan [525]

Dynamic trees O(nm log n)
1985 Goldberg [249]

Push-relabel O(n3)
1986 Goldberg & Tarjan [252]

Push-relabel O(nm log(n2/m))
1987 Ahuja & Orlin [7]

Excess scaling O(nm + n2 log U)
1990 Cheriyan, Hagerup, Mehlhorn [119]

Incremental algorithm O(n3/ log n)
1990 Alon [118, 20]

Derandomization O(nm + n8/3 log n)
1992 King, Rao, Tarjan [118, 356]

Online game O(nm + n2+ε)
1993 Phillips & Westbrook [476]

Online game O(nm logm/n n + n2 log2+ε n)
1998 Goldberg & Rao [250]

Non-unit length function O(min(n2/3,
√

m)m log n2

m
log U)

U denotes the largest possible capacity (integer capacities case only)

Better algorithms for the more restricted version of unit capacity networks
exist.

160 F. Kammer and H. Täubig

Definition 7.6.1. A network is said to be a unit capacity network (or 0-1
network) if the capacity is 1 for all edges. A unit capacity network is of type 1
if it has no parallel edges. It is called type 2 if for each vertex v (v �= s, v �= t)
either the in-degree d−(v) or the out-degree d+(v) is only 1.

Lemma 7.6.2. 1. For unit capacity networks, the computation of the maxi-
mum flow can be done (using Dinitz’s algorithm) in O(m3/2).

2. For unit capacity networks of type 1, the time complexity of Dinitz’s algo-
rithm is O(n2/3m).

3. For unit capacity networks of type 2, the time complexity of Dinitz’s algo-
rithm is O(n1/2m).

For a proof of the lemma see [188, 187, 349].
While the best bound for directed unit capacity flow problems differs only by

logarithmic factors from the best known bound for integer capacities, even better
bounds for the case of undirected unit capacity networks exist: O(min(m,n3/2)√
m) by Goldberg and Rao [251], O(n7/6m2/3) by Karger and Levine [343].

7.6.1 Vertex-Connectivity Algorithms

Table 7.2. The history of computing the vertex-connectivity κ

Year Author(s) MaxFlow calls Compute κ Ref.

1974 Even & Tarjan (κ + 1)(n − δ − 1) O(κn3/2m)

O(n1/2m2)

[188]

1984 Esfahanian &
Hakimi

n − δ − 1 +
κ(2δ−κ−3)/2

O((n−δ+κδ−κ2/2)·
n2/3m)

[183]

1996 Henzinger,
Rao, Gabow

O(min{κ3 + n, κn}κn) [298]

Table 7.3. The history of checking vertex-connectivity

Year Author(s) MaxFlow calls Check k-VC Ref.

1969 Kleitman k(n − δ) − k + 1

2
O(k2n3) [362]

1973 Even n − k +
k

2
O(k3m + knm) [186]

1984 Esfahanian & Hakimi n − k +
k − 1

2
O(k3m + knm) [183]

The basis of all flow-based connectivity algorithms is a subroutine that com-
putes the local connectivity between two distinct vertices s and t. Even [185, 186,

7 Connectivity 161

’ "

’ "

b b’ b"

’ "

Fig. 7.9. Construction of the directed graph Ḡ that is derived from the undirected
input graph G to compute the local vertex-connectivity κG(s, t)

187] presented a method for computing κG(s, t) that is based on the following
construction: For the given graph G = (V,E) having n vertices and m edges we
derive a directed graph Ḡ = (V̄ , Ē) with |V̄ | = 2n and |Ē| = 2m+n by replacing
each vertex v ∈ V with two vertices v′, v′′ ∈ V̄ connected by an (internal) edge
ev = (v′, v′′) ∈ Ē. Every edge e = (u, v) ∈ E is replaced by two (external) edges
e′ = (u′′, v′), e′′ = (v′′, u′) ∈ Ē, see Figure 7.9.
κ(s, t) is now computed as the maximum flow in Ḡ from source s′′ to the

target t′ with unit capacities for all edges2. For a proof of correctness see [187].
For each pair v′, v′′ ∈ V̄ representing a vertex v ∈ V the internal edge (v′, v′′)
is the only edge that emanates from v′ and the only edge entering v′′, thus
the network Ḡ is of type 2. According to Lemma 7.6.2 the computation of the
maximum flow resp. the local vertex-connectivity has time complexity O(

√
nm).

A trivial algorithm for computing κ(G) could determine the minimum for the
local connectivity of all pairs of vertices. Since κG(s, t) = n−1 for all pairs (s, t)
that are directly connected by an edge, this algorithm would make n(n−1)

2 −m
calls to the flow-based subroutine. We will see that we can do much better.

If we consider a minimum vertex separator S ⊂ V that separates a ‘left’
vertex subset L ⊂ V from a ‘right’ subset R ⊂ V , we could compute κ(G) by
fixing one vertex s in either subset L or R and computing the local connectivities
κG(s, t) for all vertices t ∈ V \ {s} one of which must lie on the other side of the
vertex cut. The problem is: how to select a vertex s such that s does not belong
to every minimum vertex separator? Since κ(G) ≤ δ(G) (see Theorem 7.1.1), we
could try δ(G) + 1 vertices for s, one of which must not be part of all minimum
vertex cuts. This would result in an algorithm of complexity O((δ+1)·n·

√
nm)) =

O(δn3/2m)
Even and Tarjan [188] proposed Algorithm 13 that stops computing the local

connectivities if the size of the current minimum cut falls below the number of
examined vertices.

The resulting algorithm examines not more than κ + 1 vertices in the loop
for variable i. Each vertex has at least δ(G) neighbors, thus at most O((n −
δ − 1)(κ + 1)) calls to the maximum flow subroutine are carried out. Since
κ(G) ≤ 2m/n (see Theorem 7.1.8), the minimum capacity is found not later
than in call 2m/n+ 1. As a result, the overall time complexity is O(

√
nm2).

2 Firstly, Even used c(ev) = 1, c(e′) = c(e′′) = ∞ which leads to the same results.

162 F. Kammer and H. Täubig

Algorithm 13: Vertex-connectivity computation by Even & Tarjan

Input : An (undirected) graph G = (V, E)
Output: κ(G)

κmin ← n − 1
i ← 1
while i ≤ κmin do

for j ← i + 1 to n do
if i > κmin then

break

else if {vi, vj} /∈ E then
compute κG(vi, vj) using the MaxFlow algorithm
κmin ← min{κmin, κG(vi, vj)}

return κmin

Esfahanian and Hakimi [183] further improved the algorithm by the following
observation:

Lemma 7.6.3. If a vertex v belongs to all minimum vertex-separators then there
are for each minimum vertex-cut S two vertices l ∈ LS and r ∈ RS that are
adjacent to v.

Proof. Assume v takes part in all minimum vertex-cuts of G. Consider the par-
tition of the vertex set V induced by a minimum vertex-cut S with a component
L (the ‘left’ side) of the remaining graph and the respective ‘right’ side R. Each
side must contain at least one of v’s neighbors, because otherwise v would not
be necessary to break the graph into parts. Actually each side having more than
one vertex must contain 2 neighbors since otherwise replacing v by the only
neighbor would be a minimum cut without v, in contrast to the assumption. ��

These considerations suggest Algorithm 14. The first loop makes n − δ − 1
calls to the MaxFlow procedure, the second requires κ(2δ − κ− 3)/2 calls. The
overall complexity is thus n− δ− 1 + κ(2δ−κ− 3)/2 calls of the maximum flow
algorithm.

7.6.2 Edge-Connectivity Algorithms

Similar to the computation of the vertex-connectivity, the calculation of the
edge-connectivity is based on a maximum-flow algorithm that solves the local
edge-connectivity problem, i.e. the computation of λG(s, t). Simply replace all
undirected edges by pairs of antiparallel directed edges with capacity 1 and
compute the maximum flow from the source s to the sink t. Since the resulting
network is of type 1, the computation is, due to Lemma 7.6.2, of complexity
O(min{m3/2, n2/3m}).

A trivial algorithm for computing λ(G) could simply calculate the minimum
of the local edge-connectivities for all vertex pairs. This algorithm would thus
make n(n − 1)/2 calls to the MaxFlow subroutine. We can easily improve the

7 Connectivity 163

Algorithm 14: Vertex-connectivity computation by Esfahanian & Hakimi

Input : An (undirected) graph G = (V, E)
Output: κ(G)

κmin ← n − 1
Choose v ∈ V having minimum degree, d(v) = δ(G)
Denote the neighbors N(v) by v1, v2, . . . , vδ

foreach non-neighbor w ∈ V \ (N(v) ∪ {v}) do
compute κG(v, w) using the MaxFlow algorithm
κmin ← min{κmin, κG(v, w)}

i ← 1
while i ≤ κmin do

for j ← i + 1 to δ − 1 do
if i ≥ δ − 2 or i ≥ κmin then

return κmin

else if {v, w} /∈ E then
compute κG(vi, vj) using the MaxFlow algorithm
κmin ← min{κmin, κG(vi, vj)}

i ← i + 1
return κmin

complexity of the algorithm if we consider only the local connectivities λG(s, t)
for a single (fixed) vertex s and all other vertices t. Since one of the vertices
t ∈ V \ {s} must be separated from s by an arbitrary minimum edge-cut, λ(G)
equals the minimum of all these values. The number of MaxFlow calls is thereby
reduced to n− 1. The overall time complexity is thus O(nm · min{n2/3,m1/2})
(see also [188]). The aforementioned algorithm also works if the whole vertex set
is replaced by a subset that contains two vertices that are separated by some
minimum edge-cut. Consequently, the next algorithms try to reduce the size of
this vertex set (which is called a λ-covering). They utilize the following lemma.
Let S be a minimum edge-cut of a graph G = (V,E) and let L,R ⊂ V be a
partition of the vertex set such that L and R are separated by S.

Lemma 7.6.4. If λ(G) < δ(G) then each component of G− S consists of more
than δ(G) vertices, i.e. |L| > δ(G) and |R| > δ(G).

Table 7.4. The history of edge-connectivity algorithms

Year Author(s) MaxFlow calls Check k-EC
Compute λ

1975 Even, Tarjan [188]

n − 1 O(nm · min{n2/3, m1/2})
1984 Esfahanian, Hakimi [183]

< n/2 O(λnm)
1987 Matula [413] O(kn2)

O(λn2)

164 F. Kammer and H. Täubig

Proof. Let the elements of L be denoted by {l1, l2, . . . , lk} and denote the induced
edges by E[L] = E(G[L]).

δ(G) · k ≤
k∑

i=1

dG(li)

≤ 2 · |E[L]| + |S|

≤ 2 · k(k − 1)
2

+ |S|

< k(k − 1) + δ(G)

From δ(G) · (k − 1) < k(k − 1) we conclude |L| = k > 1 and |L| = k > δ(G) (as
well as |R| > δ(G)). ��

Corollary 7.6.5. If λ(G) < δ(G) then each component of G − S contains a
vertex that is not incident to any of the edges in S.

Lemma 7.6.6. Assume again that λ(G) < δ(G). If T is a spanning tree of G
then all components of G− S contain at least one vertex that is not a leaf of T
(i.e. the non-leaf vertices of T form a λ-covering).

Proof. Assume the converse, that is all vertices in L are leaves of T . Thus no
edge of T has both ends in L, i.e. |L| = |S|. Lemma 7.6.4 immediately implies
that λ(G) = |S| = |L| > δ(G), a contradiction to the assumption. ��

Lemma 7.6.6 suggests an algorithm that first computes a spanning tree of the
given graph, then selects an arbitrary inner vertex v of the tree and computes
the local connectivity λ(v, w) to each other non-leaf vertex w. The minimum of
these values together with δ(G) yields exactly the edge connectivity λ(G). This
algorithm would profit from a larger number of leaves in T but, unfortunately,
finding a spanning tree with maximum number of leaves is NP-hard.Esfahanian

Algorithm 15: Spanning tree computation by Esfahanian & Hakimi

Input : An (undirected) graph G = (V, E)
Output: Spanning Tree T with a leaf and an inner vertex in L and R, resp.

Choose v ∈ V
T ← all edges incident at v
while |E(T)| < n − 1 do

Select a leaf w in T such that for all leaves r in T :
|N(w) ∩ (V − V (T))| ≥ |N(r) ∩ (V − V (T))|
T ← T ∪ G[w ∪ {N(w) ∩ (V − V (T))}]

return T

and Hakimi [183] proposed an algorithm for computing a spanning tree T of G
such that both, L andR of some minimum edge separator contain at least one leaf
of T , and due to Lemma 7.6.6 at least one inner vertex (see Algorithm 15).The
edge-connectivity of the graph is then computed by Algorithm 16. Since P is

7 Connectivity 165

Algorithm 16: Edge-connectivity computation by Esfahanian & Hakimi

Input : An (undirected) graph G = (V, E)
Output: λ(G)

Construct a spanning tree T using Algorithm 15
Let P denote the smaller of the two sets, either the leaves or the inner nodes of
T
Select a vertex u ∈ P
c ← min{λG(u, v) : v ∈ P \ {u}}
λ ← min(δ(G), c)
return λ

chosen to be the smaller of both sets, leaves and non-leaves, the algorithm re-
quires at most n/2 calls to the computation of a local connectivity, which yields
an overall complexity of O(λmn).

This could be improved by Matula [413], who made use of the following
lemma.

Lemma 7.6.7. In case λ(G) < δ(G), each dominating set of G is also a λ-
covering of G.

Similar to the case of the spanning tree, the edge-connectivity can now be com-
puted by choosing a dominating set D of G, selecting an arbitrary vertex u ∈ D,
and calculating the local edge-connectivities between u and all other vertices in
D. The minimum of all values together with the minimum degree δ(G) gives the
result. While finding a dominating set of minimum cardinality is NP-hard in
general, the connectivity algorithm can be shown to run in time O(nm) if the
dominating set is chosen according to Algorithm 17.

Algorithm 17: Dominating set computation by Matula

Input : An (undirected) graph G = (V, E)
Output: A dominating set D

Choose v ∈ V
D ← {v}
while V \ (D ∪ N(D))
= ∅ do

Select a vertex w ∈ V \ (D ∪ N(D))
D ← D ∪ {w}

return D

7.7 Non-flow-based Algorithms

We consider now connectivity algorithms that are not based on network flow
techniques.

166 F. Kammer and H. Täubig

7.7.1 The Minimum Cut Algorithm of Stoer and Wagner

In 1994 an algorithm for computing a minimum capacity cut of an edge-weighted
graph was published by Stoer and Wagner [536]. It was unusual not only due
to the fact that it did not use any maximum flow technique as a subroutine.
Somewhat surprisingly, the algorithm is very simple in contrast to all other algo-
rithms (flow-based and non-flow-based) that were published so far. In principle,
each phase of the algorithm is very similar to Prim’s minimum spanning tree
algorithm and Dijkstra’s shortest path computation, which leads to an equiva-
lent running time of O(m + n logn) per phase and overall time complexity of
O(nm+ n2 logn).

Algorithm 18: Minimum capacity cut computation by Stoer & Wagner

Input : An undirected graph G = (V, E)
Output: A minimum cut Cmin corresponding to λ(G)

Choose an arbitrary start vertex a
Cmin ← undefined
V ′ ← V
while |V ′| > 1 do

A ← {a}
while A
= V ′ do

Add to A the most tightly connected vertex
Adjust the capacities between A and the vertices in V ′ \ A

C := cut of V ′ that separates the vertex added last to A from the rest of
the graph
if Cmin = undefined or w(C) < w(Cmin) then

Cmin ← C
Merge the two vertices that were added last to A

return Cmin

After choosing an arbitrary start vertex a, the algorithm maintains a vertex
subset A that is initialized with the start vertex and that grows by repeatedly
adding a vertex v /∈ A that has a maximum sum of weights for its connections
to vertices in A. If all vertices have been added to A, the last two vertices s and
t are merged into one. While edges between s and t are simply deleted by the
contraction, all edges from s and t to another vertex are replaced by an edge
weighted with the sum of the old weights. The cut that separates the vertex
added last from the rest of the graph is called the cut-of-the-phase.

Lemma 7.7.1. The cut-of-the-phase is a minimum s-t-cut in the current (mod-
ified) graph, where s and t are the two vertices added last to A in the phase.

Proof. Consider an arbitrary s-t-cut C for the last two vertices. A vertex v �= a
is called active if v and its immediate predecessor with respect to the addition
to A reside in different parts of C. Let Av be the set of vertices that are in A
just before v is added and let w(S, v) for a vertex set S denote the capacity sum
of all edges between v and the vertices in S.

7 Connectivity 167

The proof shows, by induction on the active vertices, that for each active
vertex v the adjacency to the vertices added before (Av) does not exceed the
weight of the cut of Av ∪{v} induced by C (denoted by Cv). Thus it is to prove
that

w(Av , v) ≤ w(Cv)

For the base case, the inequality is satisfied since both values are equal for
the first active vertex. Assuming now that the proposition is true for all active
vertices up to active vertex v, the value for the next active vertex u can be
written as
w(Au, u) = w(Av , u) + w(Au \Av, u)

≤ w(Av , v) + w(Au \Av, u) (w(Av, u) ≤ w(Av , v))
≤ w(Cv) + w(Au \Av, u) (by induction assumption)
≤ w(Cu)

The last line follows because all edges between Au \Av and u contribute their
weight to w(Cu) but not to w(Cv).

Since t is separated by C from its immediate predecessor s, it is always an
active vertex; thus the conclusion w(At, t) ≤ w(Ct) completes the proof. ��

Theorem 7.7.2. A cut-of-the-phase having minimum weight among all cuts-of-
the-phase is a minimum capacity cut of the original graph.

Proof. For the case where the graph consists of only 2 vertices, the proof is
trivial. Now assume |V | > 2. The following two cases can be distinguished:

1. Either the graph has a minimum capacity cut that is also a minimum s-t-cut
(where s and t are the vertices added last in the first phase), then, according
to Lemma 7.7.1, we conclude that this cut is a minimum capacity cut of the
original graph.

2. Otherwise the graph has a minimum cut where s and t are on the same side.
Therefore the minimum capacity cut is not affected by merging the vertices
s and t.

Thus, by induction on the number of vertices, the minimum capacity cut of the
graph is the cut-of-the-phase having minimum weight. ��

7.7.2 Randomized Algorithms

In 1982, Becker et al. [53] proposed a probabilistic variant of the Even/Tarjan
vertex connectivity algorithm [188]. It computes the vertex connectivity of
an undirected graph G with error probability at most ε in expected time
O((− log ε)n3/2m) provided that m ≤ 1

2dn
2 for some constant d < 1. This

improved the computation of κ for sparse graphs.
A few years later, Linial, Lovasz and Wigderson provided probabilistic algo-

rithms [392, 393] that were based on a geometric, algebraic and physical interpre-
tation of graph connectivity. As a generalization of the notion of s-t-numbering,
they showed that a graph G is k-connected if and only if it has a certain non-
degenerate convex embedding in k−1, i.e., specifying any k vertices of G, the

168 F. Kammer and H. Täubig

1

1

1

1

3 1

2 34

2 32

A

ED

B

H

C

F

G

(a)

11

1

3 1

24

2 32

b

e

d

c

f

(b)

11

1

3

24

22

1

1

3

A

ED

B C

G
F
H

(c)

11

1

3

24

22

1

1

3

b c

d

e

(d)

1

1

3

24

22

1

1

1

A

ED

B

G

C
F
H

(e)

1

1

3

24

22

1

1

1

b c

d

(f)

1

3

24

2

3

1

1

A

ED

G

B
C
F
H

(g)

1

3

24

2

3

1

1

b c

(h)

2

4

5

1

3

1

A

D

E

B
C
F
G
H

(i)

2

4

5

1

3

1

b

(j)

2

7

2A

FGH
D

BCE

(k)

2

7

2

t

a

s

(l)

4

4
s t

BCDE
FGH

A

(m)

Fig. 7.10. Example for the Stoer/Wagner algorithm. Upper case letters are vertex
names, lower case letters show the order of addition to the set S. The minimum cut
{ABDEG} | {CFH} has capacity 3 and is found in Part 7.10(f) (third phase)

vertices of G can be represented by points of k−1 such that no k are in a hy-
perplane and each vertex is in the convex hull of its neighbors, except for the k
specified vertices. As a result, they proposed a Monte-Carlo algorithm running
in time O(n2.5 + nκ2.5) (that errs with probability less than 1/n) and a Las
Vegas algorithm with expected runtime of O(n2.5 + nκ3.5).

A subsequent work of Cheriyan and Reif [120] generalized this approach
to directed graphs, which yielded a Monte Carlo algorithm with running time
O((M(n) + nM(k)) · logn) and error probability < 1/n, and a Las Vegas al-
gorithm with expected time O((M(n) + nM(k)) · k), where M(n) denotes the
complexity for the multiplication of n× n matrices.

Henzinger, Rao and Gabow [298] further improved the complexities by giving
an algorithm that computes the vertex connectivity with error probability at
most 1/2 in (worst-case) time O(nm) for digraphs and O(κn2) for undirected

7 Connectivity 169

graphs. For weighted graphs they proposed a Monte Carlo algorithm that has
error probability 1/2 and expected running time O(nm log(n2/m)).

7.8 Basic Algorithms for Components

Super-linear algorithms for the computation of the blocks and the cut-vertices
as well as for the computation of the strongly connected components of a graph
were proposed in [470] and [386, 484, 485, 435], respectively. Later on, linear
time algorithms were published by Hopcroft and Tarjan [311, 542].

7.8.1 Biconnected Components

A problem that arises from the question which nodes of a network always re-
main connected in case one arbitrary node drops out is the computation of the
biconnected (or non-separable) components of a graph, also called blocks.

Let us consider a depth-first search in an undirected and connected graph
G = (V,E) where we label the traversed vertices with consecutive numbers from
1 to n = |V | using a pre-order numbering num. We observe that we inspect
two kinds of edges: the ones that lead to unlabeled vertices become tree edges,
and the ones that lead to vertices that were already discovered and labeled in a
former step we call backward edges.

For each vertex v we keep the smallest label of any vertex that is reachable
via arbitrary tree edges followed by not more than one backward edge, i.e. the
smallest number of any vertex that lies on some cycle with v. Whenever a new
vertex is discovered by the DFS, the low-entry of that vertex is initialized by its
own number.

If we return from a descent to a child w – i.e. from a tree edge (v, w) –,
we update low[v] by keeping the minimum of the child’s entry low[w] and the
current value low[v].

If we discover a backward edge (v, w), we update low[v] to be the minimum
of its old value and the label of w.

To detect the cut-vertices of the graph we can now utilize the following
lemma:

Lemma 7.8.1. We follow the method described above for computing the values
of low and num during a DFS traversal of the graph G. A vertex v is a cut-vertex
if and only if one of the following conditions holds:

1. if v is the root of the DFS tree and is incident to at least 2 DFS tree edges,
2. if v is not the root, but there is a child w of v such that low[w] ≥ num[v].

Proof. 1. Assume that v is the root of the DFS tree.
→ If v is incident to more than one tree edge, the children would be dis-

connected by removing vertex v from G.

170 F. Kammer and H. Täubig

← If v is a cut-vertex then there are vertices x, y ∈ V that are disconnected
by removing v, i.e. v is on every path connecting x and y. W.l.o.g. assume
that the DFS discovers x before y. y can only be discovered after the
descent to x returned to v, thus we conclude that v has at least two
children in the DFS tree.

2. Assume now that v is not the root of the DFS tree.
→ If there is a child w of v such that low[w] ≥ num[v] this means that

there is only one path connecting this successor w with all ancestors of
v. Thus v is a cut-vertex.

← If v is a cut-vertex, there are vertices x, y ∈ V such that v is on every path
connecting x and y. If all children of v had an indirect connection (via
arbitrary tree edges followed by one backward edge) to any ancestor of v
the remaining graph would be connected. Therefore one of the children
must have low[w] ≥ num[v].

This concludes the proof. ��

To find the biconnected components, i.e. the partition of the edges, we put
every new edge on a stack. Whenever the condition low[w] ≥ num[v] holds after
returning from a recursive call for a child w of v, the edges on top of stack
including edge (v, w) form the next block (and are therefore removed from the
stack).

F

A B

CD
E

G

H

D

G

H

C

B F

A E

A B

CD
E

G

H

F

Fig. 7.11. Computation of biconnected components in undirected graphs.
Left: the undirected input graph. Middle: dfs tree with forward (straight) and back-
ward (dashed) edges. Right: the blocks and articulation nodes of the graph.

7.8.2 Strongly Connected Components

We now consider the computation of the strong components, i.e. the maximal
strongly connected subgraphs in directed graphs (see Section 2.2.1). Analogously
to the computation of biconnected components in undirected graphs, we use a
modified depth-first search that labels the vertices by consecutive numbers from
1 to n. In case the traversal ends without having discovered all vertices we have
to restart the DFS at a vertex that has not been labeled so far. The result is a
spanning forest F .

7 Connectivity 171

The edges e = (v, w) that are inspected during the DFS traversal are divided
into the following categories:

1. All edges that lead to unlabeled vertices are called tree edges (they belong
to the trees of the DFS forest).

2. The edges that point to a vertex w that was already labeled in a former step
fall into the following classes:
a) If num[w] > num[v] we call e a forward edge.
b) Otherwise, if w is an ancestor of v in the same DFS tree we call e a

backward edge.
c) Otherwise e is called a cross edge (because it points from one subtree to

another).

2

3 4 5

1

6

7

8

9

10

11

2

3 4 5

1

6

7

8

9

10

11

Fig. 7.12. DFS forest for computing strongly connected components in directed
graphs: tree, forward, backward, and cross edges

An example is shown in Figure 7.12.
Two vertices v, w are in the same strong component if and only if there exist

directed paths from v to w and from w to v. This induces an equivalence relation
as well as a partition of the vertex set (in contrast to biconnected components
where the edge set is partitioned while vertices may belong to more than one
component).

During the DFS traversal we want to detect the roots of the strong com-
ponents, i.e. in each component the vertex with smallest DFS label. As in the
case of the biconnected components we must decide for each descendant w of a
vertex v whether there is also a directed path that leads back from w to v. Now
we define lowlink[v] to be the smallest label of any vertex in the same strong
component that can be reached via arbitrarily many tree arcs followed by at
most one backward or cross edge.

Lemma 7.8.2. A vertex v is the root of a strong component if and only if both
of the following conditions are met:

1. There is no backward edge from v or one of its descendants to an ancestor
of v.

2. There is no cross edge (v, w) from v or one of its descendants to a vertex w
such that the root of w’s strong component is an ancestor of v.

This is equivalent with the decision whether lowlink[v] = num[v].

172 F. Kammer and H. Täubig

Proof. → Assume conversely that the condition holds but u is the root of v’s
strong component with u �= v. There must exist a directed path from v
to u. The first edge of this path that points to a vertex w that is not a
descendant of v in the DFS tree is a back or a cross edge. This implies
lowlink[v] ≤ num[w] < num[v], since the highest numbered common ancestor
of v and w is also in this strong component.

← If v is the root of some strong component in the actual spanning forest,
we may conclude that lowlink[v] = num[v]. Assuming the opposite (i.e.
lowlink[v] < num[v]), some proper ancestor of v would belong to the same
strong component. Thus v would not be the root of the SCC.

This concludes the proof. ��

If we put all discovered vertices on a stack during the DFS traversal (similar
to the stack of edges in the computation of the biconnected components) the
lemma allows us to ‘cut out’ the strongly connected components of the graph.

It is apparent that the above algorithms share their similarity due to the
fact that they are based on the detection of cycles in the graph. If arbitrary
instead of simple cycles (for biconnected components) are considered, this ap-
proach yields a similar third algorithm that computes the bridge- (or 2-edge-)
connected components (published by Tarjan [544]).

7.8.3 Triconnectivity

First results on graph triconnectivity were provided by Mac Lane [403] and
Tutte [555, 556]. In the sixties, Hopcroft and Tarjan published a linear time
algorithm for dividing a graph into its triconnected components that was based
on depth-first search [309, 310, 312]. Miller and Ramachandran [422] pro-
vided another algorithm based on a method for finding open ear decompo-
sitions together with an efficient parallel implementation. It turned out that
the early Hopcroft/Tarjan algorithm was incorrect, which was then modified by
Gutwenger and Mutzel [267]. They modified the faulty parts to yield a correct
linear time implementation of SPQR-trees. We now briefly review their algo-
rithm.

Definition 7.8.3. Let G = (V,E) be a biconnected (multi-) graph. Two vertices
a, b ∈ V are called a separation pair of G if the induced subgraph on the vertices
V \ {a, b} is not connected.

The pair (a, b) partitions the edges of G into equivalence classes E1, . . . , Ek

(separation classes), s.t. two edges belong to the same class exactly if both lie
on some path p that contains neither a nor b as an inner vertex, i.e. if it contains
a or b it is an end vertex of p. The pair (a, b) is a separation pair if there are
at least two separation classes, except for the following special cases: there are
exactly two separation classes, and one of them consists of a single edge, or if
there are exactly three separation classes that all consist of a single edge. The
graph G is triconnected if it contains no separation pair.

7 Connectivity 173

Definition 7.8.4. Let (a, b) be a separation pair of a biconnected multigraph G
and let the separation classes E1..k be divided into two groups E′ =

⋃l
i=1 Ei and

E′′ =
⋃k

i=l+1Ei, s.t. each group contains at least two edges. The two graphs
G′ = (V (E′ ∪ e), E′ ∪ e) and G′′ = (V (E′′ ∪ e), E′′ ∪ e) that result from dividing
the graph according to the partition [E′, E′′] and adding the new virtual edge e =
(a, b) to each part are called split graphs of G (and they are again biconnected).
If the split operation is applied recursively to the split graphs, this yields the (not
necessarily unique) split components of G.

Every edge in E is contained in exactly one, and each virtual edge in exactly
two split components.

Lemma 7.8.5. Let G = (V,E) be a biconnected multigraph with |E| ≥ 3. Then
the total number of edges contained in all split components is bounded by 3|E|−6.

Proof. Induction on the number of edges of G: If |E| = 3, G cannot be split and
the lemma is true. Assume now, the lemma is true for graphs having at most
m− 1 edges. If the graph has m edges, the lemma is obviously true if G cannot
be split. Otherwise G can be split into two graphs having k + 1 and m− k + 1
edges with 2 ≤ k ≤ m − 2. By the assumption, the total number of edges is
bounded by 3(k + 1) − 6 + 3(m − k + 1) − 6 = 3m− 6. Thus, by induction on
the number of edges, the proof is complete. ��

There are split components of three types: triple bonds (three edges between
two vertices), triangles (cycles of length 3), and triconnected simple graphs. We
now introduce the reverse of the split operation: the merge graph of two graphs
G1 = (V1, E1) and G2 = (V2, E2), both containing the same virtual edge e, is
defined as G = (V1∪V2, (E1∪E2)\{e}). The triconnected components of a graph
are obtained from its split components by merging the triple bonds as much as
possible to multiple bonds and by merging the triangles as much as possible
to form polygons. Mac Lane [403] showed that, regardless of the (possibly not
unique) splitting and merging, we get the same triconnected components.

Lemma 7.8.6. The triconnected components of a (multi)graph are unique.

We now turn to the definition of SPQR-trees, which were initially defined
for planar [143], later also for general graphs [144]. A split pair of a biconnected
graph G is either a separation pair or a pair of adjacent vertices. A split com-
ponent of a split pair {u, v} is either an (u, v)-edge or an inclusion-maximal
subgraph of G, were {u, v} is not a split pair. A split pair {u, v} of G is called
a maximal split pair with respect to a split pair {s, t} of G if for any other split
pair {u′, v′}, the vertices u, v, s, and t are in the same split component.

Definition 7.8.7. Let e = (s, t) be an edge of G. The SPQR-tree T of G with re-
spect to this reference edge is a rooted ordered tree constructed from four different
types of nodes (S,P,Q,R), each containing an associated biconnected multigraph
(called the skeleton). T is recursively defined as follows:

(Q) Trivial Case: If G consists of exactly two parallel s-t-edges, then T is a single
Q-node with skeleton G.

174 F. Kammer and H. Täubig

(P) Parallel Case: If the split pair {s, t} has more than two split components
G1..k, the root of T is a P-node with a skeleton consisting of k parallel s-t-
edges e1..k with e1 = e.

(S) Series Case: If the split pair {s, t} has exactly two split components, one of
them is e; the other is denoted by G′. If G′ has cut-vertices c1..k−1(k ≥ 2)
that partition G into blocks G1..k (ordered from s to t), the root of T is an
S-node, whose skeleton is the cycle consisting of the edges e0..k, where e0 = e
and ei = (ci−1, ci) with i = 1..k, c0 = s and ck = t.

(R) Rigid Case: In all other cases let {s1, t1}, .., {sk, tk} be the maximal split
pairs of G with respect to {s, t}. Further let Gi for i = 1, .., k denote the
union of all split components of {si, ti} except the one containing e. The
root of T is an R-node, where the skeleton is created from G by replacing
each subgraph Gi with the edge ei = (si, ti).

For the non-trivial cases, the children μ1..k of the node are the roots of the SPQR-
trees of Gi ∪ ei with respect to ei. The vertices incident with each edge ei are
the poles of the node μi, the virtual edge of node μi is the edge ei of the node’s
skeleton. The SPQR-tree T is completed by adding a Q-node as the parent of the
node, and thus the new root (that represents the reference edge e).

Each edge in G corresponds with a Q-node of T , and each edge ei in the skeleton
of a node corresponds with its child μi. T can be rooted at an arbitrary Q-node,
which results in an SPQR-tree with respect to its corresponding edge.

Theorem 7.8.8. Let G be a biconnected multigraph with SPQR-tree T .

1. The skeleton graphs of T are the triconnected components of G. P-nodes cor-
respond to bonds, S-nodes to polygons, and R-nodes to triconnected simple
graphs.

2. There is an edge between two nodes μ, ν ∈ T if and only if the two corre-
sponding triconnected components share a common virtual edge.

3. The size of T , including all skeleton graphs, is linear in the size of G.

For a sketch of the proof, see [267].
We consider now the computation of SPQR-trees for a biconnected multi-

graph G (without self-loops) and a reference edge er. We assume a labeling of
the vertices by unique indices from 1 to |V |. As a preprocessing step, all edges
are reordered (using bucket sort), first according to the incident vertex with the
lower index, and then according to the incident vertex with higher index, such
that multiple edges between the same pair of vertices are arranged successively.
In a second step, all such bundles of multiple edges are replaced by a new vir-
tual edge. In this way a set of multiple bonds C1, .., Ck is created together with
a simple graph G′.

In the second step, the split components Ck+1, .., Cm of G′ are computed
using a dfs-based algorithm. In this context, we need the following definition:

Definition 7.8.9. A palm tree P is a directed multigraph that consists of a set
of tree arcs v → w and a set of fronds v ↪→ w, such that the tree arcs form

7 Connectivity 175

a directed spanning tree of P (that is the root has no incoming edges, all other
vertices have exactly one parent), and if v ↪→ w is a frond, then there is a directed
path from w to v.

Suppose now, P is a palm tree for the underlying simple biconnected graph
G′ = (V,E′) (with vertices labeled 1, .., |V |). The computation of the separation
pairs relies on the definition of the following variables:

lowpt1(v) = min
(
{v} ∪ {w|v ∗→↪→ w}

)
lowpt2(v) = min

(
{v} ∪

(
{w|v ∗→↪→ w} \ {lowpt1(v)}

))
These are the two vertices with minimum label, that are reachable from v by
traversing an arbitrary number (including zero) of tree arcs followed by exactly
one frond of P (or v itself, if no such option exists).

Let Adj(v) denote the ordered adjacency list of vertex v, and let D(v) be the
set of descendants of v (that is the set of vertices that are reachable via zero or
more directed tree arcs). Hopcroft and Tarjan [310] showed a simple method for
computing an acceptable adjacency structure, that is, an order of the adjacency
lists, which meets the following conditions:

1. The root of P is the vertex labeled with 1.
2. If w1, .., wn are the children of vertex v in P according to the ordering in

Adj(v), then wi = v + |D(wi+1 ∪ .. ∪D(wn)| + 1,
3. The edges in Adj(v) are in ascending order according to lowpt1(w) for tree

edges v → w, and w for fronds v ↪→ w, respectively.
Let w1, .., wn be the children of v with lowpt1(wi)) = u ordered according
to Adj(v), and let i0 be the index such that lowpt2(wi) < v for 1 ≤ i ≤ i0
and lowpt2(wj) ≥ v for i0 < j ≤ n. Every frond v ↪→ w ∈ E′ resides between
v → wi0 and v → wi0+1 in Adj(v).

An adequate rearrangement of the adjacency structure can be done in linear
time if a bucket sort with 3|V | + 2 buckets is applied to the following sorting
function (confer [310, 267]), that maps the edges to numbers from 1 to 3|V |+2:

φ(e) =

⎧⎪⎨
⎪⎩

3lowpt1(w) if e = v → w and lowpt2(w) < v
3w + 1 if e = v ↪→ w

3lowpt1(w) + 2 if e = v → w and lowpt2(w) ≥ v

If we perform a depth-first search on G′ according to the ordering of the edges
in the adjacency list, then this partitions G′ into a set of paths, each consisting
of zero or more tree arcs followed by a frond, and each path ending at the vertex
with lowest possible label. We say that a vertex un is a first descendant of u0 if
there is a directed path u0 → · · · → un and each edge ui → ui+1 is the first in
Adj(ui).

Lemma 7.8.10. Let P be a palm tree of a biconnected graph G = (V,E) that
satisfies the above conditions. Two vertices a, b ∈ V with a < b form a separation
pair {a, b} if and only if one of the following conditions is true:

176 F. Kammer and H. Täubig

Type-1 Case There are distinct vertices r, s ∈ V \{a, b} such that b→ r is a tree
edge, lowpt1(r) = a, lowpt2(r) ≥ b, and s is not a descendant of r.

Type-2 Case There is a vertex r ∈ V \ b such that a → r
∗→ b, b is a first

descendant of r (i.e., a, r, b lie on a generated path), a �= 1, every frond
x ↪→ y with r ≤ x < b satisfies a ≤ y, and every frond x ↪→ y with a < y < b
and b→ w

∗→ x has lowpt1(w) ≥ a.
Multiple Edge Case (a, b) is a multiple edge of G and G contains at least four

edges.

For a proof, see [310].
We omit the rather technical details for finding the split components

Ck+1, .., Cm. The main loop of the algorithm computes the triconnected compo-
nents from the split components C1, .., Cm by merging two bonds or two polygons
that share a common virtual edge (as long as they exist). The resulting time com-
plexity is O(|V | + |E|). For a detailed description of the algorithm we refer the
interested reader to the original papers [309, 310, 312, 267].

7.9 Chapter Notes

In this section, we briefly discuss some further results related to the topic of this
chapter.

Strong and biconnected components. For the computation of strongly connected
components, there is another linear-time algorithm that was suggested by R.
Kosaraju in 1978 (unpublished, see [5, p. 229]) and that was published by
Sharir [517].

An algorithm for computing the strongly connected components using a non-
dfs traversal (a mixture of dfs and bfs) of the graph was presented by Jiang [331].
This algorithm reduces the number of disk operations in the case where a large
graph does not entirely fit into the main memory. Two space-saving versions of
Tarjan’s strong components algorithm (for the case of graphs that are sparse
or have many single-node components) were given by Nuutila and Soisalon-
Soininen [454].

One-pass algorithms for biconnected and strong components that do not com-
pute auxiliary quantities based on the dfs tree (e.g., low values) were proposed
by Gabow [235].

Average connectivity. Only recently, Beineke, Oellermann, and Pippert [56] con-
sidered the concept of average connectivity. This measure is defined as the av-
erage, over all pairs of vertices a, b ∈ V , of the maximum number of vertex-
disjoint paths between a and b, that is, the average local vertex-connectivity.
While the conventional notion of connectivity is rather a description of a worst
case scenario, the average connectivity might be a better description of the global
properties of a graph, with applications in network vulnerability and reliability.
Sharp bounds for this measure in terms of the average degree were shown by

7 Connectivity 177

Dankelmann and Oellermann [138]. Later on, Henning and Oellermann consid-
ered the average connectivity of directed graphs and provided sharp bounds for
orientations of graphs [294].

Dynamic Connectivity Problems. Quite a number of publications consider con-
nectivity problems in a dynamical setting, that is, in graphs that are changed by
vertex and/or edge insertions and deletions. The special case where only inser-
tions are allowed is called semi-dynamic, partially-dynamic, or incremental. Since
there is a vast number of different variants, we provide only the references for
further reading: [490, 377, 237, 223, 341, 577, 144, 296, 297, 155, 295, 154, 303].

Directed graphs. As already mentioned, the local connectivity in directed graphs
is not symmetric, which is the reason why many algorithms for undirected con-
nectivity problems do not translate to the directed case. Algorithms that com-
pute the edge-connectivity in digraphs were published by Schnorr [503] and
by Mansour and Schieber [407]. Another problem of interest is the compu-
tation of edge-disjoint branchings, which is discussed in several publications
[171, 232, 264, 551, 582].

Other measures. There are some further definitions that might be of interest.
Matula [410] defines a cohesiveness function for each element of a graph (ver-
tices and edges) to be the maximum edge-connectivity of any subgraph con-
taining that element. Akiyama et al. [13] define the connectivity contribution or
cohesiveness of a vertex v in a graph G as the difference κ(G) − κ(G− v).

Connectivity problems that aim at dividing the graph into more than two
components by removing vertices or edges are considered in conjunction with
the following terms: A shredder of an undirected graph is a set of vertices
whose removal results in at least three components, see for example [121]. The �-
connectivity of a graph is the minimum number of vertices that must be deleted
to produce a graph with at least � components or with fewer than � vertices,
see [456, 455]. A similar definition exists for the deletion of edges, namely the
i-th order edge connectivity, confer [254, 255].

Acknowledgments. The authors thank the anonymous reviewer, the editors, and
Frank Schilder for critical assessment of this chapter and valuable suggestions.
We thank Professor Ortrud Oellermann for her support.

8 Clustering

Marco Gaertler

Clustering is a synonym for the decomposition of a set of entities into ‘natural
groups’. There are two major aspects to this task: the first involves algorithmic
issues on how to find such decompositions, i.e., tractability, while the second con-
cerns quality assignment, i.e., how good is the computed decomposition. Owing
to the informal notion of natural groups, many different disciplines have devel-
oped their view of clustering independently. Originally, clustering was introduced
to the data mining research as the unsupervised classification of patterns into
groups [324]. Since that time a comprehensive framework has started to evolve.
In the following, the simple yet fundamental paradigm of intra-cluster density
versus inter-cluster sparsity will be discussed exclusively. This restriction is nec-
essary in order to provide some insight into clustering theory, and to keep the
scope of this chapter. However, many other interpretations of natural decompo-
sition extend this framework, or are relatively similar. Another specialty is that
the input data is represented as networks that are not complete in general. In
the classic clustering theory, entities were embedded in metric spaces, and the
distance between them was related to their similarity. Thus, all pairwise simi-
larities were known at the beginning. In standard network analysis, the input
networks are usually sparse. Even if they are not, it is very unlikely that they
are complete. This will be the motivation for studying clustering methods that
deal with network input data.

Clustering, based either on the simple paradigm of intra-cluster density ver-
sus inter-cluster sparsity or on other more sophisticated formulations, focuses
on disjoint cliques as the ideal situation. In some instances the desired cases
are totally different. Models where clusters and their connection between each
other can have more complex structural properties are targeted in the following
chapters about roles (Chapter 9) and blockmodels (Chapter 10).

The popularity of density-based clustering is due to its similarity to the
human perception. Most things in our daily life are naturally grouped into cat-
egories. For example books are classified with respect to their content, e.g., sci-
entific, fiction, guidebooks, law, etc. Each topic can be refined, e.g., scientific
publications can be grouped according to their scientific discipline. The relation-
ship of elements within the same group is strong, whereas elements in different
groups typically have a weak relation. Most approaches that deal with infor-
mation processing are based upon this fact. For example finding a book with
a certain content. First, related topics are selected and only those books that

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 178–215, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

8 Clustering 179

belong to these groups are examined closer. The recursive structure of topics
and subtopics suggests a repeated application of this technique. Using the clus-
tering information on the data set, one can design methods that explore and
navigate within the data with a minimum of human interaction. Therefore, it is
a fundamental aspect of automatic information processing.

Preliminaries

Let G = (V,E) be a directed graph. A clustering C = {C1, . . . , Ck} of G is a
partition of the node set V into non-empty subsets Ci. The set E(Ci, Cj) is the
set of all edges that have their origin in Ci and their destination in Cj ; E(Ci) is
a short-hand for E(Ci, Ci). Then E(C) :=

⋃k
i=1E(Ci) is the set of intra-cluster

edges and E(C) := E \E(C) the set of inter-cluster edges. The number of intra-
cluster edges is denoted by m (C) and the number of inter-cluster edges by m (C).
In the following, we often identify a cluster Ci with the induced subgraph of G,
i.e., the graph G[Ci] := (Ci, E(Ci)). A clustering is called trivial if either k = 1
(1-clustering) or k = n (singletons). A clustering with k = 2 is also called a cut
(see also Section 2.2.3).

The set of all possible clusterings is denoted by A (G). The set A (G) is par-
tially ordered with respect to inclusion. Given two clusterings C1 := {C1, . . . , Ck}
and C2 := {C′

1, . . . , C
′
�}, Equation (8.1) shows the definition of the partial order-

ing.
C1 ≤ C2 : ⇐⇒ ∀ 1 ≤ i ≤ k : ∃ j ∈ {1, . . . , �} : Ci ⊆ C′

j (8.1)

Clustering C1 is called a refinement of C2, and C2 is called a coarsening of C1.
A chain of clusterings, i.e., a subset of clusterings such that every pair is com-
parable, is also called a hierarchy. The hierarchy is called total if both trivial
clusterings are contained. A hierarchy that contains exactly one clustering of k
clusters for every k ∈ {1, . . . , n} is called complete. It is easy to see that such a
hierarchy has n clusterings and that no two of these clusterings have the same
number of clusters.

Besides viewing a clustering as a partition, it can also be seen as an equiv-
alence relation ∼C on V × V , where u ∼C v if u and v belong to the same
cluster in C. Note that the edge set E is also a relation over V × V , and it is
an equivalence relation if and only if the graph consists of the union of disjoint
cliques.

The power set of a set X is the set of all possible subsets, and is denoted
by P(X), see also Section 2.4. A cut function S : P(V) → P(V) maps a set of
nodes to a subset of itself, i.e.,

∀ V ′ ⊆ V : S(V ′) ⊆ V ′ . (8.2)

Cut functions formalize the idea of cutting a node-induced subgraph into two
parts. For a given node subset V ′ of V the cut function S defines a cut
by (S(V ′), V ′ \ S(V ′)). In order to exclude trivial functions, we require a cut
function to assign a non-empty proper subset whenever possible. Proper cut
functions in addition fulfill the condition (8.3).

180 M. Gaertler

∀ V ′ ⊆ V : |V ′| > 1 =⇒ ∅ �= S(V ′) ⊂ V ′ . (8.3)

These functions are important for clustering techniques that are based on re-
cursive cutting. These methods will be introduced in Section 8.2.1, and some
examples are given in Section 8.2.2.

Graph model of this chapter. In this chapter, graph usually means simple and
directed graphs with edge weights and without loops.

Content Organization

The following is organized into three parts. The first one introduces measure-
ments for the quality of clusterings. They will provide a formal method to define
‘good’ clusterings. This will be important due to the informal foundation of
clustering. More precisely, these structural indices rate partitions with respect
to different interpretations of natural groups. Also, they provide the means to
compare different clusterings with respect to their quality. In the second part,
generic concepts and algorithms that calculate clusterings are presented. The fo-
cus is directed on the fundamental ideas, and not on concrete parameter choices.
Finally, the last section discusses potential enhancements. These extensions are
limited to alternative models for clusterings, some practical aspects, and Klein-
berg’s proposal of an axiomatic system for clustering.

8.1 Quality Measurements for Clusterings

As was pointed out in the introduction, clustering techniques are used to find
groups that are internally dense and that are only sparsely connected with each
other. Although this paradigm of intra-cluster density versus inter-cluster spar-
sity is more precise than the term ‘natural groups’, it is still based on our intuition
and not on a formal quantification. One way to mathematically express it is by
structural indices. These are mappings that assign a non-negative real number
to each clustering. Often their range is normalized to the unit interval, where one
means best possible structural behavior and zero means worst possible structural
behavior. In the following a general framework for indices is presented. Most of
the measurements can be expressed within it.

Let G = (V,E, ω) be a simple, weighted and directed graph, where ω : E →
+
0 represents the strength of the similarity relation modeled by the edges, and

let C = {C1, . . . , Ck} be a clustering of G. It is indeed possible to have neg-
ative values as strength of similarity, which would express the dissimilarity of
two nodes. However, it is rarely the case that similarity and dissimilarity are
expressed within the same relation. A far more common case is to have two
(weighted) relations, one for similarity and one for dissimilarity. In the following,
we will focus on only one relation that expresses similarity. For the unweighted
case, the weighting function ω is assumed to be constantly one. In many cases ω
will be a mapping to +, however, in some cases it is useful to distinguish be-
tween edges with weight zero and those node pairs that are not connected by an

8 Clustering 181

edge. We will also use the following short-cut for summing up the weight of an
edge subset:

ω(E′) :=
∑
e∈E′

ω(e) for E′ ⊆ E .

For simplicity, we assume that ω(E) �= 0.
Before defining the actual indices, their framework is presented. The indices

will be composed of two independent functions f, g : A (G) → +
0 , where f

measures the density inside the clusters and g the sparsity between clusters.
The functions are combined in the following way:

index (C) :=
f (C) + g (C)

max{f (C′) + g (C′) : C′ ∈ A (G)} (8.4)

In order to guarantee the well-definition of Equation (8.4), we assume that there
is at least one clustering C′ such that f (C′)+ g (C′) is not zero. For some indices
either f or g is constantly zero. These indices examine only the (internal) density
or the (external) sparsity.

Indices serve two different purposes simultaneously: first and foremost, they
rate a partition with respect to clustering paradigms, and, second, they compare
clusterings regarding quality. Before we explain both aspects in detail, please
note that, while our indices have these properties, there exist other measures
that realize only one aspect.

The quality of a partition as a clustering is expressed in quantitative terms,
i.e., an index (discretely) counts certain substructures like intra-cluster edges,
triangles, or cliques. These structural elements are related to clustering proper-
ties. Many intra-cluster edges, triangles, or cliques inside the clusters indicate
that the cluster is dense. In an analogous way the lack of these elements between
clusters imply the inter-cluster sparsity. Thus, the quality of clustering is reduced
to a quantitative aspect. Intuitively, there will always be a maximum number
of these indicators. The number of intra-cluster edges, triangles, or cliques is
limited by the size of clusters. In the ideal case the bounds are met. Thus, if
an index counts only half of them, then the clustering is only half as good as
possible. As we will see, these bounds are not tight for all indices and all input
graphs. Thus, most of them are ‘absolute’ in the sense that they do not depend
on the input graph, but rather on the clustering paradigms. In conclusion, the
actual range of indices provides useful information.

Because of this absolute, quantitative structure of our indices, they can
be used to compare clusterings regardless of whether the underlying graph
is the same or not. Different graphs can have different bounds for the num-
ber of substructures, but the indices rate the quality relative to the individ-
ual bounds. For example, in a graph with 10 nodes and 15 edges a clustering
could have 12 intra-cluster edges, and in another graph with 18 nodes and 30
edges another clustering could have 27 inter-cluster edges. Although we have
three inter-cluster edges in both cases, the second clustering would be better
since 27/30 = 9/10 > 4/5 = 12/15. This property is required when algorithms

182 M. Gaertler

are evaluated with random instances, or the data of the input network is not re-
liable, i.e., different data collections result into different networks. The clustering
methods could be applied to all networks, and the clustering with the best score
would be chosen. However, if the index uses characteristics of the input graph,
like the number of edges, maximum weight, etc., then this comparison can only
be done when the underlying graph is the same for all clusterings. Therefore,
indices that depend on the input graph are not appropriate for all applications,
such as benchmarks. Although this dependency will seldom occur, one has to
consider these facts when designing new indices.

8.1.1 Coverage

The coverage γ (C) measures the weight of intra-cluster edges, compared to the
weight of all edges. Thus f (C) = ω(E(C)) and g ≡ 0. The maximum value is
achieved for C = {V }. Equation (8.5) shows the complete formula.

γ (C) :=
ω(E(C))
ω(E)

=

∑
e∈E(C) ω(e)∑

e∈E ω(e)
(8.5)

Coverage measures only the accumulated density within the clusters. Therefore,
an individual cluster can be sparse or the number of inter-cluster edges can be
large. This is illustrated in Figure 8.1. Coverage is also the probability of ran-

cluster 2cluster 1

(a) intuitive clustering

cluster 2cluster 1

(b) non-trivial clustering with best
coverage

Fig. 8.1. A situation where coverage splits an intuitive cluster. The thickness of an
edge corresponds to its weight. If normal edges have weight one and bold edges weight
100, then the intuitive clustering has γ = 159/209 ≈ 0.76 while the optimal value for
coverage is 413/418 ≈ 0.99

domly selecting an intra-cluster edge (where the probability of selection an edge
is proportional to its weight, i.e., Pr[e] ∼ ω(e)). The structure of clusterings with
optimal coverage value is related to the connectivity structure of the graph. A
clustering is compatible with the connectivity structure if clusters consist only
of unions of connected components of the graph. Proposition 8.1.1 gives a char-
acterization of clusterings with optimal coverage value.

8 Clustering 183

Proposition 8.1.1. A clustering has γ = 1 if and only if either the set of
inter-cluster edges is empty or all inter-cluster edges have weight zero. Especially,
clusterings that are compatible with the connectivity structure have coverage value
1.

Sketch of Proof. The edge set is disjointly partitioned into intra-cluster edges
and inter-cluster edges, therefore Equation (8.6) holds for any clustering C.

ω(E) = ω(E(C)) + ω(E(C)) (8.6)

Thus, coverage γ (C) = 1 holds if and only if ω(E(C)) = 0.
Because clusterings that are compatible with the connectivity structure of

the graph have no inter-cluster edge, one can use the equivalence to prove the
proposition. ��

A conclusion of Proposition 8.1.1 is that the 1-clustering always has a cov-
erage value 1. The case of disconnected input graphs is rather special and most
techniques even assume that it is connected. Proposition 8.1.1 can be extended
to characterize non-trivial clusterings that are optimal with respect to coverage.

A further characterization of non-trivial clusterings that are optimal when
trivial clusterings are excluded is possible and given in Proposition 8.1.2.

Proposition 8.1.2. Let G = (V,E) be a connected graph where every cut has
positive weight. Then the clusterings that have more than one cluster and have
optimal coverage value are those that are induced by a minimum cut.

Proof. First, it is obvious that every clustering C with k > 1 can be transformed
into a clustering C′ with less than k clusters, with γ (C) ≤ γ (C′). This is achieved
by merging any two clusters. Therefore, a non-trivial clustering with optimal
coverage has two clusters, and thus is a cut. Second, maximizing coverage is
equivalent to minimizing the weight of the inter-cluster edges, and the edges
that are contained in the cut have minimum weight. That completes the proof.

��

Because of the properties described in Propositions 8.1.1 and 8.1.2, coverage
is rarely used as the only quality measurement of a clustering. Minimum cuts
often cannot catch the intuition, and separate only a very small portion of the
graph. However, there are a few exceptions [286], where both, the input graph
and good clusterings, have a very special structure. An extended version will be
used for the next index (Section 8.1.2).

8.1.2 Conductance

In contrast to coverage, which measures only the accumulated edge weight within
clusters, one can consider further structural properties like connectivity. Intu-
itively, a cluster should be well connected, i.e., many edges need to be removed
to bisect it. Two clusters should also have a small degree of connectivity between
each other. In the ideal case, they are already disconnected. Cuts are a useful

184 M. Gaertler

method to measure connectivity (see also Chapter 7). The standard minimum
cut has certain disadvantages (Proposition 8.1.2), therefore an alternative cut
measure will be considered: conductance. It compares the weight of the cut with
the edge weight in either of the two induced subgraphs. Informally speaking, the
conductance is a measure for bottlenecks. A cut is a bottleneck, if it separates
two parts of roughly the same size with relatively few edges.

Definition 8.1.3. Let C′ = (C′
1, C

′
2) be a cut, i.e., (C′

2 = V \ C′
1) then the

conductance-weight a(C′
1) of a cut side and the conductance ϕ(C′) are defined

in Equations (8.7) and (8.8).

a(C′
1) :=

∑
(u,v)∈E(C′

1,V)

ω((u, v)) (8.7)

ϕ(C′) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if C′
1 ∈ {∅, V }

0, if C′
1 �∈ {∅, V }, ω(E(C)) = 0

ω(E(C))
min(a(C′

1), a(C′
2))
, otherwise

(8.8)

The conductance of the graph G is defined by

ϕ(G) = min
C1⊆V

ϕ((C1, V \ C1)) . (8.9)

Note that the case differentiation in Equation (8.8) is only necessary in order
to prevent divisions by zero. Before presenting further general information about
conductance, graphs with maximum conductance are characterized.

Lemma 8.1.4. Let G = (V,E, ω) be an undirected and positively weighted
graph. Then G has maximum conductance, i.e., ϕ(G) = 1 if and only if G
is connected and has at most three nodes, or is a star.

Proof. Before the equivalence is shown, two short observations are stated:

1. All disconnected graphs have conductance 0 because there is a non-trivial
cut that has zero weight and the second condition of the Formula (8.8) holds.

2. For a non-trivial cut C′ = (C′
1, V \C′

1) the conductance-weight a(C′
1) can be

rewritten as

a(C′
1) =

∑
e∈E(C′

1,V)

ω(e) = ω(E(C′
1)) + ω(E(C))

in undirected graphs. Thus, the third condition in Formula (8.8) can be
simplified to

ω(E(C))

min
(
a(C′

1), a(V \ C′
1)
) =

ω(E(C))

ω(E(C)) + min
(
ω(E(C′

1)), ω(E(V \ C′
1))

) .

(8.10)

8 Clustering 185

‘⇐=’: If G has one node, then the first condition of Formula (8.8) holds and
thus ϕ(G) = 1.
If G has two or three nodes or is a star, then every non-trivial cut C′ =
(C′

1, V \C′
1) isolates an independent set, i.e., E(C′

1) = ∅. This is achieved
by setting C′

1 to the smaller cut set if G has at most three nodes and to
the cut set that does not contain the center node if G is a star. There-
fore ω(E(C′

1)) = 0 and Equation (8.10) implies ϕ(C′) = 1. Because all
non-trivial cuts have conductance 1, the graph G has conductance 1 as
well.

‘=⇒’: If G has conductance one, then G is connected (observation 1) and for
every non-trivial cut C′ = (C′

1, V \C′
1) at least one edge set E(C′

1) or E(V \
C′

1) has 0 weight (observation 2). Because ω has only positive weight, at
least one of these sets has to be empty.
It is obvious that connected graphs with at most three nodes fulfill these
requirements, therefore assume that G has at least four nodes. The graph
has a diameter of at most two because otherwise there is a path of length
three with four pairwise distinct nodes v1, . . . , v4, where ei := {vi, vi+1} ∈
E for 1 ≤ i ≤ 3. Then the non-trivial cut C′ = ({v1, v2}, V \{v1, v2}) can-
not have conductance 1, because first the inequality ω(E(C′)) ≥ ω(e2) ≥ 0
implies the third condition of Formula (8.8) and second both cut sides are
non-empty (e1 ∈ E({v1, v2}) and e3 ∈ E(V \ {v1, v2})). By the same ar-
gument, G cannot contain a simple cycle of length four or greater. It
also cannot have a simple cycle of length three. Assume G has such a
cycle v1, v2, v3. Then there is another node v4 that is not contained in
the cycle but in the neighborhood of at least one vi. Without loss of
generality i = 1. Thus, the non-trivial cut ({v1, v4}, V \ {v1, v4}) is a
counterexample. Thus G cannot contain any cycle and is therefore a tree.
The only trees with at least four nodes, and a diameter of at most two,
are stars.

��

It is NP-hard to calculate the conductance of a graph [39]. Fortunately, it can
be approximated with a guarantee of O(log n) [565] and O(

√
logn) [36]. For

some special graph classes, these algorithms have constant approximation fac-
tors. Several of the involved ideas are found in the theory of Markov chains and
random walks. There, conductance models the probability that a random walk
gets ‘stuck’ inside a non-empty part. It is also used to estimate bounds on the
rate of convergence. This notion of ‘getting stuck’ is an alternative description of
bottlenecks. One of these approximation ideas is related to spectral properties.
Lemma 8.1.5 indicates the use of eigenvalues as bounds.

Lemma 8.1.5 ([521, Lemma 2.6]). For an ergodic1 reversible Markov
chain with underlying graph G, the second (largest) eigenvalue λ2 of the transi-
tion matrix satisfies:

1 Aperiodic and every state can be reached an arbitrary number of times from all
initial states.

186 M. Gaertler

λ2 ≥ 1 − 2 · ϕ(G) . (8.11)

A proof of that can be found in [521, p. 53]. Conductance is also related to
isoperimetric problems as well as expanders, which are both related to similar
spectral properties themselves. Section 14.4 states some of these characteristics.

For unweighted graphs the conductance of the complete graph is often a
useful boundary. It is possible to calculate its exact conductance value. Propo-
sition 8.1.6 states the result. Although the formula is different for even and odd
number of nodes, it shows that the conductance of complete graphs is asymp-
totically 1/2.

Proposition 8.1.6. Let n be an integer, then equation (8.12) holds.

ϕ(Kn) =

{
1
2 · n

n−1 , if n is even
1
2 + 1

n−1 , if n is odd
(8.12)

Proof. Evaluating Equation (8.8) in Definition 8.1.3 with G = Kn leads to

ϕ(Kn) = min
C⊂V,1≤|C|<n

|C| · (n− |C|)
min(|C|(|C| − 1), (n− |C|)(n − |C| − 1))

. (8.13)

Node subsets of size k of a complete graph are pairwise isomorphic, therefore
only the size of the subset C matters. Thus, Equation (8.13) can be simplified
to

ϕ(Kn) = min
1≤k<n

k(n− k)
min(k2 − k, n2 − 2nk − n− k) . (8.14)

The fraction in Equation (8.14) is symmetric, thus it is sufficient if k varies in
the range from 1 to "n/2#. Using the fact that the fraction is also monotonic
decreasing with increasing k, the minimum is assumed for k = n/2!. A simple
case differentiation for even and odd ks leads to the final Equation (8.12). ��

In the following, two clustering indices are derived with the help of conduc-
tance. These will be intra-cluster conductance and inter-cluster conductance, and
both will focus on only one property. The first one measures internal density,
while the second rates the connection between clusters.

The intra-cluster conductance α is defined as the minimum conductance oc-
curring in the cluster-induced subgraphs G[Ci], i.e.,

f (C) = min
1≤i≤k

ϕ (G[Ci]) and g ≡ 0 . (8.15)

Note that G[Ci] in ϕ (G[Ci]) denotes a subgraph, and therefore is independent
of the rest of the original graph G. The conductance of a (sub)graph is small if it
can naturally be bisected, and great otherwise. Thus, in a clustering with small
intra-cluster conductance there is supposed to be at least one cluster containing
a bottleneck, i.e., the clustering is possibly too coarse in this case. The minimum
conductance cut itself can also be used as a guideline to split the cluster further
(refer to Section 8.2.2 for further details).

8 Clustering 187

The inter-cluster conductance δ considers the cuts induced by clusters, i.e.,

f ≡ 0 and g =

{
1, if C = {V }
1 − max

1≤i≤k
ϕ ((Ci, V \ Ci)) , otherwise . (8.16)

Note that (Ci, V \ Ci) in ϕ ((Ci, V \ Ci)) denotes a cut within the graph G. A
clustering with small inter-cluster conductance is supposed to contain at least
one cluster that has relatively strong connections outside, i.e., the clustering
is possibly too fine. In contrast to the intra-cluster conductance, one cannot
directly use the induced cut information to merge two clusters.

For both indices the maximum of f+g is one, which leads to the final formula:

α (C) := min
1≤i≤k

ϕ (G[Ci]) (8.17)

δ (C) :=

{
1, if C = {V }
1 − max

1≤i≤k
ϕ ((Ci, V \ Ci)) , otherwise (8.18)

Again a characterization of optimal clusterings is possible.

Proposition 8.1.7. Only clusterings where the clusters consist of connected
subgraphs that are stars or have size of at most three, have intra-cluster con-
ductance 1.

Proposition 8.1.8. Only clusterings that have an inter-cluster edge weight of
zero, including the 1-clustering, have inter-cluster conductance 1.

Both Proposition 8.1.7 and 8.1.8 are immediate consequences of the Defini-
tion 8.1.3 and Lemma 8.1.4. Both measures, intra-cluster conductance and
inter-cluster conductance, have certain disadvantages. Two examples are shown
in Figures 8.2 and 8.3. Both examples explore the ‘artificial’ handling of small
graphs considering their conductance. In practical instances, intra-cluster con-
ductance values are usually below 1/2. Small clusters with few connections have
relatively small inter-cluster conductance values.

8.1.3 Performance

The next index combines two non-trivial functions for the density measure f and
the sparsity measure g. It simply counts certain node pairs. According to the
general intuition of intra-cluster density versus inter-cluster sparsity, we define
for a given clustering a ‘correct’ classified pair of nodes as two nodes either
belonging to the same cluster and connected by an edge, or belonging to different
clusters and not connected by an edge. The resulting index is called performance.
Its density function f counts the number of edges within all clusters while its
sparsity function g counts the number of nonexistent edges between clusters, i.e.,

188 M. Gaertler

cluster 2cluster 1

(a) intuitive clustering

cluster 1 cluster 2 cluster 3 cluster 4

(b) non-trivial clustering with best
intra-cluster conductance

cluster 3cluster 2

cluster 4

cluster 5

cluster 1

(c) non-trivial clustering with best
intra-cluster conductance

Fig. 8.2. A situation where intra-cluster conductance splits intuitive clusters. The
intuitive clustering has α = 3/4, while the other two clusterings have α = 1. The split
in Figure 8.2(b) is only a refinement of the intuitive clustering, while Figure 8.2(c) shows
a clusterings with same intra-cluster conductance value that is skew to the intuitive
clustering

f (C) :=
k∑

i=1

|E(Ci)| and

g (C) :=
∑

u,v∈V

[(u, v) �∈ E] · [u ∈ Ci, v ∈ Cj , i �= j] .
(8.19)

The definition is given in Iverson Notation, first described in [322], and adapted
by Knuth in [365]. The term inside the parentheses can be any logical statement.
If the statement is true the term evaluates to 1, if it is false the term is 0. The
maximum of f+g has n·(n−1) as upper bound because there are n(n−1) different
node pairs. Please recall that loops are not present and each pair contributes with
either zero or one. Calculating the maximum of f + g is NP-hard (see [516]),
therefore this bound is used instead of the real maximum. By using some duality
aspects, such as the number of intra-cluster edges and the number of inter-cluster
edges sum up to the whole number of edges, the formula of performance can be
simplified as shown in Equation (8.21).

8 Clustering 189

cluster 4

cluster 3 cluster 2

cluster 1

(a) intuitive clustering

cluster 3 cluster 2

cluster 1

(b) non-trivial clustering with best
inter-cluster conductance

Fig. 8.3. A situation where two very similar clusterings have very different inter-
cluster conductance values. The intuitive clustering has δ = 0, while the other has the
optimum value of 8/9

perf (C) =
m (C) +

(
n(n− 1) −

∑k
i=1 |Ci|(|Ci| − 1) −m (C)

)
n(n− 1)

=
n(n− 1) −m+ 2m (C) −

∑k
i=1 |Ci|(|Ci| − 1)

n(n− 1)
(8.20)

= 1 −
m(1 − 2m(C)

m) +
∑k

i=1 |Ci|(|Ci| − 1)
n(n− 1)

. (8.21)

Note that the derivation from Equation (8.20) to (8.21) applies the equalitym =
m (C) + m (C), and that m (C) /m is just the coverage γ (C) in the unweighted
case. Similarly to the other indices, performance has some disadvantages. Its
main drawback is the handling of very sparse graphs. Graphs of this type do
not contain subgraphs of arbitrary size and density. For such instances the gap
between the number of feasible edges (with respect to the structure) and the
maximum number of edges (regardless of the structure) is also huge. For example,
a planar graph cannot contain any complete graph with five or more nodes, and
the maximum number of edges such that the graph is planar is linear in the
number of nodes, while in general it is quadratic. In conclusion, clusterings with
good performance tend to have many small clusters. Such an example is given
in Figure 8.4.

An alternative motivation for performance is given in the following. Therefore
recall that the edge set induces a relation on V × V by u ∼ v if (u, v) ∈ E, and
clusterings are just another notion for equivalence relations. The problem of
finding a clustering can be formalized in this context as finding a transformation
of the edge-induced relation into an equivalence relation with small cost. In

190 M. Gaertler

cluster 5

cluster 4 cluster 3

cluster 2cluster 1

(a) clustering with best performance

cluster 2

cluster 3cluster 1

(b) intuitive clustering

cluster 2cluster 1

(c) another intuitive clustering

Fig. 8.4. A situation where the clustering with optimal performance is a refinement
(Figure 8.4(b)) of an intuitive clustering and is skew (Figure 8.4(c)) to another intuitive
clustering

other words, add or delete edges such that the relation induced by the new edge
set is an equivalence relation. As cost function, one simply counts the number
of additional and deleted edges. Instead of minimizing the number of changes,
one can consider the dual version: find a clustering such that the clustering-
induced relation and the edge-set relation have the greatest ‘intersection’. This
is just the maximizing f+g. Thus performance is related to the ‘distance’ of the
edge-set relation to the closed clustering. Because finding this maximum is NP-
hard, solving this variant of clustering is also NP-hard. Although the problem is
hard, it possesses a very simple integer linear program (ILP). ILPs are also NP-
hard, however there exist many techniques that lead to usable heuristics or
approximations for the problems. The ILP is given by n2 decision variablesXuv ∈
{0, 1} with u, v ∈ V , and the following three groups of constraints:

8 Clustering 191

reflexivity ∀ u : Xuu = 1
symmetry ∀ u, v : Xuv = Xvu

transitivity ∀ u, v, w :

⎧⎨
⎩
Xuv +Xvw − 2 ·Xuw ≤ 1
Xuw +Xuv − 2 ·Xvw ≤ 1
Xvw +Xuw − 2 ·Xuv ≤ 1

and minimizing objective function:∑
(u,v)∈V 2

(1 − Euv)Xuv + Euv(1 −Xuv) ,

with Euv =

{
1 , if (u, v) ∈ E or u = v

0 , otherwise
.

The idea is that the X variables represent equivalence relations, i.e., two
nodes u, v ∈ V are equivalent if Xuv = 1 and the objective function counts
the number of not ‘correct’ classified node pairs.

There exist miscellaneous variations of performance that use more complex
models for classification. However, many modifications highly depend on their
applicational background. Instead of presenting them, some variations to include
edge weights are given. As pointed out in Section 8.1, indices serve two different
tasks. In order to preserve the comparability aspect, we assume that all the
considered edge weights have a meaningful maximum M . It is not sufficient to
replace M with the maximum occurring edge weight because this value depends
on the input graph. Also, choosing an extremely large value ofM is not suitable
because it disrupts the range aspects of the index. An example of such weightings
with a meaningful maximum are probabilities where M = 1. The weighting
represents the probability that an edge can be observed in a random draw.
Using the same counting scheme of performance, one has to solve the problem of
assigning a real value for node pairs that are not connected. This problem will
be overcome with the help of the meaningful maximum M .

The first variation is straightforward and leads to the measure functions given
in Equation (8.22):

f (C) :=
k∑

i=1

ω (E(Ci)) and

g (C) :=
∑

u,v∈V

M · [(u, v) �∈ E] · [u ∈ Ci, v ∈ Cj , i �= j] .
(8.22)

Please note the similarity to the unweighted definition in Formula (8.19). How-
ever, the weight of the inter-cluster edges is neglected. This can be integrated
by modifying g:

g′ (C) := g (C)+M ·
∣∣∣E(C)

∣∣∣− ω (E(C)
)

︸ ︷︷ ︸
=:gw(C)

. (8.23)

192 M. Gaertler

The additional term gw (C) corresponds to the difference of weight that would
be counted if no inter-cluster edges were present and the weight that is assigned
to the actual inter-cluster edges. In both cases the maximum is bounded by M ·
n(n− 1), and the combined formula would be:

perfw (C) =
f (C) + g (C) + ϑ · gw (C)

n(n− 1)M
, (8.24)

where ϑ ∈ [0, 1] is a scaling parameter that rates the importance of the weight
of the inter-cluster edges (with respect to the weight of the intra-cluster edges).
In this way there is a whole family of weighted performance indices.

An alternative variation is based on the duality. Instead of counting ‘cor-
rect’ classified node pairs the number/weight of the errors is measured. Equa-
tion (8.21) will be the foundation:

f̃ (C) =
k∑

i=1

(
M |Ci|(|Ci| − 1) − θ · ω(E(Ci)

)
and

g̃ (C) = ω
(
E(C)

)
,

(8.25)

where θ is a scaling parameter that rates the importance of the weight of the
intra-cluster edges (with respect to the weight of the inter-cluster edges). The
different symbols for density f̃ and sparsity g̃ functions are used to clarify that
these functions perform inversely to the standard functions f and g with respect
to their range: small values indicate better structural behavior instead of large
values. Both can be combined to a standard index via

perfm (C) = 1 − f̃ (C) + g̃ (C)
n(n− 1)M

. (8.26)

Note that the versions are the same for ϑ = θ = 1. In general, this is not true for
other choices of ϑ and θ. Both families have their advantages and disadvantages.
The first version (Equation (8.24)) should be used, if the clusters are expected
to be heavy, while the other version (Equation (8.26)) handles clusters with
inhomogeneous weights better.

8.1.4 Other Indices

Clearly these indices are only a small fraction of the whole spectrum used to
formalize and evaluate clusterings. However, they clarify different concepts very
well. This part covers some historical indices that have been used for clustering,
as well as some measures that are based on certain assumptions.

Clustering was originally applied to entities embedded in metric spaces or
vector spaces with a norm function. Many indices have been developed that use
essential structural properties of these spaces, e.g., the possibility to calculate
a barycenter or geometric coverings. Over time, some indices have been trans-
ferred to graph clustering as well. Because these spaces usually provide all pair

8 Clustering 193

information, the first problem is to estimate the similarity of nodes that are not
connected with an edge. This is often solved using shortest path techniques that
respect all information, like weight or direction, or only partial information, or
none. The most common measures resulting are: diameter, edge weight variance,
and average distance within the clusters. In contrast to the previous indices,
these measures do not primarily focus on the intra-cluster density versus inter-
cluster sparsity paradigm. Most of them even ignore the inter-cluster structure
completely. Another difference is that these indices usually rate each cluster in-
dividually, regardless of its position within the graph. The resulting distribution
is then rated with respect to the average or the worst case. Thus, a density mea-
sure2 π can be transformed into an index by applying π on all cluster-induced
subgraphs and rating the resulting distribution of values, e.g., via minimum,
maximum, average, or mean:

worst case: min
i

{π(G[C1]), . . . , π(G[Ck])}

average case:
1
k

∑
i

π(G[Ci])

best case: max
i

{π(G[C1]), . . . , π(G[Ck])}

Their popularity is partially based on the easy computation in metric or normed
vector spaces, where the distance (inverse similarity) of (all) pairs is defined by
their distance within the given space. The other reason is their use for greedy
approaches that will be introduced in Section 8.2.1.

Another kind of measure compares the partition with an average case of the
graph instead of an ideal case. This is especially preferred when the ideal situa-
tion is unknown, i.e., the network has very specific properties and thus general
clustering paradigms could hardly be fulfilled. For example, Newman [442] pos-
tulated that a (uniform) random graph does not contain a clustering structure
at all. Therefore, measuring the difference of numbers of edges within a cluster
and the expected number of edges that would randomly fall within the cluster
should be a good indicator whether the cluster is significant or not. The whole
formula is shown in Equation (8.27).

k∑
i=1

(
|E(Ci)| −m

|Ci| · (|Ci| − 1)|
n · (n− 1)

)
. (8.27)

One advantage is that one can now distinguish between good, ‘random’, and
bad clusterings depending on the sign and magnitude of the index. However, the
expected number of edges that fall at random in a subgraph may be a too global
view. The local density may be very inhomogeneous and thus an average global
view can be very inaccurate. Figure 8.5 sketches such an example. The graph
consists of two groups, i.e., a cycle (on the left side) and a clique (on the right
side), which are connected by a path. In this example there is no subgraph with
average density, in fact the two groups have a significantly different density. One
2 greater values imply larger density

194 M. Gaertler

Fig. 8.5. Graph with inhomogeneous density

way to restrict the global view of average density is to fix the degree of each
node and consider expected number of edges that fall at random in a subgraph.
The modified formula is given in Equation (8.28).

k∑
i=1

⎡
⎣ω(E(Ci))

ω(E)
−
(∑

e∈E(Ci,V) ω(e)

ω(E)

)2
⎤
⎦ . (8.28)

In general, these measures that compare the partition with an average case of the
graph seem to introduce a new perspective that has not yet been fully explored.

8.1.5 Summary

The presented indices serve as quality measurements for clusterings. They pro-
vide a formal way to capture the intuitive notation of natural decompositions.
Several of these indices can be expressed in a simple framework that models
the paradigm of intra-cluster density versus inter-cluster sparsity. It has been
introduced in Section 8.1. Table 8.1 summarizes these indices, the general form
is given in Equation (8.29).

index (C) :=
f (C) + g (C)

N
(8.29)

A commonality of these measures is that the associated optimization problem,
i.e., finding the clustering with best score, usually is NP-hard. If the optimal
structure is known in advance, as is the case for coverage or conductance, the
restriction to interesting or practically relevant clusterings leads to NP-hard
problems.

Bibliographic Notes. Further information about indices can be found in [324,
325]. In [569, Chapter 7] a collection of density concepts is presented that have
nearly the same intuition. Benchmark tests that are based on indices can be
found in [95].

There is also a lot of work done within the theory community, especially
disciplines like machine learning or neural networks, which targets approximating
indices or extracting structural properties to qualitatively rate partitions. Owing
to our limited scope, these aspects could not be covered. [170, 565] may serve as
an entry point to these issues.

8 Clustering 195

T
a
b
le

8
.1

.
S
u
m

m
a
ry

o
f
cl

u
st

er
in

g
in

d
ic

es

N
a
m

e
f

(C
)

g
(C

)
N

co
v
er

a
g
e

γ
(C

)
ω
(E

(C
))

0
ω
(E

)

in
tr

a
-c

lu
st

er
co

n
d
u
ct

a
n
ce

α
(C

)
m

in
1
≤

i≤
k
ϕ

(G
[C

i
])

0
1

in
te

r-
cl

u
st

er
co

n
d
u
ct

a
n
ce

δ
(C

)
0

1
,

if
C

=
{V

}
1
−

m
a
x

1
≤

i≤
k
ϕ

((
C

i
,V

\
C

i
))

,
o
th

er
w

is
e

1

p
er

fo
rm

a
n
ce

p
er

f(
C)

k

i=
1

|E
(C

i
)|

u
,v

∈V
[(

u
,v

)

∈

E
]
·[

u
∈

C
i
,v

∈
C

j
,i

=
j]

n
(n

−
1
)

p
er

fo
rm

a
n
ce

p
er

f w
(C

)

k

i=
1

ω
(E

(C
i
))

M
u

,v
∈V

[(
u
,v

)

∈

E
]
·[

u
∈

C
i
,v

∈
C

j
,i

=
j]

+
ϑ
·

M
·

E
(C

)
−

ω
E

(C
)

M
·n

(n
−

1
)

p
er

fo
rm

a
n
ce

1
−

p
er

f m
(C

)

k

i=
1

M
|C

i
|(|

C
i
|−

1
)
−

θ
·ω

(E
(C

i
)

ω
E

(C
)

M
·n

(n
−

1
)

196 M. Gaertler

8.2 Clustering Methods

This section covers the description of algorithmic paradigms and approaches
used to calculate clusterings. It is split in three parts: First, some fundamental
techniques are explained. Second, instances that embody these principles are
described. Third, related problems are discussed.

8.2.1 Generic Paradigms

The description of generic methods is structured into three groups: Greedy and
shifting approaches as well as general optimizing techniques utilized to find near-
optimal clusterings. Mostly the concepts and algorithms apply a certain number
of reductions to obtain an instance where a solution can easily be computed,
and then extend it to the original input. This is very similar to the standard
divide and conquer techniques, where instances are recursively divided until the
problem is trivially solvable. In contrast to this, the reduction step is more gen-
eral and can modify the instance completely. Thus, the reduced instance does
not need to be a subinstance of the original problem. The reduction step is
usually composed of two parts itself. First, significant substructures are identi-
fied. These can be bridges that are likely to separate clusters, or dense groups
that indicate parts of clusters. Such an identification is often formulated as a
hypothesis, and the recognized substructures are considered as evidence for its
correctness. After the recognition phase a proper modification is applied to the
current input graph. Such transformations can be arbitrary graph operations,
however, the usual modifications are: addition and deletion of edges, as well
as collapsing subgraphs, i.e., representing a subgraph by a new meta-node. A
sketch of this idea is given in Figure 8.6. The ‘shapes’ of the (sub)instances indi-
cate the knowledge of clustering, i.e., smooth shapes point to fuzzy information
while the rectangles indicate exact knowledge. In the initial instance (left figure,
upper row), no clustering information is present. During the reduction phases
parts of the graph became more and more separated, which is indicated by the
disjoint objects. The right instance in the upper row can be easily solved, and
the fuzzy information is transformed into exact information with respect to the
given instance. Based upon it, the expansion phase transfers this knowledge to
the original instance (left figure, lower row). An additional difference to divide
and conquer methods is that the size of the considered graphs can increase during
the reduction phases.

Greedy Concepts. Most greedy methods fit into the following framework:
start with a trivial and feasible solution and use update operations to lower
its costs recursively until no further optimization is possible. This scheme for a
greedy approach is shown in Algorithm 19, where c (L) denotes the cost of solu-
tion L and Ng (L) is the set of all solutions that can be obtained via an update
operation starting with solution L. This iterative scheme can also be expressed
for clusterings via hierarchies. A hierarchy represents an iterative refinement (or

8 Clustering 197

reduce−−−−→ reduce−−−−→

↓ solve

expand←−−−− expand←−−−−

Fig. 8.6. Example of successive reductions. The ‘shapes’ of the (sub)instances indicate
the knowledge of clustering, i.e., smooth shapes point to fuzzy information while the
rectangles indicate exact knowledge. The first row shows the application of modifica-
tions, while the second indicates the expansion phases

Algorithm 19: Scheme for greedy methods

let L0 be a feasible solution
i ← 0
while {L : L ∈ Ng (Li) , c (L) < c (Li)}
= ∅ do

Li+1 ← argminL∈Ng(Li)
c (L)

i ← i + 1
return Li

coarsening) process. Greedy methods that use either merge or split operations
as updates define a hierarchy in a natural way. The restriction to one of these
operations guarantees the comparability of clusterings, and thus leads to a hier-
archy. These two concepts will be formalized shortly, before that some facts of
hierarchies are briefly mentioned.

Hierarchies provide an additional degree of freedom over clusterings: the
number of clusters is not fixed. Thus, they represent the group structure in-
dependently of its granularity. However, this feature usually increases the space
requirement, although a hierarchy can be implicitly represented by a tree, also
called a dendrogram, that represents the merge operations. Algorithms tend to
construct it explicitly. Therefore, their space consumption is often quadratic or
larger. For a few special cases these costs can be reduced with the help of data
structures [178].

198 M. Gaertler

The Linkage process (Agglomeration) iteratively coarses a given clustering
by merging two clusters until the 1-clustering is reached. The formal description
is shown in Definition 8.2.1.

Definition 8.2.1 (Linkage). Given a graph G = (V,E, ω), an initial cluster-
ing C1 and either a global cost function cglobal : A (G) → +

0 or a cost func-
tion clocal : P(V) × P(V) → +

0 for merging operations, the Linkage process
merges two clusters in the current clustering Ci := {C1, . . . , Ck} while possible
in the following recursive way:

global: let P be the set of all possible clusterings resulting from Ci by merging
two clusters, i.e.,

P :=
{
{C1, . . . , Ck} \ {Cμ, Cν} ∪ {Cμ ∪ Cν} | μ �= ν

}
,

then the new clustering Ci+1 is defined as an element in P with minimum
cost with respect to cglobal.

local: let μ, ν be those two distinct indices such that clocal has one global min-
imum in the pair (Cμ, Cν), then the new clustering Ci+1 is defined by
merging Cμ and Cν , i.e.,

Ci+1 := {C1, . . . , Ck} \ {Cμ, Cν} ∪ {Cμ ∪ Cν} .

Although the definition is very formal, the basic idea is to perform a cheapest
merge operation. The cost of such an operation can be evaluated using two
different view points. A local version charges only merge itself, which depends
only on the two involved clusters. The opposite view is a global version that
considers the impact of the merge operation. These two concepts imply also
the used cost functions, i.e., a global cost function has the set of clusterings as
domain while the local cost function uses a pair of node subsets as arguments.
An example of linkage is given in Figure 8.7. The process of linkage can be
reversed, and, instead of merging two clusters, one cluster is split into two parts.
This dual process is called Splitting (Diversion). The formal description is given
in Definition 8.2.2.

Definition 8.2.2 (Splitting). Let a graph G = (V,E, ω), an initial cluster-
ing C1, and one of the following function sets be given:

global: a cost function cglobal : A (G) → +
0

semi-global: a cost function cglobal : A (G)→ +
0 and a proper cut function Slocal :

P(V) → P(V)
semi-local: a cost function clocal : P(V) × P(V) → +

0 and a proper cut func-
tion Slocal : P(V) → P(V)

local: a cost function clocal : P(V) × P(V) → +
0

The Splitting process splits one cluster in the current clustering Ci := {C1, . . .
Ck} into two parts. The process ends when no further splitting is possible. The
cluster that is going to be split is chosen in the following way:

8 Clustering 199

cluster 6

cluster 5 cluster 4

cluster 3

cluster 2cluster 1

(a) initial step

cluster 2,3

cluster 6

cluster 5 cluster 4

cluster 1

(b) 2nd step

cluster 1,2,3

cluster 4

cluster 6

cluster 5

(c) 3rd step

cluster 4,5

cluster 1,2,3

cluster 6

(d) 4th step

cluster 1,2,3,4,5

cluster 6

(e) 5th step

cluster 1,2,3,4,5,6

(f) final step

Fig. 8.7. Example of linkage

global: let P be the set of all possible clusterings resulting from Ci by splitting
one cluster into two non-empty parts, i.e.,

P :=
{
{C1, . . . , Ck} \ {Cμ} ∪ {C′

μ, Cμ \ C′
μ} | ∅ �= C′

μ � Cμ

}
,

then the new clustering Ci+1 is defined as an element in P with minimum
cost with respect to cglobal.

semi-global: let P be the set of all possible clusterings resulting from Ci by splitting
one cluster into two non-empty parts according to Slocal, i.e.,

P :=
{
{C1, . . . , Ck} \ {Cμ} ∪ {Slocal (Cμ) , Cμ \ Slocal (Cμ)}

}
,

then the new clustering Ci+1 is defined as an element in P with minimum
cost with respect to cglobal.

semi-local: let μ be an index such that clocal has one global minimum in the
pair (Slocal (Cμ) , Cμ \ Slocal (Cμ)) then the new clustering Ci+1 is defined
by splitting cluster Cμ according to Slocal, i.e.,

Ci+1 := {C1, . . . , Ck} \ {Cμ} ∪ {Slocal (Cμ) , Cμ \ Slocal (Cμ)} .

200 M. Gaertler

local: let μ be an index and Cν be a proper subset of cluster Cμ such that clocal

has one global minimum in the pair (Cν , Cμ \ Cν), then the new cluster-
ing Ci+1 is defined by splitting cluster Cμ according to Slocal, i.e.,

Ci+1 := {C1, . . . , Ck} \ {Cμ} ∪ {Cμ, Cμ \ Cν} .
Similar to the Linkage process, the definition is rather technical but the ba-
sic idea is to perform the cheapest split operation. In contrast to the Linkage
method, the cost model has an additional degree of freedom because clusters can
be cut in several ways. Again, there is a global and a local version that charge
the impact of the split and the split itself, respectively. Both correspond to the
views in the Linkage process. However, rating every possible non-trivial cut of
the clusters is very time consuming and usually requires sophisticated knowledge
of the involved cost functions. One way to reduce the set of possible splittings is
to introduce an additional cut function Slocal. It serves as an ‘oracle’ to produce
useful candidates for splitting operations. The semi-global and semi-local ver-
sions have the same principles a the global and the local version, however, their
candidate set is dramatically reduced. Therefore, they are often quite efficiently
computable, and no sophisticated knowledge about the cost function is required.
However, the choice of the cut function has usually a large impact on the quality.

Both, the Linkage and the Splitting process, are considered to be greedy
for several reasons. One is the construction of the successive clusterings, i.e., an
update operation chooses always the cheapest clustering. These can produce total
or complete hierarchies quite easily. Total hierarchies can be achieved by simply
adding the trivial clusterings to the resulting hierarchy. They are comparable
to all other clusterings, therefore preserving the hierarchy property. Recall that
complete hierarchies are hierarchies such that a clustering with k clusters is
included for every integer k ∈ [1, n]. Both processes lead to a complete hierarchy
when initialized with the trivial clusterings, i.e., singletons for Linkage and the
1-clustering for Splitting. Note that in the case of the Splitting process, it is
essential that the cut functions are proper. Therefore, it is guaranteed that every
cluster will be split until each cluster contains only one node. Although the cost
can be measured with respect to the result or the operation itself, clairvoyance
or projection of information into the future, i.e., accepting momentarily higher
cost for a later benefit, is never possible.

Because of their simple structure, especially in the local versions, both con-
cepts are frequently used and are also the foundation of clustering algorithms
in general. The general local versions can be very efficiently implemented. For
the Linkage process, a matrix containing all cluster pairs and their merging cost
is stored. When an update operation takes place, only the cost of merging the
new resulting cluster with another is recalculated. For certain cost functions this
scheme can even be implemented with less than quadratic space and runtime
consumption [178]. In the case of the Splitting process, only the cut information
needs to be stored for each cluster. Whenever a cluster gets split, one has to re-
compute the cut information only for the two new parts. This is not true for any
global version in general. However, a few very restricted cost and cut functions
can be handled efficiently also in the global versions.

8 Clustering 201

Shifting Concept. In contrast to the global action of the previous greedy
strategies, the shifting approaches work more locally. They choose an initial
clustering and iteratively modify it until a local optimum is found. Usually three
operations are permitted: first, a node moves from one cluster to another exist-
ing cluster, second, a node moves from one cluster to create a new cluster, and,
third, two nodes exchange their cluster assignments. Sometimes more complex
operations, like instant removal of one cluster and reassigning nodes to already
existing clusters, are allowed. However, these complex operations are usually
only used for speed-up, or to avoid artifical situations, therefore they will not
be discussed here. Note that one can typically simulate them by a sequence of
simple operations. Regarding algorithmic aspects, shifting concepts are relatively
close to the greedy ones. Algorithm 20 shows the general procedure where Ns (L)
denotes the set of all clusterings that can be obtained by applying the modifi-
cations to the clustering L. Step 1 can be based on cost or potential functions,

Algorithm 20: Scheme for shifting methods

let L0 be an initial solution
i ← 0
while Ns (Li)
= ∅ do

choose Li+1 ∈ Ns (Li)1

i ← i + 1
return Li

random selecting, or on the applicational background. The technical definition
of the shifting concept is given in Definition 8.2.3, and uses a potential function
as selection criteria.

Definition 8.2.3. Given a graph G = (V,E, ω), an initial clustering C1 and
a potential function Φ : A (G) × A (G) → , the Shifting process is defined
as performing any operation on the current clustering Ci that results in a new
clustering Ci+1 such that Φ (Ci, Ci+1) > 0.

Shifting concepts have many degrees of freedom. The choice of potential
functions is critical. There are two common subtypes of potentials: type-based
and compressed. Type-based potentials are functions that heavily depend on the
type of operations. They are often used to preserve certain properties. In the case
that creating a new cluster via a node movement is very expensive in contrast
to the other node movements, it is very likely that the number of clusters in
the final clustering is roughly the same as in the initial clustering. Compressed
or sequenced shifts collapse a series of operations into one meta-operation, and
rate only the output of this operation with its argument. Thus, a certain number
of operations are free of charge. These functions are often used in combination
with a standard potential function that has many local optima. By ignoring a
number of intermediate steps, it may be easier to reach a global optimum.

202 M. Gaertler

Owing to their contingent iterative nature, shifting approaches are rarely used
on their own. There can be sequences of shifting operations where the initial and
final clustering are the same, so-called loops. Also, bounds on the runtime are
more difficult to establish than for greedy approaches. Nonetheless, they are a
common postprocessing step for local improvements. An example of shifting is
given in Figure 8.8.

cluster 1

cluster 2cluster 3

(a) initial step

cluster 2

cluster 3

cluster 1

(b) 2. step

cluster 2

cluster 1

cluster 3

(c) 3. step

Fig. 8.8. Example of shifting

General Optimization Concepts for Clustering. The two previous con-
cepts, the greedy and the shifting framework, were fairly adapted. Both defined
precisely the permitted operations and constraints, and the conditions of their
application. The following concepts can be used for arbitrary optimization ap-
proaches. They are based on the idea that clusterings can be formulated as the
result of a generic optimization process. The input data may be generated in a
certain way with an implicit clustering structure. The optimization problem is to
extract a clustering that is relatively close to the hidden one. Alternatively, the
contained clustering is the result of an unknown optimization process. It is only
known that this process respects certain paradigms, like intra-cluster density,
inter-cluster sparsity, or both. The related problem is again to extract a cluster-
ing that is relatively close to the hidden one. The variety of techniques to solve
optimization problems is gigantic, therefore only the following are considered
here: parameter estimation, evolutionary and search-based approaches.

Parameter estimation is based on the assumption that the input data was
created by a (random) sampling process: There is a hidden graph with a certain
clustering, then a sample of the (whole) graph is drawn that will be the input
graph. The approach then tries to estimate the parameters of this sampling
process. These parameters will be used to reconstruct the clustering of the hidden
graph. Originally, these methods were introduced to find clusterings for data
embedded in metric spaces [325, Section 5.3]. There are clusterings that may be

8 Clustering 203

represented by a union of distributions, and the goal is to estimate the number
of distributions and their parameters (mean, deviation, etc.). The Expectation
Maximization (EM) is the most commonly used method. In general, it is only
applied to data that is embedded in a metric space. Although graphs are typically
not embedded, one can think of many processes that involve an implicit (metric)
topology. An example is the following: let a finite space with a topology, a set
of points, referred to as cluster centers, and a probability distribution for each
cluster center be given; then n nodes/points are introduced by choosing one
cluster center and a free spot around it that respects both the topology and its
distribution. Two nodes will be connected by edges if their distance (with respect
to the topology) is smaller than or equal to a given parameter. An example of
this process is shown in Figure 8.9. Thus, the graph (Figure 8.9(c)) would be

(a) initial topology (b) 2 cluster cen-
ters (diamonds) and
6 nodes (circles)

(c) resulting graph
with distance thres-
hold 3

Fig. 8.9. Example of generating a graph and its clustering using distributions.

the input graph, and the estimation approach would try to estimate the number
of cluster centers as well as the assignment of each node to a cluster center. In
the EM case, the resulting clustering should have the largest expectation to be
the original hidden clustering, i.e., the same number of cluster points and the
correct node cluster-point assignment.

Evolutionary approaches such as genetic algorithms (GA), evolution strat-
egies (ES) and evolutionary programming (EP) iteratively modify a population
of solution candidates by applying certain operations. ‘Crossover’ and ‘mutation’
are the most common ones. The first creates a new candidate by recombining
two existing ones, whilst the second modifies one candidate. To each candidate
a fitness value is associated, usually the optimization function evaluated on the
candidate. After a number of basic operations, a new population is generated
based on the existing one, where candidates are selected according to their fitness
value. A common problem is to guarantee the feasibility of modified solutions.
Usually this is accomplished by the model specification. In the context of cluster-

204 M. Gaertler

ing, the model can either use partitions or equivalence relations. As presented in
Section 8.1.3, clusterings can be modeled as 0-1 vectors with certain constraints.

Search-based approaches use a given (implicit) topology of the candidate
space and perform a random walk starting at an arbitrary candidate. Similar to
evolutionary approaches, the neighborhood of a candidate can be defined by the
result of simple operations like the mutations. The neighborhood of a clustering
usually is the set of clusterings that result from node shifting, cluster merging,
or cluster splitting. The selection of a neighborhood is also based on some fitness
value, usually the optimization function evaluated on the candidate. The search
usually stops after a certain number of iterations, after finding a local optimum,
or a combination of both.

8.2.2 Algorithms

Clustering methods have been developed in many different fields. They were
usually very adapted, either for specific tasks or under certain conditions. The
reduction of algorithms to their fundamental ideas, and constructing a framework
on top, started not that long ago. Thus, this part can only give a short synopsis
about commonly used methods.

Instances of Linkage. The different instances of the Linkage framework were
originally designed for distance edge weights. Distances are the ‘dual’ version of
similarities. Historically, the input data for clusterings algorithms was metrically
embedded and complete (the similarity/dissimilarity of every pair is known). In
these scenarios, it is possible to find clusterings using distance functions instead
of similarities, i.e., one has to search for spatially dense groups that are well-
separated from each other. If the distance function is only partially known, it is
no longer possible to derive information about the similarity of two objects from
their distance to other objects.

However, the use of distance functions had certain advantages that can be
carried over to similarity weights. One reason was that distances can be easily
combined to estimate the distance of a path. The most common way is the
summation of the edge weights along the path. The standard local cost functions
are defined as:

clocal (Ci, Cj) :=
⊙

{d(u, v) : u ∈ Ci, v ∈ Cj} , (8.30)

where d(u, v) is the length of any shortest path connecting u and v, and
⊙

is any
set evaluation function, like minimum, average, or maximum. Indeed these three
versions are called Single Linkage, Average Linkage, and Complete Linkage. A
possible explanation of the name Single Linkage is that the cheapest, shortest
path will be just an edge with minimum weight inside of E(Ci, Cj). Note that
the cost function can be asymmetric and have infinity as its value. Also, note
that it is necessary to use the length of the shortest paths because not every node
pair (u, v) ∈ Ci ×Cj will be connected by an edge. In fact, the set E(Ci, Cj) will
be empty in the ideal case.

8 Clustering 205

When dealing with similarities instead of distances one has to define a mean-
ingful path ‘length’. A simple way is to ignore it totally and define the cost
function as

clocal (Ci, Cj) :=
⊙

{M − ω(e) : e ∈ E(Ci, Cj)} , (8.31)

whereM is the maximum edge weight in the graph. Alternatively, one can define
the similarity of a path P : v1, . . . , v� by:

ω(P) :=

(
�−1∑
i=1

1
ω(vi, vi+1)

)−1

. (8.32)

Although this definition is compatible with the triangle inequality, the meaning
of the original range can be lost along with other properties. Similar to cost
definition in Equation (8.31), the distance value (in Equation(8.30)) would be
replaced by (n− 1)M −ω(P). These ‘inversions’ are necessary to be compatible
with the range meaning of cost functions. Another definition that is often used
in the context of probabilities is

ω(P) :=
�−1∏
i=1

ω(vi, vi+1) . (8.33)

If ω(vi, vi+1) is the probability that the edge (vi, vi+1) is present and these
probabilities are independent of each other, then ω(P) is the probability that
the whole path exists.

Lemma 8.2.4. The dendrogram of Single Linkage is defined by a Minimum
Spanning Tree.

Only a sketch of the proof will be given. A complete proof can be found
in [324]. The idea is the following: consider the algorithm of Kruskal where
edges are inserted in non-decreasing order, and only those that do not create
a cycle. From the clustering perspective of Single Linkage, an edge that would
create a cycle connects two nodes belonging to the same cluster, thus that edge
cannot be an inter-cluster edge, and thus would have never been selected.

The Linkage framework is often applied in the context of sparse networks
and networks where the expected number of inter-cluster edges is rather low.
This is based on the observation that many Linkage versions tend to produce
chains of clusters. In the case where either few total edges or few inter-cluster
edges are present, these effects occur less often.

Instances of Splitting. Although arbitrary cut functions are permitted for
Splitting, the idea of sparse cuts that separate different clusters from each
other has been the most common one. Among these are: standard cuts (Equa-
tion (8.34)), Ratio Cuts (Equation (8.35)), balanced cuts (Equation (8.36)),

206 M. Gaertler

Table 8.2. Definition of various cut functions

S (V) := min
∅�=V ′⊂V

ω(E(V ′, V \ V ′)) (8.34)

Sratio (V) := min
∅�=V ′⊂V

ω(E(V ′, V \ V ′))
|V ′| · (|V | − |V ′|) (8.35)

Sbalanced (V) := min
∅�=V ′⊂V

ω(E(V ′, V \ V ′))
min(|V ′|, (|V | − |V ′|)) (8.36)

Sconductance (V) := min
∅�=V ′⊂V

δ(V ′) (8.37)

S2–sector (V) := min
V ′⊂V,

|V |/2�≤|V ′|≤�|V |/2

ω(E(V ′, V \ V ′)) (8.38)

Conductance Cuts (Equation (8.37)), and Bisectors (Equation (8.38)). Table 8.2
contains all the requisite formulae.

Ratio Cuts, balanced cuts, and Bisectors (and their generalization, the k–
Sectors) are usually applied when the uniformity of cluster size is an important
constraint. Most of these measures are NP-hard to compute. Therefore, approx-
imation algorithms or heuristics are used as replacement. Note that balanced
cuts and Conductance Cuts are based on the same fundamental ideas: rating
the size/weight of the cut in relation to the size/weight of the smaller induced
cut side. Both are related to node and edge expanders as well as isoperimetric
problems. These problems focus on the intuitive notion of bottlenecks and their
formalizations (see Section 8.1.2 for more information about bottlenecks). Some
spectral aspects are also covered in Section 14.4, and [125] provides further in-
sight. Beside these problems, the two cut measures have more in common. There
are algorithms ([565]) that can be used to simultaneously approximate both cuts.
However, the resulting approximation factor differs.

Splitting is often applied to dense networks or networks where the expected
number of intra-cluster edges is extremely high. An example for dense graphs
are networks that model gene expressions [286]. A common observation is that
Splitting methods tend to produce small and very dense clusters.

Non-standard Instances of Linkage and Splitting. There are several al-
gorithms that perform similar operations to ‘linkage’ or ‘splitting’, but do not
fit into the above framework. In order to avoid application-specific details, only
some general ideas will be given without the claim of completeness.

The Identification of Bridge Elements is a common Splitting variant, where
cuts are replaced by edge or node subsets that should help to uncover individual
clusters. One removal step can lead to further connected components, however it
is not required. Figure 8.10 shows such an example. Most of the techniques that
are used to identify bridge elements are based on structural indices, or properties

8 Clustering 207

Fig. 8.10. Example for the removal of bridge elements. Removed elements are drawn
differently: edges are dotted and nodes are reduced to their outline

derived from shortest path or flow computations. Also centralities can be utilized
for the identification [445].

Multi-Level Approaches are generalizations of the Linkage framework, where
groups of nodes are collapsed into a single element until the instance becomes
solvable. Afterwards, the solution has to be transformed into a solution for the
original input graph. During these steps the previously formed groups need not
be preserved, i.e., a group can be split and each part can be assigned to individual
clusters. In contrast to the original Linkage framework, here it is possible to tear
an already formed cluster apart. Multi-level approaches are more often used in
the context of equi-partitioning, where k groups of roughly the same size should
be found that have very few edges connecting them. In this scenario, they have
been successfully applied in combination with shiftings. Figure 8.11 shows an
example.

Modularity – as presented at the beginning of Section 8.2.1, clustering algo-
rithms have a very general structure: they mainly consist of ‘invertible’ transfor-
mations. Therefore, a very simple way to generate new clustering algorithms is
the re-combination of these transformations, with modifications of the sequence
where appropriate. A reduction does not need to reduce the size of an instance,
on the contrary it also can increase it by adding new data. There are two different
types of data that can be added. The first is information that is already present
in the graph structure, but only implicitly. For example, an embedding such
that the distance in the embedding is correlated to the edge weights. Spectral
embeddings are quite common, i.e. nodes are positioned according to the entries
of an eigenvector (to an associated matrix of the graph). More details about
spectral properties of a graph can be found in Chapter 14. Such a step is usually
placed at the beginning, or near the end, of the transformation sequence. The
second kind is information that supports the current view of the data. Similar to
the identification of bridge elements, one can identify cohesive groups. Bridges
and these cohesive parts are dual to each other. Thus, while bridges would be
removed, cohesive groups would be extended to cliques. These steps can occur
during the whole transformation sequence.

208 M. Gaertler

(a) input graph

Group 4

Group 3Group 2

Group 1

(b) identifying groups

(c) collapsing groups

Group 2Group 1

(d) solving the instance

Group 1 Group 2

(e) expanding internal groups

Group 1 Group 2

(f) locally optimizing groups

Fig. 8.11. Example of a multi-level approach

8 Clustering 209

8.2.3 Bibliographic Notes

A good introduction to the variety of clustering techniques is given in [324, 325].
Although data mining is their primary motivation, other applicational aspects
are covered as well. Equi-partitioning, i.e., finding a clustering where clusters
have roughly the same size, is a slightly different problem from the general clus-
tering problem. It is rooted in many divide and conquer methods. Many solving
techniques involve splitting via cut functions and shiftings. Chip design (VLSI)
is one major research field that has developed such algorithms. A survey that
covers general methods as well as their relevance to VLSI is presented in [27].
More generally, finding good partitions, approximating sparse-cuts, and calculat-
ing (multi-commodity) flows has to be solved via (integer) linear programming.
An introduction is given in [439, 507]. There are several other disciplines that
deal with similar clustering and pattern matching problems, like Artifical In-
telligence, neural networks, image processing [564], genetics [286], and facility
location [439, 507]. Especially, facility location and its derivatives can be seen as
extended clustering problems. There, a set of elements has to be covered by a
subset of candidates, fulfilling certain constraints and optimizing a global target
function. This is also closely related to the parameter estimation framework. An
introduction to the general topic is provided in [169].

There is also a lot of work done within the theory community that develops
sophisticated approximations and sampling techniques. These methods have the
advantage that a provable guarantee of quality of resulting clustering can be
given (see for example [36, 565, 170]). On the other hand, these techniques
rarely operate on the clustering structure itself, but utilize other paradigms for
finding a suitable decomposition. One of these tools is spectral decomposition.
Unfortunately, these aspects go beyond the scope of this chapter. Some examples
can be found in [27, 565, 170]. Spectral properties of networks are discussed in
more detail in Chapter 14.

8.3 Other Approaches

The previous sections about quality measuring (Section 8.1) and clustering tech-
niques (Section 8.2) provide an introduction both for application as well as for the
topic as a whole. However, certain aspects have been neglected. Among them are
extensions of clustering, alternative descriptions, axiomatics, dynamic updates,
evaluation, pre- and post-processings. Discussing everything would definitely go
beyond our scope, therefore only extensions of clusterings and axiomatics will
be presented.

8.3.1 Extensions of Clustering

Clusterings were introduced as partitions of the node set. The extensions that
are presented also group the node set.

Fuzzy clustering relaxes the disjoint constraint, thus clusters can overlap
each other. The basic idea is that bridging elements belong to adjacent clusters

210 M. Gaertler

rather than build their own one. In order to avoid redundancy, one usually
requires that a cluster is not contained in the union of the remaining clusters.
Figure 8.12 shows such an example where the two groups have the middle node
in common. It is seldom used, due to its difficult interpretation. For example,

Group 1 Group 2

Fig. 8.12. Example of a fuzzy clustering

it is very difficult to judge single nodes or small node subsets that belong to a
relatively large number of (fuzzy) clusters. When the number of clusters is also
restricted, then artefacts occur more frequently. For example, if the number is
restricted to a constant k, then a difficult situation is where more than k cliques
of size at least k have a large number of nodes in common (see Figure 8.13(a)).
If the number can scale according to a node’s degree, then sparse clusters can be
torn apart. For example, a star with k leaves may be decomposed into k fuzzy
clusters, each containing one leaf and the central node (see Figure 8.13(b)).

Another extension is to enhance clusterings with representatives. Each clus-
ter has a representative. It is very similar to the facility location problems (Sec-
tion 8.2.3), where a candidate covers a subset of elements. This can be seen as
‘representing’ the group by one element. It is usually a node that is located ‘in
the center’ of the cluster. This form of enhancement can be very effective when
the graph is embedded in a metric or a vector space. In these cases the repre-
sentative can also be an element of the space and not of the input. The concept
is also used to perform speed-ups or approximate calculations. For example, if
all the similarity/distance values between the nodes in two clusters are needed,
then it can be sufficient to calculate the similarity/distance values between the
representatives of the clusters.

Nested clustering represents a nested sequence of node subsets, i.e., a map-
ping η : → P(V) such that:

1. the subsets are nested, i.e.,

∀ i ∈ : η(i+ 1) ⊆ η(i)

2. and the sequence is finite, i.e.,

∃ k ∈ : ∀� > k : η(�) = ∅ .

8 Clustering 211

(a) Four cliques of size six that
have a common K4. Each maxi-
mum clique is a fuzzy cluster.

(b) A star with four leaves and
each fuzzy cluster contains the
center node and one leaf.

Fig. 8.13. Two examples of fuzzy clusterings where many clusters intersect each other

The smallest possible k is also called the size of the sequence, and η(k) the top
element. The intuition behind this structure is that the top element η(k) consists
of locally maximal dense groups. The density of the subsets η(i) also decreases
with decreasing argument i. Therefore the argument i can be seen as degree
of density. One can distinguish two extreme types: The first one is called hier-
archies, where each η(i) induces a connected graph. The corresponding graphs
can be seen as onions, i.e., having a unique core and multiple layers around it
with different density. The second type is called peaks, and is complementary
to hierarchies, i.e., at least one subset η(i) induces a disconnected graph. An
appropriate example may be boiling water, where several hotspots exist that
are separated by cooler parts. If the graph has a skew density distribution then
a hierarchy type can be expected. In this scenario, it can reveal structural in-
formation, unlike standard clustering. If the graph has a significant clustering,
then peaks are more likely to occur. In that case, the top element consists of the
core-parts of the original clusters. Figure 8.14 shows such examples. Cores are
an often used realization of nested clusterings. They were introduced in [513, 47].
They can be efficiently computed and capture the intuition quite well.

8.3.2 Axiomatics

Axioms are the usual way to formulate generic properties and reduce concepts
to their cores. They also provide a simple way to prove characteristics, once a
property is proven for a system of axioms. Every structure fulfilling the axioms
possesses this property. In the following, only Kleinberg’s proposal introduced

212 M. Gaertler

Group 1

Group 2

Group 3

(a) hierarchy

Group 1

Group 2

(b) peaks

Fig. 8.14. Examples of a nested clustering

in [361] is presented. A graph clustering version of his result will be presented
here. This version will be equivalent to the original.

Let Kn = (V,E) be the complete graph on n nodes, and ω : E → +
0 a dis-

tance function on the edges. The set of all possible distance functions is denoted
by D.

Definition 8.3.1. A clustering function f is a mapping f : D → A (Kn) fulfill-
ing the following axioms:

Scale-Invariance:
∀ α ∈ +, ω ∈ D : f(ω) = f(α · ω) ,

where (α · ω)(u, v) := α · (ω(u, v))
Richness: f(D) = A (Kn)
Consistency: for all ω, ω′ ∈ D hold(

∀ u, v ∈ V : ω′(u, v)

{
≤ ω(u, v) , if u ∼f(ω) v

≥ ω(u, v) , otherwise

)
=⇒ f(ω) = f(ω′) .

A brief intuition of the axioms in Definition 8.3.1 is given before the conse-
quences are presented. Scale-invariance ensures that a clustering does not depend
on hard-coded values, but rather on ratios. The clustering should not change if
the distances are homogeneously increased. Richness ensures that every possible
clustering has at least one edge weighting as a preimage. It is self-evident that ev-
ery clustering should be constructable by assigning suitable weights to the edges.
Finally, consistency handles the relation between different clusterings. Assume
that ω is fixed, so f(ω) represents a clustering. If the weights on the edges are
changed respecting f(ω), then the clustering should be respected as well. The
modifications on ω consist of non-increasing the distance inside of clusters and

8 Clustering 213

non-decreasing the distance between clusters. In this way clusters may become
more compact (distances can decrease) and different clusters may become more
separated (distances can increase).

Theorem 8.3.2 ([361, Theorem 2.1]). For all n ≥ 2 there exists no cluster-
ing function.

Only a sketch of the proof is given here, but full details can be found in [361].

Sketch of Proof. Assume there exists a clustering function f for a fixed n. The
basic idea is to show that f(D), i.e., the image of f , cannot contain both a
clustering and a refinement of it simultaneously. This is achieved by using the
axiom consistency (and scale-invariance). There exists a clustering C in A (Kn)
such that at least one cluster has more than one element, and an edge weighting ω
with f(ω) = C. Informally speaking, it is possible to modify ω to isolate a proper
subset of a cluster within C. This can be done in such a way that consistency
is fulfilled for the two weighting functions. However, one can show that the
modified weighting also leads to a refinement of C. Therefore, it is not possible
that f(D) contains a clustering and its refinement. Thus f(D) is an antichain.
This contradicts the fact that A (Kn) is not an antichain for n ≥ 2. ��

Theorem 8.3.2 is a negative result for clustering functions and, as a consequence,
for clustering algorithms. However, the set of axioms is very restrictive. In fact,
there are many functions that are close to being clustering functions.

Lemma 8.3.3 ([361, Theorem 2.2]). There are many functions that fulfill
two of the three axioms of Definition 8.3.1.

For every combination of two axioms, there is a selection criterion for Single
Linkage such that it is a clustering function fulfilling these two axioms.

Further investigations reveal that relaxing the conditions of scale-invariance
and consistency to refinements leads to clustering functions. This is not the
only possibility. Another way is to explore the ‘lack’ of information (edges).
Usually graphs are not complete, and cannot be complete for several reasons.
The standard technique, completing the edge set and assigning only extremely
large values to the additional edges, is not possible in this scenario. First of
all, all values need to be finite, and, second, the two axioms, scale-invariance
and consistency, allow general manipulations so there is no guarantee that an
artificially introduced extreme value can keep its role. In order to include the
lack of information, a clustering function could be defined as a mapping from
the set of weighted relations to the set of partitions over the set. For a set of
elements X , the set of all weighted (binary) relations overX is denoted by Ω(X)
– or in short Ω, if the set X is clear. For every relation ω ∈ Ω(X) its domain is
given by E(ω).

Definition 8.3.4. Given a set of elements X, a graph clustering function f is
a mapping f : Ω(X) → A (X) fulfilling the following axioms:

Scale-Invariance:
∀ α ∈ +, ω ∈ Ω(X) : f(ω) = f(α · ω)

214 M. Gaertler

Richness: f(Ω(X)) = A (X)
Consistency: for all ω, ω′ ∈ Ω(X) with E(ω) ⊆ E(ω′) hold(

∀ u, v ∈ V : ω′(u, v)

{
≤ ω(u, v) , if u ∼f(ω) v

≥ ω(u, v) , otherwise

)
=⇒ f(ω) = f(ω′) ,

where ω(u, v) = ∞ for (u, v) ∈ E(ω′) \ E(ω).

Note that the axioms in Definition 8.3.1 and Definition 8.3.4 are essentially the
same. The complex rule for consistency is due to the fact that the relations in Ω
can have different domains. This implies the additional constraints. Also the
set D of all edge weightings (of a complete graph) is a subset of Ω. The name
graph clustering function is inspired by the fact that X and ω ∈ Ω can be seen
as a graph: Gω = (X,E(ω), ω). Thus, the graph clustering function f maps the
set of (weighted and simple) graphs with n elements to the set of all partitions
over n elements.

Lemma 8.3.5. The function fcomp that maps ω ∈ Ω to the clustering where the
clusters are the connected components of Gω is a graph clustering function.

Proof. It is sufficient to check the axioms since fcomp has the correct domain and
codomain. Scale-invariance and consistency are fulfilled. This is due to the fact
that for every relation ω ∈ Ω, the clustering fcomp(ω) has no inter-cluster edges.
Although additional edges can be introduced via the axiom consistency, these
edges cannot be inter-cluster edges with respect to fcomp(ω). The axiom richness
is also satisfied because, for every clustering C, there exists a spanning forest F
with the same connected components as the clusters. Its edge relationEF induces
a weighted relation ω via ω(u, v) = 1 if (u, v) ∈ EF . The relation ω will be
mapped to C by fcomp. ��

Definition 8.3.4 and Lemma 8.3.5 clearly indicate that the lack of information
indeed can be more explanatory than complete information. The presented graph
clustering function does not provide further insight, but shows the potential of
missing information. Alternatively to graph clustering functions, the axiom con-
sistency may be redefined in various ways: restricted to a cluster or the connec-
tion between clusters, homogenous scalings, or predetermined breaking/merging
points for controlled splits/linkages. These ideas are mostly unexplored, but have
a certain potential.

A closing remark: it would also be interesting to know if there exist axiom
systems that describe, or even characterize, already used frameworks. As men-
tioned previously, Single Linkage (with certain selection criteria) fulfills any two
axioms, therefore it may be possible to extend current frameworks with the help
of axioms. This might also be very valuable in identifying fundamental clustering
concepts.

8 Clustering 215

8.4 Chapter Notes

In this chapter, graph clustering has been introduced that was based on cohesion.
The main objective of clustering is to find ‘natural’ decompositions of graphs.
In our case, partitions of the node set modeled the clustering, and the paradigm
of intra-cluster density versus inter-cluster sparsity had to be respected.

Both the term natural decomposition and the considered paradigm define
clusterings only in an intuitive way, without mathematical parameters. To cap-
ture the informal notion more formally, structural indices were used that rate
partitions with respect to clustering paradigms (see Section 8.1). Another bene-
fit of these indices is that clusterings of different graphs can be compared, which
is required for benchmark applications and to handle graphs with uncertain-
ties. Most optimization problems related to indices, i.e., finding a non-trivial
clustering with best index score, are NP-hard.

In the first part of Section 8.2.1, generic frameworks were presented. They
include simple methods like iteratively merging or splitting clusters, shifting
concepts, and general optimization techniques. The frameworks are very flexible
and can integrate a large number of problem-specific requirements. The next
part dealt with the frameworks’ parameters. It is still a high level view, and can
be applied to most of the clustering problems. Some extensions with relatively
similar methods concluded the section.

Alternative approaches for the representation of clusterings, as well as the
methods to find suitable clusterings, were covered in the final section. First,
the data structure partition was either enhanced with additional information or
replaced by other decomposition types. Also, an axiom system was introduced to
characterize clustering methods. In contrast to Section 8.2.2, where techniques
were distinguished according to their different underlying ideas, the axiomatic
framework describes the common foundation. Kleinberg’s axioms were discussed
in detail.

Owing to the large variety of applications for graph clustering, a complete
and homogenous framework has not yet been established. However, several basic
clustering techniques are fairly well understood, both from the informal and the
mathematical points of view. The most difficult aspect is still the formalization
of the ‘natural decomposition’, and, therefore, a mathematical framework for
qualitatively good clusterings. Indices present a suitable method.

Alternative approaches to graph decompositions that are not based on den-
sity, but rather on structural properties, are presented in Chapters 9 and 10.

9 Role Assignments

Jürgen Lerner

Classification is the key to understand large and complex systems that are made
up of many individual parts. For example in the study of food webs (networks
that consist of living organisms and predator-prey relationships, flow of protein,
etc.) it is, even for moderately small ecosystems, impossible to understand the
relationship between each pair of individual organisms. Nevertheless, we can
understand the system – to a certain extent – by classifying individuals and
describing relationships on the class level. Classification in networks aims to de-
scribe regular patterns of interaction and to highlight essential structure, which
remains stable over long periods of time.

In this chapter we formalize the classification of vertices in a graph, such
that vertices in the same class can be considered to occupy the same position,
or play the same role in the network. This idea of network position or role,
see e. g., Nadel [436], has been formalized first by Lorrain and White [394] by
a special type of vertex partition. They proposed that vertices play the same
role if they have identical neighborhoods. Subsequent work like Sailer [501] and
White and Reitz [579] generalized this early definition, weakening it sufficiently
to make it more appropriate for modeling social roles. All these definitions have
in common that vertices which are claimed to play the same role must have
something in common w. r. t. the relations they have with other vertices, i. e., a
generic problem definition for this chapter can be given by

given a graph G = (V,E),
find a partition of V that is compatible with E.

The generic part here is the term ‘compatible with E’. In this chapter, we present
definitions for such compatibility requirements, and properties of the resulting
classes of vertex-partitions.

Outline of this chapter. The remainder of this section treats preliminary nota-
tion. In Sections 9.1 through 9.3, different types of role assignments are intro-
duced and investigated. In Section 9.4 definitions are adapted to graphs with
multiple relations (see Definition 9.4.1) and in Section 9.5 composition of rela-
tions is introduced and its relationship to role assignments is investigated.

Sections 9.1 through 9.3 follow loosely a common pattern: After defining
a compatibility requirement, some elementary properties of the so-defined set
of role assignment are mentioned. Then, we investigate a partial ordering on
this set, present an algorithm for computing specific elements, and treat the

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 216–252, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

9 Role Assignments 217

complexity of some decision problems. We provide a short conclusion for each
type of vertex partition, where we dwell on the applicability for defining role
assignments in empirical networks.

The most complete investigation is for regular equivalences in Section 9.2.
Although there is some scepticism as to whether regular equivalences are a good
formalization of role assignments in real social networks, we have chosen to treat
them prominently in this chapter, since their investigation is exemplary for the
investigation of types of role assignments. The results for regular equivalences
are often translatable to other types of equivalences, often becoming easier or
even trivial. We emphasize this generality when appropriate.

Graph model of this chapter. In this chapter, graph usually means directed graph,
possibly with loops. Except for Sections 9.2.4 and 9.2.5, where graph means
undirected graph, Section 9.3.1, where results are for undirected multigraphs,
and Sections 9.4 and 9.5, where we consider graphs with multiple relations (see
Definition 9.4.1).

9.0.1 Preliminaries

In the following, we will often switch between vertex partitions, equivalence
relations on the vertex set, or role assignments, since, depending on the context,
some point of view will be more intuitive than the other. Here we establish that
these are just three different formulations for the same underlying concept.

Let V be a set. An equivalence relation ∼ is a binary relation on V that
is reflexive, symmetric, and transitive, i. e., v ∼ v, u ∼ v implies v ∼ u, and
u ∼ v∧ v ∼ w implies u ∼ w, for all u, v, w ∈ V . If v ∈ V then [v] := {u ; u ∼ v}
is its equivalence class.

A partition P = {C1, . . . , Ck} of V is a set of non-empty, disjoint subsets
Ci ⊆ V , called classes or blocks, such that V =

⋃k
i=1 Ci. That is, each vertex

v ∈ V is in exactly one class.
If ∼ is an equivalence relation on V , then the set of its equivalence classes

is a partition of V . Conversely, a partition P induces an equivalence relation by
defining that two vertices are equivalent iff they belong to the same class in P .
These two mappings are mutually inverse.

Definition 9.0.1. A role assignment for V is a surjective mapping r : V → W
onto some set W of roles.

The requirement surjective is no big loss of generality since we can always restrict
a mapping to its image set. One could also think of role assignments as vertex-
colorings, but note that we do not require that adjacent vertices must have
different colors. We use the terms role and position synonymously.

A role assignment defines a partition of V by taking the inverse-images
r−1(w) := {v ∈ V ; r(v) = w}, w ∈ W as classes. Conversely an equivalence
relation induces a role assignment for V by the class mapping v '→ [v]. These
two mappings are mutually inverse, up to isomorphism of the set of roles.

We summarize this in the following remark.

218 J. Lerner

Remark 9.0.2. For each partition there is a unique associated equivalence rela-
tion and a unique associated role assignment and the same holds for all other
combinations.

For the remainder of this chapter, definitions for vertex partitions translate
to associated equivalence relations and role assignments.

9.0.2 Role Graph

The image set of a role assignment can be supplied naturally with a graph
structure. We define that roles are adjacent if there are adjacent vertices playing
these roles:

Definition 9.0.3. Let G = (V,E) be a graph and r : V →W a role assignment.
The role graph R = (W,F) is the graph with vertex set W (the set of roles) and
edge set F ⊆W ×W defined by

F := {(r(u), r(v)) ; ∃u, v ∈ V such that (u, v) ∈ E} .

R is also called quotient of G over r.

The role graph R models roles and their relations. It can also be seen as a
smaller model for the original graph G. Thus, a role assignment can be seen as
some form of network compression. Necessarily, some information will get lost
by such a compression. The goal of role analysis is to find role assignments such
that the resulting role graph displays essential structural network properties,
i. e., that not too much information will get lost.

Thus we have two different motivations for finding good role assignments.
First to know which individuals (vertices) are ‘similar’. Second to reduce network
complexity: If a network is very large or irregular, we can’t capture its structure
on the individual (vertex) level but perhaps on an aggregated (role) level. The
hope is that the role graph highlights essential and more persistent network
structure. While individuals come and go, and behave rather irregularly, roles
are expected to remain stable (at least for a longer period of time) and to display
a more regular pattern of interaction.

9.1 Structural Equivalence

As mentioned in the introduction, the goal of role analysis is to find meaningful
vertex partitions, where ‘meaningful’ is up to some notion of compatibility with
the edges of the graph. In this section the most simple, but also most restrictive
requirement of compatibility is defined and investigated. Lorrain and White
[394] proposed that individuals are role equivalent if they are related to the
same individuals.

Definition 9.1.1. Let G = (V,E) be a graph, and r : V →W a role assignment.
Then, r is called strong structural if equivalent vertices have the same (out- and
in-)neighborhoods, i. e., if for all u, v ∈ V

r(u) = r(v) =⇒ N+(u) = N+(v) and N−(u) = N−(v) .

9 Role Assignments 219

Remember Remark 9.0.2: Definitions for role assignments translate to associated
partitions and equivalence relations.

Remark 9.1.2. By Definition 9.0.3 it holds for any role assignment r that, if
(u, v) is an edge in the graph, then (r(u), r(v)) is an edge in the role graph. If
r is strong structural, then the converse is also true. This is even an equivalent
condition for a role assignment to be strong structural [579]. That is, a role
assignment r is strong structural if and only if for all u, v ∈ V , it holds that
(r(u), r(v)) is an edge in the role graph if and only if (u, v) is an edge in the
graph.

We present some examples for strong structural equivalences. The identity
mapping id : V → V ; v '→ v is strong structural for each graph G = (V,E)
independent of E. Some slightly less trivial examples are shown in Figure 9.1.
For the star, the role assignment that maps the central vertex onto one role
and all other vertices onto another, is strong structural. The bipartition of a
complete bipartite graph is strong structural. The complete graph without loops
has no strong structural role assignment besides id, since the neighborhood of
each vertex v is the only one which does not contain v.

Fig. 9.1. Star (left), complete bipartite graph (middle) and complete graph (right)

We note some elementary properties. A class of strong structurally equivalent
vertices is either an independent set (induces a subgraph without edges) for the
graph or a clique with all loops. In particular, if two adjacent vertices u, v are
strong structurally equivalent, then both (u, v) and (v, u) are edges of the graph,
and both u and v have a loop.

The undirected distance of two structurally equivalent (non-isolated) vertices
is at most 2. For if u and v are structurally equivalent and u has a neighbor w
then w is also a neighbor of v. Thus, structural equivalence can only identify
vertices that are near each other.

Although in most irregular graph there won’t be any non-trivial structural
equivalence, the set of structural equivalences might be huge. For the complete
graph with loops, every equivalence is structural. In Section 9.1.2, we investigate
a partial order on this set.

Variations of structural equivalence. The requirement that strong structurally
equivalent adjacent vertices must have loops has been relaxed by some authors.

220 J. Lerner

Definition 9.1.3 ([191]). An equivalence ∼ on the vertex set of a graph is
called structural if for all vertices u ∼ v the transposition of u and v is an
automorphism of the graph.

White and Reitz [579] gave a slightly different definition, which coincides
with Definition 9.1.3 on loopless graphs.

9.1.1 Lattice of Equivalence Relations

The set of equivalence relations on a set V is huge. Here we show that this set
naturally admits a partial order, which turns out to be a lattice. (For more on
lattice theory, see e. g., [261].) This section is preliminary for Sections 9.1.2 and
9.2.2.

Equivalence relations on a set V are subsets of V × V , thus they can be
partially ordered by set-inclusion (∼1≤∼2 iff ∼1⊆∼2). The equivalence relation
∼1 is then called finer than ∼2 and ∼2 is called coarser than ∼1. This partial
order for equivalences translates to associated partitions and role assignments
(see remark 9.0.2).

In partially ordered sets, two elements are not necessarily comparable. In
some cases we can at least guarantee the existence of lower and upper bounds.

Definition 9.1.4. Let X be a set that is partially ordered by ≤ and Y ⊆ X.
y∗ ∈ X is called an upper bound (a lower bound) for Y if for all y ∈ Y ,

y ≤ y∗ (y∗ ≤ y).
y∗ ∈ X is called the supremum (infimum) of Y , if it is an upper bound

(lower bound) and for each y′ ∈ X that is an upper bound (lower bound) for
Y , it follows y∗ ≤ y′ (y′ ≤ y∗). The second condition ensures that suprema and
infima (if they exist) are unique.

The supremum of Y is denoted by sup(Y) the infimum by inf(Y). We also
write sup(x, y) or inf(x, y) instead of sup({x, y}) or inf({x, y}), respectively.

A lattice is a partially ordered set L, such that for all a, b ∈ L, sup(a, b) and
inf(a, b) exist. sup(a, b) is also called the join of a and b and denoted by a ∨ b.
inf(a, b) is also called the meet of a and b and denoted by a ∧ b.

If ∼1 and ∼2 are two equivalence relations on V , then their intersection (as
sets) is the infimum of ∼1 and ∼2. The supremum is slightly more complicated.
It must contain all pairs of vertices that are equivalent in either ∼1 or ∼2, but
also vertices that are related by a chain of such pairs: The transitive closure of
a relation R ⊆ V × V is defined to be the relation S ⊆ V × V , where for all
u, v ∈ V

uSv⇔ ∃k ∈ , ∃w1, . . . , wk ∈ V such that
u = w1, v = wk, and ∀i = 1, . . . , k − 1 it is wiRwi+1 .

The transitive closure of a symmetric relation is symmetric, the transitive closure
of a reflexive relation is reflexive and the transitive closure of any relation is
transitive.

9 Role Assignments 221

It follows that, if ∼1 and ∼2 are two equivalence relations on V , then the
transitive closure of their union is the supremum of ∼1 and ∼2.

We summarize this in the following theorem.

Theorem 9.1.5. The set of equivalence relations is a lattice.

The interpretation in our context is the following: Given two equivalence
relations identifying vertices that play the same role, there exists a uniquely
defined smallest equivalence identifying all vertices which play the same role in
either one of the two original equivalences. Moreover, there exists a uniquely
defined greatest equivalence distinguishing between actors which play a different
role in either one of the two original equivalences.

9.1.2 Lattice of Structural Equivalences

It can easily be verified that if ∼1 and ∼2 are two strong structural equivalences
for a graph, then so are their intersection and the transitive closure of their
union.

Proposition 9.1.6. The set of strong structural equivalences of a graph is a
sublattice of the lattice of all equivalence relations.

In particular there exist always a maximum structural equivalence (MSE) for a
graph.

The property of being strong structural is preserved under refinement:

Proposition 9.1.7. If ∼1≤∼2 and ∼2 is a strong structural equivalence, then
so is ∼1.

Although the above proposition is very simple to prove, it is very useful, since
it implies that the set of all structural equivalences of a graph is completely
described by the MSE. In the next section we present a linear time algorithm
for computing the MSE of a graph.

9.1.3 Computation of Structural Equivalences

Computing the maximal strong structural equivalence for a graph G = (V,E)
is rather straight-forward. Each vertex v ∈ V partitions V into 4 classes (some
of which may be empty): Vertices which are in N+(v), in N−(v), in both, or in
none.

The basic idea of the following algorithm 21 is to compute the intersection
of all these partitions by looking at each edge at most twice. This algorithm
is an adaption of the algorithm of Paige and Tarjan [459, Paragraph 3] (see
Section 9.2.3) for the computation of the regular interior, to the much simpler
problem of computing the MSE.

The correctness of algorithm 21 follows from the fact that it divides exactly
the pairs of vertices with non-identical neighborhoods.

An efficient implementation requires some datastructures, which will be pre-
sented in detail since this is a good exercise for understanding the much more
complicated algorithm in Section 9.2.3.

222 J. Lerner

Algorithm 21: Computation of the maximal strong structural equivalence
(MSE) of a graph

Input: a graph G = (V, E)

begin
maintain a partition P = {C1, . . . , Ck} of V , which initially is the complete
partition P = {V }
// at the end, P will be the MSE of G
foreach v ∈ V do

foreach class C to which a vertex u ∈ N+(v) belongs to do
create a new class C′ of P
move all vertices in N+(v) ∩ C from C to C′

if C has become empty then
remove C from P

foreach class C to which a vertex u ∈ N−(v) belongs to do
create a new class C′ of P
move all vertices in N−(v) ∩ C from C to C′

if C has become empty then
remove C from P

end

– A graph G = (V,E) must permit access to the (out-/in-)incidence list of a
vertex v in time proportional to the size of this list.

– Scanning all elements of a list must be possible in linear time.
– An edge must permit access to its source and its target in constant time.
– A partition must allow insertion and deletion of classes in constant time.
– A class must allow insertion and deletion of vertices in constant time.
– A vertex must permit access to its class in constant time.

The requirements on partitions and classes are achieved if a partition is repre-
sented by a doubly linked list of its classes and a class by a doubly linked list of
its vertices.

One refinement step (the outer loop) for a given vertex v is performed as
follows.

1. Scan the outgoing edges of v. For each such edge (v, u), determine the class
C of u and create an associated block C′ if one does not already exist. Move
u from C to C′.

2. During the scanning, create a list of those classes C that are split. After the
scanning process the list of split classes. For each such class C mark C′ as
no longer being associated with C and eliminate C if C is now empty.

3. Scan the incoming edges of v and perform the same steps as above.

A loop for a given v runs in time proportional to the degree of v, if v is
non-isolated and in constant time else. An overall running time of O(|V | + |E|)
follows, which is also an asymptotic bound for the space requirement.

9 Role Assignments 223

Conclusion. Structural equivalence is theoretically and computationally very
simple. It is much too strict to be applied to irregular networks and only vertices
that have distance at most 2, can be identified by a structural equivalence.
Nevertheless, structural equivalence is the starting point for many relaxations
(see Chapter 10).

9.2 Regular Equivalence

Regular equivalence goes back to the idea of structural relatedness of Sailer
[501], who proposed that actors play the same role if they are connected to
role-equivalent actors – in contrast to structural equivalence, where they have
to be connected to identical actors. Regular equivalence has first been defined
precisely by White and Reitz in [579]. Borgatti and Everett (e. g., [191]) gave
an equivalent definition in terms of colorings (here called role assignments). A
coloring is regular if vertices that are colored the same, have the same colors
in their neighborhoods. If r : V → W is a role assignment and U ⊆ V then
r(U) := {r(u) ; u ∈ U} is called the role set of U .

Definition 9.2.1. A role assignment r : V →W is called regular if for all u, v ∈
V

r(u) = r(v) =⇒ r(N+(u)) = r(N+(v)) and r(N−(u)) = r(N−(v)) .

The righthand side equations are equations of sets. There are many more equiv-
alent definitions, (see e. g., [579, 90]).

Regular role assignments are often considered as the class of role assignments.
The term regular is often omitted in literature.

Regular equivalence and bisimulation. Marx and Masuch [408] pointed out the
close relationship between regular equivalence, bisimulation, and dynamic logic.
A fruitful approach to find good algorithms for regular equivalence is to have a
look at the bisimulation literature.

9.2.1 Elementary Properties

In this section we note some properties of regular equivalence relations.
The identity mapping id: V → V ; v '→ v is regular for all graphs. More

generally, every structural role assignment is regular.
The next proposition characterizes when the complete partition, which is

induced by the constant role assignment J : V → 1 is regular. A sink is a vertex
with zero outdegree, a source is one with zero indegree.

Proposition 9.2.2 ([82]). The complete partition of a graph G = (V,E) is
regular if and only if G contains neither sinks nor sources or E = ∅.

224 J. Lerner

Proof. If : If E = ∅ then the righthand side in definition 9.2.1 is simply ∅ = ∅,
thus each role assignment is regular. If G has neither sinks nor sources, then, for
all v ∈ V , J(N+(v)) = J(N−(v)) = {1} and the equations in Definition 9.2.1
are satisfied for all u, v ∈ V .

Only if : Suppose E �= ∅ and let v ∈ V be a sink. Since E �= ∅ there exists
u ∈ V with non-zero outdegree. But then

J(N+(v)) = ∅ �= {1} = J(N+(u)) ,

but J(u) = 1 = J(v), thus J is not regular. The case of G containing a source is
treated analogously. ��

The identity and the complete partition are called trivial role assignments.
The next lemma is formulated in [190] for undirected connected graphs, but it
has a generalization to strongly connected (directed) graphs.

Lemma 9.2.3. Let G be a strongly connected graph. Then in any non-trivial
role assignment r of G, neither {r(v)} = r(N+(v)) nor {r(v)} = r(N−(v))
holds for any vertex v.

Proof. If for some vertex v it is {r(v)} = r(N+(v)), then the same would
need to be true for each vertex in N+(v). Hence each vertex in successive out-
neighborhoods would be assigned the same role and since G is strongly connected
it follows that r(V) = {r(v)} contradicting the fact that the role assignment is
non-trivial. The case of {r(v)} = r(N−(v)) for some vertex v is handled equally.

��
A graph with at least 3 vertices whose only regular role assignments are trivial

is called role primitive. The existence of directed role primitive graphs is trivial:
For every directed path only the identity partition is regular. Directed graphs
which have exactly the identity and the complete partition as regular partitions
are for example directed cycles of prime length, since every non-trivial regular
equivalence induces a non-trivial divisor of the cycle length.

The existence of undirected role primitive graphs is non-trivial.

Theorem 9.2.4 ([190]). The graph in Figure 9.2 is role primitive.

Fig. 9.2. A role-primitive undirected graph

The proof goes by checking that all possible role assignments are either non
regular or trivial, where one can make use of the fact that the pending paths of

9 Role Assignments 225

the graph in Figure 9.2 largely diminish the possibilities one has to follow. The
proof is omitted here.

A graph in which any role assignment is regular is called arbitrarily role-
assignable. The next lemma is formulated in [190] for undirected connected
graphs.

Lemma 9.2.5. A strongly connected graph G = (V,E) is arbitrarily role-
assignable if and only if it is a complete graph, possibly with some but not nec-
essarily all loops.

Proof. Let G = (V,E) be a graph satisfying the condition of the lemma and let
r be any role assignment. We have to show that for all vertices u, v ∈ V

r(u) = r(v) =⇒ r(N+(u)) = r(N+(v)) and r(N−(u)) = r(N−(v)) .

If u = v this is trivial. Otherwise u and v are connected by a bidirected edge,
i. e., the role sets of their in- and out- neighborhoods contain r(u). These role
sets also contain all other roles since u and v are connected to all other vertices.
So the role sets of the in- and out- neighborhoods of both vertices contain all
roles, whence they are equal.

Conversely, let G = (V,E) be a graph with two vertices u and v, such that
u �= v and (u, v) �∈ E. We assign V \ {v} one role and v a different one. This
is a non-trivial role assignment (note that n > 2, since G is connected) with
r(u) = r(N+(u)) . So by Lemma 9.2.3 this role assignment can’t be regular. ��

9.2.2 Lattice Structure and Regular Interior

We have seen that the set of regular equivalences of a graph might be huge.
In this section we prove that it is a lattice. See the definition of a lattice in
Section 9.1.1.

Theorem 9.2.6 ([82]). The set of all regular equivalences of a graph G forms
a lattice, where the supremum is a restriction of the supremum in the lattice of
all equivalences.1

Proof. By Lemma 9.2.7, which will be shown after the proof of this theorem,
it suffices to show the existence of suprema of arbitrary subsets. The identity
partition is the minimal element in the set of regular equivalences, thus it is the
supremum for the empty set. Hence we need only to consider the supremum for
non-empty collections of regular role assignments. Since the set of all equivalences
of a graph is finite, it even suffices to show the existence of the supremum of two
regular equivalences.

So let ∼1 and ∼2 be two regular equivalences on G. Define ≡ to be the
transitive closure of the union of ∼1 and ∼2.

As mentioned in Section 9.1.1, ≡ is the supremum of ∼1 and ∼2 in the lattice
of all equivalences, so it is an equivalence relation and it is a supremum of ∼1

1 For the infimum see proposition (9.2.9).

226 J. Lerner

and ∼2 with respect to the partial order (which is the same in the lattice of all
equivalences and in the lattice of regular equivalences). Therefore it remains to
show that ≡ is regular.

For this suppose that u ≡ v and let x ∈ N+(u) for u, v, x ∈ V . Since u ≡ v
there exists a sequence u,w2, . . . , wk−1, v ∈ V where u ∼j1 w2, j1 ∈ {1, 2}. Since
∼j1 is regular and x ∈ N+(u), there exists an x2 ∈ V such that x2 ∈ N+(w2)
and x2 ∼j1 x. Iterating this will finally produce an xk such that xk ∈ N+(v)
and x ≡ xk, which shows the condition for the out-neighborhood. The case
x ∈ N−(u) is handled analogously. ��

For the proof of Theorem 9.2.6 we need the following lemma (see e. g., [261]).

Lemma 9.2.7. Let (X,≤) be a partially ordered set. If supH exists for any
subset H ⊆ X, then (X,≤) is a lattice.

Proof. All we have to show is that for x, y ∈ X there exists inf(x, y). Let H :=
{z ∈ X ; z ≤ x and z ≤ y}. Then one can easily verify that supH is the infimum
of {x, y}. ��

Corollary 9.2.8. If G is a graph then there exists a maximum regular equiva-
lence and there exists a minimum regular equivalence for G.

Proof. The maximum is simply the supremum over all regular equivalences. Du-
ally, the minimum is the infimum over all regular equivalences. Or easier: The
minimum is the identity partition which is always regular and minimal. ��

Although the supremum in the lattice of regular equivalences is a restriction
of the supremum in the lattice of all equivalences, the infimum is not.

Proposition 9.2.9 ([82]). The lattice of regular equivalences is not a sublattice
of the lattice of all equivalences.

Proof. We show that the infimum is not a restriction of the infimum in the
lattice of all equivalences (which is simply intersection). Consider the graph in
Figure 9.3 and the two regular partitions P1 := { {A,C,E}, {B,D} } and P2 :=
{ {A,C}, {B,D,E} }. The intersection of P1 and P2 is P = { {A,C}, {B,D},
{E} }, which is not regular. ��

A

B

C

D

E

Fig. 9.3. Meet is not intersection

9 Role Assignments 227

The fact that the supremum in the lattice of regular equivalences is a restric-
tion of the supremum in the lattice of all equivalences implies the existence of a
maximum regular equivalence which lies below a given (arbitrary) equivalence.

Definition 9.2.10. Let G be a graph and ∼ an equivalence relation on its vertex
set. An equivalence relation ∼1 is called the regular interior of ∼ if it satisfies
the following three conditions.

1. ∼1 is regular,
2. ∼1≤∼, and
3. for all ∼2 satisfying the above two conditions it holds ∼2≤∼1.

Corollary 9.2.11. Let G be a graph and ∼ an equivalence relation on its vertex
set. Then the regular interior of ∼ exists.

On the other hand there is no minimum regular equivalence above a given
equivalence in general (which would have been called a regular closure or regular
hull).

Proof. For the first part, let G = (V,E) be a graph and ∼ be an (arbitrary)
equivalence on the node set. Then the supremum over the set of all regular
equivalence relations that are finer than ∼ is the regular interior of ∼.

For the second part recall the example in the proof of Prop. 9.2.9 shown in Fig-
ure 9.3). It is easy to verify that the regular partitions P1 := { {A,C,E}, {B,D} }
and P2 := { {A,C}, {B,D,E} } are both above the (non-regular) partition
P := { {A,C}, {B,D}, {E} } and are both minimal with this property. ��

The regular interior is described in more detail in [90]; its computation is treated
in Section 9.2.3. The infimum (in the lattice of regular equivalence relations) of
two regular equivalence relations ∼1 and ∼2 is given by the regular interior of
the intersection of ∼1 and ∼2.

9.2.3 Computation of Regular Interior

The regular interior (see Definition 9.2.10) of an equivalence relation ∼ is the
coarsest regular refinement of ∼. It can be computed, starting with ∼, by a
number of refinement steps in each of which currently equivalent vertices with
non-equivalent neighborhoods are split, until all equivalent vertices have equiv-
alent neighborhoods. For an example of such a computation see Figure 9.4. The
running time of this computation depends heavily on how these refinement steps
are organized.

In this section we present two algorithms for the computation of the reg-
ular interior. CATREGE [83] is the most well-known algorithm in the social
network literature. It runs in time O(n3). Tarjan and Paige [459] presented a
sophisticated algorithm for the relational coarsest partition problem, which is
essentially equivalent to computing the regular interior. Their algorithm runs in
O(m log n) time and is well-known in the bisimulation literature. See [408] for
the relationship between bisimulation and regular equivalence.

228 J. Lerner

Fig. 9.4. Computation of the regular interior: initial partition (left), first step (middle)
second and final step (right)

CATREGE. In [83], Borgatti and Everett proposed CATREGE as an algo-
rithm for computing the maximal regular equivalence of a graph, or more gen-
erally for computing the regular interior of an equivalence relation. CATREGE
runs in O(n3). On a high-level view CATREGE proceeds as follows:

– CATREGE maintains in each refinement step a current partition P , which is
initially set to the complete partition (or alternatively to an arbitrary input
partition).

– In each refinement step it tests, for each pair of equivalent vertices (w. r. t.
P), whether their neighborhoods are equivalent (w. r. t. P). If so, then these
vertices remain equivalent, otherwise they will be non-equivalent after this
refinement step.

– The algorithm terminates if no changes happen.

The number of refinement steps is bounded by n, since in each refinement step
(except the last) the number of equivalence classes grows by at least one. The
running time of one refinement step is in O(n2).

The Relational Coarsest Partition Problem. This section is taken from
[459], although we translate the notation into the context of graphs.

Problem definition. The RELATIONAL COARSEST PARTITION PROBLEM
(RCPP) has as input a (directed) graph G = (V,E) and a partition P of the
vertex set V .

For a subset S ⊆ V we write E(S) := {v ∈ V ; ∃u ∈ S such that uEy} and
E−1(S) := {u ∈ V ; ∃v ∈ S such that uEy}. For two subsets B ⊆ V and S ⊆ V ,
B is called stable with respect to S if either B ⊆ E−1(S), or B ∩E−1(S) = ∅. If
P is a partition of V , P is called stable with respect to S if all of its blocks are
stable with respect to S. P is called stable if it is stable with respect to each of
its own blocks.

The RCPP is the problem of finding the coarsest stable refinement for the
initial partition P .

In the language of role assignments this condition means that for each two
roles, say r1 and r2, either no vertex, or all vertices assigned r1 has/have an
out-going edge to a vertex assigned r2. This is the ‘out-part’ in Definition 9.2.1.

9 Role Assignments 229

The algorithm of Paige and Tarjan [459] runs in time O(m log n) and space
O(m + n). Especially for sparse graphs this is a significant improvement over
CATREGE.

Paige and Tarjan already pointed out that it is possible to generalize their
algorithm to handle a bounded number of relations. This generalization can
be realized in such a way that it yields asymptotically the same running time
(see e. g., [207]). Having done this one can apply the algorithm to compute the
coarsest stable refinement with respect to E and ET to obtain the regular interior
(see Definition 9.2.10).

The Split function. The algorithm uses a primitive refinement operation. For
each partition Q of V and subset S ⊆ V , let Split(S,Q) be the refinement
of Q obtained by replacing each block B of Q such that B ∩ E−1(S) �= ∅ and
B \E−1(S) �= ∅ by the two blocks B′ := B∩E−1(S) and B′′ := B \E−1(S). We
call S a splitter of Q if Split(S,Q) �= Q. Note that Q is unstable with respect
to S if and only if S is a splitter of Q.

We note the following properties of Split and consequences of stability. Let
S and Q be two subsets of V , and let P and R be two partitions of V . The
following elementary properties are stated without proof.

Property 9.2.12. 1. Stability is inherited under refinement; that is, if R is a
refinement of P and P is stable with respect to a set S, then so is R.

2. Stability is inherited under union; that is, a partition that is stable with
respect to two sets is also stable with respect to their union.

3. Function Split is monotone in its second argument; that is, if P is a refine-
ment of R then Split(S,P) is a refinement of Split(S,R).

4. Function Split is commutative in the sense that the coarsest refinement of
P stable with respect to both S and Q is

Split(S,Split(Q,P)) = Split(Q,Split(S,P)) .

Basic algorithm. We begin by describing a naive algorithm for the problem. The
algorithm maintains a partition Q that is initially P and is refined until it is
the coarsest stable refinement. The algorithm consists of repeating the following
step until Q is stable:

Refine: Find a set S that is a union of some of the blocks of Q and is
a splitter of Q; replace Q by Split(S,Q).

Some observations. Since stability is inherited under refinement, a given set S
can be used as a splitter in the algorithm only once. Since stability is inherited
under the union of splitters, after sets are used as splitters their unions cannot
be used as splitters. In particular, a stable partition is stable with respect to the
union of any subset of its blocks.

Lemma 9.2.13. The algorithm maintains the invariant that any stable refine-
ment of P is also a refinement of the current partition Q.

230 J. Lerner

Proof. By induction on the number of refinement steps. The lemma is true ini-
tially by definition. Suppose it is true before a refinement step that refines par-
tition Q using a splitter S. Let R be any stable refinement of P . Since S is a
union of blocks of Q and R is a refinement of Q by the induction hypothesis, S
is a union of blocks of R. Hence R is stable with respect to S. Since Split is
monotone, R = Split(S,R) is a refinement of Split(S,Q). ��

The following theorem gives another proof for the existence of the regular interior
(see Corollary 9.2.11).

Theorem 9.2.14. The refinement algorithm is correct and terminates after at
most n− 1 steps, having computed the unique coarsest stable refinement.

Proof. The assertion on the number of steps follows from the fact that the num-
ber of blocks is between 1 and n. Once no more refinement steps are possible,
Q is stable, and by Lemma 9.2.13 any stable refinement is a refinement of Q. It
follows that Q is the unique coarsest stable refinement. ��

The above algorithm is more general than is necessary to solve the problem:
There is no need to use unions of blocks as splitters. Restricting splitters to
blocks of Q will also suffice. However, the freedom to split using unions of blocks
is one of the crucial ideas needed in developing a fast version of the algorithm.

Preprocessing. In an efficient implementation of the algorithm it it useful to
reduce the problem instance to one in which |E({v})| ≥ 1 for all v ∈ V (that is
only to vertices having out-going edges). To do this we preprocess the partition
P by splitting each block B into B′ := B ∩E−1(V) and B′′ := B \E−1(V). The
blocks B′′ will never be split by the refinement algorithm; thus we can run the
refinement algorithm on the partition P ′ consisting of the set of blocks B′. P ′

is a partition of the set V ′ := E−1(V), of size at most m. The coarsest stable
refinement of P ′ together with the blocks B′′ is the coarsest stable refinement of
P . The preprocessing and postprocessing take O(m+n) time if we have available
the preimage set E−1(v) of each element v ∈ V . Henceforth, we shall assume
|E({v})| ≥ 1 for all v ∈ V . This implies m ≥ n.

Running time of the basic algorithm. We can implement the refinement algo-
rithm to run in time O(mn) by storing for each element v ∈ V its preimage set
E−1(v). Finding a block of Q that is a splitter of Q and performing the appro-
priate splitting takes O(m) time. (Obtaining this bound is an easy exercise in
list processing.) An O(mn) time bound for the entire algorithm follows.

Improved algorithm. To obtain a faster version of the algorithm, we need a good
way to find splitters. In addition to the current partition Q, we maintain another
partition X such that Q is a refinement of X and Q is stable with respect to
every block of X (in Section 9.3.4, Q will be called a relative regular equivalence
w. r. t. X). Initially Q = P and X is the complete partition (containing V as its
single block). The improved algorithm consists of repeating the following step
until Q = X :

9 Role Assignments 231

Refine: Find a block S ∈ X that is not a block of Q. Find a block
B ∈ Q such that B ⊆ S and |B| ≤ |S|/2. Replace S within X by the
two sets B and S \B; replace Q by Split(S \B,Split(B,Q)).

The correctness of this improved algorithm follows from the correctness of the
original algorithm and from the two ways given previously in which a partition
can inherit stability with respect to a set.

Special case: If E is a function. Before discussing this algorithm in general,
let us consider the special case in which E is a function, i.e., |E({v})| = 1 for
all v ∈ V . In this case, assume that Q is a partition stable with respect to a
set S that is a union of some of the blocks of Q, and B ⊆ S is a block of Q.
Then Split(B,Q) is stable with respect to S \ B as well. This holds, since if
B1 is a block of Split(B,Q), B1 ⊆ E−1(B) implies B1 ∩ E−1(S \ B) = ∅,
and B1 ⊆ E−1(S) \ E−1(B) implies B1 ⊆ E−1(S \ B). It follows that in each
refinement step it suffices to replace Q by Split(B,Q), since Split(B,Q) =
Split(S \ B,Split(B,Q)). This is the idea underlying Hopcroft’s ‘process the
smaller half’ algorithm for the functional coarsest partition problem. The refining
set B is at most half the size of the stable set S containing it.

Back to the general case. In the more general relational coarsest partition prob-
lem, stability with respect to both S and B does not imply stability with respect
to S \ B, and Hopcroft’s algorithm cannot be used. This is a serious problem
since we cannot afford (in terms of running time) to scan the set S \B in order
to perform one refinement step. Nevertheless, we are still able to exploit this
idea by refining with respect to both B and S \B using a method that explicitly
scans only B.

A preliminary lemma. Consider a general step in the improved refinement algo-
rithm.

Lemma 9.2.15. Suppose that partition Q is stable with respect to a set S that
is a union of some of the blocks of Q. Suppose also that partition Q is refined
first with respect to a block B ⊆ S and then with respect to S \ B. Then the
following conditions hold:

1. Refining Q with respect to B splits a block D ∈ Q into two blocks D1 =
D ∩ E−1(B) and D2 = D −D1 iff D ∩ E−1(B) �= ∅ and D \ E−1(B) �= ∅.

2. Refining Split(B,Q) with respect to S \B splits D1 into two blocks D11 =
D1 ∩ E−1(S \ B) and D12 = D1 −D11 iff D1 ∩ E−1(S \ B) �= ∅ and D1 \
E−1(S \B) �= ∅.

3. Refining Split(B,Q) with respect to S \B does not split D2.
4. D12 = D1 ∩ (E−1(B) \ E−1(S \B)).

Proof. Conditions 1 and 2 follow from the definition of Split.
Condition 3: Form Condition 1 it follows that if D is split, it is D∩E−1(B) �=

∅. Since D is stable with respect to S, and since B ⊆ S, then D2 ⊆ D ⊆ E−1(S).
Since by Cond. 1 D2 ∩ E−1(B) = ∅, it follows that D2 ⊆ E−1(S \B).

232 J. Lerner

Condition 4: This follows from the fact that D1 ⊆ E−1(B) and D12 =
D1 \ E−1(S \B). ��

Performing the three-way splitting of a block D into D11, D12, and D2 as de-
scribed in Lemma 9.2.15 is the hard part of the algorithm. Identity 4 of Lemma
9.2.15 is the crucial observation that we shall use in our implementation. Re-
member that scanning the set S \ B takes (possibly) too long to obtain the
claimed running time. We shall need an additional datastructure to determine
D1 \ E−1(S \B) = (D ∩ E−1(B)) \ E−1(S \B) by scanning only B.

Running time of the improved algorithm. A given element of V is in at most
log2 n+1 different blocks B used as refining sets, since each successive such set is
at most half the size of the previous one. We shall describe an implementation of
the algorithm in which a refinement step with respect to block B takes O(|B|+∑

u∈B |E−1({u})|) time. From this an O(m logn) overall time bound for the
algorithm follows by summing over all blocks B used for refinement and over all
elements in such blocks.

Datastructures. (See Section 9.1.3 for an example of a much simpler algorithm
which already uses some of the ideas of this algorithm.)

Graph G = (V,E) is represented by the sets V and E. Partitions Q and X
are represented by doubly linked lists of their blocks.

A block S of X is called simple if it contains only a single block of Q (equal
to S but indicated by its own record) and compound if it contains two or more
blocks of Q.

The various records are linked together in the following ways. Each edge uEv
points its source u. Each vertex v points to a list of incoming edges uEv. This
allows scanning the set E−1({v}) in time proportional to its size. Each block
of Q has an associated integer giving its size and points to a doubly linked list
of the vertices in it (allowing deletion in O(1) time). Each vertex points to the
block of Q containing it. Each block of X points to a doubly linked list of the
blocks of Q contained in it. Each block of Q points to the block of X containing
it. We also maintain a set C of compound blocks of X . Initially C contains the
single block V , which is the union of the blocks of P . If P contains only one
block (after the preprocessing), P itself is the coarsest stable refinement and we
terminate the algorithm here.

To make three-way splitting (see Lemma 9.2.15) fast we need one more col-
lection of records. For each block S of X and each element v ∈ E−1(S) we
maintain an integer Count(v, S) := |S ∩ E({v})|. Each edge uEv with v ∈ S
contains a pointer to Count(u, S). Initially there is one count per vertex (i. e.,
Count(v, V) = |E({v})|) and each edge uEv points to Count(u, V).

This Count function will help to determine the set E−1(B) \E−1(S \B) in
time proportional to |{uEv ; v ∈ B}| (see step 5 below).

Both the space needed for all the data structures and the initialization time
is O(m).

The refinement algorithm consists of repeating refinement steps until C is
empty.

9 Role Assignments 233

Performing one refinement step. For clarity we divide one refinement step into
7 substeps.
1. (select a refining block). Remove some block S from C. (Block S is a
compound block of X .) Examine the first two blocks in the list of blocks of Q
contained in S. Let B be the smaller one. (Break a tie arbitrarily.)
2. (update X). Remove B from S and create a new (simple) block S′ of X
containing B as its only block of Q. If S is still compound, put S back into C.
3. (compute E−1(B)). Copy the vertices of B into a temporary set B′. (This
facilitates splitting B with respect to itself during the refinement.) Compute
E−1(B) by scanning the edges uEv such that v ∈ B and adding each ver-
tex u in such an edge to E−1(B) if it has not already been added. Duplicates
are suppressed by marking vertices as they are encountered and linking them
together for later unmarking. During the same scan compute Count(u,B) =
|{v ∈ B ; uEv}|, store this count in a new integer and make u point to it. These
counts will be used in step 5.
4. (refine Q with respect to B). For each block D of Q containing some
element (vertex) of E−1(B), split D into D1 = D ∩ E−1(B) and D2 = D \D1.
Do this by scanning the elements of E−1(B). To process an element u ∈ E−1(B),
determine the block D of Q containing it and create an associated block D′ if
one does not already exist. Move u from D to D′.

During the scanning, construct a list of those blocksD that are split. After the
scanning, process the list of split blocks. For each such block D with associated
block D′, mark D′ as no longer being associated with D (so that it will be
correctly processed in subsequent iterations of Step 4). Eliminate the record for
D if D is now empty and, if D is nonempty and the block of X containing D
and D′ has been made compound by the split, add this block to C.
5. (compute E−1(B)\E−1(S\B)). Scan the edges uEv with v ∈ B′. To process
an edge uEv, determine Count(u,B) (to which u points) and Count(u, S) (to
which uEv points). If Count(u,B) = Count(u, S), add u to E−1(B)\E−1(S \
B) if it has not been added already.
6. (refine Q with respect to S \ B). Proceed exactly as in Step 4 but scan
E−1(B) \ E−1(S \B) (computed in Step 5) instead of E−1(B).
7. (update counts). Scan the edges uEv such that v ∈ B′. To process and
edge uEv, decrement Count(u, S) (to which uEv points). If this count becomes
zero, delete the Count record, and make uEv point to Count(u,B) (to which
u points). After scanning all the appropriate edges, discard B′.

Note that in step 5 only edges terminating in B′ are scanned. Step 5 is correct
(computes E−1(B) \ E−1(S \ B)) since for each vertex u in E−1(B), it holds
that u is in E−1(B) \E−1(S \B) iff u is not in E−1(S \B) iff all edges starting
at u and terminating in S terminate in B iff Count(u,B) = Count(u, S).

The correctness of this implementation follows in a straightforward way from
our discussion above of three-way splitting. The time spent in a refinement step
is O(1) per edge terminating in B plus O(1) per vertex of B, for a total of
O(|B| +

∑
v∈B |E−1({v})|) time. An O(m logn) time bound for the entire algo-

234 J. Lerner

rithm follows as discussed above. It is possible to improve the efficiency of the
algorithm by a constant factor by combining various steps, which have been kept
separate for clarity.

Adaptation to Related Problems. The above algorithm turns out to be the
key to efficiently solve several partition refinement problems that arise in this
chapter. We will briefly sketch this generality.

Computing the maximal strong structural equivalence (as described in Sec-
tion 9.1.3) or the relative regular equivalence (see Section 9.3.4) is much simpler
than computing the regular interior. Nevertheless we can use the idea of itera-
tively splitting blocks according to intersection with certain neighborhoods. (See
algorithm 21 and the comments in Section 9.3.4.) These problems can be solved
by algorithms that run in O(m+ n).

Computing the coarsest equitable (see Section 9.3.1) has been solved earlier
than the problem of computing the regular interior (see [110] for an O(m log n)
algorithm and the comments in [459]).

Refining a partition w. r. t. multiple relations (see Definition 9.4.1) is also
possible in O(m log n) (if the number of relations is bounded by a constant). This
extension of the algorithm can be used to compute the regular interior w. r. t. in-
coming and out-going edges. Shortly, a partition can be refined w. r. t. multiple
relations by performing steps 3–7 (see above) for fixed B and S successively for
all relations, one at a time. (See e. g., [207].)

9.2.4 The Role Assignment Problem

In this section we investigate the computational complexity of the decision prob-
lem whether a given graph admits a regular role assignment with prespecified
role graph, or with prespecified number of equivalence classes. In this section we
consider only undirected graphs.

The most complete characterization is from Fiala and Paulusma [209]. Let
k ∈ and R be an undirected graph, possibly with loops.

Problem 9.2.16 (k-Role Assignment (k-RA)). Given a graph G.
Question: Is there a regular equivalence for G with exactly k equivalence classes?

Problem 9.2.17 (R-Role Assignment (R-RA)). Given a graph G.
Question: Is there a regular role assignment r : V (G) → V (R) with role graph
R?

Note that we require role assignments to be surjective mappings.

Theorem 9.2.18 ([209]). k-RA is polynomially solvable for k = 1 and it is
NP-complete for all k ≥ 2.

Theorem 9.2.19 ([209]). R-RA is polynomially solvable if each component of
R consists of a single vertex (with or without a loop), or consists of two vertices
without loops and it is NP-complete otherwise.

9 Role Assignments 235

We give the proof of one special case of the R-Role Assignment Problem.

Theorem 9.2.20 ([493]). Let R0 be the graph in Figure 9.5. Then R0-RA is
NP-complete.

1 2

Fig. 9.5. Role graph R0

Proof. It is easy to see that R-RA is in NP since one can easily check in poly-
nomial time whether a given function r : V → {1, 2} is a 2-role assignment with
role graph R5.

We will show that the 3-satisfiability problem (3SAT) is polynomially trans-
formable to R0-RA. So let U = {u1, . . . , un} be a set of variables and C =
{c1, . . . , cm} be a set of clauses (each consisting of exactly three literals). We
will construct a graph G = (V,E) such that G is 2-role assignable with role
graph R0 if and only if C is satisfiable.

The construction will be made up of two components, truth-setting compo-
nents and satisfaction testing components (see Figure 9.6).

u not u

2

2

1

c1 c2

c3

2

2

1

Fig. 9.6. Truth-setting component for variable u (left); satisfaction testing component
for clause {c1, c2, c3} (right) and communication edge if literal c1 equals u (dashed).
The roles of the vertices in the pending paths are uniquely determined (as indicated
by the labels 1 resp. 2) if the role assignment should be regular with role graph R0

For each variable ui ∈ U , there is a truth-setting component Ti = (Vi, Ei)
with

236 J. Lerner

Vi := {ui, ui, ai1, ai2, ai3} ,
Ei := {uiui, uiai3, uiai3, ai1ai2, ai2ai3} .

Note that, although we write uiui for the edge {ui, ui}, the graph is undirected.
The intuition behind the construction of Ti is the following: If a graph con-

taining Ti as a subgraph (such that the aij are adjacent only to the vertices in Vi

as specified above) admits a regular role assignment r with role graph R0, then
necessarily r(ai1) = 1, since ai1 has degree one and a vertex which is assigned 2
must have degree ≥ 2. Then r(ai2) = 2, since a 1-vertex is adjacent to a 2-vertex
and r(ai2) = 2, since a 2-vertex is adjacent to a 2-vertex. Finally exactly one of
ui or ui is assigned 2, meaning that variable ui is set to true or false, respectively.
Thus component Ti ensures that a variable gets either true or false.

For each clause cj ∈ C, let vertices cj1, cj2, and cj3 be three vertices corre-
sponding to the three literals in the clause cj . Then there is a satisfaction testing
component Sj = (V ′

j , E
′
j) with

V ′
j := {cj1, cj2, cj3, bj1, bj2, bj3} ,
E′

j := {cj1cj2, cj1cj3, cj2cj3, cj1bj3, cj2bj3, cj3bj3, bj1bj2, bj2bj3} .

The intuition behind the construction of Sj is the following: If a graph con-
taining Sj as a subgraph (such that the bjl are adjacent only to the vertices in
Vj as specified above) admits a regular role assignment r with role graph R0,
then necessarily r(bj1) = 1, r(bj2) = r(bj3) = 2, which ensures that one of the
vertices cj1, cj2, cj3 is assigned 1, thus ensuring that every adjacent vertex of
this 1-vertex must be assigned 2. This will be crucial later.

The construction so far is only dependent on the number of variables and
clauses. The only part of the construction that depends on which literals occur
in which clauses is the collection of communication edges. For each clause cj =
{xj1, xj2, xj3} ∈ C the communication edges emanating from Sj are given by

E′′
j := {cj1xj1, cj2xj2, cj3xj3} .

(The xjl are either variables in U or their negations.) Notice that for each cjk,
there is exactly one vertex that is adjacent to cjk in E′′

j , which is the correspond-
ing literal vertex for cjk in the clause cj .

To complete the construction of our instance of R0-RA, let G = (V,E) with
V being the union of all Vis and all V ′

j s and E the union of all Eis, all E′
js and

all E′′
j s.

As mentioned above, given a regular role assignment for G with role graph
R0, for each j = 1, . . . ,m there is a vertex cjk such that r(cjk) = 1 implying
that the corresponding adjacent literal is assigned 2. Setting this literal to true
will satisfy clause cj .

Thus we have shown that the formula is satisfiable if G is regularly R0

assignable.
Conversely, suppose that C has a satisfying truth assignment. We obtain an

assignment r : V → {1, 2} as follows. For each i = 1, . . . , n set r(ui) to 2 (and

9 Role Assignments 237

r(ui) to 1) if and only if variable ui is true and set the role of the vertices aik

and bjk as implied by the fact that r should be regular (see above). Moreover,
for each j = 1, . . . ,m let cjk, k ∈ {1, 2, 3}, be some vertex whose corresponding
literal in the clause cj is true – such a k exists since the truth assignment is
satisfying for C. Set r(cjk) := 1 and r(cjl) := 2 for l ∈ {1, 2, 3}, l �= k.

The proof is complicated a bit by the fact that more than one literal in a
clause might be true, but setting r(cjk) = 1 is allowed for only one k ∈ {1, 2, 3}.
Since a 2-vertex may be adjacent to another 2-vertex, this does not destroy the
regularity of r. ��

9.2.5 Existence of k-Role Assignments

We have seen in the previous section that the decision whether a graph admits
a regular equivalence with exactly k equivalence classes is NP-complete for
general graphs. Nevertheless, there are easy-to-verify sufficient, if not necessary,
conditions that guarantee the existence of regular k-role assignments. Briefly,
the condition is that the graph differs not too much from a regular graph.

Theorem 9.2.21 ([474]). For all k ∈ there is a constant ck ∈ such that
for all graphs G with minimal degree δ = δ(G) and maximal degree Δ = Δ(G)
satisfying

δ ≥ ck log(Δ) ,

there is a regular equivalence for G with exactly k equivalence classes.

To exclude trivial counterexamples we assume in the following that all graphs
in question have at least k vertices.

For the proof we need a uniform version of the Lovasz Local Lemma.

Theorem 9.2.22 ([25, Chapter 5 Corollary1.2]). Let Ai, i ∈ I, be events
in a discrete probability space. If there exists M such that for every i ∈ I

|{Aj ; Aj is not independent of Ai}| ≤M ,

and if there exists p > 0 such that Pr(Ai) ≤ p for every i ∈ I, then

ep(M + 1) ≤ 1 =⇒ Pr

(⋂
i∈I

Ai

)
> 0 ,

where e is the Euler number e =
∑∞

i=0 1/i!. ��

Proof (of Theorem 9.2.21). Define r : V → {1, . . . , k} as follows: For every v ∈
V choose r(v) uniformly at random from {1, . . . , k}.

For v ∈ V , let Av be the event that r(N(v)) �= {1, . . . , k}. It is

Pr(Av) ≤ k
(
k − 1
k

)d(v)

≤ k
(
k − 1
k

)δ(G)

.

238 J. Lerner

Because all r(w) are chosen independently and for a fixed value i, the probability
that i is not used for any of the vertices adjacent to v is

(
k−1

k

)d(v)
, and there

are k choices for i.
Also note that Av and Aw are not independent if and only ifN(v)∩N(w) �= ∅.

Hence, Av with M := Δ(G)2 and p := k
(

k−1
k

)δ(G)
satisfies the conditions of the

Lovasz Local Lemma. Therefore,

ek

(
k − 1
k

)δ(G)

(Δ(G)2 + 1) ≤ 1 ⇒ Pr

(⋂
v∈V

Av

)
> 0 . (9.1)

If the righthand side of (9.1) holds, there exists at least one r such that
r(N(v)) = {1, . . . , k} for every v ∈ V , that is, there exists at least one regu-
lar k-role assignment. In order to finish the proof we note that the lefthand side
of (9.1) is equivalent to

δ(G) ≥ log(ek(Δ(G)2 + 1))

log
(

k
k−1

) .

Clearly, there exists a constant ck such that ck log(Δ(G)) is greater than the
righthand side of the above inequality. ��

Conclusion. Regular equivalences are well investigated in computer science. Re-
sults indicate that many regular equivalences exist even in irregular graphs, but
it is unclear how to define and/or compute the best, or at least a good one. Fast
algorithms exist for the computation of the maximal regular equivalence or for
the regular interior of an a priori partition. The maximal regular equivalence
could be meaningful for directed graphs (for undirected it is simply the divi-
sion into isolates and non-isolates). Also, the regular interior could be a good
role assignment if one has an idea for the partition to be refined. Specifying the
number of equivalence classes or the role graph yields NP-hard problems, in
the general case. Optimization approaches for these problems are presented in
Section 10.1.7 in the next chapter.

9.3 Other Equivalences

In this section we briefly mention other (than structural or regular) types of role
equivalences.

9.3.1 Exact Role Assignments

In this section we define a class of equivalence relations that is a subset of
regular equivalences. These equivalences will be called exact. The associated
partitions are also known as equitable partitions in graph theory, they have first
been defined as divisors of graphs.

9 Role Assignments 239

While for regular equivalences only the occurrence or non-occurrence of a
role in the neighborhood of a vertex matters, for exact equivalences, the number
of occurrence matters.

The graph model of this section are undirected multigraphs.

Definition 9.3.1. A role assignment r is called exact if for all u, v ∈ V

r(u) = r(v) =⇒ r(N(u)) = r(N(v)) ,

where the last equation is an equation of multi-sets, i. e., vertices, that have
the same role, must have the same number of each of the other roles in their
neighborhoods.

The coloring in Figure 9.7 defines an exact role assignment for the shown graph.

Fig. 9.7. An exact role assignment

While an equivalence is regular for a multigraph if and only if it is regular
for the induced simple graph (each edge at most once), for exact equivalences
the multiplicity of an edge matters.

It is straightforward to see that exact role assignments are regular, the con-
verse is not true.

An equivalent definition is the following.

Definition 9.3.2 ([247]). A partition P = {C1, . . . , Ck} of the vertex set V of
an undirected (multi-)graph G = (V,E) is called equitable if there are integers
bij, i, j = 1, . . . , k, such that each vertex in class Ci has exactly bij neighbors in
class Cj. The matrix B = (bij)i,j=1,...,k defines a (directed) multi-graph, which
is called the quotient of G modulo P, denoted by G/P.

A partition is equitable if and only if the associated role assignment is exact.
The above definition also extends the definition of the quotient or role graph
(see Section 9.0.2) to multigraphs. Note that this is possible only for exact role
assignments.

Note that even if the graph is undirected the quotient is possibly directed,
meaning that the multiplicity of an edge may differ from the multiplicity of the
reversed edge. This happens always if two ‘adjacent’ equivalence classes are of
different size.

Exact role assignments are compatible with algebraic properties of a graph.

240 J. Lerner

Theorem 9.3.3 ([247]). Let G be a graph, P an equitable partition. Then, the
characteristic polynomial of the quotient G/P divides the characteristic polyno-
mial of G. ��
This theorem implies that the spectrum of the quotient G/P is a subset of the
spectrum of G.

The set of all exact role assignments of a graph forms a lattice [191]. The
maximal exact role assignment of a graph can be computed by an adaption of
the algorithm in Section 9.2.3. (See [110] and the comments in [459].)

Many problems around exact role assignments are NP-complete as well. For
example the problem of deciding if a graph G admits an exact role assignment
with quotient R is NP-complete if both G and R are part of the input, or for
some fixed R. This holds, since the NP-complete problem of deciding whether
a 3-regular graph has a perfect code [370], can be formulated as the problem of
deciding whether G has an exact role assignment with quotient

R =
[

0 3
1 2

]
.

The quotient over an equitable partition has much more in common with the
original graph than, e. g., the role graph over a regular equivalence. Exact role
assignments also ensure that equivalent vertices have the same degree, which is
not true for regular role assignments.

Conclusion. Exact role assignments, also called equitable partitions are well
investigated in algebraic graph theory. While some problems around equitable
partitions are NP-complete, there are efficient algorithms to compute the max-
imal equitable partition of a graph, or to compute the coarsest equitable re-
finement of an a priori partition. These algorithms could be used to compute
role assignments, but, due to irregularities, the results contain in most cases too
many classes and miss the underlying (possibly perturbed) structure. Brandes
and Lerner [97] introduced a relaxation of equitable partitions that is tolerant
against irregularities.

9.3.2 Automorphic and Orbit Equivalence

Automorphic equivalence expresses interchangeability of vertices.

Definition 9.3.4 ([191]). Let G = (V,E) be a graph, u, v ∈ V . Then u and v
are said to be automorphically equivalent if there is an automorphism ϕ of G
with ϕ(u) = v.

Automorphically equivalent vertices cannot be distinguished only in terms of
the graph structure. Therefore it could be argued that at least automorphically
equivalent vertices should be considered to play the same role.

It is easy to see that structurally equivalent vertices are automorphically
equivalent.

9 Role Assignments 241

A partition of the vertex set which has the property that each pair of equiv-
alent vertices is automorphically equivalent is not necessarily a regular equiva-
lence. However we have the following result.

Proposition 9.3.5 ([190]). Let G = (V,E) be a graph with automorphism
group A(G), and H < A(G) be a subgroup of A(G). Then assigning roles accord-
ing to the orbits of H defines an exact role assignment for G. Such a partition
is called an orbit partition.

Proof. Let r be a role assignment as in the formulation of the proposition. If
r(u) = r(v) then there exists ϕ ∈ H such that ϕ(u) = v. If x ∈ N+(u), then
ϕ(x) ∈ N+(ϕ(u)) = N+(v). Furthermore r(x) = r(ϕ(x)) by definition. It follows
that r(N+(u)) ⊆ r(N+(v)) (as multisets). The other inclusion and the corre-
sponding assertion for the in-neighborhoods is shown similar. ��

In particular, orbit equivalences are regular.
For example, the coloring in Figure 9.7 defines the orbit partition of the

automorphism group of the shown graph.
The set of orbit equivalences forms a proper subset of the set of all exact

equivalences, which can be proved by any regular graph which is not vertex-
transitive. For example, the complete partition for the graph in Figure 9.7 is
exact but not an orbit partition.

The above proposition can also be used to prove that every undirected role
primitive graph (see Section9.2.1) is a graph with trivial automorphism group
[190]. This is not true for directed graphs as can be seen by directed cycles of
prime length.

Orbit equivalence has the nice feature that its condition is invariant w. r. t.
a shift to the complement graph. This does not hold neither for regular nor for
exact equivalence.

The computation of orbit equivalences is related to the problem of computing
the automorphism group which has open complexity status.

Conclusion. Automorphically equivalent vertices cannot be distinguished in
terms of graph structure, but only by additional labels or attributes. It could
therefore be argued that at least automorphically equivalent vertices play the
same role. Computation of automorphic equivalence seems to be hard, but, in
irregular networks, there won’t be any significant automorphisms anyway.

9.3.3 Perfect Equivalence

Perfect equivalence is a restriction of regular equivalence. It expresses the idea
that there must be a reason for two vertices for being not equivalent.

Definition 9.3.6 ([191]). A role assignment r defines a perfect equivalence if
for all u, v ∈ V

r(u) = r(v) ⇐⇒ r(N+(u)) = r(N+(v)) and r(N−(u)) = r(N−(v)).

242 J. Lerner

A regular equivalence is perfect if and only if the induced role graph has no
strong structural equivalent vertices (see Section 9.1).

The set of perfect equivalence relations of a graph is a lattice [191], which
is neither a sublattice of all equivalence relations (Section 9.1.1) nor of the lat-
tice of regular equivalence relations (Section 9.2.2). A perfect interior of an
equivalence relation ∼ would be a coarsest perfect refinement of ∼ (compare
Definition 9.2.10). In contrast to the regular interior, the perfect interior does
not exist in general.

Theorem 9.3.7. In general, the transitive closure (see Section 9.1.1) of the
union of two perfect equivalence relations is not perfect. In particular, for some
equivalences there is no perfect interior.

3 4

5

6

1

2

Fig. 9.8. Graph for the proof of Theorem 9.3.7. Supremum of two perfect equivalences
is not perfect

Proof. Consider the graph in Figure 9.8 and the two perfect partitions P1 =
{{1, 5}, {2, 6}{3, 4}} and P2 = {{1, 2}, {5, 6}{3}, {4}}. The transitive closure of
P1 and P2 is P = {{1, 2, 5, 6}, {3, 4}}, which is not perfect.

For the second statement, note that P1 and P2 are both perfect refinements
of P and are both maximal w. r. t. this property. ��

The second statement has a more trivial proof: For a graph with two strong
structurally equivalent vertices, the identity partition has no perfect refinement.

Some decision problems concerning perfect equivalence are NP-complete as
well. This can be seen by Theorems 9.2.18 and 9.2.19, restricted to role graphs
without strong structurally equivalent vertices.

Although perfect equivalences rule out some trivial regular equivalences,
there is no evidence why roles shouldn’t be strong structurally equivalent.

Conclusion. Perfect equivalence is a restriction of regular equivalence, but it
doesn’t seem to yield better role assignments. Some mathematical properties
of regular equivalences get lost and there are examples where the condition on
perfect equivalence rules out good regular role assignments.

9.3.4 Relative Regular Equivalence

Relative regular equivalence expresses the idea that equivalent vertices have
equivalent neighborhoods in a coarser, predefined measure.

9 Role Assignments 243

Definition 9.3.8 ([90]). Let G = (V,E) be a graph and r : V → W and
r0 : V → W0 be two role assignments. Then, r is called regular relative to r0
if r ≤ r0 (see Section 9.1.1 for the partial order on the set of role assignments)
and for all u, v ∈ V

r(u) = r(v) ⇒ r0(N+(u)) = r0(N+(v)) and r0(N−(u)) = r0(N−(v)) .

A typical application [90] of relative regular equivalence is given by a network
of symmetric friendship ties which a priori is divided into two disjoint friendship
cliques A and B. Assume that within each clique every member has at least one
tie to some other member of the same clique. The partition into these two cliques
would be regular if either there is no tie between the two cliques or each actor
would have, in addition to the intra-group ties, at least one tie to a member of the
other group. But lets assume that some, but not all, actors have friendship ties
to members of the other group. The partition into A and B is no longer regular.
Now we can split each group into those actors having ties to some member of
the other group and those who don’t. Say we obtain the partition into A1, A2,
B1, and B2. Neither is this partition (in general) regular: There might be some
actors in, say, A1 having intra-group ties only with members of A1, some only
with members of A2, some with both; they don’t have equivalent neighborhoods.
But they have equivalent neighborhoods with respect to the coarse partition into
A and B. Thus, the partition into A1, A2, B1 and B2 is regular relative to the
partition into A and B.

Relative regularity below a fixed equivalence is preserved under refinement.
(Compare Prop. 9.1.7 for a similar proposition for structural equivalence.)

Proposition 9.3.9. Let ∼, ∼1, and ∼2 be equivalence relations on V such that
∼1≤∼2 and ∼2 is regular relative to ∼. Then so is ∼1.

Similar to Prop. 9.1.7, this proposition implies that the set of equivalences that
are regular relative to a fixed equivalence ∼ is a sublattice of all equivalences and
is completely described by the maximum of this set, denoted here by MRRE(∼).

Computing the MRRE(∼) is possible in linear time by an adaptation of
the algorithm 21 for computing the maximal structural equivalence: Instead of
splitting equivalence classes from the point of view of single vertices, classes
are split from the point of view of the classes of ∼ (compare the algorithm in
Section 9.2.3). Note that the classes of ∼ are fixed and the MRRE(∼) has been
found after all classes of ∼ have been processed once.

Each refinement step in the CATREGE algorithm (see Section 9.2.3) com-
putes an equivalence that is regular relative to the previous one, but the running
time of one step is in O(n2), which is worse than the above described algorithm
on sparse graphs.

Conclusion. Relative regular equivalence is computationally simple but it needs
an a priori partition of the vertices and, since its compatibility requirement is
only local, is not expected to represent global network structure. It has most
been applied in connection with multiple and composite relations (see, e. g.,
Winship-Pattison Role Equivalence in Section 9.5.1).

244 J. Lerner

9.4 Graphs with Multiple Relations

Actors in a social network are often connected by more than one relation. For
example, on the set of employees of a company there might be two relations
GivesOrdersTo and IsFriendOf. It is often insufficient to treat these rela-
tions separately one at a time since their interdependence matters.

In this section we generalize the graph model to graphs with multiple rela-
tions, that is, collections of graphs with common vertex set.

Definition 9.4.1. A graph with multiple relations G = (V, E) consists of a finite
vertex set V , and a finite set of relations (finite set of edge sets) E = {Ei}i=1,...,p,
where p ∈ and Ei ⊆ V × V .

For the remainder of this section we often write ‘graph’ meaning ‘graph with
multiple relations’. A graph is identified with the one resulting from deleting
duplicate relations, where we say that two relations are equal if they consist of the
same pairs of vertices. That is relations don’t have ‘labels’ but are distinguished
by the pairs of vertices they contain.

The role graph of a graph with multiple relations is again a graph with
(possibly) multiple relations. (Compare Definition 9.0.3 of the role graph of a
graph with one relation.)

Definition 9.4.2. Let G = (V, E) be a graph with multiple relations, and r : V →
W be a role assignment. The role graph of G over r is the graph R = (W,F),
where F = {Fi ; i = 1, . . . , p}, where Fi = {(r(u), r(v)) ; (u, v) ∈ Ei}.

Note that Fi may be equal to Fj even if Ei �= Ej and that duplicate edge
relations are eliminated (F is a set).

From the above definition we can see that role assignments are actually map-
pings of vertices and relations. That is r : V → W defines uniquely a mapping
of relations rrel : E → F . Note that rrel does not map edges of G onto edges of
R but relations, i. e. edge sets, onto relations.

Having more then one relation, the possibilities for defining different types of
role assignments explode. See [579, 471] for a large number of possibilities. We
will sketch some of them.

The easiest way to translate definitions for different types of vertex parti-
tions (see Sections 9.1, 9.2, and 9.3) to graphs with multiple relations is by the
following generic definition.

Definition 9.4.3. A role assignment r : V → W is said to be of a specific type
t for a graph G = (V, E) with multiple relations, if for each E ∈ E, r is of type t
for the graph (V,E).

We illustrate this for the definition of regular equivalence relations.

Definition 9.4.4 ([579]). Let G = (V, E) be a graph. A role assignment r : V →
W is called regular for G if for each E ∈ E, r is regular for graph (V,E).

9 Role Assignments 245

Besides this natural translation of role assignments from graphs to graphs with
multiple relations there is a weaker form (e.g. weak regular network homomor-
phism [579]), which makes use of the mapping of relations rrel.

Theorems for certain types of vertex partitions (see Sections 9.1, 9.2, and 9.3)
mostly translate to the case of multiple relations if we apply Definition 9.4.3.

Next we introduce a stronger form of compatibility with multiply relations.
Regular role assignments as defined in Definition 9.4.4 make sure that equiv-
alent vertices have, in each of the graphs relations identical ties to equivalent
counterparts. Sometimes it is considered as desirable that they have the same
combinations of relations to equivalent counterparts. That is, if we consider the
example at the beginning of this section, it matters whether an individual gives
orders to someone and is the friend of another individual or whether he gives
orders to a friend.

Definition 9.4.7 formalizes this. First we need some preliminary definitions:

Definition 9.4.5 ([579]). Given a graph G = (V, E) and u, v ∈ V , we define
the bundle (of relations) from u to v as

Buv = {E ∈ E ; (u, v) ∈ E} .

These bundles define a new graph with multiple relations.

Definition 9.4.6 ([191, 579]). Let G = (V, E) be a graph and B be the set of
all non-empty bundles. For each bundle B ∈ B defines a graph with vertex set
V and edge set MB where (u, v) ∈ MB if and only if Buv = B. MB is called a
multiplex relation induced by the graph G = (V, E). Let M = {MB}B∈B, then
MPX (G) := (V,M) is called the multiplex graph of G.

For each pair of vertices (u, v) there is a unique bundle associated with it.
This bundle may be either empty or a member of B (the set of all non-empty
bundles). This implies that either (u, v) is a member of no MB or has only one
such multiplex relation. Thus, the multiplex graph of a graph can be viewed
as a graph with a single relation, but with edge-labels. We call such a graph a
multiplex graph [579]. That is, a multiplex graph is a graph G = (V,M) such
that for each pair of relations M1,M2 ∈ M either M1 ∩M2 = ∅ or M1 = M2

holds.
For example, the multiplex graph MPX (G) of a graph G, is a multiplex graph.
Now we can define the type of equivalence relation which ensures that equiv-

alent vertices have the same bundles of relations to equivalent counterparts.

Definition 9.4.7 ([191]). Let G = (V, E) be a graph with multiple relations.
A role assignment r : V → W that is regular for MPX (G) is called multiplex
regular for G.

As in the above definition one might define multiplex strong structural role
assignments, but one can easily verify that a strong structural role assignment
on a graph (with multiple relations) is necessarily strong structural on the cor-
responding multiplex graph.

246 J. Lerner

Remark 9.4.8. An equivalent definition of multiplex regular role assignments is
given in [83]: Let G = (V, E) be a graph, where E = {E1, . . . , Ep}. Let

M :=

{⋂
i∈I

Ei ; I ⊆ {1, . . . , p}, I �= ∅
}
.

Then the regular role assignments of (V,M) are exactly the multiplex regular
role assignments of G.

Regular role assignments of a graph are in general not multiplex regular.
Regularity however is preserved in the opposite direction.

Proposition 9.4.9 ([579]). If G = (V, E) is a graph, C := MPX (G), and
r : V →W a role assignment then the following holds.

1. If r is regular for C then it is regular for G.
2. If r is strong structural for C then it is strong structural for G.

Proof. For the proof of 1 and 2 let E ∈ E be a relation of G and let u, v, u′ ∈ V
with (u, v) ∈ E and r(u) = r(u′). Let Buv be the bundle of relations of u and v (in
particular E ∈ Buv) and let M := {(w,w′) ; Bww′ = Buv} be the corresponding
multiplex relation (in particular (u, v) ∈M).

1. If we assume that r is regular for C, there exist v′ ∈ V such that r(v′) = r(v)
and (u′, v′) ∈M , in particular it is (u′, v′) ∈ E which shows the out-part of
regularity for G.

2. If we assume that r is strong structural for C, then (u′, v) ∈M , in particular
it is (u′, v) ∈ E which shows the out-part of the condition for r being strong
structural for G.

The in-parts are treated analogously. ��

9.5 The Semigroup of a Graph

Social relations also have an indirect influence: If A and B are friends and B and
C are enemies then this (probably) has some influence on the relation between
A and C.

In this section we want to formalize such higher-order relations and highlight
the relationship with role assignments.

The following definitions and theorems can be found, essentially, in [579], but
have been generalized here to graphs with multiple relations (see Section 9.4).

Labeled paths of relations (like EnemyOfAFriend) are formalized by com-
position of relations; beware of the order.

Definition 9.5.1. If Q and R are two binary relations on V then the (Boolean)
product of Q with R is denoted by QR and defined as

QR := {(u, v) ; ∃w ∈ V such that (u,w) ∈ Q and (w, v) ∈ R} .

9 Role Assignments 247

Boolean multiplication of relations corresponds to Boolean multiplication of
the associated adjacency matrices, where for two {0, 1} matrices A and B the
Boolean product AB is defined as

(AB)ij =
n∨

k=1

Aik ∧Bkj .

It is also possible to define real multiplication of weighted relations or multi-
edge sets by real matrix multiplication (this has been advocated e. g., in [89]).

Definition 9.5.2. Let G = (V, E) be a graph (with multiple relations). Then,
the semigroup induced by G is defined to be

S(G) := {E1 . . . Ek ; k ∈ , E1, . . . , Ek ∈ E} .

We also write S(E) for S(G).

Note that two elements in S(G) are equal if and only if they contain the same
set of ordered pairs in V × V .

Furthermore, note that S(G) is indeed a semigroup since the multiplication
of relations is associative, i. e., (AB)C = A(BC) holds for all relations A, B,
and C.

In general, S(G) has no neutral element, relations have no inverse and the
multiplication is not commutative.

Although the length of strings in the definition of S(G) is unbounded, S(G)
is finite since the number of its elements is bounded by 2(|V |2), the number of
all binary relations over V .

The interesting thing about composite relations is the identities satisfied
by them. For example we could imagine that on a network of individuals with
two relations Friend and Enemy, the identities FriendFriend=Friend and
FriendEnemy=EnemyFriend=Enemy hold. At least the fact whether these
identities hold or not gives us valuable information about the network. In all
cases identities exist necessarily since S(G) is finite but the set of all strings
{E1 . . . Ek ; k ∈ , Ei ∈ E} is not.

Role assignments identify individuals. Thus they introduce more identities
on the semigroup of the graph. The remainder of this section investigates the
relationship between role assignments and the identification of relations.

A role assignment on a graph induce a mapping on the induced semigroup.

Definition 9.5.3 ([579]). Let G = (V, E) be a graph with multiple relations and
r : V → W a role assignment. For Q ∈ S(G), rrel(Q) (compare Section 9.4) is
the relation on W defined by rrel(Q) := {(r(u), r(v)) ; (u, v) ∈ Q} called the
relation induced by Q and r. Thus r induces a mapping rrel on the semigroup
S(G).

Note that in general rrel(S(G)) is not the semigroup of the role graph of G
over r, however, this is true if r is regular. Role assignments do not necessarily
preserve composition, i. e., rrel is not a semigroup homomorphism. One of the

248 J. Lerner

main results (see Theorem 9.5.6) of this section is that regular role assignments
have this property.

Lemma 9.5.4 ([579]). Let G = (V, E) be a graph and r : V → W a role as-
signment which is regular with respect to Q and R ∈ S(G). Then, rrel(QR) =
rrel(Q)rrel(R).

Proof. Let w,w′ ∈ W with (w,w′) ∈ rrel(QR). By the definition of rrel(QR)
there exist v, v′ ∈ V such that f(v) = w, f(v′) = w′, and (v, v′) ∈ QR. Therefore
there is a vertex u ∈ V with (v, u) ∈ Q and (u, v′) ∈ R implying (w, r(u)) ∈
rrel(Q) and (r(c), w′) ∈ rrel(R), whence (w,w′) ∈ rrel(Q)rrel(R). We conclude
rrel(QR) ⊆ rrel(Q)rrel(R). Note that this holds without the assumption of r
being regular.

Conversely, let w,w′ ∈ W with (w,w′) ∈ rrel(Q)rrel(R). Then there is a
z ∈ W such that (w, z) ∈ rrel(Q) and (z, w′) ∈ rrel(R). By the definition of
rrel there are v, v′, u1, u2 ∈ V with r(v) = w, r(v′) = w′, r(u1) = r(u2) = z,
(v, u1) ∈ Q, and (u2, v

′) ∈ R. Since r is regular and r(u1) = r(u2) there is a
vertex v′′ ∈ V with r(v′′) = f(v′) and (u1, v

′′) ∈ R. It follows that (v, v′′) ∈ QR
whence (w,w′) = (r(v), r(v′′)) ∈ rrel(QR), implying rrel(Q)rrel(R) ⊆ rrel(QR).

��

The next theorem shows that regular or strong structural on the set of gen-
erator relations E implies regular resp. strong structural on the semigroup S(E).
This is the second step in proving Theorem 9.5.6.

Theorem 9.5.5 ([579]). Let G = (V, E) be a graph. If r : V → W is regular
(strong structural) with respect to E then r is regular (strong structural) for any
relation in S(G).

Proof. By induction on the string length of a relation in S(G) written as a
product of generating relations (see definition 9.5.2), it suffices to show that
if r is regular (strong structural) with respect to two relations Q,R ∈ S(G),
then it is regular (strong structural) for the product QR. So let Q,R ∈ S(G) be
two relations and u, v ∈ V such that (r(u), r(v)) ∈ rrel(QR). By Lemma 9.5.4,
this implies (r(u), r(v)) ∈ rrel(Q)rrel(R), whence there is a w ∈ W such that
(r(u), w) ∈ rrel(Q) and (w, r(v)) ∈ rrel(R). Since r is surjective, there exists
u0 ∈ V with r(u0) = w, and it is (r(u), r(u0)) ∈ rrel(Q) and (r(u0), r(v)) ∈
rrel(R).

Now, suppose that r is regular with respect to Q and R. We have to show
the existence of c, d ∈ V such that (c, v) ∈ QR, (u, d) ∈ QR, r(c) = r(u) and
r(d) = r(v). Since r is regular with respect to Q and (r(u), r(u0)) ∈ rrel(Q)
there exists u1 ∈ V such that r(u1) = r(u0) and (u, u1) ∈ Q. Similarly, since r
is regular with respect to R and (r(u0), r(v)) ∈ rrel(R), there exists d ∈ V such
that r(d) = r(v), and (u1, d) ∈ R. Since (u, u1) ∈ Q and (u1, d) ∈ R it follows
(u, d) ∈ QR, which is the first half of what we have to show. The proof of the
second half can be done along the same lines.

9 Role Assignments 249

Now, suppose that f is strong structural with respect to Q and R. Then
(r(u), r(u0)) ∈ rrel(Q) and (r(u0), r(v)) ∈ rrel(R) immediately implies (u, u0) ∈
Q and (u0, v) ∈ R, whence (u, v) ∈ QR. ��

The next theorem might be seen as the main result of this section. It states
that regular role assignments induce homomorphisms on the induced semigroups.

Theorem 9.5.6 ([579]). Let G = (V, E) be a graph with multiple relations. If
r : V → W is a regular role assignment with role graph R, then rrel : S(G) →
S(R) is a surjective semigroup homomorphism.

Proof. We know from Lemma 9.5.4 that the identity rrel(QR) = rrel(Q)rrel(R)
holds whenever r is regular with respect to Q and R. Theorem 9.5.5 states that
r is regular with respect to all relations in S(G). Thus the image of S(G) under
rrel is equal to S(R) (the images of the generator relations E are the generator
relations of the semigroup of the role graph S(R)) and rrel is a semigroup ho-
momorphism. ��

The condition that r be regular, is not necessary for rrel being a semigroup
homomorphism. Kim and Roush [355] gave a more general sufficient condition.
Also compare [471].

The next theorem shows that the role graph of a strong structural role as-
signment has the same semigroup as the original graph.

Theorem 9.5.7 ([579]). Let G = (V, E) be a graph with multiple relations.
If r : V → W is a strong structural role assignment with role graph R, then
rrel : S(G) → S(R) is a semigroup isomorphism.

Proof. By Theorem 9.5.6 rrel is a surjective semigroup homomorphism. It re-
mains to show that rrel is injective. So let Q,R ∈ S(G) with rrel(Q) = rrel(R).
Then, for all u, v ∈ V if holds (u, v) ∈ Q iff (r(u), r(v)) ∈ rrel(Q) (since r is
strong) iff (r(u), r(v)) ∈ rrel(R) iff (u, v) ∈ R (since r is strong). ��

Do Semigroup-Homomorphisms Reduce Networks? The above theorems
give the idea to an alternative approach to find role assignments: In Theorem
9.5.6 it has been shown that role assignments introduce new identities on the
semigroup of (generator and compound) relations of a network. Conversely, one
could impose identities on relations that are almost satisfied, or that are con-
sidered to be reasonable. Now the interesting question is: Does identification of
relations imply identification of vertices of the graph which generated the semi-
group? (See [73].)

That is, given a graph G with semigroup S(G) and a surjective semigroup
homomorphism S(G) → S′ onto some semigroup S′, is there a graph G′ and a
graph homomorphism G → G′ such that S′ is the semigroup generated by G′?

This would be the counterpart of Theorem 9.5.6, which states that role as-
signments on graphs induce, under the condition of regularity, reductions of the
induced semigroups, (i. e., surjective semigroup homomorphisms).

The answer is in general no, simply for the reason that not every semigroup is
a semigroup of relations. But under what conditions on S′ and on the semigroup

250 J. Lerner

homomorphism would we get a meaningful role graph and a meaningful role
assignment?

Although the question is open for the general case some examples can be
found in [89] and [471].

9.5.1 Winship-Pattison Role Equivalence

The condition for regular equivalent vertices is: equivalent vertices have the same
ties to equivalent counterparts. In this section the phrase to equivalent counter-
parts is replaced by the weaker requirement to some vertices. As mentioned in
Remark 9.5.9 the four equivalences defined in this section, are special cases of
relative regular equivalence (see Section 9.3.4).

Definition 9.5.8. Let G = (V, E) be a graph and ∼ an equivalence on V . Then
∼ is said to be a weak role equivalence for G if for all u, v, w ∈ V and E ∈ E,
u ∼ v implies both

– uRw implies there exists x such that vRx,
– wRu implies there exists x such that xRv.

Note that in contrast to the definition of regular equivalence one does not con-
sider the role of x. So weak role-equivalent vertices don’t share the same relations
to equivalent counterparts, but they only share the same relations. If the graph
has one single relation, the maximal weak role equivalence is simply the partition
into isolates, sinks, sources, and vertices with positive in- and out-degree.

The indifference in regard to the role of adjacent vertices makes weak role
equivalence a much weaker requirement than e. g., regular or strong structural
equivalences.

Weak role equivalence could have been defined using relative regular equiv-
alence (see Section 9.3.4).

Remark 9.5.9. Weak role equivalences are exactly the equivalences which are
regular relative to the complete partition. This remark immediately generalizes
to the next three definitions.

Weak role equivalence can be tightened in two directions: to include multi-
plexity, which leads to Definition 9.5.11, or to include composition of relations,
which leads to Definition 9.5.10.

Definition 9.5.10. Let G = (V, E) be a graph, S := S(G) its semigroup, and ∼
an equivalence on V . Then ∼ is called a compositional equivalence of G if it is
a weak role equivalence of (V, S) (see Definition 9.5.8).

Note that in contrast to regular equivalences, where an equivalence is regular
with respect to E if and only if it is regular with respect to S(E), it makes a
difference whether we require ∼ to be a weak role equivalence of G or of (V, S).
Compositional equivalences are weak role equivalences.

9 Role Assignments 251

Definition 9.5.11 ([579]). Let G = (V, E) be a graph, C = (V,M) := MPX (G)
its multiplex graph (see Definition 9.4.6) and ∼ an equivalence on V . Then, ∼
is called a bundle equivalence of G if it is a weak role equivalence (see Defini-
tion 9.5.8) of C.

Bundle equivalences are weak role equivalences.
Winship-Pattison role equivalence is most often defined in terms of the role-

set of an actor (see [471, p. 79ff]): Two actors are equivalent if they have the
same role-sets (also compare [82, p. 81]). We restate the definitions given there
in our terminology.

Definition 9.5.12. Let G = (V, E) be a graph. An equivalence relation ∼ on V
is called a local role equivalence or Winship-Pattison role equivalence if ∼ is a
bundle equivalence (see Definition 9.5.11) of the graph (V, S(G)).

Local role equivalences are both bundle and compositional equivalences. Local
role equivalences are, in general, not regular, which immediately implies the same
for the three other (weaker) equivalences defined in this section: Let vertices u
and v be connected by a bidirected edge and v have an out-going edge to a third
vertex w. Then u and v are locally role equivalent but not regularly equivalent.

Conclusion. The semigroup of a graph is a possibility to describe the interaction
of multiple and compound relations. An idea to use identification of relations
in order to get role assignments has been sketched. This approach seems to be
rather hard, both theoretically and computationally.

9.6 Chapter Notes

Vertex partitions that yield role assignments have first been introduced by Lor-
rain and White [394], who defined structural equivalence.

Sailer [501] pointed out that structural equivalence is to restrictive to meet
the intuitive notion of social role. He proposed that actors play the same role if
they are connected to role-equivalent actors (in contrast to identical actors, as
structural equivalence demands). His idea of structural relatedness has been for-
malized as regular equivalence by White and Reitz in the seminal paper [579]. In
this work, they gave a unified treatment of structural, regular, and other equiva-
lences for graphs with single or multiple relations. Furthermore, they developed
conditions for graph homomorphisms to induce (structural or regular) vertex
partitions and to be compatible with the composition of relations.

Borgatti and Everett [82, 83, 190, 191] established many properties of the set
of regular equivalences, including lattice structure, and developed the algorithm
CATREGE to compute the maximal regular equivalence of a graph. Further-
more they introduced other types of vertex partitions to define roles in graphs.
Boyd and Everett [90] further clarified the lattice structure and defined relative
regular equivalence.

Marx and Masuch [408] commented that regular equivalence is already
known, under the name of bisimulation in computer science. Their report has

252 J. Lerner

been the reason that we found the algorithm of Paige and Tarjan [459], which can
compute the maximal regular equivalence and is much faster than CATREGE.

Roberts and Sheng [493] first showed that there are NP-complete problems
stemming from regular role assignments. A more complete treatment is from
Fiala and Paulusma [209].

Role assignments for graphs with multiple and composite relations are al-
ready treated in [394, 579]. The possibilities to define role assignments in graphs
with multiple relations are abundant. We could sketch only few of them in this
chapter. Additional reading is, e. g., Kim and Roush [355] and Pattison [471]
who found many conditions for vertex partitions to be compatible with the com-
position of relations. In the latter book, the algebraic structure of semigroups
of relations is presented in detail. Boyd [89] advocated the use of real matrix
multiplication to define semigroups stemming from graphs. These semigroups
often admit sophisticated decompositions, which in turn, induce decompositions
or reductions of the graphs that generated these semigroups.

In order to be able to deal with the irregularities of empirical networks, a for-
malization of role assignment must – in addition to choosing the right compatibil-
ity criterion – provide some kind of relaxation. (See Wasserman and Faust [569]
for a more detailed explanation.) Relaxation has not been treated in this chap-
ter, which has been focused on the ‘ideal’ case of vertex partitions that satisfy
strictly the different compatibility constraints. Possibilities to relax structural
equivalence, optimizational approaches for regular equivalence, and stochastic
methods for role assignments are presented in Chapter 10 about blockmodels.
Brandes and Lerner [97] introduced a relaxation of equitable partitions to pro-
vide a framework for role assignments that are tolerant towards irregularities.

10 Blockmodels

Marc Nunkesser and Daniel Sawitzki

In the previous chapter we investigated different types of vertex equivalences
which lead us to the notion of a position in a social network. We saw algo-
rithms that compute the sets of equivalent actors according to different notions
of equivalence. However, which of these notions are best suited for the analysis
of concrete real world data seems to depend strongly on the application area.

Practical research in sociology and psychology has taken another way: In-
stead of applying one of the equivalences of the previous chapter, researchers
often use heuristical role assignment algorithms that compute approximations
of strong structural equivalence. More recently, statistical estimation methods
for stochastic models of network generation have been proposed.

Typically, researchers collect some relational data on a group of persons (the
actor set) and want to know if the latter can be partitioned into positions with
the same or at least similar relational patterns. The corresponding area of net-
work analysis is called blockmodeling. Relational data is typically considered as a
directed loopless graph G consisting of a node set V = {v1, . . . , vn} and R edge
sets E1, . . . , ER ⊆ V 2 \{(v, v) | v ∈ V }. The following definition of a blockmodel
sums up most of the views that can be found in the literature.

Definition 10.0.1. A blockmodel BM = (P , B1, . . . , BR) of G consists of two
parts:

1. A partition P = (P1, . . . , PL) of V into L disjoint subsets called the positions
of G. For v ∈ V , the position number k with v ∈ Pk is denoted by P (v).

2. Matrices Br = (bk,�,r)1≤k,�≤L ∈ {0, 1}L×L, 1 ≤ r ≤ R, called image matrices
that represent hypotheses on the relations between the positions with respect
to each relation.

Thus, a blockmodel is a simplified version of G whose basic elements are the
positions. If we demand that nodes of the same position have exactly the same
adjacencies, the equivalence classes of the structural equivalence relation intro-
duced in Definition 9.1.3 (denoted by � ∈ V 2 in this chapter) give us a unique
solution P� to our partitioning problem.

Because the field of blockmodeling is concerned with processing real world
data possibly collected in experiments, it is assumed that there is some ‘true’
blockmodel underlying the observed graph which may not be reflected cleanly
by G. This may be caused by measurement errors or natural random effects. P�

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 253–292, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

254 M. Nunkesser and D. Sawitzki

does not catch these deviations, and is therefore expected to contain too many
positions hiding the true blockmodel.

Hence, blockmodeling is much about building relaxations of structural equiv-
alence which are able to tolerate random distortions in the data up to an ap-
propriate degree. Corresponding blockmodels are expected to have a minimal
number of positions while tolerating only small deviations from the assumption
of structural equivalence. Historically, the first methods used in blockmodeling
have been heuristic algorithms which were believed to give good trade-offs be-
tween these two criterions.

In blockmodeling, graphs are often viewed from an adjacency matrix point
of view. Let Ar = (ai,j,r)i,j denote the adjacency matrix of Er, i. e., ai,j,r = 1 ⇔
(vi, vj) ∈ Er . Then, a blockmodel is represented by a permuted version of A
which contains nodes of the same position in consecutive rows and columns.

Definition 10.0.2. The P-permuted adjacency matrix A∗
r :=

(
a∗i,j,r

)
i,j

:=(
aπ−1(i),π−1(j),r

)
i,j

is obtained by reordering rows and columns of Ar with re-
spect to the permutation π ∈ Σn defined by

π(i) < π(j) :⇔
[
P (vi) < P (vj)

]
∨
[(
P (vi) = P (vj)

)
∧ (i < j)

]
for all 1 ≤ i < j ≤ n.

For 1 ≤ k, � ≤ L, the |Pk| × |P�|-submatrix

Ak,�
r := (aπ−1(i),π−1(j),r)(vi,vj)∈Pk×P�

is called a block and contains the connections between positions k and � with
respect to relation r.

That is, the rows and columns of A∗
r are lexicographically ordered with respect

to position and index. Nodes of the same position have consecutive rows and
columns. A block Ak,�

r represents the part of A∗
r that corresponds to the relation

between Pk and P�. The entry bk,�,r of Br should contain this information in
distilled form. For P�, each block is solely filled with ones or zeros (except the
diagonal elements), and it makes sense to set bP (vi),P (vj),r := ai,j,r.

In blockmodels obtained by heuristic algorithms, the nodes of a position Pk

do not necessarily have equal neighborhoods. Nevertheless, the adjacencies of
nodes of the same position should be very similar in a good model, and bk,�,r

should express trends existing in Ak,�
r . Therefore, a variety of methods has been

employed to derive the image matrices from the blocks according to P . If we
consider Br as an adjacency matrix of a graph having the positions as nodes, we
obtain the so called reduced graph of Er (compare Definition 9.0.3).

Figure 10.1(a) gives an example of a network G, its adjacency matrix A, and
its three positions due to the structural equivalence relation �. Figure 10.1(b)
shows both the corresponding permuted adjacency matrix A∗ and the reduced
graph with positions as nodes.

10 Blockmodels 255

E 1 2 3 4 5 6 7 8 9
1 - 0 0 1 0 0 0 0 1
2 0 - 0 0 1 0 1 0 0
3 0 1 - 0 1 1 1 1 0
4 1 0 0 - 0 0 0 0 1
5 0 1 0 0 - 0 1 0 0
6 0 1 1 0 1 - 1 1 0
7 0 1 0 0 1 0 - 0 0
8 0 1 1 0 1 1 1 - 0
9 1 0 0 1 0 0 0 0 -

P1

P2

P3

8

72

5

3

6

4 9

1

(a) G’s adjacency matrix A with corresponding graph and positions
P1, P2, and P3 due to the structural equivalence relation.

E 3 6 8 1 4 9 2 5 7
3 - 1 1 0 0 0 1 1 1
6 1 - 1 0 0 0 1 1 1
8 1 1 - 0 0 0 1 1 1
1 0 0 0 - 1 1 0 0 0
4 0 0 0 1 - 1 0 0 0
9 0 0 0 1 1 - 0 0 0
2 0 0 0 0 0 0 - 1 1
5 0 0 0 0 0 0 1 - 1
7 0 0 0 0 0 0 1 1 -

P3 = {3, 6, 8}

P2 = {2, 5, 7}

P1 = {1, 4, 9}

(b) P-permuted adjacency matrix A∗ and the corresponding reduced
graph. Blocks in A∗ are separated by lines. Due to the structural
equivalence, they contain solely ones or zeros in non-diagonal posi-
tions.

Fig. 10.1. Example network G = (V, E) and its blockmodel due to the structural
equivalence relation

Contents. This chapter gives a survey on selected blockmodeling approaches
which are either well-established and have been widely used, or which seem to
be promising and to give novel perspectives on this quite old field in network
analysis. We will restrict ourselves to graphsG = (V,E) containing only one edge
set corresponding to one actor relation. Most approaches can be easily adapted
to the case of several (sometimes weighted) relations.

Section 10.1 presents blockmodeling approaches that are mainly based on
heuristic assumptions on positional interplay without a concrete model of net-
work generation. In contrast to these so called deterministic models, which in-

256 M. Nunkesser and D. Sawitzki

clude some of the oldest algorithms used in blockmodeling, Section 10.2 presents
approaches based on stochastic models. They assume that the positional struc-
ture influences a randomized process of network generation and try to estimate
the parameters of the corresponding probability distribution. In this way, we can
both generate and evaluate hypotheses on the network positions. Conclusions on
both kinds of methods and an overview of the relevant literature are given in
Section 10.3

10.1 Deterministic Models

In this section, well-established blockmodeling approaches are presented which
are mainly based on heuristic assumptions on positional interplay without a con-
crete stochastic model of the process that generates the network. Instead, certain
relaxations of the structural equivalence relation are used to decide whether two
nodes share the same position. Because the decision criterions are based upon
static network properties, we call these approaches deterministic models.

In order to weaken the structural equivalence, we need to measure to what
extend two nodes are equivalent. Therefore, Section 10.1.1 is devoted to two of
the most popular measures. These need not to be metrics, but the techniques for
multidimensional scaling discussed in Section 10.1.2 can be used to embed actors
in a low-dimensional Euclidian space. Having pair-wise distance values for the
actors, clustering based methods like Burt’s algorithm (see Section 10.1.3) are
popular ways to finally partition the actor set V into positions P . Section 10.1.4
presents the CONCOR algorithm that is an alternative traditional method to
obtain P .

The methods up to this point have been mainly introduced in the 70’s and
represent classical approaches. They are only used to compute a partition P
of the actor set; the image matrix B is typically obtained by applying some
standard criterions to P discussed in Section 10.1.5. In Section10.1.6 we discuss
different goodness-of-fit indices that are obtained by comparing the P-permuted
adjacency matrix A∗ with the image matrix B of a concrete blockmodel. Fi-
nally, Section 10.1.7 introduces a generalized blockmodeling framework which
integrates the steps of partitioning the actor set, computing B, and evaluating
the resulting blockmodel. It represents the most recent blockmodeling approach
in this section on deterministic models.

10.1.1 Measuring Structural Equivalence

We have already noted in the introduction that relations between actors in ob-
served real-world networks may reflect an eventual underlying positional struc-
ture only in a distorted and inexact way. Therefore, blockmodeling algorithms
have to tolerate a certain deviation from perfect structural equivalence, whose
idea of equal neighborhoods seems to be reasonable in principle. Hence, it does
not suffice to know if two nodes vi and vj are equivalent w. r. t. �—we also want

10 Blockmodels 257

to know some value δi,j describing how close a node pair (vi, vj) is to equiv-
alence. In the following, δi,j will always denote a symmetric distance measure
between the adjacency relations of node vi and vj with the properties δi,i = 0
and δi,j = δj,i. Superscripts identify special measures.

In order to apply geometrical distance measures, we consider the concate-
nation of the ith row and ith column of A as a point in the 2n-dimensional
space 2n. Burt [107] was the first who proposed to use the Euclidian distance
in blockmodeling:

Definition 10.1.1. The Euclidian distance δe
i,j between actors vi and vj is de-

fined by

δe
i,j :=

√∑
k �=i,j

(ai,k − aj,k)2 +
∑

k �=i,j

(ak,i − ak,j)2 (10.1)

for 1 ≤ k ≤ n.

Note that δe
i,i = 0, δe

i,j = δe
j,i, and 0 ≤ δe

i,j ≤
√

2(n− 2).
A second widely used measure of structural equivalence is the correlation co-

efficient, also known as product-moment coefficient. In contrast to the Euclidian
distance, it does not directly compare entries in A, but their deviations from
mean values of rows and columns.

Definition 10.1.2. Let āi,· :=
∑

1≤k≤n ai,k/(n− 1) resp. ā·,i :=∑
1≤k≤n ak,i/(n− 1) be the mean of the values of the ith row resp. ith

column of A. The correlation coefficient (or product-moment coefficient) ci,j is
defined by ∑

k �=i,j

(ai,k − āi,·)(aj,k − āj,·) +
∑

k �=i,j

(ak,i − ā·,i)(ak,j − ā·,j)√ ∑
k �=i,j

[(ai,k − āi,·)2 + (ak,i − ā·,i)2]
√ ∑

k �=i,j

[(aj,k − āj,·)2 + (ak,j − ā·,j)2]

(10.2)
for 1 ≤ k ≤ n. The matrix C = (ci,j)i,j is called the correlation matrix of A.

That is, its numerator is the sum of products of vi’s and vj ’s deviations from their
respective row and column mean values. In the denominator, these deviations
are squared and summed separately for vi and vj before their respective square
roots are taken and the results are multiplied.

Note that ci,j ∈ [−1, 1]. In statistics, the correlation coefficient is used to
measure to what degree two variables are linearly related; an absolute correlation
value of 1 indicates perfect linear relation, while a value of 0 indicates no linear
relation. Especially, ci,i = 1 and ci,j = cj,i. On the other hand, |ci,j | = 1 does
not imply vi � vj , and ci,j = 0 does not mean that the ith and jth row/column
of A are not related at all—they are just not linearly related.

In order to derive a measure that fulfills the property δi,i = 0, we normalize
ci,j to δc

i,j := 1− |ci,j |.

258 M. Nunkesser and D. Sawitzki

Comparison of Euclidian Distance and Correlation Coefficient. Let us
compare the two measures δe

i,j and δc
i,j . We have already seen that the Euclidian

distance δe
i,j is directly influenced by the difference between the entries for vi

and vj in A, while the normalized correlation coefficient δc
i,j also incorporates

the mean values ai,·, a·,i, aj,·, and a·,j. Thus, δe
i,j measures the absolute similarity

between the neighborhoods of vi and vj , while δc
i,j measures the similarity of the

mean deviations.
In order to make the formal relationship between δe

i,j and ci,j better under-
standable, we temporarily assume that both (10.1) and (10.2) contain only the
row-related sums.

Property 10.1.3. Let σi,· :=
√∑

k �=i (ai,k − āi,·)
2
/(n− 1) resp. σ·,i :=√∑

k �=i (ak,i − ā·,i)
2
/(n− 1), 1 ≤ k ≤ n, be the standard deviation of the ith

row resp. ith column of A. Then, it holds(
δe
i,j

)2 = (n− 2)
[
(āi,· − ā·,i)

2 + σ2
i,· + σ2

j,· − 2ci,jσi,·σj,·
]

.

That is, the Euclidian distance grows with increasing mean difference |āi,· − āj,·|
and variance difference |σ2

i,· − σ2
j,·|, while these are filtered out by ci,j . If the

used blockmodeling method leaves freedom in choosing a measure, structural
knowledge about G should influence the decision: If the general tendency of an
actor to be related to others is assumed to be independent of his position, the
use of δc

i,j is expected to give a better insight in the positional structure than
δe
i,j . For example, if the relational data was obtained from response rating scales,

some actors may tend to give consistently higher ratings than others.
In the following sections, we will see how such symmetric measures δi,j are

used in computing the actor set partition P .

10.1.2 Multidimensional Scaling

Blockmodels and MDS. In the previous section we saw that the determin-
istic blockmodeling problem is connected to (dis-)similarity measures between
the rows and columns of the adjacency matrix A that correspond to the actors.
After we have decided upon a particular dissimilarity measure, we get for the
set of actors a set of pairwise dissimilarities, from which we might want to de-
duce the positions and the image matrix of the blockmodel. This in turn can
be considered as a reduced graph, which we already saw in the introduction.
This process can be seen as one of information reduction from the initial dis-
similarities to an abstract representation. Clearly, this is not the only way to
represent the blockmodel. In this section, we will discuss in detail a slightly dif-
ferent approach, where the abstract representation maps the actors to points
in the plane. The distances between the points should roughly correspond to
the dissimilarities between the actors. Points that are close to each other with
respect to the other points could then again be interpreted as positions. The
underlying general problem is called multidimensional scaling (MDS): Given a

10 Blockmodels 259

set of dissimilarities of actors, find a ‘good’ representation as points in some
space (two-dimensional Euclidean space for our purposes). It has been used as
an intermediate step for blockmodeling, where clustering algorithms are run on
the points produced by the MDS algorithm (see Section 10.1.3), and it is also
considered a result in itself that needs no further postprocessing. The result can
then be seen as a concise visual representation of the positional structure of a
social network. Let us define the problem formally:

Problem 10.1.4 (Multidimensional Scaling Problem (MDS)). Given n
objects by their n× n dissimilarity matrix δ, a dimension d and a loss function
� : n×n×

{
S ⊂ d

∣∣|S| = n
}
→ +, construct a transformation f : {1, . . . , n} →

d such that the loss �(δ, P) is minimal, for P = f({1, . . . , n}).

The loss function �(δ, P) measures how much the dissimilarity matrix of the
objects {1, . . . , n} is distorted by representing them as a point set P in d dimen-
sional Euclidean space. Obviously, different loss functions lead to different MDS
problems. In this whole section, we set d = 2 for ease of presentation even if
the first approach to be presented can be easily extended to higher dimensions.
When discussing solutions to multidimensional scaling problems we will often
directly talk about the point set P = {(p1

x, p1
y), . . . , (p

n
x , pn

y)} that implicitly de-
fines a possible transformation f . Then we also write δ[p, q] for the dissimilarity
δ[f−1(p), f−1(q)] of the preimages of p and q for some points p = pi = (pi

x, pi
y)

and q = pj = (pj
x, pj

y). We call any candidate set of points P for a solution a con-
figuration and write P = f(δ) abusing notation slightly. In the next two sections
we have selected out of the multitude of different MDS-approaches two algo-
rithms that are particularly interesting: Kruskal’s MDS algorithm and a recent
algorithm with quality guarantee by Bădoiu. Kruskal’s algorithm is probably the
one that has been used most frequently in the blockmodeling context because it
has become relatively established. On the other hand we are not aware of any
study in blockmodeling in which Bădoiu’s algorithm has been used. We present
it here, because it is an algorithmically interesting method and has appealing
properties like the quality guaranty.

Kruskal’s MDS Algorithm. Historically, Kruskal’s algorithm was among the
first that gave a sound mathematical foundation for multidimensional scaling.
Kruskal called his approach nonmetric multidimensional scaling to set it apart
from earlier approaches that fall into the class of metric scaling. The latter ap-
proach tries to transform the dissimilarity matrix into distances by some class
of parametric functions and then finds the parameters that minimize the loss
function. This scenario is very similar to the classical estimation task and can
be solved by least squares methods. In contrast to this parametric approach
nonmetric multidimensional scaling makes no parametric assumptions about
the class of legal transformations; the only condition that the transformation
f should fulfill best-possible is the monotonicity constraint (MON)

δ[p, q] < δ[r, s]⇒ ‖p− q‖2 ≤ ‖r − s‖2 (10.3)

260 M. Nunkesser and D. Sawitzki

for all p, q, r, s ∈ P . This constraint expresses that if a pair of objects is more
similar than another pair then the corresponding pair of points must have a
smaller (or equal) distance than the distance of the other pair of points. In
(10.3), the only necessary information about the dissimilarities is their relative
order.

The Stress. The key to Kruskal’s algorithm is the right choice of a loss func-
tion that he calls stress. It is best introduced via scatter diagrams. Given a
dissimilarity matrix and a candidate configuration of points P , we can plot the
distances dij = ‖pi − pj‖2 versus the dissimilarities δ in a scatter diagram like
in Figure 10.2(a).

Obviously, the configuration in Figure 10.2(a) does not fulfill the monotonic-
ity constraint, because when we trace the points in the order of increasing dis-
similarity, we sometimes move from larger to smaller distances, i.e. we move left.
Let us call the resulting curve the trace of the configuration. A trace of a config-
uration that fulfills MON must be a monotone curve like in Figure 10.2(b). The
idea is now to take the minimum deviation of the trace of a configuration from a
monotone curve as the loss function. Clearly, if the trace itself is monotone this
deviation is zero. More precisely, we define the raw stress of a configuration as

min

⎧⎨
⎩∑

i<j

(dij − d̂ij)2
∣∣∣(d̂ij)ij fulfill MON

⎫⎬
⎭ .

This means that the error is measured only at y-coordinates of points in the
scatter diagram. At these y-coordinates, we search for points d̂ij that together
fulfill MON and minimize the squared error of distances to the corresponding
points of the configuration. The raw stress has some disadvantages, for example
it is not invariant under uniform stretching or shrinking of the dissimilarities.
Therefore, stress is defined as follows.

Definition 10.1.5. Given a dissimilarity matrix δ and a configuration of points
P , the stress of P is defined by

S(P) = min

{∑
i<j(dij − d̂ij)2∑

i<j d2
ij

∣∣∣(d̂ij)ij fulfill MON

}
. (10.4)

Note that the values of δ do not enter in (10.4); however, their order occurs
implicitly via MON. In Figure 10.2(c) there is an example of a configuration
together with a monotone curve that minimizes the stress, in Figure 10.2(d) the
corresponding values of d̂ij are shown as squares.

The Algorithm. To complete the description of the algorithm we need to know
two further details: How is the stress computed and how is a configuration with
minimum stress found? Assume we have answered the first question such that
we have a procedure to compute the stress of any given configuration. For a

10 Blockmodels 261

2, 3
3, 4
3, 5

1, 2

2, 5

4, 5 1, 5

1, 32, 4

1, 4

Distance d

D
is

si
m

ia
ri

ty
σ

(a) A scatter diagram.

2, 3
1, 2

3, 5
3, 4

2, 3

4, 5 1, 5
1, 3 2, 4

1, 4

Distance d

D
is

si
m

ia
ri

ty
σ

(b) A configuration that satisfies
MON yields a monotone curve.

1, 4

1, 3
1, 5

4, 5

2, 4

2, 5
1, 2

3, 53, 4

2, 3
Distance d

D
is

si
m

ia
ri

ty
σ

(c) The stress of a configuration is
measured with respect to a mono-
tone curve.

2, 3
1, 2

2, 53, 53, 4

4, 5
1, 5

1, 32, 4

1, 4

Distance d

D
is

si
m

ia
ri

ty
σ

(d) The stress is defined by the

d̂ij values that correspond to the
squares (and circles if they coincide
with dij).

Fig. 10.2. Elements of Kruskal’s MDS-Algorithm

given configuration it returns the correct values d̂ij . These values correspond to
a local stress function

S�(P) = S�((p1
x, p1

y), . . . , (pn
x , pn

y)) =
∑
i<j

(dij − d̂ij)2
/∑

i<j

d2
ij , (10.5)

where we have still dij = ‖pi−pj‖2. The problem of finding a configuration with
minimum local stress turns out to be the numerical problem of minimizing a func-

262 M. Nunkesser and D. Sawitzki

tion of 2n variables with respect to a given objective function, the stress. There-
fore, any standard method for function minimization can be used. Kruskal pro-
poses the method of steepest descent that starts with an arbitrary point in search
space, computes the gradient of the local stress (∂S�/∂p1

x, ∂S�/∂p1
y, . . . , ∂S�/∂pn

y),
and moves towards the negative direction of the gradient. Then, it recomputes
the local stress in the new configuration and iterates until a local minimum is
found. This need not be the global minimum. In this sense the algorithm is a
heuristic without performance guarantee (just as any other general algorithm
for minimization of non-convex functions). To understand that the algorithm
is really as straight-forward as it sounds, observe that it is indeed possible to
calculate the partial derivatives of a local stress function. In general, also other
methods for function minimization could be used.

As for the computation of the d̂ij we will briefly sketch the algorithm. It
relies on the following observation.

Observation 10.1.6. The d̂ij that minimize the stress for a given configuration
have the following form: The ordered list of dissimilarities can be partitioned into
consecutive blocks {b1, . . . , bk} such that within each block, d̂ij is constant and
equals the average of the dij values in the block.

Note that the d̂ij values in Figure 10.2(d) have this form. From this observation
it is clear that the problem can be solved by finding the correct partition. This is
achieved by starting from the finest possible partition (each point in one block)
and then iteratively joining an arbitrary pair of neighboring blocks for which the
monotonicity constraint is violated.

MDS with Quality Guarantee. In this section we present a relatively new
approach to multidimensional scaling by Bădoiu [105] that relies more on the
combinatorial structure of the problem. As before the algorithm constructs an
embedding of a given dissimilarity matrix into the plane. In this case the dissimi-
larity matrix is also called distance matrix, because Bădoiu’s algorithm searches
for a point set that not only qualitatively mirrors the order relation on the
distances/dissimilarities, but also its objective is that the distances in the em-
bedding should approximate the distances given by the matrix δ as precisely as
possible. It is an approximation algorithm in the sense that the loss of the con-
structed embedding is bounded by cε if an optimal embedding has loss ε. Note
that this is not the same as having a constant loss with respect to the original
dissimilarity measure which is impossible in general. This algorithm is a quite
recent result and was the first to give such guarantees. Its success stems from a
clever choice of the loss function combined with beautiful insights into the com-
binatorial nature of the problem. Unfortunately, it is slightly too complicated to
be presented here in its entirety. However, we will see the important parts and
explain the ideas for the missing parts. All missing proofs can be found in [105].

The Loss Function. The loss function that is employed here is one that uses the
L∞-norm to measure the distance in 2. Remember that the infinity norm of a

10 Blockmodels 263

vector its component with maximum absolute value. The loss is the maximum
deviation of embedded distances from original distances.

�(δ, f(δ)) = max
1≤i<j≤n

{∣∣δ[i, j]− ‖f(i)− f(j)‖∞
∣∣} (10.6)

= max
p,q∈P

{∣∣δ[p, q]− ‖p− q‖∞
∣∣} (10.7)

The first equation is in terms of the objects, the second in terms of the configu-
ration P = f(δ). We call this loss function distortion. It measures the maximum
additive error of the embedding. Let us have a closer look at the properties of
this loss function. Assume we know the distortion ε� = minf{�(δ, f(δ))} of the
optimal solution and search the corresponding point set P �. Then, for each pair
of points p, q ∈ P � it must hold that

−ε� ≤ δ[p, q]−max {|px − qx|, |py − qy|} ≤ ε� .

Note that the infinity norm destroys the symmetry suggested by the absolute
value in (10.6) in the following sense. For the lower bound it must hold that

−ε� ≤ δ[p, q]− |px − qx| and − ε� ≤ δ[p, q]− |py − qy| , (10.8)

whereas for the upper bound it must hold that

δ[p, q]− |px − qx| ≤ ε� or δ[p, q]− |py − qy| ≤ ε� . (10.9)

We sum these two equations up in the following simple observation.

Observation 10.1.7. Let P � be the point set with minimum distortion ε�. For
any two points p, q ∈ P � the lower bound −ε� ≤ δ[p, q]− |pz − qz| must hold for
both x- (z = x) and y-coordinate (z = y). The upper bound δ[p, q]−|pz−qz| ≤ ε�

must hold for either x- or y-coordinates.

The observation also suggests that x- and y-coordinates can be treated indepen-
dently to a certain extend.

The Algorithm. The general idea of the algorithm is to do the following:

1. Guess ε� = minf{�(δ, f(δ))}
2. Find x-coordinates of an embedding with distortion ε′ ≤ c1 · ε�.
3. For these x-coordinates find y-coordinates such that the resulting point set

P has distortion no more than ε′′ ≤ c2 · ε′.

We will see that the resulting point set P has distortion ε′′ ≤ 30ε�. Guessing
the right ε� is done by a binary search in the end. The most interesting part of
the algorithm is how the y-coordinates are found. For this reason we will discuss
this part in detail. Then we will sketch how the x-coordinates are found.

264 M. Nunkesser and D. Sawitzki

The y-coordinates. Let us assume that we are given x-coordinates X = {p1
x, . . . ,

pn
x} of a point set P with the property that for all p, q ∈ P it holds

−ε′ ≤ δ[p, q]−max{|px − qx|, |py − qy|} ≤ ε′ . (10.10)

Let us call this assumption the quality assumption. It will not be possible to
exactly recover the y-coordinates in P . But we will construct y-coordinates such
that the resulting point set P ′ has the property

−5ε′ ≤ δ[p, q]−max{|px − qx|, |py − qy|} ≤ 5ε′

for all p, q ∈ P ′. We call such a solution a 5-approximation solution. In doing so,
we see finding the y-coordinates as a problem in its own right, i.e. we only want
to know how the distortion grows with respect to ε′.

From Observation 10.1.7 it is clear that all x-coordinate pairs (px, qx) have
to fulfill the lower bound. In the special case where all such pairs fulfill also
the upper bound, it follows by the same observation that it suffices to find y-
coordinates such that all y-coordinate pairs (py, qy) fulfill the lower bound. In
terms of the absolute value this means |py−qy| ≤ δ[p, q]+ε′. It is easy to express
this condition as linear constraints because |x| ≤ c is equivalent to x ≤ c and
−x ≤ c. The linear constraints become

−ε′ − δ[p, q] ≤ py − qy ≤ δ[p, q] + ε′ (10.11)

for all p, q ∈ P ′. Note that in this special case we actually recover the ‘correct’
y-coordinates that fulfill (10.10). It follows that we only need to care about pairs
(px, qx) that do not fulfill the upper bound. We introduce the notion of edges
between such points that model how bad a pair (px, qx) exceeds the upper bound.

Definition 10.1.8. If for a pair (px, qx) it holds

δ[p, q]− |px − qx| > 3ε′ , (10.12)

there is a strong edge between p and q. If

3ε′ ≥ δ[p, q]− |px − qx| > ε′ , (10.13)

there is a weak edge between p and q. We denote the set of all strong edges by
Es, the set of all weak edges by Ew.

In the special case where all edges are weak edges we can again find y-
coordinates via linear programming with constraints of Type (10.11). The result
is then at least a 3-approximation.

The set of strong edges Es together with the points P form (a drawing of)1 a
graph G. For the correctness of the algorithm, it is important that the connected
components of G can be separated by vertical lines, i.e., they do not overlap.
The graph G does not have this property. Therefore, we define the edge set E′

and claim that the resulting graph G′ has the desired property.
1 We will simply refer to the drawing of the graph G as the graph G because it will

always be clear that we are discussing embeddings in the plane, and it will also be
clear which drawing we refer to, namely the one given by P .

10 Blockmodels 265

Definition 10.1.9. Let C = {C1, . . . , Ck} be the connected components of G
and li (ri) be the leftmost (rightmost) point in Ci. Let Ẽw ⊂ Ew be the set of
weak edges that have exactly one endpoint in some component Ci and the other
one between li and ri: Ẽw =

{
{p, q} ∈ Ew | ∃i : p ∈ Ci, q /∈ Ci, li ≤ qx ≤ ri

}
.

We define E′ as Es ∪ Ẽw.

The resulting graph G′ has the desired property:

Claim 10.1.10. The connected components of G′ can be separated by vertical
lines that do not intersect any vertex. Moreover, every weak edge in G′ is adjacent
to at least one strong edge (see Figure 10.3).

The (easy) proof uses the definitions of strong and weak edges and the triangle
inequality.

Fig. 10.3. Structure of G′. Solid lines represent strong edges, dotted lines weak edges.
The four connected components do not overlap. Each weak edge is adjacent to at least
one strong edge

Now that we know the structure of the graph G′ that is constructed from the
strong and weak edges it is interesting to see how exactly these edges can help
to find an embedding. From Observation 10.1.7 we know that for a strong edge
{p, q} the y-coordinates py and qy have to fulfill both the upper and the lower
bound. If we try to express the upper bound similarly to (10.11), we run into the
problem that |x| ≥ c is equivalent to x ≥ c or −x ≥ c, which we cannot express as
linear constraints of a linear program,2 which have to be fulfilled simultaneously.
But if we know whether qy ≥ py or py > qy, this problem vanishes and we can
again use linear programming.

Definition 10.1.11. For an edge e = {p, q} ∈ E′, px ≤ qx we say that e is
oriented up if qy ≥ py, we say that it is oriented down if py > qy.

Lemma 10.1.12. If we know the orientation of all strong edges, we can compute
a 3-approximation via linear programming.

Proof. We construct the following linear program.3

2 More generally, the constraint |x| ≥ c is non-convex, because the function −|x| is
not convex. On the other hand only convex optimization problems can be solved
efficiently, which is a hint that we cannot express it in any way in a linear program.
See [91] for more information on convex optimization.

3 In the original paper [105] there are inconsistencies both in the definition of orien-
tation and in the linear program.

266 M. Nunkesser and D. Sawitzki

min δ
s. t.

−δ ≤ δ[p, q]− (qy − py) ≤ δ

{
if {p, q} ∈ E
is oriented up

−δ ≤ δ[p, q]− (py − qy) ≤ δ

{
if {p, q} ∈ E
is oriented down

−δ[p, q]− δ ≤ qy − py ≤ δ[p, q] + δ if (p, q) /∈ E

(10.14)

By the quality assumption there is a solution P that fulfills (10.10). This solution
leads to a solution to the linear program with δ = ε′. On the other hand, a
solution with optimal value δ ≤ ε′ to the linear program is only guaranteed to
have distortion lower than 3ε′: For all edges {p, q} ∈ E′ the first two inequalities
guarantee that the distortion is at most δ. For all pairs {p, q} /∈ Ew and {p, q} /∈
Es the third inequality bounds the distortion by δ; but for all {p, q} ∈ Ew \ E′

the only guarantee for an upper bound is via the weakness of the edges. Thus,
the guaranteed upper bound is 3ε′ (see Definition 10.1.8). �

After Lemma 10.1.12 it is clear that it is useful to find out the orientation
of the edges in E′. The following lemma states how to perform this task for one
connected component of E′.

Lemma 10.1.13. By fixing the orientation of one arbitrary edge in a connected
component of G′ we also fix the orientation of all other edges in this connected
component.

Proof. We show that the orientation of an edge e = {v, w} fixes the orientation
of all adjacent strong edges or of all edges if e itself is strong. Without loss of
generality let v, w be oriented up. As {v, w} ∈ E′, both the upper and the lower
bound must hold for the y-coordinate. Thus it holds (by the quality assumption)
that

wy − vy + ε′ ≥ δ[v, w] ≥ wy − vy − ε′ . (10.15)

Furthermore, wy − vy > wx − vx because u, w ∈ E′ and the upper bound must
be established. For an adjacent edge {w, t} that is oriented up, we get

δ[v, t]
Obs 10.1.6
≥ (ty − vy)− ε′ = (ty − wy) + (wy − vy)− ε′

(10.15)

≥ δ[v, w] + δ[w, t]− 3ε′ . (10.16)

As {w, t} is a strong edge δ[w, t]− 3ε′ > 0, it holds

δ[v, t] > δ[v, w] . (10.17)

As {v, w} is (at least) a weak edge and {w, t} is a strong edge, we get by com-
bining Equations (10.12), (10.13), and (10.16)

δ[v, t] > (wx − vx) + |tx − wx|+ ε′ ≥ |tx − vx|+ ε′ . (10.18)

10 Blockmodels 267

In the other case where {w, t} is oriented down we get

δ[v, t] ≤ ‖t− v‖∞ + ε′ ≤ max{|tx − vx|+ ε′, |(wy − vy)− (wy − ty)|+ ε′}
≤ max{|tx − vx|+ ε′, δ[v, w] + ε′ − δ[w, t] + ε′ + ε′}

≤ max{|tx − vx|+ ε′, δ[v, w]} . (10.19)

Where the first inequality follows by the quality assumption, the second by
the orientation of the edges, the third by the fact that both are edges and
Observation 10.1.7, and the fourth because {w, t} is a strong edge.

Equations (10.17) and (10.18) together contradict (10.19); therefore it is pos-
sible to find out the orientation of edge {w, t}. A similar argument shows that
in the case where {w, t} is a weak edge and {v, w} is strong we can find out the
orientation of {w, t}. As in a connected component each weak edge is connected
to a strong edge, we can iteratively find the orientation of all edges in it by fixing
one. �

The previous two lemmata together already yield a 3-approximation solution if
G′ consists of a single connected component.

If G′ consists of more than one connected component the algorithm arbi-
trarily fixes the orientation of one edge in each connected component. In the
case where all these relative orientations are accidentally chosen correctly, we
still have a 3-approximation. Surprisingly, even if the relative orientations are
chosen incorrectly we still have a 5-approximate solution. The intuition behind
this result is that between connected components there are no strong edges (but
potentially weak edges) and therefore by choosing the wrong relative orienta-
tion between the components not too much distortion is created. The following
lemma makes this statement precise.

Lemma 10.1.14. There is a 5-approximate solution for every relative orienta-
tion between the edges of the components.

Sketch of Proof. The idea of the proof is to show how we can transform the op-
timal solution (i.e. the solution in which the orientations are chosen optimally)
into a solution with arbitrary relative orientation. To this end, we scan through
the components {C1, . . . , Ck} from left to right and flip in the ith step compo-
nents {Ci, . . . , Ck} by an appropriately chosen horizontal line if the orientations
in Ci in the arbitrary and the optimal solution disagree. For this choice to be
possible it is necessary that the components can be separated by vertical lines.
Then it needs to be established that this (clever) choice of flips does not create
too much additional distortion. �

The x-coordinates. We will see a sketch of the method to find the x-coordinates.
We start again by stating the quality assumption (q. a.) that the optimal em-
bedding has error ε�. Now let the diameter be given by the points p and q and
assume it is defined by qx−px. As the origin of the coordinate system is arbitrary,
we can fix p at (0, 0).

268 M. Nunkesser and D. Sawitzki

Let A be the set of points v ∈ P \ {p, q} with δ[p, q] + kε� ≥ δ[p, v] + δ[v, q]
for some constant k.

A = {v ∈ P \ {p, q} | δ[p, q] + kε� ≥ δ[p, v] + δ[v, q]}

Points in A fulfill the following two inequalities

vx

q. a.

≤ δ[p, v] + ε� , (10.20)

vx

2×q. a.

≥ δ[p, q]− δ[v, q]− 2ε�
v∈A
≥ δ[p, v]− (k + 2)ε� . (10.21)

If we fix vx at the arithmetic mean of the two right hand sides vx = (2δ[p, v]−
(k + 1)ε�)/2 = δ[p, v] − ((k + 1)ε�)/2, the additive error with respect to the
optimal value for vx is bounded by (k + 3)ε�/2. If all points v ∈ P \ {p, q} are in
A, the problem is solved. In the case P \A �= ∅, the algorithm makes a (lengthy)
case distinction that we will not present in detail. The general idea is to partition
the set P \A into finer sets B, C, and D. Then, similar to the case of the problem
with the y-coordinates, equations are derived that hold under the assumptions
that a point p′ is in B, C, or D. As the equations are again contradictory, it is
possible to find out to which of the sets p′ belongs. From this membership it is
then possible to find a good approximation of the x-coordinate.

This completes the presentation of Bădoiu’s algorithm. To sum up, it achieves
its goal of guaranteeing a constant loss with respect to the optimal embedding by
connecting the MDS-problem to a discrete structure—the graph G′ together with
an orientation on it. This makes possible the use of a combinatorial algorithm.
Note that on bad instances the distortion of the constructed embedding can
still be very high if even the optimal embedding has high distortion, see the
bibliography for references on this problem.

10.1.3 Clustering Based Methods

In the preceding sections, we have discussed how to derive measures of structural
equivalence from the adjacency matrix A of G and how to refine them by mul-
tidimensional scaling. We will now investigate clustering based methods which
use such a measure δi,j for computing an actor set partition P that hopefully
corresponds to the true positional structure of G.

Having a symmetric distance measure δi,j , we could of course apply general
clustering techniques in order to identify subsets of actors which are expected
to represent one position. Chapter 8 gives an overview over this broad area of
network analysis. Nevertheless, in the area of blockmodeling a rather simple
clustering heuristic has been implemented and applied by most researchers.

In general, we speak of hierarchical clustering if the clustering algorithm
starts with clusters P1, . . . , Pn with Pi := {vi} before it iteratively joins pairs of
clusters with minimal distance d(Pk, P�). Different measures d : P(V)×P(V)→

for the inter-cluster distance have been proposed. This clustering framework
generates a hierarchy of subsets and finally results in a single cluster containing

10 Blockmodels 269

all actors of V . Then, the researcher has to select a minimum distance β that
has to be between two clusters resp. positions.

Formally, we start with a partition P1 = {{v1}, . . . , {vn}}. In general, we
have a current partition Px and compute Px+1 by joining two different clusters
Pk∗ , P�∗ ∈ Px, i. e., Px+1 := (Px \ {Pk∗ , P�∗}) ∪ {Pk∗ ∪ P�∗} for (Pk∗ , P�∗) :=
arg minPk,P�∈Px

d(Pk, P�). The result is a sequence P1, . . . ,Pn of partitions. The
researcher has to choose a threshold value β which is used to discard cluster
unions incorporating cluster pairs of larger distance than β. After having pruned
the hierarchy in this way, the resulting actor subsets are taken as the positions
of the blockmodeling analysis.

Cluster Distance Measures. There are four popular ways how to define the
cluster distance d (see [18]). All of them have been justified by successful analyses
of positional structures and may be selected depending on the relational data
of G. However, the single linkage hierarchical clustering is not considered to be
very good because of chaining effects. Nevertheless, it is able to discover well-
separated shape clusters.

Single linkage ds(Pk, P�). In case of single linkage, we set ds(Pk, P�) :=
min {δi,j | vi ∈ Pk, vj ∈ P�}. That is, the smallest distance between two mem-
bers vi of Pk and vj of P� is taken as distance between the clusters Pk and
P�.

Complete linkage dc(Pk, P�). In case of complete linkage, we demand that ev-
ery pair (vi, vj) ∈ Pk × P� has at most distance dc(Pk, P�), i. e., dc(Pk, P�) :=
max {δi,j | vi ∈ Pk, vj ∈ P�}.

Average linkage da(Pk, P�). In contrast to the maximum or minimum actor-wise
distances of the two previous measures, the average linkage takes the average
actor distances into account. The average linkage distance da is defined by

da(Pk, P�) :=
1

|Pk| · |P�|
·

∑
vi∈Pk, vj∈P�

δi,j .

Average group linkage dg(Pk, P�). Finally, the average group linkage considers
the average distance between all actor-pairs of the join of Pk and P�. This result
Pk ∪ P� contains

(
|Pk|+|P�|

2

)
actor pairs, and it is

dg(Pk, P�) :=
∑

vi∈Pk, vj∈P�

δi,j

/(
|Pk|+ |P�|

2

)
.

Burt’s Algorithm. We finally want to mention a special well-established hier-
archical clustering approach to blockmodeling that was presented by Burt [107]
in 1976. Basically, he uses the Euclidian distance δe

i,j together with the single

270 M. Nunkesser and D. Sawitzki

linkage cluster distance ds. Furthermore, Burt assumes that the vector δe
i,· :=(

δe
i,j

)
j

of the observed actor distances between vi and the other actors is com-
posed mainly of two components: First, a position-dependent vector pk ∈ n

which contains the hypothetical distances of an ideal member of position k :=
P (vi) to all other actors. Second, δe

i,· is influenced by an additive error compo-
nent wi ∈ n as small as possible which is (besides of the covariance) used to
explain the deviations of δe

i,· from pk. In detail, Burt’s model states

δe
i,· = cov

(
δe
i,·, pk

)
· pk + wi ,

where k := P (vi) and cov
(
δe
i,·, pk

)
is the covariance between δe

i,· and pk. That is,
vectors δe

i,· and δe
j,· for P (vi) = P (vj) may only differ by their mean, while the

remaining deviation wi resp. wj should be small for a good blockmodel.
Burt gives methods to compute the unknown components pk, 1 ≤ k ≤ L

and wi, 1 ≤ i ≤ n, from the distances δi,j minimizing the error components wi.
These results can then be used for further interpretation of the blockmodel or
to evaluate its plausibility by means of the magnitudes of the error components.

10.1.4 CONCOR

Besides clustering based methods, the CONCOR algorithm represents the most
popular method in traditional blockmodeling. It was presented by Breiger, Boor-
man, and Arabie [99] in 1975 and has been extensively used in the 70’s and 80’s.

CONCOR is a short form of convergence of iterated correlations. This stems
from the observation in sociological applications that the iterated calculation
of correlation matrices of the adjacency matrix A typically converges to matri-
ces of special structure. In detail, the algorithm computes the symmetric cor-
relation matrix C1 :=

(
c
(1)
i,j

)
i,j

:= (ci,j)i,j of A corresponding to Definition

10.1.2. Then, it iteratively computes the correlation matrix Cs+1 :=
(
c
(s+1)
i,j

)
i,j

of Cs :=
(
c
(s)
i,j

)
i,j

. This process is expected to converge to a matrix R := (ri,j)i,j

consisting solely of −1 and +1 entries. Furthermore, it has been observed
that there typically exists a permutation π ∈ Σn on the set of actor indices
{1, . . . , n} and an index i∗ such that the rows and columns of R can be per-
muted to a matrix R∗ :=

(
r∗i,j

)
i,j

:=
(
rπ(i),π(j)

)
i,j

with r∗i,j = 1 for (i, j) ∈
({1, . . . , i∗} × {1, . . . , i∗}) ∪ ({i∗ + 1, . . . , n} × {i∗ + 1, . . . , n}) and r∗i,j = −1 for
(i, j) ∈ ({i∗ + 1, . . . , n} × {1, . . . , i∗})∪({1, . . . , i∗} × {i∗ + 1, . . . , n}) (see Figure
10.1.4).

R∗ =
+1 −1
−1 +1

Fig. 10.4. Layout of matrix R∗

10 Blockmodels 271

Assume that the actor set partition P = {P1, . . . , PL} reflects the true posi-
tional structure of G. Let P1 and P2 be disjoint subsets of P with P1 ∪ P2 = P
such that actors of different positions Pk ∈ Px and P� ∈ Px, x ∈ {1, 2}, are more
similar to each other than actors of positions Pk′ ∈ P1 and P�′ ∈ P2. That is,
we assume that P1 and P2 are the result of some clustering method dividing P
into two subsets.

The CONCOR algorithm is based on the assumption that the correlation
coefficient c

(s)
i,j between actors vi, vj of the same part Px converges to 1, while

this index converges to −1 if vi and vj are placed in different halves of P .
Therefore, the algorithm is iterated until for some s∗ matrix Cs∗ is close enough
to R; then, the actors V are divided into V1 := {vπ(1), . . . , vπ(i∗)} and V2 :=
{vπ(i∗+1), . . . , vπ(n)}. Now, Vx, x ∈ {1, 2}, should correspond to

⋃
k∈Px

Pk.
In order to finally obtain the positional subsets P1, . . . , PL of V , CONCOR

is recursively applied to the induced subgraphs Gx := (Vx, E ∩ (Vx × Vx)) for
x ∈ {1, 2}, until the user decides to stop. One criterion for this could be the speed
of convergence to R; in most papers reporting on applications of CONCOR, this
decision is taken heuristically depending on G. That is, we get a subdivision
tree of V (often called dendrogram) whose leaves correspond to the final output
P = {P1, . . . , PL}.

Criticism. Although this method is well-established and was applied in many
blockmodel analyses of social data, there has also been a lot of criticism of
CONCOR. Doreian [160], Faust [199], and Sim and Schwartz [520] applied it to
several hypothetical networks whose positional structure was known and expe-
rienced CONCOR to be unable to recover the correct blockmodel.

Breiger, Boorman, and Arabie proposed the CONCOR algorithm without a
mathematical justification for its procedure or an idea what it exactly computes.
In [508], Schwartz approaches this problem by investigating CONCOR’s math-
ematical properties. Experiments show that for most input graphs G, the result
matrix Cs∗ has rank 1. It can be easily proved that this property implies the
special structure of R (that is, ri,j ∈ {−1, 1} and the existence of π and i∗).
Schwartz also gives concrete counterexamples for which this does not hold. Fur-
thermore, the only eigenvector of such a rank 1 matrix seems almost always to
correspond to the first principal component obtained by the statistical method
of principal component analysis (PCA) [335]. That is why there seems to be
no substantial reason to use CONCOR instead of a PCA, whose properties are
well-understood.

10.1.5 Computing the Image Matrix

It was already mentioned that the partition P� of the structural equivalence
classes causes the P�-permuted adjacency matrix A∗ =

(
a∗

i,j

)
i,j

to consist solely

of 0- and 1-blocks Ak,�, 1 ≤ k, � ≤ L. It has also been argued that � is not suited
to retrieve the hidden positional structure of real-world graphs G. Therefore,

272 M. Nunkesser and D. Sawitzki

heuristic methods based on some relaxation of � have been introduced in the
preceding sections.

Let P be an actor set partition produced by such a heuristic blockmodeling
method. The corresponding P-permuted matrix A∗ is expected to consist of
blocks Ak,� containing both zeros and ones. In order to decide if position Pk

is adjacent to P� in the reduced graph represented by the image matrix B =
(bi,j)i,j ∈ {0, 1}L×L, several criterions have been proposed in the literature. We
describe the three most popular ones for the case k �= �.

Zeroblock Criterion. The zeroblock criterion corresponds to the assumption
that two positions Pk, P� ∈ P are only non-adjacent if the k–� block Ak,� of
the P-permuted matrix A∗ solely contains zeros, i. e., bk,� = 0 :⇔ ∀(vi, vj) ∈
Pk × P� : (vi, vj) �∈ E. If the zeroblock criterion is used, the image matrix B
corresponds to the adjacency matrix of the role graph introduced in Definition
9.0.3.

Oneblock Criterion. In contrast to the zeroblock criterion, the oneblock crite-
rion corresponds to the assumption that two positions Pk, P� ∈ P are only adja-
cent if Ak,� solely contains ones, i. e., bk,� = 1 :⇔ ∀(vi, vj) ∈ Pk×P� : (vi, vj) ∈ E.

α-Density Criterion. In most cases, we do not assume that a single entry in
a block Ak,� decides about the relation between positions Pk, P� ∈ P . We would
rather accept small deviations from perfect 0- or 1-blocks and, therefore, want
to know to which block type Ak,� is more similar.

First, we define a supporting identifier for the number of non-diagonal ele-
ments of a block.

Definition 10.1.15. The block cardinality Sk,� of block Ak,� is defined by
Sk,� := |Pk| · |P�| if k �= � and Sk,� := |Pk| · (|P�| − 1) if k = �.

Definition 10.1.16. The block density Δk,� of block Ak,� is defined by

Δk,� :=
1

Sk,�
·

∑
vi∈Pk, vj∈P�

ai,j .

This definition excludes the diagonal elements of A. Using the α-density criterion,
we set bk,� to zero iff Δk,� is smaller than a certain threshold value α, i. e.,
bk,� = 0 :⇔ Δk,� < α. Often, the over-all density of the adjacency matrix A is
used as threshold α, i. e., α :=

∑
1≤i,j≤n ai,j/(n(n−1)). That is, two positions Pk

and P� are decided to be connected if the relative edge number in their induced
subgraph is at least as high as the relative edge number of the whole graph G.

10.1.6 Goodness-of-Fit Indices

Due the heuristical nature of the algorithms discussed in this section on deter-
ministic models, it makes sense to apply several different methods on the same

10 Blockmodels 273

data and to compare the results. In order to decide which result to accept as the
best approximation of the true positional structure of the input graph G, quality
or goodness-of-fit indices are needed to evaluate the plausibility of a blockmodel.

So let us assume that B = (bi,j)i,j is an image matrix produced by some
blockmodeling method for graph G with adjacency matrix A and corresponding
actor set partition P .

Density Error. A blockmodel can be evaluated by comparing A = (ai,j)i,j
with a hypothetical ideal adjacency matrix induced by B. Such an ideal matrix
would have only 1-entries in blocks Ak,� with bk,� = 1 resp. 0-entries if bk,� =
0 (excluding diagonal elements ai,i). In detail, we compute the sum of error
differences between the block densities Δk,� and the elements of B.

Definition 10.1.17. The density error ed of image matrix B is defined by

ed :=
∑

1≤k,�≤L

|bk,� −Δk,�| .

It is ed ∈
[
0, L2

]
. The smaller ed, the more structural equivalent are actors

of same position. Therefore, the blockmodel with the smallest density error is
expected to be a better representation of the positional structure of G.

Carrington-Heil-Berkowitz Index. A second widely used goodness-of-fit in-
dex is the Carrington-Heil-Berkowitz index [112], which is tailored for evaluating
blockmodels that have been created using the α-density criterion (see Section
10.1.5). Remember that we define bi,j = 0 iff the block density Δk,� is smaller
than the threshold value α. The choice of bk,� seems to be more reliable if the
difference |Δk,� −α| is large. The best possible difference for bk,� = 0 is α, while
it is 1− α for bk,� = 1.

The Carrington-Heil-Berkowitz index is the normalized weighted sum of
squared ratios of the observed difference |Δk,� − α| to the ideal one α resp.
1−α. Again, let Sk,� be the block cardinality of block Ak,� defined in Definition
10.1.15.

Definition 10.1.18. Let tk,� := 1 for bk,� = 0 and tk,� := 1/(1−α) for bk,� = 1.
The Carrington-Heil-Berkowitz index eb of image matrix B is defined by

eb :=
∑

1≤k,�≤L

(
Δk,� − α

tk,� · α

)2

· Sk,�

n(n− 1)
.

That is, the summand for block Ak,� is weighted by the ratio Sk,�/(n(n− 1)) it
contributes to the whole matrix A. It is eb ∈ [0, 1], and a value of 1 indicates
perfect structural equivalence. A value close to 0 stems from all Δk,�s being close
to α. Then, many values bk,� are expected to be wrong because the α-density
criterion classified them just due to little random deviations of Δk,� around α.
Hence, the corresponding blockmodel is assumed to be bad.

274 M. Nunkesser and D. Sawitzki

10.1.7 Generalized Blockmodeling

Batagelj, Ferligoj, and Doreian [42, 45, 206] present an approach called gener-
alized blockmodeling. They consider blockmodeling as an optimization problem
on the set of partitions Π :=

{
P = (P1, . . . , PL) | V = P1 � · · · � PL

}
, where L

is part of the input.
In the classical blockmodeling framework, the entry bk,� ∈ {0, 1} of the im-

age matrix B represents a hypothesis on the existence of a connection between
positions Pk and P�. That is, the blocks of a good blockmodel are assumed to
be filled mainly either with ones or with zeros. In contrast, generalized block-
modeling is not just based on a relaxation of structural equivalence, but allows
positions to be related by a variety of different connection types T . Hence, the
entries bk,� of B now take values in T .

The optimization problem that has to be solved is defined by an error measure
D : Π → with D(P) :=

∑
1≤k,�≤L d(Pk, P�) summing up blockwise errors

d : P2 → . The final result is an optimal partition P∗ := arg minP∈Π{D(P)}.
The authors use a local search heuristic to find P∗. Starting from an initial
(possibly random) partition, a current partition P is iteratively improved by
replacing it with the best partition P ′ ∈ N (P) from the neighborhood N (P)
of P . This neighborhood is defined by all partitions resulting from one of two
operations applied on P :

1. A transition moves some node v from its position Pk to another position P�.
2. A transposition exchanges the positional membership of two distinct nodes

v ∈ Pk and vj ∈ P�, k �= �.

This optimization method does not depend on D and leaves freedom for the
definition of the blockwise error measure d. It is assumed that each connection
type T ∈ T has a set I(T) of ideal blocks that fit T perfectly. For any block Ak,�

according to the current partition P , the type-specific error measure δ(Ak,�, T) ∈
gives the minimal distance of Ak,� to any block of I(T). Then, we assume that

Pk and P� are related by some connection type T with minimal distance to Ak,�,
that is, bk,� := arg minT∈T {δ(Ak,�, T)}. Some priority order on T can be used
to determine bk,� if the nearest connection type is not unique. Alternatively, P
can be optimized for a pre-defined image matrix B or a whole class of image
matrices (see, e. g., [44, 162]). From B, the blockwise errors are obtained by
d(Pk, P�) := δ(Ak,�, bk,�).

Some Proposed Connection Types. The generalized blockmodeling frame-
work can be used with arbitrary user-defined connection types. In [45], Batagelj,
Ferligoj, and Doreian propose a set of nine types motivated from different exist-
ing blockmodeling approaches, which will be briefly discussed in the following.
In order to simplify the descriptions, we assume that blocks contain no diagonal
elements of A.

Complete and null. This corresponds to the zeroblock- and oneblock-criterion
in classical blockmodeling. An ideal complete (null) block Ak,� contains solely

10 Blockmodels 275

ones (zeros) and represents the case that all nodes Pk are connected to all nodes
P� (no node of Pk is connected to any node of P�). If all blocks are either ideal
complete or ideal null, the partition corresponds to the equivalence classes of a
structural equivalence relation.

Row-dominant and col-dominant. An ideal row-dominant (col-dominant) block
contains at least one row (column) entirely filled with ones. That is, there is at
least one actor in the row position connected to all of the other group (there
is at least one actor in the column position to which every actor from the row
position is connected).

Row-regular, col-regular, and regular. An ideal row-regular (col-regular) block
contains at least one one in each row (column). That is, every actor in the row
position is connected to at least one of the column position (every actor in the
column position is connected from at least one of the row position). A block
is called regular if it is both row-regular and col-regular. If all blocks are ideal
regular, the partition corresponds to a regular role assignment (see Definition
9.0.3).

Row-functional and col-functional. An ideal row-functional (col-functional)
block contains exactly one one in each column (row). That is, every actor in
the column position is connected to exactly one of the row position (every actor
in the row position is connected from exactly one of the column position).

Figure 10.1.7 illustrates ideal subgraphs of each connection type, while Ta-
ble 10.1.7 lists the definitions of deviation functions δ(Pk, P�, T) for each of the
nine types. These sum up elements of rows resp. column which do not fit the
ideal block of a particular connection type.

Generalized blockmodeling has been successfully applied to several networks
(see, e. g., [163]). The method seemed to be limited to networks of at most
hundreds actors.

10.2 Stochastic Models

Recently, many researchers have advocated the use of stochastic models instead
of deterministic models because they make explicit the assumptions on the model
and enable us to make precise statements on the validity of hypotheses about
social networks. In Section 10.2.1 we present the p1 model that was the first
stochastic model to become established in social network analysis. Then we
investigate in the context of the p1 model how hypothesis testing can be done for
stochastic models in Section 10.2.2. In Section 10.2.3 we explore the use of the
p1 model for blockmodeling. We also describe stochastic models that are more
adapted to the specific setting of blockmodeling in Section 10.2.4. Finally, we
present an advanced stochastic model in Section 10.2.5.

276 M. Nunkesser and D. Sawitzki

Pk P�

(a) Com-
plete.

Pk P�

(b) Null.

Pk P�

(c) Row-
dominant.

Pk P�

(d) Col-
dominant.

Pk P�

(e) Row-
regular.

Pk P�

(f) Col-
regular.

Pk P�

(g) Regular.

Pk P�

(h) Row-
functional.

Pk P�

(i) Col-
functional.

Fig. 10.5. Examples of ideal subgraphs for the different block types of generalized
blockmodeling as proposed by Batagelj, Ferligoj, and Doreian. Dashed lines are not
necessary for the blocks to be ideal

10.2.1 The p1 Model

If we want to understand blockmodeling from a statistical point of view, we
need to make an assumption on a model that generates the data. In the setting
of parameterized statistics, this is a parameterized probability distribution. As
the data in blockmodeling is a directed graph, we need to understand suitable
distributions on graphs. Historically, the p1 model was one of the first such

10 Blockmodels 277

Table 10.1. Deviation functions for the connection types of generalized blockmodel-
ing as proposed by Batagelj, Ferligoj, and Doreian. (For blocks containing diagonal
elements, the formulas have to be slightly modified)

T δ(Pk, P�, T)

complete |Pk| · |P�| − c
null c
row-dominant (|P�| − Mr) · |Pk|
col-dominant (|Pk| − Mc) · |P�|
row-regular (|Pk| − Nr) · |P�|
col-regular (|P�| − Nc) · |Pk|
regular (|Pk| − Nr) · |P�| + (|P�| − Nc) · |Nr|
row-functional c − Nr + (|Pk| − Nr) · |P�|
col-functional c − Nc + (|P�| − Nc) · |Pk|

c Number of ones in Ak,�.
Nr Number of non-null rows in Ak,�.
Nc Number of non-null column in Ak,�.
Mr Maximal row-sum in Ak,�.
Mc Maximal column-sum in Ak,�.

distributions that has been used in social network analysis. Its main advantages
are its intuitive appeal and its simplicity.

Generally, we want to express for each graph x on n nodes with an n × n
adjacency matrix A the probability that it is drawn from the set of all possible
graphs on n nodes Gn. If we define a random variable X that assumes values
in Gn, we could express any distribution by defining Pr[X = x] explicitly for all
x ∈ Gn. Of course, this direct approach becomes infeasible already for moderately
big n. We are interested in an simple, ‘intuitive’ distribution. Therefore, it is
natural to try to connect Pr[X = x] to the presence or absence of individual
edges xij in x, which we express by a {0, 1}-random variable:

Xij =

{
1 if edge xij present in x,

0 otherwise.

Note that in contrast to the part on deterministic models concrete graphs are
called x in this part and the edges are referred to as xij . The reason for this
change in notation is that graphs are now seen as an outcome of a draw from
a distribution that is represented by a random variable X . Probably one of
the easiest ways to specify a distribution is to set Pr[Xij = 1] = 1/2 for all
i, j ∈ {1, . . . , n}, i �= j and to assume that all Xij are independent. This is
equivalent to giving all graphs in Gn the same probability, i.e. Pr[X = x] =
2−n(n−1). Obviously, this model is too simple to be useful. It is not possible to
infer anything from it as the distribution is not parameterized. A very simple
parameterization is to set Pr[Xij = 1] = aij . If we assume independence of all

278 M. Nunkesser and D. Sawitzki

Xij we get
Pr[X = x] =

∏
1≤i,j≤n

a
xij

ij (1− aij)1−xij .

One reason why this closed form is so simple is that we have assumed inde-
pendence. On the other hand this model has serious drawbacks: First, by the
independence assumption it is impossible to infer how likely it is that a relation
from a to b is reciprocated. Unfortunately, this question is at the heart of many
studies in social network analysis. Second, the model has too many parameters,
which cannot be estimated from a single observation (i.e. the observed social net-
work), this problem is often referred to as this model not being parsimonious.

The p1 model that we derive now from a first ‘tentative’ distribution over-
comes these drawbacks. In order to model reciprocation effects let us assume
statistical dependence of the variables Xij and Xji for all 1 ≤ i < j ≤ n which
are together called the dyad Dij := Xij ×Xji. Let the rest of the variables still
be independent, i.e. the probability of an edge from a to b is only dependent on
the existence of an edge from b to a. The resulting distribution, which we call pt

(for tentative), is easy to specify in terms of dyads. We set

Pr[Dij = (1, 1)] = mij ,

Pr[Dij = (1, 0)] = aij ,

Pr[Dij = (0, 0)] = nij ,

with mij + aij + aji + nij = 1. Here, mij stands for the probability of a mutual
relation, aij for an asymmetric relation and nij for no relation between actors i
and j. For the probability of a given graph x we get

pt(x) = Pr[X = x] =
∏
i<j

m
xij(1−xij)
ij

∏
i�=j

a
xij(1−xji)
ij

∏
i<j

n
(1−xij)(1−xji)
ij .

This formula completely specifies pt. We have still the problem of too many
variables, which we will address soon. From a statistical point of view, it is
desirable to find out into which class of distributions pt falls, so that the standard
theory can be applied. For pt we show that it belongs to the exponential family
of distributions:

Definition 10.2.1. A distribution of a random variable X belongs to the s-
dimensional exponential family iff its probability density or frequency function
can be written as

f(x, η) = exp

[
s∑

i=1

ηiTi(x)−A(η)

]
h(x) ,

where the ηi are parameters, A is a real-valued function of the parameters, the
Ti are real-valued statistics, and the factor h(x) is any function depending only
on x.

10 Blockmodels 279

To see that pt has indeed this form we first transform it by taking logarithms
and exponentiating:

pt(x) = exp

⎡
⎣∑

i<j

ρijxijxji +
∑
i�=j

θijxij

⎤
⎦∏

i<j

nij , (10.22)

where ρij = ln [(mijnij)/(aijaji)] and θij = ln [aij/nij]. The distribution pt is
in the exponential family: the η are all θ and ρ parameters, the statistics are
the xij and the xijxji, the function A(η) is

∑
i<j log nij and finally h(x) is just

the constant 1. The dimension is 2n2. Equation (10.22) is a reparameterization
of pt that is now expressed in terms of ρij and θij . The parameters ρ and θ
are so-called log-odds ratios. Intuitively, exp(ρij) divides the symmetric cases by
the asymmetric cases and therefore ρij measures the tendency for reciprocation.
The odds ratio exp(θij) divides a case where there is an edge from i to j by a
case where there is no edge. Therefore, θij is an indicator of the probability of
an edge from i to j.

To overcome the problem of too many parameters (that can be read off from
the high dimension of pt) we constrain the parameters in the following way:

ρij = ρ ∀i < j

and
θij = θ + αi + βj ∀i �= j (10.23)

with
∑

i αi =
∑

i βi = 0. The constraints imply that a global reciprocation
parameter ρ is assumed and that the density from i to j is split up into three
additive components: θ, a global density parameter, αi, actor i’s expansiveness
(or productivity), and βj , actor vj ’s attractiveness. The resulting distribution is
the p1 distribution:

p1(x) = exp

⎡
⎣ρm′ + θ

∑
i,j

xij +
∑

i

αi

∑
j

xij +
∑

j

βj

∑
i

xij

⎤
⎦ ·∏

i<j

nij

= exp

⎡
⎣ρm′ + θe +

∑
i

αiΔout(i) +
∑

j

βjΔin(j)

⎤
⎦ ·∏

i<j

nij .

(10.24)

Also p1 belongs to the exponential family: The statistics are the number of
mutual edges m′, the total number e of edges, and Δin(i) and Δout(i), i.e. for
all i the in- and out-degrees of node i. The dimension is 2n + 2, significantly
lower than for pt. Equation 10.24 shows that all statistics except for m′ can
be expressed as so-called margins, i.e. as a sum over the variables where some
indices are fixed and others go over the complete range.

After having deduced the p1 model, the most natural question is how we
can estimate the parameters θ = (ρ, θ, α1, . . . , αn, β1, . . . , βn) from an observed

280 M. Nunkesser and D. Sawitzki

graph. The standard estimation procedure for p1 is maximum likelihood (ML-)
estimation which yields the parameters that maximize the probability p1(x |
θ) for the observed x. The general approach to find the ML-estimator is to
differentiate the probability density function for the parameters and to search
for maxima. In this context the density function is called likelihood function �x(θ)
because it is seen as a function in the parameters and not in the data values. The
theory of exponential families (that is beyond the scope of this book, see [385] for
details) directly gives the result that the maximum likelihood estimation can be
found as the solution of the likelihood equations in which the (sufficient) statistics
are equated to their expected values.4 In our case the sufficient statistics are all
statistics that define p1. Therefore we get

m′ != E[m′] =
∑
i<j

mij , (10.25)

Δin(i) != E[Δin(i)] =
∑

j

(mij + aij) ∀i ∈ {1, . . . , n} , (10.26)

Δout(j)
!= E[Δout(j)] =

∑
i

(mij + aij) ∀j ∈ {1, . . . , n} . (10.27)

Note that for ease of presentation the variables θ and ρij have been transformed
back. Theoretically, any standard method that solves such a system of linear
equations (like the Newton-method) can be applied. However, the structure of
these equations can lead to nontrivial convergence problems. Therefore, specific
algorithms have been developed; one of them is the generalized iterative scaling
algorithm. In fact after a transformation of the variables also standard iterative
scaling can be used. As this transformation is also needed in the next section it
is presented here. Let

Yijk� =

{
1 if Xij = k, Xji = � for k, � ∈ {0, 1},
0 otherwise.

With this representation all statistics in the p1 model can be expressed as mar-
gins of the variables. In particular, m′ = 1/2

∑
i,j yij11. For a single dyad we

get

Pr[Yijk� = 1] = exp [kαi + kβj + �αj + �βi + (k + �)θ + k�ρ + λij] ,

where the λij are chosen such that
∑

k,� Yijk� = 1 and
∑

i αi =
∑

i βi = 0. It
can be verified that this is equivalent to the p1 model by expressing the original
parameters mij , aij and nij in terms of the new parameters. Besides, a little
calculation reveals that indeed∏

i<j,k,�

Pr[Yijk� = 1] = p1(x) .

4 Roughly, this result can be obtained by maximizing �(·) in setting ∂�/∂θ to zero and
observing that p1 is a convex function being in the exponential family.

10 Blockmodels 281

The new representation allows to apply the theory of generalized linear models
and categorical data analysis5 to p1.

The p1 model incorporates the possibility to do goodness-of-fit tests and
general hypothesis testing.

10.2.2 Goodness-of-Fit Indices

One of the major advantages of statistical models over the ‘ad-hoc’ deterministic
models is the (at least theoretical) possibility to make precise statements on both
how appropriate a model is for the observed data and how justified hypothesis
on the social network are.

We review basic facts from statistics that are necessary to understand this.
Whether we want to evaluate the goodness-of-fit of the model or whether we
are interested in verifying claims about the social network, we are always in a
similar setting in which we have two alternative hypothesis, the null hypothesis
H0 and the alternative hypothesis HA. Already the names suggests that we
usually treat these two hypothesis asymmetrically, which will become clear later
in this section. To give an example H0 might state that the observed social
network is from a p1 distribution with a given parameter set {θ = θ′, ρ = ρ′, α1 =
α′

1, . . . , αn = α′
n, β1 = β′

1, . . . , βn = β′
n}, whereas HA could state that this is true

except for the reciprocation parameter, which is different: {θ = θ′, ρ �= ρ′, α1 =
α′

1, . . . , αn = α′
n, β1 = β′

1, . . . , βn = β′
n} In this example H0 is called a simple

hypothesis because it completely specifies the distribution, whereas HA does not
specify ρ and is therefore called a composite hypothesis. In general composite
hypotheses specify that the parameters can come from a subset of all possible
parameters. A test statistic T is a random variable that maps the observed data
x to a value T (x), often with T (x) ∈ [0, 1]. The set of values of T for which H0

is accepted (rejected) is denoted by acceptance region (resp. rejection region).
Often the rejection region is of the form {x | T (x) < c} or {x | T (x) > c},
then the value c that separates the rejection region from the acceptance region
is called the critical value. In the ideal case all x for which H0 holds are mapped
to values in the acceptance region and all other x are mapped to values in the
rejection region. In almost all nontrivial cases errors occur. These errors can be
of two types:

1. H0 is true, but the test rejects it. This is called a type I error, its probability
α is called the significance level of the test.

2. H0 is false, but is accepted. This (usually less detrimental) error is called a
type II error. Let its probability be β, then we call 1 − β (the probability
that H0 is false and rejected by the test) the power of the test.

The asymmetry of H0 and HA is reflected in the usual test procedure: A sig-
nificance level α is fixed (typically at small values like 0.01, 0.05 or 0.1) and an
appropriate test T is chosen. Obviously, tests with higher power for the fixed
5 To be more precise the transformation shows that p1 is a loglinear model of homo-

geneous association or of no three-factor interaction, see [3, 213].

282 M. Nunkesser and D. Sawitzki

significance level are preferable. The choice of the significance level reflects how
detrimental the researcher assesses a type I error. The critical value c is set ac-
cording to this significance level and finally T (x) is computed on the observed
data x. If T (x) > c the null hypothesis is rejected, otherwise it is accepted. In
order to set the critical value c according to the significance level we need to
find a c for which Pr[T (x) > c] ≤ α under the assumption that the null hypoth-
esis is true. Therefore, it is in general necessary to know the distribution of the
test statistic under the null hypothesis. This distribution is the so-called null
distribution.

Finding a good test, i.e. finding a test T with high or even maximum power
among all possible tests, is a complicated problem beyond the scope of this book.
However we present a paradigm from which many tests are constructed: Given
two hypothesis H0 and HA expressed by the subsets of parameters ω0 and ωA

to which they restrict the likelihood function �(θ), then the statistic

Λ∗ =
supθ∈ω0

�x(θ)
supθ∈ωA

�x(θ)

is called the likelihood ratio test statistic. High values of Λ∗ suggest that H0

should be accepted, low values suggest it should be rejected. The likelihood ratio
test rejects for values below some critical value c and accepts above it. One
reason why this test is often used is that it can be shown to be optimal for
simple hypotheses (in this case the supremum is over a single value θ0 resp. θA).

Lemma 10.2.2 (Neyman-Pearson). Let H0 and HA be simple hypotheses
given by the two parameter vectors θ0 resp. θA. If the likelihood ratio test that

rejects H0 for �x(θ0)

�x(θA) < c and rejects it otherwise has significance level α then
any other test statistic with significance level α′ ≤ α has power less than or equal
to that of the likelihood ratio test.

Note that in the case of composite hypothesis nominator and denominator
are the ML-estimates from the respective restricted parameter sets ω0 and ωA.
For distributions involving exponentiation like the exponential family it is often
easier to work with the ratio of the logarithms. In this case we get the statistic
G2 that is called log likelihood ratio statistic:

G2 = −2 logλ .

The factor of -2 has the reason that with this definition, G2 has an approximate
chi-square distribution in many cases.

Testing with p1. We now investigate how to apply the general setting above to
p1 models. For goodness-of-fit evaluation we would state H0 as “the data is gen-
erated by a p1 model”. Intuitively, HA should express that “the data is generated
by some other (more complicated) model”. Making this statement precise is dif-
ficult, we need to define a family of distributions ps that is a meaningful superset

10 Blockmodels 283

of p1 with two properties: First, for the likelihood ratio tests we need to be able
to do ML-estimation in ps. Second, we need to determine the null distribution of
the likelihood ratio test statistic, in order to set a meaningful critical value. For
p1 both problems are nontrivial. One possibility to extend p1 to a more general
distribution is to allow for differential reciprocity, i.e. instead of setting ρij = ρ
every actor gets a reciprocity parameter ρi and we set ρij = ρ + ρi + ρj . Let us
ignore the estimation problems for this model and assume that we can calcu-
late the ML-estimates for given data. Then the likelihood ratio is the maximum
likelihood of the p1 model over the maximum likelihood of this extended model
(which cannot be smaller because it contains the p1 model). The value of this
ratio indicates how justified the assumption of a global reciprocity parameter in
the p1 model is.

10.2.3 Blockmodels and p1

The p1-model has been extensively used for blockmodels. Recall that the p1-
model estimation yields—apart from the global density and reciprocation esti-
mates θ and ρ—an expansiveness and an attractiveness estimate αi respectively
βi for each actor.

One prominent approach is from Anderson, Faust, and Wasserman [30]. They
propose to interpret the stochastic equivalence of two actors as them having
the same αi and βi values . From this they derive the following blockmodeling
procedure.

1. Fit a p1-model to the observed digraph G, giving a set of parameters {θ, ρ, α1,
. . . , αn, β1, . . . , βn}.

2. Attribute the point qi = (αi, βi) to each actor i ∈ {1, . . . , n}.
3. Cluster the points into k clusters and return the clusters as a partition P

for the blockmodel.

Alternatively Anderson, Faust, and Wasserman suggest to take the points as a
result of the blockmodel. The parameter k is an input parameter to the block-
modeling procedure. For the clustering any of the clustering methods from Sec-
tion 10.1.3 or Chapter 8 can be used. Once the partition P has been found
we can test its quality by the testing methods of the previous section: Let the
null-hypothesis H0 be that P is indeed the partition and therefore all actors in
each Pk ∈ P are stochastically equivalent and have αi = αj ∀i, j ∈ Pk. For a
maximum likelihood ratio test we need to evaluate G2 which can be shown to
be

2
∑

i<j,k,�

yijk� log
yijk�

ŷP
ijk�

,

where yijk� are the observed data and ŷP
ijk� are the ML-estimates for Pr[Yijk� = 1]

under the side constraints given by P . The null distribution of G2 is a chi-squared
distribution, the degrees of freedom of which are a function of the number of
partitions.

284 M. Nunkesser and D. Sawitzki

The above model has some serious drawbacks that will become clear in a
typical example, in which the social network consists of a class of pupils in a
primary school. The pupils are asked for their best friends. The answers are en-
coded in the directed graph, i.e. an edge from pupil i to pupil j means that pupil
i sees pupil j as one of his best friends. Typically, this setting results in a graph
with two ‘clusters’, the boys and the girls. Both among the boys and among
the girls a high ‘within’-density of directed edges can be observed. Between the
two clusters there are usually considerably less edges, corresponding to a low
‘between’-density. From the discussion about the different types of equivalences
it should be clear that the two groups should be taken into consideration for the
blockmodel and that the partition should be into boys and girls. Unfortunately,
the p1-model attributes a single expansiveness and attractiveness parameter to
each boy and girl and is thus unable to model the difference between ‘within’-
and ‘between’-densities. This is a serious drawback because the different densi-
ties reflect the blockmodel. To overcome these shortcomings Wang and Wong
proposed a refinement of the p1-model [567]. In particular, if the partition P
is already known in advance (like in the school class example) we can define
indicator variables dijk� that represent P as follows.

dijk� =

{
1 if actor i is in Pk and actor j is in P�,
0 otherwise.

Recall that in the derivation of p1 we set θij as in Eq. (10.23). We incorporate
the knowledge about P in the new model by setting

θij = θ + αi + βj +
∑
k,�

dijk�λk� ∀i �= j .

Here, λij are the newly introduced block parameters that model the deviations
from the average in the expansiveness and attractiveness between two specific
partitions Pk and P�. In the school class example we would get a negative λ
between the boys and girls and positive λs within the two partitions. Maximum
likelihood estimation in this model can again be done via generalized iterative
scaling, a transformation into a loglinear model of homogeneous association like
for p1 is not known however. For reasons of parsimony it is often preferably to
restrict subsets of the λijs to be equal.

10.2.4 Posterior Blockmodel Estimation

In the model of Wang and Wong that we saw in the previous section we had
to content ourselves with blockmodels that needed the partition of actors as
input and served only as a means of testing hypotheses on this partition. Such
an approach is called a priori blockmodeling, because the partition constitutes
a priori knowledge. It is justified whenever it is clear from the nature of the
sociological question or by attributes of the actors (gender, age etc.) what the
partition of interest is. In this section we consider a stochastic approach by Now-
icki and Snijders to a posteriori blockmodeling, where the partition is unknown

10 Blockmodels 285

[453]. This model does not have the drawbacks of other a posteriori approach
we saw by Anderson, Faust, and Wasserman.

As in the p1-model Nowicki and Snijders consider dyads, i.e., ordered pairs
of actors (vertices) between which relations are given. Here a relation can be the
presence or absence of directed edges between two actors, but more generally, the
model allows the relation from vertex vi to vertex vj to take on any value from
a finite set A, which is similar to allowing multiple edge sets as in Definition
10.0.1. Therefore, dyads (vi, vj) can take values xij in a set A ⊂ A × A, the
values of all dyads together form the generalized adjacency matrix. For ease of
presentation we will continue with directed graphs, thus we assume A = {0, 1}2;
for example xij = (0, 1) stands for the asymmetric dyad (vi, vj) with an edge
from vj to vi. The crucial concept that models the partition is that vertices vi

have colors ci from a set χ = {1, . . . , L} that are not observed (latent). The
authors call this model a colored relational structure. It is given by a generalized
adjacency matrix x and a coloring c = (c1, . . . , cn).

The stochastic model that generates the data is now defined as follows. We
model the coloring by independent identically distributed (i. i. d.) random vari-
ables Ci for each vertex vi ∈ V . Thus we set

Pr[Ci = k] = θk

for each color k ∈ χ. The joint distribution of a given coloring c = {c1, . . . , cn}
is

Pr[C1 = c1, . . . , Cn = cn] =
∏

1≤i≤n

θci .

As we have seen in the discussion on different types of equivalences, we
assume in blockmodeling that all actors in one block behave similarly. Therefore,
it is assumed here that the type of relation between two actors i and j depends
only on their colors:

Pr[Xij = a | C = c] = η(i, j, a) ,

where the η parameterize the distribution (we have to require ∀i, j ∈
C :

∑
a∈A η(i, j, a) = 1). We obtain the following conditional distribution of

relations x and colors c given the parameters:

286 M. Nunkesser and D. Sawitzki

Pr[x, c | θ, η] =
n∏

i=1

θci

·
∏
a,b

⎛
⎝ ∏

1≤i<j≤L

η(i, j, (a, b))|{xk�|xk�=(a,b),ck=i,c�=j}|

⎞
⎠

·
∏
a=b

⎛
⎝ ∏

1≤i≤L

η(i, i, (a, b))|{xk�|xk�=(a,b),ck=c�=i}|/2

⎞
⎠

·
∏
a�=b

⎛
⎝(

∏
1≤i≤L

η(i, i, (a, b))|{xk�|xk�=(a,b),ck=c�=i,k<�}|

⎞
⎠

∀a, b ∈ {0, 1} .

(10.28)

Note that this formula basically multiplies for each vertex the probability of its
color θi and between all color classes the probabilities for the observed relations
between the two classes. The first double product does the multiplication for
different color classes, the last two double products do this for all monochromatic
dyads. From a statistical point of view such a model falls into the class of mixture
models.

We will briefly describe one way of statistical inference for such models.
Assume some black box allows us to get a sample of values (θ, η, x) from the
distribution given by the density function f(θ, η, c | x). Thus we have at our
disposal a set of triplets {(θ0, η0, x0), (θ1, η1, x1), . . . , (θK−1, ηK−1, xK−1)}. This
sample provides us with information about the underlying model parameters
and hidden data. For example, the value

1
K

K−1∑
k=0

[xk
i = xk

j]

indicates how likely it is that actors vi and vj are in the same color class. Indeed, if
the sample consists of independent draws from the distribution given by f(θ, η, c |
x) it follows directly from the law of large numbers that the above value is a
meaningful approximation of the random indicator variable [Ci = Cj].

Pr[Ci = Cj] = E
[
[Ci = Cj]

]
≈ 1

K

K−1∑
k=0

[ck
i = ck

j] (10.29)

For convenience we restate the (weak)6 law of large numbers, which also makes
precise the sense in which the ≈ symbol is to be understood.

6 The type of convergence shown here is called convergence in probability. Other ver-
sions of this theorem exist in which stronger types of convergence are shown.

10 Blockmodels 287

Theorem 10.2.3 (Weak Law of Large Numbers). Let X1, X2, . . . , Xn be
a sequence of independent random variables with E[Xi] = μ and Var[Xi] = σ2.
Then for any ε > 0,

Pr

[∣∣∣∣∣μ− 1
n

n∑
i=1

Xi

∣∣∣∣∣ > ε

]
→ 0

for n→∞.

The proof follows straight forward by one application of the Chebyshev in-
equality and can be found in any textbook on probability theory, for exam-
ple [492].

This theorem makes no statement on the speed of convergence. In the case
of independent random variables, the central limit theorem makes such a state-
ment. Unfortunately we will see that our black box does not give us independent
samples. With the same approach as above estimates for θ and η can be obtained.
The value

1
K

K−1∑
k=0

θk
ci

(10.30)

gives an estimate of the probability of the color class containing actor i. Finally,

1
K

K−1∑
k=0

η(ci, cj , a) (10.31)

is an estimate of the probability that between actor vi’s color class and actor
vj ’s color class a relation of type a holds.

These slightly awkward constructions are necessary, because there is an iden-
tifiability problem in the estimation process: It is not meaningful to talk about
color class i because arbitrary permutations of the color class labels can lead
to identical results. Similarly, it is not meaningful to estimate the probability
Pr[Ci = j] (instead of 10.29). All functions in (10.29), (10.30), and (10.31) are
invariant under permutations and therefore circumvent the identifiability prob-
lems.

Up to now we have gently ignored the question how we get the sample from
f(θ, η, c | x). To this end a method called Gibbs sampling can be used. While
the method itself is easy to describe its precise mathematical foundations are
beyond the scope of this book. The general approach for Gibbs sampling from
a distribution f(x1, . . . , xd) with prior distributions π(xi) for all variables is to
start with a random point (x0

1, x
0
2, . . . , x

0
d) as the first point of the sample. The

next point is identical to the first, except in the first coordinate. The first coordi-
nate is drawn from the full conditional distribution f(x1 | x2 = x0

2, . . . , xd = x0
d).

Usually it is much easier to get a sample from such a full conditional distribu-
tion then from the general one. In the ith step, the new point is the same as
the last, except for the (i mod d)th coordinate, which is drawn from the distri-
bution f(xi mod d | x1, . . . , x(i mod d)−1, x(i mod d)+1, xd). Often only every dth
point is taken, so that the next point potentially differs in all coordinates from

288 M. Nunkesser and D. Sawitzki

the present one. In our case the Gibbs sampler works as follows: Given values
(xt, θt, ηt) the next values are determined as

1. (θt+1, ηt+1) is drawn from f(θ, η | xt, y).
2. For each value i ∈ {1, . . . , n} the color xt+1

i is drawn from

f(xi | θt, ηt, xt
1, . . . , x

t
i−1, x

t
i+1, . . . , x

t
d) .

It can be verified that the full conditional distributions used here have a com-
paratively easy form. The Gibbs sampler has the property that the sample
{(x0, θ0, η0), . . . , (xK−1, θK−1, ηK−1)} approximates the distribution f(θ, η, c |
x) for large K. It is obvious from this description that the sample points are
highly dependent, because the values (xt+1, θt+1, ηt+1) are constructed from
(xt, θt, ηt). The sequence of samples forms a Markov chain. Fortunately, the gen-
eral theory of Markov chains comprises the so-called ergodic theorem that is in a
sense the counterpart of the law of large numbers for dependent samples that are
produced by a Markov chain. For a precise statement of the theorem too much
terminology for Markov chains is required, therefore we leave the presentation
at that intuitive level and refer the interested reader to the bibliography.

To sum up, Nowicki and Snijders propose to see blockmodeling as actors get-
ting colors from a distribution defined by the θ parameters. The probabilities of
relations between actors are influenced by their colors. As the colors are latent
variables, the task is to predict them from the observations (namely the rela-
tions between the actors) and to estimate the parameters η that govern how the
actors in the color classes relate to each other. The prediction and estimation is
done by Gibbs sampling from the conditional distribution f(θ, η, c | x) and then
evaluating invariant functions on the sample from which information about the
coloring and the parameters can be inferred.

10.2.5 p∗ Models

In Sects. 10.2.1 and 10.2.3, we have seen how a stochastic model of social network
generation can be used to evaluate an a priori blockmodel and to compute an a
posteriori blockmodel. The simple structure of the node-wise parameters α and β
allows to define stochastic equivalence and, therefore, to express a blockmodel in
terms of a restricted parameter space of the p1 model. Moreover, the parameters
of such simple models can be estimated exactly and efficiently.

On the other hand, we made quite strong assumptions on the network genera-
tion process. Even the basic assumption that the dyads are drawn independently
of each other has been heavily criticized since the p1 model was proposed in so-
cial network analysis. In 1996, Wasserman and Pattison [570] introduced a more
powerful family of random graph distributions called p∗ models, whose applica-
tions to blockmodeling will be discussed in the following. The aim of p∗ models is
to have greater flexibility in expressing the dependencies among the relations Xij

between the actors. To state this more formally we make the following definition.

10 Blockmodels 289

Definition 10.2.4 (Conditional Independence). Let X, Y and Z be (sets
of) random variables. We say that X is conditional independent of Y given Z
if

Pr[X | Y, Z] = Pr[X | Z] for Pr[Z] > 0 .

This is written as X � Y | Z.

In the p1 model we have {Xij} � X \ {Xij} | {Xji}, i.e. the edge from i
to j only depends on the edge from j to i. In order to model more complicated
dependencies than this, we introduce a graph that represents these dependencies.

Definition 10.2.5. Let W := {Xij | 1 ≤ i, j ≤ n} with Xij ∈ {0, 1} be the set
of random variables of the edges of a random graph X on n nodes. Thus as before
X is the random variable that assumes values in Gn.

– A distribution on X is called random field if all graphs x ∈ Gn get positive
probability.

– The undirected graph IX = (W, F), F ⊆ W 2, is called the dependency graph
of X if for all Xij ∈W it holds that

{Xij} �W \ {Xij} | N (Xij)

where N (Xij) are all random variables adjacent to Xij in IX .
– A random field that can be expressed via a dependency graph is called a Markov

field.

The p1 model can be seen as a Markov field (or Markov graph) with a dependency
graph that consists of all edges {Xij , Xji}. The idea of p∗ is to try to find
explicit distributions for arbitrary dependency graphs. The Hammersley-Clifford
Theorem [59, 589] states that this is always possible in the sense that for each
Markov field there is a distribution that can be expressed by an (almost) closed
form. We state the theorem in a simplified version:

Theorem 10.2.6 (Hammersley-Clifford). Let IX = (W, F) be the depen-
dency graph of a Markov graph X. Let C be the set of cliques of IX . Then, there
exist potentials {λc ∈ | c ∈ C} such that

Pr [X = x] =
exp

(∑
c∈C λc ·

∏
Xij∈c xij

)
κ

,

where κ :=
∑

z∈Gn
exp

(∑
c∈C λc ·

∏
Xij∈c xij

)
is a normalization constant.

Observe that the products over the cliques are one if and only if all edges in the
clique in the dependency graph are present, otherwise they equal zero. Given
a dependency graph IX that expresses our assumptions about independence
between relations in the observed graph x, we get a minimal parameter set
for the graph distribution consisting of the potentials λc of all cliques of IX .
Distributions of this kind are called p∗ models.

290 M. Nunkesser and D. Sawitzki

Estimating the Potentials. Estimation in p∗ models has been a topic of
vivid research discussions in the last years. Several estimation methods have
been proposed, the most prominent ones being the pseudolikelihood method and
the Markov Chain Monte Carlo (MCMC) method which we saw briefly already
in Section 10.2.4. Both methods are mathematically involved and have serious
drawbacks as discussed in [529] and references therein, therefore we will not
present them here. See the bibliography for detailed references on the methods.

Using p∗ Models for Blockmodeling. Up to now, we have only seen a
stochastic model for graph generation. Due to the clique-wise potentials, there
is no obvious counterpart to the stochastic equivalence in p1 blockmodels. We
present an approach proposed in [472].

Consider an a priori blockmodel with actor set partition P := {P1, . . . , PL}
for an observed graph x. Let C be the set of cliques of the dependency graph
IX = {W, F}. We call the subgraph of x on the nodes of a clique c ∈ C the
configuration C(c, x).

Definition 10.2.7. Two configurations C(a, x) and C(b, x), a, b ∈ C, are called
isomorphic if there is a bijective map φ : a→ b satisfying

φ(Xij) = Xi′j′ ⇔ (xij = xi′j′) ∧ (xji = xj′i′)
∧ (P (vi) = P (vi′)) ∧ (P (vj) = P (vj′)) ∀Xij ∈W .

We can incorporate the blockmodel into the parameter estimation by forcing
λa = λb for isomorphic configurations C(a, x) and C(b, x). Then, the plausibility
of a blockmodel can be scored by computing the likelihood ratio statistic G2

using ML-estimates for both the unrestricted and restricted parameter spaces
(see Sects. 10.2.1 and 10.2.3).

10.3 Chapter Notes

We have seen that the tight concepts of roles and equivalences discussed in
Chapter 9 are not suited to analyze real-world data occurring in psychology and
sociology. Therefore, a variety of methods has been developed since the 70’s that
realize some kind of relaxation of the strict structural equivalence.

Traditional methods in blockmodeling are mainly based on measures of sim-
ilarity of actor relationships, which are then used to compute the partition of
actors into positions. These measures can be turned into metrics using tech-
niques for multidimensional scaling in order to refine the relational data or,
alternatively, to enable a visual interpretation. Often, clustering based methods
are used to compute the actor set partition. We have seen also the popular but
heavily criticized CONCOR algorithm, which works with iterated correlations
of adjacency matrices. Afterwards, different criterions may be used to decide
on relations between the positions and, therefore, to obtain a simplified repre-
sentation of the original data. With generalized blockmodeling, an integrated

10 Blockmodels 291

optimizational approach has been presented which solves both the partition-
ing problem and the image matrix computation by minimizing a common error
function.

Second, stochastic models have been introduced which assume certain kinds
of stochastic generation processes for the observed relational data. They repre-
sent the more recent developments in blockmodeling. Both simple models offer-
ing exact and efficient estimation methods and more complex, realistic models
have been presented. For the latter, different approaches to parameter estima-
tion have been discussed which do not offer both exactness and efficiency, but
which have been successfully applied to social network data. We have seen that
the adaptation and application to blockmodeling follows the introduction of a
new stochastic model originally proposed as general explanation for observed
data.

Finally, we conclude that the area of blockmodeling seems to be strongly
application driven. Researchers from psychology and sociology are in need of
methods to analyze the positional structure of observed networks and serve
themselves from different scientific areas like computer science and statistics to
obtain methods giving them the desired analytic results. Hence, the approaches
and techniques are quite heterogenous. At the moment, most researchers in this
area seem to use rather the traditional methods discussed in Section 10.1 than
the more recent methods of Section 10.2.

Further information on the properties of the correlation coefficient and its
relationship to the Euclidean distance can be found in [492, 528].

Kruskal’s Multidimensional Scaling algorithm was published in two seminal
articles as early as 1964 [372, 373]. Cox and Cox discuss Multidimensional Scaling
in a recent book [134] from a statistical point of view, it also contains among
other topics a presentation of Kruskal’s algorithm and its relation to other MDS-
methods. The approximation algorithm for metric embedding is by Bădoiu [105].
The part of the algorithm that finds the x-coordinates is in the appendix of the
paper and can be found at http://theory.lcs.mit.edu/~mihai/. More on
the related metric embedding problems can be found in [320] and the references
therein.

A variety of applications of the CONCOR algorithm to social network data
can be found in [31, 98, 100, 230, 364, 424, 434].

An implementation of generalized blockmodeling is included in the Pajek
software available via http://vlado.fmf.uni-lj.si/pub/networks/pajek/
default.htm.

Exponential models are discussed in [385]. The p1 model was introduced
by Holland and Leinhardt in [302]. The goodness-of-fit test against differential
reciprocity is advocated by Fienberg and Wasserman in [213]. In this paper the
authors also show how to understand p1 as a special case of a so-called general
linear model. Loglinear models of homogeneous association can be found in the
textbook by Agresti [3]. The Neyman-Pearson Lemma is proved in [384]. A gentle
introduction into testing and statistics in general can be found in the book by
Rice [492].

292 M. Nunkesser and D. Sawitzki

First applications of p1 to blockmodeling can be found in [30, 212, 301]. The
refinement of the p1-model presented here is by Wang and Wong [567]. The a
posteriori blockmodeling approach is by Nowicki and Snijders [453, 530]. In these
papers, the identifiability problems are discussed in more detail. Furthermore,
methods to test the adequacy of the obtained class structure are handled therein.

A proof of the strong law of large numbers can be found in [492]. The ergodic
theorem is discussed in [245]. More information on the related Markov Chain
Monte Carlo methods, Gibbs sampling, and mixture models can be found in [243,
245].

The p∗ models can be seen as an application of Markov random graphs to
social sciences. Markov random graphs were introduced by Frank and Strauss
[222]. They were made popular in social network analysis by a sequence of pa-
pers by Pattison, Robins, and Wasserman [472, 494, 570]. Recently, Snijders has
analyzed them in detail and pointed out estimation problems together with cat-
egorical problems which call into question the appropriateness of p∗ to many
social network problems [529]. More information on the two estimation meth-
ods for p∗ can be found in [245, 529, 589]. Finally, [29, 200] contain more social
network analyses using p∗ models.

11 Network Statistics

Michael Brinkmeier and Thomas Schank

Owing to the sheer size of large and complex networks, it is necessary to reduce
the information to describe essential properties of vertices and edges, regions,
or the whole graph. Usually this is done via network statistics, i.e., a single
number, or a series of numbers, catching the relevant and needed information.
In this chapter we will give a list of statistics which are not covered in other
chapters of this book, like distance-based and clustering statistics. Based on this
collection we are going to classify statistics used in the literature by their basic
types, and describe ways of converting the different types into each other.

Up to this point network statistic has been a purely abstract concept. But
one has quite good ideas what a statistic should do:

A network statistic . . .

. . . should describe essential properties of the network.
This is the main task of network statistics. A certain property should be
described in a compact and handy form. We would like to forget the exact
structure of the underlying graph and concentrate on a restricted set of
statistics.

. . . should differentiate between certain classes of networks.
A quite common question in network analysis regards the type of the ‘mea-
sured’ network and how to generate models for it. This requires the decision
whether a generated or measured graph is similar to another one. In many
situations this may be done by identifying several statistics, which are in-
variant in the class of networks of interest. Using these statistics an arbitrary
graph can be tested for membership in a specific class, by determining its
statistics and comparing them with some references.

. . . may be useful in algorithms and applications.
Some network statistics may be used for algorithms or calculations on the
graph. Or they might indicate which graph elements have certain properties
regarding the application.

To which degree a certain statistic fulfills one or more of these tasks obviously
depends on the application and the network. Therefore we will not go into detail
about the interpretation, and restrict ourselves to the description of types of
statistics, common constructions, and several examples.

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 293–317, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

294 M. Brinkmeier and T. Schank

11.1 Degree Statistics

The most common and computationally easy statistic is the vertex degree. De-
pending on the underlying network and its application, it may be a simple mea-
sure for the strength of connection of a specific vertex to the graph, or – as in the
case of indegrees – a measure for the relevance. But usually, instead of using this
statistic directly, the main interest lies in the absolute number or the fraction
of vertices of a given in-, out-, or total degree. It has been discovered that the
distribution of degrees in many naturally occurring graphs significantly differs
from that of classical random graphs.

In a classical undirected random graph Gn,p the fraction of vertices of degree
k is expected to be(

n− 1
k

)
pk(1− p)n−1−k (Binomial distribution)

if the number of vertices n is small, or approximately

(np)k

k!
e−np (Poisson distribution)

if n is large. But in many natural graphs the degrees seem to follow a power law,
i.e.

c k−γ with γ > 0 and c > 0.

The power law is a good example for a parameter elimination
by means of a functional description, as described in Section 11.7.1. Since

the degree distribution can be described as ck−γ , it suffices to determine the
constant exponent γ. This can easily be done with linear regression of the log-
log-plot of the distribution. The scaling constant c is then dictated by the fact
that the sum over all k is either the number of edges (in the absolute case) or
1 (in the relative case). Of course, the exponent is only meaningful if the degree
distribution has the appropriate form.

Examples for graphs and networks whose degree distribution seems to follow
a power law include

– the actor collaboration graph (γ ≈ 2.3) [40],
– the World Wide Web (γin ≈ 2.1, γout ≈ 2.45/2.72)1[16, 40, 102],
– the power grid of the United States of America (γ ≈ 4) [40],
– the Internet (router and autonomous systems) (γ ≈ 2.2) [197].

More details about the power law, and models for generating graphs satisfying
it, can be found in Chapter 13.

Experiments and measurements indicate that the power law and the resulting
exponents are good statistics for the classification of graphs. They are especially
useful for the decision whether a specific model generates graphs which are close
to the naturally occurring ones.
1 In the examples shown in Figures 11.4 and 11.5 near the end of this chapter, we

have γin ≈ 2 and γout ≈ 3.25.

11 Network Statistics 295

11.2 Distance Statistics

Another basic, but computationally more complex statistic is the distance be-
tween two vertices, defined as d(u, v) = min{|P | | P is a path from u to v}.
Arranging the distances leads to a V × V -matrix D, whose columns and rows
are indexed by the vertices of the graph, with

D = (d(u, v))u,v∈V

containing the distance d(u, v) in row u and column v.
For arbitrary edge weights w : E → the problem of finding a shortest path

is NP-hard (see [240]). But for more special (but also more common) cases the
distance can be calculated in polynomial time by solving the all-pairs shortest-
path problem (APSP). Before we go into detail about the algorithmic aspects
in Section 11.2.5 (see also Section 4.1.1), we will describe related statistics that
are commonly used in the literature. As we will see, often not the distances
themselves but more ‘condensed’ statistics are used.

11.2.1 Average or Characteristic Distance

The average or characteristic distance d̄ is the arithmetic mean of all distances
in the graph, i.e.,

d̄ :=
1

|V |2 − |V |
∑

u�=v∈V

d(u, v).

For disconnected graphs we obviously have d̄ = ∞. Hence it might be useful to
restrict ourselves to all connected pairs, leading to the average connected distance

d̄ :=
1
k

∑
u�=v∈V

0<d(u,v)<∞

d(u, v)

where k is the number of connected pairs u �= v. In abuse of notation we denote
both statistics with d̄, since usually only the second is meaningful.

If the distance-matrix D is known, the average distance can be calculated in
O(n2) time.

11.2.2 Radius, Diameter and Eccentricity

By fixing one argument of the distance, the number of parameters of this statistic
is reduced, leading to the eccentricity ε(u) of a vertex u. This is the maximal
distance of another node from u, i.e.,

ε(u) := max {d(u, v) | v ∈ V } .

The radius rad(G) is the minimal eccentricity of all vertices, i.e.

rad(G) := min {ε(u) | u ∈ V } .

296 M. Brinkmeier and T. Schank

Maximizing over both arguments of the distance, one obtains the diameter
diam(G) of a graph G as the maximal distance between two arbitrary (connected)
vertices, i.e.,

diam(G) := max {d(u, v) | u, v ∈ V } .

As with the average distances, the diameter and the eccentricity can be calcu-
lated from the distance matrix in O(n2) time. The eccentricity of a single vertex
may also be calculated via the single-source shortest-paths problem (SSSP), see
Sections 4.1.1 and 11.2.5.

11.2.3 Neighborhoods

The h-neighborhood Neighh(v) of a vertex v is the set of all vertices u with
distance less than or equal to h from v, i.e.,

Neighh(v) := {u ∈ V | d(v, u) ≤ h} .

The sizes of the h-neighborhoods form a parameterized statistic

N(v, h) := |Neighh(v)|.

The (absolute) hop plot P (h) eliminates the dependence on the vertex by
assigning the number of pairs (u, v) with d(u, v) ≤ h to each parameter h, i.e.,

P (h) :=
∣∣{(u, v) ∈ V 2 | d(u, v) ≤ h

}∣∣ =
∑
v∈V

N(v, h).

The (relative) hop plot p(h) is the fraction of pairs with a distance less than
or equal to h, i.e.,

p(h) :=
P (h)
n2

=
1
n2

∑
v∈V

N(v, h).

The average h-neighborhood size Neigh(h) is defined as

Neigh(h) :=
1
n

∑
v∈V

N(v, h) =
P (h)

n
= np(h).

Again the absolute and relative hop plots, and the neighborhood sizes N(v, h),
can be calculated from the distance matrix in O(n2) time and space.

The absolute hop plot of the Internet is examined by Faloutsos et al. in [197].
They observe that it follows a power law with an exponent around 4.7.

The h-neighborhoods that are necessary for the hop plot can be approximated
using the ANF-algorithm of Palmer et al. presented in [462]. We will go into
detail about that in Section 11.2.6.

11 Network Statistics 297

11.2.4 Effective Eccentricity and Diameter

The effective eccentricity εeff and the effective diameter diameff are obtained via
an interesting construction from the eccentricity and the diameter. The former
measures the minimal distance at which a specified fraction r of all nodes lies
from a specific source v, i.e.,

εeff(v, r) := min {h | N(v, h) ≥ rn} .

The latter does the same without specifying a concrete source, i.e.,

diameff(r) := min
{
h | P (h) ≥ rn2

}
= min {h | p(h) ≥ r} .

If N and P are known, both statistics can be calculated in O(log diam(G))
using binary search on N(v, h) and P (h).

The effective diameter and the effective eccentricity occur in [462] for a fixed
value of r = 0.9.

11.2.5 Algorithmic Aspects

As mentioned at the beginning of this section, the problem of finding a shortest
path between two vertices in a network with arbitrary edge weights w : E →
is NP-hard (see [240]). But if we restrict ourselves to networks without cycles
of negative weight, the problem can be solved in polynomial time by well-known
algorithms described in the following.

The Path Algebra. Assume that G = (V, E) is a weighted graph (directed/un-
directed) without cycles of negative weight. Then the most general approach,
which may be adapted to several other problems, for the calculation of the
distance matrix is given by matrix multiplication over the path algebra.

Let di(u, v) be the weight of a shortest path (i.e. a path of minimal weight)
from u to v using at most i edges. This implies

d0(u, v) =

{
0 if u = v

∞ otherwise.

Since a path with at most i + 1 edges either has at most i edges or consists of a
path of length ≤ i to a predecessor v′ of v and the edge (v′, v), we have

di+1(u, v) = min
v′∈V

(di(u, v), di(u, v′) + w(v′, v)) .

Here it is important to keep in mind that G does not contain cycles of negative
weight.

The distance matrix may be calculated via the summation and multiplication
of an adapted adjacency matrix A over the commutative semi-ring (¯ , min, +),
with ¯ = ∪ {∞}. The entries of A are given by

298 M. Brinkmeier and T. Schank

avu =

⎧⎪⎨
⎪⎩

0 if u = v

w(u, v) if there exists an edge from u to v

∞ otherwise
.

Explicitly, this means that summation is replaced by the minimum and mul-
tiplication by the addition. Then the distance matrix D is Adiam(G), or, written
as an iteration, D is the limit of the iteration Di+1 = Di · A and D0 = A.

Fortunately it suffices to iterate diam(G)-times, where the diameter is taken
on the graph without weights. This is due to the fact that each simple path has
at most length diam(G).

If T (n) is the time needed for a multiplication of two n × n-matrices, the
iteration leads to a running time of O(T (n)diam(G)). Using the iteration D2i =
Di ·Di instead, one obtains a running time of O(T (n) log(diam(G))).

Hence, the time needed for the calculation of the distance matrix via matrix
multiplication is dominated by the time T (n) needed for the multiplication of
two n× n-matrices. For the naive matrix multiplication we have T (n) = O(n3).
In [595] Zwick described an algorithm with T (n) = O(n2.575).

Single-Source Shortest-Paths. The distance matrix may be calculated by
solving the single-source shortest-paths problem (SSSP) for all sources. Depend-
ing on the type of weight function, several algorithms are known.

– If the network is unweighted, i.e., w(e) = 1 for all edges e ∈ E, then SSSP can
be solved via breadth-first-search in O(m) (see [133]).

– If G has only edges of nonnegative weights then the algorithm of Dijkstra
solves SSSP in O(n log n + m) time when using Fibonacci Heaps (see [133] or
Algorithm 4 in Section 4.1.1.).

– If G contains no cycles of negative weight, then the Bellman-Ford algorithm
solves SSSP in O(nm) (see [133]).

The runtime of the algorithm of Dijkstra may be improved if more sophis-
ticated data structures and strategies are used. In [547] Thorup describes an
algorithm which calculates the SSSP for a given source on an undirected graph
with positive integers as weights in O(m) time and space, leading to O(nm)
time for the distance matrix. He uses an alternative strategy for the choice of
the next node in the Dijkstra algorithm, following [152], and realizes the priority
queue using buckets.

For further results about shortest paths, see [224, 225, 546, 548, 487, 12].

All-Pairs Shortest-Paths. An alternative to the use of matrix multiplications
over the path algebra is the Floyd-Warshall algorithm for the solution of the all-
pairs shortest-paths problem (APSP). Again the algorithm can only be applied
to networks without cycles of negative weight. It requires O(n3) time and can be
found in textbooks (e.g., [133]) or in this volume (Algorithm 5 in Section 4.1.2).

11 Network Statistics 299

Another approach to solving the APSP consists of running an SSSP algorithm
for each of the n vertices of the given graph. This leads to the following runtimes
for APSP:

1. unweighted: O(nm)
2. non-negative weights: O(nm + n2 log n)
3. no cycles of negative weight: O(n2m)

An improved solution to the APSP on a weighted graph without cycles of
negative weight is achieved by Johnson’s algorithm (details can be found in
[133]). It first calculates the distances from an artifical source to all vertices
in the graph using the Bellman-Ford algorithm. If the graph does not contain
cycles of negative weight, it recalculates the edge weights using the results of the
Bellman-Ford algorithm and then determines the distances of all pairs by calling
the Dijkstra algorithm n times. If the graph contains cycles of negative length
it simply terminates. In total this leads to a runtime of O(n2 log n + nm).

11.2.6 ANF – The Approximate Neighborhood-Function

In [461] Palmer et al. described an algorithm for the estimation of the hop plot
of an unweighted graph G = (V, E) using approximative counting as introduced
by Flajolet and Martin in [215]. The basis of the algorithm is the observation
that the set Neighh(u) = {v | d(u, v) ≤ h} of nodes v with distance at most h
from u can be described as

Neighh(u) = Neighh−1(u) ∪
⋃

(u,v)∈E

Neighh−1(v).

Therefore it suffices to approximately count the number of elements in an it-
eratively increasing set. The main idea is to represent the sets Neighh(u) by
bitmasks, such that each bit represents a subset of vertices. Then the union cor-
responds to a logical or of the bitmasks. The resulting algorithm is shown as
Algorithm 22.

In the last loop the estimate for N(u, h) is calculated from the lowest position
R[u, h] of a 0-bit in the bitmask B[u, h] starting at 0, i.e. B[u, h] is of the form
{0, 1}∗01R[u,h]. Following [215] the expected value of R[u, h] is log(ϕN(u, h))
with ϕ ≈ 0.77351.

If this procedure is repeated z times with different position assignments k[u],
one can use the average R̄[u, h] over all lowest 0-bit positions to obtain an even
better estimate with

N(u, h) =
2R̄[u,h]

0.77351 (1 + 0.31/z)
,

where the additional factor (1+0.31/z) is caused by a bias of the expected value
of N [u, h] in this situation. Details can be found in [215].

Experiments conducted by Palmer, Gibbons and Faloutsos in [461] indicate
a high accuracy of the estimations (less than 10% error for z = 64 trials) while

300 M. Brinkmeier and T. Schank

Algorithm 22: The ANF-Algorithm

Input: A graph G = (V, E) and a natural number r
Data: Bitmasks B[u, h] for each u ∈ V , h = 1, . . . , n of length log n + r
Output: Estimations N(u, h) for the number of nodes within distance h of u

for each vertex u

begin
l ← log n + r
foreach v ∈ V do

Set k[v] = i with probability 1
2i+1 for 0 ≤ i < l − 1 and probability 1

2l−1

for i = l − 1
end
foreach v ∈ V do

Set position k[v] of B[v, 0] to 1
end
for h ∈ {1, . . . , n} do

foreach u ∈ V do
B[u, h] ← B[u, h − 1]

end
foreach (u, v) ∈ E do

B[u, h] ← B[u, h] ∨ B[v, h − 1]
end

end
foreach u ∈ V and h ∈ {0, . . . , n} do

Let R[u, h] be the lowest position of a 0-bit in B[u, h]

N(u, h) ← 2R[u,h]/0.77351
end

end

providing higher speed and lower space requirements than other approximation
methods based on random intervals and sampling. More exact results involving
the standard deviation of the estimate can be found in [215].

11.3 The Number of Shortest Paths

A statistic closely related to the distance is the number c(u, v) of distinct shortest
paths between two vertices

c(u, v) := |{P | P is a shortest path from u to v}| .

Since the general APSP isNP-hard, the same obviously holds for the calcula-
tion of the number of distinct shortest paths. But again it becomes polynomially
solvable if the network does not contain cycles of negative or zero length. The
c(u, v) can be calculated by a modified Floyd-Warshall-algorithm (see Algorithm
23). In a similar way the Dijkstra algorithm may be modified if all edge weights
are positive.

Closely related to c(u, v) is the number of disjoint shortest paths. But this
problem is known to be NP-hard [346].

Alternatively, one can calculate the number of distinct shortest paths between
two arbitrary vertices, using a specific edge, i.e.,

11 Network Statistics 301

Algorithm 23: Counting the number of distinct shortest paths

Input: A graph G = (V, E) with edge weights w and without cycles of negative
or zero length.

Output: The distances d(u, v) and the number of distinct shortest paths
between each pair u, v of vertices

begin
foreach v ∈ V do

foreach u ∈ V do

d(u, v) ←
0 if u = v

w(u, v) if (u, v) ∈ E

∞ otherwise

c(u, v) ← 1 if (u, v) ∈ E

0 otherwise

foreach v′ ∈ V do
foreach u ∈ V do

foreach v ∈ V do
if d(u, v′) + d(v′, v) = d(u, v) then

c(u, v) ← c(u, v) + c(u, v′)c(v′, v)

else
if d(u, v′) + d(v′, v) < d(u, v) then

d(u, v) ← d(u, v′) + d(v′, v)
c(u, v) ← c(u, v′)c(v′, v)

end

c(e) := |{P | P is a shortest path including e}| .

Since each shortest path passing through the edge e = (u, v) from u′ to v′ consists
of a shortest path from u′ to u, the edge e, and a shortest path from v to v′, the
statistic c(e) can be calculated from the c(u, v):

c(e) =
∑

d(u′,v′)=d(u′,u)+1+d(v,v′)

c(u′, u)c(v, v′).

11.4 Distortion and Routing Costs

Consider a spanning tree T of G = (V, E), i.e., an acyclic, connected subgraph
of G containing all vertices v ∈ V . Then the distortion D(T) of T is the average
length of paths in T between two adjacent vertices in G. More precisely

D(T) :=
1
|E|

∑
{u,v}∈E

dT (u, v)

where dT (u, v) is the distance from u to v in T .

302 M. Brinkmeier and T. Schank

The global distortion D(G) of G is the minimum distortion over all spanning
trees of G, i.e.,

D(G) := min {D(T) | T is a spanning tree of G} .

The distortion is closely related to the communication costs of a spanning
tree T of a network, as introduced by Hu in [317]. In this setting a requirement
ru,v is given for each pair of vertices. The communication cost of T is given as the
sum of all distances between vertices in T , multiplied by the requirement values.
By setting ru,v = 1

m if {u, v} ∈ E and 0 otherwise, one obtains the distortion. In
[333] Johnson et al. proved that the calculation of the minimal communication
costs of a network with ru,v = 1 for all pairs of vertices is NP-hard.

11.5 Clustering Coefficient and Transitivity

The clustering coefficient introduced by Watts and Strogatz [573] in the year 1998
has become a frequently used tool in network analysis. For a node v the clustering
coefficient c(v) is supposed to represent the likeliness that two neighbors of v
are connected. The clustering coefficient C(G) of a graph is the average of c(v)
taken over all nodes. The latter seems to be a very popular index in network
analysis.

In 2000 Barrat and Weigt [41] used an ‘alternative formulation’ for this aver-
age, claiming that their redefinition does not alter the ‘physical significance’ for
certain generated small world networks. In the year 2002 the so-called transitiv-
ity was introduced by Newman, Strogatz and Watts [447], again as an alternative
formulation of the clustering coefficient of a graph. It really turned out to be
equivalent to the formulation of Barrat and Weigt, but not at all equivalent to
the original clustering coefficient.

11.5.1 Definitions

We will define both indices in terms of triangles and triples of a node and a graph,
respectively. Let G be a simple and undirected graph. A triangle � = {V�, E�}
is a complete subgraph of G with exactly three nodes, see Figure 11.1. We use

Fig. 11.1. A triangle and its three triples

λ(G) for the number of triangles of a graph G. Accordingly we define λ(v) = |{� |
v ∈ V�}| as the number of triangles of a node. Note that λ(G) = 1/3

∑
v∈V λ(v).

11 Network Statistics 303

A triple is a subgraph of G (not necessarily an induced subgraph) with three
nodes and two edges. A triple is a triple at node v if v is incident with both edges
of the triple. The number of triples at a node v can be formulated in dependence
of its degree d(v) as

τ(v) =
(

d(v)
2

)
=

d(v)2 − d(v)
2

.

The number of triples for the whole graph is τ(G) =
∑

v∈V τ(v). In the above
terms the clustering coefficient of a node v with τ(v) �= 0 is defined as

c(v) =
λ(v)
τ(v)

.

With V ′ = {v ∈ V | d(v) ≥ 2} we define the clustering coefficient of the whole
graph as

C(G) =
1
|V ′|

∑
v∈V ′

c(v).

Note that there is some variation in the literature in how nodes of degree less
than two are handled, e.g., c(v) is defined to be zero or one and included in the
averaging process.

The transitivity for a graph is defined as

T (G) =
3λ(G)
τ(G)

.

As there are exactly three triples in each triangle, see Figure 11.1, 3λ(G) ≤ τ(G)
holds and consequently T (G) is a rational number between zero and one.

a

b

c

d

1 2 3 n

Fig. 11.2. On the left: Graph with clustering coefficients: c(a) = c(c) = 2/3, c(b) =
c(d) = 1, C(G) = 1

4
(2 + 4/3) ≈ 0.83 and transitivity T (G) = 3 · 2/8 = 0.75. On the

right: family of graphs where T (G) → 0, C(G) → 1 for n → ∞.

304 M. Brinkmeier and T. Schank

11.5.2 Relation Between C and T

The transitivity T (G) was first introduced as an alternative formulation for the
clustering coefficient C(G) in [447]. The left hand side of Figure 11.2 shows a
small graph where the two values differ. The right hand side shows a family of
graphs where T (G) approaches zero while C(G) approaches one, for increasing n.
The equation

T (G) =
∑

v∈V ′ τ(v)c(v)∑
v∈V ′ τ(v)

given by Bollobás and Riordan [68] shows a formal relation between the two
indices: The transitivity is equal to the triple weighted clustering coefficient.
Hence T (G) equals C(G), e.g., if all nodes have the same degree or all clustering
coefficients are equal.

11.5.3 Computation

To compute the clustering coefficients we need to compute the number of triples
τ(v) and the number of triangles λ(v), for each node v. It is straight-forward to
compute the number of triples τ(v) in linear time. This leaves us with the task
of computing the number of triangles. For the transitivity it suffices to compute
λ(G) for the whole graph. It is not known whether there is an algorithm that is
asymptotically faster in computing the triangles globally vs. locally.

The standard method is to iterate over all nodes and check whether the
edge between any two neighbors is present. This algorithm has running time in
O(nd2

max) where dmax = max{d(v) | v ∈ V } = Δ(G).
We assumed above that it is possible to test for edge existence in constant

time. This could be done with a n × n matrix by using the ‘indirection trick’,
see e.g. Exercise 2.12 in [4]. A more useful approach, requiring only linear space,
is to use hashing. If each node is assigned a random bit vector of appropriate
length, and the hash function uses a combination of two of these, we will get a
randomized algorithm with expected testing time in O(1).

The second approach is to use matrix multiplication. Note that if A is the
adjacency matrix of graph G, then the diagonal elements of A3 contain two times
the number of triangles of the corresponding node. This gives an algorithm with
running time in O(nγ), where γ is the matrix multiplication coefficient. It is
currently known that γ ≤ 2.376 [132].

Itai and Rodeh [321] proposed an algorithm with running time in O(m3/2).
This is an improvement for sparse graphs, compared to the mentioned methods.

We will now discuss the algorithm of Alon, Yuster, and Zwick [26]. It im-
proves the running time by using fast matrix multiplication, and still expresses
only dependence on m in the running time. If used with standard matrix mul-
tiplication (γ = 3) it will achieve the same bound as the algorithm of Itai and
Rodeh.

The pseudocode of the algorithm is listed in Algorithm 24. Informally the
algorithm splits the node set into low degree vertices Vlow = {v ∈ V : d(v) ≤ β}

11 Network Statistics 305

Algorithm 24: AYZ triangle algorithm

Input: Graph G with adjacency array representation and hashed edge set
matrix multiplication parameter γ
Output: number of triangles λ(v) for each node

β ←− m(γ−1)/(γ+1)
1

for v ∈ V do2

λ(v) ← 0
if d(v) ≤ β then

Vlow ← Vlow ∪ {v}
else

Vhigh ← Vhigh ∪ {v}

for v ∈ Vlow do3

for all pairs of neighbors {u, w} of v do
if edge between u and w exists then4

if u, w ∈ Vlow then5

for z ∈ {v, u, w} do
λ(z) ← λ(z) + 1/3

else if u, w ∈ Vhigh then6

for z ∈ {v, u, w} do
λ(z) ← λ(z) + 1

else7

for z ∈ {v, u, w} do
λ(z) ← λ(z) + 1/2

A ← adjacency matrix of node induced subgraph of Vhigh8

M ← A3
9

for v ∈ Vhigh do10

λ(v) ← λ(v) + M(i, i)/2 where i is index of v11

and high degree vertices Vhigh = V \Vlow, where β = mγ−1/γ+1. It then performs
the standard method on the low degree nodes, and uses fast matrix multiplication
on the subgraph induced by the high degree nodes.

Lemma 11.5.1. Algorithm 24 computes the triangles λ(v) for each node and
can be implemented to have running time in O(m2γ/(γ+1)), or O(m1.41) .

Proof. The correctness of the algorithm can be easily seen by checking the case
distinction for different types of triangles consisting of exactly three (line 5), two
(line 7), one (line 6), or zero (line 11) low degree nodes.

To prove the time complexity, we first note that the lines 1, 2, and 10 can
clearly be implemented to run in linear time. We prove that the time required
for the loop beginning at line 3 is in O(m2γ/(γ+1)). Line 4 requires a test for
edge existence in constant time. We have discussed this in the context of the
standard method above. The following tests in line 5, 6 and 7 are clearly in
constant time. The bound follows then from

∑
v∈Vlow

(
d(v)

2

)
≤ mβ. The running

time of line 8 is less than that of line 9. To bound line 9 we have to show that

306 M. Brinkmeier and T. Schank

O
(
nγ

high

)
⊂ O

(
m2γ/(γ+1)

)
. Utilizing the hand shaking lemma

∑
v∈V d(v) = 2m,

we get nhighβ ≤ 2m, which yields nhigh ≤ 2m2/(γ+1). �

11.5.4 Approximation

For processing very large networks, linear or sublinear running time is desired.
We outline now how we can achieve approximations with sublinear running time
using random sampling. A more detailed description can be found in [502].

Let Xi be independent real random variables bounded by 0 ≤ Xi ≤M for all
i. With k denoting the number of samples, and ε some error bound, Hoeffding’s
bound [299] states:

Pr

(∣∣∣∣∣1k
k∑

i=1

Xi −
[

1
k

k∑
i=1

Xi

]∣∣∣∣∣ ≥ ε

)
≤ e

−2kε2

M2 (11.1)

We assume that the graph is in an appropriate data structure in working
memory. Specifically, we require that testing whether an edge between two nodes
exists is in constant time. When giving the running time we regard the error
bound ε and probability of correctness to be constants. To approximate the
clustering coefficient for a node v, we estimate λ(v) by checking for the required
number (determined by Eq. 11.1) of neighbor pairs whether they are connected.
This leads to an O(n)-time algorithm for approximating c(v) for all nodes. The
clustering coefficient for the graph C(G) can be approximated in a similar fash-
ion. A short computation shows that it is sufficient to choose a random node v
and then two random neighbors for each sample. This gives an algorithm running
in constant time. To approximate the transitivity one can proceed in a similar
fashion, however, the nodes have to be chosen with weights corresponding to
τ(v). This can be done in time O(n).

Lemma 11.5.2. Consider the error bound ε and the probability of correctness
to be constants. Then there exist algorithms that approximate the clustering coef-
ficients for each node c(v) and the transitivity T (G) in time O(n). The clustering
coefficient C(G) can be approximated in time in O(1).

11.6 Network Motifs

In molecular biology a functional domain of a molecule is called a motif. Thus
motifs are building blocks for molecules on a higher level than atoms. Milo et
al. [423] introduced the term motifs for networks, following the idea of building
blocks on a higher level than nodes and edges. They enumerated the occur-
rences of small subgraphs in a network G. A connected subgraph that occurs in
G significantly more often than in a random network of same size and degree
distribution is called a motif of G.

The authors considered several networks from biology (food webs, neuronal
networks, gene regulation), engineering (electrical circuits), and also a domain
of the World Wide Web. They looked for weakly connected subgraphs up to four
nodes, and discovered for each of the networks distinctive motifs.

11 Network Statistics 307

11.6.1 Algorithmic Aspects

A very basic algorithm to enumerate the occurrences of a subgraph with k nodes
is to check all

(
n
k

)
possible combinations of k nodes. The comparison itself can

be done by permuting the k nodes in k! steps, where in each step all potential
2
(
k
2

)
edges are considered. To do this the number of possible automorphisms of

the subgraph has to be known, see Section 12.1.
Unfortunately the original work of Milo et al. [423] does not describe the

algorithm, and the ‘supplementary materials’ remain very vague in that respect,
too. The ‘supplementary materials’, some of the considered networks, and an
implementation of the algorithm can be downloaded from an author’s website.2

However, it has been reported that the published results produced by that pro-
gram are incorrect.3

Algorithm 24 of Alon, Yuster, and Zwick [26] for enumerating all triangles in
an undirected graph can be modified to count directed and connected subgraphs
of three nodes without incurring additional costs in the asymptotic running time.

In [363] the basic idea of the triangle counting algorithm of Alon, Yuster,
and Zwick was refined by Kloks, Kratsch and Müller to achieve an algorithm
for counting all K4’s in a graph in time O(m

γ+1
2). Here γ ≤ 2.376 [132] is the

matrix multiplication coefficient. Further, for the undirected case, they were able
to derive an algorithm that counts all subgraphs with at most four nodes in time
O(nγ + m

γ+1
2). It is not known whether this can be generalized to the directed

case whilst obeying the same bound in running time.

11.7 Types of Network Statistics

Browsing through the literature, and by examination of the previous examples,
one can identify four basic types of statistics which can be described by two
pairs of exclusive attributes:

single-valued vs. distribution and global vs. local

Even though the attributes are intuitively clear, we give a formal description
of the four resulting types. Let G be a class of graphs (e.g., (un-)weighted, (un-
)directed, (un-)connected etc.), P a set of parameters, and Y a set of values.
Usually we have, e.g., P, Y = , , or products of them. Furthermore let XG

be a set of not specified graph elements in G, which may consist of vertices,
edges, subgraphs, paths etc.

Global (Single-valued) Statistics. A global (single-valued) statistic γ assigns
a single value γG ∈ Y to each graph G ∈ G.

Examples: Number of vertices/edges, diameter (Section 11.2.2), clustering
coefficient of a graph (Section 11.5), edge- and vertex-connectivity (Chapter
7).

2 http://www.weizmann.ac.il/mcb/UriAlon/
3 Falk Schreiber, personal communication regarding MFinder 1.1

308 M. Brinkmeier and T. Schank

Global Distributions. A global distribution Γ assigns a map ΓG : P → Y to
each graph G ∈ G. We usually denote the value by ΓG(t), where t is the
parameter. For example for P = a global distribution ΓG is a sequence
(ΓG(0), ΓG(1), . . .) of values for each graph in G.

Examples: absolute/relative distribution of in/out-degrees (Section 11.1),
hop plot (Section 11.2.3).

Local (Single-valued) Statistics. A local (single-valued) statistic λG assigns
a single value λG(x) ∈ Y to a certain graph element x of a given graph
G ∈ G, where x may be a vertex, an edge, a set of vertices or edges, a
subgraph, or whatever may be seen as a local graph element.
More formally λG : XG → Y is a map from a set XG of graph elements in
G to the set of values Y .

Examples: in/out-degree (Section 11.1), weight/capacity/length of edges,
distance (Section 11.2), clustering coefficient of a vertex (Section 11.5) ,
various centralities (Chapters 3 and 5).

Local Distributions. A local distribution Λ assigns a map ΛG : XG × P → Y
from the cartesian product of the appropriate set of graph elements and a
parameter set P to Y to each graph G ∈ G. As in the global case we write
ΛG(x, t) for the value at x with parameter t.

Examples: Sizes of neighborhood (Section 11.2.3), effective eccentricity and
diameter (Section 11.2.4).

Since we already used the term distribution for multiple valued statistics, we
will adapt our nomenclature slightly. The term statistic refers to a single-valued,
and distribution to multiple-valued, network statistics. Nonetheless both types
are included in the notion network statistics.

11.7.1 Transformation of Types of Statistics

The four types are not isolated from each other. In the literature several tech-
niques can be found to transform one into another. In fact, it usually is possible
to classify network statistics by their ‘underlying’ statistic, from which they are
deduced in one or more of the constructions we are going to describe. A rough
scheme of the possible transformations is presented in Figure 11.3. A more de-
tailed description is given in the following sections.

Of course, all constructions may be composed, e.g., after going from a global
statistic to a local distribution, one may construct a local statistic from the
result. In this section we restrict ourselves to the operations which seem to be
more or less independent of each other. In the literature and in the examples
below, many network statistics are obtained by the application of two or more
of the steps described here.

11 Network Statistics 309

Global Distribution

Global Statistics Local Statistic

Local Distribution

Localization

Globalization

Localization

Localization Elimination
Parameter

Elimination
Parameter

Globalization
Localization Countin

g

Parameter ReductionParameter Reduction
Reparametrization Reparametrization

Reparametrization

Fig. 11.3. Transformations of types of statistics

Some of the operations do not occur in the literature (at least as far as
we know). They are mainly presented for completeness, and because they seem
to be very natural possibilities. Furthermore we do not discuss the intuition
behind the transformations, since this depends on the concrete application and
interpretation of the values. We only give a formal description of the techniques.

Globalization. As the name says, globalization eliminates the dependence of a
local statistic or distribution on graph elements. This is often done by calculating,
choosing, or constructing a single value γG from the values λG(x) for all graph
elements x ∈ XG. The most common examples are:

– the maximum
γG := max {λG(x) | x ∈ XG} ,

– the minimum
γG := min {λG(x) | x ∈ XG} ,

– the summation
γG :=

∑
x∈XG

λG(x),

– and averaging

γG :=
1
|XG|

∑
x∈XG

λG(x).

For distributions, the same constructions may be applied parameterwise, e.g.,

ΓG(t) := max
x∈XG

{λG(x, t)} .

310 M. Brinkmeier and T. Schank

Examples are the average (connected) distance (Section 11.2.1), the diam-
eter and the radius (Section 11.2.2), the relative and absolute hop plot (Sec-
tion 11.2.3), and the global distortion (Section 11.4).

Counting. To transform a local statistic λ into a global distribution Γ , one
may count the number of graph elements x such that λG(x) lies in a specific
range of values. For discrete statistics (e.g., λG(x) ∈ ,), the absolute number
of occurrences of the value t, i.e.,

ΓG(t) := |{x ∈ XG | λG(x) = t}|,

or the relative number of occurrences, i.e.

ΓG(t) :=
|{x ∈ XG | λG(x) = t}|

|XG|

are very common. Similarly, for continuous statistics (e.g., λG(x) ∈), the
absolute or relative number of elements with λG(x) ≤ t, i.e.,

ΓG(t) := |{x ∈ XG | λG(x) ≤ t}| or

ΓG(t) :=
|{x ∈ XG | λG(x) ≤ t}|

|XG|
is widely used.

Examples are the absolute, relative, and complementary cumulative degree
distributions (Section 11.1), the absolute and relative hop plot (Section 11.2.3).

Parameter Elimination and Reduction. Perhaps the widest class of type
changes is the elimination of parameters. In some respect nearly all types of
changes can be interpreted in this way. But we restrict ourselves to parameters,
i.e., values which are not directly related to the examined network.

Similar to the transformation from local to global statistics and distributions,
one may calculate a single value λG from a sequence/map of values given by a
distribution ΛG. But instead of using the graph elements as variables, one uses
the parameter of the distribution. Examples are

– the maximum
λG(x) := max {ΛG(x, t) | t ∈ P} ,

– the minimum
λG(x) := min {ΛG(x, t) | t ∈ P} ,

– summation
λG(x) :=

∑
t∈P

ΛG(x, t),

11 Network Statistics 311

– averaging (only sensible if P is finite)

λG(x) :=
1
|P |

∑
t∈P

ΛG(x, t),

– and the projection onto a certain parameter t0 ∈ P

λG(x) := ΛG(x, t0).

For single-valued statistics one simply has to neglect the argument x. The ec-
centricity (Section 11.2.2) is an example for this transformation.

If a local or global distribution has more than one parameter, i.e., if its set
of parameters is the cartesian product P = P ′ × P ′′, one may use only one
parameter for the calculations, leading to a parameter reduced distribution, e.g.,

Λ′
G(x, t′) := max

t′′∈P ′′
{ΛG(x, t′, t′′)} .

If the local or global distribution allows the description as a function of the
parameters, some may be eliminated using a different technique. Assume that the
local distribution ΛG(x, t) can be described by a function fr with parameter r(x),
i.e., ΛG(x, t) = fr(x)(t). Then the parameters r(x) form a local statistic which
indirectly describes the local distributions. If the graph element x is omitted,
the same technique can be applied for the construction of a global statistic from
a global distribution.

An example for this transformation is the power law exponent (Section 11.1).
The degree distributions are reduced to a single value.

Reparametrization. Instead of eliminating a parameter, one can change it.
For a local distribution ΛG(x, t) with parameter t ∈ P , we usually can write the
reparameterized distribution Λ̃G with parameter r ∈ P ′ as

Λ̃G(x, r) := fr(x, (ΛG(x, t))t∈P)

where fr is a function with parameter r, using all values of ΛG(x, t) for a given x.
For example one may chose P = P ′ = ,

fr(x; y0, y1, . . .) = max{yr, yr+1, . . . }

leading to
Λ̃G(x, r) := max {ΛG(x, t) | t ≥ r} .

Another example is fr(x; y0, y1, . . .) =
∑

t≥r ΛG(x, t) leading to

Λ̃G(x, r) :=
∑
t≥r

ΛG(x, t).

Concrete examples are the effective eccentricity and diameter (Section 11.2.4).

312 M. Brinkmeier and T. Schank

Another type of reparametrization affects the locality of local statistics and
distributions. In some situations it may useful to change the set of graph elements
on which a certain statistic is defined. For example one may change a vertex-
based statistic λG(v) to an edge-based statistic λ′

G(e) via the general relation

λ′
G(e) := f(λG(u), λG(v))

where e = {u, v}, and f is an arbitrary function with two arguments (like sum,
average, product etc.).

An example for this transformation is the eccentricity (Section 11.2.2), where
the notion of locality is transformed from ‘a pair of vertices’ to ‘a single vertex’.

Localization. To construct a local distribution Λ from a global statistic γ, one
may choose a subgraph H(x, t) ⊆ G for each graph element x ∈ XG and each
parameter t ∈ P . Then set

ΛG(x, t) := γH(x,t).

Of course this requires that the statistic γ is defined on the subgraph H(x, t).
An example for the choice of H(x, t) is:

– The ball of radius t around x, i.e., the subgraph induced by the t-neighborhood
Neight(x) (all vertices v with d(x, v) ≤ t) of x ([486, 540]).

– The largest/smallest subgraph of G containing x and satisfying a certain cri-
terion, possibly depending on t, e.g. the largest subgraph among all subgraphs
containing x and having edge connectivity ≥ t.

Similarly, a local statistic λ can be derived from a global statistic γ by choosing
a subgraph H(x) depending only on x and setting

λG(x) := γH(x).

An example for the choice of H(x) is:

– The union of the cliques containing x that have largest size among all cliques
containing x.

The localization of a global distribution Γ can be done in a similar manner to
that described above. If the subgraph H(x) is chosen solely based on the graph
element x, this leads to the local distribution

ΛG(x, t) := ΓH(x)(t).

The last type of localization constructs a local distribution from a local statis-
tic. Again a subgraph H(x, t) is chosen for each graph element x ∈ XG. But this
time it additionally depends on a new parameter t ∈ P . This leads to

ΛG(x, t) := λH(x,t)(x).

Transformations of these types can be found in [486, 540].

11 Network Statistics 313

11.7.2 Visualization

A single-valued global statistic γ is simply a value. Hence its visualization is
trivial. It becomes more interesting if several graphs of a class G are examined.
If the graphs depend on a parameter t, then one may examine the distribution
γG(t) where G(t) is a graph with parameter t. This distribution may be treated
like the distributions on a single graph, as described in the following.

Global distributions Γ : P → Y are maps from the set of parameters to the set
of values. Hence they may be visualized as functions in the usual way. Further-
more this interpretation allows the application of techniques like interpolation
or regression to obtain a functional description based on a set of parameters.
Since we assume that the reader is familiar with these notions and techniques,
we do not go into detail about them here.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06

N
um

be
r

of
 v

er
tic

es

Indegree

Fig. 11.4. The absolute indegree distribution of the 2001 Crawl of WebBase [566] with
logarithmic scale

Figures 11.4 and 11.5 show two examples of visualizations of this type. They
show the absolute in- and outdegree distributions of the 2001 WebBase Crawl
[566]. Both diagrams have logarithmic scale and show a linear relation, indicating
a power law (see Section 11.1).

For local statistics and distributions the visualization is more tricky. For a
single-valued statistic λG(x), one could choose an order x1, x2, . . . on the graph

314 M. Brinkmeier and T. Schank

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000

N
um

be
r

of
 v

er
tic

es

Outdegree

Fig. 11.5. The absolute outdegree distribution of the 2001 Crawl of WebBase [566]
with logarithmic scale

elements and plot the resulting pairs (i, λG(xi)). But the resulting diagram heav-
ily depends on the chosen order. A better approach would be counting or aver-
aging, and then using the global distributions or statistics, leading to a global
distribution.

Different local statistics of the same graph, based on the same set XG of
graph elements, may be visualized using a scatter plot. Let λG and λ′

G be two
local statistics over the same set XG of graph elements. Then the scatter plot of
λG and λ′

G consists of the pairs (λG(x), λ′
G(x)) for all graph elements x ∈ XG.

The scatter plot visualizes the relation between λ and λ′ in the underlying graph
G. If the resulting diagram is an unstructured cloud, the two statistics seem to
be unrelated. If, on the other hand, the resulting diagram allows a functional
description (obtained via regression, interpolation or similar techniques), the two
statistics seem to be closely related – at least in the given graph.

Figure 11.6 shows the scatter plot of the absolute in- and outdegrees of the
2001 WebBase Crawl in logarithmic scale. Each cross represents one or more
vertices having the corresponding combination of in- and outdegree. Since the
resulting diagram is a very dense cloud, the two types of degree do not seem to
be directly related.

11 Network Statistics 315

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06

O
ut

de
gr

ee

Indegree

Fig. 11.6. The scatter plot of the in- and outdegrees of the 2001 Crawl of WebBase
[566] with logarithmic scale

11.7.3 Sampling of Local Statistics

As we have seen, many network statistics are computationally expensive on large
graphs, even though they require only polynomial space and time. Hence it seems
sensible to use approximations.

Assume that σG is an arbitrary local or global statistic derived from a local
statistic λG based on graph elements x ∈ XG. Then one very common and
accepted technique for the approximation of σG is sampling. Instead of using the
values λG(x) for all graph elements x ∈ XG for the calculation of σ, only the
values for some samples x ∈ Xsamples ⊂ XG are used.

In general, the sampling of a (global) statistic σG from a local statistic
λG : XG → Y has the following form:

1. Choose a set Xsamples of samples in XG. (This may be done completely at
random or using a specific strategy.)

2. Calculate λG(x) for each sample x ∈ Xsamples.
3. Calculate σG from the set {λG(x) | x ∈ Xsample}.

Of course, this description is very rough. Depending on the concrete situation,
adaptations might be necessary or useful. For example the strategy for the choice
of the samples often determines the quality of the approximation. On the other
hand, the calculation of the approximation of σG from the samples may require

316 M. Brinkmeier and T. Schank

changes in the definition or calculation of σG to improve the quality or to obtain
reasonable values.

In any case the quality of this approximation has to be certified either by
experiments or by analysis of the specific graph models. In general it is clear that
an increase of the number of samples directly results in a better approximation.

For example the relative hop plot of a graph can be estimated quite easily
using sampling (see Algorithm 25). For l = n one obtains the exact values P̄ .
The runtime of this algorithm is O(ln2 log n) and the space requirements are
O(n) (in addition to the graph). Unfortunately, we do not know of any results
about the quality of the estimates.

Algorithm 25: A simple example for sampling: The relative hop plot

Input: A graph G = (V, E).

begin
Set P (h) = 0 for h = 0, 1, 2, . . . , diam(G)
for i ∈ {1, . . . , l} do

Choose an unused vertex ui

Calculate the distances d(ui, v) for all v ∈ V by solving the SSSP for
source ui

for v ∈ V do
for h ∈ {d(ui, v), . . . , diam(G)} do

P (h) ← P (h) + 1;

p(h) ← P (h)
ln

end

11.8 Chapter Notes

The first articles mentioning the power law distribution of the degrees of large
‘naturally’ occurring networks are [16, 40, 197]. Following that, more detailed
studies were done. During these and the initial studies a power law was found
for several distributions. These include

– the hop plot of the Internet (see Section 11.2.3) [197],
– the distribution of the eigenvalues of the Internet (see Chapter 14) [197],
– the size of certain components of the WWW [102].

Other examples of power law distributions can be found in [405, 147].
Recently, the seeming universality of the power law was questioned (e.g.

[117]). Furthermore Bu and Towsley observed in [104] that the complementary
cumulative distribution of degrees of the Internet seems to fit better with the
power law than the degree distributions did. More precisely, this means that

D(k) := |{v | d(v) ≤ k}| = ckλ

11 Network Statistics 317

for some constants c and λ.
The average (connected) distance of networks is used in [573, 16, 102, 104].
The eccentricity of the Internet on the level of autonomous systems is ex-

amined by Magoni and Pansiot in [405]. They observe a mean eccentricity of 7,
while the radius is 5.

The eccentricity also appears in [540], where it is called node diameter.
In [486, 540] Tangmunarunkit et al. use the average of absolute and relative

hop plots over all vertices in the graph. They call their statistic expansion.
In [197] Faloutsos et al. give an alternative definition of the effective diameter,

which relies on a power law distribution of the hop plot. They observe that the
absolute hop plot P (h) satisfies P (1) = n + 2m (distance 1 is given by the
edges) and therefore P (h) = (n+2m)hH for a constant exponent H. Then their
effective diameter δeff is the value such that P (δeff) = (n+2m)δHeff = n2, leading

to δeff =
(

n2

n+2m

)1/H
. Therefore their effective diameter estimates the maximal

distance under the assumption that the hop plot satisfies the power law exactly.
The number of distinct shortest paths is used in [405]. There the fraction of

all pairs of vertices with a certain number of distinct shortest paths is measured.
Tangmunarunkit et al. apply the distortion in [486, 540] to analyze the net-

work of autonomous systems of the Internet. They sample the distortion over a
collection of spanning trees, generated by unspecified heuristics using the num-
ber of all-pairs-shortest-paths traversing a specific link. This global statistic is
localized with balls of radius h around a vertex v, leading to a local distribution.
This in turn is globalized by averaging over all center nodes.

The term clustering coefficient might be somewhat misleading. Clustering in
networks, see Chapter 8, is based on many concepts. There are graphs with high
clustering coefficient that are contrary to most of these concepts. A relatively
high clustering coefficient together with a small diameter is known as the small
world property of a network [573], see also Section 13.1.2 for details.

Also the term transitivity as used in Section 11.5 is somewhat misleading. In
a directed graph the edge (u, w) is called transitive if there is a path consisting
of the two edges (u, v) and (v, w). In this sense the term transitivity ratio was
defined by Harary and Kommel in 1979 [280]. The equivalent index of transitivity
was defined in the context of linguistics even earlier, in the year 1957 [282]. The
transitivity of Newman, Watts and Strogatz [447] is an undirected version of the
above terms. Interestingly the term triple also appeared already in its directed
version in [280].

12 Network Comparison

Michael Baur and Marc Benkert

A fundamental question in comparative network analysis is whether two given
networks have the same structure. To formalize what to relate to structural
equivalence, the following definition was made:

Definition 12.0.1. Two undirected simple graphs G1 = (V1, E1) and G2 =
(V2, E2) are isomorphic (denoted by G1 � G2) if there is an edge-preserving
bijective vertex mapping φ : V1 −→ V2, i.e. a bijection φ with

∀u, v ∈ V1 : {u, v} ∈ E1 ⇐⇒ {φ(u), φ(v)} ∈ E2.

The graph isomorphism problem (GI) is to determine whether two given
graphs are isomorphic. Figure 12.1 shows an example of two – differently em-
bedded – isomorphic graphs. However, in practice it will be extremely rare that
two graphs are isomorphic. We can deal with this fact, as in most cases it is
comparatively easy to recognize two graphs as non-isomorphic. We simply have
to check necessary conditions: trivially, the number of vertices and edges has to
match. For each degree value the number of vertices having this degree has to
match, the two graphs must form the same number of connected components,
the diameter has to match, and so on. We can also use more complicated proper-
ties like those from other chapters in this book: if it should be possible that two
graphs are isomorphic, their spectra should be equal, all centrality indices have
to match, etc. One could give an ever increasing list of necessary conditions, but
thus far no one has succeeded in giving a sufficient condition that is polynomially
computable. More details are given in Section 12.1, especially in the overview
and in Section 12.1.3.

1

3

2

4

5 6

87

1 2

3 4

5 6

7 8

Fig. 12.1. Two isomorphic graphs. The labeling indicates a possible isomorphism; it
is not part of the graph

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 318–340, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

12 Network Comparison 319

Indeed, even in the case of two graphs being non-isomorphic, we want to
make a statement as to how similar the graphs are. For example, in chemistry
it is often desired to determine the similarity between two molecular structures.
Several approaches were made to give such similarity measures; we will present
the important ones in Section 12.2. One can also ask if one graph is a part of
another; this leads to the Subgraph Isomorphism Problem: Determine for two
given graphs H and G whether there is a subgraph H ′ ⊂ G with H � H ′.
This problem is NP–complete [240] and can probably only be solved in time
exponential in the number of vertices of the subgraph.

12.1 Graph Isomorphism

Although the graph isomorphism problem has been studied since the Seven-
ties [489], its complexity status is still unknown. Clearly GI∈ NP , but it is not
known that GI is polynomially solvable or that it is NP-complete. Also the re-
lationship of GI to co-NP is not known. Unless P = NP there are problems
whose complexity status is intermediate, that means their complexity class lies
between P and NPC. The widespread conjecture is that GI is such an interme-
diate problem. Indications for that conjecture are on one hand that, in spite of
enduring research, no polynomial algorithm has been found. And on the other
hand, it is known that the counting version of the problem (determine the num-
ber of all isomorphisms) is equally difficult as the decision version itself [409].
This together with a theorem proven by Boppana, H̊astad and Zachos [80] and
Schöning [504] indicates that GI is unlikely to be NP-complete. The theorem
makes a statement on the collapse of the polynomial time hierarchy as a con-
sequence of GI∈ NPC, which is considered to be very unlikely. One approach
in complexity theory to follow this conjecture is to define a special complexity
class isomorphism-complete which contains GI and all problems as hard as GI.
However, Lubiw described in 1981 NP-complete problems similar to GI [398].

Nevertheless, GI is in P for many graph classes, and graph classes for which
GI is really difficult seem to be rare. GI is in P for trees [4], planar graphs [313],
[314], graphs with bounded degree [402], circular-arc graphs [316] and interval
graphs (as a subclass of circular-arc graphs). Recently, Cvetkovic, Rowlinson
and Simic [136] showed that GI is in P for graphs with eigenvalues of bounded
multiplicity. On the other hand, isomorphism-completeness is maintained on
bipartite graphs, line graphs [4], chordal graphs [77] and regular graphs [76].
Most of the positive results are mainly of theoretical interest as the introduced
algorithms are of little practical use.

A powerful approach to solve GI is to consider the automorphism group
Aut(G1) of a given graph G1, or at least the computable information about
Aut(G1). Clearly, if Aut(G1) is known, G1 � G2 can be decided by testing
φ(G1) = G2 for all φ ∈ Aut(G1). Even if we cannot compute Aut(G1) explicitely,
we can restrict the number of possible isomorphisms between two graphs by
grouping their vertices in equivalence classes. For this, vertex invariants are
used. A vertex invariant is a function inv defined on the vertex set of a graph

320 M. Baur and M. Benkert

with the following property: if there is an isomorphism between G1 and G2

that maps v to w then inv(v) = inv(w). The simplest vertex invariant, and in
many cases the most powerful, is the degree of a vertex. We can immediately
recognize two graphs to be non-isomorphic if their degree sequences are different.
If the sequences are equal, but the cardinality of equivalence classes is small,
the number of possible isomorphisms is restricted, e.g. if in each graph there
are only three vertices of degree d and all other degrees appear only once, the
number of possible isomorphisms is 6. In general, we can solve GI polynomially
on graph classes for which the automorphism group is polynomially computable,
or at least the vertices can be grouped in equivalence classes such that the
number of possible isomorphisms between two graphs is polynomial. This raises
the question for which graph classes this approach does not work, as these might
be difficult to solve. The degree sequence, for example, yields no restriction for
regular graphs, but also more elaborate properties may fail. In Section 12.1.3
we give two comparatively small examples that show the hardness of solving
GI polynomially using invariants. It gets difficult if the graph does not allow
a meaningful vertex grouping because the graph structure is very regular. For
more details see Section 4 of [221].

To solve the problem (on general graphs) in practice, there are mainly two
methods. Naturally, the direct one: take the two graphs that are to be compared
and try to compute an isomorphism. This has the advantage that if there are
many isomorphisms, only one has to be found. The second method is to define –
independently from the comparison of two specific graphs – a canonical label C,
which is a function on the set of all graphs, such that G1 and G2 are isomorphic
if and only if C(G1) = C(G2). This has the advantage that already computed in-
formation can be recycled for new comparisons. McKay’s nauty algorithm grabs
this second idea and has become the most practical algorithm for GI. We will
elaborate on it later in Section 12.1.2, but refer to [415] for full details. However,
first we will have a look at a simple backtracking algorithm that follows the first
method.

12.1.1 A Simple Backtracking Algorithm

For the first method we give an algorithm that uses vertex invariants in order
to find an isomorphism. The more powerful the invariant, the less the number
of functions tested to be isomorphisms from the n! possible ones. Let R be a
set with a linear order ‘<’. Let inv : V → R denote some vertex invariant, e.g.
inv(v) = d(v) and R = . Let Π(V, inv) =

(
V1, . . . , Vk

)
be the ordered vertex

partition of V with respect to inv, i.e. ∀v, w ∈ Vi : inv(v) = inv(w) and for all
v ∈ Vi, w ∈ Vj with i < j : inv(v) < inv(w).

Let G1 =
(
V = {v1, . . . , vn}, E1

)
and G2 =

(
W = {w1, . . . , wn}, E2

)
denote

the two graphs that are checked for isomorphism. The output of the algorithm
will be a permutation φ of {1, . . . , n}, such that vi → wφ(i), 1 ≤ i ≤ n, is an
isomorphism between G1 and G2, or ‘NON-isomorphic’, if no isomorphism exists.
The algorithm will extend isomorphisms between subgraphs of G1 and G2 step-
by-step and either stop if an isomorphism can be extended to the whole graphs or

12 Network Comparison 321

Algorithm 26: Isomorph(G1, G2, (V1, . . . , Vm), (W1, . . . , Wm), φ′)

Input: Graphs G1 = V = {v1, . . . , vn}, E1 , G2 = W = {w1, . . . , wn}, E2 ,
vertex partitions (V1, . . . , Vm), (W1, . . . , Wm) with Vi ⊂ V , Wi ⊂ W
and |Vi| = |Wi|, and an isomorphism φ′ between the subgraphs induced
by V \ Vi and W \ Wi.

Output: φ, if φ′ is extensible to an isomorphism φ between G1 and G2,
‘NON-isomorphic’ otherwise.

if (V1, . . . , Vm) = ∅ then return φ′

compute Vi ∈ Vj |Vj | ≤ |V�|, 1 ≤ � ≤ m

let Vi = {vi1, vi2, . . . }, Wi = {wi1, wi2, . . . }
for j = 1, . . . , |Vi| do

if φ′ extended by i1 → ij is an isomorphism between the subgraphs induced
by V \ Vk ∪ {vi1} and W \ Wk ∪ {wij} then

branch = Isomorph G1, G2, (V1, . . . , Vi \ vi1, . . . Vm),

(W1, . . . , Wi \ wij , . . . Wm), φ′ ∪ {i1 → ij}
if branch
= ‘NON-isomorphic’ then return branch

return ‘NON-isomorphic’

if all possibilities have been checked unsuccessfully. Isomorphisms on subgraphs
will be denoted by φ′. Note that any φ′ is a bijection between two subsets of
{1, . . . , n}. Initially Π(V, inv) = (V1, . . . , Vk) and Π(W, inv) = (W1, . . . , Wk′)
are computed. If k �= k′ or |Vi| �= |Wi| for any 1 ≤ i ≤ k, the two graphs
cannot be isomorphic because each possible mapping does not preserve inv. Let
us assume that we have checked k = k′ and |Vi| = |Wi| successfully in the
preprocessing; then Isomorph

(
G1, G2, (Π(V, inv), Π(W, inv), ∅

)
is called, see

Algorithm 26.
First, the vertex subset Vi with minimum cardinality among all subsets of the

partition is determined; obviously Wi has the same cardinality. Any isomorphism
φ between G1 and G2 has to map the vertices of Vi to the vertices of Wi.
Thus it is sufficient to fix a mapping between a vertex of Vi and Wi and to
go on. The smallest cell is chosen in the hope of detecting ‘NON-isomorphism’
as fast as possible. Now, in the for–loop we determine the mapping. If there is
an isomorphism φ, then φ(vi1) ∈ Wi, and checking all mappings vi1 → wij is
sufficient in order to obtain an isomorphism. If it is now still possible to extend
φ′ ∪ {vi1 → wij} to an isomorphism φ, we check the mappings of the remaining
unmapped vertices. This is done by a recursive call of Isomorph.

12.1.2 McKay’s Nauty Algorithm

An example of the approach to compute a canonical label that has been imple-
mented is McKay’s nauty algorithm. In which nauty stands for no automor-
phisms yet?

We first explain McKay’s idea to define a canonical label. For an undirected
graph G = (V, E) with V = {v1, v2, . . . , vn} let Adj(G, δ) be the adjacency
matrix of G with respect to the vertex order vδ(1), vδ(2), . . . , vδ(n), where δ is a

322 M. Baur and M. Benkert

permutation of {1, . . . , n}. Then Cadj defined by

Cadj(G) = min
δ∈Sn

Adj(G, δ)

is a canonical label, where Adj(G, δ) is interpreted as a n2-bit binary number
derived by concatenation of all rows. Two labels Cadj(G1)and Cadj(G2) are equal
if and only if G1 and G2 are isomorphic. This is because the minimum adjacency
matrix is uniquely defined, and two graphs are isomorphic only if there are vertex
orders that yield equal adjacency matrices. The naive approach to compute
Cadj(G) would look at all n! vertex orders and for each order compare two
adjacency matrices of size n× n. However, even for comparatively small values
of n this would not be feasible in acceptable time. To speed up this approach
McKay uses various techniques in his nauty algorithm in order to compute a label
C(G). In general, C(G) will be different from Cadj(G) as the nauty algorithm
does not look at all n! orders but at a special sample and computes the minimum
matrix among them. The Refinement Procedure will determine these samples.
The number of samples depends on the structure of the graph, but usually
the sample size is significantly smaller than n!. To compute all vertex orders
that will be checked, the nauty algorithm uses a search tree T in which each
leaf corresponds to a vertex order. The algorithm traverses T and examines
all adjacency matrices that are induced by the vertex orders of visited leaves.
Now, the next trick comes into play: not all leaves are visited. Group theory,
more precisely the information about the automorphism group Aut(G) already
known, allows to exclude subtrees of T from the traversal. A subtree is pruned if
it is known that it contains only vertex orders that lead to adjacency matrices not
smaller than the best one found so far. Using algebra, mainly group theory, it is
shown that the label C derived by this approach is indeed canonical, see Theorem
12.1.2. There is another technique to prune T , but, as it is very abstract, we will
mention it only briefly in the chapter notes (Section 12.3). Next, we introduce
some basics from group theory that we need in the sequel.

Basics in Group Theory

We denote the permutation group of n elements by Sn. An element δ ∈ Sn is
simply a bijection between the sets {1, . . . , n} and {1, . . . , n}. Obviously, there
are n! such bijections. The product of two elements f and g in a group of func-
tions is defined by composition, i.e. f · g = f ◦ g. For a finite group G and
a subset of elements F ⊆ G the group product of F in G is the subgroup 〈F〉
defined by

〈F〉 = {f ∈ G | ∃m∃f1, . . . , fm ∈ F : f = f1 · . . . · fm}.
The elements of F are called generators of 〈F〉.

A group G operates on a set M with respect to a function σ : G ×M→M,
if for the neutral element e ∈ G and all f, g ∈ G and x ∈ M it holds that
σ(e, x) = x and σ(f ·g, x) = σ(f, σ(g, x)). Then, G and σ induce an equivalence
relation on M in the following way:

12 Network Comparison 323

x ∼ y ⇐⇒ ∃f ∈ G : σ(f, x) = y.

We call the equivalence class of x, i.e. the set {σ(f, x) | f ∈ G}, the orbit of x.
The set of all equivalence classes ofM with respect to G and σ is called the orbit
partition. In our case a subgroup Φ ⊆ Aut(G) of the automorphism group of a
graph G = (V, E) will operate on V . For an automorphism φ ∈ Φ and a vertex
v ∈ V the function σ is simply defined by σ(φ, v) = φ(v).

The Search Tree T

In the following G = (V, E) is the undirected graph whose label C(G) we want
to compute. Let the cardinality of V be n. We first fix an initial indexing of the
vertices V = {v1, . . . , vn}. We now give a formal definition of what we mean by
vertex partition.

Definition 12.1.1 (Vertex partition). A vertex partition of G is an ordered
list Π =

(
V1, . . . , Vr

)
of vertex subsets Vi ⊆ V , the so-called cells, with

1. Vi ∩ Vj = ∅, 1 ≤ i �= j ≤ r
2.

⋃
i∈{1,...,r} Vi = V

3. |Vi| ≥ 1, 1 ≤ i ≤ r.

The number r of vertex subsets of Π is denoted by |Π |. A vertex partition Π is
called unit partition if r = 1 and discrete partition if r = n.

From now on, by vertex partition we will always mean a vertex partition of
G. Any node of T corresponds to a vertex partition with which we will identify
that node. To specify these vertex partitions, we have to introduce a refinement
procedure f in advance. For a vertex partition Π , f(Π) will be a refinement
of Π , i.e. for each cell V ′ in f(Π) there will be a cell V in Π with V ′ ⊆ V .
The refinement is arranged such that vertices that have ‘equal’ adjacencies are
grouped together. For a vertex v ∈ V and a vertex set W ⊂ V let d(v, W) be
the number of vertices in W that are adjacent to v. For simplicity assume that
we want to compute the refinement f(Π) of the unit partition Π = (V). In the
first refinement step, the number d(v, V) is computed for each vertex v, which
simply means the degree of v. Then, the vertices are partitioned according to
their degrees, i.e. the result of this first refinement step is a partition Π1 =
(W1, . . . , Wj) in which any two vertices of each cell are of same degree and
for a vertex v ∈ Wk and a vertex w ∈ W� it holds that d(v, V) < d(w, V)
if and only if k < �. Next, each cell of Π1 is refined with respect to Π1. We
proceed in basically the same manner as before. For each vertex v of a cell Wi its
number η(v) =

(
d(v, W1), . . . , d(v, Wj)

)
is computed and the vertices of Wi are

partitioned according to these numbers. (Two vectors are compared according to
their lexicographical order.) Doing this for all cells results in a refined partition
Π2. Partition Π3 is then the refined partition of Π2 and so on. This is done as
long as Πi+1 is a real refinement of Πi, see Algorithm 27.

Note that the partition f(Π) = (V1, . . . , Vr′) fulfills the following property:
for any two (not necessarily distinct) cells Vi, Vj of f(Π) and for any two vertices

324 M. Baur and M. Benkert

Algorithm 27: Refinement procedure f(Π)

Input: A vertex partition Π = (V1, . . . , Vr).
Output: The refined vertex partition f(Π).

Πnew = Π
repeat

Πold = Πnew

let Πold = (V1, . . . , Vr′)
for i = 1 to r′ do

for each v ∈ Vi do
compute η(v) = (d(v, V1), . . . , d(v, Vr′))

partition Vi into W1, . . . , Wj such that for v ∈ Wk, w ∈ W�:
η(v) < η(w) ⇐⇒ k < �

replace Vi in Πnew by W1, . . . , Wj

until Πnew = Πold

return Πnew

v, w ∈ Vi it holds that d(v, Vj) = d(w, Vj). A partition that satisfies this property
has been called equitable in Section 9.3.1, where the same method has been
discussed. We say that two vertices are structurally equivalent (w.r.t. f(Π)) if
they lie in the same cell of f(Π).

Now, we can precisely describe the nodes of T . All nodes will correspond
to equitable partitions. The root Π =

(
V1, . . . , Vr

)
corresponds to the refine-

ment of the unit partition f
(
(V)

)
. If Π is already a discrete partition, Π has

no descendants and T consists of just one node, otherwise the descendants of
Π are derived as follows: let Vi = {v′1, . . . , v′m} be the first non-trivial cell of
Π , i.e. the first cell that contains more than one vertex. Then, Π has m de-
scendants, namely f(Π \ v′1), . . . , f(Π \ v′m), where f(Π \ v′j) is short hand
for f(

(
V1, . . . , Vi−1, {v′j}, Vi \ {v′j}, Vi+1, . . . Vr

)
). This means that we take each

vertex v′ ∈ Vi out of Vi once, define {v′} artifically as new cell and refine this
partition in order to get the descendant f(Π \ v′). This makes sense as Π was
equitable before, i.e. any two vertices of one cell of Π were structurally equiva-
lent, and we now check each possibility to refine Π by removing each vertex v′

out of Vi and make it an artificial cell.
For any other node Π ′ ∈ T that does not correspond to a discrete parti-

tion, the descendants are derived in exactly the same manner as for Π . Hence,
all leaves of T correspond to discrete partitions. The order of such a discrete
partition

(
{vδ(1)}, . . . , {vδ(n)}

)
, δ ∈ Sn determines the adjacency matrix of the

corresponding leaf. Recall that the purpose of f is to make T as small as possible
by means of structurally equivalent vertices with respect to the current parti-
tion. However, the real size of T depends on the structure of G. For the example
graph in Figures 12.2, T has only three nodes, while the search tree T of the
example graph in Figure 12.3, which contains somewhat more regular structures
than the graph of Figure 12.3, is much bigger.

McKay now defines the label C(G) as minimum adjacency matrix found
among all leaves of T . This is indeed a canonical label:

12 Network Comparison 325

v1

v2

v3 v4

v5

v6

v7

Refinement steps:

{v1, v2, v3, v4, v5, v6, v7}
{v1}, {v2, v3, v4}, {v5, v6, v7}
{v1}, {v2, v3, v4}, {v5, v6}, {v7}

G

T

{v1}, {v2}, {v3, v4}, {v5}, {v6}, {v7}

{v1}, {v2}, {v4}, {v3}, {v5}, {v6}, {v7}

{v1}, {v2}, {v3, v4}, {v5}, {v6}, {v7}

{v1}, {v2}, {v3}, {v4}, {v5}, {v6}, {v7}

Fig. 12.2. A graph G and the corresponding search tree T . At the beginning only v3

and v4 are structurally equivalent

v1

v2 v3

v4v5

v6

v7

Refinement steps:
{v1, v2, v3, v4, v5, v6, v7, v8, v9}
{v1, v2, v3}, {v4, v5, v6, v7, v8, v9}

G

T

v8

v9

{v1, v2, v3}, {v4, v5, v6, v7, v8, v9}

f
(
{v1}, {v2, v3}, {v4, . . . , v9}

)
f
(
{v3}, {v1, v2}, {v4, . . . , v9}

)
.

{v2}, {v1, v3}, {v4, v5, v6, v7, v8, v9}

{v2}, {v1, v3}, {v5, v6, v7, v9}, {v4, v8}

f
(
{v2}, {v1}, {v3}, {v5, v6, v7, v9}, {v4, v8}

)
. . .

{v2}, {v1, v3}, {v5, v6, v7, v9}, {v4, v8}
{v2}, {v3}, {v1}, {v5, v6, v7, v9}, {v4, v8}
{v2}, {v3}, {v1}, {v5, v7}, {v6, v9}, {v4, v8}
{v2}, {v3}, {v1}, {v5}, {v7}, {v6, v9}, {v4, v8}
{v2}, {v3}, {v1}, {v5}, {v7}, {v9}, {v6}, {v8}, {v4}

{v2}, {v3}, {v1}, {v5}, {v7}, {v9}, {v6}, {v8}, {v4}

{v2}, {v3}, {v1}, {v5, v7}, {v6, v9}, {v4, v8}

{v2}, {v3}, {v1}, {v7}, {v5}, {v6}, {v9}, {v4}, {v8}

Fig. 12.3. A graph G, an extract of the corresponding search tree T and the refinement
steps for the emphasized path in T . At the beginning the vertices in {v1, v2, v3} and
in {v4, . . . , v9} are structurally equivalent

326 M. Baur and M. Benkert

Theorem 12.1.2. Let G1 and G2 be two undirected graphs. Let C(G1) and
C(G2) be the labels that were derived from the corresponding search trees. It
holds that

C(G1) = C(G2)⇐⇒ G1 � G2.

On one hand it is clear that non-isomorphic graphs G1 and G2 cannot have
the same label as each adjacency matrix of G1 is different from each adjacency
matrix of G2 (otherwise the graphs would be isomorphic). In the other direction
the clear prescript to generate the search trees gives a hint that two isomor-
phic graphs really get the same label. Of course, this has to be proven exactly.
However, the proof is very technical. We refer the interested reader to [415,
Theorem 2.19].

Using Automorphisms to Prune T

The nauty algorithm does not compute T explicitly. Instead the algorithm parses
T in a special early-to-late order and tries to exclude as many subtrees from
the search. Actually, the partition that corresponds to a node is not computed
until the node is visited by the search. When the algorithm reaches a leaf �,
the adjacency matrix A� induced by � is computed. During the traversal the
algorithm maintains the minimum adjacency matrix Amin it has found so far.
When the algorithm reaches the first leaf �1, Amin is initialized by A�1 . When
another other leaf � is reached, it is tested whether A� < Amin and, if so, Amin

is set to A�. Thus, at the end Amin contains the label C(G). Additionally, the
algorithm maintains the subgroup Φt(G) of the automorphism group of G that
has been computed so far. We will denote this group by Φt(G). It holds that
Φt(G) = 〈φ1, . . . , φi(t)〉, where φ1, . . . , φi(t) are all automorphisms that we know
at time t. An automorphism φ is found when two leaves induce equal adjacency
matrices: let w1, . . . , wn and w′

1, . . . , w
′
n be the vertex orders of the two leaves.

Then, φ : wi → w′
i for i = 1, . . . , n is an automorphism, see Figure 12.4.

0 1 0
1 0 1
0 1 0

0 1 1
1 0 0
1 0 0

0 1 1
1 0 0
1 0 0

Fig. 12.4. Recognizing automorphisms: the matrix below each graph is the adjacency
matrix induced by the particular labeling. If and only if two matrices are equal, the
mapping that matches identically labeled vertices is an automorphism

12 Network Comparison 327

To see how T can be pruned, we need some more definitions. First a linear
order on the nodes in T is introduced to establish the early-to-late order. Let Π
be an inner vertex of T . We denote the subtree rooted at a descendant f(Π \ vi)
of Π by T (Π \ vi).

Definition 12.1.3 (Linear order on the nodes of T). Let Π1, Π2 be two
different nodes of T and let Π be the least common ancestor of Π1 and Π2

in T . We define Π1 ‘<’ Π2 if Π1 = Π or if for the vertices vi and vj in the
first non-trivial cell of Π with Π1 ∈ T (Π \ vi) and Π2 ∈ T (Π \ vj) it holds that
i < j. Otherwise Π2 ‘<’ Π1.

Π1

Π2

Π

Π1 Π2

f(Π \ vi) f(Π \ vj)i < j

Fig. 12.5. Linear order on the nodes of T : the two cases where Π1 ‘<’ Π2

It is easy to see that the relation ‘<’ is a linear order, see also Figure 12.5.
The nauty algorithm traverses the nodes of T with respect to this order. Next,
we need an equivalence relation on the nodes of T .

Definition 12.1.4 (Equivalence relation on the nodes of T).
Let Π1 =

(
V1, . . . , Vm

)
∈ T and Π2 =

(
W1, . . . , Wm

)
∈ T . Then Π1 ∼ Π2 if

and only if there is an automorphism φ ∈ Aut(G) and a permutation δ ∈ Sm

such that φ(Vi) = Wδ(i) for i = 1, . . . , m. We say that φ witnesses Π1 ∼ Π2.

Automorphisms that witness the equivalence of two partitions can be thought
of as color-preserving automorphisms. For each cell Vi of Π1 color its vertices in
a distinct color and color the vertices of cell Wδ(i) in the same color. Then there
exists an automorphism φ that preserves the color of each vertex. We can now
state the first of two important theorems on the way to prune T .

Theorem 12.1.5. Let Π1 ∼ Π2 ∈ T and let T1 and T2 be the subtrees of T
rooted at Π1 and Π2, respectively. Then for each node Π ′

1 ∈ T1 there is a node
Π ′

2 ∈ T2 with Π ′
1 ∼ Π ′

2.

For the proof we refer to [415], Theorem 2.14. As an immediate consequence
of Theorem 12.1.5 we can discard the subtree T2 rooted at a node Π2 ∈ T if
we know that there is a node Π1 with Π1 ‘<’ Π2 and Π1 ∼ Π2. This is due
to the fact that each leaf of T2 is equivalent to a leaf of the subtree rooted at
Π1. Thus, we have already seen all adjacency matrices that would be induced
by the leaves of T2. We have to see how Φt(G) is applied to find equivalent inner
nodes. For a vertex v ∈ V ,

{
φ(v) | φ ∈ Φt(G)

}
is the orbit of v with respect to

328 M. Baur and M. Benkert

Φt(G). Let Θt be the orbit partition of V at time t. The algorithm has access
to Θt at any time. Initially Θt is the discrete partition, i.e. Θ0 = {v1}, . . . , {vn}.
Every time a new automorphism is discovered, Θt is updated. This means Θt is
getting coarser as the new automorphism can enlarge Φt(G) and thus vertices
can become equivalent (w.r.t. Φt(G)) that were not equivalent before. We can
now detect equivalent descendants of a node Π ∈ T by means of the following
theorem which corresponds to Theorem 2.15. in [415].

Theorem 12.1.6. Let Π =
(
V1, . . . , Vr

)
∈ T and Vi = {v′1, . . . , v′m) be the first

non-trivial cell of Π. If there are v′i, v
′
j ∈ Vi that lie in the same orbit of Θt,

there is an automorphism φ ∈ Φt(G) that witnesses f(Π \ v′i) ∼ f(Π \ v′j).

This theorem is used to prune T in two ways. The first is obvious: assume
the algorithm reaches a node Π ∈ T whose first non-trivial cell is Vi. Then, Θt

induces a partition of Vi into cells such that any two vertices of each cell lie in the
same orbit. We denote this partition by Θt ∧ Vi. According to Theorem 12.1.6,
we have to consider only one descendant T (Π \ v′) for each cell Θt ∧Vi. Namely
v′ is the vertex that is minimal in its cell, i.e. has the lowest initial index out of
all vertices in its cell. In other words, we have to consider the descendants that
are derived by the minimal cell representatives of Θt ∧ Vi.

The second way is a bit trickier. Assume that the algorithm reaches a node
Π ∈ T at time t1. Again let Vi be the first non-trivial cell of Π , and let vi, vj ∈ Vi

be vertices that do not lie in the same orbit w.r.t. Θt1 . This means that the
algorithm will examine T (Π \ vi) and T (Π \ vj) by the information that it gets
from Θt1 . W.l.o.g. let vi have the smaller initial index than vj , and thus T (Π\vi)
will be examined before T (Π\vj). The algorithm proceeds, and at time t2 it finds
a new automorphism φ′ such that now there is an automorphism φ ∈ Φt2(G)
with φ(vi) = vj . Hence, vi and vj lie in the same orbit w.r.t. Θt2 . (Note that
φ is not necessarily the new automorphism φ′ itself but a composition of φ′

and automorphisms that have been found before.) Now, the algorithm has the
information that T (Π \ vj) can be pruned. Of course, this cannot be taken into
account anymore if t2 is after the examination of T (Π \ vj) has been completed.
Otherwise this examination can be discarded or (if T (Π \ vj) is already being
examined) aborted. If the algorithm indeed aborts the examination of a subtree
T (Π \ vj) and jumps back to Π , a new automorphism has just been found such
that Θt allows this step. Now, it might even be possible to jump back to an
ancestor of Π because Θt now also allows to abort the examination of a subtree
in which Π is contained. Actually, when a new automorphism is found, the
algorithm immediately checks how far it can jump back in T by means of the
new information.

A challenge is to determine an appropriate number of adjacency matrices
to be stored. Storing and comparing adjacency matrices needs a lot of time
and space. However, if the algorithm maintains a large number of adjacency
matrices, the number of detected automorphisms will also be higher. Thus T
can be pruned more efficiently which in turn will again decrease the running
time. McKay claims that the storage of only two adjacency matrices has stood

12 Network Comparison 329

Algorithm 28: NautyAlgorithm G = (V, E), V = {v1, . . . , vn}
Input: A graph G = (V, E) and an initial vertex indexing V = {v1, . . . , vn}.
Output: The label C(G).
adj.matrix A�1 , vertex order(A�1) = nil
adj.matrix Amin, vertex order(Amin) = nil

Φ(G) = {id}
Θ = {v1}, . . . , {vn}
process f (V)

return Amin.

process Π = (V1, . . . , Vr)
if r = n then

identify V1 = {v′
1}, . . . , Vn = {v′

n} with vertex order v′
1, . . . , v

′
n

compute adj. matrix AΠ induced by v′
1, . . . , v

′
n

if A�1 = nil then
A�1 = AΠ , vertex order(A�1) = v′

1, . . . , v
′
n

Amin = AΠ , vertex order(Amin) = v′
1, . . . , v

′
n

else
if Amin > AΠ then Amin = AΠ , vertex order(Amin) = v′

1, . . . , v
′
n

else
φ = nil
if A�1 = AΠ then

compute automorphism φ induced
by vertex order(A�1) and v′

1, . . . , v
′
n

if Amin
= A�1 and Amin = AΠ then
compute automorphism φ induced
by vertex order(Amin) and v′

1, . . . , v
′
n

if φ
= nil then
Φ(G) = 〈 Φ(G) ∪ φ 〉
update Θ
check jump back

else
let Vi = {v′

1, . . . , v
′
m} be the first non-trivial cell of Π

let v′′
1 , . . . , v′′

m′ be the minimum cell representatives of Θ ∧ Vi

for j = 1 to m′ do process f(Π \ v′′
j)

330 M. Baur and M. Benkert

the test in practice. At any time, the nauty algorithm stores two adjacency
matrices, the matrix A�1 of the first visited leaf and Amin. We summarize the
nauty algorithm in Algorithm 28. For simplification we have omitted a detailed,
rather complicated description of the jump-back steps.

12.1.3 The Difficulty of GI or ‘How to Trick Nauty’

Recall that the complexity status of GI is not yet known. Assume we strongly
believe that there is a polynomial algorithm and we want to try to solve GI
polynomially (many people have in fact tried to derive such an algorithm). The
obvious way to do it would be to use an idea similar to that of McKay. This
section tries to illustrate why it seems to be hard to succeed in solving GI
like this; we show that even elaborate approaches fail. In principle we want to
proceed as in the nauty algorithm, but to use a different refinement procedure
and compute only one leaf of the search tree. The label C(G) is then again
defined as the adjacency matrix induced by the vertex order of this leaf. As
stated before two non-isomorphic graphs G1 and G2 are never recognized as
isomorphic because each adjacency matrix of G1 is different from any adjacency
matrix of G2. To make sure that two isomorphic graphs G1 and G2 are recognized
as isomorphic we want to ensure the following: Let Πk be the leaf in the search
tree of G1 that has been computed and that defines C(G1). Let Π ′

k be the leaf
in the search tree of G2 that defines C(G2). Let Π1, . . . , Πk and Π ′

1, . . . , Π
′
k′

be the vertex partitions that have been computed in order to get to Πk and
Π ′

k′ , respectively. Then it should hold that k = k′ and for i = 1, . . . , k each
vertex partition Πi matches Π ′

i in terms of number of cells and cardinality of
each cell. Finally we need that for Πi = (V1, . . . , Vr) and Π ′

i = (V ′
1 , . . . , V ′

r)
and for each pair Vj = {v1, . . . , vm}, V ′

j = {v′1, . . . , v′m} of cells the following
holds: for all (v, v′) ∈ Vj × V ′

j there is an isomorphism φ between G1 and G2

with φ(v) = v′. This last condition justifies our computing only one leaf of the
search tree. Then it is irrelevant which vertices v and v′ we take out of the first
non-trivial cells of Πi and Π ′

i, define artificially as new equivalence classes and
refine according to these new partitions. To see this, note that if later C(G1)
really equals C(G2), the corresponding vertex orders of the two leaves induce an
isomorphism φ between G1 and G2. Defining {v} and {v′} as new equivalence
classes simply means that we fix φ(v) = φ(v′) and refine with respect to this
information. And if there is really an isomorphism φ that maps v onto v′, which
is guaranteed by the last condition, we will still find it.

To illustrate that it seems difficult to solve GI polynomially in the way de-
scribed above, we give two counterexamples. First, we look at the refinement
procedure f used in the nauty algorithm. The 3-regular graph G in Figure 12.6
proves that f does not help to solve GI polynomially.

For this graph G = (V, E), it holds that d(v, V) equals d(w, V) for any two
vertices v, w ∈ V , since G is regular. Thus, the unit partition is not further
refined by f . If we now have two copies G1 and G2 of G and take v1 out of V
to derive C(G1) while we take v2 out of V to derive C(G2), we will come to the
false conclusion that G1 and G2 are non-isomorphic. There is no isomorphism

12 Network Comparison 331

v1

v2

v3

Fig. 12.6. The 3-regular graph G

that maps v1 onto v2: from v1 the distance to any other vertex is 2, while the
distance from v2 to v3 is 3.

1

11

1

1 1

2 1

11

1

1 1

2

Fig. 12.7. Graph with two components

We now want to see what happens if we apply a different refinement pro-
cedure that uses more information than adjacencies to other cells. Recall that
the idea of f was to partition the vertex set in equivalence classes as long as it
holds that any two vertices of one cell have the same number of neighbors in
each other cell. For v ∈ V, W ⊆ V and i ∈ let now di(v, W) be the number of
vertices in W of distance i to v. We try to improve f and refine as long as the
following holds: for any two vertices v and w of one cell the numbers di(v, W)
and di(w, W) are equal w.r.t. each cell W and each i ∈ . The 3-regular graph
is no longer a counterexample for this refinement procedure. However, the new
method also fails, as the graph in Figure 12.7 shows. The label of each vertex v
corresponds to the equivalence class to which v belongs after the refinement of
the unit partition. Each 1–vertex has two 1–vertices and one 2–vertex at distance
1 and three 1–vertices at distance 2, while each 2–vertex has six 1–vertices at
distance 1. Obviously, there is no isomorphism that maps the 2–vertex of the
left component onto the 2–vertex of the right component. For simplification the
graph consists of two components, but the graph can be extended, resulting in
a connected graph which yields the same result.

332 M. Baur and M. Benkert

12.2 Graph Similarity

The graph isomorphism problem asks if two graphs have identical structure. As
this is a very restrictive criterion, one may consider the natural relaxation which
tries to specify how similar two graphs are. Graph similarity, often called graph
matching, compares two graphs to give a measure for the similarity, or distance,
between them.

There are various applications of this problem, i.e., CAD/CAM, computer
vision, and molecule matching. An important advantage of graph similarity over
isomorphism is its ability to cope with errors and distortions in the input data,
which often occurs when collecting real world data. These errors can change
isomorphic graphs to non-isomorphic ones, so a rigorous check for isomorphism is
inappropriate. The alternative is an imprecise matching using a graph similarity
measure.

Many applications imply a labeling of the vertices or edges, i.e., in molecule
matching the labeling is defined by the types of the elements. When labels are
present vertices and edges with different labels are either penalized or even not
allowed to match. Since we are interested in structural similarity, all graphs are
regarded as unlabeled in the following.

There are certain properties a meaningful similarity measure should fulfill.
For example, the distance from graph G1 to graph G2 should be the same as
from G2 to G1, and the distance of isomorphic graphs should be 0. An common
formalization of such properties is a graph distance metric.

Definition 12.2.1. Let G1, G2, and G3 be graphs. A function d : G1×G2 → +
0

is called a graph distance metric if the following properties hold:

reflexivity: d(G1, G2) = 0⇔ G1
∼= G2 (12.1)

symmetry: d(G1, G2) = d(G2, G1) (12.2)
triangle inequality: d(G1, G2) + d(G2, G3) ≥ d(G1, G3) (12.3)

On the other hand, all graph distance metrics are hard to compute since
the reflexivity property implies a solution for graph isomorphism. Thus, in prac-
tice, one may either relax these properties, or compute an approximation of the
measure.

For simplicity, only undirected connected graphs are considered in the fol-
lowing. All statements can be extended to unconnected graphs by considering
their connected components, and also to directed (strongly connected) graphs.

We present three types of similarity measures. Two are metrics: one is based
on the size of a maximum common subgraph, and the other on the difference
in the length of corresponding paths. Another approach defines the distance
between two graphs in terms of edit operations needed to transform one into the
other. Finally we give a short overview of other methods from literature

12.2.1 Edit Distance

A general and flexible method for matching structural objects is the concept of
edit distance. Given a set of allowed edit operations on the objects, the distance

12 Network Comparison 333

between two objects is defined as the minimal number of operations needed to
transform one into the other. A well-known example is string edit distance.

In graph edit distance typical operations include the insertion, deletion, and
substitution of vertices and edges. There is no general agreement on the set
of allowed operations. Instead, a good selection of allowed operations is very
application-dependent. Furthermore, non-negative costs can be assigned to op-
erations to better fit special requirements. In this case the distance is defined
as the minimum cost taken over all sequences of operations that transform one
graph into the other.

Intuitively speaking, for reasonable and meaningful specifications of opera-
tions and costs, the problem is hard to solve. For certain combinations of op-
erations and costs the metric properties are satisfied. Recall this implies the
problem is at least as hard to solve as GI. On the other hand the distance is
efficiently computable only for simple sets of allowed operations. In this case the
resulting distance is less significant.

Example 1. The first example illustrates a specification which is easy to handle
but does not lead to very meaningful results. The following edit operations are
allowed:

– vertex insertion - a new (isolated) vertex is added to the graph
– vertex deletion - a (isolated) vertex is deleted from the graph
– edge insertion - a new edge is added between arbitrary vertices of the graph
– edge deletion - an edge is deleted from the graph

The costs of both vertex operations are one, of both edge operations zero.
It is easy to see that the distance defined by this specification is equal to the
difference of the number of vertices of the two graphs:

dexp1 = ||V (G1)| − |V (G2)|| .
This means, for example, a path, a star, and a clique of the same number of

vertices are equal in terms of this distance.

Example 2. This specification was introduced by Papadopoulos and Manolo-
poulos [464]. They propose to use three operations, all with cost one:

– vertex insertion – a new (isolated) vertex is added to the graph
– vertex deletion – a (isolated) vertex is deleted from the graph
– edge update – one endvertex of an edge is changed

Insertion or deletion of an edge requires two edge updates in this model.
Using these operations on the graphs of Figure 12.8, two operations are required
to match G1 with G2, namely two edge updates, whereas three operations are
required to match G1 with G3, namely one vertex insertion and two edge updates.
Thus, in this specification, G1 is more similar to G2 than to G3.

334 M. Baur and M. Benkert

(a) G1 (b) G2 (c) G3

Fig. 12.8. Similarity among graphs: in Example 2, G1 is more similar to G2 than to
G3

As already mentioned, the computation of a meaningful graph edit distance
is hard. Therefore, the matching condition is relaxed: given two graphs G1 and
G2, instead of transforming G1 into G2, G1 is transformed into a graph with
the same number of vertices and edges and the same degree sequence as G2. In
other words, only the size and the degree sequence of the graphs are considered.

A degree vector x = (x1, . . . , xn) of a graph G = ({v1, ..., vn}, E) with n
vertices is defined by xi := d(vi). A graph histogram is a degree vector whose
entries are incremented by one and sorted in decreasing order. Given two graphs
G1 and G2, the distance according to the L1 metric of the corresponding graph
histograms gives the minimum number of operations required to transform G1

into a graph with the same number of vertices and edges and the same degree
sequence as G2. If the number of vertices of the two graphs differs, zeros are
added to the smaller graph histogram.

12.2.2 Difference in Path Lengths

The next similarity measure we present is an example of a graph distance met-
ric [116]. Hence, while the definition is quite simple, its computation is hard.
Roughly speaking, the sum of differences of the lengths of corresponding paths
for all pairs of vertices is considered. Since this measure is reasonable only for
graphs of the same number of vertices, only such graphs are compared in the
following.

Definitions. Let G1, G2 be isomorphic connected graphs with isomorphism
φ : V (G1)→ V (G2). Two vertices of G1 are adjacent iff their isomorphic vertices
in G2 are adjacent, in other words:

∀u, v ∈ V (G1) : {u, v} ∈ E(G1)⇔ {φ(u), φ(v)} ∈ E(G2) .

An equivalent formulation extends this connection property from distance-one
vertices to arbitrary pairs of vertices:

∀u, v ∈ V (G1) : dG1(u, v) = dG2(φ(u), φ(v)) . (12.4)

Now, let G1, G2 be two arbitrary connected graphs of the same number of
vertices and σ : V (G1) → V (G2) a bijection. Then, Equation 12.4 does not

12 Network Comparison 335

necessarily hold anymore. Instead, we can use the differences of the path lengths
to define the similarity of two graphs with respect to σ.

Definition 12.2.2. For two connected graphs G1, G2 of the same number of
vertices and a bijection σ : V (G1)→ V (G2) we define the σ-distance dσ by

dσ(G1, G2) =
∑

{u,v}∈V (G1)×V (G1)

|dG1(u, v)− dG2(σ(u), σ(v))| ,

where the sum is taken over all unordered pairs of vertices of G1.

Since the similarity of two graphs can not depend on a specific mapping
between the sets of vertices, the distance is defined as the minimum over all
possible bijections between V (G1) and V (G2).

Definition 12.2.3. For two connected graphs G1, G2 of the same number of
vertices, we define the path distance dpath by

dpath(G1, G2) = min
σ∈Λ

dσ(G1, G2) ,

where Λ is the set of all bijections between V (G1) and V (G2).

Example. Let G1 be the graph shown in Figure 12.9 and let G2 be a cycle
of 4 vertices. At first sight there are 4! = 10 bijective mappings from V (G1)
to V (G2). However, because of the highly symmetric structure of the graphs,
there are only two inequivalent mappings with respect to path distance. These
are depicted in Figure 12.9, where the mappings σ1, σ2 : V (G1) → V (G2) are
defined by σij = j for j = 1, . . . , 4. Now we determine for each pair of vertices
the difference between distance in G1 and distance of the corresponding images
in G2 and find that

dσ1(G1, G2) = 2 and dσ2(G1, G2) = 4 .

Thus dpath(G1, G2) = 2.

Path Distance Is a Metric. dpath(G1, G2) = dpath(G2, G1) follows directly
from the definition. From Equation 12.4 we get immediately dpath(G1, G2) =
0 for isomorphic graphs. On the other hand, dpath(G1, G2) = 0 implies the
existence of an isomorphism φ : V (G1)→ V (G2).

The triangle inequality remains to be verified. Let G1, G2, and G3 be con-
nected graphs with |V (G1)| = |V (G2)| = |V (G3)|, and α : V (G1) → V (G2)
and β : V (G2) → V (G3) bijections with dα(G1, G2) = dpath(G1, G2) and
dβ(G2, G3) = dpath(G2, G3) respectively. Then β ◦ α : V (G1)→ V (G3) is also a
bijection and

336 M. Baur and M. Benkert

1

2

4 3

(a) G1

1 2

4 3

(b) σ1

1 3

4 2

(c) σ2

Fig. 12.9. Two different mappings of G1 to a cycle of 4 vertices

dpath(G1, G3) ≤ dβ◦α(G1, G3)

=
∑

{u,v}∈V (G1)×V (G1)

|dG1(u, v)− dG3((β ◦ α)(u), (β ◦ α)(v))|

≤
∑

{u,v}∈V (G1)×V (G1)

|dG1(u, v)− dG2(α(u), α(v))|

+
∑

{u,v}∈V (G1)×V (G1)

|dG2(α(u), α(v)) − dG3((β ◦ α)(u), (β ◦ α)(v))|

= dα(G1, G2) + dβ(G2, G3)
= dpath(G1, G2) + dpath(G2, G3) .

Therefore, the triangle inequality holds and dpath is a graph similarity metric.

Computation of Path Distance. The computation of path distance of two
graphs consists of three steps. First, we compute the distance of all pairs of
vertices in both graphs. This is exactly the all-pairs shortest path problem (see
Section 2.2.2). Then, we can compute the σ-distance for a given bijection σ in
time O(n2). Finally, we must identify the minimum bijection with respect to
path distance.

12.2.3 Maximum Common Subgraphs

In this section we look at a similarity measure based on the size of a maximum
common subgraph. The idea to use similar substructures of graphs for graph
matching was introduced by Horaud and Skordas [315] and Levinson [391], and
refined by Bunke and Shearer [106].

Recall the definition of induced subgraphs in Section 2.1. A graph G′ =
(V ′, E′) is a subgraph of the graph G = (V, E) if V ′ ⊆ V and E′ ⊆ E. It is an
induced subgraph if E′ contains all edges e ∈ E that join vertices in V ′.

12 Network Comparison 337

Definition 12.2.4. Let G1, G2 be undirected graphs. An injective function φ :
V (G1) → V (G2) is a subgraph isomorphism from G1 to G2 if there exists an
induced subgraph G′

2 ⊆ G2 such that φ is a graph isomorphism between G1 and
G′

2.

Definition 12.2.5. Let G1, G2 be undirected graphs. A graph S is a common
induced subgraph of G1 and G2 if there exist subgraph isomorphisms from S to
G1 and G2.

Definition 12.2.6. Let G1, G2 be undirected graphs. A common induced sub-
graph S of G1 and G2 is maximum if there exists no other common subgraph
with more vertices than S. We denote such a maximum common induced sub-
graph (MCIS) by mcis(G1, G2).

A concept closely related to (vertex-)induced subgraphs are edge-induced
subgraphs. A graph G′ = (V ′, E′) is a edge-induced subgraph of the graph G =
(V, E) if E′ ⊆ E and V ′ contains only the incident vertices of edges in E′. Note
that edge-induced subgraphs contain no isolated vertices. Figure 12.10 shows
a comparison of vertex- and edge-induced subgraphs of a simple graph. The
prior definitions for induced subgraphs are easily carried over to edge-induced
subgraphs.

(a)
edge-
induced

(b)
vertex-
induced

(c)
vertex-
and
edge-
induced

(d) not
induced

Fig. 12.10. Comparison of vertex- and edge-induced subgraphs

Definition 12.2.7. Let G1, G2 be undirected graphs. An injective function φ :
V (G1)→ V (G2) is an edge subgraph isomorphism from G1 to G2 if there exists
an edge-induced subgraph S ⊆ G2 such that φ is a graph isomorphism between
G1 and S.

Definition 12.2.8. Let G1, G2 be undirected graphs. A graph S is a common
edge subgraph of G1 and G2 if there exist edge subgraph isomorphisms from S
to G1 and to G2.

338 M. Baur and M. Benkert

Definition 12.2.9. Let G1, G2 be undirected graphs. A common edge subgraph
S of G1 and G2 is maximum if there exists no other common edge subgraph
with more vertices than S. We denote such a maximum common edge subgraph
(MCES) by mces(G1, G2).

Note that maximum common subgraphs are neither unique nor connected
by definition. Note also that the MCIS or MCES of non-empty graphs consist at
least of one vertex or one edge, respectively. Next, induced subgraphs are used
to define distance measures for graphs.

Definition 12.2.10. Let G1, G2 be undirected graphs, not both empty. We de-
fine the MCIS distance dmcis by

dmcis(G1, G2) = 1− |V (mcis(G1, G2))|
max(|V (G1||, |V (G2)|)

(12.5)

and the MCES distance dmces by

dmces(G1, G2) = 1− |V (mces(G1, G2))|
max(|V (G1)|, |V (G2)|)

. (12.6)

MCIS and MCES Distance Are Metrics. Two properties of a graph simi-
larity metric, reflexivity and symmetry, follow directly from the definition. The
proof of the triangle inequality consists of a longish case differentiation, so we
only give a sketch for MCIS. The complete proof for MCIS is given in [106].

Let G1, G2, and G3 be undirected graphs. For notational convenience, let
ni = V (Gi), mcis(i, j) = |V (mcis(Gi, Gj))|, and max(i, j) = max(ni, nj) for
i, j ∈ {1, 2, 3}. Using this notation, the triangle inequality is equivalent to

1− mcis(1, 3)
max(1, 3)

≤ 1− mcis(1, 2)
max(1, 2)

+ 1− mcis(2, 3)
max(2, 3)

.

Next, consider a maximum common subgraph of mcis(G1, G2) and
mcis(G2, G3) and denote its number of vertices by mcis(12, 23). Clearly

mcis(12, 23) ≤ mcis(1, 3) ,

mcis(12, 23) ≤ mcis(1, 2) ,

mcis(12, 23) ≤ mcis(2, 3) ,

and
mcis(1, 2) + mcis(2, 3)−mcis(12, 23) ≤ n2 .

Now distinguish six cases by the possible orderings of n1, n2, and n3 and get
the result by combining the above inequalities.

12 Network Comparison 339

Computation of MCIS and MCES. The detection of a maximum common
subgraph is an NP-complete problem [240]. Nevertheless a few exact algorithms
have been proposed, based either on an exhaustive search for all subgraphs or
on the relation of maximum common subgraph and maximum clique detection.

The first method was proposed by McGregor [414] and is very similar to the
search-and-backtrack approach to graph isomorphism. The algorithm identifies
common subgraphs by starting from single vertices in each graph and iteratively
adding vertices (and incident edges) which do not violate the common subgraph
condition. If it is impossible to add any new vertex, the size of the current
subgraph is compared to the one previously found and a backtracking is done
to test other branches of the search tree. Finally, a largest common subgraph is
reported.

The second approach is based on the fact that a MCIS of two graphs cor-
responds to a maximum clique in their modular product graph. Recall a clique
is a completely connected subgraph. A maximum clique (MC) is a clique with
the largest number of vertices. Note that a MC is not necessarily unique. The
modular product graph G1 �G2 of G1 and G2 is defined on the vertex set

V (G1 �G2) = V (G1)× V (G2)

and two vertices (ui, vi), (uj , vj) ∈ G1 �G2 being adjacent if either

(ui, uj) ∈ E(G1) and (vi, vj) ∈ E(G2)

or
(ui, uj) �∈ E(G1) and (vi, vj) �∈ E(G2) .

Accordingly, a MCES of two graphs corresponds to a maximum clique in the
modular product graph of their line graphs [450].

Exact algorithms for clique detection are based on exhaustive search strate-
gies [240]. This approach is similar to algorithms for MCIS, but takes advantage
of a number of upper and lower bounds to prune the search space (e.g., see [466]).
Also, many approximation algorithms have been proposed, see [70] for an exten-
sive survey.

12.2.4 Other Methods

RASCAL. This is not a single method but a combination of a fast initial
screening process followed by a rigorous MCES detection algorithm [488]. In the
initial screening the degree sequence and vertex and edge labels are considered
for computing a first approximation of the similarity. Only if it is above a certain
threshold is the costly MCES detection executed. The idea is that one does not
care about quite different graphs but only about very similar ones. Other benefits
of this paper, beside the two phase approach, are a detailed description of the
MCES computation including some minor improvements and a good readability.

340 M. Baur and M. Benkert

Motifs. In Section 11.6 the concept of motifs is introduced. Motifs are small
connected subgraphs in a graph G that occur in G significantly more often than
in a random graph of the same size and degree distribution. Characteristics and
quantity of motifs in graphs can be used as indicators for their similarity.

12.3 Chapter Notes

Besides the detection of explicit algorithms (by finding equal adjacency matri-
ces), an automorphism can sometimes be inferred by a special structure of a
vertex partition in T . However, this occurs rarely, for details see [415, Lemma
2.25].

McKay uses another trick in order to prune the search tree T : let Λ be a
function defined on the set of all vertex partitions. The goal is now to define
an indicator function Λ∗ on the nodes of T . In the nauty algorithm a node
Πm ∈ T actually stores all vertex partitions of its ancestors, i.e. the list of re-
fined partitions f

(
(V)

)
= Π1, . . . , Πm that were derived in order to get to Πm.

Identify the node from now on with [Π1, . . . , Πm]. The function Λ∗ is defined by
Λ∗([Π1, . . . , Πm]) = (Λ(Π1), . . . , Λ(Πm)). McKay’s algorithm actually searches
the minimum adjacency matrix among the leaves that maximize Λ∗. The algo-
rithm can then prune subtrees as soon at it is clear that all their leaves have a
Λ∗–value below the current maximum. This is due to the lexicographical order
of Λ∗. The benefit of this method depends eminently on the quality of Λ. For
example, if Λ is the identity, Λ has no effect. McKay uses information from the
computation of f(Π) = Π to define Λ(Π), see again [415].

13 Network Models

Nadine Baumann and Sebastian Stiller

The starting point in network analysis is not primarily the mathematically de-
fined object of a graph, but rather almost everything that in ordinary language is
called ‘network’. These networks that occur in biology, computer science, econ-
omy, physics, or in ordinary life belong to what is often called ‘the real world’.
To find suitable models for the real world is the primary goal here. The analyzed
real-world networks mostly fall into three categories.

The biggest fraction of research work is devoted to the Internet, the WWW,
and related networks. The HTML-pages and their links (WWW), the newsgroups
and messages posted to two or more of them (USENET), the routers and their
physical connections, the autonomous systems, and several more are examples
from this scope of interest.

In biology, in particular chemical biology, including genetics, researchers en-
counter numerous structures that can be interpreted as networks. Some of these
show their net structure directly, at least under a microscope. But some of the
most notorious of the biological networks, namely the metabolic networks, are
formed a little more subtly. Here the vertices model certain molecules, and edges
represent chemical reactions between these molecules in the metabolism of a
certain organism. In the simplest case, two vertices are connected if there is a
reaction between those molecules.

Sociological networks often appear without scientific help. We think of crony-
ism and other (usually malign) networks in politics and economy, we enjoy to be
part of a circle of friends, we get lost in the net of administration, and network-
ing has become a publicly acknowledged sport. The trouble – not only but also
– for scientists is to get the exact data. How can we collect the data of a simple
acquaintance network for a whole country, or even a bigger city? But for some
networks the data is available in electronic form. For example, the collaboration
of actors in movies, and the co-authorship and the citation in some research
communities, partly owe their scientific attraction to the availability of the data.

Many – but not all – of these examples from different areas have some char-
acteristics in common. For example metabolics, the WWW, and co-authorship
often form networks that have very few vertices with very high degree, some
of considerable degree and a huge number of vertices with very low degree.
Unfortunately, the data is sometimes forced to fit into that shape, or even mis-
chievously interpreted to show a so called power law. Often deeper results are

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 341–372, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

342 N. Baumann and S. Stiller

not only presented without proof, but also only based on so called experimental
observations.

Yet one feature can be regarded as prevalent without any alchemy: Most of
the real-world networks are intrinsically historical. They did not come into being
as a complete and fixed structure at one single moment in time, but they have
developed step by step. They emerged. Therefore, on the one hand, it makes
sense to understand the current structure as the result of a process. On the
other hand, one is often more interested in the network’s future than in one
of its single states. Therefore several models have been developed that define a
graph, or a family of graphs, via a process in the course of which they emerge.

The mathematical models for evolving networks are developed for three main
intentions. First of all, the model should meet or advocate a certain intuition
about the nature of the development of the real-world network. Secondly, the
model should be mathematically analyzable. A third objective is to find a model
that is well suited for computational purpose, i.e., to simulate the future devel-
opment or generate synthetic instances resembling the real network, for example
to test an algorithm.

There are several overviews in particular on models for Internet and WWW
networks (see [164, 68] for a more mathematically inclined overview). Some of
these papers already exceed this chapter in length. It hardly pays and it is
virtually impossible to mention all models, experimental conjectures, and results.
We rather intend to endow the reader with the necessary knowledge to spark
her own research. We proceed in four sections.

In the first section the founding questions, driving ideas, and predominant
models are summarized. Then, in the second section, we compile some methods
that are deemed to or have proven to be fruitful in analyzing the structure of a
network as a whole. Third, we broaden our scope in order to exemplify the great
variety of models for evolving networks. The last section is devoted to the state
of the art generators for networks that resemble the Internet.

Up to further notice we consider graphs as directed graphs. Some graph
processes may generate multigraphs which should be clear from the context.

13.1 Fundamental Models

13.1.1 The Graph Model (Gn,p)

First we want to discuss the historical starting point of random graph theory.
More precisely, we define the graph model (Gn,p).

A graph model is a set of graphs endowed with a probability distribution.
In this case the graphs under consideration are undirected. The following three
graph models stochastically converge to each other as n→∞:

1. The first way to generate a random graph is to choose a graph uniformly
at random among all graphs of given vertex number n and average vertex
degree z.

13 Network Models 343

2. Alternatively, choose every edge in a complete graph of n vertices with prob-

ability p to be part of E(G), where
2p(n

2)
n = p(n − 1) =: z is the expected

average degree. This model is denoted by (Gn,p).
3. In the third method, n vertices vi are added successively, deciding for each

vi and for each j < i whether to put {vi, vj} in the edge set or not with
probability p.

The last one is an interpretation of the second as a graph process. See Sec-
tion 13.1.4 for more details about graph processes. The first is of course more
restrictive, because the average degree is fixed and not just expected, as in the
two other models. Still these models converge. Thereby the first model may be
more intuitive, but the second is often more suitable for analysis. These three
aspects are also important for the other models we will discuss in this section:
Some models capture best our intuition about the real world, others are superior
in mathematical tractability. Third, networks in the real world very often are
structures which rather emerged from a process than popped up as a whole.

There is a myriad of literature and highly developed theory on the (Gn,p) and
related models. It turns out that a graph chosen according to that distribution,
a graph ‘generated’ by that model, shows a number of interesting characteristics
with high probability. On the other hand, this graph model has, precisely be-
cause of these characteristics, often been disqualified as a model for real-world
networks that usually do not show these characteristics. For example, without
deep mathematical consideration one can see that the majority of the vertices
will have almost or exactly the average degree. For many networks in the real
world this is not the case. Still our interest in this model is more than historical.

We should state at least one fundamental and very illuminating result on
(Gn,p)-graphs. Let Gn,p denote a fixed graph generated by one of these models.

Theorem 13.1.1. Let mω be the expected number of arcs in a Gn,p, i.e., mω =
p
(
n
2

)
. If mω = n

2 (log n + ω(n)), then for
ω → −∞ Gn,p is disconnected with high probability, and for
ω →∞ Gn,p is connected with high probability.

This chapter will extensively treat degree sequences. Therefore we state the
following immediate fact about the probability distribution p of the degree k of
a vertex in a (Gn,p)-graph. We use z or z1 to denote the average degree of a
vertex in the graph under consideration.

p(k) =
(

n− 1
k

)
pk(1 − p)n−1−k ≈ zk exp(−z)

k!
After this classical mathematical model let us turn to a topic strongly inspired

by the real-world, the concept of a Small World.

13.1.2 Small World

One of the starting points of network analysis is a sociological experiment con-
ducted to verify the urban legend that anyone indirectly knows each other by

344 N. Baumann and S. Stiller

just a few other mediators. To scrutinize this assumption Milgram [421] asked
several people in the US to deliver a message just by passing it on to people they
knew personally. The senders and mediators knew nothing about the recipient
but his name, profession, and the town he lived in. These messages reached their
destination on average after roughly five or six mediators, justifying the popular
claim of six degrees of vicinity. The world, at least in the US, appears to be
small.

The notion of ’Small World’ has become technical since, usually encompass-
ing two characteristics: First, the average shortest path distances over all vertices
in a small world network has to be small. ’Small’ is conceptualized as growing
at most logarithmically with the number of vertices. In this sense (Gn,p) graphs
(see Section 13.1.1) are small even for small values of p, and the sociological ob-
servation would come as no surprise. But in a vicinity-network – like the one the
sociological experiment was conducted on – a huge fraction of people one knows
personally, also know each other personally. Mathematically speaking a network
shows the worldly aspect of a small world if it has a high clustering coefficient.
Whereas in an (Gn,p) graph the clustering coefficient obviously tends to zero.
(The clustering coefficient gives the fraction of pairs of neighbors of a vertex
that are adjacent, averaged over all vertices of the graph. For a precise definition
of the clustering coefficient and a related graph statistic, called transitivity, see
11.5.)

A very popular abstract model of small world networks, i.e., a graph with
clustering coefficient bounded from below by a constant and logarithmically
growing average path distance, is obtained by a simple rewiring procedure. Start
with the kth power of an n-cycle, denoted by Ck

n. The kth power of a cycle is
a graph where each vertex is not only adjacent to its direct neighbors but also
to its k neighbors to the right and k neighbors to the left. Decide for each edge
independently by a given probability p whether to keep it in place or to rewire
it, i.e., to replace the edge {a, b} by an edge {a, c} where c is chosen uniformly
at random from the vertex set.

The description contains a harmless ambiguity. Viewing the rewiring process
as iteratively passing through all vertices, one may choose an edge to be rewired
from both of its vertices. It is not a priori clear how to handle these ties. The
natural way to straighten this out is the following: Visit each vertex iteratively
in some order, and make the rewiring decisions for each of the currently incident
edges. Therefore, strictly speaking, the model depends on the order in which the
vertex set is traversed. Anyway, the reader should be confident that this does
not affect the outcome we are interested in, namely the average shortest path
distance and the clustering coefficient C. For small p the clustering coefficient
stays virtually that of Ck

n. To be more precise, for small k and p and large
n: C(Grewired) = C(Ck

n)(1 − p
2k), as the pth fraction of an average of the 2k

neighbors’ contribution is removed from the numerator. On the other hand, the
average path distance in such a graph decreases quickly (as p increases) from the
original n

4k (on average one has to walk a quarter of the circle by steps of length

13 Network Models 345

Fig. 13.1. Clustering coefficient and path lengths for the small world model by Watts-
Strogats. Found at: http://backspaces.net/PLaw/. Results are from 2,000 random
graphs, each with 300 vertices and 900 edges

k, except for maybe the last) to small values, claimed [573] to be in O(log n)
(compare Figure 13.1).

Unfortunately, these figures were obtained and verified empirically only. The
chart suggests that calculation of the second moment of the distributions would
be desirable, as the lower cloud of points, i.e., the average shortest path dis-
tances, appear far less stable. Maybe the most important problem with such
experimental figures is that they can hardly account for the difference between,
for example, a logarithmic or a

√
n behavior.

A weakness of the rewiring model, and thus of the whole definition of small
world graphs, is that, by fixing the number of random edges and enlarging k, the
clustering coefficient can be kept artificially high, whereas the path distances on
average only depend on the number of random edges relative to n. An increase
in small deterministic edges does not contribute to the average path distance,
except for a constant: On average the number of steps to go from one long-
range edge to the other becomes smaller only by a constant factor. Sociologically
speaking, having many friends in the neighborhood brings you only a constant
closer to the Dalai Lama.

13.1.3 Local Search

Revisiting the sociological experiment, one may not be satisfied that the theoret-
ical explanation only accounts for the existence of short average shortest paths.
The fact that the letters reached their destination within a few steps requires
short paths not only to exist, but also to be detectable for the ignorant agents in
the vicinity network. This led Kleinberg to the idea of a local algorithm. Roughly
speaking, a local algorithm should act – for example crawl a network – step by

346 N. Baumann and S. Stiller

step without knowing the whole structure. In each step only a specific, local part
of the whole data should be used to reach the current decision. A definition of
local algorithm for the specific problem will be given in a moment.

The real-world vicinity network is idealized by a parameterized network
model that is easily found to have a high and constant clustering coefficient.
It is once again a network comprised of short deterministic and long random
edges, modeling the intuition that we know our neighborhood and have some
occasional acquaintances. The aim is to determine the parameters under which
there exists a local algorithm capable of finding a path with on average logarith-
mic length for a randomly chosen pair of vertices.

Model for Local Search. The network G(V, E) is parameterized by n, p, q
and r. The vertex set V contains the points of a 2-dimensional n × n lattice.
On the one hand, E contains bi-directed arcs between each vertex and its 2p
closest horizontal and 2p closest vertical neighbors. On the other hand, for each
vertex, v, there are q directed arcs of the form (v, x) ∈ E, where x is chosen
out of V \ {v} according to the distribution p(x) = d−r(v,x)

y d−r(v,y) , where d(x, y)
denotes the minimum number of steps to go from x to y on the grid and r > 0 is
a constant. We call such a network GK(n, p, q, r) a Kleinberg-Grid. (Note that
for p = 1 the clustering coefficient is 0, but for p > 1 it is greater than 0 and
essentially independent of n.)

Local Algorithm. The following notion of a local algorithm is not very general,
but rather tailor-made for the above model. A local algorithm provides a rule
giving the subsequent vertex at each vertex of the path to be output in the end,
based only on the following types of information:

– Global Knowledge
– The structure of the underlying grid.
– The position of the destination vertex in the underlying grid.

– Local Knowledge
– The positions of the current vertex in the underlying grid and of its neigh-

bors in the whole network (i.e., including its long-range connections).
– The positions of all vertices visited so far, including their neighbors posi-

tions.

Results. The local algorithm Kleinberg analyses is the most natural one –
which gives even more explanatory power for the sociological experiment: Every
recipient of the message passes it on to that vertex among its neighbors that is
closest to the destination in d(·, ·). Call this the Kleinberg-Algorithm.

13 Network Models 347

Theorem 13.1.2. Let p, q ∈ be fixed. Then the following holds for every
Kleinberg-Grid GK(n, p, q, r):
For r = 0
every local algorithm finds paths of average length in Ω(n

2
3).

For 0 < r < 2
every local algorithm finds paths of average length in Ω(n

2−r
3).

For r = 2
the Kleinberg-Algorithm finds paths of average length in O(log2 n).
For r > 2
every local algorithm finds paths of average length in Ω(n

r−2
r−1).

Sketch of Proof. Though the negative results of Theorem 13.1.2 (that no local
algorithm can find a path of the desired length) are the intriguing ones, it is
the proof of the positive result that will give us the required insight, and will be
sketched here.

In order to estimate the average number of steps which the Kleinberg-Algo-
rithm takes (for r = 2 and x the destination vertex) subdivide the vertex space in
subsets Uk of vertices v with 2k−1 ≤ d(x, v) < 2k. The algorithm always proceeds
to a vertex that is closer to x than the current vertex. Thus, if it once reaches a
subset Ui it will only advance to Uj where j ≤ i. As the total number of subsets
grows logarithmically with n, we are done if we can show that the algorithm
needs at most a constant number of steps to leave a subset Uk, independent
of k.

As the subset Uk can be very big, we interpret leaving a subset as finding
a vertex that has a random edge into

⋃
i<k Ui. As the algorithm visits every

vertex at most once, we can apply the technique of postponed decisions, i.e.,
choose the random edge of a vertex v when we reach v. In order to have a
constant probability at every level k, the probability for v to have a random
contact at distance less than or equal to 2k−1 from v, must be constant for all
k. This is true for a 2-dimensional lattice if and only if r = 2. �

At this point the result of Theorem 13.1.2 seems generalizable to other di-
mensions, where r should always equal the dimension. This can easily be seen
for dimension 1. The details of the proof and the negative results may be more
difficult to generalize.

The above proof already gives a hint why the negative results hold for di-
mension 2. If r > 2 the random arcs are on average too short to reach the next
section in a constant time, when the algorithm is in a big and far away subset.
On the other hand, r < 2 distributes too much of the probabilistic mass on long
reaching arcs. The algorithm will encounter lots of arcs that bring it far beyond
the target, but too rarely one that takes it to a subset closer to the target.

In general, the distribution must pay sufficient respect to the underlying grid
structure to allow for a local algorithm to make use of the random arcs, but
still need to be ‘far-reaching’ enough. It seems worthwhile to conduct such an
analysis on other, more life-like, models for the vicinity network.

348 N. Baumann and S. Stiller

13.1.4 Power Law Models

As already described in Section 11.1 there is a wide interest in finding graphs
where the fraction of vertices of a specified degree k follows a power law. That
means that the degree distribution p is of the form

p(k) = ck−δ δ > 0, c > 0.

This mirrors a distribution where most of the vertices have a small degree, some
vertices have a medium degree, and only very few vertices have very high degree.

Power laws have not only been observed for degree distributions but also
for other graph properties. The following dependencies (according to [197]) can
especially be found in the Internet topology:

1. Degree of vertex as a function of the rank, i.e., the position of the vertex in
a sorted list of vertex degrees in decreasing order

2. Number of vertex pairs within a neighborhood as a function of the neigh-
borhood size (in hops)

3. Eigenvalues of the adjacency matrix as a function of the rank

A more detailed view to these power laws found in Internet topologies is given
in Section 13.4. Since in the literature the most interesting fact seems to be the
degree distribution, or equivalently the number of vertices that have a certain
degree k, we will focus mostly on this.

In some contexts (protein networks, e-mail networks, etc.) we can observe an
additional factor qk to the power law with 0 < q < 1 – the so called exponential
cutoff (for details see [448]). Trying to fit a degree distribution to this special
form, the power law p(k) = ck−δqk obtains a lower exponent δ than would be
attained otherwise. A power law with an exponential cutoff allows to normalize
the distribution even in the case that the exponent δ lies in (0, 2].

Since the ‘strict’ power law, i.e., in the form without cutoff, is more funda-
mental and more explicit in a mathematical way, we will in the following restrict
ourselves to some models that construct networks with power laws not consider-
ing exponential cutoff. We start by describing the most well-known preferential
attachment model and then give some modifications of this and other models.

Preferential Attachment Graphs. In many real life networks we can ob-
serve two important facts: growth and preferential attachment. Growth happens
because networks like the WWW, friendships, etc. grow with time. Every day
more web sites go online, and someone finds new friends.

An often made observation in nature is that some already highly connected
vertices are likely to become even more connected than vertices with small de-
gree. It is more likely that a new website also inserts a link to a well-known
website like google than to some private homepage. One could argue that some-
one who already has a lot of friends easily gets more new friends than someone
with only a few friends – the so called ‘the rich get richer’-phenomenon. This is
modeled by a preferential attachment rule.

13 Network Models 349

One of the first models to tackle these two special characteristics is the pref-
erential attachment model presented by Barabási and Albert in [40].

Graph Process. Formally speaking a graph process (Gt) is a sequence of sets
Gt of graphs (called states of the process (Gt)) each endowed with a probability
distribution. Thereby the sets and their distributions are defined recursively by
some rule of evolution. More intuitively one thinks of a graph process as the
different ways in which a graph can develop over the time states.

In [40] a graph process (Gt
m) is described in this intuitive way as the history

of a graph G = (V, E). At every point in time one vertex v with outdegree m
is added to the graph G. Each of its outgoing edges connects to some vertex
i ∈ V chosen by a probability distribution proportional to the current degree or
indegree of i.

Formally, this description gives a rule how any graph of a certain state of
the process is transformed into a graph of the next state. Further, this rule of
evolution prescribes for any graph of a state of the graph process the probabilities
with which it transforms into a certain graph of the next state. In this way, the
sets and distributions of the graph process are recursively defined. Unfortunately,
the above description from [40] entails some significant imprecisions which we
will discuss now.

The choice of the initial state (which usually contains exactly one graph) is
a nonnegligible matter. For example, taking m = 1, if the graph is disconnected
at the beginning of the sequence then any emerging graph is also disconnected.
In contrast, any connected graph stays connected. Moreover, we need at least
one vertex to which the m new edges can connect. But it is not defined how to
connect to a vertex without any edge, since its probability is zero. Thus, there
must be at least one loop at that vertex, or some other rule how to connect to
this vertex.

Secondly, one has to spell out that the distribution shall be proportional to
the degree. In particular, it has to be clear whether and how the new vertex is
already part of the vertex set V . If it is excluded no loops can occur. (Note that
for m = 1 loops are the only elementary cycles possible.) If it is an element of V it
is usually counted as if it had degree m, though its edges are not yet connected
to their second vertices. Moreover, if m > 1 one has to define a probability
distribution on the set of all

(|V |
m

)
or

(|V |+1
m

)
possible ways to connect which is

not sufficiently defined by requiring proportionality to the degree for each single
vertex.

Note that the process (Gt
1) is equivalent to the process (Gt

m) for large t in
the following sense: Starting with the process (Gtm

1) and always contracting the
last m vertices after m states we get the same result as for the process (Gt

m).
With the graph process (Gt

1), the probability that an arbitrary vertex has
degree k is Pr[k] = k−δ, with δ = 3. There are several possibilities to prove
this degree distribution. Some of them, and a precise version of the model, are
presented in Section 13.2.1.

350 N. Baumann and S. Stiller

Other Power-Law Models. There are more models that try to construct
a graph that resembles some real process and for which the degree distribution
follows a power law. One of them is the model of initial attractiveness by Buckley
and Osthus (see [68] for details and references). Here the vertices are given
a value a ≥ 1 that describes their initial attractiveness. For example a search
engine is already from the start more attractive to be linked to than a specialized
webpage for scientists. So the probability that a new vertex is linked to vertex i
is proportional to its indegree plus a constant initial attractiveness am.

A different approach to imitate the growing of the world wide web is the
copying model introduced by Kleinberg and others [375] where we are given
a fixed outdegree and no attractiveness. We choose a prototype vertex v ∈ V
uniformly at random out of the vertex set V of the current graph. Let v′ be a new
vertex inserted into the network. For all edges (v, w) for w ∈ V edges (v′, w) are
inserted into the network. In a next step each edge (v′, w) is retained unchanged
with probability p, or becomes rewired with probability 1 − p. This simulates
the process of copying a web page almost identical to the one the user is geared
to and modifying it by rewiring some links. The authors also showed that this
model obtains a degree distribution following a power law. One advantage of this
model is that it constructs a lot of induced bipartite subgraphs that are often
observed in real web graphs (for some further details see Section 3.9.3 about
Hubs & Authorities). But it does not account for the high clustering coefficient
that is also characteristic of the webgraph.

Another model that tries to combine most of the observations made in nature,
and therefore does not restrict to only one way of choosing the possibilities for
a connection, is the model of Cooper and Frieze [131]. Here we first have the
choice between a method NEW and a method OLD, which we choose by a
probability distribution α. Method OLD inserts a number of edges starting at a
vertex already in the network whereas method NEW inserts first a new vertex
and then connects a number of edges to this new vertex. The number of inserted
edges is chosen according to probability distribution β. The end vertices to which
to connect the edges are chosen either uniformly at random, or depending on
the current vertex degree, or by a mixture of both.

13.2 Global Structure Analysis

13.2.1 Finding Power Laws of the Degree Distribution

We would like to have some general approaches to find the exact degree distri-
bution of a given graph model. Since there are no known general methods we
will present four different ways of showing the degree distribution of the prefer-
ential attachment model. One will be a static representation of one state of the
graph process called Linearized Chord Diagrams, introduced by Bollobás [68].
Furthermore we will give three heuristic approaches that yield the same result.

Linearized Chord Diagrams. A Linearized Chord Diagram (LCD) consists
of 2n distinct points on the x-axis paired off by chords in the upper half-plane.

13 Network Models 351

v1 v2 v3 v4 v5
Fig. 13.2. An LCD representing a graph

The goal is now to construct a graph out of this LCD that represents a static
state of a graph process.

Reconsider the preferential attachment model by Barabási and Albert (Sec-
tion 13.1.4). There a graph process (Gt

m) is used. Let us consider the case m = 1.
Let Pr[v] be the probability that the vertex vt inserted at time t is connected to
vertex v. We define

Pr[v] =
{

1/(2t− 1) if v = vt,
kv/(2t− 1) otherwise (13.1)

where kv denotes the current degree of vertex v before the connection. The
normalizing term is (2t− 1) because the new edge is understood to be incident
to vt only, until its second endpoint is chosen.

The LCD Model. To construct a Linearized Chord Diagram as defined in the
beginning of this section we can use n-pairings. An n-pairing L is a partition of
the set S = {1, 2, . . . , 2n} into pairs. So there are (2n)!

n!2n n-pairings. Figure the
elements of S in their natural order on the x-axis and represent each pair by
connecting its two elements by a chord (compare Figure 13.2). On such a Lin-
earized Chord Diagram the construction of the graph for the pairing L becomes
understandable. Construct the graph Φ(L) by the following rules: starting from
the left of the x-axis we identify all endpoints up to and including the first right
endpoint of a chord to form vertex v1. Then we identify all further endpoints
until the second right endpoint as vertex v2 and so on. To form the edges we
replace all chords by an edge connecting the vertices associated with the end-
points. Figure 13.2 gives an example of such a Linearized Chord Diagram and
the associated graph.

The same can be achieved by choosing 2n points at random in the [0, 1]
interval and associating the points 2i− 1 and 2i, i ∈ {1, 2, . . . , n} as a chord.

LCD’s as Static Representation of (Gn
m). For a special point in time t = n we

can construct a Linearized Chord Diagram with n chords and build the graph
Φ(L). The obtained graph model is exactly the nth state of the graph process
(Gt

1), i.e., Gn
1 . To see this observe how the evolution rule of (Gt

1) can be imitated
for LCD’s. Add one pair to an arbitrary LCD by placing the right point of the

352 N. Baumann and S. Stiller

pair at the end of the point set and inserting the left point of the pair uniformly
at random before any of the 2n + 1 points. Then the new edge is connected by
the same distribution as in the (Gt

1) process.
It can easily be shown that the degree distribution of this ‘static’ graph fol-

lows a power law with exponent γ = −3 (for details see [69]).

Now we will give three heuristic approaches that work with the preferential
attachment model.

Continuum Theory. Let ki again denote the degree of vertex i. The value ki

increases if a new vertex v enters the network and connects an edge to vertex
i. The probability that this happens will be ki

j∈V \{v} kj
. Note that this does

not yet determine the full probability distribution, but it is sufficient for our
argument. In addition we have to specify a start sequence. We want to start
with a graph of m0(≥ m) vertices and zero edges. As in this case the probability
distribution is not defined, we stipulate it to be the uniform distribution for the
first step. Obviously after the first step we have a star plus vertices of degree
zero which are irrelevant for the further process. Unfortunately, the exact shape
of the initial sequence is not given in [15].

We now want to consider ki as a continuous real variable. Therefore the rate
with which ki changes is proportional to the probability that an edge connects
to i. So we can state the following dynamic equation:

∂ki

∂t
= m

ki∑
jj∈V \{v} kj

(13.2)

So we get for the total number of degrees in the network, except for that of the
new vertex,

∑N−1
j=1 kj = 2mt−m.

Thus the above equation changes to ∂ki

∂t = ki

2t−1 and, since we consider very
large times t, we can approximate it as

∂ki

∂t
=

ki

2t
. (13.3)

By construction of the preferential attachment model we know that the initial
condition ki(ti) = m holds where ti is the time when vertex i was inserted into
the network. Using this initial condition we obtain as a solution of the differential
equation (13.3) the following result:

ki(t) = m

(
t

ti

)β

, β =
1
2
. (13.4)

Our goal is now to determine p(k), the probability that an arbitrary vertex
has degree exactly k. Since p(k) = ∂ Pr[ki(t)<k]

∂k we firstly have to determine the
probability that the degree of vertex i at time t is strictly smaller than k.

13 Network Models 353

By using the solution of the differential equation given above, the following
equations arise:

Pr[ki(t) < k] = Pr[m
(

t

ti

)β

< k]

= Pr

[
ti >

m
1
β t

k
1
β

]

= 1− Pr

[
ti ≤

m
1
β t

k
1
β

]

= 1−
∫ m

1
β tk

− 1
β

0

Pr[ti = t] dt

= 1− m
1
β t

k
1
β (t + m0)

The last equation follows from the fact that the probability space over ti has
to sum up to one and the probabilities are assumed to be constant and uniformly
distributed, thus 1 =

∑t
i=1 Pr[ti] =⇒ Pr[ti] = 1

m0+t .
Differentiating the above equations with respect to k we obtain for p(k):

p(k) =
∂ Pr[ki(t) < k]

∂k
=

2m
1
β t

m0 + t
· 1

k
1
β +1

. (13.5)

For t→∞ asymptotically we get p(k) ∼ 2m
1
β k−γ with γ = 1

β + 1 = 3. Note
that the exponent is independent of m. So we get a degree distribution that
follows a power law where the coefficient is proportional to m2.

Master Equation Approach. With the master equation approach we want to
use recursion to find the shape of the degree distribution. So we are looking for
equations that use information from the time steps before, in form of the degree
distribution of older time steps. Since we know the initial distribution it is easy
to solve this recursion.

This approach to determining the power law of the preferential attachment
model was introduced by Dorogovtsev, Mendes, and Samukhin [166].

We study the probability p(k, ti, t) that a vertex i that entered the system at
time ti has degree k at time t. During the graph process the degree of a vertex
i increases by one with probability k

2t .
For simplicity of formulas we use the dot notation for the derivative with

respect to t.
A master equation for this probability p(k, ti, t) is of the form:

ṗ(k, ti, t) =
∑
k′

[Wk′→k p(k′, ti, t)−Wk→k′ p(k, ti, t)] (13.6)

354 N. Baumann and S. Stiller

Here Wk′→k denotes the probability of changing from state k′ to state k. In our
model this probability is obviously

Wk′→k =
k′

2t
δk′,k−1 , where δi,j =

{
1 i = j
0 otherwise (13.7)

is the Kronecker symbol.
By summing up over all vertices inserted up to time t, we define the proba-

bility P (k, t) :=
t
ti

p(k,ti,t)

t that some arbitrary vertex has degree k.
As we are interested in a stationary distribution, we are looking for the point

where the derivative with respect to time is zero.

0 = Ṗ (k, t) =
t
∑

ti
ṗ(k, ti, t)−

∑
ti

p(k, ti, t)
t2

=

(
1
t

∑
ti

ṗ(k, ti, t)

)
− 1

t
P (k, t)

=

(∑
k′

1
t

[Wk′→k p(k′, ti, t)−Wk→k′ p(k, ti, t)]

)
− 1

t
P (k, t)

=

(∑
k′

[Wk′→k P (k′, t)−Wk→k′ P (k, t)]

)
− 1

t
P (k, t)

=

(∑
k′

[
k′

2t
δk′,k−1P (k′, t)− k

2t
δk,k′−1P (k, t)

])
− 2

2t
P (k, t)

=
k − 1

2t
P (k − 1, t)− k + 2

2t
P (k, t)

There is now a t′ so that for every time t greater than t′ we get the stationary
distribution, P̃ (k). This results in the recursive equation P̃ (k) = k−1

k+2 P̃ (k−1) for
k ≥ m + 1. For the case k = m the probability directly results from the scaling
condition of the probability measure: P̃ (m) = 2

m+2 .

This directly yields the power law of the form Pr[k] = 2m(m+1)
k(k+1)(k+2) which con-

verges to the value of the power law found using the continuum theory, 2m2γ−3.
This approach can also be used to determine the degree distribution of a more

general case of preferential linking. In this model, one new vertex is inserted at
every point in time. At the same time we insert m edges with one endpoint at
unspecified vertices or from the outside. This can be done since here we only take
into consideration the indegree of a vertex. The other endpoints are distributed
to existing vertices proportional to q(s) + A where q(s) is the indegree of vertex
s, and A an additional attractiveness associated with all vertices.

Rate Equation Approach. In this approach we want to analyze the change
over time of the numbers of vertices with degree k – we are looking for the rate
at which this number changes.

13 Network Models 355

This approach for the preferential attachment model is due to Krapivsky,
Redner, and Leyvraz [369].

We are considering the average number (over all graphs of the state of the
process) Nk(t) of vertices that have exactly degree k at time t. Asymptotically
we have, by the strong law of large numbers, the following for large t: Nk(t)/t ∼
Pr[k] and

∑
k kNk(t)/t ∼ 2m.

If a new vertex enters the network, Nk(t) changes as follows:

Pr[k] =
∂Nk

∂t
= m

(k − 1)Nk−1(t)− kNk(t)∑
k kNk(t)

+ δk,m. (13.8)

Here the first term of the numerator denotes the total number of edges leaving
vertices with degree exactly k−1 where new edges connect to those vertices and
therefore increase the degree to k. The second term determines the number of
edges leaving vertices with degree exactly k where new edges connect to those
vertices and therefore increase the degree to a value higher than k. If the newly
entered vertex has exactly degree k, i.e., m = k, then we have to add a 1 to our
rate equation.

Applying the above limits we obtain exactly the same recursive equation as
found with the master equation approach, and therefore we have the same power
law.

Flexibility of the Approaches. All the approaches mentioned before are
very helpful and easy to understand for the case of analyzing the preferential
attachment model. Some of them are also applicable for more general versions of
the preferential attachment model, as for m �= 1 and others. But it is not clear
whether there is a useful application of these approaches to totally different
models. For the rate equation approach an adaption to more general evolving
networks, as well as for networks with site deletion and link-arrangement, is
possible. There is a huge need for approaches that can deal with other models.
It would be even more desirable to find a way to treat numerous types of evolving
network models with a single approach.

13.2.2 Generating Functions

The power law exemplifies an often faced problem in network-analysis: In many
cases all that is known of the network is its degree sequence, or at least the
distribution of the degrees. It seems as if one could infer certain other structural
features of the network, for example second order neighbors from its degree-
sequence. Combinatorics provides a powerful tool to retrieve such insights from
sequences: Generating functions. Our goal is to present some basics of generat-
ing functions and then develop the method for the special purposes of network
analysis.

356 N. Baumann and S. Stiller

Ordinary Generating Functions. We are given the distribution of the degree
sequence, to be precise a function p(k) mapping each vertex degree k to the
probability for a randomly chosen vertex – in a network chosen according to that
degree sequence – to be adjacent to k other vertices. (For simplicity we confine
ourselves to undirected graphs.) Calculating the expectation of that distribution
immediately gives the (expected) average degree z1, i.e., the average number
of neighbors of a random vertex. Can we as easily calculate the probability for
a vertex to have k second order neighbors, i.e., vertices whose shortest path
distance to it equals exactly 2, from the distribution of the first order neighbors?
Trying a direct approach, one might want to average over all degrees of a vertex
the average of the degrees of the adjacent vertices. In some sense, one would like
to perform calculations that relate the whole distribution to itself. But how to
get hold of the entire distribution in a way useful for calculation? A generating
function solves exactly this problem: On the one hand, it is an encoding of the
complete information contained in the distribution, but on the other hand it is
a mathematical object that can be calculated with. We define:

Definition 13.2.1. For a probability distribution p : !→ [0, 1]

Gp(x) =
∑

k

p(k)xk (13.9)

is called the generating function of p.

This definition is by no means in its most general form. This particular way of
encapsulating p is sometimes called the ordinary generating function.

The formal definition is justified in the light of the following proposition:

Proposition 13.2.2. Let p be a probability distribution and Gp its generating
function:

1.
Gp(1) = 1

2.
Gp(x) converges for x in [−1, 1].

3.

p(k) =
1
k!

∂kGp

∂xk

∣∣∣∣
(x=0)

4.
E(p) :=

∑
k

kp(k) = G′
p(1)

5.
Var(p) :=

∑
k

k(k − 1)p(k) = G
′′
p (1)

13 Network Models 357

The convergence is shown by standard analytic criteria. The other parts of the
proposition are immediate from the definition, keeping in mind for the first that∑

k p(k) = 1 for a probability distribution.
Part 3 of the proposition shows that a generating function encodes the in-

formation of the underlying distribution. From another perspective a generating
function, Gp, is a formal power series that actually converges on a certain in-
terval. Taking powers (Gp(x))m of it will again result in such a power series.
Interpreting this in turn as a generating function amounts to interpreting the
coefficient of some xk in (Gp(x))m. For m = 2 this is

∑
j+l=k p(j)p(l), in other

words, this is the probability that the values of two independent realizations
of the random variable with distribution p sum up to k. In general (Gp(x))m

is the generating function for the distribution of the sum of the values of m
independent realizations of the random variable distributed according to p.

Generating Functions for Degree Sequences. For k ∈ let Dk be a
random variable equal to the number of vertices of degree k. Further p(k) shall
be the probability that a randomly chosen vertex has degree equal to k. It holds
that np(k) = E(Dk), the expectation of the random variable. To construct a
random graph according to the distribution p may mean two slightly different
things. We may take Dk to be a constant function for every k, thus, there is
a fixed number of vertices with degree k. Alternatively, we only require the
expectation of Dk to equal that fixed number. The latter model will make the
graphs to which the first model is confined only the most probable. Moreover,
as the first fixes the degree sequence, only those sequences of fixed values of
Dk that are realizable generate a non-empty model. For example the sum of all
degrees must not be odd. (The next section will discuss which degree sequences
are realizable.) Despite these differences, for a realizable sequence the statistical
results we are interested in here are not affected by changing between these two
models. We confine our explicit considerations to the second and more general
interpretation, where p(k) only prescribes the expectation of Dk.

To justify the technicality of generating functions, some structural features
of the network should be easily derived from its degree sequence’s distribution.
So far the average vertex degree z1 has been shown to be G′

p(1), which is not
a real simplification for computation. Next we ask for the degree distribution
of a vertex, chosen by the following experiment: Choose an edge of the graph
uniformly at random and then one of its endpoints. The probability f to thereby
reach a vertex of degree k is proportional to kp(k). That means the corresponding

generating function is Gf (x) =
∑

k
kp(k)

k kp(k)x
k = x

G′
p(x)

G′
p(1) . Removing the factor

x in the right hand term amounts to reducing the exponent of x in the middle
term, thus obtaining a generating function, where the coefficient of xk in Gf (x)
becomes the coefficient of xk−1 in the new generating function. Hence the new
function is the generating function of f(k−1). Interpreting this combinatorially,
we look at the distribution of the degrees minus one. In other words, we want to
know the probability distribution p∗ for the number of edges that are incident
to the vertex, not counting the one edge we came from in the above choosing

358 N. Baumann and S. Stiller

procedure. Its generating function can thus be written nicely, as

Gp∗(x) =
∑

k

kp(k)∑
k kp(k)

xk−1 =
G′

p(x)
G′

p(1)
. (13.10)

This distribution p∗ is useful to determine the distribution of rth neighbors of a
random vertex.

Distribution of rth Neighbors. What is the probability, for a randomly
chosen vertex v, that exactly k vertices are at a shortest path distance of exactly
r? For r = 2, assume that the number of vertices of distance exactly 2 from v
is (

∑
w∈N(v) d(w)) − d(v), (where d(v) denotes the degree of v), and for general

r that the network contains no cycles. This assumption seems to be a good
approximation for big, sparse, random graphs, as the number of occasional cycles
seems negligible. But its exact implications are left to be studied. For the sake
of explanation, assume the network to be directed in the following way: Choose
a shortest-path tree from a fixed vertex v and direct each of its edges in the
orientation in which it is used by that tree. Give a third orientation, zero, to
the remaining edges. In this way the definition is consistent even for non tree-
like networks. But assume again a tree structure. Any vertex except for v has
exactly one in-edge and p∗ is the distribution of the number of out-edges of
that in-edge. Now a second assumption is required: For an out-edge {x, y} of a
vertex x the degree of y shall be distributed independently of that of x’s other
out-edges’ endvertices, and independently of the degree of x. Of course, there
are examples of pathological distributions for the degree-sequence where this
assumption fails. Again, the assumption seems reasonable in most cases. Again,
precise propositions on the matter are left to be desired.

Given these two assumptions, tree structure and independence, the generat-
ing function of the distribution of second neighbors is seen to be∑

k

p(k)(Gp∗(x))k = Gp(Gp∗(x)), (13.11)

recalling that k independent realizations of a random variable amount to tak-
ing the kth power of its generating function. Correspondingly, the generating
function of the distribution of the rth neighbors G(r) is:

G(r) := Gp(Gp∗(Gp∗ . . . Gp∗(x)))︸ ︷︷ ︸
r functions altogether

. (13.12)

Taking expectations for second neighbors, i.e., calculating z2, simplifies nicely:

z2 = [Gp(Gp∗(x))]′|(x=1) = G′
p(Gp∗(1)︸ ︷︷ ︸

=1

)G′
p∗(1) = G

′′
p (1) (13.13)

Recall that the expectation of the first neighbors z1 is G′
p(1). Note that in general

the formula for r-neighbors does not boil down to the rth derivative.

13 Network Models 359

Component Size. For the analysis of the component size, first consider the
case without a giant component. A giant component is a component of size in
Θ(n). Thus we assume that all components have finite size even in the limit.
Assume again the network to be virtually tree-like. Again the results are subject
to further assumptions on the independency of certain stochastic events. And
again these assumptions are false for certain distributions and, though likely
for large networks, it is unclear where they are applicable. To point out these
presuppositions we take a closer look at the stochastic events involved.

Construct a random graph G for a given probability distribution of the vertex
degree, p, as always in this section. Next, choose an edge e uniformly at random
among the edges of G. Flip a coin to select v, one of e’s vertices. The random
variable we are interested in is the size of the component of v in G \ e. Let p◦

be its distribution, and p∗ as above the distribution of the degree of v in G \ e
found by this random experiment. Then for example p◦(1) = p∗(0). In general,
for k the degree of v, let n1, . . . , nk be the neighbors of v in G \ e. Further,
we need a laborious definition: Pk(s − 1) := Pr[The sizes of the components
of the k vertices n1 . . . nk in G \ {e, (v, n1), . . . (v, nk)} sum up to s − 1.] Then
when may write: p◦(s) =

∑
k p∗(k)Pk(s − 1). How to compute Pk? It does not

in general equal the distribution of the component size of a randomly chosen
vertex when removing one of its edges. Take into account that in the above
experiment a vertex is more likely to be chosen the higher its degree. On the
other hand, supposing a tree-like structure, the component size of nj is the same
in G \ {e, (v, n1), . . . (v, nk)} as in G \ (v, nj). Now, assume that our experiment
chooses the edges (v, ni) independently and uniformly at random among all
edges in G, then Pk is distributed as the sum of k random variables distributed
according to p◦. These assumptions are not true in general. Yet, granted their
applicability for a special case under consideration, we can conclude along the
following lines for the generating function of p◦:

Gp◦(x) =
n∑

s=0

p◦xs =
n∑

s=0

xs
∑

k

p∗(k)Pk(s− 1)

= x
∑

k

p∗(k)
n∑

s=0

xs−1Pk(s− 1)

︸ ︷︷ ︸
GPk

(x)

Since we presume Pk as the distribution of the sum of k independent realizations
of p◦, we have GPk

(x) = Gk
p◦(x), and Gp◦(x) = x

∑
k p∗(k)(Gp◦(x))k. This can

be restated as
Gp◦(x) = xGp∗(Gp◦(x)). (13.14)

In a similar way we arrive at a consistency requirement for p•, the distribution
of the component size of a randomly chosen vertex:

Gp•(x) = xGp(Gp◦(x)) (13.15)

The assumptions on stochastic independence made here are not true in gen-
eral. Granted they are verified for a specific degree distribution, the functional

360 N. Baumann and S. Stiller

Equations (13.14) and (13.15) still withstand their general solution. Numerical
solutions have been carried out for special cases (for details see [448]).

But the expected component size of a random vertex can be computed di-
rectly from those equations. The expectation of a distribution is the derivative of
its generating function at point 1. Therefore E(p•) = G′

p•(1) = 1+G′
p(1)G′

p◦(1).
But, as G′

p◦(1) = 1 + G′
p∗(1)G′

p◦(1), this becomes:

E(p•) = G′
p•(1) = 1 +

G′
p(1)

1−G′
p∗(1)

= 1 +
z2
1

z1 − z2
(13.16)

Giant Component. So far we have excluded graphs with a giant component,
i.e., a component that grows linearly with the graph. For a distribution that
would generate such a component, the probability for a cycle would of course
be no longer negligible. If we, however, still infer a tree-like structure as a good
approximation, Formula 13.16 for the expected component size should no longer
be independent of n, the number of vertices.

Indeed for G′
p∗(1)→ 1 equation (13.16) diverges, meaning that the expected

component size is not bounded for unbounded n. What can be derived from
G′

p∗(1) = 1?

1 = G′
p∗(1) ⇐⇒∑

k

k(k − 1)p(k)xk−2

∣∣∣∣∣
(x=1)

=
∑

k

kp(k) ⇐⇒

∑
k

k(k − 2)p(k) = 0

This equation marks the phase transition to the occurrence of a giant compo-
nent, as the sum on the left increases monotonically with the relative number of
vertices of degree greater than 2.

How much of the graph is occupied by the giant component? In [448] it is
claimed that the above considerations on the component size still apply to the
‘non-giant’ part of the graph. But Gp•(1) becomes smaller than 1 in these cases.
Following the lines of [448], this should in turn give the fraction of the vertex set
that is covered by non-giant components. In other words, n(1 −Gp•(1)) equals
the (expected) number of vertices in the giant component. This is an audacious
claim, as we calculate information about the non-giant part insinuating that
it shows the same degree distribution as the whole graph. For example high-
degree vertices could be more likely to be in the giant-component. Maybe those
calculations actually lead to reasonable results, at least in many cases, but we
cannot give any mathematical reason to be sure.

Generating Functions for Bipartite Graphs. So far this section has col-
lected several ideas based on generating functions in order to squeeze as much
information as possible from the mere knowledge of the degree distribution. Some

13 Network Models 361

of them depend on further assumptions, some are less appropriate than others.
Some conclusions drawn in the literature are left out due to their questionable
validity.

Finally, we become a little more applied. Many real-world networks show a
bipartite structure. For example, in [184] we find a graph model used to analyze
how infections can spread in a community. The model consists of two sets of
vertices, persons and places, and edges from any person to any place the per-
son regularly visits. As in other examples, like the co-author or the co-starring
network, we are given bipartite data, but the interest is often mainly in the pro-
jection onto one of the vertex sets, mostly the persons’. Suppose we are given
two probability distributions of degrees a and b, for the persons and the places,
and the fraction ρ between the numbers of persons and places. Make a partition
of n vertices according to ρ, realize a and b each in one part of the partition,
and choose H̄ uniformly at random among all bipartite graphs of n vertices with
the same partition and degree sequences on the partition sets. Let H be the
projection of H̄ on the persons’ vertices, and p the corresponding distribution of
its degree sequence. Then Gp = Gb(Ga∗) and Gp∗ = Gb∗(Ga∗). Now the whole
machinery of generating functions can be applied again. In this way generating
functions can help to bridge the gap between the bipartite data we are given
and the projected behavior we are interested in.

13.2.3 Graphs with Given Degree Sequences

Given a degree sequence, generating functions allow to derive some deeper graph
properties. Now we wish to construct a graph of a given degree sequence. At best,
the generating algorithm would construct such a graph with uniform probability
over all graphs that have a proposed degree sequence d1, d2, . . . , dn.

For reasons of simplicity we assume that d1 ≥ d2 ≥ · · · ≥ dn are the degrees
of vertices v1, v2, . . . , vn.

Definition 13.2.3. A degree sequence d1, d2, . . . , dn is called realizable if there
is a graph G with vertices v1, v2, . . . , vn ∈ V with exactly the given degree se-
quence.

Erdős and Gallai [180] gave sufficient and necessary conditions for realizabil-
ity of a simple, undirected graph.

Necessary and Sufficient Conditions. In order to construct a graph with a
given degree sequence we should at first verify whether that sequence is realizable
at all. Secondly, we are only interested in connected graphs. Thus, we also want
to know whether the degree sequence can be realized by a connected graph.

Starting with the first property we can observe the following. A degree se-
quence d = (d1, d2, . . . , dn) is realizable if and only if

∑n
i=1 di is even (since the

sum of the degrees is twice the number of edges), and for all subsets {v1, v2, . . . , v�}
of the � highest vertex degrees, the degrees of those vertices can be absorbed
within those vertices and with the outside degrees. This means that there are

362 N. Baumann and S. Stiller

enough edges within the vertex set and to the outside to bind to all the degrees.
More formally we can state the following theorem.

Theorem 13.2.4. A degree sequence d = (d1, d2, . . . , dn) is realizable if and
only if

∑n
i=1 di is even and

�∑
i=1

di ≤ �(�− 1) +
n∑

i=�+1

min{�, di} 1 ≤ � ≤ n. (13.17)

This inequality is intuitively obvious, and therefore one direction of the theorem
is trivial to prove. All degrees in the first � degrees of highest order have to be
connected first of all to the (�− 1) other vertices in this set of vertices. The rest
of the open degrees have to be at least as many as there are open degrees in the
outside of the chosen set. How many can there be? For each vertex there is the
minimum of either � (since no more are needed for the � vertices in the chosen
set) or the degree of a vertex i where only vertices � + 1, . . . , n are taken into
account.

A more precise theorem about realizability of an undirected, simple graph is
given below.

Theorem 13.2.5. A sequence d = (d1, d2, . . . , dn) is realizable if and only if the
sequence H(d) = (d2− 1, d3− 1, . . . , dd1+1− 1, dd1+2, dd1+3, . . . , dn) is realizable.

Furthermore we are interested not only in a graph with this degree sequence,
but in a connected graph. The necessary and sufficient conditions on connected-
ness are well known, but should be repeated here for completeness.

Theorem 13.2.6. A graph G is connected if and only if it contains a spanning
tree as a subgraph.

As we neither have a graph nor a spanning tree, we are interested in a property
that can give us the information whether a graph with certain degree sequence
is constructible. As a spanning trees comprises (n− 1) edges, the sum of degrees
must be at least 2(n−1). This necessary condition is already sufficient, as it will
become clear from the constructing algorithms given below.

If we can fulfill Theorem 13.2.4, and
∑

vi∈V di ≥ 2(n− 1) holds, there exists
a connected graph with the given degree sequence.

Algorithms. There are several easy-to-implement algorithms with linear run-
ning time that construct a graph with a given degree sequence. In the following
we present two slightly different algorithms; one constructs a graph with a sparse
core, the other constructs a graph with a dense core. The reader has to be aware
that all of these easy algorithms do not construct a random graph out of all
graphs with the desired degree sequence with the same probability. But start-
ing from the graph constructed by one of these algorithms we give a method to
generate a random instance that is indeed equiprobable among all graphs with
the desired degree sequence. We assume that the sum of all degrees is at least
2(n− 1).

13 Network Models 363

For both algorithms we need a subroutine called connectivity. This subrou-
tine first of all checks whether the constructed graph is connected. If the graph
G is not connected, it finds a connected component that contains a cycle. Such a
connected component must exist because of the assumption on the degrees made
above. Let uv be an edge in the cycle, and st be an edge in another connected
component. We now delete edges uv and st, and insert edges us and vt to the
network.

Sparse Core. In this section we want to describe an algorithm that constructs a
graph with the given degree sequence that additionally is sparse. We are given
a degree sequence d1 ≥ d2 ≥ · · · ≥ dn, and we assign the vertices v1, v2, . . . , vn

to those degrees. As long as there exists a vertex vi with di > 0, we choose the
vertex v� with the currently lowest degree d�. Then we insert d� edges from v� to
the first d� vertices with highest degree. After that we update the residual vertex
degrees di = di − 1 for i = 1, . . . , d� and d� = 0. Last, but not least, we have
to check connectivity and, if necessary, establish it using the above mentioned
method connectivity.

Dense Core. To construct a graph with a dense core for a certain degree se-
quence, we only have to change the above algorithm for sparse cores slightly.
As long as there exists a vertex vi with di > 0 we now choose such a vertex
arbitrarily and insert edges from vi to the di vertices with the highest residual
degrees. After that we only have to update the residual degrees and establish
connectivity if it is not given.

Markov-Process. To generate a random instance from the space of all graphs
with the desired degree sequence, we start using an easy to find graph G with
the desired realization. In a next step, 2 edges (u, v) and (s, t) with u �= v, s �= t
such that (u, s), (v, t) /∈ G are chosen uniformly at random. The second step is
to delete the edges (u, v) and (s, t) and replace them with (u, s) and (v, t).

This process is a standard Markov-chain process often used for randomized
algorithms. We can observe that the degree distribution is unchanged by this al-
gorithm. If rewiring two edges would induce a disconnected graph, the algorithm
simply does not do this step, and repeats the random choice. The following the-
orem states that this algorithm constructs a random instance out of the space
of all graphs with the desired degree sequence.

Theorem 13.2.7. Independent of the starting point, in the limit, the above
Markov-chain process will reach every possible connected realization with equal
probability.

For practical reasons one has to find a stopping rule so that we can bound the
number of steps of the algorithm. Mihail et al. [420] observed that the process
levels off in terms of the difference of two sorted lists (at different points in time)
of all neighbors (by degree) of nodes with unique degrees. Using this measure
they heuristically claim a number of at most 3 times the level-off number of
steps to get a good random graph for instances like today’s AS-level topology

364 N. Baumann and S. Stiller

(about 12,000 vertices). They observed the number of steps to level-off to be less
than 10,000 for graphs of 3,000 vertices, less than 75,000 for graphs with 7,500
vertices, and less than 180,000 for graphs with 11,000 vertices.

d-Regular Graphs. A special variant of graphs with given degree sequences
are d-regular graphs where each vertex has exactly degree d.

There are several algorithms known that can construct an equiprobable d-
regular graph. McKay and Wormald [416] gave an algorithm that is also appli-
cable for arbitrary degree sequences. For a given d ∈ O(n

1
3) its expected running

time is in O(n2d4), and furthermore it is very difficult to implement. A modifi-
cation of this algorithm for only d-regular graphs improves the running time to
O(nd3), but does not remove the disadvantages. Tinhofer [550] gave a simpler
algorithm that does not generate the graphs uniformly at random and, more-
over, the resulting probability distribution can be virtually unknown. Jerrum
and Sinclair [329] introduced an approximation algorithm where all graphs have
only a probability varying by a factor of (1 + ε), but the d-regular graph can
be constructed in polynomial time (in n and ε), and the algorithm works for all
possible degrees d.

A very simple model is the pairing model, introduced in the following. The
running time is exponential (O(nd exp (d2−1

4))), and the graph can only be con-
structed in this running time for d ≤ n

1
3 .

Pairing Model. A simple model to construct a d-regular graph is the so-called
pairing model. There, nd points are partitioned into n groups – clearly every
group should include exactly d points. In a first step a random pairing of all
points has to be chosen. Out of this pairing we now construct a graph G. Let
the n groups be associated with n vertices of the graph. There is an edge (i, j)
between vertices i and j in the graph if and only if there is a pair in the pairing
containing points in the ith and jth group. This so constructed graph is a d-
regular graph if there are no duplicated edges. Furthermore, we have to check a
posteriori whether the graph is connected.

13.3 Further Models of Network Evolution

In this section we want to present some further models for evolving networks.
Since there is a huge variety of them, we want to consider only some of those
network models that include significantly new ideas or concepts.

13.3.1 Game Theory of Evolution

The literature for games on a (fixed) network is considerable. But game theoret-
ical mechanisms can also be used to form a network, and this falls in our scope
of interest. The following example is designed to model economic cooperation.

Vertices correspond to agents, who establish or destroy an edge between each
other trying to selfishly maximize their value of a cost revenue function.

13 Network Models 365

The objective function of an agent sums revenues that arise from each other
agent directly or indirectly connected to him minus the costs that occur for each
edge incident to him: Let c be the fixed costs for an incident edge and δ ∈ (0, 1).
The cost revenue of a vertex v is uv(G) = (

∑
w∈V (G) δd(v,w))−deg(v)c , where G

is the current network and d(v, w) is the edge-minimal path distance from v to
w in G. (To avoid confusion we denote the degree of a vertex v by deg(v) here.)
Set that distance to infinity for vertices in different components, or confine the
index set of the sum to the component of v.

An edge is built when it increases the objective function of at least one of
the agents becoming incident and does not diminish the objective function of
the other. To delete an edge it suffices that one incident agent benefits from
the deletion. In fact the model analyzed is a little more involved. Agents may
simultaneously delete any subset of their incident edges, while participating in
the creation of a new edge, and consider their cost revenue function after both
actions.

To put it formally:

Definition 13.3.1. A network G is stable if for all v ∈ V (G)

∀e ∈ E(G) : v ∈ e =⇒ uv(G) ≥ uv(G \ e)

and

∀w ∈ V (G), ∀S ⊆ {e ∈ E(G) | v ∈ e ∨ w ∈ e} :
uv((G ∪ {v, w}) \ S) > uv(G) =⇒ uw((G ∪ {v, w}) \ S) < uw(G)

This quasi-pareto notion of stability does not guarantee that a stable network
is in some sense ‘good’, namely that at least in total the benefit is maximal.
Therefore we define:

Definition 13.3.2. A network G is efficient if

∀G′ : V (G) = V (G′) =⇒
∑

v

uv(G′) ≤
∑

v

uv(G).

Theorem 13.3.3. In the above setting we have:
For c < δ, (δ − c) > δ2 the complete graph is stable.
For c < δ, (δ − c) ≤ δ2 the star is stable.
For c ≥ δ the empty graph is stable.

Theorem 13.3.4. In the above setting we have:
For (δ − c) > δ2 only the complete graph is efficient.
For (δ − c) < δ2, c < δ + (n− 2)δ2/2 only a star is efficient.
For (δ − c) < δ2, c > δ + (n− 2)δ2/2 only the empty graph is efficient.

Through the work of A. Watts [572], this approach received a push towards
evolution. Given the parameters c and δ, the question is, which networks will
emerge? This remains unclear until the order in which agents may alter their

366 N. Baumann and S. Stiller

incident part of the edge set (and the initial network) is given. Up to now only
the case for an empty network as the initial configuration has been scrutinized.
The order, in which the agents can make their decisions, is given in the following
random way: At each step t of a discretized time model, one edge e of the
complete graph of all agents (whether e is part of the current network or not) is
chosen uniformly at random. Then the two incident agents may decide whether
to keep or drop or, respectively, establish or leave out the edge e for the updated
network. This means for an existing edge e that it is deleted if and only if one
of its endvertices benefits from the deletion, and for a non-existing edge e that
it is inserted if and only if at least one of the potentially incident vertices will
benefit and the other will at least not be worse off. Note that in this model more
sophisticated actions, that are comprised of the creation of one and the possible
deletion of several other edges, are not allowed. All decisions are taken selfishly by
only considering the cost revenue of the network immediately after the decision
of time t. In particular no vertex has any kind of long time strategy. The process
terminates if a stable network is reached. For this model the following holds:

Theorem 13.3.5. In the above setting we have:
For (δ − c) > δ2 > 0 the process terminates in a complete graph

in finite time.
For (δ − c) < 0 the empty set is stable.
For δ2 > (δ − c) > 0 Pstar :=

Pr[Process terminates in finite time in a star] > 0,
but Pstar → 0 for n→∞ .

The first result is obvious as any new edge pays. The second just reformulates
the stability Theorem 13.3.3. For the third part, note that a star can no longer
emerge as soon as two disjoint pairs of vertices form their edges.

The model and the results, though remarkable, still leave lots of room for
further refinement, generalization, and variation. For example, if a star has pos-
itive probability that tends to zero, then this could mean that one can expect
networks in which some vertices will have high degree, but most vertices will
show very low degree. This is a first indication of the much discussed structure
of a power law.

13.3.2 Deterministic Impact of the Euclidean Distance

For the following geometric model we want to denote the Euclidean distance
between a vertex i and a vertex j by d(i, j). The idea of this model by Fabrikant,
Koutsoupias, and Papadimitriou [196] is to iteratively construct a tree. In a first
step a sequence p0, p1, . . . , pn of vertices is distributed within a unit square or
unit sphere. In the next step we insert edges successively. Here we want to
distinguish between two opposite goals. On the one hand, we are interested in
connecting vertices to their geometrically nearest neighbor. On the other hand,
we are interested in a high degree of centrality for each vertex. In order to deal
with this trade-off between the ‘last mile’ costs and the operation costs due to

13 Network Models 367

communication delays, we connect the vertices with edges in the following way.
Vertex i becomes connected to the vertex j that fulfills minj<i α · d(i, j) + hj ,
where hj denotes the centrality measure and α the relative importance of both
goals. Here centrality measures can be the average number of hops to other
vertices, the maximum number of hops to another vertex, or the number of hops
to a given center - a fixed vertex v ∈ V (for more details on centrality measures,
see Chapter 3).

The behavior of this model is of course highly dependent on the value α and,
to a lesser extent, on the shape used to place the vertices. Let T denote the
constructed tree in a unit square. And let us define hj to be the number of hops
from pi to p0 in the tree T . Then we can state the following properties of T for
different values of α.

Theorem 13.3.6. (Theorem 2.1. in [196])
If T is generated as above then:

1. If α < 1/
√

2, then T is a star with vertex p0 as its center.
2. If α = Ω(

√
n), then the degree distribution of T is exponential, that is, the

expected number of vertices that have degree at least k is at most n2 exp (−ck)
for some constant c:
E[|{i : degree of i ≥ k}|] < n2 exp (−ck).

3. If α ≥ 4 and α = o(
√

n), then the degree distribution of T is a power law;
specifically, the expected number of vertices with degree at least k is greater
than c · (k/n)−β for some constants c and β (that may depend on α though):
E[|{i : degree of i ≥ k}|] > c(k/n)−β. Specifically, for α = o(

√
3n) the

constants are: β ≥ 1/6 and c = O(α−1/2).

This theorem gives the impression that networks constructed by this algo-
rithm have a degree sequence following a power law. But there are some points
to add. The power law given in this theorem does not resemble the definition of
power law given in this chapter. Here the authors analyzed the behavior of the
degree distribution where only vertices with degree at least k come into consid-
eration. Therefore, one has to take care when comparing results. A second point
is that the results only hold for a very small number of vertices in the network.
For a majority of vertices (all but O(n1/6)) there is no statement made in the
work by Fabrikant et al. Subsequently, Berger et al. [58] prove the real behavior
of the degree distribution obtained by this model and show that “there is a very
large number of vertices with almost maximum degree”.

13.3.3 Probabilistic Impact of the Euclidean Distance

The model of Waxman [574] uses the Euclidean distance, henceforth denoted
by d(·, ·), to determine the probability distribution used to generate a graph
of the model. In a first step n points on a finite 2-dimensional lattice are cho-
sen equiprobably to form the vertex set V (G) of the graph G. Then each edge
{i, j}, i, j ∈ V , of the complete graph on these vertices is chosen to be part of
the edge set E(G) with probability Pr({i, j}) = β exp −d(i,j)

Lα . Thereby L denotes

368 N. Baumann and S. Stiller

the maximum Euclidean distance of two lattice points, i.e., the diagonal of the
lattice.

Increasing α ∈ (0, 1] will decrease the expected length of an edge, whereas
increasing β ∈ (0, 1] will result in a higher number of edges in expectation.

In a variant of the model, the function d(·, ·) is defined by random for each pair
of chosen vertices. Thus, it will in general not even fulfill the triangle inequality.

13.4 Internet Topology

The Internet consists of two main levels, the router level and the Autonomous
System level. Both are systems with certain properties, like a power law with
specified exponent, a certain connectivity, and so on. These properties are ana-
lyzed by Faloutsos et al. [197] in detail. One goal is now to construct synthetic
networks that resemble the Internet very much and, further, that can generate a
prediction of the future Internet topology. There are two types of generators: The
first type are model-oriented generators that implement only a specified set of
models, as for example given in the previous sections. A universal topology gen-
erator, on the other hand, should further have the property of being extensible
to new models that can be added in an easy way.

To have such a universal generator is interesting for researchers who need
good synthetic topologies to simulate their Internet protocols and algorithms.
Therefore very good generation tools are needed. Those tools should have at
least the following characteristics to be usable for a wide range of researchers
and their different applications, not only for Internet topologies (see also [417]).

1. Representativeness: The tool should generate accurate synthetic topologies
where as many aspects of the target network as possible are reflected.

2. Inclusiveness: A single tool should combine the strengths of as many models
as possible.

3. Flexibility: The tool should be able to generate networks of arbitrary size.
4. Efficiency: Even large topologies should be generated in reasonable CPU

time and memory.
5. Extensibility: The generator should be easily extendible by new models by

the user.
6. User-friendliness: There should be an easy to learn interface and mechanics

of use.
7. Interoperability: There should be interfaces to the main simulation and vi-

sualization applications.
8. Robustness The tool should be robust in the sense of resilience to random

failures and, moreover, have the capability to detect errors easily.

These are the desired characteristics of a generator tool. In order to reach
the characteristics made above, there are some challenges that have not been
solved yet in an acceptable way. Two main challenges in the field of topology
generation are (quoted from [417]):

13 Network Models 369

1. How do we develop an adapting and evolving generation tool that
constitutes an interface between general Internet research and pure
topology generation research? Through this interface, representative
topologies, developed by the topology generation research commu-
nity, can be made readily available to the Internet research commu-
nity at large.

2. How do we design a tool that also achieves the goal of facilitating
pure topology generation research? A researcher that devises a gen-
eration model should be able to test it readily without having to
develop a topology generator from scratch.

The topology generators available today or, better, their underlying models can
be classified as follows (after [417]). On the one hand, there are ad-hoc models
that are based on educated guesses, like the model of Waxman [574] and fur-
ther models [109, 157]. On the other hand there are measurement based models
where measures can be, for example, a power law. We can divide this class into
causality-oblivious and causality-aware models. By causality we think of some
possible fundamental or physical causes, whereas causality-oblivious models ori-
ent themselves towards such abstract features as power laws. The INET model
and generator, described in Section 13.4.2, and the PLRG model by Aiello et
al. [9] belong to the first of these subclasses. The preferential attachment model
and the topology generator BRITE belong to the causality-aware models.

13.4.1 Properties of the Internet’s Topology

Faloutsos, Faloutsos and Faloutsos [197] analyzed the structure of the Internet
topology at three different points in time, and especially analyzed the growing
of special metrics. Some of the very obvious metrics are, for example, the rank
of a vertex, i.e., the position of the vertex in a sorted list of vertex degrees in
decreasing order, and the frequency of a vertex degree, i.e., how often a degree k
occurs among all the vertices. Using the minimal distance between two vertices,
i.e., the minimal number of edges on a path between the two vertices, one can
determine the number of pairs of vertices P (h) that are separated by a distance
of no more than h. By taking this definition we obviously have the property that
self-pairs are included in P (h) and all other pairs are counted twice. A resultant
metric is the average number of vertices N(h) that lie in a distance of at most
h hops.

In the Internet there are two levels worth evaluating (for details see [259]).
In [197] the data collected by the Border Gateway Protocols (BGP) that stores
all inter-domain connections is evaluated. There the authors looked at three
special points in time. The first graph is from November 1997, the second from
April 1998, and the third from December 1998.

By evaluating this information, and looking for power laws for the above
mentioned metrics, they draw the following conclusions. The first conclusion is
that the degree d(v) of a vertex v is proportional to the rank rv of the vertex,
raised to the power of a constant, R. This yields the power law of the form

370 N. Baumann and S. Stiller

d(v) ∝ rR
v . R is defined as the slope in the graph of the function that maps

d(v) on the rank of v (denoted as (d(v); rank of v)) in log-log plot. A second
observation is about the frequency fk of a vertex degree k: fk ∝ kO with O a
constant. The constant O can be determined by determining the slope of the
(fk; k) plot with a log-log scale. For the total number of pairs of vertices P (h)
they can only approximate the power law to the form P (h) ∝ hH , where H is
the so called hop-plot exponent and is constant. In this case the constant H is
defined by the slope of a plot in log-log scale of the (P (h); h) graph.

13.4.2 INET – The InterNEt Topology Generator

This model-oriented topology generator (more details in [332]) tries to implement
more than just the analyzed power law in the degree distribution. Several of the
analyses of Faloutsos et al. result in exponential laws. The first exponential law
they observed and determined an exact form for is the frequency of certain
degrees.

fk = exp(at + b)kO, (13.18)

where fk is the frequency of a degree k. a, b, O are known constants and t is the
time in months since November 1997. Having this equation, we can also predict
the frequency of a degree k for t a month in the future.

A second exponential law they found was the degree growth.

k = exp(pt + q)rR (13.19)

The degree k at a given rank r also grows exponentially over time. Here
p, q, R are known constants and t is again the number of months since November
1997. This law tells us that the value of the ith largest degree of the Internet
grows exponentially. This does not necessarily mean that every AS’s degree grows
exponentially with time because the rank of a particular AS can change as the
number of AS’s increases.

Two further exponential laws are the pair size growth and the resultant
neighborhood size growth.

Pt(h) = exp(sht)P0(h) (13.20)

The pair size within h hops, P (h), grows exponentially with the factor P0(h), that
is the pair size within h hops at time 0 (=November 1997). The neighborhood
size within h hops, A(h), grows exponentially as follows.

At(h) =
Pt(h)
P0(h)

= exp((log P0(h)− log P0(0)) + (sh − s0)t)

= A0(h) exp((sh − s0)t) (13.21)

Here A0(h) is the neighborhood size at time 0 (= November 1997). The value t
is, as always, the number of months since time 0.

The INET topology generator now uses the observed and analyzed exponen-
tial laws to construct a network that strongly resembles the real Internet network

13 Network Models 371

evaluated at time t. In a first step, the user has to input the number of vertices
and the fraction p of the number of vertices that have degree one. By assuming
exponential growth of the number of AS’s in the Internet, the generator com-
putes the value of t – the number of months since November 1997. Then it is
easy to also compute the distributions of degree frequency and rank. Since the
second power law only holds for 98% of the vertices we have to assign degrees
to the top 2% of the vertices using the rank distribution (13.19). p percent of
the vertices are assigned degree one. The remaining vertices are assigned degrees
following the frequency degree distribution. The edges are inserted into the ini-
tial graph G to be generated according to the following rules. First, a spanning
tree is built among vertices with degree strictly larger than one. This is done by
successively choosing uniformly at random a vertex with degree strictly larger
than one that is not in the current tree G, and connecting it to a vertex in G with
probability proportional to k

K . Here k is the degree of the vertex in G, and K is
the sum of degrees of all vertices already in G that still have at least one unfilled
degree. In a next step, p|V | vertices with degree one are connected to vertices in
G with proportional probability as above. In a final step, the remaining degrees
in G, starting with the vertex with largest assigned degree, are connected to
vertices with free degrees randomly picked, again using proportional probability.
The connectivity of the graph is first tested by a feasibility test before actually
inserting the edges.

Other Generators. There are several more topology generators available. The
GT-ITM generator [109] is able to construct different topologies. One of them is
a transit-stub network that has a well-defined hierarchical structure. The Tiers
generator [157] is designed to provide a three level hierarchy that represents
Wide Area Networks (WAN), Metropolitan Area Networks (MAN), and Local
Area Networks (LAN). The generator BRITE [417] also contains several mecha-
nisms to construct topologies. It not only includes the well-known basic model of
Barabási and Albert on router and on AS level but also the Waxman model for
both types. It can also illustrate and evaluate the networks made by the INET
and GT-ITM generators, and the data obtained from the National Laboratory
for Applied Network Research routing data [452].

By using the mentioned power laws observed in the Internet it is now easy to
determine the representativeness of such a generator. Medina et al. [418] used the
above mentioned topology generators to generate different kinds of topologies,
and then evaluated them according to the existence of power laws. As a result
they can say that the degree versus rank and the number of vertices versus degree
power laws were not observed in all of the topologies. In this way the existence
can be used to validate the accuracy of a generator. Power laws concerning the
neighborhood size and the eigenvalues were found in all the generated topologies,
but with different values of the exponent.

372 N. Baumann and S. Stiller

13.5 Chapter Notes

In 1959, Gilbert [244] introduced the model (Gn,p) in the sense of our second
definition. In the same year Erdős and Rényi [181] presented a model param-
eterized by the number of vertices and the number of edges, n and m, which
corresponds to the first definition we give, except that we fix the average ver-
tex degree, z = 2m

n . For a good introduction to this research area we refer to
Bollobás [67, Chapter 7]. There Theorem 9 corresponds to our Theorem 13.1.1.

Our discussion about Local Search in Small Worlds is based on Kleinbergs
pertinent work [360].

Further details on the exponential cutoff, and an evolutionary model that
regards the exponential cutoff, are given in the very recent paper by Fenner,
Levene, and Loizou [205].

In Bollobás et al. [68] further interesting behavior caused by certain initial
choices of vertices and edges for the preferential attachment model by Barabási
and Albert is given, and some more imprecisions are pointed out. For more details
on the equivalence of (Gt

m) and (Gtm
1) see [68], too. Also, more explanations of

other power law models and some mathematical background are given there.
Simple and efficient generators for standard random graphs, small worlds,

and preferential attachment graphs are described in [43].
Generating functions are a concept for dealing with counting problems that is

far more general than we present it here. Most books on combinatorics include a
thorough discussion of generating functions (see for example [10]). A particular
reference for generating functions only is [586], which can be downloaded at
www.cis.upenn.edu/~wilf/. We mainly mathematically clarify the assertions
found in [448]. There also further details on generating functions for bipartite
graphs can be found.

The results in Section 13.2.3 are basically taken from Mihail et al. [420]. A
proof for Theorem 13.2.4 is contained in [57, Chapter 6] (the original paper of
Erdős and Gallai [180] is in Hungarian). The more precise Theorem 13.2.5 was
firstly given and proven in Havel and Hakimi [288, 270], and it is stated as found
in Aigner and Triesch [11]. For references on Markov-chain-processes see [420].
An overview of the algorithms for d-regular graphs can be found in Steger and
Wormald [532]. They also construct a polynomial algorithm that works for all
d and give an idea of how to implement that algorithm to obtain an expected
running time in O(nd2 + d4).

We present the results given in Section 13.3.1 following A. Watts [572], though
earlier work by Jackson and Wolinsky [323] prepared the ground.

The p∗-model is introduced in Section 10.2.5, and therefore it is omitted in
this chapter.

14 Spectral Analysis

Andreas Baltz and Lasse Kliemann

A graph can be associated with several matrices, whose eigenvalues reflect struc-
tural properties of the graph. The adjacency matrix, the Laplacian, and the
normalized Laplacian are in the main focus of spectral studies. How can the
spectrum be used to analyze a graph? In particular, the following questions will
be of interest:

– What can the spectrum tell us about subgraphs? Can we prove the existence
or nonexistence of certain subgraphs by looking at the spectrum?

– Can certain eigenvalues be related to other global statistics (also called graph
parameters), such as diameter, isoperimetric number or chromatic number?

– How can spectra help in classifying graphs?

This chapter is organized as follows: In the first section, we review facts from
linear algebra and point out some fundamental properties of graph spectra. In the
next section, we summarize what methods we know to compute the spectrum.
In the sections that follow, we give some answers and ideas regarding the above
questions.

14.1 Fundamental Properties

We define the different spectra and point out some fundamental properties. We
show why it makes sense to consider more than the adjacency spectrum and list
the three spectra for some basic graph classes (Table 14.1).

14.1.1 Basics from Linear Algebra

Let M = (mi,j) ∈ n×n be an n × n matrix with complex numbers as entries.
A non-zero vector x ∈ n is an eigenvector of M with corresponding eigenvalue
λ ∈ if x and λ satisfy the equation

Mx = λx. (14.1)

The vector 0n is excluded from the set of possible eigenvectors since every λ ∈
is a solution to M0n = λ0n. Equation (14.1) has a non-zero solution if and only
if rank(M − λIn) < n, which is equivalent to det(M − λIn) = 0. Hence we can
characterize the eigenvalues of M as roots of the polynomial pM (λ) := det(M −

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 373–417, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

374 A. Baltz and L. Kliemann

λIn). This characteristic polynomial pM does not change if M is replaced by
Q−1MQ for some arbitrary non-singular matrix Q. So M and Q−1MQ have the
same eigenvalues. The spectrum of M is defined as the multiset of all eigenvalues
of M , where the multiplicity of an eigenvalue λ is its (algebraic) multiplicity as
a root of pM .

From now on we shall assume that M is a symmetric matrix, i.e. M = M�,
with real valued entries. One can show that there exists a non-singular matrix
Q such that M ′ := Q−1MQ has diagonal form and Q−1 = Q�. Clearly, each
vector ei from the standard basis of n is an eigenvector of M ′ with λi := m′

i,i,
the ith entry on the diagonal of M ′, as its corresponding eigenvalue. Since the
characteristic polynomial is unchanged,

det(M − λIn) = det(M ′ − λIn) =
n∏

i=1

(λi − λ). (14.2)

So the spectrum of M consists of n (not necessarily distinct) eigenvalues λ1, . . . ,
λn ∈ , and we have det(M) =

∏n
i=1 λi. From the definition of the determinant

as
detM =

∑
π∈Sn

sign(π) ·m1,π(1) · · · · ·mn,π(n)

we see that det(M − λIn) =
∏n

i=1(mi,i − λ) + R(λ), where R(λ) is the sum
corresponding to permutations from Sn \ {id} and thus has degree ≤ n − 2.
Hence the coefficient of λn−1 in the characteristic polynomial is

∑n
i=1 mi,i, the

trace of M , and by comparison with (14.2) we infer that trace(M) =
∑n

i=1 λi.
Defining vi := Qei for all i ∈ {1, . . . , n}, we have

Mvi = MQei = QQ−1MQei = Qλiei = λivi

v�i vj = (Qei)�Qej = e�i Q�Qej = e�i ej,

i.e., v1, . . . , vn are orthonormal eigenvectors of M . Consequently, {v1, . . . , vn} is
a basis of n, and the multiplicity of λi as an eigenvalue equals the maximum
cardinality of a corresponding set of linearly independent eigenvectors.

In sum we have observed the following facts.

Theorem 14.1.1 ([135, 247, 576]). Let M ∈ n×n be a matrix with M =
M�, then

1. M has real eigenvalues λ1 ≤ . . . ≤ λn and n orthonormal eigenvectors
forming a basis of n [Spectral Theorem],

2. multiplicity of λi as an eigenvalue := multiplicity of λi as a root of the
characteristic polynomial det(M−λIn) = cardinality of a maximum linearly
independent set of eigenvectors corresponding to λi,

3. there is a matrix Q with Q� = Q−1 such that Q�MQ =

⎛
⎜⎝λ1 0

. . .
0 λn

⎞
⎟⎠,

4. det(M) =
∏n

i=1 λi, trace(M) =
∑n

i=1 λi.

14 Spectral Analysis 375

14.1.2 The Spectrum of a Graph

Given a multi-digraph G = (V, E) with labeled vertices v1, . . . , vn, we define the
adjacency matrix A = (ai,j) by

ai,j := multiplicity of edge (vi, vj) in E,

i.e., ai,j is equal to the number of arcs starting at vertex vi and terminating at
vertex vj (for loops (vi, vi) ∈ E it is sometimes useful to define ai,i as 2 instead
of 1). The spectrum of G is the spectrum of the adjacency matrix of G (see
Figure 14.1 for an example).

v2

v1

v3

A =

⎛
⎜⎝

10 0

10 1

21 0

⎞
⎟⎠

Fig. 14.1. Example of an adjacency matrix

Note that though A depends on the order of labeling, the spectrum does not,
since exchanging the labels of vertices vi and vj corresponds to exchanging row
i with row j and column i with column j in A, which does not affect det(A)
nor det(A− λIn). For the rest of this chapter we will identify V with the set of
labels, i.e., we will assume that V = {1, . . . , n}. Moreover we shall mainly focus
on simple undirected graphs without loops. So, any graph G = (V, E) will be
assumed as simple, loopless, and undirected, unless explicitly stated otherwise.
Hence the adjacency matrix A will (almost always) be a symmetric 0/1 matrix
with a real spectrum of n eigenvalues λi, where we assume for convenience that
λ1 ≤ λ2 ≤ . . . ≤ λn.

Notation. We will use both, spectrum(A) and spectrum(G) to denote the eigen-
values of an adjacency matrix A corresponding to a graph G. Moreover, when
speaking of the spectrum of a graph, we will always have the adjacency spectrum
in mind (unless stated otherwise).

Let w ∈ n be an arbitrary vector and let ω : V → map each i ∈ V on
wi. Since A represents a graph, the ith component of Aw,

∑n
j=1 ai,jwj , can be

written as
∑

j∈N(i) ω(j). Now the equation Ax = λx has the following useful
interpretation.

Remark 14.1.2. 1. A has eigenvalue λ if and only if there exists a non-zero
weight function ω : V → such that for all i ∈ V , λω(i) =

∑
j∈N(i) ω(j).

376 A. Baltz and L. Kliemann

2. The Spectral Theorem 14.1.1.1. ensures that we can restrict ourselves to
considering real-valued weight functions. Moreover, we can assume the max-
imum weight to be non-negative (if max {ω(i); i ∈ V } < 0 then ω(i) < 0 for
all i ∈ V and we can consider −ω instead of ω).

Consider an assignment of weights to the vertices of a triangle as depicted in
Figure 14.2. From

vertex 1 vertex 3

vertex 2

0

−11

Fig. 14.2. A triangle with eigenvector components as weights

ω(1) = 1 = −(0 + (−1)) = −(ω(2) + ω(3)),
ω(2) = 0 = −(1 + (−1)) = −(ω(1) + ω(3)),
ω(3) = −1 = −(1 + 0) = −(ω(1) + ω(2)),

we can conclude that −1 is an eigenvalue. Similarly, by assigning a weight of 1
to all vertices we can check that 2 is in the spectrum of the triangle. For another
example, have a look at Figure 14.3, which proves that 2 is an eigenvalue of a
star on 5 vertices.

Remark 14.1.2 enables us to prove the following claims.

Lemma 14.1.3 ([576]). Let G = (V, E) be a graph on n vertices with adjacency
matrix A and eigenvalues λ1 ≤ . . . ≤ λn. Let Δ be the maximum vertex degree
of G.

1. λn ≤ Δ.
2. If G = G1∪̇G2 is the union of two disjoint graphs G1 and G2 then spec-

trum(G) = spectrum(G1) ∪ spectrum(G2).
3. If G is bipartite then λ ∈ spectrum(G)⇔ −λ ∈ spectrum(G).

4. If G is a simple cycle then spectrum(G) =
{

2 cos
(

2πk
n

)
; k ∈ {1, . . . , n}

}
.

14 Spectral Analysis 377

1

2

11

1

Fig. 14.3. A star with eigenvector components as weights

Proof. 1. Let ω be a non-zero weight function on the vertices such that λnω(i) =∑
j∈N(i) ω(j) for all i ∈ V and let i0 be a vertex of maximum weight. Then

λnω(i0) =
∑

j∈N(i0) ω(j) ≤ Δω(i0) implies λn ≤ Δ.

2. Let ω be a non-zero weight function for λi ∈ spectrum(G). Since ω is not
identically zero, either ω|V (G1) or ω|V (G2) must not be identically zero and hence
is a weight function for λi on G1 or G2. On the other hand, if ω is a weight
function for λ ∈ spectrum(Gj) for j = 1 (or j = 2) then extending ω by defining
ω(i) := 0 for all i ∈ V \ V (Gj), yields a non-zero weight function for λ on G.

3. Let ω be a weight function for λ on G. Let V1, V2 denote the partition classes
of V . Define ω′ : V → by

i !→
{

ω(i), if i ∈ V1

−ω(i), if i ∈ V2.

Then for all i ∈ V1,

−λω′(i) = −λω(i) = −
∑

j∈N(i)

ω(j) =
∑

j∈N(i)

ω′(j),

and for all i ∈ V2,

−λω′(i) = λω(i) =
∑

j∈N(i)

ω(j) =
∑

j∈N(i)

ω′(j).

4. For the proof of this claim we will use complex weights. Assume that the
edges of the cycle are {1, n} and {i, i+1}, for all i ∈ {1, . . . , n−1}. For each k ∈
{1, . . . , n} let τk := exp(2πik/n) be an nth root of unity and put ω(j) := τ j−1

k .
(Here, i denotes the complex number i with i2 = −1 and not a vertex.) Then for
all j ∈ V , ∑

l∈N(j)

ω(l) = (τ−1
k + τk) · τ j−1

k ,

and thus τ−1
k + τk = exp(−2πik/n)+exp(2πik/n) = 2 cos

(
2πk
n

)
is an eigenvalue

of G. �

378 A. Baltz and L. Kliemann

We mention two further results on the adjacency spectrum (see [135] for a proof):
it can be shown that λn = Δ if and only if G has a Δ-regular component. For
the smallest eigenvalue of G one can prove the lower bound λ1 ≥ −λn, where
equality holds if and only if G has a bipartite component whose largest eigenvalue
is equal to λn.

Let us determine the spectra of the complete bipartite graph Kn1,n2 and the
complete graph Kn.

Lemma 14.1.4 ([576]). Let n1, n2, and n be positive integers.

1. For G = Kn1,n2 , λ1 = −√n1n2, λ2 = · · · = λn−1 = 0, and λn =
√

n1n2.
2. For G = Kn, λ1 = · · · = λn−1 = −1, λn = n− 1.

Proof. 1. Since A is diagonalizable with eigenvalues as diagonal entries, the rank
of A is equal to the number of non-zero eigenvalues. For Kn1,n2 , the rank is 2, so
A has two non-zero eigenvalues λi and λj . Note that the trace of A is both the
sum of the eigenvalues and the number of loops in G. Hence, λi + λj = 0, and
we conclude that the spectrum of G is λ1 = −c, λ2 = · · · = λn−1 = 0, λn = c for
some c ∈ >0. Let us look at the characteristic polynomial, det(A−λIn) = (−c−
λ)λn−2(c− λ) = λn − c2λn−2. Since λ appears only on the diagonal of A− λIn,
terms in the permutation expansion that contribute to λn−2 arise from those
permutations that select n − 2 diagonal elements and 2 non-diagonal elements,
ai,j = aj,i = 1. Choosing i and j completely determines the permutation, so
there are exactly n1 · n2 permutations contributing to λn−2, each with negative
sign. Consequently, c2 = n1n2 and thus λ1 = −√n1n2, λn =

√
n1n2.

2. For Kn, the adjacency matrix is J − In, where J is the matrix of all ones.
Subtracting c from the diagonal of a matrix M shifts its eigenvalues by −c, since
Mx = λx is equivalent to (M − cIn)x = (λ − c)x. By induction on n it can be
shown that the spectrum of J consists of a single eigenvalue being n and n− 1
eigenvalues equal to zero. Thus the spectrum of Kn is λ1 = · · · = λn−1 = −1,
λn = n− 1. �

The adjacency matrix is also useful for counting paths of length k in a graph.

Lemma 14.1.5 ([576]). Let G be a multi-digraph possibly with loops. The
(i, j)th entry of Ak counts the i → j-paths of length k. The eigenvalues of Ak

are λk
i .

Proof. The first claim can be shown by induction on k. For the second claim, note
that for every eigenvector x with corresponding eigenvalue λ, Akx = Ak−1(Ax) =
λAk−1x = · · · = λkx. �

Corollary 14.1.6. 1.
∑n

i=1 λi = number of loops in G.
2.

∑n
i=1 λ2

i = 2 · |E|.
3.

∑n
i=1 λ3

i = 6· number of triangles in G.

Now we can prove that the converse of the third claim in Lemma 14.1.3 is
also true.

14 Spectral Analysis 379

Lemma 14.1.7 ([576]). G is bipartite if and only if the eigenvalues of G occur
in pairs λ, λ′ such that λ = −λ′.

Proof. One direction of the claim has been shown in the proof of Lemma 14.1.3.
For the other direction, note that λi = −λj implies λk

i = −λk
j for every odd k.

Since trace(Ak) =
∑k

i=1 λk
i = 0 counts the number of cycles of length k in G,

we infer that in particular there are no odd simple cycles which means that G
is bipartite. �

We have seen that it is possible to retrieve certain structural properties of a
graph (e.g. number of edges, number of triangles, whether or not it is bipartite)
from its spectrum. However, the spectrum does not reflect all of the graph’s
structure. Take for example the graphs in Figure 14.4.

Fig. 14.4. Two non-isomorphic graphs with identical adjacency spectrum

Both have eigenvalues λ1 = −2, λ2 = λ3 = λ4 = 0, and λ5 = 2, but they are
not isomorphic. Such graphs are called cospectral. Obviously, we can not even
determine from the spectrum if a graph is connected. Nevertheless, this can be
achieved by looking at eigenvalues of another graph matrix, the Laplacian.

14.1.3 The Laplacian Spectrum

Let G = (V, E) be an undirected multigraph (possibly with loops) with adjacency
matrix A. Let D =diag(d(1), . . . , d(n)) be the diagonal matrix of vertex degrees.
The Laplacian matrix L = (li,j) is defined as L := D − A, so if G is a simple
undirected graph, then

li,j =

⎧⎪⎨
⎪⎩
−1, if {i, j} ∈ E

d(i), if i = j

0 otherwise.

Another way of defining the Laplacian of an undirected simple graph is the
following. Consider an arbitrary orientation of G, i.e. a mapping assigning each
edge e = {i, j} a direction by indicating whether i or j is to be viewed as the

380 A. Baltz and L. Kliemann

head of e. The incidence matrix B = (bi,e) of the oriented graph (G, σ) is a
{0, 1,−1} matrix with rows and columns indexed by the vertices and edges of
G, respectively, such that

bi,e :=

⎧⎪⎨
⎪⎩

1, if i is the head of e

−1, if i is the tail of e

0 otherwise.

It can be shown that independently of the choice of σ, L = BB�. Consequently,
we obtain the following result.

Lemma 14.1.8. For each x ∈ n, x�Lx = x�BB�x =
∑

{i,j}∈E(xi − xj)2.

Since A is real and symmetric, L = D − A is also symmetric, and hence the
Laplacian spectrum consists of n real eigenvalues λ1(L) ≤ · · · ≤ λn(L). Again,
we may interpret an eigenvector x ∈ n as an assignment of weights ω : V → ,
i !→ xi. From this point of view, λ is an eigenvalue of L if there exists a non-zero
(and not completely negative) weight function ω : V → such that

λω(i) =
∑

j∈N(i)

(ω(i)− ω(j))

for all i ∈ V . Considering this equation for i ∈ V with maximum weight, we see
that λω(i) =

∑
j∈N(i)(ω(i)− ω(j)) ≥ 0, so all eigenvalues are non-negative. For

ω ≡ 1 we have λ = λω(i) =
∑

j∈N(i)(ω(i)−ω(j)) = 0, hence the vector 1n is an
eigenvector of L with eigenvalue 0.

Lemma 14.1.9 ([247]). A graph G consists of k connected components if and
only if λ1(L) = · · · = λk(L) = 0 and λk+1(L) > 0.

Proof. Let B be the incidence matrix of an arbitrary orientation of G. For each
component C of G define z(C) ∈ n by

z(C)i :=

{
1, if i ∈ V (C)
0 otherwise.

Then, Z := {z(C); C component of G} is linearly independent and Lz(C) =
BB�z(C) = 0n. Hence the connected component can be injectively mapped
into a linearly independent set of eigenvectors with eigenvalue 0. On the other
hand, if z ∈ n is a vector such that Lz = BB�z = 0n, then z�BB�z = 0
implies B�z = 0n, meaning that z must be constant on each connected compo-
nent. Thus, z is a linear combination of elements from Z, and consequently we
have exactly as many components as there are linearly independent eigenvectors
corresponding to eigenvalue 0. �

The Laplacian is useful for counting the number of spanning trees of a graph.

Theorem 14.1.10 (Matrix-Tree Theorem [135, 247, 427]). The Laplacian
matrix L of a graph G is related to spanning trees in the following way.

14 Spectral Analysis 381

1. For every i ∈ {1, . . . , n} the number of spanning trees in G is equal to
|det(Li)|, where Li is obtained from the Laplacian L by deleting row i and
column i.

2. Moreover, the number of spanning trees is equal to 1
n

∏
i≥2 λi(L).

While the Laplacian spectrum has the advantage over the adjacency spectrum
of indicating the number of connected components of a graph, it fails to identify
bipartite structures, as can be seen from the graphs in Figure 14.5 which are
cospectral with respect to L.

Fig. 14.5. Two cospectral graph with respect to the Laplacian

14.1.4 The Normalized Laplacian

A matrix whose spectrum enables us to recognize both, bipartite structure and
connected components, can be obtained by multiplying L from left and right
with the diagonal matrix D−1/2, where the ith entry in the diagonal is d(i)−1/2

if d(i) > 0 and 0 otherwise. This matrix is called the normalized Laplacian
L = D−1/2LD−1/2. For simple graphs, L = (l̄i,j) satisfies

l̄i,j =

⎧⎪⎪⎨
⎪⎪⎩

1, if i = j and d(i) > 0
− 1√

d(i)d(j)
, if {i, j} ∈ E

0 otherwise.

λ is an eigenvalue of L if there is a non-zero weight function ω : V → , such
that

λω(i) =
1√
d(i)

∑
j∈N(i)

(
ω(i)√
d(i)

− ω(j)√
d(j)

)
.

Again, L is symmetric with real valued entries, and we can order its n eigenvalues
in the sequence λ1(L) ≤ · · · ≤ λn(L).

The following claims are proved in [125].

Lemma 14.1.11 ([125]). Let G be a graph with normalized Laplacian ma-
trix L.

382 A. Baltz and L. Kliemann

1. λ1(L) = 0, λn(L) ≤ 2.
2. G is bipartite if and only if for each λ(L), the value 2 − λ(L) is also an

eigenvalue of L.
3. If λ1(L) = · · · = λi(L) = 0 and λi+1(L) �= 0, then G has exactly i connected

components.

14.1.5 Comparison of Spectra

If G is graph where each vertex has exactly d neighbors, then L = dIn −A and
L = I −D−1/2AD−1/2. This implies that for d-regular graphs, the three spectra
are equivalent. In particular, if d > 0 and

spectrum(A) = (λ1, , λn) then
spectrum(L) = (d− λn, . . . , d− λ1) and

spectrum(L) =
(

1− λn

d
, . . . , 1− λ1

d

)
.

In general, there is no simple relationship between the three spectra. Never-
theless, we can bound the eigenvalues of the adjacency matrix in terms of the
Laplacian eigenvalues and the maximum and minimum vertex degrees.

Lemma 14.1.12 ([425]). Let G be a graph with adjacency matrix A and Lapla-
cian matrix L. If Δ and δ are the maximum and the minimum vertex degrees of
G, respectively, then the kth smallest eigenvalue λk(A) of A and the kth largest
eigenvalue λn+1−k(L) of L are related by

δ − λk(A) ≤ λn+1−k(L) ≤ Δ− λk(A).

We will show this claim with the help of Courant-Fischer’s characterization of
the eigenvalues. This is a well-known theorem from linear algebra, however we
include a proof for completeness.

Theorem 14.1.13 ([587]). Let M ∈ n×n be a real symmetric matrix with
eigenvalues λ1 ≤ . . . ≤ λn. Then, for all k ∈ {1, . . . , n},

λk = min
U≤ n

dim(U)=k

max
x∈U
x �=0n

x�Mx

x�x
.

Proof. Let {v1, . . . , vn} be an orthonormal basis of eigenvectors of M for n

such that Mvi = λivi for all i ∈ {1, . . . , n}. For each x ∈ n, x �= 0n, let i0(x) ∈
{1, . . . , n} be maximal subject to the condition

x⊥vi for all i < i0(x).

In other words, i0(x) is the first index for which x �⊥ vi0(x). (x cannot be or-
thogonal to all vectors from the basis, because x �= 0n.) Therefore, there exist
scalars μi0(x), . . . , μn ∈ such that

14 Spectral Analysis 383

x =
n∑

i=i0(x)

μivi.

Consequently,

x�Mx = x�M

n∑
i=i0(x)

μivi = x�
n∑

i=i0(x)

μiMvi

= x�
n∑

i=i0(x)

μiλivi =
n∑

i=i0(x)

μiλi x�vi︸︷︷︸
=μi

≥ λi0(x)

n∑
i=i0(x)

μ2
i = λi0(x)x

�x.

(14.3)

Obviously, equality holds for x = vk, i.e., for all k ∈ {1, . . . , n} we have,

vk
�Mvk = λkvk

�vk. (14.4)

We now make the following claim:

For every k-dimensional subspace U ≤ n there exists x ∈ U , x �=
0n, such that i0(x) ≥ k. (14.5)

First, we explain how to prove the theorem from this claim. From (14.3) it
follows that for every k-dimensional subspace U ,

max
x∈U
x �=0n

x�Mx

x�x
≥ λk

On the other hand, because 〈v1, . . . , vk〉 is a k-dimensional subspace, it follows
from (14.4) that

min
U≤ n

dim(U)=k

max
x∈U
x �=0n

x�Mx

x�x
= λk.

We now have to prove (14.5). For a contradiction, assume that for all x ∈ U ,
we have i0(x) < k. By the definition of i0 this means that for every x ∈ U there
exists an i < k such that x �⊥ vi or equivalently, 1

〈v1, . . . , vk−1〉⊥ ∩ U = 0n.

On the other hand

dim〈v1, . . . , vk−1〉⊥ + dimU = n− (k − 1) + k = n + 1,

a contradiction. �
1 Here, 〈W 〉 denotes the linear hull of a subset W ⊆ n, and W⊥ denotes the set of

all vectors that are orthogonal to each vector from W .

384 A. Baltz and L. Kliemann

For later use, we state a simple corollary from this theorem.

Corollary 14.1.14. (a) The largest eigenvalue λn of a real symmetric matrix
M ∈ n×n satisfies

λn = max
x∈ n

x �=0n

x�Mx

x�x
.

(b) The second smallest eigenvalue of the Laplacian matrix satisfies

λ2(L) = min
x⊥1n

x�Lx

x�x
.

Later, we will also use another characterization of Laplacian eigenvalues,
which we cite without a proof. Let us call a vector x ∈ n constant, if all its
entries are the same, i.e., if it is a multiple of 1n.

Theorem 14.1.15 (Fiedler [211]).

λ2(L) = n min
{ ∑

{i,j}∈E(xi − xj)2∑
{i,j}∈(V

2)(xi − xj)2
; x ∈ n non-constant

}
(14.6)

λn(L) = n max
{ ∑

{i,j}∈E(xi − xj)2∑
{i,j}∈(V

2)(xi − xj)2
; x ∈ n non-constant

}
(14.7)

Now, we turn to the proof of Lemma 14.1.12.

Proof (of Lemma 14.1.12). Since λn+1−k(L) is the kth largest eigenvalue of L,
δ−λn+1−k(L) is the kth smallest eigenvalue of the matrix δIn−L = A−(D−δIn)
which differs from A only on the diagonal, where the non-negative values d(i)−δ

are subtracted. We have x	(A−(D−δIn))x
x	x

= x�Ax−r(x) for r(x) := x	(D−δIn)x
x	x

∈
≥0, and Theorem 14.1.13 gives

δ − λn+1−k(L) = λk(δIn − L)
= λk(A− (D − δIn))

= min
U≤ n

dim(U)=k

max
x∈U
x �=0n

x� (A− (D − δIn))x

x�x

= min
U≤ n

dim(U)=k

max
x∈U
x �=0n

(
x�Ax

x�x
− r(x)

)

≤ min
U≤ n

dim(U)=k

max
x∈U
x �=0n

x�Ax

x�x

= λk(A).

The other inequality is obtained in a similar way. �
Figure 14.6 shows two non-isomorphic graphs that are cospectral with respect

to all three matrices.

14 Spectral Analysis 385

Fig. 14.6. Two graphs that are cospectral with respect to A, L, and L

14.1.6 Examples

Table 14.1 lists the spectrum of the adjacency matrix A, the Laplacian L, and
the normalized Laplacian L for some elementary graph classes. All graphs are
assumed to have n vertices.

Table 14.1. Spectra of some elementary graph classes

graph class spectrum(A) spectrum(L) spectrum(L)

simple path
G = Pn

2 cos πk
n+1

,

k ∈ {1, . . . , n}
2 − 2 cos π(k−1)

n
,

k ∈ {1, . . . , n}
1 − cos π(k−1)

n−1
,

k ∈ {1, . . . , n}

simple cycle
G = Cn

2 cos 2πk
n

,
k ∈ {1, . . . , n}

2 − 2 cos 2πk
n

,
k ∈ {1, . . . , n}

1 − cos 2πk
n

,
k ∈ {1, . . . , n}

star
G = K1,n

−
√

n,
√

n,
0 (n − 2 times)

0, n,
1 (n − 2 times)

0, 2,
1 (n − 2 times)

G = Kn1,n2
−√

n1n2,
√

n1n2,
0(n − 2 times)

0, n1 (n2 − 1 times)
n2 (n1 − 1 times), n

0, 2
1 (n − 2 times)

G = Kn 1, −1 (n − 1 times) 0, n (n − 1 times) 0, n
n−1

(n − 1 times)

14.2 Numerical Methods

To use the spectrum of a graph for analysis, we have to compute it (or parts of
it) first. What methods are available? What are their running times and other
characteristics?

386 A. Baltz and L. Kliemann

14.2.1 Methods for Computing the Whole Spectrum of Small
Dense Matrices

It is not at all obvious how to compute the spectrum of a matrix M efficiently,
since already a straightforward evaluation of the characteristic polynomial as
det(M − λIn) takes O(n!) steps. A better strategy is to utilize the fact that
as a graph matrix, M is real and (in case of undirected graphs) symmetric
and thus can be transformed into a diagonal matrix by means of a similarity
transformation M → P−1MP . If we are interested only in eigenvalues, not
eigenvectors, it is enough to transform the matrix M to be triangular, with all
elements below (or above) the diagonal equal to zero. In this case the diagonal
elements are already the eigenvalues.
There is a two-stage technique for implementing the diagonalization strategy. In
the first stage we iteratively approximate P (and P−1) as a product of certain
‘atomic’ transformations Pi designed for zeroing a particular off-diagonal element
(Jacobi transformation [482]) or a whole particular row or column (Householder
transformation [482], elimination method [482]). We stop after O(n3) steps with
a matrix P̃ such that M1 = (mi,j) := P̃−1MP̃ has tridiagonal form (i.e., mi,j =
0 whenever |i − j| > 1). Now the second stage starts, where we perform a
QL- (or QR-) decomposition: the basic idea is that any real matrix M ′ can be
decomposed in the form M ′ = QL (or QR), such that Q is orthogonal (i.e.,
QT = Q−1) and L (R) is lower (upper) triangular. Writing these factors in
opposite order we get M ′′ := LQ = QT QLQ = QT M ′L, where properties such
as symmetry and tridiagonal form are preserved. The QL-algorithm consists of
a sequence of transformations

Mi := QiLi,

Mi+1 := LiQi = QT
i MiQi,

and relies on the following theorem [535].

Theorem 14.2.1 ([535]). 1. If M has eigenvalues of different absolute value
|λi| then Ms converts to lower triangular form as s→∞.

2. If M has an eigenvalue |λi| of multiplicity p then Ms converts to lower
triangular form as s → ∞, except for a diagonal block matrix of order p,
whose eigenvalues converge to λi.

Note that if M has an eigenvalue with multiplicity greater than one, then the
second part of Theorem 14.2.1 allows us to split the matrix into submatrices that
can be diagonalized separately. For tridiagonal matrices, one iteration of the QL-
algorithm can be performed in O(n) steps. With the technique of implicit shifts
[482] a reasonably good convergence is achieved in O(n) steps, resulting in a
total number of O(n2) steps for the second stage. Thus the overall complexity
of computing all eigenvalues with ‘good precision’ is O(n3).

14 Spectral Analysis 387

14.2.2 Methods for Computing Part of the Spectrum of Large
Sparse Matrices

When our given matrix M is very large, the computational and storage costs
required for the diagonalization strategy of the previous section become pro-
hibitive. However, in many situations M is sparse and it suffices to determine a
small subset of (extremal) eigenvalues. Suppose, we are interested in the largest
eigenvalue of M . The eigenvalue equation Mx = λx is clearly equivalent to
λ = x	Mx

x	x . In fact, we have observed in Corollary 14.1.14 that

λn = max
{

x�Mx

x�x
; x ∈ n \ {0n}

}
.

This suggests a simple algorithm: Choose an arbitrary starting vector x1 with
x�

1 x1 = 1, and then follow the direction of steepest ascend to successively ob-
tain an improved approximation to λn. The Lanczos algorithm is a run-time
and storage cost efficient algorithm that uses this idea to approximate extremal
eigenvalues of M . It proceeds as follows: a given initial vector x1 is normalized to
length one. Then at each step i an orthonormal basis (x1, x2, . . . , xi) for the space
spanned by (x1, Mx1, . . . , M

i−1x1) is constructed (this space is called ‘Krylov
space’). Let Xi denote the n×i-matrix with x1, x2, . . . , xi as column vectors. The
matrix T = X�

i MXi has tridiagonal form. Its eigenvalues — which are easy to
calculate (see [2]) — provide approximations to i eigenvalues of M . The method
favors convergence to eigenvalues in the outermost part of the spectrum of A.
The process is restarted every k steps for some fixed k & n until sufficiently
good convergence is achieved. We state the Lanczos method in its simplest form
as Algorithm 29.

Algorithm 29: The Lanczos algorithm

1. Initialization: Choose the number of steps k, the desired number of
eigenvalues r and an initial vector x1; let β0 := x�

1 x1,. x1 := x1/β0

2. Lanczos steps:
for i = 1 to k do

(i) y := Mxi

(ii) αi := x�
i y

(iii) xi+1 := y − αixi − βi−1xi−1

(iv) βi := x�
i+1xi+1

(v) xi+1 := xi+1/βi;

Set Xi :=Mat(x1, . . . , xi)

3. Eigenvalue computation: Compute the eigenvalues of T := X�
i MXi.

4. Convergence test and restart: If the first r columns of T satisfy the
convergence criteria then accept the corresponding eigenvalues and stop.
Otherwise restart with a suitable new x1.

388 A. Baltz and L. Kliemann

By replacing M with (M − μIn)−1 in step 2(i) of the algorithm, this scheme
is capable of approximating eigenvalues in the vicinity of any given value μ.
In general, the minimum number of Lanczos iterations necessary to compute
a desired set of eigenvalues is unknown. In practice, a fast convergence can be
achieved via a restarting scheme (see [591]). Farkas et al. [198] were able to
compute the spectrum of graphs with up to 40,000 vertices and 200,000 edges
with the ‘thick-restart’ version of the Lanczos algorithm. The Arnoldi Method
differs from the Lanczos algorithm in replacing steps (ii)–(iv) with

(ii)’ hi,j := x�
j y for all j ∈ {1, . . . , i}

(iii)’ xi+1 := y −
∑i

j+1 xjhj,i

(iv)’ hi,i+1 := x�
i+1xi+1, βi := hi,i+1.

For symmetrical matrices, Arnoldi’s and Lanczos’ methods are mathematically
equivalent, but the Lanczos algorithm uses fewer arithmetic operations per step
by explicitly taking advantage of the symmetry of M . The advantage of Arnoldi’s
method is that it can be applied to treat asymmetric matrices. In that case,
H = X�

i MXi is an upper Hessenberg matrix that can be reduced to block
triangular form, allowing for an efficient computation of eigenvalues (see [509]).

14.3 Subgraphs and Operations on Graphs

What can the spectrum tell us about subgraphs in a graph? Do eigenvalues of
subgraphs show up in the spectrum? Can we conclude that a certain graph is
not a subgraph (or at least not an induced subgraph) by looking at the spec-
trum? What happens to the spectra of two graphs that are joined by taking the
Cartesian product or the sum?

In this section, we will show some directions for answering these questions.
We only consider the adjacency spectrum here, although many results also hold
for the Laplacian spectra.

14.3.1 Interlacing Theorem

How do induced subgraphs manifest themselves in the spectrum? Obviously, not
every induced subgraph inserts its eigenvalues or some of its eigenvalues into
the spectrum of the whole graph. For example, the complete graph K2 on two
vertices has eigenvalues −1 and 1. But many graphs containing K2 as an induced
subgraph, i.e., an edge, do not have −1 or 1 in their spectrum. See Table 14.1
in Section 14.1.6 for examples.

However, there is an interlacing of the eigenvalues of induced subgraphs. Let
G = (V, E) be a graph on n vertices and let H be an induced subgraph of G with
n− 1 vertices. (In other words: H is obtained from G be removing one vertex.)
If, in our usual notation, λ1 ≤ . . . ≤ λn are the eigenvalues of the adjacency
matrix of G and μ1 ≤ . . . ≤ μn−1 are those of H , we have

λi ≤ μi ≤ λi+1 ∀i ∈ {1, . . . , n− 1},

14 Spectral Analysis 389

i.e., between two eigenvalues of G there lies exactly one eigenvalue of H . Conse-
quently, if G has an eigenvalue with multiplicity k, then H has this eigenvalue
with multiplicity k − 1.

For an induced subgraph on m vertices, by induction (over the number of
vertices removed to obtain H from G) the interlacing generalizes to

λi ≤ μi ≤ λi+(n−m) ∀i ∈ {1, . . . , m}. (14.8)

We will now prove an even more general result than this, from which we will
get (14.8) directly.

Theorem 14.3.1. Let n, m ∈ and S ∈ n×m such that S�S = Idm. Let A ∈
n×n be symmetric and B := S�AS. Then, for the eigenvalues λ1 ≤ . . . ≤ λn

of A and the eigenvalues μ1 ≤ . . . ≤ μm of B we have the interlacing property
(14.8), i.e.,

λi ≤ μi ≤ λi+(n−m) ∀i ∈ {1, . . . , m}. (14.9)

The interlacing property of the adjacency spectrum follows from this. To see
this, let A be the adjacency matrix of G. The adjacency matrix of an induced
subgraph H is a principal submatrix of A, i.e., a matrix that is obtained by
deleting the ith row and ith column of A for every vertex i ∈ V \ V (H). Such a
principal submatrix can be obtained from A in the same way as B is obtained
from A in the above theorem. If i1, . . . , ik are the vertices removed from G to
get H , we have to choose S to be the identity matrix with the ijth row deleted,
j = 1, . . . , k.

Proof (of Theorem 14.3.1). The matrix S defines an injective mapping from m

to n. For a subset U ⊆ m we as usually denote by S(U) the image of U under
that mapping, i.e.,

S(U) := {Su; u ∈ U} .

If U ≤ m is an i-dimensional subspace (i ≤ m), then S(U) is an i-dimensional
subspace of n, because S is injective.

Remember the characterization of eigenvalues given in Theorem 14.1.13. For
every i ∈ {1, . . . , m} we have

λi = min
U≤ n

dim(U)=i

max
x∈U
x �=0

x�Ax

x�x
≤ min

U≤S(m)
dim(U)=i

max
x∈U
x �=0

x�Ax

x�x

= min
U≤ m

dim(U)=i

max
x∈S(U)

x �=0

x�Ax

x�x
= min

U≤ m

dim(U)=i

max
x∈U
x �=0

(Sx)�A(Sx)

(Sx)�(Sx)

= min
U≤ m

dim(U)=i

max
x∈U
x �=0

x�(S�AS)x
x�x

= min
U≤ m

dim(U)=i

max
x∈U
x �=0

x�Bx

x�x

= μi.

This is the first inequality of (14.9).

390 A. Baltz and L. Kliemann

Applying the same argument to −A instead of A, we get for every k ∈
{0, . . . , m− 1} that −λn−k ≤ −μm−k, which means

λn−k ≥ μm−k.

Setting k := m− i yields the second inequality of (14.9). �

From the Interlacing Theorem we immediately get the following corollary.

Corollary 14.3.2. Let G and H be two graphs with eigenvalues λ1 ≤ . . . ≤ λn

and μ1 ≤ . . . ≤ μm respectively. If μ1 < λ1 or λn < μn, then H does not occur
as an induced subgraph of G.

For example, let G be a graph with all eigenvalues smaller than 2.
The graphs Cj , j ∈ , all have 2 as their largest eigenvalue (see Table 14.1

in Section 14.1.6). Hence, G does not contain a cycle as an induced subgraph.
Because in every cycle, we can find a simple cycle, in which in turn we can find
an induced simple cycle, G even is cycle-free.

We also know that G has no vertices of degree larger than 3. Otherwise, G
would have a K1,j , j ≥ 4, as an induced subgraph, which has

√
j (as largest

eigenvalue) in its spectrum.

14.3.2 Grafting

Let us now approach the question about the role of subgraphs from a different
direction. Suppose you have a graph G and another graph H and would like to
modify G in a way that gives G some of the eigenvalues of H .

For a disconnected graph the spectrum is the union of the spectra of its
components. This is easy to see. It also gives us a straightforward method for
accomplishing our goal in the given setup: Simply add H to G as a separate
component. However this is not a suitable approach in case one has to preserve
the connectivity of the graph.

Let λ be an eigenvalue of H which we would like to add to the spectrum of G.
Let us first consider the special case that the eigenvector x corresponding to λ
has an entry equal to zero, say, xi0 = 0. Think of the graph G′ as the union of G
and H where the vertex i0 of H has been identified with some arbitrary vertex
of G. Formally, we define G′ from G = (V (G), E(G)) and H = (V (H), E(H))
by picking a vertex j0 ∈ V (G) and setting

V (G′) := V (G) ∪ (V (H) \ {i0}) and
E(G′) := E(G) ∪ E(H − i0) ∪ {{j0, i}; i ∈ V (H), {i0, i} ∈ E(H)} .

We say that H is grafted onto G along i0 and j0.
To get an eigenvector for λ, assign 0 to all vertices of G in G′. To the vertices of

H−i0 in G′ assign the values given by the eigenvector x. Using the combinatorial
interpretation of eigenvectors (Remark 14.1.2), one easily verifies that this yields
an eigenvector of G′ for eigenvalue λ. See Figure 14.7 for an example.

14 Spectral Analysis 391

j0

00

0

0

0

1−1

Fig. 14.7. A triangle grafted on a star of five vertices. The new graph has an eigenvalue
−1, which the star alone did not have

But what if we do not have an eigenvector of H for λ with an entry equal
to zero? We can still do a similar trick. We pick a vertex i0 ∈ V (H) and make
two copies H+ and H− of H . The copies of a vertex i ∈ V (H) are called i+ and
i− respectively. We then take a new vertex i1 and connect H+ with H− via two
new edges {i+0 , i1} and {i1, i−0 }. Call the resulting graph H̃ .

Let λ be an eigenvalue of H and x a corresponding eigenvector. Then the
following vector x̃ is an eigenvector of H̃ with the same eigenvalue λ.

x̃i+ := xi and x̃i− := −xi ∀i ∈ V (H)

and
x̃i1 := 0.

Now, H̃ can be grafted onto G along i1 and an arbitrary vertex j0 ∈ V (G).
We call such a construction a symmetric graft. Note, that if H is a tree, H̃ will
be a tree as well. Symmetric grafts of trees play an important role in the analysis
of spectra of random graphs [49]; see also the notes about sparse random graphs
in 14.5.2.

As an example, consider the path on three vertices, P3. This graph has an
eigenvalue

√
2 with eigenvector (1/

√
2, 1, 1/

√
2)

�
. Take the middle vertex as i0.

Figure 14.8 shows the symmetric construction ready to be grafted along i1.
Finally we remark that grafting along one vertex can be extended in a natural

way to grafting along several vertices.

14.3.3 Operations on Graphs

Consider two graphs G1 = (V1, E1) and G2 = (V2, E2). The sum G1 + G2 is a
graph on V1 × V2 where two vertices (i1, i2), (j1, j2) ∈ V1 × V2 are connected if
either (but not both!) {i1, j1} ∈ E1 or {i2, j2} ∈ E2. On the other hand, letting

392 A. Baltz and L. Kliemann

i1

i+0

−1√
2

i−0

1√
2

1√
2

−1

0

1

−1√
2

Fig. 14.8. A symmetric construction from two copies of P3, ready to be grafted

(i1, i2) and (j1, j2) share an edge if and only if {i1, j1} ∈ E1 and {i2, j2} ∈ E2

defines the Cartesian product graph G1 × G2. Figure 14.9 depicts the sum and
the product of a simple path on four vertices with itself.

Fig. 14.9. The sum and the Cartesian product of a 4-vertex simple path with itself

It is easy to compute the eigenvalues of G1+G2 and G1×G2 from the spectra
of G1 and G2.

Lemma 14.3.3. (a) spectrum(G + H) = spectrum(G) + spectrum(H).
(b) spectrum(G×H) = spectrum(G) · spectrum(H).

More general, the spectrum of any non-complete extended p-sum of graphs is
determined by the individual spectra.

Definition 14.3.4 ([135]). Let p ∈ ≥2 and let B ⊆ {0, 1}p \ 0p. The non-
complete extended p-sum of graphs G1 = (V1, E1), . . . , Gp = (Vp, Ep) with basis
B is the graph NEpS(Gk)p

k=1 with vertex set V1 × · · · × Vp, in which two vertices
(i1, . . . , ip), (j1, . . . , jp) are adjacent if and only if there exists β ∈ B such that
ik = jk whenever βk = 0 and {ik, jk} ∈ Ek whenever βk = 1.

14 Spectral Analysis 393

Theorem 14.3.5 ([135]). Let p ∈ ≥2. For each k ∈ {1, . . . , p} let Gk be a
graph on nk vertices with spectrum λk1, . . . , λknk

. Then

spectrum(NEpS(Gk)p
k=1) =

{∑
β∈B

λβ1
1i1
· . . . · λβp

pip
; (i1, . . . , ik) ∈ I

}
,

where
I := {1, . . . , n1} × . . .× {1, . . . , nk}.

Note that the sum and the Cartesian product of graphs are NEpS with p = 2
and basis B = {(1, 0), (0, 1)} resp. B = {(1, 1)}.

14.4 Bounds on Global Statistics

Certain eigenvalues, especially the extreme eigenvalues, give bounds for global
statistics. Recall from Section 11.7 in Chapter 11 that a global statistic assigns
to each graph (from some class of graphs) a single value. These statistics are
sometimes also called graph parameters.

We will study a selection of eigenvalue bounds on graph parameters.

Average Degree

Recall that the degree d(i) of a vertex i is the number of edges incident with i.
Denote the average degree by d̄, i.e.,

d̄ :=
1
n

∑
i∈V

d(i). (14.10)

The average degree is related to the largest eigenvalue of the adjacency matrix,
as seen in the following observation.

Lemma 14.4.1. Let G be a graph and d̄ its average degree. Then

d̄ ≤ λn.

Proof. Let x := 1n be the n-dimensional vector with all entries equal to 1. Then
by Corollary 14.1.14 we have

λn ≥
x�Ax

x�x
=
∑

i∈V d(i)
n

= d̄.

�

394 A. Baltz and L. Kliemann

Diameter and Mean Distance

We only cite some results in this section. Recall that the diameter is the largest
distance between two vertices. Eigenvalues of the Laplacian provide bounds on
the diameter of a connected graph.

Theorem 14.4.2 ([126, 426]). Let α > 1. Then

diam(G) ≤ 2

⎢⎢⎢⎣ cosh−1(n− 1)

cosh−1
(

λn(L)+λ2(L)
λn(L)−λ2(L)

)
⎥⎥⎥⎦+ 1

and

diam(G) ≥
⌈

4
nλ2(L)

⌉
.

Recall that the mean distance ρ̄ is the average over all distances between
distinct vertices.

Theorem 14.4.3 ([426]). The mean distance is bounded by Laplacian eigen-
values in the following way:

1
n− 1

(
2

λ2(L)
+

n− 2
2

)
≤ ρ̄(G) ≤ n

n− 1

⌈
Δ + λ2(L)

4λ2(L)
ln(n− 1)

⌉
.

Connectivity

We already know that λ2(L) is non-zero if and only if the graph is connected.
Fiedler [210] noticed more relations between λ2(L) and connectivity properties.
λ2(L) is therefore also called the algebraic connectivity. We only cite his results.

Theorem 14.4.4 ([210]). Let G be a graph and ω = π
n . Let κ(G) and η(G)

denote the minimum number of nodes and edges, respectively that have to be
removed in order to make G disconnected. Then,

1. λ2(L) ≤ κ(G) ≤ η(G),
2. λ2(L) ≥ 2η(G)(1 − cosω), and
3. λ2(L) ≥ 2(cosω − cos 2ω)η(G)− 2 cosω(1− cosω)Δ(G).

Isoperimetric Number

The isoperimetric number is defined as follows:

i(G) := min
{

|E(X, Y)|
min{|X |, |Y |} ; ∅ �= X ⊂

�=
V, Y = V \X

}
,

where E(X, Y) denotes the set of edges connecting X with Y . The definition
characterizes i(G) as the size of a smallest possible edge-cut separating as large
a subset X as possible from the remaining larger part Y (we assume |X | ≤ |Y |

14 Spectral Analysis 395

w.l.o.g.). Hence, i(G) is a measure of how many edges we have to remove from
a network to isolate a large portion of nodes. This relates i(G) to both, network
connectivity and the min-bisection problem, which has important applications
in VLSI design.

Obviously, by choosing X = {v} with d(v) = δ(G), we see that

i(G) ≤ δ(G). (14.11)

If G is disconnected, we have i(G) = 0.
A well-known relationship between the isoperimetric number and λ2(L) states

that i(G) ≥ λ2(L)
2 . For the case of λ2(L) ≤ 2, this bound is outperformed by the

following result.

Theorem 14.4.5 ([176]). The isoperimetric number is bounded from below by
Laplacian eigenvalues in the following way:

i(G) ≥ min
{

1,
λ2(L)λn(L)

2(λn(L) + λ2(L)− 2)

}
.

We will now look at an upper bound following [425].

Proposition 14.4.6. Let G be a graph with maximum degree Δ that is not a
complete graph. Then,

λ2(L) ≤ Δ.

Proof. If G is disconnected, then λ2(L) = 0 ≤ Δ. So let G be connected. Then G
contains a path on three vertices P3 as an induced subgraph. (Otherwise, G would
be complete: Take two vertices i and j and by induction on the length of the
shortest i-j path show that there exists an edge {i, j}.) By the examples in Table
14.1 in Section 14.1.6 we know that λ2(A(P3)) = 0. Hence, by the Interlacing
Theorem, see (14.8), we get

0 = λ2(A(P3)) ≤ λn−1(A).

We also know from Lemma 14.1.12 that

λ2(L) ≤ Δ− λn−1(A) ≤ Δ.

�

With the help of the preceding proposition, we can prove:

Theorem 14.4.7. Let G = (V, E) be a graph not equal to K1, K2 or K3 with
n vertices and m edges. Then

i(G) ≤
√

λ2(L)(2Δ− λ2(L)). (14.12)

The proof takes up several pages and includes some more technical details.
Nevertheless it is a nice proof and an interesting example, how we can obtain
non-trivial bounds from Laplacian eigenvalues. It is therefore presented in an
extra section 14.4.1 at the end of this section.

396 A. Baltz and L. Kliemann

Expansion

Many times a good vertex expansion is a desired property of a network. One
common definition capturing this property that ‘all small sets of nodes have
large neighborhoods’ is the following.

cV := min
{
|N(S) \ S|
|S| ; S ⊆ V, |S| ≤ n

2

}
.

A large vertex expansion cV is crucial, e.g. for the construction of parallel sorting
networks, superconcentrators, fault-tolerant networks, and networks for simulat-
ing random generators, the latter being an important means for derandomization
via small sample spaces. Using probabilistic methods, one can generate a random
network that will have good expansion properties almost surely, but it is hard
to measure the expansion properties from the definition. Therefore the following
bounds are very useful.

Theorem 14.4.8 ([19]). λ2(L)
Δ
2 +λ2(L)

≤ cV = O(
√

λ2(L)).

A graph with expansion at least α is called an α-magnifier.
Let us prove a weak version of Theorem 14.4.8 for regular graphs.

Theorem 14.4.9 ([576]). A d-regular graph is a λ2(L)
2d -magnifier.

Proof. Let G = (V, E) be a d-regular graph on V = {1, . . . , n}. Take a subset S
of V of cardinality s ≤ n/2. Define a vector x ∈ {s− n, s}n by

xi :=

{
s− n, i ∈ S

s, i ∈ V \ S.

By definition of L, x�Lx = x�(D − A)x = d
∑n

i=1 x2
i −

∑n
i=1 xi

∑
{i,j}∈E xj =∑

{i,j}∈E(xi−xj)2 = n2 · |E(S, V \S)|, where E(S, V \S) is the set of edges with
exactly one end point in S. Since

∑
i xi = s(s−n) + (n− s)s = 0, we see that x

is perpendicular to the eigenvector 1n of L which corresponds to the eigenvalue
0. From Corollary 14.1.14 we conclude that n2|(S, S̄)| = x�Lx ≥ λ2(L)x�x =
λ2(L)sn(n − s), and consequently |N(S)| ≥ |(S,S̄)|

d ≥ λ2(L)s(n−s)
dn ≥ λ2(L)|S|

2d as
claimed. �

For results on the closely related Cheeger constants see [125].

Routing Number

Consider a set of (distinguishable) ‘pebbles’. Initially, each pebble is located on
a distinct vertex of the connected graph G = (V, E), |V | = n. We are given
a permutation π on V . The goal is to move each pebble which at the start is
on vertex i ∈ V to vertex π(i). This has to be done in a number of steps of
the following form. At each step, choose a set of disjoint edges E0 ⊆ E and
interchange the pebbles at the endpoints of each edge in E0.

14 Spectral Analysis 397

The minimum number of steps required to accomplish the goal is denoted by
rt(G, π). The routing number rt(G) of G is

rt(G) := max
π∈Sn

rt(G, π).

Now let G be connected and d-regular. We can upper bound the routing
number in terms of λn−1. We only cite the following result.

Theorem 14.4.10 ([21]). Let G be a d-regular connected graph. Then we have
λn−1 < d and

rt(G) = O
(

d2

(d− λn−1)2
log2 n

)
.

Chromatic Number

A coloring of a graph is an assignment of colors, e.g., natural numbers, to the
vertices such that adjacent vertices have different colors. We speak of a k-coloring
if the graph is assigned k different colors. The chromatic number of a graph is
the minimum number of colors required for a coloring. We denote the chromatic
number by χ(G).

It is well-known that computing the chromatic number is NP-hard. How-
ever, eigenvalues provide us with lower and upper bounds. We consider only
eigenvalues of the adjacency matrix.

Theorem 14.4.11 ([428]). Let G be a graph. Then

χ(G) ≤ 1 + λn.

Proof. Let H be a subgraph of G without isolated vertices and such that

χ(H) = χ(G) and for every edge e in H we have χ(H − e) < χ(H). (14.13)

It is easy to show that such a subgraph always exists and that in fact χ(H −
e) = χ(H)− 1. We have χ(H) ≤ δ(H)+1. To see this, assume χ(H) > δ(H)+1
and let i ∈ V (H) be a vertex with dH(i) = δ(H). Let j ∈ N(i) and e = {i, j}.
Then k := χ(H−e) = χ(H)−1 > δ(H). Because dH(i) = δ(H), we can construct
a k-coloring of H from a k-coloring of H − e. This is a contradiction to (14.13).

From Lemma 14.4.1 and the Interlacing Theorem (14.8), we derive

χ(G)− 1 = χ(H)− 1 ≤ δ(H) ≤ λn(H) ≤ λn(G).

�
It is possible to actually find a 1 + λn–coloring in polynomial time; see [428]

for details.

Theorem 14.4.12 ([246, 268]). Let G be a graph. Then

1− λn

λ1
≤ χ(G).

Theorem 14.4.13 ([135]). Let G be a graph. Then
n

n− λn
≤ χ(G).

398 A. Baltz and L. Kliemann

Independence Number

An independent set is a set of vertices such that none of them is adjacent to
another vertex from that set. Independent sets are also called stable sets. For
a graph G, the independence number α(G) is the cardinality of an independent
set of maximal cardinality among all independent sets of G.

We will follow [427] in extending the following result due to Hoffman and
Lovász [397].

Theorem 14.4.14. Let G be a d-regular graph. Then

α(G) ≤ n

(
1− d

λn(L)

)
.

Now, let G = (V, E) be a graph with n vertices and degrees

d1 ≤ d2 . . . ≤ dn.

Set
d̄s :=

1
s

∑
i∈{1,...,s}

di for all s ∈ {1, . . . , n}.

Then the sequence d̄1, d̄2, . . . , d̄n is non-decreasing and for a d-regular graph
d̄s = d for all s ∈ {1, . . . , n}.

Theorem 14.4.15. Let s0 be the smallest integer such that

d̄s0 >
λn(L)(n− s0)

n
.

Then
α(G) ≤ s0 − 1,

and consequently

α(G) ≤ n

(
1− d̄s0−1

λn(L)

)
.

Proof. We will show that
λn(L)(n− s)

n
≥ d̄s (14.14)

whenever there is a stable set of size s > 1 in G. To this end, let S ⊆ V be a
stable set of size s := |S| > 1. Equation (14.14) is true for s = n, since then
d̄i = 0 for all i ∈ {1, . . . , n}. So let s < n. Define x ∈ n by

xi :=

{
0 if i ∈ S

1 otherwise
.

Then x is non-constant, i.e., not a multiple of 1. By Fiedler’s characterization,
Theorem 14.1.15, equation (14.7), we have

14 Spectral Analysis 399

λn(L) ≥ n

∑
{i,j}∈E(xi − xj)2∑
{i,j}∈(V

2)(xi − xj)2
= n

|E(S, V \ S)|
s(n− s)

.

Because S contains no edges, we have |E(S, V \ S)| ≥ sd̄s, and so

λn(L) ≥ n
sd̄s

s(n− s)
= n

d̄s

n− s
.

This yields (14.14).
Now let s0 be the first integer that violates (14.14). Then, there is no stable

set of cardinality s0. Because (d̄s)s=1,...,n is non-decreasing, all s ≥ s0 violate
(14.14) as well, and so there cannot be a stable set larger than s0 − 1. �

Bisection Width

Given a graph with an even number of vertices, the Minimum Bisection problem
aims at partitioning the vertices into two classes of equal size that are con-
nected by as few edges as possible. The minimum number of edges between the
two classes is called the bisection width of the graph. The decision version of
the Minimum Bisection problem is NP-complete [241], and the currently best
polynomial approximation algorithm is guaranteed only to stay within a multi-
plicative error of O(log2 n) [203]. The following bound on the bisection width is
a special case of a result of Alon and Milman [23].

Lemma 14.4.16. Let G = (V, E) be a graph on {1, . . . , n}, where n is an even
positive integer, then

bw(G) ≥ n

4
λ2(L).

Proof. Let S be an arbitrary subset of V of cardinality n
2 and define

xi :=

{
1, i ∈ S

−1, i /∈ S

for all i ∈ V . Then
∑

i∈V xi = 0. Hence x ⊥ 1n and by Corollary 14.1.14 and
Lemma 14.1.8 we have nλ2(L) = x�xλ2(L) ≤ x�Lx =

∑
{i,j}∈E(xi − xj)2 =∑

{i,j}∈E(S,V \S)(xi − xj)2 = 4 · |E(S, V \ S)|. Choosing S as one class of a
minimum bisection yields the claim. �

Bezrukow et al. [60] have shown that this bound is tight if and only if all vertices
are incident with exactly λ2(L)

2 cut edges, which is true, e.g., for complete graphs,
complete bipartite graphs, hypercubes, and the Petersen graph. However, for the√

n×
√

n grid graph, the bisection width is
√

n while λ2(L) = 2−2 cos(π/
√

n) ≈
π2/n [60] and hence n

4 · λ2(L) ≈ π2

4 . So the gap between the optimal bisection
width and the bound of Lemma 14.4.16 can be large.

As mentioned earlier, the bisection width is closely related to the isoperimet-
ric number: directly from the definition of i(G) and bw(G) we obtain i(G) ≤
2bw(G)

n . Hence, lower bounds on i(G) yield lower bounds on bw(G).

400 A. Baltz and L. Kliemann

14.4.1 Proof of Theorem 14.4.7

Recall that G = (V, E) is a graph not equal to K1, K2 or K3 with n vertices
and m edges. We have to prove

i(G) ≤
√

λ2(L)(2Δ− λ2(L)). (14.15)

For the proof, let us write λ := λ2(L), δ := δ(G), and Δ := Δ(G).
If λ = 0, then G is disconnected and so i(G) = 0, and we are done. The case

that G is a complete graph on n ≥ 4 vertices or more can be dealt with easily
by using λ = n, see 14.1.6.

Hence we may assume that G is not a complete graph. Then by Proposition
14.4.6, we have λ ≤ Δ. If δ < λ, we have

λ(2Δ− λ) > δ(2Δ− λ) ≥ δ(2Δ−Δ) = δΔ ≥ δ2 ≥
(14.11)

i(G)2.

This is (14.15). We now may assume that

λ ≤ δ. (14.16)

Let y ∈ n be an eigenvector for λ and set W := {i ∈ V ; yi > 0}. Then, perhaps
after switching from y to −y, we have |W | = min{|W | , |V \W |}. Define

gi :=

{
yi if i ∈W

0 otherwise
.

Let E(W) ⊆ E be the edges between vertices from W . We have∑
i∈W

(
d(i)yi ±

∑
j: {i,j}∈E

yj

)
yi

=
∑
i∈W

∑
j: {i,j}∈E

(yi ± yj)yi

=
∑

{i,j}∈E(W)

((yi ± yj)yi + (yj ± yi)yj) +
∑

{i,j}∈E(W,V \W)

(yi ± yj)yi

=
∑

{i,j}∈E(W)

(yi ± yj)2 +
∑

{i,j}∈E(W,V \W)

(yi ± yj)yi

=
∑

{i,j}∈E(W)

(yi ± yj)2 +
∑
i∈W

d(i)y2
i ±

∑
{i,j}∈E(W,V \W)

yjyi

=
∑

{i,j}∈E

(gi ± gj)2 −
∑
i∈W

d(i)g2
i +

∑
i∈W

d(i)y2
i ±

∑
{i,j}∈E(W,V \W)

yjyi

=
∑

{i,j}∈E

(gi ± gj)2 ±
∑

{i,j}∈E(W,V \W)

yjyi.

(14.17)

14 Spectral Analysis 401

Keep in mind that when summing over all edges {i, j} ∈ E, the terms must not
depend on which end of the edge actually is i and which is j. Observe that this
is always the case here, e.g., in the preceding calculation because (gi ± gj)2 =
(gj ± gi)2 for all i, j ∈ V .

Using the eigenvalue property of y we get

λyi = d(i)yi −
∑

j: {i,j}∈E

yj ∀i ∈ V. (14.18)

This, together with the ‘−’ version of (14.17), yields

λ
∑
i∈W

y2
i =

∑
i∈W

(
d(i)yi −

∑
j: {i,j}∈E

yj

)
yi

=
(14.17)

∑
{i,j}∈E

(gi − gj)2 −
∑

{i,j}∈E(W,V \W)

yjyi,

(14.19)

and using the ‘+’ version of (14.17)

(2Δ− λ)
∑
i∈W

y2
i

= 2Δ
∑
i∈W

y2
i −

∑
i∈W

d(i)y2
i +

∑
i∈W

∑
j: {i,j}∈E

yjyi

≥
∑
i∈W

d(i)y2
i +

∑
i∈W

∑
j: {i,j}∈E

yjyi

=
(14.17)

∑
{i,j}∈E

(gi + gj)2 +
∑

{i,j}∈E(W,V \W)

yjyi.

(14.20)

Set α :=
∑

{i,j}∈E(W,V \W) yiyj . Because the left and right hand sides of (14.19)
are not negative, using (14.20) we derive

λ(2Δ− λ)
(∑

i∈W

y2
i

)2

≥
∑

{i,j}∈E

(gi + gj)2
∑

{i,j}∈E

(gi − gj)2

+ α
(∑
{i,j}∈E

(gi − gj)2 −
∑

{i,j}∈E

(gi + gj)2
)
− α2

=
∑

{i,j}∈E

(gi + gj)2
∑

{i,j}∈E

(gi − gj)2 − α
(
4

∑
{i,j}∈E(W)

yiyj + α
)

.

(14.21)

We would like to drop the ‘α’ term completely in this equation. To this end,
observe that by the definition of W we have α ≤ 0. Furthermore, using again
the eigenvalue property of λ (see also (14.18)), we have

402 A. Baltz and L. Kliemann

4
∑

{i,j}∈E(W)

yiyj + α

= 2
∑

{i,j}∈E(W)

yiyj + 2
∑

{i,j}∈E(W)

yiyj +
∑

{i,j}∈E(W,V \W)

yiyj

= 2
∑

{i,j}∈E(W)

yiyj +
∑
i∈W

yi

∑
j: {i,j}∈E

yj

= 2
∑

{i,j}∈E(W)

yiyj︸︷︷︸
≥0

+
∑
i∈W

(d(i)− λ)︸ ︷︷ ︸
≥0

y2
i

≥ 0,

because of the definition of W and (14.16). We thus have by (14.21)

λ(2Δ− λ)
(∑

i∈W

y2
i

)2

≥
∑

{i,j}∈E

(gi + gj)2
∑

{i,j}∈E

(gi − gj)2. (14.22)

Define v, w ∈ m by v{i,j} := gi + gj and w{i,j} := |gi − gj|. We apply the
Cauchy-Schwartz inequality to v and w, getting(∑

{i,j}∈E

∣∣g2
i − g2

j

∣∣)2

=
(∑
{i,j}∈E

(gi + gj) |gi − gj |
)2

= 〈v, w〉2

≤ ‖v‖2 ‖w‖2

=
∑

{i,j}∈E

(gi + gj)2
∑

{i,j}∈E

(gi − gj)2

≤
(14.22)

λ(2Δ− λ)
(∑

i∈W

y2
i

)2

.

(14.23)

We will now bound this from below. Let 0 = t0 < t1 < . . . < tN be all the
different values of the components of g. Define Vk := {i ∈ V ; gi ≥ tk} for k ∈
{0, . . . , N} and for convenience VN+1 := ∅. Then, for k ∈ {1, . . . , N + 1} we have
Vk ⊆W and therefore |Vk| ≤ |W |, hence |Vk| = min{|Vk| , |V \ Vk|}. It also holds
that VN ⊆ VN−1 ⊆ . . . V1 = W ⊆ V0 = V and that |Vk| − |Vk+1| is the number
of entries in g equal to tk for all k ∈ {0, . . . , N}.

We will later show that we can express the sum
∑

{i,j}∈E

∣∣g2
i − g2

j

∣∣ in a con-
venient way:

14 Spectral Analysis 403

∑
{i,j}∈E

∣∣g2
i − g2

j

∣∣ =
N∑

k=1

∑
{i,j}∈E

gi<gj=tk

(g2
j − g2

i)

=
see below

N∑
k=1

∑
{i,j}∈E(Vk,V \Vk)

(t2k − t2k−1) =
N∑

k=1

|E(Vk, V \ Vk)| (t2k − t2k−1)

≥ i(G)
N∑

k=1

|Vk| (t2k − t2k−1) = i(G)
N∑

k=0

t2k(|Vk| − |Vk+1|),

since VN+1 = ∅ and t0 = 0. Now we can conclude that
∑

{i,j}∈E

∣∣g2
i − g2

j

∣∣ ≥
i(G)

∑
i∈V g2

i = i(G)
∑

i∈W y2
i . This together with (14.23) yields the claim of

the theorem.
We now only have left to prove the validity of the transformation of the sum,

i.e.,
N∑

k=1

∑
{i,j}∈E

gi<gj=tk

(g2
j − g2

i) =
N∑

k=1

∑
{i,j}∈E(Vk,V \Vk)

(t2k − t2k−1). (14.24)

This will be done by induction on N . The case N = 1 is clear. So let N > 1 and
assume that (14.24) has already been proven for instances with N − 1 instead of
N , i.e., instances where we have a vector g̃ on a graph G̃ = (Ṽ , Ẽ) assuming only
N different values 0 = t̃0 < . . . < t̃N−1 on its components and where subsets
ṼN−1 ⊆ ṼN−2 ⊆ . . . Ṽ1 = W̃ ⊆ Ṽ0 = Ṽ are defined accordingly.

We will make use of this for the following instance. Define G̃ := G−VN (the
vertices and edges of G̃ are Ṽ and Ẽ, respectively) and let g̃ be the restriction
of g on Ṽ . We then have t̃k = tk for all k ∈ {0, . . . , N − 1}. If we then define the
sets Ṽk accordingly, we also have Ṽk = Vk \ VN for all k ∈ {0, . . . , N − 1}. Note
that VN ⊆ Vk for all k ∈ {0, . . . , N − 1}, so the sets Ṽk differ from the sets Vk

exactly by the vertices in VN .
By induction, we have

404 A. Baltz and L. Kliemann

N∑
k=1

∑
{i,j}∈E

gi<gj=tk

(g2
j − g2

i)

=
N−1∑
k=1

∑
{i,j}∈E

gi<gj=tk

(g2
j − g2

i) +
∑

{i,j}∈E
gi<gj=tN

(g2
j − g2

i)

=
N−1∑
k=1

∑
{i,j}∈E

g̃i<g̃j=tk

(g̃2
j − g̃2

i) +
∑

{i,j}∈E
gi<gj=tN

(g2
j − g2

i)

=
induction

N−1∑
k=1

∑
{i,j}∈EG̃(Ṽk,Ṽ \Ṽk)

(t̃2k − t̃2k−1) +
∑

{i,j}∈E
gi<gj=tN

(g2
j − g2

i)

=
N−1∑
k=1

∑
{i,j}∈EG̃(Ṽk,Ṽ \Ṽk)

(t2k − t2k−1)

︸ ︷︷ ︸
(∗)

+
∑

{i,j}∈E
gi<gj=tN

(g2
j − g2

i).

(14.25)

Observe that the cuts EG̃(Ṽk, Ṽ \ Ṽk) only consist of edges in Ẽ. If we switch
to cuts in G, we have to subtract some edges afterwards, namely those with one
end in VN . This way, we get for the sum (∗) the following:

N−1∑
k=1

∑
{i,j}∈EG̃(Ṽk,Ṽ \Ṽk)

(t2k − t2k−1)

=
N−1∑
k=1

∑
{i,j}∈E(Vk,V \Vk)

(t2k − t2k−1)−
N−1∑
k=1

∑
{i,j}∈E(Vk,V \Vk)

j∈VN

(t2k − t2k−1)

︸ ︷︷ ︸
(+)

.
(14.26)

We will inspect the ‘corrective’ term (+) closer. To this end, for each i ∈ V
let k(i) be the smallest index such that i ∈ V \ Vk(i). We then have gi = tk(i)−1

for all i ∈ V and

14 Spectral Analysis 405

N−1∑
k=1

∑
{i,j}∈E(Vk,V \Vk)

j∈VN

(t2k − t2k−1)

=
∑

{i,j}∈E(VN ,V \VN)
j∈VN

∑
k∈{1,...,N−1}

i∈V \Vk

(t2k − t2k−1)

=
∑

{i,j}∈E(VN ,V \VN)
j∈VN

N−1∑
k=k(i)

(t2k − t2k−1)

=
telescope

∑
{i,j}∈E(VN ,V \VN)

j∈VN

(t2N−1 − t2k(i)−1)

=
∑

{i,j}∈E(VN ,V \VN)
j∈VN

(t2N−1 − g2
i).

(14.27)

We can now continue our work on (14.25). Note that

{(i, j); {i, j} ∈ E(VN , V \ VN), j ∈ VN }
= {(i, j); {i, j} ∈ E, gi < gj = tN } .

(14.28)

This will later allow us to combine the last sum from (14.25) and that from
(14.27).

Putting everything together, we see:

N∑
k=1

∑
{i,j}∈E

gi<gj=tk

(g2
j − g2

i)

=
(14.25)

N−1∑
k=1

∑
{i,j}∈EG̃(Ṽk,Ṽ \Ṽk)

(t2k − t2k−1)

︸ ︷︷ ︸
(∗)

+
∑

{i,j}∈E
gi<gj=tN

(g2
j − g2

i)

=
(14.26)

N−1∑
k=1

∑
{i,j}∈E(Vk,V \Vk)

(t2k − t2k−1)−
N−1∑
k=1

∑
{i,j}∈E(Vk,V \Vk)

i∈VN

(t2k − t2k−1)

︸ ︷︷ ︸
(+)

+
∑

{i,j}∈E
gi<gj=tN

(g2
j − g2

i).

Apply (14.27) to the (+) term and get

406 A. Baltz and L. Kliemann

. . . =
N−1∑
k=1

∑
{i,j}∈E(Vk,V \Vk)

(t2k − t2k−1)−
∑

{i,j}∈E(VN ,V \VN)
j∈VN

(t2N−1 − g2
i)

+
∑

{i,j}∈E
gi<gj=tN

(g2
j︸︷︷︸

=t2N

−g2
i)

=
(14.28)

N−1∑
k=1

∑
{i,j}∈E(Vk,V \Vk)

(t2k − t2k−1)

+
∑

{i,j}∈E(VN ,V \VN)
j∈VN

(t2N − g2
i − t2N−1 + g2

i)

=
N−1∑
k=1

∑
{i,j}∈E(Vk,V \Vk)

(t2k − t2k−1) +
∑

{i,j}∈E(VN ,V \VN)
j∈VN

(t2N − t2N−1)

=
N∑

k=1

∑
{i,j}∈E(Vk,V \Vk)

(t2k − t2k−1).

This is (14.24). �

14.5 Heuristics for Graph Identification

We know several models for random graphs from Chapter 13. Given some graph,
which one of these models describes it best? In this chapter, we will point out
some ideas for using spectral methods to recognize graphs from different random
graph models.

We will only consider the adjacency spectrum in this chapter. In the first
section we will define some new graph parameters based on this spectrum. In
the subsequent sections we will look at histogram plots of the spectrum and at
the behavior of these new parameters for different models of random graphs.

In a final section, we briefly review some analytical results concerning the
adjacency spectrum of random power law graphs.

14.5.1 New Graph Statistics

The spectrum of a graph as well as the set of its eigenvectors are graph statistics,
more precisely they are global distributions. See Section 11.7 in Chapter 11 for
a general discussion of graph statistics.

A multigraph is — up to isomorphy — fully determined by its spectrum
plus eigenvectors [135, Theorem 1.8, p. 44]. It seems reasonable to define new
statistics which store only selected parts of that information in order to retrieve
relevant characteristics.

14 Spectral Analysis 407

Inverse Participation Ratio. Recall that we can interpret an eigenvector as
an assignment of weights to the vertices; see Remark 14.1.2. We will ask, how
these weights are distributed. Are there a few vertices that have relatively large
weights compared to the rest (we also speak of a high localization in this case),
or are the weights very similar for all vertices?

Let G be a graph and let w1, . . . , wn be the normalized eigenvectors of its
adjacency matrix. We define the inverse participation ratio [198] of the jth eigen-
vector as

Ij(G) :=
n∑

k=1

((wj)k)4 . (14.29)

We also write Ij when dealing with only one graph at a time.
Because the eigenvectors are normalized, we have Ij(G) ∈ [1

n , 1] for all j ∈
{1, . . . , n}. The inverse participation ratio measures an eigenvector’s extent of
localization. This becomes clear by considering extreme cases. First let wj define
perfectly evenly distributed weights on the graph, i.e., (wj)k := 1√

n
for all k ∈

{1, . . . , n}. Then, Ij = 1
n , i.e., the inverse participation ration attains its minimal

value.
On the other hand, if for an arbitrary vertex k0 ∈ V , we have

(wj)k =

{
1 if k = k0

0 otherwise
,

then Ij = 1, i.e., the inverse participation ration attains its maximum value.

Offset of Largest Eigenvalue. In certain classes of graphs, the largest eigen-
value tends to ‘escape’ from the rest of the spectrum. For example, this is the
case in certain models of random graphs. It therefore is interesting to study the
quantity

R(G) :=
λn − λn−1

λn−1 − λ1
. (14.30)

R(G) captures the offset of λn from the second largest eigenvalue λn−1 normal-
ized with respect to the range of the rest of the spectrum.

There is a correlation between R(G) and the chromatic number χ(G), as was
noticed in [198]. Define ε by the equation

−λ1 = λn−1 + ε.

For |ε| small, the smallest interval containing all eigenvalues except λn is al-
most centered around 0. (For certain random graphs, |ε| is in fact small.) Recall
from 14.4 that there are bounds on the chromatic number in terms of extremal
eigenvalues. In particular, we have by Theorem 14.4.12,

χ(G)
2

− 1 ≥ −λn

2λ1
− 1

2
=
−λn − λ1

2λ1

=
−λn + λn−1 + ε

λ1 − λn−1 − ε
=

λn − λn−1 − ε

λn−1 − λ1 + ε
.

408 A. Baltz and L. Kliemann

So, for graphs with ε = 0 the chromatic number is lower bounded in terms of
R(G) as

χ(G) ≥ 2R(G) + 2.

For small |ε|, this equation obviously still holds in an approximate sense.

14.5.2 Spectral Properties of Random Graphs

Can random graphs from different models be distinguished by looking at spectral
properties? One way of approaching this problem is to study the outcome of
a large number of random experiments. We will present some results of some
such experiments and discuss possible interpretations. The three random models
under consideration are the model by Erdős and Rényi, G(n, p), the scale-free
graphs by Barabási and Albert — see 13.1.4 — and the small-world graphs by
Watts and Strogatz — see 13.1.2.

First, we investigate how these models differ in their spectra by looking at
histogram plots of the eigenvalues of a number of randomly generated graphs.
Then, we compare the inverse participation ratios, defined in (14.29). Finally we
also look at the offsets of the largest eigenvalues, defined in (14.30). Our focus
will be on G(n, p) and Barabási-Albert-like graphs. For details on small-world
graphs, see [198].

For our numerical experiments, we wrote a small C program (about 600 lines
of code). To compute the eigenvalues and later (for the inverse participation ra-
tios) also the eigenvectors, we use the function ssyev from the Sun Performance
Library [537]. The actual plots were made using gnuplot [588].

Spectra. Let us start with G(n, p). We generated 100 graphs randomly accord-
ing to G(2000, 1

2) and computed their spectra. A first observation is that the
largest eigenvalue is significantly set off from the rest of the spectrum in all of
these experiments. Because this offset will be explicitly regarded later, we for
now exclude the largest eigenvalue from our considerations. So, when talking of
‘spectrum’, for the rest of this section, we mean ‘spectrum without the largest
eigenvalue’.

To get a visualization of all the spectra, we computed a histogram of the
eigenvalues of all 100 random graphs. This technique will be used for the other
random graph models as well. The quantity approximated by those histograms
is also known as the spectral density. Although we do not introduce this notion
formally [198], we will in the following occasionally use that term when referring
to the way eigenvalues are distributed.

All histograms, after being normalized to comprise an area of 1, were scaled
in the following way. Let λ1, . . . , λN be the eigenvalues. (In our case N = 100 ·
(2000− 1), for we have 100 graphs with 2000 eigenvalues each, and we exclude
the largest of them for each graph). Define λ̄ as the mean of all these values

λ̄ =
1
N

N∑
i=1

λi.

14 Spectral Analysis 409

Then, we compute the standard deviation

σ =

√√√√ N∑
i=1

(λi − λ̄)2.

The x-axis of our plots is scaled by 1
σ and the y-axis is scaled by σ. This

makes it easy to compare spectra of graphs of different sizes.
Figure 14.10 shows the scaled histogram. The semicircle form actually is no

surprise. It follows from a classical result from random matrix theory known as
the semicircle law. It originally is due to Wigner [584, 585] and has later been
refined by a number of researchers [34, 233, 337].

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

"Gnp_2000_0.5_.dens"

Fig. 14.10. A histogram of the union of the spectra of 100 random graphs from
G(2000, 1

2
)

Now we look at graphs that originate from an evolutionary process with
preferential attachment, like the Barabási-Albert graphs. We implemented a very
simple algorithm for creating graphs with preferential attachment. There is only
one parameter m (apart from the number of vertices n). The process starts with
m unconnected vertices. Whenever a new vertex arrives, it is connected with
m edges to older vertices. To this end, the algorithm m times chooses a vertex
out of the set of old vertices at random. The probability of an old vertex being

410 A. Baltz and L. Kliemann

chosen is proportional to its degree; at the very first step, when all vertices have
degree 0, each of them is equally likely to be chosen.

This way of generating preferential attachment graphs is slightly different
from what usually is considered in that multiple edges are allowed. However,
the resulting histograms of the spectra look very similar to those of [198], where
multiple edges do not occur. See Figure 14.11 for our results. For comparison,
Figure 14.12 shows plots for our preferential attachment graphs and for G(n, p)
graphs in one figure.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-4 -3 -2 -1 0 1 2 3 4

"BA_2000_10_.dens"

Fig. 14.11. A smoothed histogram of the union of the spectra of 100 random graphs
with preferential attachment on 2000 vertices and with m = 10

The preferential attachment graph obviously has significantly more small
eigenvalues than the G(n, p) graph. Since it essentially is connected2 these small
eigenvalues cannot originate from small connected components. In [198] it is
suggested that these eigenvalues belong to eigenvectors that are highly localized.
This is supported by high inverse participation ratios, which we will observe later.

An interesting case for our studies of G(n, p) are sparse random graphs. We
used to look at large values of n, for which according to the semicircle law, our
histograms should more and more (with increasing n) resemble a semicircle. In

2 There might be a number of less than m = 10 isolated vertices.

14 Spectral Analysis 411

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-2 -1 0 1 2

c(x)
"Gnp_2000_0.5_.dens"

"BA_2000_10_.dens"

Fig. 14.12. Histograms of spectra of 100 random graphs with preferential attachment
(n = 2000, m = 10) and from G(2000, 1

2
) each. The solid line marks an ideal semicircle

the case displayed in Figure 14.10 we have an expected degree of approximately3

pn = 1
22000 = 1000. This quantity pn is also referred to as the connectivity of the

graph, although we will avoid this term, because it has already been extensively
used in another context (see Chapter 7).

What if we look at graphs with fewer edges than in Figure 14.10, say, graphs
in G(n, p) where pn = 5? Figure 14.13 shows that the spectral densities of such
graphs rise above the semicircle in the vicinity of 0. Reasons for this have been
discussed in [198].

One can also notice small peaks at larger eigenvalues. They become more
obvious in plots of graphs with even lower expected degree. To study them in
more detail, it is helpful to look at the cumulative distribution of eigenvalues,
i.e., at the function

x !→ |{i; λi ≤ x}|
Figure 14.14 shows an examplary plot.

3 The expected degree is in fact p(n − 1). To see this, fix a vertex i ∈ V . This vertex
has n−1 potential neighbors. Let X1, . . . , Xn−1 be 0/1 random variables, where Xj

indicates whether or not an edge is drawn from i to j. If we put X := n−1
j=1 Xi, then

[X] is the expected degree of i. The claim follows from linearity of expectation.

412 A. Baltz and L. Kliemann

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

c(x)
"Gnp_alpha_1000_5.0.dens"
"Gnp_alpha_2000_5.0.dens"
"Gnp_alpha_4000_5.0.dens"

Fig. 14.13. Histograms of spectra of sparse random graphs. For n = 1000, 2000 and
4000 each we created 10 random graphs from G(n, p) with p set to satisfy pn = 5. The
solid line marks an ideal semicircle

In [49], the reasons for the peaks are investigated. It is argued that they
originate from small connected components and, for pn > 1, also from small
trees grafted on the giant component.

Inverse Participation Ratios. Looking at Figure 14.12 has already lead us
to conjecture that our graphs with preferential attachment have highly localized
eigenvectors. To investigate this further, we created random graphs in all three
models and plotted the inverse participation ratios of their eigenvectors. Figure
14.15 shows all three plots. Each circle represents an eigenvector. The x position
of the circle corresponds to the eigenvalue and the y position to the inverse par-
ticipation ratio. Note that in the second plot (which shows the results for the
Barabási-Albert-like graph), there are even eigenvectors with inverse participa-
tion ratio near to 1.

It is also interesting that we obtain very distinguishing plots even for small
numbers of vertices; all considered graphs only had 100 vertices each. We ran-
domly created more such graphs and always could observe the same character-
istics. Obviously one can recognize the G(n, p) by the fact that all eigenvectors
have their inverse participation ratios rather evenly distributed in a small band at
the bottom of the diagram. The Barabási-Albert-like graph exhibits as a salient

14 Spectral Analysis 413

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-6 -4 -2 0 2 4 6

"Gnp_2000__1_20"
"Gnp_2000__2_00"
"Gnp_2000__5_00"

Fig. 14.14. The cumulative distribution of eigenvalues for sparse random graphs. For
n = 2000 and pn = 1.2, 2.00 and 5.00 each we created 10 random graphs from G(n, p)

feature eigenvectors with high inverse participation ratio. The small-world graph
shows a very asymmetric structure.

We were not able to produce likewise distinguishing plots of the spectral
density for such small graphs.

Offset of Largest Eigenvalue. We already mentioned that in the G(n, p)
model as well as in the graphs with preferential attachment, the largest eigen-
value is significantly set off from the rest of the spectrum. The offset R, see
(14.30), in these two models differs from that in the small-world graphs by sev-
eral orders of magnitude. But there is also a difference between the R values of
sparse G(n, p) graphs and graphs with preferential attachment. For the former,
with increasing number of vertices and constant average degree, the R values
seem to stay constant, while for the latter they decrease. See [198] for numerical
results.

14.5.3 Random Power Law Graphs

In [127, 128], first the adjacency spectrum of a very general class of random
graphs is examined. Given a sequence w = (w1, w2, . . . , wn) of non-negative
reals satisfying

414 A. Baltz and L. Kliemann

0

0.2

0.4

0.6

0.8

1

-15 -10 -5 0 5 10 15

"Gnp_100_0.1_0001_.ipr"

0

0.2

0.4

0.6

0.8

1

-15 -10 -5 0 5 10 15

"BA_100_10_0001_.ipr"

0

0.2

0.4

0.6

0.8

1

-15 -10 -5 0 5 10 15

"sw_100_0.01_10_0001_.ipr"

Fig. 14.15. Inverse participation ratios of three random graphs. The models are:
G(n, p) (Gnp 100 0.1 0001 ipr), preferential attachment (BA 100 10 0001 ipr), small-
world (sw 100 0.01 10 0001 ipr). All graphs have an expected degree of 10

max
i∈{1,...,n}

w2
i <

n∑
i=1

wi,

a random graph G(w) is constructed by inserting an edge between vertices i and
j with probability

wiwj∑n
k=1 wk

.

It is easy to verify that in such a graph, vertex i has expected degree wi.
A useful notation is the second order average degree, defined by

d̃ :=
∑n

i=1 w2
i∑n

i=1 wi
.

Furthermore, we denote the largest expected degree by m and the average ex-
pected degree by d.

We can prove results on the largest eigenvalue of the adjacency spectrum of
a random graph from G(w), which hold almost surely4 and under certain condi-
tions on d̃ and m. We can also make such statements on the k largest eigenvalues,
provided that d̃, m, and the k largest expected degrees behave appropriately.

An interesting application of these results concerns random power law graphs:
we can choose the sequence w suitably, so that the expected number of vertices
of degree k is proportional to k−β , for some given β. Under consideration were
values of β > 2.

Theorem 14.5.1 ([127, 128]). Let G be a random power law graph with ex-
ponent β and adjacency spectrum λ1, . . . , λn.

4 I.e., with probability tending to 1 as n tends to ∞.

14 Spectral Analysis 415

1. For β ≥ 3 and
m > d2 log3 n, (14.31)

we have almost surely
λn = (1 + o(1))

√
m.

2. For 2.5 < β < 3 and
m > d

β−2
β−2.5 log

3
β−2.5 n, (14.32)

we have almost surely
λn = (1 + o(1))

√
m.

3. For 2 < β < 2.5 and
m > log

3
2.5−β n,

we have almost surely
λn = (1 + o(1))d̃.

4. For 2.5 < β and k < n

(
d

m log n

)β−1

, almost surely the k largest eigenvalues

of G have power law distribution with exponent 2β − 1, provided m is large
enough (satisfying (14.31) and (14.32)).

We remark that the second order average degree d̃ can actually be computed
in these cases. For details see [127, 128].

14.6 Chapter Notes

Fundamental Properties

The adjacency spectrum is discussed in a vast amount of papers and textbooks.
The results presented in this chapter are taken from [135, 247, 576]. More on
the Laplacian can be found in [135] (under the term ‘admittance matrix’) and in
[427]. The normalized Laplacian is extensively studied in [125]. While the eigen-
values alone do not generally determine the structure of a graph (as shown by
cospectral graphs), eigenvalues plus eigenvectors do: if u1, u2, . . . , un are linearly
independent eigenvectors of A corresponding to λ1, λ2, . . . , λn respectively, then
A = UDU−1, where U :=Mat(u1, . . . , un) is the matrix with ui as column vec-
tors and D :=diag(λ1, . . . , λn) is the diagonal matrix with entries λi. Already
the knowledge of some eigenvectors can be very useful to recognize important
properties of a graph. This is elaborated on in [136]. The cited references con-
tain also many results on the spectrum of regular graphs which we treated rather
stepmotherly since in network analysis we are typically dealing with highly non-
regular graphs.

Numerical Methods

The diagonalization strategy for small dense matrices is comprehensively treated
in [482, 535]. For a discussion of QR-like algorithms including parallelizable
versions see [571]. More on the Lanczos method can be found in [467, 591]. An
Arnoldi code for real asymmetric matrices is discussed in [509].

416 A. Baltz and L. Kliemann

Subgraphs and Operations on Graphs

The Interlacing Theorem plays an important role in many publications on spec-
tral graph theory. In addition to the already mentioned literature, we point the
reader to [561]. More on graph operations and resulting spectra can be found in
[135, Chapter 2] and [427]. As already mentioned, symmetric grafting also plays
a role in [49].

Bounds on Global Statistics

For more results on the connection between eigenvalues and graph parameters
see [427, 428] and the references therein, such as [426, 425]. More on the role of
the eigenvalues of the normalized Laplacian for graph parameters can be found
in [125]. More on the connection between λ2(L) and expansion properties can
be found in [19]. Better spectral lower bounds on the bisection width have been
given by Donath, Hoffman [159], Boppana [78], and Rendl, Wolkowicz [491].
Boppana’s technique also yields an efficient algorithm with good average case
behavior. For a discussion of spectral methods for the multiway partition problem
of finding a k-partition with prescribed part sizes see [27, 389].

Heuristics for Graph Identification

For further reading, see [198, 49] as well as the already mentioned [127, 128].
The behavior of certain extremal eigenvalues is also considered in [337].

15 Robustness and Resilience

Gunnar W. Klau and René Weiskircher

Intuitively, a complex network is robust if it keeps its basic functionality even
under failure of some of its components. The study of robustness in networks is
important because a thorough understanding of the behavior of certain classes
of networks under failures and attacks may help to protect, for instance, com-
munication networks like the Internet against assaults or to exploit weaknesses
of metabolic networks in drug design.

Often, we distinguish between random failure and intentional attacks. Ex-
amples for random and intentional component failures in real-world complex
networks are, for instance, mutations in a cell, pharmaceutical or environmen-
tal stress on metabolic networks, router failures in the Internet, or intentional
attacks on airline or highway networks. We will see that some networks like the
Internet are very robust against random drop-outs of routers but may suffer
heavily from targeted attacks against well-chosen central routers.

This chapter is dedicated to network statistics that are of interest with respect
to a network’s robustness or its resilience against repeated component failure.
We give an overview of a variety of statistics and discuss their applicability in
practice in terms of usefulness and computational complexity. Often, research
on robustness focuses on how these statistics change, by analyzing or measuring
the effects if a network undergoes a sequence of component failures. Wherever
possible we try to relate the different statistics and discuss their advantages and
disadvantages. In many cases, we use examples to illustrate the definitions.

We chose to organize this chapter as follows: We distinguish between worst
case, average, and probabilistic statistics. Sections 15.1 and 15.2 cover worst case
connectivity and distance measures. Average robustness statistics (Section 15.3)
allow a more global perspective on robustness properties whereas probabilis-
tic statistics (Section 15.4) consider the failure probabilities implicitly. While,
roughly speaking, the statistics become more and more meaningful the more
they are located towards the end of this chapter, they are also more difficult to
compute. We conclude this chapter in Section 15.5 with final remarks and list
some open problems.

15.1 Worst-Case Connectivity Statistics

This section deals with statistics that answer questions of the form “What is the
minimum number of edges or vertices that have to be deleted from the network

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 417–437, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

418 G.W. Klau and R. Weiskircher

such that the resulting network is disconnected and has property P ?”. These
are worst case statistics because the deletion of an arbitrary set of vertices or
edges of the same size may not cause the same effect. So we implicitly assume
that the vertex or edge failures are not random but targeted for maximum effect.

15.1.1 Classical Connectivity

Classical connectivity is the basis of many robustness statistics. A network is
called connected, if there exists a path between every pair of vertices in the
network. In many applications, connectedness is a necessary condition for a
network to fulfill its purpose. Therefore, one measure of robustness of a network
is the number of vertices or edges that have to be removed to make the network
unconnected. These are called the vertex-connectivity and edge-connectivity of
the network, respectively. They are treated in depth in Chapter 7. Here we only
look at connectivity as a measure of the robustness of a network.

If a network loses its functionality completely as soon as it is not connected
anymore, connectivity is indeed a good measure for its robustness. But if we are
concerned with the case where the usefulness of a network is not seriously affected
by disconnecting a small set of vertices from the network, connectivity is not a
meaningful measure. Consider the Internet as an example. A desktop computer
is only connected to the net via one link to a provider or server. Cutting this
link disconnects the net but has only a negligible influence on the functionality
of the whole Internet. Yet the edge-connectivity of the net is only one. Similarly,
the failure of a small router will only disconnect a handful of clients from the
net but proves that the Internet has vertex connectivity one.

15.1.2 Cohesiveness

The notion of cohesiveness was introduced by Akiyama et al. in [13] and defines
for each vertex of the network to what extent it contributes to the connectivity.

Definition 15.1.1. Let κ(G) be the vertex-connectivity of G (see the definition
in Section 2.2.4). Let G− v be the network obtained from G by removing vertex
v. For any vertex v of G, the cohesiveness c(v) is defined as follows:

c(v) = κ(G) − κ(G− v)

Vertex 7 in Figure 15.1(a) has a cohesiveness of -2, because the network has
vertex-connectivity 1 if vertex 7 is present and vertex connectivity 3 if we delete
it. On the other hand, vertex 6 in Figure 15.1(b) has cohesiveness 1 because if
we remove it from the network, the vertex-connectivity drops from 3 to 2.

It follows from the definition that the cohesiveness of a vertex cannot be
greater than 1. Intuitively, a vertex with negative cohesiveness is an outlier of
the network while a vertex with cohesiveness 1 is central. It can be shown that
a network can have at most one vertex with negative cohesiveness and that
the neighborhood of this negative vertex contains the only set of vertices of

15 Robustness and Resilience 419

0

1

2 3

4

5

67

(a)

0

1

2 3

4

5

6

(b)

Fig. 15.1. Example graphs for the cohesiveness of a vertex. Vertex 7 in Figure 15.1(a)
has cohesiveness -2 and vertex 6 in Figure 15.1(b) cohesiveness 1

size κ(G) whose removal disconnects the network. Consider as an example the
network shown in Figure 15.1(a), where vertex 7 is the only vertex with negative
cohesiveness. The only neighbor of vertex 7 is vertex 1 and this is the only vertex
whose deletion splits the network.

Even though a network can have at most one negative vertex, we can compute
a set of loosely connected vertices by removing the negative vertex and then
looking for the next negative vertex. This algorithm could be used to find loosely
connected vertices in a network because a negative vertex is at the periphery of
the graph. A drawback of this approach is that this algorithm may stop after
a few vertices even for big networks because there are no more vertices with
negative cohesiveness.

The cohesiveness of a vertex can be computed using standard connectivity
algorithms (see Chapter 7). To compute the cohesiveness of every vertex, the
connectivity algorithm has to be called n times where n is the number of vertices
in the network.

15.1.3 Minimum m-Degree

The statistics we have mentioned so far make statements about the connectivity
of a network. The m-degree was introduced in [65] by Boesch and Thomas. It is
concerned with the state of the network after disconnection.

Definition 15.1.2. The minimum m-degree ξ(m) of a network is the small-
est number of edges that must be removed to disconnect the network into two
connected components G1 and G2 where G1 contains exactly m vertices.

Table 15.1 shows the m-degrees for the network in Figure 15.2.
Let G = (V, E) be a network with |V | = n. Boesch and Thomas showed

in [65] the following properties of the minimum m-degree:

– ξ(m) = ξ(n−m).
– ξ(m) ≥ m(δ(G)−m + 1) where δ(G) is the minimum degree of any vertex in

G.

420 G.W. Klau and R. Weiskircher

0

1

2

3

4

5 6

78

Fig. 15.2. Example network for the minimum m-degree

Table 15.1. The m-degrees for the network in Figure 15.2

1-degree 2-degree 3-degree 4-degree 5-degree
1 2 3 3 3

– Let G be a regular network with degree r ≤ n/2, n > 2 and m ≥ l. Then

r ≥ (ξ(m)/m)+ *ξ(l)/l+ .

There is no asymptotically faster algorithm known for computing the mini-
mum m-degree than trying all sets of vertices of size m and check if the graphs
induced by the set and by its complement are connected. If this is the case, we
count the number of edges connecting vertices in the set with vertices outside.
The minimum over all sets is the m-degree. This results in a running time of
O(

(
n
m

)
|E|).

The main problem of this statistics is that the splitting of the graph has to
result in two connected components, so it does not express an intuitive concept
of robustness. The network in Figure 15.3 has 3-degree 3 while the deletion of
the two thick edges is enough to split a component with three vertices from the
network.

0 1

23

4 5

6

7

8 9

10

Fig. 15.3. A counter-intuitive example for the m-degree statistics

15.1.4 Toughness

The toughness of a network was introduced by Chvátal [129]. It measures the
number of internally connected components that the graph can be broken into
by the failure of a certain number of vertices.

15 Robustness and Resilience 421

Definition 15.1.3. Let S be a subset of the vertices of G and let K(G− S) be
the number of internally connected components that G is split into by the removal
of S. The toughness of G is defined as follows:

t(G) = min
S⊆V,K(G−S)>1

{
|S|

K(G− S)

}
The edge-toughness of a network is defined analogously for edges.

Intuitively, the toughness of a network is high if even the removal of a large
number of vertices splits the network only into few components. Conversely, if
a network can be split into many components by removing a small number of
vertices, its toughness is small.

The toughness of a complete network is defined as infinite. The network with
the smallest toughness is a star. Removing the central vertex splits the network
into components of size one and so the toughness of a star with n vertices is

1
n−1 . Note that the central vertex is also the only one whose removal splits the
graph.

It is NP-hard to decide for a general graph if it has toughness at least t [48].
If the network is a tree, the toughness is 1

Δ(G) where Δ(G) is the maximum
degree of any vertex. The toughness of the complete bipartite network Km,n

with m ≤ n and n ≥ 2 is m
n .

The toughness of a circle is one and it follows that the toughness of a Hamil-
tonian graph is at least one. In [129], Chvátal also showed a connection between
the independence number of a network and the toughness. The independence
number β0 is the size of the largest subset S of the vertices with the property
that there is no edge in the network connecting two vertices in S. The toughness
of G is lower-bounded by κ(G)/β0(G) and upper bounded by (n− β0(G))/β0.

15.1.5 Conditional Connectivity

Conditional connectivity was introduced by Harary in [276] and is a generaliza-
tion of the minimum m-degree. The measure is parameterized with a property
P that has to hold for all the components created by deleting vertices from the
network.

Definition 15.1.4. The P -connectivity κ(G : P) of network G is the small-
est number of vertices that have to be deleted from the network such that the
remaining network G′ has the following properties:

1. G′ is not connected.
2. Every connected component of G′ has property P .

Conditional edge-connectivity is defined analogously for the deletion of edges.
Conditional connectivity is potentially very useful in practice because the prop-
erty P can be chosen according to the characteristics of the task that the network
should accomplish. An example could be defining P as: “The component has at
most k vertices”. The conditional connectivity would then correspond to the

422 G.W. Klau and R. Weiskircher

size of the smallest subset of vertices we have to delete to split the network into
components of at most k vertices each. Classical connectivity is a special case of
conditional connectivity where P = ∅.

If we define a sequence S = (P1, . . . , Pk) of properties according to our ap-
plication such that Pi+1 implies Pi for 1 ≤ i ≤ k − 1, we obtain a vector of
conditional connectivity

(κ(G : P1), . . . , κ(G : Pk)) .

If the properties are defined to model increasing degradation of the network with
respect to the application, this vector gives upper bounds for the usefulness of
the system with respect to the number of failed vertices.

A similar measure is general connectivity, also introduced by Harary [277].
If G is a network with property P and Y is a subset of the vertices (edges) of
G, then κ(G, Y : P) is the smallest set X ⊂ Y of vertices (edges) in G whose
removal results in a network G′ that does not have property P . Conditional
connectivity is a special case of general connectivity.

The main drawback of these statistics is that there is no efficient algorithm
known that computes them for a general graph.

15.2 Worst-Case Distance Statistics

The statistics in this section make statements about the increase of distances in
the network caused by the deletion of vertices or edges. These are again worst-
case statistics because they give the smallest number of vertices or edges that
have to be deleted in order to increase the distances. All the statistics we present
in this section are only defined until the network becomes disconnected by the
removal of vertices and edges.

15.2.1 Persistence

The persistence of a network is the minimum number of vertices that have to be
deleted in order to increase the diameter (the longest distance between a pair of
vertices in the network). Again, an analogous notion is defined for the deletion
of edges (edge persistence). Persistence was introduced by Boesch, Harary and
Kabell in [64] where they also present the following properties of the persistence
of a network:

– The persistence of a network with diameter 2 ≤ d ≤ 4 is equal to the minimum
over all pairs of non-adjacent vertices i and j of the maximum number of
vertex-disjoint i, j-paths of length no more than d.

– The edge-persistence of a network with diameter d ∈ {2, 3} is the minimum
over all pairs of vertices i, j of the maximum number of edge-disjoint i, j-paths
of length no more than d.

15 Robustness and Resilience 423

There are many theoretic results on persistence that mainly establish con-
nections between connectivity and persistence, see for example [74, 475]. The
persistence vector is an extension of the persistence concept. The i-th compo-
nent of P (G) = (p1, . . . , pn) is the worst-case diameter of G if i vertices are
removed. This is the same concept as the vertex-deleted diameter sequence we
introduce in Section 15.2.2.

The main drawback of persistence is that there is no efficient algorithm known
to compute it.

15.2.2 Incremental Distance and Diameter Sequences

Krishnamoorthy, Thulasiraman, and Swamy have studied the increase of dis-
tances in a network caused by the deletion of vertices and edges [371]. They
introduce for a network G four sequences A, B, D, and T defined as follows:

Definition 15.2.1. Let d(u, v) = dG(u, v) be the distance of the two vertices u
and v in G. Let d(G) be the diameter of G. Let l be the vertex connectivity of G
and m the edge-connectivity. Then the sequences A, B, D and T are defined as
follows:

ai = max|Vi|=i{dG−Vi(u, v)− d(u, v) | u, v ∈ V − Vi} for 1 ≤ i ≤ l − 1
bi = max|Ei|=i{dG−Ei(u, v)− d(u, v)} for 1 ≤ i ≤ m− 1
di = max|Vi|=i{d(G− Vi)} for 1 ≤ i ≤ l − 1
ti = max|Ei|=i{d(G− Ei)} for 1 ≤ i ≤ m− 1 .

Sequence A is called the vertex-deleted incremental distance sequence, B the
edge-deleted incremental distance sequence, D the vertex-deleted diameter se-
quence and T the edge-deleted diameter sequence.

Entry i in sequence A is the maximum increase of the distance between a
pair of vertices caused by the deletion of i vertices from G. The sequence B
contains the maximum increase in distance for the deletion of edges. Entry i in
sequence D is the maximum diameter of the graph caused by deleting i vertices,
and sequence T is the analogous sequence for the deletion of edges. Table 15.2
contains the four sequences for the network shown in Figure 15.4.

Table 15.2. The vertex- and edge-deletion-sequences for the network of Figure 15.4

A (1,2)
B (3,3)
D (3,4)
T (4,4)

It is easy to see that the A, B and T sequences are always monotonically
nondecreasing. The entries of the A sequence are non-negative and the entries
in the B sequence at least 1. If G is complete the four sequences are as follows:

– A = (0, . . . , 0)

424 G.W. Klau and R. Weiskircher

0

1

23 4 5

6 7

Fig. 15.4. Example graph for incremental distance sequences

– B = (1, . . . , 1)
– D = (1, . . . , 1)
– T = (2, . . . , 2)

Krishnamoorthy, Thulasiraman and Swamy show that the largest increase
in the distance between any pair of vertices caused by the deletion of i vertices
or edges can always be found among the neighbors of the deleted objects. This
speeds up the computation of the sequences significantly and also simplifies the
definitions of A and B. These sequences can also be defined as follows (note that
N(Vi) is the set of vertices adjacent to vertices in the set Vi and N(Ei) is the
set of vertices incident to edges in Ei):

ai = max
|Vi|=i

{dG−Vi(u, v)− d(u, v) |u, v ∈ N(Vi)} for 1 ≤ i ≤ l − 1

bi = max
|Ei|=i

{dG−Ei(u, v)− d(u, v) |u, v ∈ N(Ei)} for 1 ≤ i ≤ m− 1

The vertex- and edge-deletion sequences are a worst case measure for the
increase in distance caused by the failure of vertices or edges and they do not
make any statements about the state of the graph after disconnection occurred.
So these measures are only suited for applications where distance is crucial and
disconnection makes the whole network unusable. Even with the improvement
mentioned above, computing the sequences is still only possible for graphs with
low connectivity.

15.3 Average Robustness Statistics

The statistics in this section make statements about the average number of
vertices or edges that have to fail in order for the network to have a certain
property or build an average of local properties in order to cover global aspects
of the network.

15 Robustness and Resilience 425

15.3.1 Mean Connectivity

All of the measures introduced so far are worst-case measures. The mean con-
nectivity introduced by Tainiter [538, 539] tries to make statements about the
probability that a network is disconnected by the random deletion of edges.

Definition 15.3.1. Let G = (V, E) be a connected network with n vertices and
m edges. Let S(G) be the set of all m! orderings of the edges and G0 = (V, ∅).
For each ordering s ∈ S(G) we define the number ξ(s) as follows: We insert the
edges of G into G0 in the sequence given by s. We define ξ(s) as the index of
the edge that transforms the network from disconnected to connected. The mean
connectivity of G is then defined as follows:

M(G) = m− 1
m!

∑
s∈S(G)

ξ(s)

Figure 15.5 shows a graph with mean connectivity 3/4. This can be seen as
follows: For every edge-sequence where the edge (2, 3) does not come last, we have
ξ(s) = 3. For all other sequences, we have ξ(s) = 4. Since there are six sequences
where edge (2, 3) is last and 24 sequences in total, the mean connectivity of the
graph is 3/4.

Note that M(G) is not the same as the mean number of edges we have to
delete to disconnect G. If we look at all sequences of deleting edges and compute
the mean index where the graph becomes disconnected, we obtain the value 7/4
for the graph in Figure 15.5.

0

1

2 3

Fig. 15.5. A graph with mean connectivity 3/4

Tainiter has shown the following properties of this measure:

– If G = (V, E′) with E′ ⊆ E is a connected sub-network of G = (V, E) then
M(G′) ≤M(G)

– Let G be a network with n vertices and m edges. We construct a new network
G′ by adding one new vertex and h edges that connect it to vertices in G.
Let M(G, k) be the number of edge-sequences for G with ξ(s) = k. Then the
following inequality is satisfied:

M(G′)−M(G) ≥ M(G) + 1
m + 1

− 1
h + 1

m∑
k=n−1

M(G, k)
(h + m− k + 1)!
(m− k)!(m + h)!

426 G.W. Klau and R. Weiskircher

– The following bounds are tight:

λ(G) − 1 ≤M(G) ≤ m− n + 1

where λ(G) is the edge-connectivity of G. An example where both bounds are
tight is a circle where we have λ(G) = 2 and M(G) = 1.

If the difference between the mean connectivity and the classical edge-con-
nectivity is large, then there must be connectivity bottlenecks in the network.
It follows that the connectivity of the network can be strengthened by inserting
only a few edges to bridge the bottleneck. An example would be a complete graph
with one ‘dangling’ vertex connected to the rest of the graph by a single edge.
With each edge we add to the dangling vertex, we can increase the connectivity
of the graph by one. The principal drawback of the measure is again the fact
that there is no efficient algorithm known for computing it. Also, it is useful only
in the case of random edge failures.

15.3.2 Average Connected Distance and Fragmentation

In 1999, the article [17] received a lot of attention in the scientific world. Albert,
Jeong, and Barabási simulate random vertex failures and intentional attacks at
the highest-degree vertices in random and scale-free networks. They measure
the effects on two parameters of the network, namely on the average connected
distance and on the fragmentation.

The average connected distance d̄ is the average length of the shortest paths
between connected pairs of nodes in the network as defined in Section 11.2.1

Fragmentation measures the decay of a network in terms of the size of its
connected components.

Definition 15.3.2 (Fragmentation). Let G be a network with k connected
components S1, . . . , Sk. The fragmentation frag(G) = (frag1(G), frag2(G)) is
defined by two parameters: The relative size of the largest component

frag1 =
maxk

i=1 |Sk|∑k
i=1 |Sk|

and the average size of an isolated component

frag2 =
∑k

i=1 |Sk| −maxk
i=1 |Sk|

k − 1
,

where |Sk| denotes the number of vertices in the kth component.

1 In [17], the authors use the term interconnectedness which corresponds to the clas-
sical average distance. In their experiments, however, they measure the average
connected distance. The classical average distance becomes ∞ as soon as the graph
becomes disconnected.

15 Robustness and Resilience 427

Figure 15.6 shows the effect of vertex failures and attacks on the average con-
nected distance d̄ for randomly generated networks whose degree distributions
follow a Poisson distribution and a power-law distribution, respectively. The
Poisson networks suffer equally from random and targeted failures. Every vertex
plays more or less the same role, and deleting one of them affects the average
connected distance, on average, only slightly if at all. The scale-free network, in
contrast, is very robust to failures in terms of average connected distance. The
probability that a high-degree vertex is deleted is quite small and since those
vertices are responsible for the short average distance in scale-free networks,
the distances almost do not increase at all when deleting vertices randomly. If,
however, those vertices are the aim of an attack, the average connected distance
increases quickly. Simulations on small fragments of the Internet router graph
and the WWW graph show a similar behavior as the random scale-free network,
see [17].

0.00
4

6

8

10

12

d̄

SFP

Attack

Failure

f

0.02 0.04

Fig. 15.6. Changes in average connected distance d̄ of randomly generated networks
(|V | = 10, 000, |E| = 20, 000) with Poisson (P) and scale-free (SF) degree distribution
after randomly removing f |V | vertices (source: [17])

The increase in average connected distance alone does not say much about
the connectivity status of the network in terms of fragmentation. It is possible
to create networks with small average connected distance that consist of many
disconnected components (imagine a large number of disconnected triangles:
their average connected distance is 1). Therefore, Albert et al. also measure the
fragmentation process under failure and attack.

Figure 15.7 shows the results of the experimental study on fragmentation.
The Poisson network shows a threshold-like behavior for f > fc ≈ 0.28 when
frag1, the relative size of the largest component, becomes almost zero. Together
with the behavior of frag2, the average size of the disconnected components, that
reaches a peak of 2 at this point, this indicates the breakdown scenario as shown

428 G.W. Klau and R. Weiskircher

also in Figure 15.8: Removing few vertices disconnects only single vertices. The
components become larger as f reaches the percolation threshold fc. After that,
the system falls apart. As in Figure 15.6, the results are the same for random
and targeted failures in networks with Poisson degree distribution.

The process looks different for scale-free networks (again, the data for the
router and WWW graphs look similar as for the randomly generated scale-
free networks). For random deletion of vertices no percolation threshold can be
observed: the system shows a behavior known as graceful degradation. In case of
attacks, we see the same breakdown scenario as for the Poisson network, with
an earlier percolation threshold fc ≈ 0.18.

P

f

fc

SF

1

0
0.0 0.4 0.8

fc

0.0 0.2 0.40.0 0.2 0.4
f

frag1 frag2
Failure
Attack

0

1

2

0

1

2

Fig. 15.7. Changes in fragmentation frag = (frag1, frag2) of random networks (Poisson
degree distribution: P, scale-free degree distribution: SF) after randomly removing f |V |
vertices. The inset in the upper right corner shows the scenario for the full range of
deletions in scale-free networks (source: [17])

scale-
free

Poisson

Fig. 15.8. Breakdown scenarios of networks with Poisson degree and scale-free distri-
bution (source: [17])

15 Robustness and Resilience 429

In summary the experimental study shows that scale-free networks are tol-
erant against random failures but highly sensitive to targeted attacks. Since the
Internet is believed to have a scale-free structure, the findings confirm the vul-
nerability of this network which is often paraphrased as the ‘Achilles heel of the
Internet’.

Broder et al. study the structure of the web more thoroughly and come to
the conclusion that the web has a ‘bow tie structure’ as depicted in Figure 4.1
on page 77 in Chapter 3 [102]. Their experimental results on the web graph W
reveal that the world wide web is robust against attacks. Deleting all vertices
{v ∈ V (W) | d−(v) ≥ 5} does not decrease the size of the largest component
dramatically, it still contains approximately 30% of the vertices. This apparent
contradiction to the results of Albert et al. can be explained by the fact that

|{v ∈ V (W) | d−(v) ≥ 5}|
|V (W)|

is still below the percolation threshold and is thus just another way to look at
the same data: while ‘deleting all vertices with high degree’ sounds drastic this
is still a set of small cardinality.

A number of application-oriented papers use the average connected distance
and fragmentation as the measures of choice in order to show the robustness
properties of the corresponding network. For example, Jeong et al. study the
protein interaction network of the yeast proteome (S. cervisiae) and show that
it is robust against random mutations of proteins but susceptible to the destruc-
tion of the highest degree proteins [327]. Using average connected distance and
fragmentation to study epidemic propagation networks leads to the advice to
take care of the hubs first, when it comes to deciding a vaccination strategy (see,
e.g., [469]).

Holme et al. [305] study slightly more complex attacks on networks. Besides
attacks on vertices they also consider deleting edges and choose betweenness
centrality as an alternative selection criterion for deletion. In addition, they
investigate in how far recalculating the selection criteria after each deletion alters
the results. They show empirically that attacks based on recalculated values are
more effective.

On the theoretical side Cohen et al. [130] and, independently, Callaway et
al. [108] study the fragmentation process on scale-free networks analytically.
While the first team of authors uses percolation theory, Callaway and his col-
leagues obtain more general results for arbitrary degree distributions using gener-
ating functions (see Section 13.2.2 in Chapter 13). The theoretical analyses con-
firm the results of the empirical studies and yield the same percolation thresholds
as shown in the figures above.

15.3.3 Balanced-Cut Resilience

Among other statistics, Tangmunarunkit et al. use a new measure of robustness
to link failures in their experimental study [541]. The aim of their experiments is

430 G.W. Klau and R. Weiskircher

to evaluate generators that supposedly simulate the Internet topology. Besides
expansion and distortion (see Chapter 11), the authors measure the similarity of
generated and real networks with respect to the size of a balanced cut through
the network. In terms of the new statistics, a network is resilient to component
failure if the average size of a balanced cut within an h-neighborhood around
each vertex is large. We give a more formal definition:

Definition 15.3.3 (Balanced-cut resilience). Let G = (V, E) be a network
with n vertices, and let the capacity of each edge in G be equal to one. The
minimum balanced cut of G is the capacity of a minimum cut such that the two
resulting vertex sets contain approximately the same number, namely (n

2) and
*n

2 +, of vertices. The balanced-cut resilience R(N(v, h)) is the average size of a
minimum balanced cut within the h-neighborhood Neighh(v) around each vertex
v, that is,

R(N(v, h)) =
1
n

(∑
v∈V

min. balanced cut in Neighh(v)

)
.

The h-neighborhood of a vertex v contains all vertices with distance less
than or equal to h from v, see also the definition on page 296 in Chapter 11.
The balanced-cut resilience is a function of the number of nodes N(v, h) in the
h-neighborhood of a vertex v, not the radius h itself, to factor out the fact
that networks with high expansion have more nodes in neighborhoods of the
same radius. Clearly, we have R(h) = 1 for paths and trees. The resilience of
random graphs in the Erdős-Rényi model with average degree k is proportional
to kn, whereas it is proportional to n for complete graphs, see [541]. For regular
grid graphs, the balanced-cut resilience grows with

√
n. See Figure 15.9 for an

illustrative example.

2

3

1

2

1

2

(a)

3

3

3

3

2

3

3

3

3

3

3

3

(b) (c)

Fig. 15.9. Balanced-cut resilience for an example graph. Balanced cut shown for each
vertex for (a) 1-neighborhoods, (b) 2-neighborhoods, and (c) 3-neighborhoods

Computing a minimum balanced cut is NP-hard [240] and thus the draw-
back of this statistics is certainly its computational complexity which makes it
impractical for large networks. There are, however, a number of heuristics that
yield reasonably good values so that the balanced-cut resilience can at least be

15 Robustness and Resilience 431

estimated. Karypis and Kumar [348], for instance, propose a multilevel parti-
tioning heuristics that runs in time O(m) where m is the number of edges in the
network.

15.3.4 Effective Diameter

Palmer et al. introduce in [462] the effective eccentricity and the effective diam-
eter as measures of resilience against vertex and edge failures. These statistics
are based on the hop-plot and we recall their definitions (see also Sections 11.2.4
and 11.2.3 on neighborhoods and eccentricity in Chapter 11):

Definition 15.3.4 (Effective eccentricity, effective diameter). The
effective eccentricity εeff(v, r), 0 ≤ r ≤ 1, of a vertex v is the smallest h such
that the number of vertices N(v, h) within a h-neighborhood of v is at least r
times the total number of vertices, that is,

εeff(v, r) = min{h ∈ | N(v, h) ≥ rn} .

The effective diameter diameff(r) of a network is the smallest h such that the
number of pairs within a h-neighborhood is at least r times the total number of
reachable pairs:

diameff(r) = min{h ∈ | P (h) ≥ rP (∞)} ,

where P denotes the number of pairs within a certain neighborhood (hop-plot),
that is,

P (h) :=
∣∣{(u, v) ∈ V 2 | d(u, v) ≤ h

}∣∣ =
∑
v∈V

N(v, h) ,

see also Chapter 11. In the case that this distribution follows the power law
P (h) = (n + 2m)hH, the value H is also referred to as the hop-plot exponent.

The authors perform experiments on the network of approximately 285,000
routers in the Internet to investigate in how far and under which circumstances
the effective diameter of the router network changes. The experiments consist
of deleting either edges or vertices of the network and recomputing the effective
diameter diameff after each deletion, using a value of 0.9 for the parameter r.
Since an exact calculation of this statistics would take days, they exploit the
approximate neighborhood function described in Section 11.2.6 of Chapter 11.
Using these estimated values leads to a speed-up factor of 400.

Figures 15.10 and 15.11 show the effect of link and router failures on the
Internet graph. Confirming previous studies, the plots show that the Internet
is very robust against random failures but highly sensitive to failure of high
degree vertices. Also, deleting vertices with low effective eccentricity first rapidly
decreases the connectivity.

432 G.W. Klau and R. Weiskircher

6

7

8

100K 200K 300K 400K

P (∞)/1010

0

1

2

3

4

5

100K 200K 300K 400K

Hop-plot exponent H

|E′| |E′|

5

4

3

2

1

Fig. 15.10. Effect of edge deletions (link failures) on the network of 285,000 routers
(source: [462]). The set E′ denotes the deleted edges

0

1

2

3

4

5

6

7

8

9

20K 40K 60K 80K

(Uniform) random
Individual hop exponent

Node degree

0

1

2

3

4

5

20K 40K 60K 80K

Hop-plot exponent H

(Uniform) random
Individual hop exponent

Node degree

|V ′| |V ′|

P (∞)/1010

Fig. 15.11. Effect of vertex deletions (router failures) on the network of 285,000 routers
(source: [462]). The set V ′ denotes the deleted edges

15.4 Probabilistic Robustness Statistics

This section describes robustness statistics that explicitly consider the failure
probabilities of network components and are thus more appropriate to describe
untargeted component failure. We present two different approaches to deter-
mine the probability of network disconnection given the failure probability: the
reliability polynomial and probabilistic resilience.

We chose not to cover purely theoretical approaches such as the symbolic
approach to robustness by Flajolet et al. [214], in which the authors define a
measure of robustness by determining the expected number of edge-disjoint paths
to get from a start vertex s to a target vertex t in a graph.

15.4.1 Reliability Polynomial

The reliability polynomial was already used in 1977 by Boorstyn and Frank [75].

15 Robustness and Resilience 433

Definition 15.4.1. Let G be a connected network with n vertices and m edges.
We assume that the edges of G fail independently with probability 1−p where 0 ≤
p ≤ 1. The reliability polynomial R(G, p) is the probability that G is connected.

Obvious properties of the reliability polynomial R(G, p) are:

1. R(G, 0) = 0, R(G, 1) = 1.
2. p1 < p2 implies R(G, p1) < R(G, p2).
3. Let G be a connected graph and G−e be the graph obtained from G by

removing e. Let Ge be the graph obtained from G by contracting e. Then
the following equality holds:

R(G, p) = (1− p)R(G−e, p) + pR(Ge, p) .

4. If G is a tree with m edges, than we have R(G, p) = pm.

In his doctoral thesis [497], Rosenthal showed that it isNP-hard to decide for
a given edge failure probability if the probability that the network is connected is
at least a certain value q. The same is true if we are given a failure probability for
vertices and edges. In [480], Pönitz and Tittmann have shown that the problem
can be solved in time O((2n+m)B(k)) for graphs with pathwidth k where B(k)
is the Bell number of k. The bell number of k is the number of ways the set of
natural numbers from 1 to k can be partitioned into nonempty subsets. It follows
that the problem is polynomially solvable for graphs with bounded pathwidth.
Figure 15.12 shows a graph with pathwidth two from [480] together with a plot
of its reliability polynomial. The polynomial has the following formula:

R(G, p) = 55p5 − 155p6 + 169p7 − 84p8 + 16p9

1

2

3

4

5

6

(a) Graph with pathwidth two

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(b) The reliability polynomial

Fig. 15.12. A graph and a plot of its reliability polynomial

There is no polynomial time algorithm known to compute the reliability
polynomial for general graphs.

434 G.W. Klau and R. Weiskircher

15.4.2 Probabilistic Resilience

In contrast to the deterministic probability measures presented in Section 15.1
on worst-case connectivity statistics, Najjar and Gaudiot study a probabilistic
variant of connectivity [438]. The authors consider a class of regular networks
and examine the probability of disconnection through random vertex failures.

They define the disconnection probability of a network G as

P (G, i) = Pr[G disconnected exactly after ith failure]

Motivated by the architectures of large-scale computer clusters the authors
study a family F of k-regular graphs that includes, for example, tori and hyper-
cubes. They show that for networks in F the disconnection probability P (G, i)
can be approximated by the term

P1(G, i) = Pr[G disconnected exactly after ith failure
and one component contains exactly one vertex] ,

that is, the disconnection probability can be estimated by the probability of
disconnecting only one vertex from the network. For networks in the family F ,
P1(G, i) and thus an estimation of P (G, i) can be derived analytically.

The function P (G, i) is a bell-shaped curve whose height increases with n,
the number of vertices in the network, whereas the x-coordinate of the max-
imum depends on k, the degree of the vertices (see Figure 15.13). The larger
the connectivity of a regular network in terms of k the more failures are needed
until disconnection occurs. The authors confirm their theoretical predictions by
running Monte-Carlo experiments on a large number of graphs from F .

% of failed nodes

G, i)

k

n

Fig. 15.13. The probability P (G, i) for members of F . The number of vertices in the
network, n, determines the height of the curve. Their vertex degree, k, determines the
offset on the abscissa

15 Robustness and Resilience 435

The concept of disconnection probability enables us to define a probabilistic
version of connectivity: probabilistic resilience. Intuitively, a resilient network
should sustain a large number of vertex failures until it becomes disconnected.

Definition 15.4.2 (Probabilistic resilience). Let G be a network with n ver-
tices. The probabilistic resilience2 resprob(G, p) is the largest number of vertex
failures such that G is still connected with probability 1− p, that is,

resprob(G, p) = max{I |
I∑

i=1

P (G, i) ≤ p} .

The relative probabilistic resilience relates resprob(G, p) to the size of G:

resprob(G, p) =
resprob(G, p)

n
.

Clearly, this probabilistic measure is related to classical connectivity, and the
identity resprob(G, 0) = κ(G) − 1 holds.

Analyzing P (G, i) for regular graphs shows that the probabilistic resilience
resprob(G, p) grows with the size of G. The relative probabilistic resilience
resprob(G, p), however, decreases with the size if the degree of the network re-
mains constant. Therefore, the relative resilience increases for hypercubes and
decreases for tori with increasing network size.

It is quite difficult to compute the probabilistic resilience for more com-
plicated families of networks than F . Even in this case, P (G, i) can only be
estimated. Nevertheless, the probabilistic variant of connectedness seems well-
suited to describe system degradation under random component failure. Due to
its analytical complexity, however, it will most likely be used only in empirical
evaluations.

15.5 Chapter Notes

Many different statistics have been studied in order to describe how networks
change under component failures or intentional attacks. In this chapter we have
given an overview of analyses and experimental results that aim at describing
robustness and resilience properties of complex networks.

We first looked at worst case connectivity statistics that implicitly assume
optimal attacks. Apart from classical connectivity, we also considered cohesive-
ness, the minimum m-degree, toughness and conditional connectivity. Only the
first two measures can be computed in polynomial time. For a fixed parameter
m, the minimum m-degree is also computable in polynomial time. Toughness is
known to be NP-hard and the complexity of conditional connectivity depends
on the chosen property.

In an application, the function of a network might not only depend on its
connectivity, but also on the length of the shortest paths. In Section 15.2, we
2 In the original paper [438], Najjar and Gaudiot use the term network resilience.

436 G.W. Klau and R. Weiskircher

looked at two worst case distance statistics, namely the persistence and incre-
mental distance sequences. The second concept is more general than the first
but for neither of them a polynomial time algorithm is known.

The main drawback of all the worst case statistics is that they make no state-
ments about the results of random edge- or vertex-failures. Therefore, we looked
at average robustness statistics in Section 15.3. The two statistics in this section
for which no polynomial algorithm is known (mean connectivity and balanced-
cut resilience) make statements about the network when edges fail while the
two other statistics (average distance/fragmentation and effective diameter) only
characterize the current state of a network. Hence, they are useful to measure
robustness properties of a network only if they are repeatedly evaluated after
successive edge deletions—either in an experiment or analytically.

In Section 15.4, we presented two statistics that give the probability that
the network under consideration is still connected after the random failure of
edges or vertices. The reliability polynomial gives the probability that the graph
is connected given a failure probability for the edges while the probabilistic
resilience for a network and a number i is the probability that the network
disconnects after exactly i failures. There is no polynomial time algorithm known
to compute any of these two statistics for general graphs.

The ideal statistics for describing the robustness of a complex network de-
pend on the application and the type of the failures that are expected. If a
network ceases to be useful after it is disconnected, statistics that describe the
connectivity of the graph are best suited. If distances between vertices must be
small, diameter-based statistics are preferable.

For random failures, the average and probabilistic statistics are the most
promising while the effects of deliberate attacks are best captured by worst case
statistics. So the ideal measure for deliberate attacks seems to be generalized
connectivity but this has the drawback that it is hard to compute. A probabilistic
version of generalized connectivity would be ideal for random failures.

In practice, an experimental approach to robustness seems to be most use-
ful. The simultaneous observation of changes in average connected distance and
fragmentation is suitable in many cases. One of the central results regarding
robustness is certainly that scale-free networks are on the one hand tolerant
against random failure but on the other hand exposed to intentional attacks.

Robustness is already a very complex topic but there are still many features of
real-world networks that we have not touched in this chapter. Examples include
the bandwidth of edges or the importance of vertices in an application as well
as routing protocols and delay on edges.

Another interesting area are networks where the failures of elements are not
independent of each other. In power networks for example, the failure of a power
line puts more stress on other lines and thus makes their failure more likely,
which might cause a domino effect.

At the moment, there are no deterministic polynomial algorithms that can
answer meaningful questions about the robustness of complex real-world net-

15 Robustness and Resilience 437

works. If there are no major theoretic breakthroughs the most useful tools in
this field will be simulations and heuristics.

Acknowledgments. The authors thank the editors, the co-authors of this book,
and the anonymous referee for valuable comments.

Bibliography

1. Serge Abiteboul, Mihai Preda, and Gregory Cobena. Adaptive on-line page im-
portance computation. In Proceedings of the 12th International World Wide Web
Conference (WWW12), pages 280–290, Budapest, Hungary, 2003.

2. Forman S. Acton. Numerical Methods that Work. Mathematical Association of
America, 1990.

3. Alan Agresti. Categorical Data Analysis. Wiley, 2nd edition, 2002.
4. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Anal-

ysis of Computer Algorithms. Addison-Wesley, 1974.
5. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and

Algorithms. Addison-Wesley, 1983.
6. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:

Theory, Algorithms, and Applications. Prentice Hall, 1993.
7. Ravindra K. Ahuja and James B. Orlin. A fast and simple algorithm for the max-

imum flow problem. Operations Research, 37(5):748–759, September/October
1989.

8. Ravindra K. Ahuja and James B. Orlin. Distance-based augmenting path algo-
rithms for the maximum flow and parametric maximum flow problems. Naval
Research Logistics Quarterly, 38:413–430, 1991.

9. William Aiello, Fan R. K. Chung, and Linyuan Lu. A random graph model for
massive graphs. In Proceedings of the 32nd Annual ACM Symposium on the
Theory of Computing (STOC’00), pages 171–180, May 2000.

10. Martin Aigner. Combinatorial Theory. Springer-Verlag, 1999.
11. Martin Aigner and Eberhard Triesch. Realizability and uniqueness in graphs.

Discrete Mathematics, 136:3–20, 1994.
12. Donald Aingworth, Chandra Chekuri, and Rajeev Motwani. Fast estimation

of diameter and shortest paths (without matrix multiplication). In Proceedings
of the 7th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’96),
1996.

13. Jin Akiyama, Francis T. Boesch, Hiroshi Era, Frank Harary, and Ralph Tindell.
The cohesiveness of a point of a graph. Networks, 11(1):65–68, 1981.

14. Richard D. Alba. A graph theoretic definition of a sociometric clique. Journal
of Mathematical Sociology, 3:113–126, 1973.

15. Réka Albert and Albert-László Barabási. Statistical mechanics of complex net-
works. Reviews of Modern Physics, 74(1):47–97, 2002.

16. Réka Albert, Hawoong Jeong, and Albert-László Barabási. Diameter of the world
wide web. Nature, 401:130–131, September 1999.

17. Réka Albert, Hawoong Jeong, and Albert-László Barabási. Error and attack
tolerance of complex networks. Nature, 406:378–382, July 2000.

18. Mark S. Aldenderfer and Roger K. Blashfield. Cluster Analysis. Sage, 1984.
19. Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.
20. Noga Alon. Generating pseudo-random permutations and maximum flow algo-

rithms. Information Processing Letters, 35(4):201–204, 1990.

440 Bibliography

21. Noga Alon, Fan R. K. Chung, and Ronald L. Graham. Routing permutations on
graphs via matchings. SIAM Journal on Discrete Mathematics, 7:513–530, 1994.

22. Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden
clique in a random graph. Randoms Structures and Algorithms, 13(3–4):457–466,
1998.

23. Noga Alon and Vitali D. Milman. λ1, isoperimetric inequalities for graphs, and
superconcentrators. Journal of Combinatorial Theory Series B, 38:73–88, 1985.

24. Noga Alon and Joel Spencer. The Probabilistic Method. Wiley, 1992.
25. Noga Alon, Joel Spencer, and Paul Erdős. The Probabilistic Method. Wiley, 1992.
26. Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length

cycles. Algorithmica, 17(3):209–223, 1997.
27. Charles J. Alpert and Andrew B. Kahng. Recent directions in netlist partitioning:

A survey. Integration: The VLSI Journal, 19(1-2):1–81, 1995.
28. Ashok T. Amin and S. Louis Hakimi. Graphs with given connectivity and inde-

pendence number or networks with given measures of vulnerability and surviv-
ability. IEEE Transactions on Circuit Theory, 20(1):2–10, 1973.

29. Carolyn J. Anderson, Stanley Wasserman, and Bradley Crouch. A p∗ primer:
Logit models for social networks. Social Networks, 21(1):37–66, January 1999.

30. Carolyn J. Anderson, Stanley Wasserman, and Katherine Faust. Building
stochastic blockmodels. Social Networks, 14:137–161, 1992.

31. James G. Anderson and Stephen J. Jay. The diffusion of medical technology:
Social network analysis and policy research. The Sociological Quarterly, 26:49–
64, 1985.

32. Jacob M. Anthonisse. The rush in a directed graph. Technical Report BN 9/71,
Stichting Mathematisch Centrum, 2e Boerhaavestraat 49 Amsterdam, October
1971.

33. Arvind Arasu, Jasmine Novak, Andrew S. Tomkins, and John Tomlin. PageRank
computation and the structure of the web: experiments and algorithms. short
version appeared in Proceedings of the 11th International World Wide Web Con-
ference, Poster Track, November 2001.

34. Ludwig Arnold. On the asymptotic distribution of the eigenvalues of random
matrices. Journal of Mathematical Analysis and Applications, 20:262–268, 1967.

35. Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time approx-
imation schemes for dense instances of NP-hard problems. Journal of Computer
and System Sciences, 58(1):193–210, 1999.

36. Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric
embeddings and graph partitioning. In Proceedings of the 36th Annual ACM
Symposium on the Theory of Computing (STOC’04), pages 222–231. ACM Press,
2004.

37. Yuichi Asahiro, Refael Hassin, and Kazuo Iwama. Complexity of finding dense
subgraphs. Discrete Applied Mathematics, 121(1–3):15–26, 2002.

38. Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. Greedily
finding a dense subgraph. Journal of Algorithms, 34(2):203–221, 2000.

39. Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, and Al-
berto Marchetti-Spaccamela. Complexity and Approximation - Combinatorial
Optimization Problems and Their Approximability Properties. Springer-Verlag,
2nd edition, 2002.

40. Albert-László Barabási and Réka Albert. Emergence of scaling in random net-
works. Science, 286:509–512, 1999.

41. Alain Barrat and Martin Weigt. On the properties of small-world network models.
The European Physical Journal B, 13:547–560, 2000.

42. Vladimir Batagelj. Notes on blockmodeling. Social Networks, 19(2):143–155,
April 1997.

Bibliography 441

43. Vladimir Batagelj and Ulrik Brandes. Efficient generation of large random net-
works. Physical Review E, 2005. To appear.

44. Vladimir Batagelj and Anuška Ferligoj. Clustering relational data. In Wolf-
gang Gaul, Otto Opitz, and Martin Schader, editors, Data Analysis, pages 3–15.
Springer-Verlag, 2000.

45. Vladimir Batagelj, Anuška Ferligoj, and Patrick Doreian. Generalized block-
modeling. Informatica: An International Journal of Computing and Informatics,
23:501–506, 1999.

46. Vladimir Batagelj and Andrej Mrvar. Pajek – A program for large network
analysis. Connections, 21(2):47–57, 1998.

47. Vladimir Batagelj and Matjaž Zaveršnik. An O(m) algorithm for cores decom-
position of networks. Technical Report 798, IMFM Ljublana, Ljubljana, 2002.

48. Douglas Bauer, S. Louis Hakimi, and Edward F. Schmeichel. Recognizing tough
graphs is NP-hard. Discrete Applied Mathematics, 28:191–195, 1990.

49. Michel Bauer and Olivier Golinelli. Random incidence matrices: moments of
the spectral density. Journal of Statistical Physics, 103:301–307, 2001. arXiv
cond-mat/0007127.

50. Alex Bavelas. A mathematical model for group structure. Human Organizations,
7:16–30, 1948.

51. Alex Bavelas. Communication patterns in task oriented groups. Journal of the
Acoustical Society of America, 22:271–282, 1950.

52. Murray A. Beauchamp. An improved index of centrality. Behavioral Science,
10:161–163, 1965.

53. M. Becker, W. Degenhardt, Jürgen Doenhardt, Stefan Hertel, G. Kaninke, W. Ke-
ber, Kurt Mehlhorn, Stefan Näher, Hans Rohnert, and Thomas Winter. A prob-
abilistic algorithm for vertex connectivity of graphs. Information Processing
Letters, 15(3):135–136, October 1982.

54. Richard Beigel. Finding maximum independent sets in sparse and general graphs.
In Proceedings of the 10th Annual ACM–SIAM Symposium on Discrete Algo-
rithms (SODA’99), pages 856–857. IEEE Computer Society Press, 1999.

55. Lowell W. Beineke and Frank Harary. The connectivity function of a graph.
Mathematika, 14:197–202, 1967.

56. Lowell W. Beineke, Ortrud R. Oellermann, and Raymond E. Pippert. The average
connectivity of a graph. Discrete Mathematics, 252(1):31–45, May 2002.

57. Claude Berge. Graphs. North-Holland, 3rd edition, 1991.
58. Noam Berger, Béla Bollobás, Christian Borgs, Jennifer Chayes, and Oliver M.

Riordan. Degree distribution of the FKP network model. In Proceedings of
the 30th International Colloquium on Automata, Languages, and Programming
(ICALP’03), pages 725–738, 2003.

59. Julian E. Besag. Spatial interaction and the statistical analysis of lattice systems
(with discussion). Journal of the Royal Statistical Society, Series B, 36:196–236,
1974.

60. Sergej Bezrukov, Robert Elsässer, Burkhard Monien, Robert Preis, and Jean-
Pierre Tillich. New spectral lower bounds on the bisection width of graphs.
Theoretical Computer Science, 320:155–174, 2004.

61. Monica Bianchini, Marco Gori, and Franco Scarselli. Inside PageRank. ACM
Transactions on Internet Technology, 2004. in press.

62. Robert E. Bixby. The minimum number of edges and vertices in a graph with
edge connectivity n and m n-bonds. Bulletin of the American Mathematical
Society, 80(4):700–704, 1974.

63. Robert E. Bixby. The minimum number of edges and vertices in a graph with
edge connectivity n and m n-bonds. Networks, 5:253–298, 1981.

442 Bibliography

64. Francis T. Boesch, Frank Harary, and Jerald A. Kabell. Graphs as models of
communication network vulnerability: Connectivity and persistence. Networks,
11:57–63, 1981.

65. Francis T. Boesch and R. Emerson Thomas. On graphs of invulnerable commu-
nication nets. IEEE Transactions on Circuit Theory, CT-17, 1970.

66. Béla Bollobás. Extremal graph theory. Academic Press, 1978.
67. Béla Bollobás. Modern Graph Theory, volume 184 of Graduate Texts in Mathe-

matics. Springer-Verlag, 1998.
68. Béla Bollobás and Oliver M. Riordan. Mathematical results on scale-free random

graphs. In Stefan Bornholdt and Heinz Georg Schuster, editors, Handbook of
Graphs and Networks: From the Genome to the Internet, pages 1–34. Wiley-
VCH, 2002.

69. Béla Bollobás, Oliver M. Riordan, Joel Spencer, and Gábor Tusnády. The de-
gree sequence of a scale-free random graph process. Randoms Structures and
Algorithms, 18:279–290, 2001.

70. Immanuel M. Bomze, Marco Budinich, Panos M. Pardalos, and Marcello Pelillo.
The maximum clique problem. In Ding-Zhu Du and Panos M. Pardalos, edi-
tors, Handbook of Combinatorial Optimization (Supplement Volume A), volume 4,
pages 1–74. Kluwer Academic Publishers Group, 1999.

71. Phillip Bonacich. Factoring and weighting approaches to status scores and clique
identification. Journal of Mathematical Sociology, 2:113–120, 1972.

72. Phillip Bonacich. Power and centrality: A family of measures. American Journal
of Sociology, 92(5):1170–1182, 1987.

73. Phillip Bonacich. What is a homomorphism? In Linton Clarke Freeman, Dou-
glas R. White, and A. Kimbal Romney, editors, Research Methods in Social Net-
work Analysis, chapter 8, pages 255–293. George Mason University Press, 1989.

74. J. Bond and Claudine Peyrat. Diameter vulnerability in networks. In Yousef
Alavi, Gary Chartrand, Linda Lesniak, Don R. Lick, and Curtiss E. Wall, editors,
Graph Theory with Applications to Algorithms and Computer Science, pages 123–
149. Wiley, 1985.

75. Robert R. Boorstyn and Howard Frank. Large scale network topological opti-
mization. IEEE Transaction on Communications, Com-25:29–37, 1977.

76. Kellogg S. Booth. Problems polynomially equivalent to graph isomorphism. Tech-
nical report, CS-77-04, University of Ljublana, 1979.

77. Kellogg S. Booth and George S. Lueker. Linear algorithms to recognize interval
graphs and test for consecutive ones property. Proceedings of the 7th Annual
ACM Symposium on the Theory of Computing (STOC’75), pages 255–265, 1975.

78. Ravi B. Boppana. Eigenvalues and graph bisection: an average case analysis. In
Proceedings of the 28th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’87), pages 280–285, October 1987.

79. Ravi B. Boppana and Magnús M. Halldórsson. Approximating maximum inde-
pendent sets by excluding subgraphs. BIT, 32(2):180–196, 1992.

80. Ravi B. Boppana, Johan H̊astad, and Stathis Zachos. Does co-NP have short
interactive proofs? Information Processing Letters, 25:127–132, 1987.

81. Stephen P. Borgatti. Centrality and AIDS. Connections, 18(1):112–115, 1995.
82. Stephen P. Borgatti and Martin G. Everett. The class of all regular equivalences:

Algebraic structure and computation. Social Networks, 11(1):65–88, 1989.
83. Stephen P. Borgatti and Martin G. Everett. Two algorithms for computing

regular equivalence. Social Networks, 15(4):361–376, 1993.
84. Stephen P. Borgatti and Martin G. Everett. Models of core/periphery structures.

Social Networks, 21(4):375–395, 1999.
85. Stephen P. Borgatti and Martin G. Everett. A graph-theoretic perspective on

centrality. Unpublished manuscript, 2004.

Bibliography 443

86. Stephen P. Borgatti, Martin G. Everett, and Paul R. Shirey. LS sets, lambda
sets and other cohesive subsets. Social Networks, 12(4):337–357, 1990.

87. Allan Borodin, Gareth O. Roberts, Jeffrey S. Rosenthal, and Panayiotis Tsaparas.
Finding authorities and hubs from link structures on the world wide web. In
Proceedings of the 10th International World Wide Web Conference (WWW10),
pages 415–429, Hong Kong, 2001.

88. Rodrigo A. Botagfogo, Ehud Rivlin, and Ben Shneiderman. Structural analysis
of hypertexts: Identifying hierarchies and useful metrics. ACM Transactions on
Information Systems, 10(2):142–180, 1992.

89. John P. Boyd. Social Semigroups. George Mason University Press, 1991.
90. John P. Boyd and Martin G. Everett. Relations, residuals, regular interiors, and

relative regular equivalence. Social Networks, 21(2):147–165, April 1999.
91. Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Uni-

versity Press, 2004.
92. Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathe-

matical Sociology, 25(2):163–177, 2001.
93. Ulrik Brandes and Sabine Cornelsen. Visual ranking of link structures. Journal

of Graph Algorithms and Applications, 7(2):181–201, 2003.
94. Ulrik Brandes and Daniel Fleischer. Centrality measures based on current flow.

In Proceedings of the 22nd International Symposium on Theoretical Aspects of
Computer Science (STACS’05), volume 3404 of Lecture Notes in Computer Sci-
ence, 2005. To appear.

95. Ulrik Brandes, Marco Gaertler, and Dorothea Wagner. Experiments on graph
clustering algorithms. In Proceedings of the 11th Annual European Symposium on
Algorithms (ESA’03), volume 2832 of Lecture Notes in Computer Science, pages
568–579, September 2003.

96. Ulrik Brandes, Patrick Kenis, and Dorothea Wagner. Communicating centrality
in policy network drawings. IEEE Transactions on Visualization and Computer
Graphics, 9(2):241–253, 2003.

97. Ulrik Brandes and Jürgen Lerner. Structural similarity in graphs. In Pro-
ceedings of the 15th International Symposium on Algorithms and Computation
(ISAAC’04), volume 3341 of Lecture Notes in Computer Science, pages 184–195,
2004.

98. Ronald L. Breiger. Toward an operational theory of community elite structures.
Quality and Quantity, 13:21–57, 1979.

99. Ronald L. Breiger, Scott A. Boorman, and Phipps Arabie. An algorithm for clus-
tering relational data with applications to social network analysis and comparison
with multidimensional scaling. Journal of Mathematical Psychology, 12:328–383,
1975.

100. Ronald L. Breiger and James G. Ennis. Personae and social roles: The network
structure of personality types in small groups. The Sociological Quarterly, 42:262–
270, 1979.

101. Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web
search engine. Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

102. Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Ra-
jagopalan, Raymie Stata, Andrew S. Tomkins, and Janet Wiener. Graph struc-
ture in the Web. Computer Networks: The International Journal of Computer
and Telecommunications Networking, 33(1–6):309–320, 2000.

103. Coen Bron and Joep A. G. M. Kerbosch. Algorithm 457: Finding all cliques of
an undirected graph. Communications of the ACM, 16(9):575–577, 1973.

104. Tian Bu and Don Towsley. On distinguishing between Internet power law topol-
ogy generators. In Proceedings of Infocom’02, 2002.

444 Bibliography

105. Mihai Bădoiu. Approximation algorithm for embedding metrics into a two-
dimensional space. In Proceedings of the 14th Annual ACM–SIAM Symposium
on Discrete Algorithms (SODA’03), pages 434–443, 2003.

106. Horst Bunke and Kim Shearer. A graph distance metric based on the maximal
common subgraph. Pattern Recognition Letters, 19:255–259, 1998.

107. Ronald S. Burt. Positions in networks. Social Forces, 55:93–122, 1976.
108. Duncan S. Callaway, Mark E. J. Newman, Steven H. Strogatz, and Duncan J.

Watts. Network robustness and fragility: Percolation on random graphs. Physical
Review Letters, 25(85):5468–5471, December 2000.

109. Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Zegura. Modeling Internet
topology. IEEE Communications Magazine, 35:160–163, June 1997.

110. A. Cardon and Maxime Crochemore. Partitioning a graph in O(|a| log2 |v|).
Theoretical Computer Science, 19:85–98, 1982.

111. Tami Carpenter, George Karakostas, and David Shallcross. Pracical Issues and
Algorithms for Analyzing Terrorist Networks. invited talk at WMC 2002, 2002.

112. Peter J. Carrington, Greg H. Heil, and Stephen D. Berkowitz. A goodness-of-fit
index for blockmodels. Social Networks, 2:219–234, 1980.

113. Moses Charikar. Greedy approximation algorithms for finding dense components
in a graph. In Proceedings of the 3rd International Workshop on Approximatin
Algorithms for Combinatorial Optimization (APPROX’00), volume 1931 of Lec-
ture Notes in Computer Science, pages 84–95. Springer-Verlag, 2000.

114. Gary Chartrand. A graph-theoretic approach to a communications problem.
SIAM Journal on Applied Mathematics, 14(5):778–781, July 1966.

115. Gary Chartrand, Gary L. Johns, Songlin Tian, and Steven J. Winters. Directed
distance on digraphs: Centers and medians. Journal of Graph Theory, 17(4):509–
521, 1993.

116. Gary Chartrand, Grzegorz Kubicki, and Michelle Schultz. Graph similarity and
distance in graphs. Aequationes Mathematicae, 55(1-2):129–145, 1998.

117. Qian Chen, Hyunseok Chang, Ramesh Govindan, Sugih Jamin, Scott Shenker,
and Walter Willinger. The origin of power laws in internet topologies revisited.
In Proceedings of Infocom’02, 2002.

118. Joseph Cheriyan and Torben Hagerup. A randomized maximum-flow algorithm.
SIAM Journal on Computing, 24(2):203–226, 1995.

119. Joseph Cheriyan, Torben Hagerup, and Kurt Mehlhorn. An o(n3)-time
maximum-flow algorithm. SIAM Journal on Computing, 25(6):144–1170, De-
cember 1996.

120. Joseph Cheriyan and John H. Reif. Directed s-t numberings, rubber bands, and
testing digraph k-vertex connectivity. In Proceedings of the 3rd Annual ACM–
SIAM Symposium on Discrete Algorithms (SODA’92), pages 335–344, January
1992.

121. Joseph Cheriyan and Ramakrishna Thurimella. Fast algorithms for k-shredders
and k-node connectivity augmentation. Journal of Algorithms, 33:15–50, 1999.

122. Boris V. Cherkassky. An algorithm for constructing a maximal flow through a
network requiring O(n2√p) operations. Mathematical Methods for Solving Eco-
nomic Problems, 7:117–126, 1977. (In Russian).

123. Boris V. Cherkassky. A fast algorithm for constructing a maximum flow through a
network. In Selected Topics in Discrete Mathematics: Proceedings of the Moscow
Discrete Mathematics Seminar, 1972-1990, volume 158 of American Mathemat-
ical Society Translations – Series 2, pages 23–30. AMS, 1994.

124. Steve Chien, Cynthia Dwork, Ravi Kumar, and D. Sivakumar. Towards exploit-
ing link evolution. In Workshop on Algorithms and Models for the Web Graph,
November 2002.

125. Fan R. K. Chung. Spectral Graph Theory. CBMS Regional Conference Series in
Mathematics. American Mathematical Society, 1997.

Bibliography 445

126. Fan R. K. Chung, Vance Faber, and Thomas A. Manteuffel. An upper bound
on the diameter of a graph from eigenvalues associated with its laplacian. SIAM
Journal on Discrete Mathematics, 7(3):443–457, 1994.

127. Fan R. K. Chung, Linyuan Lu, and Van Vu. Eigenvalues of random power law
graphs. Annals of Combinatorics, 7:21–33, 2003.

128. Fan R. K. Chung, Linyuan Lu, and Van Vu. The spectra of random graphs with
given expected degree. Proceedings of the National Academy of Science of the
United States of America, 100(11):6313–6318, May 2003.

129. Vašek Chvátal. Tough graphs and hamiltionian circuits. Discrete Mathematics,
5, 1973.

130. Reuven Cohen, Keren Erez, Daniel ben Avraham, and Shlomo Havlin. Resilience
of the Internet to random breakdown. Physical Review Letters, 21(85):4626–4628,
November 2000.

131. Colin Cooper and Alan M. Frieze. A general model of web graphs. Randoms
Structures and Algorithms, 22:311–335, 2003.

132. Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. Journal of Symbolic Computation, 9(3):251–280, 1990.

133. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 2nd edition, 2001.

134. Trevor F. Cox and Michael A. A. Cox. Multidimensional Scaling. Monographs
on Statistics and Applied Probability. Chapman & Hall/CRC, 2nd edition, 2001.

135. Dragoš M. Cvetković, Michael Doob, and Horst Sachs. Spectra of Graphs. Johann
Ambrosius Barth Verlag, 1995.

136. Dragoš M. Cvetković, Peter Rowlinson, and Slobodan Simic. Eigenspaces of
Graphs. Cambridge University Press, 1997.

137. Andrzej Czygrinow. Maximum dispersion problem in dense graphs. Operations
Research Letter, 27(5):223–227, 2000.

138. Peter Dankelmann and Ortrud R. Oellermann. Bounds on the average connec-
tivity of a graph. Discrete Applied Mathematics, 129:305–318, August 2003.

139. George B. Dantzig. Application of the simplex method to a transportation prob-
lem. In Tjalling C. Koopmans, editor, Activity Analysis of Production and Al-
location, volume 13 of Cowles Commission for Research in Economics, pages
359–373. Wiley, 1951.

140. George B. Dantzig. Maximization of a linear function of variables subject to linear
inequalities. In Tjalling C. Koopmans, editor, Activity Analysis of Production and
Allocation, volume 13 of Cowles Commission for Research in Economics, pages
339–347. Wiley, 1951.

141. George B. Dantzig and Delbert R. Fulkerson. On the max-flow min-cut theorem
of networks. In Linear Inequalities and Related Systems, volume 38 of Annals of
Mathematics Studies, pages 215–221. Princeton University Press, 1956.

142. Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all
pairs shortest paths. In Proceedings of the 35th Annual ACM Symposium on the
Theory of Computing (STOC’03), pages 159–166, June 2003.

143. Guiseppe Di Battista and Roberto Tamassia. Incremental planarity testing. In
Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’89), pages 436–441, October/November 1989.

144. Guiseppe Di Battista and Roberto Tamassia. On-line maintenance of tricon-
nected components with SPQR-trees. Algorithmica, 15:302–318, 1996.

145. Reinhard Diestel. Graph Theory. Graduate Texts in Mathematics. Springer-
Verlag, 2nd edition, 2000.

146. Edsger W. Dijkstra. A note on two problems in connection with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

446 Bibliography

147. Stephen Dill, Ravi Kumar, Kevin S. McCurley, Sridhar Rajagopalan, D. Sivaku-
mar, and Andrew S. Tomkins. Self-similarity in the web. ACM Transactions on
Internet Technology, 2(3):205–223, August 2002.

148. Chris H. Q. Ding, Xiaofeng He, Parry Husbands, Hongyuan Zha, and Horst D.
Simon. PageRank, HITS and a unified framework for link analysis. LBNL Tech
Report 49372, NERSC Division, Lawrence Berkeley National Laboratory, Uni-
versity of California, Berkeley, CA, USA, November 2001. updated Sept. 2002
(LBNL-50007), presented in the poster session of the Third SIAM International
Conference on Data Mining, San Francisco, CA, USA, 2003.

149. Chris H. Q. Ding, Hongyuan Zha, Xiaofeng He, Parry Husbands, and Horst D.
Simon. Link analysis: Hubs and authorities on the world wide web. SIAM Review,
46(2), 2004. to appear, published electronically May, 3, 2004.

150. Yefim Dinitz. Algorithm for solution of a problem of maximum flow in a network
with power estimation. Soviet Mathematics-Doklady, 11(5):1277–1280, 1970.

151. Yefim Dinitz. Bitwise residual decreasing method and transportation type prob-
lems. In A. A. Fridman, editor, Studies in Discrete Mathematics, pages 46–57.
Nauka, 1973. (In Russian).

152. Yefim Dinitz. Finding shortest paths in a network. In Y. Popkov and B. Shmu-
lyian, editors, Transportation Modeling Systems, pages 36–44. Institute for Sys-
tem Studies, Moscow, 1978.

153. Yefim Dinitz, Alexander V. Karzanov, and M. V. Lomonosov. On the structure
of the system of minimum edge cuts in a graph. In A. A. Fridman, editor, In
Studies in Discrete Optimization, pages 290–306. Nauka, 1976.

154. Yefim Dinitz and Ronit Nossenson. Incremental maintenance of the 5-edge-
connectivity classes of a graph. In Proceedings of the 7th Scandinavian Workshop
on Algorithm Theory (SWAT’00), volume 1851 of Lecture Notes in Mathematics,
pages 272–285. Springer-Verlag, July 2000.

155. Yefim Dinitz and Jeffery Westbrook. Maintaining the classes of 4-edge-
connectivity in a graph on-line. Algorithmica, 20(3):242–276, March 1998.

156. Gabriel A. Dirac. Extensions of Turán’s theorem on graphs. Acta Mathematica
Academiae Scientiarum Hungaricae, 14:417–422, 1963.

157. Matthew B. Doar. A better model for generating test networks. In IEEE GLOBE-
COM’96, 1996.

158. Wolfgang Domschke and Andreas Drexl. Location and Layout Planning: An
International Bibliography. Springer-Verlag, Berlin, 1985.

159. William E. Donath and Alan J. Hoffman. Lower bounds for the partitioning of
graphs. IBM Journal of Research and Development, 17(5):420–425, 1973.

160. Patrick Doreian. Using multiple network analytic tools for a single social network.
Social Networks, 10:287–312, 1988.

161. Patrick Doreian and Louis H. Albert. Partitioning political actor networks: Some
quantitative tools for analyzing qualitative networks. Journal of Quantitative
Anthropology, 1:279–291, 1989.

162. Patrick Doreian, Vladimir Batagelj, and Anuška Ferligoj. Symmetric-acyclic de-
compositions of networks. Journal of Classification, 17(1):3–28, 2000.

163. Patrick Doreian, Vladimir Batagelj, and Anuška Ferligoj. Generalized blockmod-
eling of two-mode network data. Social Networks, 26(1):29–53, 2004.

164. Sergey N. Dorogovtsev and Jose Ferreira F. Mendes. Evolution of networks.
Advances in Physics, 51(4):1079–1187, June 2002.

165. Sergey N. Dorogovtsev and Jose Ferreira F. Mendes. Evolution of Networks.
Oxford University Press, 2003.

166. Sergey N. Dorogovtsev, Jose Ferreira F. Mendes, and Alexander N. Samukhin.
Structure of growing networks: Exact solution of the Barabási-Albert’s model.
http://xxx.sissa.it/ps/cond-mat/0004434, April 2000.

Bibliography 447

167. Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and
completeness II. On completeness for W[1]. Theoretical Computer Science, 141(1–
2):109–131, 1995.

168. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Mono-
graphs in Computer Science. Springer-Verlag, 1999.

169. Zvi Drezner and Horst W. Hamacher, editors. Facility Location: Application and
Theory. Springer-Verlag, 2002.

170. Petros Drineas, Alan M. Frieze, Ravi Kannan, Santosh Vempala, and V. Vinay.
Clustering large graphs via the singular value decomposition. Machine Learning,
56:9–33, 2004.

171. Jack Edmonds. Edge-disjoint branchings. In Randall Rustin, editor, Courant
Computer Science Symposium 9: Combinatorial Algorithms (1972), pages 91–96.
Algorithmics Press, 1973.

172. Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM, 19(2):248–264, April
1972.

173. Eugene Egerváry. On combinatorial properties of matrices. Mat. Lapok, 38:16–28,
1931.

174. Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed param-
eter clique and dominating set. Theoretical Computer Science, 326(1–3):57–67,
2004.

175. Peter Elias, Amiel Feinstein, and Claude E. Shannon. A note on the maximum
flow through a network. IRE Transactions on Information Theory, 2(4):117–119,
December 1956.

176. Robert Elsässer and Burkhard Monien. Load balancing of unit size tokens and
expansion properties of graphs. In Proceedings of the 15th Annual ACM Sympo-
sium on Parallel Algorithms and Architectures (SPAA’03), pages 266–273, 2003.

177. Lars Engebretsen and Jonas Holmerin. Towards optimal lower bounds for clique
and chromatic number. Theoretical Computer Science, 299(1-3):537–584, 2003.

178. David Eppstein. Fast hierarchical clustering and other applications of dynamic
closest pairs. j-ea, 5:1–23, 2000.

179. David Eppstein and Joseph Wang. Fast approximation of centrality. In Pro-
ceedings of the 12th Annual ACM–SIAM Symposium on Discrete Algorithms
(SODA’01), 2001.

180. Paul Erdős and Tibor Gallai. Graphs with prescribed degrees of vertices (in
hungarian). Matematikai Lapok, 11:264–274, 1960.

181. Paul Erdős and Alfred Rényi. On random graphs I. Publicationes Mathematicae
Debrecen, 6:290–297, 1959.

182. Abdol-Hossein Esfahanian. Lower-bounds on the connectivities of a graph. Jour-
nal of Graph Theory, 9(4):503–511, 1985.

183. Abdol-Hossein Esfahanian and S. Louis Hakimi. On computing the connectivities
of graphs and digraphs. Networks, 14(2):355–366, 1984.

184. Stephen Eubank, V. S. Anil Kumar, Madhav V. Marathe, Aravind Srinivasan,
and Nan Wang. Structural and algorithmic aspects of massive social networks. In
Proceedings of the 14th Annual ACM–SIAM Symposium on Discrete Algorithms
(SODA’04), pages 718–727, 2004.

185. Shimon Even. Algorithmic Combinatorics. Macmillan, 1973.
186. Shimon Even. An algorithm for determining whether the connectivity of a graph

is at least k. SIAM Journal on Computing, 4(3):393–396, September 1975.
187. Shimon Even. Graph Algorithms. Computer Science Press, 1979.
188. Shimon Even and Robert E. Tarjan. Network flow and testing graph connectivity.

SIAM Journal on Computing, 4(4):507–518, December 1975.
189. Martin G. Everett. Graph theoretic blockings k-plexes and k-cutpoints. Journal

of Mathematical Sociology, 9:75–84, 1982.

448 Bibliography

190. Martin G. Everett and Stephen P. Borgatti. Role colouring a graph. Mathematical
Social Sciences, 21:183–188, 1991.

191. Martin G. Everett and Stephen P. Borgatti. Regular equivalence: General theory.
Journal of Mathematical Sociology, 18(1):29–52, 1994.

192. Martin G. Everett and Stephen P. Borgatti. Analyzing clique overlap. Connec-
tions, 21(1):49–61, 1998.

193. Martin G. Everett and Stephen P. Borgatti. Peripheries of cohesive subsets.
Social Networks, 21(4):397–407, 1999.

194. Martin G. Everett and Stephen P. Borgatti. Extending centrality. In Peter J.
Carrington, John Scott, and Stanley Wasserman, editors, Models and Methods in
Social Network Analysis. Cambridge University Press, 2005. To appear.

195. Martin G. Everett, Philip Sinclair, and Peter Dankelmann. Some centrality re-
sults new and old. Submitted, 2004.

196. Alex Fabrikant, Elias Koutsoupias, and Christos H. Papadimitriou. Heuristi-
cally optimized trade-offs: A new paradigm for power laws in the Internet. In
Proceedings of the 29th International Colloquium on Automata, Languages, and
Programming (ICALP’02), volume 2380 of Lecture Notes in Computer Science,
2002.

197. Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law re-
lationships of the Internet topology. In Proceedings of SIGCOMM’99, 1999.

198. Illés Farkas, Imre Derényi, Albert-László Barabási, and Tamás Vicsek. Spectra
of “real-world” graphs: Beyond the semicircle law. Physical Review E, 64, August
2001.

199. Katherine Faust. Comparison of methods for positional analysis: Structural and
general equivalences. Social Networks, 10:313–341, 1988.

200. Katherine Faust and John Skvoretz. Logit models for affiliation networks. Soci-
ological Methodology, 29(1):253–280, 1999.

201. Uriel Feige, Guy Kortsarz, and David Peleg. The dense k-subgraph problem.
Algorithmica, 29(3):410–421, 2001.

202. Uriel Feige and Robert Krauthgamer. Finding and certifying a large hidden
clique in a semirandom graph. Randoms Structures and Algorithms, 16(2):195–
208, 2000.

203. Uriel Feige and Robert Krauthgamer. A polylogarithmic approximation of the
minimum bisection. SIAM Journal on Computing, 31(4):1090–1118, 2002.

204. Uriel Feige and Michael A. Seltser. On the densest k-subgraph problem. Technical
Report CS97-16, Department of Applied Mathematics and Computer Science,
The Weizmann Institute of Science, Rehovot, Israel, 1997.

205. Trevor Fenner, Mark Levene, and George Loizou. A stochastic evolu-
tionary model exhibiting power-law behaviour with an exponential cutoff.
http://xxx.sissa.it/ps/cond-mat/0209463, June 2004.

206. Anuška Ferligoj, Patrick Doreian, and Vladimir Batagelj. Optimizational ap-
proach to blockmodeling. Journal of Computing and Information Technology,
4:63–90, 1996.

207. Jean-Claude Fernandez. An implementation of an efficient algorithm for bisim-
ulation equivalence. Science of Computer Programming, 13(1):219–236, 1989.

208. William L. Ferrar. Finite Matrices. Oxford University Press, London, 1951.
209. Jǐŕı Fiala and Daniël Paulusma. The computational complexity of the role assign-

ment problem. In Proceedings of the 30th International Colloquium on Automata,
Languages, and Programming (ICALP’03), pages 817–828. Springer-Verlag, 2003.

210. Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical
Journal, 23(98):289–305, 1973.

211. Miroslav Fiedler. A property of eigenvectors of nonnegative symmetric matrices
and its application to graph theory. Czechoslovak Mathematical Journal, 1:619–
633, 1975.

Bibliography 449

212. Stephen E. Fienberg and Stanley Wasserman. Categorical data analysis of a single
sociometric relation. In Samuel Leinhardt, editor, Sociological Methodology, pages
156–192. Jossey Bass, 1981.

213. Stephen E. Fienberg and Stanley Wasserman. Comment on an exponential family
of probability distributions. Journal of the American Statistical Association,
76(373):54–57, March 1981.

214. Philippe Flajolet, Kostas P. Hatzis, Sotiris Nikoletseas, and Paul Spirakis. On
the robustness of interconnections in random graphs: A symbolic approach. The-
oretical Computer Science, 287(2):515–534, September 2002.

215. Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for
data base applications. Journal of Computer and System Sciences, 31(2):182–
209, 1985.

216. Lisa Fleischer. Building chain and cactus representations of all minimum cuts
from Hao-Orlin in the same asymptotic run time. Journal of Algorithms,
33(1):51–72, October 1999.

217. Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM,
5(6):345, 1962.

218. Lester R. Ford, Jr. and Delbert R. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8:399–404, 1956.

219. Lester R. Ford, Jr. and Delbert R. Fulkerson. A simple algorithm for finding
maximal network flows and an application to the Hitchcock problem. Canadian
Journal of Mathematics, 9:210–218, 1957.

220. Lester R. Ford, Jr. and Delbert R. Fulkerson. Flows in Networks. Princeton
University Press, 1962.

221. Scott Fortin. The graph isomorphism problem. Technical Report 96-20, Univer-
sity of Alberta, Edmonton, Canada, 1996.

222. Ove Frank and David Strauss. Markov graphs. Journal of the American Statistical
Association, 81:832–842, 1986.

223. Greg N. Frederickson. Ambivalent data structures for dynamic 2-edge-
connectivity and k smallest spanning trees. In Proceedings of the 32nd Annual
IEEE Symposium on Foundations of Computer Science (FOCS’91), pages 632–
641, October 1991.

224. Michael L. Fredman. New bounds on the complexity of the shortest path problem.
SIAM Journal on Computing, 5:49–60, 1975.

225. Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms for
minimum spanning trees and shortest paths. Journal of Computer and System
Sciences, 48(3):533–551, 1994.

226. Linton Clarke Freeman. A set of measures of centrality based upon betweeness.
Sociometry, 40:35–41, 1977.

227. Linton Clarke Freeman. Centrality in social networks: Conceptual clarification I.
Social Networks, 1:215–239, 1979.

228. Linton Clarke Freeman. The Development of Social Network Analysis: A Study
in the Sociology of Science. Booksurge Publishing, 2004.

229. Linton Clarke Freeman, Stephen P. Borgatti, and Douglas R. White. Centrality in
valued graphs: A measure of betweenness based on network flow. Social Networks,
13(2):141–154, 1991.

230. Noah E. Friedkin. Structural cohesion and equivalence explanations of social
homogeneity. Sociological Methods and Research, 12:235–261, 1984.

231. Delbert R. Fulkerson and George B. Dantzig. Computation of maximal flows in
networks. Naval Research Logistics Quarterly, 2:277–283, 1955.

232. Delbert R. Fulkerson and G. C. Harding. On edge-disjoint branchings. Networks,
6(2):97–104, 1976.

233. Zoltán Füredi and János Komlós. The eigenvalues of random symmetric matrices.
Combinatorica, 1(3):233–241, 1981.

450 Bibliography

234. Harold N. Gabow. Scaling algorithms for network problems. Journal of Computer
and System Sciences, 31(2):148–168, 1985.

235. Harold N. Gabow. Path-based depth-first search for strong and biconnected
components. Information Processing Letters, 74:107–114, 2000.

236. Zvi Galil. An O(V 5/3E2/3) algorithm for the maximal flow problem. Acta Infor-
matica, 14:221–242, 1980.

237. Zvi Galil and Giuseppe F. Italiano. Fully dynamic algorithms for edge connectiv-
ity problems. In Proceedings of the 23rd Annual ACM Symposium on the Theory
of Computing (STOC’91), pages 317–327, May 1991.

238. Zvi Galil and Amnon Naamad. An O(EV log2 V) algorithm for the maximal
flow problem. Journal of Computer and System Sciences, 21(2):203–217, October
1980.

239. Giorgio Gallo, Michail D. Grigoriadis, and Robert E. Tarjan. A fast paramet-
ric maximum flow algorithm and applications. SIAM Journal on Computing,
18(1):30–55, 1989.

240. Michael R. Garey and David S. Johnson. Computers and Intractability. A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

241. Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified
NP-complete graph problems. Theoretical Computer Science, 1:237–267, 1976.

242. Christian Gawron. An iterative algorithm to determine the dynamic user equilib-
rium in a traffic simulation model. International Journal of Modern Physics C,
9(3):393–408, 1998.

243. Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian
Data Analysis. Chapman & Hall Texts in Statistical Science. Chapman &
Hall/CRC, 2nd edition, June 1995.

244. Horst Gilbert. Random graphs. The Annals of Mathematical Statistics,
30(4):1141–1144, 1959.

245. Walter R. Gilks, Sylvia Richardson, and David J. Spiegelhalter. Markov Chain
Monte Carlo in Practice. Interdisciplinary Statistics. Chapman & Hall/CRC,
1996.

246. Chris Godsil. Tools from linear algebra. Research report, University of Waterloo,
1989.

247. Chris Godsil and Gordon Royle. Algebraic Graph Theory. Graduate Texts in
Mathematics. Springer-Verlag, 2001.

248. Andrew V. Goldberg. Finding a maximum density subgraph. Technical Re-
port UCB/CSB/ 84/171, Department of Electrical Engineering and Computer
Science, University of California, Berkeley, CA, 1984.

249. Andrew V. Goldberg. A new max-flow algorithm. Technical Memo
MIT/LCS/TM-291, MIT Laboratory for Computer Science, November 1985.

250. Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier.
Journal of the ACM, 45(5):783–797, 1998.

251. Andrew V. Goldberg and Satish Rao. Flows in undirected unit capacity networks.
SIAM Journal on Discrete Mathematics, 12(1):1–5, 1999.

252. Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-
flow problem. Journal of the ACM, 35(4):921–940, 1988.

253. Andrew V. Goldberg and Kostas Tsioutsiouliklis. Cut tree algorithms: An ex-
perimental study. Journal of Algorithms, 38(1):51–83, 2001.

254. Donald L. Goldsmith. On the second order edge connectivity of a graph. Con-
gressus Numerantium, 29:479–484, 1980.

255. Donald L. Goldsmith. On the n-th order edge-connectivity of a graph. Congressus
Numerantium, 32:375–381, 1981.

256. Gene H. Golub and Charles F. Van Loan. Matrix Computations. John Hopkins
University Press, 3rd edition, 1996.

Bibliography 451

257. Ralph E. Gomory and T.C. Hu. Multi-terminal network flows. Journal of SIAM,
9(4):551–570, December 1961.

258. Ralph E. Gomory and T.C. Hu. Synthesis of a communication network. Journal
of SIAM, 12(2):348–369, 1964.

259. Ramesh Govindan and Anoop Reddy. An analysis of Internet inter-domain topol-
ogy and route stability. In Proceedings of Infocom’97, 1997.

260. Fabrizio Grandoni and Giuseppe F. Italiano. Decremental clique problem. In
Proceedings of the 30th International Workshop on Graph-Theoretical Conecpts
in Computer Science (WG’04), Lecture Notes in Computer Science. Springer-
Verlag, 2004. To appear.

261. George Grätzer. General Lattice Theory. Birkhäuser Verlag, 1998.
262. Jerrold R. Griggs, Miklós Simonovits, and George Rubin Thomas. Extremal

graphs with bounded densities of small subgraphs. Journal of Graph Theory,
29(3):185–207, 1998.

263. Geoffrey Grimmett and Colin J. H. McDiarmid. On colouring random graphs.
Mathematical Proceedings of the Cambridge Philosophical Society, 77:313–324,
1975.

264. Dan Gusfield. Connectivity and edge-disjoint spanning trees. Information Pro-
cessing Letters, 16(2):87–89, 1983.

265. Dan Gusfield. Very simple methods for all pairs network flow analysis. SIAM
Journal on Computing, 19(1):143–155, 1990.

266. Ronald J. Gutman. Reach-based routing: A new approach to shortest path al-
gorithms optimized for road networks. In Proceedings of the 6th Workshop on
Algorithm Engineering and Experiments (ALENEX’04), Lecture Notes in Com-
puter Science, pages 100–111. SIAM, 2004.

267. Carsten Gutwenger and Petra Mutzel. A linear time implementation of SPQR-
trees. In Proceedings of the 8th International Symposium on Graph Drawing
(GD’00), volume 1984 of Lecture Notes in Computer Science, pages 70–90, Jan-
uary 2001.

268. Willem H. Haemers. Eigenvalue methods. In Alexander Schrijver, editor, Packing
and Covering in Combinatorics, pages 15–38. Mathematisch Centrum, 1979.

269. Per Hage and Frank Harary. Structural models in anthropology. Cambridge
University Press, 1st edition, 1983.

270. S. Louis Hakimi. On the realizability of a set of integers as degrees of the vertices
of a linear graph. SIAM Journal on Applied Mathematics, 10:496–506, 1962.

271. S. Louis Hakimi. Optimum location of switching centers and the absolute centers
and medians of a graph. Operations Research, 12:450–459, 1964.

272. Jianxiu Hao and James B. Orlin. A faster algorithm for finding the minimum
cut in a graph. In Proceedings of the 3rd Annual ACM–SIAM Symposium on
Discrete Algorithms (SODA’92), pages 165–174, January 1992.

273. Frank Harary. Status and contrastatus. Sociometry, 22:23–43, 1959.
274. Frank Harary. The maximum connectivity of a graph. Proceedings of the National

Academy of Science of the United States of America, 48(7):1142–1146, July 1962.
275. Frank Harary. A characterization of block-graphs. Canadian Mathematical Bul-

letin, 6(1):1–6, January 1963.
276. Frank Harary. Conditional connectivity. Networks, 13:347–357, 1983.
277. Frank Harary. General connectivity. In Khee Meng Koh and Hian-Poh Yap,

editors, Proceedings of the 1st Southeast Asian Graph Theory Colloquium, volume
1073 of Lecture Notes in Mathematics, pages 83–92. Springer-Verlag, 1984.

278. Frank Harary and Per Hage. Eccentricity and centrality in networks. Social
Networks, 17:57–63, 1995.

279. Frank Harary and Yukihiro Kodama. On the genus of an n-connected graph.
Fundamenta Mathematicae, 54:7–13, 1964.

452 Bibliography

280. Frank Harary and Helene J. Kommel. Matrix measures for transitivity and bal-
ance. Journal of Mathematical Sociology, 6:199–210, 1979.

281. Frank Harary and Robert Z. Norman. The dissimilarity characteristic of Husimi
trees. Annals of Mathematics, 58(2):134–141, 1953.

282. Frank Harary and Herbert H. Paper. Toward a general calculus of phonemic
distribution. Language: Journal of the Linguistic Society of America, 33:143–
169, 1957.

283. Frank Harary and Geert Prins. The block-cutpoint-tree of a graph. Publicationes
Mathematicae Debrecen, 13:103–107, 1966.

284. Frank Harary and Ian C. Ross. A procedure for clique detection using the group
matrix. Sociometry, 20:205–215, 1957.

285. David Harel and Yehuda Koren. On clustering using random walks. In Proceed-
ings of the 21st Conference on Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS’01), volume 2245 of Lecture Notes in Computer
Science, pages 18–41. Springer-Verlag, 2001.

286. Erez Hartuv and Ron Shamir. A clustering algorithm based on graph connectiv-
ity. Information Processing Letters, 76(4-6):175–181, 2000.

287. Johan H̊astad. Clique is hard to approximate within n1−ε. Acta Mathematica,
182:105–142, 1999.

288. Vaclav Havel. A remark on the existence of finite graphs (in czech). Casopis
Pest. Math., 80:477–480, 1955.

289. Taher H. Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking algo-
rithm for web search. IEEE Transactions on Knowledge and Data Engineering,
15(4):784–796, 2003.

290. Taher H. Haveliwala and Sepandar D. Kamvar. The second eigenvalue of the
Google matrix. Technical report, Stanford University, March 2003.

291. Taher H. Haveliwala, Sepandar D. Kamvar, and Glen Jeh. An analytical com-
parison of approaches to personalized PageRank. Technical report, Stanford
University, June 2003.

292. Taher H. Haveliwala, Sepandar D. Kamvar, Dan Klein, Christopher D. Manning,
and Gene H. Golub. Computing PageRank using power extrapolation. Technical
report, Stanford University, July 2003.

293. George R. T. Hendry. On graphs with a prescribed median. I. Journal of Graph
Theory, 9:477–487, 1985.

294. Michael A. Henning and Ortrud R. Oellermann. The average connectivity of a
digraph. Discrete Applied Mathematics, 140:143–153, May 2004.

295. Monika R. Henzinger and Michael L. Fredman. Lower bounds for fully dynamic
connectivity problems in graphs. Algorithmica, 22(3):351–362, 1998.

296. Monika R. Henzinger and Valerie King. Fully dynamic 2-edge connectivity al-
gorithm in polylogarithmic time per operation. SRC Technical Note 1997-004a,
Digital Equipment Corporation, Systems Research Center, Palo Alto, California,
June 1997.

297. Monika R. Henzinger and Johannes A. La Poutré. Certificates and fast algo-
rithms for biconnectivity in fully-dynamic graphs. SRC Technical Note 1997-021,
Digital Equipment Corporation, Systems Research Center, Palo Alto, California,
September 1997.

298. Monika R. Henzinger, Satish Rao, and Harold N. Gabow. Computing vertex
connectivity: New bounds from old techniques. In Proceedings of the 37th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’96), pages 462–
471, October 1996.

299. Wassily Hoeffding. Probability inequalities for sums of bounded random vari-
ables. Journal of the American Statistical Association, 58(301):713–721, 1963.

Bibliography 453

300. Karen S. Holbert. A note on graphs with distant center and median. In V. R.
Kulli, editor, Recent Sudies in Graph Theory, pages 155–158, Gulbarza, India,
1989. Vishwa International Publications.

301. Paul W. Holland, Kathryn B. Laskey, and Samuel Leinhardt. Stochastic block-
models: First steps. Social Networks, 5:109–137, 1983.

302. Paul W. Holland and Samuel Leinhardt. An exponential family of probability
distributions for directed graphs. Journal of the American Statistical Association,
76(373):33–50, March 1981.

303. Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic de-
terministic fully-dynamic algorithms for connectivity, minimum spanning tree,
2-edge, and biconnectivity. Journal of the ACM, 48(4):723–760, 2001.

304. Petter Holme. Congestion and centrality in traffic flow on complex networks.
Advances in Complex Systems, 6(2):163–176, 2003.

305. Petter Holme, Beom Jun Kim, Chang No Yoon, and Seung Kee Han. Attack
vulnerability of complex networks. Physical Review E, 65(056109), 2002.

306. Klaus Holzapfel. Density-based clustering in large-scale networks. PhD thesis,
Technische Universität München, 2004.

307. Klaus Holzapfel, Sven Kosub, Moritz G. Maaß, Alexander Offtermatt-Souza, and
Hanjo Täubig. A zero-one law for densities of higher order. Manuscript, 2004.

308. Klaus Holzapfel, Sven Kosub, Moritz G. Maaß, and Hanjo Täubig. The com-
plexity of detecting fixed-density clusters. In Proceedings of the 5th Italian Con-
ference on Algorithms and Complexity (CIAC’03), volume 2653 of Lecture Notes
in Computer Science, pages 201–212. Springer-Verlag, 2003.

309. John E. Hopcroft and Robert E. Tarjan. Finding the triconnected components
of a graph. Technical Report TR 72-140, CS Dept., Cornell University, Ithaca,
N.Y., August 1972.

310. John E. Hopcroft and Robert E. Tarjan. Dividing a graph into triconnected
components. SIAM Journal on Computing, 2(3):135–158, September 1973.

311. John E. Hopcroft and Robert E. Tarjan. Efficient algorithms for graph manipu-
lation. Communications of the ACM, 16(6):372–378, June 1973.

312. John E. Hopcroft and Robert E. Tarjan. Dividing a graph into triconnected
components. Technical Report TR 74-197, CS Dept., Cornell University, Ithaca,
N.Y., February 1974.

313. John E. Hopcroft and Robert E. Tarjan. Efficient planarity testing. Journal of
the ACM, 21(4):549–568, October 1974.

314. John E. Hopcroft and J.K. Wong. A linear time algorithm for isomorphism of
planar graphs. In Proceedings of the 6th Annual ACM Symposium on the Theory
of Computing (STOC’74), pages 172–184, 1974.

315. Radu Horaud and Thomas Skordas. Stereo correspondence through feature
grouping and maximal cliques. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 11(11):1168–1180, 1989.

316. Wen-Lian Hsu. O(MN) algorithms for the recognition and isomorphism problems
on circular-arc graphs. SIAM Journal on Computing, 24:411–439, 1995.

317. T.C. Hu. Optimum communication spanning trees. SIAM Journal on Computing,
3:188–195, 1974.

318. Xiaohan Huang and Victor Y. Pan. Fast rectangular matrix multiplication and
applications. Journal of Complexity, 14(2):257–299, 1998.

319. Charles H. Hubbell. In input-output approach to clique identification. Sociome-
try, 28:377–399, 1965.

320. Piotr Indyk and Jǐŕı Matoušek. Low-distortion embeddings of finite metric spaces.
In Jacob E. Goodman and Joseph O’Rourke, editors, Handbook of Discrete and
Computational Geometry. Chapman & Hall/CRC, April 2004.

321. Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM
Journal on Computing, 7(4):413–423, 1978.

454 Bibliography

322. Kenneth E. Iverson. A Programming Language. Wiley, 1962.
323. Matthew O. Jackson and Asher Wolinsky. A strategic model of social and eco-

nomic networks. Journal of Economic Theory, 71:474–486, 1996.
324. Anil K. Jain and Richard C. Dubes. Algorithms for clustering data. Prentice

Hall, 1988.
325. Anil K. Jain, M. N. Murty, and Patrick J. Flynn. Data clustering: a review. ACM

Computing Surveys, 31(3):264–323, 1999.
326. Glen Jeh and Jennifer Widom. Scaling personalized web search. In Proceedings of

the 12th International World Wide Web Conference (WWW12), pages 271–279,
Budapest, Hungary, 2003.

327. Hawoong Jeong, Sean P. Mason, Albert-László Barabási, and Zoltan N. Oltvai.
Lethality and centrality in protein networks. Nature, 411, 2001. Brief communi-
cations.

328. Mark Jerrum. Large cliques elude the Metropolis process. Randoms Structures
and Algorithms, 3(4):347–359, 1992.

329. Mark Jerrum and Alistair Sinclair. Fast uniform generation of regular graphs.
Theoretical Computer Science, 73:91–100, 1990.

330. Tang Jian. An O(20.304n) algorithm for solving maximum independent set prob-
lem. IEEE Transactions on Computers, C-35(9):847–851, 1986.

331. Bin Jiang. I/O- and CPU-optimal recognition of strongly connected components.
Information Processing Letters, 45(3):111–115, March 1993.

332. Cheng Jin, Qian Chen, and Sugih Jamin. Inet topology generator. Technical
Report CSE-TR-433-00, EECS Department, University of Michigan, 2000.

333. David S. Johnson, Jan Karel Lenstra, and Alexander H. G. Rinnooy Kan. The
complexity of the network design problem. Networks, 9:279–285, 1978.

334. David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. On gen-
erating all maximal independent sets. Information Processing Letters, 27(3):119–
123, 1988.

335. Ian T. Jolliffe. Principal Component Analysis. Springer-Verlag, 2002.
336. Camille Jordan. Sur les assemblages de lignes. Journal für reine und angewandte

Mathematik, 70:185–190, 1869.
337. Ferenc Juhász. On the spectrum of a random graph. Colloquia Mathematica

Societatis János Bolyai, 25:313–316, 1978.
338. Sepandar D. Kamvar, Taher H. Haveliwala, and Gene H. Golub. Adaptive meth-

ods for the computation of PageRank. Technical report, Stanford University,
April 2003.

339. Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, and
Gene H. Golub. Exploiting the block structure of the web for computing PageR-
ank. Technical report, Stanford University, March 2003.

340. Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, and
Gene H. Golub. Extrapolation methods for accelerating PageRank computa-
tions. In Proceedings of the 12th International World Wide Web Conference
(WWW12), pages 261–270, Budapest, Hungary, 2003.

341. Arkady Kanevsky, Roberto Tamassia, Guiseppe Di Battista, and Jianer Chen.
On-line maintenance of the four-connected components of a graph. In Proceed-
ings of the 32nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS’91), pages 793–801, October 1991.

342. Ravi Kannan and V. Vinay. Analyzing the structure of large graphs. Manuscript,
1999.

343. David R. Karger and Matthew S. Levine. Finding maximum flows in undirected
graphs seems easier than bipartite matching. In Proceedings of the 30th Annual
ACM Symposium on the Theory of Computing (STOC’98), pages 69–78, May
1998.

Bibliography 455

344. David R. Karger and Clifford Stein. An Õ(n2) algorithm for minimum cuts. In
Proceedings of the 25th Annual ACM Symposium on the Theory of Computing
(STOC’93), pages 757–765, May 1993.

345. Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller and James W. Thatcher, editors, Complexity of Computer Computations,
pages 85–103. Plenum Press, 1972.

346. Richard M. Karp. On the computational complexity of combinatorial problems.
Networks, 5:45–68, 1975.

347. Richard M. Karp. Probabilistic analysis of some combinatorial search problems.
In Joseph F. Traub, editor, Algorithms and Complexity: New Directions and Re-
cent Results, pages 1–19. Academic Press, 1976.

348. George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–
392, 1998.

349. Alexander V. Karzanov. On finding maximum flows in networks with spe-
cial structure and some applications. In Matematicheskie Voprosy Upravleniya
Proizvodstvom, volume 5, pages 66–70. Moscow State University Press, 1973. (In
Russian).

350. Alexander V. Karzanov. Determining the maximal flow in a network by the
method of preflows. Soviet Mathematics-Doklady, 15(2):434–437, 1974.

351. Alexander V. Karzanov and Eugeniy A. Timofeev. Efficient algorithm for finding
all minimal edge cuts of a nonoriented graph. Cybernetics, 22(2):156–162, 1986.

352. Leo Katz. A new status index derived from sociometric analysis. Psychometrika,
18(1):39–43, 1953.

353. Subhash Khot. Improved approximation algorithms for max clique, chromatic
number and approximate graph coloring. In Proceedings of the 42nd Annual
IEEE Symposium on Foundations of Computer Science (FOCS’01), pages 600–
609. IEEE Computer Society Press, 2001.

354. Subhash Khot. Ruling out PTAS for graph min-bisection, densest subgraph
and bipartite clique. In Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’04), pages 136–145. IEEE Computer
Society Press, 2004.

355. K. H. Kim and F. W. Roush. Group relationships and homomorphisms of boolean
matrix semigroups. Journal of Mathematical Psychology, 28:448–452, 1984.

356. Valerie King, Satish Rao, and Robert E. Tarjan. A faster deterministic maximum
flow algorithm. In Proceedings of the 3rd Annual ACM–SIAM Symposium on
Discrete Algorithms (SODA’92), pages 157–164, January 1992.

357. G. Kishi. On centrality functions of a graph. In N. Saito and T. Nishizeki,
editors, Proceedings of the 17th Symposium of Research Institute of Electrical
Communication on Graph Theory and Algorithms, volume 108 of Lecture Notes
in Computer Science, pages 45–52, Sendai, Japan, October 1980. Springer.

358. G. Kishi and M. Takeuchi. On centrality functions of a non-directed graph.
In Proceedings of the 6th Colloquium on Microwave Communication, Budapest,
1978.

359. Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM, 46(5):604–632, 1999.

360. Jon M. Kleinberg. The small-world phenomenon: An algorithmic perspective. In
Proceedings of the 32nd Annual ACM Symposium on the Theory of Computing
(STOC’00), May 2000.

361. Jon M. Kleinberg. An impossibility theorem for clustering. In Proceedings of
15th Conference: Neiral Information Processing Systems, Advances in Neural In-
formation Processing Systems, 2002.

362. Daniel J. Kleitman. Methods for investigating connectivity of large graphs. IEEE
Transactions on Circuit Theory, 16(2):232–233, May 1969.

456 Bibliography

363. Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small in-
duced subgraphs efficiently. Information Processing Letters, 74(3–4):115–121,
2000.

364. David Knoke and David L. Rogers. A blockmodel analysis of interorganizational
networks. Sociology and Social Research, 64:28–52, 1979.

365. Donald E. Knuth. Two notes on notation. American Mathematical Monthly,
99:403–422, 1990.

366. Dénes Kőnig. Graphen und Matrizen. Mat. Fiz. Lapok, 38:116–119, 1931.
367. Avrachenkov Konstantin and Nelly Litvak. Decomposition of the Google PageR-

ank and optimal linking strategy. Technical Report 5101, INRIA, Sophia An-
tipolis, France, January 2004.

368. Tamás Kővári, Vera T. Sós, and Pál Turán. On a problem of Zarankiewicz.
Colloquium Mathematicum, 3:50–57, 1954.

369. Paul L. Krapivsky, Sidney Redner, and Francois Leyvraz. Connectivity of growing
random networks. http://xxx.sissa.it/ps/cond-mat/0005139, September 2000.

370. Jan Kratochv́ıl. Perfect Codes in General Graphs. Academia Praha, 1991.
371. V. Krishnamoorthy, K. Thulasiraman, and M. N. S. Swamy. Incremental distance

and diameter sequences of a graph: New measures of network performance. IEEE
Transactions on Computers, 39(2):230–237, February 1990.

372. Joseph B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a
nonparametric hypothesis. Psychometrika, 29:1–27, March 1964.

373. Joseph B. Kruskal. Nonmetric multidimensional scaling: A numerical method.
Psychometrika, 29:115–129, June 1964.

374. Luděk Kučera. Expected complexity of graph partitioning problems. Discrete
Applied Mathematics, 57(2–3):193–212, 1995.

375. Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D. Sivakumar, An-
drew S. Tomkins, and Eli Upfal. Stochastic models for the web graph. In Proceed-
ings of the 41st Annual IEEE Symposium on Foundations of Computer Science
(FOCS’00), 2000.

376. Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew S.
Tomkins. Trawling the web for emerging cyber-communities. Computer Net-
works: The International Journal of Computer and Telecommunications Network-
ing, 31(11–16):1481–1493, 1999.

377. Johannes A. La Poutré, Jan van Leeuwen, and Mark H. Overmars. Maintenance
of 2- and 3-connected components of graphs, Part I: 2- and 3-edge-connected com-
ponents. Technical Report RUU-CS-90-26, Dept. of Computer Science, Utrecht
University, July 1990.

378. Amy N. Langville and Carl D. Meyer. Deeper inside PageRank. Technical report,
Department of Mathematics, North Carolina State University, Raleigh, NC, USA,
March 2004. accepted by Internet Mathematics.

379. Amy N. Langville and Carl D. Meyer. A survey of eigenvector methods of web
information retrieval. Technical report, Department of Mathematics, North Car-
olina State University, Raleigh, NC, USA, January 2004. accepted by The SIAM
Review.

380. Luigi Laura, Stefano Leonardi, Stefano Millozzi, and Ulrich Meyer. Algorithms
and experiments for the webgraph. In Proceedings of the 11th Annual European
Symposium on Algorithms (ESA’03), volume 2832 of Lecture Notes in Computer
Science, 2003.

381. Eugene L. Lawler. Cutsets and partitions of hypergraphs. Networks, 3:275–285,
1973.

382. Eugene L. Lawler, Jan Karel Lenstra, and Alexander H. G. Rinnooy Kan. Gen-
erating all maximal independent sets: NP-hardness and polynomial-time algo-
rithms. SIAM Journal on Computing, 9(3):558–565, 1980.

Bibliography 457

383. Chris Pan-Chi Lee, Gene H. Golub, and Stefanos A. Zenios. A fast two-stage
algorithm for computing PageRank. Technical Report SCCM-03-15, Stanford
University, 2003.

384. Erich L. Lehmann. Testing Statistical Hypotheses. Springer Texts in Statistics.
Springer-Verlag, 2nd edition, 1997.

385. Erich L. Lehmann and George Casella. Theory of Point Estimation. Springer
Texts in Statistics. Springer-Verlag, 2nd edition, 1998.

386. L. Ya. Leifman. An efficient algorithm for partitioning an oriented graph into
bicomponents. Cybernetics, 2(5):15–18, 1966.

387. Ronny Lempel and Shlomo Moran. The stochastic approach for link-structure
analysis (SALSA) and the TKC effect. Computer Networks: The International
Journal of Computer and Telecommunications Networking, 33:387–401, 2000. vol-
ume coincides with the Proceedings of the 9th international World Wide Web
conference on Computer networks.

388. Ronny Lempel and Shlomo Moran. Rank-stability and rank-similarity of link-
based web ranking algorithms in authority-connected graphs. Information Re-
trieval, special issue on Advances in Mathematics/Formal Methods in Informa-
tion Retrieval, 2004. in press.

389. Thomas Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Wi-
ley, 1990.

390. Linda Lesniak. Results on the edge-connectivity of graphs. Discrete Mathematics,
8:351–354, 1974.

391. Robert Levinson. Pattern associativity and the retrieval of semantic networks.
Computers & Mathematics with Applications, 23(2):573–600, 1992.

392. Nathan Linial, László Lovász, and Avi Wigderson. A physical interpretation of
graph connectivity and its algorithmic applications. In Proceedings of the 27th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’86), pages
39–48, October 1986.

393. Nathan Linial, László Lovász, and Avi Wigderson. Rubber bands, convex em-
beddings and graph connectivity. Combinatorica, 8(1):91–102, 1988.

394. François Lorrain and Harrison C. White. Structural equivalence of individuals in
social networks. Journal of Mathematical Sociology, 1:49–80, 1971.

395. Emmanuel Loukakis and Konstantinos-Klaudius Tsouros. A depth first search
algorithm to generate the family of maximal independent sets of a graph lexico-
graphically. Computing, 27:249–266, 1981.

396. László Lovász. Connectivity in digraphs. Journal of Combinatorial Theory Se-
ries B, 15(2):174–177, August 1973.

397. László Lovász. On the Shannon capacity of a graph. IEEE Transactions on
Information Theory, 25:1–7, 1979.

398. Anna Lubiw. Some NP-complete problems similar to graph isomorphism. SIAM
Journal on Computing, 10:11–24, 1981.

399. Fabrizio Luccio and Mariagiovanna Sami. On the decomposition of networks in
minimally interconnected subnetworks. IEEE Transactions on Circuit Theory,
CT-16:184–188, 1969.

400. R. Duncan Luce. Connectivity and generalized cliques in sociometric group struc-
ture. Psychometrika, 15:169–190, 1950.

401. R. Duncan Luce and Albert Perry. A method of matrix analysis of group struc-
ture. Psychometrika, 14:95–116, 1949.

402. Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in
polynomial time. Journal of Computer and System Sciences, 25:42–65, 1982.

403. Saunders Mac Lane. A structural characterization of planar combinatorial
graphs. Duke Mathematical Journal, 3:460–472, 1937.

404. Wolfgang Mader. Ecken vom Grad n in minimalen n-fach zusammenhängenden
Graphen. Archiv der Mathematik, 23:219–224, 1972.

458 Bibliography

405. Damien Magoni and Jean Jacques Pansiot. Analysis of the autonomous system
network topology. Computer Communication Review, 31(3):26–37, July 2001.

406. Vishv M. Malhotra, M. Pramodh Kumar, and S. N. Maheshwari. An O(|V |3) al-
gorithm for finding maximum flows in networks. Information Processing Letters,
7(6):277–278, October 1978.

407. Yishay Mansour and Baruch Schieber. Finding the edge connectivity of directed
graphs. Journal of Algorithms, 10(1):76–85, March 1989.

408. Maarten Marx and Michael Masuch. Regular equivalence and dynamic logic.
Social Networks, 25:51–65, 2003.

409. Rudi Mathon. A note on the graph isomorphism counting problem. Information
Processing Letters, 8(3):131–132, 1979.

410. David W. Matula. The cohesive strength of graphs. In The Many Facets of
Graph Theory, Proc., volume 110 of Lecture Notes in Mathematics, pages 215–
221. Springer-Verlag, 1969.

411. David W. Matula. k-components, clusters, and slicings in graphs. SIAM Journal
on Applied Mathematics, 22(3):459–480, May 1972.

412. David W. Matula. Graph theoretic techniques for cluster analysis algorithms.
In J. Van Ryzin, editor, Classification and clustering, pages 95–129. Academic
Press, 1977.

413. David W. Matula. Determining edge connectivity in O(nm). In Proceedings of the
28th Annual IEEE Symposium on Foundations of Computer Science (FOCS’87),
pages 249–251, October 1987.

414. James J. McGregor. Backtrack search algorithms and the maximal common
subgraph problem. Software - Practice and Experience, 12(1):23–24, 1982.

415. Brendan D. McKay. Practical graph isomorphism. Congressus Numerantium,
30:45–87, 1981.

416. Brendan D. McKay and Nicholas C. Wormald. Uniform generation of random
regular graphs of moderate degree. Journal of Algorithms, 11:52–67, 1990.

417. Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE: An
approach to universal topology generation. In Proceedings of the International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommu-
nication Systems (MASCOTS’01), 2001.

418. Alberto Medina, Ibrahim Matta, and John Byers. On the origin of power laws
in Internet topologies. Computer Communication Review, 30(2), April 2000.

419. Karl Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae, 10:96–
115, 1927.

420. Milena Mihail, Christos Gkantsidis, Amin Saberi, and Ellen W. Zegura. On
the semantics of internet topologies. Technical Report GIT-CC-02-07, Georgia
Institute of Technology, 2002.

421. Stanley Milgram. The small world problem. Psychology Today, 1:61, 1967.
422. Gary L. Miller and Vijaya Ramachandran. A new graph triconnectivity algorithm

and its parallelization. Combinatorica, 12(1):53–76, 1992.
423. Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,

and Uri Alon. Network motifs: Simple building blocks of complex networks.
Science, 298:824–827, October 2002.

424. J. Clyde Mitchell. Algorithms and network analysis: A test of some analyti-
cal procedures on Kapferer’s tailor shop material. In Linton Clarke Freeman,
Douglas R. White, and A. Kimbal Romney, editors, Research Methods in Social
Network Analysis, pages 365–391. George Mason University Press, 1989.

425. Bojan Mohar. Isoperimetric numbers of graphs. Journal of Combinatorial Theory
Series B, 47(3):274–291, 1989.

426. Bojan Mohar. Eigenvalues, diameter and mean distance in graphs. Graphs and
Combinatorics, 7:53–64, 1991.

Bibliography 459

427. Bojan Mohar. The laplacian spectrum of graphs. In Yousef Alavi, Gary Char-
trand, Ortrud R. Oellermann, and Allen J. Schwenk, editors, Graph Theory,
Combinatorics, and Applications, pages 871–898. Wiley, 1991.

428. Bojan Mohar and Svatopluk Poljak. Eigenvalues in combinatorial optimization.
In Richard A. Brualdi, Shmuel Friedland, and Victor Klee, editors, Combinato-
rial and Graph-Theoretical Problems in Linear Algebra, pages 107–151. Springer-
Verlag, 1993.

429. Robert J. Mokken. Cliques, clubs, and clans. Quality and Quantity, 13:161–173,
1979.

430. Burkhard Möller. Zentralitäten in Graphen. Diplomarbeit, Fachbereich Infor-
matik und Informationswissenschaft, Universität Konstanz, July 2002.

431. John W. Moon. On the diameter of a graph. Michigan Mathematical Journal,
12(3):349–351, 1965.

432. John W. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathemat-
ics, 3:23–28, 1965.

433. Robert L. Moxley and Nancy F. Moxley. Determining Point-Centrality in Un-
contrived Social Networks. Sociometry, 37:122–130, 1974.

434. N. C. Mullins, L. L. Hargens, P. K. Hecht, and Edward L. Kick. The group struc-
ture of cocitation clusters: A comparative study. American Sociological Review,
42:552–562, 1977.

435. Ian Munro. Efficient determination of the transitive closure of a directed graph.
Information Processing Letters, 1(2):56–58, 1971.

436. Siegfried F. Nadel. The Theory of Social Structure. Cohen & West LTD, 1957.
437. Kai Nagel. Traffic networks. In Stefan Bornholdt and Heinz Georg Schuster,

editors, Handbook of Graphs and Networks: From the Genome to the Internet.
Wiley-VCH, 2002.

438. Walid Najjar and Jean-Luc Gaudiot. Network resilience: A measure of network
fault tolerance. IEEE Transactions on Computers, 39(2):174–181, February 1990.

439. Georg L. Nemhause and Laurence A. Wolesy. Integer and Combinatorial Opti-
mization. Wiley, 1988.

440. Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph
problem. Commentationes Mathematicae Universitatis Carolinae, 26(2):415–419,
1985.

441. Mark E. J. Newman. Assortative mixing in networks. Physical Review Letters,
89(208701), 2002.

442. Mark E. J. Newman. Fast algorithm for detecting community structure in net-
works. arXiv cond-mat/0309508, September 2003.

443. Mark E. J. Newman. A measure of betweenness centrality based on random
walks. arXiv cond-mat/0309045, 2003.

444. Mark E. J. Newman and Michelle Girvan. Mixing patterns and community
structure in networks. In Romualdo Pastor-Satorras, Miguel Rubi, and Albert
Diaz-Guilera, editors, Statistical Mechanics of Complex Networks, volume 625 of
Lecture Notes in Physics, pages 66–87. Springer-Verlag, 2003.

445. Mark E. J. Newman and Michelle Girvan. Findind and evaluating community
structure in networks. Physical Review E, 69(2):026113, 2004.

446. Mark E. J. Newman and Juyong Park. Why social networks are different from
other types of networks. Physical Review E, 68(036122), 2003.

447. Mark E. J. Newman, Steven H. Strogatz, and Duncan J. Watts. Random graph
models of social networks. Proceedings of the National Academy of Science of the
United States of America, 99:2566–2572, 2002.

448. Mark E. J. Newman, Duncan J. Watts, and Steven H. Strogatz. Random graphs
with arbitrary degree distributions and their applications. Physical Review E,
64:026118, 2001.

460 Bibliography

449. Andrew Y. Ng, Alice X. Zheng, and Micheal I. Jordan. Link analysis, eigenvectors
and stability. In Proceedings of the senventeenth international joint conference
on artificial intelligence, pages 903–910, Seattle, Washington, 2001.

450. Victor Nicholson, Chun Che Tsai, Marc A. Johnson, and Mary Naim. A subgraph
isomorphism theorem for molecular graphs. In Proceedings of The International
Conference on Graph Theory and Topology in Chemistry, pages 226–230, 1987.

451. U. J. Nieminen. On the Centrality in a Directed Graph. Social Science Research,
2:371–378, 1973.

452. National laboratory for applied network research routing data, 1999.
453. Krzysztof Nowicki and Tom A.B. Snijders. Estimation and prediction for stochas-

tic blockstructures. Journal of the American Statistical Association, 96:1077–
1087, 2001.

454. Esko Nuutila and Eljas Soisalon-Soininen. On finding the strongly connected
components in a directed graph. Information Processing Letters, 49(1):9–14,
January 1994.

455. Ortrud R. Oellermann. A note on the �-connectivity function of a graph. Con-
gressus Numerantium, 60:181–188, December 1987.

456. Ortrud R. Oellermann. On the l-connectivity of a graph. Graphs and Combina-
torics, 3:285–291, 1987.

457. Maria G.R. Ortiz, Jose R.C. Hoyos, and Maria G.R. Lopez. The social networks of
academic performance in a student context of poverty in mexico. Social Networks,
26(2):175–188, 2004.

458. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageR-
ank citation ranking: Bringing order to the web. Manuscript, 1999.

459. Robert Paige and Robert E. Tarjan. Three partition refinement algorithms.
SIAM Journal on Computing, 16(6):973–983, 1987.

460. Ignacio Palacios-Huerta and Oscar Volij. The measurement of intellectual influ-
ence. Econometrica, 2004. accepted for publication.

461. Christopher Palmer, Phillip Gibbons, and Christos Faloutsos. Fast approximation
of the “neighbourhood” function for massive graphs. Technical Report CMUCS-
01-122, Carnegie Mellon Uiversity, 2001.

462. Christopher Palmer, Georgos Siganos, Michalis Faloutsos, Christos Faloutsos, and
Phillip Gibbons. The connectivity and fault-tolerance of the Internet topology.
In Workshop on Network-Related Data Management (NRDM 2001), 2001.

463. Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal. Using PageRank to
characterize Web structure. In Proceedings of the 8th Annual International Con-
ference on Computing Combinatorics (COCOON’02), volume 2387 of Lecture
Notes in Computer Science, pages 330–339, 2002.

464. Apostolos Papadopoulos and Yannis Manolopoulos. Structure-based similarity
search with graph histograms. In DEXA Workshop, pages 174–178, 1999.

465. Britta Papendiek and Peter Recht. On maximal entries in the principal eigen-
vector of graphs. Linear Algebra and its Applications, 310:129–138, 2000.

466. Panos M. Pardalos and Jue Xue. The maximum clique problem. Journal of
Global Optimization, 4:301–328, 1994.

467. Beresford N. Parlett. The Symmetric Eigenvalue Problem. SIAM, 1998.
468. Romualdo Pastor-Satorras, Alexei Vázquez, and Alessandro Vespignani. Dy-

namical and correlation properties of the internet. Physical Review Letters,
87(258701), 2001.

469. Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemics and immu-
nization in scale-free networks. In Stefan Bornholdt and Heinz Georg Schuster,
editors, Handbook of Graphs and Networks: From the Genome to the Internet.
Wiley-VCH, 2002.

470. Keith Paton. An algorithm for the blocks and cutnodes of a graph. Communi-
cations of the ACM, 14(7):468–475, July 1971.

Bibliography 461

471. Philippa Pattison. Algebraic Models for Social Networks. Cambridge University
Press, 1993.

472. Philippa Pattison and Stanley Wasserman. Logit models and logistic regressions
for social networks: II. Multivariate relations. British Journal of Mathematical
and Statistical Psychology, 52:169–193, 1999.

473. Marvin C. Paull and Stephen H. Unger. Minimizing the number of states in
incompletely specified sequential switching functions. IRE Transaction on Elec-
tronic Computers, EC-8:356–367, 1959.

474. Aleksandar Pekeč and Fred S. Roberts. The role assignment model nearly fits
most social networks. Mathematical Social Sciences, 41:275–293, 2001.

475. Claudine Peyrat. Diameter vulnerability of graphs. Discrete Applied Mathemat-
ics, 9, 1984.

476. Steven Phillips and Jeffery Westbrook. On-line load balancing and network flow.
Algorithmica, 21(3):245–261, 1998.

477. Jean-Claude Picard and Maurice Queyranne. A network flow solution to some
nonlinear 0-1 programming problems, with an application to graph theory. Net-
works, 12:141–159, 1982.

478. Jean-Claude Picard and H. D. Ratliff. Minimum cuts and related problems.
Networks, 5(4):357–370, 1975.

479. Gabriel Pinski and Francis Narin. Citation influence for journal aggregates of
scientific publications: theory, with application to the literature of physics. In-
formation Processing & Management, 12:297–312, 1976.

480. André Pönitz and Peter Tittmann. Computing network reliability in graphs
of restricted pathwidth. http://www.peter.htwm.de/publications/Reliability.ps,
2001.

481. R. Poulin, M.-C. Boily, and B.R. Mâsse. Dynamical systems to define centrality
in social networks. Social Networks, 22:187–220, 2000.

482. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes in C. Cambridge University Press, 1992.

483. C.H. Proctor and C. P. Loomis. Analysis of sociometric data. In Marie Ja-
hoda, Morton Deutsch, and Stuart W. Cook, editors, Research Methods in Social
Relations, pages 561–586. Dryden Press, 1951.

484. Paul W. Purdom, Jr. A transitive closure algorithm. Computer Sciences Tech-
nical Report #33, University of Wisconsin, July 1968.

485. Paul W. Purdom, Jr. A transitive closure algorithm. BIT, 10:76–94, 1970.
486. Pavlin Radoslavov, Hongsuda Tangmunarunkit, Haobo Yu, Ramesh Govindan,

Scott Shenker, and Deborah Estrin. On characterizing network topologies and
analyzing their impact on protocol design. Technical Report 00-731, Computer
Science Department, University of Southern California, February 2000.

487. Rajeev Raman. Recent results on the single-source shortest paths problem. ACM
SIGACT News, 28(2):81–87, 1997.

488. John W. Raymond, Eleanor J. Gardiner, and Peter Willet. RASCAL: Calculation
of graph similarity using maximum common edge subgraphs. The Computer
Journal, 45(6):631–644, 2002.

489. Ronald C. Read and Derek G. Corneil. The graph isomorphism disease. Journal
of Graph Theory, 1:339–363, 1977.

490. John H. Reif. A topological approach to dynamic graph connectivity. Information
Processing Letters, 25(1):65–70, 1987.

491. Franz Rendl and Henry Wolkowicz. A projection technique for partitioning the
nodes of a graph. Annals of Operations Research, 58:155–180, 1995.

492. John A. Rice. Mathematical Statistics and Data Analysis. Duxbury Press, 2nd
edition, 1995.

493. Fred S. Roberts and Li Sheng. NP-completeness for 2-role assignability. Tech-
nical Report 8, Rutgers Center for Operation Research, 1997.

462 Bibliography

494. Garry Robins, Philippa Pattison, and Stanley Wasserman. Logit models and
logistic regressions for social networks: III. Valued relations. Psychometrika,
64:371–394, 1999.

495. John Michael Robson. Algorithms for maximum independent sets. Journal of
Algorithms, 7(3):425–440, 1986.

496. Liam Roditty and Uri Zwick. On dynamic shortest paths problems. In Proceed-
ings of the 12th Annual European Symposium on Algorithms (ESA’04), volume
3221 of Lecture Notes in Computer Science, pages 580–591, 2004.

497. Arnon S. Rosenthal. Computing Reliability of Complex Systems. PhD thesis,
University of California, 1974.

498. Sheldon M. Ross. Introduction to Probability Models. Academic Press, 8th edition,
2003.

499. Britta Ruhnau. Eigenvector-centrality – a node-centrality? Social Networks,
22:357–365, 2000.

500. Gert Sabidussi. The centrality index of a graph. Psychometrika, 31:581–603,
1966.

501. Lee Douglas Sailer. Structural equivalence: Meaning and definition, computation
and application. Social Networks, 1:73–90, 1978.

502. Thomas Schank and Dorothea Wagner. Approximating clustering-coefficient and
transitivity. Technical Report 2004-9, Universität Karlsruhe, Fakultät für Infor-
matik, 2004.

503. Claus P. Schnorr. Bottlenecks and edge connectivity in unsymmetrical networks.
SIAM Journal on Computing, 8(2):265–274, May 1979.

504. Uwe Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer
and System Sciences, 37:312–323, 1988.

505. Alexander Schrijver. Theory of linear and integer programming. Wiley, 1986.
506. Alexander Schrijver. Paths and flows—a historical survey. CWI Quarterly,

6(3):169–183, September 1993.
507. Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency.

Springer-Verlag, 2003.
508. Joseph E. Schwartz. An examination of CONCOR and related methods for

blocking sociometric data. In D. R. Heise, editor, Sociological Methodology 1977,
pages 255–282. Jossey Bass, 1977.

509. Jennifer A. Scott. An Arnoldi code for computing selected eigenvalues of
sparse real unsymmetric matrices. ACM Transactions on Mathematical Software,
21:423–475, 1995.

510. John R. Seeley. The net of reciprocal influence. Canadian Journal of Psychology,
III(4):234–240, 1949.

511. Stephen B. Seidman. Clique-like structures in directed networks. Journal of
Social and Biological Structures, 3:43–54, 1980.

512. Stephen B. Seidman. Internal cohesion of LS sets in graphs. Social Networks,
5(2):97–107, 1983.

513. Stephen B. Seidman. Network structure and minimum degree. Social Networks,
5:269–287, 1983.

514. Stephen B. Seidman and Brian L. Foster. A graph-theoretic generalization of the
clique concept. Journal of Mathematical Sociology, 6:139–154, 1978.

515. Stephen B. Seidman and Brian L. Foster. A note on the potential for gen-
uine cross-fertilization between anthropology and mathematics. Social Networks,
172:65–72, 1978.

516. Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification prob-
lems. In Graph-Theoretic Concepts in Computer Science, 28th International
Workshop, WG 2002, volume 2573 of Lecture Notes in Computer Science, pages
379–390. Springer-Verlag, 2002.

Bibliography 463

517. Micha Sharir. A strong-connectivity algorithm and its applications in data flow
analysis. Computers & Mathematics with Applications, 7(1):67–72, 1981.

518. Yossi Shiloach. An O(n · I log2 I) maximum-flow algorithm. Technical Report
STAN-CS-78-702, Computer Science Department, Stanford University, December
1978.

519. Alfonso Shimbel. Structural parameters of communication networks. Bulletin of
Mathematical Biophysics, 15:501–507, 1953.

520. F. M. Sim and M. R. Schwartz. Does CONCOR find positions? Unpublished
manuscript, 1979.

521. Alistair Sinclair. Algorithms for Random Generation and Counting: A Markov
Chain Approach. Birkhäuser Verlag, 1993.

522. Brajendra K. Singh and Neelima Gupte. Congestion and Decongestion in a
communication network. arXiv cond-mat/0404353, 2004.

523. Mohit Singh and Amitabha Tripathi. Order of a graph with given vertex and edge
connectivity and minimum degree. Electronic Notes in Discrete Mathematics, 15,
2003.

524. Peter J. Slater. Maximin facility location. Journal of National Bureau of Stan-
dards, 79B:107–115, 1975.

525. Daniel D. Sleater and Robert E. Tarjan. A data structure for dynamic trees.
Journal of Computer and System Sciences, 26(3):362–391, June 1983.

526. Giora Slutzki and Oscar Volij. Scoring of web pages and tournaments – axioma-
tizations. Technical report, Iowa State University, Ames, USA, February 2003.

527. Christian Smart and Peter J. Slater. Center, median and centroid subgraphs.
Networks, 34:303–311, 1999.

528. Peter H. A. Sneath and Robert R. Sokal. Numerical Taxonomy: The Principles
and Practice of Numerical Classification. W.H. Freeman and Company, 1973.

529. Tom A.B. Snijders. Markov chain monte carlo estimation of exponential random
graph models. Journal of Social Structure, 3(2), April 2002.

530. Tom A.B. Snijders and Krzysztof Nowicki. Estimation and prediction of stochas-
tic blockmodels for graphs with latent block structure. Journal of Classification,
14:75–100, 1997.

531. Anand Srivastav and Katja Wolf. Finding dense subgraphs with semidefinite
programming. In Proceedings of the 1st International Workshop on Approxi-
matin Algorithms for Combinatorial Optimization (APPROX’98), volume 1444
of Lecture Notes in Computer Science, pages 181–191. Springer-Verlag, 1998.

532. Angelika Steger and Nicholas C. Wormald. Generating random regular graphs
quickly. Combinatorics, Probability and Computing, 8:377–396, 1999.

533. Karen A. Stephenson and Marvin Zelen. Rethinking centrality: Methods and
examples. Social Networks, 11:1–37, 1989.

534. Volker Stix. Finding all maximal cliques in dynamic graphs. Computational
Optimization and Applications, 27(2):173–186, 2004.

535. Josef Stoer and Roland Bulirsch. Introduction to Numerical Analysis. Springer-
Verlag, 1993.

536. Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. Journal of the
ACM, 44(4):585–591, 1997.

537. Sun Microsystems. Sun Performance Library User’s Guide.
538. Melvin Tainiter. Statistical theory of connectivity I: Basic definitions and prop-

erties. Discrete Mathematics, 13(4):391–398, 1975.
539. Melvin Tainiter. A new deterministic network reliability measure. Networks,

6(3):191–204, 1976.
540. Hongsuda Tangmunarunkit, Ramesh Govindan, Sugih Jamin, Scott Shenker, and

Walter Willinger. Network topologies, power laws, and hierarchy. Technical
Report 01-746, Computer Science Department, University of Southern California,
2001.

464 Bibliography

541. Hongsuda Tangmunarunkit, Ramesh Govindan, Sugih Jamin, Scott Shenker, and
Walter Willinger. Network topologies, power laws, and hierarchy. ACM SIG-
COMM Computer Communication Review, 32(1):76, 2002.

542. Robert E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal
on Computing, 1(2):146–160, June 1972.

543. Robert E. Tarjan. Finding a maximum clique. Technical Report 72-123, Depart-
ment of Computer Science, Cornell University, Ithaca, NY, 1972.

544. Robert E. Tarjan. A note on finding the bridges of a graph. Information Pro-
cessing Letters, 2(6):160–161, 1974.

545. Robert E. Tarjan and Anthony E. Trojanowski. Finding a maximum independent
set. SIAM Journal on Computing, 6(3):537–546, 1977.

546. Mikkel Thorup. On RAM priority queues. In Proceedings of the 7th Annual
ACM–SIAM Symposium on Discrete Algorithms (SODA’96), pages 59–67, 1996.

547. Mikkel Thorup. Undirected single source shortest paths with positive integer
weights in linear time. Journal of the ACM, 46(3):362–394, 1999.

548. Mikkel Thorup. On ram priority queues. SIAM Journal on Computing, 30(1):86–
109, 2000.

549. Mikkel Thorup. Fully dynamic all-pairs shortest paths: Faster and allowing neg-
ative cycles. In Proceedings of the 9th Scandinavian Workshop on Algorithm
Theory (SWAT’04), volume 3111 of Lecture Notes in Computer Science, pages
384–396. Springer-Verlag, 2004.

550. Gottfried Tinhofer. On the generation of random graphs with given properties
and known distribution. Appl. Comput. Sci. Ber. Prakt. Inf., 13:265–296, 1979.

551. Po Tong and Eugene L. Lawler. A faster algorithm for finding edge-disjoint
branchings. Information Processing Letters, 17(2):73–76, August 1983.

552. Miroslaw Truszczyński. Centers and centroids of unicyclic graphs. Mathematica
Slovaca, 35:223–228, 1985.

553. Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. A new al-
gorithm for generating all the maximal independent sets. SIAM Journal on
Computing, 6(3):505–517, 1977.

554. Pál Turán. On an extremal problem in graph theory. Matematikai és Fizikai
Lapok, 48:436–452, 1941.

555. William T. Tutte. A theory of 3-connected graphs. Indagationes Mathematicae,
23:441–455, 1961.

556. William T. Tutte. Connectivity in graphs. Number 15 in Mathematical Exposi-
tions. University of Toronto Press, 1966.

557. Salil P. Vadhan. The complexity of counting in sparse, regular, and planar graphs.
SIAM Journal on Computing, 31(2):398–427, 2001.

558. Thomas W. Valente and Robert K. Foreman. Integration and radiality: measuring
the extent of an individual’s connectedness and reachability in a network. Social
Networks, 1:89–105, 1998.

559. Leslie G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8:189–201, 1979.

560. Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8(3):410–421, 1979.

561. Edwin R. van Dam and Willem H. Haemers. Which graphs are determined by
their spectrum? Linear Algebra and its Applications, 373:241–272, 2003.

562. René van den Brink and Robert P. Gilles. An axiomatic social power index for
hierarchically structured populations of economic agents. In Robert P. Gilles and
Picter H.M. Ruys, editors, Imperfections and Behaviour in Economic Organiza-
tions, pages 279–318. Kluwer Academic Publishers Group, 1994.

563. René van den Brink and Robert P. Gilles. Measuring domination in directed
networks. Social Networks, 22(2):141–157, May 2000.

Bibliography 465

564. Stijn M. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, Uni-
versity of Utrecht, 2000.

565. Santosh Vempala, Ravi Kannan, and Adrian Vetta. On clusterings - good, bad
and spectral. In Proceedings of the 41st Annual IEEE Symposium on Foundations
of Computer Science (FOCS’00), pages 367–378, 2000.

566. The Stanford WebBase Project. http://www-diglib.stanford.edu/ testbed/doc2/-
WebBase/.

567. Yuchung J. Wang and George Y. Wong. Stochastic blockmodels for directed
graphs. Journal of the American Statistical Association, 82:8–19, 1987.

568. Stephen Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–
12, 1962.

569. Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods and
Applications. Cambridge University Press, 1994.

570. Stanley Wasserman and Philippa Pattison. Logit models and logistic regressions
for social networks: I. An introduction to Markov graphs and p∗. Psychometrika,
60:401–426, 1996.

571. David S. Watkins. QR-like algorithms for eigenvalue problems. Journal of Com-
putational and Applied Mathematics, 123:67–83, 2000.

572. Alison Watts. A dynamic model of network formation. Games and Economic
Behavior, 34:331–341, 2001.

573. Duncan J. Watts and Steven H. Strogatz. Collective dynamics of “small-world”
networks. Nature, 393:440–442, 1998.

574. Bernard M. Waxman. Routing of multipoint connections. IEEE Journal on
Selected Areas in Communications, 6(9):1617–1622, 1988.

575. Alfred Weber. Über den Standort der Industrien. J. C. B. Mohr, Tübingen, 1909.
576. Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2nd edition, 2001.
577. Jeffery Westbrook and Robert E. Tarjan. Maintaining bridge-connected and

biconnected components on-line. Algorithmica, 7:433–464, 1992.
578. Douglas R. White and Stephen P. Borgatti. Betweenness Centrality Measures

for Directed Graphs. Social Networks, 16:335–346, 1994.
579. Douglas R. White and Karl P. Reitz. Graph and semigroup homomorphisms on

networks of relations. Social Networks, 5:193–234, 1983.
580. Scott White and Padhraic Smyth. Algorithms for estimating relative importance

in networks. In Proceedings of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD’03), 2003.

581. Hassler Whitney. Congruent graphs and the connectivity of graphs. American
Journal of Mathematics, 54:150–168, 1932.

582. R. W. Whitty. Vertex-disjoint paths and edge-disjoint branchings in directed
graphs. Journal of Graph Theory, 11(3):349–358, 1987.

583. Harry Wiener. Structural determination of paraffin boiling points. Journal of
the American Chemical Society, 69:17–20, 1947.

584. Eugene P. Wigner. Characteristic vectors of bordered matrices with infinite
dimensions. Annals of Mathematics, 62:548–564, 1955.

585. Eugene P. Wigner. On the distribution of the roots of certain symmetric matrices.
Annals of Mathematics, 67:325–327, 1958.

586. Herbert S. Wilf. generatingfunctionology. pub-ap, 1994.
587. James H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, 1965.
588. Thomas Williams and Colin Kelley. Gnuplot documentation.
589. Gerhard Winkler. Image Analysis, Random Fields, and Markov Chain Monte

Carlo Methods. Springer-Verlag, 2nd edition, 2003.
590. Gerhard J. Woeginger. Exact algorithms for NP-hard problems: A survey. In

Proceedings of the 5th International Workshop on Combinatorial Optimization
(Aussois’2001), volume 2570 of Lecture Notes in Computer Science, pages 185–
207. Springer-Verlag, 2003.

466 Bibliography

591. Kesheng Wu and Hort Simon. Thick-restart Lanczos method for large symmet-
ric eigenvalue problems. SIAM Journal on Matrix Analysis and Applications,
22(2):602–616, 2000.

592. Stefan Wuchty and Peter F. Stadler. Centers of complex networks. Journal of
Theoretical Biology, 223:45–53, 2003.

593. Norman Zadeh. Theoretical efficiency of the Edmonds-Karp algorithm for com-
puting maximal flows. Journal of the ACM, 19(1):184–192, 1972.

594. Bohdan Zelinka. Medians and peripherians tree. Archivum Mathematicum
(Brno), 4:87–95, 1968.

595. Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix
multiplication. Electronic Colloquium on Computational Complexity (ECCC),
60(7), 2000.

This bibliography is available in BibTEX format from www.inf.uni-konstanz.de/
algo/gina/gina.bib.

Index

acceptance region 281
adjacent 7
Aitken extrapolation 75
algorithm
– ANF 299
– betweenness centrality 68
– BlockRank 78
– Burt 269
– Dijkstra’s 63, 166
– dynamic PageRank approximation

80–82
– Floyd-Warshall 65, 298
– HITS 54
– Kleinberg 346
– Lanczos 387
– McKay’s nauty 321, 329
– MDS
– – Bădoiu 262
– – Kruskal 259
– PageRank approximation 74
– power iteration 67
– Prim’s 166
– SALSA 55
– shortcut value 70–72
– Stoer and Wagner 166
– triangle counting (AYZ) 304
all-pairs shortest paths problem see

APSP
α-magnifier 396
APSP 10, 64
– dynamic 65
Arnoldi method 388
assortative mixing 112
attractiveness 279
authority 54, 107, 137
automorphism 13
– group 319

β-measure 99
BFS 9, 63, 68, 298
bisection width 399

block see also component, biconnected,
254

– cardinality 272
– density 272
– parameter 284
blockmodel 253
blockmodeling 253
– a posteriori 284
– a priori 284
– generalized 274
– stochastic 275
BlockRank 78, 91
bow tie structure 77, 429
breadth-first search see BFS

cactus 148, 157–158
Carrington-Heil-Berkowitz index 273
CATREGE 227
center 25
centrality
– bargaining 51
– betweenness 29–32
– – algorithm 68
– – approximation 74
– – current-flow 41
– – edge 31
– – max-flow 37, 66
– – random-walk 43
– – relative 88
– – shortest-path 29
– Botafogo et al. 57
– centroid value 23
– closeness 22
– – approximation 72
– – current-flow 42
– – random-walk 45
– cumulative number of nominations

57–59
– degree 20
– eccentricity 22
– edge centrality 34
– edge value 34

468 Index

– eigenvector 49
– Hubbell 50
– Markov 45
– PageRank see PageRank
– radiality 23
– reach 32
– shortcut value 38
– status 47
– stress 28–29
– vertex 96, 98, 104
– vitality 36
– Wiener index 38
centralization 59
characteristic polynomial 374
chromatic number 397, 407
clique 114–115
– clan 115
– club 115
– maximal clique 114
– maximum clique 114, 339
cluster distance measure 269
clustering 179
– coefficient 344
– function 212
– fuzzy 209
– hierarchical 268
– nested 210
clustering coefficient 302, 303, 317
– weighted 304
co-cited 111
coarsening 179
cohesiveness 418–419
colored relational structure 285
coloring 397
component
– biconnected 169–170
– connected 9
– strongly connected 9, 170–172
– triconnected 172–176
– weakly connected 9
CONCOR 270
conditional independence 288
conductance 184
configuration 259, 290
– isomorphism 290
connectivity 11–12, 422
– algebraic 394
– conditional 421–422
– – edge 421
– edge 11
– mean 425–426
– vertex 11
core 129
core-periphery model 49

correlation coefficient 257
correlation matrix 257, 270
cospectral 379, 381
coverage 182
critical value 281
current 41–42
cut 10, 147
– s-t- 10
– minimum 11, 147
cut function 179
cut tree 149
cut-edge 143
cut-vertex 143
cutset see separator
cycle 9

data mining 178
degree 8
– average degree 133, 343, 393
– distribution 294
– – complementary cumulative 316
– in-degree 8
– minimum m-degree 419–420
– out-degree 8
degree sequence 355–364
– generating function 357–361
– graph construction 362
– realizable 361
degree vector 334
density 131
– degree of order 132
– error 273
depth-first search see DFS
destination
– of an edge 7
DFS 9, 123, 169, 172
diameter 296, 394, 422
– effective 297
– node 317
diameter sequence
– edge deleted 423–424
– vertex deleted 423–424
disconnection probability 434
discrete probability space 14
distance 10, 295
– average 295
– average connected distance 426
– average path distance 344
– characteristic 295
– Euclidean 257, 367
– MCES distance 338
– MCIS distance 338
– mean distance 394
– σ-distance 335
distortion 263, 301, 317

Index 469

– global 302
distribution
– degree 348
– exponential 278
– Markov field 289
– null 282
– p1 279
– random field 289
dyad 278, 285

eccentricity 21, 295
– effective 297
edge 7
– parallel 8
edge graph 34
edit distance 332
effective diameter 431
eigengap 76, 108
eigenvalue 14, 48, 58, 66, 348, 373
– histogram 408
– interlacing 388
eigenvector 14, 49, 58, 66, 373
equivalence 253
– automorphic 240
– bundle 251
– compositional 250
– local role 251
– multiplex regular 245
– orbit 241
– perfect 241
– regular 223, 244
– regular relative 243
– strong structural 218
– structural 220, 324
– weak role 250
– Winship-Pattison 251
event 14
expansiveness 279
expectation maximization 203

facility location 20
flow network 10, 158–163
– type 1 160
– type 2 160
flow tree 148
fragmentation 426

Gauss-Seidel iteration 77
generating function 356
GI see graph isomorphism
Gibbs sampling 287
Gomory-Hu Tree see cut tree
goodness-of-fit 273
Google 2
graft 390

– symmetric 391
grap
– isomorphism 319–331
graph 7
– block 78
– dependency 289
– directed 7
– distance metric 332
– histogram 334
– incidence 35
– isomorphism 13, 318
– loop-free 8
– matching 332
– multiplex 245
– product 392
– – modular 339
– quasi-stable 105
– random see random graph
– reduced 254
– regular 9, 364
– similarity 332
– simple 8
– stable 105
– sum 391
– undirected 7
– unstable 105
– weighted 8
– with multiple relations 244
graph model 342
– copying model 350
– Erdős-Rényi 342, 410
– initial attractiveness 350
– p∗ 288–290
– p1 276–281
– preferential attachment 348
– random 342
– small world 344
– Waxman 367
graph process 349

hierarchy 179
h-neighborhood 296
hop plot 296, 317
hub see authority
hypothesis
– alternative 281
– composite 281
– null 281
– simple 281

ILP 12, 190
image matrix 253
– computing 271–272
incremental distance sequence
– edge-deleted 423–424

470 Index

– vertex-deleted 423–424
independence number 398, 421
integer linear program see ILP
inter-cluster edges 179
interconnectedness 426
interlacing 388
Internet Movie Database 5
Internet topology 368–371
intra-cluster edges 179
inverse participation ratio 407
isomorphism 19
isoperimetric number 394

lambda set 142
λ-covering 163
laminar 157
lattice 220–221, 225
law of large numbers 286
likelihood
– equation 280
– function 280
– maximum likelihood estimation 280
line graph see edge graph
linear program 12
– integer see ILP
Linearized Chord Diagram 350
linkage process 198
local search 345
log-odds ratio 279
Luccio-Sami set 141
lumpable 79

margin 279
Markov chain 14, 52, 288, 363
– aperiodic 15
– ergodic reversible 185
– homogeneous 14
– irreducible 15
Markov condition 14
matrix
– adjacency 13, 44, 48, 58
– correlation 257, 270
– fundamental 46
– generalized adjacency 285
– image 253
– incidence 13, 380
– Laplacian 13, 41, 379
– normalized Laplacian 13, 381
– P-permuted adjacency 254
– stochastic 15
– transition 15, 52
max-flow problem 10, 36, 66, 135
maximum likelihood estimation 280
median 26
min-cost flow problem 11

monotonicity constraint 259
motif 306
motifs 340
multi-level approach 207
multidimensional scaling 258–268
multigraph 8

neighborhood 274
– h- 296
network 7
network flow 10–11
network games 364
network resilience 435
network statistics 293
Neyman-Pearson lemma 282
non-complete extended p-sum 392
normal set 142
NP-completeness 12

Oracle of Bacon 5
origin
– of an edge 7

p∗-model 288–290
p1-model 276–281
PageRank 2, 53
– approximation 74
– dynamic approximation 80–82
– modular 91
– personalized 89
– topic sensitive 90
pairing 351
parameter estimation 202
particle hopping network 83
partition 100, 217
– equitable 239, 324
– orbit 241, 323
– vertex 323
path 9
– shortest see shortest path
path algebra 297
path distance 335
performance 187
persistence 422–423
– edge 422
– vector 423
personalization vector 89
plex 126
polynomial
– characteristic 14, 374
– reliability 432–433
position 253
potential 41
power iteration 53
power law 294, 316, 348, 406

Index 471

preferential attachment 348–350, 410
– continuum theory 352
– master equation 353
– rate equation 354
probabilistic resilience 435
product-moment coefficient 257
productivity see expansiveness

QR-decomposition 386

radius 25, 295
random graph 342, 408–415
random walk 15
rank-stable 110
ranking
– distance 110
– method 102
– problem 102
RASCAL 339
refinement 179
regular interior 227
rejection region 281
role 216
– primitive 224
role assignment 217
– exact 239
– multiplex regular 245
– problem 234
– regular 223, 244
– strong structural 218
– structural 220
role graph 218, 244
routing number 397

sample space 14
scatter diagram 260
search engine 2
semicircle law 409
semigroup 247
separator
– edge 11
– vertex 11
shifting process 201
shortest path 10, 28–34, 297
– all-pairs 295, 298
– disjoint 300
– distinct 300
– – number of 300, 317
– single-source 296, 298
single-source shortest paths problem

see SSSP
spectral density 408
spectrum 14, 374–385
– adjacency 375
– Laplacian 380

splitting process 198
SSSP 10, 63
stress 260
structural index 19, 59
subgraph 9, 336
– isomorphism 337

test statistic 281
– error types 281
– likelihood ratio 282
– log likelihood ratio 282
Theorem
– Courant-Fischer 382
– Edmonds’ Branching 147
– Fiedler’s 384
– Ford-Fulkerson 11, 145
– Hammersley-Clifford 289
– Kotzig’s 147
– Matrix-Tree 380
– Max-Flow Min-Cut 10, 145
– Menger’s 11, 145
– Turán’s 114
– Whitney’s 145
tightly-knit community 55
toughness 420–421
– edge- 421
trace 374
traffic-simulation 83
transition 274
transitivity 303, 317
– index of 317
– ratio 317
transposition 274
traversal set 33
triangle 302
triple 303, 317

vertex 7
vertex expansion 396

walk 9, 120, 132
– random 43, 52, 92, 142, 185, 204

	Frontmatter
	Introduction
	Fundamentals
	Part I Elements
	Centrality Indices
	Algorithms for Centrality Indices
	Advanced Centrality Concepts

	Part II Groups
	Local Density
	Connectivity
	Clustering
	Role Assignments
	Blockmodels
	Network Statistics
	Network Comparison
	Network Models
	Spectral Analysis
	Robustness and Resilience

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

