

Lecture Notes in Computer Science 3393
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Hans-Jörg Kreowski Ugo Montanari
Fernando Orejas Grzegorz Rozenberg
Gabriele Taentzer (Eds.)

Formal Methods
in Software
and Systems Modeling

Essays Dedicated to Hartmut Ehrig
on the Occasion of His 60th Birthday

13

Volume Editors

Hans-Jörg Kreowski
University of Bremen, Department of Computer Science
28334 Bremen, Germany
E-mail: kreo@informatik.uni-bremen.de

Ugo Montanari
Università di Pisa, Dipartimento di Informatica
Via F. Buonarroti 2, 56127 Pisa, Italy
E-mail: ugo@di.unipi.it

Fernando Orejas
Universitat Politècnica de Catalunya, Department LSI
Jordi Girona 1-3, 08034 Barcelona, Spain
E-mail: orejas@lsi.upc.es

Grzegorz Rozenberg
Universiteit Leiden, Leiden Institute of Advanced Computer Science
2300 RA Leiden, The Netherlands
E-mail: rozenberg@liacs.nl

Gabriele Taentzer
Technische Universität Berlin, Fakultät IV
Franklinstr. 28/29, 10587 Berlin, Germany
E-mail: gabi@cs.tu-berlin.de

Library of Congress Control Number: 2005920315

CR Subject Classification (1998): F.4.2-3, F.3, D.2, G.2.2, D.3

ISSN 0302-9743
ISBN 3-540-24936-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11392910 06/3142 5 4 3 2 1 0

Hartmut Ehrig

Preface

This Festschrift is dedicated to Hartmut Ehrig on the occasion of his 60th birth-
day on December 6, 2004. The contributions discuss various aspects of the formal
and visual modeling of software and systems. The authors are some of Hartmut
Ehrig’s former students and collaborators who are established researchers in their
fields. All essays were invited, but they nevertheless went through a reviewing
process.

Hartmut Ehrig is a leading, very enthusiastic and highly inspiring scientist
who has made lasting contributions to the theoretical foundations of software
and system modeling and in particular to graph transformation, algebraic spe-
cification and net theory. For more than 30 years his name has been associated
with the double-pushout approach, which is the most frequently used and most
successful framework in graph transformation. For nearly as long, his work on
structuring, parameterization, refinement, and modularization of algebraic spe-
cifications has helped to develop this area in an important and sustainable way.
Also net theory owes him a very powerful notion and a fundamental study of
high-level nets. While Hartmut Ehrig is a category theorist and has advocated
the use of category theory in most of his research, he has also undertaken many
successful efforts to cooperate with researchers in applied areas such as database
systems, software engineering, and even mechanical engineering.

The essays in this book are divided into three parts, each consisting of eight
papers: graph transformation, algebraic specification and logic, and formal and
visual modeling. Five papers from the first part concern syntactic and semantic
aspects of graph transformation (concurrent semantics, interconnection of graph
transformation modules, graph processes, graph transformation with variables,
and changing labels in the double-pushout approach). The other three papers
relate graph transformation with net theory, software engineering, and molecular
biology. The papers from the second part address a wide spectrum of topics
ranging from data types, coalgebras and interfaces, through functorial semantics
of rewrite theories and interactive formal reasoning, to the integration of logics
and schema theory. Moreover, one paper relates conditional specifications and
interaction charts. The third part contains all further contributions concerning
formal and visual modeling including four papers on statechart models, link
graphs, architectural connectors for UML, and concurrent object-based systems.
Two papers deal with Petri nets considering them as a foundation for a system
theory for transportation on the one hand and providing them with a loose
semantics on the other hand. And the other two papers in this part discuss nested
constraints for high-level systems and transformation units with interlinking
semantics.

We felt privileged to be able to edit this volume for Hartmut, expressing in
this way our admiration for his scientific work and our thanks for his friendship
and collaboration. We would like to express our gratitude to all contributors to

VIII Preface

this volume. We are also indebted to the referees and in particular to Roberto
Bruni and Horst Reichel, who served as reviewers without being authors. We are
grateful to Peter Knirsch for his support in editing the book and careful unifica-
tion of all the print files. Very special thanks go to DADARA, who provided the
beautiful cover illustration. Finally, we would like to acknowledge the excellent
cooperation with Springer, the publisher of this Festschrift.

Dezember 2004 Hans-Jörg Kreowski
Ugo Montanari

Fernando Orejas
Grzegorz Rozenberg

Gabriele Taentzer

Table of Contents

Bibliography of Hartmut Ehrig . XI

Graph Transformation

On the Concurrent Semantics of Algebraic Graph Grammars 3
Paolo Baldan and Andrea Corradini

From Graph Transformation to Software Engineering and Back 24
Luciano Baresi and Mauro Pezzè

Flexible Interconnection of Graph Transformation Modules –
A Systematic Approach . 38

Gregor Engels, Reiko Heckel, and Alexey Cherchago

Simulating Algebraic High-Level Nets
by Parallel Attributed Graph Transformation . 64

Claudia Ermel, Gabriele Taentzer, and Roswitha Bardohl

Graph Processes with Fusions: Concurrency by Colimits, Again 84
Fabio Gadducci and Ugo Montanari

Graph Transformation with Variables . 101
Berthold Hoffmann

Graph Transformation in Molecular Biology . 116
Francesc Rosselló and Gabriel Valiente

Changing Labels in the Double-Pushout Approach Can Be
Treated Categorically . 134

Hans J. Schneider

Algebraic Specification and Logic

Modules, Brains and Schemas . 153
Michael A. Arbib

From Conditional Specifications to Interaction Charts –
A Journey from Formal to Visual Means to Model Behaviour 167

Egidio Astesiano and Gianna Reggio

Algebraic Properties of Interfaces . 190
Michael Löwe, Harald König, and Christoph Schulz

∈T -Integration of Logics . 204
Bernd Mahr and Sebastian Bab

X Table of Contents

Functorial Semantics of Rewrite Theories . 220
José Meseguer

Expander2 – Towards a Workbench for Interactive Formal Reasoning 236
Peter Padawitz

Relationships Between Equational and Inductive Data Types 259
Eric G. Wagner

Cofree Coalgebras for Signature Morphisms . 275
Uwe Wolter

Formal and Visual Modeling

Nested Constraints and Application Conditions
for High-Level Structures . 293

Annegret Habel and Karl-Heinz Pennemann

Synthesis Revisited: Generating Statechart Models
from Scenario-Based Requirements . 309

David Harel, Hillel Kugler, and Amir Pnueli

Main Concepts of Networks of Transformation Units
with Interlinking Semantics . 325

Dirk Janssens, Hans-Jörg Kreowski, and Grzegorz Rozenberg

Embeddings and Contexts for Link Graphs . 343
Robin Milner

Towards Architectural Connectors for UML . 352
Fernando Orejas and Sonia Pérez

Loose Semantics of Petri Nets . 370
Julia Padberg and Hans-Jörg Kreowski

A Formal Framework for the Development
of Concurrent Object-Based Systems . 385

Leila Ribeiro, Fernando Lúıs Dotti, and Roswitha Bardohl

A Formal Description of the Basic Concepts of System Theory
for Transportation . 402

Eckehard Schnieder and Jörg R. Müller

Author Index . 413

Bibliography of Hartmut Ehrig

Books

[6] H. Ehrig, B. Mahr, F. Cornelius, M. Große-Rhode, and P. Zeitz. Mathematisch-
strukturelle Grundlagen der Informatik. Springer, 1999.

[5] I. Claßen, H. Ehrig, and D. Wolz. Algebraic Specification Techniques and Tools
for Software Development – The ACT Approach. AMAST Series in Computing
Vol. 1. World Scientific, 1993.

[4] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module Specifi-
cations and Constraints, Vol. 21 of EATCS Monographs on Theoretical Computer
Science. Springer, 1990.

[3] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations
and Initial Semantics, Vol. 6 of EATCS Monographs on Theoretical Computer
Science. Springer, 1985.

[2] H. Ehrig, K. D. Kiermeier, H.-J. Kreowski, and W. Kühnel. Universal Theory of
Automata. Teubner, 1974.

[1] H. Ehrig and M. Pfender. Kategorien und Automaten. de Gruyter Lehrbuch,
1972.

Edited Books

[17] H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg, editors. Graph Trans-
formations. Second International Conference, ICGT 2004, Rome, Italy, LNCS
3256. Springer, 2004.

[16] H. Ehrig, editor. Integration of Software Specification Techniques for Applica-
tions in Engineering: Priority Program SoftSpez of the German Research Foun-
dation (DFG), Final Report. LNCS 3147. Springer, 2004.

[15] R. Bardohl and H. Ehrig, editors. Proc. Uniform Approaches to Graphical Pro-
cess Specification Techniques (UNIGRA’01), Electronic Notes in TCS (ENTCS),
Vol. 82, Warsaw, Poland, Elsevier, 2003.

[14] H. Ehrig, W. Reisig, G. Rozenberg, and H. Weber, editors. Advances in Petri
Nets: Petri Net Technology for Communication Based Systems. LNCS 2472.
Springer, 2003.

[13] W. Brauer, H. Ehrig, J. Karhumäki, and A. Salomaa, editors. Formal and Nat-
ural Computing: Essays Dedicated to Grzegorz Rozenberg. LNCS 2300. Springer,
2002.

[12] H. Ehrig, B. J. Krämer, and A. Ertas, editors. Proc. Int. Conf. on Integrated
Design and Process Technology (IDPT’02), Pasadena, USA. Society of Process
Technology, 2002.

[11] A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors. Proc. 1st Int.
Conference on Graph Transformation (ICGT’02). LNCS 2505. Springer, 2002.

[10] H. Ehrig and J. Padberg, editors. Component-Based System Development, Vol.
82 (7) of Journal of Integrated Design and Process Science. Society for Design
and Process Science (SDPS), 2003.

[9] H. Ehrig, G. Juhás, J. Padberg, and G. Rozenberg, editors. Advances in Petri
Nets: Unifying Petri Nets. LNCS 2128. Springer, 2001.

XII Bibliography of Hartmut Ehrig

[8] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Vol. 2: Applica-
tions, Languages and Tools. World Scientific, 1999.

[7] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook
of Graph Grammars and Computing by Graph Transformation. Vol 3: Concur-
rency, Parallelism and Distribution. World Scientific, 1999.

[6] J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors. Graph Grammars and
Their Application to Computer Science. LNCS 1073. Springer, 1996.

[5] H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors. 4th Int. Workshop on
Graph Grammars and Their Application to Computer Science. LNCS 532.
Springer, 1991.

[4] H. Ehrig, H. Herrlich, H.-J. Kreowski, and G. Preuß, editors. Int. Workshop on
Categorical Methods in Computer Science with Aspects from Topology. LNCS
393, Springer, 1989.

[3] H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors. 3rd Int. Workshop
on Graph Grammars and Their Application to Computer Science. LNCS 291.
Springer, 1987.

[2] H. Ehrig, M. Nagl, and G. Rozenberg, editors. 2nd Int. Workshop on Graph
Grammars and Their Application to Computer Science. LNCS 153. Springer,
1983.

[1] H. Ehrig, V. Claus, and G. Rozenberg, editors. 1st Int. Workshop on Graph
Grammars and Their Application to Computer Science and Biology. LNCS 73.
Springer, 1979.

Papers

[238] Compositional Semantics of Open Petri Nets Based on Deterministic Processes.
Mathematical Structures in Computer Science (with P. Baldan, A. Corradini,
and R. Heckel), 2004.

[237] Integrating Meta Modelling with Graph Transformation for Efficient Visual Lan-
guage Definition and Model Manipulation. In M. Wermelinger and T. Margaria-
Steffen, editors, Proc. Fundamental Aspects of Software Engineering 2004. LNCS
2984, pp. 214–228, Springer (with R. Bardohl, J. de Lara, and G. Taentzer), 2004.

[236] Constraints and Application Conditions: From Graphs to High-Level Structures.
In F. Parisi-Presicce, P. Bottoni, and G. Engels, editors, Proc. 2nd Int. Confer-
ence on Graph Transformation (ICGT’04), LNCS 3256, pp. 287–303, Springer
(with K. Ehrig, A. Habel, and K.-H. Pennemann), 2004.

[235] Adhesive High-Level Replacement Categories and Systems. In F. Parisi-Pre-
sicce, P. Bottoni, and G. Engels, editors, Proc. 2nd Int. Conference on Graph
Transformation (ICGT’04), LNCS 3256, pp. 144–160, Springer (with A. Habel,
J. Padberg, and U. Prange), 2004.

[234] Integration of Software Specification Techniques for Applications in Engineering:
Introduction and Overview of Results. In Ehrig [16], 2004.

[233] Behaviour and Instantiation of High-Level Petri Net Processes. Fundamenta In-
formaticae, 64:1–37, 2004.

[232] On the Relevance of High-Level Net Processes. In G. Păun, G. Rozenberg, and
A. Salomaa, editors, Current Trends in Theoretical Computer Science: The Chal-
lenge of the New Century, pp. 89–95. World Scientific, 2004.

Bibliography of Hartmut Ehrig XIII

[231] Bigraphs Meet Double Pushouts. In G. Păun, G. Rozenberg, and A. Salomaa,
editors, Current Trends in Theoretical Computer Science: The Challenge of the
New Century, pp. 27–41. World Scientific, 2004.

[230] Deriving Bisimulation Congruences in the DPO Approach to Graph Rewriting.
In Proc. FOSSACS 2004. LNCS 2987, pp. 151–166, Springer (with B. König),
2004.

[229] A Component Framework for System Modeling Based on High-Level Replace-
ment Systems. Software and Systems Modeling, 3, pp. 114–134 (with F. Orejas,
B. Braatz, M. Klein, and M. Piirainen), 2004.

[228] Graph Grammars and Petri Net Transformations. In Lectures on Concurrency
and Petri Nets. Special Issue Advanced Course PNT. LNCS 3098, pp. 496–536,
Springer (with J. Padberg), 2004.

[227] A Generic Framework for Connector Architectures Based on Components and
Transformations. In Proc. FESCA’04, pp. 151–166, ENTCS (with J. Padberg),
2004.

[226] Fundamental Theory for Typed Attributed Graph Transformation. In F. Parisi-
Presicce, P. Bottoni, and G. Engels, editors, Proc. 2nd Int. Conference on Graph
Transformation (ICGT’04), LNCS 3256, pp. 161–177, Springer (with U. Prange
and G. Taentzer), 2004.

[225] The Role of Mathematics in Software System Development. In G. Păun, G.
Rozenberg, and A. Salomaa, editors, Current Trends in Theoretical Computer
Science: The Challenge of the New Century, pp. 5–15. World Scientific (with
G. Schröter), 2004.

[224] Anwendung softwaretechnischer Komponentenkonzepte auf die Produktions-
automatisierung. Automatisierungstechnische Praxis (atp), pp. 46–56, with
(M. Klein, B. Braatz, G. Schröter, and M. Bengel), 2004.

[223] Petri Net Modules in the Transformation-Based Component Framework. In
Journal of Logic and Algebraic Programming, 35 pages (with J. Padberg), 2004.
To appear.

[222] Semantische Konsistenz viewpointorientierter Modellierungstechniken am Bei-
spiel der Produktionsautomatisierung. Automatisierungstechnische Praxis (atp),
pp. 26–36 (with G. Schröter, B. Braatz, H. Ehrig, M. Klein, and M. Bengel),
2004.

[221] Konzeption und Entwicklung eines UML-basierten Funktionsblockmodells für
den objektorientierten Steuerungsentwurf. In Tagungsband Entwicklung und Be-
trieb komplexer Automatisierungssysteme EKA 2003, 15 pages. Institut für
Regelungs- und Automatisierungstechnik TU Braunschweig (with A. Braatz,
M. Klein, and E. Westkämper), 2003.

[220] Generation of Animation Views for Petri Nets in GenGED. In Ehrig et al. [14],
pp. 25–37 (with C. Ermel and R. Bardohl), 2003.

[219] B. Braatz, H. Ehrig, and M. Urbášek. Petri Net Transformations in the Petri
Net Baukasten. In Ehrig et al. [14], pp. 37–65 (with B. Braatz and M. Urbášek),
2003.

[218] Behavior and Instantiation of High-Level Net Processes. In R. Bardohl and
H. Ehrig, editors, Proc. Workshop on Uniform Approaches to Graphical Pro-
cess Specification Techniques (UNIGRA), ENTCS, Vol. 82, 16 pages. Elsevier,
2003.

[217] Formal Specification Techniques for Software and Systems Engineering. In Proc.
FORMS 2003, pp. 23–36, Budapest (with O. Kluge), 2003.

XIV Bibliography of Hartmut Ehrig

[216] A Transformation-Based Component Framework for a Generic Integrated Mod-
eling Technique. Journal of Integrated Design and Process Science, 6(4):78–104
(with F. Orejas, B. Braatz, M. Klein, and M. Piirainen), 2003.

[215] The Petri Net Baukasten of the DFG-Forschergruppe Petri Net Technology. In
Ehrig et al. [14], pp. 8–21 (with W. Reisig and H. Weber), 2003.

[214] Components for Algebra Transformation Systems. In R. Bardohl and H. Ehrig,
editors, Proc. Workshop on Uniform Approaches to Graphical Process Specifica-
tion Techniques (UNIGRA), ENTCS, Vol. 82, 16 pages. Elsevier (with F. Ore-
jas), 2003.

[213] Application of Graph Transformation Techniques to the Area of Petri Nets. In
H.-J. Kreowski, editor, Proc. AGT 2002: APPLIGRAPH Workshop on Applied
Graph Transformation, pp. 35–44 (with B. Braatz, K. Hoffmann, J. Padberg,
and M. Urbášek), 2002.

[212] High-Level Net Processes. In W. Brauer, H. Ehrig, J. Karhumäki, and A. Salo-
maa, editors, Formal and Natural Computing, LNCS 2300, pp. 191–219, Springer
(with K. Hoffmann, J. Padberg, P. Baldan, and R. Heckel), 2002.

[211] Basic Results for Two Types of High-Level Replacement Systems. In M. Baud-
eron and A. Corradini, editors, Proc. GETGRATS Closing Workshop, ENTCS,
Vol. 51, 12 pages. Elsevier (with A. Habel and F. Parisi-Presicce), 2002.

[210] A Transformation-Based Component Framework for a Generic Integrated Mod-
eling Technique. In Proc. of the Sixth World Conference on Integrated Design &
Process Technology (IDPT’02), CD-ROM, 15 pages (with F. Orejas, B. Braatz,
M. Klein, and M. Piirainen), 2002.

[209] A Component Framework Based on High-Level Replacement Systems. In Proc.
Int. Workshop on Graph Transformation and Visual Modeling Techniques (GT-
VMT’02), Satellite Event of ICGT’02, pp. 124–138 (with F. Orejas, B. Braatz,
M. Klein, and M. Piirainen), 2002.

[208] A Generic Component Concept for System Modeling. In Proc. FASE 2002: For-
mal Aspects of Software Engineering, Grenoble, LNCS 2306, pp. 32–48. Springer
(with F. Orejas, B. Braatz, M. Klein, and M. Piirainen), 2002.

[207] Concurrency and Loose Semantics of Open Graph Transformation Systems.
Mathematical Structures in Computer Science, 12(4):349–376 (with R. Heckel,
M. Llabres, and F. Orejas), 2002.

[206] Compositional Modeling of Reactive Systems Using Open Nets. In K. G. Larsen
and M. Nielsen, editors, Proc. of CONCUR 2001, LNCS 2154, pp. 502–518,
Springer (with P. Baldan, A. Corradini, and R. Heckel), 2001.

[205] UML-basierte Software-Spezifikation und Entwicklungswerkzeuge für Syste-
me der Automatisierungstechnik. In Proc. Engineering komplexer Automa-
tisierungssysteme, Braunschweig (with B. Braatz, M. Große-Rhode, and
E. Westkämper), 2001.

[204] Specification and Implementation of Animation Views for Petri Nets. In DFG
Research Group “Petri Net Technology”, editor, Proc. of 2nd International Col-
loquium on Petri Net Technology for Communication Based Systems, 12 pages.
Berlin (with C. Ermel and R. Bardohl), 2001.

[203] On Formal Semantics and Integration of Object Oriented Modeling Languages.
In G. Păun, G. Rozenberg, and A. Salomaa, editors, Current Trends in Theoret-
ical Computer Science: Entering the 21st Century, pp. 226–232. World Scientific
(with R. Geisler, M. Große-Rhode, M. Klar, and S. Mann), 2001.

[202] Integration von Techniken der Softwarespezifikation für ingenieurwissen-
schaftliche Anwendungen. Informatik Forschung und Entwicklung, 16:100–117,
Springer (with M. Große-Rhode), 2001.

Bibliography of Hartmut Ehrig XV

[201] On the Role of Formal Specification Techniques: From TAPSOFT 1985 to
ETAPS 2000. In G. Păun, G. Rozenberg, and A. Salomaa, editors, Current
Trends in Theoretical Computer Science: Entering the 21st Century, pp. 131–
133. World Scientific, 2001.

[200] Algebraic Techniques in Software Development: A Review of Progress up to
the Mid Nineties. In G. Păun, G. Rozenberg, and A. Salomaa, editors, Current
Trends in Theoretical Computer Science: Entering the 21st Century, pp. 134–
152. World Scientific (with B. Mahr), 2001.

[199] Theory and Practice of Software Development: A Review of Driving Forces and
Expectations of TAPSOFT from 1985 to 1997. In G. Păun, G. Rozenberg, and
A. Salomaa, editors, Current Trends in Theoretical Computer Science: Entering
the 21st Century, pp. 118–130. World Scientific (with B. Mahr), 2001.

[198] Integration Paradigm for Data Type and Process Specification Techniques. In
G. Păun, G. Rozenberg, and A. Salomaa, editors, Current Trends in Theoretical
Computer Science: Entering the 21st Century, pp. 192–201. World Scientific
(with F. Orejas), 2001.

[197] A Conceptual and Formal Framework for the Integration of Data Type and
Process Modeling Techniques. In Proc. GT-VMT 2001, ICALP 2001 Satellite
Workshops, pp. 201–228, Greece (with F. Orejas), 2001.

[196] Dynamic Abstract Data Types: An Informal Proposal in 1994. In G. Păun,
G. Rozenberg, and A. Salomaa, editors, Current Trends in Theoretical Com-
puter Science: Entering the 21st Century, pp. 180–191. World Scientific (with
F. Orejas), 2001.

[195] From Basic Views and Aspects to Integration of Specification Formalisms. In
G. Păun, G. Rozenberg, and A. Salomaa, editors, Current Trends in Theoretical
Computer Science: Entering the 21st Century, pp. 202–214. World Scientific
(with J. Padberg and F. Orejas), 2001.

[194] The Relevance of Mathematics in Software System Development. Internat-
ional Journal of Differential Equations and Applications, 3:169–182 (with
G. Schröter), 2001.

[193] The “Petri Net Baukasten”: An Overview. In H. Ehrig, G. Juhás, J. Padberg,
and G. Rozenberg, editors, Unifying Petri Nets, Advances in Petri Nets, LNCS
2128, pp. 26–53. Springer (with M. Gajewsky), 2001.

[192] Double-Pullback Transitions and Coalgebraic Loose Semantics for Graph Trans-
formation Systems. Journal of Applied Categorical Structures, 9(1):83–110 (with
R. Heckel, U. Wolter, and A. Corradini), 2001.

[191] Tight and Loose Semantics for Transformation Systems, pp. 238–255. LNCS
2267, Springer (with F. Orejas and E. Pino), 2001.

[190] Parametrized Net Classes: A Uniform Approach to Petri Net Classes. In H.
Ehrig, G. Juhás, J. Padberg, and G. Rozenberg, editors, Advances in Petri Nets:
Unifying Petri Nets, LNCS 2128, pp. 173–229. Springer (with J. Padberg), 2001.

[189] Behaviour and Realization Construction for Petri Nets Based on Free Monoid
and Power Set Graphs. In H. Ehrig, G. Juhás, J. Padberg, and G. Rozenberg,
editors, Advances in Petri Nets: Unifying Petri Nets, LNCS 2128, pp. 230–249.
Springer (with J. Padberg and G. Rozenberg), 2001.

[188] Cooperability in Train Control Systems Specification of Scenarios Using Open
Nets. Journal of Integrated Design and Process Technology, 5:3–21 (with J. Pad-
berg, L. Jansen, E. Schnieder, and R. Heckel), 2001.

XVI Bibliography of Hartmut Ehrig

[187] Conceptual Model of the Graphical Editor GenGEd for the Visual Definition of
Visual Languages. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg,
editors, Proc. 6th Int. Workshop on Theory and Applications of Graph Transfor-
mation (TAGT’98), Selected Papers, LNCS 1764, pp. 252–266. Springer (with
R. Bardohl), 2000.

[186] Generic Description, Behavior and Animation of Visual Modeling Languages. In
Proc. Integrated Design and Process Technology (IDPT 2000), USA, CD-ROM,
11 pages. Society for Design and Process Science (SDPS) (with R. Bardohl and
C. Ermel), 2000.

[185] Double-Pullback Graph Transitions: A Rule-Based Framework with Incomplete
Information. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors,
Proc. 6th Int. Workshop on Theory and Applications of Graph Transformation
(TAGT’98), Selected Papers, LNCS 1765, pp. 85–102. Springer (with R. Heckel,
M. Llabres, F. Orejas, J. Padberg, and G. Rozenberg), 2000.

[184] On the Role of Mathematics and Formal Specification in Software System De-
velopment. EACTS, 72:69–76 (with G. Schröter), 2000.

[183] A Proposal for Consistent Integration of Visual Computing with Visual Soft-
ware Development. In Proc. of Workshop on Graph Transformation and Visual
Modeling Techniques (GT-VMT 2000), pp. 427–434. Carleton Scientific (with
G. Taentzer), 2000.

[182] Concurrency of Double-Pullback Graph Transitions. In H. Ehrig and G.
Taentzer, editors, Proc. of Joint APPLIGRAPH/GETGRATS Workshop on
Graph Transformation (GRATRA 2000), pp. 146–154. Berlin (with R. Heckel,
M. Llabres, and F. Orejas), 2000.

[181] Modeling Train Control Systems: From Message Sequence Charts to Petri Nets.
In Proc. Formale Techniken für die Eisenbahnsicherung (FORMS), pp. 25–42.
Fortschritt-Berichte VDI, Reihe 12, Nr. 44, VDI Verlag (with O. Kluge and
J. Padberg), 2000.

[180] New Concepts for High-Level Petri Nets in the Application Domain of Train
Control. In E. Schnieder and U. Becker, editors, Proc. 9th Symposium on Trans-
portation Systems, pp. 153–160 (with J. Padberg and P. Schiller), 2000.

[179] Consistency Analysis of UML Class and Sequence Diagrams Using Attributed
Graph Grammars. In H. Ehrig and G. Taentzer, editors, Proc. of Joint APPLI-
GRAPH/GETGRATS Workshop on Graph Transformation (GRATRA 2000),
pp. 77–86. Berlin (with A. Tsiolakis), 2000.

[178] Semantics of Distributed System Specifications Based on Graph Transformation.
In GI Workshop “Rigorose Entwicklung software-intensiver Systeme”, Berlin,
LMU-Report 0005, pp. 57–72 (with G. Taentzer), 2000.

[177] Concurrent Semantics of Algebraic Graph Transformations. In H. Ehrig, H.-J.
Kreowski, H. Montanari, G. Rozenberg, editors, Handbook of Graph Grammars
and Computing by Graph Transformations, Vol. 3: Concurrency, Parallelism
and Distribution, pp. 107–188. World Scientific (with P. Baldan, A. Corradini,
U. Montanari, F. Rossi, and M. Löwe), 1999.

[176] Abstract and Behaviour Module Specifications. Mathematical Structures in
Computer Science, 9:21–62 (with F. Cornelius, M. Baldamus, H. Ehrig, and
F. Orejas), 1999.

[175] High-Level Replacement Systems with Applications to Algebraic Specifications
and Petri Nets. In H. Ehrig, H.-J. Kreowski, H. Montanari, G. Rozenberg, edi-
tors, Handbook of Graph Grammars and Computing by Graph Transformations,
Vol. 3: Concurrency, Parallelism, and Distribution, chapter 6, pp. 341–400.
World Scientific (with M. Gajewsky and F. Parisi-Presicce), 1999.

Bibliography of Hartmut Ehrig XVII

[174] Refinement and Implementation. In E. Astesiano, H.-J. Kreowski, and B. Krieg-
Brückner, editors, Algebraic Foundations of Systems Specification, chapter 7, pp.
201–242. Springer (with H.-J. Kreowski), 1999.

[173] Relevance, Integration and Classification of Specification Formalisms and Formal
Specification Techniques. In Proc. FORMS’99, Braunschweig, Germany, pp. 31–
54. Fortschritt-Berichte VDI, Reihe 12, Nr. 436, VDI Verlag (with F. Orejas and
J. Padberg), 2000.

[172] Graphical Representation and Graph Transformation. In P. Degano, R. Gorrieri,
A. Marchetti-Spaccamela, and P. Wegner, editors, Symposium on Theoretical
Computer Science: A Retrospective. Computing Surveys 31/3 (with G. Taentzer),
1999.

[171] Classification and Comparison of Modularity Concepts for Graph Transforma-
tion Systems. In H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg, editors,
Handbook of Graph Grammars and Computing by Graph Transformation. Vol 2:
Applications, Languages and Tools, pp. 669-690. World Scientific (with R. Heckel,
G. Engels, and G. Taentzer), 1999.

[170] A View-Based Approach to System Modeling Based on Open Graph Transfor-
mation Systems. In H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg, editors,
Handbook of Graph Grammars and Computing by Graph Transformation. Vol 2:
Applications, Languages and Tools, pp. 639-668. World Scientific (with R. Heckel,
G. Engels, and G. Taentzer), 1999.

[169] Formale Techniken für die Eisenbahnsicherungstechnik: Anforderungskatalog –
Zusammenfassung der Arbeitsunterlagen. Signal und Draht (Rail Signalling and
Telecommunication), 10:38–42 (with E. Schnieder and S. Einer), 1999.

[168] Conceptual Model of the Graphical Editor GenGEd. In Proc. 6th Int. Workshop
on Theory and Application of Graph Transformation (TAGT’98), pp. 32–45.
Universität Paderborn (with R. Bardohl), 1998.

[167] DFG-Schwerpunktprogramm ab 1998: Integration von Techniken der Soft-
warespezifikation für ingenieurwissenschaftliche Anwendungen. Informatik –
Forschung und Entwicklung, 13(1):43–46, Springer (with R. Geisler and M. Klar),
1998.

[166] From Abstract Data Types to Algebraic Development Techniques: A Shift of
Paradigms. In Proc. of Workshop on Algebraic Development Techniques, LNCS
1376, pp. 1–17. Springer (with M. Gajewsky and U. Wolter), 1998.

[165] Applications of Category Theory to the Area of Algebraic Specification in Com-
puter Science. Applied Categorical Structures, 6(1):1–35 (with M. Große-Rhode
and U. Wolter), 1998.

[164] Construction and Characterization of Double-Pullback Graph Transitions. In
G. Engels and G. Rozenberg, editors, Proc. 6th Int. Workshop on Theory and
Applications of Graph Transformation (TAGT’98), Reihe Informatik, tr–ri–98–
201, pp. 308–315 (with R. Heckel, M. Llabres, and F. Orejas), 1998.

[163] Categorical Concepts for Logical Systems and Formal Specification in Computer
Science. Seminarberichte aus dem Fachbereich Mathematik, Band 63, Teil 1,
Fernuniversität Hagen, pp. 131–148 (with A. Martini and U. Wolter), 1998.

[162] Graph Transformations and Other Rule-Based Formalisms with Incomplete In-
formation. In G. Engels and G. Rozenberg, editors, Proc. 6th International
Workshop on Theory and Application of Graph Transformation, pp. 268–278.
Paderborn (with G. Rozenberg and J. Padberg), 1998.

XVIII Bibliography of Hartmut Ehrig

[161] Classification and Comparison of Modularity Concepts for Graph Transforma-
tion Systems. In Proc. 6th Int. Workshop on Theory and Application of Graph
Transformation (TAGT’98), pp. 278–289, Paderborn (with R. Heckel, G. Engels,
and G. Taentzer), 1998.

[160] Interoperability in Train Control Systems Specification of Scenarios Using Open
Nets. In Proc. Integrated Design and Process Technology, pp. 17–24. Society for
Design and Process Science (with J. Padberg, L. Jansen, and R. Heckel), 1998.

[159] Algebraic Approaches to Graph Transformation. Part I: Basic Concepts and
Double Pushout Approach. In G. Rozenberg, editor, Handbook of Graph Gram-
mars and Computing by Graph transformation, Vol. 1: Foundations, pp. 163–
246. World Scientific (with A. Corradini, U. Montanari, F. Rossi, R. Heckel, and
M. Löwe), 1997.

[158] A Combined Reference Model- and View-Based Approach to System Specifica-
tion. Int. Journal of Software and Knowledge Engineering, 7(4):457–477 (with
G. Engels, R. Heckel, and G. Taentzer), 1997.

[157] Horizontal and Vertical Structuring Techniques for Statecharts. In A. Mazur-
kiewicz and J. Winkowski, editors, CONCUR’97: Concurrency Theory, 8th Int.
Conf., Warsaw, Poland, LNCS 1243, pp. 181–195. Springer (with R. Geisler,
M. Klar, and J. Padberg), 1997.

[156] Reverse Petri Net Technology Transfer: On the Boundary of Theory and Ap-
plication. In L. Groves and S. Reeves, editors, Formal Methods Pacific ’97, pp.
297–298. Springer (with M. Gajewsky, S. Lembke, and J. Padberg), 1997.

[155] Action Nets and Abstract Statecharts in the Theory of High-Level Structures. In
Proc. of First European GETGRATS Workshop, Bordeaux (with M. Gajewsky
and J. Padberg), 1997.

[154] Algebraic Approaches to Graph Transformation II: Single Pushout Approach
and Comparison with Double Pushout Approach. In G. Rozenberg, editor, Hand-
book of Graph Grammars and Computing by Graph Transformation, Vol. 1:
Foundations, chapter 4, pp. 247–312. World Scientific (with R. Heckel, M. Korff,
M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini), 1997.

[153] A View-Oriented Approach to System Modelling Using Graph Transformation.
In Proc. of ESEC/FSE’97, Zürich, LNCS 1301, pp. 327–343. Springer (with
G. Engels, R. Heckel, and G. Taentzer), 1997.

[152] Correctness of Horizontal and Vertical Composition for Implementation Con-
cepts Based on Constructors and Abstractors. Revista Matemática de la Univer-
sidad Complutense de Madrid, vol. 10, no. 2, pp. 365–387 (with H.-J. Kreowski
and F. Orejas), 1997.

[151] Future Trends of TAPSOFT. In M. Bidoit and M. Dauchet, editors, TAP-
SOFT’97, LNCS 1214, pp. 6–10. Springer (with B. Mahr), 1997.

[150] A Uniform Approach to Petri Nets. In Ch. Freksa, M. Jantzen, and R. Valk, ed-
itors, Foundations of Computer Science: Potential – Theory – Cognition, LNCS
1337, pp. 219–231. Springer (with J. Padberg), 1997.

[149] Integrating the Specification Techniques of Graph Transformation and Temporal
Logic. In Proc. of MFCS’97, Bratislava, LNCS 1295, pp. 219-228. Springer (with
R. Heckel, U. Wolter, and A. Corradini), 1997.

[148] Institutions for Logic Programming. In TCS 173, pp. 485–511 (with F. Orejas
and E. Pino), 1997.

[147] The Category of Typed Graph Grammars and Its Adjunctions with Categories of
Derivations. In Proc. 5th Int. Workshop on Graph Grammars and Their Applica-
tions to Computer Science, LNCS 1073, pp. 56–74. Springer (with A. Corradini,
M. Löwe, U. Montanari, and J. Padberg), 1996.

Bibliography of Hartmut Ehrig XIX

[146] An Event Structure Semantics for Graph Grammars with Parallel Productions.
In Cuny et al. [6], pp. 240–256 (with A. Corradini, M. Löwe, U. Montanari, and
F. Rossi), 1996.

[145] A New Integration Paradigm for Formal Specification of Safe Software Systems.
In Proc. 10th Japan-Germany Forum on Information Technology. Gesellschaft
für Mathematik und Datenverarbeitung (with R. Bardohl, F. Cornelius,
R. Geisler, M. Große-Rhode, and J. Padberg), 1996.

[144] Pragmatic and Semantic Aspects of a Module Concept for Graph Transformation
Systems. In Cuny et al. [6], pp. 137–154 (with G. Engels), 1996.

[143] On the Role of Category Theory in the Area of Algebraic Specifications. In
Proc. WADT11, Oslo. LNCS 1130, pp. 17–48. Springer (with M. Große-Rhode
and U. Wolter), 1996.

[142] Requirements Engineering of a Medical Information System Using Rule-Based
Refinement of Petri Nets. In D. Cooke, B. J. Krämer, P. C.-Y. Sheu, J. P. Tsai,
and R. Mittermeir, editors, Proc. Integrated Design and Process Technology,
Vol. 1, pp. 186–193. Society for Design and Process Science (with C. Ermel and
J. Padberg), 1996.

[141] Horizontal and Vertical Structuring of Typed Graph Transformation Systems.
Math. Struc. in Comp. Science, 6(6):613–648 (with R. Heckel, A. Corradini, and
M. Löwe), 1996.

[140] Towards a Module Concept for Graph Transformation Systems: The Software
Engineering Perspective. In G. Valiente Feruglio and F. Rosello Llompart, ed-
itors, Proc. Colloquium on Graph Transformation and Its Application in Com-
puter Science, pp. 25–28. Spain (with G. Engels), 1995.

[139] Introduction to COMPUGRAPH. Proc. of SEGRAGRA’95 “Graph Rewriting
and Computation”, ENTCS, Vol. 2, 1995.

[138] Compositionality Results for Different Types of Parameterization and Parameter
Passing in Specification Language. Special Issue of Mathematical Structures in
Computer Science, 5(2):283–314 (with R. M. Jimenez and F. Orejas), 1995.

[137] Computing with Algebraic Graph Transformations: Overview of Recent Re-
sults. In G. Valiente Feruglio and F. Rosello Llompart, editors, Proc. Colloquium
on Graph Transformation and Its Application in Computer Science, pp. 17–23.
Spain (with M. Korff), 1995.

[136] Dynamic Abstract Data Types Based on Algebraic Graph Transformations. In
Proc. of ADT-COMPASS Workshop. LNCS 906, pp. 236–254. Springer (with
M. Löwe and F. Orejas), 1995.

[135] A Decade of TAPSOFT: Aspects of Progress and Prospects in Theory and Prac-
tice of Software Development. In LNCS 915, pp. 3–24. Springer (with B. Mahr),
1995.

[134] Algebraic High-Level Net Transformation Systems. Mathematical Structures in
Computer Science, 5:217–256 (with J. Padberg and L. Ribeiro), 1995.

[133] How to Cope with the Spectrum of SPECTRUM. In LNCS 1009, pp. 173–189.
Springer (with U. Wolter, K. Didrich, F. Cornelius, M. Klar, and R. Wessäly),
1995.

[132] Functorial Semantics for Safe Graph Grammars Using Prime Algebraic Domains
and Event Structures. In Proc. 5th Int. Workshop on Graph Transformation,
USA, pp. 120–126 (with A. Corradini, M. Löwe, U. Montanari, and J. Padberg),
1994.

[131] Typed Graph Grammars and Their Adjunction with Categories of Derivations.
In Proc. 5th Int. Workshop on Graph Transformations, USA (with A. Corradini,
M. Löwe, U. Montanari, and J. Padberg), 1994.

XX Bibliography of Hartmut Ehrig

[130] Abstract Graph Derivations in the Double Pushout Approach. In Proc. Graph
Grammar Workshop Dagstuhl ’93, LNCS 776, pp. 86–103. Springer (with A. Cor-
radini, M. Löwe, U. Montanari, and F. Rossi), 1994.

[129] An Event Structure Semantics for Safe Graph Grammars. In E.-R. Olderog,
editor, Programming Concepts, Methods and Calculi. IFIP Transactions A-56.
North-Holland (with A. Corradini, M. Löwe, U. Montanari, and F. Rossi), 1994.

[128] An Event Structure Semantics for Safe Graph Grammars. In Proc. PRO-
COMET’94, IFIP TC2 Working Conf., San Miniato, 1994, pp. 417–439 (with
A. Corradini, M. Löwe, U. Montanari, and F. Rossi), 1994.

[127] Note on Standard Representation of Graphs and Graph Derivations. In Proc.
Graph Grammar Workshop Dagstuhl ’93, LNCS 776, pp. 104–118. Springer (with
A. Corradini, M. Löwe, U. Montanari, and F. Rossi), 1994.

[126] Specification Techniques Using Dynamic Abstract Data Types and Application
to Shipping Software. In Proc. of the International Workshop on Advanced Soft-
ware Technology, Shanghai, pp. 70–85 (with R. Bardohl), 1994.

[125] Functorial Theory of Parameterized Specifications in a General Specification
Framework. Theoretical Computer Science, 135:221–266 (with M. Große-Rhode),
1994.

[124] Algebraic Specification Concepts and Languages for Modular Software Systems.
In Proc. Workshop on Software Technology. Shanghai, 1994.

[123] Computing with Algebraic Graph Transformations: An Overview of Recent Re-
sults. In Proc. of Graph Grammar Workshop, Spain (with M. Korff), 1994.

[122] Canonical Derivations for High-Level Replacement Systems. In LNCS 776, pp.
153–169. Springer (with H.-J. Kreowski and G. Taentzer), 1994.

[121] Behaviour and Realization Construction for Petri Nets Based on Free Monoid
and Power Set Graphs. In Workshop on Concurrency, Specification & Program-
ming. Berlin (with J. Padberg and G. Rozenberg), 1994.

[120] Algebraic High-Level Nets: Petri Nets Revisited. In Recent Trends in Data Type
Specification, LNCS 785, pp. 188–206, Springer (with J. Padberg and L. Ribeiro),
1994.

[119] Algebraic Methods in the Compositional Analysis of Logic Programs. In Proc.
MFCS’94. Springer (with F. Orejas and E. Pino), 1994.

[118] GRAPHIT: Graphical Support and Integration of Formal and Semiformal Meth-
ods for Software Specification and Development. In Proc. Workshop on In-
formation Technology: Cooperative Research with Industrial Partners Between
Germany and Brazil. PUC/Rio Press (with B. Bardohl, R. Bardohl, P. Castro,
M. Korff, J. Padberg, R. Ribeiro, D. Nunes, J. Martins, and A. Martini), 1993.

[117] Combined Algebraic Specification Techniques for Concurrent and Distributed
Systems. In H. Reichel, editor, Proc. GI-Annual Meeting, Dresden, pp. 528–533.
Informatik, Wirtschaft, Gesellschaft, 1993.

[116] Algebraic Specification. In G. Rozenberg and A. Salomaa, editors, Current
Trends in Theoretical Computer Science, chapter 2, pp. 49–222. World Scien-
tific, 2001.

[115] Compositionality Results for Different Types of Parameterization and Parameter
Passing in Specification Language. In Proc. TAPSOFT ’93, Paris, LNCS 668,
pp. 16–30. Springer (with R. M. Jimenez and F. Orejas), 1993.

[114] Categorical Principles, Techniques and Results for High-Level Replacement Sys-
tems in Computer Science. Applied Categorical Structures, 1(1):21–50 (with
M. Löwe), 1993.

[113] Parallel and Distributed Derivations in the Single Pushout Approach. Theoretical
Computer Science, 109:123–143 (with M. Löwe), 1993.

Bibliography of Hartmut Ehrig XXI

[112] The ESPRIT Basic Research Working Group COMPUGRAPH “Computing by
Graph Transformation”: A Survey. In TCS 109, pp. 3–6, North-Holland (with
M. Löwe), 1993.

[111] High-Level Replacement Systems for Equational Algebraic Specifications. In
Proc. 3rd Conf. on Algebraic and Logic Programming, Pisa (with F. Parisi-
Presicce), 1993.

[110] Interaction Between Algebraic Specification Grammars and Modular Systems.
In Proc. AMAST 93 (with F. Parisi-Presicce), 1993.

[109] Formal Development of Concurrent Systems Using Algebraic High-Level Nets
and Transformations. In Proc. VII Simpósio Brasileiro de Engenharia de Soft-
ware, Rio de Janeiro, pp. 1–16 (with L. Ribeiro and J. Padberg), 1993.

[108] Specification Techniques for Concurrent and Distributed Systems. In Proc. 2nd
Maghr. Conference on Software Engineering and Artificial Intelligence, Tunis
(with M. Große-Rhode and A. Heise), 1992.

[107] Introduction to Graph Grammars with Applications to Semantical Networks.
Computers and Mathematics with Applications, 23(6-9):557–572 (with A. Habel
and H.-J. Kreowski), 1992.

[106] From Parallel to Distributed Derivations of Graphs in the Single Pushout Ap-
proach. Memorial Volume for R. Frank, Inf. Fachberichte 309, Berlin, pp. 47–65
(with M. Löwe), 1992.

[105] Introduction to Algebraic Specification – Part 1: Formal Methods for Software
Development. The Computer Journal, 35(5):460–467 (with B. Mahr, I. Claßen,
and F. Orejas), 1992.

[104] Introduction to Algebraic Specification – Part 2: From Classical View to Foun-
dations of System Specifications. The Computer Journal, 35(5):468–477 (with
B. Mahr and F. Orejas), 1992.

[103] Non-equivalence of Categories for Equational Algebraic Specifications in View
of High-Level-Replacement Systems. In Proc. WADT-COMPASS-Workshop,
Dourdan, LNCS 655, pp. 222–235. Springer (with F. Parisi-Presicce), 1992.

[102] From Parallel Graph Grammars to Parallel High-Level Replacement Systems.
In Lindenmayer Systems, pp. 283–303. Springer (with G. Taentzer), 1992.

[101] Graph Grammars and Logic Programming. Graph Grammars and Their Appli-
cation to Computer Science. In LNCS 532, pp. 221–237. Springer (with A. Cor-
radini, U. Montanari, F. Rossi, and M. Löwe), 1991.

[100] Theory of Algebraic Module Specifications Including Behavioral Semantics and
Constraints. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors, Alge-
braic Methodology and Software Technology (AMAST), Iowa City, pp. 145–172.
Springer Workshops in Computing 23 (with M. Baldamus, F. Cornelius, and
F. Orejas), 1991.

[99] New Concepts for Amalgamation and Extension in the Framework of Specifica-
tion Logics. In Proc. ADT-Workshop, Dourdan, LNCS 655, pp. 199–221 (with
M. Baldamus and F. Orejas), 1991.

[98] Algebraic Concepts for Software Development in ACT ONE, ACT TWO and
LOTOS. Syst. Anal. Model. Simul., 8(4/5):353–373 (with I. Claßen, P. Boehm,
W. Fey, M. Korff, and M. Löwe), 1991. Also in: Informatik Fachberichte 212.

[97] From Graph Grammars to High-Level Replacement Systems. In 4th Int. Work-
shop on Graph Grammars and Their Application to Computer Science, LNCS
532, pp. 269–291. Springer (with A. Habel, H.-J. Kreowski, and F. Parisi-
Presicce), 1991.

XXII Bibliography of Hartmut Ehrig

[96] Parallelism and Concurrency in High-Level Replacement Systems. Math. Struct.
in Comp. Science, 1:361–404 (with A. Habel, H.-J. Kreowski, and F. Parisi-
Presicce), 1991.

[95] Tutorial Introduction to the Algebraic Approach of Graph Grammars Based on
Double and Single Pushouts. In Ehrig et al. [5], LNCS 532, pp. 24–37. Springer
(with M. Korff and M. Löwe), 1991.

[94] Computing by Graph Transformation – Overall Aims and New Results. In 4th
Int. Workshop on Graph Grammars and Their Application to Computer Science,
LNCS 532, pp. 688–697. Springer (with M. Löwe), 1991.

[93] Algebraic Specification Grammars: Adjunction Between Module Specifications
and Graph Grammars. In 4th Int. Workshop on Graph Grammars and Their Ap-
plication to Computer Science, LNCS 532, pp. 292–310. Springer (with F. Parisi-
Presicce), 1991.

[92] A Match Operation for Rule-Based Modular System Design. In Proc. ADT
Workshop, Wusterhausen, LNCS 534, pp. 74–97. Springer (with F. Parisi-
Presicce), 1991.

[91] Algebraic Approach to Graph Transformation Based on Single Pushout Deriva-
tions. In R. H. Möhring, editor, Graph-Theoretic Concepts in Computer Science,
WG’90, LNCS 484, pp. 338–353. Springer (with M. Löwe), 1991.

[90] On the Relationship Between Algebraic Module Specifications and Program
Modules. In Proc. TAPSOFT, LNCS 494, pp. 83–98. Springer (with M. Löwe,
W. Fey, and D. Jacobs), 1991.

[89] Linking Schemas and Module Specifications for Distributed Systems. In Proc.
2nd IEEE Workshop on Future Trends of Distributed Computing Systems, pp.
165–171. IEEE Computing Society (with M. Arbib), 1990.

[88] Algebraic Concepts for Formal Specification and Transformation of Modular
Software Systems. In Proc. 23rd Hawaii Int. Conf. on System Science, Kailua-
Kona, Hawaii, pp. 153–164. IEEE Comp. Sci. Press (with P. Boehm and W. Fey),
1990.

[87] Compatibility Problems in the Development of Algebraic Module Specifications.
Theoretical Computer Science, 77:27–71 (with W. Fey, H. Hansen, M. Löwe,
D. Jacobs, and F. Parisi-Presicce), 1990.

[86] Combining Data Type and Recursive Process Specifications Using Projection
Algebras. Theoretical Computer Science, 71:347–380 (with F. Parisi-Presicce,
P. Boehm, C. Rieckhoff, C. Dimitrovici, and M. Große-Rhode), 1990.

[85] Transformation of Combined Data Type and Process Specifications Using Pro-
jection Algebras. In Stepwise Refinement of Distributed Systems, REX-Workshop
1989, LNCS 430, pp. 301–339. Springer (with M. Große-Rhode), 1990.

[84] Algebraic Concepts for Software Development in ACT ONE, ACT TWO and
LOTOS. In Informatik Fachberichte 212, pp. 201–224. Springer (with I. Claßen,
P. Boehm, W. Fey, M. Korff, and M. Löwe), 1989.

[83] Algebraic Concepts for the Evolution of Module Families. In Proc. First Int.
Conf. Algebraic Methodology and Software Technology (AMAST), Iowa City,
USA (with W. Fey, H. Hansen, M. Löwe, and D. Jacobs), 1989.

[82] Algebraic Specifications of Modules and Configuration Families. Journal Inf.
Process. Cybern. EIK 25, 5(6):205–232 (with W. Fey, H. Hansen, M. Löwe,
D. Jacobs, A. Langen, and F. Parisi-Presicce), 1989.

[81] Algebraic Software Development Concepts for Module and Configuration Fami-
lies. In Proc. 9th Conf. on Foundations of Software Technology and Theoretical
Computer Science, Bangalore, India (with W. Fey, H. Hansen, M. Löwe, and
D. Jacobs), 1989.

Bibliography of Hartmut Ehrig XXIII

[80] Categories for the Development of Algebraic Module Specification. In Proc. Cat-
egorical Methods in Comp. Sci. with Aspects from Topology, LNCS 393, pp. 157–
184. Springer (with W. Fey, H. Hansen, M. Löwe, and F. Parisi-Presicce), 1989.

[79] The Construct PRO of Projection Spaces: Its Internal Structure. In Categorical
Methods in Computer Science, LNCS 393, pp. 286–293 Springer (with H. Her-
rlich), 1989.

[78] A Categorical Concept of Constraints for Algebraic Specifications. In Categorical
Methods in Computer Science – With Aspects from Topology, LNCS 393, pp. 1–
15. Springer, 1989.

[77] On Recent Trends in Algebraic Specification. In Invited Paper ICALP’89, LNCS
372, pp. 263–288. Springer, 1989.

[76] Algebraic Specification of Modeules and Modular Software Systems Within the
Framework of Specification Logics. In Proc. 1st Maghr. Conference on Software
Engineering and Artificial Intelligence, Constantine, pp. 79–92, 1989.

[75] Semantical Constructions for Categories of Behavioral Specifications. In H.
Ehrig, H. Herrlich, H.-J. Kreowski, G. Preus̈, editors, Computer Science – With
Aspects from Topology, LNCS 393, pp. 220–243. Springer (with F. Orejas and
P. Nivela), 1989.

[74] Distributed Parallelism of Graph Transformation. In 13th Int. Workshop on
Graph Theoretic Concepts in Computer Science, LNCS 314, pp. 1–19, Springer
(with P. Böhm, U. Hummert, and M. Löwe), 1988.

[73] Algebraic Data Type and Process Specifications Based on Projection Spaces. In
D. Sannella and A. Tarlecki, editors, Recent Trends in Data Type Specifications,
LNCS 332, pp. 23–43. Springer (with F. Parisi-Presicce, P. Boehm, C. Rieckhoff,
C. Dimitrovici, and M. Große-Rhode), 1988.

[72] Algebraic Specification of Modules and Their Basic Interconnections. Journal of
Computer Systems Science, 34(2/3):293–339 (with E. K. Blum and F. Parisi-
Presicce), 1987.

[71] Towards Distributed Graph Grammars. In H. Ehrig, M. Nagl, G. Rozenberg,
and A. Rosenfeld, editors, 3rd Int. Workshop on Graph Grammars and Their
Application to Computer Science, LNCS 291, pp. 86–98, Springer (with P. Böhm,
U. Hummert, and M. Löwe), 1987.

[70] Graph Rewriting with Unification and Composition. In 3rd Int. Workshop on
Graph Grammars and Their Application to Computer Science, LNCS 291, pp.
496–514, Springer (with F. Parisi-Presicce and U. Montanari), 1987.

[69] Distributive Laws for Composition and Union of Module Specification for Soft-
ware Systems. In Proc. IFIP WG 2.1 Working Conf. on Program Specification
and Transformation, Bad-Tölz, pp. 293–312. North Holland (with W. Fey and
F. Parisi-Prescicce), 1986.

[68] Concurrent Transformation of Relational Structures. Fundamenta Informaticae,
IX:13–50 (with A. Habel and B. Rosen), 1986.

[67] Programming in the Large with Algebraic Module Specifications. Information
Processing, 86:675–684 (with H. Weber), 1986. Invited Paper, IFIP’86 World
Congress.

[66] Specification of Modular Systems. IEEE Transactions on Software Engineering,
SE-12(7):784–798 (with H. Weber), 1986.

[65] Towards Abstract User Interfaces for Formal System Specifications. In Recent
Trends in Data Type Specification, Informatik Fachberichte 116, pp. 73–88.
Springer (with W. Fey and H. Hansen), 1985.

[64] Graph Grammars with Application Conditions. In G. Rozenberg and A. Salo-
maa, editors, The Book of L, pp. 87–100. Springer (with A. Habel), 1985.

XXIV Bibliography of Hartmut Ehrig

[63] Algebraic Specification of Modules. In Proc. IFIP Work Conf. 85: The Role
of Abstract Models in Programming, Wien, pp. 231–258. North Holland (with
H. Weber), 1985.

[62] ACT ONE. An Algebraic Specification Language Based on Initial Algebra and
Free Functor Semantics. In Proc. of the 10th National Summer School “Ap-
plication of Mathematics in Engineering” Varna. University of Varna (with
H. Hansen), 1984.

[61] Combining Initial and Loose Algebraic Specification Methods Including Compo-
sitionality and Modules. In Proc. Workshop on Formal Software Development,
Nyborg. University of Copenhagen, 1984.

[60] Parameter Passing in Algebraic Specification Languages. Theoretical Computer
Science, 28:45–81 (with H.-J. Kreowski, J. W. Thatcher, E. G. Wagner, and
J. B. Wright), 1984.

[59] Algebraische Spezifikationen: Konzepte und Sprachen für die Software-Ent-
wicklung. In Festband 10 Jahre Informatik Dortmund. Abt. Informatik, Uni-
versität Dortmund (with W. Fey and K. P. Hasler), 1983.

[58] Development, Specification and Semantics of Strictly Modular Systems. In Lec-
ture Notes Seminar on State of the Art and Perspectives of Software Technology
in Europe, USA, and Japan. ICC Berlin, 1983.

[57] Aspects of Concurrency in Graph Grammars. In H. Ehrig, M. Nagl, and G.
Rozenberg, editors, 2nd Int. Workshop on Graph Grammars and Their Applica-
tion to Computer Science, LNCS 153, pp. 82–101. Springer, 1983.

[56] Concurrent Transformations of Graphs and Relational Structures. In M. Nagl
and J. Perl, editors, Proc. WG 1983, Int. Workshop on Graphtheoretic Concepts
in Computer Science, Osnabrück, pp. 76–88. Trauner-Verlag, 1983.

[55] Compatibility of Parameter Passing and Implementation of Parameterized
Types. TCS, 27:255–286 (with H.-J. Kreowski), 1983.

[54] Church-Rosser Properties for Graph Replacement Systems with Unique Split-
ting. In H. Ehrig, M. Nagl, and G. Rozenberg, editors, 2nd Int. Workshop
on Graph Grammars and Their Application to Computer Science, LNCS 153,
pp. 82–101. Springer (with J. Staples), 1983.

[53] Algebraic Specifications with Generating Constraints. In Proc. ICALP’83,
LNCS, pp. 188–202. Springer (with E. G. Wagner and J. W. Thatcher), 1983.

[52] Algebraic Implementation of Abstract Data Types. TCS, 20:209–263 (with H.-J.
Kreowski, B. Mahr, and P. Padawitz), 1982.

[51] Methodology for the Specification of Software Systems: From Formal Re-
quirements to Algebraic Design Specifications. In Informatik Fachberichte 50,
pp. 255–269. Springer (with W. Fey), 1981.

[50] Algebraic Theory of Parameterized Specifications with Requirements. In Proc.
CAAP ’81, LNCS 112, pp. 1–24. Springer, 1981.

[49] A Graph Theoretical Model for Multi-pass Parsing. In J. R. Mühlbacher, editor,
Proc. Workshop on Graphtheoretic Concepts in Computer Science, Linz, pp. 19–
31. Hanser-Verlag (with B. Hoffmann and I. R. Schmiedicke), 1981.

[48] Keywords in Context: An Algebraic Specification. In Proc. Workshop on Pro-
gram Specification, Aarhus, Denmark, LNCS 134, pp. 78–83. Springer (with H.-J.
Kreowski), 1981.

[47] Transformation of Structures: An Algebraic Approach. Mathematical Systems
Theory, 14:305–334 (with H.-J. Kreowski, A. Maggiolo-Schettini, B. K. Rosen,
and J. Winkowski), 1981.

Bibliography of Hartmut Ehrig XXV

[46] Parameter Passing in Algebraic Specification Languages. In Workshop on Pro-
gram Specification, Aarhus, LNCS 134, pp. 322–369. Springer (with H.-J. Kre-
owski, J. W. Thatcher, E. G. Wagner, and J. B. Wright), 1981.

[45] Complexity of Algebraic Implementations for Abstract Data Types. JCSS,
23:223–253 (with B. Mahr), 1981.

[44] Algebraische Spezifikationen eines Stücklistensystems – Eine Fallstudie. In Proc.
2nd German Chapter of the ACM Software Engineering – Entwurf und Spezi-
fikation, Berlin, pp. 75–90. Teubner Verlag (with W. Fey and H.-J. Kreowski),
1980.

[43] Applications of Graph Grammar Theory to Consistency, Synchronization, and
Scheduling in Database Systems. Information Systems, 5:225–238 (with H.-J.
Kreowski), 1980.

[42] Compound Algebraic Implementations: An Approach to Stepwise Refinement
of Software Systems. In Proc. Conf. Math. Foundations of Computer Science,
Rydzyna, LNCS 88, pp. 231–245. Springer (with H.-J. Kreowski, B. Mahr, and
P. Padawitz), 1980.

[41] A Case Study of Abstract Implementation and Their Correctness. In Proc. 4th
Int. Symp. on Programming, LNCS 83, pp. 108–122. Springer (with H.-J. Kre-
owski and P. Padawitz), 1980.

[40] Algebraic Implementation of Abstract Data Types: Concept, Syntax, Semantics,
and Correctness. In Proc. ICALP’80, LNCS 85, pp. 142–156. Springer (with
H.-J. Kreowski and P. Padawitz), 1980.

[39] Parameterized Data Types in Algebraic Specification Languages. In Proc.
ICALP’80, LNCS 85, pp. 157–168. Springer (with H.-J. Kreowski,
J. W. Thatcher, E. G. Wagner, and J. B. Wright), 1980.

[38] Complexity of Implementations on the Level of Algebraic Specifications. In
Proc. 12th ACM Symposium Theory of Comp., Los Angeles, pp. 281–293 (with
B. Mahr), 1980.

[37] Parallelism and Concurrency of Graph Manipulations. Theoretical Computer
Science, 11:247–275 (with B. K. Rosen), 1980.

[36] Graph Grammars and Their Application to Computer Science and Biology. In
LNCS 79. Springer (with V. Claus and G. Rozenberg), 1979.

[35] Introduction to the Algebraic Theory of Graph Grammars (A Survey). In Graph
Grammars and Their Application to Computer Science and Biology, LNCS 73,
pp. 1–69. Springer, 1979.

[34] Neue Aspekte algebraischer Spezifikationsschemata für Datenbanksysteme. In
Proc. Workshop Formale Modelle für Informationssysteme, IFB 21, pp. 181–198
(with H.-J. Kreowski), 1979.

[33] Pushout-Properties: An Analysis of Gluing Constructions for Graphs. Mathe-
matische Nachrichten, 91:135–149 (with H.-J. Kreowski), 1979.

[32] The Skeleton of Minimal Realization. Studien zur Algebra und Anwendungen,
7:137–154 (with H.-J. Kreowski), 1979.

[31] Categorical Approach to Nonlinear Constant Continuous Time Systems.
R.A.I.R.O, 13(2):107–133 (with W. Kühnel), 1979.

[30] A Graph Grammar Approach to Optimal and Consistent Schedules in Data
Base Systems. In U. Pape, editor, Proc. Workshop WG’79 Graphentheoretis-
che Konzepte in der Informatik, Berlin, pp. 223–240. Hanser-Verlag (with H.-J.
Kreowski), 1979.

[29] Locally Star-Gluing Formulas for a Class of Parallel Graph Grammars. In Graph
Grammars and Their Application to Computer Science and Biology, LNCS 73.
Springer (with A. Liedtke), 1979.

XXVI Bibliography of Hartmut Ehrig

[28] Decomposition of Graph Grammars, Productions and Derivations. In Graph
Grammars and Their Application to Computer Science and Biology, LNCS 73,
pp. 192–205. Springer (with B. K. Rosen), 1979.

[27] Pushout Properties: An Analysis of Gluing Constructions for Graphs. In Proc.
Nordwestdeutsches Kategorienseminar, Bielefeld, pp. 69–89. University of Biele-
feld (with H.-J. Kreowski), 1978.

[26] Algebraic Theory of Graph Grammars Applied to Consistency and Synchro-
nization in Data Base Systems. In Proc. Workshop WG’78 Graphentheoretische
Konzepte in der Informatik, pp. 227–244. Hanser-Verlag (with H.-J. Kreowski),
1978.

[25] Deriving Structures from Structures. In Proc. 7th Int. Symp. on Math. Found. of
Comp. Science, Zakopane, LNCS 64, pp. 177–190. Springer (with H.-J. Kreowski,
A. Maggiolo-Schettini, B. K. Rosen, and J. Winkowski), 1978.

[24] Stepwise Specification and Implementation of Abstract Data Types. In 5th Int.
Coll. Automata, Languages, and Programming, LNCS 62, pp. 205–226. Springer
(with H.-J. Kreowski and P. Padawitz), 1978.

[23] Algebraic Specification Schemes for Data Base Systems. In Proc. 4th Int. Conf.
Very Large Data Bases, pp. 427–440. Hahn-Meitner-Institut für Kernforschung,
HMI-B266 (with H.-J. Kreowski and H. Weber), 1978.

[22] Concurrency of Manipulations in Multi-dimensional Information Structures. In
LNCS 64, pp. 65–176. Springer (with B. K. Rosen), 1978.

[21] Embedding Theorems in the Algebraic Theory of Graph Grammars. In LNCS
56, pp. 245–255. Springer, 1977.

[20] The Mathematics of Record Handling. In LNCS 52, pp. 206–220, Springer (with
B. K. Rosen), 1977.

[19] Algebraic Graph Theory Applied in Computer Science. In Proc. Conf. Categor-
ical and Algebraic Methods in Comp. Science and Systems Theory, Dortmund
(with H.-J. Kreowski), 1976.

[18] Categorical Theory of Graphical Systems and Graph Grammars. In Conf. Report
Algebraic System Theory, Udine, 1975, Lect Notes Econ, Math. Syst. 131 (1976),
pp. 323–351. Springer (with H.-J. Kreowski), 1976.

[17] Minimization Concepts of Automata in Pseudoclosed Categories. In Conf. Report
Algebraic System Theory, Udine, 1975, Lect Notes Econ, Math. Syst. 131 (1976),
pp. 359–374. Springer (with H.-J. Kreowski), 1976.

[16] Parallel Graph Grammars. In A. Lindenmayer and G. Rozenberg, editors, Au-
tomata, Languages, Development, pp. 425–447. Amsterdam, North Holland (with
H.-J. Kreowski), 1976.

[15] Parallelism of Manipulations in Multidimensional Information Structures. In
Proc. Conf. Math. Foundations of Computer Science, LNCS 45, pp. 284–293.
Springer (with H.-J. Kreowski), 1976.

[14] Systematic Approach to Reduction and Minimization in Automata and System
Theory. Journal Computer Syst. Science, 12(3):269–304 (with H.-J. Kreowski),
1976.

[13] Some Definitional Suggestions for Parallel Graph Grammars. In A. Lindenmayer
and G. Rozenberg, editors, Formal Languages, Automata and Development,
pp. 443–468. North Holland (with G. Rozenberg), 1976.

[12] Grammars on Partial Graphs. Acta Informatica, 6:297–316 (with H. J. Schnei-
der), 1976.

[11] Power and Initial Automata in Pseudoclosed Categories. In Proc. 1st Int. Symp.
Category Theory Applied to Computation and Control, San Francisco, LNCS 25,
pp. 144–150. Springer (with H.-J. Kreowski), 1975.

Bibliography of Hartmut Ehrig XXVII

[10] Diagram Characterization of Recursion. In Proc. 1st Int. Symp. Category Theory
Applied to Computation and Control, San Francisco, LNCS 25, pp. 137–143.
Springer (with W. Kühnel and M. Pfender), 1975.

[9] Graph Grammars and Applications to Specification and Evolution in Biology.
Journal Computer System Science, 11(2):212–236 (with K. W. Tischer), 1975.

[8] Development of Stochastic Graphs. In Proc. Conf. on Uniformly Structured Au-
tomata Theory and Logic, Tokyo, Vol. 11/2, pp. 1–6 (with K. W. Tischer), 1975.

[7] F-Morphisms. Mathematische Nachrichten, 59:75–93, 1974.
[6] Kategorielle Theorie von Automaten. BI-Buch: Überblicke Mathematik VII, pp.

167–218, 1974.
[5] Topological Automata. R.A.I.R.O, 3:73–91 (with W. Kühnel), 1974.
[4] Kategorielle Theorie der Reduktion, Minimierung und Äquivalenz von Au-

tomaten. Mathematische Nachrichten, 59:105–124 (with H.-J. Kreowski and
M. Pfender), 1974.

[3] Graph Grammars for the Specialization of Organisms. In Proc. Conf. on Biolog-
ically Motivated Automata Theory, Virginia, USA, pp. 158–165. Record Mitre
Corp. (with K. W. Tischer), 1974.

[2] Graph Grammars: An Algebraic Approach. In 14th Annual IEEE Symposium
on Switching and Automata Theory, pp. 167–180. IEEE (with M. Pfender and
H. J. Schneider), 1973.

[1] Übertragung universeller und spezieller Probleme in F-Morphismen-Darstellung.
PhD thesis, Technische Universität Berlin, 1971.

On the Concurrent Semantics
of Algebraic Graph Grammars�

Paolo Baldan1 and Andrea Corradini2

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
baldan@dsi.unive.it

2 Dipartimento di Informatica, Università di Pisa, Italy
andrea@di.unipi.it

Abstract. Graph grammars are a powerful model of concurrent and
distributed systems which can be seen as a proper extension of Petri
nets. Inspired by this correspondence, a truly concurrent semantics has
been developed along the years for the algebraic approaches to graph
grammars, based on Winskel’s style unfolding constructions as well as
on suitable notions of processes. A basic role is played in this framework
by the study of contextual and inhibitor nets, two extensions of ordinary
nets which can be seen as intermediate models between ordinary Petri
nets and algebraic graph grammars.
This paper presents a survey of these results, discussing in a precise,
even if informal way, some of the main technical contributions that made
possible the development of such a theory.

Introduction

Petri nets [40, 42] are one of the most widely used models of concurrency. Since
their introduction they have attracted the interest of both theoreticians and
practitioners. Along the years Petri nets have been equipped with satisfactory
semantics, doing justice to their intrinsically concurrent nature. These semantics
have served as basis for the development of a variety of modelling and verification
techniques. However, the simplicity of Petri nets, which is one of the reasons of
their success, represents also a limit in their expressiveness. If one is interested in
giving a more structured description of the state, or if the kind of dependencies
between steps of computation cannot be reduced simply to causality and conflict,
Petri nets are likely to be inadequate.

This paper summarizes the work presented by the authors in a series of pa-
pers [2–4, 7–10, 12], most of which written jointly with Ugo Montanari, and some
with Nadia Busi, Michele Pinna and Leila Ribeiro. Such papers are the outcome
of a project aimed at proposing graph transformation systems as an alternative
model of concurrency, extending Petri nets. The basic intuition underlying the
use of graph transformation systems for formal specifications is to represent the

� Research partially supported by the EU FET-GC Project IST-2001-32747 agile,
and by the EC RTN 2-2001-00346 SegraVis.

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 3–23, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

4 Paolo Baldan and Andrea Corradini

states of a system as graphs (possibly attributed with data-values) and state
transformations by means of rule-based graph transformations. Needless to say,
the idea of representing system states by means of graphs is pervasive in com-
puter science. Whenever one is interested in giving an explicit representation of
the interconnections, or more generally of the relationships among the various
components of a system, a natural solution is to use (possibly hierarchical and
attributed) graphs. The possibility of giving a suggestive pictorial representa-
tion of graphical states makes them adequate for the description of the meaning
of a system specification, even to a non-technical audience. A popular example
of graph-based specification language is given by the Unified Modelling Lan-
guage (UML), but we recall also the more classical Entity/Relationship (ER)
approach, or Statecharts, a specification language suited for reactive systems.
Moreover, graphs provide a privileged representation of systems consisting of a
set of processes communicating through ports.

When one is interested in modelling the dynamic aspects of systems whose
states have a graphical nature, graph transformation systems are clearly one of
the most natural choices. Since a graph rewriting rule has only a local effect
on the state, it is natural to allow for the parallel application of rules acting
on independent parts of the state, so that a notion of concurrent computation
naturally emerges in this context. The research in the field, mainly that dealing
with the so-called algebraic approaches to graph transformation [25, 22, 27], has
led to the attempt of equipping graph grammars with a satisfactory semantical
framework, where their truly concurrent behaviour can be suitably described and
analyzed. After the seminal work [31], which introduced the notion of shift equiv-
alence, many original contributions to the theory of concurrency for algebraic
graph transformation systems have been proposed during the last ten years,
most of them inspired by their relation with Petri nets. In particular, for the
double-pushout (dpo) approach to graph transformation, building on some ideas
of [31], a trace semantics has been proposed in [18, 22]. Resorting to a construc-
tion in the style of Mazurkiewicz, the trace semantics has been used to derive
an event structure semantics [20, 19] for dpo graph grammars. Graph grammars
have been endowed also with a process semantics with the introduction of graph
processes [21], further refined with the notion of concatenable (deterministic)
processes [8]. A Winskel’s style unfolding construction [51] has been defined
both for the single pushout (spo) and the dpo approaches [43, 9, 10], and has
been exploited for providing, through suitable chains of functors, such grammars
with more abstract semantics based on event structures and domains.

In this survey paper, after recalling the basics of the algebraic approaches to
graph transformation and their relationship with Petri nets, we will summarize
the functorial, unfolding semantics of Petri nets and the elegant way in which
it can be reconciled with the event structure semantics based on determinis-
tic processes. Next we will discuss how this approach has been generalized to
algebraic graph grammars. This required the definition of new structures and
constructions that will be briefly outlined in the following sections. We shall focus
mainly on the definition of two generalizations of prime event structures, called

On the Concurrent Semantics of Algebraic Graph Grammars 5

asymmetric and inhibitor event structures, explaining why they were necessary,
and to which extent they made possible to generalize to graph grammars the
constructions and results originally developed for Petri nets. It is worth stress-
ing here that this research activity contributed to the theory of Petri nets as
well, by generalizing the functorial semantics to the classes of contextual and in-
hibitor nets, already introduced in the literature. Such nets can be considered as
intermediate models between Place/Transition (P/T) nets and graph grammars.

The rest of this paper is organized as follows. In Section 1 we introduce the
dpo and spo approaches to graph transformation, discussing their relation with
Petri nets, and we stress the role of contextual and inhibitor nets as intermediate
models between Petri nets and graph grammars. This allows us to organize
the mentioned models in an ideal partial order where each model generalizes
its predecessors. Then Section 2 outlines the approach to the truly concurrent
semantics of ordinary Petri nets which is proposed as a paradigm. Section 3
describes the semantical framework that has been generalized from Petri nets to
graph grammars, and Section 4 gives an overview of the results, by explaining
how and to what extent such semantical framework has been lifted along the
chains of models, first to contextual and inhibitor nets and then to dpo and spo
graph grammars. Finally, Section 5 discusses some open problems and directions
of future research.

1 Graph Grammars and Their Relation with Petri Nets

In this section we present the algebraic approaches to graph transformation and
we discuss how ordinary Petri nets can be seen as special algebraic graph gram-
mars. The new features with which graph grammars extend ordinary Petri nets
establish a close relationship between graph grammars and two generalizations
of Petri nets in the literature, i.e., contextual and inhibitor nets.

1.1 The Algebraic Approaches to Graph Transformation

Generally speaking, a graph grammar consists of a start graph together with a
set of graph productions, i.e., rules of the kind p : L � R, specifying that, under
certain conditions, once an occurrence (a match) of the left-hand side L in a
graph G has been detected, it can be replaced by the right-hand side R. The
form of graph productions, the notion of match, and the mechanisms establishing
how a production can be applied to a graph, and what the resulting graph is,
depend on the specific graph rewriting formalism.

Here we consider the algebraic approaches to graph rewriting [25, 18, 27],
where the basic notions of production and direct derivation are defined in terms
of constructions and diagrams in a suitable category. Consequently, the resulting
theory is very general and flexible, easily adaptable to a very wide range of
structures, simply by changing the underlying category.

In the double-pushout approach, a graph production consists of a left-hand
side graph L, a right-hand side graph R and a (common) interface graph K
embedded both in R and in L, as depicted in the top part of Fig. 1. Informally,
to apply such a rule to a graph G we must find a match, namely an occurrence

6 Paolo Baldan and Andrea Corradini

RL

D HG

K

Fig. 1. A (double-pushout) graph rewriting step.

of its left-hand side L in G. The rewriting mechanism first removes the part of
the left-hand side L which is not in the interface K producing the graph D, and
then adds the part of the right-hand side R which is not in the interface K, thus
obtaining the graph H . Formally, this is obtained by requiring the two squares
in Fig. 1 to be pushouts in the category of graphs and total graph morphisms,
hence the name of the approach. The interface graph K is “preserved”: it is
necessary to perform the rewriting step, but it is not affected by the step itself.
Notice that the interface K plays a fundamental role in specifying how the right-
hand side has to be glued with the graph D. Working with productions having
an empty interface graph K, the expressive power would drastically decrease:
only disconnected subgraphs could be added.

In the single-pushout approach, a production consists instead of a partial,
injective graph morphism p : L � R from the left- to the right-hand side graph.
By looking at the partial morphism p as a span of total morphisms

L←↩ dom(p) → R

one sees that the domain of p plays here the role of the interface K of dpo rules.
To apply such a production to a given match of L in a graph G, i.e., to a total
morphism L→ G, we have to compute the pushout of p : L � R and L→ G in
the category of graphs and partial graph morphisms.

The most relevant difference between the dpo and spo approaches (see [27])
is the fact that while the construction of the double pushout diagram may fail if
the match L → G does not satisfy the so-called gluing conditions with respect
to the given rule, the construction of the pushout of an spo rule L � R and a
match L → R is always possible. We shall come back on this when relevant in
the rest of the paper.

1.2 Relation with Petri Nets

A basic observation belonging to the folklore (see, e.g., [17] and references
therein) regards the close relationship existing between graph grammars and

On the Concurrent Semantics of Algebraic Graph Grammars 7

Petri nets. Basically a Petri net can be viewed as a graph transformation system
that acts on a restricted kind of graphs, namely discrete, labelled graphs (that
can be considered as sets of tokens labelled by places), the productions being
the transitions of the net. For instance, Fig. 2 presents a Petri net transition t
and the corresponding dpo and spo graph productions which consume nodes
corresponding to two tokens in s0 and one token in s1 and produce new nodes
corresponding to one token in s2 and one token in s3. The interface is empty in
the dpo rule and the domain of the morphism is empty in the spo rule, since
nothing is explicitly preserved by a net transition. It is easy to check that both
representations satisfy the properties one would expect: the production can be
applied to a given marking if and only if the corresponding transition is enabled,
and the double or single pushout construction produces the same marking as the
firing of the transition.

�������	s0

2 ���
��

�������	 s1

1����
�

t
1���

��1 ����
�

�������	s2 �������	 s3

s0 s1s0

s0 s1s0

s3s2

s3s2

Fig. 2. A Petri net transition and the corresponding dpo and spo productions.

In this view, general graph transformation systems can be seen as a proper
extension of ordinary Petri nets in two dimensions:

1. they allow for general productions, possibly with non-empty interface, spec-
ifying rewriting steps where a part of the state is preserved, i.e., required,
but not affected by the rewriting step;

2. they allow for a more structured description of the state, that is an arbitrary,
possibly non-discrete, graph.

The first capability is essential to give a faithful representation of concur-
rent accesses to shared resources. In fact, the part of the state preserved in a
rewriting step, i.e., the (image of the) interface graph in the dpo or the domain
of the production in the spo approach, can be naturally interpreted as a part
of the state which is accessed in a read-only manner by the rewriting step. Co-
herently with such interpretation, several productions can be applied in parallel
sharing (part of) the interface. It is worth remarking that the näıve technique of
representing a read operation as a consume/produce cycle may cause a loss of
concurrency since it imposes an undesired serialization of the read-only accesses
to the shared resource.

As for the second capability, even if multisets may be sufficient in many
situations, as already mentioned in the introduction, graphs are more appropriate
when one is interested in giving an explicit representation of the interconnections
among the various components of the systems, e.g., if one wants to describe the
topology of a distributed system and the way it evolves.

8 Paolo Baldan and Andrea Corradini

These distinctive features of graph grammars establish a link with two ex-
tensions of ordinary Petri nets in the literature, introduced to overcome some
deficiencies of the basic model: contextual nets and inhibitor nets.

1.3 Contextual Nets

Contextual nets [37], also called nets with test arcs in [16], activator arcs in [30]
or read arcs in [49], extend ordinary nets with the possibility of checking for
the presence of tokens which are not consumed. Concretely, besides the usual
preconditions and postconditions, a transition of a contextual net has also some
context conditions, which specify that the presence of some tokens in certain
places is necessary to enable the transition, but such tokens are not affected by
the firing of the transition. Following [37], non-directed (usually horizontal) arcs
are used to represent context conditions: for instance, transition t in the left part
of Fig. 3 has place s as context.

Clearly the context of a transition in a contextual nets closely corresponds to
the interface graph of a dpo production and to the domain of an spo production,
seen as a partial morphism. As suggested by Fig. 3, a contextual net corresponds
to a graph grammar still acting on discrete graphs, but where productions may
have a non-empty interface/domain.

�������	s0

2 ���
��

�������	 s1

1����
�

t
1���

��
1 ����

�
1 �������	 s

�������	s2 �������	 s3

ss1 ss0 s0 s2 s3 s

s1 ss0 s0 s2 s3 s

Fig. 3. A contextual Petri net transition and the corresponding dpo and spo produc-
tions.

For their ability of faithfully representing concurrent read-only accesses to
shared resources, contextual nets have been used to model the concurrent access
to shared data (e.g., for serializability problems for concurrent transactions in a
database) [23, 44], to give a concurrent semantics to concurrent constraint pro-
grams [14] where several agents access a common store, to model priorities [29]
and to compare temporal efficiency in asynchronous systems [49].

1.4 Inhibitor Nets

Inhibitor nets (or nets with inhibitor arcs) [1] further generalize contextual nets
with the possibility of checking not only for the presence, but also for the absence
of tokens in a place. For each transition an inhibitor set is defined and the
transition is enabled only if no token is present in the places of its inhibitor set.
When a place s is in the inhibitor set of a transition t we say that s inhibits

On the Concurrent Semantics of Algebraic Graph Grammars 9

(the firing of) t. The fact that a place s inhibits a transition t is graphically
represented by drawing a dotted line from s to t, ending with an empty circle,
as shown in the left part of Fig. 4.

While, at a first glance, this could seem a minor extension, it definitely in-
creases the expressive power of the model. In fact, many other extensions of
ordinary nets, like nets with reset arcs or prioritized nets, can be simulated in a
direct way by using nets with inhibitor arcs (see, e.g., [39]). Indeed the crucial
observation is that ordinary nets can easily simulate all the operations of RAM
machines, with the exception of the zero-testing. Enriching nets with inhibitor
arcs is the simplest extension which allows to overcome this limit, thus giving
the model the computational power of Turing machines.

�������	s0

2 ���
��

�������	 s1

1����
�

�������	s4 t
1���

��
1 ����

�

������ �������	 s

�������	s2 �������	 s3

• •
s0 s0

���
��

•
s1

�����
• ��

�����
��

s

•s4 t

���
��

�����•s2 • s3

Fig. 4. Correspondence between inhibitor Petri nets and dpo graph grammars.

In this case the relation with algebraic graph grammars is less straightfor-
ward, and it only concerns the dpo approach. We must recall that in a graph
transformation system each rewriting step is required to preserve the consistency
of the graphical structure of the state, namely each step must produce a well-
defined graph. Hence, as required by a part of the application condition of the
dpo approach, the so-called dangling condition, a production q which removes a
node n cannot be applied if there are edges having n as source or target, which
are not removed by q: in fact, such edges would remain dangling in the resulting
graph. In other words the presence of such edges inhibits the application of q.
This is informally illustrated by Fig. 4, where place s which inhibits transition
t in the left part, becomes an edge which would remain dangling after the ex-
ecution of t, in the right part. As in the case of contextual nets, this intuitive
relation can be made formal, but here, for lack of space, we cannot give the
details of the correspondence.

It is worth stressing, again informally, that in the spo approach the dangling
condition is not necessary. By the nature of pushouts in the category of graphs
and partial morphisms, a rule which deletes a node can be applied to any match
of its left-hand side: any edge attached to that node is automatically erased by
the construction, as a kind of side-effect.

2 Truly Concurrent Semantics of Petri Nets

Along the years Petri nets have been equipped with several semantics, aimed
at describing, at the right degree of abstraction, the truly concurrent nature of

10 Paolo Baldan and Andrea Corradini

their computations. The approach that we propose as a paradigm, comprises the
semantics based on deterministic processes, whose origin dates back to an early
proposal by Petri himself [41] and the semantics based on the nondeterministic
unfolding, introduced in a seminal paper by Nielsen, Plotkin and Winskel [38],
and shows how the two may be reconciled in a satisfactory framework.

2.1 Deterministic Process Semantics
The notion of deterministic process naturally arises when trying to give a truly
concurrent description of net computations, taking explicitly into account the
causal dependencies ruling the occurrences of events in single computations.

The prototypical example of Petri net process is given by the Goltz-Reisig
processes [28]. A Goltz-Reisig process of a net N is a (deterministic) occurrence
net O, i.e., a finite net enjoying suitable acyclicity and conflict freeness properties,
plus a mapping to the original net ϕ : O → N . The flow relation induces a
partial order on the elements of the net O, which can be naturally interpreted as
causality. The mapping essentially labels places and transitions of O with places
and transitions of N , in such a way that places in O can be thought of as tokens
in a computation of N and transitions of O as occurrences of transition firings
in such computation. For instance, Fig. 5 depicts a Petri net and a deterministic
process of such a net, representing the sequential execution of two occurrences
of t1 followed by t2, in parallel with t3.

�������	• s1

		

		
			

�������	• s3

		
t1����

�� ��		

t2
		

t3
		�������	 s2 �������	 s4

�������	 s1

				

�������	 s3

		
t1
		

t3
		�������	 s1

		

�������	 s4

t1
		�������	 s1

		
			

t2
		�������	 s2

Fig. 5. A Petri net and a deterministic process for the net.

A refinement of Goltz-Reisig processes, the so-called concatenable processes
[24], form the arrows of a category CP[N], where objects are markings (states of
the net) and arrow composition models the sequential composition of computa-
tions. It turns out that such category is a symmetric monoidal category, in which
the tensor product represents faithfully the parallel composition of processes.

2.2 Unfolding Semantics
A deterministic process represents only a single, deterministic computation of
a net. Nondeterminism is captured implicitly by the existence of several differ-

On the Concurrent Semantics of Algebraic Graph Grammars 11

ent “non confluent” processes having the same source. An alternative classical
approach to the semantics of Petri nets is based on an unfolding construction,
which maps each net into a single branching structure, representing all the pos-
sible events that can occur in all the possible computations of the net and the
relations existing between them. This structure expresses not only the causal
ordering between the events, but also gives an explicit representation of the
branching (choice) points of the computations.

In the seminal work of Nielsen, Plotkin and Winskel [38], the denotation of a
safe net is a coherent finitary prime algebraic Scott domain [47] (briefly domain),
obtained via a construction which first unfolds the net into a (nondeterministic)
occurrence net which is then abstracted to a prime event structure, which, finally,
gives rise to a domain. Building on such result, Winskel [51] proves the existence
of a chain of categorical coreflections (a particularly nice kind of adjunction),
leading from the category S-N of safe (marked) P/T nets to the category Dom
of finitary prime algebraic domains, through the categories O-N of occurrence
nets and PES of prime event structures.

S-N
U
⊥ �� O-N

E
⊥ ��

� �
IOcc��

PES
L
∼ ��

N��
Dom

P��

The first step unwinds a safe net N into a nondeterministic occurrence net
U(N), which can be seen as a “complete” nondeterministic process of the net
N , representing in its branching structure all the possible computations of the
original net N . The construction exploits the fact that in a safe Petri net, a
specific occurrence of a transition t can be identified uniquely by its history,
namely by the finite set of transition occurrences starting from the initial mark-
ing which are strictly necessary to enable to considered occurrence of t. Any two
distinct transition occurrences t1 and t2 can be related in four possible, mutually
exclusive, ways:

1. t2 is causally dependent on t1 (denoted t1 < t2) if any computation including
t2 includes also t1;

2. t1 is causally dependent on t2 (t2 < t1) in the symmetric case;
3. t1 and t2 are in conflict (t1# t2) if they do not appear together in any

computation;
4. t1 and t2 are concurrent if none of the previous conditions holds.

The relations of causality and conflict are easily shown to be generated by
the direct causality, which relates a transition occurrence which produces a token
with all those which consume it, and by the direct conflict, which relates two
transition occurrences which would consume the same token. The occurrence
net U(N) obtained as the unfolding of a safe net N records exactly all this
information.

The subsequent step abstracts such occurrence net to a prime event structure
(pes). The pes is obtained from the unfolding simply by forgetting the places,
and remembering only the transition occurrences and the causality and conflict

12 Paolo Baldan and Andrea Corradini

�������	 s1

		

 �������	 s3

		
t1

		
t2

		
t3

		
t1

��
��

��
��

��
��

� # t2 t3

�������	 s1

		

 �������	 s2 �������	 s4

t1

		
t2

		
t1

��
��

��
��

��
��

� # t2

�������	 s1

		

 �������	 s2

t1

		
t2

		
t1 # t2

�������	 s1 �������	 s2

Fig. 6. Unfolding and event structure semantics of Petri nets.

relations among them. From a prime event structure E it is possible to generate
freely an occurrence net N (E) which is the “most general” among those having
E as underlying pes. Such a net is obtained by considering the events of E as
transition occurrences, and introducing, among others, one fresh place for every
pair of events related by causality or conflict in E, in order to enforce the same
relationships in N (E).

The last step (which establishes an equivalence between the category of prime
event structures and the category of domains) maps any event structure to its
domain of configurations. Fig. 6 presents the unfolding and event structure cor-
responding to the net in Fig. 5.

In [36] it has been shown that essentially the same construction applies to
the category of semi-weighted nets, i.e., P/T nets in which the initial marking
is a set and transitions can generate at most one token in each post-condition.
Besides strictly including safe nets, semi-weighted nets also offer the advantage
of being characterized by a “static condition”, not involving the behaviour but
just the structure of the net.

2.3 Reconciling Deterministic Processes and Unfolding

Since the unfolding is essentially a “maximal” nondeterministic process of a
net, one would expect the existence of a clear relation between the unfolding
and the deterministic process semantics. Indeed, as shown in [35], the domain
associated to a net N through the unfolding construction can be equivalently
characterized as the set of deterministic processes of the net starting from the
initial marking, endowed with a kind of prefix ordering. This result is stated in an
elegant categorical way by resorting to concatenable processes. Given a (semi-
weighted) net N with initial marking m, the comma category 〈m ↓ CP[N]〉
is shown to be a preorder, whose elements are intuitively finite computations
starting from the initial state, and if ϕ1 and ϕ2 are elements of the preorder, ϕ1 �

On the Concurrent Semantics of Algebraic Graph Grammars 13

ϕ2 when ϕ1 can evolve to ϕ2 by performing appropriate steps of computation.
Then the ideal completion of such preorder, which includes also the infinite
computations of the net, is shown to be isomorphic to the domain generated
from the unfolding.

Deterministic processes
��

P/T Nets

��

��

Domains

Unfolding
��

3 Concurrent Semantics: From Nets to Graph Grammars

In this section, guided by the relationship between graph grammars and Petri
nets, we describe the way the semantical framework described in the previous
section has been generalized to graph grammars.

The main complications which arise in the treatment of graph grammars are
related to the possibility of expressing rewritings where part of the state is pre-
served and, just for the dpo approach, to the need of preserving the consistency
of the graphical structure of the state, a constraint which leads to the mentioned
“inhibiting effects” between production applications. Therefore, not surprisingly,
contextual and inhibitor nets play an essential role in the extension in that they
offer a technically simple framework, where problems which are conceptually
relevant to graph grammars can be studied in isolation.

Intuitively, we can organize the considered formalisms in an ideal partial
ordering leading from Petri nets to graph transformation systems

Petri
nets

�� Contextual
nets

��

��

Inhibitor
nets

�� dpo graph
grammars

spo graph
grammars

and for each one of such formalisms we develop a similar theory by following a
common schema which can be summarized as follows:

1. We define a category of systems Sys, where morphisms, which basically origin
from an algebraic view of the systems, can be interpreted as simulations.

2. We develop an unfolding semantics, expressed as a coreflection between Sys
and a subcategory O-Sys, where objects, called “occurrence” systems, are
suitable systems exhibiting an acyclic behaviour. From the unfolding we
extract an (appropriate kind of) event structure, the transformation being
expressed as a functor from O-Sys to the considered category of event struc-
tures ES. In the case of contextual nets and of spo grammars this functor
establishes a coreflection between O-Sys and ES. Finally, a connection is
established with domains and pes by showing that the category ES of gen-
eralized event structures coreflects into the category Dom of domains.

14 Paolo Baldan and Andrea Corradini

Summing up, we obtain the following chain of functors, leading from systems
to event structures and domains

Sys ⊥ �� O-Sys ��
� ���

ES ⊥ �� Dom
��

∼ �� PES
��

The last step in the chain is the equivalence between the categories Dom of
domains and PES of prime event structures, due to Winskel.

3. We introduce a notion of deterministic process for systems in Sys. Relying
on the work in point (2), a general (possibly nondeterministic) process of a
system S is defined as an “occurrence system” in O-Sys, plus a (suitable
kind) of morphism back to the original system S (the prototypical example
of nondeterministic process being the unfolding). Then, roughly speaking, a
process is deterministic if it contains no conflict, or, in other words, if the
corresponding event structure has a configuration including all the events.
The deterministic processes of a system S are turned into a category CP[S],
by endowing them with a notion of concatenation, modelling the sequential
composition of computations.

4. We show that the deterministic process and the unfolding semantics can
be reconciled by proving that, as for ordinary nets, the comma category
〈Initial State ↓ CP[S]〉, is a preorder whose ideal completion is isomorphic
to the domain obtained from the unfolding, as defined at point (2).

It is fair to point here that the steps (3) and (4) above have not been com-
pletely worked out for spo grammars.

Observe that, differently from what happens for ordinary nets, the unfold-
ing semantics (essentially based on nondeterministic processes) is defined be-
fore developing a theory of deterministic processes. To understand why, note
that for ordinary nets the only source of nondeterminism is the the presence of
pairs of different transitions with a common precondition, and therefore there
is an obvious notion of “deterministic net”. When considering contextual nets,
inhibitor nets or graph grammars the situation becomes less clear: the depen-
dencies between event occurrences cannot be described only in terms of causality
and conflict, and the deterministic systems cannot be given a purely syntactical
characterization. Consequently, a clear understanding of the structure of non-
deterministic computations becomes essential to be able to single out which are
the good representatives of deterministic computations.

4 Some Insights into the Technical Problems

For each one of the considered models the core of the developed theory is
point (2) and, more specifically, the formalization of the kind of dependencies
among events which can occur in their computations. As mentioned above, such
dependencies cannot be faithfully reduced to causality and conflict and thus ap-
propriate generalizations of Winskel’s event structures must be defined. Next we
give some more details on the specific problems that we found for each formalism
and on the way we decided to face them.

On the Concurrent Semantics of Algebraic Graph Grammars 15

Grammar G1

A B B B

TG = Gin =

q3

q2

q1

q1

q3
q2

B

A

A
L

B

L

BA L

Fig. 7. The safe graph grammar G1 and its net-like representation.

4.1 From Prime to Asymmetric Event Structures

In the case of algebraic graph grammars, both in the dpo and in the spo ap-
proaches, the presence of a context in a production, i.e., of items that are needed
for the application of a production but which are not consumed, introduces a
new kind of dependency among production occurrences, making prime event
structures not completely satisfactory as a semantic domain.

As an example, consider the (typed) dpo graph grammar G1 of Figure 7. On
the left-hand side, the grammar is represented as usual in the dpo approach,
consisting of a set of productions (spans of injective graph morphisms) and a
start graph, all of them typed over the type graph TG (i.e., equipped with a
homomorphism to TG), which, in this case, coincides with the start graph Gin.
On the right-hand side, a net-like pictorial representation of the same grammar
is shown, where the productions and the items of the type graph play the rôle of
transitions and of places of a Petri net, respectively. This net-like representation
can be given for strongly safe graph grammars, which, intuitively, are the graph
grammar counterpart of safe nets (see [10] for more details).

Let us focus on productions q1 and q2. Both are applicable to the start graph
Gin. But notice that if we apply q2 first, then q1 cannot be applied anymore
because q2 deletes node B; on the other hand, if we apply q1 first, then q2 can
still be applied. This phenomenon has been extensively studied for contextual
nets. For example, in the net N1 of Fig. 8(a), transitions t1 and t2 play the same
rôle as productions q1 and q2 of the above grammar, and place s, which is a
context of q1 and a precondition of q2, is like node B above.

The possible firing sequences in net N1 are given by the firing of t1, the
firing of t2, and the firing of t1 followed by t2, denoted t1; t2, while t2; t1 is
not allowed. This situation cannot be modelled in a direct way within a prime
event structure: t1 and t2 are neither in conflict nor concurrent nor causally
dependent. Simply, as for an ordinary conflict, the firing of t2 prevents t1 to be
executed, so that t1 can never follow t2 in a computation, but the converse is not
true, since t2 can fire after t1. This situation can be interpreted naturally as an
asymmetric conflict between the two transitions. Equivalently, since t1 precedes

16 Paolo Baldan and Andrea Corradini

N1

�������	•
s0

		
t1 �������	•

s

		
t2

e′2 # e1

e′′2

(a) (b)

Fig. 8. A simple contextual net and a prime event structure representing its behaviour.

t2 in any computation where both transitions fire, t1 acts as a cause of t2 in
such computations. However, differently from a true cause, t1 is not necessary
for t2 to be fired. Therefore we can also think of the relation between the two
transitions as a weak form of causality.

A possible way to encode this situation in a pes is to represent the firing of t1
with an event e1 and the firing of t2 with two distinct mutually exclusive events:
e′2, representing the execution of t2 that prevents t1, thus in conflict with e1,
and e′′2 , representing the execution of t2 after t1, thus caused by e1. Such pes is
depicted in Fig. 8.(b), where causality is represented by a plain arrow and conflict
is represented by a dotted line, labelled by #. However, this solution is not
completely satisfactory with respect to the interpretation of contexts as “read-
only resources”: since t1 just reads the token in s without changing it, one would
expect the firing of t2, preceded or not by t1, to be represented by a single event.

In order to provide a more direct, event based representation of contextual
net computations, asymmetric event structure (aes) were introduced in [7]. An
aes, besides of the usual causality relation ≤ of a prime event structure, has a
relation ↗, called the asymmetric conflict relation, that allows one to specify
the new kind of dependency described above simply as t1 ↗ t2. Informally, in an
aes each event has a set of “strong” causes (given by the causality relation) and
a set of weak causes (due to the presence of the asymmetric conflict relation).
To be fired, each event must be preceded by all strong causes and by a (suitable)
subset of the weak causes. Therefore, differently from pes’s, an event of an aes
can have more than one history. Moreover the usual symmetric binary conflict
e#e′ can be represented easily by using cycles of asymmetric conflicts: if e↗ e′

and e′ ↗ e then clearly e and e′ can never occur in the same computation, since
each one should precede the other.

The main result of [7] shows that Winskel’s functorial semantics for safe nets
can be generalized to the following, similar chain of adjuctions for contextual
nets, where asymmetric event structures play a central rôle.

Semi-weighted
Contextual

Nets Ua

⊥ ��
Occurrence
Contextual

Nets Ea

⊥ ��
� ��� Asymmetric

Event
Structures La

⊥ ��
Na��

Domains

Pa��

On the Concurrent Semantics of Algebraic Graph Grammars 17

Grammar G2

q4

L

L

A B
q1

q3

TG =

q2

C

L BA

q2 q3

q4

q1

B

AA BBA B

CBA CB

BA

B C B

B B

L

L

Gin =

Fig. 9. Graph grammar G2 and its net-like representation.

4.2 From Asymmetric to Inhibitor Event Structures

Unfortunately, aes’s are not yet sufficient to capture all relationships among
the production occurrences in a dpo graph grammar. Consider grammar G2 of
Figure 9 (in the net-like representation, on the right-hand side, nodes with empty
interior and dashed edges can be seen as empty places). More specifically, let us
focus on the relationships among the various productions. Notice that q4 can be
applied to the start graph Gin consisting of nodes B and C, but if we first apply
q1, then the application of q4 is prevented by the dangling condition: removing
the node B would leave edge L without its target node, so, basically, q4 cannot
be applied for ensuring a structural property of the state. Production q4 could
be applied again if we first delete edge L, by applying production q2 or q3.

Such complex relationships have been analyzed in depth for inhibitor Petri
nets. Consider the inhibitor net N2 in Fig. 10 where the place s, which inhibits
transition t, is in the post-set of transition t′ and in the pre-set of t0. The
execution of t′ inhibits the firing of t, which can be enabled again by the firing of
t0. Thus t can fire before or after the “sequence” t′; t0, but not in between the two
transitions. Roughly speaking there is a sort of atomicity of the sequence t′; t0
with respect to t. The situation can be more involved since many transitions t0,
. . . , tn may have the place s in their pre-set (see the net N3 in Fig. 10). Therefore,
after the firing of t′, the transition t can be re-enabled by any of the conflicting
transitions t0, . . . , tn. This leads to a sort of or-causality, but only when t fires
after t′. With a logical terminology we can say that t causally depends on the
implication t′ ⇒ t0 ∨ t1 ∨ . . . ∨ tn.

In order to model these complex relationships in a direct way, a generalization
of pes’s and aes’s has been introduced, called inhibitor event structures (ies’s).
A ies is equipped with a ternary relation, called DE-relation (disabling-enabling
relation) and denoted by ������ !� (·, ·, ·), which allows one to model the dependencies
between transitions in N3 as ������ !� ({t′}, t, {t0, . . . , tn}). It is possible to show that
the DE-relation is sufficient to represent both causality and asymmetric conflict
and thus, concretely, it is the only relation of an ies.

18 Paolo Baldan and Andrea Corradini

�������	•
		�������	•

		

t′

		
t
������ �������	 s

		
t0

�������	•
		�������	•

		

t′

		
t
������ �������	 s

		 ��

����
��
�

t0 . . . tn

N2 N3

Fig. 10. Two inhibitor nets.

Using inhibitor event structures and the DE-relation as basic tools, a functo-
rial semantics in Winskel’s style has been proposed for (semi-weighted) inhibitor
nets in [4, 3] as summarised by the following diagram:

Semi-weighted
Inhibitor

Nets Ui

⊥ ��
Occurrence
Inhibitor

Nets
Ei

��� ��� Inhibitor Event
Structures Li

⊥ �� Domains

Pi��

Besides of the fact that inibitor event structures replace asymmetric ones, even at
this level of abstraction, it is possible to see another relevant difference between
the functorial semantics of semi-weighted inhibitor nets and the simpler case of
contextual nets. In fact, the functor from the category of inhibitor occurrence
nets to the category of ies’s does not have a left adjoint and thus the whole
semantic transformation is not expressed as a coreflection. Indeed, by making
only very mild assumptions, it has been shown in [3] that such a left adjoint does
not exist, essentially because of the presence of a restricted kind of or-causality
in inhibitor occurrence nets.

4.3 Lifting the Results to dpo Graph Grammars

When we finally turn our attention to dpo graph grammars we are rewarded of
the effort spent on generalized Petri nets, since basically nothing new has to be
invented. Inhibitor event structures are expressive enough to model the structure
of dpo graph grammar computations and the theory developed for inhibitor nets
smoothly lifts, at the price of some technical complications, to dpo grammars.
Furthermore, not only the process and the unfolding semantics developed for
dpo graph grammars are shown to agree, but also they have been shown to
be consistent with the classical theory of concurrency for dpo grammar in the
literature, basically relying on shift-equivalence. More specifically:

1. A Winskel’s style semantics for dpo graph grammars is presented in [2, 9,
10], as summarized by the following diagram:

DPO Graph
Grammars Ug

⊥ ��
DPO Occurrence

Grammars Eg

��� ��� Inhibitor Event
Structures Li

⊥ �� Domains

Pi��

On the Concurrent Semantics of Algebraic Graph Grammars 19

The unfolding construction associates to each graph grammar a nondeter-
ministic occurrence grammar describing its behaviour. Such a construction
establishes a coreflection between suitable categories of dpo grammars and
the category of occurrence grammars. The unfolding is then abstracted to
an inhibitor event structure and finally to a prime algebraic domain (or
equivalently to a prime event structure).

2. Nondeterministic graph processes are introduced in [2, 10], generalizing the
deterministic processes of [21]. The notion fits nicely in the theory since a
graph process of a dpo grammar G is defined simply as a (special kind of)
grammar morphism from an occurrence grammar to G, while in [21] an ad
hoc mapping was used.

3. Concatenable graph processes are introduced in [8], as a variation of deter-
ministic, finite processes, endowed with an operation of concatenation which
models sequential composition of computations. The appropriateness of this
notion is confirmed by the fact that the category CP[G] of concatenable pro-
cesses of a dpo grammar G turns out to be isomorphic to the truly concurrent
model of computation of G, as defined in [22] using the classical notions of
shift-equivalence and of traces.

4. The event structure obtained via the unfolding is shown in [9] to coincide
both with the one defined in [20] via a comma category construction on the
category of concatenable derivation traces, and with the one proposed in [46],
based on a deterministic set-theoretical variant of the dpo approach. These
results, besides confirming the appropriateness of the proposed unfolding
construction, give an unified view of the various event structure semantics
for the dpo approach to graph transformation.

4.4 Unfolding Semantics of spo Graph Grammars

Recently, a Winskel’s style unfolding semantics has been developed for the spo
approach to graph transformation as well, as reported in [12]. Apart from the
technical differences in the way rules are defined, the main difference with re-
spect to the dpo approach lies in the fact that there are no conditions on rule
applications, i.e., whenever a match is found the corresponding rule can always
be applied.

It turned out that a coreflective unfolding semantics for spo graph grammars
can be defined, leading to the following chain of adjunctions:

SPO Graph
Grammars Us

⊥ ��
SPO Occurrence

Grammars Es

⊥ ��
� ��� Asymmetric Event

Structures La

⊥ ��
N��

Domains

Pa��

The first step of the above diagram is obtained as a slight variation of the unfold-
ing construction for spo grammars proposed in [43]. The rest of the construction
differs from and improves that for dpo graph grammars recalled above, for the
following facts:

– Due to the absence of the dangling condition, asymmetric event structures
are sufficient to represent adequately the dependencies among production
occurrences: inhibitor event structures are not necessary.

20 Paolo Baldan and Andrea Corradini

– A novel construction, inspired by the work on contextual nets [7], allows us
to build a canonical occurrence spo graph grammar N (A) from any given
asymmetric event structure A. This provides the left-adjoint functor (indeed
a coreflection) which is missing in the corresponding chain for inhibitor nets
and dpo grammars. Given an asymmetric event structure A, the correspond-
ing grammar has the events of A as productions. The graph items are freely
generated in order to induce the right kind of dependencies between events.
More specifically, first the nodes of the graph are freely generated according
to the dependencies in A. Then for any pair of nodes, edges connecting the
two nodes are freely generated according to the dependencies in A and the
specific restrictions of the spo rewriting mechanism.

5 Conclusions

In this paper we surveyed several results proposed by our coauthors and ourselves
in a series of papers, contributing to the development of a systematic theory of
concurrency for algebraic graph grammars, aimed at closing the existing gap
between graph transformation systems and Petri nets. A second achievement of
this research activity is the development of an analogous unifying theory for two
widely diffused generalizations of Petri nets, namely contextual and inhibitor
nets. In fact, while a theory of deterministic processes for these kind of nets was
already available in the literature (see, e.g., [37, 15]), the Winskel-style seman-
tics, comprising the unfolding construction, its abstraction to a prime algebraic
domain semantics, as well as its relation with the deterministic process semantics
were missing.

The truly concurrent semantics for graph grammars (and generalized nets)
is intended to represent the basis for defining more abstract observational se-
mantics to be used for the analysis and verification of the modelled systems.
For instance, the notions of process and of event structure associated to a pro-
cess naturally lead to the definition of a behavioural equivalence, called history
preserving bisimulation (HP-bisimulation) [48], which, differently from ordinary
bisimulation, takes into account the properties of concurrency of the system. A
generalization of this approach to graph grammars has been proposed in [11].

The unfolding semantics of Petri nets has been used successfully for the anal-
ysis of finite-state systems: as shown in [34], a finite fragment can be extracted
from the (possibly infinite) unfolding, which is still useful to study some relevant
properties of the system, like reachability, deadlock freeness, and liveness and
concurrency of transitions. Such an approach has been extended to contextual
nets in [50]. Inspired by this line of research, recently we started to develop, in
joint works with Barbara and Bernhard König, a methodology for the verifica-
tion of algebraic graph grammars using finite approximations of the unfolding,
and a suitable graph logic for expressing relevant properties. Papers [5, 13] ad-
dress the verification of possibly infinite-state systems, while [6] is more closely
related to [34] as it consider finite-state systems only.

Finally, although we considered only graph rewriting acting on directed
(typed) graphs, it would be interesting to understand if the presented con-

On the Concurrent Semantics of Algebraic Graph Grammars 21

structions and results can be extended to more general structures. While the
generalization to hypergraphs looks trivial, developing a similar theory for more
general structures and for abstract categories (e.g., High Level Replacement Sys-
tems [26], or the recently introduced Adhesive Categories [32]) is not immediate
and represents an interesting topic of further investigation.

References

1. T. Agerwala and M. Flynn. Comments on capabilities, limitations and “correct-
ness” of Petri nets. Computer Architecture News, 4(2):81–86, 1973.

2. P. Baldan. Modelling concurrent computations: from contextual Petri nets to graph
grammars. PhD thesis, Department of Computer Science, University of Pisa, 2000.
Available as technical report n. TD-1/00.

3. P. Baldan, N. Busi, A. Corradini, and G.M. Pinna. Domain and event structure
semantics for Petri nets with read and inhibitor arcs. Theoretical Computer Science,
to appear, 2004.

4. P. Baldan, N. Busi, A. Corradini, and G.M. Pinna. Functorial concurrent semantics
for Petri nets with read and inhibitor arcs. In C. Palamidessi, editor, CONCUR’00
Conference Proceedings, volume 1877 of LNCS, pages 442–457. Springer Verlag,
2000.

5. P. Baldan, A. Corradini, and B. König. A static analysis technique for graph
transformation systems. In Proc. of CONCUR 2001, pages 381–395. Springer,
2001. LNCS 2154.

6. P. Baldan, A. Corradini, and B. König. Veryfing Finite-State Graph Grammars:
an Unfolding-Based Approach. In Proc. of CONCUR 2004, pages 83–98. Springer,
2004. LNCS 3170.

7. P. Baldan, A. Corradini, and U. Montanari. Contextual Petri nets, asymmetric
event structures and processes. Information and Computation, 171(1):1–49, 2001.

8. P. Baldan, A. Corradini, and U. Montanari. Concatenable graph processes: relating
processes and derivation traces. In Proceedings of ICALP’98, volume 1443 of LNCS,
pages 283–295. Springer Verlag, 1998.

9. P. Baldan, A. Corradini, and U. Montanari. Unfolding and Event Structure Se-
mantics for Graph Grammars. In W. Thomas, editor, Proceedings of FoSSaCS ’99,
volume 1578 of LNCS, pages 73–89. Springer Verlag, 1999.

10. P. Baldan, A. Corradini, and U. Montanari. Unfolding of double-pushout graph
grammars is a coreflection. In G. Ehrig, G. Engels, H.J. Kreowsky, and G. Rozem-
berg, editors, TAGT’98 Conference Proceedings, volume 1764 of LNCS, pages 145–
163. Springer Verlag, 1999.

11. P. Baldan, A. Corradini, and U. Montanari. Bisimulation Equivalences for Graph
Grammars. InFormal and Natural Computing, W. Brauer, H. Ehrig, J. Karhumäki,
A. Salomaa eds., number 2300 in LNCS, pages 158–190. Springer Verlag, 2002.

12. P. Baldan, A. Corradini, U. Montanari, and L. Ribeiro. Coreflective Concurrent
Semantics for Single-Pushout Graph Grammars. Proceedings WADT 2002, volume
2755 of LNCS, pages 165–184. Springer Verlag, 2002.

13. P. Baldan and B. König. Approximating the behaviour of graph transformation
systems. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors,
Proceedings of the First International Conference on Graph Transformation (ICGT
2002), volume 2505 of LNCS, pages 14–30. Springer, 2002.

22 Paolo Baldan and Andrea Corradini

14. F. Bueno, M. Hermenegildo, U. Montanari, and F. Rossi. Partial order and con-
textual net semantics for atomic and locally atomic CC programs. Science of
Computer Programming, 30:51–82, 1998.

15. N. Busi. Petri Nets with Inhibitor and Read Arcs: Semantics, Analysis and Applica-
tion to Process Calculi. PhD thesis, University of Siena, Department of Computer
Science, 1998.

16. S. Christensen and N. D. Hansen. Coloured Petri nets extended with place capac-
ities, test arcs and inhibitor arcs. In M. Ajmone-Marsan, editor, Applications and
Theory of Petri Nets, volume 691 of LNCS, pages 186–205. Springer Verlag, 1993.

17. A. Corradini. Concurrent graph and term graph rewriting. In U. Montanari and
V. Sassone, editors, Proceedings of CONCUR’96, volume 1119 of LNCS, pages
438–464. Springer Verlag, 1996.

18. A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. Abstract graph
derivations in the double-pushout approach. In H.-J. Schneider and H. Ehrig,
editors, Proceedings of the Dagstuhl Seminar 9301 on Graph Transformations in
Computer Science, volume 776 of LNCS, pages 86–103. Springer Verlag, 1994.

19. A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. An event struc-
ture semantics for safe graph grammars. In E.-R. Olderog, editor, Programming
Concepts, Methods and Calculi, IFIP Transactions A-56, pages 423–444. North-
Holland, 1994.

20. A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. An event structure
semantics for graph grammars with parallel productions. In J. Cuny, H. Ehrig,
G. Engels, and G. Rozenberg, editors, Proceedings of the 5th International Work-
shop on Graph Grammars and their Application to Computer Science, volume 1073
of LNCS. Springer Verlag, 1996.

21. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26:241–265, 1996.

22. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Alge-
braic Approaches to Graph Transformation I: Basic Concepts and Double Pushout
Approach. In Rozenberg [45], chapter 3.

23. N. De Francesco, U. Montanari, and G. Ristori. Modeling Concurrent Accesses to
Shared Data via Petri Nets. In Programming Concepts, Methods and Calculi, IFIP
Transactions A-56, pages 403–422. North Holland, 1994.

24. P. Degano, J. Meseguer, and U. Montanari. Axiomatizing the algebra of net com-
putations and processes. Acta Informatica, 33:641–647, 1996.

25. H. Ehrig. Tutorial introduction to the algebraic approach of graph-grammars. In
H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors, Proceedings of the 3rd
International Workshop on Graph-Grammars and Their Application to Computer
Science, volume 291 of LNCS, pages 3–14. Springer Verlag, 1987.

26. H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and concur-
rency in High-Level Replacement Systems. Mathematical Structures in Computer
Science, 1:361–404, 1991.

27. H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic approaches to graph transformation II: Single pushout approach and
comparison with double pushout approach. In Rozenberg [45], chapter 4.

28. U. Golz and W. Reisig. The non-sequential behaviour of Petri nets. Information
and Control, 57:125–147, 1983.

29. R. Janicki and M. Koutny. Invariant semantics of nets with inhibitor arcs. In
Proceedings of CONCUR ’91, volume 527 of LNCS. Springer Verlag, 1991.

30. R. Janicki and M. Koutny. Semantics of inhibitor nets. Information and Compu-
tation, 123:1–16, 1995.

On the Concurrent Semantics of Algebraic Graph Grammars 23

31. H.-J. Kreowski. Manipulation von Graphmanipulationen. PhD thesis, Technische
Universität Berlin, 1977.

32. S. Lack and P. Sobociński. Adhesive categories. In I. Walukiewicz, editor, Foun-
dations of Software Science and Computation Structures, volume 2987 of LNCS,
pages 273–288. Springer, 2004.

33. M. Löwe. Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science, 109:181–224, 1993.

34. K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.
35. J. Meseguer, U. Montanari, and V. Sassone. Process versus unfolding semantics

for Place/Transition Petri nets. Theoretical Computer Science, 153(1-2):171–210,
1996.

36. J. Meseguer, U. Montanari, and V. Sassone. On the semantics of Place/Transition
Petri nets. Mathematical Structures in Computer Science, 7:359–397, 1997.

37. U. Montanari and F. Rossi. Contextual nets. Acta Informatica, 32(6), 1995.
38. M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains,

Part 1. Theoretical Computer Science, 13:85–108, 1981.
39. J.L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice-Hall, 1981.
40. C.A. Petri. Kommunikation mit Automaten. PhD thesis, Schriften des Institutes

für Instrumentelle Matematik, Bonn, 1962.
41. C.A. Petri. Non-sequential processes. Technical Report GMD-ISF-77-5, Gesellshaft

für Mathematik und Datenverarbeitung, Bonn, 1977.
42. W. Reisig. Petri Nets: An Introduction. EACTS Monographs on Theoretical

Computer Science. Springer Verlag, 1985.
43. L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.

PhD thesis, Technische Universität Berlin, 1996.
44. G. Ristori. Modelling Systems with Shared Resources via Petri Nets. PhD thesis,

Department of Computer Science - University of Pisa, 1994.
45. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph

Transformation. Vol. 1: Foundations. World Scientific, 1997.
46. G. Schied. On relating rewriting systems and graph grammars to event structures.

In H.-J. Schneider and H. Ehrig, editors, Proceedings of the Dagstuhl Seminar
9301 on Graph Transformations in Computer Science, volume 776 of LNCS, pages
326–340. Springer Verlag, 1994.

47. D. S. Scott. Outline of a mathematical theory of computation. In Proceedings of
the Fourth Annual Princeton Conference on Information Sciences and Systems,
pages 169–176, 1970.

48. R. van Glabbeek and U. Goltz. Equivalence notions for concurrent systems and
refinement of actions. In A. Kreczmar and G. Mirkowska, editors, Proceedings of
MFCS’89, volume 39 of LNCS, pages 237–248. Springer Verlag, 1989.

49. W. Vogler. Efficiency of asynchronous systems and read arcs in Petri nets. In
Proceedings of ICALP’97, volume 1256 of LNCS, pages 538–548. Springer Verlag,
1997.

50. W. Vogler, A. Semenov, and A. Yakovlev. Unfolding and finite prefix for nets with
read arcs. In Proceedings of CONCUR’98, volume 1466 of LNCS, pages 501–516.
Springer-Verlag, 1998.

51. G. Winskel. Event Structures. In Petri Nets: Applications and Relationships to
Other Models of Concurrency, volume 255 of LNCS, pages 325–392. Springer Ver-
lag, 1987.

From Graph Transformation
to Software Engineering and Back

Luciano Baresi1 and Mauro Pezzè2

1 Politecnico di Milano,
Dipartimento di Elettronica e Informazione,

Milano, Italy
baresi@elet.polimi.it

2 Università degli Studi di Milano-Bicocca,
Dipartimento di Informatica Sistemistica e Comunicazione,

Milano, Italy
pezze@disco.unimib.it

Abstract. Software engineers usually represent problems and solutions
using graph-based notations at different levels of abstractions. These
notations are often semi-formal, but the use of graph transformation
techniques can support reasoning about graphs in many ways, and thus
can largely enhance them.
Recent work indicates many applications of graph transformation to soft-
ware engineering and opens new research directions. This paper aims
primarily at illustrating how graph transformation can help software en-
gineers, but it also discusses how software engineering can ameliorate the
practical application of graph transformation technology and its support-
ing tools.

1 Introduction

Software engineering aims at developing large software systems that meet qual-
ity and cost requirements. The development process that moves from the initial
problem to the software solution is based on models that describe and support
the development during the different phases. Models are key elements of many
software engineering methodologies for capturing structural, functional and non-
functional aspects. Popular methodologies prescribe various models – with differ-
ent degrees of formality, flexibility, and analyzability – to solve the different prob-
lems. For example, UML proposes some semi-formal diagrammatic languages:
class, object, component, and deployment diagrams for modeling structural as-
pects, and use case, sequence, activity, collaboration, and statechart diagrams
for modeling behavioral aspects [24].

The syntax and semantics of these models are defined informally with differ-
ent degrees of precision. Although users and tools agree on the main syntactic
and semantic aspects, important details are often given different – and frequently
incompatible – interpretations.

The scientific community agrees on the need to improve current practice
by increasing the degree of formality of these notations. Unfortunately, formal

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 24–37, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

From Graph Transformation to Software Engineering and Back 25

methods have not found wide application so far, and cannot be easily used in
conjunction with popular modeling notations [6]. This is where graph transfor-
mation (GT) provides unique features to strengthen diagrammatic models by
adding formality. Similarly to grammars for textual languages, GT can formally
describe the concrete and abstract syntaxes of modeling languages, but it can
also formalize the semantic aspects, and thus provides a strong basis for reason-
ing on diagrammatic models at all levels.

Formalizing the concrete and abstract syntaxes eliminates ambiguities and
contradictions and supports automatic checks for consistency and correctness.
GT allows the designer to describe the semantics both operationally and denota-
tionally. Operational semantics can be given by describing the legal evolutions of
models in terms of GT rules. Denotational semantics can be expressed by map-
ping models onto semantic domains by means of rules that mimic syntactical
changes onto the chosen semantic domain [28].

GT is well supported by tools, which are useful for solving many problems and
validating new ideas and applications, but often they do not scale well. When the
size of the application grows, and requires significant mediation between theory
and performance, software engineering principles can provide useful ideas. They
can contribute significantly in this direction and help GT experts move towards
complex problems and applications.

The main goal of this paper is to frame the opportunities offered by GT
to software engineering by illustrating sample cases and proposing additional
applications not fully explored yet. The paper also suggests ways for improving
GT technology and tools, inspired by well-known software engineering principles,
to address practical problems.

The paper is organized as follows. Section 2 discusses the opportunities of-
fered by GT as modeling language by touching the use of GT for modeling
and reasoning on particular aspects of software systems. Section 3 illustrates
the potentiality of GT for modeling and verifying notations, i.e., for formaliz-
ing the concrete and abstract syntaxes as well as the semantics of notations,
thus providing a uniform framework for modeling heterogeneous notations, and
fostering analysis tools. Section 4 indicates how software engineering can help
experiment and introduce graph transformation in current modeling practice.
Section 5 proposes some future directions and concludes the paper.

2 Graph Transformation for Models

GT provides a formal and intuitive way for describing systems and their evo-
lution. For example, GT has been proposed to model software architectures.
Architectural styles constrain the connectivity among components to guarantee
the regularity of architectural models, and thus improve the maintainability and
evolvability of systems [10].

GT provides a natural way for formalizing architectural styles by means of
rules that support the creation of models that comply with the style by con-
struction. Le Metayér [19] first and then Hirsch et al. [12] investigated different
approaches to model software architectural styles by using GT; Baresi et al. [3]

26 Luciano Baresi and Mauro Pezzè

extend these approaches for service-oriented applications and emphasize the an-
alyzability of such systems.

Type graphs, or metamodels according to the OMG terminology, define the
elements that belong to a style. GT uses these definitions to create new mod-
els and make existing ones evolve. For example, Fig. 1, taken from [3], shows
a UML class diagram – used as type graph – that models a fragment of the
service-oriented architectural style. This means that all service-oriented appli-
cations must share this type graph and be suitable instantiation of these classes
(types). In other words, the node types of the graph behind these architectures
must belong to the set of nodes defined in Fig. 1. The type graph says that a Com-
ponent dynamically searches for Services that meet given Requirements through
a Connect Request. A Service is a special Component that satisfies a Service
Specification. A Component knows the Service Specification of available Services
and can require services for given Requirements, which could satisfy the given
specification. The Connect Request establishes the link.

Component

Service

Service

Specification
Requirements

specifies

couldSatisfy

knowsrequiresServicefor

Connect Request sends

connectFor
receives

Fig. 1. An excerpt of the type graph for service-oriented architectures [3].

Fig. 2 presents an example GT rule that describes how to establish a new
connection. A GT rule comprises two parts: a left- and a right-hand side. The
left-hand side describes the conditions for the application of the rule. In this
example, the Component must know a Service Specification that could satisfy
its Requirements. The right-hand side describes the effect of the modification.
In this case, the Component can send a Connect Request, newly added, for the
required services to the Service.

The rule applies to all instances of the SoA style to enable generic components
to request services according to given specifications. It creates a new Connect
Request, called req to connect the Requirements, Service, and Component ac-
cordingly. The rule formally describes one of the steps to build and configure
architectural models, without changing either the syntax or semantics. A set
of rules can formally describe all possible building steps, thus formalizing com-
pletely the semantics of an architectural style, i.e., the semantics of an entire
family of models.

Architectures often evolve with systems. Architecture reconfiguration refers
to control the evolution of architectures according to given guidelines. The for-

From Graph Transformation to Software Engineering and Back 27

s:Service

spec:Service

Specification

r:Requirements specifies

couldSatisfy

knows

requiresServicefor

ServiceRequestor

:Component

s:Service

spec:Service

Specification

r:Requirements specifies

couldSatisfy

knows

requiresServicefor

ServiceRequestor

:Component

req:ConnectRequest receives

connectFor

sends

Fig. 2. A GT rule that models a reconfiguration of a service oriented architecture,
where a component plays the role of a service requester and sends a request to the
service it would like to connect to (The figure is taken from [3]).

malization of reconfiguration guidelines and constraints with GT provides a
means to automatically check for consistency of architecture reconfigurations,
and in perspective also a means for predicting and comparing the effects of
different reconfiguration approaches.

Security is another interesting problem that presents variegate aspects that
can be modeled with diagrammatic languages and GT. For example, Fig. 3
shows an Alloy model of the type system of a role based access control (RBAC)
policy taken from [17]. The figure formalizes the relations among the entities in
the system. Roles can be organized hierarchically (a role can be a super - or a
sub-role, but each role has a unique super-role); roles’ duty are separated (sod);
a session belongs only to users whose roles are activated for the considered
sessions.

Role User Session
-superrole

!
subrole

is_in

belongs!

sod has_activated

(~has)

Fig. 3. An Alloy model of a role based access control (RBAC) policy (The figure is
taken from [17]).

Policies can be expressed with rules that describe the evolutions of the rela-
tions among roles. A rule may for example allow users to activate only a subset of
authorized roles when in a session. Such rule can be formally expressed with the
GT rule of Fig. 4 taken from [17]. Koch and Parisi-Presicce show that GT rules
allow to model not only types and policy rules, as UML or Alloy, but also policy
constraints, and thus support a larger set of analyses that include constraint
checking and conflict solving.

Also the behavior of mobile systems depends on the current configuration
that changes dynamically. Mobile systems can be modeled with graphs that

28 Luciano Baresi and Mauro Pezzè

User Role

Session Role

*

User Role

Session Role

*
activate role

Fig. 4. A GT rule that allows a User within a Session to activate a Role only if it
belongs to a specific subset of Roles that represent the roles the user is allowed to
activate (The figure is taken from [17]).

evolve when agents move from node to node, activate or deactivate, and leave
the network. Typed graphs can model different configurations, while graph trans-
formation can formalize the rules that describe how configurations evolution, as
observed in an early work by Corradini et al. [7].

So far, we introduced graph transformation mainly as a modeling means,
but recently we have seen proposals that go a step beyond and address the
validation of modeled GT systems. The pairing of graph transformation and
model checking techniques is proposed by Varrò [29]. His approach transforms a
graph transformation system, along with an initial configuration of the system
under analysis, into a Promela specification, which is the representation required
by SPIN. The model checker starts from the initial configuration and searches all
the possible sequences of rules. This way, we can check if a given sequence of rules
is feasible or try to identify the right sequence to obtain a target configuration
of the system under analysis.

3 Graph Transformation for Notations

In the previous section, we have illustrated how GT can be used as modeling
language. In this section, we show how GT can be used to define specification
languages. Figure 5 uses the well-known MVC (Model-View-Control) pattern to
identify the different parts that belong to a diagram notation ([1]). The graphical
elements are the view, i.e., the set of lines, boxes, bubbles, and labels perceived
by the user. The concrete syntax, the control, captures the structure of diagrams
in terms of their graphical elements and the relationships among them. The ab-
stract syntax stands for the model and defines the structure of the diagram in
terms of the diagram notation itself. Even if we could move directly from the
graphical elements to their abstract syntax, it is important that we distinguish
between visualization and interpretation. The concrete syntax deals with visu-
alization and identifies the spatial relationships among the graphical elements.
The abstract syntax deals with interpretation and specifies the tokens of the
language and how they are composed to obtain a meaningful sentence (i.e., a
model). The interpretation may require a semantic domain, that is, an external

From Graph Transformation to Software Engineering and Back 29

Graphical

Elements

Concrete

Syntax

scan

layout

parse

render

Abstract

Syntax

Semantic

Domain

denotational

semanticsfeedback

operational

semantics

Fig. 5. Layered view of a diagram language.

formal model. The meaning of a diagram becomes the result of its translation
into the semantic domain.

GT systems can be employed to define both the different views and the
relationships among them. This means, for example, that we can use a GT
system to formalize the abstract syntax of a diagram language, but we can also
imagine a pair of GT systems to specify the relationships between the concrete
and abstract syntaxes of a language. More precisely, the pairs of rules define
how to parse models if we move from concrete to abstract, while they specify
the layout of models if we move from abstract to concrete.

[clientAccepted]

insertCard

Operating

Authentication
Started

Serving

Rejected

Transaction Handling

Idle

Card
Inserted

1

2

3
4

6

5

receiveClientData

ejectCard

[! clientAccepted]

Fig. 6. A simple Statechart model of a CashBox (The figure is taken from [5]).

Let us consider for example the simple Statechart diagram of Fig. 6, taken
from [5], as running example. It models the behavior of a CashBox. After switch-
ing it on, the CashBox enters the super-state Operating and moves to its default

30 Luciano Baresi and Mauro Pezzè

sub-state Idle. As soon as a card is inserted (i.e., event insertCard occurs), the
component enters state Card Inserted. When it receives the client data from the
card (event receiveClientData), it moves to state Authentication Started. Here,
the choice of the next state depends on the data received. If the client is accepted,
the component enters state Serving, otherwise it moves to state Rejected. In both
cases and after processing the transaction, the component returns to state Idle
as soon as the card is ejected (event cardEjected).

The first aspect that characterizes a diagram like this is the set of graphi-
cal elements that define its structure. These elements are specific to the chosen
format and concur in defining the concrete syntax of the notation. If we chose
an XML representation, like Scalable Vector Graphic (SVG) [30], the schema
associated with the notation specifies how to identify a line, a bubble, a rect-
angle, or a label. These representation-specific elements are the starting point
to construct and understand the graphical sentences behind a set of pictorial
symbols.

The concrete syntax abstracts away from the particular representation and
identifies the relationships among the graphical shapes. No matter of XML or
an object-oriented language, states in Fig. 6 are represented through rectangles
with rounded corners, initial states with black bubbles, and state transitions
with directed edges. Relationships among these elements can be: a line connects
two rectangles, a rectangle contains other rectangles, or an element is on the
left/right of another element. At this level, a GT system defines the concrete
syntax of the language in terms of the steps necessary to build a correct model.
These rules can be conceived with the idea of scanning an existing graphical
representation to produce the concrete syntax model, but it could also be de-
fined with respect to a user that uses a syntax-directed editor for the supported
notation. In this latter case, the transformation system defines all the correct
user actions on the editor.

For example, Minas in [14] proposes a complete hyperedge grammar for edit-
ing well-formed Statechart diagrams, to feed the DiaGen tool for automatically
generating a graphical editor for Statechart diagrams. Formally, the grammar de-
fines all correct Spatial Relationship Hypergraphs (SRHG), that is, hypergraphs
with edges like label, rectangle, edge, etc. and nodes representing the points where
the hyperedges are connected. SRHGs through a further set of transformation
rules become Reduced Hypergraph Model (HGM). These graphs represent the
abstract syntax of the example Statecharts.

The abstract syntax defines the modeling elements supplied by the notation,
without the concrete “sugar”, and the relationships among them. Tokens at this
level are related to the semantic interpretation, that is, we think of the example
of Fig. 6 in terms of states (initial, AND-decomposed, and OR-decomposed)
transitions, events, and so on. Figure 7 shows a simplified abstract syntax graph
for the Statechart diagram of Fig. 6. Nodes are instances of a simple type graph
that comprises: startStates, ORStates, States, and Transitions (further details
are omitted for the sake of clarity). Edges connect the nodes to render the
connections between states and transitions in the Statechart diagram.

From Graph Transformation to Software Engineering and Back 31

t6: Transition

: startState

Idle: State

t2: Transition

CardInstd: State

Operating: ORState

TranHdlg: ORState

AuthStrd: State

t5: Transition

t4: Transition

Serving: State

Rejected: State

contains contains contains contains contains

contains
contains

t3: Transitiont1: Transition

Fig. 7. Abstract syntax graph for the Statechart diagram of Fig. 6 (The figure is taken
from [5]).

If we wanted to map abstract to concrete syntaxes, this implies the definition
of the concrete layout of models. The grammar in this case defines how abstract
concepts should be rendered at the concrete level, but also the correct positioning
of each element on the canvas. Special-purpose algorithms for defining the layout
of user models can be implemented using GT rules and textual attributes to
compute the coordinates of each graphical symbol.

GT systems can be used to specify the rules that govern the elements at a
given level, but also to define the mappings and transformations between levels.
The choice is between two parallel systems, with paired rules, or a single complex
system. In the first case each pair would comprise a rule that specifies a step in
the first domain and the corresponding step in the other domain. The selection
and application of the first rule would also trigger the application of the second
rule. In the second case, we could foresee complex rules that start from symbols
of the first domain and rewrite them into their equivalent elements of the second
domain.

Moving to the semantics of the model of Fig. 6, we can specify it both oper-
ationally and denotationally.

An operational semantics can be given directly on the abstract syntax of
the language through yet another GT system that specifies an interpreter for
the language ([8]). Each model can also be “compiled” into a set of dedicated
rules ([18]) to specify the behavior of each single model separately. For exam-
ple, transitions for syntactically correct Statechart diagrams can be generated
by applying the rules of the transformation unit term(S) presented in [18]. Fig. 8
shows the result for some of the transitions of Fig. 6. Rule t1 moves the current
state from the start state to Idle; Rule t5 moves the current state from Authen-
tication Started to the hierarchy Transaction Handling / Serving. Rule t6 moves

32 Luciano Baresi and Mauro Pezzè

Idle: State

t5:

t1:

t6:

contains

containsAuthStrd: State

: startState Idle: State

TranHdlg: ORState

Serving: State

: State

TranHdlg: ORState

Fig. 8. Some transitions of Fig. 6 as GT rules (The figure is taken from [5]).

the current state from the hierarchy Transaction Handling / any contained state
back to Idle.

Denotational semantics is given by mapping the abstract syntax to a semantic
domain. The role played by GT depends on the chosen semantic domain. If it is
a textual one, the productions of the grammar that defines the abstract syntax
can be augmented with textual annotations to build the semantic representation.
More generally, the productions can be paired with those of the textual grammar
that specify the semantic models, and the application of a production of the
abstract syntax grammar automatically triggers the application of the paired
textual production [27].

For example, Engels et al. define the dynamic semantics of Statecharts through
CSP (Communicating Sequential Processes [13]). The left-hand side of each rule
defines how UML-like metamodel instances can be built for Statecharts (GT
rules); the right-hand side codes how the corresponding CSP specification must
be modified accordingly (textual grammar productions). Baresi uses high-level
timed Petri nets as semantic domain. The mapping is defined with pairs of GT
production: the first production defines the evolution of the abstract syntax rep-
resentation, while the second production states the corresponding changes on the
semantic Petri nets [2, 4]. Figure 9 taken from [2] shows a simple transformation
rule that formalizes the connection of two Statechart states with a Statechart
transition. A transformation rule comprises two productions. The left-hand side
production applies to pairs of Statechart states and connects them through a
Statechart transition, as indicated by the right-hand side of the rule. The right-
hand side production applies to the Petri net places corresponding to the selected
Statechart states and adds a Petri net transition and two arcs to connect them.
The figure omits the textual annotations that can be found in [2].

More sophisticated mappings could be implemented using triple graph gram-
mars [28], that is, besides the two grammars that define the abstract syntax and
the corresponding modifications of the semantic domain, a third grammar would
state the mapping between the two paired productions explicitly.

The different models defined so far pave the ground to additional analysis
techniques, e.g., modern refactoring approaches. For example, Mens et al. start
from the abstract syntax representation of UML class diagrams to reason on

From Graph Transformation to Software Engineering and Back 33

: State

t

s

:Transition

1

2

1

2

3

: State

: State

: State

a

t

a

p

ST

1

1

4

3

5

2

ST

ST

ST

2

(a) Abstract Syntax Model (b) Semantic Model

Fig. 9. A simple transformation rule taken from [2].

them and improve the quality of designed models [21]. Transformation rules
work at this level to modify and improve user-defined class diagrams.

Similarly, with the help of pair grammars, transformation rules can be used
to maintain, enforce or access the consistency of different views on the same
problem. The fact that a modification of a given model can trigger modifications
in other models, that is, the application of a rule on a model triggers the appli-
cation of other rules on other models, is a way to enforce the consistency among
views in complex models. Rules can be used both as a generative means, i.e.,
consistency is enforced by construction, or they can be a validation means and
thus access the consistency of views defined independently. For example Haus-
mann et al. show how to use GT to enforce and access the consistency between
requirements and high-level design of software systems [11].

4 Software Engineering for Graph Transformation

After discussing how GT can be proficiently used in software engineering, we
briefly discuss how graph transformation can benefit from software engineering
principles and techniques.

Software engineers can help graph transformation experts improve tools. Cur-
rently, the most popular tools for GT are excellent supports for early experimen-
tation and validation of new ideas, but do not always meet the needs of software
developers. They work well with research-size models, but become slow or crash
when the size of models increases. They support well the direct use of graph
transformation, but provide less help to software experts that would like to ex-
ploit GT without being proficient in the formalism. They need open tools that
interoperate with sophisticated development environments [22].

34 Luciano Baresi and Mauro Pezzè

Software engineers look for “problem-oriented”, rather than “solution-orien-
ted” tools. They are not ready to use graph transformation systems per-se, but
they want means to solve development problems. This means that many details
and technicalities should be hidden, while the adoption of standard notations and
formats should be emphasized. This approach was adopted by Fujaba with its
use of UML, as standard modeling notation (class diagrams to define concepts,
object diagrams to define rules, and activity diagrams to compose them), and its
hiding of many details related to graph transformation. The GT community is
using standard notations to renders type graphs and rules. UML is the de-facto
standard also in this community and the adoption of this notation is a first step
towards the readability and usability of GT.

Software engineers need techniques that interface well with other CASE
tools. Software engineering can contribute to GT with well-known standards
for information exchange like XMI or MOF [23]. Besides special-purpose XML-
based standards to encode graphs and graph transformation (GXL and GTXL,
namely), GT tools should also support common “generic” standards to import
and export artifacts and improve their interfaceability with other tools in the
development process.

When designing real(istic) artifacts, modularization becomes an important
issue. Nowadays, many graph transformation systems adopt a flat organization
and the number of rules is constrained. Some proposals were presented to add
modules to graph transformation; none of them has been widely accepted, but
modules are a key element to handle real problems through graph transforma-
tion. They help understand the specification, by allowing the designer to reason
at different levels, and foster the idea of reusing organized and coherent sets of
rules. Something like a package in UML, to group the rules, and a component to
show its interfaces would clearly improve the organization and management of
graph transformation systems.

Software engineering can also help validate designed graph transformation
systems. Flow-based analysis techniques, but also unit and integration testing
techniques may help understand how a set of rules (i.e., a system) works. Other
more formal approaches could also exploit process calculi and model checking
techniques to reason on the dynamic behavior of such systems and prove inter-
esting properties.

The last aspect concerns the methodologies and heuristics usually adopted
by software engineers to model the different aspects of a software system, reason
on them, and solve possible problems. This help is nothing concrete, but the
right mix between capabilities in abstracting and modeling and the knowledge
of graph transformation systems should pave the ground to better graph-based
models of addressed aspects.

5 Conclusions

This overview was motivated by the idea that graphs provide a direct and in-
tuitive way to represent, visualize and analyze a variety of structures that are

From Graph Transformation to Software Engineering and Back 35

typical to software engineering, and graph transformation provides general means
for both describing and analyzing changes on graphs and specifying their gov-
erning rules and constraints. Sections 2 and 3 sketch some approaches, which are
intended as example applications and do not aim at providing a complete survey
of existing experiments with graph transformation and software engineering.

Moving to future directions, modern software development paradigms and
applications, such as mobility, pervasive computing and component-based devel-
opment raise new critical challenges. They come from the impossibility of pre-
dicting all possible uses of the software at development time. Traditional quality
assurance techniques are mostly based on pre-deployment test and analysis, and
provide limited support to these new challenges. Unpredicted interactions with
new components or agents may lead to unexpected behaviors not previously ver-
ified. Current research investigates techniques such as in-field testing, run-time
monitoring and self-healing mechanisms. They make use of run-time information
to capture and analyze the in-field behavior of complex systems ([20, 25, 26, 9,
16]).

A main challenge of “post-deployment verification” is modeling the expected
and experienced run-time behavior of the system, to identify and record po-
tentially harmful runs. An excellent example of application of post-deployment
modeling is the STAT intrusion detection framework proposed by Kemmerer and
Vigna [15]. STAT models suspect security threats with finite state machines. The
run-time behavior of the monitored systems is compared to the STAT model that
detects and signals possible security threats. Finite state machines are effective
in this context because the behaviors of interest are fairly simple and can be
captured with a simple model. In general, the behavior of interest may be very
complicated and may not be easily captured with a simple finite state machine.
Graph transformation systems provide an excellent support for modeling com-
plex evolutions, as illustrated in the previous sections, and thus are an obvious
candidate to extend post-deployment modeling for monitoring complex system
evolutions.

We think that these examples are only the first fruits of a cooperation that
has all the chances to become wider. The marriage will be complete as soon as
the knowledge also addresses the other way around. Software engineers could
contribute to improve the development of graph transformation tools and stan-
dard exchange formats for graphs and graph transformation. They can lend their
experience on modularity and components, to add these features to graph trans-
formation specifications, and on analysis and testing to validate produced GT
systems.

References

1. M. Andries, G. Engels, and J. Rekers. How to represent a visual specification.
In K. Marriott and B. Meyer, editors, Visual Language Theory, pages 241–255.
Springer-Verlag, 1997.

2. L. Baresi. Formal customization of graphical notations. PhD thesis, Dipartimento
di Elettronica e Informazione – Politecnico di Milano, 1997. In Italian.

36 Luciano Baresi and Mauro Pezzè

3. L. Baresi, R. Heckel, S. Thone, and D. Varro. Modeling and validation of service-
oriented architectures: application vs. style. In Proceedings of the 9th European soft-
ware engineering conference held jointly with 10th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 68–77. ACM Press, 2003.

4. L. Baresi, A. Orso, and M. Pezzè. Introducing formal methods in industrial prac-
tice. In Proceedings of the 20th International Conference on Software Engineering,
pages 56–66. ACM Press, 1997.

5. L. Baresi and R. Heckel. Tutorial introduction to graph transformation: A software
engineering perspective. In Proceedings of the First International Conference on
Graph Transformation (ICGT 2002), volume 2505 of Lecture Notes in Computer
Science, pages 402–429. Springer-Verlag, 2002.

6. E. Clarke, J. Wing, R. Alur, R. Cleaveland, D. Dill, A. Emerson, S. Garland,
S. German, J. Guttag, A. Hall, T. Henzinger, G. Holzmann, C. Jones, R. Kurshan,
N. Leveson, K. McMillan, J. Moore, D. Peled, A. Pnueli, J. Rushby, N. Shankar,
J. Sifakis, P. Sistla, B. Steffen, P. Wolper, J. Woodcock, and P. Zave. Formal meth-
ods: State of the art and future directions. ACM Computing Surveys, 28(4):626–
643, 1996.

7. A. Corradini, F. Dotti, and L. Ribeiro. A graph transformation view on the specifi-
cation of applications using mobile code. In Proceedings of the International Sym-
posium on Graph Transformation and Visual Modeling Techniques (GT-VMT),
volume 50 (3). Electronic Notes in Computer Science, 2001.

8. G. Engels, J.H. Hausmann, R. Heckel, and S. Sauer. Dynamic meta modeling: A
graphical approach to the operational semantics of behavioral diagrams in UML.
In A. Evans, S. Kent, and B. Selic, editors, Proc. UML 2000, York, UK, volume
1939 of Lecture Notes in Computer Science, pages 323–337. Springer-Verlag, 2000.

9. D. Garlan and B. Schmerl. Model-based adaptation for self-healing systems. In
Proceedings of the first workshop on Self-healing systems, pages 27–32. ACM Press,
2002.

10. D. Garland. Software architecture: a roadmap. In The Future of Software Engi-
neering, pages 91–101. ACM Press, 2000.

11. J. Hausmann, R. Heckel, and G. Taentzer. Detecting conflicting functional re-
quirements in a use case driven approach: A static analysis technique based on
graph transformation. In Proceedings of the International Conference on Software
Engineering (ICSE’2002), pages 105–155. ACM Press, May 2002.

12. D. Hirsch, P. Inverardi, and U. Montanari. Graph grammars and constraint solving
for software architecture styles. In ISAW ’98: Proceedings of the Third International
Workshop on Software Architecture, pages 69–72, 1998.

13. C. Hoare. Communicating sequential processes. Communicat. Associat. Comput.
Mach., 21(8):666–677, 1978.

14. B. Hoffmann and M. Minas. A generic model for diagram syntax and semantics.
In Proc. ICALP2000 Workshop on Graph Transformation and Visual Modelling
Techniques, Geneva, Switzerland. Carleton Scientific, 2000.

15. R.A. Kemmerer and G. Vigna. Intrusion Detection. IEEE Computer, 2002. Special
publication on Security and Privacy.

16. J.O. Kephart and D.M. Chess. The vision of autonomic computing. IEEE Com-
puter, 36(1):41–50, January 2003.

17. M. Koch, L. V. Mancini, and F. Parisi-Presicce. A graph based formalism
for RBAC. ACM Transactions on Information and System Security (TISSEC),
5(3):332–365, August 2002.

From Graph Transformation to Software Engineering and Back 37

18. S. Kuske. A formal semantics of UML state machines based on structured graph
transformation. In M. Gogolla and C. Kobryn, editors, Proc. UML 2001, volume
2185 of Lecture Notes in Computer Science. Springer-Verlag, 2001.

19. D. Le Métayer. Software architecture styles as graph grammars. In Sigsoft, pages
15–23. ACM Pres, 1996.

20. S. McCamant and M. Ernst. Predicting problems caused by component upgrades.
In Proceedings of ESEC/FSE 2003, pages 287–296. ACM Press, 2003.

21. T. Mens, N. Van Eetvelde, D. Janssen, and S. Demeyer. Formalising refactorings
with graph transformations. Journal of Software Mainetnance and Evolution, pages
1001–1025, 2004.

22. T. Mens, A. Scürr, and G. Taenzer. Proceedings of the Workshop on Graph-Based
Tools. ENTCS, 2002.

23. OMG. Meta object facility (MOF) specification, September 1999.
24. OMG. Unified Modeling Language (UML), version 1.5. OMG Standard, 2003.
25. A. Orso, D. Liang, M. Harrold, and R. Lipton. Gamma system: continuous evolu-

tion of software after deployment. In Proceedings of the international symposium
on Software testing and analysis, pages 65–69, Roma, Italy, 2002. ACM Press.

26. C. Pavlopoulou and M. Young. Residual test coverage monitoring. In International
Conference on Software Engineering, pages 277–284, 1999.

27. T. W. Pratt. Pair grammars, graph languages and string-to-graph translations.
Journal of Computer and System Sciences, 5:560–595, 1971.

28. A. Schürr. Specification of graph translators with triple graph grammars. In
Proceedings of the 20th International Workshop on Graph-Theoretic Concepts in
Computer Science, volume 904 of LNCS, pages 228–253. Springer Verlag, 1994.

29. D. Varró. Towards symbolic analysis of visual modelling languages. In Paolo
Bottoni and Mark Minas, editors, Proc. GT-VMT 2002: International Workshop
on Graph Transformation and Visual Modelling Techniques, volume 72 of ENTCS,
pages 57–70, Barcelona, Spain, October 11-12 2002. Elsevier.

30. W3C. SVG: Scalable Vector Graphics (SVG) version 1.2. W3C, May 2004.
http://www.w3.org/TR/2004/WD-SVG12-20040510/.

Flexible Interconnection
of Graph Transformation Modules

A Systematic Approach

Gregor Engels, Reiko Heckel, and Alexey Cherchago

University of Paderborn, Germany
{engels,reiko,cherchago}@upb.de

Abstract. Modularization is a well-known concept to structure software
systems as well as their specifications. Modules are equipped with export
and import interfaces and thus can be connected with other modules
requesting or providing certain features.
In this paper, we study modules the interfaces of which consist of behav-
ioral specifications given by typed graph transformation systems. We in-
troduce a framework for classifying and systematically defining relations
between typed graph transformation systems. The framework comprises
a number of standard ingredients, like homomorphisms between type
graphs and mappings between sets of graph transformation rules.
The framework is applied to develop a novel concept of substitution
morphism by separating preconditions and effects in the specification of
rules. This substitution morphism is suited to define the semantic rela-
tion between export and import interfaces of requesting and providing
modules.

1 Introduction

One of the most successful principles of software engineering is encapsulation,
i.e., the containment of implementations in classes, modules, or components ac-
cessible through well-defined interfaces only. This reduces possible dependencies
of clients to those functions provided in the interface and allows to replace im-
plementations without affecting the client.

Client ��"#$%&'() Server
INT

Fig. 1. Server component implementing interface INT that is used by Client compo-
nent.

As it is obvious from Fig. 1, the developer of the Client component requires
knowledge about the interface of the Server. That means, the development of the
two components can not easily be decoupled and the architectural dependencies
have to be known at design time.

In the service-oriented paradigm, but also in more advanced component mod-
els, this picture is extended by distinguishing between provided and required in-
terfaces. While provided interfaces describe existing implementations, required

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 38–63, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Flexible Interconnection of Graph Transformation Modules 39

interfaces are specifications of virtual components whose existence is assumed
at design time to capture the context dependencies of the components under
development.

Requestor
IMP � � ��� ����� "#$%&'() Provider

EXP

Fig. 2. Requestor and provider components.

As shown in Fig. 2, composing two components (or services) now means to
connect their required and provided interfaces. This is possible if the operations
asked for in the required interface are guaranteed by the provided interface.
In programming languages like Java and component models like Corba such a
relation between interfaces is verified by the compiler, matching the signatures
(names and parameter types) of these operations.

However, in a truly open scenario, as it is typical for Web services or, more
generally, service-oriented architectures, we cannot assume that, e.g., the name of
an operation has any global meaning or that the types of the parameters convey
enough information about the purpose and usage of the operation. In such case,
it is inevitable that both required and provided interfaces contain behavioral
specifications which are taken into account when interfaces are matched.

1.1 Module and Component Models with Behavioral Interfaces

The first steps in this direction have been made in the context of algebraic
and logic specifications. An algebraic specification module MOD (see, e.g., [7])
consists of a body BOD providing the implementation and of interfaces IMP
for import and EXP for export describing, respectively, required and provided
functionality. (In addition, a parameter PAR is provided to allow for generic
modules, but this feature will not be relevant for our purposes.) All specifications
are connected through algebraic specification morphisms.

The composition of modules MOD and MOD′ is based on morphisms, too,
connecting the import (required) interface of IMP of MOD with the export
(provided) interface of EXP ′ of MOD′. Hence, algebraic specification modules
realize the idea illustrated in Fig. 2 that components are connected indirectly
through the matching of required and provided interfaces.

In [7] the relation between IMP and EXP ′ is described by standard mor-
phisms of algebraic specifications. That means, for example, that matching op-
erations are required to have the same number of parameters of corresponding
types. A more flexible approach to the connection of required and provided in-
terfaces is presented by Zaremski and Wing in [25] and [26], who have developed
sophisticated matching procedures at the level of both signatures and specifica-
tions.

In object-oriented programming, the extension of interfaces with behavioral
information became known under the name of Design by Contract in the context

40 Gregor Engels, Reiko Heckel, and Alexey Cherchago

EXP

exp

��

IMP

subst

��

imp
�� BOD

EXP ′

exp′

��

IMP ′ imp′
�� BOD′

Fig. 3. Conformation of the TGTS-modules.

of the Eiffel language [22]. Here, preconditions and effects of operations are
specified by means of logic predicates, and object-oriented subtyping rules are
extended to capture the compatibility of, for example, the contracts of a newly
introduced subclass with that of a superclass.

1.2 Modules of Graph Transformation Systems

Since the mid nineties [5], there is an increasing interest in the transfer of mod-
ularity concepts from algebraic specifications and programming languages to
graph transformation systems [21, 24, 10] (see also the survey [19]). Modules
of typed graph transformation systems (TGTS modules) [10] follow the struc-
ture of algebraic specification modules, replacing the specifications BOD, IMP ,
and EXP by graph transformation systems related by different kinds of mor-
phisms. In particular, IMP and BOD are related by a simple inclusion mor-
phism (IMP ⊆ BOD), whereas EXP and BOD are connected by a refinement
morphism, allowing a sequential or parallel decomposition of rules.

In [1, 15] it has been observed that graph transformation rules could provide
a more abstract, visual representation of contracts, specifying preconditions and
effects of operations. In order to check the desired behavioral compatibility of
contracts between required and provided interfaces, a matching relation has been
defined which can be syntactically verified. Roughly speaking, the semantic idea
of this compatibility was the substitution principle, i.e., it should be safe to
replace the required rule by a matching provided rule: The applicability of the
first should imply the applicability of the latter, and the effect of applying the
latter should satisfy the expectations of the first.

However, it has been assumed that the two rules to be compared are defined
over the same types, based on the assumption that the matching is performed by
a central discovery agency which represents both provided and required contracts
over a common ontology. This assumption, which is satisfied in service-oriented
architectures, is not in general true for modules or components.

It is the purpose of this paper to define a flexible matching relation enabling
retyping as a morphism of typed graph transformation systems representing the
required and provided (import and export) interfaces of modules.

Flexible Interconnection of Graph Transformation Modules 41

1.3 Morphisms of Graph Transformation Systems

A survey of the literature reveals at least five fundamentally different proposals
for morphisms of graph transformation system [2, 23, 13, 17, 20]. They represent
different objectives, like inclusions, refinements, or views and enjoy different
semantic properties.

So far there has been no general and systematic approach for comparing and
relating different notions. Hence, before going on to extend the list by a new
proposal, so-called substitution morphisms, we will survey possible definitions
and provide a four-step recipe for deriving the appropriate definition from given
semantic requirements.

We will apply this recipe to derive a notion of morphism between graph
transformation systems with application conditions which, as it turns out, are
essential for a flexible and yet semantically meaningful relation between required
and provided interfaces.

1.4 Outline of the Paper

The rest of this paper is organized as follows. After recalling in the next section
the basic concepts of the DPO and DPB approaches to graph transformation, in
Section 3 we introduce a framework enabling to classify and systematically define
morphisms of typed graph transformation systems. In particular, two examples
of morphisms existing in the literature will be discussed informally in Section 3.1.
After that, the constituents of the framework will be identified in Section 3.2,
and aggregated in the definitions of the sample morphisms in Section 3.3. Then,
a new concept of a substitution morphism playing a role of an inter-connector
between two modules requiring and offering a specific service will be considered
in Section 3.4.

The flexibility of the substitution morphism depends on the rule structure
which is refined in Section 4 via separating preconditions and effects. Here, we
will revise all the necessary definitions on the graph transformation rules with
application conditions in Section 4.1, and formally define the substitution mor-
phism in Section 4.2. In Section 5, the substitution morphism as well as the
other sample morphisms are illustrated via their application as intra- and inter-
connectors of the modules. We conclude with the summary of our work in Sec-
tion 6.

2 Basic Definitions

In this section we review some of the basic notions of the double-pushout (DPO)
[8] and double-pullback (DPB) [18] approaches to graph transformation. The
DPB approach represents a loose version of the classical DPO, assuming that
rules may be incomplete specifications of the transformations to be performed
and thus allowing additional, unspecified effects. Both approaches are presented
using typed graphs [3].

42 Gregor Engels, Reiko Heckel, and Alexey Cherchago

By graphs we mean directed unlabeled graphs G = 〈GV , GE , srcG, tarG〉
with set of vertices GV , set of edges GE , and functions srcG : GE → GV and
tarG : GE → GV associating with each edge its source and target vertex. A
graph homomorphism f : G → H is a pair of functions 〈fV : GV → HV , fE :
GE → HE〉 preserving source and target, that is, srcH ◦ fE = fV ◦ srcG and
tarH ◦ fE = fV ◦ tarG. With componentwise identities and composition this
defines the category Graph.

Given a graph TG, called type graph, a TG-typed (instance) graph consists
of a graph G together with a typing homomorphism g : G → TG (cf. Fig. 4 on
the left) associating with each vertex and edge x of G its type g(x) = t in TG.
In this case, we also write x : t ∈ G. A TG-typed graph morphism between two
TG-typed instance graphs 〈G, g〉 and 〈H,h〉 is a graph morphism f : G → H
which preserves types, that is, h ◦ f = g. With composition and identities this
defines the category GraphTG, which is the comma category Graph over TG.

G

g

��

TG

G

f

��

g
���

��
��

��
� H

h
����
��
��
��

TG

L

(1)dL

��

K

(2)

l�� r ��

dK

��

R

dR

��

G Dg
��

h
�� H

Fig. 4. Typed graph and graph morphism (left) and double-pushout (or -pullback)
diagram (right).

Definition 1 (typed graph transformation system). A TG-typed graph
transformation rule is specified by a span (L l←− K

r−→ R) of injective TG-
typed graph morphisms (cf. Fig. 4 on the right).

Given TG-typed graph transformation rules p = (L l←− K
r−→ R) and q =

(L′ l′←− K ′ r′
−→ R′), a typed rule morphism f : p → q is a tuple (fL, fK , fR)

of TG-typed graph morphisms commuting with the span morphisms l, l′, r and
r′ (cf. Fig. 5). With componentwise identities and composition this defines the
category RuleTG, which is the comma category Rule over TG.

L

(=)fL

��

K

(=)

l�� r ��

fK

��

R

fR

��

L′ K′
l′

��
r′

�� R′

Fig. 5. Typed rule morphism.

A typed graph transformation system GTS = (TG,P, π) consists of a type
graph TG, a set of rule names P , and a mapping π : P → |RuleTG| associating
with each rule name p a TG-typed rule π(p).

Flexible Interconnection of Graph Transformation Modules 43

The left-hand side L of a rule contains the items that must be present for an
application of the rule, the right-hand side R those that are present afterwards,
and the interface graph K specifies the “gluing items”, i.e., the objects which
are read during application, but are not consumed.

As running example, a specification of a mutual exclusion algorithm with
deadlock detection [16] is developed throughout the paper.

Example 1 (MUTEX). The typed graph transformation system in Fig. 6 models
a distributed algorithm for mutual exclusion (MUTEX). This example is derived
from a small case study [16] and tailored for our presentation. Two basic types,
processes P (drawn as black nodes) and resources R (drawn as light boxes),
constitute the type graph shown in the upper-left corner. A request is modeled
by an edge going from a process to a resource. The fact that the resource is
currently held by the process is shown by an edge in the opposite direction.
A token ring algorithm implements the mutual exclusion. The processes in the
token ring are arranged in a cycle. Two neighbor processes are connected by an
edge running from the antecedent to the next process. This edge is given by a
loop in the type graph. A default position for introducing new processes and
resources is marked by a pointer head.

Fig. 6. Graph transformation system modeling MUTEX algorithm.

An edge with a white flag denotes a token which is passed from process to
process along the ring. In order to get an access to a resource a process waits
for the corresponding token. Mutual exclusion is achieved by uniqueness of the
token for each resource in the system.

Now we discuss the rules of the graph transformation system. The first four
rules are used for creating and killing processes (new and kill), and for mounting
and unmounting resources (mount and unmount). The rules req, take, and rel
allow processes to issue requests, take resources, and release them upon regular
completion of their task. The negative application conditions [14] for req ensure

44 Gregor Engels, Reiko Heckel, and Alexey Cherchago

that a process can not issue more then one request at a time. The negative
application condition for rel prevents the release of a resource r while the process
requests another resource, since r may still be required to complete the given
task.

The last two rules are intended for application in possibly deadlock situations
resulting from competition of processes for non-sharable resources. The MUTEX
algorithm does not know how to detect deadlocks, therefore the rule dead? rep-
resents external features, to be imported from another module. The dotted part
of this rule is a positive application condition (cf. Section 4.1) representing
items that must be present for the rule application, but are not consumed. This
condition restricts the applicability of rule dead? to situations where the process
has a pending request for a resource.

In general, positive application conditions can be encoded by extending both
the left- and the right-hand side of a rule by the required elements: they become
part of the context. That means rules with positive application conditions can
easily be transformed into ordinary rules. The use of positive application condi-
tions makes a difference, however, when we consider relations between different
systems, as shall be demonstrated in Section 4.2.

Rule rel dl finally implements the resolution of detected deadlocks by forcing
the release of the resource held by the involved process.

In the DPO approach, transformation of graphs is defined by a pair of
pushout diagrams, a so-called double-pushout construction. Operationally speak-
ing that means: the elements of G matched by L \ l(K) are removed, and a copy
of R \ r(K) is added to D.

A double-pushout (DPO) diagram d is a diagram as in Fig. 4 on the right,
where (1) and (2) are pushouts. Gluing the graphs L and D over their common
part K yields again the given graph G, i.e., D is a so-called pushout complement
and the left-hand square (1) is a pushout square. Only in this case the application
is permitted. Similarly, the derived graph H is the gluing of D and R over K,
which forms the right-hand side pushout square (2).

This formalization implies that only vertices that are preserved can be merged
or connected to edges in the context. It is reflected in the identification and the
dangling conditions of the DPO approach. The identification condition states
that objects from the left-hand side may only be identified by the match if they
also belong to the interface (and are thus preserved). The dangling condition
ensures that the structure D obtained by removing from G all objects that are
to be deleted is indeed a graph, that is, no edges are left “dangling” without
source or target node.

Definition 2 (DPO graph transformation). Given a typed graph transfor-
mation system GTS = (TG,P, π), a (DPO) transformation step in GTS from

G to H via p is denoted by G
p/d
=⇒ H, or simply by G

p
=⇒ H if the DPO diagram

d is understood.
A transformation sequence ρ = ρ1 . . . ρn : G ⇒∗ H in GTS via p1, . . . , pn is

a sequence of transformation steps ρi = (Gi
pi/di=⇒ Hi) such that G1 = G,Hn = H

and consecutive steps are composable, that is, Gi+1 = Hi for all 1 ≤ i < n.

Flexible Interconnection of Graph Transformation Modules 45

The category of transformation sequences over GTS denoted by Trf (GTS)
has all graphs G ∈ GraphTG as objects and all transformation sequences in
GTS as arrows.

A sample transformation step is shown in Fig. 7. It applies the rule new
inserting a new process in the token ring.

Fig. 7. A sample DPO transformation step.

The DPO approach ensures that the changes to the given graph H are exactly
those specified by the rule. A more liberal notion of rule application is provided
by the double-pullback (DPB) approach to graph transformation [18], where
at least the elements of G matched by L \ l(K) are removed, and at least the
elements matched by R \ r(K) are added. The DPB approach introduces graph
transitions and generalizes DPO by allowing additional, unspecified changes.
Formally, graph transitions are defined by replacing the double-pushout diagram
of a transformation step with a double-pullback .

Definition 3 (DPB graph transitions). Given a typed graph transformation
system GTS = (TG,P, π), a transition in GTS from G to H via p, denoted by

G
p/d
� H, is a diagram like in the right of Fig. 4, where both (1) and (2) are

pullback squares. A transition is called injective if both g and h are injective
graph morphisms. It is called faithful if it is injective, and the morphisms dL

and dR satisfy the following identification condition [4] with respect to l and r:
for all x, y ∈ L, y �∈ l(K) implies dL(x) �= dL(y), and analogously for dR.

A transition sequence ρ = ρ1 . . . ρn : G �∗ H in GTS via p1, . . . , pn is a

sequence of faithful transitions ρi = Gi
pi/di
� Hi such that G1 = G,Hn = H and

consecutive steps are composable, that is, Gi+1 = Hi for all 1 ≤ i < n.
The category of transitions over GTS, denoted by Trs(GTS), has all graphs

G ∈ GraphTG as objects and all transition sequences in GTS as arrows.

A sample transition is shown in Fig. 8. It also demonstrates an application
of the rule new. Note that during application of the rule a token is deleted that
is unspecified by new. Here the left-hand square is not a pushout: the graph
G obtaining by the gluing of L and D additionally contains the token which is
“spontaneously deleted”.

46 Gregor Engels, Reiko Heckel, and Alexey Cherchago

Fig. 8. A sample DPB graph transition.

3 TGTS Morphisms, Systematically

In this section, we provide a framework for classifying and systematically defin-
ing morphisms of typed graph transformation systems based on a number of
standard “ingredients”, like homomorphisms between type graphs and mappings
between sets of rules. First, two examples of morphisms will be discussed infor-
mally in the context of TGTS modules. Then, in Section 3.2, the constituents
of the framework are presented and combined, yielding definitions of the sam-
ple morphisms in Section 3.3. In Section 3.4, a novel concept of substitution
morphism is considered.

3.1 TGTS Morphisms as Intra-connectors of Modules

Each TGTS describes a specific behavior in terms of the transformation or
transition sequences obtained via application of its rules. A TGTS morphism
f : GTS → GTS′ defines a relation between the behaviors of GTS and GTS′

through an association of their type graphs and rules. Thus, a systematic ap-
proach should always start by identifying the kind of semantic relation that shall
be expressed.

First, we consider an example of behavior-preserving morphisms providing
a first attempt at describing the relation between the export interface EXP
of a module MOD with its body BOD. The export interface EXP specifies
the features offered for import by other modules. The specification of these
features should be consistent with their implementation in the body. That means,
applicability of EXP rules should imply applicability of the corresponding BOD
rules. Behavior-preserving morphisms shall ensure this property.

Example 2 (behavior-preserving morphism). The body of the module MUTEX
is given in Fig. 6. One service provided by this module is deadlock resolution
described by the rule rel dl in the export interface EXP (cf. Fig. 9 on the right).
(It shall be imported by an external deadlock detection module to break up de-
tected deadlocks.) The embedding of EXP into BOD preserves behavior: Each
transformation sequence in EXP implies a corresponding sequence in BOD.

The type graph TGEXP of the export is a subgraph of TGBOD of the body
containing all the types relevant for deadlock resolution. More generally, a homo-
morphism between type graphs ensures that all types of the source (TGEXP in

Flexible Interconnection of Graph Transformation Modules 47

Fig. 9. TGTSs IMP (left) and EXP (right) of the module MOD modeling the MU-
TEX algorithm.

this case) have a correspondence in the target (TGBOD). If the homomorphism
is not an inclusion, as in our example, a type in the target may have a different
name than its source or two different types in the source may be mapped to the
same target type.

Based on the homomorphism, graphs, rules, and also transformations typed
over the source can be converted into such typed over the target by a simple
renaming of their types. This gives us the opportunity to compare two systems
by translating the rules of the source system into ones typed over the target.

Due to the subgraph relation between TGEXP and TGBOD the translation
of the EXP rule to the BOD type graph does not change anything in this rule.
The comparison reveals that the rule identical to rel dl is already present in
TGBOD, even with the same name. In the general case, we might consider a
mapping of rule names as well to use different names for corresponding rules in
the two systems.

The behavior-preserving morphisms as discussed above are originally intro-
duced in [9, 11]. In our example, the export interface EXP is just a subsystem
of BOD. More general situations are considered in [11] where the relation be-
tween export interface and body may be, e.g., spatial or temporal refinements. In
spatial refinements, a rule of the source system may be associated with an amal-
gamation of rules of the target system, in temporal refinements with a sequential
composition.

The requirements and definitions about behavior-preserving morphisms are
presented in Section 3.3. Here, we proceed with an example of behavior-reflecting
morphisms, determining the relation between the import interface IMP and the
body BOD of a module MOD. The idea is that the rules required at IMP have
at least the effect of the rules specified at BOD. Otherwise, the body could not
use the imported rules for the internal implementations. This can be expressed
as a reflection of the BOD transformations by IMP transitions.

Example 3 (behavior-reflecting morphism). As mentioned already, deadlock de-
tection represents an external feature abstractly represented in the MUTEX
module by the rule dead? in the import interface IMP (cf. Fig. 9 on the left).

Reflection of BOD behavior by IMP means that for each transformation
in BOD we require a corresponding transition in IMP . As with behavior-
preserving morphisms, we have to specify the relation between the type graphs
and rules of the two systems.

For type graphs, a homomorphism from TGIMP to TGBOD ensures that
BOD has at least the same types as IMP . In order to check that transformations

48 Gregor Engels, Reiko Heckel, and Alexey Cherchago

in BOD are reflected by transitions in IMP , we have to compare the rules
of the two systems. In this case, since we are interested in reflection rather
than preservation of steps, we translate the rules of BOD to IMP against the
direction of the type graph morphism. That means, beside the renaming of types,
elements of the rules are removed if their type in BOD does not have a pre-image
in IMP under the type graph homomorphism.

Then, the BOD behavior is reflected by IMP if each rule, after the transla-
tion, turns out to be a super-rule of the corresponding rule in IMP . In our case,
the rule dead? of BOD coincides with the one in IMP after the translation.

Morphisms that reflect transformation in the target by transitions in the
source have been introduced in [16] to specify the relation between different
views of a system model.

Below, we formally introduce the different components of TGTS morphisms.

3.2 Definitions of Ingredients

In this section we define the two main ingredients of TGTS morphisms, i.e.,
translations between type graphs and subrule relations. We start with forward
and backward retyping using the notation of [12].

Definition 4 (retyping). A graph morphism fTG : TG → TG′ induces a
forward retyping functor f>

TG : GraphTG → GraphTG′ , f>(g) = f ◦ g and
f>(k : g → h) = k by composition as shown in the diagram below,

H

h

��

G

k

����������

g
���

��
��

��
�

TG
f

�� TG′

as well as a backward retyping functor f<
TG : GraphTG′ → GraphTG, f<(g′) =

g∗ and f<(k′ : g′ → h′) = k∗ : g∗ → h∗ by pullbacks and mediating morphisms
as shown in the diagram below.

H∗

h∗

��

�� H ′

h′

��

G∗

k∗
����������

g∗
���

��
��

��
�

�� G′

k′
����������

g′
���

��
��

��
�

TG
f

�� TG′

We proceed by listing a number of relations between rules typed over the
same type graph.

Flexible Interconnection of Graph Transformation Modules 49

Definition 5 (subrule relations). Given TG-typed graph transformation

rules p : (L l←− K
r−→ R), q : (L′ l′←− K ′ r′

−→ R′), and a typed rule mor-
phism f : p→ q (cf. Fig. 5), we say that

– p is identical to q, in symbols p = q, if f is an identity in RuleTG,
– p is a DPO-subrule of q, in symbols p �DPO q, if the diagrams (1) and (2)

in Fig. 5 are pushouts in GraphTG,
– p is a DPB-subrule of q, in symbols p �DPB q, if the diagrams (1) and (2)

in Fig. 5 are pullbacks in GraphTG and construct a faithful transition.

This list could be further extended by relations between a single rule and
a collection of rules such as the spatial and temporal refinements, but this is
beyond the scope of this paper.

Having defined retyping and rule relations we are now in a position to com-
bine these ingredients into definitions of TGTS morphisms.

3.3 Recipes for TGTS Morphism

We have already discussed by means of the two examples in Section 3.1 how
semantic requirements determine the definition of morphisms of graph transfor-
mation systems. In this section, we are going to make this explicit in terms of
a four-step recipe. In each step we introduce a number of options and motivate
possible choices based on the semantic requirements. First of all we formulate
an initial assumption to simplify the presentation.

Assumption: Without loss of generality we assume that the TGTS morphism
f : GTS → GTS′ and the type graph morphism fTG : TG → TG′ have the
same direction. That means, the target system has at least the types like the
ones of the source system, but possibly more.

Step 1. The first variation point is the relation between the sets of rule names of
GTS and GTS′. Here it is most convenient to use total functions, rather than
general relations. For example, a mapping from P to P ′ designates for each p ∈ P
one corresponding p′ ∈ P ′: the relation is left total and right unique. This option
should be used for behavior-preserving morphisms, where each transformation
of the source system has to be associated with a transformation of the target
system. Dually, a mapping in the opposite direction provides for each p′ ∈ P ′ one
p ∈ P : a left unique and right total relation which is suitable for the behavior-
reflecting morphisms.

Step 2. The next alternative is introduced by the context of comparison, i.e.,
where the corresponding rules of the two systems are compared. This can be done
either in the context of GTS′ using the forward retyping f>

TG : GraphTG →
GraphTG′ of the rules in GTS, or in the context of GTS using the backward
retyping f<

TG : GraphTG′ → GraphTG of the rules in GTS′. The forward re-
typing is appropriate for behavior-preserving morphism, the objective in this case

50 Gregor Engels, Reiko Heckel, and Alexey Cherchago

being the construction of transformations in the target from existing ones in the
source system. By analogy backward is used for behavior-reflecting morphisms.

We continue with the specification of the subrule relation required between
the rules of the two systems. For pairs of corresponding rules as defined in Step
1 and modulo the retyping functor selected in Step 2 this means to decide for
the direction of the relation in Step 3 and its kind in Step 4.

Step 3. The direction of the subrule relation, i.e., if p is required to be a sub-
rule of p′, or vice versa, depends on the desired relation between the sets of
transformations or transitions of the two systems. If p is a subrule of p′ then
each transformation step via p′ implies a transition or transformation step via p.
Thus, behavior-preserving morphisms generally require that the GTS′ rules are
subrules of the GTS rule, while behavior-reflecting morphisms specify the dual
requirement.

Remark 1. Note that it may be the case that a subrule relation between p and p′

holds when considered over the larger type graph GTS′ using forward retyping,
but not if compared via backward retyping (projection) over the smaller GTS
type graph. The converse is also true, i.e. a subrule relation may hold over GTS,
but not over GTS′.

This motivates why the comparison of rules is always done over the system
where the existence of transformations or transitions should be ensured, i.e., the
target system if behavior shall be preserved and the source system if behavior
shall be reflected.

Step 4. Finally, we have to select the kind of subrule relation that the comparison
shall be based upon. The identity of p and p′ ensures that all transformations
via p are also transformations via p′. If p is a DPO or DPB subrule of p′, respec-
tively, then each transformation step via p′ implies a transformation (�DPO) or
transition (�DPB) via p. (The dual holds if we replace p and p′.)

The relation between the different choices and the implied semantic proper-
ties is summarized in Table 1. Combinatorially, we obtain eight different notions.
Numbers 4 and 5 represent, respectively, the behavior-reflecting and preserving
morphisms discussed above.

Next we introduce formally the semantic requirements of behavior-preserva-
tion and -reflection and, subsequently, the actual definitions of the morphisms.

Table 1. Ingredients of TGTS-morphisms.

forward retyping f>
TG backward retyping f<

TG

left-total left-unique left-total left-unique
right-unique relation right-total relation right-unique relation right-total relation

� – – DPO/DPBε DPO,DPB,[=]
1 2 3 4

� =,[DPO/DPB] – – –
5 6 7 8

Flexible Interconnection of Graph Transformation Modules 51

Definition 6 (preservation of behavior). Given typed graph transformation
systems GTS = (TG,P, π) called the source system and GTS′ = (TG′, P ′, π′)
called the target system. We say that the target system preserves the behavior of
the source system if there exists a functor F : Trf (GTS) → Trf (GTS′).

The existence of a functor between two categories of sequences requires that
each individual step in GTS is mapped to a sequence in GTS′. By induction, this
mapping extends to sequences in GTS. However, we will deal with the simpler
case where a step in GTS is actually mapped to a single step in GTS′.

As discussed above, this requires that each rule p ∈ P has a corresponding
rule p′ ∈ P ′. Hence, a mapping f : P → P ′ is chosen in Step 1. To ensure the
preservation of sequences in GTS′, the comparison of rules is done in the context
of GTS′ and, therefore, forward retyping is applied at Step 2.

The mapping in Step 1 must guarantee the desired relation between the
transformations in the two systems. This is achieved if in Step 3 the rules in
GTS′ are subrules of those in GTS. The choices in Step 4 ensuring behavior
preservation range from identity to DPB relations. The identity is the most
common one because it results in an embedding of GTS into GTS′, while any
true subrule relations would mean that the rules of GTS are reduced in GTS′.

The behavior-preserving morphism is specified in cell 5 of Table 1 and for-
mally defined below.

Definition 7 (behavior-preserving morphism). Given typed graph trans-
formation systems GTS = (TG,P, π) and GTS′ = (TG′, P ′, π′), a behavior-
preserving TGTS morphism fpres = (fTG, fP) is given by a type graph mor-
phism fTG : TG → TG′ and a mapping fP : P → P ′ between the sets of rule
names such that for each p ∈ P , f>

TG(π(p)) = π′((fP (p))).

The justifications for the following claim can be found in [9, 11].

Fact 1 Behavior-preserving morphisms fpres : GTS → GTS′ satisfy the re-
quirements of Def. 6.

Just to consider another example, the candidate in cell 6 differs from the one
above in the direction of the mapping between rule names. That means, to each
p′ ∈ P ′ a p ∈ P is associated. If we require the existence of the subrule relation
for all pairs of rules thus associated, this guarantees a partial preservation of
behavior only, i.e., for those transformations in GTS via rules with corresponding
rules in GTS′.

To continue on the right-hand side of the table, the semantic requirements
for behavior-reflecting morphisms are given below.

Definition 8 (reflection of behavior). Given typed graph transformation sys-
tems GTS = (TG,P, π) called the source system and GTS′ = (TG′, P ′, π′) called
the target system, we say that the first reflects the behavior of the second if there
exists a functor F : Trf (GTS′) → Trs(GTS).

52 Gregor Engels, Reiko Heckel, and Alexey Cherchago

That means, each transformation step in GTS′ implies a transition in GTS,
a liberal requirement compared to reflecting transformations in transformations.

By the same arguments as above, in Step 1 we assume a mapping of rule
names from P ′ to P . The context of comparison is the source system, leading
to the use of backward retyping is selected at Step 2. To fulfill the semantic
requirement, rules in P ′ are subrules of corresponding rules in P in Step 3. Both
DPO or DPB subrule relations are reasonable at Step 4. The first would, in fact,
guarantee the stronger reflection property based on transformations only.

This morphism specified in cell 4 of Table 1 is formally defined below.

Definition 9 (behavior-reflecting morphism). Given typed graph transfor-
mation systems GTS = (TG,P, π) and GTS′ = (TG′, P ′, π′), a behavior-
reflecting morphism f refl = (fTG, fP) is given by a type graph morphism fTG :
TG → TG′ and a mapping fP : P ′ → P between rule names such that for each
p′ ∈ P ′, π(fP (p′)) �DPO/DPB f<

TG(π′(p′)).

The proof of following is obvious.

Fact 2 Behavior-reflecting morphisms f refl : GTS → GTS′ satisfy the require-
ments of Def. 8.

In [16] a variant of the above has been used represented by cell 3. The dif-
ference from 4 is the direction of the mapping of rule names from P to P ′, i.e.,
in the same direction like the mapping of types. Using DPB subrules and as-
suming in each GTS an empty ε-rule, each step in GTS′ using a rule without
a corresponding rule in GTS is associated with an ε-transition. In this way, the
behavior is indeed reflected by GTS.

If we consider, instead, DPO subrules we obtain a partial reflection of the
target transformations by the source ones.

It turns out that none of the other alternatives in Table 1 preserve or reflect
behavior. Variants 1 and 2 are not behavior-preserving, because the subrule
relation allows rules in the target system to be larger than in the source. Hence,
additional preconditions may be introduced which make rules in GTS′ applicable
in less situations.

Similarly, variants 7 and 8 are inadequate for the behavior reflection since,
due to Remark 1, subrule rule relations are not in general preserved by the
retyping.

The preservation properties for subrule relations between the rules of the two
systems are detailed in Fig. 10.

In the next section we discuss another kind of semantic relation, called sub-
stitutability: Abstract operation specifications in the source system (e.g., the
import interface) shall by substituted by their implementations in the target
system (e.g., the body of another module).

3.4 Towards Substitution Morphisms

Let us come back to the discussion of the connector between the import inter-
face IMP of the requestor module MOD and the export interface EXP ′ of the

Flexible Interconnection of Graph Transformation Modules 53

f>
TG(π(p)) � π′(p′) �

∦
��

π(p) � f<
TG(π′(p′))⇐
∦
��

f>
TG(π(p)) � π′(p′) ⇒

∦

��

π(p) � f<
TG(π′(p′)�

∦

��

Fig. 10. Relation between the different alternatives for the TGTS-morphisms.

provider module MOD′. Since IMP and EXP ′ are TGTS, the desired relation
between them should be described via a TGTS morphism. To construct an ap-
propriate recipe for the morphism between IMP and EXP ′, it is necessary to
understand what are the semantic requirements behind this a relation.

IMP contains the abstract specifications of the required features, so it is
natural to interpret its rules as incomplete, with DPB semantics. The provider
offers the concrete implementations of the operations, therefore the correspond-
ing rules should be complete, having DPO interpretation.

The concrete rules can be safely substituted for the abstract rules if the fol-
lowing two conditions are true: First, the effect of applying a rule of EXP ′ should
satisfy the expectations described in the rule of IMP for which it was substi-
tuted. This is the case if IMP reflects the EXP ′ behavior. Second, applicability
of the IMP rule should imply applicability of the corresponding EXP ′ rule, i.e.,
applicability must be preserved from IMP to EXP ′. These two requirements
are formally given in the following definition.

Definition 10 (substitutability). Given typed graph transformation systems
GTS = (TG,P, π), the source system, and GTS′ = (TG′, P ′, π′), the target
system, the second is substitutable for the source if there exists a functor F :
Trf (GTS′) → Trs(GTS) such that for all graphs G′ ∈ |Trf (GTS′)| and for all
transition sequences ρ : F (G′) → ∈ Trs(GTS) there exists a transformation
sequence ρ′ : G′ → ∈ Trf (GTS′) with F (ρ′) = ρ.

Let us give an operational interpretation of what happens when the abstract

rules pi = (Li
li←− Ki

ri−→ Ri) are substituted for the concrete rules p′i = (L′
i

l′i←−
K ′

i

r′
i−→ R′

i). This assumes that requestor and provider are actual components
which communicate at runtime.

G0
p1/d1
� H0 = G1

p2/d2
� H1 = G2

. . .

G′
0

�
f<

T G

		

p′
1/d′

1=⇒ H ′
0 = G′

1

�
f<

T G

		

p′
2/d′

2=⇒ H ′
1 = G′

2

�
f<

T G

		

. . .

Fig. 11. Substitution in detail.

The starting point is a graph G′
0 ∈ GraphTG′ , representing the state of the

provider component (cf. Fig. 11).

54 Gregor Engels, Reiko Heckel, and Alexey Cherchago

The substitution consists of the following steps:

– G′
0 is projected to G0 ∈ GraphTG via backward retyping, modeling the

requestors incomplete knowledge about the provider.
– If a rule p1 is applicable to G0 on the requestor side, the same holds for the

corresponding provider rule p′1 = fP (p1).

– A transformation step G′ p′
1/d′

1=⇒ H ′ is performed by the provider which

projects to a transition G0
p1/d1
� H via the corresponding rule in the re-

questor view.

Thus, the requestor receives an update to its local view of the state of the
provider, and the cycle can start anew.

After this operational motivation, let us understand the consequences of the
semantic requirements of Def. 10, i.e., reflection of behavior and preservation
of rule applicability. The first requires that rules are compared over the GTS
(backward retyping for Step 2) with π(p) �DPB f<

TG(π′(p′)) (DPB subrule from
p to p′ for Steps 3 and 4). The second is guaranteed if the left-hand sides of
the rules p′ is contained in that of p (Steps 3 and 4), compared over GTS′

(forward retyping for Step 2). Thus, modulo retyping, p is contained in p′, but
L′ is contained in L, i.e., the rules must be essentially identical.

It is clear that this is not a satisfactory result because it means that, again,
requestor and provider components have to be developed in close coordination.
We will see in the next section that the solution consists in a separation of the
preconditions for the application of the rule from the description of the effects
of the transformation. Indeed, the problem occurs because the left-hand side of
a rule mixes up items restricting the applicability with items needed to specify
the actual transformations.

4 Separating Preconditions and Effects

As discussed in the previous section, the separate specifications of application
conditions and transformations allows for a more flexible notion of substitution
morphisms. The desired separation is achieved by extending rules with positive
and negative application conditions as introduced below. In Section 4.2, substitu-
tion morphisms will be introduced formally. It will be illustrated by an example
in Section 5, as well as the other morphisms discussed so far.

4.1 Application Conditions

Negative conditions are well-known to increase the expressive power of rules [14].
This is not the case for positive application conditions which are easily encoded
in the left-hand side of a rule (more precisely: in both the left- and the right-hand
side if the elements are to be preserved).

However, this encoding, while leading to an identical operational behavior,
is not compatible with the semantic requirements for substitution morphisms.

Flexible Interconnection of Graph Transformation Modules 55

For example, by strengthening the precondition of an operation in the import
we should preserve legal substitution relations because the overall requirements
towards existing implementations are weakened. Yet, due to the encoding we
are enlarging the rule itself, which reduces the collection of legal substitution
morphisms outgoing from the import interface.

Therefore, we consider in the following definition negative as well as positive
application conditions.

Definition 11 (rules with application conditions). An application condi-
tion A(p) = (AP (p), AN(p)) for a graph transformation rule p : (L l←− K

r−→
R) consists of two sets of typed graph morphisms AP (p), AN(p) outgoing from
L which contain positive and negative constraints, respectively. A(p) is called
positive (negative) if AN(p) (AP (p)) is empty.

Let L
l̂−→ L̂ be a positive or negative constraint and L

dL−→ G be a typed
graph morphism (cf. Fig. 12). Then dL P-satisfies l̂, if there exists a typed graph

morphism L̂
dL̂−→ G such that dL̂ ◦ l̂ = dL. dL N-satisfies l̂, if it does not P-

satisfy l̂.

L̂

d
L̂

��
��

��
��

L
l̂�� l̂��

dL

��

(1)

K
l�� r ��

dK

��

(2)

R

dR

��

G D
h

��
g

�� H

Fig. 12. DPB graph transition and rule with application condition.

Let A(p) = (AP (p), AN(p)) be an application condition and L
dL−→ G be

a typed graph morphism. Then dL satisfies A(p), if it P–satisfies at least one
positive constraint and N-satisfies all negative constraints from A(p).

A graph transformation rule with application condition is a pair p̂ = (p,A(p))
consisting of a graph transformation rule p : s = (L l←− K

r−→ R) and an
application condition A(p) for p. It is applicable to a graph G via L

dL−→ G if dL

satisfies A(p).
Let p̂ = (p : (L l←− K

r−→ R), A(p)) be a graph transformation rule with
application condition. A graph transition from G to H via the rule p̂, denoted

by G
p̂/d
� H, is a graph transition via a rule p, such that dL ∈ d satisfies the

application condition of p̂.

Note that positive application conditions consist of a disjunction of positive
constraints, in contrast with the conjunction in [14]. That means, L

dL−→ G
satisfies AP (p) if it satisfies at least one positive constraints. So, positive and
negative conditions are, in fact, dual to each other.

56 Gregor Engels, Reiko Heckel, and Alexey Cherchago

As an example of a rule with positive and negative constraints let us consider
the rule req in Fig. 6. Constraints are represented in the left-hand side of the
rule where they are distinguished by dotted borders. If a positive constraint
coincides with L, we omit this border. All nodes and edges outside these borders
form the left-hand side L while L̂ is given by the left-hand side plus one of
the bordered parts and l̂ or k̂ by the corresponding embedding. Two negative
constraints and one positive, being identical to the left-hand side, constitute the
application condition of the rule req.

4.2 Substitution Morphism

We proceed with the definition of substitution morphisms, consisting of two
parts. The first one ensures that the applicability of the requestor rule implies
the applicability of the associated provider rule. This is similar to behavior-
preserving morphisms (cf. cell 5 in Table 1) except that the application condition
is considered instead of the actual rule.

The second part of the definition ensures the reflection of effects. Thus,
behavior-reflecting morphisms are appropriate here, but only for those rules of
EXP ′ which are associated to rules of IMP , cf. cell 3 of Table 1.

Below, we first deal with reflection of effects and then with preservation of
applicability.

Definition 12 (substitution morphism). Given typed graph transformation
systems GTS = (TG,P, π) and GTS′ = (TG′, P ′, π′) containing graph trans-
formation rules with application conditions. A substitution morphism fsub =
(fTG, fP) is given by a type graph morphism fTG : TG → TG′ and a mapping
fP : P → P ′ between the sets of rule names, such that for each p ∈ P we have

1. π(p) �DPB f<
TG(π′(p′)) (cf. Fig. 13 on the right)

2. applicability of p implies that of fP (p) = p′, i.e.
(a) for each f>

TG(l̂ : L → L̂) ∈ f>
TG(AP (p)) there exist l̂′ : L′ → L̂′ ∈

AP (p′) and a graph homomorphisms hL̂′
P

: L̂′ → f>
TG(L̂) such that the

corresponding square in Fig. 13 on the left commutes;
(b) for each k̂′ : L′ → L̂′ ∈ AN(p′) there exist f>

TG(k̂ : L→ L̂) ∈ f>
TG(AN(p))

and a graph homomorphism hL̂′
N

: f>
TG(L̂) → L̂′ such that the corre-

sponding square in Fig. 13 on the left commutes.

The justification for the definition of the substitution morphism is presented
in the following theorem.

Theorem 1. The substitution morphism fsub = (fTG, fP) satisfies the semantic
requirements of Def. 10.

Proof Sketch. It is necessary to show that Def. 12 implies Def. 10, i.e. (1) trans-
formation steps via a GTS′ rule can be considered as transitions via the cor-
responding GTS rule, and (2) the applicability of this GTS rule implies the

Flexible Interconnection of Graph Transformation Modules 57

f>
TG(L̂

h
L̂′

N

��

L
l̂/k̂

��

f>
TG

(fL)

��

)

L̂′

=h
L̂′

P

��

L′
l̂′/k̂′
��

L

fL

��

K
l�� r ��

fK

��

R

fR

��

f<
TG(L′ K′

l′
��

r′
�� R′)

Fig. 13. Substitution morphism of graph transformation rules (the functors f>
TG and

f<
TG are applied to the entire constraint of p in the left part of figure and to the entire

bottom span in the right part of figure correspondingly).

applicability of the GTS′ rule. Assume two graph transformation rules with ap-
plication conditions p̂ = (π(p), A(p)) in GTS and p̂′ = (π′(p′), A(p′)) in GTS′

such that p′ = fP (p).

1. It is necessary to demonstrate that each transformation step via the GTS′

rule can be reflected by a transition via the GTS rule. By assumption, for
each backward retyped rule f<

TG(p̂′) there is a DPO-/DPB-subrule p̂ in GTS,
i.e. there exist graph homomorphisms between the first and the second rule
(fL, fK , fR), forming a faithful transition (cf. Fig. 14 on the right). Now,
both transitions can be vertically composed using the composition of the un-
derlying pushout/pullback squares. The faithfulness of the composed tran-
sition follows from the preservation of the identification condition under the
composition of pushout/pullback squares. Obviously, both transitions have
the same underlying span G

g←− D
h−→ H .

2. We have to show that if f>
TG(dL) satisfies the application condition of f>

TG(p̂),
then dL′ satisfies the application condition of p̂′. This induces two problems:
(a) dL′ (cf. Fig. 14 on the left) must N-satisfy all negative constraints of p̂′,

i.e., there must not exist dL̂′ : L̂′ → G′. This can be proved by assuming
existence of dL̂′ and showing a contradiction. The full proof of this can
be found in [1].

(b) dL′ (cf. Fig. 14 on the left) must P-satisfy some positive constraint of
p̂′. Since the satisfiability of the positive constraints is defined dually to
the negative case, the proof is analogous.

Combining (a) and (b), we obtain that dL′ satisfies the application condition
of p̂′.

Further we discuss the application of the introduced TGTS morphisms.

5 Application of TGTS Morphisms

In this section we revise the intra-connectors relating the import/export inter-
faces and the body of a module and introduce a new concept of inter-connector
employing the substitution morphism defined in the previous section. The inter-
connectors determine a relation between the import and export interfaces of
two modules being requestor and provider of a specific service. To illustrate the

58 Gregor Engels, Reiko Heckel, and Alexey Cherchago

Fig. 14. Substitution morphisms satisfy the semantic requirements (the functors f>
TG

and f<
TG are applied to the entire application constraint of p in the left part of figure

and to the entire bottom span in the right part of figure correspondingly).

application of the substitution morphism as the inter-connector a module imple-
menting the algorithm for distributed deadlock detection (DDD) is introduced.

5.1 Extended Scenario

The algorithm for distributed deadlock detection is specified by the module
MOD′ depicted in the lower part of Fig. 15. The upper part of this figure shows
the module MOD modeling the algorithm for mutual exclusion discussed in
Section 3.1.

The module MOD′ offers a deadlock detection service at the export interface
EXP ′ asked for by the module MOD at the import interface IMP (cf. IMP
and EXP ′ in Fig. 15). At the same time, the module MOD′ lacks deadlock res-
olution capabilities provided, in turn, by the module MOD through the export
interface EXP (cf. IMP ′ and EXP in Fig. 15). In general, such a relation be-
tween module interfaces, called cyclic import, might be problematic for practical
realization. However, it properly illustrates different kinds of module connectors.

Example 4 (distributed deadlock detection). The main purpose of MOD′ is to
observe processes and resources and to detect a deadlock if asked to do so. In a
graph representing a system state, a deadlock appears as a cycle of request and
held by edges, where one process requests a resource held by another process
and simultaneously holds a resource requested by it. The distributed deadlock
detection uses blocked messages, represented by edges with a black flag, in order
to detect such cyclic dependencies.

The algorithm is invoked by a process p waiting for a resource r. The process
uses rule dead? to send a blocked -message to r. This feature is offered by MOD′

at EXP ′ for external use, e.g., by MOD. If the resource is held by another pro-
cess which itself is waiting for a resource, the message is passed on using waiting.
If this is not the case, which is checked by a negative application condition, the
message is deleted by rule ignore. Thanks to the mutual exclusion, each resource
is held by only one process. Hence, if the message arrives at a resource which is
held by the original sender, a cycle has been detected.

Flexible Interconnection of Graph Transformation Modules 59

Fig. 15. Modules implementing the algorithms for mutual exclusion (upper) and dis-
tributed deadlock detection (lower).

60 Gregor Engels, Reiko Heckel, and Alexey Cherchago

Since MOD′ is only destined for deadlock detection, deadlock resolution is
described only abstractly by the rule rel dl, which deletes the blocked -message,
but does not decide how the deadlock is actually resolved. This rule in the import
interface IMP ′ needs to be replaced by the rule of MOD with the same name.
The positive application condition of rel dl restricts the rule applicability to the
system states where a resource is held by the process, i.e. to the situations being
meaningful for the deadlock resolution.

5.2 TGTS Morphisms as Intra-connectors of Modules (Revised)

We proceed with the discussion of intra-connectors relating an import interface
and a body of a module. In Section 3.1 behavior-reflecting morphisms were
proposed for this purpose. We shall verify whether the requirements of Def. 9
are fulfilled for the corresponding constituents of the modules MOD and MOD′

in Fig. 15.
First of all, we establish a type graph morphism fTG and a mapping fP be-

tween the sets of rule names. In the module MOD the type graph TGIMP of the
import is a subgraph of TGBOD of the body. Similarly, the type graph TGIMP ′

is a subgraph of TGBOD′ in the module MOD′. The type graph morphisms in
both cases are given by inclusions. The corresponding rules in the source and
target systems are identified by their names, i.e. dead? for IMP and BOD, and
rel dl for IMP ′ and BOD′.

The rule dead? in IMP is a subrule of the BOD one, simply because the two
rules are identical (cf. Def. 9). The rule rel dl in IMP ′ is a subrule of the BOD′

rule, because the latter becomes identical to the IMP ′ rule after the backward
retyping. Hence, the specifications at IMP and IMP ′ conform with BOD and
BOD′ correspondingly.

In contrast with the import-body connector, the requirements towards the
connector between export interface and body shall be strengthened. Behavior-
preservation guarantees that the applicability of rules in the export interface
implies the applicability of corresponding body rules. However, this property
would be satisfied even for empty body rules. In fact, we also require that the
effect achieved by the body rules is at least the one promised by the rules in
the export interface. Hence, we “upgrade” behavior-preserving morphisms to
substitution morphisms. Next we shall demonstrate that the relations between
exports and bodies of the modules in Fig 15 are indeed substitution morphism.

To show this one should check preservation of applicability from the export
interface to the body and reflection of the effects between the rules in the body
and the export interface. The rules rel dl in the export interface EXP of MOD
and dead? in EXP ′ of MOD′ are identical to the body rules of the modules,
and so the properties required by Def 12 obviously hold.

5.3 TGTS Morphisms as Inter-connectors of Modules

The ultimate aim of matching import and export interfaces of requestor and
provider modules is to check whether the corresponding rules in the body of

Flexible Interconnection of Graph Transformation Modules 61

the former can be safely substituted for the rules in the body of the later. That
means the obvious choice of morphism for this inter-connector is the substitution
morphism.

Let us first discuss the relation between the import interface IMP and the
export interface EXP ′ of the modules in Fig 15. The type graph morphism fTG

from TGIMP to TGEXP ′ is given by an inclusion. The mapping fP between the
sets of rule names is unique, because only one rule dead? is contained in each of
the interfaces.

After that, one should check the preservation of applicability from IMP to
EXP ′ (cf. Def 12). Each of the rules has one positive application condition
being the union of the left-hand side and the dotted part for the IMP rule, and
coinciding with the left-hand side for the EXP ′ rule. The application conditions
of the two rules are the same because the forward retyping of the EXP ′ rule
does not introduce any changes. Applicability is thus preserved.

The last step is the reflection of effects. While the backward retyping of
the EXP ′ rule gets rid of the blocked -message, it is still bigger in context and
effect then the IMP rule. This is allowed by the DPB-subrule relation which
can be established between the two rules. Thereby, the import interface IMP is
associated with the export interface EXP ′ by a substitution morphism.

Now we discuss the relation between the import interface IMP ′ and the ex-
port interface EXP . The type graphs TGIMP ′ and TGEXP of the two systems
are the same, consequently the retyping does not change the rules. The positive
application conditions of the rules rel dl coincide, that means preservation of
applicability from IMP ′ to EXP . The reflection of effects is ensured by the
DPO-subrule relation between the two rules in spite of the bigger context of the
EXP ′ rule additionally containing the held by edge. Hence, the import inter-
face IMP ′ and the export interface EXP are also connected by a substitution
morphism.

The fact that import-export and export-body relations are both described by
substitution morphisms allows us, by means of their composition, to consider the
body of the provider module as a replacement for the export of the requestor.
This is the first prerequisite for a composition of modules, i.e., the actual sub-
stitution of the import by the body. The detailed analysis of this construction
is, however, beyond the scope of this paper.

The final section summarizes the main results of our work.

6 Conclusion

The contributions of this paper can be summarized in two points: a system-
atic presentation of morphisms of graph transformation systems along with a
recipe of how to define new variants, if needed, in a generic framework; and a
novel notion of substitution morphism between graph transformation systems
with application conditions being uniformly introduced in the context of this
framework.

The latter has been motivated by the need to connect import and export
interfaces of modules in a flexible way, i.e., such that they can be developed

62 Gregor Engels, Reiko Heckel, and Alexey Cherchago

independently of each other. The first result is a reaction to the multitude of
proposals and variants that exist in the literature.

Future work will include the further analysis of modules based on the con-
nectors introduced here, in particular their composition, as well as possible gen-
eralizations towards refinements of both the general framework and the notion
of substitution morphism.

References

1. A. Cherchago and R. Heckel. Specification matching of web services using con-
ditional graph transformation rules. In H. Ehrig, G. Engels, F. Parisi-Presicce,
and G. Rozenberg, editors, Proc. 2nd Int. Conference on Graph Transformation
(ICGT’04), Rome, Italy, volume 3256 of LNCS. Springer-Verlag, 2004.

2. A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and J. Padberg. The category of
typed graph grammars and their adjunction with categories of derivations. In 5th
Int. Workshop on Graph Grammars and their Application to Computer Science,
Williamsburg ’94, LNCS 1073, pages 56–74. Springer-Verlag, 1996.

3. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26(3,4):241–266, 1996.

4. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
approaches to graph transformation, Part I: Basic concepts and double pushout
approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation, Volume 1: Foundations, pages 163–245. World Scientific,
1997. Preprint available as Tech. Rep. 96/17, Univ. of Pisa, http://www.di.unipi.
it/TR/TRengl.html.

5. H. Ehrig and G. Engels. Pragmatic and semantic aspects of a module concept
for graph transformation systems. In 5th Int. Workshop on Graph Grammars
and their Application to Computer Science, Williamsburg ’94, LNCS 1073, LNCS,
pages 137–154. Springer-Verlag, 1996.

6. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 2: Applica-
tions, Languages, and Tools. World Scientific, 1999.

7. H. Ehrig and B. Mahr. Fundamentals of algebraic specification 2: module specifi-
cations and constraints. Springer-Verlag, 1990.

8. H. Ehrig, M. Pfender, and H.J. Schneider. Graph grammars: an algebraic approach.
In 14th Annual IEEE Symposium on Switching and Automata Theory, pages 167–
180. IEEE, 1973.

9. M. Große–Rhode, F. Parisi Presicce, and M. Simeoni. Concrete spatial refine-
ment construction for graph transformation systems. Technical Report SI 97/10,
Università di Roma La Sapienza, Dip. Scienze dell’Informazione, 1997.

10. M. Große–Rhode, M. Simeoni, and F. Parisi Presicce. Refinements and modules
for typed graph transformation systems. In J.L.Fiadeiro, editor, Proc. WADT’98
(Workshop on Algebraic Development Techniques), at ETAPS’98, Lisbon, April,
number 1589 in LNCS, pages 138 – 151. Springer, 1999.

11. M. Grosse-Rhode, F. Parisi-Presicce, and M. Simeoni. Spatial and temporal re-
finement of graph transformation systems. In Proc. of Mathematical Foundations
of Computer Science 1998, volume 1450 of LNCS, pages 553–561. Springer-Verlag,
1998.

Flexible Interconnection of Graph Transformation Modules 63

12. M. Grosse-Rhode, F. Parisi-Presicce, and M. Simeoni. Refinements and modules
for typed graph transformation systems. In J.L. Fiadeiro, editor, Proc. Workshop
on Algebraic Development Techniques (WADT’98), at ETAPS’98, Lisbon, April
1998, volume 1589 of LNCS, pages 138–151. Springer-Verlag, 1999.

13. M. Große-Rhode, F. Parisi-Presicce, and M. Simeoni. Refinement of graph trans-
formation systems via rule expressions. In H. Ehrig, G. Engels, H.-J. Kreowski,
and G. Rozenberg, editors, Proc. 6th Int. Workshop on Theory and Application
of Graph Transformation (TAGT’98), Paderborn, November 1998, volume 1764 of
LNCS, pages 368–382. Springer-Verlag, 2000.

14. A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application
conditions. Fundamenta Informaticae, 26(3,4):287 – 313, 1996.

15. J.H. Hausmann, R. Heckel, and M. Lohmann. Model-based discovery of web ser-
vices. In Proc. International Conference on Web Services, San Diego, USA, July
2004.

16. R. Heckel. Open Graph Transformation Systems: A New Approach to the Com-
positional Modelling of Concurrent and Reactive Systems. PhD thesis, TU Berlin,
1998.

17. R. Heckel, A. Corradini, H. Ehrig, and M. Löwe. Horizontal and vertical structuring
of typed graph transformation systems. Math. Struc. in Comp. Science, 6(6):613–
648, 1996.

18. R. Heckel, H. Ehrig, U. Wolter, and A. Corradini. Double-pullback transitions and
coalgebraic loose semantics for graph transformation systems. Applied Categorical
Structures, 9(1), January 2001. See also TR 97-07 at http://www.cs.tu-berlin.
de/cs/ifb/TechnBerichteListe.html.

19. R. Heckel, G. Engels, H. Ehrig, and G. Taentzer. Classification and comparison of
modularity concepts for graph transformation systems. In Ehrig et al. [6], pages
669 – 690.

20. R. Heckel, G. Engels, H. Ehrig, and G. Taentzer. A view-based approach to system
modelling based on open graph transformation systems. In Ehrig et al. [6], pages
639 – 667.

21. H.-J. Kreowski and S. Kuske. On the interleaving semantics of transformation
units - a step into GRACE. In 5th Int. Workshop on Graph Grammars and their
Application to Computer Science, Williamsburg ’94, LNCS 1073, pages 89 – 106.
Springer-Verlag, 1996.

22. B. Meyer. Object-Oriented Software Construction. Prentice Hall International,
1988.

23. L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.
PhD thesis, TU Berlin, 1996.

24. A. Schürr and A.J. Winter. UML packages for PROgrammed Graph REwrite
Systems. In Selected Papers of 6th International Workshop on Theory and Appli-
cation of Graph Transformations (TAGT’98), Paderborn, Germany, volume 1764
of LNCS, pages 396–409. Springer-Verlag, 1999.

25. A.M. Zaremski and J.M. Wing. Signature matching: a tool for using software
libraries. ACM Transactions on Software Engineering and Methodology (TOSEM),
4(2):146 – 170, April 1995.

26. A.M. Zaremski and J.M. Wing. Specification matching of software components. In
Proc. SIGSOFT’95 Third ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, volume 20(4) of ACM SIGSOFT Software Engineering Notes,
pages 6–17, October 1995. Also CMU-CS-95-127, March, 1995.

Simulating Algebraic High-Level Nets
by Parallel Attributed Graph Transformation

Claudia Ermel1, Gabriele Taentzer1, and Roswitha Bardohl2

1 Technische Universität Berlin, Germany
{lieske,gabi}@cs.tu-berlin.de

2 Intern. Center for Computer Science, Schloss Dagstuhl, Germany
rosi@dagstuhl.de

Abstract. The “classical” approach to represent Petri nets by graph
transformation systems is to translate each transition of a specific Petri
net to a graph rule (behavior rule). This translation depends on a con-
crete model and may yield large graph transformation systems as the
number of rules depends directly on the number of transitions in the net.
Hence, the aim of this paper is to define the behavior of Algebraic High-
Level nets, a high-level Petri net variant, by a parallel, typed, attributed
graph transformation system. Such a general parallel transformation sys-
tem for AHL nets replaces the translation of transitions of specific AHL
nets. After reviewing the formal definitions of AHL nets and parallel
attributed graph transformation, we formalize the classical translation
from AHL nets to graph transformation systems and prove the correct-
ness of the translation. The translation approach then is contrasted to
a definition for AHL net behavior based on parallel graph transforma-
tion. We show that the resulting amalgamated rules correspond to the
behavior rules from the classical translation approach.

1 Introduction

Visual modeling languages (like the Unified Modeling Language (UML), Petri
nets, Statecharts, and many more) play a central role for software and system
modeling. Visual models are used for system design, simulation, validation, and
code generation. Apart from developing visual models, the simulation of a model
on the basis of a formal specification is an important issue for testing and validat-
ing the system behavior. The simulation of Petri nets, for example, is realized
by playing the token game: a transition can fire if it is enabled, a firing step
removes tokens from the transition’s predomain places and adds tokens to its
postdomain places.

Petri net behavior can be defined as graph transformation system where each
transition is translated to a graph rule modeling the corresponding change of the
marking (deleting and/or adding tokens) in a firing step [15, 3]. This “classical”
way to define Petri net behavior by graph transformation assumes a specific
Petri net before compiling its transitions into graph rules (compiler approach).

Yet, for related visual behavior modeling languages, it is often possible to
define a general graph transformation system which is independent of a specific

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 64–83, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Simulating Algebraic High-Level Nets 65

model and can be used to interpret arbitrary models of a visual language (inter-
preter approach). An example is a graph transformation system for describing
the behavior of a Statechart variant given in [2]. In general, the interpreter ap-
proach is much more flexible and scalable than the compiler approach. As it is
independent of a concrete model, the graph transformation system defined for
the interpreter approach is fixed once for the complete visual language, i.e. the
number of behavior rules is finite and does not grow with the size of the model
(scalability). In contrast, using the compiler approach, each specific model must
be translated to get the model-specific graph transformation system.

Unfortunately, it is difficult to give a general graph transformation system to
simulate Petri nets as there may be arbitrary many places connected to a tran-
sition, leading to an arbitrary number of behavior rules. Hence, parallel graph
transformation concepts have been used to simulate the behavior of Condition-
Event nets in [20] and of Timed Transition Petri Nets in [4].

Parallel graph transformation was introduced by Ehrig and Kreowski in [6],
later generalized to parallel high-level replacement systems [11] by Ehrig and
Taentzer, further elaborated and applied to communication-based systems in
[20]. The essence of parallel graph transformation is that (possibly infinite) sets of
rules which have a certain regularity, so-called rule schemes, can be described by
a finite set of rules modeling the elementary actions. For instance, when modeling
the firing of a Petri net transition, the elementary actions would be the removal
of a token from a place in the transition’s predomain and the addition of a token
to a postdomain place. For the description of such rule schemes the concept
of amalgamating rules at subrules is used which is based on synchronization
mechanisms for rules developed first in [5].

The aim of this paper is to present a formal interpreter approach to define
the behavior of high-level Petri nets. A specific, well-defined variant of high-level
nets are Algebraic High-Level nets, AHL nets for short, introduced by Ehrig,
Padberg and Ribeiro in [18]. We present an interpreter approach for the behavior
of AHL nets based on parallel attributed graph transformation. Thus, a general
graph transformation system for simulating AHL nets replaces the translation
of transitions of specific AHL nets. The resulting parallel behavior specification
is formally proven to be semantically equivalent to the corresponding compiler
approach translating each specific AHL net to a corresponding attributed graph
transformation system. This compiler approach for AHL nets has been presented
in [1] and is reviewed in a slightly modified form in this paper.

In Section 2, the formal definitions of AHL nets and their behavior are re-
viewed, using the well-known Dining Philosophers as running example. Section
3 presents the concepts of sequential (classical) and parallel attributed graph
transformation. The concepts are the basis in Section 4 to formalize the trans-
lation from AHL nets to sequential graph transformation systems according to
the compiler approach. We prove the semantical compatibility of an AHL net
and its translation to a graph transformation system, i.e. we show that a fir-
ing sequence in the net corresponds to a graph transformation sequence in the
translated graph transformation system. The compiler approach is contrasted by

66 Claudia Ermel, Gabriele Taentzer, and Roswitha Bardohl

the interpreter approach based on parallel attributed graph transformation, in
Section 5. An interaction scheme is presented specifying the elementary actions
when simulating an AHL net. From this scheme, amalgamated rules are defined
for AHL nets, and it is proven that these rules correspond semantically to the
behavior rules of the sequential graph transformation system given in Section 4.
The conclusion (Section 6) gives an outlook on how the simulating graph trans-
formation systems for AHL nets are used in the visual language environment
GenGED for simulating and animating the behavior of AHL nets.

2 Algebraic High-Level Nets

An AHL net is a combination of a place/transition net [19] and an algebraic
datatype specification SPEC describing operations used as arc inscriptions. To-
kens are elements of a corresponding SPEC-algebra [8, 7]. In this section, we re-
view the definition of AHL nets and their behavior as given in [18], and present
our running example, the well-known Dining Philosophers.

In contrast to other variants of AHL nets [14, 16] we do not label places with
sorts. The pre- and postdomain of a transition is given by a multiset of pairs of
terms and places, i. e. as elements of a commutative monoid.

Definition 1 (Algebraic High-Level Net).
An algebraic high-level net N = (SPEC,P, T, pre, post, cond,A) consists of an
algebraic specification SPEC = (S,OP,E;X) with equations E and additional
variables X over the signature (S,OP), sets P and T of places and transitions
respectively, pre- and postdomain functions pre, post : T → (TOP (X) × P)⊕

assigning to each transition t ∈ T the pre- and postdomains pre(t) and post(t),
respectively, a firing condition function cond : T → Pfin(EQNS(S,OP,X))
assigning to each transition t ∈ T a finite set cond(t) of equations over the
signature (S,OP) with variables X, and an (S,OP,E)-algebra A.

Remarks

– TOP (X) is the set of terms with variables X over the signature (S,OP), and
M⊕ is the free commutative monoid over a set M . Thus, TOP (X) × P =
{(term, p)|term ∈ TOP (X), p ∈ P}.

– The predomain function pre(t) (and similar postdomain function post(t))
have the form pre(t) =

∑n
i=1(termi, pi) with (n ≥ 0), pi ∈ P, termi ∈

TOP (X). This means that {p1, ...pn} is the predomain of t with arc-inscription
termi for the arc from pi to t if all p1, ..., pn differ (unary case) and arc-
inscription termi1⊕ ...⊕ termik for pi1 = ... = pik (multi case). Note that in
our sample AHL net (see Example 1) we have the multi case, but as drawing
convention we draw separate arcs, each inscribed by one term only. Hence,
we allow to draw more than one arc in one direction between a place and a
transition.

– AHL nets together with AHL net morphisms build a category AHLnet [18].

Simulating Algebraic High-Level Nets 67

Definition 2 (Marking and Firing Behavior of AHL Nets).
Let N = (SPEC,P, T, pre, post, cond,A) be an AHL net according to Def. 1.

– A marking m is an element m ∈ M⊕ with M = A × P = {(a, p)|a ∈⋃
s∈S As, p ∈ P}

– Enabling and firing of transitions is defined as follows: For any t ∈ T let
V ar(t) be the set of local variables occurring in pre(t), post(t) and cond(t).
An assignment asgA : V ar(t) → A is called consistent wrt. t ∈ T if the
equations cond(t) are satisfied in A under asgA. Transition t is enabled
under a consistent assignment asgA : V ar(t) → A and a marking m ∈
(A × P)⊕, if preA(t, asgA) ≤ m. The marking preA(t, asgA) – analogously
postA(t, asgA) – is defined for pre(t) =

∑n
i=1(termi, pi) by preA(t, asgA) =∑n

i=1(asgA(termi), pi), where asgA : TOP (V ar(t)) → A is the extended eval-
uation of terms under assignment asgA. The successor marking m′ is defined
in the case of t being enabled by m′ = m � preA(t, asgA) ⊕ postA(t, asgA)
and gives raise to a firing step m[t, asgA〉m′.

Example 1 (The Dining Philosophers as AHL Net).
As example we show the AHL net for The Dining Philosophers in Fig. 1 (see [19,
18] for the corresponding place/transition net). We identify the five philosophers
as well as their chopsticks by numbers. Fig. 1 (a) shows the initial situation where
all philosophers are thinking and all chopsticks are lying on the table. Fig. 1 (b)
shows the AHL net with the corresponding initial marking. For this marking,
the transition take is enabled as a thinking philosopher and his left and right
hand side chopsticks are available. The firing of transition take with the variable
binding p = 2, for example, removes token 2 from place thinking and adds it
to place eating, whereas tokens 2 and 3 are removed from place table, as the
chopstick computing operation (p mod 5) +1 is evaluated to 3.

Fig. 1. The Dining Philosophers (a) modeled as AHL Net (b)

As datatype specification we take a basic specification for all AHL nets
SPECBASIS consisting of the union of specifications NAT for natural num-
bers, BOOL for boolean operations, and STRING for strings. The tokens on

68 Claudia Ermel, Gabriele Taentzer, and Roswitha Bardohl

all places are elements of a corresponding SPECBASIS-algebra, i.e. natural num-
bers in our example. The arcs are inscribed each by one variable or term from
TOP (X) denoting computation operations to be executed on token values.

3 Parallel Attributed Graph Transformation

3.1 Attributed Graph Transformation

In the following, we present attributed graph structures as defined in [9]. For
graph transformations in the category of attributed graph structures and ho-
momorphisms with a distinguished class M of morphisms, the Church-Rosser,
Parallelism and Concurrency Theorem have been shown in [9].

Definition 3 (Attributed Graph Structure Signatures). A graph struc-
ture signature GSIG = (SG, OPG) is an algebraic signature with unary op-
erations op : s → s′ in OPG only. An attributed graph structure signature
ASSIG = (GSIG,DSIG) consists of a graph structure signature GSIG and
a data signature DSIG = (SD, OPD) with attribute value sorts S′

D ⊆ SD such
that S′

D = SD ∩ SG and OPD ∩OPG = ∅.
ASSIG is called well-structured if for each op : s→ s′ in OPG we have s /∈ SD.

ASSIG-algebras and ASSIG-homomorphisms build up a category [9] which
is denoted by ASSIG-Alg. In the following, we call ASSIG-algebras attributed
graphs and ASSIG-homomorphisms attributed graph morphisms.

As an example for an attributed graph structure signature we define the sig-
nature ASSIGAHL for AHL nets. AHL nets are considered as ASSIGAHL-algebras.

Definition 4 (Attributed Graph Structure Signature for AHL Nets).

Fig. 2. Abstract Syntax Graph visualizing the
ASSIG for AHL Nets

The attributed graph structure sig-
nature for AHL nets (shown visu-
ally in Fig. 2) is given by ASSIGAHL

= (GSIGAHL, DSIGAHL). In
Fig. 2, the sorts of GSIGAHL are
represented as nodes. The oper-
ations are the arcs between the
sort nodes (the op-links between
graph sorts) and from sort nodes to
data nodes, (the attr-links between
graph sorts and attribute sorts).
The DSIG part (data signature) consists of the attribute value sorts of the basic
specification, i.e. String,Nat and Bool and their usual operations.

The attribute values are used for the arc inscriptions, tokens and transition
firing conditions.

Next, we define the double-pushout approach to graph transformation on the
basis of category ASSIG-Alg.

Simulating Algebraic High-Level Nets 69

Proposition 1 (Pushouts of ASSIG-Homomorphisms). Let M be a dis-
tinguished class of all homomorphisms f which is defined by f ∈M if fGSIG is
injective and fDSIG = idDSIG for f in ASSIG-Alg. Given f : A → B ∈ M
and a : A → C then there exists their pushout in ASSIG-Alg.

Proof: See [9].
Category ASSIG-Alg and class M are fixed throughout this section.

Definition 5 (Typed Attributed Graph Transformation System). A
typed attributed graph transformation system GTS = (S, P) based on (ASSIG-
Alg, M) consists of an ASSIG-algebra S, called start graph and a set P of
rules, where

1. a rule p = (L l← I
r→ R) of ASSIG-algebras L, I and R attributed over the

term algebra TDSIG(X) with variable set X of variables (Xs)s∈SDSIG , called
left-hand side L, interface I and right-hand side R, and homomorphisms
l, r ∈ M , i.e. l and r are injective and identities on the data type TDSIG(X),

2. a direct transformation G
p,m
=⇒ H via a rule

p and a homomorphism m : L → G, called
match, is given by the diagram to the right,
called double-pushout diagram, where (1) and
(2) are pushouts in ASSIG-Alg (the triple
(m, i,m∗) is called rule embedding),

L

(1)m

		

I

(2)

l�� r ��

i

		

R

m∗

		
G Dg

��
h

�� H

3. a typed attributed graph transformation, short transformation, is a sequence
G0 ⇒ G1 ⇒ ...⇒ Gn of direct transformations, written G0

∗⇒ Gn,
4. the language L(GTS) is defined by L(GTS) = {G | S ∗⇒ G}.

Now we add the concept of attribute conditions.

Definition 6 (Attribute Condition). Given a rule p attributed over the term
algebra TDSIG(X), an attribute condition C consists of a set of equations (a =
b) over TDSIG(X). An ASSIG-morphism m : L → G satisfies an attribute
condition C, if mDSIG(a) = mDSIG(b) for all (a = b) ∈ C.

Definition 7 (Conditional Rule and Transformation). Let p = (L l← I
r→

R) be a rule attributed over the term algebra TDSIG(X), and C an attribute
condition over TOP (X). Then, p̂ = (p, C,X) is a conditional rule. The direct

conditional transformation G
p̂,m
=⇒ H is given by the direct transformation G

p,m
=⇒

H if m satisfies C.

A transformation sequence as well as a graph transformation system and its
language based on conditional rules are defined as in Def. 5.

3.2 Parallel Graph Transformation

Parallel graph transformation in the double-pushout approach has been intro-
duced in [20] on the basis of labeled graphs. Here, we extend the concepts to

70 Claudia Ermel, Gabriele Taentzer, and Roswitha Bardohl

attributed graphs and rules with attribute conditions. The main idea of parallel
graph transformation is to apply a number of rules in one parallel step. Their
matches are allowed to overlap and can even be conflicting in the general case.
Common subactions are described by subrules. Therefore, the notion of subrule
embedding is basic to the whole approach.

Definition 8 (Subrule Embedding).

Given a conditional rule p̂ = ((L l← I
r→ R), A, Y),

a conditional rule ŝ = ((Ls
ls← I

rs→ Rs), As, X) is
called subrule of p̂ if X ⊆ Y and there are injective
morphisms e : Ls → L, f : Is → I and g : Rs → R
in M such that e ◦ ls = l ◦ f and g ◦ rs = r ◦ f , i.e.
the diagram to the right commutes.

Ls

=e

		

Is

=

ls�� rs ��

f

		

Rs

g

		
L I

l
��

r
�� R

The triple t = (e, f, g) from ŝ to p̂ (short t : ŝ→ p̂) is called subrule embed-
ding. In this context, p̂ is called extending rule. Subrule embedding t is called
quasi-identical, if e, f , and g are isomorphisms. In this case, ŝ is called isomor-
phic to p̂. Two subrule embeddings t1 : ŝ1 → p̂1 and t2 : ŝ2 → p̂2 are called
isomorphic, if there are quasi-identical subrule embeddings from ŝ1 to ŝ2 and
from p̂1 to p̂2 such that they commute with t1 and t2.

All conditional rules and their subrule embeddings build up a category which
we call RuleASSIG−Alg. Three rule functors are defined to extract the LHS
embeddings, the embeddings of interfaces and the RHS embeddings.

Definition 9 (Rule Functors). The forgetful functors VL, VI , VR :
RuleASSIG−Alg → ASSIG−Alg, called rule functors, are defined in the obvi-

ous way, e.g. VL(p̂) = VL((L l← I
r→ R), C, Y) = L.

To apply a set of rules in parallel in a synchronized way, we have to decide
how and how often the rules can be applied to a host graph G. One possibility
is to allow a rule to be applied at all different matches it has in G. This would
result in a massively parallel application of rules which is not always wanted.
To restrict the degree of parallelism, two control features are introduced: the
interaction scheme and the covering construction. The interaction scheme is
a set of subrule embeddings and restricts the synchronization possibilities of
rule applications. The covering construction restricts the matching possibilities
for the rules of the interaction scheme. One special covering construction, called
local, allows to match a subrule s exactly once to a part m(s) of G, and to match
all rules extending s as often as possible to the surroundings of m(s). In this
way, a kernel action can be described in a variable context. Another important
covering construction, called fully synchronized forbids conflicting rule matches,
i.e. two rule matches of rules extending the same subrule s have to overlap
completely at a match of their common subrule.

Formally, a covering is described by an instance interaction scheme and a
set of matches. The instance interaction scheme contains the concrete number
of instances of each rule in the scheme, depending on how many matches into

Simulating Algebraic High-Level Nets 71

G have been found for each rule of the interaction scheme. Thus, an interaction
scheme can be seen as type information for instance interaction schemes.

Definition 10 (Interaction Scheme). An interaction scheme IS consists of
a set of subrule embeddings such that the following conditions hold:

1. for each two subrule embeddings t1 : ŝ1 → p̂1 and t2 : ŝ2 → p̂2 we have
ŝ1 �= ŝ2 or p̂1 �= p̂2,

2. for each two subrule embeddings t1 : ŝ → p̂1 and t2 : ŝ → p̂2 in IS with
ŝ = (ps, Cs, X), p̂1 = (p1, C1, Y1) and p̂2 = (p2, C2, Y2) we have Y1∩Y2 = X.

IS is called local interaction scheme, if there is one subrule ŝ being the source
of at least one subrule embedding to each extending rule.

Definition 11 (Instance Interaction Scheme). Given an interaction scheme
IS, an interaction scheme IIS is an instance interaction scheme of IS, if there
is a mapping ins : IIS → IS such that ∀t ∈ IIS: if there is an isomorphic
subrule embedding t

∼−→ u then ins(t) = u.

Definition 12 (Covering Construction). Let IS be an interaction scheme
and G an ASSIG-algebra. A partial covering COV = (IIS,MA) consists of an
instance interaction scheme IIS of IS and a set MA of matches from all rules
of all subrule embeddings in IIS to G such that they commute with the subrule
embeddings, i.e. for any two subrule embeddings t1 : ŝ → p̂1 and t2 : ŝ → p̂2

in IIS there are two matches ms : Ls → G and mp : Lp → G in MA with
mp ◦ e = ms. Let t1 : ŝ → p̂1 and t2 : ŝ → p̂2 be any two subrule embeddings in
IIS and mp1 : Lp1 → G and mp2 : Lp2 → G corresponding matches in MA.

1. COV is called local, if IIS is local, and if p̂1 is isomorphic to p̂2, then mp1

has to be non-isomorphic to mp2 .
2. COV is called fully synchronized, if there are two subrule embeddings u1 :

ŝ′ → p̂1 and u2 : ŝ′ → p̂2 such that mp1(Lp1) ∩mp2(Lp2) = ms′(Ls′).

Since category ASSIG-Alg has initial objects being empty graphs attributed
over TDSIG(X), and pushouts, it is finitely cocomplete [17], i.e. has all finite
colimits. This is the basis to build the amalgamated rule of any partial covering
which glues all parallel rules according to their subrule embeddings. Applying
the amalgamated rule afterwards according to Def. 5 completes a parallel graph
transformation step.

Definition 13 (Amalgamated Rule and Transformation). Let G be a
graph and COV = (IIS,MA) be a covering construction with IIS =

⋃
n∈IN (tn :

ŝn → p̂n) being an instance interaction scheme with ŝn = ((Lsn

lsn← Isn

rsn→
Rsn), Csn , Ysn) and p̂n = ((Ln

ln← In
rn→ Rn), Cn, Yn) and MA = ∪n∈IN mn :

Ln → G. The amalgamated rule p̂COV = ((L l← I
r→ R), C, Y) is constructed by

the following steps:

1. Let L be the colimit object of
⋃

n∈IN VL(tn) : VL(sn) → VL(pn) with an :
VL(pn) → L.

72 Claudia Ermel, Gabriele Taentzer, and Roswitha Bardohl

2. Let I be the colimit object of
⋃

n∈IN VI(tn) : VI(sn) → VI(pn) with bn :
VI(pn) → I.

3. Let R be the colimit object of
⋃

n∈IN VR(tn) : VR(sn) → VR(pn) with cn :
VR(pn) → R.

4. Morphisms l and r are uniquely determined by the universal property of
colimit (I, bn) such that an ◦ ln = l ◦ bn and cn ◦ rn = r ◦ bn.

5. C =
⋃

n∈IN Csn ∪
⋃

n∈N Cn.
6. Y =

⋃
n∈IN Ysn ∪

⋃
n∈N Yn.

Match mCOV : L → G is uniquely determined by the universal property of
colimit (L, an), i.e. m ◦ an = mn. An amalgamated graph transformation is a

direct transformation G
p̂COV ,mCOV=⇒ H applying amalgamated rule p̂ at match m.

A parallel attributed graph transformation system PAGTS = (S, IScheme)
based on (ASSIG-Alg, M) consists of an ASSIG-algebra S, called start graph
and a set IScheme of interaction schemes.

Parallel transformation sequences and the language of a parallel attributed
graph transformation system are defined analogously to Def. 5.

4 Translating AHL Nets
to Sequential Graph Transformation Systems

The translation of AHL nets to attributed graph transformation systems gen-
eralizes that of P/T nets into graph transformation systems as proposed in the
literature [3, 15] and reviews in a slightly modified form the concepts and results
in [1]. An initially marked AHL net N together with its behavior is translated
to an attributed graph transformation system AGT = (G,P) with start graph
G being the translation of the AHL net N with initial marking to an attributed
graph typed over the type graph for AHL nets ASSIGAHL (Def. 4), and the set
of rules P being behavior rules p̂t, one for each transition t ∈ T where L and R
contain the transition’s pre- and postdomain, and the rule application condition
corresponds to the firing condition of t.

Definition 14 (Translation of a marked AHL net to an Attributed
Graph). Given an AHL net N = (SPEC,P, T, pre, post, cond,A) with mark-
ing m ∈ (A × P)⊕. The translation Tr of (N,m) is given by the function
Tr : (AHLnet, (A × P)⊕) → ASSIGAHL-Alg from the set of pairs of AHL nets
plus markings to the set of algebras wrt. the attributed graph structure signature
ASSIGAHL (Def. 4) with

Tr(N,m) = G = (GPlace, GTrans, GToken, GEdgeTk, GArcPT , GArcTP ,
opsPT , optPT , opsTP , optTP , opsTk, optTk,
attrtv, attriPT , attriTP , attrcond), where

GDSIG = TOP (X) � A (disjoint union of the term algebra with variables over
ASSIGAHL and A),

Simulating Algebraic High-Level Nets 73

GPlace = P (the place nodes), GTrans = T (the transition nodes),
GToken = {tk|tk = (a, p, i) ∈ ∼

m}. The multiset m ∈ (A × P)⊕ is given by the
set

∼
m = {(a, p, i) ∈ A×P × IN |0 < i ≤ m(a, p)}, where multiple occurrences

of the same element in m are numbered by i in
∼
m,

GEdgeTk = {etk|tk ∈ GToken},
GArcPT = {arcPT |arcPT = (term, p, i) ∈ PreSet},
GArcTP = {arcTP |arcTP = (term, p, i) ∈ PostSet}, where the multisets of

terms in arc inscriptions are given by the sets PreSet = ∪t∈TPreSett and
PostSet = ∪t∈TPostSett where PreSett = {(term, p, i)|pre(t)(term, p) ≥
i > 0} corresponds to pre(t) and, analogously, PostSett to post(t).

opsPT : GArcPT → GPlace with opsPT (term, p, i) = p ∀(term, p, i) ∈ GArcPT ,
optPT : GArcPT → GTrans with optPT (term, p, i) = t, if (term, p, i) ∈ PreSett,
∀(term, p, i) ∈ GArcPT ,

opsTP : GArcTP → GPlace, optTP : GArcTP → GTrans: analogously,
opsTk : GEdgeTk → GToken with opsTk(e(a,p,i)) = (a, p, i) ∀e(a,p,i) ∈ GEdgeTk,
optTk : GEdgeTk → GPlace with optTk(e(a,p,i)) = p ∀e(a,p,i) ∈ GEdgeTk,

attrtv : GToken → IN with attrtv((a, p, i)) = a ∀(a, p, i) ∈ GTV ,
attriPT : GArcPT → TOP (X) with attriPT ((term, p, i)) = term ∀(term, p, i) ∈

GArcPT , attriTP : GArcTP → TOP (X): analogously,
attrcond : GTrans → Pfin(EQNS(X)) with attrcond(t) = cond(t) ∀t ∈ GTrans

Example 2 (AHL net Dining Philosophers translated to an attributed graph).

Fig. 3. Translation of AHL net Dining
Philosophers with initial marking

Fig. 3 shows the attributed graph re-
sulting from the translation of the ini-
tially marked AHL net presented in
Fig. 1 (b). We visualize Place nodes
as ellipses, Transition nodes as rect-
angles, and Token nodes as coloured
circles containing the token value at-
tributes. Token nodes are connected
to their places by EdgeTk arcs. ArcPT

and ArcTP symbols are drawn as edges
which are attributed by the arc in-
scription terms. In this example we have no firing conditions.

In addition to the statical structure of the AHL net and the net marking, we
now define the translation of a net’s firing behavior into a set of graph rules PTr,
the so-called behavior rules. Each behavior rule encorporates the firing behavior
of one transition: the left-hand side contains its predomain, the right-hand side
its postdomain. The firing condition cond(t) is translated to the attribute con-
dition of the behavior rule for transition t. The firing rules PTr together with
the translated initially marked AHL net Tr(N,m) form an attributed graph
transformation system, the translation of the AHL net N including its behavior.

74 Claudia Ermel, Gabriele Taentzer, and Roswitha Bardohl

Definition 15 (Translation of AHL net firing behavior to graph rules).
Let N = (SPEC,P, T, pre, post, cond) be an AHL net. We translate the firing
behavior of N to a set of behavior rules PTr = {pt = (Lt

lt← It
rt→ Rt)|t ∈ T }

where for each transition t ∈ T the rule components Lt, It and Rt are attributed
graphs over ASSIGAHL (Def. 4), defined as follows:
The interface It contains only nodes of sort Place (the environment of transition
t) and no operations. All sorts and operations in Lt and Rt are empty, except
Place, Token, EdgeTk and the adjacent operations:

– LPlace = IPlace = RPlace = {p|p ∈ pre(t) ∪ post(t)}
– LToken[RToken] = {tk|tk = (term, p, i) ∈ PreSett[PostSett]}
– LEdgeTk = {etk|tk ∈ LToken},

– opL
sTK : LEdgeTk → LToken with opL

sTk(e(term,p,i)) = (term, p, i),
– opL

tTK : LEdgeTk → LPlace with opL
tTk(e(term,p,i)) = p,

– attrL
tv : LToken → TOP (X) with attrtv((term, p, i)) = term

(analogously for REdgeTk, op
R
sTK , opR

tTK and attrR
tv)

The rule morphisms Lt
lt← It and It

rt→ Rt are given by (pPlace, pTrans, pToken,
pArcPT , pArcTP , pEdgeTk) = (idPlace, ∅, ∅, ∅, ∅, ∅). Let C = cond(t) be a set of
attribute conditions over TOP (X) as defined in Def. 6. Then, p̂t = (pt, C,X) is
the conditional rule corresponding to the firing behavior of transition t.

Remarks. Both Lt and Rt contain only the places of the transition’s environ-
ment and tokens connected to these places, where the tokens are attributed by
terms of TOP (X). The difference between Lt and Rt is that Lt corresponds to
pre(t) whereas Rt corresponds to post(t). The Token symbols are not in the in-
terface It as the rule models the deletion of tokens from the predomain (Lt) and
the addition of tokens to the postdomain (Rt).

Combining the translations of a marked AHL net and of its firing behavior,
we obtain a complete translation of a marked AHL net including its behavior to
an attributed graph transformation system:

Definition 16 (Translation of a marked AHL net and its Firing Be-
havior to an Attributed Graph Transformation System). Let N be
an AHL net and m its initial marking. Then the translation TrAGT (N,m) :
(AHLnet,M⊕) → AGT from the set of pairs of AHL nets plus markings to the
set AGT of attributed graph transformation systems over graph structure signa-
ture ASSIGAHL (Def. 4) is defined by TrAGT (N,m) = (STr, PTr) where start
graph STr = Tr(N,m) is the translated AHL net marked by m according to
Def. 14, and the set of conditional behavior rules PTr = {(p̂t, C,X)|t ∈ T } is the
translation of the firing behavior of all transitions t ∈ T as defined in Def. 15.

Example 3 (Attributed graph transformation system for the Dining Philoso-
phers). Let N be our AHL net as shown in Fig.1 (b), and STr = Tr(N,m)

Simulating Algebraic High-Level Nets 75

be its translation to an attributed graph as shown in Fig. 3. Then, the behavior
transformation system for our AHL net is given by TrAGT (N) = (STr, PTr) with
PTr being the set of two behavior rules constructed according to Def. 15. These
behavior rules are shown in Fig. 4. Note that place nodes are preserved by the
rule mapping (equal numbers for an object in L and R means that this object
is contained in the interface I), and token nodes are deleted (predomain tokens)
or generated (postdomain tokens).

Fig. 4. Translated firing behavior of the AHL net Dining Philosophers

In TrAGT (N) the model behavior is simulated by applying the behavior rules
from PTr to the start graph STr and to the sequentially derived graphs which
correspond to different markings of N .

Proposition 2 (Semantical Compatibility of AHL net N and its trans-
lation to an Attributed Graph Transformation System). The seman-
tics of an AHL net N with initial marking minit and the semantics of the
translation TrAGT (N,minit) are compatible, denoted by SemAHL(N,minit) ∼=
SemAGT (TrAGT (N,minit)), where the semantics of an AHL net is given by a
set of firing sequences (firing steps), and the semantics of an attributed graph
transformation system by a set of transformation sequences.

Proof Sketch (For the complete proof see [13]): We show that

1. For each firing step m[t, asg〉m′ and for G = Tr(N,m) there is a transfor-
mation step d : G

pt=⇒ H where pt is the behavior rule corresponding to
transition t, such that the marking m′ is the same as the marking of the
backward translated AHL net Back(H). (The backward translation Back of
H to the marked AHL net Back(H) is defined formally in [13]).

2. Each firing sequence σ ∈ SemAHL(N,minit) corresponds to a transforma-
tion sequence σ′ ∈ SemAGT (TrAGT (N,minit)). This means, for all firing
sequences σi = (mi[ti, asgi〉m′

i) ∧ 1 ≤ i ≤ n such that m′
i−1 = mi, we have

Tr(N,m′
i−1) = Tr(N,mi) in the corresponding transformation sequence

Tr(N,mi)
rti=⇒ Tr(N,m′

i), for 1 ≤ i ≤ n.

Up to now we discussed an approach of simulating AHL net behavior by
graph transformation which is based on compiling the behavior of AHL nets
into graph rules. The disadvantage of this approach is that for Petri nets in
contrast to other visual languages there is no general behavior transformation
system which can be applied to all language elements, but that for each different

76 Claudia Ermel, Gabriele Taentzer, and Roswitha Bardohl

model (i.e. for each AHL net), the compilation or translation to its corresponding
graph transformation system has to be performed according to Def. 16.

In order to have a more general approach for modeling Petri net behavior by
graph transformation, we propose to use parallel graph transformation and thus
avoid the model-specific translation of transitions to behavior rules.

5 AHL Net Simulation by Parallel Graph Transformation

In this section, we define AHL net behavior by parallel graph transformation
(interpreter approach) and compare this approach to the compiler approach
presented in Section 4.

For the construction of the covering construction for behavior rules we need
a graph to define the set of matches MA from all subrules and rules in the in-
teraction scheme (see Def. 12). This graph needs to supply all the information
we need for the behavior rule construction. It contains the predomains of all
transitions in form of virtual tokens, i.e. tokens being the terms in PreSet corre-
sponding to the ArcPT inscriptions, and the information about the postdomains
in form of ArcTP inscriptions. As we use only “virtual” tokens, we call this graph
V virtually marked AHL net graph. The amalgamation construction over V then
yields amalgamated rules containing the transitions and the adjacent arcs. Thus
we apply a restriction functor after the amalgamation and show that the result
is equivalent to the sequential behavior rules. Note that so far we do not consider
firing conditions in the amalgamation, i.e. the correspondence result (Prop. 4)
holds only for AHL nets without firing conditions like the Dining Philosophers.

Definition 17 (Virtually marked AHL net graph). Let N be an AHL net,
and Tr(N,m) the corresponding attributed graph (acc. to Def. 14). The virtu-
ally marked AHL net graph V corresponds to Tr(N,m), but is marked by terms
(term, p, i) ∈ PreSet (which virtually enables all transitions):

V = Tr(N,m) for all sorts except Token, EdgeTk and the adjacent arc operations:

VToken = {tk|tk = (term, p, i) ∈ PreSet}, VEdgeTk = {etk|tk ∈ VToken},
and the operations opsTK , optTK , and attrtv are defined as the corresponding
operations for the behavior rule sides in Def. 15.

Example 4 (Virtually marked AHL net graph for the Dining Philosophers). The
bottom graph in Fig. 6 shows the virtually marked AHL net graph VDIPHI for
our sample AHL net modeling the Dining Philosophers. Note that the marking
of the virtually marked AHL net graph denotes the union of predomains of all
transitions and has nothing to do with a specific marking as e.g. shown in Fig. 3.

Next, we define an interaction scheme for AHL nets according to Def. 10.

Definition 18 (Interaction Scheme for AHL Nets).
The interaction scheme ISAHL consists of two subrules glueTrans and gluePlace,
two extending rules get and put, and four subrule embeddings t1 : glueTrans →
get, t2 : glueTrans → put, t3 : gluePlace → get and t4 : gluePlace → put.

Simulating Algebraic High-Level Nets 77

Fig. 5 shows the interaction scheme ISAHL, i.e. the definitions of the sub-
rules, the extending rules, and the four embeddings. For each rule, the algebra
is the term algebra TOP (Y) where Y is the set of variables depicted at graph ob-
jects in Fig. 5. The interaction scheme ISAHL is local, as e.g. subrule glueTrans

is source of embeddings to both extending rules get and put.

Fig. 5. Interaction Scheme for AHL nets

Example 5 (Partial Covering for the AHL net Dining Philosophers).
Given interaction scheme ISAHL as defined in Def. 18. An instance interaction
scheme IIStake is shown in the upper part of Fig. 6. (Note that the detailed
presentation on the left does not include all gluePlace copies.) Then, COVtake =
(IIStake,MAtake) is a partial covering with MAtake being a set of matches from
ISAHL into VDIPHI as shown at the bottom of Fig. 6. The matches in MAtake

are indicated in Fig.6 by a fat arc inscribed by MAtake and given precisely by
node numbers. All matches from all extending rules of all subrule embeddings
in IIStake commute with the matches of the subrules.

COVtake is local as IIStake is local (the subrule glueT rans is embedded in
all extending rules) and because the matches from the left-hand sides of all three
extending rule instances of get into GAHLDIP HI are non-isomorphic. COVtake is
additionally fully synchronized, because for each pair of extending rules we find
a subrule s.t. the matches of their left-hand sides into GAHLDIP HI overlap only
in the match of this common subrule.

Note that, if a graph G and an interaction scheme are given and the covering
is characterized (as e.g. for AHL nets the covering must be local, and fully
synchronized), then the set of all partial coverings, i.e. the instance interaction
schemes and the set of matches MA from all rules and subrules from the instance
interaction scheme into G can be computed automatically.

For the covering construction for the AHL net Dining Philosophers this
means that we can find two basic partial coverings – one for transition take in
VDIPHI (as shown in Fig. 6), and the other one for transition put. In the second
case, a different instance interaction scheme is computed with three instances of
rule put and one instance of rule get. From one instance of the subrule gluePlace

there are embeddings into two of the put instances, and from one instance of the
subrule glueTrans there are embeddings into all get and put instances.

78 Claudia Ermel, Gabriele Taentzer, and Roswitha Bardohl

A desired property of our AHL net covering construction is that it can be
computed deterministically in the sense that the rules resulting from the amal-
gamation are unique. This property will be shown in Proposition 3.

Example 6 (Amalgamated Rule for the AHL net Dining Philosophers).
Let COVtake = (IIStake,MAtake) be the partial covering construction as defined
in Def. 5. The LHS (RHS) of the amalgamated rule ptake for this partial covering
is constructed according to Def. 13 by gluing the instances of the LHS (RHS) of
get and put along the objects of the LHS (RHS) of their common subrules.

In the center of Fig. 6, the construction of the amalgamated rule pamalgtake

from COVtake is shown. The embeddings of rules and subrules into the amalga-
mated rule are indicated by dashed arrows and given precisely by numbers.

The result of the amalgamation, pamalgtake
, is a rule corresponding to the

behavior rule for transition take with two slight differences. The variables x1, .., x3

and y1 used in the amalgamated rule have to be replaced by the right terms from
TOP (X), and the transition and arcs must not appear in the behavior rule. The
rewriting step for the variables is given by the matches in MAtake, where x1 is

Fig. 6. Covering Construction COVtake and Amalgamated Rule pamalgtake

Simulating Algebraic High-Level Nets 79

matched to (p mod 5) + 1, and x2, x3 and y1 are matched to p. The transition
and arcs disappear by applying a functor restricting an ASSIG algebra such that
the sorts Trans,ArcPT and ArcTP and the adjacent arc operations are empty.

The general construction of a partial covering for a transition t ∈ T is the
basis for the correspondence proof in Proposition 4.

Construction 1 (Partial Coverings for Amalgamated Rules modeling
the Firing Behavior of AHL Net Transitions).
Let V be the virtually marked AHL net graph for net N defined in Def. 17. Let
COVt = (IISt,MAt) be the partial covering for a transition t ∈ VTrans with
IISt being an instance interaction scheme of ISAHL as defined in Def. 18 and
MAt the set of matches from IISt into V . IISt and MAt are defined as follows:

– Extending rule instances: For each edge arcPT ∈ VArcPT there is one in-
stance getarcPT of the extending rule get. For each edge arcTP ∈ VArcTP

there is one instance putarcTP of the extending rule put.
– Subrule instances: There is one instance of subrule glueTrans for transition

t which is embedded into all get and put instances as defined in Def. 18.
For each place p ∈ NEnvt there is one gluePlace instance, called gluePlacep,
which is embedded into all those extending rule instances getarcPT with
opsPT (arcPT) = p similar as in Def. 18. Analogously, gluePlacep is embedded
into all those extending rule instances putarcTP with optTP (arcTP) = p.

– Matches in MAt: The transitions of all rules and subrules in IISt are
mapped to t ∈ VTrans. The place nodes from get instances are mapped
to place nodes in pre(t) such that the arc inscription and the token value are
mapped to the same term and the mappings overlap only in the matches of
their subrules in IISt. Place nodes from put instances are mapped to place
nodes in post(t) such that the mappings overlap only in the matches of their
subrules.

Proposition 3 (Existence and Uniqueness of Partial Covering COVt).
Let V be the virtually marked AHL net graph for net N defined in Def. 17. For
each transition t ∈ VTrans a local, fully synchronized partial covering COVt =
(IISt,MAt) constructed as in Construction 1, exists and is unique.

Proof Sketch (For the complete proof see [13]): We show that

1. there is at least one partial covering COVt which is local and fully synchro-
nized (due to the instance of glueTrans in IISt).

2. COVt is unique by assuming that there are two different partial coverings
COV 1t and COV 2t and by showing that they are equal.

On the basis of the unique construction of the amalgamated rule pamalg :
Lamalgt → Ramalgt using the virtually marked AHL net V as host graph (step
(1) in Fig. 7), we get the match mcov : Lamalgt → V by gluing the matches in
MAt along the matches of the subrules (step (2) in Fig. 7). Then we apply the
amalgamated rule pamalg at match mcov to V (step (3) in Fig. 7). The resulting
span V ← VI → V ′ can be interpreted as rule again. This rule still contains all

80 Claudia Ermel, Gabriele Taentzer, and Roswitha Bardohl

AHL net places, arcs and the transitions due to V being constructed once for
the complete AHL net N . So we now restrict V ← VI → V ′ to the elements of
the environment of transition t. This transformation step is depicted as step (4)
in Fig. 7. The result is the span V |codom(mcov) ← VI |codom(i) → V ′|codom(m∗

cov)

which looks similar to our sequential behavior rule pt with the difference that it
still contains the transition and the adjacent arcs. Thus, in a last step (step (5)
in Fig. 7) we apply a functor which forgets the transition and its adjacent arcs.

Fig. 7. Correspondence of Amalgamated Rules and Behavior Rules

Proposition 4 now formally states that the rule resulting from this functor
application is isomorphic to the sequential behavior rule pt as defined in Def. 15.

Proposition 4 (Correspondence of Amalgamated Rules and Behavior
Rules for AHL Net Simulation).

Let N be an AHL net and m ∈ M⊕ its initial marking. Let GTSN =
TrAGT (N,m) = (STr, PTr) be the translation of the AHL net marked by m
according to Def. 16, with the set of behavior rules PTr = {p̂t : Lt → Rt|t ∈ T }.
Let V be the virtually marked AHL net graph for N acc. to Def. 17.

Then for each transition t ∈ T the following holds: Given COVt = (IISt,
MAt), the partial covering for transition t constructed as in Constr. 1, and
pamalgt : Lamalgt → Ramalgt , the amalgamated rule for COVt. Let mcov be
the match from Lamalgt to V , with mcov being the gluing of MAt, and let
V

pamalgt ,mcov−→ V ′ be the transformation step. Performing an epi-mono-factor-
ization of the corresponding rule embedding (mcov, i,m

∗
cov) leads to a new rule

pcodom = (codom(mcov) ← codom(i) → codom(m∗
cov)). Let F be a functor that

forgets transition and arcs, i.e. the sorts Trans,ArcPT,ArcTP and all adjacent
operations are empty. Then, F (pcodom)∼=pt.

Proof Sketch (For the complete proof see [13]): We construct pamalgt and
mcov : Lamalgt → V and show that

1. the transformation step V
pamalgt ,mcov−→ V ′ restricted to the codomain of rule

embedding (mcov, i,m
∗
cov) corresponds to pt except that it still contains the

transition and adjacent arcs.
2. F ((pcodom) is isomorphic to pt.

Simulating Algebraic High-Level Nets 81

6 Conclusion

In this paper we have shown how to define the behavior of AHL nets by parallel,
typed and attributed graph transformation systems. This yields the advantage
of an interpreter approach for simulating AHL nets. Using parallel graph trans-
formation, possibly infinite rule sets can be described by a finite set of rules (rule
schemes) modeling the elementary actions like the firing of a transition in a Petri
net. The description of a rule scheme and hence of an infinite rule set is given in a
purely categorical way. For AHL nets we defined an interaction scheme and con-
structed partial coverings. We proved the semantical compatibility between the
resulting amalgamated productions and the behavior rules from the sequential
graph transformation systems. The categorical definition of sequential AHL net
behavior using parallel graph transformation can be extended to define parallel
firing behavior of AHL nets. Here, the interaction scheme ISAHL needs to be
extended by an empty subrule to allow the construction of amalgamated rules
containing more than one transition. The instance interaction schemes are still
fully synchronized, but do not have to be local anymore. The amalgamation for
parallel firing then yields behavior rules for combinations of different transitions
and model their parallel firing.

Some restrictions had to be made when defining the behavior of AHL nets by
parallel graph transformation. As we provide a general rule scheme (which is not
specific to a certain net), we decided to use a fixed data signature, ASSIGAHL for
all AHL nets, to make use of the attribute evaluation in attributed graph trans-
formation. Thus we use directly ASSIGAHL terms and avoid to define higher-order
functions operating on terms. In our running example all tokens are attributed by
natural numbers. Extending the interaction scheme by variants of rules get and
put allowing tokens with further kinds of attributes would increase the flexibility
of the AHL net simulator. Another restriction concerns the firing conditions for
transitions. In this paper, the construction of amalgamated rules and the corre-
spondence result (Prop. 4) are defined for AHL nets without firing conditions,
only. As firing conditions are translated to rule conditions in sequential graph
transformation systems, this should be reflected also in the amalgamated rule
construction, an extension which is planned as future work.

Tool support for AHL net simulation has been realized using GenGED [2],
a tool for generating visual modeling environments. In GenGED, an alphabet
editor supports the definition of the language vocabulary (alphabet) as graph
structure signature and the layout of alphabet symbols by graphical constraints.
A visual grammar editor allows to define different kinds of grammars based on
the alphabet, e.g. for syntax-directed editing, parsing and/or simulation. Alpha-
bet and grammars configure a specific VL environment, including an editor for
the specified language (e.g. an AHL net editor). The behavior rules are used for
simulation, where the underlying graph transformations are performed by Agg
[21]. Moreover, they are the basis for the definition of an application-specific an-
imation view [12]: the original alphabet for AHL nets is merged with a so-called
view alphabet containing e.g. graphical symbols and layout definitions for the
Dining-Philosophers example, i.e. icons for philosophers, a table and chopsticks.

82 Claudia Ermel, Gabriele Taentzer, and Roswitha Bardohl

In addition, a so-called view transformation grammar is used to extend the AHL
net and its behavior rules by corresponding view-specific icons. Applying the
view transformation grammar to the AHL net in Fig. 1 (b) yields the animation
view shown in Fig. 1 (a), and the application to the behavior rules yields the cor-
responding animation rules. These rules can be enhanced by specific animation
operations defining e.g. the smooth movement of the philosophers’ chopsticks.

In GenGED, the generated environment supports simulation/animation by
applying the corresponding simulation/animation rules. Animation scenarios can
be exported to the SVG format [22] and viewed by an external SVG viewer which
shows continuous state changes according to the defined animation operations.
Due to the generic and modular definition of syntax, behavior and animation for
behavior models, the GenGED approach reduces considerably the amount of
work to realize a domain-specific animation of a system’s behavior. Yet, it would
be even more desirable to have an interconnection between GenGED and other
tools supporting the definition of visual models, e.g. the world of Petri net or
UML tools. The motivations for such a tool interconnection are obvious: Petri
net tools which are focused on formal analysis could profit from the animation
view support offered by GenGED, whereas GenGED might export a Petri
net to a Petri net tool for formal analysis. In the DFG researcher group “Petri
Net Technology” [10], guided by Ehrig, Reisig and Weber, the Petri net tool
infrastructure Petri Net Kernel (PNK) has been developed. As a first step towards
tool interchange, an XML-based file exchange between GenGED and the PNK
has been realized for place/transition nets.

Last but not least, work is in progress to implement parallel graph transfor-
mation in Agg. This extension can serve in future to simulate behavior models
such as AHL nets using the interpreter approach as described in this paper.

References

1. R. Bardohl, C. Ermel, and J. Padberg. Formal Relationship between Petri Nets and
Graph Grammars as Basis for Animation Views in GenGED. In Proc. IDPT 2002:
Sixth World Conference on Integrated Design and Process Technology. Society for
Design and Process Science (SDPS), 2002.

2. R. Bardohl, C. Ermel, and I. Weinhold. GenGED - A Visual Definition Tool
for Visual Modeling Environments. In J. Pfaltz and M. Nagl, eds. Proc. Appli-
cation of Graph Transformations with Industrial Relevance (AGTIVE’03), Char-
lottesville/Virgina, USA, September 2003.

3. A. Corradini and U. Montanari. Specification of Concurrent Systems: From Petri
Nets to Graph Grammars. In G. Hommel, ed. Proc. Quality of Communication-
Based Systems, Berlin, Germany. Kluwer Academic Publishers, 1995.

4. J. de Lara, C. Ermel, G. Taentzer, and K. Ehrig. Parallel Graph Transformation
for Model Simulation applied to Timed Transition Petri Nets. In Proc. Graph
Transformation and Visual Modelling Techniques (GTVMT) 2004, 2004.

5. P. Degano and U. Montanari. A model of distributed systems based on graph
rewriting. Journal of the ACM, 34(2):411–449, 1987.

6. H. Ehrig and H.-J. Kreowski. Parallel graph grammars. In A. Lindenmayer and
G. Rozenberg, eds. Automata, Languages, Development, pp. 425–447. Amsterdam:
North Holland, 1976.

Simulating Algebraic High-Level Nets 83

7. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics, Vol. 6 of EATCS Monographs on Theoretical Computer Science.
Springer, Berlin, 1985.

8. H. Ehrig, B. Mahr, F. Cornelius, M. Grosse-Rhode, and P. Zeitz. Mathematisch
Strukturelle Grundlagen der Informatik. Springer Verlag, 1998.

9. H. Ehrig, U. Prange, and G. Taentzer. Fundamental Theory for Typed Attributed
Graph Transformation. In F. Parisi-Presicce, P. Bottoni, and G. Engels, eds. Proc.
2nd Int. Conf. on Graph Transformation, Springer LNCS 3256, pp. 161–177, 2004.

10. H. Ehrig, W. Reisig, G. Rozenberg, H. Weber, eds. Advances in Petri Nets: Petri
Net Technology for Communication Based Systems. Springer LNCS 2472, 2003.

11. H. Ehrig and G. Taentzer. From parallel graph grammars to parallel high- level
replacement systems. In Lindenmayer Systems, pp. 283–303. Springer, 1992.

12. C. Ermel and R. Bardohl. Scenario Animation for Visual Behavior Models: A
Generic Approach. Software and System Modeling: Special Section on Graph Trans-
formations and Visual Modeling Techniques, 5, 2004.

13. C. Ermel, G. Taentzer, and R. Bardohl. Simulating Algebraic High-Level Nets
by Parallel Attributed Graph Transformation. Long Version. Technical Report
2004–21, TU Berlin, 2004. ISSN 1436-9915.

14. U. Hummert. Algebraische High-Level Netze. PhD thesis, TU Berlin, 1989.
15. H.-J. Kreowski. A comparison between Petri-nets and graph grammars. In Lecture

Notes in Computer Science 100, pp. 1–19. Springer Verlag, 1981.
16. J. Lilius. On the Structure of High-Level Nets. PhD thesis, Helsinki University of

Technology, 1995. Digital Systems Laoratory, Research Report 33.
17. S. MacLane. Categories for the Working Mathematician, Vol. 5 of Graduate Texts

in Mathematics. Springer, New York, 1971.
18. J. Padberg, H. Ehrig, and L. Ribeiro. Algebraic high-level net transformation

systems. Mathematical Structures in Computer Science, 5:217–256, 1995.
19. W. Reisig. Petri Nets, Vol. 4 of EATCS Monographs on Theoretical Computer

Science. Springer Verlag, 1985.
20. G. Taentzer. Parallel and Distributed Graph Transformation: Formal Description

and Application to Communication-Based Systems. PhD thesis, TU Berlin, 1996.
Shaker Verlag.

21. G. Taentzer. AGG: A Graph Transformation Environment for System Modeling
and Validation. In T. Margaria, ed. Proc. Tool Exhibition at ‘Formal Methods
2003’, Pisa, Italy, September 2003.

22. WWW Consortium (W3C). Scalable Vector Graphics (SVG) 1.0 Specification.
http://www.w3.org/TR/svg, 2000.

Graph Processes with Fusions:
Concurrency by Colimits, Again�

Fabio Gadducci and Ugo Montanari

Dipartimento di Informatica, Università di Pisa,
Pisa, Italy

{gadducci,ugo}@di.unipi.it

Abstract. Classical concurrency in the dpo approach to graph rewrit-
ing, as defined by the shift equivalence construction [7], can also be rep-
resented by a graph process, a structure where concurrency and causal
dependency are synthetically represented by a partial ordering of re-
writes [1]. Interestingly, all shift equivalent derivations, considered as
diagrams in the category of graphs, have the same colimit, which more-
over exactly corresponds to the graph process. This construction, due
to Corradini, Montanari and Rossi, was originally defined for rules with
injective right-hand morphisms [6]. This condition turns out to be restric-
tive when graphs are used for modeling process calculi like ambients [4]
or fusion [21], where the coalescing of read-only items is essential [11,
13]. Recently, a paper by Habel, Müller and Plump [16] considered again
shift equivalence, extending classical results to non-injective rules. In
this paper we look at the graph-process-via-colimit approach: We pro-
pose and motivate its extension to non-injective rules in terms of existing
computational models, and compare it with the aforementioned results.

Keywords: dpo rewriting, concurrent semantics, process calculi.

1 Introduction

Historically, graph rewriting lies its roots on the late Sixties, as the conceptual
extension of the theory of formal languages: The extension was motivated by
a wide range of interests, from pattern recognition to data type specification.
Nowadays, the emphasis has shifted from the generative aspects of the formalism,
moving toward what could be called the “state transformation” view: A graph is
considered as a data structure, on which a set of rewriting rules may implement
local changes; the transformation mechanism itself is considered as expressing a
basic computational paradigm, where graphs describe the states of an abstract
machine and rewrites express its possible evolutions. An interest confirmed by
the large diffusion of visual specification languages, such as the standard uml,
and the use of graphical tools for their manipulation.

To some extent, this is also the intuition behind the introduction of process
algebras, such as Milner’s ccs [19]: They represent specification languages for
� Research partially supported by the EU within the FET – Global Computing Ini-

tiative, project agile IST-2001-32747 (Architectures for Mobility).

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 84–100, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Graph Processes with Fusions: Concurrency by Colimits, Again 85

concurrent systems, considered as structured entities interacting via some syn-
chronization mechanism. A (possibly distributed) system is just a term over a
signature, under the hypothesis that each operator represents a basic feature of
the system. The rewriting mechanism (accounting for the interaction between
distinct components of a system) is usually described operationally, according to
the sos-style [22], where the rewriting steps are inductively defined by inference
rules, driven by the structure of terms. Novel extensions of the process alge-
bra paradigm involve calculi with higher-order features such as name mobility
(hence, nominal calculi). Here systems are terms, carrying a set of associated
names , and usually provided with a structural congruence, expressing basic ob-
servational properties; the reduction mechanism may also change the topology
of a system, which formally amounts to changing the associated set of names.

Recent years have seen many proposals concerning the use of graph rewriting
techniques for simulating reduction in process algebras, in particular for their
mobile extensions. Typically, the use of graphs allows for getting rid of the prob-
lems concerning the implementation of reduction over the structural congruence,
such as e.g. the α-conversion of (bound) names, since equivalent processes turn
out to be mapped into isomorphic graphs. Most of these proposals follow the
same pattern: At first, a suitable graphical syntax is introduced, and its opera-
tors used for implementing processes. After that, usually ad-hoc graph rewriting
techniques allows for simulating the reduction semantics. Most often, the re-
sulting graphical structures are eminently hierarchical (that is, roughly, each
node/edge is a structured entity, and possibly a graph). From a practical point
of view, this is unfortunate, since the restriction to standard graphs would allows
for the reuse of already existing theoretical techniques and practical tools.

Building on our work on the syntactical presentation of rule-based graphi-
cal formalisms [3, 5, 12] (using techniques adopted in the algebraic specification
community for modelling flow graphs [8]), in recent years we proposed graphical
encodings of (possibly recursive) processes of π-calculus [20] and mobile ambi-
ents [4] into unstructured graphs, proving suitable soundness and completeness
results with respect to the original reduction semantics (see [11] and [13], respec-
tively, also for a comparison with other proposals for the graphical encoding of
calculi with name mobility). The use of non hierarchical graphs allows for the
reuse of standard graph rewriting theory and tools for simulating the reduction
semantics of these calculi, such as the double-pushout (dpo) approach. (A more
specific discussion on the advantages offered by our graphical encodings appears
in the last paragraph of Section 5.3 of the present paper.)

Having asserted the benefits concerning the encoding of nominal calculi into
unstructured graphs and the use of the dpo approach, we face some unresolved
problems with respect to the concurrent semantics. The correspondence between
graph transformation and process reduction highlights the relevance of concur-
rency in this setting, since allowing for the simultaneous execution of independent
rewrites implicitly defines a concurrent semantics for process reduction.

Unfortunately, the graphical encodings we proposed so far (including that
for the simple calculus in Section 5 of the present paper) lies outside the canon

86 Fabio Gadducci and Ugo Montanari

of dpo concurrent semantics: More precisely, the matching morphisms (that is,
the morphisms identifying the occurrence of the left-hand side of a rule into the
graph to be rewritten) have to be restricted, and they are often forced to be
injective; more importantly, the right-hand side of the rules resulting from the
encoding are usually specified by non-injective morphisms (operationally, they
force some node and edge coalescing in the graph to be rewritten).

We recall that concurrency in the dpo approach was originally defined by
the shift equivalence construction [7], equating those derivations that could be
combinatorially related via the repeated application of an interchange operator,
i.e., by swapping two consecutive rewriting steps that were sequentially indepen-
dent (roughly, such that they acted on disjoint parts of the graph). As originally
proposed in [6], graph processes allowed for representing concurrency and causal
dependency in a synthetic manner by a partial ordering on the rewrites oc-
curring in a derivation. Furthermore, two derivations are shift equivalent iff the
corresponding partial orders are isomorphic, thus stating the substantial unique-
ness of the notion of concurrency. Besides its computationally neat presentation,
graph processes allowed for lifting the notion of non-sequential process from the
Petri nets mold, via the complete concurrency property: Each total order on
rule instances, compatible with the partial order of the graph process, uniquely
characterizes a derivation which is shift equivalent to the original one [1].

As well as shift equivalence, also the graph process semantics was originally
defined for rules with injective right-hand morphisms, and thus turns out to
be restrictive when modeling nominal calculi, where fusion of read-only items
is essential [11, 13]. Building on recent work [16] that extends some of the re-
sults concerning sequential independence valid for the classical definition, the
main technical achievement of this paper is the extension of the graph process
approach to this new setting, its motivation in terms of existing computational
models, and its comparison with the aforementioned results.

The paper has the following structure. In Section 2 we recall some basic tools
of the dpo approach to (hyper-)graph rewriting, as presented in [7, 9], and we
discuss some results on (strong) sequential independence for injective deriva-
tions, adapted from [16]. In Section 3 we provide an (obvious) extension of the
graph process semantics, as originally proposed in [6], in order to deal with rules
sporting non-injective right-hand sides. More importantly, in Section 4 we prove
that the correspondence between shift and (graph) process equivalence still holds
in the new setting. Finally, Section 5 presents the main example, and motiva-
tions, for our work. In Section 5.1 we introduce the simple, yet expressive solo
calculus [18], first showing how processes are modeled by graphs (Section 5.2),
and later providing the rules for simulating also the reduction semantics of the
calculus (Section 5.3), arguing on the benefits of the graphical encoding. Finally,
in Section 5.4 we discuss the concurrent features of the encoding we propose,
proving that it enhances the analysis of the causal dependencies among the pos-
sible reductions performed by a process of the solo calculus.

Graph Processes with Fusions: Concurrency by Colimits, Again 87

2 A Recollection on Graphs and Sequential Independence

We open the section recalling the definition of (labeled hyper-)graphs, as well
as some basic tools of the double-pushout (dpo) approach to (hyper-)graph
rewriting, as presented in [7, 9]. In particular, we assume in the following a
chosen signature (Σ,S), for Σ a set of operators, and S a set of sorts, such that
the arity of an operator in Σ is a pair (ωs, ωt), for ωs, ωt strings in S∗.

Definition 1 (graphs). A graph d (over (Σ,S)) is a five tuple d=〈N,E, l, s, t〉,
where N , E are the sets of nodes and edges; l is the pair of labeling functions
le : E → Σ, ln : N → S; s, t : E → N∗ are the source and target functions; and
such that for each edge e ∈ dom(l), the arity of le(e) is (l∗n(s(e)), l∗n(t(e))), i.e.,
each edge preserves the arity of its label.

With an abuse of notation, in the definition above we let l∗n denote the
extension of the function ln from nodes to strings of nodes. In the following,
we denote the components of a graph d by Nd, Ed, ld, sd and td.

Definition 2 (graph morphisms). Let d, d′ be graphs. A (graph) morphism
f : d → d′ is a pair of functions fn : Nd → Nd′ , fe : Ed → Ed′ that preserves
the labeling, source and target functions.

Graphs and graph morphisms form a category, denoted by GΣ,S.

Definition 3 (graph production and derivation). A graph production p : σ
is composed of a production name p and of a span of graph morphisms σ =
(dL

l←− dK
r−→ dR), with l injective. A graph transformation system (gts)

G is a set of productions, all with different names. Thus, when appropriate, we
denote a production p : σ using only its name p.

A double-pushout diagram is like the diagram depicted in Figure 1, where
top and bottom are spans and (1) and (2) are pushout squares in the cat-
egory GΣ,S. A direct derivation from dG to dH via production p and triple

m = 〈mL,mK ,mR〉 is denoted by dG
p/m
=⇒ dH .

We let dG =⇒ dH denote the existence of a direct derivation between dG and
dH , leaving unspecified the applied production and the chosen triple.

Operationally, applying a production p to a graph dG consists of three steps.
First, the match mL : dL → dG is chosen, providing an occurrence of dL in
dG. Then, all the items of dG matched by dL − l(dK) are removed, leading to
the context graph dD. If dD is well-defined, and the resulting square is indeed
a pushout, the items of dR − r(dK) are finally added to dD, further coalescing
those nodes and edges identified by r, obtaining the derived graph dH .

dLp :

mL

��

(1)

dK
r ��l��

mK

��

(2)

dR

mR

��

dG dD
r∗

��
l∗

�� dH

Fig. 1. A direct derivation.

88 Fabio Gadducci and Ugo Montanari

In the following, we will further require any matching mL to be injective,
thus denoting a derivation injective if all its matches are so. Besides allowing
for an easier check of the existence of the context graph, this condition will be
pivotal in our proposed encoding of the solo calculus. The restriction however
partially affects the usual properties concerning concurrent execution and shift
equivalence, and their correspondence: In order to recover these properties, we
first recall the recent results by Habel, Müller and Plump on the characterization
of strong sequential independence between rewriting steps [16].

Definition 4 (strong sequential independence). Let dG
p1/m1=⇒ dH

p2/m2=⇒ dM

be an injective derivation such as in Figure 2. Then, its components are strongly
sequentially independent if there exists an independence pair among them, i.e.,
two graph morphisms i1 : dR1 → dD2 and i2 : dL2 → dD1 such that

– l∗2 ◦ i1 = mL2 and r∗1 ◦ i2 = mR1 ;
– r∗2 ◦ i1 is injective.

dL1

mL1

��

dK1
l1��

r1 ��

mK1
��

dR1

mR1

���

�
��

��

dL2

mL2
���

�������

dK2
l2��

r2 ��

mK2
��

dR2

mR2

��
dG dD1

l∗1
��

r∗
1

�� dH dD2
l∗2

��
r∗
2

�� dM

Fig. 2. Strong sequential independence for derivation ρ = dG
p1/m1
=⇒ dH

p2/m2
=⇒ dM .

The additional constraint on r∗2 ◦ i1 arises for the interplay between the pos-
sible fusions operated by r∗2 and the matches being injective. Otherwise, the
classical property of sequential independence would fail, namely, the application
of the two productions could not be inverted, as shown in Example 6.5 of [16].

Proposition 1 (interchange operator). Let ρ = dG
p1/m1=⇒ dH

p2/m2=⇒ dM be an
injective derivation as in Figure 2, and let its components be strongly sequentially
independent via an independence pair π. Then, an injective derivation ICπ(ρ) =

dG
p2/m∗

2=⇒ dH∗
p1/m∗

1=⇒ dM can be uniquely chosen, such that its components are
strongly sequentially independent via a canonical independence pair π∗.

In particular, m∗
2 = l∗1 ◦ i1, and m∗

1 is then uniquely induced. The “canon-
ical” bit implies that both the derivation, and its independence pair, can be
constructively given: We refer to Theorem 6.4 and Theorem 6.7 of [16].

3 Remarks on the Graph Process Construction

The role of the interface graph dK in a rule is to characterize the elements of
the graph to be rewritten that are read but not consumed by a direct deriva-
tion. Such a distinction is important when considering concurrent derivations,
possibly defined as an equivalence class of concrete derivations up-to so-called

Graph Processes with Fusions: Concurrency by Colimits, Again 89

shift equivalence [7], identifying (as for the analogous, better-known permutation
equivalence of λ-calculus) those derivations which differ only for the scheduling
of independent steps. Roughly, the equivalence states the possibility to inter-
change two direct derivations d1 =⇒ d2 =⇒ d3 if they act either on disjoint
parts of d1, or on parts that are in the image of the interface graphs.

A more concrete, yet equivalent notion of abstract derivation for a gts is
obtained by means of the so-called (graph) process semantics. As for the similar
notion on Petri nets [15], a graph process describes a derivation abstracting away
from the ordering of causally unrelated steps, and thus it offers at the same time
a concrete representative for a class of equivalent derivations. The definition
below straightforwardly generalizes [1]: The original proposal considered only
gts’s where both left- and right-hand sides were injective morphisms.

Definition 5 (graph processes). Let G be a gts and ρ = dG0

p1/m1=⇒ . . .
pn/mn=⇒

dGn a derivation of length n (upper part of Figure 3). The graph process Π(ρ)
associated to the derivation ρ is the n+1-tuple 〈tG0 , 〈p1, π1〉, . . . , 〈pn, πn〉〉: Each
πi is a triple 〈tLi , tKi , tRi〉, and the graph morphisms txi : dxi → dρ, for
xi ∈ {Li,Ki, Ri} and i = 1, . . . , n, are those uniquely induced by the colimit
construction shown in Figure 3.

Let ρ, ρ′ be two derivations of length n, both originating from graph dG0 .
They are process equivalent if the associated graph processes are isomorphic,
i.e., if there exists a graph isomorphism γπ : dρ → dρ′ and a bijective function
γp : {1, . . . , n} → {1, . . . , n} such that productions pi and p′γp(i) coincide for all
i = 1, . . . , n, and all the involved diagrams commute1.

A graph process associated to a derivation ρ thus includes, by means of
the colimit construction and of the morphisms txi , the action of each single
production pi on the graph dρ. From the image of each dxi is then possible to
recover a suitable partial order among the direct derivations in ρ, which faithfully
mirrors the causal relationship among them. For example, let (Σex, Sex) be the
one-sorted signature containing just four constants, namely {a, b, c, d}; and let
Gex be the gts containing two productions, roughly rewriting a into c and b into
d. The derivation ρex is represented in Figure 4, where, for the sake of readability,
graph morphisms are simply depicted as thick arrows.

dL1p1 :
mL1

��

dK1
l1��

r1 ��

mK1
��

dR1

mR1

��

��
��

dLipi :

mLi
��

����

dKi

li��
ri ��

mKi
��

Ri

mRi

��

��
��

dLnpn :
mLn

��
����

dKn

ln��
rn��

mKn
��

dRn

mRn
��

dG0

��

dD1

l∗1��
r∗
1 ��

��

dG1

��

... dGi−1

dDi

l∗i��
r∗

i ��

��

dGi

��

... dGn−1

��

dDn

l∗n��
r∗

n��

��

dGn

��dρ

Fig. 3. Colimit construction for derivation ρ = dG0

p1/m1
=⇒ . . .

pn/mn
=⇒ dGn .

1 Explicitly, γπ ◦tG0 = t′G0 , and γπ ◦txi = t′xγp(i)
for xi ∈ {Li, Ki, Ri} and i = 1, . . . , n.

90 Fabio Gadducci and Ugo Montanari

pa : a �� • �� • �� c �� • pb : b �� • �� • �� d �� •

�� ��
���� �� ��

������ �� ��
���� �� ��

������

b ��a �� • �� b �� • �� b ��c �� • �� c �� • �� d ��c �� •

Fig. 4. The derivation ρex = dG0

pa/ma
=⇒ dGa

pb/mb=⇒ dGb .

a

��

�� �� pa �� �� c

��
•

b

��

�� �� pb �� �� d

��

Fig. 5. Compact representation for the process Π(ρex).

The process Π(ρex) can be described as in Figure 5, extending the graph dρex

with two shaded boxes: They are labeled pa and pb, in order to make explicit
the mappings txi (hence, the action of the productions on the initial graph).
Thus, (the application of) the production pa consumes the a edge (it is in the
image of tLa , but not in the image of tKa), and this is denoted by the dotted
arrow from a into pa; it then reads the only node (which is indeed in the image
of tKa), denoted by the dotted arrow with no head; and finally, it creates the
c edge, denoted by the dotted arrow into c. Similarly, (the application of) the
production pb consumes the b edge, reads the node and creates the d edge.

We feel confident that our example underlines the connection between the
process semantics for graphs, and the standard process semantics for Petri nets.
This compact representation is further argued upon in the following sections.

4 Some Properties of Graph Processes

The aim of this section is twofold: First of all, we establish a connection between
strong sequential independence and the graph process construction. Second, we
analyze the difficulties in recovering one of the properties usually associated
with process semantics, namely, complete concurrency, stating that each possible
interleaving of the rules could be related to a concrete derivation.

4.1 Interchanges vs. Colimits

We remember that shift equivalence equates those derivations that are obtained
via the repeated application of the interchange operator. Thus, we now prove
the correspondence between the equivalences induced on 2-steps derivations by
the interchange operator and by the colimit construction. This result states
the substantial correspondence between shift equivalence and process semantics,
hence, it makes clear that the two different frameworks actually characterize the
same notion of concurrent computation.

Graph Processes with Fusions: Concurrency by Colimits, Again 91

Theorem 1 (from interchange to process). Let ρ be an injective deriva-
tion as in Figure 2, and let its components be strongly sequentially independent
via the independence pair π. Then, Π(ρ) and Π(ICπ(ρ)) are isomorphic graph
processes, and the two derivations are process equivalent.

pb : b �� • �� • �� d �� • pa : a �� • �� • �� c �� •

�� ��
���� �� ��

������ �� ��
���� �� ��

������

b ��a �� • �� a �� • �� d ��a �� • �� d �� • �� d ��c �� •

Fig. 6. The derivation IC〈id,id〉(ρex).

Let us now consider the derivation ρex in Figure 4. Its components are clearly
strongly sequentially independent, with independence pair given by two isomor-
phisms. The associated derivation IC〈id,id〉(ρex) is depicted in Figure 6. The
graph processes Π(ρex) and Π(IC〈id,id〉(ρex)) clearly coincide.

Theorem 2 (from process to interchange). Let ρ = dG
p1/m1=⇒ dH

p2/m2=⇒ dM

and ρ′ = dG
p2/m′

1=⇒ dH′
p1/m′

2=⇒ dM be two injective derivations, and let them be
process equivalent via the graph isomorphism γπ : dρ → dρ′ (and the obvious swap
on productions) between the graphs underlying the processes Π(ρ) and Π(ρ′).
Then, γ induces an independence pair π on ρ such that ICπ(ρ) = ρ′.

4.2 Derivations out of a Graph Process

When originally proposed in [6], a process associated to a derivation was used to
induce a partial order on the family of direct derivations occurring in it. Basically,
the intuition tells that, if there is no ordering between the application of two
productions, then a different derivation exists, shift equivalent to the former,
where the occurrence of those productions is swapped.

Definition 6 (derivation order). Let ρ = dG0

p1/m1=⇒ . . .
pn/mn=⇒ dGn be a

derivation of length n, and let us consider the associated graph process Π(ρ),
as in Figure 3. Let us then consider the set given by the (disjoint) union of the
sets of nodes Ndρ and edges Edρ of the graph underlying Π(ρ), and of the set of
production applications pi’s (a distinct instance of a production name p for each
occurrence of the production in a direct derivation). Then, the derivation order
is the reflexive and transitive closure of the relation induced by

– if pi consumes x then x ≤ pi;
– if pi creates x then pi ≤ x;
– if pi creates x and pj preserves x then pi ≤ pj;
– if pi preserves x and pj consumes x then pi ≤ pj;

92 Fabio Gadducci and Ugo Montanari

The definition coincides with Definition 17 in [6] (see also Definition 3.4.4
of [1]), and two derivations are said to be concurrent if they are not related by
the partial order. In fact, it is proved in Theorem 23 of the same paper that, for
any total order compatible with the derivation order, there is a derivation where
the application of the productions exactly reflects that total order, and whose
graph process is isomorphic to the former.

In fact, this is the situation occurring for derivation ρex: The partial or-
der does not force any relation between the two productions, and they can be
swapped, as it is in fact the case for IC〈id,id〉(ρex).

As nice as it might be, the property does not hold for those gts’s such that
the right morphism may coalesce nodes. This is shown by the derivation ρex2,
depicted in Figure 7 (inspired by Example 6.5 in [16]): The two components
of the derivation are not strongly sequentially independent, so they can not be
swapped. This fact goes unnoticed in the associated graph process, where the
two productions are unrelated by the partial order, as shown in Figure 8.

pa : • �� a �� • •�� �� a �� • �� • �� a �� • pb : • • •�� • �� •

�� ��
���
�

�� ��
��

�
��

�
�� ��
���
�

�� ��
��

�
��

�

• �� a �� • •�� �� a �� • �� • �� a �� • •�� �� a �� • �� • �� a
��

Fig. 7. A derivation with causally related components.

a

��pa •

��

pb

Fig. 8. Compact representation for the process Π(ρex2).

5 Encoding a Simple Process Calculus

We now exploits the results presented in the previous section to discuss about
concurrent reductions for a simple (the simplest available, in fact) process calcu-
lus, namely, the monadic solo calculus [18], one of the dialects of those nominal
calculi whose distinctive feature is name fusion [10, 14, 21].

5.1 The Monadic Fragment of the Solo Calculus

This section shortly introduces the monadic variant of the solo calculus, its
structural equivalence and the associated reduction semantics.

Definition 7 (processes). Let N be a set of names, ranged over by x, y, w,
A process P is a term generated by the syntax

P ::= 0, σ, (νx)P, P1 | P2 for σ ∈ {x(y), xy}

We let P,Q,R, . . . range over the set Proc of processes.

Graph Processes with Fusions: Concurrency by Colimits, Again 93

The operators x(y) and xy are denoted as input and output, respectively,
even if their symmetric behavior makes the distinction (typical instead of other
calculi) immaterial; collectively, each instance of them is called a solo, to em-
phasize its lack of connections, except for some possible name sharing, with the
other operators. Finally, the first argument of the two operators, indicated by
x, is usually called the channel where the communication of information take
place.

We assume the standard definitions for the set of free names of a process P ,
denoted by fn(P). Similarly for α-convertibility, with respect to the restriction
operators (νy)P : The name y is bound in P , and it can be freely α-converted.
Using these definitions, the behavior of a process P is described as a relation
obtained by closing a set of basic rules under a suitable congruence.

Definition 8 (reduction semantics). The reduction relation for processes is
the relation Rσ ⊆ Proc×Proc, closed under the structural congruence ≡ induced
by the equations in Figure 9, generated by the following inference rules

y �= w

(νw)(x(y) | xw | P) → P{y/w}
y �= w

(νy)(x(y) | xw | P) → P{w/y}

x(y) | xy → 0

P → Q

(νx)P → (νx)Q
P → Q

P | R → Q | R
where P → Q means that 〈P,Q〉 ∈ Rσ.

The two top rules characterize the communication between restricted pro-
cesses. Consider the second: The process xw is ready to communicate the (pos-
sibly global) name w along the channel x; it then synchronizes with the process
x(y), and the bound name y is thus substituted by w on all the occurrences inside
the residual process P . Hence, the communication has a global effect, affecting
the process as a whole. Note that one of the names among {y, w} has to be bound,
so that, in principle, the rule does not to alter the number of free names floating
around: And the possible choice requires the presence of two different rules.

The third rule simply states that there is no reason to bind a name during a
reduction, if no substitution has actually to occur.

The two latter rules simply state the closure of the reduction relation with
respect to the operators of restriction and parallel composition.

P | Q = Q | P P | 0 = P P | (Q | R) = (P | Q) | R

(νx)(νy)P = (νy)(νx)P (νx)0 = 0 (νx)(P | Q) = P | (νx)Q for x �∈ fn(P)

Fig. 9. The set of structural axioms.

Basically, the axioms state that a process is a collection of solos floating
around, much in the tradition of the cham paradigm [2], and interacting by
forcing some name fusion (in our view, as we will see, this will be equivalent to
ask for applying some node coalescing).

94 Fabio Gadducci and Ugo Montanari

The only difference with respect to the syntax and the operational semantics
for the monadic fragment of the calculus proposed in Section 2 of [18] is the lack
of a match operator [x = y] and the explicit presentation of the three reduction
rules, which in [18] are given instead in a more compact way as a unique rule
equipped with constraints on the substitution induced by the name fusion. The
match would pose no real problem, and it is simply avoided for being as straight
as possible in our graphical encoding, as presented in the later section; while the
explicit presentation of the reduction rules will make clearer their correspondence
with the productions of the gts associated to the calculus by the encoding.

We conclude the section with a remark on the expressiveness of the calculus.
Despite their simple syntax and operational semantics, both the monadic variant
with match and the dyadic variant (operators come with two names, besides the
channel) are as expressive as the whole fusion calculus (as proved in [18]), which
in turn is a symmetric version of the foremost nominal calculi, the π-calculus [20].

5.2 The Graphical Encoding of Solos

This section informally presents a graphical encoding of the solo calculus. Its
formal definition could be obtained by easily adapting the proposals for mobile
ambients and π-calculus presented by the authors in [11, 13].

In order to help intuition, we begin with an easy description of the normal
form for equivalent processes, induced by structural congruence.

Proposition 2 (normal forms). Let P be a process. Then, P is equivalent to
a process of the shape (νx1) . . . (νxn)(σ1 | . . . | σm) where all xi’s are different,
all σj ’ are solos, and the set X = {x1 . . . xn} contains only names occurring in
S = σ1 | . . . | σm, that is, X ⊆ fn(S).

We could then denote a process in normal form as (νX)P , for P a set of
solos, since the order of the restriction operators and of the solos is immaterial.
Exploiting that characterization, it is quite easy to think of its graphical corre-
spondence. You just need three hyper-edges, corresponding to the operators of
the calculus: They are neatly represented by the type graph in Figure 10.

in

��

• ��

��

c �� ◦

out

�� !!

Fig. 10. The type graph.

For graphical convenience, the nodes are represented either by an hollow or
as a full circle, in order to distinguish those nodes used for names (the former)
from the possible node occurring as a root in the encoding (the latter); similarly
for the labels in and out inside the edges. For example, the encoding of the
process (already in normal form) (νw)(x(y) | xw | w(z) | yz) is represented in

Graph Processes with Fusions: Concurrency by Colimits, Again 95

out

""

##

in

��

��
◦z

• ��

��

��

��

c �� ◦w ◦y

out

��

�� ◦
x

in

��

$$

Fig. 11. The encoding of a process.

Figure 11, where nodes are additionally equipped with the name they represent,
in order to make the encoding clearer.

A final remark on the presence of the root node is now in order. An even
simpler graphical encoding could have been obtained by dropping it, since the
normal form basically states that solos just float around as in a chemical solution.
Indeed, this is the proposal put forward by a former graphical encoding for the
calculus, the solo diagrams [17]. Our proposal is more general, since it would
allow for recovering also the standard interleaving semantics of the calculus
(by linking to the root node a flag operator that is deleted and recreated by
each of the productions). More importantly, the chosen solution emphasizes the
connection between the present encoding and those we previously proposed for
mobile ambients and π-calculus: In those calculi the operators may occur nested,
thus the root node is necessary for taking care of the syntactical constraints.
The similarities between all these encodings allow us for claiming that all the
present considerations on concurrent semantics, and our analysis of the causal
dependencies due to name fusion among the possible reductions, can be lifted to
the syntactically more demanding calculi.

5.3 Encoding Reductions

We can now introduce the gts Gσ, showing how it simulates the reduction se-
mantics for processes. It is a simple system, since it basically contains just three
productions (i.e., one for each axiom of the reduction system), plus some in-
stances of them. The first production pσ

1 is depicted in Figure 12: The graph on
the left-hand side (center, right-hand side) is dσ1

L (dσ1
K and dσ1

R , respectively).
The action of the rule is described by the names of the nodes: As an example,
the nodes identified by y and w, distinct in dσ1

L , are coalesced in dσ1
R . The node

identifiers are of course arbitrary: They correspond to the actual elements of the
set of nodes, and they are used just to characterize the span of functions.

Constraining the matches to be injective ensures that the production is not
applied to a graph where nodes y and w are coalesced. Nevertheless, this turns
out to be too restrictive, since a reduction step can be performed if name x
coincides with either y or w. Hence, two additional productions are needed:

96 Fabio Gadducci and Ugo Montanari

in

%%

��
◦y

• ��

��

c �� ◦w

out

&&

'' ◦
x

◦y

• ◦w

◦x

◦y
w

•

◦x

Fig. 12. The first production for Gσ.

They instantiate pσ
1 , coalescing the node x with either the node y or the node w.

We leave these productions unnamed, since they play a minor röle in the paper.
A similar situation occurs when the name y on the input operator, instead

of the name w on the output operator, is bound: It suffices a production pσ
2

(together with two instances) mirroring pσ
1 . Most important, a production pΣ

3 is
needed, where nodes y and w are already coalesced and the restriction operator
is not required, as depicted in Figure 13. (Also an instance where the three names
coincide, and the corresponding nodes are thus merged, has to be included.)

In fact, the presence of alternative productions is imposed by the possible
constraints (as e.g. in the fusion of names) occurring in a reduction, and it is
typical of other encodings of process calculi that we proposed [11, 13]. In general
terms, a common constraint is that the match has to be injective on edges,
since they represent different resources which have to be explicitly consumed:
This condition is void in the encoding of solos, since for each production the two
edges have different labels, but this is not always the case, as e.g. in the encoding
for mobile ambients [13]. Concerning nodes, the reason for the match to be
injective is linked with the politics which are involved with name replacing: Some
of the possible substitutions among names are forbidden, usually by imposing
structural constraints on the processes (as in the π-calculus, where the name
occurring in the input has to be local [11]). Note also that the injectivity of the
match is counterbalanced by the presence of rules with non-injective right-hand
side, taking care of merging the names singled out by the match.

We now take the chance of summing up some advantages arising from the
use of graphical encoding for nominal calculi. First of all, note that the reduction
semantics of a calculus is usually given by a set of rules closed up-to structural
congruence. Instead, no closure is required in our formalism: congruent processes
are mapped to isomorphic graphs, and the graphical presentation accounts for
a unique description of the normal form of a process, up-to α-conversion of
bound names. Similarly, note that the reduction rules usually represent a schema,
modulo the names occurring in the operators: The graphical representation is

in

��

��
◦y

•

��

out

&&

�� ◦
x

◦y

•

◦x

◦y

•

◦x

Fig. 13. The third production for Gσ.

Graph Processes with Fusions: Concurrency by Colimits, Again 97

also basically up-to injective renaming of free names. It is also noteworthy that
there is no need of explicit rules for closing with respect to the restriction and
parallel operators: These structural rules are taken care of by the fact that graph
morphisms allow for embedding the left-hand side of a production into a large
graph, thus modeling the closure of reductions by context. Finally, we remark
that, even if the search of a match can be considered as a global operation, rule
application itself is a local operation, coalescing at most one node, and removing
either two or three edges, so that also name fusion becomes local2.

5.4 Causality via Fusion

Since the matching morphisms are required to be injective, we can apply the
considerations on sequential independence provided in Section 2.

In fact, consider the process (νw)(x(y) | xw | w(z) | yz), and its graphical
depiction in Figure 11: A derivation is represented by the proof tree below.

y �= w

(νw)(x(y) | xw | w(z) | yz) → (w(z) | yz){y/w} = y(z) | yz y(z) | yz → 0

(νw)(x(y) | xw | w(z) | yz) → 0

The reduction is obtained by first applying the rule removing the restriction
operator for the name w occurring in the output operator xw, coalescing it with
the name y. Thanks to that fusion, the rule where no restriction operator occurs
(since the names to be coalesced already coincide) can then be applied. Being the
context rules immaterial, we end up by applying to the graph in Figure 11 first
the rule pσ

1 , and then the rule pσ
3 . The derivation (namely, the derived graphs)

is shown in Figure 14, and the associated colimit in Figure 15.
Now, the two steps are clearly not sequentially independent, since there is

no suitable morphism leaving from dσ3
L . This fact goes unnoticed in the graph

process, since there is no dependence between the copies of the productions.

out

""

##

in

��

��
◦z

• ��

��

��

��

c �� ◦w ◦y

out

��

�� ◦
x

in

��

$$

out

""

((

in

))

��
◦z

•

��

◦w
y

◦x

◦z

• ◦w
y

◦x

Fig. 14. The derived graphs of a derivation first applying pσ
1 and then pσ

3 .

2 Even if it is not relevant here, we may add that dealing with reduction rules creating
new names usually needs the presence of global checks on the whole process; in the
dpo approach, this is easily dealt with by rules with non-surjective right-hand side.

98 Fabio Gadducci and Ugo Montanari

out

""

��

����

in

��

��

����

◦z

p1

• ��

��

��

**

c ��

++++

◦w
y

p3

out

��

��

++++

◦x

in

��

,,

				

Fig. 15. The colimit of the derivation in Figure 14 (and of Figures 16 and 17 as well).

Hence, the complete concurrency property does not hold, since only one of the
two possible derivations obtained by linearizing the partial order actually exists.

Let us now consider the process (νw)(x(y) | xw | w(z) | wz), distinguished
by the process above for the presence of an output operator on channel w. The
same sequence of rule applications as for the derivation depicted in Figure 14
can be replicated, and the result is presented in Figure 16.

out

""

""

in

��

◦z

• ��

��

��

��

c �� ◦w ◦y

out

''

&& ◦
x

in

��

$$

out

""

((

in

��

◦z

•

��

◦w
y

◦x

◦z

• ◦w
y

◦x

Fig. 16. The derived graphs of another derivation first applying pσ
1 and then pσ

3 .

However, now the components of the derivation are strongly sequentially in-
dependent, since the coalescing of nodes y and w has not enabled any derivation.
The derivation obtained by applying the interchange operator is in Figure 17,
while the graph underlying the graph process is the same presented in Figure 15.

6 Conclusions and Further Work

In our paper we proposed an extension of the classical process semantics for
gts’s, in order to deal with injective derivations and productions with non-
injective right-hand sides. We also proved that its correspondence with the con-
current semantics defined by shift equivalence still holds in this new setting.

Graph Processes with Fusions: Concurrency by Colimits, Again 99

out

""

""

in

��

◦z

• ��

��

��

��

c �� ◦w ◦y

out

''

&& ◦
x

in

��

$$

◦z

• ��

��

��

c �� ◦w ◦y

out

''

&& ◦
x

in

��

$$

◦z

• ◦w
y

◦x

Fig. 17. The derivation obtained via interchange from the derivation in Figure 16.

Furthermore, we applied these results to the gts obtained by the encoding of
a simple nominal calculi. We argued about the relevance of similar encodings as
an improvement with respect to the usual operational semantics for these calculi,
given by a reduction system on terms up-to some structural congruence. In turn,
the encoding motivated our research, since productions with non-injective right-
hand side arise naturally for these graphical presentations of calculi.

Since shift-equivalent (injective) derivations are represented by the same
graph process, our results provide a neat concurrent semantics for the reduc-
tion mechanism in nominal calculi. We leave as an open question the search of
those conditions ensuring the classical complete concurrency property for the
graph process semantics, as discussed in Section 5.4: Namely, the existence of a
derivation for each possible total ordering, compatible with the derivation order,
of the productions occurring in the graph process. A possible solution we foresee
as viable is enriching the derivation order by recording the possible occurring of
a fusion, as well as the nodes involved in the fusion itself.

References

1. P. Baldan, A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. Con-
current semantics of algebraic graph transformation. In H. Ehrig, H.-J. Kreowski,
U. Montanari, and G. Rozenberg, editors, Handbook of Graph Grammars and Com-
puting by Graph Transformation, volume 3, pages 107–187. World Scientific, 1999.

2. G. Berry and G. Boudol. The chemical abstract machine. Theor. Comp. Sci.,
96:217–248, 1992.

3. R. Bruni, F. Gadducci, and U. Montanari. Normal forms for algebras of connec-
tions. Theor. Comp. Sci., 286:247–292, 2002.

4. L. Cardelli and A. Gordon. Mobile ambients. Theor. Comp. Sci., 240:177–213,
2000.

5. A. Corradini and F. Gadducci. Rewriting on cyclic structures: Equivalence be-
tween the operational and the categorical description. Informatique Théorique et
Applications/Theoretical Informatics and Applications, 33:467–493, 1999.

6. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26:241–265, 1996.

100 Fabio Gadducci and Ugo Montanari

7. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Alge-
braic approaches to graph transformation I: Basic concepts and double pushout
approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation, volume 1, pages 163–245. World Scientific, 1997.

8. V.-E. Căzănescu and Gh. Ştefănescu. A general result on abstract flowchart
schemes with applications to the study of accessibility, reduction and minimization.
Theor. Comp. Sci., 99:1–63, 1992.

9. F. Drewes, A. Habel, and H.-J. Kreowski. Hyperedge replacement graph grammars.
In G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph
Transformation, volume 1, pages 95–162. World Scientific, 1997.

10. Y. Fu. Variations on mobile processes. Theor. Comp. Sci., 221:327–368, 1999.
11. F. Gadducci. Term graph rewriting and the π-calculus. In A. Ohori, editor, Pro-

gramming Languages and Semantics, volume 2895 of Lect. Notes in Comp. Sci.,
pages 37–54. Springer, 2003.

12. F. Gadducci, R. Heckel, and M. Llabrés. A bi-categorical axiomatisation of con-
current graph rewriting. In M. Hofmann, D. Pavlovic̀, and G. Rosolini, editors,
Category Theory and Computer Science, volume 29 of Electr. Notes in Theor.
Comp. Sci. Elsevier Science, 1999.

13. F. Gadducci and U. Montanari. A concurrent graph semantics for mobile ambients.
In S. Brookes and M. Mislove, editors, Mathematical Foundations of Programming
Semantics, volume 45 of Electr. Notes in Theor. Comp. Sci. Elsevier Science, 2001.

14. P. Gardner and L. Wischik. Explicit fusion. In M. Nielsen and B. Rovan, editors,
Mathematical Foundations of Computer Science, volume 1893 of Lect. Notes in
Comp. Sci., pages 373–382. Springer, 2000.

15. U. Golz and W. Reisig. The non-sequential behaviour of Petri nets. Information
and Control, 57:125–147, 1983.

16. A. Habel, J. Müller, and D. Plump. Double-pushout graph transformation revis-
ited. Mathematical Structures in Computer Science, 11:637–688, 2001.

17. C. Laneve, J. Parrow, and B. Victor. Solo diagrams. In N. Kobayashi and B. Pierce,
editors, Theoretical Aspects of Computer Science, volume 2215 of Lect. Notes in
Comp. Sci., pages 127–144. Springer, 2001.

18. C. Laneve and B. Victor. Solos in concert. Mathematical Structures in Computer
Science, 13:675–683, 2002.

19. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
20. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Part I and

II. Information and Computation, 100:1–77, 1992.
21. J. Parrow and B. Victor. The fusion calculus: Expressiveness and simmetry in

mobile processes. In V. Pratt, editor, Logic in Computer Science, pages 176–185.
IEEE Computer Society Press, 1998.

22. G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

Graph Transformation with Variables

Berthold Hoffmann

Technologiezentrum Informatik, Universität Bremen,
Bremen, Germany

hof@informatik.uni-bremen.de

Abstract. Variables make rule-based systems more abstract and expres-
sive, as witnessed by term rewriting systems and two-level grammars. In
this paper we show that variables can be used to define advanced ways of
graph transformation as well. Taking the gluing approach to graph trans-
formation [7, 3] as a basis, we consider extensions of rules with attribute
variables, clone variables, and graph variables, respectively. In each case,
the variables in a rule are instantiated in order to obtain a set of rule
instances that in turn defines the transformation relation. By combining
different kinds of variables, we define very expressive rules, and reduce
them to plain rules by instantiation. Since gluing graph transformation
has a well developed theory, this opens the door to lift results of that
theory from instances to rules with variables.

1 Introduction

Rules are frequently used in computer science, for specifying the behavior of
systems in an axiomatic way. Rules do often contain variables. Term rewriting
systems, for instance, specify the evaluation of functions by rewrite rules such as

fib(s(s(N))) → fib(s(N)) + fib(N)

wherein the substitution of variables like N by terms yields ground rules like

fib(s(s(s(0)))) → fib(s(s(0))) + fib(s(0))

that define the term rewrite relation [19]. Two-level grammars, another example,
derive languages of words by rules such as

〈T0 expression〉 ::= 〈T1 to T0 operator〉 〈T1 expression〉

wherein variables like T0 and T1 are substituted by words of a context-free meta
grammar in order to obtain context-free production rules like

〈bool expression〉 ::= 〈int to bool operator〉 〈int expression〉

which in turn define the derivation relation of the grammar [2]. In both cases,
rewriting is used twice: On the meta level, rule are instantiated by substituting
variables, producing rule instances that generate the rewrite relation on the ob-
ject level. Variables make rules more abstract and more expressive: term rewriting

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 101–115, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

102 Berthold Hoffmann

systems define functions on infinite sets in a finite way, and two-level grammars
derive recursively enumerable languages on the basis of context-free derivation.

This paper is about the use of variables in the area of graph transformation.
Surprisingly, this concept has hardly been used in the major approaches of graph
transformation that are documented in the handbook [27]. Early attempts by
H. Göttler [11] and W. Hesse [17] to extend two-level word grammars to graphs
were not successful. This work was inspired by three papers: D. Plump and
A. Habel have devised variable hyperedges as placeholders for hypergraphs [25];
N. van Eetvelde and D. Janssens have introduced variable nodes as placeholders
for graphs in [32]; and, D. Plump and S. Steinert have proposed variable labels as
placeholders for attribute values [26]. These proposals follow the two-level model
outlined above, but are based on different approaches to graph transformation.
We catch on their ideas, but reformulate them so that they coherently use a single
way of graph transformation on the object level. As a common basis, we choose
the well-known gluing approach to graph transformation [7, 3] (also known as
the algebraic, or double-pushout approach). In addition, we define clones, which
are nodes that stand for sets of similar nodes within the same framework. The
unified notions of variables allow to model several advanced concepts of graph
transformation, such as the connection instructions of [10], and object set nodes
and path expressions devised for programmed graph transformation [30]. The
two-level model is modular so that different kinds of variables can also be com-
bined easily. In this way, even the very advanced rules of [32] can be reduced
to sets of simple gluing rules. Since variable instantiation is simply defined and
easily understood, the resulting definitions are easily understood as well. And,
since gluing transformation, the common basis of the instantiations, has a rich
theory, results of this theory can help to prove properties of the rules as well.

The paper may raise a fundamental objection: Need rules be that sophis-
ticated? Indeed, generative power is no issue, as gluing rules without variables
already derive the recursively enumerated languages. However, in complex appli-
cations like software refactoring [22, 32], operations can be developed and verified
more easily if they are expressed as a single rule – even a complex one – rather
than as programs that control the application of simple rules in order to achieve
the same effect.

The paper is structured as follows. We first recall graph transformation by
gluing rules with relabeling in Section 2. This is the basis for discussing the use
of variables in graph transformation in Section 3. Three kinds of variables are
considered in Sections 4 to 6: attribute variables, clones, and graph variables.
Section 7 discusses how instantiations can be combined, and how they may help
to lift properties and results known from rule instances to rules. In Section 8 we
conclude with pointers to related work and a discussion of further research.

2 Basic Graph Transformation

Rules in the gluing approach to graph transformation [7, 3] shall be used as rule
instances on the object level. We have chosen this approach as it is not committed
to a particular notion of graph (not even to graphs!), is widely used and has a

Graph Transformation with Variables 103

rich theory. We confine the occurrences of rules to injective morphisms. It has
been shown in [14] that this is no restriction; on the contrary, it permits a finer
control of rule application. As in [15], we allow partially labeled graphs in rules
so that nodes and edges may be relabeled in a transformation step.

Graphs. A (partially labeled) graph G = 〈VG, EG, sG, tG, �G〉 over a set C of
labels consists of disjoint finite sets VG of nodes and EG of edges, source and
target functions sG, tG : EG → VG for edges, and a partial labeling function
�G : VG ∪ EG → C 1. An edge e ∈ EG is called incident to its source and target
sG(e) and tG(e) and makes these nodes adjacent with each other. G is called
totally labeled if the function �G is total.

A premorphism m : G → H between two graphs G and H consists of two
functions mV : VG → VH and mE : EG → EH that preserve sources and targets,
i.e., sH ◦mE = mV ◦ sG and tH ◦mE = mV ◦ tG. If m also preserves defined
labels, i.e., if �H(m(n)) = �G(n) for all n ∈ Dom(�G), it is called a morphism. A
morphism m is injective (surjective) if both mV and mE are injective (surjective,
resp.), and it is an inclusion if m(n) = n for all nodes and edges n in G. Two
graphs G and H are isomorphic, written G ∼= H , if there is an injective and
surjective morphism m : G → H that preserves all labels, i.e., �H(m(n)) = �G(n)
for all n ∈ VG ∪EG.

Rules. A rule t = (L ← I → R) consists of two inclusions I → L and I → R
between partially labeled graphs such that for all n ∈ VL∪EL, �L(n) = ⊥ implies
n ∈ VI ∪EI and �R(n) = ⊥, and, vice versa, �R(n) = ⊥ implies n ∈ VI ∪EI and
�L(n) = ⊥.

Example 1 (Rule). Assuming that the set C of labels contains natural numbers,
the rule in Fig. 1, taken from [26], relabels the target of an edge in a graph. In
our examples, numbers attached to the nodes in the graphs of a rule define the
morphisms between them.

1

1

7

2
2

← 1

1 2

→ 1

1

3

2
2

Fig. 1. A rule.

Transformation. Let G and H be totally labeled graphs and t = (L← I → R)
a rule. We say that t transforms G to H and write G ⇒t H if there exists a
graph C with two natural pushouts

L I R

G C H

(1) (2)

1 The set Dom(f) = {x ∈ A | f(a) is defined} denotes the domain of a partial mapping
f ; we write f(x) = ⊥ if f(x) is undefined.

104 Berthold Hoffmann

so that the vertical morphisms are injective2. If T is a set of rules, we write
G⇒T H if G⇒t H for some rule t ∈ T , and call ⇒T⊆ G×G the transformation
relation induced by T .

Rule Application. The above definition does not tell how a rule t is actually
applied to a graph G in order to transform it into a graph H . For a totally
labeled graph G and a rule t = (L← I → R), an injective morphism m : L→ G
is called a match of t in G if it satisfies the following dangling condition: No
node in m(L \ I) is incident to an edge in G \ m(L). Using this definition, a
transformation G⇒t H is constructed as follows:

– Find a match m : L→ G of t in G (if it exists).
– Remove all nodes and edges in m(L\I) from G, yielding the context graph C.
– Obtain H from the disjoint union of R and C by identifying the correspond-

ing nodes and edges of m(I) and R.

This construction defines H uniquely up to isomorphism.

3 A Framework for Graph Transformation with Variables

In the general setting for graph transformation with variables, a rule scheme will
be instantiated to a set of rule instances that in turn defines the transformation
relation. Below we outline general properties of rules, instantiation, and rule
application that will be used in the following sections.

Rules. The set C of labels is extended by a set X of variable names. Graphs with
labels from C and X are called graph patterns (or just patterns). In a pattern G,
a variable name x ∈ X may occur as a label, or be part of a label; it designates
the label, or the so labeled node or edge as a placeholder. The kernel G of a
pattern G is the graph obtained by removing all placeholders.

Then a rule scheme is a rule t = (L ← I → R) where L, I, and R are
patterns.

Instantiation. A substitution function σ specifies how variable names occurring
in a rule shall be substituted.

Instantiation of a rule scheme t according to some substitution σ defines a
particular rule instance tσ. Then T (t) = {tσ | σ is a substitution} defines the
set of rule instances for t. T (t) is a set of rules without variables that defines a
transformation relation as described in the previous section.

Rule Application. The application of a rule t cannot generate the set T (t) in
order to apply one of the resulting rules because this set is infinite in general.
Instead, rule application proceeds as follows.

Let G be a graph, and t = (L← I → R) a rule scheme.
2 A pushout is natural if it is a pullback as well. The construction of natural pushouts

is described in [15].

Graph Transformation with Variables 105

1. Identify a kernel match m : L→ G of the kernel L of L in G (if it exists).
2. Induce a substitution σ such that the kernel match m extends to a full match

m : Lσ → G of t (if such a substitution exists).
3. Construct the instance Rσ and apply tσ to construct the instance application

G ⇒tσ H .

Step 2 need not succeed in all cases; it may also be nondeterministic. We require
that rule schemes used in the sequel satisfy the following two conditions:

– A rule scheme t is left-linear if every variable name occurs at most once in L.
– A rule scheme t is closed if every variable name occurring in R occurs in L

as well.

These conditions make rule application easier. If a rule scheme is left-linear,
the substitution σ can be induced (in step 2) by considering the unique occur-
rences of variable names in L one after the other. If a rule scheme is closed, the
substitution σ induced in step 2 determines Rσ uniquely and completely.

4 Attribute Variables

In many applications of graph transformation, the nodes and edges of graphs
have attributes like numbers or strings that shall be computed by functions
during transformation. The attribute model of D. Plump and S. Steinert [26]
represents attribute values as labels. The rule schemes on the meta-level are
labeled with terms that specify how these values are computed. This is close to
the models proposed in [28, 21].

Attributed Rules. Attributed patterns are graphs that are partially labeled
with terms over a family F = (Fn)n�0 of graded function symbols that is disjoint
to a set X of variable names. The set T (X) of terms is the least set satisfying (i)
x ∈ T (X) for all variable names x ∈ X , (ii) c ∈ T (X) for all constant symbols
c ∈ F0, and (iii) f(t1, . . . , tk) ∈ T (X) for all function symbols f ∈ Fk and k > 0
terms t1, . . . , tk ∈ T (X).

A rule scheme t = (L ← I → R) is an attributed rule if L, I, and R are
attributed patterns. (Note that t is left-linear and closed, as every rule scheme.)
We also require that t is deterministic, meaning that all terms used as labels in
L are variables.

Instantiation. The meaning of function symbols F is given by an algebra A
that consists of a carrier set A with elements cA ∈ A for all c ∈ F0, and functions
fA : Ak → A for all f ∈ Fk with k > 0.

A function α : X → A is called an assignment. The extension α̂ : T (X) → A
of α is defined by (i) α̂(x) = α(x) for all variable names x ∈ X , (ii) α̂(c) = cA

for all constant symbols c ∈ F0, and (iii) α̂(f(t1, . . . , tk)) = fA(α̂(t1), . . . , α̂(tk))
for all function symbols f ∈ Fk and all terms t1, . . . , tk ∈ T (X).

For an attributed pattern G and an assignment α : X → A, its instance Gα

is the partially labeled graph over A obtained by replacing the labeling function

106 Berthold Hoffmann

x

1

z

2
y

← x

1 2

→ x

1

x+y

2
y

Fig. 2. An attributed rule.

�G by α̂ ◦ �G
3. The instance of an attributed rule t = (L ← I → R) is the rule

tα = (Lα ← Iα → Rα) with partially labeled graphs over A.

Example 2 (Computing Path Weights). The attributed rule in Fig. 2 computes
node attributes that represent the weight of paths in a graph. The assignment
α = {x �→ 3, y �→ 2, z �→ 7} instantiates the attributed rule to the instance
shown in Fig. 1 above (supposing that +A implements addition).

Rule Application. A transformation step G ⇒t H via some attributed rule
t = (L← I → R) is constructed by finding a pre-morphism m : L→ G. Since t is
left-linear and all defined labels in L are variables, mapping �L(n) onto �G(m(n))
for every labeled node or edge n in L, uniquely defines a partial assignment
α : X → A that is defined for all x ∈ X occurring in L. Then α determines
the instantiation Rα completely since t is closed, and the transformation step
G ⇒t H is uniquely defined as well (up to isomorphism). The induction of
assignments is thus deterministic and always successful.

Discussion. For simplicity, our definitions deal with untyped terms and algebra
whereas the labels in [26] are many-sorted. In that paper, attribute values are
also used to define conditional rules of the form t = (L← I → R where c) with
a boolean expression c; instantiation yields an instance t = (Lα ← Iα → Rα)
if and only if α̂(c) evaluates to true. Then the induction of assignments is still
deterministic, but partial, as some assignments α yield invalid rule instances tα.

The algebra A can be implemented by some library in a programming lan-
guage. It can also be defined by rewriting itself: Every confluent and terminating
term rewriting system defines an algebra. The values of A may as well be graphs,
and the operations can be defined by (confluent and terminating) graph trans-
formations. This idea has been considered in [29] for the first time.

Attribution by instantiation is considerably simpler than other models, such
as the one proposed in [16], where every graph is burdened by an infinite set
of nodes that represents all values of A, and cluttered up with edges that point
from nodes to their actual attribute values. It is also more general as edges may
be labeled as well as nodes.

5 Clone Variables

Rules in programmed graph transformation [30] may contain “object set iden-
tifiers”, which are nodes in a rule pattern that shall match the set of all nodes
in a graph that are connected to the nodes of the rule in the same way. We call
such nodes clones.
3 The composition α̂ ◦ �G is undefined at the nodes and wedges where �G is undefined.

Graph Transformation with Variables 107

Cloning Rules. Extend the label set C by the Cartesian product C×X , where X
is a set of variable names disjoint to C. A partially labeled graphG over C∪(C×X)
is a clone pattern if labels of the form (c, x) with c ∈ C and x ∈ X are only used
on nodes. A node v in a clone pattern G with �G(v) = (c, x) is called an x-fold
c-clone, or just a clone if c and x do not matter. (Labels “(, x)” indicate clones
with undefined label.) All other nodes are called constant. The clone variable
x in a label (c, x) stands for a number of c-nodes that are instantiated for v.
Although this number is arbitrary for every variable name x, it restricts x-fold
clones v and w to be instantiated by the same number of nodes.

A rule scheme t = (L ← I → R) consisting of clone patterns is a cloning
rule. (It is left-linear and closed.)

Instantiation. Let μ : X → N be a multiplicity function which specifies how
many instances of clones shall be inserted in a graph.

For a clone pattern G and a multiplicity function μ, the instance Gμ is defined
as follows:

1. Replace every x-fold clone v by a set of μ(x) nodes, which are called the
instances of v and are denoted by vμ(x).

2. Replace every edge between a clone v and a constant node w by μ(x) edges
between every instance in vμ(x) and w, with the same label and direction.

3. Replace every edge between two x-fold clones v and w by μ(x) edges be-
tween corresponding instances in vμ(x) and in wμ(x), with the same label
and direction. (See Fig. 3 on the left.)

4. Replace every edge between an x-fold clone v and a y-fold clone w (with
different variables x �= y) by μ(x) × μ(y) edges between every instance in
vμ(x) and every instance of wμ(y), with the same label and direction. (See
Fig. 3 on the right.)

The rule tμ = (Lμ ← Iμ → Rμ) is the instance of a cloning rule for a
multiplicity function μ.

Example 3 (A Pull-Down-Method Refactoring). The cloning rule in Fig. 4 has
been adapted from [32]. It describes a transformation of graphs representing
object-oriented programs where a method definition (denoted by the square
δ-node) is pulled down from a class (represented by the constant C-node) to
its subclasses (represented by the n-fold C-clone). For the transformation rule,

x

x

c

m

c′

�→

μ(x) nodesz }| {
c

m

c′ · · ·

· · ·

· · ·

c

m

c′

| {z }
μ(x) nodes

x

y

c

m

c′

�→

μ(x) nodesz }| {
c

m

c′ · · ·

· · ·

· · ·

· · ·
c

m

c′

| {z }
μ(y) nodes

Fig. 3. Instantiation of edges between multiple nodes, case 3 (left) and case 4 (right).

108 Berthold Hoffmann

x z

C

y i

n

m

C δ

1

2

3

4

←

x z

y

n

C

1

2

3

4

→

x z

C

y i

n n
mC δ

1

2

3

4

Fig. 4. Cloning rule for the pull-down-method refactoring.

C

i i i
m

C
C

C δ
1

2

3

4

5 6

←

C
C

C
1

2

3

4

5 6

→

C

i i i

C
C

C
m
m
m

δ
δ

δ

1

2

3

4

5 6

Fig. 5. Cloning rule instance for the pull-down-method refactoring.

the neighborhood of the class and the method definition have to be considered;
this is done by the unlabeled clones with the clone variables x, y, and z.

Instantiating clone variables by μ = {n �→ 3, x �→ 0, y �→ 1, z �→ 2} yields the
instance shown in Fig. 5. The i-edges are induced by case 2 of the instantiation,
whereas m-edges are obtained according to case 3, and the unlabeled edges to
the δ-clones are generated according to case 4.

Rule Application. The kernel match of a cloning rule t = (L ← I → R) is
an injective morphism m : L → G, where L is the kernel of L from which all
clones and their incident edges have been removed. The kernel match uniquely
determines the instances of the clones in L as follows: If {v̄1, . . . , v̄k} is the set
of nodes adjacent with an x-fold c-clone v̄ in L, search the adjacent nodes of
their kernel matches m(v̄1), . . . ,m(v̄k) for the set {v1, . . . , vk} of all c-nodes that
are connected to m(v̄1), . . . ,m(v̄k) in G in the same way as v̄ is connected to
v̄1, . . . , v̄k in L. This defines μ(x) = k, vμ(x) = {v1, . . . , vk}, and Lμ. The interface
instance Iμ is included in Lμ, and the right hand side R can be instantiated by
making μ(x) copies of all x-fold clones that are fresh in R, and connecting them
accordingly. It is important that the clone variable x is defined by the left hand
side of the rule in order to know how many copies shall be made for every fresh
clone. (In Fig. 5, e.g., the clone variable n of the δ-clone on the right hand side
is bound by the C-clone on the left hand side.)

The multiplicity function μ can be uniquely determined for every kernel
match m. However, the instance tμ may not apply because it violates the dan-
gling condition. For instance, the cloning rule in Fig. 4 cannot be applied to a
graph where the match of the constant C-node has an incoming edge e that is
not labeled with i because deletion of that node would leave e dangling.

Simulating Connecting Graph Transformation. Cloning rules can sim-
ulate connecting graph transformation in the sense of [22, 32]. The connecting
rules in that paper take the form (L,R, in, out) where L is the graph to be

Graph Transformation with Variables 109

matched (and deleted), R is the graph, a copy of which has to be replaced for
the match of L, and the connection instructions in , out ⊆ VL × VR × CE × CE

specify how the nodes incident to the match m(L) are to be connected to the
nodes in the copy of R:

– An instruction (v, w, c, d) ∈ in says that every neighbor node v′ pointing to
v by a c-edge shall point to the node w in R by a d-edge.

– An instruction (v, w, c, d) ∈ out says that if v points to some neighbor node
v′ by a c-edge, the node w in R shall point to the node v′ by a d-edge.

– All other edges connecting nodes in L to neighbor nodes (with labels or
directions not mentioned in connection instructions, that is) are deleted.

The cloning rule t = (L̃← Ĩ → R̃) simulating a connecting rule (L,R, in, out)
is defined as follows:

– L̃ is obtained by extending L with a set of mutually distinct clones so that
every node v in L is adjacent with two clones xv,c,in and xv,c,out , for every
edge label c in CE .

– Ĩ consists of all clones of L̃.
– R̃ is obtained by extending R with Ĩ, and by connecting the clones of Ĩ to

nodes w in R according to the connection instructions:
• If (v, w, c, d) ∈ in , let the clone xv,c,in point to w by a d-edge.
• If (v, w, c, d) ∈ out , let w point to the clone xv,c,out by a d-edge.

Admittedly, this simulation is rather clumsy because 2×|C| variables are needed
for every node of a left hand side. Especially if C is infinite, we need a notation
for clones that match “all other neighbor nodes” of some node v, i.e., all adjacent
nodes that are connected by labels and directions not mentioned in the other
clones at v.

6 Graph Variables

In [25], D. Plump and A. Habel have devised rules wherein variable hyper-
edges are placeholders for hypergraphs that are substituted by hyperedge re-
placement [5]. We “translate” hyperedge replacement to a simple way of node
replacement in graphs.

Rules with Variable Nodes. The label set C is extended by a disjoint set X of
variable names. Every variable name x ∈ X comes with a type type(x) ∈ C∗×C∗
that specifies the number and labels of its incident edges as follows. Let G be a
graph over C ∪X . A node v in G is a node variable if �G(v) = x ∈ X . A node
variable v with �G(v) = x and type(x) = (c1 · · · cn, c̄1 · · · c̄n̄) is well-typed if v is
the target of n edges e1 · · · en with �G(ei) = ci for 1 � i � n, and the source of
n̄ edges ē1 · · · ēn̄ with �G(ēj) = c̄j for 1 � j � n̄; v is straight if all sources of
its ingoing edges and all targets of its outgoing edges are pairwise distinct, and
finally, v is apart if there is no variable node among these adjacent nodes.

110 Berthold Hoffmann

A graph G over C ∪ X is a graph pattern if all edges have constant labels,
and all variable nodes are well-typed, straight, and apart.

A rule scheme t = (L ← I → R) with graph patterns L, I, and R is a rule
with variable nodes if I is constant. As usual, we also assume that t is left-linear
and closed.

Instantiation. Variables in a graph pattern G are instantiated by replacing
variable nodes by graphs.

With 〈x�〉 we denote the star graph of a variable name x, which is the graph
with an x-labeled center node and incident edges according to type(x), plus
unlabeled nodes at the other ends of these edges. The graph 〈x◦〉 is the discrete
subgraph of 〈x�〉 that consists just of its border nodes.

A rule of the form t = (〈x�〉 ← 〈x◦〉 → S) is called a simple node replacement
rule4. (Fig. 6 shows such a rule.) A graph substitution γ maps variable names
x ∈ X onto node replacement rules γ(x) = (〈x�〉 ← 〈x◦〉 → S).

γ =

8>>>><
>>>>:

δ �→

m
δ

1 2

3

←

1 2

3

→

m M

I

E A

1 2

3

9>>>>=
>>>>;

Fig. 6. A graph substitution.

The instantiation of a graph pattern G according to a graph substitution γ
applies the simple node replacement rules γ(�G(v)) to all variable nodes v in G
in parallel.

In a graph pattern G, straightness guarantees that the simple node replace-
ment rule γ(x) applies to every x-node in G. Apartness ensures that the matches
of two nodes replacement rules t and t′ either overlap only in their border nodes,
or they overlap completely, and t = t′. In the first case, the steps commute by the
parallel independence results for gluing rules; in the second case, the definition
of γ makes sure that the rules are equal. Thus simple node replacement via γ
is strongly confluent for graph patterns, and the instance Hγ is unique up to
isomorphism.

Example 4 (A Pull-Down-Method Refactoring). The substitution γ shown in
Fig. 6 with Dom(γ) = {δ} specifies a simple node replacement rule for the
variable name δ with type(δ) = (⊥⊥,m) that replaces δ-stars by a method def-
inition. In this case, the method body is a tree representing an if-statement
if E then A with a condition E and a simple assignment A.

The substitution γ instantiates the rule with variable nodes in Fig. 5 to the
rule shown in Fig. 7 below.
4 This definition covers a restricted form of node replacement that corresponds to

hyperedge replacement [5]. Full node replacement rules have connection instructions,
and may be applied to variables that are not apart.

Graph Transformation with Variables 111

C

i i i
m

C
C

C M

I

E A

1

2

3

4

5 6

←
C

C
C

1

2

3

4

5 6

→

C

i i i

C
C

C
m
m
m

M
M

M

I I I

E E EA A A

1

2

3

4

5 6

Fig. 7. Rule instance for the pull-down-method refactoring.

Rule Application. For constructing a transformation of a graph G via a rule t
with variable nodes, we define the kernel of the left hand side pattern L in such
a rule as the subgraph L where all variable nodes and their incident edges are
removed, and determine a kernel match m : L→ G.

We then attempt to induce a substitution γ by starting, for every variable
node v in L, at the matches of its adjacent nodes, say v1, . . . , vk. Every candidate
for γ(�L(v)) has to be isomorphic to a subgraph S ⊆ G that overlaps with
m(L) and with the substitution candidates for other variables only in the nodes
m(v1), . . . ,m(vk).

One the one hand, there need not be such a graph, for instance if one vi is not
in the interface I, not adjacent with any other variable node in L, and if its kernel
match is source or target of an edge e outside m(L) that is incident to the kernel
match m(vi) of a node v̄ in m(L) other than m(v1), . . .m(vk). This edge cannot
belong to S, it cannot belong to the substitution of another variable, and it may
also not belong to the context of the transformation, since deletion of m(vi)
would leave e dangling. On the other hand, there may be several candidates for
substituting a variable in general.

Instantiation of the right hand side R is unique once a graph substitution
γ has been found. The transformation G ⇒tγ H and the resulting graph H are
then unique up to isomorphism.

Discussion. Variable nodes can also be substituted if they are not apart, and
by applying full node replacement with connection instructions [10]. However,
this requires some precaution as node replacement is not confluent in general.

Programmed graph transformation rules [30] feature path expressions by
which the existence of paths can be specified. Path expressions can be con-
sidered as variable edges that may be substituted by chain-like graphs which are
defined by edge replacement.

7 Combining Variables

It is fairly straight-forward to combine different kinds of variables in order to get
even more powerful graph transformation rules. Simulation of the rules proposed
in [32], for instance, requires at least two kinds of variables: The rules need clone

112 Berthold Hoffmann

variables as they use connection instructions, and variable nodes as they copy
subgraphs of arbitrary size (like the method bodies). The rule in Fig. 4 contains
clone variables and a variable node (δ) which are instantiated by making clones
first, and instantiating the variable node δ afterwards. The combination requires
some care in order to achieve the desired results: The clone variables like δ on
the right hand side of Fig. 4 need to be cloned before the resulting set of variable
nodes is substituted itself.

The rules in [32] might also take advantage of attribute variables if compu-
tations on primitive values shall be performed. In this case, attributes should be
instantiated last.

Lifting Properties of Rule Instances. Given that instantiation is a simple
concept, there is hope that some results for the underlying rule instances can
be lifted to the level of the rule schemes. Confluence, for instance, is relevant
for many applications. Fortunately, the theory of gluing graph transformation
provides criteria for the parallel independence of transformations [7], and there
is also a critical pair lemma [24]. In [13], parallel independence has been lifted
to transformation with variable nodes. We think that confluence for the kind of
rules used in [32] can be proved more easily in the two-level model than in the
original definition.

8 Conclusions

In this paper we have studied how variables can be used in graph transforma-
tion. The general framework of two-level transformation – instantiation of rule
schemes to rule instances which in turn define transformations – applies to sev-
eral kinds of variables: attribute variables, clones, and graph variables. Since the
model is modular, different kinds of variables can be combined. This yields very
expressive rules that are still comprehensible, because variables are a familiar
concept in specification and programming. Instantiation reduces rule schemes
to standard gluing rules, and thereby allows to add important concepts of con-
necting and programmed graph transformation to the gluing approach – such as
connection instructions and path expressions. Gluing graph transformation has
a rich theory that is automatically available on the level of rule instances. Some
of this theory can probably be lifted to the level of rule schemes as well.

Related Work. Several authors have studied advanced graph transformation
rules. The early book [23] by M. Nagl defines a very general way of operational
graph transformation. The structured rules of H.-J. Kreowski and G. Rozen-
berg [20] combine gluing rules with connection instructions. Both approaches do
not consider graph variables.

Future Work. The work started in this paper can be continued in several
directions.

The basic transformation model can be extended by types and shapes [18],
by negative application conditions [12], and so on.

Graph Transformation with Variables 113

We would also like to loosen the standard conditions on rule schemes. For
left-linearity, this is rather easy; but then, the induction of substitutions can
no longer be done independently for every variable, since different occurrences
of the same variable must have equal substitutions. Dropping the closedness
condition is only feasible if transformation is lifted to graphs with variables.
Then matching of graphs with variables against graphs has to be replaced by
unification of two graphs with variables. However, it is unknown whether graph
unification is decidable.

An important issue is to make the induction of substitutions for graph vari-
ables less nondeterministic, because variable nodes may have many different
substitutions. The paper [6] gives rather strict conditions for the unique in-
duction of substitutions. In [18], the nondeterminism of induction is reduced by
requiring substitutions to be “shaped” graphs that are generated by a hyperedge
replacement grammar. Then, substitution candidates can be found by parsing
according to the grammar. In the rule in Fig. 5, for instance, the substitutions
of δ could be restricted to the syntax trees of method definitions. A substitution
for δ can be induced by parsing according to the syntactic rules.

Of course, we are also interested in evaluating how useful variables are for
modeling realistic case studies. Refactoring seems to be an area where graph
transformation can be applied successfully, and where advanced concepts are
needed for the transformation rules. Such case studies could also show whether
it is really possible to lift theorems from the underlying world of gluing rules to
the high-level rules.

Acknowledgment

In 1978, Hartmut Ehrig urged I.-R. Schmiedecke and me to define extended affix-
grammars (a variant of the two-level grammars mentioned in the introduction)
so that he could understand them. This resulted not only in a graph grammar
definition [9], but also introduced me to the field of graph transformation which
has fascinated me ever since. Now the topics of this paper brought me back to
two-level grammars where all this began. Thank you, Hartmut!

References

1. Volker Claus, Hartmut Ehrig, and Grzegorz Rozenberg, editors. Proc. Graph Gram-
mars and Their Application to Computer Science and Biology, number 73 in Lec-
ture Notes in Computer Science. Springer, 1979.

2. C.J. Cleaveland and R.C. Uzgalis. Grammars for Programming Languages. Else-
vier, New York, 1977.

3. Andrea Corradini, Hartmut Ehrig, Reiko Heckel, Michael Löwe, Ugo Montanari,
and Francesca Rossi. Algebraic approaches to graph transformation, part I: Basic
concepts and double pushout approach. In Grzegorz Rozenberg, editor, Handbook
of Graph Grammars and Computing by Graph Transformation. Vol. I: Founda-
tions. World Scientific, 1997.

114 Berthold Hoffmann

4. Andrea Corradini, Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg,
editors. 1st Int’l Conference on Graph Transformation (ICGT’02), number 2505
in Lecture Notes in Computer Science. Springer, 2002.

5. Frank Drewes, Annegret Habel, and Hans-Jörg Kreowski. Hyperedge replacement
graph grammars. In Rozenberg [27], chapter 2, pages 95–162.

6. Frank Drewes, Berthold Hoffmann, and Mark Minas. Constructing shapely nested
graph transformations. In Hans-Jörg Kreowski and Peter Knirsch, editors, Proc.
Int’l Workshop on Applied Graph Transformation (AGT’02), 2002. 107–118.

7. Hartmut Ehrig. Introduction to the algebraic theory of graph grammars. In Claus
et al. [1], pages 1–69.

8. Hartmut Ehrig, Gregor Engels, Francesco Parisi-Presicce, and Grzegorz Rozenberg,
editors. 2nd Int’l Conference on Graph Transformation (ICGT’04), number 3256
in Lecture Notes in Computer Science. Springer, 2004.

9. Hartmut Ehrig, Berthold Hoffmann, and Ilse-Renate Schmiedecke. A Graph-
Theoretical Model for Multi-Pass Parsing. In J.R. Mühlbacher, editor, Proc.
7th Conf. on Graph-Theoretical Concepts in Comp. Sci. (WG’81), pages 19–32,
München-Wien, 1982. Hanser Verlag.

10. Joost Engelfriet and Grzegorz Rozenberg. Node replacement graph grammars. In
Rozenberg [27], chapter 1, pages 1–94.

11. Herbert Göttler. Zweistufige Graphmanipulationssysteme für die Semantik von
Programmiersprachen. Dissertation, Universität Erlangen-Nürnberg, 1977. [In
German].

12. Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph grammars with
negative application conditions. Fundamenta Informaticae, 26:287–313, 1996.

13. Annegret Habel and Berthold Hoffmann. Parallel independence in hierarchical
graph transformation. In Ehrig et al. [8], pages 178–193.

14. Annegret Habel, Jürgen Müller, and Detlef Plump. Double-pushout graph trans-
formation revisited. Mathematical Structures in Computer Science, 11(5):637–688,
2001.

15. Annegret Habel and Detlef Plump. Relabelling in graph transformation. In Cor-
radini et al. [4], pages 135–147.

16. Reiko Heckel, Jochen M. Küster, and Gabriele Taentzer. Confluence of typed
attributed graph transformation systems. In Corradini et al. [4], pages 161–176.

17. Wolfgang Hesse. Two-level graph grammars. In Claus et al. [1], pages 255–269.
18. Berthold Hoffmann. Shapely hierarchical graph transformation. In Proc. IEEE

Symposia on Human-Centric Computing Languages and Environments, pages 30–
37. IEEE Computer Press, 2001.

19. Jan Willem Klop. Term rewriting systems. In S. Abramsky, Dov M. Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages
1–116. Oxford University Press, 1992.

20. Hans-Jörg Kreowski and Grzegorz Rozenberg. On structured graph grammars, I
and II. Information Sciences, 52:185–210 and 221–246, 1990.

21. Michael Löwe, Martin Korff, and Annika Wagner. An algebraic framework for the
transformation of attributed graphs. In Sleep et al. [31], pages 185–199.

22. Tom Mens, Serge Demeyer, and Dirk Janssens. Formalising behaviour-preserving
transformation. In Corradini et al. [4], pages 286–301.

23. M. Nagl. Graph-Grammatiken: Theorie, Anwendungen, Implementierungen.
Vieweg-Verlag, Braunschweig, 1979. In German.

24. Detlef Plump. Hypergraph rewriting: Critical pairs and undecidability of conflu-
ence. In Sleep et al. [31], pages 201–213.

Graph Transformation with Variables 115

25. Detlef Plump and Annegret Habel. Graph unification and matching. In Jan-
ice E. Cuny, Hartmut Ehrig, Gregor Engels, and Grzegorz Rozenberg, editors,
Proc. Graph Grammars and Their Application to Computer Science, number 1073
in Lecture Notes in Computer Science, pages 75–89. Springer, 1996.

26. Detlef Plump and Sandra Steinert. Towards graph programs for graph algorithms.
In Ehrig et al. [8], pages 128–143.

27. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. I: Foundations. World Scientific, Singapore, 1997.

28. Georg Schied. Über Graphgrammatiken, eine Spezifikationsmethode für Program-
miersprachen und verteilte Regelsysteme. Dissertation, Universität Erlangen-
Nürnberg, 1992. [In German].

29. Hans-Jürgen Schneider. On categorical graph grammars integrating structural
transformations and operations on labels. Theoretical Computer Science, 109:257–
274, 1993.

30. Andy Schürr. Programmed graph replacement systems. In Rozenberg [27], chap-
ter 7, pages 479–546.

31. M. Ronan Sleep, Rinus Plasmeijer, and Marko van Eekelen, editors. Term Graph
Rewriting, Theory and Practice. Wiley & Sons, Chichester, 1993.

32. Niels van Eetvelde and Dirk Janssens. Extending graph rewriting for refactoring.
In Ehrig et al. [8], pages 399–415.

Graph Transformation in Molecular Biology�

Francesc Rosselló1 and Gabriel Valiente2

1 Department of Mathematics and Computer Science,
Research Institute of Health Science (IUNICS), University of the Balearic Islands,

Palma de Mallorca, Spain
2 Department of Software, Technical University of Catalonia, Barcelona, Spain

cesc.rossello@uib.es, valiente@lsi.upc.edu

Abstract. In the beginning, one of the main fields of application of
graph transformation was biology, and more specifically morphology.
Later, however, it was like if the biological applications had been left aside
by the graph transformation community, just to be moved back into the
mainstream these very last years with a new interest in molecular biology.
In this paper, we review several fields of application of graph grammars in
molecular biology, including: the modelling of higher-dimensional struc-
tures of biomolecules, the description of biochemical reactions, and the
study of biochemical pathways.

1 Introduction

Once upon a time, biology was one of the main fields of application of graph
transformation, as it is proved by the maiden name (back in 1978) “Workshop on
Graph Grammars and Their Application to Computer Science and Biology” of
the current “International Conference on Graph Transformation.” Those early
applications of graph rewriting in biology mostly belonged to the field of mor-
phogenesis.

It is common knowledge that graphs describe structures in a simplified but
explicit way. In such descriptions, nodes correspond to substructures and arcs
represent relations among substructures. These arcs can be directed if the rela-
tion is so, labelled if one wants to record the kind of relation they stand for, and
so on. On their turn, nodes may be labelled to make explicit what they symbol-
ize, with labels that may be not only raw names, but also graphs themselves, or
other higher-order objects that can be used to abstract the details of the sub-
structure represented by the nodes in hierarchical structures. In any case, the
actual meaning of the nodes and the arcs will depend on the actual application.
Under this graphical representation of structures, the evolution of the latter can
be described by graph rewriting mechanisms, where one or several subgraphs are
replaced by other graphs in a way determined by evolution rules specified in a
graph grammar.

It was soon noticed that the development states of an organism can be de-
scribed as graphs in this way, with nodes representing for instance cells, body
� This work has been partially supported by the Spanish CICYT, project MAVERISH

(TIC2001-2476-C03-01) and by the Spanish DGES and the EU program FEDER,
project BFM2003-00771 ALBIOM.

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 116–133, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Graph Transformation in Molecular Biology 117

segments, or tissues, and arcs representing spatial or biological relations among
nodes. The nodes’ labels may be used to denote their type and the arcs’ la-
bels the type of interaction they stand for. The rules governing some aspect
of the development of such an organism can be described in this framework as
graph rewriting rules and gathered in a graph grammar. In a given application,
these rules can be fired simultaneously, in a synchronized way, or following some
priority order. It was precisely the possibility of modelling the development of
organisms where changes and segmentations take place simultaneously at differ-
ent places that lead to the notion of parallel graph grammars, also called graph
L-systems, as a generalization of string L-systems. They were introduced about
thirty years ago by K. Culik and A. Lindenmayer [12], previously hinted by B.
Mayoh [42], and they have been used since then in many applications of graph
rewriting in morphogenesis.

This was the first kind of applications of graph rewriting in biology, and, as
a matter of fact, the use of graph grammars as models of the development of
organisms is still alive. For instance, Beck, Benkö et al [2] have proposed recently
the use of graph transformation as an alternative to standard morphospace rep-
resentations and geometric morphometrics in the field of theoretical morphology,
while Tomita, Kurokawa and Murata [63] have introduced a new type of graph
rewriting systems, graph automata, as an alternative to graph L-systems in the
description of self-reproducing complex systems.

The success of graph grammars in the description of development pathways
can be seen as a simple instance of their pattern handling power. According to D.
Gernert [33], as soon as patterns are represented as graphs, graph grammars are a
natural tool to describe the fundamental operations related to patterns: pattern
generation, pattern transfer (the duplication of a certain subpattern and its
insertion in a different location), pattern recognition, pattern interpretation (the
influence of certain subpatterns on the behavior of whole system) and pattern
application (the transmission of a certain pattern to another location). A type
of graph grammars specifically tailored to handle patterns was proposed in [41].

Patterns that are conveniently modelled as graphs are found everywhere in
biology, and not only in morphology. Molecular biology is no exception: the in-
ner structure of chemical compounds [9], the tridimensional structure of nucleic
acids and proteins [64], the chemical reactions [31], the biochemical networks [45],
most formal components of molecular biology can be represented as graphs. This
fact must be added to what is called in sociology of science “the phenomenon of
the earlier tool” [33]: when some branch of mathematics reaches a high standard
or it becomes fashionable, then it will be surely used in many other sciences1.

1 Historians of science put more emphasis on the converse phenomenon, when a prob-
lem in some science gives rise to new a branch of mathematics or gives new life to
an already existing branch; for instance, the theory of Abstract Data Types gave a
boost to universal algebra. . . and H. Ehrig [24] had his share of guilt! Graph gram-
mars can also be seen as an example of this phenomenon, as they were born to solve
the problem of specifying the transformation of non linear structures in software
systems.

118 Francesc Rosselló and Gabriel Valiente

Therefore, it should not be a surprise that, with the recent thriving of compu-
tational molecular biology and computational systems biology, graph grammars
have initiated what will probably become a second silver age of applications in
biology.

The goal of this paper is to overview some applications of graph rewriting
in molecular biology. In the next section we shall write about the modelling
of tridimensional structures of nucleic acids and proteins. In Section 3 we will
cover the modelling of chemical compounds and chemical reactions in artificial
chemistries and then, in Section 4, the application of the latter in the analysis
of biochemical pathways. With this short survey we want to celebrate H. Ehrig
participation in the development of such a versatile specification and analysis
tool.

2 Higher-Dimensional Structures of Biomolecules

A biomolecule can always be viewed as an oriented chain of monomers, which
in turn can be mathematically described as a string over a suitable alphabet.
This string is called the primary structure of the molecule. For instance, a DNA
or an RNA molecule is a chain of nucleotides, each one of them characterized
by the base attached to it: adenine, A, cytosine, C, guanine, G, or thymine, T ,
(in RNA, thymine is replaced by uracil, U). Thus, the primary structure of a
DNA molecule is a string over {A,C,G, T}, while the primary structure of an
RNA molecule is a string over {A,C,G,U}. In a similar way, proteins are chains
of amino acids, and hence the primary structure of a protein is a string over a
20-letter alphabet, for instance

{A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y },

each letter representing an amino acid: A for Alanine, C for Cysteine, D for
Aspartic acid, etcetera.

In the cell and in vitro, each RNA molecule and protein folds into a tridi-
mensional structure, and it is this structure what determines its biochemical
function. The understanding of the folding process of these biomolecules and
the prediction of their tridimensional structure from their primary structure are
two of the main open questions in molecular biology.

As different levels of graining are suitable for different problems [51], we can
sometimes forget about the detailed description of these tridimensional struc-
tures and consider only a simplified model of them, like for instance their contact
structures. The contact structure [10] of a biomolecular tridimensional structure
is the set of all pairs of monomers that are either consecutive in the chain or,
in some specific sense, neighbors in the structure. Such a contact structure can
be mathematically described as an undirected graph without multiple edges or
self-loops, with sets of nodes representing the monomers numbered according to
their position along the chain and with edges of two types: those that join pairs
of consecutively numbered monomers, which are said to form the backbone of
the contact structure, and the other ones, which are called contacts.

Graph Transformation in Molecular Biology 119

The secondary structures of RNA molecules form a special class of contact
structures. In them, contacts represent the hydrogen bonds between pairs of non-
consecutive bases2 that hold together the tridimensional structure. A restriction,
called the unique bonds condition, is added to the definition of RNA secondary
structure [64]: a base can only pair with at most another base. It is usual to im-
pose a final restriction on RNA secondary structures, by forbidding the existence
of knots, i.e., of contacts that ‘cross’ each other. This restriction has its origin
in the first dynamic programming methods to predict RNA secondary struc-
tures [64, 71], but real RNA structures can contain knots, which are moreover
important structural elements of them. Contact structures with unique bonds
and knots can also be used to represent the local basic building blocks of protein
structures, like α-helixes or β-sheets, often called protein secondary structures.

Beyond secondary structures, the representation of the neighborhood in tri-
dimensional structures of RNA molecules and proteins needs contact structures
without unique bonds. The full contact structure of an RNA molecule may con-
tain sets of contacts that violate the unique bonds condition, like base triplets
and guanine platforms, and in the usually very complex contact structure of a
protein, each amino acid uses to be a neighbor of several amino acids.

Although the theory of formal languages was born in the 1950s, and then
almost simultaneously to modern molecular biology, (recall that F. Crick and
J. Watson discovered DNA’s double helix in 1953 and N. Chomsky published
Syntactic structures in 1957), it was not until the 1980s that formal grammars
methods started to be applied to biomolecular sequences [7]. A little later it was
also noticed that string grammars could also be used to model and study not only
the primary structure of biomolecules, but also certain aspects of their contact
structures, as for instance secondary structures of RNA molecules [59, 58]. In
these approaches, an RNA secondary structure is represented by a derivation tree
of a certain context free grammar, while RNA contact structures with unique
bonds and knots must be generated by new types of string grammars [53]. Many
more works have focused on RNA secondary structures, or, more in general,
contact structures with unique bonds, which can be easily described as strings
over a complemented language. These include a few attempts to model and study
simple aspects of the secondary structures of proteins using string grammar
methods. Two typical examples are the SMART [57] and the TOPS [68] systems.

The goal of the representation of contact structures of biomolecules by means
of grammars is to contribute to both main questions about contact structures of
biomolecules mentioned above. From the theoretical point of view, one expects
to deduce properties of their folding mechanisms from the performance of these
grammars and the accuracy with which they generate real structures. In this
way, these grammars would yield to a better understanding of the folding pro-
cess of nucleic acids and proteins. From the practical point of view, stochastic
versions of these grammars can be used to predict contact structures. Recall
that a stochastic grammar specifies a probability for each production, and in

2 Actually, a hydrogen bond can only form between bases that are at least four posi-
tions apart in the chain.

120 Francesc Rosselló and Gabriel Valiente

Fig. 1. Two RNA folding processes from [28].

this way it assigns a probability to every derivation. Once a grammar is trained,
i.e., its probability parameters are tuned on a set of training examples, it can
be used to predict the contact structure corresponding to a given primary struc-
ture as the most likely derivation of a structure with this primary structure. In
the case of string regular grammars, this last step can also done using the very
popular, and equivalent, formalism of Hidden Markov Models [21], while in the
case of stochastic context-free grammars ad-hoc parsing methods are used [56].
Stochastic graph transformation was recently introduced [35].

Nevertheless, it is clear that it will be difficult to go beyond these results
using string grammars in the study of protein structures, because of their high
complexity [60]. As contact structures of proteins are graphs, the clear candidate
to generate them are graph grammars.

There have been several important advances in the theoretical study of the
protein folding problem using graph grammars in a hidden way. In these ap-
proaches, “rules take the form of local structure generators, from which structure
evolves via iterative application of elementary steps” [48, p. 409]. Actually, the
first rule-based approach to protein folding [52] dates back to 1977, and consists
of several explicitly described composition rules for the formation, growth and
coalescence of β-sheets that could perfectly be formalized as graph rewriting
rules. Another description of the formation of protein domains3 and their rel-
ative position as the result of the hierarchical application of explicit rules that
are reminiscent of graph transformation rules is due to Lesk [40]. Rule-based
descriptions of folding processes of RNA molecules have been proposed [38, 36,
28]; cf. Figure 1.

A paradigmatic, and very interesting, work in this line of research is Przyty-
cka et al’s rule-based description of a certain class of protein contact structures,
the so-called all-β proteins, that admit a high variety of topologies and are dif-
ficult to predict from their primary structure. These researchers use a grammar
consisting on four composition rules, or rather four families of composition rules,
motivated by biophysical considerations that make them conjecture that their

3 A domain of a protein is a piece that folds into a stable higher order contact structure.

Graph Transformation in Molecular Biology 121

Fig. 2. A derivation of Przytycka et al’s grammar.

rules have physical correlates in the actual mechanism of protein folding [48].
Contrary to all previous rule-based approaches to protein contact structures,
their rules are explicitly presented as a graph grammar. For the purpose of this
grammar, all-β proteins are represented as graphs with nodes corresponding to
β-sheets and two types of edges: there are domain edges, that are generated by
the application of the folding rules and combine the β-sheets to generate more
complex folds, and neighbor edges, that represent the spatial juxtaposition of
non-consecutive β-sheets after the application of a rule by means of a closure
operation that can also be represented by a graph rewriting rule. The start graph
has only neighbor edges between consecutive β-sheets and no domain edge, and
successive applications of the rules group β-sheets by means of domain edges into
more complex domains and connect β-sheets that are distant in the sequence but
that become juxtaposed in space due to spatial restrictions. Figure 2 displays a
derivation of this graph grammar, extracted from [48].

What can the graph grammar community bring to this line of research? To
our opinion, it is the biologists’ task to propose new rules of formation of contact
structures of RNA molecules and proteins, but graph-grammarians could and
should collaborate, among other tasks, in formalizing these rules and analyzing
the redundancies that appear in the grammars; in determining the properties,
for instance related to parallelism and concurrency, of the rewriting systems they
define, which might lead to uncovering properties of the real folding process; and
in developing general methods to characterize the sets of structures generated
by any given set of biomolecules’ folding rules, which might give new insights
not only on folding processes but also on the evolution mechanisms.

As far as the prediction of protein contact structures goes, Abe and Mamit-
suka [1] proposed in 1997 a stochastic tree grammar to predict β-sheets in a way
similar to those developed for RNA secondary structures using string grammars
that we recalled above. Stochastic versions of more general graph grammars will
be necessary to predict contact structures of RNA molecules and proteins beyond
secondary structures using this kind of methods. To do that, one should find a

122 Francesc Rosselló and Gabriel Valiente

set of rules, perhaps in the spirit of those discussed in the previous paragraphs,
that capture the formation of the different components of the contact structures
of the target biomolecules as well as their relation; one should develop an efficient
technique to estimate the grammar’s parameters from a set of training graphs;
and one should devise an efficient method to find the most probable structure
of a protein given the grammar.

3 Artificial Chemistries

Roughly speaking, an artificial chemistry [20, 62] is a computational model of a
chemical system. It consists of a set (a soup) of objects, called molecules, a set
of reaction rules that produce new molecules from already existing molecules,
and the definition of the dynamics of the system, that specifies the application
conditions of the rules, the preference in their application, etc. Against other
types of computational models, the goal of an artificial chemistry is to answer
qualitative, rather than quantitative, questions: the existence of steady, or closed
and self-maintaining, states, the size and diversity of the soup at some moment,
etc.

The nature of the molecules, the reactions, and the dynamics of an artifi-
cial chemistry can be quite diverse. For instance, in one of the first artificial
chemistries, Walter Fontana’s AlChemy [29], objects were λ-terms, a reaction
consisted of the application of the first λ-term to the second one, and the dy-
namics followed a combination of randomness (in the selection of the pair of
molecules) and an explicit algorithm (to decide whether the reaction took place
or not).

Now, although artificial chemistries can be, and have been, used to model
many kinds of systems, their primary targets are ‘real’ chemistries, in which case
molecules should be representations of chemical compounds, and reaction rules
of chemical reactions. The chemical description of a ‘real’ molecule can be made
at different levels of resolution:

– A molecular descriptor uniquely identifies a molecule in a biochemical data-
base. For instance, beta-D-Glucose is entry number C00221 in the KEGG
database [37].

– A molecular formula indicates the number of each type of atom in a molecule.
For instance, beta-D-Glucose has the molecular formula C6H12O6.

– A constitutional formula or chemical graph indicates which pairs of these
atoms are bonded. For instance, beta-D-Glucose has the following chemical
graph displayed in Figure 3 (left). Chemical graphs of molecules can be
represented as strings using the SMILES language [65–67].

– A structural formula refines a chemical graph by indicating those stereo-
chemical distinctions that are required to uniquely identify a molecule. For
instance, Figure 3 (right) downloaded from the KEGG database, displays the
structural formula of beta-D-Glucose; in it, plain lines depict bonds approxi-
mately in the plane of the drawing, bonds to atoms above the plane are shown
with a bold wedge, and bonds to atoms below the plane are shown with short

Graph Transformation in Molecular Biology 123

CH

CH

OCH2

CHHO

CHHO

CH

OH

OH

OH

Fig. 3. Beta-D-Glucose’s chemical graph (left) and structural formula (right).

parallel lines. This representation allows to distinguish beta-D-Glucose from
other chemical compounds with the same chemical graph. D-glucose and L-
glucose are mirror images and therefore they share the same chemical graph.
Further, there are two possible orientations for the upper-right OH group,
which is linked to the CH group number 7 in the ring structure: below the
plane of the drawing (alpha-D-glucose) and above the plane of the drawing
(beta-D-glucose).

A chemical description at the level of molecular descriptors or molecular
formulas is useful for database retrieval purposes, and they can be used in an
artificial chemistry when the knowledge of the structure of the chemical com-
pounds is not necessary. In this case, molecular descriptors and formulas play the
roles of simple labels, but then chemical reactions cannot be defined by means
of local interactions of the atoms of the substrate’s molecules.

Chemists have used chemical graphs to distinguish isomers since the second
half of the nineteenth century. In first course Organic Chemistry classes, chem-
ical reactions are explained in terms of constitutional formulas and a handful
of reaction mechanisms, which corresponds to (chemical) graphs and rules to
modify them by means of breaking, forming and changing the type of bonds.
This leads in a natural way to artificial chemistries based on labelled graphs as
molecules and graph transformation rules as reactions.

Several such artificial chemistries have been proposed so far. J. McCaskill
and U. Niemann [44] proposed in 2000 an artificial chemistry for DNA and
RNA processing based on graph transformation. In it, molecules are labelled
graphs of a specific type, called variable graphs, that can represent nucleotides,
nucleic acid single or double strands, or sets of all the latter. The reaction rules
represent several types of chemical reactions: unimolecular (only one molecule is
involved), bimolecular (two molecules react together) and enzymatic (a special
type of unimolecular reaction that represents the attachment or the removal
of an enzyme at a specific position of a molecule). These reaction rules are
graph transformation rules that act following the usual matching-replacement-
embedding schema, with some properties of the single-pushout approach [23].
All other reactions, including complex enzymatic reactions, can be decomposed
into a series of applications of these reaction rules. The dynamics of the system
simply consists of performing all possible reactions through a branching process
to obtain all possible derivation paths. The final goal is to predict all libraries

124 Francesc Rosselló and Gabriel Valiente

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Fig. 4. The Toy model double-pushout rule for the Diels-Alder reaction.

of nucleic acids arising from a given set of strands by means of a given set of
enzymatic reactions. The authors have implemented their artificial chemistry in
a computer program called MOLGRAPH.

More recently, an artificial chemistry for organic chemistry called the Toy
Model has been developed by G. Benkö, C. Flamm and P. Stadler [3, 5, 4]. In it,
and following [46], molecules are orbital graphs : undirected graphs with nodes
representing outer atom orbitals, labelled by the atomic element and the hy-
bridization type of the orbital, and edges representing overlaps of adjacent or-
bitals. These orbital graphs represent sets of chemical compounds and they are
uniquely determined by the chemical graphs of these chemical compounds, but
they moreover incorporate chemically meaningful energy functions that allow
the computation of reaction energies.

The reactions rules translate to this level of abstraction the basic organic
reaction mechanisms as graph transformation rules that preserve the vertex la-
bels and the total degrees of corresponding nodes, to capture the conservation of
atoms and valences in organic reactions. These graph rewriting rules are actu-
ally double pushout production rules [11] over orbital graphs: the left-hand side,
context, and right-hand side are orbital graphs with the same labelled nodes;
the left-hand side graph represents the substrate, the right-hand side graph rep-
resents the product and the context graph has as edges those appearing in both
the substrate and the product with the same type.

Consider4, for example, the Diels-Alder reaction [19], one of the most impor-
tant reactions in organic chemistry. The substrate of the reaction, 1,3-butadiene
(C4H6) and ethylene (C2H4), is combined to form cyclohexene (C6H10), as de-
scribed by the double-pushout transformation rule displayed in Figure 4.

A forward application of the previous double-pushout transformation rule
to 1,3-butadiene (C4H6) and dihydro-2,5-furandione (C4H4O3) to form 1,3-iso-
benzofurandione (C8H8O3), corresponds to the double-pushout transformation
in Figure 5.

In this artificial chemistry, the rules can be applied randomly or according to
the reactivity index of the matching step, computed using suitable formulas from
the energy functions, that can for instance be translated into a reaction rate.
This graph rewriting system has been implemented in Maude as a client/server
application. The final goal is again to compute extensively all possible results
of any specific instance of this artificial chemistry, in this case under the form

4 Usually, hydrogen atoms and the corresponding bonds are not represented explicitly
in constitutional formulas.

Graph Transformation in Molecular Biology 125

C

C

C

C

C

C

O

C

C

O

O

C

C

C

C

C

C

O

C

C

O

O

C

C

C

C

C

C

O

C

C

O

O

Fig. 5. A reaction in the Toy model.

C

C

C

C

C

C

2 : 1 0 : 1

1 : 2

2 : 1 0 : 1

2 : 1

Fig. 6. The explicit chemical reaction for the Diels-Adler reaction.

of large chemical reaction networks defined by an initial set of molecules and
the set of allowed reactions. We shall talk more on chemical networks, which are
graphs themselves, in the next sections.

We have recently started to develop an artificial network based on graph
relabeling grammars [55, 54], also with the final aim of studying biochemical
networks. In our approach, and following Fujita’s imaginary transition struc-
tures [30, 32, 31] to model chemical reactions, molecules are generalized chemical
graphs, disjoint unions of chemical graphs with possibly some extra edges la-
belled 0. Reactions are then described as edge relabeling graph transformation
rules. These reactions can be explicit and implicit.

An explicit chemical reaction is an undirected graph whose nodes are labeled
by means of chemical elements and whose edges are labeled by the combination
of two natural numbers: a substrate weight and a product weight. No edge can
have both substrate and product weights equal to zero and, for all nodes, the
total substrate weight (over all edges incident with the node) cannot be equal to
zero and must coincide with the total product weight: it will be actually equal to
the valence of the corresponding atom. An application of a generalized chemical
reaction replaces the substrate weights by the product weights in the matching
subgraph.

For instance, the aforementioned Diels-Alder reaction would be represented
by the explicit chemical reaction shown in Figure 6, where a label of the form
x : y next to an edge means that the edge has substrate weight x and product
weight y.

Then, the aforementioned reaction of 1,3-butadiene (C4H6) and dihydro-2,5-
furandione (C4H4O3) to form 1,3-isobenzofurandione (C8H8O3) would corre-
spond to the edge relabeling graph transformation described in Figure 7.

Explicit chemical reactions can be seen as edge relabeling versions of the Toy
Model’s double-pushout transformation rules. The novelty is that they admit im-

126 Francesc Rosselló and Gabriel Valiente

plicit versions. An implicit chemical reaction is a compact representation of an
explicit chemical reaction by means of a finite set of elementary edge relabeling
operations that, when applied to a generalized chemical graph taking into ac-
count that the total degree of each node must remain constant and that no
edge labeled 0 can still be labeled 0 after the application, determine uniquely
the product chemical graph. Our conjecture is that, at least for reactions with
molecules only involving hydrogen, oxygen, nitrogen and carbon, any one of the
relabeling operations of the form 0 : 1 in an explicit chemical reaction forms an
implicit chemical reaction for all its applications. For the moment we still have
not found a counterexample (don’t get fooled by Figure 7, which seems to be
a counterexample: to simplify the representation, we omitted in it the weighted
bonds between hydrogen atoms). We have implemented our generalized chemical
graphs and reactions on top of PerlMol, and together with L. Félix, we are cur-
rently working on the dynamics and application of this artificial chemistry [27].

M. Yadav, B. Kelley and S. Silverman have recently written a paper [69]
where they discuss several aspects of artificial chemistries based on graph trans-
formation rules and designed to model ‘real’ chemistries. They argue that the
reaction rules in any such artificial chemistry should carry associated relevant
physical aspects (like temperatures, concentrations, nature and properties of the
solvent, etc.), preconditions (like the necessary solvent or any other molecule
that must be present or absent in order the reaction to take place), reactivity
rates (it is already considered in the Toy Model), and inner mechanisms (similar
to the implicit chemical reactions) of the chemical reactions. They also discuss
several possible applications of these artificial chemistries: Computer Aided Or-
ganic Synthesis, the generation of exhaustive chemical compound libraries (from
a given set of molecules through a permitted set of reaction rules and up to a
fixed number of steps), and the modelling and analysis of chemical networks (the
topic of the next section).

4 Symbolic Systems Biology

Cells are complex but organized chemical engines that carry out a large num-
ber of transformations, called biochemical reactions. The representation of a
cellular process as an ordered set of biochemical reactions is usually called a
biochemical network or a biochemical pathway [45]. There are many types of bio-
chemical pathways, like metabolic (which use some molecules to produce others),
regulatory (where proteins regulate the expression of genes that produce other

C

C

C

C

C

C

O

C

C

O

O

2 0

1

2 0

2

1

1

2

2

1

1

C

C

C

C

C

C

O

C

C

O

O

1 1

2

1 1

1

1

1

2

2

1

1

Fig. 7. An explicit chemical reaction in action.

Graph Transformation in Molecular Biology 127

proteins), or signalling (which transmit information from the environment to
intracellular targets). Biochemical pathways can range in size from involving a
few molecules to the complete network giving life to a complex organism, where
billions of molecules interact.

The progress in molecular biology has made possible the detailed description
of the main molecular components of living systems and their interactions. Nowa-
days’ experimental molecular biology is producing vast amounts of quantitative
data on biochemical networks that may support simulation-based research but
also that need of theoretical models and the tools related to them, as well as their
computer implementations, to interpret them and to make in a systematic way
unambiguous descriptions and predictions that, by guiding new experiments,
lead to a better understanding of the cellular processes [39].

The mathematical analysis of biochemical pathways has been approached
through a large sort of techniques aiming at different goals. The traditional way
of modelling them has been by means of quantitative methods based on differ-
ential equations. This is the formalism most widely used in science and engi-
neering to model dynamical systems, and thus (recall the principle of the earlier
tool mentioned in the introduction) also in molecular biology. In the simplest
models of biochemical processes based on ordinary differential equations, the
evolution of the concentrations of molecules is modeled by means of rate equa-
tions that express the rate of production of each molecule as a function of the
concentrations of the other molecules, but other types of differential equations
have also been used [6]. These equations can be solved when possible, or treated
using numerical methods, and they are used to predict quantitative properties of
the networks. They have shown to be fundamental in the understanding of cell
processes, but they have also some drawbacks: it is difficult to obtain the input
experimental data they need; the actual models are difficult to solve or simu-
late, as well as to understand intuitively; they assume the concentrations vary
continuously, which at the cellular scale numbers of molecules is questionable;
and they assume that these concentrations vary deterministically, which may
be compromised by the stochastic behavior of the timing of cellular events, due
again to the small numbers of molecules involved in the reactions [43]. Other
methods include the use of discrete stochastic methods like stochastic master
equations and bayesian networks.

The last years it has been observed that the biochemical reactions that take
place in a cell behave like computation steps performed in a concurrent, non-
linear and asynchronous way [50]. This has motivated the introduction of ad-
vanced formal methods from computer science to model and study biochemical
networks,from their automated reconstruction to the analysis of the networks ob-
tained in this way. This has led to the new field of research of symbolic systems
biology [39, 47]. Some of the problems considered in this area can be attacked
using graph transformation techniques

The most natural way to represent a biochemical network is, as the name
‘network’ hints, a directed graph with molecules as nodes and interactions as
arcs. Many operations on these graphs can be carried out to analyze biochemical

128 Francesc Rosselló and Gabriel Valiente

pathways: a search for a path between two genes in a regulatory pathway may
reveal missing regulatory interactions; cycles in these networks mean feedback
relations; clustering algorithms can be used to group together molecules with
similar temporal reaction patterns.

Consider for instance metabolic pathways. In their graphical representation,
nodes symbolize molecules and the arcs stand for applications of reaction rules
in a suitable artificial chemistry [18]. If the molecules involved in a metabolic
network are described as graphs and the reaction rules are graph rewriting rules,
then graph transformation techniques can be used in a natural way.

One of the most important problems in metabolic pathway analysis is path-
way synthesis : the construction of one or all pathways that can transform a given
set of substrate molecules into a given product molecule. This problem is usually
solved by means of retrosynthetic analysis using the reactions rules available. In
order to synthesize meaningful metabolic pathways and to spot them in a graph-
ical representation of the network, the so-called combinatorially feasible reaction
pathways are defined by means of a set of axioms in [26, 61]. These axioms can be
easily formalized in an artificial chemistry setting: for their translation in terms
of generalized chemical graphs and explicit (or implicit) chemical reactions, see
[55]. Then, the formal version of the pathway synthesis problem on a graphi-
cal representation of a metabolic network is to find one or all combinatorially
feasible reaction pathways that, using as substrate as subset of the given set of
substrates, produces the products.

In a graphical representation of a metabolic pathway with nodes symbolizing
graphs and arcs symbolizing graph rewriting rules, the metabolic pathway syn-
thesis problem can be solved using graph transformation by subjecting the target
graph to a disconnection process by means of the reverses of the allowed graph
rewriting rules and with application conditions that translate the satisfaction
of the axioms of combinatorially feasible reaction pathways in this backwards
construction. As a result, the target graph is transformed into a sequence of
‘simpler’ graphs in a stepwise manner. The aforementioned axioms guarantee
that the repetition of this process eventually will result in a hierarchical synthe-
sis tree rooted by the target graph, and then it only remains to check whether
the set of graphs corresponding to the given substrate consists of leaves of this
tree.

A graph transformation system for the analysis of metabolic pathways is be-
ing developed by G. Valiente at the Technical University of Catalonia. The sys-
tem is based on a database of explicit chemical reactions, a database of metabolic
pathways, and a chemical graph transformation system. The efficient implemen-
tation of the latter system relies on the CANON method for labeling a molecular
structure with canonical labels [65–67], in which a molecular structure is treated
as a graph with nodes (atoms) and edges (bonds), and each atom is given a
unique numerical label on the basis of the topology of the molecular structure.

The analysis of single metabolic, or, in general, biochemical networks must
also be complemented with an investigation of the interactions between related
networks. This could be done by composing them by means of rules abstracting

Graph Transformation in Molecular Biology 129

these interactions. Biochemical networks being represented as graphs, their com-
position could be described as the application of graph rewriting rules, and hence
graph transformation techniques could be used to analyze both the composition
process and the resulting network. A particular example, the growth of metabolic
networks obtained in a formal way from the repetition of a single biochemical
reaction using graph transformation, is considered in [3]. There are already logic
rewriting models that can be used to generate biochemical pathways, like the
Pathway Logic [25], which has been designed to model and analyze signaling
pathways. We mention specifically this formalism because we think that it can
be translated into a graph transformation system.

Graph transformation can also be used in the formal modelling of cellular
processes. Many formal approaches to develop formal computational models of
the biochemical processes that take place in the cell have been based on process
algebras: Petri nets [34, 70], CCS [14], π-calculus [49, 13], brane-calculi [8], κ-
calculus [16]. All these approaches represent the molecules in the system by
abstract symbols, not taking any care of their inner structure.

Several formal models of cellular biochemical processes specifically designed
to model protein-protein interactions have been recently proposed. Pathway
Logic has already been mentioned. Another very interesting one is the graphi-
cal π-calculus [15, 17]. In it, proteins can be seen as nodes with a set of sites,
numbered hooks where edges can be attached to them. Then, protein complexes
are seen as graphs obtained by connecting pairs of nodes by means of edges
attached to sites; not all sites of proteins need to have edges attached, but even
these orphan sites must be taken into account in the rules’ application condi-
tions. Sets of protein complexes are called solutions. These solutions evolve by
means of reactions that reactions take place when a sub-solution, called a re-
actant, has a special shape: then, this reactant changes to a new reactant and
binds to the rest of the solution in a way specified by the rewriting rules. Danos
and Leneve carefully define the syntax and the rewriting rules for this system in
a process-algebra style and, among other things, they give an implementation in
π-calculus. The rewriting rules they propose can also be translated into graph
rewriting rules. This surely would give a new semantic to this system and would
bring new tools to study its properties. We believe that the graph transforma-
tion formalisms and techniques could be used in symbolic systems biology to
model specific systems where the graphic nature of the molecules involved and
the nature of the interaction between them ask for it.

5 Conclusion

Graph transformation was born more than 30 years ago with an eye on its ap-
plications, but since then it has become a very popular mathematical field of re-
search in theoretical computer science. The obvious fact that graphs can be used
to model many kind of structures and graph rewriting can be used to model the
transformation of these structures, with some contribution of the phenomenon of
the earlier tool, have made graph rewriting to find many applications, including
in molecular biology.

130 Francesc Rosselló and Gabriel Valiente

We have overviewed several fields of application of graph rewriting techniques
in molecular biology: the modelling of biomolecules’s tridimensional structures,
the definition of artificial chemistries and the analysis of biochemical networks.
There are many other applications that have been omitted because of the lack
of space. For instance, we are sure that everybody has in her or his mind the
formal description of gene assembly in ciliates [22] as a graph rewriting system.
We just wanted to call the attention of the graph transformation community,
mostly oriented to software systems specification these days, and to invite them
to catch a glimpse of a completely different world of possible applications.

References

1. Abe, N., Mamitsuka, H.: Predicting protein secondary structure using stochastic
tree grammars. Machine learning 29 (1997) 275–301

2. Beck, M., Benkö, G., G. Eble, C.F., Müller, S., Stadler, P.: Graph grammars as
models for the evolution of developmental pathways. In Schaub, H., Detje, F.,
Brüggemann, U., eds.: The Logic of Artificial Life: Abstracting and Synthesizing
the Principles of Living Systems, IOS Press (2004) 8–15

3. Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. Jour-
nal of Chemical Information and Computer Sciences 43 (2003) 1085–1093

4. Benkö, G., Flamm, C., Stadler, P.F.: Multi-phase artificial chemistry. In Schaub,
H., Detje, F., Brüggemann, U., eds.: The Logic of Artificial Life: Abstracting and
Synthesizing the Principles of Living Systems, IOS Press (2004) 16–22

5. Benkö, G., Flamm, C., Stadler, P.F.: Generic properties of chemical networks: Ar-
tificial chemistry based on graph rewriting. In: Proc. 7th European Conf. Advances
in Artificial Life. Volume 2801 of Lecture Notes in Computer Science., Springer-
Verlag (2003) 10–19

6. Bower, J.M., H. Bolouri, e.: Computational modeling of genetic and biochemical
networks. MIT Press, Cambridge, MA (2001)

7. Brendel, V., Busse, H.G.: Genome structure described by formal languages. Nucleic
Acid Research 12 (1984) 2561–2568

8. Cardelli, L.: Brane calculi. In: Proc. Workshop Concurrent Methods in Molecu-
lar Biology. Electronic Notes in Theoretical Computer Science, Elsevier (2004) to
appear.

9. Cayley, A.: On the mathematical theory of isomers. Philosophical Magazine 47
(1874) 444–446

10. Chan, H.S., Dill, K.A.: Compact polymers. Macromolecules 22 (1989) 4559–4573
11. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic

approaches to graph transformation. Part I: Basic concepts and double pushout
approach. In Rozenberg, G., ed.: Handbook of Graph Grammars and Computing
by Graph Transformation, Volume 1: Foundations. World Scientific (1997) 163–246

12. Culik II, K., Lindenmayer, A.: Parallel rewriting on graphs and multidimensional
development. Int. Journ. of General Systems 3 (1976) 53–66

13. Curti, M., Degano, P., Baldari, C.: Causal π-calculus for biochemical modelling.
In: Proc. 1st Int. Workshop Computational Methods in Systems Biology. Volume
2602 of Lecture Notes in Computer Science., Springer-Verlag (2003) 21–33

14. Danos, V., Krivine, J.: Formal molecular biology done in CCS. In: Proc. Work-
shop Concurrent Methods in Molecular Biology. Electronic Notes in Theoretical
Computer Science, Elsevier (2004) to appear.

Graph Transformation in Molecular Biology 131

15. Danos, V., Laneve, C.: Graphs for core molecular biology. In: Proc. 1st Int. Work-
shop Computational Methods in Systems Biology. Volume 2602 of Lecture Notes
in Computer Science., Springer-Verlag (2003) 34–46

16. Danos, V., Laneve, C.: Core formal molecular biology. In: Proc. 12th European
Symposium on Programming. Volume 2618 of Lecture Notes in Computer Science.,
Springer-Verlag (2003) 302–318

17. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science
325 (2004) 69–110

18. Deville, Y., Gilbert, D., van Helden, J., Wodak, S.J.: An overview of data models
for the analysis of biochemical pathways. Briefings in Bioinformatics 4 (2003) 246–
259

19. Fringuelli, F., Taticchi, A.: The Diels-Alder Reaction: Selected Practical Methods.
John Wiley & Sons, Chichester, England (2002)

20. Dittrich, P., Ziegler, J., Banzhaff, W.: Artificial chemistries—a review. Artificial
life 7 (2001) 225–275

21. Durbin, R., Krogh., A., Mitchison, G., Eddy, S.: Biological sequence analysis: Prob-
abilistic models of proteins and nucleic acids. Cambridge Univ. Press, Cambridge
(1998)

22. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rosenberg, G.: Computation
in Living Cells: Gene Assembly in Ciliates. Natural computing series. Springer-
Verlag, Berlin (2004)

23. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.:
Algebraic approaches to graph transformation. part II: Single pushout approach
and comparison with double pushout approach. In Rozenberg, G., ed.: Handbook
of Graph Grammars and Computing by Graph Transformation. Volume 1: Foun-
dations. World Scientific (1997) 247–312

24. Ehrig, H., Mahr, B.: Fundamentals of algebraic specification I: Equations and initial
semantics. Springer Verlag (1985)

25. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway
logic: Symbolic analisys of biological signalling. In: Pacific symposium on Biocom-
puting 2001, World Scientific (2001) 400–412

26. Fan, L.T., Bertók, B., Friedler, F.: A graph-theoretic method to identify candi-
date mechanisms for deriving the rate law of a catalytic reaction. Computers &
Chemistry 26 (2002) 265–292

27. Félix, L., Rosselló, F., Valiente, G.: Artificial chemistries and metabolic pathways.
In Messeguer, X., Valiente, G., eds.: Proc. 5th Annual Spanish Bioinformatics
Conference, Barcelona, Technical University of Catalonia (2004) 56–59

28. Flamm, C., Fontana, W., Hofacker, I., Schuster, P.: Kinetic folding of RNA at
elementary step resolution. RNA 6 (2000) 325–338

29. Fontana, W.: Algorithmic chemistry. In: Artificial Life II. Volume 47 of Santa Fe
Institute Studies in the Sciences of Complexity., Addison-Wesley (1992) 159–210

30. Fujita, S.: Description of organic reactions based on imaginary transition struc-
tures. Part 1–5. Journal of Chemical Information and Computer Sciences 26 (1986)
205–242

31. Fujita, S.: Computer-Oriented Representation of Organic Reactions. Yoshioka
Shoten, Kyoto (2001)

32. Fujita, S.: Description of organic reactions based on imaginary transition struc-
tures. Part 6–9. Journal of Chemical Information and Computer Sciences 27 (1987)
99–120

33. Gernert, D.: Graph grammars as an analytical tool in physics and biology. Biosys-
tems 43 (1997) 179–187

132 Francesc Rosselló and Gabriel Valiente

34. Goss, P., Peccoud, J.: Quantitative modelling of stochastic systems in molecular
biology using stochastic Petri nets. Proc. Nat. Acad. Sc. 95 (1998) 6750–6755

35. Heckel, R., Lajios, G., Menge, S.: Stochastic graph transformation systems. In:
Proc. 2nd Int. Conf. Graph Transformation. Volume 3256 of Lecture Notes in
Computer Science., Springer-Verlag (2004) 210–225

36. Hofacker, I., Fontana, W., Stadler, P., Bonhoeffer, L., Tacker, M., Schuster, P.:
Fast folding and comparison of RNA secondary structures. Monatsh. Chem. 125
(1994) 167–188

37. Kanehisa, M., Goto, S.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic
Acids Research 28 (2000) 27–30

38. Kister, A., Magarshak, Y., Malinsky, J.: The theoretical analysis of the process of
RNA molecule self-assembly. BioSystems 30 (1993) 31–48

39. Kitano, H.: Computational systems biology. Nature 420 (2002) 206–210
40. Lesk, A.M.: Systematic representation of protein folding patterns. J. Mol. Graph.

13 (1995) 159–164
41. Mayoh, B.: On patterns and graphs. Preprint (1995)
42. Mayoh, B.: Multidimensional Lindenmayer organisms. In: L-systems. Volume 15

of Lecture Notes in Computer Science., Springer-Verlag (1974) 302–326
43. McAdams, H., Arkin, A.: It’s a noisy business! Genetic regulation at the nanomolar

scale. Trends in Genetics 15 (1999) 65–69
44. McCaskill, J., Niemann, U.: Graph replacement chemistry for DNA processing. In:

Proc. 6th Int. Workshop DNA-Based Computers. Volume 2054 of Lecture Notes
in Computer Science., Springer-Verlag (2001) 103–116

45. Michal, G., ed.: Biological Pathways: An Atlas of Biochemistry and Molecular
Biology. John Wiley & Sons, New York (1999)

46. Polanski, O.: Graphs in quantum chemistry. MATCH 1 (1975) 183–195
47. Priami, C., ed.: Proc. 1st Int. Workshop Computational Methods in Systems Biol-

ogy. Volume 2602 of Lecture Notes in Computer Science., Springer-Verlag (2003)
48. Przytycka, T., Srinivasan, T., Rose, G.: Recursive domains in proteins. Protein

Science 11 (2002) 409–417
49. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochem-

ical processes using the π- calculus process algebra. In: Pacific symposium on Bio-
computing 2001, World Scientific (2001) 459–470

50. Regev, A., Shapiro, E.: Cells as computation. Nature 419 (2002) 343
51. Reidys, C., Stadler, P.F.: Bio-molecular shapes and algebraic structures. Comput-

ers & Chemistry 20 (1996) 85–94
52. Richardson, J.: β-sheet topology and the relatedness of proteins. Nature 268 (1977)

495–500
53. Rivas, E., Eddy, S.R.: The language of RNA: a formal grammar that includes

pseudoknots. Bioinformatics 16 (2000) 334–340
54. Rosselló, F., Valiente, G.: Chemical graphs, chemical reaction graphs, and chemical

graph transformation. In: Proc. 2nd Int. Workshop Graph-Based Tools. Electronic
Notes in Theoretical Computer Science, Elsevier (2004) to appear.

55. Rosselló, F., Valiente, G.: Analysis of metabolic pathways by graph transformation.
In: Proc. 2nd Int. Conf. Graph Transformation. Volume 3256 of Lecture Notes in
Computer Science., Springer-Verlag (2004) 70–82

56. Sakakibara, Y., Brown, M., Hughey, R., Mian, I., Sjolander, K., Underwood, R.,
Haussler, D.: Stochastic context-free grammars for tRNA modeling. Nucleic Acids
Research 22 (1994) 5112–5128

57. Schultz, J., Milpetz, F., Bork, P., Ponting, C.: SMART, a simple molecular archi-
tecture research tool. Proc. Nat. Acad. Sc. 95 (1998) 5857–5864

Graph Transformation in Molecular Biology 133

58. Searls, D.: The computational linguistics of biological sequences. In: Artificial In-
telligence and Molecular Biology, AAAI Press (1993) 47–120

59. Searls, D.: Formal language and biological macromolecules. In: Mathematical Sup-
port for Molecular Biology. Volume 47 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science., AMS (1999) 128–141

60. Searls, D.: The language of genes. Nature 420 (2002) 211–217
61. Seo, H., Lee, D.Y., Park, S., Fan, L.T., Shafie, S., Bertók, B., Friedler, F.: Graph-

theoretical identification of pathways for biochemical reactions. Biotechnology Let-
ters 23 (2001) 1551–1557

62. Speroni, P.: Artificial chemistries. Bull. EATCS 76 (2002) 128–141
63. Tomita, K., Kurokawa, H., Murata, S.: Graph automata: natural expression of self

reproduction. Physica D 171 (2002) 197–210
64. Waterman, M.S., Smith, T.F.: RNA secondary structure: a complete mathematical

analysis. Math. Biosci. 42 (1978) 257–266
65. Weininger, D.: SMILES, a chemical language and information system. 1. Intro-

duction to methodology and encoding rules. Journal of Chemical Information and
Computer Sciences 28 (1988) 31–36

66. Weininger, D., Weininger, A., Weininger, J.L.: SMILES. 2. Algorithm for genera-
tion of unique SMILES notation. Journal of Chemical Information and Computer
Sciences 29 (1989) 97–101

67. Weininger, D.: SMILES. 3. DEPICT. Graphical depiction of chemical structures.
Journal of Chemical Information and Computer Sciences 30 (1990) 237–243

68. Westhead, D., Slidel, T., Flores, T., Thornton, J.: Protein structural topology:
automated analysis and diagrammatic representation. Protein Science 8 (1999)
897–904

69. Yadav, M.K., Kelley, B.P., Silverman, S.M.: The potential of a chemical graph
transformation system. In: Proc. 2nd Int. Conf. Graph Transformation. Volume
3256 of Lecture Notes in Computer Science., Springer-Verlag (2004) 83–95

70. Zevedei-Oancea, I., Schuster, S.: Topological analysis of metabolic networks based
on Petri net theory. In Silico Biology 3 (2003) 323–345

71. Zuker, M., Sankoff, D.: RNA secondary structures and their prediction. Bull. Math.
Biol. 46 (1984) 591–621

Changing Labels in the Double-Pushout
Approach Can Be Treated Categorically

Hans J. Schneider

Universität Erlangen-Nürnberg – Institut für Informatik (Lehrstuhl 2),
Erlangen, Germany

schneider@informatik.uni-erlangen.de

Abstract. In the double-pushout approach to graph transformations,
most authors assume the left-hand side to be injective, since the nonin-
jective case leads to ambiguous results. Taking into consideration produc-
tions that change labels, however, may add ambiguity even in the case of
injective graph productions. A well-known solution to this problem is re-
stricting the categorical treatment to the underlying graphs, whereas the
labels on the derived graph are defined by other means. In this paper, we
resume the detailed results on arbitrary left-hand sides that Ehrig and
Kreowski have already given in 1976. We apply these results to the case
of relabeling such that we can retain the elegant categorical constructions
at the level of labeled graphs.

1 Introduction

Graph structures are ubiquitous in computer science as well as in many appli-
cation areas. They are a very natural way to explain complex situations on an
intuitive level, and they are used to define the syntax of structures according to
given rules (graph grammars) as well as to describe dynamically deriving new
situations from given ones (graph transformations). In 1973, we have introduced
the double-pushout approach to formalize this process [9]. The approach allows
replacing substructures in an intuitive way immediately instead of encoding the
graphs into strings and then applying string transformations. Using concepts
from category theory leads to elegant proofs, e.g., concerning local Church-
Rosser property, parallelism, and concurrency, which can easily be applied to
different categories [3]. Whereas the pushout construction is straightforward in
the categories of interest, we need a pushout complement on the left-hand side
of the double-pushout that may be ambiguous or not even exist.

The construction is well-understood in Set and Graph . We have already out-
lined in our first paper that the category Lgraph of labeled graphs with label
preserving morphisms does not add any new difficulties to constructing pushouts
or pushout complements. Many applications of interest, however, use morphisms
that change not only the structure of the graph, but also change some labels.
Examples can be found, e.g., in data bases [11, 16], compiler technique [15], term
graph rewriting [12], asynchronous processes [17–19], and so on. To some extent,
this is possible even in Lgraph : The node to be relabeled is not included in the

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 134–149, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Changing Labels in the Double-Pushout Approach 135

interface graph, and therefore, corresponding nodes on the left-hand and on the
right-hand side can bear different labels. But, this node must have a fixed context
given in the production, and it is not applicable in other contexts. In [9], we have
overcome the limitations of label-preserving graph morphisms, by not labeling
the interface graph and the corresponding nodes and edges in the context graph.
The pushout construction is performed in Graph , and a so-called “labeled gluing”
ensures that the derivation includes only labeled graphs. Rosen has shown that
this approach can be written in Lgraph using two different morphisms from the
interface graph into the context graph [13]. With respect to term graph rewrit-
ing, Habel and Plump solve relabeling by considering partially labeled graphs
[10]: If a node of the interface graph is not labeled, the corresponding nodes on
the left-hand side and on the right-hand side may be labeled differently. Fur-
thermore, their construction allows the left-hand side and the right-hand side
to be partially labeled. In this case, the production represents a (possibly infi-
nite) set of productions, which you get by labeling the unlabeled nodes with any
element of a given set of symbols. Another approach that deserves special atten-
tion has been introduced by Parisi-Presicce, Ehrig, and Montanari [11]. With
data base applications in mind, these authors define a structure on the labeling
alphabet that allows the user to specify which changes are possible and which
are not. Morphisms in the category SLgraph are graph morphisms compatible
with this structure. Both approaches define the labels on the derived graph by
set-theoretic means.

In this paper, we show that the SLgraph-approach is able to model various
applications that need relabeling or specifying sets of productions in a uniform
way. Especially, it is possible to retain the elegant categorical constructions at
the level of labeled graphs. Unfortunately, the structured alphabet adds a new
difficulty in constructing the pushout complement: The solution may be unam-
biguous even in the case of injective graph morphisms. But this problem can be
treated on a categorical level using the results by Ehrig and Kreowski concerning
E−M-factorizable categories [6].

The rest of the paper is organized as follows. In the next section, we sum-
marize the basic definitions of derivability in general and in the category of
structurally labeled graphs. We recapitulate the decomposition theorem that al-
lows us to characterize the pushout complements in the category of structurally
labeled graphs (Section 3). Finally, Section 4 considers two special cases that are
important in many applications, namely (infinite) sets of productions and pro-
ductions changing some labels. The results, however, are formulated independent
of these applications.

2 Background

In the double-pushout approach (see, e.g., [3]), the notion of derivability with
respect to arbitrary categories is defined a symmetrical diagram:

136 Hans J. Schneider

IBl
pl

� Brpr
�

Gl

gl

�
C

g

�
Gr

gr

�

p̄l
�

p̄r
�

PO PO

Gl and Gr are unambiguously defined if we know the production p = (pl, pr) and
the embedding g. Usually, however, the embedding g is not given, but the handle
gl : Bl → Gl, and we have to look for a suitable context object C that allows
an embedding g : I → C such that the given Gl is the pushout object of g and
pl. If we have found such an embedding, the right-hand part of the derivability
diagram is unambiguously defined, and we can construct it in a straightforward
manner. By this reason, the main problem in effectively constructing a derivation
step is completing a pushout diagram backwards:

Definition 1 (Pushout complement). If the diagram (a) can be completed
such that diagram (b) is a pushout diagram:

I B
p �

G

ḡ

�

(a) I B
p �

G

ḡ

�
C

g

�
p̄

�

(b)

then, we call C together with morphisms g and p̄ a pushout complement of ḡ ·p.1

Whereas the pushout is unambiguous up to isomorphism, the pushout com-
plement need not exist in each case, and if it exists, it may be ambiguous.
The different cases are well-understood in the categories Set and Graph . As
usual, a graph is a quadruple G = (E, V, s, t) with E and V being the sets
of edges and nodes, respectively, and two set morphisms s and t assigning a
source node and a target node to each edge. A graph morphism f : G → H is a
pair (fE : EG → EH , fV :→ VH) such that fV · sG = sH · fE ∧ fV · tG = tH · fE .

The category Lgraph of labeled graphs with label preserving morphisms does
not add any new difficulties to constructing pushouts or pushout complements.
In many areas of computer science as well as in application areas, however, it
is necessary to change labels. We consider two examples illustrating different
requirements.

Example 2. We consider a production removing common subexpressions from a
term graph (Fig. 1). The nodes of a term graph are labeled with operator sym-
bols, constants, and variables. In the productions, we use additional metavari-
ables (op, x, y, . . .). Applying such a production, we have to replace these
metavariables with operator symbols, and so on: The handle does not preserve
the labels. In the figure, the nodes are represented by their labels. The different

1 For reason of simplicity, we often call C the pushout complement without explicitly
referring to the morphisms.

Changing Labels in the Double-Pushout Approach 137

x3

op1

l
�

y4

op2

r
�

op1 op2

x3 y4
x3

op[1,2]

l
�
�
��

y4

r
�

�
�	

r

�

��l

��

×[3,4]

+1

r
l

�
�

�	

�
�

�	
+2

rl

�
�
��

�
�
��

. . .

�
. . .

�

. . .�� . . .

�

+1

. . .

�
+2

. . .

�

. . .

×[3,4]

�� . . .

�

+[1,2]

. . .

�
. . .

��

×[3,4]

��

. . .�� . . .

�

pl
� pr

�

gl

�

g

�

gr

�

p̄l
� p̄r

�

Bl I Br

Gl C Gr

Fig. 1. Example of a derivation step removing common subexpressions.

nodes are distinguished by numbers that we write as exponents, and the map-
pings are given by these numbers, e.g., pr(3) = 3. If the mapping is not injective,
we use the notation pr(1) = pr(2) = [1, 2]. Edge labels indicate the left-hand (l)
and the right-hand (r) operand. In this example, we can omit the edge identifiers
since they are unambiguously determined by the node mappings together with
the labels. The figure shows only a part of the graph Gl explicitly, the rest is in-
dicated by dots. We have chosen a noninjective gl putting together the operand
nodes 3 and 4, indicating that the left-hand operand and the right-hand operand
of the operation are already detected to be identical. Of course, the production
can also be applied to different operands; in this case, we have an injective gl.
Furthermore, we can apply it to a term graph in which several edges leave node
1 or node 2.

Example 3. We describe the problem of the dining philosophers in the following
way: We have three places containing the thinking philosophers, the unused
forks, and the eating philosophers, respectively. The transitions correspond to
becoming hungry and satisfied. In the situation given in Fig. 2, philosophers p2

and p5 are eating using the forks f2, f3, f5, f1. Fork f4 is not used. When p2 is
satisfied, he turns to thinking and puts back the forks f2 and f3. A derivation
step modeling this transition is shown in Fig. 3. Please note that in the original
net, the edge labels define the elements to be removed from a place or to be
put onto it, whereas in the graph transformation approach, these changes are
described by the transformation of the place labels. We introduce new edge labels
such as ps (philosopher satisfied) or t (takes) to distinguish the edges. (We omit
the identifying numbers to simplify the picture.)

138 Hans J. Schneider

satisfied

pi

���������

fi, f(i mod 5)+1�

p1, p3, p4

�� ��
pi

���������
f4

�� ��fi, f(i mod 5)+1�

p2, p5

�� ��
pi

���������
hungry

pi

���������

Fig. 2. Dining philosophers.

p2

�� ��
satisfied

∅
�� �� ∅

�� ��

ps
�

b�
���

pt�
���

∅
�� ��

∅
�� �� ∅

�� ��

∅
�� ��

satisfied

f2, f3

�� �� p2

�� ��

ps
�

b�
���

pt�
���

. . .
pe �
p2, p5

�� ��
satisfied

f4

�� ��
. . .t �

p1, p3, p4

�� ��
. . .ph�

ps
�

b�
���

pt�
���

. . .
pe �

p5

�� ��

f4

�� ��
. . .t �

p1, p3, p4

�� ��
. . .ph�

. . .
pe �

p5

�� ��
satisfied

f2, f3, f4

�� ��
. . .t �

p1, .., p4

�� ��
. . .ph�

ps
�

b�
���

pt�
���

pl
� pr

�

p̄l
� p̄r

�

gl

�
g

� gr

�

Bl I Br

Gl C Gr

Fig. 3. Derivation step modeling the transition when p2 is satisfied.

Although in these examples, we have different relabeling conditions, the ap-
proach introduced by Parisi-Presicce, Ehrig, and Montanari [11] is able to model
both. With data base applications in mind, these authors define a structure on
the labeling alphabet that allows the user to specify which changes are allowed
and which are not:

Definition 4 (SLgraph). Let LE and LV be two alphabets on which reflexive
and transitive relations �LE and �LV are defined2. A structurally labeled graph
2 In the following, we almost always omit the indices, since the relations cannot be

confused.

Changing Labels in the Double-Pushout Approach 139

(SL-graph) is a labeled graph G = (E, V, s, t, lE , lV) with lE : E → LE and
lV : V → LV . An SL-graph morphism f : G → H is a graph morphism f =
(fE : EG → EH , fV : VG → VH) which additionally satisfies:

(∀v ∈ VG)(lV G(v) � lV H(fV (v))) and (∀e ∈ EG)(lEG(e) � lEH(fE(e))).

In Example 3, relation �LV is set inclusion and �LE is identity. But, the
approach also allows to describe Example 2: We define that op can be replaced
by a function symbol, whereas x and y can be replaced by constants, variables,
or function symbols: op � +,−,×, / and x, y � +,−,×, /, v, c, where v and c
denote any variable or constant.

Constructing the pushout in SLgraph , some nodes (and edges) are put to-
gether. We have to label the resulting node with the least upper bound of the
labels of the original nodes3.

Lemma 5 ([11]). If in the structured alphabet, the least upper bound exists,
then SLgraph has pushouts.

Parisi-Presicce et al. restrict discussion to injective left-hand sides and addi-
tionally assume the right-hand side to be injective. Considering the underlying
graphs, injective left-hand sides make the solution unambiguous if it exists. It
is easy to see that structured labeling adds ambiguity to constructing pushout
complements even in the case of an injective pl, since different labels may lead to
the same least upper bound. Parisi-Presicce et al., however, make the definition
unambiguous by an explicit condition written in a set-theoretic style. It requires
existence of a minimal label that is chosen to be the solution.

In the next section, we resume this approach, but we do not make the pushout
complement unambiguous by set-theoretic restrictions. Instead, we look for a
categorical solution. In 1976, Ehrig and Kreowski have studied the construction
of arbitrary pushout complements in a general setting based on E−M-factorizable
categories [6]:

Definition 6 (E −M-factorizable category). Given a category K, let E be
a class of epimorphisms that contains all the isomorphisms of K and is closed
under composition, and let M be a class of monomorphisms that contains all the
isomorphisms of K and is closed under composition. Then, K is called E−M-
factorizable if and only if we can split each morphism f ∈ MorK unambiguously
(up to ismorphism) into two morphisms such that

(∃e ∈ E)(∃m ∈M)(f = m · e)

We call E (M) closed under construction of pushouts if a given E-morphism
(M-morphism) leads to an E-morphism (M-morphism) on the opposite side in
constructing a pushout diagram.

Theorem 7 (Decomposition Theorem). Let K be an E−M-factorizable cat-
egory that has pushouts such that E and M are closed under construction of

3 Parisi-Presicce et al. use the inverse relation �. Therefore, they need the greatest
lower bound in constructing the pushout in SLgraph.

140 Hans J. Schneider

pushouts. Then, each pushout diagram ḡ · p = p̄ · g in K can be unambiguously
split into four pushout diagrams such that each morphism with index e is in E
and each morphism with index m is in M:

· ·p �·

·

g

�

·

·

ḡ

�· ·
p̄

�

· ·pe �·

·

ge

�

·

·

g′
e

�· ·p′
e �·

·

gm

�

·

·

g′
m

�· ·
p̄e

�

· ·pm � ·

·

ḡe

�· ·p′
m � ·

·

ḡm

�· ·
p̄m

�

⇔PO (3)

(4)

(1)

(2)

Obviously, the assumptions of the theorem are fulfilled with E being the set
of all epimorphisms and M being the set of all coretractions. In the category
of graphs, however, coretractions are too much a restriction. Therefore, we have
formulated the theorem making explicit the assumptions the proof really needs.

As Ehrig and Kreowski have shown, this decomposition simplifies construct-
ing pushout complements. The numbers in the figure indicate the order in which
you can construct the subdiagrams. Subdiagrams (1), (2), and (4) can take ad-
vantage of the simpler concept of a coproduct complement:

Definition 8 (Coproduct complement). The morphism f̄ : Ā→ B is called

a coproduct complement of f : A → B if and only if A
f−→ B

f̄←− Ā is a
coproduct.

In Set , the situation is simple: If a morphism is injective, it has a unique
coproduct complement, otherwise it has no coproduct complement at all.

Lemma 9 ([6, 9]).

1. If in Diagram (a), p is an arbitrary morphism and if ḡm has a coproduct
complement ḡ′m, then the coproduct (gm, g′m) together with the morphism p̄
factorizing ḡ′m and ḡm · p yields a pushout diagram ḡm · p = p̄ · gm.

(a) I B
p �

C

gm

�
G

ḡm

�p̄ �

B′

g′
m

�
ḡ′

m
�

�
��

=

(b) I B
pm�

C

ge

�
G

ḡe

�

I ′
m̄�

m̄′
�

�
���

p̄m

�

=
=

2. If in Diagram (b), (pm, m̄) is a coproduct: then ḡe ·pm = p̄m · ge is a pushout
if and only if (p̄m, m̄′) is a coproduct.

Changing Labels in the Double-Pushout Approach 141

Subdiagrams (2) and (4) can be completed by the first part of this lemma.
Restricting gm and g′m to injective morphisms makes the solution unambiguous.
The second part of this lemma is not constructive, but in Set , we get the solution
by defining ge := (p̄m)−1 · ḡe · pm, where (p̄m)−1 is the unique inverse of the
restriction p̄m : C → p̄m[C].

Finally, subdiagram (3) can be completed in each case, since constructing
the natural pushout complement is trivial:

Lemma 10 ([6]). If in the following diagram

I B
p �

G

ḡ

�
G

ḡ · p
� id�

p and ḡ are epimorphisms, then it is a pushout diagram.

In Set , we have a fine situation: Proving existence is restricted to subdiagram
(1), and ambiguity is restricted to subdiagram (3). All the morphisms indexed
with m have a unique coproduct complement. If in addition, the identification
condition is satisfied, m̄′ := ḡe · m̄ is injective, too, and has a coproduct com-
plement. In this case, the solutions to subdiagrams (1), (2), and (4) can be
constructed, unambiguously. Due to Rosen’s lemma [13, Lemma 4.1], we know
all the solutions to subdiagram (3).

3 Ambiguous Pushout Complements in SLgraph

Discussing the situation in Set , we have taken advantage of its special properties.
Therefore, we could isolate the aspect to find all solutions in subdiagram (3) of
the decomposition. If we, however, consider other categories, the situation may
become more complicated. Fortunately, we can prove a lemma that is strongly
related to Rosen’s lemma, but is not restricted to sets:

Lemma 11 (Ambiguous pushout complements). Let ḡ · p = p̄ · g be a
pushout diagram.

I B
p �

C

g

�
ḡ

�
Gp̄

�

PO

I B
p �

C′

α · g
�

ḡ

�
G

β
�

PO

If there is a factorization p̄ = β · α with an epimorphic α and an arbitrary β,
then the right-hand diagram ḡ · p = β · (α · g) is a pushout diagram, too.

142 Hans J. Schneider

Proof. We consider the following diagram

I I
id � B

p �

C

g

�
C′

αg

�
G

ḡ

�α� β�

H

k

�
�
�
�
�
�
���

h

��������

q

�
hα

������������

and assume k · p = h · (α · g). We can rewrite this as k · (p · id) = (h ·α) · g. Since
the outer diagram is a pushout, we get a unique morphism q : G → H with
k = q · ḡ and h ·α = q · (β ·α) = (q ·β) ·α and with α assumed to be epimorphic:
h = q · β. !

We call C together with morphisms g and p̄ a minimal pushout complement if
in every factorization p̄ = β ·α with an epimorphism α, this α is an isomorphism.
Then, the lemma allows us to characterize ambiguous pushout complements: If
we have a unique minimal solution C, we can find all the solutions by looking
for factorizations of the morphism p̄ : C → G. In general, however, we do not
have a unique minimal pushout complement even in the category Set .

Conversely, we call a pushout complement maximal if it is constructed ac-
cording to Theorem 7 using the solution given in Lemma 10 as subdiagram (3).
In this case, p′e and therefore, p̄e are isomorphisms, and p̄ is in M. Rosen has
called this the natural pushout complement.

In the category SLgraph , we have ambiguous pushout complements even if
we restrict discussion to injective graph morphisms. How to treat this situation
in a categorical setting? Parisi-Presicce et al. have already observed that we
can split an injective SL-graph morphism into a bijective SL-graph morphism
followed by a label preserving graph morphism. We use this factorization to take
advantage of the decomposition theorem.

Lemma 12 (Decomposition of SLgraph). Given a structured alphabet, the
category SLgraph is E−M-factorizable with

1. E being the set of all epimorphisms of SLgraph and
2. M being the set of all label preserving graph monomorphisms.

Proof. Let f : G → H be a morphism in SLgraph . More precisely, we have
fE : EG → EH , fV : VG → VH and the labeling conditions

(∀v ∈ VG)(lV G(v) � lV H(fV (v)))
(∀e ∈ EG)(lEG(e) � lEH(fE(e)))

We can uniquely decompose the underlying graph morphism into an epimor-
phism and a monomorphism, and we label the intermediate graph with the
labels of H : G′ := (fE [EG], fV [VG], s′, t′, l′E, l′V), where s′, t′, l′E , and l′V are the

Changing Labels in the Double-Pushout Approach 143

restrictions of sH , tH , lEH , and lV H , respectively. Now, we decompose f into
f = fm · fe:

fe = (fE : EG → fE [EG], fV : VG → fV [VG])
fm = (infE [EG] : fE [EG] → EH , infV [VG] : fV [VG] → VH)

where the morphism infE [EG] is the natural injection of fE [EG] into EH , etc.
Trivially, fe is an epimorphism satisfying the labeling conditions of an SL-graph
morphism and fm is a label preserving monomorphism. !

This factorization satisfies the assumptions of Theorem 7. The proof is simple
and left to the reader. (See, e.g., [20, Chapter 4].)

Lemma 13 (Decomposition of pushouts in SLgraph). Decomposing the
construction of a pushout complement in SLgraph as shown in Theorem 7 again
restricts ambiguity to subdiagram (3).

Proof. This assertion holds true for the underlying graphs (Lemma 9). Although
coproduct complements in SLgraph are not unambiguous, we have no problems
due to the special decomposition we have chosen4:

I B′pe�

C′

ge

�
G′

g′
e

�p′
e�

C

gm

�
g′

m

�·
p̄e

�

B
pm� ·m̄� ·

·
m̄′

�
�

���·

ḡe

�·p′
m� ·

G

ḡm

�·
p̄m

�

·

g′
m

�

·

·

ḡ′′
m

�
�

��

·

·

g′′
m

�

·
ḡ′

m

�
�

��

(3)

(4)

(1)

(2)

In subdiagrams (2) and (4), the construction of coproduct complements is ap-
plied to label preserving morphisms, and p̄e is unambiguous because of the uni-
versal property of coproducts. In subdiagram (1), we construct the coproduct
complement m̄ of a label preserving morphism. But in the second step, we con-
sider m̄′ := ḡe · m̄. Although ḡe need not preserve labels, the composition does.
Consider, e.g., a node v in B such that the label of ḡe(v) is different from the
label of v. Since the resulting diagram must be a pushout, this means that v is
a gluing node and changing its label is caused by the label of the corresponding
node in the graph G′. Therefore, v cannot be part of the coproduct complement,
i.e., m̄′ is label preserving, and there exists a unique p′m. !

4 More precisely, we had to consider pEe, pV e, pEm, pV m, etc., i.e., all formulaes hold
for edges as well as for nodes. For reason of simplicity, we omit this distinction.

144 Hans J. Schneider

What about subdiagram (3)? Lemma 10 ensures existence of the maximal
pushout complement. With respect to the underlying graphs, the well-known re-
sults presented in detail in [20, Chapter 4], can be used to find minimal solutions.
We have to add the labeling:

Lemma 14. In subdiagram (3) of the decomposition, the label of a node (or an
edge) y must satisfy:

(a) lI(v) � lC′(y) � lG′(g′e(pe(v))) for all v with ge(v) = y,
(b) lG′(p′e(y)) = lub({lC′(y′) | p′e(y′) = p′e(y)} ∪ {lB′(y′′) | g′e(y′′) = p′e(y)}).

The first inequality is a consequence of the commutativity of the diagram, the
second follows from the pushout property. According to Lemma 10, the maximal
solution is lC′(y) := lG′(p′e(y)).

4 Results

In the case of an injective production, pe and p′e are bijective graph morphisms,
and the underlying graph of C′ is identical to that of G′ and therefore, it is
unambiguous if G′ exists, i.e., if the identification condition and the dangling
condition are satisfied [3]. Ambiguity can arise only from the labeling. But,
condition (b) of Lemma 14 becomes simpler:

lG′(p′e(y)) = lub({lC′(y)} ∪ {lB′(y′′) | g′e(y′′) = p′e(y)}).

Parisi-Presicce et al. have called the solutions lC′(y) to this equation g′e-com-
plements. In their definition of derivability, they add a condition on the labeling
that is based on studying the g′e-complements in detail. In our terminology, this
additional property ensures existence of a unique minimal pushout complement
which is used to complete the right-hand side of the derivation step.

We apply Lemma 14 to the examples of Section 2. We start with considering
the simple case: Both the left-hand side of the production and the handle are
injective, i.e., in the subdiagram of interest, the underlying graph morphisms pe

and g′e as well as ge and p′e are bijections, especially, there is exactly one v with
y = ge(v). The two conditions to label an element y become rather simple:

lI(v) � lC′(y) � lG′(g′e(pe(v)))

lG′(p′e(y)) = lub{lC′(y), lB′(pe(v))}

This means that each solution of

lI(v) � x � lub{x, lB′(pe(v))} = lG′(p′e(y))

is a possible label of y. The following diagram makes clear what happens:

lI(v) lB′(pe(v))
� �

lG′(p′e(y))

�
�

x

�
�

�
�

Changing Labels in the Double-Pushout Approach 145

Since the structured alphabet can be considered a category with a � b to be the
unique morphism from a to b and with the least upper bound as the pushout
construction, we have to find the pushout complements in the category of the
structured alphabet. Since the monomorphic part of the decomposition is label
preserving, we can summarize this case without restricting discussion to subdia-
gram (3):

Theorem 15 (Pushout complements of injective handles in SLgraph).
We assume a production with an injective left-hand side and an injective handle
such that the pushout complement C in Graph exists. Then, we can use any
pushout complement of

lI(g−1(y)) lBl(pl(g−1(y)))
� �

lGl(p̄l(y))

�
�

lC(y)

�
�

�
�

PO

to label a node (or an edge) y of C that has a pre-image in the interface graph,
and lC(y) = lGl(p̄l(y)) if it has not5.

Whether or not a unique minimum exists depends on the structure of the
alphabet. In Example 3, we have chosen set inclusion as �. In this case, there is
a unique minimal solution.

Corollary 16. If the structured alphabet uses set inclusion as the �-relation,
the unique minimal solution to label a node or an edge that has a pre-image in
the interface graph is

lGl(p̄l(y)) \ lBl(pl(g−1(y))).

In Example 3, the solutions to label the input place must satisfy

{p2, p5} = lub(l, {p2}) ∅ � l

The minimal solution is l = {p5} and the maximal is l = {p2, p5}. Restricting
derivation steps to minimal pushout complements coincides with the usual defi-
nition of the token game. This example as well as some others (see, e.g., [17])
suggest that unique minimal pushout complements cannot only be used to char-
acterize all solutions, but also are of special importance in many applications.

If we allow non-injective handles, the situation becomes more complicated.
Let us consider a node (or an edge) yC in C. Then, there may be several pre-
images yI

i in the interface graph (Fig. 4). As we have shown in a more general
setting [18], constructing the pushout in SLgraph in the case of noninjective
morphisms leads to constructing general colimits in the category of the alphabet.

An interesting application using noninjective handles is term graph rewriting
[12]. In this special case, the structure of the alphabet allows to characterize all
the possible complements. We illustrate this structure in Fig. 5.
5 Please note that this is the inverse of a theorem we have proved some years ago [18,

Theorem 2.11].

146 Hans J. Schneider

yI
1 yB

1
�

yI
2 yB

2
�

· · · · · ·�

yC yG�

�
�
�
��� �

�
�
�
�
�
�
�
�
�
���

�
�
�
��� �

�
�
�
�
�
�
�
�
�
���

Fig. 4. The situation in the case of a non-injective handle.

var

�

��������

cst
�

�
�

+

�

−

�

. . . (Level 2)

x

�

�
�

�

��������

������������

y

� �

�
�

�

��������

. (Level 1)opR×R→R

� �

⊥��������

�

�
�

�

Fig. 5. Structure of the term graph alphabet.

In the graphs to be derived, we find only the labels given on the second
level, where var and cst represent the variables and constants occurring in the
application of interest. These two nodes are placeholders for a set of nodes with
different identifiers. On the first level, we have metavariables that may occur
in the productions. In order to simplify the figure, we have mentioned only one
group of function symbols, namely the dyadic operators on the real numbers.
We have arcs from the metalabel opR×R→R to all the operators of this type. The
label ⊥ is allowed only in the interface graph. Finally, the "-symbol is necessary
to ensure existence of the least upper bound. If it occurs in a derived graph, the
production can be applied formally, but from the application point of view, the
result is not valid.

Definition 17 (Term graph alphabet). A term graph alphabet consists of
the following:
(1) A set of (possibly typed) variables , constants, and operator symbols that

are given by the application,
(2) a set of (possibly typed) metalabels that may occur in the productions with

l � v, c, op if and only if the type of the metalabel l and the type of the
variable v, the constant c, or the operator symbol op agree,

Changing Labels in the Double-Pushout Approach 147

(3) a special symbol ⊥ that may occur in the interface graph with ⊥ � l for
each metalabel l,

(4) a special symbol " with v, c, op � " for all variables v, constants c, and
operator symbols op,

If we do not have a typed alphabet, the second condition simply means that
the arity of the operator is the same as that of the metalabel.

Theorem 18 (Pushout complements in term graph rewriting). In the
case of a term graph alphabet, the minimal solution always exists and is unique.
The minimal solution describes the usual interpretation of term graph rewriting.

Proof. The structure of Fig. 5 allows us to find the possible labels of node y (or
edge y) in Fig. 4 by case discrimination. The labels on the yB

i are either on level 1
or on level 2. Furthermore, the level-2 labels must be identical. (Otherwise, these
yB

i can not be mapped onto the same yG.) By Lemma 10, the maximal solution
is the label of yG. Case 1: All the elements yB

i bear metalabels. The label of yI
i

can be either ⊥ or the label of the corresponding yB
i . The label of yC must be

the label of yG. This solution is unique.
Case 2: Some yB

i bear the label of yG, and at least one of the yI
i also takes

this label. yC must be labeled with it, too.
Case 3: Some yB

i bear the label of yG, and all the yI
i are labeled with ⊥. In

this case, the solution is ambiguous. ⊥ is the minimal label of yC . The metalabel
between ⊥ and the label of yG is the third solution.

Case 4: Some yB
i bear the label of yG, and some yI

i are labeled with ⊥, others
with a metalabel. If all the metalabels are identical, this is the minimal label
of yC . Otherwise, the label of yG is the only solution.

Case 1 covers sets of productions. In Example 2, we get lub{x, y} � lC(v[3,4])
and × = lub{lC(v[3,4]), x, y} resulting in lC(v[3,4]) = × as well as op � lC(v1)
and + = lub{lC(v1), op} resulting in lC(v1) = +.

Example 19. We consider the situation of Fig. 6. From Case 3, we get that the
question mark can be replaced by ⊥, fct2, or f . Solution f would lead to "
on the right-hand side that is not a legal label. The same situation results from
using fct2 because this metalabel can be replaced only by a dyadic operation
symbol. Only the minimal label leads to a valid solution.

5 Conclusion

The categorical approach to graph transformations is very elegant and allows
to take advantage of rather general constructions. Relabeling, however, leads to
ambiguous results even in the case of injective graph morphisms. There are at
least two situations of practical importance that lead to relabeling: (1) The label
on the right-hand side of a production is different from the label on the corre-
sponding node (edge) on the left-hand side. (2) The production describes a set of
productions using metalabels that must be replaced by real labels when applying
the production. Many authors have considered these applications restricting the

148 Hans J. Schneider

f1

x2

�
���

x3

�
���

⊥1

x2

�
�
��

x3

�
�
��

g1

x[2,3]
�

f1

+[2,3]
��

. . .��� . . .

�

?1

+[2,3]

. . .��� . . .

�

g1

�
+[2,3]

. . .��� . . .

�

pl
� pr

�

gl

�

g

�
gr

�

p̄l
� p̄r

�

Bl I Br

Gl C Gr

Fig. 6. Relabeling in the term graph example.

categorical treatment to the underlying graphs. Therefore, these approaches lead
to different definitions of derivability in different applications, and novices enter-
ing the field of graph transformations feel annoyed by this diversity. Furthermore,
the general categorical results, e.g., on parallel application of productions, can-
not be applied to different applications immediately, but must be proved again
and again.

Our approach defining derivability in the category SLgraph allows to treat
different applications in a uniform way and to avoid diversity. We have shown
that the problem of ambiguity arising from changing labels can be controlled
by a suitable E−M-decomposition and that we know all solutions if we know
the minimal solutions. The applications under consideration suggest that the
minimal solution is the solution of interest. What to do next? Now, we can
reconsider the results on parallel independence, etc., which usually are proved
using set-theoretic conditions (see, e.g., [3, Def. 3.4.1]). Applying such results to
SLgraph can be based on the purely categorical condition given in [18]. It seems
that it is easy to modify that condition such that it uses a minimal context
object C instead of a unique. This is left to the next paper. Then, we have a
uniform description of parallel independence in term graph rewriting, Petri nets,
data bases, and some other applications.

References

1. V. Claus/H. Ehrig/G. Rozenberg (Eds.): Graph-Grammars and Their Application
to Computer Science and Biology, International Workshop, Bad Honnef, Germany,
(Oct. 1978), Lect. Notes Comput. Science 73, Springer, Berlin, 1979

2. A. Corradini/H. Ehrig/H.-J. Kreowski/G. Rozenberg (Eds.): Graph Transforma-
tion, First International Conference, Barcelona, Spain, (Oct. 2002), Lect. Notes
Comput. Science 2505, Springer, Berlin, 2002

Changing Labels in the Double-Pushout Approach 149

3. A. Corradini/U. Montanari/F. Rossi/H. Ehrig/R. Heckel/M. Löwe: Algrebraic
approaches to graph transformation - Part I: Basic concepts and double pushout
approach, in [14], pp. 163-245

4. H. Ehrig: Introduction to the algebraic theory of graph grammars (a survey), in:
[1], pp. 1-69

5. H. Ehrig/G. Engels/H.J. Kreowski/G. Rozenberg (Eds.): Handbook of Graph
Grammars and Computing by Graph Transformation - Volume 2: Applications,
Languages, and Tools, World Scientific, Singapore, 1999

6. H. Ehrig/H.J. Kreowski: Categorical approach to graphic systems and graph gram-
mars, Lect. Notes Economics Math. Systems 131 (1976), pp. 323-351

7. H. Ehrig/H.J. Kreowski/U. Montanari/G. Rozenberg (Eds.): Handbook of Graph
Grammars and Computing by Graph Transformation - Volume 3: Concurrency,
Parallelism, and Distribution, World Scientific, Singapore, 1999

8. H. Ehrig/M. Nagl/G. Rozenberg/A. Rosenfeld (Eds): Graph-Grammars and
Their Application to Computer Science, 3rd International Workshop, Warrenton,
Va., (Dec. 1986), Lect. Notes Comput. Science 291, Springer, Berlin, 1987

9. H. Ehrig/M. Pfender/H.J. Schneider: Graph-grammars - An algebraic approach,
Proceed. Conf. Switching and Automata Theory 1973, Iowa, pp. 167-180

10. A. Habel/D. Plump: Relabelling in graph transformation, in [2], pp. 135-147
11. F. Parisi-Presicce/H. Ehrig/U. Montanari: Graph rewriting with unification and

composition, in [8], pp. 496-514
12. D. Plump: Term graph rewriting, in: [5], pp. 3-61
13. B.K. Rosen: Deriving graphs from graphs by applying a production, Acta Infor-

matica 4 (1975), pp. 337-357
14. G. Rozenberg (Ed.): Handbook of Graph Grammars and Computing by Graph

Transformation - Volume 1: Foundations, World Scientific, Singapore, 1997
15. H.J. Schneider: Syntax-directed description of incremental compilers, Lecture

Notes Computer Science 26, Springer, Berlin, 1975, pp. 192-201
16. H.J. Schneider: Conceptual data base description using graph-grammars, in:

Graphen, Algorithmen, Datenstrukturen (Ed.: H. Noltemeier), Hanser, München,
1976, pp. 77-97

17. H.J. Schneider: Describing distributed systems by categorical graph grammars,
Lecture Notes Computer Science 411, Springer, Berlin, 1990, pp. 121-135

18. H.J. Schneider: On categorical graph grammars integrating structural transforma-
tions and operations on labels, Theoretical Computer Science 109 (1993), pp. 257-
274

19. H.J. Schneider: Describing systems of processes by means of high-level replace-
ment, in [7], pp. 401-450

20. H.J. Schneider: Graph Transformations – An Introduction to the Categorical Ap-
proach, Preliminary version:
http://www2.informatik.uni-erlangen.de/~schneide/gtbook/index.xml

(Link checked on Nov. 2nd, 2004)
21. H.J. Schneider/H. Ehrig: Grammars on partial graphs, Acta Informatica 6, 2

(1976), pp. 297-316

Modules, Brains and Schemas

Michael A. Arbib

Computer Science, Neuroscience and USC Brain Project
University of Southern California

Los Angeles, California 90089-2520, USA
arbib@pollux.usc.edu

Abstract. A short personal note briefly traces the author’s interactions
with Hartmut Ehrig. Where Ehrig has devoted much work to an algebraic
theory of modules, the author has developed schema theory primarily as
a tool for brain theory, but the author’s version of schema theory has
also been associated with algebraic theory and robotics. Topics presented
in the present informal overview of schema theory include the role of
schemas in bridging from action-oriented perception to knowledge, the
notion of schema instances and their role in cooperative computation,
learning in schemas, and ways of linking schemas to the study of the
brain.

1 A Personal Introduction

My friendship with Hartmut Ehrig can be traced back to the volume “Universal
Theory of Automata” which he co-authored with W. Kühnel, H.-J. Kreowski,
and K.D. Kiermeier and published with Teubner, Stuttgart, in 1974. In this
work, he applied category theory to provide a general framework for parts of
automata theory. At around the same time, Ernie Manes – then my colleague at
the University of Massachusetts at Amherst – had developed an alternative ap-
proach, first published in “Machines in a Category: An Expository Introduction”
(in SIAM Review, 1974,16:163-192). In 1974, Ernie Manes arranged workshops
in Amherst and San Francisco and we welcomed Hartmut to the United States,
while in the following years he returned our hospitality in Germany. As the years
went by, Hartmut’s interests diverged from ours as he worked more and more
on graph grammars and we continued in system theory, but as we moved on to
apply our methods to the semantics of programming languages, we developed
complementary algebraic approaches to the study of abstract data types.

Hartmut and I have only written one joint paper, “Linking schemas and
module specifications for distributed systems”, which Hartmut presented at the
2nd IEEE Workshop on Future Trends of Distributed Computing Systems, in
Cairo in 1990. It must be confessed that the paper was more a program for re-
search than a presentation of results, and that research remains to be done. Since
many readers of this volume will be well acquainted with the theory of module
specifications (e.g., H. Ehrig and B. Mahr, 1990,Fundamentals of Algebraic Spec-
ification 2: Module Specifications and Constraints, volume 21 of EATCS Mono-
graphs on Theoretical Computer Science. Berlin: Springer Verlag), I present here

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 153–166, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

154 Michael A. Arbib

the informal background for schema theory in its motivation in the search for
a high-level description of the ways in which brains function. Readers wishing a
more formal treatment may find it in the paper “Port Automata and the Alge-
bra of Concurrent Processes” written with Martha Steenstrup and Ernie Manes
(Journal of Computer and System Sciences, 1983, 27:29–50) and its development
with Damian Lyons of a schema-based framework for programming robots, “A
Formal Model of Computation for Sensory-Based Robotics” (IEEE Trans. on
Robotics and Automation, 1989, 5:280–293).

Finally, I want to acknowledge both Hartmut’s continuing interest in brain
theory, both as intellectual stimulation and for its potential yield of insights
for new technology, and his support of my work in these areas. For example,
his invitation to give a keynote address at IDPT-2002: Integrated Design and
Process Technology in Pasadena in June 2002 was the stumulus for the perspec-
tive published as “Towards a neurally-inspired computer architecture” (Natural
computing, 2003, 2:1–46).

I count myself fortunate to be among those many computer scientists who
have benefited from both Hartmut’s collaboration and his intellectual support,
and I wish him many more years of intellectual excitement.

2 Basic Notions of Schema Theory

Many workers in cognitive science have little interest in brain or action, and
much of their work focuses on linking Artificial Intelligence (AI) and cognition
to symbol manipulation in general and to linguistics in particular. My own work,
on the contrary, tries to see our cognitive abilities as rooted in our more basic
capabilities to perceive and interact with the world. What, then, is this schema
theory in which we are to give an account of the embodied mind, integrating an
account of our mental representations with an account of the way in which we
interact with the world?

There are many other approaches to schema theory, as outlined in the sec-
tion “A Historical Sketch” below. My own version of schema theory [2,3] is an
approach to cognitive neuroscience which explains behavior in terms of the con-
current interaction of many functional units called schemas (composable units
of action, thought and perception). There are schemas for recognition of differ-
ent objects, and the planning and control of different activities, and for more
abstract operations besides. Schema theory now combines three distinct levels
of theorizing:

1) Basic Schema Theory: Schema theory simpliciter provides a basic lan-
guage which matches well with the “mental”. It has its basic definition at
a functional level which associates schemas with specific perceptual, motor,
and cognitive abilities and other complex dispositions – and then stresses
how our mental life results from the dynamic interaction, the competition
and cooperation, of many schema instances. For example, one perceptual
schema would let you recognize that a large structure is a house; in doing so,

Modules, Brains and Schemas 155

it might provide strategies for locating the front door. The recognition of the
door (activation of the perceptual schema for door) is not an abstract end
in itself – it helps activate, and supply appropriate inputs to, motor schemas
for approaching the door and for opening it (see Sec. 2.2 of [6], for exam-
ples). However, even at this functional level, a “computationally complete”
explanation may involve schemas which are quite different from those that
are suggested by introspection from conscious mental behavior.

2) Neural Schema Theory: Just as much human behavior can be explained
by psychology without recourse to neurology, so can much successful schema
theory proceed at a purely functional level. However, if we are to under-
stand phenomena like episodic memory, emotion, consciousness, mental dis-
orders, etc., it is clear that the details of schema function must make contact
with data on brain localization and even neurochemistry. This motivates
the “downward” extension of schema theory to form neural schema the-
ory, in which we move from psychology and cognitive science as classically
conceived (viewing the mind “from the outside”) to cognitive neuroscience.
The description of a schema can often be refined into a network of more
detailed schemas. For a psychologist looking at overt behavior, the lowest
level schemas employed may be relatively molar, themselves relatable to the
subject’s introspection or to the gross regional analysis of brain activity
afforded by current human brain imaging techniques. For the neurophysiol-
ogist, further decomposition may be required until the schemas so defined
are sufficiently fine-grain that their function may be played out across the
detailed structures of specific neural networks of the brain. Neural schema
theory provides a language for neuroscience appropriate to the analysis of
data at the level of neuropsychology and human brain imaging, while at the
same time showing that this “molar language” for neuroscience in no way
precludes the relevance of finer-grain analysis in terms of neural circuitry and
neurochemistry. Note that that our functional definition of a schema may
change as we work out its implementation, revealing details that escaped our
attention on superficial examination.
A schema in the basic sense of (1) is a functional notion (emphasizing the
schema’s causal role in some overall computation, never mind what imple-
ments it). It is only when we turn to neural schema theory that we seek to go
the further step of studying the neural implementation of the schemas – thus
linking schemas to the structural entities (brain regions or neural circuits,
for example) which implement them. Interestingly, the language of schema
theory is little used by neuroscientists. This is not because schema theory
is irrelevant to neuroscience – but rather because few neuroscientists study
large systems. Instead, they focus on one specific schema (for example, depth
perception), the response of one neural circuit to specific patterns of stim-
ulation, or fine details of neurochemistry and biophysics. I believe schema
theory will become more widely accepted as more neuroscientists seek to link
these details with larger cognitive systems, and relate them to the results of
human brain imaging (which forces a more global view of interacting brain
regions).

156 Michael A. Arbib

Neural schemas, then, are intermediate between behavior and neurons. How
does a schema differ from an Edelman group [20], a Hebb assembly [25],
or other notions that are similarly intermediate? They occupy the same
“ecological niche” but my theory offers explicit analyses of perceptual-motor
linkages and of the formation of assemblages/coordinated control programs
that go beyond their theories. Below, I will strongly distinguish “schemas”
from “modules” in the sense of Fodor’s Modularity of Mind [22].

3) Social Schema Theory: In seeking to reconcile the “collective representa-
tions” of a community with the thought processes of individuals – creating
an epistemology that integrates a sociology of knowledge with a psychol-
ogy of knowledge – Arbib and Hesse [10] extended the basic schema theory
“upward” to develop social schema theory. Their theory shows how “social
schemas” constituted by collective patterns of behavior in a society may pro-
vide an external reality for a person’s acquisition of schemas “in the head”
in the sense of primary schema theory; conversely, it is the collective effect
of behavior expressing schemas within the heads of many individuals that
constitutes, and changes, this social reality. To understand the human indi-
vidual we study the coherence and conflicts within a schema network that
constitutes a personality, with all its contradictions. Social schema theory
extends this to the holistic nets of social reality, of custom, language and
religion. In this article, I concentrate on schema theory at the psychological
and neural levels.

3 A Historical Sketch

Schema theory is designed to give an account of the embodied mind, an account
which is to transcend mind-body dualism by integrating an account of our men-
tal representations with an account of the way in which we interact with the
world. To enrich the discussion of schemas, this section offers a brief historical
review (see [8] for more). The history of schemas goes back to Immanuel Kant
and beyond, but its links to neuroscience start with the work of the neurologists
Head and Holmes [24] who discussed the notion of the body schema (see [35] for
a current perspective). A person with damage to one parietal lobe of the brain
may lose all sense of the opposite side of his body (see our earlier discussion of
“neglect”), not only ignoring painful stimuli but neglecting to dress that half
of the body; conversely, a person with an amputated limb but with the corre-
sponding part of the brain intact may experience a wide range of sensation from
the “phantom limb”. Even at this most basic level of our personal reality – our
knowledge of the structure of our own body – our brain is responsible for con-
structing that reality for us. Our growing scientific understanding of knowledge
takes us far from what “common sense” will tell us is obvious. One of Head’s
students was Bartlett [13] noted that people’s retelling of a story is based not on
word-by-word recollection, but rather on remembering the story in terms of their
own internal schemas, and then finding words in which to express this schema
assemblage.

Modules, Brains and Schemas 157

Such ideas prepare us for the work of Craik [18] who viewed the nature of the
brain to be to “model” the world, so that when you recognize something, you
“see” in it things that will guide your interaction with it. There is no claim of
infallibility, no claim that the interactions will always proceed as expected. But
the point is that you recognize things not as a linguistic animal, merely to name
them, but as an embodied animal. I use the term “schema” for the building
blocks of these models that guide our interactions with the world about us. To
the extent that our expectations are false, our schemas can change, we learn.
We then see many writers in the 1960s and 1970s [23,33,37] building upon this
notion of an internal model of the world, at first in the cybernetic tradition, to
develop the concept of representation so central to work in AI today.

One of the best-known users of the term “schema” is Piaget, whose Biol-
ogy and Knowledge [42] gives an overview of his “genetic epistemology” which
develops an embryological metaphor for the growth of a human’s, and of hu-
man, knowledge. Piaget defines a schema as “the structure of interaction, the
underlying form of a repeated activity pattern that can transcend the partic-
ular physical objects it acts on and become capable of generalization to other
contexts”. He traces the cognitive development of children, starting from basic
schemas that guide their motoric interactions with the world, through stages
of increasing abstraction that lead to language and logic, to abstract thought.
We have already noted the importance of Piaget’s concepts of assimilation, the
ability to make sense of a situation in terms of the current stocks of schemas,
and of accommodation, the way in which the stock of schemas may change over
time as the expectations based on assimilation to current schemas are not met.
These processes within the individual are reminiscent of the way in which a sci-
entific community is guided by the pragmatic criterion of successful prediction
and control [26]. We keep updating our scientific theories as we try to extend the
range of phenomena they can help us understand. It is worth noting, however,
that the increasing range of successful prediction may be accompanied by revo-
lutions in ontology, in our understanding of what is real, as when we shift from
the inherently deterministic reality of Newtonian mechanics to the inherently
probabilistic reality of quantum mechanics.

Much work in brain theory and artificial intelligence contributes to schema
theory, even though the scientists involved do not use this term. Schema theory
provides a knowledge representation protocol which is part of the same theory-
building enterprise as frames and scripts [38,45] but is distinguished in that,
for example, schema theory has a grain size smaller than frames and scripts,
but larger than neural models. Schema theory stresses the building up of new
schemas; script theory stresses overarching organizational schemas for some fam-
ily of behaviors. In its emphasis on the interaction of active computing agents
(the schema instances), schema theory is related to studies in distributed artifi-
cial intelligence or multi-agent teams [50]. Since each schema combines knowledge
with the processes for using it, schemas are more like actors than like frames or
systems with unitary blackboards. Marvin Minsky espouses a Society of Mind
analogy in which “members of society”, the agents, are analogous to schemas

158 Michael A. Arbib

[39]. Rodney Brooks [17] controls robots with layers made up of asynchronous
modules that can be considered as a version of schemas. This work shares with
schema theory, with its mediation of action through a network of schemas, the
point that no single, central, logical representation of the world need link percep-
tion and action; while sharing with Walter [51] and Braitenberg [15,16] the study
of the “evolution” of simple “creatures” with increasingly sophisticated senso-
rimotor capacities – see [9] for further discussion). The term “schema theory”,
then, does not refer to one polished and widely accepted formalism. Aspects of
schema theory have been within cognitive psychology [34,48] and motor control
[47], for example.

For work within artificial intelligence, including work in machine vision and
robotics, we ask how to define schemas as program units for cooperative com-
putation that meet criteria for ease of implementation or for computational
efficiency. For work within brain theory and cognitive psychology, schemas are
designed to serve as units of complexity intermediate between behavior and neu-
ron, and which help us “decompose” overall behavior in a fashion that gives us
insight into the data of psychology and neuroscience. While my schema theory
has been informed by that of Piaget – especially in its emphasis on the senso-
rimotor basis for mental development – and other work reviewed above, it is
distinguished by:

(a) Its emphasis on the fact that our experience is usually mediated by an as-
semblage of schemas rather than a single schema. A situation is represented
(consciously or unconsciously, repressed or not) by activation of a network
of schemas that embody the significant aspects of a situation for the organ-
ism. Then, schemas determine a course of action by a process of analogy
formation, planning, and schema interaction, in which formal deduction is
not necessary implicated. Moreover, memory of a schema assemblage may
be tuned to create a new schema.

(b) It relates perception to action in a unified representational framework (cf.
[30]).

(c) A view of adaptation with links to Piaget’s assimilation and accommodation,
but which sees developmental stages as “emergent” rather than genetically
prespecified.

(d) Related to (a), it introduces cooperative computation as a unifying style for
cognitive science and neuroscience.

My approach is also distinguished by being structured in such a way that
a schema may either be viewed purely as a functional unit in a network of
interacting schemas (basic schema theory), or further analyzed in terms of its
neural underpinnings (neural schema theory), and that individual schemas may
be linked to social schemas (social schema theory [10]).

4 From Action-Oriented Perception to Knowledge

A schema is both a store of knowledge and the description of a process for ap-
plying that knowledge. As such, a schema may be instantiated to form multiple

Modules, Brains and Schemas 159

active copies called schema instances. For example, given a schema that rep-
resents generic knowledge about a chair, we may need several active instances
of the chair schema, each suitably tuned, to subserve our perception of a scene
containing several chairs. A schema is more like a molecule than an atom in
that schema instances may well be linked to others to form schema assemblages
which provide yet more comprehensive schemas.

Schema theory provides, inter alia, a language for the study of action-oriented
perception [1,41] in which the organism’s perception is in the service of current
and intended action rather than (though not exclusive of) providing stimuli to
which the organism provides unintended responses. According to schema theory,
our minds comprise a richly interconnected network of schemas. Schema theory
can also express models of language and other cognitive functions [11].

An assemblage of some instances of these schemas represents our current sit-
uation. A crucial notion is that of dynamic planning: the organism is continually
making and remaking plans – in the form of schema assemblages called coor-
dinated control programs which combine perceptual, motor, and coordinating
schemas – but these are subject to constant updating as perception signals ob-
stacles or novel opportunities. In particular, action-oriented perception involving
passing parameters from perceptual to motor schemas: For example, perceiving
a ball instructs the hand how to grasp it; perceiving obstacles adjusts one’s
navigation. However, schema assemblages and dynamic planning ensure that
behavior seldom involves direct relationships of a behaviorist, stimulus-response
simplicity; rather, context and plans help determine which perceptual clues will
be sought and acted upon.

Schemas are modular entities whose instances can become activated in re-
sponse to certain patterns of input from sensory stimuli or other schema instances
that are already active. The activity level of an instance of a perceptual schema
represents a “confidence level” that the object represented by the schema is in-
deed present; while that of a motor schema may signal its “degree of readiness”
to control some course of action. The activity level of a schema may be but one
of many parameters that characterize it. Thus a schema for “ball” might include
parameters for its size, color, and velocity – in the sense of properties we might
notice when we see a ball or play with it, i.e., with a level of detail appropriate
to our skill and interest, rather than being highly precise measurements.

To make sense of any given situation we call upon hundreds of schemas in
our current schema assemblage. Our lifetime of experience might be encoded in
a personal “encyclopedia” of hundreds of thousands of schemas. As we act, we
perceive; as we perceive, so we act. Perception is not passive, like a photograph.
Rather it is active, as our current schemas determine what we take from the
environment.

The essence of schema goes beyond the fact that we have concepts, for exam-
ple, of a ball, because it makes explicit aspects of “concepts” that might be lost in
other accounts. We first need to distinguish the “concepts” from the “schema”.
Are whales mammals? Now science says “Yes” – but “Do whales activate the
mammal schema?” would be answered “No” for many individuals. Further, it

160 Michael A. Arbib

integrates perceptual schemas (for example, how to recognize a ball) with motor
schemas (such as what to do with a ball) through the parameter-passing mech-
anism, but also expresses likely and unlikely patterns of co-occurrence through
the patterns of competition and cooperation that develop within the schema net-
work. I discuss learning below – where perceptions lead (in an ongoing action-
perception cycle) to actions with attendant expectations; failure of these ex-
pectations can lead to modifications of perceptual, motor and other schemas.
Admittedly, this is an inadequate classification of schemas. Specific models in-
troduce schemas whose role is to coordinate other schemas (for example, Hoff
and Arbib [28] study the interaction of hand transport and preshape during visu-
ally guided reaching. Moreover, as assemblages or coordinated control programs
are built up, they constitute compound schemas which are primarily neither
perceptual nor motor.

One would like to have criteria (whether functional, neurological, phenomeno-
logical, conceptual, or behavioral) to individuate, or pick out, distinct schemas
but none such exists at present. A schema analysis will often start with some
overall function or phenomenon of interest and then refine the definition of the
schema and its decomposition into other schemas in such a way as to match data
on speed and error of behavior, or (if one studies schemas at the level of brain
theory) the effects of lesions and other neural measurements and perturbations
(see, for example, [6] or Chapter 3 of [12] for more details).

5 Schema Instances and Cooperative Computation

Schema theory sees behavior as based not on inferences from axioms nor on the
operation of an inference engine on a passive store of knowledge. This moves
us from the domain of serial computation to an understanding of how behavior
results from competition and cooperation between schema instances (i.e., inter-
actions which, respectively, decrease and increase the activity levels of these
instances) which, due to the limitations of experience, cannot constitute a com-
pletely consistent axiom-based logical system.

Schema theory thus offers a new paradigm of computation, with “schemas”
as the programs, and cooperative computation – a shorthand for “computa-
tion based on the competition and cooperation of concurrently active agents”
– as their style of interaction. Cooperation yields a pattern of “strengthened
alliances” between mutually consistent schema instances that allows them to
achieve high activity levels to constitute the overall solution of a problem (as
perceptual schemas become part of the current short-term model of the envi-
ronment, or motor schemas contribute to the current course of action). It is as
a result of competition that instances which do not meet the evolving (data-
guided) consensus lose activity, and thus are not part of this solution (though
their continuing subthreshold activity may well affect later behavior).

A schema network does not, in general, need a top-level executor since schema
instances can combine their effects by distributed processes. This may lead to
apparently emergent behavior, due to the absence of global control. For a very

Modules, Brains and Schemas 161

simple example: in my model of the frog, Rana computatrix (see, e.g., [5]), the
decision on whether to feed or flee results from the interaction of schemas related
to these two behaviors, not from explicit analysis of the relative merits of these
two courses of action by higher level schemas. But the process does not stop
there. A schema for hunger can shift the balance from “flee” to “feed” not by
top-down control but by lowering the threshold for the “feed schema” to initiate
behavior; schemas for recognition of obstacles can bias the chosen behavior to
yield an appropriate detour, and this is expandable by learning.

To further see why a schema network may not need a top-level executor, think
of schemas as linked in a network with two kinds of links: One kinds passes data,
for example, the ball-schema might pass time-until-contact information to the
catch-schema. The other passes activity levels so that, for example, perceptual
schemas for two regions of an image may excite each other if the objects they
represent are likely to occur in that spatial relationship; they might inhibit each
other if such a juxtaposition is unlikely, as in seeing a snowball atop a fire.
Since a surrealist painting could be seen to depict a snowball atop a fire, it is
clear that these activity-links bias a dynamic process of interpretation rather
than determining what can and cannot be seen. Similar considerations apply to
other forms of integration of action, perception, and thought. Elsewhere ([6], Sec.
5.3), I provide a more fully developed example of cooperative computation in
recognition in visual scene perception, which involves the continued interaction of
bottom-up (more data-driven) and top-down (more hypothesis-driven) schemas.

6 Learning

Schema theory is a learning theory too. A schema provides us not only with
abilities for recognition and guides to action, but also with expectations about
what will happen. These may be wrong. We sometimes learn from our mistakes.
Our schemas, and their connections within the schema network, change. In a
general setting, there is no fixed repertoire of basic schemas. Rather, new schemas
may be formed as assemblages of old schemas; but once formed a schema may
be tuned by some adaptive mechanism. This tunability of schema-assemblages
allows them to start as composite but emerge as primitive, much as a skill is
honed into a unified whole from constituent pieces. My approach to schema
theory thus adopts the idea of Jean Piaget (e.g., [42]), the Swiss developmental
psychologist and genetic epistemologist, that the child has certain basic schemas
and basic ways of assimilating knowledge to schemas, and that the child will
find at times a discrepancy between what it experiences and what it needs or
anticipates. On this basis, its schemas will change, accommodation will take
place. It is an active research question as to what constitutes the initial stock of
schemas. Much of Piaget’s writing emphasizes the initial primacy of sensorimotor
schemas, where other scientists study the interactions between mother and child
to stress social and interpersonal schemas as part of the basic repertoire on which
the child builds.

162 Michael A. Arbib

Another important concept in Piaget’s work is that of reflective abstraction1.
Piaget emphasizes that we do not respond to unanalyzed patterns of stimulation
from the world. Rather, current stimuli are analyzed in terms of our current stock
of schemas. It is the interaction between the stimulation – which provides variety
and the unexpected – and the schemas already in place that provides patterns
from which we can then begin to extract new operational relationships. These
relationships can now be reflected into new schemas which form, as it were, a new
plane of thought. And then – and this is the crucial point – since schemas form a
network, these new operations not only abstract from what has gone before, but
now provide an environment in which old schemas can become restructured. To
the extent that we can form a general concept of an object, our earlier knowledge
of a dog and a ball, and so on, become enriched.

7 Linking Schemas to the Brain

In brain theory, the analysis of schema instances is intermediate between the
overall specification of some behavior and the neural networks that subserve it.
A given schema, defined functionally, may be distributed across more than one
brain region; conversely, a given brain region may be involved in many schemas.
A top-down analysis may advance specific hypotheses about the localization of
(sub)schemas in the brain, and these may be tested by lesion experiments, with
possible modification of the model (for example, replacing one schema by sev-
eral interacting schemas with different localizations) and further testing. Once a
schema-theoretic model of some animal behavior has been refined to the point of
hypotheses about the localization of schemas, we may then model a brain region
by seeing if its known neural circuitry can indeed be shown to implement the
posited schema. In some cases the model will involve properties of the circuitry
that have not yet been tested, thus laying the ground for new experiments.

Schemas as “functional units” may be contrasted with the “structural units”
of neuroanatomy and neurophysiology. The work of the nineteenth-century neu-
rologists led us to think of the brain in terms of large interacting regions each
with a more or less specified function, and this localization was reinforced by
the work of the anatomists at the turn of the century who were able to subdi-
vide the cerebral cortex on the basis of cell characteristics, cytoarchitectonics. It
was at this same time that the discoveries of the neuroanatomist Ramón y Ca-
jal [44] and the neurophysiologist Sherrington [49] helped establish the neuron
doctrine, leading us to view the function of the brain in terms of the interac-
tion of discrete units, the neurons. The issue for the brain theorist, then, is to
map complex functions, behaviors, patterns of thought, upon the interactions
of these rather large entities, anatomically defined brain regions, or these very
small and numerous components, the neurons. This has led many neuroscientists
to look for structures intermediate in size and complexity between brain regions
1 The idea of reflective abstraction is developed [14]. I have argued [7] that Piaget pays

insufficient attention to the role of social structures, including formal instruction, in
the child’s construction of logic and mathematics.

Modules, Brains and Schemas 163

and neurons to provide stepping stones in an analysis of how neural structures
subserve various functions. One early example was the Scheibels’ [46] suggestion
that the reticular formation could be approximated by a stack of “poker chips”
each incorporating a large number of neurons receiving roughly the same input
and providing roughly the same output to their environments. This modular
decomposition provided the basis a model of the reticular formation [31].

In another direction, the theoretical ideas of Pitts and McCulloch [43] com-
bined with the empirical observations of Lettvin and Maturana on the frog visual
system to suggest that one might think of important portions of the brain in
terms of interacting layers of neurons, with each layer being retinotopic in that
the position of neurons in the layer was correlated with position on the retina,
and thus in the visual field [32]. A neuron may participate in the implementation
of multiple schemas. For example, in the toad brain we find that certain neurons
in pretectum whose activity correlates with that of the perceptual schema for
predators will also, via an inhibitory pathway to the tectum, contribute to the
perceptual schema for prey (this is an explicit example of “cooperative computa-
tion”). A representation of some overtly defined concept or behavioral parameter
will in general involve temporally coordinated activity of a multitude of neurons
distributed over multiple brain regions. Moreover, each region will in general
exhibit coarse coding of parameters: it is not the firing of a single cell that codes
a value, but rather the averaged activity of a whole set of neurons that is crucial.
In any case, the brain embodies many different schemas, some based on circuitry
evolved for that purpose, others developed on the basis of experience with both
social and nonsocial interactions.

Mountcastle and Powell [40] working in somatosensory cortex, followed by
Hubel and Wiesel [29] working in visual cortex, established the notion of the
column as a “vertical” aggregate of cells in cerebral cortex, again working on a
common set of inputs to provide a well-defined set of outputs.

With this research, the notion of the brain as an interconnected set of “mod-
ules” – intermediate in complexity between neurons and brain regions – was
well established within neuroscience2, but here it may be useful to distinguish
“neural modules” and “schemas” from “modules” in the sense of Fodor [22], a
sense which has been excessively influential in recent cognitive science and re-
lated philosophizing. Rather than go into details, I simply list the key points
from an earlier critique [4]: The fundamental point is that Fodor’s modules –
such as “language” or “vision” – are too large. It is clear from schema analyses
of visual perception or motor control (e.g., in [6]) that a computational theory
of cognition must use a far finer grain of analysis than that offered by Fodor.
Fodor offers big modules (for example, one for all of language), argues vocifer-
ously that they are computationally autonomous, and despairs at the problem
of explaining the central processes, since they are not informationally encapsu-
lated. By contrast, my approach is to analyze the brain in terms of those smaller
functional units called schemas, while stressing that each schema may involve

2 For a recent overview, see Szentágothai’s discussion of “modular architectonics of
the brain” in Chapter 2 of [12].

164 Michael A. Arbib

the cooperative computation of many structural units (“modules” in the classi-
cal, medium-grain sense of neuroscience outlined above). Since the interactions
between these schemas play a vital role in my models, the case for autonomy of
large modules becomes less plausible. As a result, schema theory offers a conti-
nuity of theorizing between, say, vision and action and central processes, rather
than recognizing the reality of the divide posited by Fodor.

The notion raised in the section on “Learning” that “schema assemblages may
start as composite but emerge as primitive” [i.e., functionally grouped schemas
can be described and/or activated by a single label] underlies the essential feature
of hierarchical structuring. In fact, the issue of hierarchical structuring has been
a central concern from, for example, the publication of Hebb’s The Organization
of Behavior to present day study of neural networks. The main ingredients are
that patterns of neural activity become established (“attractors”) as quasi-stable
(i.e., until a certain amount of change of input activity), and then the formation
of excitatory and inhibitory links which will encourage coactivation of several
such patterns together (Hebb’s “assemblies”) or the activation of such patterns
in some order (Hebb’s “phase sequences”). However, many processes that we
can now describe at the abstract schema level (as in the visual scene perception
example mentioned above) still pose unanswered questions about whether and
how they are realized in the brain’s circuitry.

References

1. Arbib, M.A., 1972,The Metaphorical Brain: An Introduction to Cybernetics as
Artificial Intelligence and Brain Theory, Wiley-Interscience: New York, p. 168.

2. Arbib, M.A., 1975, Artificial Intelligence and Brain Theory: Unities and Diversities,
Ann. Biomed. Eng. 3:238–274.

3. Arbib, M.A., 1981, Perceptual Structures and Distributed Motor Control, in Hand-
book of Physiology, Section 2: The Nervous System, Vol. II, Motor Control, Part
1 (V.B. Brooks, Ed.), American Physiological Society , pp. 1449–1480.

4. Arbib, M.A., 1987a, Modularity and Interaction of Brain Regions Underlying Vi-
suomotor Coordination, in Modularity in Knowledge Representation and Natural
Language Understanding, (J.L. Garfield, Ed.), pp. 333–363.

5. Arbib, M. A. 1987b, Levels of Modelling of Visually Guided Behavior (with peer
commentary and author’s response), Behavioral and Brain Sciences, 10:407–465.

6. Arbib, M. A., 1989, The Metaphorical Brain 2: Neural Networks and Beyond,
Wiley-Interscience

7. Arbib, M.A., 1990, A Piagetian Perspective on Mathematical Construction, Syn-
these, 84:43–58

8. Arbib, M.A., 1995, Schema Theory: From Kant to McCulloch and Beyond, in Brain
Processes, Theories and Models . An International Conference in Honor of W.S.
McCulloch 25 Years After His Death, (R. Moreno-Diaz and J. Mira-Mira, Eds.),
Cambridge, MA: The MIT Press, pp.11–23.

9. Arbib, M.A., 2003, Rana computatrix to human language: towards a computational
neuroethology of language evolution, Phil. Trans. R. Soc. Lond. A, 361: 2345–2379.

10. Arbib, M. A., and M. B. Hesse, 1986, The Construction of Reality, Cambridge
University Press

Modules, Brains and Schemas 165

11. Arbib, M.A., E.J. Conklin and J.C. Hill, 1987, From Schema Theory to Language,
Oxford University Press.

12. Arbib, M. A., Érdi, P. and Szentágothai, J., 1998, Neural Organization: Structure,
Function, and Dynamics, Cambridge, MA: The MIT Press.

13. Bartlett, F.C., 1932, Remembering, Cambridge University Press.
14. Beth, E.W., and Piaget, J., 1966, Mathematical Epistemology and Psychology,

(Translated from the French by W. Mays), Reidel.
15. Braitenberg, V., 1965, Taxis, kinesis, decussation, Progress in Brain Research,

17:210–222.
16. Braitenberg, V., 1984, Vehicles: Experiments in Synthetic Psychology, Bradford

Books/The MIT Press, Cambridge, MA.
17. Brooks, R.A., 1986, A robust layered control system for a mobile robot, IEEE

Journal of Robotics and Automation, RA-2:14–23
18. Craik, K.J.W., 1943, The Nature of Explanation, Cambridge University Press.
19. Davis, R., and Smith, R.G., 1983, Negotiation as a metaphor for distributed prob-

lem solving, Artificial Intelligence, 20:63–109.
20. Edelman, G.M., 1987, Neural Darwinism: The Theory of Neuronal Group Selection,

Basic Books.
21. Erman, L.D., Hayes-Roth, F.A., Lesser, V.R., and Reddy, D.R., 1980, The Hearsay-

II Speech-Understanding System: Integrating Knowledge to Resolve Uncertainty,
Computing Surveys, 12:213–253.

22. Fodor, J. , 1983, The Modularity of Mind, MIT Press/A Bradford Book.
23. Gregory, R.L., 1969, On How so Little Information Controls so much Behavior, in

Towards a Theoretical Biology. 2, Sketches (C.H. Waddington, Ed.), Edinburgh
University Press.

24. Head, H., and Holmes, G., 1911, Sensory Disturbances from Cerebral Lesions,
Brain, 34:102–254.

25. Hebb, D.O., 1949, The Organization of Behavior, John Wiley & Sons.
26. Hesse, M.B., 1980, Revolutions and Reconstructions in the Philosophy of Science,

Indiana University Press.
27. Hewitt, C.E., 1977, Viewing control structures as patterns of passing messages,

Artificial Intelligence, 8:323–364.
28. Hoff, B., and Arbib, M.A., (1993) Simulation of Interaction of Hand Transport

and Preshape During Visually Guided Reaching to Perturbed Targets, J .Motor
Behav. 25: 175–192.

29. Hubel, D.H. and Wiesel, T.N., 1974, Sequence regularity and geometry of ori-
entation columns in the monkey striate cortex. J. Comparative Neurology 158:
267–294.

30. Jeannerod, M., 1997, The Cognitive Neuroscience of Action, Oxford: Blackwell
Publishers.

31. Kilmer, W.L., McCulloch, W.S., and Blum, J., 1969, A model of the vertebrate
central command system, Int. J. Man-Machine Studies 1: 279–309.

32. Lettvin, J. Y., Maturana, H., McCulloch, W. S. and Pitts, W. H., 1959, What the
frog’s eye tells the frog’s brain, Proc. IRE. 47: 1940–1951.

33. MacKay, D.M., 1966, Cerebral Organization and the Conscious Control of Action,
in Brain and Conscious Experience (J.C. Eccles, Ed.), Springer-Verlag, pp.422–440.

34. Mandler, G. (1985): Cognitive Psychology: An Essay in Cognitive Science, Hills-
dale, NJ: Lawrence Erlbaum Associates

35. Maravita, A., and Iriki, A., 2004, Tools for the body (schema), Trends in Cognitive
Sciences, 8:79–86.

166 Michael A. Arbib

36. Minsky, M.L., 1975, A Framework for Representing Knowledge, In: The Psychology
of Computer Vision, (P.H.Winston, Ed.), McGraw-Hill, pp.211–277.

37. Minsky, M.L., 1965, Matter, Mind and Models, In Information Processing 1965,
Proceedings of IFIP Congress 65, Spartan Books, Vol.1, pp.45–59.

38. Minsky, M.L., 1975, A Framework for Representing Knowledge, In: The Psychology
of Computer Vision, (P.H. Winston, Ed.), McGraw-Hill, pp.211–277.

39. Minsky, M.L., 1985, The Society of Mind, Simon and Schuster, New York, pp.244–
250).

40. Mountcastle, V. B., and Powell, T.P.S., 1959, Neural mechanisms subserving cuta-
neous sensibility, with special reference to the role of afferent inhibition in sensory
perception and discrimination, Bulletin of Johns Hopkins Hospital, 105:201–232.

41. Neisser, U., 1976, Cognition and Reality: Principles and Implications of Cognitive
Psychology, W.H. Freeman.

42. Piaget, J., 1971, Biology and Knowledge, Edinburgh University Press.
43. Pitts, W.H., and McCulloch, W.S., 1947, How we know universals, the perception

of auditory and visual forms. Bull. Math. Biophys., 9:127–147.
44. Ramón y Cajal, S., 1911, Histologie du systeme nerveux, Paris: A. Maloine, (En-

glish Translation by N. and L. Swanson, Oxford University Press, 1995;.
45. Schank, R., and Abelson, R., 1977, Scripts, Plans, Goals and Understanding: An

Inquiry into Human Knowledge Structures, Erlbaum.
46. Scheibel, M.E. and Scheibel, A.B., 1958, Structural substrates for integrative pat-

terns in the brain stem reticular core. In Reticular Formation of the Brain (H. H.
Jasper et al., eds.), pp. 31–68, Little, Brown and Co.

47. Schmidt, R.A., 1976, The Schema as a Solution to Some Persistent Problems in
Motor Learning Theory, in Motor Control: Issues and Trends (G.E. Stelmach, ed.),
New York: Academic Press, pp.41–65.

48. Shallice, T. (1988): From Neuropsychology to Mental Structure, Cambridge: Cam-
bridge University Press.

49. Sherrington, C.S., 1906, The integrative action of the nervous system, New Haven
and London, Yale University Press.

50. Vidal, J.M., & Durfee, E.H., 2003, Multiagent systems, in The Handbook of Brain
Theory and Neural Networks, (M.A. Arbib, Ed.), Second Edition, Cambridge, MA:
A Bradford Book/The MIT Press, pp.707–711.

51. Walter, W.G., 1953, The Living Brain, Penguin Books, Harmondsworth.

From Conditional Specifications
to Interaction Charts

A Journey from Formal to Visual Means
to Model Behaviour

Egidio Astesiano and Gianna Reggio

DISI – Università di Genova, Italy
{reggio,astes}@disi.unige.it

Abstract. In this paper, addressing the classical problem of modelling
the behaviour of a system, we present a paradigmatic journey from purely
formal and textual techniques to derived visual notations, with a further
attention first to code generation and finally to the incorporation into a
standard notation such as the UML.
We show how starting from Casl positive conditional specifications with
initial semantics of labelled transition systems, we can devise a new visual
paradigm, the interaction charts, which are diagrams able to express both
reactive and proactive/autonomous behaviour.
Then, we introduce the executable interaction charts, which are interac-
tion charts with a special semantics, by which we try to ease the passage
to code generation.
Finally, we present the interaction machines, which are essentially exe-
cutable interaction charts in a notation that can be easily incorporated,
as an extension, into the UML.

Keywords: design of visual notations, formal notations, behaviour mod-
elling/specification, CASL, UML, interaction charts

1 Introduction

In a remarkable paper [10], celebrating and assessing a decade of TAPSOFT in
1995, Ehrig and Mahr, after admitting some disproportion between the original
claims of formal methods and their real impact on software practices, were how-
ever insisting on the need of rooting engineering practices on “the contributions
from theoretical and conceptual work”. That call was taken up and expanded
by the authors first in a talk at the last TAPSOFT (Lille,1997) [2, 3] and later
on in some papers advocating the use of “well-founded methods” more than
“formal methods” (see [5] for a general presentation). Well-founded methods are
precisely rooted on theoretical and conceptual models, but presented in a way
that is friendly for the user and more concerned with the practical engineering
needs. In this paper, addressing the classical problem of modelling the behaviour
of a system, we present in a sense a paradigmatic journey from purely formal
and textual techniques to derived visual notations, with a further attention first
to code generation and finally to the incorporation into a standard practical no-
tation such as the UML [13]. A bit more precisely, we show how starting from

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 167–189, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

168 Egidio Astesiano and Gianna Reggio

a formal specification technique, namely, positive conditional specifications with
initial semantics of labelled transition systems, expressed using the Casl spec-
ification language [6, 12], we can devise a new visual paradigm, which can also
be adopted for an extension of UML. The paradigm is centered on the inter-
action charts, which are diagrams able to express also a proactive/autonomous
behaviour, in opposition to the only reactive behaviour of the state charts and
of the UML state machines.

The first main new contribution of this paper is the introduction of the ex-
ecutable interaction charts, by which we try to tackle the problem of the treat-
ment of the nondeterministic choice among various alternatives when moving
from abstract formal notations to more practical notations that need a kind of
operational/executable semantics in order to ease the passage to code. Whereas
there are no needs to restrict the alternatives in the first case, namely, it is
possible specify a system that may nonderministically choose among a set of
activities of any kind (internal, inputting, outputting, a mixture of inputting
and outputting), in the latter either the sets of activities among which to choose
are restricted (for example, only inputting and at most one internal, as in UML
and Ada programming language) or some mechanism is introduced to be able
to discover which alternatives are feasible in a certain situation (e.g., event
queues/pools of UML). Executable interaction charts follow the second choice,
by proposing the use of abstract buffers. The result is an abstract and executable
visual notation to specify/model interactive behaviour, a kind of behaviour com-
monly found in “client” components, proactive agents and so on.

The second contribution of the paper is the introduction of the interaction
machines, which are essentially executable interaction charts in a notation that
can be easily incorporated, as an extension, in the UML notation.

We start in Sect. 2 by briefly summarizing the use of conditional specifica-
tions for modelling the behaviour of systems, then we introduce in Sect. 3 the
interaction charts, showing how they have been derived from the correspond-
ing conditional specifications. In Sect. 4 we present the executable interaction
charts, and finally in Sect. 5 we show how they can be used to extend UML with
a new kind of diagrams, the interaction machines.

2 Free Positive Conditional Specifications
for Modelling Behaviour

Here, we use the word system to denote a dynamic entity of whatever kind, and
so evolving along the time, without any assumption about other aspects; thus a
system may be a communicating/nondeterministic/sequential/. . . process, a re-
active/parallel/concurrent /distributed/. . . system, but also an object-oriented
system (a community of interacting objects), and an agent or an agent system.

For modelling the behaviour of systems we adopt the well-known and ac-
cepted technique based on labelled transition systems (see [11, 16, 4]), which is
today standard, widely used, and proven adequate in many cases, and there is
a huge literature. For example, labelled transition systems are the basic formal

From Conditional Specifications to Interaction Charts 169

models that we have used for giving the semantics to Ada [1] and to UML [18,
19].

A labelled transition system (shortly lts) is a triple (STAT,LAB,→), where
STAT and LAB are sets, the states and the labels, and →⊆ STAT×LAB×STAT
is the transition relation. A triple (s, l, s′) ∈→ is said a transition and is usually

denoted by s l−−→ s′.
The behaviour of a system S may be represented by an lts (STAT,LAB,→)

and an initial state s0 ∈ STAT; then the states in STAT reachable from s0 rep-
resent the intermediate (interesting) situations of the life of S and the transition
relation → the possibilities of S of passing from a situation to another one. It

is important to note that here a transition s l−−→ s′ has the following meaning:
S in the state s has the capability of passing into the state s′ by performing a
transition whose interaction with the external (to S) world is represented by the
label l. Thus the label l contains information on the conditions on the external
world for the capability to become effective, and information on the transforma-
tion of such world induced by the execution of the action, i.e., it describes the
interaction of S with the external world during such transition.

Labelled transition systems may be used also to model structured systems
(i.e., systems built by putting together several subsystems, simple or in turn
structured). The lts modelling a structured system is defined by composing the
lts’s describing its composing subsystems; the states of this lts are sets of states
of the subsystems, and its transitions consist of the simultaneous execution of
sets of transitions of the subsystems (at most one for each subsystem), see [4, 7].

Labelled transition systems may be specified by means of algebraic speci-
fications having the form shown below. In this paper we present the algebraic
specifications using the language Casl [6, 12]. Casl has been designed by CoFI1,
the international Common Framework Initiative for algebraic specification and
development. It is based on a critical selection of features that have already been
explored in various contexts, including subsorts, partial functions, first-order
logic, and structured and architectural specifications.

A Casl specification may include the declarations of sorts, operations and
predicates (together with their arity), and axioms that are first-order formulae
with strong and existential equality and a 2-valued logics. In Casl large and
complex specifications are easily built out of simpler ones by means of (a small
number of) specification building primitives, among them union (keyword ‘and’)
and extension can be used to structure specifications. Extensions, introduced by
the keyword ‘then’, may specify new symbols, possibly constrained by some
axioms, or merely require further properties of old ones.

spec LTS = Data1 and . . . and Datar then
sorts State ,Label , . . .
ops . . .
preds −−→ : State × Label × State

. . .
axioms . . .

1 http://www.brics.dk/Projects/CoFI

170 Egidio Astesiano and Gianna Reggio

where Data1 , . . . , Datar are the names of the specifications of the basic data
used to define the states and the labels.

Any algebra M that is a model of LTS defines a labelled transition system,
precisely

(StateM,LabelM, −−→ M).

By choosing appropriately the set of axioms of the above specification, it is
possible to specify particular classes of lts, and thus particular classes of systems
by characterizing their behaviour. However, first-order logic is not expressive
enough to specify all relevant classes of lts, i.e., to express all relevant properties
on them (see, e.g., [9, 4]); for example, using first-order logic it is not possible to
require liveness conditions. A convenient solution is to extend the first-order logic
with temporal combinators, as proposed by LTL (Labelled Transition Logic)
presented in [9, 4], and its Casl version Casl-Ltl [17].

If, instead, we want to specify a particular system with a given behaviour,
that is a particular lts, we can use positive conditional specifications with free
(initial) semantics. Such specifications in Casl have the form shown below. The
Casl free construct defines free specifications, which are specifications having
initial semantics. Such semantics avoids the need for explicit negation; indeed, in
the models of free specifications, it is required that values of terms are distinct
except when their equality follows from the specified axioms, and positive atoms
built by predicates hold only when their truth follows from the specified axioms.

spec FCondLTS = Data1 and . . . and Datar then
free { sorts State ,Label , . . .

ops . . .
preds −−→ : State × Label × State

. . .
axioms PosCond } end

where Data1 , . . . , Datar are the names of the free conditional specifications
of the data used to define the states and the labels, and PosCond is a set of
positive conditional formulae, which have the form ∧i=1 ,...,n αi ⇒ β, where
each αi is a positive atom, i.e., either pr(t1 , . . . , tm) or t1 = e = t2 (existential
equation), and β is either pr(t1 , . . . , tm) or t1 = t2 (strong equation).

The initial model I of FCondLTS, unique up to isomorphism, defines the
lts

(StateI,LabelI, −−→ I).

Any element of StateI and of LabelI is the interpretation of a ground term, and
we have that I |= s l−−→ s ′ iff s l−−→ s ′ follows from PosCond. Thus, any ground
term stat of sort State represents a system, the one having as initial state the
interpretation of stat in I.

We can specify algebraically also the structured systems, again by free con-
ditional specifications, built by extending the union of the specifications of
their subsystems. The transition predicates of the subsystems will appear in
the premises of the axioms of these specifications, whereas the transition predi-
cate of the structured system will appear in the consequences. For lack of room
we do not further detail this topic, see, [4, 7].

From Conditional Specifications to Interaction Charts 171

3 Interaction Charts

In this section we introduce the interaction charts as the visual counterparts
of the free conditional specifications of lts introduced in Sect. 2, and thus a
visual notation to present lts, and so the behaviour of systems. A first version
of interaction charts was presented in [20], recently refined in [7]; then a Java
oriented version named behaviour graph was proposed as part of the notation
JTN [8].

We restrict the considered class of free conditional specifications of lts’s to
be able to associate with them an interaction chart, by fixing the structure of
the states and of the labels, and the form of the conditional axioms defining the
transition predicate.

Here we consider two cases, which will result in two slightly different variants
of interaction charts; which variant to use depends on the applications and on
the specifier style.

Generator Variant, the states and the labels are defined by means of total
generator operations.

Record Variant, the states have a record structure and the labels are defined
by means of total generator operations.

3.1 Interaction Charts: Generator Variant

In this case we consider free conditional specifications of lts, written again in
Casl, having the following form.

spec Name = Data1 and . . . and Datar then free {
sorts State ,Label
ops sg1 : . . . → State %% state generators

. . .
sgn : . . . → State
lg1 : . . . → Label %% label generators
. . .
lgm : . . . → Label

preds −−→ : State × Label × State
axioms GPosCond } end

where Name is an identifier, Data1 , . . . , Datar are the names of the free condi-
tional specifications (given elsewhere) of the datatypes used to define the states
and labels, and each element of GPosCond has the form

(*) cond ⇒ sg(t1 , . . . , tk)
lg(t′′1 ,...,t′′p)

−−−−−−−−−→ sg ′(t ′1 , . . . , t
′
h)

where sg and sg ′ are state generators, lg is a label generator, t1 ,. . . ,tk , t ′′1 ,. . . ,
t ′′p , t ′1 , . . . , t ′h are terms possibly with variables and cond is a conjunction of
positive atoms, where t1 ,. . . ,tk , t ′′1 ,. . . , t ′′p , t ′1 , . . . , t ′h and their subterms may
appear while the transition predicate −−→ cannot. Recall that the state
and label generators are total operations2.
2 In Casl total operations are declared by . . . : . . . → . . ., whereas the partial operation

by . . . : . . . →?

172 Egidio Astesiano and Gianna Reggio

Note that in the initial model of this specification the states/labels repre-
sented by different generators or by the same generator applied to different
arguments are different.

The visual notation for presenting the above system specification is3

In the above picture, a label generator lg : . . . → Label is written lg(. . .), and
similarly a state generator sg : . . .→ State is written sg(. . .), since in both cases
the result type may be omitted because it is implicit. The interaction chart is
the visual presentation of the set GPosCond of the conditional axioms of the
specification defining the transition predicate.

A conditional axiom having form (*) is visually represented as

The visual presentations of all the axioms in GPosCond may then be put together
building an oriented graph, as originally proposed in [20], by collecting together
all rounded boxes related to states built by the same generator, and by writing
only once repeated generator instantiations. The guards will be omitted when
they are equivalent to true.

Example. We give, in Fig. 1, the specification of a simple process (component)
operating a calculation over up to 100 negative integers and refusing any positive
number. IntPlus is the specification of integers extended with an operation op.
To help understand the strong correspondence between the interaction chart and
the conditional axioms of the corresponding specification, we report them below.
run(100)

null−−−−→ stop

0 > N ⇒ run(CNT)
receiveOk(N)−−−−−−−−−→ processing(N , CNT)

run(CNT)
receiveKo(N)−−−−−−−−−→ ko

0 ≤ N ⇒ run(CNT)
receiveOk(N)−−−−−−−−−→ refusing(N ,CNT)

refusing(N ,CNT)
refused(N)−−−−−−−−→ run(CNT)

processing(N , CNT)
result(op(N))−−−−−−−−−→ run(CNT + 1)

Summarizing, an interaction chart is a labelled graph where

– nodes represent the relevant types/classes of situations in the life of the
modelled system, during which some (usually implicit) invariant condition
holds,

3 Also the free conditional specifications of datatypes may be presented visually, see
[20, 7].

From Conditional Specifications to Interaction Charts 173

Fig. 1. Specification of a simple process with an interaction chart (generator variant)

– arcs represent the capabilities of the system of passing from a situation of
one kind into another one of the same or of another kind and their labels
describe the interaction of the system with the outside world during such
move.

Thus, the interaction charts are a visual notation that follows the state-
transition paradigm allowing to visually depict all the capabilities of interactions
with the external environment of the modelled system, where transitions corre-
spond to interaction capabilities, and interaction is intended as a description of
the interchange between the modelled system and the external environment.

Notice that this is quite different from other visual notations, such as state-
charts, where only the reactions to events coming from outside or from inside are
visually depicted by the transitions. In some sense a statechart gives a picture of
the reactive aspects of the behaviour of a system, whereas an interaction chart
gives a picture of the interactive aspects of that behaviour.

3.2 Interaction Charts: Record Variant

In this case we consider free conditional specifications of lts, written again using
Casl, having the following form.

spec Name = Data1 and . . . and Datar and String then
free { sorts State ,Label

ops < , . . . , >: s1 × . . . × sn × String → State %% record generator
lg1 : . . . → Label %% label generators
. . .
lgm : . . . → Label

preds −−→ : State × Label × State
vars F 1 : s1 ; . . . F n : sn ;
axioms RPosCond } end

174 Egidio Astesiano and Gianna Reggio

where Name is an identifier, String is a specification of strings of characters,
Data1 , . . . , Datar are the names of the free conditional specifications (given
elsewhere) of the datatypes used to define the states and the labels, and each
element of RPosCond has the form

(**) cond ⇒ <F 1 , . . . ,Fn , “ident1”>
lg(t1 ,...,tm)−−−−−−−−−→ <t ′1 , . . . , t

′
n , “ident2”>

where ident1 and ident2 are two identifiers (and so “ident1” and “ident2” are
ground terms of sort String), F 1 , . . . , Fn are variables of sorts s1 , . . . , sn

respectively (always the same for all the axioms), t1 , . . . , tm , t ′1 , . . . , t ′n are
terms possibly with variables and cond is a conjunction of positive atoms, where
F 1 ,. . . , Fn , t1 , . . . , tm , t ′1 ,. . . , t ′n and their subterms may appear and the tran-
sition predicate cannot. Again, recall that the record and the label generators
are total operations.

Note that in the initial model of this specification the states are records
with n fields and the labels represented by different generators or by the same
generator applied to different arguments are different.

The visual notation for presenting the above system specification is

In the above picture, a label generator lg : . . . → Label is written lg(. . .), as for
the other variant. The fields are determined by the variables used to denote the
state record components and are written F 1 : s1 . . .Fn : sn .

The interaction chart is again a visual presentation of the set RPosCond of
the conditional axioms defining the transition predicate.

A conditional axiom having form (**) is visually represented as

The visual presentations of all the conditional axioms may then be put together
building an oriented graph by joining together all rounded boxes decorated by
the same identifier.

The null field updates of the form F = F will be omitted, as well as the guard
when they are equivalent to true.

Example. We give, in Fig. 2, the specification of the same simple process used as
example in Sect. 3.1. Again, to help understand the relationship of the interaction
chart with the corresponding conditional axioms we report them below.
CNT = 100 ⇒ < CNT ,N , “run” >

null−−−−→ < CNT ,N , “stop” >

0 > X ⇒ < CNT ,N , “run” >
receiveOk(X)−−−−−−−−−→ < CNT ,X , “processing” >

From Conditional Specifications to Interaction Charts 175

< CNT ,N , “run” >
receiveError(X)−−−−−−−−−−−→ < CNT ,N , “ko” >

0 ≤ X ⇒ < CNT ,N , “run” >
receiveOk(X)−−−−−−−−−→ < CNT ,X , “refusing” >

< CNT ,N , “refusing” >
refused(N)−−−−−−−−→ < CNT ,N , “run” >

< CNT ,N , “processing” >
result(op(N))−−−−−−−−−→ < CNT + 1 , N , “run” >

Fig. 2. Specification of a simple process with an interaction chart (record variant)

3.3 Specification of Structured Systems

We can visually present also the free conditional specifications of structured
systems, by requiring they have the precise form described below.

– A transition of a structured system is made by the simultaneous execution
of a group of transitions of its subsystems (obviously at most one for each
subsystem), whose interactions form a set of cooperations.

– A cooperation is a set of complementary interactions, in the sense that the
interactions being part of a cooperation can only be executed together; for
example, sending and receiving a message along a channel, destroying a sub-
system and being destroyed, sending a broadcast message and any number
of reception of such message.

– There is a criterium for selecting which sets of cooperations will correspond
to transitions; for example, interleaving (each transition corresponds to a
unique cooperation), free parallel (each transition corresponds to a set of
cooperations), and maximal parallelism (each transition corresponds to a
maximal group of cooperations).

Here we do not have the room to present the details of the visual presentations
of the cooperations and of the criteria; see [20, 7].

3.4 Interaction Charts: Additional Constructs

To effectively use the simple forms of interaction charts presented in Sect. 3.1
and 3.2, they have to be enriched with constructs allowing to easily present

176 Egidio Astesiano and Gianna Reggio

quite complex and large charts. Here we present some of them, those that we
have found useful in the years; notice that some of them have been inspired
by similar constructs of the UML state machines, whose introduction has been
motivated by the needs of some of the proposers of the UML notation. Their
semantics can be easily defined by transforming a chart using these features into
a simpler one having the form defined in Sect. 3.1 or 3.2.

Syntactic Facilities. To help improve the layout of complex interaction charts.
– a state may be anonymous, i.e., the generator/the identifier is not written.
– a state may be depicted several times in a chart;

• a generator chart may contain several rounded boxes decorated by pat-
terns built by the same generator; such chart is equivalent to another
one, where all those boxes are coalesced into a unique one including
inside the decorations of all those boxes;

• a record chart may contain several rounded boxes decorated by the same
identifier; such chart is equivalent to another one, where all those boxes
are coalesced into a unique one decorated by that identifier.

– a large system presentation may be split into several partial ones, where
each one has the name compartment, and some of the other compartments
(e.g., a representation containing the name, label and state generators, and
another one containing the name and the interaction chart).

Initial/Final States. A node (at most one) of an interaction chart marked by
is initial (only the states of the associated lts corresponding to that

node may be used to determine the initial state of the specified system). The
final states (any number), each one represented by , explicitly show the end
of the activity of the specified system; obviously no transition may leave a final
state. A final state can be replaced by another one decorated by a zero-ary
generator/identifier different from all those used in the chart.

For the record variant, the values of the fields in the initial state may be de-
fined by decorating the arrow marking the initial state with F 1 = t1 ; . . .Fn = tn .

Local Transitions (Null Interaction). A system may perform internal activity
without any interaction with the external world, in this case we have transitions
decorated by a null interaction. The null interaction is characterized by the fact
that it takes part in a unique cooperation consisting just of itself. We assume
that there is a unique predefined zero-ary label generator to represent a null
interaction: null4. Moreover, null may be dropped from the transitions, to better
depict the absence of interaction with the external environment.

Factorizing Transitions into Segments. It is useful to visually present a transi-
tion by joining many transition segments (that are not transitions) by a special
symbol, the junction5, visually presented by .

Technically, a transition segment is an arc either between two junctions or a
junction and a state or a state and a junction annotated with a partial transition
4 Similar to the τ label of Milner’s CCS.
5 We do not call a junction a pseudo-state as in UML [15], to stress that it is just a

presentation mechanism without any special semantics in term of lts.

From Conditional Specifications to Interaction Charts 177

decoration (e.g., just a guard, an interaction, an activity, a guard and an inter-
action, . . .). The meaning of junctions and segments is simply given by some
replacement rules: a junction may be eliminated by connecting any incoming arc
with any outgoing arc and annotating the resulting arc with the combination of
the two decorations (clearly, not all combination of segments are correct, e.g., a
guard cannot follow an activity).

The factorization of transitions improves the readability of the charts, by
splitting complex transitions into pieces, by avoiding to depict many times the
same part of decoration, and also by making more clear which are the differences
and the commonalities among some transitions.

For example the following fragment of interaction chart

stands for

Composite (Sequential) States. A composite state is represented by a rounded
box with a compartment containing the name and another one containing an
interaction chart with a unique initial state and any number of final states. A
composite state may be the target or source state of a transition, and the source
of a unique special undecorated transition. Here we have a schematic generic
composite state.

A composite state can be replaced by

– dropping the state icon,
– making the initial state the target state of any incoming transition,
– adding to any internal state (neither initial nor final) any outgoing transition,
– replacing the final states by the state target of the undecorated outgoing

transition.

The above schematic composite state stands for the following fragment of inter-
action chart.

178 Egidio Astesiano and Gianna Reggio

Because there is not a standard general well accepted way to define parallel
composite states, and because the existing definitions are quite complicate always
with subtle problematic points, we decided to avoid them in the interaction chart
notation. Furthermore, this is not a big restriction; indeed, if we need to specify
a system explicitly exhibiting a parallel behaviour it is always possible to see it
as a structured system made by some subsystems cooperating among them in a
parallel way.

Subcharts. Complex interaction charts may be modularly decomposed by defin-
ing and using subcharts. A subchart is an interaction chart with an initial state.
Subcharts are declared in additional compartments of the system specifications
that contain the name of the subchart (written in italic) and the interaction
chart defining it. To include a subchart in the enclosing one it is sufficient to
depict a rounded box with inside the name of the subchart, always written in
italic. It stands for a composite state including the definition of that subchart.

Entry/Exit Actions and Internal Transition (Only for the Record Variant). En-
try/exit actions and internal transition are associated to the states of an inter-
action chart. An entry action associated with a state is executed, as last thing,
whenever a transition having that state as target is executed. An exit action
associated with a state is executed, as first thing, whenever a transition having
that state as source is executed. An internal transition presents an interaction
capability that does not change the state.

The following picture shows a generic state, named Stat, with one entry
action, one exit action and k internal transitions, plus a generic incoming and a
generic outgoing transition.

It stands for

From Conditional Specifications to Interaction Charts 179

Example. We consider a variant of the simple process used as examples already
in Sect. 3.1 and 3.2. In this case the counter is incremented also when a number is
refused and the process may break down in any state, not only in the initial one.
For simplicity, here we only give the new interaction chart using several of the
additional constructs, among them initial, final and composite states, compound
transitions and null interaction.

4 Executable Interaction Charts

The interaction charts presented in Sect. 3 specify the (simple) systems consid-
ered in isolation in an abstract formal way, by defining an lts determined by
the corresponding free conditional specification. The concept of cooperation (fi-
nite sets of complementary interactions) together with a criteria to select among
the possible groups of cooperations allow to specify the structured systems (i.e.,
systems built by several subsystems, simple or in turn structured) in an ab-
stract formal way, again by determining a conditional specification defining an
appropriate lts; however, for lack of room we cannot present the details and the
corresponding visual notation here (see [20, 4, 7]).

Thus, the interaction charts are a rigorous/well-founded (i.e., based on a for-
mal foundation) notation that is extremely flexible and powerful, since a very
large class of systems may be specified/modelled using it, including almost any
relevant case, as shown by the many applications made in the years, from Ada
to OO systems. However, due to their extreme abstraction and generality inter-
action charts have less nice aspects, which may prevent their use in the current
software development practice. Indeed,

– the lts modelling a simple system determined by an interaction chart may
have infinite transitions leaving a state;

– the sets of transitions of the subsystems generating a transition of a struc-
tured system can be determined only by considering all the subsystems to-
gether and all their possible transitions.

180 Egidio Astesiano and Gianna Reggio

As a consequence, it is very hard to develop software tools to support the use of
interaction charts, such as a code generator. Thus, here we propose a less general
version of interaction charts, which we call executable, characterized by the fact
that they a have an executable (operational) semantics, similar to those of Petri
nets and Harel’s statecharts.

The executable interaction charts are based on the recordvariant (see Sect. 3.2)
and must have an initial state. Syntactically only the form of the transitions is
changed. A transition of an executable interaction chart has the form

where scond and dcond are conjunctions of positive atoms, inter is a term built
by a label generator, F 1 , . . . , Fn are the field names, act = F 1=t1 ; . . . ;
Fn=tn , FreeVars(scond) ⊆ {F 1 , . . . ,Fn}, FreeVars(dcond) ⊆ {F 1 , . . . ,Fn} ∪
FreeVars(inter), FreeVars(act) ⊆ {F 1 , . . . ,Fn} ∪ FreeVars(inter). B, whenever
present, denotes that the transition is blocking. As before, he null field updates
of the form F = F will be omitted, as well as the guards when they are equivalent
to true.

The operational semantics of an executable interaction chart is described be-
low. The system goes on performing a basic-execution-step after another, where a
basic-execution-step is defined in Fig. 3, where we write T.scond, T.inter, T.dcond,
. . . to denote the various parts of a transition T. Recall that at any time exactly
one state is active (at the beginning the initial state is active).

(1) Let ET be the set of the transitions starting from the active state whose static
guard holds; if ET = ∅ then stop;

(2) let ETLIST be the list of the elements of ET in some order;
(3) if ETLIST is empty then go to (2);

T = first(ETLIST); ETLIST = dropFirst(ETLIST);
(4) “attempt to execute T.inter”;

%%it can either fail or be successful returning a list of values VL instantiating the
%%free variables of T.inter
if it fails
then

if T is blocking then go to (4) else go to (3);
else

if T.dcond[VL/FreeVars(T.inter)] does not hold
then

go to (3)
else

execute T.act[VL/FreeVars(T.inter)];
T.target becomes active and T.source, if different from T.target, becomes
inactive; stop

Fig. 3. The basic-execution-step

From Conditional Specifications to Interaction Charts 181

In Fig. 3 we have a generic schema since step (4) “attempt to execute T.inter”
must be defined case by case, i.e., the effect/meaning of performing an interaction
must be defined, and it is not possible to simply say “there are other subsystems
which have chosen to perform the transitions needed to build a cooperation”.
At this point we have two choices:

– to fix the interactions (e.g., reading and writing a buffer, sending and receiv-
ing messages along a channel, sending and receiving messages in a broad-
casting way, . . .), and thus the executable interaction charts are a unique
notation;

– to propose a general schema for defining the meaning of executing a given
set of interactions, and thus the executable interaction charts are a family
of notations differing for the used interactions.

In this paper, we follow the second choice, and present it using, as example, the
particular case of executable interaction charts, where subsystems communicate
by sending and receiving asynchronous signals.

Syntactically the interactions are defined by a set of generators, as in Sect. 3.
In this case we have two generators:

send(SysIdent,SignalName,ValueList) and rec(SysIdent,SignalName,ValueList).
For what concerns the semantics, we first define the cooperations among such

interactions. In this case, send(si,n,vals) and rec(si’,n’,vals’) form a cooperation
whenever the arguments are identically, and these are all the possible coopera-
tions.

Then, we introduce some abstract buffers that will be accessed by the sub-
systems by reading or writing information about their possibilities/willingness
to perform some interactions. Thus, the attempt to perform an interaction will
correspond to access one of these buffers, and depending on its content it can
result in the buffer communicating either the failure or the success (together
with the values needed to instantiate the free variables).

In this case, for each subsystem there is a buffer containing the set of signals
received by it and not yet consumed. To attempt executing send(si,n,vals) consists
in adding to the buffer of si the sent signal <n,vals>, and thus it will never
fail; whereas to attempt executing rec(si,n,vars) by a subsystem with identity si
consists in seeing whether its own buffer contains a signal having form <n,vals>,
if the answer is positive the attempt is successful, the values vals are returned
and <n,vals> is deleted from the buffer, otherwise the attempt fails.

Formally, the semantics of an executable interaction chart is given by trans-
forming it into an equivalent normal one (presented in Sect. 3.2). Precisely, a
specification of a structured system where the subsystems are modelled by exe-
cutable interaction charts is transformed into an equivalent specification where
the subsystems are modelled by normal interaction charts.

Let SP be a specification of a structured system whose n subsystems are
specified respectively by SP1 , . . . , SPn . The specification SPeq equivalent to SP
is defined in the following way. The specifications SP1 , . . . , SPn using executable
interaction charts are transformed in a standard way into specifications using
normal interaction charts, say SP’1 , . . . , SP’n . The added buffers are defined

182 Egidio Astesiano and Gianna Reggio

by specifications of simple systems using normal interaction charts, say B1 , . . . ,
Bk . SP’1 , . . . , SP’n and B1 , . . . , Bk are the specifications of the subsystems of
SPeq, whereas all its non trivial cooperations are defined in a standard way, and
have as participants one buffer and one original subsystem.

In the example, we show on a fragment of executable interaction chart using
the rec/send interactions how to transform it into a normal one interacting with
the buffers.

is transformed into

whereas the buffer for a subsystem identified by s9 is modelled by the following
interaction chart

The cooperations between the subsystems and the buffers are just pairs of iden-
tical interactions (e.g., <try-inter(. . .),try-inter(. . .)>).

Notice that there is not a unique way to define the buffers realizing the
cooperations, not even in this simple case of asynchronous signals exchange (in
our example, we could have organized the buffer as a list instead of as a set).

We can summarize the tasks for defining a variant of executable interaction
charts as follows:

(a) fix which are the interactions used by the variant, by giving their generators
and defining the types of their arguments,

(b) fix which are the cooperations among them,
(c) define the buffers supporting the above cooperations. The possible inter-

actions of these buffers are try-inter(. . .), ok-inter(. . .), ko-inter(. . .), where
inter is one of the interaction generators defined at (a). Define also their
behaviour by means of a normal interaction chart.

The point (3) of the definition of the basic execution step given in Fig. 3,
concerning the choice of one among the various transitions, may be made less
casual by offering the possibility to control it by decorating the transitions leav-
ing a state with priorities, just integer numbers. Then it is sufficient to replace

From Conditional Specifications to Interaction Charts 183

line (3) of the definition of the basic-execution-step in Fig. 3 by (3’) let ETLIST
be the list of the elements of ET ordered with respect to their priorities first
those with the higher one (if several transitions have the same priority they are
ordered in a casual way).

Then, a transition without priority stands for a transition with priority 0; and
a transition decorated by else / act stands for a transition decorated by null / act i,
where i is a number lower than the priorities of all the other transitions leaving
the source state.

5 Extending UML with Interaction Machines

We propose to extend UML by adding a UML-like version of executable inter-
action charts that we call interaction machines.

UML 2.0 (but versions 1.. . . are quite similar) offers three main ways to model
the behaviour:

– (behaviour and protocol) state machines, or state charts or state diagrams,
showing the reactive behaviour of objects,

– sequence/communication/interaction6 overview diagrams showing sets of se-
quences of events happening among a group of objects,

– and activity diagrams showing the control and dataflow aspect of the be-
haviour.

Thus, there is no way to present the interactive aspects of an object in isolation;
such aspects may be shown only by scenarios where its interactions are performed
with a selected set of partners. As a consequence, to depict the behaviour in
isolation of a proactive object, i.e., one which does not simply react to events,
but instead mainly triggers events to which other objects will react, we can use
only a state machine, which will be not very informing and readable, since it
will have very few transitions with heavy decorations, mainly with huge activity
part7. For these reasons, incorporating into UML the interaction charts may be
seen as a real extension adding more notational power.

5.1 Interaction Machines

We define the interaction machines by changing as less as possible the definition
of behaviour state machines8 of UML 2.0 [15]. Here for lack of room we just show

6 Note that in the UML world [15] the term interaction has a meaning different from
the one used in this paper, a UML interaction is a set of sequences of event occur-
rences among some objects.

7 To overcome this problem UML 2.0 offers a very limited possibility to visually depict
in a state machine some action either by enclosing it in a box, or, only for the send
signal action, by a convex pentagon.

8 Note, that it is possible to define also protocol interaction machines, since the dis-
tinction between behaviour and protocol state machine is orthogonal with respect
to depicting interactions or reactions.

184 Egidio Astesiano and Gianna Reggio

how to define the basic form of the interaction machines (but there is no problem
to incorporate the other more complex constructs of the state machines).

Recall that the abstract syntax of UML is given by means of an object-
oriented description, a class diagrams, called metamodel, whose classes corre-
spond to the abstract syntactic categories, presented inside [15]. At the meta-
model level, the interaction machines may be added as a new subclass of the
metaclass Behaviour, defined using the existing metaclasses whenever possible,
see Fig. 4.

Fig. 4. The metamodel definition of interaction machines

Here we assume that the context of an interaction machines must be an active
class.

Interaction machines are defined as the executable interaction charts, but
the transition decorations are expressed using UML ingredients; precisely, the
interactions are determined by the UML actions and events, and the guards and
the activities are expressed by using the means offered by the UML. The generic
form of the transitions of the interaction machines is

where

From Conditional Specifications to Interaction Charts 185

– sguard and dguard are boolean expressions (written using OCL9).
– inter is defined by the fragment of the UML metamodel in Fig. 4. It may be

either a simple action requiring an interaction with some other object (here
we only consider: operation call, signal sending, creation and destruction of
objects), or an event that is the result of an interaction by some other object
(call and signal trigger) or null that is no interaction with any other object,
i.e., an activity purely internal to the context object.

– act, the activity, is an UML action.

In this case the “Constraints” defining the well-formed constructs are quite
important and are as follows

– the evaluation of sguard and dguard cannot have any side effect, as already
required for state machines [15];

– the evaluation of sguard, dguard and the execution of act must be possible
without accessing anything outside the context object. For example, this
means that, differently from UML state machines, a call of an operation of
another object cannot appear in the activity part;

– the evaluation of any expression appearing in an interaction of the kind ac-
tion must be possible without accessing anything outside the context object;

– only interactions of the form call and signal event may have formal param-
eters that may appear in dguard and act;

– all the attributes of the context active class are visible only inside the class
itself and the interaction machine; thus no other object may access or modify
them indirectly, except explicitly calling operations of the object (sending
signals to it).

Notice that when we speak of objects, obviously we do not consider instances of
UML datatypes.

The intuitive meaning of a transition of an interaction machine is that the
object may perform (whenever possible) some interaction with some other object
possibly followed by some local activity when some guard conditions are satisfied.

The precise meaning of an interaction machine is given by specializing the
basic-execution-step of Fig. 3 to this particular case, that is essentially to define
what means to attempt executing the particular interactions used here, as shown
below.

CallAction: execute the call action; here we consider only asynchronous calls,
thus it cannot fail;

CallTrigger: if there is matching call in the event pool, then take it instanti-
ating the parameters, otherwise fail;

SendAction: execute the send action; sending signal is always asynchronous,
thus it cannot fail;

SignalTrigger: if there is matching signal in the event pool, then take it in-
stantiating the parameters, otherwise fail;

9 The Object Constraint Language to specify constraints and other expressions ap-
pearing in UML models, see [14].

186 Egidio Astesiano and Gianna Reggio

null: do nothing, clearly it cannot fail
CreateObjectAction: execute the create action; it cannot fail;
DestroyObjectAction: execute the destroy action, it cannot fail.

In this case, the abstract buffer supporting the cooperations are just the event
pools associated with any UML object [15]. Notice, that the basic-execution-step
in this case is a generalization of the run-to-completion-step used to describe the
semantics of the state machines in [15], Sect. 15.3.12.

5.2 An Example: The Distributed Buffer Resetter

In this section we present a simple example of the use of the interaction machines
to model a nonpurely-reactive active object, the Distributed Buffer Resetter.
This example is quite paradigmatic of autonomous agents doing monitoring and
maintenance over distributed systems or Internet. The resetter accesses some
buffers one after another following some given ordering, and resets each buffer
if its contents is “wrong”. At each moment, the resetter can receive from some
manager the list of the buffers to reset, or it can be stopped.

Using UML we model the buffer resetter using an active class with an asso-
ciated interaction machine.

The class has two attributes cont and bl, and two operations stops and recList.

The text enclosed by is an UML comment.

From Conditional Specifications to Interaction Charts 187

The resetter in the running state has three possible moves:

– when bl is not empty, it may access the first buffer of the list getting its
content; if such content is an error (checked by the operation error) it resets
such buffer by correcting its content;

– it may receive a new list of buffers to be reset by accepting a call of its
operation recList;

– it may receive a request to stop (by a call of its operation stops); in such cases
it passes in the state stopping. If bl is empty, it terminates by a transition
into the final state, whose atomic interaction is the null one, otherwise it
asks for a confirmation to its master by calling its operation confirm. Then,
if it receives it as a new call of the stops operation, it terminates; if instead
it receives a new list of buffers, it goes on to work again.

6 Conclusions

The main message of this paper is to witness the evolution from purely formal
techniques to visual notations that are more friendly for the user, but still rooted
in “theoretical and conceptual work”, as advocated by Ehrig and Mahr [10] about
ten years ago.

On the technical side, our journey was consisting of the following intermediate
steps:

– a description of the behaviour of systems using Casl conditional specifica-
tions, with initial semantics, of labelled transition systems;

– their visual presentations by means of interaction charts;
– their specialization as executable interaction charts, i.e., interaction charts

with a special operational semantics targeted at an easier passage to the
code;

– finally a proposal of an extension of UML by introducing the interaction ma-
chines, which are essentially the UML version of the executable interaction
charts.

The technical motivation of the introduction of the interaction machines in
UML is their ability to represent both reactive and proactive behaviour of an
object, where by proactive we mean autonomous behaviour of the kind required
for example when modelling autonomous agents.

Note the difference with the approach taken in the UML [15], where interac-
tion means a set of sequences of event occurrences among some objects. In other
words in UML there is no provision to represent the interactions of an object in
isolation.

The approach we have shown here allows to use visual notations where the
formalities are completely hidden, though being amenable to a precise seman-
tics; this is the essential meaning of the strategy that we call “well-founded
methods” [5].

Note also that in the case that we have presented in this paper we have not
given a semantics to an existing practical notation, but we have gone the opposite

188 Egidio Astesiano and Gianna Reggio

way: the interaction charts, with their ability to express autonomous behaviour,
have been suggested by a purely formal specification technique (Casl specifi-
cations of labelled transition systems). This is one of the modalities appearing
in what we have called “virtuous cycle” of the interaction between foundational
and engineering work [5].

References

1. E. Astesiano, A. Giovini, F. Mazzanti, G. Reggio, and E. Zucca. The Ada Chal-
lenge for New Formal Semantic Techniques. In Ada: Managing the Transition,
Proc. of the Ada-Europe International Conference, Edimburgh, 1986, pages 239–
248. University Press, Cambridge, 1986.

2. E. Astesiano and G. Reggio. Formalism and Method. In M. Bidoit and M. Dauchet,
editors, Proc. TAPSOFT ’97, number 1214 in Lecture Notes in Computer Science,
pages 93–114. Springer Verlag, Berlin, 1997.

3. E. Astesiano and G. Reggio. Formalism and Method. T.C.S., 236(1,2):3–34, 2000.
4. E. Astesiano and G. Reggio. Labelled Transition Logic: An Outline. Acta Infor-

matica, 37(11-12):831–879, 2001.
5. E. Astesiano, G. Reggio, and M. Cerioli. From Formal Techniques to Well-Founded

Software Development Methods. In Formal Methods at the Crossroads: From
Panacea to Foundational Support, 10th Anniversary Colloquium of UNU/IIST the
International Institute for Software Technology of The United Nations University,
Lisbon, Portugal, March 18-20, 2002. Revised Papers., number 2757 in Lecture
Notes in Computer Science, pages 132 – 150. Springer Verlag, Berlin, 2003.

6. M. Bidoit and P.D. Mosses. CASL User Manual, Introduction to Using the Com-
mon Algebraic Specification Language. Number 2900 in Lecture Notes in Computer
Science. Springer-Verlag, 2004.

7. C. Choppy and G. Reggio. Towards a Formally Grounded Software Development
Method. Technical Report DISI–TR–03–35, DISI, Università di Genova, Italy,
2003.
Available at ftp://ftp.disi.unige.it/person/ReggioG/ChoppyReggio03a.pdf.

8. E. Coscia and G. Reggio. JTN: A Java-targeted Graphic Formal Notation for
Reactive and Concurrent Systems. In Finance J.-P., editor, Proc. FASE 99, number
1577 in Lecture Notes in Computer Science. Springer Verlag, Berlin, 1999.

9. G. Costa and G. Reggio. Specification of Abstract Dynamic Data Types: A Tem-
poral Logic Approach. T.C.S., 173(2):513–554, 1997.

10. H. Ehrig and B. Mahr. A Decade of TAPSOFT: Aspects of Progress and Prospects
in Theory and Practice of Software Development. In P.D. Mosses, M. Nielsen, and
M.I. Schwartzbach, editors, Proc. of TAPSOFT ’95, number 915 in Lecture Notes
in Computer Science, pages 3–24. Springer Verlag, Berlin, 1995.

11. R. Milner. A Calculus of Communicating Systems. Number 92 in Lecture Notes
in Computer Science. Springer Verlag, Berlin, 1980.

12. P.D. Mosses, editor. CASL Reference Manual, The Complete Documentation of
the Common Algebraic Specification Language. Number 2960 in Lecture Notes in
Computer Science. Springer-Verlag, 2004.

13. OMG. UML Specification 1.3, 2000.
Available at http://www.omg.org/docs/formal/00-03-01.pdf.

14. OMG. UML 2.0 OCL Specification, 2003.
15. OMG. UML 2.0 Superstructure Specification, 2003.

From Conditional Specifications to Interaction Charts 189

16. G. Plotkin. An Operational Semantics for CSP. In D. Bjorner, editor, Proc. IFIP
TC 2-Working conference: Formal description of programming concepts, pages 199–
223. North-Holland, Amsterdam, 1983.

17. G. Reggio, E. Astesiano, and C. Choppy. Casl-Ltl : A Casl Extension for Dy-
namic Reactive Systems Version 1.0– Summary. Technical Report DISI-TR-03-36,
DISI – Università di Genova, Italy, 2003.
Available at ftp://ftp.disi.unige.it/person/ReggioG/ReggioEtAll03b.ps.

18. G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. Analysing UML Active
Classes and Associated State Machines – A Lightweight Formal Approach. In
T. Maibaum, editor, Proc. FASE 2000, number 1783 in Lecture Notes in Computer
Science. Springer Verlag, Berlin, 2000.

19. G. Reggio, M. Cerioli, and E. Astesiano. Towards a Rigorous Semantics of UML
Supporting its Multiview Approach. In H. Hussmann, editor, Proc. FASE 2001,
number 2029 in Lecture Notes in Computer Science. Springer Verlag, Berlin, 2001.

20. G. Reggio and M. Larosa. A Graphic Notation for Formal Specifications of Dy-
namic Systems. In J. Fitzgerald and C.B. Jones, editors, Proc. FME 97 - Indus-
trial Applications and Strengthened Foundations of Formal Methods, number 1313
in Lecture Notes in Computer Science. Springer Verlag, Berlin, 1997.

Algebraic Properties of Interfaces

Michael Löwe, Harald König, and Christoph Schulz

Fachhochschule für die Wirtschaft (FHDW),
Hannover, Germany

michael.loewe@fhdw.de

Abstract. Interfaces became one of the most important features in
modern software systems, especially in object-oriented systems. They
provide for abstraction and detail hiding and, therefore, contribute to
readable and reusable software construction. Formal specification meth-
ods have also addressed interfaces and provided formal semantics to
them. These semantics are always based on some forgetful and/or re-
striction constructions. The main focus has been laid on integrating these
constructions with free or behaviourable constructions in order to pro-
vide some combined semantics for specification modules.
In this paper, we investigate the algebraic properties of “forgetting” and
“restricting”. We define two different notions of model category for alge-
braic specification with explicit interface signatures, so-called interface
specifications. The first one uses forgetful constructions only, the second
one integrates the restriction to the part reachable by the interface.
We investigate closure properties of these categories w.r.t. subalgebras,
products and directed limits. This analysis provides the first result,
namely that interface specifications with Horn-axioms do not exceed
the expressiveness of Horn-axiom specifications without interfaces. The
inverse is more interesting. We show that each category specified by
Horn-axioms can be specified by simple equations on possibly hidden
operations. The constructive proof for this theorem leads to the next
main result that every class specified by an interface specification with
restriction semantics possesses an interface specification using forgetful
semantics only.

1 Introduction and Preliminaries

Since the early days of algebraic specification research (see [4, 6]), it is well-
known that some specification problems cannot be solved using a finite number
of equations or Horn-axioms only ([2, 8, 9, 11]). There is no way to avoid some
hidden operators for a finite solution. These results gave rise to a theory of
implementation relations between abstract data types ([1]). The main mechanism
here is a forgetful and/or restriction semantics in order to semantically model the
realisation of target or export data types by some source or import data types.
In these frameworks, the sorts and operations of the source types are considered
hidden. In [3], specification and implementation methods are combined within
one concept: algebraic module specifications. Semantics of these models consist
of free constructions together with some forgetful and restriction steps. Algebraic

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 190–203, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Algebraic Properties of Interfaces 191

module specifications are able to provide semantics to access control concepts
in object oriented languages as they are defined by “private”- or “protected”-
keywords in Java ([5]) or UML ([10]) for example.

In this paper, we investigate forgetful and restriction semantics, as well. But
we use a somewhat different approach. We are not interested in point-wise con-
struction of export models from import models as it is done in [3]. We put the
main emphasis on categories of algebras which are designed as model classes for
algebraic specification with explicit export interfaces, so-called interface specifi-
cations. We show that, by the right choice of these model classes, data generating,
forgetful, and restriction steps can be combined into a single free construction.
Thus, the semantics of algebraic data types with hidden operations can be pre-
sented as a simple free construction, which possesses the well-known categorical
compositional properties [7]. The paper is organised as follows.

The section “Interface Specifications” introduces syntax and semantics for
algebraic specifications with explicit interfaces. We provide two kinds of seman-
tics: forgetful semantics and restriction semantics. We show that forgetful model
categories are not closed with respect to subalgebras. Therefore, they are no
candidate for initial semantics. Restriction semantics is derived from forgetful
semantics just by repairing this deficiency.

The section “Closure Properties” investigates algebraic closure properties of
model classes with restriction semantics in the spirit of [12]. We address closure
w.r.t. products, directed limits, and subalgebras using Horn-axioms as formulas1.
The results of this section characterise restriction classes as classes which can
be specified by Horn-axioms without hidden operators. They also guarantee
the existence of initial semantics, which are explicitly constructed in section
“Free Construction”. Here the name restriction semantics is justified by showing
that free constructions into restriction classes are composed of term-generating,
equivalence factorisation, forgetful, and restriction steps.

Section “Interface Specifications with Equations” investigates the subset of
interface specifications with restriction semantics where all axioms are equations.
We show that for each Horn-specification without hidden operators there is one
with hidden operators using equations only. The constructive proof provides
another interesting corollary, namely that for each restriction class, there is an
interface specification with forgetful semantics.

The “Summary and Outlook”-section provides an overview of all results con-
tained in this paper and an outlook on parametric interface specifications as a
future research topic.

We use the following notions and notations. A signature SIG = (S,OP)
consists of a set S of sorts and a family OP = (OPw,s)w∈S∗,s∈S of sets of
operator symbols. With op : s1s2 · · · sn → s we denote domain and codomain for
operators op ∈ OPs1s2···sn,s.

1 We restrict ourselves to Horn-axioms, since they are the most expressive type of
formulas that (1) are finite in all components and (2) provide an iterative access
to the specified equivalence. Hence, they are the right choice on the design level of
software systems, which is addressed by interface specifications, too.

192 Michael Löwe, Harald König, and Christoph Schulz

SIG = (S,OP) is a subsignature of SIG′ = (S′, OP ′) (written SIG ⊆ SIG′),
iff S ⊆ S′ and OPw,s ⊆ OP ′

w,s for all w ∈ S∗, s ∈ S. The category of all algebras
w.r.t. a signature SIG is denoted by Alg(SIG). If SIG ⊆ SIG′ we obtain a
functor ()SIG : Alg(SIG′) → Alg(SIG), the so-called forgetful functor, where
((A)SIG)s = As for each sort in SIG and op(A)SIG = opA for each operator in
SIG. The application of this functor to an algebra A is denoted by (A)SIG, the
application to a homomorphism f by (f)SIG. Whenever we mention categories
of algebras, we assume them to be full and abstract, i.e. they contain all ho-
momorphisms between objects, and with every object each isomorphic object is
contained.

TSIG means the term algebra w.r.t. a signature, TSIG(X) denotes the term
algebra over some variable set X = (Xs)s∈S , being a sort-indexed family of sets.
Note, that the carrier sets of every SIG-algebra form a variable set.

A Horn-axiom h = (X,P, e) consists of a finite variable set X (i.e.
⊎

s∈S Xs

is finite), a finite set P of equations over X (premisses) and one equation e over
X (conclusion). An equation (tl, tr) over X is a pair of terms tl, tr ∈ (TSIG(X))s

for some sort s. If P is empty, h reduces to an equation. Satisfaction is as
usual. A specification SPEC = (SIG,H) consists of a signature SIG and a set
of Horn-axioms H . Alg(SPEC) denotes the subcategory of those algebras in
Alg(SIG) that satisfy all axioms. QSPEC denotes (up to an isomorphism) the
initial algebra in Alg(SPEC).

A partially ordered set where every finite subset has an upper bound is called
a directed index set. Let I be such a set. Adirected family of SIG-homomorphisms
on a family (Ai)i∈I of SIG-algebras is a familiy H = (hij : Ai → Aj)i≤j,i,j∈I of
homomorphisms with the following properties:

1. hii = idAi for each i ∈ I
2. hjk ◦ hij = hik for all i, j, k ∈ I with i ≤ j ≤ k

We call �H with
(�H)s = (

⋃
i∈I

(Ai)s)/≡

the directed limit, where for any x ∈ Ai, y ∈ Aj : x ≡ y iff there is k ∈ I such
that hik(x) = hjk(y). Moreover,

op
	H([x1], . . . , [xn]) = [opAk(hi1k(x1), . . . , hink(xn))] (1)

for an upper bound k of {i1, . . . , in} and xj ∈ Aij .

2 Interface Specifications

Here we introduce the syntactical and semantical framework for specifications
with auxiliary operators. Such operators do not occur in the description of the
problem itself, but can provide additional structure that facilitates the formula-
tion of the intended properties. Therefore we will distinguish between a public
part and a design part which does not belong to the data type but is used inter-
nally. In the sequel we will refer to the public part as the interface signature.

Algebraic Properties of Interfaces 193

Definition 1 (Interface specification). An interface specification (a specification
with auxiliary sorts and operators, resp.) ISPEC = (SIG,DSPEC) consists of

1. a specification DSPEC = (DSIG,H), where DSIG = (DS,DOP) is the
design signature and H is a set of Horn-axioms w.r.t. DSIG and

2. a subsignature SIG of DSIG, called the interface2.

Interface specifications are written in the form ISPEC = (S,OP,DS,DOP,H)
with subset relations between the sort sets and operation sets or in one of the
forms ISPEC = (SIG,DSIG,H) = (SIG,DSPEC) dependent on what fits
best our requirements. Moreover, in examples, we use the keywords sorts, opns
for enumerating interface sorts and operator symbols, Dsorts, Dopns for declar-
ing additional design sorts and operator symbols and axioms for Horn-axioms.
If all these Horn-axioms reduce to equations, we write eqns.

The next definition introduces two alternatives for the category of all algebras
that satisfy an interface specification. The question, what signature are these
algebras of, can easily be answered: we want to describe algebras that are conform
to the interface and not to the (hidden) design signature. Hence, we have

Definition 2 (Satisfaction). A SIG-algebra A satisfies an interface specifica-
tion ISPEC = (SIG,DSPEC) if

1. there is B ∈ Alg(DSPEC) such that A ∼= (B)SIG (Forgetful Semantics).
2. there is B ∈ Alg(DSPEC) such that A � (B)SIG (Restriction Semantics).

Here C ∼= D (C � D) denotes the fact, that there is an isomorphism (a
monomorphism) between two SIG-algebras C and D.

We use the abbreviations AlgF (ISPEC) or AlgR(ISPEC) for the category
of all ISPEC-algebras with regard to forgetful semantics or restriction seman-
tics, resp. Thus, there are two different possibilities for A to satisfy an interface
specification. We deduce from the definition, that

AlgF (ISPEC) ⊆ AlgR(ISPEC). (2)

In general, we can replace ⊆ by ⊂ as is shown in the following examples.

Example 1. Consider the following interface specification:
NEMPTY =

sorts S
Dopns c : → S

Because the first alternative in Definition 2 requires an isomorphism, every A ∈
AlgF (ISPEC) contains at least one element in its carrier set. But the subalgebra
As = ∅ is a SIG-algebra in AlgR(ISPEC). Hence, the subset relation is strict
in (2) for NEMPTY and we also deduce that, in general, AlgF (ISPEC) is not
closed under subalgebras.
2 The integration of the interface into the design signature could also be provided using

general signature morphisms. In this contribution we restrict ourselves to inclusions
but keep in mind that the following theory could also be presented in the general
case.

194 Michael Löwe, Harald König, and Christoph Schulz

Example 2. Consider the specification
Y OY O =

sorts S, T
opns a, b : → S

c, d : → T
Dopns f : S → T

g : T → S
eqns f(a) = c

f(b) = c
f(g(x)) = d

Since f is constant and equal to c on the interface generated terms, any DSPEC-
algebra needs a third element in the carrier set of S if c �= d. So a minimal
B ∈ AlgF (Y OY O) is given by BS = {a, b, z}, BT = {c, d}. Indeed it is the
forgetful image of the DSPEC-algebra C with fC = {(a, c), (b, c), (z, d)} and
gC = {(c, z), (d, z)}. But TSIG(∅) �∈ AlgF (Y OY O) because it lacks this third
element.

Both cases underline that, in general, AlgF (ISPEC) �= AlgR(ISPEC) and
that, using forgetful semantics, it might happen that hidden operations produce
junk elements from the public point of view. Thus, forgetful semantics are not
appropriate for initial semantics which is summarised by the following fact.

Proposition 1 (Main weakness of forgetful semantics). In general, the inclu-
sion functor I : AlgF (ISPEC) → Alg(SIG) does not possess a left adjoint
functor.

Proof. We can easily deduce a counter example from Example 1. Assume that
there is a free construction for A ∈ Alg(SIG) with AS = ∅. Then, the universal
morphism u = ∅. Because F (A)S �= ∅, u cannot be an epimorphism, contradict-
ing the universality of u. !

Restriction semantics does not possess these weaknesses as we will show in the
next section. Moreover, we can point out another strength of these semantics: If
B ∈ Alg(DSPEC) with A � B, we call B an implementation of A. The next
proposition shows that the free construction G : Alg(SIG) → Alg(DSPEC)
considered as left adjoint of the forgetful functor is consistent (in the sense of
[11]) on AlgR(SIG,DSPEC).

Proposition 2. Let A ∈ AlgR(SIG,DSPEC) and G : Alg(SIG) → Alg
(DSPEC) be the free construction w.r.t. the forgetful functor Alg(DSPEC) →
Alg(SIG) then G(A) can be considered to be a standard implementation of A,
i.e. A � (G(A))SIG.

Proof. Let B ∈ Alg(DSPEC), i : A → (B)SIG be a monomorphism and let
u : A → (G(A))SIG denote the universal homomorphism. Hence, i extends to a
unique homomorphism i∗ : G(A) → B with (i∗)SIG ◦u = i on A. The injectivity
of i forces u to be injective on A which yields the desired property. !

Algebraic Properties of Interfaces 195

3 Closure Properties

The results of this section will provide sufficient conditions to classify the cate-
gory AlgR(ISPEC). It turns out that hidden sorts and operations do not im-
prove specification accuracy. A direct consequence of Definition 2 is

Proposition 3. The category AlgR(ISPEC) is closed under subalgebras, i.e. if
A ∈ AlgR(ISPEC) and B ⊆ A, then B ∈ AlgR(ISPEC). !
We also obtain

Proposition 4. The category AlgR(ISPEC) is closed under products, i.e. if I
is an index set, then

Ai ∈ AlgR(ISPEC) for all i ∈ I ⇒
∏
i∈I

Ai ∈ AlgR(ISPEC)

and

Proposition 5. The category AlgR(ISPEC) is closed under directed limits,
i.e. if I is a directed index set, (Ai)i∈I is a family of ISPEC-algebras, and
H = (hij : Ai → Aj)i≤j∈I is a directed family of ISPEC-homomorphisms, then
�H ∈ AlgR(ISPEC).

For the proofs of Propositions 4 and 5 we need the following intermediate results.

Lemma 1. Let SIG ⊆ SIG′ be two signatures.

1. If I is an index set and A = (Ai)i∈I is a family of SIG′-algebras, then
(
∏
A)SIG =

∏
i∈I(Ai)SIG.

2. If I is an index set and A = (Ai)i∈I ,B = (Bi)i∈I are two families of SIG-
algebras with Ai � Bi for all i ∈ I, then

∏
A �

∏
B.

Proof. 1 follows directly from the fact, that ()SIG is a right adjoint functor and
therefore preserves limits. To show 2, let pi :

∏
A → Ai and p′i :

∏
B → Bi be

the projections and mi : Ai → Bi monomorphisms for all i ∈ I. The product
definition (for

∏
B) yields a unique homomorphism h :

∏
A →

∏
B such that

p′i ◦ h = mi ◦ pi for all i ∈ I. (3)

We claim that h is a monomorphism. Indeed, let f, g : X →
∏
A be two arrows

with h ◦ f = h ◦ g. Then p′i ◦ h ◦ f = p′i ◦ h ◦ g. By (3) we obtain

mi ◦ pi ◦ f = mi ◦ pi ◦ g for all i ∈ I.

Because mi is a monomorphism, this gives pi ◦ f = pi ◦ g for all i ∈ I and thus,
by the universality of

∏
A: f = g. !

Lemma 2. Let SIG ⊆ SIG′ be two signatures.

1. If I is a directed index set, and H = (hij : Ai → Aj)i≤j∈I is a directed
family of of SIG′-homomorphisms, then (�H)SIG = �HSIG where HSIG =
((hij)SIG : (Ai)SIG → (Aj)SIG)i≤j∈I .

196 Michael Löwe, Harald König, and Christoph Schulz

2. If I is a directed index set, and H = (hij : Ai → Aj)i≤j∈I ,K = (kij : Bi →
Bj)i≤j∈I are two directed families of SIG-homomorphisms with Ai � Bi

for all i ∈ I via monomorphisms mi : Ai → Bi and

mj ◦ hij = kij ◦mi for all i ≤ j ∈ I (4)

then �H � �K.

Proof. To derive 1 we observe that for each sort s in SIG and every homo-
morphism ((hij)SIG)s = (hij)s. Or, equally, ≡′=≡ on (Ai)s × (Aj)s where ≡ is
the SIG-congruence w.r.t. ((hij)SIG)i≤j∈I and ≡′ is the SIG′-congruence w.r.t.
(hij)i≤j∈I . Thus

((�H)SIG)s = (�H)s = (
⋃
i∈I

(Ai)s)/≡′ = (
⋃
i∈I

((Ai)SIG)s)/≡ = �(HSIG)s.

Using these arguments again, one easily derives op(H)SIG = op
	HSIG for all oper-

ator symbols op in SIG.
To show 2 we observe that the congruences ≡h in �H and ≡k in �K are coupled

via the monomorphisms as follows: let x ∈ Ai, y ∈ Aj and x ≡h y. Then, for some
l: ml(hil(x)) = ml(hjl(y)). Using (4) and the fact that ml is a monomorphism,
we obtain for all i, j ∈ I:

x ≡h y ⇐⇒ mi(x) ≡k mj(y) for all x ∈ Ai, y ∈ Aj . (5)

From (5) we easily deduce that the mapping m : �H → �K defined by

m([x]≡h
) = [mi(x)]≡k

, (6)

where x ∈ Ai, is well-defined and injective. We will show, that m is a homomor-
phism which will yield �H � �K. Let op : s1 · · · sn → s be an operator in SIG
and x1 ∈ Ai1 , . . . , xn ∈ Ain . If l is an upper bound of i1, . . . , in, then

op
	K(m([x1]≡h

), . . . ,m([xn]≡h
))

(6)
= op

	K([mi1 (x1)]≡k
, . . . , [min(xn)]≡k

)
(1)
= [opBl(ki1l(mi1(x1)), . . . , kinl(min(xn)))]≡k

(4)
= [opBl(ml(hi1l(x1)), . . . ,ml(hinl(xn)))]≡k

(7)

Since ml is a homomorphism,

[opBl(ml(hi1l(x1)), . . . ,ml(hi1n(xn)))]≡k

= [ml(opAl(hi1l(x1), . . . , hinl(xn)))]≡k
. (8)

Moreover,

[ml(opAl(hi1l(x1), . . . , hinl(xn)))]≡k

(6)
= m([opAl(hi1l(x1), . . . , hinl(xn))]≡h

)
(1)
= m(op 	H([x1]≡h

, . . . , [xn]≡h
)). (9)

Combining (7), (8), and (9) we obtain the desired result. !

Algebraic Properties of Interfaces 197

Proof (of Proposition 4). Let (Bi)i∈I be a family of DSPEC-algebras such that
Ai � (Bi)SIG for each i ∈ I. From Lemma 1, 2 we deduce that∏

i∈I

Ai �
∏
i∈I

(Bi)SIG. (10)

By Lemma 1, 1 the right hand side of (10) equals (
∏

i∈I Bi)SIG. Since impli-
cational classes are closed under products (see [12]) we deduce that

∏
i∈I Bi ∈

Alg(DSPEC) which gives
∏

i∈I Ai ∈ AlgR(ISPEC). !

Proof (of Proposition 5). Let G : Alg(SIG) → Alg(DSPEC) be the free functor
from Proposition 2. Thus, the family

u = (uAi : Ai � (G(Ai))SIG)i∈I

provides a natural transformation u : IdAlg(SIG) ⇒ (G)SIG where the uAi are
monomorphisms. Thus

(G(hij))SIG ◦ uAi = uAj ◦ hij . (11)

Moreover, the functor property of G shows that (G(hij) : G(Ai) → G(Aj))i≤j∈I

is a directed familiy. Let �G(H) be its directed limit. Then from Lemma 2, 2
together with (11) and Lemma 2, 1 we obtain

�H � �G(H)SIG = (�G(H))SIG.

Since implicational classes are closed under directed limits (see [12]), we deduce
that �G(H) ∈ Alg(DSPEC) and thus �H ∈ AlgR(ISPEC). !

It is shown in [12], Section 3.3, Theorem 25, that a necessary and sufficient con-
dition for a class of algebras to possess a specification with Horn-axioms is that
this class forms a quasi-variety, i.e. it is closed w.r.t. subalgebras (Proposition 3),
products (Proposition 4), and directed limits (Proposition 5). Thus, the results
of this chapter imply

Theorem 1 (Characterisation of restriction classes). If C is a full and
abstract subcategory of Alg(SIG), then there is an interface specification ISPEC
for C, i.e. C = AlgR(ISPEC) if and only if C can be specified by Horn-axioms
H, i.e. C = Alg(SIG,H). !

4 Free Construction

Since AlgR(ISPEC) is closed w.r.t. subalgebras (Proposition 3) and products
(Proposition 4), from [12], Section 3.3, Theorem 13 we obtain another important
result.

Corollary 1 (Existence of free constructions). Let ISPEC be an inter-
face specification then the inclusion functor I : AlgR(ISPEC) → Alg(SIG)
possesses a left adjoint. !

198 Michael Löwe, Harald König, and Christoph Schulz

A

F(A) (G(A))SIGi

sA uA

Fig. 1. Free construction w.r.t. inclusion.

In this chapter we will provide the explicit construction of this left adjoint. Let G
be the standard implementation from Proposition 2. We will show that the free
object for an algebra A ∈ Alg(SIG) w.r.t. the inclusion I : AlgR(ISPEC) →
Alg(SIG) is the surjective part in the epi/mono-factorisation of the universal
morphism uA : A→ I(G(A)). The epi/mono-factorisation can be interpreted as
a restriction step and, together with the well-known construction of G, completes
the free construction into restriction classes as mentioned in chapter 1.

Theorem 2. Let ISPEC be an interface specification and A ∈ Alg(SIG).
If uA : A → (G(A))SIG is the universal morphism of the free construction
G : Alg(SIG) → Alg(DSPEC) and uA = i ◦ sA is its epi/mono-factorisation
(compare Figure 1), then (F (A), sA) is the free construction w.r.t. the inclusion
functor I : AlgR(ISPEC) → Alg(SIG).

Proof. Obviously, F (A) ∈ AlgR(ISPEC) (because i is a monomorphism in
Fig. 1). Let B ∈ AlgR(ISPEC) and f : A → B be a homomorphism. We have
to show universality of the surjective homomorphism sA : A → F (A). Since
B ∈ AlgR(ISPEC) there is C ∈ Alg(DSPEC) and a SIG-monomorphism
m : B → (C)SIG. The universality of uA : A → (G(A))SIG provides a unique
homomorphism F ∗ : G(A) → C such that

(F ∗)SIG ◦ uA = m ◦ f (12)

holds in Alg(SIG). We define f∗ : F (A) → B as

f∗ = m−1 ◦ (F ∗)SIG ◦ i

and claim that this is a well-defined homomorphism and the unique extension
of f . First of all we use the fact that for each y ∈ F (A) there is x ∈ A with
i(y) = uA(x). Thus by (12)

(F ∗)SIG(i(y)) = (F ∗)SIG(uA(x)) ∈ m(B),

which explains well-definedness. Moreover, using (12) a second time and the
definition of f∗, we observe that

f∗ ◦ sA = f (13)

holds in A. Uniqueness of f∗ among all arrows that fulfill (13) easily follows from
the fact that sA is an epimorphism. !

Algebraic Properties of Interfaces 199

Corollary 2 (Initial objects). Let ISPEC = (SIG,DSPEC) be an interface
specification. Then the category AlgR(ISPEC) contains an initial object.

Proof. Each object F (TSIG) is initial in AlgR(ISPEC) because TSIG is initial
in Alg(SIG) and free functors preserve initial objects. !

5 Interface Specifications with Equations

Theorem 1 shows that hidden operators do not add any specification power if
Horn-axioms are used. We get a different situation if we restrict ourselves to
equations, as the following example demonstrates.

Example 3. Consider the specification
HIDINJ =

sorts S, T
opns c : → S

f : S → T
Dopns g : T → S
eqns g(f(x)) = x

The hidden injectivity of f in every DSPEC-algebra is transported to every
subalgebra and hence f must be injective in every A ∈ AlgR(HIDINJ). We
consider the Algebra I ∈ AlgR(HIDINJ) : IS = IT = {0, 1}, cI = 0, f I = id.
Constructing A/≡ where ≡ is the equality on IS and IT × IT on IT , we ob-
tain the surjective canonical homomorphism [.] : A → A/≡. Thus, A/≡ is a
homomorphism of A with non-injective f , since

f
A/≡
S ([0]≡S) = [0]≡T = [1]≡T = f

A/≡
S ([1]≡S), but [0]≡S �= [1]≡S .

Hence, AlgR(HIDINJ) is not closed under homomorphic images. !

Since all equational classes are closed w.r.t. homomorphic images (Birkhoff
characterisation), Example 3 demonstrates that interface specifications with
equations do not possess an equational specification in general. But the next
theorem shows that hidden operators and equations are sufficient specification
tools for any Horn-axiom specification.

The major step of the proof is the transformation of a Horn-axiom specifica-
tion into an equational specification with hidden operators and was inspired by
various examples of [11].

Theorem 3 (Characterisation of implicational classes). If C is a full and ab-
stract subcategory of Alg(SIG), then there is an interface specification ISPEC
for C where all axioms are equations, i.e. C = AlgR(ISPEC) with ISPEC =
(SIG,DSIG,E), if and only if C can be specified by Horn-axioms H, i.e. C =
Alg(SIG,H).

Proof. The first direction of the proof is shown easily, since Theorem 1 already
stated that for each interface specification ISPEC, there exists a Horn-axiom

200 Michael Löwe, Harald König, and Christoph Schulz

specification H such that AlgR(ISPEC) = Alg(S,OP,H). This is obviously
also true if the design axioms are equations only.

For the second direction, we observe that if (S,OP,H) is a specification with
Horn-axioms, each axiom h ∈ H has the form

h = (x1: sx1 , . . . , xn: sxn ; t1 = u1, . . . , tm = um ⇒ tm+1 = um+1) (14)

Assuming the sort of the equations ti = ui is si for i = 1, . . . ,m + 1, we can
define the following interface specification:
ISPEC(H) =

sorts (s)s∈S

opns (op)op∈OP

Dopns (h: sx1 · · · sxns1s1 · · · smsmsm+1 → sm+1)h∈H

eqns

⎛⎜⎝
(e1,h) x1: sx1 , . . . , xn: sxn ;

h(x1, . . . , xn, t1, u1, t2, u2, . . . , tm, um, tm+1) = um+1

(e2,h) x1: sx1 , . . . , xn: sxn , y1: s1, . . . , ym: sm, z: sm+1;
h(x1, . . . , xn, y1, y1, y2, y2, . . . , ym, ym, z) = z

⎞⎟⎠
h∈H

We are now going to prove AlgR(ISPEC(H)) = Alg(S,OP,H) by showing

AlgR(ISPEC(H)) ⊆ Alg(S,OP,H) (15)

and
Alg(S,OP,H) ⊆ AlgR(ISPEC(H)). (16)

To derive (15), we assume A ∈ AlgR(ISPEC(H)). We want to show A |= h
for all h ∈ H . Let ass:X → A be an assignment for the set of variables X =
{x1, . . . , xn} of h in A, such that

ass(ti) = ass(ui) (17)

for all i = 1, . . . ,m. Because A ∈ AlgR(ISPEC(H)), there exists an algebra C
for the design part of ISPEC(H), such that there is a monomorphism i : A �
(C)(S,OP). Taking this monomorphism as a family of mappings, we obtain an
assignment assC = i ◦ ass : X → C. For the extension i ◦ ass : TSIG(X) → C,
we have

i ◦ ass = i ◦ ass. (18)

But C satisfies the equations, i.e.,

C |= (e1,h) (19)

C |= (e2,h) (20)

Algebraic Properties of Interfaces 201

so we can conclude:

i ◦ ass(um+1)
(18)
= assC(um+1)

(19)
= assC

(
h(x1, . . . , xn, t1, u1, . . . , tm, um, tm+1)

)
= hC

(
assC(x1), . . . , assC(xn), assC(t1), assC(u1), . . . , assC(tm+1)

)
(17)
= hC

(
assC(x1), . . . , assC(xn), assC(t1), assC(t1), . . . , assC(tm+1)

)
= assC

(
h(x1, . . . , xn, t1, t1, . . . , tm, tm, tm+1)

)
(20)
= assC(tm+1)

(18)
= i ◦ ass(tm+1)

Since i is a monomorphism, we obtain ass(um+1) = ass(tm+1).
To show (16), we assume A ∈ Alg(S,OP,H). Due to Definition 2, it is

sufficient to construct an algebra C ∈ Alg(DSIG,E), so that (C)SIG ⊇ A. The
construction is done as follows:

1. Cs = As for all sorts s ∈ S

2. opC = opA for all operators op ∈ OP

3. For each design operator h ∈ DOP , we define a corresponding operation
hC : Csx1

× · · · × Csxn
× Cs1 × Cs1 · · · × Csm × Csm × Csm+1 → Csm+1 such

that hC(c1, . . . , cn, y1, z1, . . . , ym, zm, x) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x if yi = zi for all i = 1, . . . ,m
ass(um+1) if yi = ass(ti) and zi = ass(ui) for all i = 1, . . . ,m, and

x = ass(tm+1), where ass : Xh → C is defined as ass(xj) =
cj for all j = 1, . . . , n.

c ∈ Csm+1 otherwise

In the last of the three cases we could also have chosen x instead of an
arbitrary c ∈ Csm+1 , because x ∈ Csm+1 guarantees Csm+1 �= ∅.

The operations hC are well-defined, even if both the first and second condition
are met simultaneously. In such a case, we obtain for all i = 1, . . . ,m: yi = zi,
yi = ass(ti), zi = ass(ui), and ass(tm+1) = x. From this, we can easily conclude
x = ass(tm+1) = ass(um+1) (since A |= H).

Now we have to show that C satisfies the equations of the design specification
ISPEC(H). It is obvious that there are two equations for each operation which
are to be satisfied. But the operations have been defined deliberately so that these
two equations are covered by the first two of the three cases in the definition of
hC . According to the definition of C, we deduce A = (C)(S,OP), completing the
proof. !

Corollary 3 (Forgetful and restriction semantics). For each category AlgR

(ISPEC), there exists a design specification ISPEC′, such that AlgF (ISPEC′)
= AlgR(ISPEC), i.e., each restriction class can be specified by forgetful seman-
tics.

202 Michael Löwe, Harald König, and Christoph Schulz

Proof. Theorem 1 guarantees the existence of a specification with Horn-axioms
(SIG,H) for AlgR(ISPEC), i.e., AlgR(ISPEC) = Alg(SIG,H). Due to the
construction of the proof of Theorem 3, Alg(SIG,H) = AlgR(ISPEC(H)).
Additionally, for each A ∈ Alg(SIG,H), there is a C satisfying the design equa-
tions of ISPEC(H), such that A = (C)SIG. From this, it follows directly that
Alg(SIG,H) = AlgF (ISPEC(H)). !

6 Summary and Outlook

In this paper, we introduced a notion of interface specification which integrates
design specifications with explicit interfaces. The corresponding notion of satis-
faction – also introduced here – provides a class of algebras for each interfaces
specification. In this setting we can compare different specification mechanisms
w.r.t. their expressive power. The results in this paper can be summarised as
follows.

For each signature SIG, let SIG(H) and SIG(E) be the classes of SIG-
algebras that can be specified using Horn-axioms or equations resp. without
hidden sorts and operations, let SIGF (H) and SIGF (E) be the classes with an
interface specification using forgetful semantics, and let SIGR(H) and SIGR(E)
be the corresponding classes using restriction semantics. Then, by the results
presented above, we obtain the following relations:

SIG(E) ⊂ SIGR(E) = SIG(H) = SIGR(H) ⊂ SIGF (E)
?
⊆ SIGF (H) (21)

The only open question is SIGF (E) = SIGF (H).
Most of the results we have achieved do not address finiteness of the specifi-

cations. For example, it is not guaranteed that the Horn-axiom specification that
exists for a finite interface specification with equations is finite as well. There-
fore, it is an interesting issue for future research to investigate the relationships
of (21) for classes that can be specified by finite specifications3 of the different
types. One contribution to these questions can be found in the constructive proof
of Theorem 3: If we have a finite Horn-axiom specification without hidden sorts
and operations for a class C, then there is a finite interface specification for C
using restriction semantics and equations only.

A second important result presented here that opens up a new research line
is the existence of free constructions for interface specifications with restriction
semantics. Theorem 2 demonstrates that this free construction integrates term
generating, equivalence factorisation, and restriction steps into a single mech-
anism that is compositional in itself, since free constructions compose to free
constructions.

On the basis of these constructions a module concept comparable to that
presented in [3] can be built. A first step is to consider parametric interface
specifications where the parameter is a subsignature of the interface. Initial se-
mantics for this type of specifications is guaranteed by Theorem 2. A second step
3 Finiteness means finite in all components.

Algebraic Properties of Interfaces 203

is to allow interface specifications to formulate restrictions on the admissible pa-
rameter algebras. Again, we have free constructions. In a third step, a module
concept that considers the implementation level explicitly can be obtained from
this situation if we require specification morphisms from the parameter design
to the target design, such that the resulting diagram of free functors between the
related categories commutes. Now it should be possible to construct an explicit
implementation for the target if the parameter comes equipped with an explicit
implementation as well. What we get is a parametric specification with a para-
metric interface whose properties are worthwhile to be investigated by future
research.

References

1. Hartmut Ehrig, Hans-Jörg Kreowski, Bernd Mahr, and Peter Padawitz. Algebraic
implementation of abstract data types. Theoret. Comp. Sci. 20 (1982), 209-263.

2. Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification 1: Equa-
tions and Initial Semantics, volume 6 of EATCS Monographs on Theoretical Com-
puter Science. Springer, 1985.

3. Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification 2: Module
Specifications and Constraints, volume 21 of EATCS Monographs on Theoretical
Computer Science. Springer, 1990.

4. Joseph A. Goguen, James W. Thatcher, and Eric G. Wagner. An initial alge-
bra approach to the specification, correctness and implementation of abstract data
types. IBM Research Report RC 6487, 1976. Also: Current Trends in Programming
Methodology IV: Data Structuring, Prentice Hall (1978), 80-144.

5. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The JavaTMLanguage Spec-
ification. Second edition, Addison-Wesley, 2000.

6. John V. Guttag. The specification and application to programming of abstract data
types. Ph.D. Thesis, University of Toronto, 1975.

7. Horst Herrlich and George E. Strecker. Category Theory. Second edition, Helder-
mann, 1979.

8. Hans-Jörg Kreowski. Internal communication. TU-Berlin, 1978.
9. Michael Löwe. Algebra 2. Technical Lecture Notes, TU-Berlin, 1991 (in german).

10. James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley, 1999.

11. James W. Thatcher, Eric G. Wagner, J.B. Wright. Data Type Specification.
Parametrization and the Power of Specifiction Techniques. ACM Transactions on
Programming Languages and Systems, Vol. 4, No. 4, 1982, 711-732.

12. Wolfgang Wechler. Universal Algebra for Computer Scientists. Springer, 1992.

∈T -Integration of Logics

Bernd Mahr and Sebastian Bab

Technische Universität Berlin,
Berlin, Germany

{mahr,bab}@cs.tu-berlin.de

Abstract. ∈T -logic was first designed by Werner Sträter as a first-order
propositional logic with quantification, reference, and predicates for true
and false. It is motivated by reconstruction of natural language seman-
tics and allows, as a logic with self-reference and impredicativity, among
others the treatment of the liar paradox despite the totality of its truth
predicates. Its intensional models form a theory of propositions for which
a correct and complete calculus is given.
∈T -logic was picked up by Philip Zeitz to study the extension of abstract
logics by the concepts of truth, reference and classical negation, thereby
rebuilding the meta-level of judgements in a formal level of propositional
logic. His parameterized ∈T -logic allows formulas from a parameter logic
to become the constants in his ∈T -logic. Parameter-passing of logics with
correct and complete calculus also admits, under certain conditions, the
entailment of a calculus which is correct and complete for the extended
logic.
Since in parameterized ∈T -logic Tarski Biconditionals not only apply for
the truth of ∈T -logic sentences, but also for the meta-level truth of the
parameter logic it is natural to view ∈T -logic as a theory of judgements
whose propositions are expressed in the parameter logic.
We add a new interpretation to ∈T -logic as a theory of truth and judge-
ments, and introduce ∈T -logic as a means for the integration of logics.
Based on a particular choice of uniform view and treatment of logics we
define ∈T -logics and ∈T -extensions as the foundation for ∈T -integration
of logics and models.
Studies in ∈T -logic, which have started to deal with the difficulties of
truth in natural language semantics, have evolved into a concept of logic
integration where application oriented logics can be plugged in as pa-
rameters. This paper very much relies on the work of Philip Zeitz, but
opens it for the new perspective of integration.

1 Introduction

There are various approaches to integration in the design and description of
systems. Here integration of logics has the goal to define a logic formalism which
admits compound propositions whose components come from different logics.
For this task of integration ∈T -logic is used as a basis.

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 204–219, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

∈T -Integration of Logics 205

1.1 Studies in ∈T -Logic

∈T -logic, a theory of truth and propositions, was first defined by Werner Sträter
in the context of reconstructing natural language semantics by means of self-
referential structures (see [15, 14]). Based on propositional variables and con-
stants formulas of ∈T -logic are built from classical propositional connectives
together with quantification over propositional variables, propositional equality
and predicates for truth and falsity. The resulting logic is intensional in that it
has not just truth values but rather sets of propositions as its models. It has
been proven free from antinomies despite its total truth-predicates and its abil-
ity to model self-referential sentences and impredicative quantification. This is
shown in a model existence theorem. Also a correct and complete calculus of
∈T -logic is given by Sträter. The concept of ∈T -integration defined below is a
reinterpretation and particular use of ∈T -logic.

Logic reconstruction of natural language semantics shows the need to simul-
taneously handle various kinds of logics as well as their extension by concepts of
truth and reference. This need was taken as a motivation for a generalization of
∈T -logic, which admits propositional constants to be formulas from some other
logic. The study of this generalization resulted in the definition of the so-called
∈T -extension by Philip Zeitz (in [26]). To deal with concrete extensions of arbi-
trarily given logics Zeitz studies different forms of abstract logics and introduces
a particular form, in which the semantics is given by a system of sets, called ba-
sis. For extensions of such logics in abstract form Zeitz studies the existence of
models and the conditions which allow to extend a correct and complete calculus
of the parameter logic so that the resulting calculus is correct and complete for
the extended logic. He also discusses basics of a model theory and the existence
of intensional propositional interpretations.

∈T -logic has proven to be a suitable concept for truth and reference. It avoids
antinomies which necessarily appear with logics having total truth predicates and
at the same time allow for representations of decidable relations and computable
functions (Tarski, see [24]). In this respect ∈T -logic is not a rich language. The
concept of ∈T -extension however circumvents limitations in expressive power by
some kind of stratification in which language features that are rich enough for
representations are being separated from their conceptual truth predicates.

1.2 Concepts of Integration

The task of specification has more and more become a task of dealing with the
complexity of the system to be specified. Early approaches to cope with complex
system structures were based on the concept of modularization, first studied in
the context of programming (Parnas, see [18]) and later in the context of abstract
data type specification (see Goguen, Tardo [12] and Ehrig, Mahr [4, 5]). Integra-
tion was here understood as composition of specifications based on some under-
lying logic. The need of a variety of logics for specification has motivated the
study of abstract concepts of system description in appropriate formal or concep-
tual frameworks. Initially these frameworks were specification languages based

206 Bernd Mahr and Sebastian Bab

on the categorical concept of institution (see for example Goguen, Burstall [10]
and Ehrig, Mahr [5]). They have intensively been studied and have strongly in-
fluenced the design of later approaches in programming and specification. While
specification languages over arbitrary institutions abstract away the underlying
logic from specifications and allow thereby the use of different logics in system
description it was still required that specifications in a given language are based
on one and the same logic formalism.

Systematic description of systems and systems behaviour in a single formal-
ism, however, has proven inadequate in many cases. In the context of application
and technology development it was found that not only different tasks, but also
different viewpoints and perspectives on the same object are required to deal
with the many aspects involved.

Different tasks and different viewpoints however create the need for inte-
gration of different logic formalisms as well as frameworks of conformance and
consistency. Computer systems have for a long time offered facilities for inte-
gration of programs written in different programming languages. While in the
beginning these facilities were placed at the operating system level, using script
languages for example, it was object-oriented approaches to system development,
that first allowed integration at a higher language level. Middleware technolo-
gies like CORBA, J2EE, .NET or Sun.ONE are good examples. Integration is
here achieved by service oriented architectures with interface conventions and
definition languages.

An early example of specification under multiple views is the ANSA archi-
tectural model, a predecessor to the ISO reference model for open distributed
processing (ODP, see [8] and Putman [19]). It distinguishes five viewpoints (en-
terprise, information, computation, engineering, technology), and, like RM-ODP,
requires a system to be specified under each of these viewpoints.

In RM-ODP, integration of specification under the different viewpoints is not
achieved by mere composition, but by the requirement of additional conformance
specifications and activities of conformance assessment in which, among other
properties, also consistency between specifications and compliance with stan-
dards is to be checked. Another example of integration of specifications under
different viewpoints is found in the UML standard (see for example Born, Holz,
Kath [1]) which provides several distinct diagrammatic specification formalisms
to be applied in the specification of a single object.

Integration always requires concepts of abstraction and substitution. This is
true for computer systems, programming languages, specification languages and
logics in the same way. Abstraction in logic and other specification formalisms
has indeed provided a good basis for the treatment of integration. In specification
theory the study of integration beyond composition was first addressed in the
merging of process and data type specifications (see Ehrig, Orejas [7] for a recent
treatment of the matter) and was later also developed in the context of other
formalisms.

General and more abstract approaches to integration have been studied in
the framework of categories of institutions, dealing with mappings of logics and

∈T -Integration of Logics 207

institutions (see Meseguer [16] and Goguen, Rosu [11]) and with so-called het-
erogeneous specifications and the moving between logical systems (see Tarlecki
[22, 23], Mossakowski [17] and Diaconescu [3]).

1.3 A Scenario for the Integration of Logics

The key feature of the parameterized ∈T -logic defined by Zeitz (see [26]) is found
in the formal treatment of meta-level formulas which can be read as judgements
about sentences from other logics. This feature of parameterized ∈T -logic is
closely related to the integration of logics through the meta-level of their seman-
tics. To elaborate this idea further we define the so-called ∈T -integration as an
∈T -logic which integrates families of logics through their meta-level.

Our approach to ∈T -integration is motivated by the following general sce-
nario of integration:

Given a complex object A together with different views V1, . . . , Vn on A,
each view Vj is expressed in terms of some logic Lj and can be identified
by a model Mj with respect to the logic Lj. What we can say about these
models Mj represents our knowledge about the object A. The goal of inte-
gration is now to create an integrated model in an appropriate integration
logic, so that logical consequence and validity under the particular views
are being preserved.

In ∈T -integration, the integration logic, as being required in the scenario, will
be an ∈T -logic whose parameters are the logics underlying the different views.
And the integrated model in the scenario will in ∈T -integration be a model of
propositions, which is constructed from the models representing the views. In
this way ∈T -integration meets the integration scenario.

1.4 Goal of this Paper

The goal of this paper is to discuss the idea of reinterpreting and using ∈T -logic
for the integration of logics. Many questions however will be left open and will
be the subject of later studies. Nevertheless we can prove a number of results
which show that ∈T -logic can well be used for logic integration and which serve
as a starting point for further extensions. Among those may be the extension of
∈T -logic by modal operators to express propositions about time and possibility.

Even though integration of logics has never been a motivation for their study,
it is becoming evident that ∈T -logics can well be used for a particular style of
integration of languages and formalisms. The idea of integrating logics is not
new. Extensive work of similar spirit is published by Gabbay in [9], where a
fibred semantics methodology for combining logics and systems is studied. ∈T -
integration of logics has yet to be analyzed in its relation to fibring logics as
exposed in [9] and other approaches to logic integration.

With this paper we want to honor our colleague and friend Hartmut Ehrig
by addressing questions in a field that has interested him for many years.

208 Bernd Mahr and Sebastian Bab

2 Uniform Views and Treatment of Logics

Before the concept of ∈T -integration can be defined, a suitable concept is needed
which admits a uniform view and treatment of logics. In the study of logics a
most natural way to express what is meant by a logic is to define systems L
consisting of a set of formulas L and a proper consequence relation �L . We do
not follow this tradition here, mainly for two reasons: first, because integration
of logics is more convenient if logics are in abstract form, and second, because
several logics like modal logic for example do not emphasise so strongly logical
consequence, rather they emphasize validity in situations, which is closely related
to the abstract form of a logic (see section 2.2).

Because of the abstract nature of this uniform view, it is conventional to state
two axioms which have to be satisfied by every reasonable concept of logical
consequence.

Definition 1 (Axioms of Logical Consequence). Let L be a logic, L be its
set of formulas and �L its logical consequence relation. Then �L is said to be
proper if it satisfies the following two axioms: For all Φ, Ψ ⊆ L and all χ ∈ L:

1. A1: If ϕ ∈ Φ then Φ �L ϕ.
2. A2: If Φ �L ψ for all ψ ∈ Ψ and Ψ �L χ then Φ �L χ.

Here we present two other concepts for a uniform view and treatment of logics,
logics in modeltheoretic and logics in abstract form. Both concepts have logical
consequence as a derived concept and we will see that both give rise to a logical
consequence relation which is proper.

2.1 Logics in Modeltheoretic and Abstract Form

The modeltheoretic form of a logic is defined as follows:

Definition 2 (Modeltheoretic Form, Logical Consequence, Validity). A
logic L is given in modeltheoretic form if L = (L,M, |=M) where L denotes a
set of formulas, M denotes a class of models and |=M denotes a validity relation
saying that ϕ ∈ L resp. Φ ⊆ L is valid in a model M if M |=M ϕ resp. M |=M Φ.
For a logic in modeltheoretic form the following derived concepts are defined:

1. The logical consequence relation �M is defined as: Φ �M ϕ iff for all M ∈ M
it holds that M |=M Φ implies M |=M ϕ.

2. The theory of a model M ∈ M is defined as ThM(M) := {ϕ ∈ L |M |=M ϕ}.
3. The theory of a set of formulas Φ is defined as ThM(Φ) = {ϕ ∈ L | Φ �M ϕ}.
4. A set of formulas Φ is called consistent if there is an M ∈ M in which Φ is

valid.
5. A set of formulas Φ is called tautological if Φ is valid in all M ∈ M.

The following are easy to prove facts:

Theorem 1 (Derived Concepts). Given a logic L = (L,M, |=M) in model-
theoretic form. Then:

∈T -Integration of Logics 209

1. The logical consequence relation �M is proper.
2. For any M ∈ M and Φ ⊆ L the theories ThM(M) and ThM(Φ) are closed

under logical consequence.
In the tradition of formal specification the concept of institution was defined

(see Goguen, Burstall [10] and also Ehrig, Mahr [5]) to cover the logical core
of specification languages. Institutions naturally extend the concept of a logic
in modeltheoretic form by notions of signatures and morphisms in a categorical
framework (see also Meseguer [16] for the concept of general logics). Our ap-
proach to integration is based on traditional logic notions rather than structural
concepts like morphisms and universal properties of objects and therefore bor-
rows its basic concepts from the Warschau School of logic (see Wójcicki [25] and
Cleave [2]).

The abstract form of a logic is defined as follows:
Definition 3 (Abstract Form, Logical Consequence, Validity). A logic
L is given in abstract form if L = (L,B) where L denotes a set of formulas
and B, called the basis of L , denotes a set of subsets of L. For a logic in abstract
form the following derived concepts are defined:
1. The logical consequence relation �B is defined as: Φ �B ϕ iff Φ ⊆ B implies

ϕ ∈ B for all B ∈ B.
2. The theory of a set of formulas Φ is defined as ThB(Φ) := {ϕ | Φ �B ϕ}.
3. A set of formulas Φ is called consistent if there is at least one B ∈ B with

Φ ⊆ B.
4. A set of formulas Φ is called tautological if Φ ⊆ B for all B ∈ B.

The following are easy to prove facts:
Theorem 2 (Derived Concepts). Given a logic L = (L,B) in abstract form.
Then:
1. The logical consequence relation �B is proper.
2. For any Φ ⊆ L the theory ThB(Φ) is closed under logical consequence.

Logics L = (L,M, |=M) in modeltheoretic form can easily be transformed
into logics in abstract form by defining a basis to be the set of theories of models
of M. This transformation preserves logical consequence, tautologies and consis-
tency which is stated in the following easy to prove theorem:
Theorem 3 (Conservative Transformation into Abstract Form). Let
L = (L,M, |=M) be a logic in modeltheoretic form and let B := {ThM(M) |
M ∈ M}. Then L ′ := (L,B) is a logic in abstract form such that for all ϕ ∈ L:
1. �M = �B.
2. ϕ is consistent in L iff ϕ is consistent in L ′.
3. ϕ is tautological in L iff ϕ is tautological in L ′.

The concepts of logics in modeltheoretic and abstract form are in a way equiva-
lent. While we have seen that logics in modeltheoretic form can be conservatively
transformed into abstract form, it is also possible to define a modeltheoretic form
from a logic in abstract form. Then the set B is taken as the class of models
and the validity relation is just membership. But for the purposes of this paper
there is no need to discuss the relationship between the two forms further.

210 Bernd Mahr and Sebastian Bab

2.2 Examples of Logics in Abstract Form

The following are three examples showing how well-known logics generate logics
in abstract form.

Propositional Logic: Let V be a set of propositional variables and let Form(V)
be the set of propositional formulas over V defined as usual (see Ehrig, Mahr [6]
for example): V ⊆ Form(V) and if a, b ∈ Form(V), then ¬a ∈ Form(V) and
a∨b ∈ Form(V). Let L1 := Form(V). A truth assignment is a function B : V →
{T, F}, and validity B |= ϕ is defined as usual. The theory of an assignment is
defined by Th(B) := {ϕ ∈ L1 | B |= ϕ}.

Now let B1 := {Th(B) | B is a truth assignment}. Then L1 := (L1,B1)
denotes a logic in abstract form whose consequence relation and concepts of
validity coincide to the corresponding concepts of propositional logic.

Propositional Modal Logic: The set of formulas of propositional modal logic
L2 := Form(V) is defined over a set of propositional variables V and operators
¬, ∨ and � as follows: V ⊆ Form(V) and if a, b ∈ Form(V), then ¬a ∈ Form(V),
a∨b ∈ Form(V) and �a ∈ Form(V). Validation of formulas is defined on frames
F = (W,R) where W �= ∅ is a set of possible worlds and R ⊆ W × W is
an access relation on W . An assignment to variables is defined as a function
β : V → 2W , assigning to every variable the set of worlds in which this variable
is considered a true proposition. An interpretation Int = (F , β, w) is then defined
to consist of a frame F = (W,R), an assignment β and a world w ∈ W denoting
the perspective from which validation is checked. Validation is then inductively
defined as follows:

– Int |= v :⇔ w ∈ β(v) (v ∈ V).
– Int |= a ∨ b :⇔ Int |= a or Int |= b.
– Int |= ¬a :⇔ Int �|= a.
– Int |= �a :⇔ (F , β, w′) |= a for all w′ ∈ W with (w,w′) ∈ R.

Let Th(Int) := {a ∈ Form(V) | Int |= a}. Depending on the choice of the
relation R in a frame F several variants of modal logic have been studied (see
for example Hughes, Cresswell [13] and Rautenberg [20]).

Now let BK := {Th(Int) | Int is a modal logic interpretation}. Then LK :=
(L2,BK) forms a logic in abstract form whose logical consequence and concepts
of validity coincide with the propositional modal logic known as K in the litera-
ture. In a similar way we also get the well-known propositional modal logic S4 in
abstract form by LS4 := (L2,BS4) with BS4 := {Th(Int) | Int = (W,R, β, w)
where R is reflexive and transitive}.
First-Order Predicate Logic: The set of formulas of first-order predicate logic is
defined with respect to a signature Σ = (S,OP,R), providing names for sorts,
functions and relations, and a family of variables V = (Vs)s∈S . Formulas with
respect to Σ and V are composed from operators =, ¬, ∨ and ∃ in the usual way.
Traditionally first-oder predicate logic is given as a logic in modeltheoretic form
L = (L3,M, |=M) with L3 being the set of formulas, M being the class of Σ-
structures and |=M being inductively defined (see Ehrig, Mahr [6] for example).

∈T -Integration of Logics 211

Then L3 = (L3,B3) with B3 := {Th(A) | A is a Σ-structure} and Th(A) :=
{ϕ | A |=M ϕ} is a logic in abstract form whose concepts of logical consequence
and validity coincide with the corresponding concepts of L .

A further example of a logic in abstract form, however of trivial nature, is
given by the logic of constants.

Logic of Constants: Let C be a nonempty set of constant symbols and B := 2C .
Then LC := (C,B) is a logic in abstract form. It can easily be shown that
all constants c ∈ C are consistent, while no constant c ∈ C is tautological. The
logical consequence relation �LC has the property that Φ �LC ϕ iff ϕ ∈ Φ. Thus
all B ∈ B are closed under logical consequence.

For further elaboration and more examples of logics in abstract form see
Zeitz [26].

2.3 Integration of Logics

Our intention is to study ∈T -integration as a particular way of integrating logics.
The form of integration embodied by ∈T -integration however can be defined more
abstractly. We therefore make no particular assumptions on the form in which
logics are given:

Definition 4 (Integration of Logics). Given two logics L0 and L1 with for-
mulas L0 and L1, and logical consequence relations �L0 and �L1 respectively.
Then:

1. L1 is said to integrate L0, written L0 � L1, if there exists a mapping
f : L0 → L1 such that for all Φ ⊆ L0 and all ϕ ∈ L0 the following integration
properties hold:
I1: Φ �L0 ϕ iff f(Φ) �L1 f(ϕ),
I2: Φ is consistent in L0 iff f(Φ) is consistent in L1,
I3: Φ is tautological in L0 iff f(Φ) is tautological in L1,
where f(Φ) denotes the image of Φ under f , i.e. f(Φ) := {f(ϕ) | ϕ ∈ Φ}.

2. If L0 ⊆ L1 and f is the inclusion, then L1 is called an extension of L0.
3. Given an I-indexed family (Lj)j∈I of logics, then L is called an integration

logic for (Lj)j∈I if the logic L integrates Lj for all j ∈ I. We also say that
L integrates the family (Lj)j∈I .

Obviously integration can be iterated as stated in the following theorem.

Theorem 4 (Iterated Integration). For any three logics L0, L1, L2 we
have: if L0 � L1 and L1 � L2, then L0 � L2.

For later use we state the easy to prove theorem saying that disjoint union
logic is an integration logic for its components.

Definition 5 (Disjoint Union Logic). Let (Lj)j∈I be an I-indexed family of
logics and let (L ∗

j)j∈I with L ∗
j = (L∗

j ,B
∗
j) be the corresponding family of logics

in abstract form. Then the disjoint union logic L� = (L�,B�) of (Lj)j∈I is
defined by:

212 Bernd Mahr and Sebastian Bab

1. L� :=
⊎

j∈I

L∗
j ,

2. B� = {
⊎

j∈I

Bj | Bj ∈ B∗
j , j ∈ I},

where
⊎

denotes the disjoint union of sets.

Theorem 5 (Disjoint Union Integration). Let L� = (L�,B�) be the dis-
joint union logic of an I-indexed family of logics (Lj)j∈I . Then for every j ∈ I
the logic L� integrates Lj.

3 ∈T -Logics and ∈T -Extension

Formulas of an ∈T -logic may be propositional variables, propositional parameters
or compound expressions built up from the classical propositional connectives as
well as quantification and assertions for truth, falsity and propositional equality.
Accordingly, ∈T -logics are propositional logics. Their expressive power however is
far beyond classical propositional logic since it allows quantification over propo-
sitional variables and propositional equality. Assertions of truth and falsity in
∈T -logics are explicit statements for truth predicates. This allows to deal with
impredicativity, intensionality and truth (see Sträter [21] and Zeitz [26]). Our
interest in ∈T -logics however is not in the study of these phenomena, but in the
use of ∈T -logics as particular integration logics.

3.1 Syntax of ∈T -Logics

∈T -formulas are inductively defined as follows:

Definition 6 (∈T -Formulas). Let X := {xi | i ∈ N} be a well-ordered infinite
set of variables and let P be an arbitrary set of parameters. Then the set L :=
L(P) of ∈T -formulas with parameters P is the smallest set of expressions such
that:

(1) x ∈ X ⇒ x ∈ L
(2) a ∈ P ⇒ a ∈ L
(3) ϕ ∈ L ⇒ (¬ϕ) ∈ L

(ϕ:true) ∈ L
(ϕ:false) ∈ L

(4) ϕ, ψ ∈ L ⇒ (ϕ→ ψ) ∈ L
(ϕ ≡ ψ) ∈ L

(5) ϕ ∈ L, x ∈ X ⇒ (∀x. ϕ) ∈ L

Free and bound variables of ∈T -formulas as well as substitution of free vari-
ables are defined as usual. We write substitutions in the form of mappings
σ : X → L and call σ admissible for a formula ϕ if for all free variables y in ϕ
the following holds: if there is a free occurrence of y in the scope of a binding
∀x. in the formula ϕ, then x is not a variable in σ(y). Admissible substitutions
do not cause unwanted binding of free variables.

∈T -Integration of Logics 213

Also renaming of bound variables is defined in the usual way. We call two
formulas ϕ, ψ ∈ L α-congruent, written ϕ =α ψ, if ϕ and ψ differ only in the
choice of their bound variables. It holds that for every substitution σ and formula
ϕ there is a formula ψ which is α-congruent to ϕ and σ is admissible for ψ (see
for example Zeitz [26]). Hereby ψ can be obtained by renaming bound variables
of ϕ.

On the basis of the propositional connectives ¬ and → other connectives like
∧, ∨ and ↔ can be defined in the usual way. Also existencial quantification ∃x.ϕ
can be defined by ¬∀x.¬ϕ. For economic reasons however we use the reduced
set of connectives and quantifiers.

3.2 Semantics of ∈T -Logics

∈T -logics are defined in modeltheoretic form. Since ∈T -logics are propositional
logics their models are sets of propositions. In the semantics of ∈T -logics the
nature and the structure of these propositions is not determined. Constructing
new propositions from given propositions is expressed in the syntax of ∈T -logics
and is semantically enforced by the properties of propositional interpretation of
∈T -formulas. In particular we define:

Definition 7 (Propositional Interpretation of ∈T -Formulas). Let L be
the set of ∈T -formulas with parameters P . A propositional interpretation of ∈T -
formulas I = (M,T, Γ) is given by:

1. A set M �= ∅ of propositions, called propositional universe.
2. A set T � M with T �= ∅ of true propositions, called truth domain.
3. A mapping Γ : L × [X → M] → M , called propositional assignment, such

that the following truth and contextual properties hold:
(a) Truth Properties:

(1) Γ ((ϕ:true), β) ∈ T ⇔ Γ (ϕ, β) ∈ T
(2) Γ ((ϕ:false), β) ∈ T ⇔ Γ (ϕ, β) /∈ T
(3) Γ ((ϕ ≡ ψ), β) ∈ T ⇔ Γ (ϕ, β) = Γ (ψ, β)
(4) Γ ((¬ϕ), β) ∈ T ⇔ Γ (ϕ, β) /∈ T
(5) Γ ((ϕ→ ψ), β) ∈ T ⇔ Γ (ϕ, β) /∈ T or Γ (ψ, β) ∈ T
(6) Γ ((∀x.ϕ), β) ∈ T ⇔ for all m ∈M : Γ (ϕ, β[m/x]) ∈ T

(b) Contextual Properties:
(1) Γ (x, β) = β(x) for all x ∈ X and all β : X →M
(2) Γ (ϕ, β1) = Γ (ϕ, β2) if β1|Free(ϕ) = β2|Free(ϕ)

(3) Γ (ϕ[σ], β) = Γ (ϕ, 〈βσ〉) for all substituions σ
(4) Γ (ϕ, β) = Γ (ψ, β) if ϕ =α ψ

where β[m/x] denotes the variant of β assigning m to x and being identical
to β otherwise, Free(ϕ) denotes the set of free variables in ϕ and 〈βσ〉 de-
notes the propositional assignment to variables, assigning to a variable x the
proposition Γ (σ(x), β).

We define (I , β) |= ϕ :⇔ Γ (ϕ, β) ∈ T for validity and call I a model of a set
of ∈T -formulas Φ if for all ϕ ∈ Φ and all β : X → M it holds that (I , β) |= ϕ.
We then write for short I |= ϕ.

214 Bernd Mahr and Sebastian Bab

Definition 8 (∈T -Logics). Let L(P) be the set of ∈T -formulas with parameter
P , let M be a class of (not necessarily all) propositional interpretations of ∈T -
formulas and let |= be the validity relation for ∈T -formulas. Then ∈T (P) :=
(L(P),M, |=) is called an ∈T -logic.

Note that an ∈T -logic is given in modeltheoretic form. Its logical consequence
relation, denoted �M, is defined as in Definition 2. Its abstract form is defined
as in Theorem 3.

Also note, that x:true is a truth predicate in ∈T (P). The propositional as-
signment of (ϕ:true) falls into the truth domain of the propositional universe
iff I is a model of ϕ. In other words the evaluation of the expression (ϕ:true)
coincides with the meta-level truth of the formula ϕ. This coincidence reflects
the well-known Tarski Biconditionals (see Tarski [24]).

Note also that quantification in ∈T -logics is impredicative, since for example
in a sentence (∀x.ϕ) the variable x ranges over all propositions, including the
proposition expressed by (∀x.ϕ) itself. Sträter and Zeitz have shown that this
has no effect on the existence of models (see [21, 26]). We will use their model
construction later for the purpose of model integration.

Note further that ∈T -logic also allows to speak about the liar paradox saying
that “this sentence is false”, where this refers to the sentence itself. Unlike
other approaches (see Sträter [21] for a discussion), ∈T -logic has a total truth
predicate. The liar paradox in ∈T -logic is phrased by x ≡ (x:false) which is a
formula that is false in all propositional interpretations for all values of x.

Finally note, that the semantics of ∈T -logic admits intensional models in the
sense that the meaning of an ∈T -formula is not a truth value, but a proposition
that may be true or false depending on it falling into the truth domain or not.
Accordingly the negation of propositional equivalence ¬(ϕ ≡ ψ) expresses that
ϕ and ψ do not denote the same proposition, in contrast to ¬(ϕ ↔ ψ) expressing
that ϕ and ψ have different behaviours of truth. Sträter and Zeitz also show that
intensional models for ∈T -logic can be constructed.

3.3 ∈T -Extension

In [26] Zeitz defines the concept of ∈T -extension as an ∈T -logic in the sense
above which is an extension of some other logic. ∈T -extension is based on the
observation that a parameter P in an ∈T -logic ∈T (P), which is an arbitrary
set, may well be the set of formulas of some other logic P = (P,BP). Zeitz
gives conditions under which ∈T (P) forms an extension of P (in the sense of
Definition 4) and studies model- and prooftheoretic properties of such extensions.
We adopt his notion, but rephrase it with only slight differences in their formal
notation for our discussion of ∈T -integration below. The following theorem is
easy to prove.
Theorem 6 (∈T -Extension). Let P = (P,BP) be a logic in abstract form,
called parameter logic, and let ∈T (P) = (L,M, |=) be an ∈T -logic in modeltheo-
retic form such that for all propositional interpretations I the following exten-
sion property holds:

E : {a ∈ P | I |= a} ∈ BP .

Then ∈T (P) is an extension of P.

∈T -Integration of Logics 215

Note that in the semantics of ∈T -logics the assignment of propositions to param-
eters by the mapping Γ is not constrained in any way. ∈T -extensions however do
constrain the propositional assignment to parameters as expressed in the exten-
sion property. We can, nevertheless, obtain every ∈T -logic as an ∈T -extension
by choosing an appropriate logic of constants (see Section 2.2) as a parameter
logic.

4 ∈T -Integration

The scenario of logic integration starts from different views on one and the same
object and identifies a particular view with a model in some logic. Different views
then correspond to different logics. The idea of integration was to provide an
integration logic which allows statements which integrate other statements from
different views. The concept of ∈T -logics, which was used by Zeitz to study ∈T -
extensions of arbitrary logics in abstract form can now be used for the integration
of logics. We model the scenario therefore by ∈T -integration of I-indexed families
of logics which we assume without loss of generality to have mutually disjoint
sets of formulas.

4.1 ∈T -Logic Integration

The integration of logics is generally defined in Section 2.3. ∈T -integration is
seen as a particular form of integration where the expressiveness of ∈T -logic is
added to the sum of logics to be integrated. This is achieved by defining the
integration logic of a family of logics as an extension of the familiy’s disjoint
union. We state this in the following theorem.

Theorem 7 (∈T -Integration Logic). Given a family (Pj)j∈I of logics and
let P� = (P�,B�) be the disjoint union logic of (Pj)j∈I as defined in Definition
5. Then ∈T (P�) integrates the family (Pj)j∈I in the sense of Definition 4 if
∈T (P�) is an extension of P�. We call ∈T (P�), also written as ∈T ((Pj)j∈I),
the ∈T -integration logic of (Pj)j∈I .

Proof. Let ∈T (P�) be an extension of P� which means that P� � ∈T (P�).
From Theorem 5 we know that P� integrates each of the component logics Pj ,
in other words it holds Pj � P� for all j ∈ I. From Theorem 4 it follows
that ∈T (P�) integrates Pj for all j ∈ I. Thus from Definition 4 it follows that
∈T (P�) integrates the family (Pj)j∈I . !

4.2 ∈T -Model Integration

According to the above stated scenario of logic integration a view on some object
corresponds with a model in some logic. Assertions which integrate statements
from different views on some object will therefore need an interpretation in some
model that integrates these views. The propositional meaning of ∈T -logics now
allows to construct such an integrating model. One could think of different types

216 Bernd Mahr and Sebastian Bab

of models for model integration, but we simply use the model construction given
by Zeitz in [26].

Lemma 1 (Existence of ∈T -Interpretations). Let P = (P,BP) be a logic
in abstract form and let ∈T (P) = (L,M, |=) be the ∈T -extension of P. Then for
all B ∈ BP there exists an interpretation I of ∈T -formulas such that {ϕ ∈ P |
I |= ϕ} = B.

Proof. See Zeitz in [26], Theorem 3.17. The propositional interpretation I =
(M,T, Γ) is defined by: M = P � {0, 1}, the truth domain T = B � {1} and the
propositional assignment Γ : P × [X →M] →M inductively defined as follows:

(1) Γ (x, β) := β(x) for all x ∈ X
(2) Γ (a, β) := a for all a ∈ P
(3) Γ ((ϕ:true), β) := 1 if Γ (ϕ, β) ∈ T
(4) Γ ((¬ϕ), β) := 1 if Γ (ϕ, β) /∈ T
(5) Γ ((ϕ ≡ ψ), β) := 1 if Γ (ϕ, β) = Γ (ψ, β)
(6) Γ ((ϕ→ ψ), β) := 1 if Γ (ϕ, β) /∈ T or Γ (ψ, β) ∈ T
(7) Γ ((∀x.ϕ), β) := 1 if Γ (ϕ, β[m/x]) ∈ T for all m ∈M
(8) Γ (ϕ, β) := 0 otherwise

In this interpretation all formulas of the parameter logic are considered to
be propositions. In addition the propositions 0 and 1 are interpretations of
∈T -formulas, expressing truth and falsity. For this propositional interpretation
truth and contextual properties as well as the extension property are shown in
Zeitz [26]. !

Based on this model construction model integration can now be stated:

Theorem 8 (∈T -Model Integration). Given an I-indexed family (Pj)j∈I

of logics in modeltheoretic form with Pj = (Pj ,Mj , |=j) and let ∈T ((Pj)j∈I) be
the ∈T -integration logic of (Pj)j∈I . Then for all I-indexed families of models
(Mj)j∈I with Mj ∈ Mj there is a model I of ∈T ((Pj)j∈I) such that:

For all j ∈ I and all Φj ⊆ Pj : I |= Φj iff Mj |=j Φj .

Proof. Given an I-indexed family (Pj)j∈I of logics in modeltheoretic form with
Pj = (Pj ,Mj , |=j), let P∗

j = (Pj ,Bj) be the logic Pj after transformation into
abstract form. Then for all j ∈ I, Mj ∈ Mj and Φj ⊆ Pj

Mj |=j Φj iff Φj ⊆ Th(Mj) ∈ Bj (1)

This is obvious from the definition of the theory of a model and the transforma-
tion into abstract form (Theorem 3). Since the sets of formulas Pj for j ∈ I are
assumed to be pairwise disjoint we conclude directly from the definition of the
disjoint union logic (see Definition 5) that for all j ∈ I

Φj ⊆ Th(Mj) ∈ Bj iff Φj ⊆
⊎
j∈I

Th(Mj) ∈ B� (2)

∈T -Integration of Logics 217

Since ∈T ((Pj)j∈I) is an extension of P� we conclude from Lemma 1 the existence
of an interpretation I of ∈T -formulas such that:

⊎
j∈I Th(Mj) = {ϕ ∈ P� |

I |= ϕ}. We therefore have for j ∈ I

Φj ⊆
⊎
j∈I

Th(Mj) ∈ B� iff I |= Φj (3)

Putting (1), (2) and (3) together we finally obtain for all j ∈ I: Mj |=j Φj iff
I |= Φj . Since this is true for all I-indexed families of models (Mj)j∈I and all
families (Φj)j∈I the theorem follows. !

4.3 Discussion on ∈T -Calculus Integration

In [26] Zeitz proves (in Corollary 4.20) the following theorem.

Theorem 9 (Calculus Extension). Let P = (P,BP) be a logic in abstract
form having a Hilbert-type calculus K which is correct and complete for P. Then
∈T (K) is correct and complete for ∈T (P) iff BP is closed under intersection.

Here a calculus of logic in abstract form is a pair consisting of a decidable set
of axioms and a decidable set of rules. Provability is abstractly defined and
correctness and completeness are defined in the usual way. The calculus ∈T (K)
is defined as an extension of the calculus K whose axioms contain besides all
axioms of K and all rules of K being rewritten in axiomatic form the following
list of ∈T -axioms

1. ϕ → (ψ → ϕ)
2. (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ→ χ))
3. (¬ψ → ¬ϕ) → (ϕ → ψ)
4. ϕ → (ϕ:true)
5. (ϕ:true) → ϕ
6. (ϕ ≡ ψ) (if ϕ =α ψ)
7. (ϕ ≡ ψ) → (ϕ → ψ)
8. (∀x.(ϕ ≡ ϕ′)) → ((ψ ≡ χ) → (ϕ[x := ψ] ≡ ϕ′[x := χ]))
9. (∀x.ϕ) → ϕ[x := ψ]

10. (∀x.(ϕ → ψ)) → (ϕ→ ∀x.ψ) (if x /∈ Free(ϕ))

as well as the two ∈T -rules

11. Modus Ponens: ψ can be derived from ϕ and ϕ→ ψ.
12. Generalization: ∀x.ϕ can be derived from ϕ.

The assumption that BP is closed under intersection is rather strong, since it
implies that the set P of formulas is consistent, which is true for equational logic
for example, but for no other logic with negation. Zeitz therefore studies exten-
sions of the calculus ∈T (K) and variants of conditions which admit correctness
and completeness of the resulting calculi for ∈T (P). Based on these results he
can then show that numerous classical logics (among those the logics given in

218 Bernd Mahr and Sebastian Bab

Section 2.2) admit preservation of the correctness and completeness properties
for their extended calculi (see Zeitz [26], Corollary 4.23 and 4.26, as well as
Examples 4.24 and 4.27).

We claim here that these results can be inherited in the situation of ∈T -
integration of logics. We expect no major difficulties to arise in the proofs. Be-
cause of a rather lengthy treatment in the transfer of these results, however, we
do not check the details and leave this here as a claim.

5 Conclusion

Based on a minor generalization of ∈T -logic in the sense of Sträter and Zeitz we
have shown that ∈T -logics can be used for integration of logics. This integration
takes place at the meta-level of judgements and makes available the expressive
power of elementary ∈T -logic for assertions about statements from parameter
logics. It was our goal to explain how in a formal framework of abstract logics
integration through ∈T -logic can work. We have so far not yet exploited all
the potential of integration through ∈T -logic. Even though the disjoint union of
parameter logics is not a limit construction in the category of logics in abstract
form the use of limits and colimits in this category for combining logics might
turn out to be much more appropriate to reflect the assumption in our integration
scenario namely that parameter logics correspond to views on one and the same
object.

Another example of fruitful study is the construction of models which reflect
propositional equality between assertions from different parameter logics. Finally
the extension of ∈T -logic by modal operators for truth and possibility seems to
be a promising task. Along with such further studies the expressiveness of ∈T -
integration has to be examined.

Acknowledgments

We would like to thank the anonymous referee for the positive suggestions and
criticism.

References

1. Marc Born, Eckhardt Holz, and Olaf Kath. Softwareentwicklung mit UML 2.
Addison-Wesley Verlag München, 2004.

2. J.P. Cleave. A Study of Logics. Clarendon Press, 1991.
3. R. Diaconescu. Grothendieck institutions, 2002.
4. Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification 1.

Springer Verlag Berlin, 1985.
5. Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification 2.

Springer Verlag Berlin, 1990.
6. Hartmut Ehrig, Bernd Mahr, Felix Cornelius, Martin Große-Rohde, and Philip

Zeitz. Mathematisch-strukturelle Grundlagen der Informatik, 2. Auflage. Springer,
2001.

∈T -Integration of Logics 219

7. Hartmut Ehrig and Fernando Orejas. A generic component concept for integrated
data type and process modeling techniques. Technical Report 2001/12, Technische
Universität Berlin, 2001.

8. International Organization for Standardization. Basic Reference Model of Open
Distributed Processing. ITU-T X.900 series and ISO/IEC 10746 series, 1995.

9. Dov M. Gabbay. Fibring Logics, volume 38 of Oxford Logic Guides. Oxford Science
Publications, 1999.

10. J.A. Goguen and R.M. Burstall. Introducing institutions. In Proceedings Logics
of Programming Workshop, Carnegie-Mellon, pages 221–256. LNCS 164, Springer,
1984.

11. J.A. Goguen and G. Rosu. Institution morphisms, 2001.
12. J.A. Goguen and J.J. Tardo. An introduction to OBJ: a language for writing and

testing formal algebraic program specifications. In Proceedings IEEE Conference on
Specification for Reliable Software, pages 170–189. IEEE Computer Society Press,
1979.

13. G. E. Hughes and M. J. Cresswell. A New Introduction to Modal Logic. Routledge,
1996.

14. Bernd Mahr. Applications of type theory. In Proceedings of the International Joint
Conference CAAP/FASE on Theory and Practice of Software Development, pages
343–355. Springer-Verlag, 1993.

15. Bernd Mahr, Werner Sträter, and Carla Umbach. Fundamentals of a theory of
types and declarations. Technical Report KIT-Report 82, Technische Universität
Berlin, 1990.

16. José Meseguer. General logics. In H.-D. Ebbinghaus et al., editor, Proceedings,
Logic Colloquium, 1987. North-Holland, 1989.

17. T. Mossakowski. Foundations of heterogeneous specification. In M. Wirsing,
D. Pattinson, and R. Hennicker, editors, Recent Trends in Algebraic Development
Techniques, 16th International Workshop, WADT 2002, pages 359–375. Springer
London, 2003.

18. D.C. Parnas. A technique for software module specification with examples. In
CACM 15, 5, pages 330–336, 1972.

19. Janis R. Putman. Architecting with RM-ODP. Prentice Hall PTR, 2000.
20. Wolfgang Rautenberg. Klassische und nichtklassische Aussagenlogik. Vieweg Ver-

lag Braunschweig / Wiesbaden, 1979.
21. Werner Sträter. ∈T Eine Logik erster Stufe mit Selbstreferenz und totalem Wahr-

heitsprädikat. Forschungsbericht, KIT-Report 98, 1992. Dissertation, Technische
Universität Berlin.

22. A. Tarlecki. Moving between logical systems. In COMPASS/ADT, pages 478–502,
1995.

23. A. Tarlecki. Towards heterogeneous specifications. In D. Gabbay and M. van
Rijke, editors, Proceedings 2nd International Workshop on Frontiers of Combining
Systems, FroCoS’98. Kluwer, 1998.

24. Alfred Tarski. Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philo-
sophica 1, pages 261–405, 1935.

25. R. Wójcicki. Theory of Logical Calculi. Kluwer, 1988.
26. Philip Zeitz. Parametrisierte ∈T -Logik: Eine Theorie der Erweiterung abstrakter

Logiken um die Konzepte Wahrheit, Referenz und klassische Negation. Logos Verlag
Berlin, 2000. Dissertation, Technische Universität Berlin, 1999.

Functorial Semantics of Rewrite Theories�

José Meseguer

University of Illinois at Urbana-Champaign, USA
meseguer@cs.uiuc.edu

Abstract. This paper develops a close analogy between Lawvere’s func-
torial semantics of equational theories [21], and a similar 2-functorial se-
mantics for rewrite theories, which specify concurrent systems and whose
models are “true concurrency” models of such systems. This has the ad-
vantage of unifying within a single 2-functorial framework both models
and rewrite theory morphisms. Such morphisms are used in Maude to
“put rewrite theories together” in different constructions, including pa-
rameterized rewrite theory specifications.

1 Introduction

We owe to Lawvere [21], Bénabou [2], and to Eilenberg and Moore [14] the
important insight that algebraic semantics can be developed not just on the
category Set of sets and functions, but on general categories satisfying mini-
mal requirements. This insight has been exploited in computer science since the
1970s, leading to many fruitful extensions of algebraic semantics beyond the
traditional universal algebra of algebraic data types. Since Hartmut Ehrig has
made fundamental contributions to both the original theory of algebraic data
types and to extending algebraic semantics in new directions, including, for ex-
ample, graph rewriting, and Petri-net based concurrent system specifications, it
seems appropriate for this occasion to discuss the way in which the semantics
of rewriting logic [25] is a form of universal algebra on the 2-category Cat, the
same way that the semantics of traditional algebraic specifications is furnished
by universal algebra on the category Set.

Of course, in traditional algebraic semantics we are not only interested in
the categories of models (the algebras) but on “putting theories together” in a
categorical way as originally proposed by Burstall and Goguen in [6] and fur-
ther developed in the work of Hartmut Ehrig and other researchers (see his
two-volume work with Mahr [12, 13] and references there). Theories are “put to-
gether” by means of categorical constructions in the category EqtlTh of equa-
tional theories and equational theory morphisms. Although the most common
description of EqtlTh is in terms of theory presentations, the most elegant
and presentation-independent way of describing EqtlTh is as the category of
Lawvere-Bénabou theories [21, 2]. This has the conceptual advantage of unify-
ing the semantics of the category of theories EqtlTh and that of the difference
� Research supported by ONR Grant N00014-02-1-0715 and NSF Grant CCR-0234524.

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 220–235, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Functorial Semantics of Rewrite Theories 221

categories of algebras within a single functorial semantics framework, so that
a theory morphism H : T −→ T ′ becomes a product-preserving functor and
can therefore be regarded as a T -algebra interpreted in the target Lawvere the-
ory T ′. In a completely similar way, rewrite theories can be viewed as Lawvere
2-theories and form a category RWTh, so that rewrite theory morphisms and
models of rewrite theories (which intuitively correspond to “true concurrency”
models of the concurrent system specified by the given rewrite theory) are again
unified within a single 2-functorial semantics as 2-product preserving 2-functors.
Furthermore, the semantics of a parameterized module as the left adjoint of
the forgetful functor associated to the inclusion of the parameter theory into
the body theory typical of algebraic specifications has an exact analogue for
parameterized rewrite theories (supported for example by the Maude language
[7, 11]) as a corresponding left adjoint of the forgetful functor in the 2-functorial
semantics.

This paper is mostly based on two appendices of the SRI Technical report
[24] now not easily available. The paper is organized as follows. The inference
rules and model theory of (unconditional) rewriting logic is summarized in Sec-
tion 2. The functorial semantics of rewrite theories is then presented in Section 3.
Rewrite theory morphisms and parameterization are then discussed in Section 4.
I then discuss related work and give some concluding remarks in Section 5.

2 Rewriting Logic and Its Models

2.1 Inference Rules and Their Meaning

A signature in rewriting logic is an equational theory1 (Σ,E), where Σ is an
equational signature and E is a set of Σ-equations. Rewriting will operate on
equivalence classes of terms modulo E. In this way, we free rewriting from the
syntactic constraints of a term representation and gain a much greater flexibility
in deciding what counts as a data structure; for example, string rewriting is
obtained by imposing an associativity axiom, and multiset rewriting by imposing
associativity and commutativity. Of course, standard term rewriting is obtained
as the particular case in which the set of equations E is empty. Techniques for
rewriting modulo equations have been studied extensively [10] and can be used
to implement rewriting modulo many equational theories of interest.

Given a signature (Σ,E), sentences of rewriting logic are sequents of the
form

[t]E −→ [t′]E ,

where t and t′ are Σ-terms possibly involving some variables X , and [t]E , or [t] for
short, denotes the equivalence class of the term t modulo the equations E, that
is, an element of the free (Σ,E)-algebra TΣ,E(X) generated by the variables X .
A rewrite theory R is a 4-tuple R = (Σ,E,L,R) where Σ is a ranked alphabet
1 Rewriting logic is parameterized by the choice of its underlying equational logic,

that can be unsorted, many-sorted, order-sorted, membership equational logic, and
so on. To ease the exposition I give an unsorted presentation.

222 José Meseguer

of function symbols, E is a set of Σ-equations, L is a set of labels, and R is a set
of pairs R ⊆ L × TΣ,E(X)2 whose first component is a label and whose second
component is a pair of E-equivalence classes of terms, with X = {x1, . . . , xn, . . .}
a countably infinite set of variables. Elements of R are called rewrite rules2. We
understand a rule (r, ([t], [t′])) as a labeled sequent and use for it the notation
r : [t] −→ [t′]. To indicate that {x1, . . . , xn} is the set of variables occurring in
either t or t′, we write r : [t(x1, . . . , xn)] −→ [t′(x1, . . . , xn)], or in abbreviated
notation r : [t(x)] −→ [t′(x)].

Given a rewrite theory R, we say that R entails a sentence [t] −→ [t′], or
that [t] −→ [t′] is a (concurrent) R-rewrite, and write R ' [t] −→ [t′] if and
only if [t] −→ [t′] can be obtained by finite application of the following rules
of deduction (where we assume that all the terms are well formed and t(w/x)
denotes the simultaneous substitution of wi for xi in t):

1. Reflexivity. For each [t] ∈ TΣ,E(X), [t] −→ [t] .

2. Congruence. For each f ∈ Σn, n ∈ IN,

[t1] −→ [t′1] . . . [tn] −→ [t′n]
[f(t1, . . . , tn)] −→ [f(t′1, . . . , t

′
n)]

.

3. Replacement. For each rule r : [t(x1, . . . , xn)] −→ [t′(x1, . . . , xn)] in R,

[w1] −→ [w′
1] . . . [wn] −→ [w′

n]
[t(w/x)] −→ [t′(w′/x)]

.

4. Transitivity.
[t1] −→ [t2] [t2] −→ [t3]

[t1] −→ [t3]
.

Rewriting logic is a logic for reasoning correctly about concurrent systems
having states, and evolving by means of transitions. The signature of a rewrite
theory describes a particular structure for the states of a system – e.g., multiset,
binary tree, etc. – so that its states can be distributed according to such a struc-
ture. The rewrite rules in the theory describe which elementary local transitions
are possible in the distributed state by concurrent local transformations. The
rules of rewriting logic allow us to reason correctly about which general con-
current transitions are possible in a system satisfying such a description. Thus,
computationally, each rewriting step is a parallel local transition in a concurrent
system. Alternatively, however, we can adopt a logical viewpoint instead, and
regard the rules of rewriting logic as metarules for correct deduction in a logical
system. Logically, each rewriting step is a logical entailment in a formal system.
2 To simplify the exposition the rules of the logic are given for the case of unconditional

rewrite rules. However, all the ideas presented here have been extended to conditional
rules in [25] with very general rules of the form

r : [t] −→ [t′] if [u1] −→ [v1] ∧ . . . ∧ [uk] −→ [vk].

This increases considerably the expressive power of rewrite theories.

Functorial Semantics of Rewrite Theories 223

2.2 Models

I first sketch the construction of initial and free models for a rewrite theory R =
(Σ,E,L,R). Such models capture the intuitive idea of a “concurrent system” in
the sense that they describe systems whose states are E-equivalence classes of
terms, and whose computations are concurrent rewritings using the rules in R. By
adopting a logical instead of a computational perspective, we can alternatively
view such models as “logical systems” in which formulas are validly rewritten
to other formulas by concurrent rewritings which correspond to proofs for the
logic in question. Such models have a natural category structure, with states
(or formulas) as objects, computations (or proofs) as morphisms, and sequential
composition as morphism composition, and in them dynamic behavior exactly
corresponds to deduction.

Given a rewrite theory R = (Σ,E,L,R), for which we assume that different
labels in L name different rules in R, the model that we are seeking is a cate-
gory TR(X) whose objects are equivalence classes of terms [t] ∈ TΣ,E(X) and
whose morphisms are equivalence classes of “proof terms” representing proofs in
rewriting deduction, i.e., concurrent R-rewrites. The rules for generating such
proof terms, with the specification of their respective domains and codomains,
are given below; they just “decorate” with proof terms the rules 1–4 of rewriting
logic. Note that we always use “diagrammatic” notation for morphism compo-
sition, i.e., α;β always means the composition of α followed by β.

1. Identities. For each [t] ∈ TΣ,E(X), [t] : [t] −→ [t] .

2. Σ-structure. For each f ∈ Σn, n ∈ IN,

α1 : [t1] −→ [t′1] . . . αn : [tn] −→ [t′n]
f(α1, . . . , αn) : [f(t1, . . . , tn)] −→ [f(t′1, . . . , t

′
n)]

.

3. Replacement. For each rewrite rule r : [t(xn)] −→ [t′(xn)] in R,

α1 : [w1] −→ [w′
1] . . . αn : [wn] −→ [w′

n]
r(α1, . . . , αn) : [t(w/x)] −→ [t′(w′/x)]

.

4. Composition. α : [t1] −→ [t2] β : [t2] −→ [t3]
α;β : [t1] −→ [t3]

.

Each of the above rules of generation defines a different operation taking
certain proof terms as arguments and returning a resulting proof term as its
result. In other words, proof terms form an algebraic structure PR(X) consisting
of a graph with nodes TΣ,E(X), with identity arrows, and with operations f
(for each f ∈ Σ), r (for each rewrite rule), and ; (for composing arrows). Our
desired model TR(X) is the quotient of PR(X) modulo the following equations3:

3 In the expressions appearing in the equations, when compositions of morphisms
are involved, we always implicitly assume that the corresponding domains and
codomains match.

224 José Meseguer

1. Category
(a) Associativity. For all α, β, γ, (α;β); γ = α; (β; γ).
(b) Identities. For each α : [t] −→ [t′], α; [t′] = α and [t];α = α.

2. Functoriality of the Σ-Algebraic Structure. For each f ∈ Σn,
(a) Preservation of Composition. For all α1, . . . , αn, β1, . . . , βn,

f(α1;β1, . . . , αn;βn) = f(α1, . . . , αn); f(β1, . . . , βn).

(b) Preservation of Identities. f([t1], . . . , [tn]) = [f(t1, . . . , tn)].
3. Axioms in E. For t(x1, . . . , xn) = t′(x1, . . . , xn) an axiom in E, for all

α1, . . . , αn, t(α1, . . . , αn) = t′(α1, . . . , αn).
4. Exchange. For each r : [t(x1, . . . , xn)] −→ [t′(x1, . . . , xn)] in R,

α1 : [w1] −→ [w′
1] . . . αn : [wn] −→ [w′

n]
r(α) = r([w]); t′(α) = t(α); r([w′])

.

Note that the set X of variables is actually a parameter of these constructions,
and we need not assume X to be fixed and countable. In particular, for X = ∅,
we adopt the notation TR. The equations in 1 make TR(X) a category, the
equations in 2 make each f ∈ Σ a functor, and 3 forces the axioms E. The
exchange law states that any rewriting of the form r(α) – which represents the
simultaneous rewriting of the term at the top using rule r and “below,” i.e.,
in the subterms matched by the variables, using the rewrites α – is equivalent
to the sequential composition r([w]); t′(α), corresponding to first rewriting on
top with r and then below on the subterms matched by the variables with α,
and is also equivalent to the sequential composition t(α); r([w′]) corresponding
to first rewriting below with α and then on top with r. Therefore, the exchange
law states that rewriting at the top by means of rule r and rewriting “below”
using α are processes that are independent of each other and can be done either
simultaneously or in any order.

Since each proof term is a description of a concurrent computation, what
these equations provide is an equational theory of true concurrency allowing us to
characterize when two such descriptions specify the same abstract computation.

Note that, since [t(x1, . . . , xn)] and [t′(x1, . . . , xn)] can both be regarded as
functors TR(X)n −→ TR(X), from the mathematical point of view the exchange
law just asserts that r is a natural transformation.

Lemma 1. [25] For each rewrite rule r : [t(x1, . . . , xn)] −→ [t′(x1, . . . , xn)] in
R, the family of morphisms

{r([w]) : [t(w/x)] −→ [t′(w/x)] | [w] ∈ TΣ,E(X)n}

is a natural transformation r : [t(x1, . . . , xn)] ⇒ [t′(x1, . . . , xn)] between the
functors [t(x1, . . . , xn)], [t′(x1, . . . , xn)] : TR(X)n −→ TR(X).

The category TR(X) is just one among many models that can be assigned
to the rewrite theory R. The general notion of model, called an R-system, is
defined as follows:

Functorial Semantics of Rewrite Theories 225

Definition 1. Given a rewrite theory R = (Σ,E,L,R), an R-system S is a
category S together with:

– a (Σ,E)-algebra structure given by a family of functors

{fS : Sn −→ S | f ∈ Σn, n ∈ IN}

satisfying the equations E, i.e., for any t(x1, . . . , xn) = t′(x1, . . . , xn) in E
we have an identity of functors tS = t′S , where the functor tS is defined
inductively from the functors fS in the obvious way.

– for each rewrite rule r : [t(x)] −→ [t′(x)] in R a natural transformation
rS : tS ⇒ t′S .

An R-homomorphism F : S −→ S′ between two R-systems is then a functor
F : S −→ S′ such that it is a Σ-algebra homomorphism, i.e., fS ∗F = Fn ∗ fS′ ,
for each f in Σn, n ∈ IN, and such that “F preserves R,” i.e., for each rewrite
rule r : [t(x)] −→ [t′(x)] in R we have the identity of natural transformations4

rS ∗F = Fn ∗ rS′ , where n is the number of variables appearing in the rule. This
defines a category R-Sys in the obvious way.

This category has the additional property that the homsets R-Sys(S,S′)
are themselves categories with morphisms, called modifications, given by natu-
ral transformations δ : F =⇒ G between R-homomorphisms F,G : S −→ S′

satisfying the identities
δn ∗ fS′ = fS ∗ δ

for each f ∈ Σn, n ∈ IN. This category structure actually makes R-Sys into a
2-category [22, 20].

A detailed proof of the following theorem on the existence of initial and
free R-systems for the more general case of conditional rewrite theories is given
in [25], where the soundness and completeness of rewriting logic for R-system
models is also proved.

Theorem 1. TR is an initial object in the category R-Sys. More generally,
TR(X) has the following universal property: Given an R-system S, each function
F : X −→ |S| extends uniquely to an R-homomorphism F � : TR(X) −→ S.

3 Functorial Semantics of Rewrite Theories

If categories present difficulties of exposition for readers unfamiliar with the
area, 2-categories are even more of a challenge. What follows is a quite informal
exposition of ideas that I consider important for further work on rewriting logic’s
model theory. It explains in some detail the main intuitions about the basic
concepts, and then builds up to the main goal of this section, namely obtaining
a 2-categorical semantics for rewrite theories and a 2-functorial semantics for
their models. To help the reader grasp the basic intuitions, I first discuss classical
Lawvere theories, a fundamental concept that is then generalized to that of
Lawvere 2-theories.
4 Note that we use diagrammatic order for the horizontal , α ∗ β, and vertical , γ; δ,

composition of natural transformations [22].

226 José Meseguer

3.1 Classical Lawvere Theories

Equational logic was the first instance of a categorical logic considered by Law-
vere in his doctoral dissertation [21]. Lawvere restricted his analysis to classical
set-theoretic models. Given an equational theory (Σ,E), he exhibited a category
with finite products LΣ,E such that Σ-algebras A that satisfy the equations E

can be put in one-to-one correspondence with functors Ã : LΣ,E → Set that
strictly preserve products; i.e., chosen products in LΣ,E are mapped to cartesian
products in Set.

The category LΣ,E is easy to describe. Its objects are the natural numbers.
A morphism [t] : n −→ 1 is the equivalence class modulo the equations E of a Σ-
term t whose variables are among x1, . . . , xn. A morphism n −→ m is an m-tuple
of morphisms n −→ 1. Morphism composition is term substitution. For example,
([x7∗x3], [x4+x5]); [x2+x1] = [(x4+x5)+(x7∗x3)]. It is then easy to see that the
object n is the nth product of the object 1 with projections [x1], . . . , [xn]; and,
more generally, that the product of the objects n and m is n + m. The functor
Ã associated to the algebra A sends the morphism [t] : n −→ 1 to the derived
operation tA : An −→ A associated to the term t. Under this correspondence
between algebras and functors, an equation t = t′ is satisfied by a (Σ,E)-algebra
A iff Ã([t]) = Ã([t′]).

Lawvere also showed that any small category with finite products and with
objects the natural numbers such that n is the nth power of 1 is isomorphic to
LΣ,E for some equational theory (Σ,E). In fact, many equivalent presentations
by operations and equations are possible for the same concept, e.g., groups, and
what the Lawvere theory provides is a presentation-independent description of
the concepts and, by taking product-preserving functors into Set, also of the
models.

The analogous case of many-sorted equational logic was studied by Bénabou
in his thesis [2]. The category LΣ,E is constructed as in the unsorted case, but
now it has as its set of objects the free monoid S∗ generated by the set S of sorts.

Note that, since TΣ,E(X) is the free (Σ,E)-algebra on X and n is the nth

power of 1 in LΣ,E , we have the chain of bijections

LΣ,E(n,m) ∼= LΣ,E(n, 1)m = TΣ,E({x1, . . . , xn})m ∼=
∼= Set({x1, . . . , xm}, TΣ,E({x1, . . . , xn})) ∼=

∼= AlgΣ,E(TΣ,E({x1, . . . , xm}), TΣ,E({x1, . . . , xn}))

and since composition of morphisms in LΣ,E is given by term substitution, this
bijection preserves compositions and is actually an isomorphism of categories
between Lop

Σ,E and the full subcategory of AlgΣ,E whose objects are the algebras
of the form TΣ,E({x1, . . . , xn}) for n ∈ IN.

3.2 Enriched Categories and 2-Categories

Given a closed symmetric monoidal category V [22], a V-category A is a class of
objects together with an object A(A,B) ∈ V for each pair of objects A,B, and
morphisms in V :

Functorial Semantics of Rewrite Theories 227

– idA : I −→ A(A,A), called identities , for each object A, where I denotes
the unit object for the tensor product ⊗ in V ,

– ∗ : A(A,B) ⊗ A(B,C) −→ A(A,C), called compositions , for each triple
A,B,C of objects,

satisfying the usual category axioms for identities and for associativity of com-
position that are expressed in terms of commutative diagrams in V in the usual
way (see [18] for a detailed and far-reaching exposition). The most basic example
of a V-enriched category is the category V itself, with hom objects the internal
homs given by the closed structure.

2-Categories. The category Cat of small categories is cartesian closed. A 2-
category A is just a Cat-category. This can be equivalently described as an
ordinary category A0, called the underlying category of A, together with, for
each pair of objects A,B ∈ A0, a small category A(A,B) whose set of objects is
precisely the homset A0(A,B); all this is defined in such a way that there exist
composition and identity functors satisfying the usual axioms for categories. The
morphisms in A(A,B) are called 2-cells; given f, g : A −→ B in A0 we use the
notation

φ : f =⇒ g : A −→ B

to indicate a 2-cell from f to g. The example of 2-category par excellence is of
course Cat, where the 2-cells are natural transformations. The graphical nota-
tion used for the calculus of natural transformations, with vertical and horizon-
tal composition, can be used in any 2-category. Vertical composition just means
composition inside the category A(A,B), and is denoted ; , whereas horizontal
composition is application of one of the composition functors

∗ : A(A,B) ⊗A(B,C) −→ A(A,C)

and the so called “double law” is just the preservation of (vertical) composition
due to the functoriality of ∗ .

Given 2-categories A and B, a 2-functor

F : A −→ B

is a mapping sending objects to objects, morphisms to morphisms and 2-cells to
2-cells in such a way that domains, codomains, identities and compositions are
all preserved.

A 2-natural transformation

η : F =⇒ G : A −→ B

between 2-functors F and G is a morphism of 2-functors consisting of an ordinary
natural transformation

η : F0 =⇒ G0 : A0 −→ B0

228 José Meseguer

of the underlying functors such that for any 2-cell α : f =⇒ g : A −→ A′ in A
the identity

F (α) ∗ η(A′) = η(A) ∗G(α)

holds.
A modification

ρ : η � ν : F =⇒ G : A −→ B
between 2-natural transformations η and ν is a morphism of 2-natural transfor-
mations consisting of an assignment of a 2-cell

ρ(A) : η(A) =⇒ ν(A)

to each object A in A, such that for each morphism f : A −→ A′ in A the
identity

F (f) ∗ ρ(A′) = ρ(A) ∗G(f)

holds.

Limits and Colimits. Many concepts of ordinary category theory generalize
to V-categories; in fact, ordinary categories are V-categories for the special case
V = Set. It is for example possible to define V-enriched notions of limit and
colimit [18]. For the case of 2-categories, we shall call such limits and colimits
2-limits and 2-colimits. The point is that in an enriched context more subtle
kinds of limits and colimits are possible.

For example, a 2-product of A and B in A is an object P such that there is
a natural isomorphism

A(X,P) ∼= A(X,A)×A(X,B)

where A(X,A) × A(X,B) denotes the product in Cat of the given categories.
Similarly, an object F is a 2-final object in A if there is a natural isomorphism

A(X,F) ∼= 1

for 1 the category consisting of just one object and its identity morphism which
is the final object in Cat. We say that A has finite 2-products if it has binary
2-products and a 2-final object; if all finite 2-limits exist, we say that A has finite
2-limits. See [34] for a careful investigation of 2-limits. A 2-functor F : A −→ B
preserves 2-products if it preserves all existing 2-products and the 2-final object.
Similarly, F is called finitely (2-)continuous if it preserves all the finite 2-limits
that exist in A.

3.3 Lawvere 2-Theories

A Lawvere 2-theory is a 2-categoryL with finite 2-products and having as objects
the natural numbers5 with n the nth 2-power of 1.
5 The definition of a many-sorted Lawvere-Bénabou 2-theory is entirely analogous,

and is left to the reader.

Functorial Semantics of Rewrite Theories 229

An important example is provided by the following Lawvere 2-theory LR
associated to a rewrite theory R. We define LR(n, 1) = TR({x1, . . . , xn}) with
horizontal composition of

αn : [w]
n

=⇒ [w′]
n

: m −→ n

with
β : [t] =⇒ [t′] : n −→ 1

given by

[t(αn)];β(w′n/xn) : [t(wn/xn)] =⇒ [t′(w′n/xn)] : m −→ 1

where β(w′n/xn) denotes the substitution of w′n in β defined in Fact 3.12 of [25].
It follows easily from the equations defining TR({x1, . . . , xn}) that this defines
indeed a 2-category. It is the exact analogue of a classical Lawvere theory of the
form LΣ,E for (Σ,E) an equational theory, but now we have 2-cells correspond-
ing to rewritings between [t], [t′] ∈ TΣ,E({x1, . . . , xn}).

3.4 2-Functorial Semantics of Rewrite Theories

Given a Lawvere 2-theory L, we define the 2-category Mod(L) of its models
whose objects are finite product preserving 2-functors

M : L −→ Cat,

whose morphisms are 2-natural transformations between such functors, and
whose 2-cells are modifications. In a way entirely analogous to that of classical
Lawvere theories we can now relate the model theory of unconditional rewrite
theories developed in Section 2.2 with a (2-)functorial semantics as follows:

ForR an unconditional rewrite theory, given anR-system S, the assignments:

– n �→ Sn

– [t(x1, . . . , xn)] �→ tS : Sn −→ S
– α : [t(x1, . . . , xn)] −→ [t′(x1, . . . , xn)] �→ αS : tS =⇒ t′S

determine a 2-product preserving 2-functor

S̃ : LR −→ Cat

in such a way that R-homomorphisms

F : S −→ S′

are in 1-1 correspondence with 2-natural transformations

F̃ : S̃ =⇒ S̃′,

and modifications
ρ : F =⇒ G

230 José Meseguer

are in 1-1 correspondence with modifications

ρ̃ : F̃ � G̃.

Requiring preservation of chosen 2-products “on the nose,” this yields an iso-
morphism of 2-categories

R-Sys ∼= Mod(LR).

In a way analogous to classical Lawvere theories, we can discover Lop
R “inside

the belly” of R-Sys. Indeed, using the freeness of TR({x1, . . . , xn}) (where TR
can be viewed as a 2-functor TR : Cat −→ R-Sys 2-left adjoint to the obvious
forgetful 2-functor, and {x1, . . . , xn} can be understood as a discrete category)
and that n is the nth 2-power of 1 in LR, we have the chain of isomorphisms of
categories

LR(n,m) ∼= LR(n, 1)m = TR({x1, . . . , xn})m ∼=
∼= Cat({x1, . . . , xm}, TR({x1, . . . , xn})) ∼=

∼= R-Sys(TR({x1, . . . , xm}), TR({x1, . . . , xm}))

and since composition of morphisms and 2-cells in LR is given by substitution,
this bijection preserves the 2-category structure and corresponds to an isomor-
phism of 2-categories between Lop

R and the full 2-subcategory of R-Sys whose
objects are the R-systems of the form TR({x1, . . . , xn}) for n ∈ IN.

More generally, we can define models of a Lawvere 2-theory L in a 2-category
A with finite 2-products. Such models are defined as 2-product preserving 2-
functors

M : L −→ A.

This, together with 2-natural transformations and modifications defines a 2-
category Mod(L,A). Similarly, given a rewrite theoryR, we can easily generalize
the definition of the model 2-category R-Sys by defining the models of R not
on Cat but on any 2-category A with finite 2-products. In this way we obtain a
2-category that we denote R-A, so that the special case R-Sys is simply R-Cat.
By requiring preservation of chosen 2-products “on the nose” we then obtain an
isomorphism of 2-categories R-A ∼= Mod(LR,A).

4 Morphisms of Rewrite Theories and Parameterization

The 2-functorial semantics just developed allows us to investigate two notions of
morphism between rewrite theories and also to give semantics to parameterized
rewrite theories. The intuitions behind those two notions are as follows:

1. A prescriptive notion, in which a basic rewrite step in one theory is refined
into a specified proof term, involving a possibly complex concurrent com-
bination of rewritings. This generalizes the implementation morphisms that
Ugo Montanari and I defined for Petri nets [27].

Functorial Semantics of Rewrite Theories 231

2. A notion of implementable morphism, where it is only required that the
second theory should be capable of simulating any of the basic rewrites of
the first, but no indication is given about how this should be done when
several different ways are possible.

The precise definition of the prescriptive notion follows easily from our discussion
of functorial semantics. To ease the exposition, this paper has presented the ideas
in an unsorted context; however, everything has a straightforward generalization
to the many-sorted case and I will assume from now on that we are dealing
with many-sorted rewrite theories. Given two such rewrite theories, R and R′ a
morphism

H : R −→ R′

between them is an interpretation of R in the 2-category L′
R, i.e., an object H

of the 2-category R-LR′ . In addition – for considerations of syntactical ease –
we impose on H the condition of mapping basic sorts of R to basic sorts of R′.
Therefore, what this interpretation H really means for R = (Σ,E,L,R) and
R′ = (Σ′, E′, L′, R′) is the specification of:

– An equational theory morphism for H0 : (Σ,E) −→ (Σ′, E′) mapping basic
sorts to basic sorts, basic operations to (possibly derived) operations, and the
axioms E to provable consequences of the axioms E′ under the corresponding
translation of terms, that is, we have E′ ' H(E).

– An assignment to each rewrite rule r : [t(xn)] −→ [t′(xn)] in R (with xn a
sequence of many-sorted variables of sorts sn) of a 2-cell (that is, an equiv-
alence class of proof terms)

H(r) : H0([t]) =⇒ H0([t′])

Therefore, this notion corresponds to specifying a simulation of basic actions of
the theory R as possibly complex actions of the theory R′.

A nice consequence of the 2-functorial semantics of rewrite theories developed
in Section 3.4 is that defining composition of morphisms is now trivial. Given
morphisms

G : R −→ R′ H : R′ −→ R′′

we can recall the isomorphisms

R-LR′ ∼= Mod(LR,L′
R) R′-LR′′ ∼= Mod(L′

R,L′′
R)

and define G ∗H as the interpretation associated by the isomorphism

R-LR′′ ∼= Mod(LR,L′′
R)

to the composition G̃ ∗ H̃ where G̃ and H̃ are the corresponding 2-product pre-
serving 2-functors associated to G and H by the above isomorphisms. Therefore,
rewrite theories and morphisms between them form a category that we denote

RWTh.

232 José Meseguer

Another very important consequence of the functorial semantics is that we
can give a model-theoretic semantics to parameterized rewrite theories. By a
parameterized rewrite theory we mean a morphism

H : P −→ R.

In this terminology, we call P the parameter rewrite theory and R the body.
Notice that composition along H̃ defines a 2-functor

H� : R-Sys −→ P-Sys.

Thanks to general results about locally finitely presentable 2-categories (see [19],
Prop. 9.13 and Section 10) H� has a left adjoint

H∗ : P-Sys −→ R-Sys

which we adopt as our model-theoretic semantics for parameterized rewrite the-
ories.

The definition of the category of implementable rewrite theory morphisms is
as follows. A morphism of this kind between R and R′ is of the form

H0 : R −→ R′

with H0 the underlying equational theory morphism (between the underlying
equational theories (Σ,E) and (Σ′, E′)) of a morphism

H : R −→ R′.

Therefore, H0 describes a general way in which a refinement of R by R′ can
be implemented , but we have forgotten the particular choice of implementation.
Since there is a forgetful functor

RWTh −→ EqtlTh

sending R = (Σ,E,L,R) to the equational theory (Σ,E) and H to H0, this de-
fines a category of implementable morphisms which we can view as a quotient of
RWTh under the equivalence relation on morphisms induced by such a forgetful
functor.

5 Related Work and Concluding Remarks

For the case of a rewrite theory with E = ∅, a somewhat different construction
of LR was given by D.E. Rydeheard and J.G. Stell in [32] who used 2-category
presentations by generators and relations. With the aim of unifying the fix-
point constructions of continuous functions and of recursive domain equations,
A. Pitts [31] defined many-sorted Lawvere 2-theories with the additional struc-
ture of fixpoint operators and considered 2-product preserving 2-functors from
such theories into 2-categories with 2-products and with fixpoint operators. In

Functorial Semantics of Rewrite Theories 233

the same work, Pitts also introduced a logic of fixpoints whose fixpoint-free
fragment essentially corresponds to unconditional rewriting logic.

In the classical case, in order to provide a functorial semantics in the more
general setting of conditional theories and of “essentially algebraic” theories,
Lawvere theories are generalized to categories with finite limits, presented by
means of “sketches” in the sense of Ehresmann (see [1] for a good exposition)
or by other means. The categories that are equivalent to categories of models
for theories with finite limits were first characterized by Gabriel and Ulmer
and are called locally finitely presentable categories [15]. The extension of the
present work to conditional rewrite theories is sketched in [24] and has been
further developed by Miyoshi in [30]. The key additional 2-limits needed beyond
2-products are subequalizers or, more generally, inserters, and models are then
finitely continuous 2-functors from the corresponding 2-lim theories.

The point of view presented in this paper has been further generalized and
exploited in Pisa to provide very useful connections with other concurrency the-
ory models. Corradini, Gadducci and Montanari [9] provide a uniform construc-
tion for LR and for a sesqui-category model, similar to LR but satisfying fewer
equations, that has been proposed by Stell [33]. They associate posets of partial
orders of events to both models, and make the important observation that when
a rewrite rule is not right linear – that is, when it has a repeated occurrence
of a variable in its righthand side – then the poset associated to LR is not a
prime algebraic domain, whereas the poset of the sesqui-category model is. In
this way, the relationship between rewriting logic models and event structures
is clarified. What happens is that, when rules are not right linear, LR is in a
sense too abstract, because what is one event in one proof term may – because
of repetition of variables – become several events in a proof term equivalent to it
by the exchange axiom; in the sesqui-category model the exchange axiom does
not hold, and therefore those computations are considered different.

Yet another important direction in which this work has been generalized is
to provide models for tile logic [16, 17, 3], an algebraic model of synchronous
concurrent systems. The key idea is to generalize Lawvere 2-theories to Lawvere
double-theories, sometimes relaxing cartesian products to monoidal products as
done in [28, 3, 5].

A theme common to the just-cited papers [28, 3, 5] is the use of membership
equational logic [26] as a semantic framework to define categorical structures.
This is the approach taken also in [4] to generalize the rewriting logic model
theory of [25] to the case of rewrite theories such that: (1) their underlying
equational theory is a theory in membership equational logic [26], and (2) some
of the arguments in an operator f may be frozen, so that rewriting is forbidden in
such arguments. A treatment of rewrite theories and rewrite theory morphisms
along the same lines is currently under development in joint work with Roberto
Bruni. Rewrite theory morphisms in this more general setting are important in
several respects. First of all, they are used in the instantiation of parameterized
modules in Maude [11, 8]. Furthermore, certain forms of rewrite theory morphism
are very useful to describe simulations between different concurrent systems

234 José Meseguer

[29, 23], which can then be used to define abstractions and implementation maps,
and to preserve temporal logic properties which can be more easily verified on
simpler and possibly finite state systems thanks to such simulations.

References

1. M. Barr and C. Wells. Toposes, Triples and Theories. Springer-Verlag, 1985.
2. J. Bénabou. Structures algébriques dans les catégories. Cahiers de Topologie et

Géometrie Différentielle, 10:1–126, 1968.
3. R. Bruni. Tile Logic for Synchronized Rewriting of Concurrent Systems. PhD

thesis, Dipartimento di Informatica, Università di Pisa, 1999. Technical Report
TD-1/99. http://www.di.unipi.it/phd/tesi/tesi_1999/TD-1-99.ps.gz.

4. R. Bruni and J. Meseguer. Generalized rewrite theories. In J. Baeten, J. Lenstra,
J. Parrow, and G. Woeginger, editors, Proceedings of ICALP 2003, 30th Inter-
national Colloquium on Automata, Languages and Programming, volume 2719 of
Springer LNCS, pages 252–266, 2003.

5. R. Bruni, J. Meseguer, and U. Montanari. Symmetric monoidal and cartesian
double categories as a semantic framework for tile logic. Mathematical Structures
in Computer Science, 12:53–90, 2002.

6. R. Burstall and J. Goguen. Putting theories together to make specifications. In
R. Reddy, editor, Proceedings, Fifth International Joint Conference on Artificial
Intelligence, pages 1045–1058. Department of Computer Science, Carnegie-Mellon
University, 1977.

7. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: specification and programming in rewriting logic. Theoretical Com-
puter Science, 285:187–243, 2002.

8. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Maude 2.0 Manual. June 2003, http://maude.cs.uiuc.edu.

9. A. Corradini, F. Gadducci, and U. Montanari. Relating two categorical models of
term rewriting. In J. Hsiang, editor, Proc. Rewriting Techniques and Applications,
Kaiserslautern, pages 225–240, 1995.

10. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pages 243–320. North-Holland,
1990.

11. F. Durán and J. Meseguer. On parameterized theories and views in Full Maude
2.0. In K. Futatsugi, editor, Proc. 3rd. Intl. Workshop on Rewriting Logic and its
Applications. ENTCS, Elsevier, 2000.

12. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specifications 1, Equations
and Initial Semantics, volume 6 of EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, 1985.

13. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specifications 2, Module Speci-
fications and Constraints, volume 21 of EATCS Monographs on Theoretical Com-
puter Science. Springer-Verlag, 1990.

14. S. Eilenberg and J. C. Moore. Adjoint functors and triples. Illinois J. Math.,
9:381–398, 1965.

15. P. Gabriel and F. Ulmer. Lokal präsentierbare Kategorien. Springer Lecture Notes
in Mathematics No. 221, 1971.

16. F. Gadducci. On the Algebraic Approach to Concurrent Term Rewriting. PhD the-
sis, Dipartimento di Informatica, Università di Pisa, Mar. 1996. Technical Report
TD-2/96.

Functorial Semantics of Rewrite Theories 235

17. F. Gadducci and U. Montanari. The tile model. In G. Plotkin, C. Stirling, and
M. Tofte, editors, Proof, Language and Interaction: Essays in Honour of Robin
Milner. The MIT Press, 2000. http://www.di.unipi.it/~ugo/festschrift.ps.

18. G. Kelly. Basic Concepts of Enriched Category Theory. Cambridge Univ. Press,
1982.

19. G. Kelly. Structures defined by finite limits in the enriched context, I. Cahiers de
Topologie et Géometrie Différentielle, 23:3–42, 1982.

20. G. Kelly and R. Street. Review of the elements of 2-categories. In G. Kelly,
editor, Category Seminar, Sydney 1972/73, pages 75–103. Springer Lecture Notes
in Mathematics No. 420, 1974.

21. F. W. Lawvere. Functorial semantics of algebraic theories. Proceedings, National
Academy of Sciences, 50:869–873, 1963. Summary of Ph.D. Thesis, Columbia
University.

22. S. MacLane. Categories for the Working Mathematician. Springer-Verlag, 1971.
23. N. Mart́ı-Oliet, J. Meseguer, and M. Palomino. Theoroidal maps as algebraic

simulations. To appear in Proc. WADT’04, Springer LNCS, 2004.
24. J. Meseguer. Rewriting as a unified model of concurrency. Technical Report

SRI-CSL-90-02, SRI International, Computer Science Laboratory, February 1990.
Revised June 1990.

25. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992.

26. J. Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In F. Parisi-Presicce, editor, Proc. WADT’97, pages 18–61. Springer LNCS
1376, 1998.

27. J. Meseguer and U. Montanari. Petri nets are monoids. Information and Compu-
tation, 88:105–155, 1990.

28. J. Meseguer and U. Montanari. Mapping tile logic into rewriting logic. In F. Parisi-
Presicce, editor, Recent Trends in Algebraic Development Techniques, 12th Inter-
national Workshop, WADT’97, Tarquinia, Italy, June 3–7, 1997, Selected Papers,
volume 1376 of Lecture Notes in Computer Science, pages 62–91. Springer-Verlag,
1998.

29. J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Equational abstractions. in Proc.
CADE-19, Springer LNCS, Vol. 2741, 2–16, 2003.

30. H. Miyoshi. Modelling conditional rewriting logic in structured categories. In
J. Meseguer, editor, Proc. First Intl. Workshop on Rewriting Logic and its Appli-
cations, volume 4 of Electronic Notes in Theoretical Computer Science. Elsevier,
1996.

31. A. Pitts. An elementary calculus of approximations. Unpublished manuscript,
University of Sussex, December 1987.

32. D. Rydeheard and J. Stell. Foundations of equational deduction: A categori-
cal treatment of equational proofs and unification algorithms. In Proceedings of
the Summer Conference on Category Theory and Computer Science, Edinburgh,
Sept. 1987, pages 114–139. Springer LNCS 283, 1987.

33. J. Stell. Modelling term rewriting systems by sesqui-categories. Technical Report
TR94-02, Keele University, 1994. Also in shorter form in Proc. C.A.E.N., 1994,
pp. 121–127.

34. R. Street. Limits indexed by category-valued 2-functors. J. Pure Appl. Algebra,
8:149–181, 1976.

Expander2

Towards a Workbench for Interactive Formal Reasoning

Peter Padawitz

University of Dortmund,
Dortmund, Germany

peter.padawitz@udo.edu

Abstract. Expander2 is a flexible multi-purpose workbench for inter-
active rewriting, verification, constraint solving, flow graph analysis and
other procedures that build up proofs or computation sequences. More-
over, tailor-made interpreters display terms as two-dimensional struc-
tures ranging from trees and rooted graphs to a variety of pictorial rep-
resentations that include tables, matrices, alignments, piles, partitions,
fractals and turtle systems.
Proofs and computations performed with Expander2 follow the rules
and the semantics of swinging types. Swinging types are based on many-
sorted predicate logic and combine visible constructor-based types with
hidden state-based types. The former come as initial term models, the lat-
ter as final models consisting of context interpretations. Relation symbols
are interpreted as least or greatest solutions of their respective axioms.
This paper presents an overview of Expander2 with particular emphasis
on the system’s prover capabilities.

1 Introduction

The following design goals distinguish Expander2 from many other proof editors
or tools using formal methods:
• Expander2 provides several representations of formal expressions and allows

the user to switch between linear, tree-like and pictorial ones when executing
a proof or computation on formulas or terms.

• Proof and computation steps take place at three levels of interaction: the sim-
plifier automates routine steps, axiom-triggered computations are performed
by narrowing and rewriting, analytical rules like induction and coinduction
are applied locally and stepwise.

• The underlying logic is general enough to cover a wide range of applications
and to admit the easy integration of special structures or methods by adding
or exchanging signatures, axioms, theorems or inference rules including built-
in simplifications.

• Expander2 has an intelligent GUI that interprets user entries in dependence
of the current values of global state variables. This frees the user from enter-
ing input that can be deduced from the context in which the system actually
works.

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 236–258, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Expander2 237

Proofs and computations performed with the system are correct with respect
to the semantics of swinging types [16–19]. A swinging type is a functional-logic
specification consisting of a many-sorted signature and a set of (generalized)
Horn or co-Horn axioms (see section 3) that define relation symbols as least or
greatest fixpoints and function symbols in accordance with the initial resp. final
model induced by the specification.

Sortedness is only implicit because otherwise the proof and computation pro-
cesses would become unnecessarily complicated. If used as a specification envi-
ronment, the main purpose of Expander2 is proof editing and not type checking.
Therefore, the syntax of signatures is kept as minimal as possible. The only ex-
plicit distinction between different types is the one between constants on the one
hand and functions and relations on the other hand, expressed by the distinc-
tion between first-order variables (fovars) and higher-order variables (hovars).
Proofs or computations that depend on a finer sort distinction can always be
performed by introducing and using suitable membership predicates.

The prover features of Expander2 do not aim at the complete automation
of proof processes. Instead, they support natural derivations, which humans can
comprehend and thus control easily. Natural deduction avoids skolemization and
other extensive normalizations that make formulas unreadable and thus inappro-
priate for interactive proving. For instance, the simplifier (see Section 5), which
turns formulas into equivalent “simplified” ones, prefers implication to negation.

Of course, many conjectures can be proved both comprehensibly and effi-
ciently without any human intervention into the proof process. Such proofs often
follow particular schemas and thus may be candidates for derived inference rules.
However, proofs of program correctness usually do not fall into this category, es-
pecially if induction or coinduction is involved and the original conjecture must
be generalized in a particular way.

In fact, the simplifier of Expander2 performs certain normalizations. But they
are in compliance with natural deduction and deviate from classical normaliza-
tions insofar as, for instance, implications and quantifiers are not eliminated by
introducing negations and new signature symbols, respectively. On the contrary,
the simplifier eliminates negation symbols by moving them to literal positions
and then are removed completely by transforming negated (co)predicates into
their complements. Axioms for relations and their complements can be con-
structed from each other: If P is a predicate specified by Horn axioms, then these
axioms can be transformed systematically into co-Horn axioms for the copredi-
cate not P, and vice versa. This follows from the fact that relation symbols are in-
terpreted by the least resp. greatest solutions of their axioms provided that these
are negation-free and thus induce monotonic consequence operators [16–18].

Expander2 has been written in O’Haskell [12], an extension of Haskell [8]
with object-oriented features for reactive programming and a typed interface
to Tcl/Tk for developing GUIs. Besides providing a comfortable GUI the over-
all design goals of Expander2 were to integrate testing, proving and visualizing
deductive methods, to admit several degrees of interaction and to keep the sys-
tem open for extensions or adaptations of individual components to changing
demands.

238 Peter Padawitz

 solver

 painter

 simplifier

signaturesaxioms

theorems

sums
of terms

rooted
graphs

widgets
graphs

Haskell
functions

 recorderdisplays

consumes
and

produces

evaluates

draws

derivations

files

respect

respect

derivations

perform
perform

enumerator

stepwise
partial

evaluation
Haskell

functions

evaluates

paths, polygons,
tables, matrices,

turtle systems

dis/conjunctions
of formulas

inference
rules

alignments,
partitions

produces

apply

uses

apply

proof terms

constructs

evaluates

uses

Fig. 1. Components of Expander2.

2 System Components

The main components of Expander2 are two copies of a solver, a painter, a
simplifier an enumerator and a recorder that saves proofs and other com-
putation sequences as well as executable proof terms. As Fig. 1 indicates, these
components work together via several interfaces. For instance, the painter is used
for drawing normal forms or solutions produced by the solver.

The solver is accessed via a window for entering, editing and displaying a
list of trees (or graphs) that represents a disjunction or conjunction of logical
formulas or a sum of algebraic terms (see Fig. 2). By moving the slider below
the canvas of the solver window one selects the summand/factor to be shown
on the canvas. If the parse text resp. parse tree button is pushed, the linear
representation of a term or formula in the solver’s text field is translated into an
equivalent tree representation on the canvas and vice versa. Both representations
are editable. As a linear representation is edited by selecting substrings, the tree
representation is edited by selecting subtrees or nodes or redirecting edges.

The painter consists of several widget interpreters from which one is se-
lected and applied to the current trees or parts of them. The resulting pictorial
representations are displayed in a painter window. Pictures can be edited in the
painter window and completed to widget graphs. Widgets are built up of path,
polygon and turtle action constructors that admit the definition of a variety of
pictorial representations ranging from tables and matrices via string alignments,
piles and partitions to complex fractals generated by turtle systems [24]. The

Expander2 239

Fig. 2. The solver window.

latter define pictures in terms of sequence of basic actions that a turtle would
perform when it draws the picture while moving over the canvas of a window.
The turtle works recursively in two ways: it maintains a stack of positions and
orientations where it may return to, and it may create trees whose pictorial
representations are displayed at its current position.

The solver and its associated painter are fully synchronized: the selection of
a tree in the solver window is automatically followed by a selection of the tree’s
pictorial representation in the painter window and vice versa. Hence rewriting,
narrowing and simplification steps can be carried out from either window.

The enumerator provides algorithms that enumerate trees or graphs and
pass their results both to the solver and the painter. Currently, two algorithms
are available: a generator of all sequence alignments [5, 20] satisfying constraints
that are partly given by axioms, and a generator of all nested partitions of a list
with a given length and satisfying constraints given by particular predicates. The
painter displays an alignment in the way DNA sequences are usually visualized.
A nested partition is displayed as a rectangular dissection of a square where
different levels are colored differently.

The user of Expander2 operates on specifications (consisting of signatures
and axioms), theorems, substitutions, trees (representing algebraic terms, logi-
cal formulas or transition systems to be evaluated, solved, proved, or executed,
respectively) via commands selected from the solver’s menus (see Fig. 2). Sliders
control the layout of a tree. With the slider in the middle of a solver window,
one browses among several trees. All these actions yield input for the solver and

240 Peter Padawitz

may modify its state variables. Hence the solver can be regarded as a finite
automaton whose actions are triggered not only by user input, but also by the
actual system state. Here are the main state variables:
• The current axioms and theorems are applied to conjectures and build

up the high- or medium-level steps of a computation or proof. Axioms and
theorems are applied by narrowing or rewriting. A narrowing/rewriting step
starts with unifying/matching a subtree (the redex) with/against an axiom.
Narrowing applies (guarded) Horn or co-Horn clauses, rewriting applies only
unconditional, but possibly guarded equations. The guard of an axiom is a
subformula to be solved before the axiom is applied.

• The widget interpreter pictEval recognizes paintable terms or formulas and
transforms them into their pictorial representations (see above).

• The current proof records the sequence of derivation steps performed since
the last initialization of the list of current trees. Each element of the current
proof consists of a description of a rule application, the resulting list of
current trees and the resulting values of state variables.

• The current proof term represents the current proof as an executable ex-
pression for the purpose of later proof checking. It is built up automatically
when a derivation is carried out and can be saved to a user-defined file. A
saved proof term is loaded by writing its name into the entry field and push-
ing check proof term from file. This action overwrites the current proof term.
The proof represented by the loaded proof is carried out stepwise (and thus
checked) on the displayed tree by pushing only the ---> button. Each click
triggers a proof step.

• The current signature consists of symbols denoting basic specifications con-
sisting of signatures and axioms, predicates interpreted as the least solutions
of their (Horn) axioms, copredicates interpreted as the greatest solutions of
their (co-Horn) axioms, constructors and cofunctions for building up data,
defined functions specified by (Horn) axioms or implemented as Haskell func-
tions called by the simplifier, first-order variables that may be instantiated
by terms or formulas, and higher-order variables that may be instantiated
by functions or relations. Most built-in signature symbols have the syntax
and semantics as the synonymous Haskell functions (see [21]).

• The current substitution maps the variables of its domain to terms over
the current signature. It is generated, modified and applied by particular
commands.

• treeMode indicates whether the list trees of current trees (or other rooted
graphs) is a singleton or represents a disjunction or conjunction of formulas
or a sum (= disjoint union) of terms. True, False and () are the respective
zero elements. The slider between the canvas and the text field of a solver
window allows one to browse among the current trees and to select the one
to be displayed on the canvas.

• The list treePoss consists of the positions of selected subtrees of the actually
displayed tree. Subtrees are selected (and moved) by pushing the left mouse
button while placing the cursor over their roots.

Expander2 241

• varCounter maps a variable x to the maximal index i such that xi occurs
in the current proof. varCounter is updated when new variables are needed.

• Further state variables may occur as function symbols in terms or formulas.
Their values are stored by rewriting steps, retrieved and modified by simplifi-
cation steps and represented pictorially in a painter window by applying suit-
able widget interpreters. The purpose of these state variables is to hide com-
plex function parameters from the screen whose current values are needed
by the simplifier for evaluating built-in iterative Haskell functions [21].
Expander2 allows the user to control proofs and computations at three levels

of interaction. At the high level, analytic and synthetic inference rules and other
syntactic transformations are applied individually and locally to selected sub-
trees. The rules cover single axiom applications, substitution or unification steps,
Noetherian, Hoare, subgoal or fixpoint induction and coinduction. Derivations
are correct if, in the case of trees representing terms, their sum is equivalent
to the sum of their successors or, in the case of trees representing formulas,
their disjunction/conjunction is implied by the disjunction/conjunction of their
successors. The underlying models are determined by built-in data types and
the least/greatest interpretation of Horn/co-Horn axioms. Incorrect deduction
steps are recognized and cause a warning. All proper tree transformations are
recorded, be they correct proofs or other transformations.

At the medium level, rewriting and narrowing realize the iterated and ex-
haustive application of all axioms for the defined functions, predicates and co-
predicates of the current signature. Rewriting terminates with normal forms,
i.e. terms consisting of constructors and variables. Terminating narrowing se-
quences end up with the formula True, False or solved formulas that represent
solutions of the initial formula (see section 3). Since the axioms are functional-
logic programs in abstract logical syntax, rewriting and narrowing agree with
program execution. Hence the medium level allows one to test such programs,
while the inference rules of the high level provide a “tool box” for program
verification. In the case of finite data sets, rewriting and narrowing is often
sufficient even for program verification. Besides classical relations or determin-
istic functions, non-deterministic functions (e.g. state transition systems) and
“distributed” transition systems like Maude programs [10] or algebraic nets [26]
may also be axiomatized and verified by Expander2. The latter are executed
by applying associative-commutative rewriting or narrowing on bag terms, i.e.
multisets of terms (see section 3).

At the low level, built-in Haskell functions simplify or (partially) evaluate
terms and formulas and thereby hide most routine steps of proofs and compu-
tations. The functions comprise arithmetic, list, bag and set operations, term
equivalence and inequivalence and logical simplifications that turn formulas into
nested Gentzen clauses (see section 5). Evaluating a function f at the medium
level means narrowing upon the axioms for f , Evaluating f at the low level means
running a built-in Haskell implementation of f . This allows one to test and de-
bug algorithms and visualize their results. For instance, translators between
different representations of Boolean functions were integrated into Expander2 in

242 Peter Padawitz

this way. In addition, an execution of an iterative algorithm can be split into
its loop traversals such that intermediate results become visible. Currently, the
computation steps of Gaussian equation solving, automata minimization, OBDD
optimization, LR parsing, data flow analysis and global model checking can be
carried out and displayed.

Section 3 presents the syntax of the axioms and theorems that can be handled
by Expander2 and describes how they are applied to terms or formulas and how
the applications build up proofs. Section 4 shows how axiom applications are
combined to narrowing or rewriting steps. Section 5 goes into the logical details
of the simplifier and lists the simplification rules for formulas. Section 6 provides
induction, coinduction and other rules that Expander2 offers at the high level of
interaction. The correctness of the rules presented in Sections 4, 5 and 6 follows
almost immediately from corresponding soundness results given in [15–18]. The
concluding section 7 focuses on future work.

3 Axioms, Theorems, and Derivations

Axioms and theorems to be applied in derivations are Horn clauses ((1)-(7))
or co-Horn clauses ((8)-(13)):

(1) {guard⇒} (f(t) = u {⇐= prem})
(2) {guard⇒} (t1 ∧ . . . ∧tk

∧!∧tk+1
∧ . . . ∧tn = u {⇐= prem})

(3) {guard⇒} (p(t) {⇐= prem})
(4) t = u {⇐= prem}
(5) q(t) {⇐= prem}
(6) at1 ∧ . . . ∧ atn {⇐= prem}
(7) at1 ∨ . . . ∨ atn {⇐= prem}
(8) {guard⇒} (f(t) = u =⇒ conc)
(9) {guard⇒} (q(t) =⇒ conc)

(10) t = u =⇒ conc
(11) p(t) =⇒ conc

(12) at1 ∧ . . . ∧ atn =⇒ conc
(13) at1 ∨ . . . ∨ atn =⇒ conc

Curly brackets enclose optional parts. f , p and q denote a defined function,
a predicate and a copredicate, respectively, of the current signature. In the case
of a higher-order symbol f , p or q, (t) may denote a “curried” tuple (t1) . . . (tn).
Usually, at1, . . . , atn are atoms, but may also be more complex formulas (see
section 6).

The underlined terms or atoms are called anchors. Each application of a
clause to a redex, i.e. a subterm or subformula of the current tree, starts with
the search for a most general unifier of the redex and the anchor of the clause.
If the unification is successful and the unifier satisfies the guard, then the redex
is replaced by the reduct, i.e. the instance of prem, u or conc, respectively, by
the unifier. Moreover, the reduct is augmented with equations that represent

Expander2 243

the restriction of the unifier to the redex variables (see section 4). If the current
trees are terms, then the reducts must be terms and thus only premise-free, but
possibly guarded clauses of the form (1) or (2) can be applied.

A guarded clause is applied only if the instance of the guard by the unifier
is solvable. The derived (most general) solution extends the unifier. Guarded
axioms are needed for efficiently evaluating ground, i.e. variable-free, formulas.
Axioms or theorems used as lemmas in proofs, however, should be unguarded.
Otherwise the search for a solution of the guard may block the proof process.

Axioms of form (2) are called AC equations because they take into account
that ∧ is an associative-commutative function (see section 2). (2) can be applied
to a bag term u1

∧ . . . ∧um if a list L1 = [ui1 , . . . , uin] of elements of L =
[u1, . . . , um] unifies with [t1, . . . , tn] and if the unifier satisfies the guard. At first,
a substitution f that unifies L′ = [t1, . . . , tk] with members of L is looked for.
Then f must be extendable to a substitution g that satisfies the guard and unifies
[tk+1, . . . , tm] with a permutation of the list L2 = [v1, . . . , vn−k] that consists
of all elements of L that were not unified with elements of L′. The search is
performed by traversing the permutations of L2 in reverse lexicographic order.
If a suitable permutation has been found, the elements of L1 are replaced by
the instance of t by g, while the remaining elements of L are replaced with
their instances by g. At most 720 permutations of L2 are checked. If this case
is reached without achieving a unifier, then the application of (2) consists of
replacing L2 by the permutation achieved at last. Further permutations may
then be tried by re-applying the AC equation.

For applying a clause of type (6), (7), (12) or (13), n subformulas at′1, . . . , at
′
n

must be selected in the displayed tree such that for all 1 ≤ i ≤ n, at′i is unifiable
with ati. at′i is replaced by the corresponding instance of prem resp. conc. The
resulting reducts are combined conjunctively in the case of a Horn clause and
disjunctively in the case of a co-Horn clause (see section 6).

Axioms represent functional-logic programs and thus are of the form (1), (2),
(3) or (9). Axioms determine the least/greatest fixpoint model of a specification
(see section 1). Theorems are supposed to be valid in this model. Narrowing and
rewriting consist of automatic axiom applications (see section 4). Applications
of individual axioms are restricted to the high level of interaction (see section 6).

Example 1. An Expander2 specification of finite lists with a defined function
flatten for flattening lists of lists and a predicate part for generating list partitions
reads as follows:

specs: NAT
defuncts: flatten
preds: part
fovars: x y s s’ p

axioms: part([x],[[x]]) &
(part(x:y:s,[x]:p) <=== part(y:s,p)) &
(part(x:y:s,(x:s’):p) <=== part(y:s,s’:p)) &
flatten[] = [] &
flatten(s:p) = s++flatten(p)

244 Peter Padawitz

Example 2. An Expander2 specification of streams (infinite lists) with defined
functions head, tail and eq and, given a Boolean function f, for a predicate ex-
ists(f) and a copredicate fair(f), which check whether f holds for one element
resp. infinitely many elements of a stream reads as follows:

constructs: blink
defuncts: head tail eq
preds: exists
copreds: fair
fovars: x y s
hovars: f

axioms: head(x:s) = x &
tail(x:s) = s &
head(blink) = 0 &
tail(blink) = 1:blink &
eq(x)(x) = true &
(x =/= y ==> eq(x)(y) = false) &
(f(head(s)) = true ==> exists(f)(s)) &
(f(head(s)) = false
==> (exists(f)(s) <=== exists(f)(tail(s)))) &

(fair(f)(s) ===> exists(f)(s) & fair(f)(tail(s)))

A derivation with Expander2 is a sequence of successive values of the state
variable trees (see Section 2). It is stored in the state variables proof and proof
term. All three variables are initialized when the contents of the text field is
parsed and the resulting tree t is displayed on the canvas. Then the state variable
trees is set to the singleton [t].

A derivation is correct if the derived disjunction/conjunction (resp. sum)
of the current trees implies (resp. is a possible result of) the original one. The
underlying semantics is described in section 1. Built-in symbols are interpreted
by the simplifier. Expander2 checks the correctness of each derivation step and
delivers a warning if the step may be incorrect.

A correct derivation that ends up with the formula True or False is a proof
resp. refutation of the original formula ϕ. Further possible results are solved
formulas, which are conjunctions of existentially quantified equations or uni-
versally quantified inequations that represent a substitution of the free variables
of ϕ by normal forms (see section 2). The substitution is a solution of ϕ if the
derivation of the solved formula is correct.

The correctness of a derivation step depends on the polarity of the redex
with respect to its position within the current trees. The polarity is positive if the
number of preceding negation symbols or premise positions is even. Otherwise
it is negative. A rule is analytical or expanding if the reduct implies the
redex. Here the redex must have positive polarity if the derivation step shall be
correct. A rule is synthetical or contracting if the redex implies the reduct.
Here the redex must have negative polarity if the derivation step shall be correct.
Expander2 checks these applicability conditions automatically. Of course, both
analytical and synthetical rules transform a redex into an equivalent formula and
thus may be applied regardless of the polarity.

Expander2 245

4 Narrowing and Rewriting

The narrowing procedure of Expander2 applies axioms and simplification rules
repeatedly from top to bottom and from left to right, first to the currently
displayed tree and then to other current trees.

Usually, the narrowing procedure applies all applicable axioms for the an-
chor of a redex simultaneously. Hence narrowing steps within a proof provide
case distinctions. The axioms for a relation or defined function may be eager
or lazy. Eager axioms are applied first. Lazy axioms are applied only if, within
a complete top-down traversal of the current trees, no eager axiom is applica-
ble. AC equations are typical candidates for lazy axioms (see Section 2). The
repeated application of an AC equation to the same AC term may prevent other
axioms from being applied to subredices. Hence other axioms are preferred to
AC equations.

Applying all applicable (Horn) axioms for a predicate or defined function
simultaneously results in the replacement of the redex by the disjunction of
their premises together with equations representing the computed unifiers (see
Section 3). Applying all applicable (co-Horn) axioms for a copredicate simul-
taneously results in the replacement of the redex by the conjunction of their
conclusions. The narrowing rules read as follows:
• Narrowing upon a Predicate p

p(t)∨k
i=1 ∃Zi : (ϕiσi ∧ x = xσi)

*

where γ1 ⇒ (p(u1) ⇐= ϕ1), . . . , γn ⇒ (p(un) ⇐= ϕn) are the (Horn) axioms
for p,
(∗) x is a list of the variables of t,

for all 1 ≤ i ≤ k, tσi = uiσi, γiσi ' True1and Zi = var(ui, ϕi),
for all k < i ≤ n, t is not unifiable with ui.

• Narrowing upon a Copredicate p

p(t)∧k
i=1 ∀Zi : (x = xσi ⇒ ϕiσi)

*

where γ1 ⇒ (p(u1) =⇒ ϕ1), . . . , γn ⇒ (p(un) =⇒ ϕn) are the (co-Horn)
axioms for p and (∗) holds true.

• Narrowing upon a Defined Function f

ϕ(f(t))∨k
i=1 ∃Zi : (ϕ(viσi) ∧ ϕiσi ∧ x = xσi) ∨∨l

i=k+1(ϕ(f(tσi)) ∧ x = xσi)

*

where γ1 ⇒ (f(u1) = v1) ⇐= ϕ1, . . . , γn ⇒ (f(un) = vn) ⇐= ϕn are the
(Horn) axioms for f ,

1 Hence σi solves the guard γi. Expander2 tries to solve γi by applying at most 500
narrowing steps.

246 Peter Padawitz

(∗) x is a list of the variables of t,
for all 1 ≤ i ≤ k, tσi = uiσi, γiσi ' True and Zi = var(ui, ϕi),
for all k < i ≤ l, σi is a partial unifier of t and ui,
for all l < i ≤ n, t is not partially unifiable with ui.

u1, . . . , un may be tuples of terms. In the case of narrowing upon a defined
function, the unification of t with ui may fail because at some position, the
root symbols of t and ui are different and one of them is a defined function f .
Since the unification may succeed later, when subsequent narrowing steps have
replaced f by a constructor or a variable, we save the already obtained partial
unifier σi and construct a reduct that consists of the σi-instance of the redex and
equations that represent σi. This version of the narrowing rule has been derived
from the needed narrowing strategy [1, 15]. If the underlying specification is
functional, the strategy of applying these narrowing rules iteratively from top
to bottom to a formula ϕ leads to a set S of solutions of ϕ such that each
solution of ϕ is an instance of some s ∈ S [16, 17]. Hence, in the context of
this strategy, the narrowing rules are not only expansions (or analytical rules),
but even equivalence transformations. This fact is indicated by the symbol *
attached to the rules.

Non-narrowable logical atoms p(t) with normal form t are simplified to by
False if p is a predicate and by True if p is a copredicate. This complies with the
semantics of p as the least/greatest solution of the axioms for p. Non-narrowable
terms f(t) with normal form t are simplified to the undefinedness constant ().
Of course, this transformation may lead to undesired results if some function or
relation occurring in a (simplified) conjecture has not been specified completely!

If the current trees are terms, only rewriting steps can be applied. Rewriting
is the special case of narrowing upon defined functions where the unifiers σi do
not instantiate redex variables:
• Rewriting upon a Defined Function f

u(f(t))
u(v1σ1)<+> . . .<+>u(vkσk)

where γ1 ⇒ f(u1) = v1, . . . , γ1 ⇒ f(un) = vn are the axioms for f and
(∗) for all 1 ≤ i ≤ k, t = uiσi and γiσi ' True,

for all k < i ≤ n, t does not match ui.
If a rewriting step delivers a proper sum of terms, the applied axioms specify

a non-deterministic function: each viσi is a possible value. Non-rewritable terms
f(t) with normal form t are simplified to the undefinedness constant (), which
is neutral with respect to the sum operator <+>.

5 Simplification

Narrowing removes predicates, copredicates and defined functions from the cur-
rent trees. The simplifier does the same with logical operators, constructors and
symbols of the built-in signature. Simplifications realize the highest degree of

Expander2 247

automation and the lowest level of interaction (see section 2). The reducts of
rewriting or narrowing steps are simplified automatically.

The simplifier turns formulas into minimal nested Gentzen clauses of the
form2

∀x (∃y (t1 ∧ . . . ∧ tm) ⇒ ∀z (u1 ∨ . . . ∨ un)).

“Nested” means that the clause is derivable by the following grammar:

S −→ A | B A −→ A1 | C
B −→ B1 | C A1 −→ ∃x (B ∧ . . . ∧B)
B1 −→ ∀x (A ∨ . . . ∨A) C −→ ∀x (A1 ⇒ B1) | atom

The evaluation rules used by the simplifier are equivalence transformations. Be-
sides the partial evaluation of built-in predicates and functions, the following
rules are applied:
• Elimination of Zero Elements

t1 <+> . . . <+> () <+> . . . <+> tn
t1 <+> . . . <+> tn

ϕ1 ∧ . . . ∧ True ∧ . . . ∧ ϕn

ϕ1 ∧ . . . ∧ ϕn

ϕ1 ∨ . . . ∨ False ∨ . . . ∨ ϕn

ϕ1 ∨ . . . ∨ ϕn

• Disjunctive Normal Form

f(. . . , t1 <+> . . . <+> tn, . . .)
f(. . . , t1, . . .) <+> . . . <+> f(. . . , tn, . . .)

p(. . . , t1 <+> . . . <+> tn, . . .)
p(. . . , t1, . . .) ∨ . . . ∨ p(. . . , tn, . . .)

ϕ ∧ ∀x(ψ1 ∨ . . . ∨ ψn)
∀x((ϕ ∧ ψ1) ∨ . . . ∨ (ϕ ∧ ψn))

if no x ∈ x occurs freely ϕ

• Equation Splitting

c(t1, . . . , tn) = c(u1, . . . , un)
t1 = u1 ∧ . . . ∧ tn = un

c(t1, . . . , tn) = d(u1, . . . , un)
False

c(t1, . . . , tn) �= c(u1, . . . , un)
t1 �= u1 ∨ . . . ∨ tn �= un

c(t1, . . . , tn) �= d(u1, . . . , un)
True

• Quantifier Distribution

∀x(ϕ1 ∧ . . . ∧ ϕn)
∀xϕ1 ∧ . . . ∧ ∀xϕn

∃x(ϕ1 ∨ . . . ∨ ϕn)
∃xϕ1 ∨ . . . ∨ ∃xϕn

∃x(ϕ ⇒ ψ)
∀xϕ⇒ ∃xψ

∃x(ϕ1 ∧ . . . ∧ ϕn)
∃x1ϕ1 ∧ . . . ∧ ∃xnϕn

∀x(ϕ1 ∨ . . . ∨ ϕn)
∀x1ϕ1 ∨ . . . ∨ ∀xnϕn

if for all 1 ≤ i ≤ n, no variable of xi occurs freely in ϕj , 1 ≤ j ≤ n, j �= i.
2 The binding-priority ordering of logical operators is given by {¬,∀,∃} > ∧ > ∨ > ⇒.

248 Peter Padawitz

• Removal of Quantifiers. Unused bounded variables are removed. Succes-
sive quantifiers are merged.

• Removal of Negation. Negation symbols are moved to literal positions where
they are replaced by complement predicates: ¬P (t) is reduced to not P (t),
¬not P (t) is reduced to P (t).
Co-Horn/Horn axioms for not P can be generated automatically from Horn/
Co-Horn axioms for P .

• Flattening of Conjunctions and Disjunctions

ϕ1 ∧ . . . ∧ (ψ1 ∧ . . . ∧ ψk) ∧ . . . ∧ ϕn

ϕ1 ∧ . . . ∧ ψ1 ∧ . . . ∧ ψk ∧ . . . ∧ ϕn

ϕ1 ∨ . . . ∨ (ψ1 ∨ . . . ∨ ψk) ∨ . . . ∨ ϕn

ϕ1 ∨ . . . ∨ ψ1 ∨ . . . ∨ ψk ∨ . . . ∨ ϕn

ϕ1 ∧ . . . ∧ False ∧ . . . ∧ ϕn

False
ϕ1 ∨ . . . ∨ True ∨ . . . ∨ ϕn

True
• Subsumption I. The set of factors of a conjunction or summands of a dis-

junction is reduced to its minimal elements with respect to the subsumption
relation (see below).

• Removal of Equations

∃x(x = t ∧ ϕ)
∃xϕ[t/x]

∀x(x �= t ∨ ϕ)
∀xϕ[t/x]

if x ∈ x \ var(t)

∀x(x = t ∧ ϕ ⇒ ψ)
∀x(ϕ ⇒ ψ)[t/x]

if x ∈ x \ var(t)

• Creation of Narrowing Redices
x = t ∧ ϕ

x = t ∧ ϕ[t/x]
x �= t ∨ ϕ

x �= t ∨ ϕ[t/x]

if x is a free variable of ϕ that does not occur in t and t consists of construc-
tors and codefined functions

• Modus Ponens
ϕ ∧ (ψ ⇒ θ)

ϕ ∧ θ
if ϕ subsumes ψ

• Subsumption II. An implication ϕ ⇒ ψ is reduced to True if ϕ subsumes ψ.
Subsumption is the least binary relation on terms and formulas that satisfies
the following implications:

∃ 1 ≤ i ≤ n : ϕ subsumes ψi =⇒ ϕ subsumes ψ1 ∨ . . . ∨ ψn

∀ 1 ≤ i ≤ n : ϕ subsumes ψi =⇒ ϕ subsumes ψ1 ∧ . . . ∧ ψn

∃ t : ϕ(t) = ψ(y) and ∃ u : ψ(u) = ϕ(x) =⇒ ∃xϕ(x) subsumes ∃yψ(y)
∃ u : ψ(u) = ϕ =⇒ ϕ subsumes ∃yψ(y)
∀ 1 ≤ i ≤ n : ϕi subsumes ψ =⇒ ϕ1 ∨ . . . ∨ ϕn subsumes ψ
∃ 1 ≤ i ≤ n : ϕi subsumes ψ =⇒ ϕ1 ∧ . . . ∧ ϕn subsumes ψ
∃ t : ϕ(t) = ψ(y) and ∃ u : ψ(u) = ϕ(x) =⇒ ∀xϕ(x) subsumes ∀yψ(y)
∃ t : ϕ(t) = ψ =⇒ ∀xϕ(x) subsumes ψ
ϕ = ψ modulo reorderings of bounded variables, factors or summands

=⇒ ϕ subsumes ψ

Expander2 249

• Implication Splitting

∀x(ϕ1 ∨ . . . ∨ ϕn ⇒ ψ)
∀x(ϕ1 ⇒ ψ) ∧ . . . ∧ ∀x(ϕn ⇒ ψ)

∀x(ϕ ⇒ ψ1 ∧ . . . ∧ ψn)
∀x(ϕ⇒ ψ1) ∧ . . . ∧ ∀x(ϕ ⇒ ψn)

• Universal Quantification of Implications

∃xϕ⇒ ψ

∀x(ϕ ⇒ ψ)
ψ ⇒ ∀xϕ
∀x(ψ ⇒ ϕ)

if no variable of x occurs freely in ψ.
• Uncurrying

ϕ⇒ (θ ⇒ ψ1) ∨ ψ2

ϕ ∧ θ ⇒ ψ1 ∨ ψ2

Besides being an essential part of proof processes, simplification in Expander2
may be used for testing algorithms, especially iterative ones, which change values
of state variables during loop traversals [21]. Several such algorithms have been
integrated into the simplifier by translating a loop traversal into a simplification
step. Consequently, intermediate results can be visualized in a painter window
(see Section 2). The respective state variables are initialized as a side-effect of
applying particular axioms that rewrite constants.

Similarly to narrowing and rewriting, the simplifier pursues a top-down strat-
egy that ensures termination and the eventual application of all applicable rules.
This is necessary because it usually works in the background. For instance, nar-
rowing reducts are simplified automatically before they are submitted to further
narrowing steps.

The notion of simplification differs from prover to prover. For instance, Is-
abelle [13] subsumes rewriting upon equational axioms under simplification.

6 Rules at the High Level of Interaction

Narrowing steps and simplifications are both analytical and synthetical and thus
turn formulas into semantically equivalent ones. Instances of the rules that are
accessible via the solver’s subtrees menu (see Fig. 2), however, may be strictly
analytical or strictly synthetical. Hence they can be applied only individually
and only to subtrees with positive resp. negative polarity (see Section 3). We
describe the main rules in terms of the actions to be taken by the user in order
to apply them.
• Instantiation. Select an existentially/universally quantified variable x. If

the scope of x has positive/negative polarity, then all occurrences of x in
the scope are replaced by the term in the solver’s entry field. Alternatively,
the replacing term t may be taken from the dispalyed tree and moved to
a position of x in the scope. Again, all occurrences of x in the scope are
replaced by t.

• Generalization. Select a subformula ϕ and enter a formula ψ into the
solver’s entry field. If ϕ has positive/negative polarity, then ϕ is combined
conjunctively/disjunctively with ψ.

250 Peter Padawitz

• Unification. Select two factors of a conjunction ϕ = ∃x(ϕ1 ∧ . . . ∧ ϕn) or
two summands of a disjunction ψ = ∀x(ϕ1 ∨ . . . ∨ ϕn). If they are unifiable
and the unifier instantiates only variables of x, then one of them is removed
and the unifier is applied to the remaining conjunction/disjunction. The
transformation is correct if ϕ/ψ has positive/negative polarity.

• Copy. Select a subtree ϕ. A copy of ϕ is added to the children of the sub-
tree’s parent node. The transformation is correct if the parent node holds a
conjunction or disjunction symbol.

• Removal. Select subtrees φ1, . . . , φn. φ1, . . . , φn are removed from the dis-
played tree. The transformation is correct if φ1, . . . , φn are summands/factors
of the same disjunction/conjunction with positive/negative polarity.

• Reversal. The list of selected subtrees is reversed. The transformation is
correct if all subtrees are arguments of the same occurrence of a permutative
operator. Currently, the permutative operators are:

&, |,=,= / =,∼,∼∼,∼/∼,+, ∗, ∧, {}.

• Congruence. Select (1) an atom tRt′ with positive polarity such that R ∈
{=,∼} or (2) an atom tRt′ with negative polarity such that R ∈ {�=, �∼} or
(3) an atom tRt′ with positive polarity such that

R ∈ Trans =def {<,≤, >,≥,=,∼,∼∼}

or (4) n− 1 factors
t1Rt2, t2Rt3, . . . , tn−1Rtn

of a conjunction with negative polarity such that R ∈ Trans. The selected
atoms are composed resp. decomposed in accordance with the assumption
that R is compatible with function symbols (cases 1 and 2) or transitive
(cases 3 and 4).

• Constrained Narrowing. Select subtrees φ1, . . . , φn and write axioms into
the text field or a signature symbol f into the solver’s entry field. Then
narrowing/rewriting steps upon the axioms in the text field or the axioms
for f , respectively, are applied to φ1, . . . , φn.

• Axiom/Theorem Application. Select subtrees φ1, . . . , φn and write the
number of an axiom or theorem into the solver’s entry field. The selected ax-
iom or theorem is applied from left to right or from right to left to φ1, . . . , φn.
If the applied clause is of the form (1), (2), (4), (8) or (10), then left/right
refers to the respective side of the leading equation, otherwise to the re-
spective side of implication that is given by the clause (see Section 3). The
transformation is correct if the conclusion/premise is applied to a subfor-
mula with positive/negative polarity. A clause of type (6), (7), (12) or (13)
is applied to atoms at′1, . . . , at

′
n each of which is part of a conjunction or

disjunction: Let V be the set of variables of prem resp. conc that do not
occur in at1, . . . , atn.

application of (6)
ϕ1(at′1) ∧ . . . ∧ ϕn(at′n)

(
∧n

i=1 ϕi(∃ V (premσ ∧
∧

x∈dom(σ) x ≡ xσ)))
⇑

Expander2 251

where for all 1 ≤ i ≤ n, at′iσ = atiσ and ϕi does not contain existential
quantifiers or negation or implication symbols.

application of (7)
ϕ1(at′1) ∨ . . . ∨ ϕn(at′n)

(
∧n

i=1 ϕi(∃ V (premσ ∧
∧

x∈dom(σ) x ≡ xσ)))
⇑

where for all 1 ≤ i ≤ n, at′iσ = atiσ and ϕi does not contain universal
quantifiers or negation or implication symbols.

application of (12)
ϕ1(at′1) ∧ . . . ∧ ϕn(at′n)

(
∨n

i=1 ϕi(∀ V (
∧

x∈dom(σ) x ≡ xσ ⇒ concσ)))
⇓

where for all 1 ≤ i ≤ n, at′iσ = atiσ and ϕi does not contain existential
quantifiers or negation or implication symbols.

application of (13)
ϕ1(at′1) ∨ . . . ∨ ϕn(at′n)

(
∨n

i=1 ϕi(∀ V (
∧

x∈dom(σ) x ≡ xσ ⇒ concσ)))
⇓

where for all 1 ≤ i ≤ n, at′iσ = atiσ and ϕi does not contain universal
quantifiers or negation or implication symbols.

• Noetherian Induction. Select a list of free or universal induction variables
x1, . . . , xn in the displayed tree. If ϕ = (prem ⇒ conc), then the induction
hypotheses

conc′ ⇐= (x1, . . . , xn) - (x′
1, . . . , x

′
n) ∧ prem′

prem′ =⇒ ((x1, . . . , xn) - (x′
1, . . . , x

′
n) ⇒ conc′)

are added to the current theorems. If ϕ is not an implication, then

conc′ ⇐= (x1, . . . , xn) - (x′
1, . . . , x

′
n)

is added. Primed formulas are obtained from unprimed ones by priming the
occurrences of x1, . . . , xn. - denotes the induction ordering. Each left-to
right application of an added theorem corresponds to an induction step and
introduces an occurrence of -. After axioms for - have been added to the
current axioms, narrowing steps upon - should remove the occurrences of
- because the transformation is correct only if ϕ can be derived to True
[14, 15].

• Factor Shift. Select an implication ϕ = (prem1 ∧ . . .∧ premn ⇒ conc) and
premise indices i1, . . . , ik. ϕ is turned into the equivalent implication

premj1 ∧ . . . ∧ premjr ⇒ (premi1 ∧ . . . ∧ premik
⇒ conc′)

where j1, . . . , jr = {1, . . . , n} \ i1, . . . , ik. This transformation may be neces-
sary for submitting ϕ to a proof by fixpoint induction.

• Summand Shift. Select an implication ϕ = (prem ⇒ conc1 ∨ . . . ∨ concn)
and conclusion indices i1, . . . , ik. ϕ is turned into the equivalent implication

prem ∧ ¬conci1 ∧ . . . ∧ ¬concik
⇒ concj1 ∨ . . . ∨ concjr

where j1, . . . , jr = {1, . . . , n} \ i1, . . . , ik. This transformation may be neces-
sary for submitting ϕ to a proof by coinduction.

252 Peter Padawitz

The following rules are correct if the selected subformulas have positive po-
larity.
• Coinduction on a Copredicate p. Select subformulas

{prem1 ⇒} p(t1)
∧ . . . (A)
∧ {premk ⇒} p(tk)

such that p does not depend on any predicate or function occurring in premi.
(A) is turned into

p(x) ⇐= {prem1 ∧} x = t1
∧ . . . (A’)
∧ {premk ∧} x = tk

where x is a list of variables. Moreover, a new predicate p′ is added to the
current signature and

p′(x) ⇐= {prem1 ∧} x = t1
∧ . . . (*)
∧ {premk ∧} x = tk

becomes the axiom for p′. All occurrences of p in the axioms for p are re-
placed by p′. Then (*) is applied to all occurrences of p′ in the transformed
axioms for p. The conjunction of the clauses resulting from these applications
replaces the original conjecture (A).

• Fixpoint Induction on a Predicate p. Select subformulas

p(t1) ⇒ conc1
∧ . . . (B)
∧ p(tk) ⇒ conck

such that p does not depend on any predicate or function occurring in conci.
(B) is turned into

p(x) =⇒ (x = t1 ⇒ conc1)
∧ . . . (B’)
∧ (x = tk ⇒ conck)

where x is a list of variables. Morever, a new predicate p′ is added to the
current signature and

p′(x) =⇒ (x = t1 ⇒ conc1)
∧ . . . (*)
∧ (x = tk ⇒ conck)

becomes the axiom for p′. All occurrences of p in the axioms for p are re-
placed by p′. Then (*) is applied to all occurrences of p′ in the transformed
axioms for p. The conjunction of the clauses resulting from these applications
replaces the original conjecture (B).

Expander2 253

• Fixpoint Induction on a Function f . Select subformulas

f(t1) = u1 ⇒ conc1
∧ . . . (C)
∧ f(tk) = uk ⇒ conck

or
f(t1) = u1 {∧ conc1}

∧ . . . (D)
∧ f(tk) = uk {∧ conck}

such that f does not depend on any predicate or function occurring in ui or
conci. (C) is turned into

f(x) = z =⇒ (x = t1 ∧ z = u1 ⇒ conc1)
∧ . . . (C’)
∧ (x = tk ∧ z = uk ⇒ conck),

(D) is turned into

f(x) = z =⇒ (x = t1 ⇒ z = u1{∧ conc1})
∧ . . . (D’)
∧ (x = tk ⇒ z = uk{∧ conck})

where x is a list of variables and z is a variable. Moreover, a new predicate
f ′ is added to the current signature and

f ′(x, z) =⇒ ((x = t1 ∧ z = t1) ⇒ conc1)
∧ . . . (*)
∧ ((x = tk ∧ z = tk) ⇒ conck)

resp.
f ′(x, z) =⇒ (x = t1 ⇒ (z = t1{∧ conc1}))

∧ . . . (*)
∧ (x = tk ⇒ (z = tk{∧ conck}))

becomes the axiom for f ′. All occurrences of f in the flattened axioms for f
are replaced by f ′. Replacing f actually means replacing equations f(t) = u
by logical atoms f ′(t, u). Then (*) is applied to all occurrences of f ′ in the
transformed axioms for f . The conjunction of the clauses resulting from these
applications replaces the original conjecture (C)/(D).

• Hoare Induction. Select a subformula of the form (C) or (D) such that
k = 1 and f has a single axiom of the form f(x) = loop(v). (C)/(D) is
turned into (C’)/(D’) and then transformed into the following conjectures,
which characterize INV as a Hoare invariant:

INV (x,v) (INV 1)
loop(y) = z ∧ INV (x,y) ⇒ conc1 (INV 2)

• Subgoal Induction. Same as Hoare induction except that the following
conjectures are created, which characterize INV as a subgoal invariant:

INV (v, z) ⇒ conc1 (INV 1)
loop(y) = z ⇒ INV (y, z) (INV 2)

254 Peter Padawitz

Example 1 (continued). A proof by fixpoint induction as Expander2 records
it is presented. The conjecture says that part is correct insofar as it only computes
partitions of the given list. All, Any, & and | denote ∀, ∃, ∧ and ∨, respectively.

part(s,p) ==> s = flatten(p)

Applying fixpoint induction w.r.t.

part([x0],[[x0]])
& (part(x1:(y0:s3),[x1]:p0) <=== part(y0:s3,p0))
& (part(x2:(y1:s4),(x2:s’0):p1) <=== part(y1:s4,s’0:p1))

to the preceding tree leads to the formula

All x0 x1 y0 s3 p0 x2 y1 s4 s’0 p1:
([x0] = flatten[[x0]]
& (x1:(y0:s3) = flatten([x1]:p0) <=== y0:s3 = flatten(p0))
& (x2:(y1:s4) = flatten((x2:s’0):p1) <=== y1:s4 = flatten(s’0:p1)))

Simplifying (6 steps) the preceding tree leads to the factor

All x0:([x0] = flatten[[x0]])

Narrowing the preceding factor leads to the factor

[] = flatten[]

Narrowing the preceding factor leads to new ones.
The current factor is given by

All x1 y0 s3 p0:
(y0:s3 = flatten(p0) ==> x1:(y0:s3) = flatten([x1]:p0))

Applying the axiom

flatten(s:p) = s++flatten(p)

at position [1,1] of the preceding factor leads to the factor

All x1 y0 s3 p0:(y0:s3 = flatten(p0) ==> x1:(y0:s3) = [x1]++flatten(p0))

Simplifying (12 steps) the preceding factor leads to a new formula.
The current formula is given by

All x2 y1 s4 s’0 p1:
(y1:s4 = flatten(s’0:p1) ==> x2:(y1:s4) = flatten((x2:s’0):p1))

Applying the axiom

flatten(s:p) = s++flatten(p)

at positions [0,1,1],[0,0,1] of the preceding tree leads to the formula

All x2 y1 s4 s’0 p1:
(y1:s4 = s’0++flatten(p1) ==> x2:(y1:s4) = x2:s’0++flatten(p1))

Simplifying (11 steps) the entire formula leads to the formula
True

Expander2 255

A proof by Noetherian induction (see above) of the same conjecture is less
straightforward and more than twice as long as the above proof by fixpoint
induction (see [21], Examples, PARTPROOF2).

Example 2 (continued). A proof by coinduction as Expander2 records it is
presented. The conjecture says that blink is a fair stream insofar as it contains
infinitely many zeros. At first, the conjecture must be generalized. blink and
1:blink have to be fair streams.

fair(eq(0))(blink) & fair(eq(0))(1:blink)

Adding the other factors leads to

fair(eq(0))(blink) & fair(eq(0))(1:blink)

Applying coinduction w.r.t.

fair(f0)(s0) ===> exists(f0)(s0) & fair(f0)(tail(s0))

to the preceding tree leads to the formula

All f0 s0:

(f0 = eq(0) & s0 = blink

| f0 = eq(0) & s0 = 1:blink

===> exists(f0)(s0)

& (f0 = eq(0) & tail(s0) = blink

| f0 = eq(0) & tail(s0) = 1:blink))

Simplifying (49 steps) the preceding tree leads to the summand

exists(eq(0))(blink) & tail(blink) = blink

& exists(eq(0))(1:blink) & tail(1:blink) = blink

Adding the other summands leads to

exists(eq(0))(blink) & tail(blink) = blink

& exists(eq(0))(1:blink) & tail(1:blink) = blink

| exists(eq(0))(blink) & tail(blink) = blink

& exists(eq(0))(1:blink) & tail(1:blink) = 1:blink

| exists(eq(0))(blink) & tail(blink) = 1:blink

& exists(eq(0))(1:blink) & tail(1:blink) = blink

| exists(eq(0))(blink) & tail(blink) = 1:blink

& exists(eq(0))(1:blink) & tail(1:blink) = 1:blink

Narrowing (9 steps) the preceding tree leads to the formula

True

7 Conclusion

We have given an overview of Expander2 with special focus on the system’s
prover capabilities. Other features, such as the generation, editing and com-

256 Peter Padawitz

bination of pictorial term representations or the use of state variables by the
simplifier are described in detail in [21]. Future work on Expander2 and on the
underlying Swinging Types approach will concentrate on the following:

➢ Representation of coalgebraic data types in terms of coinductively defined
functions and of corresponding subtypes defined in terms of co-Horn clauses for
membership predicates or coequalities. First steps towards this extension can be
found in [19]. Coalgebraic specifications are also dealt with in, e.g., [6, 23, 9, 11].
O’Haskell records [12] may be suitable for embedding standard coalgebraic data
types into the simplifier.

➢ Compilers that translate functional or relational programs written in, e.g.,
Haskell, Maude [10], Prolog or Curry [7] into simplification rules. This might
involve the combination of particular programming language constructs and their
semantics with the pure algebraic-logic semantics of Expander2 specifications.
Related work has been done by combining the algebraic specification language
CASL [3] with Haskell [25].

➢ A compiler of UML class diagrams and OCL constraints into Expander2
specifications has been developed in a students’ project. This yields a basis
for proving invariants, reachabilities and other safety or liveness properties of
object-oriented specifications within Expander2.

➢ Commands for the automatic generation of particular axioms, theorems
or simplification rules. Such commands are already available for specifying com-
plement predicates, deriving “generic” lemmas from the least/greatest fixpoint
semantics of relations and for turning co-Horn axioms into equivalent Horn ax-
ioms (see [21], Axioms menu).

➢ Simplification rules that cooperate with other theorem provers [2, 22, 27–
29] or constraint solvers [4] via tailor-made interfaces.

➢ Narrowing and fixpoint (co)induction complement each other with respect
to the direction axioms are combined with conjectures: In the first case, axioms
are applied to conjectures, and the proof proceeds by transforming the modi-
fied conjectures. In the second case, conjectures are applied to axioms and the
proof proceeds by transforming the modified axioms. Moreover, narrowing on
a predicate p is, at first, a computation rule, i.e. a rule for evaluating p, while
fixpoint induction on p is a proof rule, i.e. a rule for proving something about
p. Strinkingly, the situation turns upside down for copredicates: narrowing on
a copredicate q is rather a proof rule, whereas coinduction on q is used as a
computation rule [18]. This observation makes it worthwhile to look for a uni-
form proof/computation strategy that uses fixpoint (co)induction already at the
medium level of interaction.

➢ The range of applications of Expander2 will be investigated and extended
by further case studies. Most specifications designed and proofs and computa-
tions performed with the system up to now are listed and classified in the Ex-
amples section of the manual [21]. So far, the above-mentioned students’ project
for translating UML/OCL specifications into Expander2 has led to the most
extensive examples.

Expander2 257

References

1. S. Antoy, R. Echahed, M. Hanus, A Needed Narrowing Strategy, Journal of the
ACM 47 (2000) 776-822

2. Automated Reasoning Systems,
http://www-formal.stanford.edu/clt/ARS/systems.html

3. M. Bidoit, P.D. Mosses, CASL User Manual, Springer LNCS 2900 (2004)
4. Th. Frühwirth, S. Abdennadher, Essentials of Constraint Programming, Springer

2003
5. R. Giegerich, A Systematic Approach to Dynamic Programming in Bioinformat-

ics. Parts 1 and 2: Sequence Comparison and RNA Folding, Report 99-05, Tech-
nical Department, University of Bielefeld 1999

6. J. Goguen, G. Malcolm, A Hidden Agenda, Theoretical Computer Science 245
(2000) 55-101

7. M. Hanus, ed., Curry: A Truly Integrated Functional Logic Language,
http://www.informatik.uni-kiel.de/∼curry

8. Haskell: A Purely Functional Language, http://haskell.org
9. B. Jacobs, J. Rutten, A Tutorial on (Co)Algebras and (Co)Induction, EATCS

Bulletin 62 (1997) 222-259
10. The Maude System, http://maude.cs.uiuc.edu
11. Till Mossakowski, Horst Reichel, Markus Roggenbach, Lutz Schröder, Algebraic-

coalgebraic specification in CoCASL, Proc. WADT 2002, Springer LNCS 2755
(2003) 376-392

12. J. Nordlander, ed., The O’Haskell homepage,
http://www.cs.chalmers.se/∼nordland/ohaskell

13. T. Nipkow, L.C.Paulson, M. Wenzel, Isabelle/HOL, Springer LNCS 2283 (2002)
14. P. Padawitz, Deduction and Declarative Programming, Cambridge University

Press 1992
15. P. Padawitz, Inductive Theorem Proving for Design Specifications, J. Symbolic

Computation 21 (1996) 41-99
16. P. Padawitz, Proof in Flat Specifications, in E. Astesiano, H.-J. Kreowski, B.

Krieg-Brückner, eds., Algebraic Foundations of Systems Specification, IFIP State-
of-the-Art Report, Springer 1999

17. P. Padawitz, Swinging Types = Functions + Relations + Transition Systems,
Theoretical Computer Science 243 (2000) 93-165

18. P. Padawitz, Structured Swinging Types,
http://ls5-www.cs.uni-dortmund.de/∼peter/SST.ps.gz

19. P. Padawitz, Dialgebraic Swinging Types,
http://ls5-www.cs.uni-dortmund.de/∼peter/Dialg.ps.gz

20. P. Padawitz, Swinging Types At Work,
http://ls5-www.cs.uni-dortmund.de/∼peter/BehExa.ps.gz

21. P. Padawitz, Expander2: A Formal Methods Presenter and Animator,
http://ls5-www.cs.uni-dortmund.de/∼peter/Expander2/Expander2.html

22. The QPQ Database of Deductive Software Components, http://www.qpq.org
23. H. Reichel, An Approach to Object Semantics based on Terminal Coalgebras,

Math. Structures in Comp. Sci. 5 (1995) 129-152
24. G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, Vol. 3: Beyond

Words, Springer 1997
25. L. Schröder, T. Mossakowski, Monad-Independent Dynamic Logic in HasCASL,

Proc. WADT 2002, Springer LNCS 2755 (2003) 425-441

258 Peter Padawitz

26. M.-O. Stehr, J. Meseguer, P.C. Ölveczky, Rewriting Logic as a Unifying Frame-
work for Petri Nets, in: H. Ehrig et al., eds., Unifying Petri Nets, Springer LNCS
2128 (2001)

27. G. Sutcliffe, Problem Library for Automated Theorem Proving,
http://www.cs.miami.edu/∼tptp

28. F. Wiedijk, ed., The Digital Math Database,
http://www.cs.kun.nl/∼freek/digimath

29. The Yahoda Verification Tools Database, http://anna.fi.muni.cz/yahoda

Relationships Between Equational
and Inductive Data Types

Eric G. Wagner

Wagner Mathematics, 1058 Old Albany Post Road,
Garrison, NY 10524, USA
wagner@highlands.com

Abstract. This paper explores the relationship between equational al-
gebraic specifications (using initial algebra semantics) and specifications
based on simple inductive types (least fixed points of equations using
just products and coproducts, e.g. N ∼= 1 + N). The main result is a
proof that computable data type (one in which the corresponding alge-
bra is computable in the sense of Mal’cev) can be specified inductively.
This extends an earlier result of Bergstra and Tucker showing that any
computable data type can be specified equationally.

1 Introduction

For the purposes of this paper, an equational data type is one specified as the
initial Σ-algebra for a given signature, Σ and set of equations E over Σ; and
a simple inductive data type is one defined as the least fixpoint solution of
equations using just products and coproducts, e.g., N ∼= 1 + N .

The early papers on equational data type specifications [5–8], and inductive
specifications [12], were written in the seventies. (See [11] for other earlier refer-
ences relevant to inductive types). The two approaches seem rather different:

1. Early papers on inductive data types used → in addition to + and × and
thus introduced higher level types not found in the equational approach.

2. In the equational approach it is easy to specify types such as finite sets of
natural numbers, but this can not be done directly in the inductive approach,
that is, finite sets do not appear as a fixpoint of equations using just + and×.

3. Papers on inductive types frequently also consider co-inductive types: great-
est fixpoints of equations in + and × (and →). This also leads to data types,
such as possibly-infinite strings and possibly-infinite trees; I do not know of
any equational specifications for such types.

4. Equational specifications are not necessarily implementable as is shown by
the existence of unsolvable word problems; but simple inductive data types
are always implementable [14].

We could continue listing differences, but the real point of this paper is to
argue that, for all “practical purposes”, the equational and inductive approaches
are equally powerful. Of course this is only true when we make certain “practical”
restrictions:

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 259–274, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

260 Eric G. Wagner

1. We restrict ourselves to computable data types.
2. We restrict ourselves to simple inductive types (no →, no greatest fixpoints).

The first restriction is justified on the grounds that, after all, we do want to
use the specified data types in real programs which means they must be im-
plementable, i.e., computable. This does not justify the second restriction, but
without the second restriction we are clearly faced with insurmountable differ-
ences.

Section 2 of the paper reviews the relevant concepts from the theories of
equational specifications and recursive functions, and the work on computable
data types (or algebras) from [13] and [1]. Section 3 explores simple inductive
specifications and ways to enrich them with additional operations. In particular,
it is shown how we can generalize primitive recursion and the While-do operator
to inductive types. Section 4 applies the results of Section 3 to traditional recur-
sion theory; showing that both primitive recursion and minimalization can be
expressed using While-do. The main result is given in Section 5, where we show
that computable data types can be specified both equationally and inductively
following a particular specification strategy.

2 Preliminaries

2.1 Signatures and Algebras

The following is meant only to clarify our notation, we assume the reader is
already familiar with the concepts.

Definition 1. A signature consists of the following data

S, a finite set, the set of sorts.
F , a finite set, the set of operators.
dom : F → S∗

cod : F → S

We write Σ = .S, F, dom, cod/ to indicate that Σ is a signature with the
given data.

Given a signature Σ = .S, F, dom, cod/ we define a Σ-algebra, A, as con-
sisting of

1. For each s ∈ S a set A(s), called the carrier of sort s.
2. For each σ ∈ F a function A(σ) : A(dom(σ)) → cod(σ) where, for any

w ∈ S∗, if w = s1 · · · sn, then A(w) = A(s1)× · · · ×A(sn).

We will sometimes denote a Σ-algebra as A = .〈A(s) | s ∈ S〉, 〈A(σ) | σ ∈ F 〉/.
If A and B are Σ-algebras then a Σ-homomorphism, h : A → B, consists

of an S-indexed family of mappings, h = 〈h(s) : A(s) → B(s) | s ∈ S〉, such that
for any σ ∈ F ,

B(σ) ◦ h(dom(σ)) = h(cod(σ)) ◦A(σ),

where, for any w ∈ S∗, if w = s1 · · · sn then h(w) = h(s1)× · · · × h(sn).

Relationships Between Equational and Inductive Data Types 261

Definition 2. Let Σ = .S, F, dom, cod/ be a signature, then for each s ∈ S we
define the set of Σ-terms as follows:
1. If σ ∈ F , dom(σ) = ε (the empty string), and cod(σ) = s then σ is a Σ-term

of sort s.
2. If σ ∈ F , dom(σ) = w = s1 · · · sn ∈ S∗, cod(σ) = s, and, for i = 1, . . . , n, ti

is a Σ-term of sort si, then σ(t1, . . . , tn) is a Σ-term of sort s.
We write T (Σ)s for the set of all Σ-terms of sort s. We write T (Σ) for the
S-indexed set T (Σ) = 〈T (Σ)s | s ∈ S〉.

Given a signature, Σ, we also write T (Σ) to denote the Σ-term algebra, where
T (Σ)(s) = T (Σ)s and where for any σ ∈ F and 〈t1, . . . , tn〉 ∈ T (Σ)(dom(σ)),

T (Σ)(σ)(t1, . . . , tn) = σ(t1, . . . , tn).

Recall that T (Σ) is “the” initial Σ-algebra, that is, for any Σ-algebra, A, there
is exactly one Σ-homomorphism hA : T (Σ) → A.

2.2 Recursive Functions and Recursive Sets

We follow the definitions given in [4] for the definitions of recursive functions on
the natural numbers, ω, and for recursive sets of natural numbers.

Definition 3. Given functions ψ : ωn → ω and θ : ω1+1+n → ω, the operation
of primitive recursion yields the unique function φ : ω1+n → ω such that, for
y ∈ ω and x ∈ ωn,

φ(0, x) = ψ(x)
φ(y + 1, x) = θ(y, φ(y, x), x).

A function is primitive recursive if it can be obtained by a finite number of
applications of the operations of composition1 and primitive recursion starting
from the constant 0-function, the successor function, and the projection func-
tions.

Given a total function θ : ωn+1 → ω the operation of minimalization yields
the unique function φ : ωn → ω, whose value for given x is the least value of y,
if such exists, for which θ(y, x) = 0, and is undefined if no such y exists. The
function θ is said to Min-regular if φ is total.

A class of functions is recursive if it can be obtained by a finite number
of applications of composition, primitive recursion, and minimalization of Min-
regular functions.

We say that a set is (primitive) recursive if its characteristic function is.
Thus, a subset P ⊆ ω × ω is (primitive) recursive iff the function

CP (x, y) =
{

0 〈x, y〉 ∈ P
1 〈x, y〉 �∈ P

is (primitive) recursive.
1 In this definition, as in [4], composition may have more than two arguments: given

a function g : ωn → ω and n functions fi : ωp → ω, i = 1, . . . , n, this composition
operation gives us the function g(f1, . . . , fn) : ωp → ω. However, in most of the
paper we will use binary composition.

262 Eric G. Wagner

The above definition of a recursive function is convenient for theoretical pur-
poses but is not necessarily convenient for writing specifications of functions even
when we restrict ourselves to functions on the natural numbers. For example,
the specification of the equality predicate on natural numbers given in [4] using
primitive recursive and composition requires a sequence of five functions to be
defined, but we can give a succinct definition using double recursion

eq(0, 0) = 0
eq(succ(n), 0) = 1
eq(0, succ(p)) = 1

eq(succ(n), succ(p)) = eq(n, p)

The original treatments of recursion allowed such double recursions among many
others; indeed a set of equations was defined as recursive if it could always be
applied and evaluated “recursively”, see [10]. That is, the emphasis is on how the
equations are applied rather than on specific forms of equations schemata. It is
straightforward to show that even with double recursion we can define functions
which are not primitive recursive even though they are recursive.

2.3 Gödelizations of Σ-Terms

In order to treat Σ-algebras in the context of traditional recursive function theory
it is necessary to be able to represent Σ-terms by natural numbers. What we
want is to do this in a way in which the translation from term to number, and its
inverse from number to term, are, in some sense, computable, and in which the set
of numbers representing terms is a recursive set. Such a representation is called
a Gödelization. Rather than spell out the desired properties of Gödelizations in
detail, we shall always use the following specific Gödelization, GN , in this paper.

Definition 4. For each i ∈ ω let Pr(i) denote the ith prime (take Pr(0) = 0).
Given a signature Σ = .S, F, dom, cod/, let 〈σ1, . . . , σn〉 be an enumeration of the
elements of F (without repetitions). Then for each t ∈ T (Σ) let its Gödelization,
GN(t), be given as follows:

1. If t = σi where dom(σi) = ε (the empty string), then GN(t) = 2Pr(i).
2. If t = σj(t1, . . . , tp) then GN(t) = 2Pr(j) · 3GN(t1) · · ·Pr(p + 1)GN(tp).

Definition 5. A function f :
⋃
〈T (Σ)s | s ∈ S〉 → ω is called GN -computable

if there is a recursive function g : ω → ω such that g •GN = f .
A set W ⊆

⋃
〈T (Σ)s | s ∈ S〉 is said to be GN -computable if the set GN(W)

=def {GN(w) | w ∈W} is recursive.

Example 1. For each s ∈ S, the set T (Σ)s is GN -computable. The set
⋃
〈T (Σ)s

| s ∈ S〉 is GN -computable.

2.4 Computable Algebraic Specifications

The following definition comes from [13] via [2] and has been rephrased to reflect
our needs and notation:

Relationships Between Equational and Inductive Data Types 263

Definition 6. Let Σ = .S, F, dom, cod/ be a signature and let A be a Σ-algebra.
We say that A is effectively presented if for each s ∈ S there is a recursive set
Ω(s) and a surjective function αs : Ω(s) → As, and, for each σ ∈ F , there exists
a recursive function Ω(σ) : Ω(dom(σ)) → Ω(cod(σ)) such that,

A(σ) ◦ αdom(σ) = αcod(σ) ◦Ω(σ)

where, for w = s1 · · · sn ∈ S∗, αw = αs1 × · · · × αsn .
We say that a Σ-algebra, A, effectively presented as above, is computable if

for each s ∈ S the relation ≡α,s on Ω(s), such that n ≡α,s p iff αs(n) = αs(p)
for all n, p ∈ Ω(s), is recursive.

Note that Ω = .〈Ωs | s ∈ S〉, 〈Ω(σ) | σ ∈ F 〉/ is a Σ-algebra. Furthermore,
α is a surjective homomorphism from Ω to A.

Theorem 1. Every computable Σ-algebra, A, finitely generated by a1, . . . , an

has a specification consisting of a finite set, E, of equations over some signa-
ture Σ′ = .S, F ∪ F ′, dom′, cod′/ where, for each σ ∈ F , dom′(σ) = dom(σ),
cod′(σ) = cod(σ), and the Σ-reduct of T (Σ′, E) is isomorphic to A.

Proof. See Theorem 3.1. in [2].

3 Inductive Specifications Using Only + and ×
In contrast to the approach taken in [12], where +, ×, → are used to construct
inductive types, we will only consider simple inductive types constructed using +
and ×. Our main effort in this section will be directed to exploring the extension
of inductive types to include operations other than those corresponding directly
to injections and projections. Such extensions can be thought of as embedding
the inductive types in some form of programming language [9, 3, 17, 16].

The restriction to + and × has the additional advantage that it simplifies
the mathematics since everything (that we will do in this paper) can be carried
out within the category, Set, of sets and total functions rather than in a more
general CPO. It is worthwhile, however, to point out that Set

1. Has terminal objects (which we denote by 1), 1 is the empty product of sets.
2. Is distributive, so, in particular, for any sets, A, B and C, the function

Δ = [1C × iA, 1C × iB] : (C ×A) + (C ×B) ∼= C × (A + B)

is an isomorphism, where iA and iB are the evident coproduct injections,
and 1C is the identity on C.

3.1 Carrier Specifications

Notation: Given a set S and strings u1, . . . , un ∈ S∗ we write (u1) · · · (un) to
denote the string-of-strings whose ith element is ui. Note, () denotes the empty
string.
Definition 7. A carrier specification: A carrier specification consists of

1. K, a finite set (of class names)
2. ι : K → (K∗)∗, assigning each class name a string-of-strings of class names.

264 Eric G. Wagner

Given a set, K, of class names we can interpret a string-of-strings, u =
(u1) · · · (un), as a sum of products, or, more precisely, as a polynomial in the
algebra with operations + and × generated by the set K. Such a polynomial
then defines (up-to-isomorphism) a function |Set|K → |Set| with + interpreted
as coproduct, and with × interpreted as product. The function ι : K → (K∗)∗

then defines an endofunctor ι : SetK → SetK . Such a functor has a least fixed
point (with respect to inclusion and up-to-isomorphism). We say then that the
semantics of the carrier specification, .K, ι/, is the algebra consisting of the sets
making up this least fixpoint together with the associated coproduct injections and
product projections. (Note, we have not formally presented a signature for this
algebra, but see below.)
Example 2. : Let K = {NAT, STACK BOOL} and let ι : K → (K∗)∗ be such
that ι(NAT) = ()(NAT), ι(STACK) = ()(NAT · STACK) and ι(BOOL) =
()(). The corresponding set of least points consists of sets, NAT , STACK and
BOOL such that

NAT ∼= 1 + NAT
STACK ∼= 1 + (NAT × STACK)
BOOL ∼= 1 + 1

That is, NAT is isomorphic to the set of natural numbers, STACK is isomorphic
to the set of stacks of natural numbers (isomorphic to the set of strings over the
natural numbers), and BOOL is “the” two-element set.

If we now look at the injections and projections we see that they all cor-
respond to natural operations on the corresponding sets. E.g., the injection
1 → NAT picks out 0, while the other injection is naturally interpreted as
the successor function. For BOOL it is natural to name the injections true
and false. Going further, it is suggestive to name the remaining injections and
projections as in the following diagram:

��
��
NAT ��

��
N × S ��

��
STACK�

� �

� 	

×

|

×
pretop

prepop

push

�

�

� | 1
empty

in which we have used special arrows to denote injections and projections:
� for injections, and �× for projections. It is

tempting to replace the labels prepop and pretop by pop and top respectively;
but the domains are wrong.

However, it is reasonable to say that the coproduct injections and product
projections “always correspond to the basic underlying operations of the corre-
sponding data type”.

3.2 Operation Specifications

Only a very limited class algebras can be defined in the above manner. Two
particular limitations are:

Relationships Between Equational and Inductive Data Types 265

1. The only operations are the injections and projections. Thus while the above
definition of NAT gives us zero and successor, it does not give addition and
multiplication to say nothing of the other operations readily definable in
equational specifications.

2. We don’t have any mechanism for defining congruences on the inductive
types.

In this section we address the first problem.

Defining Functions Using Source, or Target, Tupling

Definition 8. Given sets A0, A1, . . . , An and a function fi : Ai → A0 for each
i = 1, . . . , n, then the source tupling of the fi, denoted [f1, . . . , fn], is the function

[f1, . . . , fn] : A1 + · · ·+ An → A0

where, for all j = 1, . . . , n, if ij : Aj → A1 + · · · + An is the evident coproduct
injection, then [f1, . . . , fn] ◦ ij = fj.

Example 3. Two simple examples of a function defined by means of source tu-
pling are the definition of the identity and predecessor functions on the natural
numbers: 1NAT = [zero, succ], and pred = [zero, 1NAT]. Two other examples
would be to define the stack operations as pop = [empty, prepop] and top =
[zero, pretop]. Note that we could, equally well, define top = [s17(zero), pretop],
the choice of the first value is no more restricted here than in the equational
case.

Definition 9. Given sets A0, A1, . . . , An and a function fi : A0 → Ai for each
i = 1, . . . , n, then the target tupling of the fi, denoted 〈f1, . . . , fn〉, is the function

〈f1, . . . , fn〉 : A0 → A1 × · · · ×An

where, for all j = 1, . . . , n, if pj : A1 × · · · × An → Aj is the evident product
projection, then pj ◦ 〈f1, . . . , fn〉 = fj.

Target tupling is important for several reasons; a major one being that it
allows us to define composition as a binary operation. See the proof of Proposi-
tion 3 for another use of target-tupling.

Generalizing Primitive Recursion

Definition 10. Let .K, ι/ be a carrier specifications with corresponding carrier
algebra A. Then given

1. k ∈ K with ι(k) = (u1)(u2) · · · (un)
2. a function ρi, for each i = 1, . . . , n such that, if ui contains exactly pi ≥ 0

occurrences of k, then they are enumerated by ρi : {1, . . . , pi} → {1, . . . , |ui|},
where |ui| is the length of ui. That is, ui,ρi(j) = k and is the jth occurrence
of k in ui,

3. k′ ∈ K

266 Eric G. Wagner

4. v ∈ K∗

5. for each i = 1, . . . , n, a function gi : A(v) ×A(ui)×A(k′)pi → A(k′)

we say that the operation of primitive recursion associates with the above data a
new function h : A(v) × A(k) → k′ such that for each j = 1, . . . , n, if a ∈ A(v)
and b ∈ A(uj), then

h(a, iuj (b)) = gj(a, b, h(a, bρ(1)), . . . , h(a, bρ(pj))),

where iuj : A(uj) → A(k) is the indicated coproduct injection.

Definition 11. Let .K, ι/ be a carrier specification with corresponding carrier
algebra A. We say that a function f : A(v)×A(k) → A(k′) is primitive recursive
with respect to .K, ι/ if there exists a finite sequence of functions g1, . . . , gp such
that each function gi is either

1. An injection or projection function from A, or
2. A source-tupling or target tupling of functions earlier in the sequence, or
3. A binary composite of functions of preceding it in the sequence (i.e., we

compose functions f : A → B and g : C → D to get f • g : A → D only
when B = C, rather than using the multi-argument version of composition
given in the earlier footnote),or

4. A result of applying the operation of primitive recursion to functions preced-
ing it in the sequence.

Proposition 1. For the carrier specification

nat = .{NAT }, ι(NAT) = ()(NAT)/

of the natural numbers, primitive recursion with respect to NAT is equivalent to
that for primitive recursion as in Definition 3.

Example 4. Consider the presentation .{T }, ι(T) = ()(T · T)/ for binary trees
with the projections and injections named as in the diagram:

��
��
T × T ��

��
T�

� �

� 	

×

×

|
join

right

left

�

�

� |
root

1

The primitive recursive function for the depth of such a tree is

depth(root) = 0
depth(join(〈T1, T2〉)) = max(depth(T1), depth(T2))

Relationships Between Equational and Inductive Data Types 267

Generalized While-Do

Definition 12. Let .K, ι/ be a carrier specifications with corresponding carrier
algebra A. Then given

1. Strings t, u, v, w ∈ K∗ such that A(u) = A(v) + A(w),
2. A function f : A(t) → A(u) (the initialization function).
3. a function g : A(u) → A(u) (the iterated function)

The operation of while-do associates with the above data a partial function W (g) :
A(u)−◦→A(u) that is a fix point for the diagram

A(v)

A(u)

A(w)

iv

iw

W (g) A(u)

W (g) • g • iw

iv

�
�

�
�������

������	

where iv and iw are the indicated coproduct injections. Equationally: W (g) =
[iv, W (g) • g • iw].

The operation of initialized while-do associates with the above data the func-
tion W (f, g) =def W (g) • f . We say that : W (f, g) is WD-regular if W (f, g) is
total.

Our claim is that this captures what we would intuitively expect as the
meaning of “While in A(w) do g starting with initialization f”. More precisely:

Proposition 2. Given A(u) = A(v) + A(w) and a function g : A(u) → A(u)
then there is a least partial function2 h : A(u)−◦→A(u) which is a fixpoint for
the equation h = [iv, h • g • iw]. In particular, if a ∈ A(u) and gn(a) ∈ A(v)
then h(a) = gn(a), and, if no such n exists for a then h(a) is undefined.

Proof. See [15], where the proof is given in a slightly more general setting.

In the review of recursion theory, given in section 2, we employed the op-
eration of minimalization. The minimalization operation does not carry over to
arbitrary inductive data types defined using + and × since such algebras lack
the “natural” total ordering enjoyed by NAT . Of course we can (and, in some of
our proofs, we will) employ minimalization after first introducing a Gödelization
to provide the necessary ordering; but this does not seem to me to be the road
to intuitively clear specifications.

4 Recursive Functions on NAT via While-Do

The following results show that we can replace primitive recursion, and mini-
malization of min-regular functions, with while-do (starting from a small, finite
2 Given partial functions f, g : A−◦→B we say f is less-than g if for every a ∈ A, if

f(a) is defined the g(a) = f(a).

268 Eric G. Wagner

set of given primitive recursive functions). Of course this does not say anything
about either the convenience or efficiency of relying on while-do. But it does
show that we can implement recursive functions in a reasonably conventional
programming language without complex recursions.

Proposition 3. If φ : ωn → ω is defined by minimalization from the Min-
regular function θ : ω1+n → ω, then it is definable in the inductive specification
.{NAT }, ι(NAT) = ()(NAT)/, as φ = π1+n+1

(1) •W (f, g), from the WD-regular
iterative while-do function, W (f, g) given by the data

– A(t) = ωn, A(u) = ω1+n+1, A(v) = ω1+n × 1, A(w) = ω1+n × ω, with
coproduct injections as shown in the diagram below.

– With initializing function f = 〈zero, 1ωn , θ • 〈zero, 1ωn〉〉
– With iterated function g = 〈succ • π1+n+1

(1) , π1+n+1
(2) , θ • 〈succ • π1+n+1

(1) ,

π1+n+1
(2) 〉〉

giving the fixpoint diagram

ω1+n × 1

ω1+n × ω

ω1+n × ω

11+n × zero

11+n × succ

W (g) ω1+n × ω

W (g) • g • (1ω1+n × succ)

1ω1+n × zero

�
�

�

��������

�������	

Proposition 4. If φ : ω1+n → ω is defined by primitive recursion from the
functions ψ : ωn → ω and θ : ω1+1+n → ω, then it is definable in the inductive
specification .{NAT }, ι(NAT) = ()(NAT)/, as φ = π1+n+1+1+1

(4) • W (f, g),
from the WD-regular iterative while-do function, W (f, g) given by the data

– A(t) = ω1+n, A(u) = ω1+n+1+1 × ω, A(v) = ω1+n+1+1 × 1, A(w) =
ω1+n+1+1 × ω, with coproduct injections (1ω1+n+1+1 × zero) : A(v) → A(u)
and (1ω1+n+1+1 × succ) : A(w) → A(u).

– With initializing function

f = 〈π1+n
(1) , π1+n

(2) , zero, ψ • 〈zero, π1+n
(2) 〉, eq • 〈π1+n

1 , zero〉〉

– With iterated function

g = 〈π(1), π(2), succ • π(3), θ • 〈π(3), π(4), π(2)〉, eq • 〈succ • π(3), π(1)〉〉

where, for i = 1, . . . , 5, π(i) is an abbreviation for the projection π1+n+1+1+1
(i) .

Corollary 1. All the usual recursive functions on ω can be defined as inductive
functions on NAT .

Relationships Between Equational and Inductive Data Types 269

5 Congruences and Computable Data Types

Let Σ = .S, F, dom, cod/ be a signature. Nothing we have proposed so far al-
lows us to go from an inductively defined Σ-algebra, R, to a quotient algebra,
A = (R/ ≡R), where ≡R is a congruence on R. One approach to this problem
is to require the congruence, ≡R to by inductively definable, that is, that its
characteristic function, C, be inductively definable in R. Note that since ≡R is
an S-indexed set, ≡R= 〈≡R,s| s ∈ S〉, what we want is an S-indexed set of func-
tions C = 〈Cs : T (Σ)s → NAT 〉 (or, equivalently, C = 〈Cs : T (Σ)s → BOOL〉).
This is sufficient in that, for each s ∈ S, Cs tells us precisely when two elements
of R(s) represent the same element of A. See Example 6 below, for a familiar
example, namely that of fractions as representatives of rational numbers.

Definition 13. Let R be an inductively defined algebra in the sense of being an
extension of an algebra given by a carrier presentation .K, ι/ to include addi-
tional defined inductively operations, and let ≡R be a congruence on R, then we
say (R/ ≡R) is inductively defined providing that ≡R can be inductively defined
(using “hidden” sorts and operators).

The question then is, when can this be done? The answer is that it can
be done providing that the algebra A is computable (see Definition 6). The
following theorem provides the key. Note that it is in a more general context
than the above discussion in that it starts from a Σ-algebra A and provides
an inductively defined algebra R(Γ) for each choice, Γ , of constructors for A.
The theorem does not show that R is inductively defined, that is shown by the
propositions following the theorem.

Theorem 2. Let Σ = .S, F, dom, cod/ be a signature and let A be a computable
Σ-algebra (data type with signature Σ) with an effective presentation .Ω, α/.
Let Γ = .S, FΓ , dom|FΓ , cod|FΓ / ⊆ Σ consisting of constructors, that is, of
operators, σ, whose corresponding operations, A(σ), generate (the carriers of)
A. Let T (Γ) denote the initial Γ -term algebra. Then

1. Let γ : T (Σ) → Ω be the unique homomorphism given by the initiality of
T (Σ). Then γ is GN -computable.

2. There exists a computable Σ-algebra R(Γ) such that
(a) R(Γ)(s) = T (Γ)(s) for each s ∈ S.
(b) For each σ ∈ FΓ , and 〈t1, . . . , tn〉 ∈ T (Γ)(dom(σ)), we have

R(σ)(t1, . . . , tn) = σ(t1, . . . , tn),

3. Let ≡R be the congruence on R(Γ) such that (R(Γ)/ ≡R) ∼= A. Then ≡R is
GN -computable.

The proof is given in the Appendix.

Proposition 5. Given a signature Σ = .S, F, dom, cod/ then there exists an
inductive presentation .{T }∪S, ι/, where T �∈ S, defining an inductive algebra,
A, of signature .{T } ∪ S, S ∪ F, · · ·/ with

270 Eric G. Wagner

carriers:
A(s) = T (Σ)s

A(T) =
∐
〈T (Σ)s | s ∈ S〉

operations:
A(σ) : A(dom(σ)) → A(cod(σ)) where A(σ)(t1, . . . , tn) = σ(t1, . . . , tn)
A(s) : T (Σ)s →

∐
〈T (Σ)s | s ∈ S〉 =

⋃
〈T (Σ)s | s ∈ S〉, the inclusion

function

Corollary 2. The carrier algebra for R(Γ) is inductively definable by applying
the above proposition to Γ .

Proposition 6. Extending the above presentation to include ;the carrier spec-
ification .{NAT }, ι(NAT) = ()(NAT)/, we can inductively define the func-
tion GN :

⋃
〈T (Σ)s | s ∈ S〉 → NAT and, for each s ∈ S, the restriction

GN |T (Σ)s
: T (Σ)s → NAT .

Proposition 7. Every GN -recursive function and set (see Definition 5) is in-
ductively definable.

Theorem 3. If A is computable then R(Γ) and ≡R are inductively definable
and so A = (R(Γ)/ ≡R) is inductively specifiable. Furthermore, by Theorem 1
(originally from [1]), A is equationally specifiable.

Example 5. In STACKS-OF-NAT the above approach works very neatly, There
we could take

Σ = .{NAT, STACK}, {zero, succ, plus, times, empty, push, pop, top}, . . ./

and Γ = .{NAT, STACK}, {zero, succ, empty, push}, . . ./ (we leave dom and
cod to the reader). We immediately get T (Γ)(NAT) ∼= ω ∼= A(NAT) and
T (Γ)(STACK) ∼= ω∗ ∼= A(STACK). Then, assuming A(pop)(A(empty)) =
A(empty), and A(top)(A(empty)) = A(zero)) it is easy to write equations for
the remaining operators. The desired congruences are both trivial, i.e., the di-
agonal (equality).

Example 6. A more interesting example is provided by the positive rational num-
bers. Let NAT , POS and RAT have signatures:

ΣNAT = .{NAT }, {zero, succN , +N ,×N}, · · ·/
ΓNAT = .{NAT }, {zero, succN}, · · ·/
ΣPOS = .{POS}, {one, succP , +P ,×P }, · · ·/
ΓPOS = .{POS}, {one, succP}, · · ·/
ΣRAT = .{NAT, POS, RAT }, FNAT ∪ FPOS ∪ {make, +R,×R}, · · ·/
ΓRAT = .{NAT, POS, RAT }, {zero, one, succN, succP ,make}, · · ·/.

where dom(make) = NAT · POS, cod(make) = RAT .

Relationships Between Equational and Inductive Data Types 271

There is a “coercion”

C : T (ΓPOS) → T (ΓNAT)
C(one) = succN(zero)

C(succP (n)) = succN(C(n))

which we could either add to the signature or regard as a “hidden operator”.
Then the equations defining the operations are:

+N (n, zero) = n +P ((n, one) = succP (n)
+N (n, succN (p)) = succN(+N (n, p)) +P (n, succP (p)) = succP (+P (n, p))

×N (n, zero) = zero ×P (n, one) = n
×N (n, succN (p)) = +N (×N(n, p), n) ×P (n, succP (p)) = +P (×P (n, p), n)

+R(make(n, p), make(q, r))
= make(+N(×N (n, C(r)), ×N(C(p), q)), ×P (p, r))

×R(make(n, p), make(q, r)) = make(×N(n, q), ×P (p, r))

With the equations given so far we get an algebra of positive fractions. To
get the positive rationals we need to introduce a congruence on T (ΓRAT). In the
equational specification framework it suffices to add one more axiom, namely

make(×N(n, C(q)), ×N (p, C(q)) = make(n, p),

where n is of sort NAT and p and q are of sort POS. But it is equally easy to
show that the desired congruence is recursive. Let eqN be the equality on NAT
(which we defined earlier), then the characteristic function, eqS , of the desired
congruence is given by the equation

eqS(make(n, p), make(q, r)) = eqN (×N (n, C(r)), ×N (C(p), q));

the familiar definition for the equality of rational numbers written as fractions.

References

1. J. A. Bergstra and J. V. Tucker. Algebraic specifications of computable and semi-
computable data structures. TCS, 50:137–181, 1987.

2. J. A. Bergstra and J. V. Tucker. Algebraic Specifications of Computable and Semi-
computable data structures. Technical Report 115, Mathematical Centre, Depart-
ment of Computer Science, Amsterdam, 1979.

3. J. R. B. Cockett, H. G.Chen, and L. R. Smith. Preliminary User Manual for
CHARITY. Technical Report CS-89-82, University of Tennessee, 1989.

4. Martin Davis. Computability and Unsolvability. McGraw-Hill, New York, 1958.
5. J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra approach to

the specification, correctness, and implementation of abstract data types. In R. T.
Yeh, editor, Current Trends in Programming Methodology, IV, Data Structuring,
pages 80–149, Prentice-Hall, 1978.

272 Eric G. Wagner

6. J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Abstract data types
as initial algebras and the correctness of data representations. In Proc. Conference
on Computer Graphics, Pattern Recognition and Data Structures, 1975.

7. J. V. Guttag. Abstract data types and the development of data structures. Com-
munications of the ACM, 20(6):396–404, 1977.

8. K. V. Guttag and J. J. Horning. The algebraic specification of data types. Acta
Mathematica, 10:27–52, 1978.

9. T. Hagino. A categorical programming language. PhD thesis, University of Edin-
burgh, 1988.

10. S. C. Kleene. Introduction to Metamathematics. D. Van Nostrand, New York,
1952.

11. D. J. Lehmann and M. B. Smyth. Algebraic specification of data types: a synthetic
approach. Mathematical Systems Theory, 14:97–139, 1981.

12. D. J. Lehmann and M. B. Smyth. Data types. In 18th Annual Symposium on
Foundations of Computer Science, Providence, RI, IEEE, New York, NY, pages 7–
12, IEEE, New York, NY, 1977.

13. A. I. Mal’cev. Constructive algebra, i. Russian Mathematical Surveys, 16:77–129,
1961.

14. Eric G. Wagner. All recursive types defined using products and sums can be
implemented using pointers. In Proceedings of Conference on Algebraic Logic and
Universal Algebra in Computer Science, Jun1-June4 1988, Iowa State University,
Ames, Iowa, pages 111–132, Springer – Verlag LNCS 425, 1990.

15. Eric G. Wagner. Categorical semantics, or extending data types to include memory.
In H.-J. Kreowski, editor, Recent Trends in Data Type Specification: 3rd Workshop
on Theory and Applications of Abstract Data Types Selected Papers, pages 1–21,
Informatik-Fachberichte 116, Springer-Verlag, 1984.

16. Eric G. Wagner. Generic types in a language for data directed design. In Recent
Trends in Data Type Specification: Proceedings of the 7th Workshop on Specification
of Abstract Data Types, pages 341–361, LNCS 534, Springer Verlag, 1990.

17. R. F. C. Walters. An imperative language based on distributive categories. Research
Report 89–26, Department of Pure Mathematics, The University of Sydney, De-
cember 1989.

A The Proof of Theorem 2

Proof. Let .Ω, α/ be an effective presentation for A.

1) Let γ : T (Σ) → Ω be the unique homomorphism given by the initiality of
T (Σ). To see that γ is GN -computable let gγ,s : ω → ω, for each s ∈ S, such
that

gγ,s(n) =

⎧⎪⎪⎨⎪⎪⎩
0 if n �∈ GN(T (Σ)s)
Ω(σ) if n = GN(σ) where dom(σ) = ε

and cod(σ) = s
Ω(σ)(γ(t1), . . . , γ(tn)) if n = GN(σ(t1, . . . , tn)) with cod(σ) = s.

That gγ,s is recursive follows from the recursiveness of GN(T (Σ)s) and Ω(σ).
But then we see, immediately, that γs = gγ,s ◦GN and so γs is GN -computable
by Definition 5.

Relationships Between Equational and Inductive Data Types 273

2) Let R(Γ) be the Σ-algebra such that

1. For each s ∈ S, R(Γ)s = T (Γ)s,
2. For each σ ∈ FΓ , and 〈t1, . . . , tn〉 ∈ T (Γ)(dom(σ)),

R(Γ)(σ)(t1, . . . , tn) = σ(t1, . . . , tn) ∈ T (Γ)cod(σ).

3. For each σ ∈ (FΣ\FΓ), and 〈t1, . . . , tn〉 ∈ T (Γ)(dom(σ)),

R(Γ)(σ)(t1, . . . , tn) =
GN−1(the least n ∈ GN(T (Γ)s) such that

gγ,s(n) = Ω(σ)(γ(t1), . . . , γ(tn)).

To show that R(Γ) is computable we must give an appropriate effective presen-
tation, .Δ, δ/. To this end, let Δ be the Σ-algebra where

1. For each s ∈ S, Δ(s) = GN(T (Γ)s)
2. For each σ ∈ FΓ , and 〈p1, . . . pn〉 ∈ Δ(dom(σ)),

Δ(σ)(p1, . . . , pn) = 2Pr(i) · 3p1 · · ·Pr(n + 1)pn

where σ = σi in the enumeration σ1, . . . , σ|F | of FΣ in Definition 4.
3. For each σ ∈ FΣ\FΓ and 〈p1, . . . , pn〉 ∈ Δ(dom(σ))

Δ(σ)(p1, . . . , pn) =
the least n ∈ GN(T (Γ)s) such that gγ,s(n) = Ω(σ)(gγ(p1), . . . , gγ(pn)).

Now let δ = 〈δs | s ∈ S〉, where, for each s ∈ S, δs = (GN |T (Γ)s
)−1.

What we need to show, for each σ ∈ FΣ , is that R(Γ)(σ)•δdom(σ) = δcod(σ) •
Δ(σ) and that the congruence ≡δs on Δ(s) is recursive for each s ∈ S.

Let σ ∈ FΣ and let 〈p1, . . . , pn〉 ∈ Δ(dom(σ)).
If σ ∈ FΓ then

(R(Γ) • δdom(σ))(p1, . . . , pn)
= σ(GN−1(p1), . . . , GN−1(pn))
which, if σ = σi

= GN−1(2Pr(i) · 3p1 , . . . , P r(n + 1)pn)
= GN−1(Δ(σ)(p1, . . . , pn))
= δcod(σ)(Δ(σ)(p1, . . . , pn))
= (δcod(σ) •Δ(σ))(p1, . . . , pn)

as desired,.
While, if σ ∈ FΣ\FΓ then

(R(Γ) • δdom(σ))(p1, . . . , pn)
= R(Γ)(σ)(GN−1(p1), . . . , GN−1(pn))
= GN−1(the least n ∈ GN(T (Γ)s) such that

gγ,s(n) = Ω(σ)(γ(GN−1(p1)), . . . , γ(GN−1(pn)))
= GN−1(the least n ∈ GN(T (Γ)s) such that

gγ,s(n) = Ω(σ)(gγ(p1), . . . , gγ(pn))
= (δ)cod(σ) •Δ(σ))(p1, . . . , pn)

as desired.

274 Eric G. Wagner

That ≡δ is recursive follows immediately from δs being bijective for each
s ∈ S. Thus R(Γ) is a computable algebra with effective presentation .Δ, δ/.

3) Let ≡R be the congruence on R(Γ) such that (R(Γ)/ ≡R) ∼= A. We want
to show that ≡R is GN -computable. By definition, if t, t′ ∈ R(Γ)s =def T (Γ)s,
then t ≡R t′ if, and only if, A(t) = A(t′). Now let β : T (Σ) → A and ρ :
T (Σ) → R(Γ) be the unique homomorphisms given by the initiality of T (Σ).
By the construction of R(Γ) it follows that ρ|T (Γ) is the identity and thus that
κ : R(Γ) → A such that κs(t) = A(t) is a homomorphism. But then, for any
s ∈ S and t, t′ ∈ T (Γ)s

t ≡R t′

⇔ A(t) = A(t′)
⇔ β(t) = β(t′)
⇔ α • γ(t) = α • γ(t′)
⇔ α(gγ,s(GN(t))) = α(gγ,s(GN(t′)))
⇔ gγ,s(GN(t)) ≡α gγ,s(GN(t′))

But, by Definition 6, the congruence ≡α is recursive, and, by an earlier part of
this proof, the function gγ,s is recursive, and so ≡R is GN-computable.

Cofree Coalgebras for Signature Morphisms�

Uwe Wolter

Department of Informatics, University of Bergen,
Bergen, Norway

wolter@ii.uib.no

Abstract. The paper investigates the construction of cofree coalgebras
for ‘unsorted signature morphisms’. Thanks to the perfect categorical
duality between the traditional concept of equations and the concept of
coequations developed in [14] we can fully take profit of the methodolog-
ical power of Category Theory [2] and follow a clean three step strat-
egy: Firstly, we analyse the traditional Birkhoff construction of free
algebras and reformulate it in a systematic categorical way. Then, by
dualizing the Birkhoff construction, we obtain, in a second step, cor-
responding results for cofree coalgebras. And, thirdly, we will interpret
the new “abstract” categorical results in terms of more familiar concept.
The analysis of a sample cofree construction will provide, finally, some
suggestions concerning the potential rôle of cofree coalgebras in System
Specifications.

1 Introduction

It is an old observation that unsorted signatures used in Universal Algebra and
Algebraic Specifications can be coded by functors F : Set → Set. F -algebras are
given in this setting by a carrier A and a map α : F(A) → A. A corresponding
unsorted signature morphism is modeled by a natural transformation τ : F ⇒ G
and gives rise to a forgetful functor Uτ : Alg(G) → Alg(F), where Alg(F)
denotes the category of all F -algebras and all homomorphisms between them.

Free algebras w.r.t. Uτ and the corresponding free functor Tτ : Alg(F) →
Alg(G), i.e., the functor left-adjoint to Uτ , play an important rôle in Algebraic
Specifications, especially for parametrization, structuring, and modularization
[2–4, 8, 9].

On the other hand, it has become evident, in the last few years, that coal-
gebras, the categorical dual of algebras, provide a unifying framework for for-
mal specification of dynamical and behavioural aspects of systems [6, 7, 10, 15].
F -coalgebras are given by a carrier A and a (reversed) map α : A → F(A).
An unsorted signature morphism τ : F ⇒ G gives rise to a functor U c

τ :
Algc(F) → Algc(G) between the corresponding categories of coalgebras. Those
“co-forgetful” functors have been, e.g., successfully used in establishing a hi-
erarchy of probabilistic system types [1]. In contrast the corresponding cofree
functors have not been investigated and applied up to now, as far as we know.
� Research partially supported by the Norwegian NFR project MoSIS/IKT.

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 275–290, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

276 Uwe Wolter

But, taking into account the importance of free algebras in Algebraic Specifi-
cations, we should be curious about the rôle of cofree coalgebras in structuring
and modularizing (dynamic) System Specifications.

In the paper we take a first step and investigate the construction of cofree
coalgebras for unsorted signature morphisms. Due to the perfect categorical du-
ality between the traditional concept of equations and the concept of coequations
developed in [14] we can fully take profit of the methodological power of Category
Theory [2] and follow a clean three step strategy: The first, most demanding,
step will be to analyse the traditional Birkhoff construction of free algebras
and to develop a systematic categorical description of this construction. In a sec-
ond, easy step we will dualize the categorical construction in a quite formal way.
And, in a third step, we will try to interpret the dual construtions and results in
terms of known concepts, i.e., in terms of concepts we are familiar with because
of our today education.

The analysis of a sample (co)free construction will, hopefully, give some hints
for a future, more comprehensive investigation of the potential rôle of cofree coal-
gebras in System Specification. We will close the paper with a short discussion
of possible generalizations and extensions of the results presented here.

2 Sets, Algebras, Termalgebras, and Equations

We summarize the necessary concepts, constructions, and results from [14].
A (generalized) subset (S, i)1 of a set A is a set S together with a mono

(injective map) i : S → A. We write (S1, i1) ⊆A (S2, i2) (or simply (S1, i1) ⊆
(S2, i2)), if there is a map m : S1 → S2 such that i1 = i2 ◦ m, and we write
(S1, i1) ∼=A (S2, i2) in case (S1, i1) ⊆A (S2, i2) and (S2, i2) ⊆A (S1, i1).Note,
that S1 and S2 are isomorphic if (S1, i1) ∼=A (S2, i2).

The category Set has all limits thus we can construct for any family S =
((Sj , ij) | j ∈ J) of subsets of A the multiple pullback (

⋂
S mj−→ Sj | j ∈ J).

The mj are mono since multiple pullbacks preserve mono’s in any category.
In such a way, we obtain a new subset (

⋂
S, i∩) of A with i∩ = ij ◦ mj, i.e.,

(
⋂
S, i∩) ⊆A (Sj , ij), for all j ∈ J , called the intersection of S.
Using intersection we can define for any map f : A → B the image of A under

f : We build the intersection of all subsets (S, i) of B with f = i ◦ l for some
map l : A → S and obtain a subset (f(A),mf) of B and a map ef : A → f(A)
with f = mf ◦ ef . In Set holds the axiom of choice: Every epi e : A→ B in Set
is a split epi, i.e., there exists at least one r : B → A such that e ◦ r = idB. This
axiom ensures that the image construction provides an epi-mono factorization:

Proposition 1. Any map f : A → B in Set can be factorized as f = mf ◦ ef

with mf : f(A) → B a mono and ef : A → f(A) a (split) epi.

A relation between two sets A and B is a subset (R, iR) of the product A×B,
where we take here for A×B the cartesian product {(a, b) | a ∈ A, b ∈ B}.
1 Note, that the position of S indicates that S is the domain of i.

Cofree Coalgebras for Signature Morphisms 277

Kernels play an important technical role in Universal Algebra. Categorically,
the kernel ker(f) = {(a, a′) ∈ A×A | f(a) = f(a′)} of a map f : A→ B is the
equalizer of the parallel pair (f ◦ π1, f ◦ π2) of maps

ker(f)
if �� A×A

π1
��

π2

�� A
f �� B

(ker(f), if) is a relation in A since equalizer are always mono. Limit reasoning
shows that intersection of kernels is related to tupling of maps as expressed in

Proposition 2. For each family (fj : A → Bj | j ∈ J) of maps in Set we have
(ker(〈fj〉j∈J), i〈fj〉) ∼=A×A (

⋂
j∈J ker(fj), i∩).

Moreover, kernels are compatible with composition:

Proposition 3. For any map f : A → B and any mono m : B → C in Set we
have (ker(f), if) ⊆A×A (ker(g ◦ f), ig◦f).

Split epi’s are regular epi’s in any category thus the axiom of choice also provides

Proposition 4. Each (split) epi e : A→ B in Set is the coequalizer of the pair
π1 ◦ ie, π2 ◦ ie : ker(e) → A of maps.

Given a functor F : Set → Set an F-algebra (α,A) consists of a set A, called
the carrier, and a map α : F(A) → A, called the (algebraic) structure map2. An
F -homomorphism f : (α,A) → (β,B) between F -algebras is a map f : A → B
such that β ◦ F(f) = f ◦ α.

A
f �� B

F(A)
F(f) ��

α

��

F(B)

β

��

An F-subalgebra of an F -algebra (α,A) is a subset (S, i) of A with an F -algebraic
structure (σ, S) such that the map i : S → A defines an F -homomorphism
i : (σ, S) → (α,A).

By Alg(F) we denote the category of all F -algebras and all homomorphisms
between them. Obviously, the assignments (α,A) �→ A and (f : (α,A) →
(β,B)) �→ (f : A → B) extend to a functor UF : Alg(F) → Set. Straight-
forward categorical reasoning shows, that only the fact that the functor F ap-
pears in the domain of the algebraic structure maps ensures that UF creates
limits. This means, Alg(F) has all limits and both the carriers of limit F -
algebras and the mediating F -homomorphisms are obtained by the correspond-
ing limit constructions on carriers and on maps in Set [10, 14]. The product of
two F -algebras (α,A) and (β,B), for instance, is given by (α ⊗ β,A × B) with
α⊗β := (α×β)◦ 〈F(π1),F(π2)〉, thus the projections π1 and π2 become indeed
F -homomorphisms:

2 Note, that the position of A indicates now that A is the codomain of α.

278 Uwe Wolter

A A×B
π1�� π2 �� B

F(A)×F(B)

α×β

��

πF(A)

������
����

����
��� πF(B)

��

F(A)

α

��

F(A×B)
F(π1)�� F(π2) ��

〈F(π1),F(π2)〉

��

F(B)

β

��

And, since kernels are equalizer, we obtain for anyF -homomorphism f : (α,A) →
(β,B) an F -subalgebra (αf , ker(f)) of (α⊗ α,A×A).

Example 1. We consider the identity functor I := IdSet : Set → Set and a
functor D : Set → Set with D(A) := A× A for all sets A and D(f) := f × f :
A × A → B × B for all maps f : A → B. An I-algebra is then given by a set
A and a unary operation α : A → A, and G−algebras are just a set A together
with a binary operation α : A×A→ A.

There are three crucial technical results in Algebraic Specifications. Firstly,
the image factorization in Set can be transferred to algebras:

Proposition 5. Any F-homomorphism f : (α,A) → (β,B) can be factorized
as f = mf ◦ ef with mf : (f(A), β̂) → (β,B) a mono in Alg(F) (and mf :
f(A) → B a mono in Set) and with ef : (α,A) → (f(A), β̂) an epi in Alg(F)
(and ef : A → f(A) a (split) epi in Set).

Secondly we have different versions of homomorphism theorems as, for instance:

Theorem 1. For any F-homomorphisms e : (α,A) → (β,B), g : (α,A) →
(γ, C) with e : A→ B (split) epi in Set there exists a unique F-homomorphism
h : (β,B) → (γ, C) with g = h ◦ e iff (ker(e), ie) ⊆A×A (ker(g), ig).

ker(e)
ie ��

m

		�
�
� A×A

π1
��

π2

�� A
e ��

g
���

��
��

��
� B

h

		�
�
� (α,A) e ��

g
��!!

!!
!!

!!
!

(β,B)

h

		�
�
�

ker(g)
ig

��"""""""""
C (γ, C)

Another useful and more categorical formulation of this statement is given by a
generalization of Proposition 4

Proposition 6. Any F-homomorphism e : (α,A) → (β,B) with e : A → B
(split) epi in Set is the coequalizer of the pair π1◦ie, π2◦ie : (αe, ker(e)) → (α,A)
of F-homomorphisms.

Thirdly, we can construct terms for all ω-continous functors F : Set → Set
[11], i.e., especially for all polynomial functors, i.e., functors that can we build
from the constant functors A : Set → Set, the identical functor I : Set →
Set, the product functor × : Set × Set → Set, and the coproduct functor

Cofree Coalgebras for Signature Morphisms 279

+ : Set × Set → Set [6, 10]. Note, that functors F : Set → Set related to
“algebraic signatures” are special polynomial functors assigning to a carrier A a
corresponding coproduct of products of A:

Let X be a set (of variables). An F -algebra (ιF ,X , TF(X)) together with a
(variable) assignment ηF ,X : X → TF(X) is free over X w.r.t. UF if for every
F -algebra (α,A) and for every assignment a : X → A there exists a unique
F -homomorphism aF : (ιF ,X , TF(X)) → (α,A) such that aF ◦ ηF ,X = a.

X
ηF,X ��

a
 �#

##
##

##
##

TF(X)

aF

		�
�
�

(ιF ,X , TF(X))

aF

		�
�
�

A (α,A)

The ‘elements’ of TF(X) are usually called F -terms and (ιF ,X , TF(X)) is called
the F -termalgebra over X . Moreover, we will call the universal assignment ηF ,X :
X → TF(X) the F-unit for X and aF the (unique) F-extension of a.

Standard categorical arguments show that the assignments X �→ (ιF ,X ,
TF(X)) and (s : X → Y) �→ (ηF ,Y ◦ s)F : (ιF ,X , TF(X)) −→ (ιF ,Y , TF(Y))
define a functor TF : Set → Alg(F) left-adjoint to UF and called the ‘free
functor for F ’.

Example 2. For X = {0, 1} we can identify TI(X) with the set N × X thus
we have ιI,X(n, b) = (n + 1, b). And TD(X) consists of all binary trees with no
symbols at the branching nodes but with 0 or 1 at the leafs, where ιD,X just
makes a new binary tree out of two given one.

An equational F-specification over X is a relation (E, spec) in TF(X), where
the ‘elements’ 1

eq→ TF(X)×TF(X) are called equations. An assignment a : X →
A is a solution of (E, spec) in a F -algebra (α,A), if (E, spec) ⊆ (ker(aF), iaF).
Since (ker(aF), iaF) is an equalizer this condition is equivalent to the condition:
aF ◦ π1 ◦ spec = aF ◦ π2 ◦ spec

ker(aF)
iaF �� TF(X)× TF(X)

π1
!

π2

"! TF(X) aF
�� A

E

i

���
�
� spec

��$$$$$$$$$$$$$$$$$$

3 Free Algebras

In our categorical setting an “unsorted signature morphism” is represented by a
natural transformation and provides, as usual, a forgetful functor

Definition 1. Any natural transformation τ : F ⇒ G : Set → Set gives rise
to a functor Uτ : Alg(G) → Alg(F) defined for any G-algebra (α,A) and any
G-homomorphism f : (α,A) → (β,B) as Uτ (α,A) := (α◦τA, A) and Uτ (f) := f .

280 Uwe Wolter

F(A)
τA ��

F(f)

		

G(A) α ��

G(f)

		

A

f

		
F(B)

τB �� G(B)
β �� B

Remark 1. To model, e.g., morphisms between many-sorted signatures, we would
need a more general construction: Let be given functors F : C → C, G : D → D,
a functor V : D → C, and a natural transformation τ : F ◦ V ⇒ V ◦ G : C → C.
Then we obtain a functor UV,τ : Alg(G) → Alg(F) defined for any G-algebra
(α,A) and any G-homomorphism f : (α,A) → (β,B) as UV,τ (α,A) := (V(α) ◦
τA,V(A)) and UV,τ (f) := V(f).

Example 3. Definition 1 covers the traditional unsorted signature morphisms,
but is slightly more general: Obviously, the assignments A �→ ΔA : A → A× A
with ΔA(a) := (a, a) for all a ∈ A define a natural transformation Δ : I ⇒ D.
Given a D-algebra (α : A × A → A,A) the I-algebra UΔ(α,A) = (α ◦ ΔA, A)
will forget all the applications of α to non-identical input pairs.

The objective of the paper is to analyse the construction of free algebras:
Definition 2. Let be given an F-algebra (α,A). A G-algebra (ιτ,α, Tτ(A)) to-
gether with an F-homomorphism ηα : (α,A) → Uτ (ιτ,α, Tτ (A)) is free over
(α,A) w.r.t. Uτ if for any G-algebra (β,B) and for any F-homomorphism h :
(α,A) → Uτ (β,B) there exists a unique G-homomorphism hτ : (ιτ,α, Tτ (A)) →
(β,B) such that Uτ (hτ) ◦ ηα = h.

(α,A)
ηα ��

h %%
%%%

%%%
%%%

Uτ (ιτ,α, Tτ (A))

Uτ (hτ)=hτ

		�
�
�

(ιτ,α, Tτ (A))

hτ

		�
�
�

Uτ (β,B) (β,B)

Usually, the free algebra (ιτ,α, Tτ (A)) is obtained by constructing an appropriate
quotient of the G-termalgebra over the carrier of (α,A). To do this, we have to
“syntactify” the F -algebra (α,A). Traditionally, this is done either by “signa-
ture extensions” [3] or by “generators” [9, 13]. Categorically, these approaches
are reflected as follows: We consider the F -termalgebra over the carrier of (α,A).
Then, the F -extension of the trivial assignment idA : A → A gives us an evalu-
ation evα := idFA : (ιF ,A, TF(A)) → (α,A) of the “arithmetical expressions over
(α,A)” thus we have

evα ◦ ηF ,A = idA in Set. (1)

Note, that, in such a way, evα becomes split epi and ηF ,A split mono in Set.
The (internal) F-theory of (α,A) is given now by the kernel (ker(evα), ievα)

(see the diagram in Proposition 7). To translate this F -theory into a G-theory
we need a translation of F -terms over A into G-terms over A: We consider
the G-unit for A ηG,A : A → TG(A) and take the corresponding F -extension
ηFG,A : (ιF ,A, TF(A)) → Uτ (ιG,A, TG(A)) with

ηFG,A ◦ ηF ,A = ηG,A in Set (2)

Cofree Coalgebras for Signature Morphisms 281

for the underlying map ηFG,A : TF(A) → TG(A). In such a way we obtain the
required translated internal theory of (α,A) as the relation (ker(evα), (ηFG,A ×
ηFG,A) ◦ ievα) in TG(A).

Example 4. We consider for A = {0, 1} the I-algebra (α,A) with α(0) = 1 and
α(1) = 0. Then we have evα(2n + 1, 0) = evα(2m, 1) = 1 and evα(2n, 0) =
evα(2m + 1, 1) = 0 for all n,m ∈ N, i.e., the kernel of evα will contain all the
pairs ((2n+ 1, 0), (2m, 1)) and ((2n, 0), (2m+ 1, 1)). And ηID,A will map (n, b) to
a perfect binary tree of depth n with only the constant symbol b at the leafs.

Now, it turns out that the semantical condition used in Definition 2 can be
reformulated in terms of the translated theory:

Proposition 7. For any G-algebra (β,B) and for any map h : A → B the
following conditions are equivalent:

1. h : A → B defines an F-homomorphism h : (α,A) → Uτ (β,B) such that
h ◦ evα = hG ◦ ηFG,A in Alg(F).

2. h is a solution of the specification (ker(evα), (ηFG,A × ηFG,A) ◦ ievα) in (β,B).

Proof.

ker(evα)
ievα ��

m

		�
�
�

TF(A) × TF(A)
π1 #"

π2

$#

ηF
G,A×ηF

G,A

		

TF(A)
evα ��

hF

 ��
��

��
��

��

ηF
G,A

		

A

h

		�
�
�

ker(hG)
ihG �� TG(A) × TG(A)

π1 #"

π2

$# TG(A) hG
�� B

(1)⇒(2) Equation (1) entails h ◦ evα ◦ ηF ,A = h in Set thus the uniqueness of
F -extensions forces hF = h ◦ evα in Alg(F) and thus also in Set. Moreover,
equation (2) entails in Set hG ◦ ηFG,A ◦ ηF ,A = hG ◦ ηG,A = h thus again the
uniqueness of F -extensions implies hF = hG ◦ ηFG,A in Alg(F). Since ievα is an
equalizer in Set we obtain in such a way the required equation

hG ◦ π1 ◦ (ηFG,A × ηFG,A) ◦ ievα = hG ◦ ηFG,A ◦ π1 ◦ ievα

= hF ◦ π1 ◦ ievα

= h ◦ evα ◦ π1 ◦ ievα

= h ◦ evα ◦ π2 ◦ ievα

. . .

= hG ◦ π2 ◦ (ηFG,A × ηFG,A) ◦ ievα

(2)⇒(1) Since ihG is an equalizer in Set the assumption ensures, in a similar
way as above, hG ◦ ηFG,A ◦ π1 ◦ ievα = hG ◦ ηFG,A ◦ π2 ◦ ievα . But, since evα :
TF(A) → A is (spli) epi in Set there exists according to Proposition 4 a unique
h′ : (α,A) → Uτ (β,B) such that h′ ◦ evα = hG ◦ ηFG,A in Alg(F) and thus in
Set. By the equations (1), (2) and the definition of G-extensions this provides
finally h′ = hG ◦ ηG,A = h. !

282 Uwe Wolter

4 Birkhoff Construction of Free Algebras

Given any F -algebra (α,A) we will present now a categorical analysis of the
so-called Birkhoff-construction of free algebras [12].

Firstly, we look for an appropriate quotient G-termalgebra: Since any set
has up to isomorphism only a set of subsets there exists a set J (of indices), a
family ((γj , Cj) | j ∈ J) of G-algebras, and a family (gj : (α,A) → Uτ (γj , Cj) |
j ∈ J) of F -homomorphisms such that for any G-algebra (β,B) and for any
F -homomorphism h : (α,A) → Uτ (β,B) there is an index jh ∈ J such that

(ker(hG), ihG) ∼= (ker(gGjh
), igG

jh

). (3)

We build the product (
∏

j∈J (γj , Cj), πj :
∏

j∈J (γj , Cj) → (γj , Cj), j ∈ J)
in Alg(G), where the carrier of

∏
j∈J (γj , Cj) will be a product

∏
j∈J Cj of the

carriers in Set since UG creates limits. This together with the uniqueness of
G-extensions ensures that tupling is compatible with G-extensions

〈gj〉Gj∈J = 〈gGj 〉j∈J : (ιG,A, TG(A)) →
∏

(γj , Cj). (4)

Now we can construct an epi-mono factorization of 〈gj〉Gj∈J according to Propo-
sition 5

(ιG,A, TG(A))
eτ,A ��

〈gj〉Gj∈J

��
(ιτ,A, Tτ (A))

mτ,A �� ∏(γj , Cj)

Example 5. TΔ(A) contains the trees (0), (1) of depth 0 and all binary trees
that have no perfect subtree with constantly only 0 or 1 at the leafs and with
depth greater than 0, because those perfect trees are mapped by eΔ,A to either
0 or 1, respectively. Moreover, we will have, for instance, ιΔ,A((0), (0)) = (1),
ιΔ,A((1), (1)) = (0), but ιΔ,A((0), (1)) = (0, 1), ιΔ,A((0), (0, 1)) = (0, (0, 1)), and
ιΔ,A((0, 1)), (0, 1)) = (0, (0, 1)).

The claim, to be validated in the rest of this section, is that (ιτ,A, Tτ (A)) is
indeed free over (α,A) w.r.t. Uτ . For this we have to find, secondly, a candidate
for the unit:

Lemma 1. 〈gj〉j∈J : A →
∏

j∈J Cj is a solution of the translated F-theory of
(α,A) in

∏
j∈J (γj , Cj), and eτ,A◦ηG,A : A→ Tτ (A) is a solution in (ιτ,A, Tτ(A)).

Proof. According to Proposition 7 we have (ker(evα), (ηFG,A × ηFG,A) ◦ ievα) ⊆
(ker(gGj), igG

j
) for all j ∈ J . Moreover, eτ,A = (eτ,A ◦ ηG,A)G is ensured by

the uniqueness of G-extensions thus we obtain by the definition of intersec-
tion, Proposition 2, Equation (4), and Proposition 3: (ker(evα), (ηFG,A × ηFG,A) ◦
ievα) ⊆ (

⋂
ker(gGj), i∩) ∼= (ker(〈gGj 〉j∈J), i〈gG

j 〉j∈J
) ∼= (ker(〈gj〉Gj∈J), i〈gj〉Gj∈J

) ∼=
(ker(mτ,A ◦ eτ,A), imτ,A◦eτ,A) ∼= (ker(eτ,A), ieτ,A) ∼= (ker((eτ,A ◦ ηG,A)G), ieτ,A).

 !

Cofree Coalgebras for Signature Morphisms 283

Lemma 1 and Proposition 7 ensure now that the map eτ,A ◦ ηG,A : A → Tτ (A)
defines an F -homomorphism ηα := eτ,A ◦ ηG,A : (α,A) → Uτ (ιτ,A, Tτ (A)) that
will be called the τ-unit for (α,A).

Example 6. The algebraic structure map in UΔ(ιΔ,A, TΔ(A)) will map (0) �→
(1), (1) �→ (0), (0, 1) �→ ((0, 1), (0, 1)), And, eΔ,A◦ηD,A maps 0 �→ (0), 1 �→ (1)
thus ηα becomes indeed an I-homomorphism.

To validate that the τ -unit owns the required universal property, we have
to show, thirdly, the existence of mediating morphisms: For any G-algebra
(β,B) and for any F -homomorphism h : (α,A) → Uτ (β,B) we obtain according
to our construction and in the same way as above

(ker(hG), ihG) ∼= (ker(gGjh
), igG

jh

) ⊇ (
⋂

ker(gGj), i∩) ∼= (ker(eτ,A), ieτ,A)

such that the homomorphism theorem 1 ensures the existence of a unique G-
homomorphism hτ : (ιτ,A, Tτ (A)) → (β,B) such that

hτ ◦ eτ,A = hG in Alg(F). (5)

Further we obtain due to the definition of G-extensions, equation (5), and the
definition of the τ -unit the required equation

h = hG ◦ ηG,A = hτ ◦ eτ,A ◦ ηG,A = hτ ◦ ηα. (6)

Finally, we show the uniqueness of mediating morphisms: Let be given
any g : (ιτ,A, Tτ (A)) → (β,B) with h = g ◦ ηα in Alg(F). For the underlying
maps in Set we obtain due to the definition of ηα h = g◦ηα = g◦eτ,A◦ηG,A thus
the uniqueness of G-extensions and equation 5 provides g ◦eτ,A = hG = hτ ◦eτ,A

in Alg(G). But this means g = hτ since eτ,A is epi.

5 Partitions, Coalgebras, Processcoalgebras,
and Coequations

Kernels (or equivalences and congruences, respectively) are one of the most im-
portant concepts in Algebraic Specifications thus we could assume that cokernels
deserve a similar important rôle in the dual setting of coalgebras. Focussing on
cokernels allows for a perfect categorical dualization of all the concepts, con-
structions, and results from Algebraic Specifications, once we have reformulated
them fully categorically, to the area of coalgebras, i.e., of Systems Specifications.

[14] presents the first steps of a firm realization of this program. Due to
the limitation on space we will not “dual-copy” all the last three sections. We
will only present the essential dualizations and will put more emphasis on the
interpretation of the dual concepts, constructions, and results3.

A partition (s, P) of a set B is a set P together with an epi (surjective map)
s : B → P . In usual set-theoretic terms a (canonical) partition is a set P ⊆ P(B)
3 We will use sans serif for pointing at interpretations in usual set-theoretic terms.

284 Uwe Wolter

such that
⋃

P = B, p �= ∅ for all p ∈ P , and p1∩p2 = ∅ for all p1 �= p2 ∈ P . These
conditions ensure that there is for each b ∈ B exactly one pb ∈ P with b ∈ pb, thus
the assignment b �→ pb defines a surjective map sP : B → P .

We write (s1, P1) �B (s2, P2), if there is a map e : P1 → P2 such that
s2 = e ◦ s1, and we write (s1, P1) ∼=B (s2, P2) in case (s1, P1) �B (s2, P2) and
(s2, P2) �B (s1, P1). P1 �B P2 means, for canonical partitions, that each element
in P2 is the union of some elements in P1, i.e., that P2 makes more elements of B
indistinguishable than P1.

We can construct for any family P = ((sj , Pj) | j ∈ J) of partitions of B

the multiple pushout (Pj
ej−→

∨
P | j ∈ J). The ej are epi since pushouts

preserve epi’s. We obtain a partition (s∨,
∨
P) of B with s∨ = ej ◦ sj , i.e.,

(sj , Pj) �B (s∨,
∨
P), for all j ∈ J , called the gluing of P . To compute P1 ∨ P2

for two canonical partitions P1 and P2 we have to join p1 ∈ P1 with p2 ∈ P2 if
p1 ∩ p2 �= ∅. By carrying out the “reflexive, symmetric, and transitive closure” of
these gluings we obtain the elements of P1 ∨ P2.

Using gluing we can define for each map f : A → B the coimage of B w.r.t.
f : We build the gluing of all partitions (s, P) of A with f = l ◦ s for some map
l : P → B and obtain a partition (ef , f c(B)) of A and a map mf : f c(B) → B
with f = mf ◦ ef . In Set holds also the dual axiom of choice: Every mono
m : A → B in Set with A �= ∅ is a split mono, i.e., there exists at least
one r : B → A such that r ◦ m = idA. This axiom ensures that the coimage
construction provides an epi-mono factorization that is equivalent to the epi-
mono factorization in Proposition 1, i.e., there exists an iso if : f(A) → f c(B)
such that if ◦ ef = ef and if ◦mf = mf .

A corelation between two sets A and B is a partition (sQ, Q) of the coproduct
A + B, where we take here for A + B the set {(1, a) | a ∈ A} ∪ {(2, b) | b ∈ B}.

The cokernel (sf , cok(f)) of a map f : A → B is the coequalizer of the
parallel pair (κ1 ◦ f, κ2 ◦ f) of maps. cok(f) is a corelation in B since coequalizer
are always epi. In Set cok(f) codes the image f(A): The elements of cok(f) are
either singleton sets {(i, b)} with i ∈ {1, 2} or two element sets {(1, b), (2, b)}, where
{(1, b), (2, b)} ∈ cok(f) iff b ∈ f(A).

A
f �� B

κ1 !

κ2
"! B + B

sf �� cok(f)

Colimit reasoning shows that gluing of cokernels is related to cotupling of maps
as expressed in

Proposition 8. For each family (fj : Aj → B | j ∈ J) of maps we have
(s[fj], cok([fj]j∈J)) ∼=B+B (s∨,

∨
j∈J cok(fj)).

Proposition 8 codes the equation [fj]j∈J (
∐

j∈J Aj) =
⋃

j∈J fj(Aj), i.e.,
∨

cok(fj)
just collects all identifications of ‘associated’ elements (1, b), (2, b) made by the
single cokernels cok(fj). Split mono’s are regular mono’s in any category thus
the dual axiom of choice provides

Proposition 9. Each (split) mono m : A → B is the equalizer of the pair
sm ◦ κ1, sm ◦ κ2 : B → cok(m) of maps.

Cofree Coalgebras for Signature Morphisms 285

Given a functor F : Set → Set an F-coalgebra (A,α) consists of a set A
and a map α : A → F(A). An Fc-homomorphism f : (A,α) → (B, β) between
F -coalgebras is a map f : A→ B such that β ◦ f = F(f) ◦ α.

An F-partition of an F -coalgebra (B, β) is a partition (s, P) of B with an F -
coalgebraic structure (P, φ) such that s : B → P defines an Fc-homomorphism
s : (B, β) → (P, φ).

By Algc(T) we denote the category of all F -coalgebras and all Fc-homomor-
phisms. The assignments (A,α) �→ A and (f : (A,α) → (B, β)) �→ (f : A → B)
extend to a functor U c

F : Algc(T) → Set. U c
F creates colimits [10]. The coproduct

of two U c
F -coalgebras (A,α) and (B, β), for instance, is given by (A +B,α⊕ β)

where α⊕β) = [F(κ1),F(κ2)]◦(α+β). Since cokernels are coequalizer, we obtain
for any Fc-homomorphism f : (A,α) → (B, β) an F -partition (cok(f), βf) of
(A + B,α⊕ β).

Example 7. An I-coalgebra (S, t) can be interpreted as a ‘transition system’
with a set S of ‘states’ and a ‘state transition’ map t : S → S. D-coalgebras
(S, n : S → S × S) can be understood, in this way, as a ‘branching transition
system’.

Finally we dualize the three crucial technical results from Algebraic Specifi-
cations. Firstly, we have also an epi-mono-factorization for Fc-homomorphisms:

Proposition 10. Any Fc-homomorphism f : (A,α) → (B, β) can be factorized
as f = mf ◦ ef with mf : (f c(B), α̂) → (B, β) a mono in Algc(F) (and mf :
f c(B) → B a (split) mono in Set) and with ef : (A,α) → (f c(B), α̂) an epi in
Alg(F) (and ef : A→ f c(B) an epi in Set).

The dual of the homomorphism theorem could be called the subcoalgebra the-
orem since it states in terms of cokernels when a homomorphism factors through a
given subcoalgebra:.

Theorem 2. For any Fc-homomorphisms m : (A,α) → (B, β), g : (C, γ) →
(B, β) with m : A → B (split) mono in Set there exists a unique Fc-homomorph-
ism h : (C, γ) → (A,α) with g = m ◦ h iff (sg, cok(g)) �B+B (sm, cok(m)).

(A,α) m �� (B, β) A
m �� B

κ1 !

κ2
"! B + B

sm ��

sg ��&&
&&&

&&&
&&

cok(m)

(C, γ)

g

��'''''''''
h

���
�
�

C

g

%$��������
h

���
�
�

cok(g)

e

���
�
�

Fortunately, many functors important in applications of the theory of coalge-
bras do have cofree coalgebras. This holds especially for all functors we can build
from constant functors, the identical functor, the product functor, the coproduct
functor, the function space functor ()A : Set → Set, and the finite powerset
functor Pf : Set → Set [6, 10].

Let X be a set (of ‘colors’). An F -coalgebra (PF (X), φF ,X) together with
a ‘coloring’ εF ,X : PF (X) → X is cofree over X w.r.t. U c

F if for every F -
coalgebra (A,α) and for every coloring c : A → X there exists a unique in
Fc-homomorphism cF : (A,α) → (PF (X), φF ,X) such that εF ,X ◦ cF = c.

286 Uwe Wolter

(PF (X), φF ,X) PF(X)
εF,X �� X

(A,α)

cF

���
�
�

A

cF

���
�
� c

&%((((((((((

Example 8. For X = {0, 1} we can identify PI(X) with the set Xω of all (infi-
nite) bit streams. φI,X : Xω → Xω is the ‘tail’-operation and εI,X : Xω → X
the ‘head’-operation. For a coloring c : S → X of the ‘states’ of a transition sys-
tem (S, t) cI : S → Xω assigns to each state s ∈ S the bit stream we can observe
if we visit the states in (S, t) via t starting in s. PD(X) consists of all infinite
binary trees with bits at the branching nodes. εD,X : PD(X) → X provides the
bit at the root and φD,X the both subtrees of the root.

In general, the ‘elements’ of PF(X) could be interpreted as the ‘observable be-
haviours’ of systems of typ F [6, 7, 10] or as ‘F -processes’ [15]. Therefore, we will
call (PF (X), φF ,X) the F-processcoalgebra over X . Moreover, εF ,X : PF (X) →
X will be called the Fc-counit for X and cF the (unique) Fc-extension of c.

A coequational F-specification over X is a corelation (cosp,Q) in PF (X),
where the ‘cuts’ PF (X)+PF (X) ce→ 2 with 2 = {1, 2} are called coequations [14].

A coloring c : A → X is a solution of (cosp,Q) in an F -coalgebra (A,α), if
(scF , cok(cF)) � (cosp,Q).

A
cF ��

		�
�
� PF (X)

κ1 '&

κ2
�� PF (X) + PF (X)

s
cF ��

cosp

��)))
))))

))))
))))

)))
cok(cF)

s

		
PF (X)↓cosp

i

('����������
Q

cosp determines, by equalizing cosp ◦ κ1 and cosp ◦ κ2, a subset PF(X)↓cosp of
PF (X) thus c : A→ X is a solution of (cosp,Q) in (A,α) if we can observe in the
c-colored coalgebra (A,α) only the “right” processes in PF (X)↓cosp.

Remark 2. For any e ∈ PF (X) we can define a cut PF(X) + PF (X) ce−→ 2 with
ce(1, e) = 1 and ce(i, x) = 2 in all other cases, thus PF (X)↓ce = PF (X) − {e}.
This shows that the concept of coequation in [5] is covered by our definition.

Remark 3. It is well-known, that any equational F -specification (E, spec) over
X gives rise to a corresponding F -quotientalgebra (ιspec, Tspec(X)) of the F -
termalgebra (ιF ,X , TF(X)). Dually, we can describe for any coequational F -
specification (cosp,Q) a corresponding F -subcoalgebra (Pcosp(X), φcosp) of the
F -processcoalgebra (PF (X), φF ,X), where (Pcosp(X), φcosp) will be the greatest
F -subcoalgebra (P, φ) of (PF (X), φF ,X)such that P ⊆ PF (X)↓cosp.

Therefore “subcoalgebras” have been proposed as a synonym for “coequa-
tional specifications” [7, 10]. The observations that Modal Logic is related to
coalgebras of a certain kind, that a set of modal logical formulas determines
“subcoalgebras”, and the duality between “subcoalgebras” and “quotient alge-
bras” have been developed in a row of papers under the slogan “Modal Logic is

Cofree Coalgebras for Signature Morphisms 287

dual to Equational Logic” [7]. In contrast, our cokernel-based concept of coequa-
tional specifications is perfectly dual to equational specifications, and seems to
have appropriate structural properties, as it has been indicated, e.g., in [1], where
results concerning the reflection of bisimilarity along signature morphisms could
be (only) proved by using corelations. Moreover, it can be easily shown that our
coequational specifications “are invariant under behavioural equivalences”, i.e.,
provide an abstract Modal Logic in the sense of [7].

6 Cofree Coalgebras and the Dual Birkhoff Construction

An unsorted signature morphism provides also for coalgebras a coforgetful func-
tor but in the other direction:

Definition 3. Any natural transformation τ : F ⇒ G : Set → Set gives rise
to a functor U c

τ : Algc(F) → Algc(G) defined for any F-coalgebra (A,α) and
any Fc-homomorphism f : (A,α) → (B, β) as U c

τ (A,α) := (A, τA ◦ α) and
U c

τ (f) := f .

A

f

		

α �� F(A)
τA ��

F(f)

		

G(A)

G(f)

		
B

β �� F(B)
τB �� G(B)

Example 9. Given an I-coalgebra (S, t) the D-coalgebra U c
Δ(S, t) = (S,ΔS◦t) =

(S, 〈t, t〉) consists of two identical ‘transition branches’.

Now, we define cofree coalgebras for signature morphisms:

Definition 4. Let be given a G-coalgebra (A,α). An F-coalgebra (Pτ (A), φτ,α)
together with a Gc-homomorphism εα : U c

τ (Pτ (A), φτ,α) → (A,α) is cofree over
(A,α) w.r.t. U c

τ if for any F-coalgebra (B, β) and for any Gc-homomorphism
h : U c

τ (B, β) → (A,α) there exists a unique Fc-homomorphism hτ : (B, β) →
(Pτ (A), φτ,α) such that εα ◦ U c

τ (hτ) = h.

(Pτ (A), φτ,A) U c
τ (Pτ (A), φτ,α)

εα �� (A,α)

(B, β)

hτ

���
�
�

U c
τ (B, β)

Uc
τ (hτ)=hτ

���
�
� h

)(***********

By duality, we can construct the cofree coalgebra (Pτ (A), φτ,α) as an appropriate
subcoalgebra of the F -processcoalgebra over the carrier of (A,α). To do this, we
have to “co-syntactify” the G-coalgebra (A,α), i.e., we have to code (A,α) in
terms of ‘processes’: We consider the G-processcoalgebra over A. Then, the Gc-
extension of the trivial coloring idA : A→ A gives us an unfolding unα := idGA :
(A,α) → (PG(A), φG,A), that assigns to each ‘state’ a ∈ A the ‘process’ that can
be observed in (A,α) starting in this state, thus we have

εG,A ◦ unα = idA in Set. (7)

288 Uwe Wolter

The internal Gc-theory of (A,α) is given now by the cokernel (sunα ,cok(unα)).
As mentioned above, the internal Gc-theory codes, in such a way, the image unα(A),
i.e., all the processes that can be observed actually in (A,α). To translate the Gc-
theory we consider the Fc-unit for A εG,A : PF (A) → A and take the corre-
sponding Gc-extension εGF ,A : U c

τ (PF (A), φF ,A) → (PG(A), φG,A) with

εG,A ◦ εGF ,A = εF ,A in Set (8)

for the underlying map εGF ,A : PF (A) → PG(A). In such a way we obtain the re-
quired translated internal theory of (A,α) as the corelation
(sunα ◦ (εGF ,A + εGF ,A), cok(unα)) in PF (A).

Example 10. We consider for A = {0, 1} the D-coalgebra (A,α) with α(0) =
(0, 0) and α(1) = (0, 1). Then unα(0) will produce an infinite tree with only 0’s
at all the nodes and unα(1) produces an infinite tree with only 0’s except at
the most right nodes, where we will have 1’s. εDI,A will map a bit stream into
an infinite tree with only 0’s (or 1’s) at all nodes with the same depth n ∈ N
if 0 (or 1) is the n’th bit in the stream. This means, that unα(1) will be not in
the image of εDI,A, thus the translated theory of (A,α) codes essentially only the
constant bit stream 0ω.

Also for coalgebras we have an equivalent formulation of the semantical condition
in Definition 4 in terms of the translated theory:

Proposition 11. For any F-coalgebra (B, β) and for any map h : B → A the
following conditions are equivalent:

1. h : B → A defines an Gc-homomorphism h : U c
τ (B, β) → (A,α) such that

unα ◦ h = εGF ,A ◦ hF in Algc(G).
2. h is a solution of the specification (sunα ◦ (εGF ,A +εGF ,A), cok(unα)) in (B, β).

A
unα �� PG(A)

κ1 ��

κ2
�� PG(A) + PG(A)

sunα �� cok(unα)

B

h

���
�
�

hF
��

hG
&%���������

PF (A)
κ1 ��

κ2
��

εG
F,A

��

PF (A) + PF (A)
shG ��

εG
F,A+εG

F,A

��

cok(hF)

e

���
�
�

Finally, we present the dual Birkhoff construction: Firstly, we construct
an appropriate subcoalgebra of the F -processcoalgebra over A. Since any set has
up to isomorphism only a set of partitions there exists a set J (of indices), a
family ((Cj , γj) | j ∈ J) of F -coalgebras, and a family (gj : U c

τ (Cj , γj) → (A,α) |
j ∈ J) of Gc-homomorphisms such that for any F -coalgebra (B, β) and for any
Gc-homomorphism h : U c

τ (B, β) → (A,α) there is an index jh ∈ J such that

(shF , cok(hF)) ∼= (sgF
jh

, cok(gFjh
)). (9)

We build the coproduct (
∐

j∈J (Cj , γj), κj : (Cj , γj) →
∐

j∈J (Cj , γj)) in
Algc(F), where the carrier of

∐
j∈J (Cj , γj) will be a coproduct

∐
j∈J Cj of

Cofree Coalgebras for Signature Morphisms 289

the carriers in Set since U c
F creates colimits. This together with the uniqueness

of Fc-extensions ensures that cotupling is compatible with Fc-extensions

[gj]Fj∈J = [gFj]j∈J :
∐

(Cj , γj) → (PF (A), φF ,A). (10)

Now we can construct an epi-mono factorization of [gj]Gj∈J according to Propo-
sition 10

∐
(Cj , γj)

eτ,A
��

[gj]
F
j∈J

��
(Pτ (A), φτ,α) mτ,A

�� (PF (A), φF ,A)

Dualizing the argumentations in section 4 we can prove that (Pτ (A), φτ,α) is
indeed cofree over (A,α) w.r.t. U c

τ . Especially, Proposition 11 ensures that the
map εF ,A ◦mτ,A : Pτ (A) → A defines a Gc-homomorphism εα := εF ,A ◦mτ,A :
U c

τ (Pτ (A), φτ,α) → (A,α), i.e., the τ-counit for (A,α).

Example 11. Taken as a I-subcoalgebra of (PI(A), φI,A) (PΔ(A), φΔ,α) will
have PΔ(A) = {0ω}, φΔ,α(0ω) = 0ω, and εα(0ω) = 0 (since εΔ

I,A(0ω) = unα(0)).
That is, (PΔ(A), φΔ,α) provides a “minimal” stream-based representation of the
biggest subsystem of (A,α) that obeys in infinitary, symmetric behaviour.

7 Conclusion and Future Work

We have been able to give a fully categorical account of the traditional Birkhoff
construction of free algebras w.r.t. unsorted signature morphisms. Than, by du-
alization, we obtained new results concerning the existence and construction of
cofree coalgebras. The analysis of a sample cofree construction supports the in-
tuition that cofree coalgebras should play an important rôle in structuring and
modularization of System Specifications:

For a given unsorted signature morphism τ : F ⇒ G the forgetful functor Uτ :
Alg(G) → Alg(F) forgets some ‘algebraic structure’ thus the corresponding free
functor Tτ : Alg(F) → Alg(G) builds new ‘algebraic structure’ by “identifying
constructions”. Coalgebraically, or in terms of system behaviour, the co-forgetful
functor U c

τ : Algc(F) → Algc(G) interprets a simple, restricted behaviour as a
special case of a more sophisticated, free behaviour. Therefore, the corresponding
cofree functor Pτ : Algc(G) → Algc(F) reduces a system by “selecting” the part
of the system obeying the restricted pattern of behaviour.

Many results in the paper are based on the fact that Alg(F) and Algc(F)
are concrete categories over Set, i.e., Uτ and U c

τ are faithful functors. In such
a way, we could formulate some results even more categorically abstract. This
observation may help in generalizing the results to many-sorted signature mor-
phisms. Having in mind the situation in Algebraic Specifications this generaliza-
tion should be possible and relatively straightforward.

A generalization to morphisms between (co)equational specifications (or even
conditional (co)equational specifications) will be notationally very tedious, but

290 Uwe Wolter

should not cause principal problems, because the (dual) Birkhoff construction
is based on products (coproducts) and subalgebras (partitions) and the corre-
sponding classes of (co)algebras are closed under these constructions [5, 8, 14]
(compare also the Birkhoff construction of initial algebras in [14]).

Probably the next steps should focus on the analysis of more comprehensive
examples as, for instance, CSP [15], to reach a better intuition and understanding
of cofree constructions and their potential rôle.

References

1. F. Bartels, A. Sokolova, and E. de Vink. A hierarchy of probabilistic system types.
TCS, 2004. Submitted.

2. H. Ehrig, M. Große–Rhode, and U. Wolter. Applications of category theory to the
area of algebraic specification in computer science. Applied Categorical Structures,
6(1):1–35, 1998.

3. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics, volume 6 of EATCS Monographs on Theoretical Computer Sci-
ence. Springer, Berlin, 1985.

4. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module Specifica-
tions and Constraints, volume 21 of EATCS Monographs on Theoretical Computer
Science. Springer, Berlin, 1990.

5. H. P. Gumm. Equational and implicational classes of coalgebras. TCS, 260:57–69,
2001.

6. B. Jacobs and J. Rutten. A tutorial on (Co)Algebras and (Co)Induction. Bulletin
of the EATCS, 62:222–259, June 1997.

7. A. Kurz. Coalgebras and modal Logic. Technical report, CWI Amsterdam, 2001.
Lecture notes.

8. M. Löwe, H. König, and Ch. Schulz. Algebraic Properties of Interfaces. In H.J.
Kreowski and G. Taentzer, editors, tHE BOOK on Formal Methods in Software
and System Modelling (This volume). Springer LNCS, 2004.

9. H. Reichel. Initial Computability, Algebraic Specifications, and Partial Algebras.
Oxford University Press, Oxford, 1987.

10. J.J.M.M. Rutten. Universal coalgebra: A theory of systems. TCS, 249:3–80, 2000.
First appeared as Report CS-R9652, CWI, Amsterdam 1996.

11. M.B. Smyth and G.D. Plotkin. The category theoretic solution of recursive domain
equations. SIAM Journ. Comput., 11:761–783, 1982.

12. W. Wechler. Universal Algebra for Computer Scientists, volume 25 of EATCS
Monographs on Theoretical Computer Science. Springer, Berlin, 1992.

13. U. Wolter. An Algebraic Approach to Deduction in Equational Partial Horn The-
ories. J. Inf. Process. Cybern. EIK, 27(2):85–128, 1990.

14. U. Wolter. On Corelations, Cokernels, and Coequations. In H. Reichel, edi-
tor, Third Workshop on Coalgebraic Methods in Computer Science (CMCS’2000),
Berlin, Germany, Proceedings, volume 13 of ENTCS, pages 347–366. Elsevier Sci-
ence, 2000.

15. U. Wolter. CSP, Partial Automata, and Coalgebras. TCS, 280:3–34, 2002.

Nested Constraints and Application Conditions
for High-Level Structures

Annegret Habel and Karl-Heinz Pennemann

Carl v. Ossietzky University of Oldenburg, Germany
{habel,k.h.pennemann}@informatik.uni-oldenburg.de

Abstract. Constraints and application conditions are most important
for transformation systems in a large variety of application areas. In this
paper, we extend the notion of constraints and application conditions to
nested ones and show that nested constraints can be successively trans-
formed into nested right and left application conditions.

1 Introduction

Constraints and application conditions are most important for transformation
systems in a large variety of application areas, especially in the area of safety-
critical systems e.g. the specification of railroad control systems and access con-
trol policies [10]. Application conditions for rules were investigated e.g. in [2, 6,
8, 10, 1]. They define classes of morphisms and thus restrict the applicability of
their rules. Constraints, also called consistency constraints, were studied e.g. in
[8, 10, 1]. They are properties on objects which have to be satisfied. In the graph
case, simple constraints like the existence or uniqueness of certain nodes and
edges can be expressed.

In this paper, we extend the existing theory on constraints and application
conditions [1] to nested constraints and application conditions as proposed in
[15]. We show that nested constraints can be transformed into nested right ap-
plication conditions, and nested right application conditions can be transformed
into nested left application conditions.

The transformation results are proved for high-level structures and are ap-
plied exemplarily for the case of graphs. The concepts are illustrated by a simple
railroad system. The specification of a railroad system is given in terms of rail
net graphs, constraints, rules for moving the trains, and application conditions.
We study the integration of general rail net constraints into rail net application
conditions for the movement of trains.

The paper is organized as follows. In section 2, we give a short introduction
of adhesive HLR categories together with their basic properties. In section 3
we generalize constraints and application conditions to nested constraints and

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 293–308, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

294 Annegret Habel and Karl-Heinz Pennemann

application conditions in the framework of adhesive HLR categories. In sections
4, 5 and 6, we prove the main transformation results and give some applications
of the results. A conclusion including further work is given in section 7.

2 Preliminaries

The main idea of high-level replacement systems is to generalize the concepts of
graph replacement from graphs to all kinds of structures which are of interest in
Computer Science and Mathematics. In the following sections, we will consider
constraints and application conditions in adhesive HLR-categories (see [3]) and
prove our transformation results on this general level. This has the advantage,
that our results apply not only for graphs, but also for other high-level structures,
e.g. typed attributed graphs, Petri-nets or algebraic specifications. We consider
adhesive HLR-categories to benefit from the combined advantages of HLR and of
adhesive categories [11]: the sound theory of the HLR framework and the much
smoother requirements for adhesive categories in comparison with the variety of
HLR preconditions.

Definition 1 (adhesive HLR-category). A category C with a morphism class
M is called adhesive HLR category, if 1) M is a class of monomorphisms closed
under compositions and decompositions (g ◦ f ∈ M , g ∈ M implies f ∈ M),
2) C has pushouts and pullbacks along M -morphisms, i.e. pushouts and pull-
backs, where at least one of the given morphisms is in M , and M -morphisms
are closed under pushouts and pullbacks, i.e. whenever a given morphism is in
M , then the opposite morphism is in M , as well, and 3) pushouts in C along
M -morphisms are VK-squares (see e.g. [3]).

Examples for adhesive HLR categories for the class M of all monomorphism
include Sets, Graphs, PT -Nets and several other variants of graphs and nets,
like typed, labeled and attributed graphs, hypergraphs and high-level nets. Fur-
ther examples can be found, e.g. in [3].

Example 1 (rail net graph). The railroad system (similar to [12]) models the
movement of one or more trains on a net of railroad tracks. The basic items are
simple tracks from which the net is synthesized. The net together with trains
on it forms the static part of the system, while movement of trains constitute
the dynamic part. The static part is given by a labeled directed rail net graph:

Fig. 1. A simple railway model.

Nested Constraints and Application Conditions for High-Level Structures 295

tracks are modeled by undirected (resp. a pair of directed) edges, and trains are
modeled by edges. Source and target nodes of a train edge encode the train’s
position on the track. An example of a rail net graph with two trains is given in
figure 1.

Fact 1. Given an adhesive HLR-category 〈C,M〉, the following HLR conditions
are satisfied.

1. Pushouts along M -morphisms are pullbacks.
2. Pushout-pullback decomposition: If the diagram (1)+(2) is a pushout, (2) a

pullback, and l, w ∈M , then (1) and (2) are pushouts and also pullbacks.

A B

C D

E

F

(1) (2)

b

l s

u

r

w

v

3. Uniqueness of pushout complements for M -morphisms: Given b:A → B in
M and s:B → D then there is up to isomorphism at most one C with
l:A→ C and u:C → D such that diagram (1) is a pushout.

General Assumption. In the following, we assume that 〈C,M〉 is an adhesive
HLR category with binary coproducts and epi-M -factorizations, that is, for every
morphism there is an epi-mono-factorization with monomorphism in M .

3 Constraints and Application Conditions

In the following, we will consider structural constraints and application condi-
tions. Structural constraints, short constraints, correspond to graph constraints,
but not necessarily to logical constraints defined by predicate logic.

Definition 2 (constraint). Constraints over an object P are defined induc-
tively as follows: For an arbitrary morphism x:P →C, ∃x is a (basic) constraint
over P . For an arbitrary morphism x:P →C and a constraint c over C, ∀(x, c)
and ∃(x, c) are (conditional) constraints over P . For constraints c, ci (i ∈ I)
[over P], true, false, ¬c, ∧i∈Ici and ∨i∈Ici are (Boolean) constraints [over P].

A morphism p:P → G satisfies a basic constraint ∃x if there exists a mor-
phism q:C → G in M with q◦x = p. A morphism p:P → G satisfies a conditional
constraint ∃(x, c) [∀(x, c)] if some [all] morphisms q:C → G in M with q ◦ x = p
satisfy c. Every morphism satisfies true, and no morphism satisfies false. A mor-
phism p satisfies a Boolean constraint ¬c if p does not satisfy c; p satisfies ∧i∈Ici

[∨i∈Ici] if p satisfies all [some] ci with i ∈ I. We write p |= c to denote that p
satisfies c.

An object G satisfies a constraint c of the form ∃x, ∃(x, d) [∀(x, d)] if all
[some] morphisms p:P → G in M satisfy c. Every object satisfies true, and no
object satisfies false. An object G satisfies ¬c if G does not satisfy c and ∧i∈Ici

296 Annegret Habel and Karl-Heinz Pennemann

[∨i∈Ici] if it satisfies all [some] ci with i ∈ I. We write G |= c to denote that G
satisfies c. Two constraints c and c′ are equivalent, denoted by c ≡ c′, if, for all
objects G, G |= c if and only if G |= c′.

Constraints of the form ∃x and ¬∃x with empty morphism x: ∅ → C are
denoted by ∃C and �C, respectively. Constraints of the form ¬∃x are abbreviated
by �x. Constraints of the form ∃x, ∃(x, c) are said to be existential ; constraints
of the form ∀(x, c) are universal.

In [1], negative atomic constraints are considered. A morphism p:P → G
satisfies the negative atomic constraint NC(x) with morphism x:P → C if there
does not exist a morphism q:C → G in M with q ◦ x = p. Negative atomic
constraints are equivalent to positive ones (with negation).

Fact 2. For x:P → C in M , NC(x) ≡ ¬∃C; otherwise, NC(x) ≡ true.

Proof. For x:P → C in M , G |= NC(x) iff, for all p:P → G in M , there does not
exist a q:C → G in M such that q ◦x = p iff there does not exists a q:C → G in
M iff G |= ¬∃C. In [1], it is shown that, for x not in M , NC(x) ≡ true: Assume,
there exists a G such that G �|= NC(x). Then there exist p:P → G in M and
q:C → G in M with q ◦ x = p. Then p, q in M implies x in M (contradiction).

In [1], constraints with not-M -morphisms are allowed. This does not give
more expressive power. For every constraint with arbitrary morphisms, there is
an equivalent constraint with morphisms in M .

Fact 3. For a morphism x:P → C not in M , the following constraints are
equivalent: ∃(x, c) ≡ ∃x ≡ �P and ∀(x, c) ≡ ∃P .

Proof. G |= ∃x [∃(x, c)] iff every p:P → G in M implies the existence of a
q:C → G in M with q ◦ x = p [and q |= c]. Assume there is such a p. Then
p, q in M implies x in M (contradiction). Thus there is no p:P → G in M and
we have G |= �P . Vice versa, G |= �P iff there is no p:P → G in M . Then all
p:P → G in M can imply the existence of a q:C → G in M with q ◦ x = p
[and q |= c] (because there is no p) and we have G |= ∃x [∃(x, c)]. Furthermore,
G |= ∀(x, c) iff there exists p:P → G in M such that for all q:C → G in M with
q ◦ x = p holds q |= c. Assume there is such a q. Then p, q in M implies x in
M (contradiction). Thus there is no q:C → G in M and we have G |= ∃P . Vice
versa, G |= ∃P iff there exists an p:P → G in M . If there is no q:C → G in M
with q ◦ x = p, then all q can imply q |= c and we have G |= ∀(x, c).

Constraints without Boolean symbols, i.e. true, false, ¬, ∧ or ∨, may have
alternating quantifiers. For every such constraint with consecutive quantifiers
Q, there is an equivalent constraint with single quantifier Q. In this way, equal
consecutive quantifiers can be eliminated.

Fact 4. Q(x,Q(y, c)) ≡ Q(y ◦ x, c)) for Q ∈ {∀, ∃}.

Proof. Let x:P → C, y:C → C′ and m:P → G in M . Then m |= ∃(x,∃y, c))
iff there exists q:C → G in M such that q ◦ x = m and there exists q′:C′ → G

Nested Constraints and Application Conditions for High-Level Structures 297

in M such that q′ ◦ y = q and q′ |= c iff there exists q′:C′ → G in M such that
q′ ◦ y ◦x = m and q′ |= c iff m |= ∃(y ◦x, c). Moreover, m |= ∀(x,∀y, c)) iff for all
q:C → G in M with q ◦ x = m and for all q′:C′ → G in M with q′ ◦ y = q and
q′ |= c iff for all q′:C′ → G in M with q′ ◦y◦x = m and q′ |= c iff m |= ∀(y◦x, c).

Remark. The definition of constraints generalizes the ones in [8, 10, 1], because
we allow arbitrary nested constraints. E.g., we allow to express constraints like
“For all nodes, there exists an outgoing edge such that, for all edges outgoing
from the target, the target has a loop.”

∃(
1
→

1 2
, ∀ (

1 2
→

1 2 3
))

Fact 5. (Counting constraints) Counting of elements is possible. The follow-
ing properties of graphs can be expressed as graph constraints:

For a given n ∈ N0, all nodes have exactly n outgoing edges:

∃(→ , cout=n)

There exists a node with an even number of incoming edges:

∀(→ ,∨n∈N0 cin=2n)

There exists a node with same number of outgoing and incoming edges:

∀(→ ,∨n∈N0 cout=n ∧ cin=n)

where, given n ∈ N, cout=n and cin=n are subconstraints that are satisfied, if
and only if the number of outgoing and incoming edges equals n, respectively.
The constraints cout=n and cin=n are defined with the help of a constraint c(x)
which is used to count edges. For a morphism x:P → C, let c(x) = ∨e∈E ∃(e◦x),
where the set E consists of all epimorphisms that do not identify edges. Define
cout=n = c(→ Sn) ∧ ¬c(→ Sn+1) and cin=n = c(→ Tn) ∧ ¬c(→ Tn+1)
where Sn [Tn] denotes the star with outgoing [incoming] edges as depicted below.
E.g., c(→ Sn) is satisfied, iff there exists at least n outgoing edges, and ¬c(→
Sn+1) is satisfied, iff there exists at most n edges.

In general, constraints are a collection of constraints combined by conjunction
and disjunction. Several subconstraints may be similar. For complexity aspects,
we will reduce the number of subconstraints, before the constraint is transformed
into a right application condition. In the following, we sketch some equivalence-
preserving rules for modifying and condensing constraints.

Fact 6. For constraints, we have the following equivalences:

(1) ∀(o, c) ≡ c if c is existential.
(2) ∃(o, c) ≡ c if c is universal.

where o: ∅ → P is the empty morphism.

298 Annegret Habel and Karl-Heinz Pennemann

A constraint c implies a constraint c′, denoted by c ⇒ c′, if, for all objects
G, G |= c implies G |= c′. A constraint c m-implies c′, denoted by c ·⇒ c′, if, for
all morphisms p:P → G, p |= c implies p |= c′.

Fact 7. For constraints and application conditions, we have the following impli-
cations, where �∈ {⇒, ·⇒}.

(1) ∃x � ∃x′ if i ◦ x′ = x for some i in M .
(2) ∃(x, c) � ∃(x′, c′) if c ·⇒ c′ and i ◦ x′ = x for some i in M .
(3) ∀(x, c) � ∀(x′, c′) if c ·⇒ c′ and i ◦ x = x′ for some i in M .

We distinguish between inner and outer conjunctions and disjunctions: A con-
junction [disjunction] symbol in a constraint is said to be inner if it occurs in a
subconstraint of the form Q(x, c) with Q ∈ {∀, ∃}.

Lemma 1 (elimination of constraints). Every constraint can be transformed
into an equivalent constraint according to the following rules: (1) Replace sub-
constraints by equivalent ones and (2) condense outer [inner] conjunctions and
disjunctions: (a) Eliminate cl from ∧i∈Ici provided ck ⇒ cl [ck

·⇒ cl] for some
k �= l and (b) eliminate ck from ∨i∈Ici provided ck ⇒ cl [ck

·⇒ cl] for some
k �= l.

Example 2 (rail net constraints). Consider the railroad system in example 1. For
security aspects, we formalize some rail net constraints for rail net graphs. E.g.
we want to be sure that every train is on a track, that two trains do not occupy
the same piece of track, and that two trains do not occupy neighboring pieces
of track, except if the trains have a different direction.

(c1) Every train occupies one piece of track:

∃(→)

(c2) Different trains occupy different pieces of track:

�() ∧ �()

(c3) Two adjacent trains head into opposite directions:

�() ∧ �()

In the following, we will consider application conditions for rules. Application
conditions for rules were first introduced in [2]. In a subsequent paper [6], a
special kind of application conditions were considered which can be represented
in a graphical way. In the graph case, contextual conditions like the existence
or non-existence of certain nodes and edges or certain subgraphs in the given
graph can be expressed. In [8, 1] a simple form of nested application conditions
are considered.

Nested Constraints and Application Conditions for High-Level Structures 299

Definition 3 (rule). A rule p = 〈L ← K → R〉 consists of two morphisms in
M with a common domain K. Given a rule p and a morphism K → D, a direct
derivation consists of two pushouts (1) and (2). We write G⇒p,m,m∗ H and say
that m:L→ G is the match and m∗:R→ H is the comatch of p in H .

L K R

G D H

m m∗(1) (2)

Definition 4 (application condition for a rule). An application condition
a = (aL, aR) for a rule p = 〈L← K → R〉 consists of a constraint aL over L and
a constraint aR over R, called left and right application condition, respectively.
A direct derivation G ⇒p,m,m∗ H satisfies an application condition a = (aL, aR),
if m |= aL and m∗ |= aR.

Remark. The definition of application conditions generalizes the ones in [8, 1],
because we allow arbitrary nested application conditions. In [1], simple nested
application conditions of the form ∀(x,∨i∈I∃xi) and ∀(x,∧i∈I¬∃(xi)) with mor-
phisms xi are considered.

Example 3 (application condition for the rule Move). The dynamic part of the
railroad system in example 1 consists of a rule Move for the movement of trains,
which is depicted in figure 2.

Move: ←− −→

Fig. 2. The rule Move for movement of trains.

Application of the rule Move means to find an occurrence of the left-hand side
in the rail net graph and to replace the occurrence of the left-hand side by the
right-hand side of the rule. In this context, it is adequate to restrict on injective
matches of the left-hand side in the rail net graph. For security aspects, we
formalize application conditions for the rule Move. E.g. every train should move
only on a free piece of track and, after movement, two trains should not occupy
neighboring pieces of track (except if the trains have a different direction).

�(→)

Fig. 3. A left application condition for Move.

For every derivation step G⇒Move,g H with injective match g, G |= c1 implies
H |= c1. Unfortunately, this does not hold for the constraints c2 and c3. To ensure
that Move can only be applied if H satisfies the constraints c2 and c3, we will
transform these constraints first into right application conditions and then into
left application conditions for Move.

300 Annegret Habel and Karl-Heinz Pennemann

Remark. The definitions of constraints and application conditions are the same.
But constraints and application conditions are used in a different way. Con-
straints express properties on objects which have to be satisfied. A constraint
restricts the set of objects to the set of objects that satisfy the constraint. Ap-
plication conditions restrict the set of matches/comatches and, thus, the appli-
cability of the rule.

4 Transformation of Constraints

In the following, we will show that arbitrary constraints can be transformed into
right application conditions.

Theorem 1. (transformation of constraints into right application con-
ditions) Given a rule with right-hand side R and a constraint c. Then there is
a right application condition T (c) such that, for all comatches m∗:R → H,

m∗ |= T (c) ⇔ H |= c.

The construction is an extended version of the one for basic constraints in [1].
It is done with help of a right application condition Tp(c) of c according to a
morphism p:P → S in M .

Construction. Given a constraint c over P and a morphism p:P → S in M , we
construct Tp(c) over S according to p as follows: For a basic constraint c = ∃x,
we construct the pushout (1) in figure 4(a) of p and x leading to t:S → T and
q:C → T in M and all epimorphisms e:T → U such that u = e ◦ t and r = e ◦ q
are in M . Let E denote the set of all these epimorphisms and, for e ∈ E , u = e◦ t.

Tp(c) = ∨e∈E∃u

For a conditional constraint c = ∀(x, d) [∃(x, d)], we construct Tp(∃x) =
∨e∈E∃u over S according to p. The choice of an epimorphism e ∈ E determines
morphisms u = e ◦ t and r = e ◦ q. For the constraint d and the morphism r, we
construct Tr(d) of d according to r.

Tp(c) = ∧e∈E∀(u, Tr(d)) [∨e∈E∃(u, Tr(d))]

S

T

U

P

C

t

e

u

x

p

q

r

(1)

(a)

R

S P

s
p

(b)

Fig. 4. Construction of Tp(c) and T (c).

Nested Constraints and Application Conditions for High-Level Structures 301

Tp is compatible with Boolean operations, i.e. Tp(true) = true, Tp(false) = false,
Tp(¬d) = ¬Tp(d), Tp(∧i∈Ici) = ∧i∈ITp(ci), and Tp(∨i∈Ici) = ∨i∈ITp(ci). For a
universal [existential] constraint c over P and an object R, we construct T (c) with
help of the Tp(c). Let A denote the set of all triples a = 〈S, s, p〉 with arbitrary
s:R → S and p:P → S in M such that the pair 〈s, p〉 is jointly epimorphic (see
figure 4(b)).

T (c) = ∨a∈A∃(s, Tp(c)) [∧a∈A∀(s, Tp(c))]

T is compatible with Boolean operations.

Remark. For the double-pushout approach with matches in M (see [7]), the
construction of T (c) can be simplified: Since M is closed under decompositions,
p′′◦s = m∗ and p′′:S → H in M implies s in M . Therefore, it suffices to consider
the subset A′ ⊆ A of all triples a = 〈S, s, p〉 with both s:R → S and p:P → S
in M such that the pair 〈s, p〉 is jointly epimorphic.

Proof. By structural induction, we show:
(∗) For arbitrary constraints c over P and morphisms p:P → S in M , we

have: For arbitrary morphisms p′′:S → H in M ,

p′′ |= Tp(c) if and only if p′ = p′′ ◦ p |= c.

We will use the following statements: (1) If q′′:U → H is a morphism in M
with q′′ ◦ u = p′′, then there exists a morphism q′ = q′′ ◦ r:C → H in M with
q′ ◦x = p′. (2) If q′:C → H is a morphism in M with q′ ◦x = p′, then there exist
morphisms e ∈ E and q′′:U → H in M with q′′ ◦ r = q′ and q′′ ◦ e ◦ t = p′′ (see
figure 5). The second statement may be seen as follows: The universal property
of pushouts implies the existence of a unique morphism h:T → H with h◦t = p′′

and h ◦ q = q′. Now let q′′ ◦ e be a epi-mono factorization of h with epimorphism
e and monomorphism q′′ in M . Then q′′ ◦ e ◦ t = h ◦ t = p′′ in M implies
e ◦ t in M and q′′ ◦ e ◦ q = h ◦ q = q′ in M implies e ◦ q in M (M closed under
decompositions). Thus, there exists a morphism q′′:U → H in M with q′′◦r = q′

and q′′◦e◦t = p′′ for some e ∈ E . Now we will prove (∗) for arbitrary constraints.
For basic constraints, (∗) follows from the definitions and (1) and (2): p′′ |=

Tp(∃x) iff for some epimorphisms e ∈ E , p′′ |= ∃u iff for some epimorphisms
e ∈ E , there exists a morphism q′′:U → H in M with q′′ ◦ u = p′′ if(2) and only
if(1) there exists a morphism q′:C → H in M with q′ ◦ x = p′ iff p′ |= ∃x.

S P

U C

H

p

r
u e ◦ t x

p′′

q′′
p′

q′

(a)

R R + P

S P

H

inR

e

p

s inP

m∗

p′′ p′ f

(b)

Fig. 5. Correspondence of T (c) and c.

302 Annegret Habel and Karl-Heinz Pennemann

For conditional constraints, (∗) follows from the definitions, (1) and (2),
and the inductive hypothesis: p′′ |= Tp(∀(x, d)) iff for all epimorphisms e ∈ E ,
p′′ |= ∀(u, Tr(d)) iff for all epimorphisms e ∈ E and all morphisms q′′:U → H
in M with q′′ ◦ u = p′′, q′′ |= Tr(d) if(1)(∗) and only if(2)(∗) for all morphisms
q′:C → H in M with q′ ◦ x = p′, q′ |= d iff p′ |= ∀(x, d). p′′ |= Tp(∃(x, d)) iff
for some epimorphisms e ∈ E , p′′ |= ∃(u, Tr(d)) iff for some epimorphisms e ∈ E ,
there exists a morphism q′′:U → H in M with q′′ ◦ u = p′′such that q′′ |= Tr(d)
if(2)(∗) and only if(1)(∗) there exists a morphism q′:C → H in M with q′ ◦ x = p′

such that q′ |= d iff p′ |= ∃(x, d).
For Boolean constraints, (∗) follows directly from the definitions and the

inductive hypothesis.
Consequently, (∗) holds for all constraints.
It remains to prove the main statement: For all morphisms m∗:R → H ,

m∗ |= T (c) ⇔ H |= c. This is done by structural induction. We will use the
following statements: (3) Given a triple a = 〈S, s, p〉 in A and a morphism p′′ in
M as above we define p′ = p′′ ◦p:P → H . Then p′ is in M , because p and p′′ are
in M . (4) Given a morphism p′:P → H in M and a comatch m∗:R → H , we
construct the coproduct R + P with injections inR and inP in figure 5. By the
universal property of coproducts, there is a unique morphism f :R+P → H with
f ◦ inR = m∗ and f ◦ inP = p′. Now let f = p′′ ◦ e be an epi-mono factorization
of f with epimorphism e and monomorphism p′′ in M , and define s = e ◦ inR

and p = e ◦ inP . Then the pair 〈s, p〉 is jointly epimorphic, because e is an
epimorphism, and p is in M , because p′′ ◦ p = p′′ ◦ e ◦ inP = f ◦ inP = p′ is in M .
Hence a = 〈S, s, p〉 belongs to the set A. Moreover we have p′′ ◦s = p′′ ◦e◦ inR =
f ◦ inR = m∗ with monomorphism p′′ in M .

For universal constraints we have: m∗ |= T (c) iff for all tuples a = 〈S, s, p〉
in A and all morphisms p′′:S → H in M holds p′′ |= Tp(c) if(3)(∗) and only
if(4)(∗) for all morphisms p′:P → H in M holds p′ |= c iff H |= c. For existential
constraints we have: m∗ |= T (c) iff for some tuples a = 〈S, s, p〉 in A and for some
morphisms p′′:S → H in M holds p′′ |= Tp(c) if(4)(∗) and only if(3)(∗) for some
morphisms p′:P → H in M , holds p′ |= c iff H |= c. For Boolean constraints,
the statement follows directly from the definitions and the inductive hypothesis.
This completes the proof.

Example 4 (transformation of constraints into right application conditions).
Consider the rule Move and the constraint NoTwo = ¬∃(∅ → Two) ≡ �Two
where Two denotes the graph with a track edge and two parallel train edges (see
the first subconstraint of c2 in example 2), saying that two trains are not allowed
to occupy the same piece of track in the same direction. Then the transformation
of constraint NoTwo yields the following right application condition of Move:

T (NoTwo) = ¬ ∧a∈A ∀(s,∨e∈E∃u).

The set A of all “gluings” of the right-hand side R of Move and the empty
graph consists of all triples a = 〈S, s, p〉 where S is a surjective image of R. In the
rail road example, we restrict to injective matches. Thus, it suffices to consider
injective morphisms s:R→ S, i.e. the triple a = 〈R, id, ∅ → R〉.

Nested Constraints and Application Conditions for High-Level Structures 303

R

s |↓

S p←− ∅

t |↓ (1) x |↓

T q←− Two

e |↓

U

Fig. 6. Transformation of NoTwo into a right application condition of Move.

The pushout of p: ∅ → S and x: ∅ → Two is the disjoint union T = S + Two
with the injections t and q. Let E denote the set of all surjective morphisms
e:T → U with injective u = e ◦ t and r = e ◦ q. By the equivalence ∀(id, c) ·≡ c,
we have

T (NoTwo) ·≡ ¬ ∨e∈E ∃u ·≡ ∧e∈E¬∃u.
We get a conjunction of application conditions from which one is depicted in
figure 6. The depicted one says that the moved train is not on a piece of track
which is occupied by another train moving in the same direction.

Remark. Given a rule with left-hand side L and a constraint c, there is a left
application condition TL(c) such that, for all matches m:L→ G, m |= TL(c) ⇔
G |= c: Let TL(c) be the right application condition of the inverse rule p−1 =
〈L ← K → R〉 and c. Then TL(c) is a left application condition of p with the
wanted property.

Remark. In general, there is no transformation from application conditions into
constraints: Let a be a non-trivial application condition, that is, there exist two
morphisms m1, m2 with same codomain G, such that m1 |= a and m2 �|= a.
Assume there exists a constraint c(a) such that, for all matches m:L→ G in M ,
m |= a⇔ G |= c(a). Then G |= c(a) and G �|= c(a). Contradiction.

5 Transformation of Application Conditions

In the following, we will show that arbitrary right application conditions can be
transformed into left application conditions.

304 Annegret Habel and Karl-Heinz Pennemann

L K R

Y Z X

l r

l∗ r∗

y x(2) (1)

Fig. 7. Transformation of application conditions.

Theorem 2. (transformation from right to left application conditions)
Let a be a right application condition for p. Then there is a left application
condition Tp(a) such that, for all direct derivations G⇒p,m,m∗ H we have:

m |= Tp(a) ⇔ m∗ |= a.

The construction of Tp(a) is an extended version of the corresponding con-
struction for basic application conditions in [1].

Construction. Let a be a right application condition for the rule p = 〈L ←
K → R〉. Construct the left application condition Tp(a) according to p as follows:
for a basic right application condition ∃x with morphism x:R → X , define
y:L→ Y by two pushouts (1) and (2) in figure 7 if the pair 〈r, x〉 has a pushout
complement. Let Tp(∃x) = ∃y if 〈r, x〉 has a pushout complement and false
otherwise. For a conditional right application condition Q(x, a) with Q ∈ {∀, ∃},
construct the morphism y as above, if the pair 〈r, x〉 has a pushout complement,
and the left application condition Tp∗(a) = b according to the “derived” rule p∗ =
〈Y ← Z → X〉. Let Tp(Q(x, a)) = Q(y, b) if 〈r, x〉 has a pushout complement.
Otherwise, let Tp(∃(x, a)) = false and Tp(∀(x, a)) = true. Tp is compatible with
Boolean operations.

Proof. Let G ⇒p,m,m∗ H be any direct derivation. We show m |= Tp(a) ⇔
m∗ |= a for every application condition a. The proof is done by induction on the
structure of application conditions. For basic right application conditions, the
statement follows immediately from the statement in [1]. For conditional right
application conditions of the form Q(x, a) with Q ∈ {∀, ∃}, two cases may occur:

Case 1. The pair 〈r, x〉 has no pushout complement. Then Tp(∃(x, a)) = false
and Tp(∀(x, a)) = true. To show is m |= false ⇐ m∗ |= ∃(x, a) and m |= true ⇒
m∗ |= ∀(x, a), respectively. As no morphism satisfies false and every morphism
satisfies true, it suffices to show m∗ �|= ∃(x, a) and m∗ |= ∀(x, a). Both statements
hold, because there is no q:X → H with q ∈ M and q ◦ x = m∗. Otherwise,
since the pair 〈r,m∗〉 has a pushout complement, the pair 〈r, x〉 would have a
pushout complement in contradiction to case 1.

Case 2. The pair 〈r, x〉 has a pushout complement. Then the left application
condition is of the form Tp(a) = Q(y, b). It remains to show that m |= Q(y, b) ⇔
m∗ |= Q(x, a). This is done by structural induction. We will use the following
statements: [α] Given a morphism q′:Y → G in M with q′ ◦ y = m we can
construct pushouts (1), (2), (5), (6) as above, where this time we first construct
(6) as pullback leading in the right-hand side to a morphism q:X → H in M

Nested Constraints and Application Conditions for High-Level Structures 305

with q ◦ x = m∗. [β] Given a morphism q:X → H in M with q ◦ x = m∗. From
the double pushout for G ⇒p,m,m∗ H and q ◦ x = m∗ we obtain the following
decomposition in pushouts (1), (2), (5), (6): First (5) is constructed as pullback
of q and d1 leading to pushouts (1) and (5), with same square (1) as in the
construction because of uniqueness of pushout complements for M -morphisms.
Then (2) is constructed as pushout and we have q′:Y → G with q′ ◦ y = m
and pushout (6) induced by the pushouts (2) and (2)+(6). Since q is in M , z
and q′ are in M . [γ] Given application conditions as above and a “derived” rule
p∗ = 〈Y ← Z → X〉 with morphisms q′:Y → G and q:X → H we apply the
inductive hypothesis to conclude q′ |= b iff q |= a. For an universal application
condition we have: m |= ∀(y, b) iff for all morphisms q′:Y → G in M with
q′ ◦ y = m holds q′ |= b if[α],[γ] and only if[β],[γ] for all morphisms q:X → H in
M with q ◦ x = m∗ holds q |= a iff m∗ |= ∀(x, a). For an existential application
condition we have: m |= ∃(y, b) iff for some morphisms q′:Y → G in M with
q′ ◦ y = m holds q′ |= b if[β],[γ] and only if[α],[γ] for some morphisms q:X → H in
M with q ◦ x = m∗ holds q |= a iff m∗ |= ∀(x, a). For Boolean right application
conditions, the statement follows directly from the definition and the inductive
hypothesis.

Example 5 (transformation of right into left application conditions). Consider
the rule Move in example 3 and the right application condition T (NoTwo) =
∧e∈E¬∃u of example 4. Then the transformation of the right application condi-
tion T (NoTwo) according to Move yields the left application condition

TMove(T (NoTwo)) = ∧e∈E¬∃v.

Given a morphism u:R → U , we have to check whether the pair 〈r, u〉 has
a pushout complement, and if so, to apply the inverse rule of Move according
to u:R → U yielding a match v:L → V . The result of the transformation of a
subcondition of T (NoTwo) is presented in figure 9. The left application condition
is obtained from the transformation of the right subconditions. It says more or
less that “the next piece of track is not allowed to be occupied by a train moving
in the same direction”.

Remark. Given a rule p and a left application condition aL. Then there is a
right application condition aR such that, for all direct derivations G ⇒p,m,m∗ H ,

L K R

Y Z X

G D H

l r

l∗ r∗

d2 d1

y x

q′ z q

m m∗

(2) (1)

(6) (5)

= =

Fig. 8. Decomposition of pushouts.

306 Annegret Habel and Karl-Heinz Pennemann

L K R

l←− r−→

v |↓ (1) |
↓ (2) u |↓

l∗←− r∗−→

V W U

Fig. 9. Transformation of T (NoTwo) into a left application condition of Move.

m∗ |= aR ⇔ m |= aL: Consider the inverse rule p−1 of p with right application
condition aL. Let aR = Tp−1(aL) be the left application condition of p−1. Then
aR is a right application condition of p with the wanted property.

6 Application

We will use the transformation results for integrating constraints into left ap-
plication conditions such that every direct derivation satisfying the application
condition is constraint-guaranteeing resp. constraint-preserving.

Definition 5. Given a constraint c, a direct derivation G⇒p,m,m∗ H is said to
be c-guaranteeing if H |= c and c-preserving if G |= c implies H |= c.

Theorem 3 (guarantee and preservation of constraints). Given a rule p
and a constraint c, we can effectively construct a left application condition a(c)
[a′(c)] such that every direct derivation G ⇒p,m,m∗ H satisfying a(c) [a′(c)] is
c-guaranteeing [c-preserving].

Proof. Let TL(c) [TR(c)] be the left [right] application condition of the con-
straint c and Tp(TR(c)) the left application condition of TR(c). Let a(c) =
Tp(TR(c)) and a′(c) = TL(c) ⇒ Tp(TR(c)) where A ⇒ B denotes ¬A ∨ B.
Then the left application conditions have the wanted properties.

7 Conclusion

This paper is mainly based on [1]. It generalizes the notion of constraints and
application conditions to nested ones and shows that nested constraints can
be transformed into nested right and left application conditions. Furthermore,
it presents an equivalence-preserving transformation that allows to eliminate
superfluous subconstraints and subconditions, respectively. Further topics are:

– The extension of the underlying first-order logic by adding counting quanti-
fiers as proposed in [9, 13],

Nested Constraints and Application Conditions for High-Level Structures 307

– the transformation of specific application conditions into constraints and
from constraints into constraints,

– a systematic study of the complexity of the transformation and a construc-
tive, equivalence-preserving, simplifying transformation of constraints and
application conditions because the integration of constraints into application
conditions may yield a large conjunction/disjunction of application condi-
tions.

– an application to typed attributed graph transformation [4] and graph-based
specification of access control policies [10],

– an implementation of the transformation of nested constraints and applica-
tion conditions (e.g. in the AGG tool [5]).

References

1. Hartmut Ehrig, Karsten Ehrig, Annegret Habel, and Karl-Heinz Pennemann. Con-
straints and application conditions: From graphs to high-level structures. In Graph
Transformations (ICGT’04), volume 3256 of Lecture Notes in Computer Science,
pages 287–303. Springer-Verlag, 2004.

2. Hartmut Ehrig and Annegret Habel. Graph grammars with application conditions.
In G. Rozenberg and A. Salomaa, editors, The Book of L, pages 87–100. Springer-
Verlag, Berlin, 1986.

3. Hartmut Ehrig, Annegret Habel, Julia Padberg, and Ulrike Prange. Adhesive high-
level replacement categories and systems. In Graph Transformations (ICGT’04),
volume 3256 of Lecture Notes in Computer Science, pages 144–160. Springer-
Verlag, 2004.

4. Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamental theory of
typed attributed graph transformation. In Graph Transformations (ICGT’04), vol-
ume 3256 of Lecture Notes in Computer Science, pages 161–177. Springer-Verlag,
2004.

5. Claudia Ermel, Michael Rudolf, and Gabriele Taentzer. The AGG approach: Lan-
guage and environment. In Handbook of Graph Grammars and Computing by Graph
Transformation, volume 2, pages 551–603. World Scientific, 1999.

6. Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph grammars with neg-
ative application conditions. Fundamenta Informaticae, 26:287–313, 1996.

7. Annegret Habel, Jürgen Müller, and Detlef Plump. Double-pushout graph trans-
formation revisited. Mathematical Structures in Computer Science, 11(5):637–688,
2001.

8. Reiko Heckel and Annika Wagner. Ensuring consistency of conditional graph gram-
mars – a constructive approach. In SEGRAGRA 95, volume 2 of Electronic Notes
in Theoretical Computer Science, pages 95–104, 1995.

9. Neil Immerman. Relational queries computable in polynomial time. Information
and Control, 68(1-3):86–104, 1986.

10. Manuel Koch and Francesco Parisi-Presicce. Describing policies with graph con-
straints and rules. In Graph Transformation (ICGT 2002), volume 2505 of Lecture
Notes in Computer Science, pages 223–238. Springer-Verlag, 2002.

11. Stephen Lack and Pawe�l Sobociński. Adhesive categories. In Proc. of Foundations
of Software Science and Computation Structures (FOSSACS’04), volume 2987 of
Lecture Notes in Computer Science, pages 273–288. Springer-Verlag, 2004.

308 Annegret Habel and Karl-Heinz Pennemann

12. Bernd Mahr and Anne Wilharm. Graph grammars as a tool for description in com-
puter processed control: A case study. In Graph-Theoretic Concepts in Computer
Science, pages 165–176. Hanser Verlag, München, 1982.

13. Mohamed Mosbah and Rodrigue Ossamy. A programming language for local com-
putations in graphs: Logical basis. Technical report, University of Bordeaux, 2003.

14. Karl-Heinz Pennemann. Generalized constraints and application conditions for
graph transformation systems. Master’s thesis, University of Oldenburg, 2004.

15. Arend Rensink. Representing first-order logic by graphs. In Graph Transformations
(ICGT’04), volume 3256 of Lecture Notes in Computer Science, pages 319–335.
Springer-Verlag, 2004.

Synthesis Revisited: Generating Statechart
Models from Scenario-Based Requirements�

David Harel, Hillel Kugler, and Amir Pnueli

Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Rehovot, Israel
{dharel,kugler,amir}@wisdom.weizmann.ac.il

Abstract. Constructing a program from a specification is a long-known
general and fundamental problem. Besides its theoretical interest, this
question also has practical implications, since finding good synthesis al-
gorithms could bring about a major improvement in the reliable devel-
opment of complex systems. In this paper we describe a methodology for
synthesizing statechart models from scenario-based requirements. The re-
quirements are given in the language of live sequence charts (LSCs), and
may be played in directly from the GUI, and the resulting statecharts are
of the object-oriented variant, as adopted in the UML. We have imple-
mented our algorithms as part of the Play-Engine tool and the generated
statechart model can then be executed using existing UML case tools.

1 Introduction

Constructing a program from a specification is a long-known general and funda-
mental problem. Besides its theoretical interest, this question also has practical
implications, since finding good synthesis algorithms could bring about a major
improvement in the reliable development of complex systems.

Scenario-based inter-object specifications (e.g., via live sequence charts) and
state-based intra-object specifications (e.g., via statecharts) are two complemen-
tary ways to specify behavioral requirements. In our synthesis approach we aim
to relate these different styles for specifying requirements. In [10] the first two
coauthors of this paper suggested a synthesis approach using the scenario-based
language of live sequence charts (LSCs) [7] as requirements, and synthesizing a
state-based object system composed of a collection of finite state machines or
statecharts. The main motivation for suggesting the use of LSCs as a require-
ment language in [10] is its enhanced expressive power. LSCs are an extension of
message sequence charts (MSCs; or their UML variant, sequence diagrams) for
rich inter-object specification. One of the main additions in LSCs is the notion
of universal charts and hot, mandatory behavior, which, among other things,
enables one to specify forbidden scenarios. Synthesis is considerably harder for

� This research was supported in part by the John von Neumann Minerva Center for
the Verification of Reactive Systems, by the European Commission project OMEGA
(IST-2001-33522) and by the Israel Science Foundation (grant No. 287/02-1).

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 309–324, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

310 David Harel, Hillel Kugler, and Amir Pnueli

LSCs than for MSCs, and is tackled in [10] by defining consistency, showing
that an entire LSC specification is consistent iff it is satisfiable by a state-based
object system. A satisfying system is then synthesized.

There are several issues that have prevented the approach described in [10]
from becoming a practical approach for developing complex reactive systems. A
major obstacle is the high computational complexity of the synthesis algorithms,
that does not allow scaling of the approach to large systems. Additional problems
are more methodological, related to the level of detail required in the scenarios to
allow meaningful synthesis, the problem of ensuring that the LSC requirements
are exactly what the user intended, and a lack of tool support and integration
with existing development approaches.

In this paper we revisit the idea of synthesizing statecharts from LSCs, with
an aim of addressing the limitations of [10] mentioned above. Our approach ben-
efits from the advances in research made since the publication of [10] – mainly
the play-in/play-out approach [13], which supplies convenient ways to capture
scenarios and execute them directly, and our previous work on smart play-out
[11], which allows direct execution and analysis of LSCs using powerful verifica-
tion techniques. We suggest a synthesis methodology that is not fully automatic
but rather relies on user interaction and expertise to allow more efficient synthe-
sis algorithms. One of the main principles we apply is that the specifier of the
requirements provide enough detail and knowledge of the design to make the job
easier for the synthesis algorithm. The algorithm tries to prove, using verification
methods, that a certain synthesized model satisfies all requirements; if it man-
ages to do so, it can safely synthesize the model. We have developed a prototype
statechart synthesis environment, that receives as input LSCs from the Play-
Engine tool [13] and generates a statechart model that can then be executed by
Rhapsody [15], and in principle also by other UML tools, see e.g., [24, 27].

The paper is organized as follows. Section 2 describes the main challenges in
synthesizing statecharts from scenarios and the main principles we adopt to ad-
dress them. Section 3 shows how to relate the object model of LSCs as supported
by the Play-Engine tool with standard UML object models, and describes how
this is supported by our prototype tool. Section 4 addresses the notion of con-
sistency of LSCs and introduces a game view for synthesizing reactive systems.
Section 5 describes our approach to statechart synthesis, while Section 6 explains
the actual statechart synthesis using an example of a cellular phone system. We
conclude with a discussion of related work in Section 7.

2 Main Challenges in Synthesis

In this section we discuss some of the main challenges that need to be addressed
in order to make a method for synthesizing statechart models from scenarios
successful. The challenges are of different nature, varying from finding a scenario-
based language that is powerful and easy for engineers to learn, to dealing with
the inherent computational complexity of synthesis algorithms that must handle
large complex systems.

Synthesis Revisited: Generating Statechart Models 311

2.1 Appropriate Scenario-Based Language

An important usage of scenario notations is for communicating ideas and for
documentation. For such purposes sketching an inter-object scenario on a black-
board or diagram editor can be very helpful. When our goal is synthesizing a
statechart model and eventually production code from the scenarios, we need
a powerful and expressive inter-object scenario-based language with rigorously
defined semantics. The language should still retain the simplicity and intuitive
feel that made scenario-based languages popular among engineers. In our ap-
proach we use the language of live sequence charts (LSCs) introduced in [7].
LSCs extends classical message sequence charts, which have very limited expres-
sive power. Among other things, LSCs distinguish between behaviors that may
happen in the system (existential) from those that must happen (universal).
An example of a universal chart appears in Fig. 1. A universal chart contains
a prechart (dashed hexagon), which specifies the scenario which, if successfully
executed, forces the system to satisfy the scenario given in the actual chart body.
For more details on LSCs see [7, 13, 14].

Fig. 1. Example of a universal LSC.

2.2 Sufficiently Detailed Scenario-Based Specification

Specifying requirements of a system is a very difficult task, which must be car-
ried out in a careful and accurate manner. For this reason, it may be claimed
that requirements in general, and scenario-based ones in particular, will only
be partial and will focus on certain important properties and concepts of the
system. According to this argument it is not possible to beneficially apply a
synthesis approach for deriving a system implementation since the requirement
model provides insufficient details.

We attempt to overcome this challenge by using the play-in/play-out ap-
proach introduced in [13, 14]. In play-in the user starts with a graphical rep-
resentation of the system and specifies various scenarios by interacting with

312 David Harel, Hillel Kugler, and Amir Pnueli

the GUI and demonstrating the required behavior. As this is being done, the
Play-Engine tool constructs the LSC that captures what was played in. Play-in
enables non-technical stake holders to participate in the requirement elucidation
phase, and to contribute to building a detailed scenario model. Our experience
in several projects [12] shows that the play-in/play-out approach enhanced to
a large extent the efficiency of this process and allowed building rich and de-
tailed scenario-based requirements, which can serve as a solid starting point for
synthesis algorithms.

2.3 Correct Scenarios

As mentioned earlier, specifying requirements is a difficult job, and the user must
be sure that the property specified is exactly what is intended. In the context of
formal verification, many times when verifying a system with respect to a speci-
fied property the result shows that the system does not satisfy the property, and
then the user realizes that the property specified was not exactly the intended
one and refines it. In a synthesis approach the requirements themselves must be
accurate, otherwise even if the synthesis algorithms work perfectly the obtained
system will not be what was actually intended.

We try to address this challenge in several complementary ways. First, the re-
quirement language of LSCs, being an extension of classical MSCs, has intuitive
semantics, and allows users who are not very technical to express complex behav-
ioral requirements, while other formalisms, e.g., temporal logic, may prove to be
trickier even for advanced users. Second, play-out, the complementary process
to play-in, allows one to execute the LSCs directly, giving a feeling of working
with an executable system. This makes it possible to debug the requirements
specification and gain more confidence that what is specified is exactly what is
required.

2.4 The Complexity of Synthesis Algorithms

Solving the problem of synthesis for open reactive systems is an inherently diffi-
cult problem. In various settings the problem is undecidable, and even in more
restricted settings when it is becomes decidable, the time and space requirements
of the synthesis algorithm may be too large to be practical for large systems.

One way we attack this problem is by applying methods from formal veri-
fication, in ways that will be discussed below. We have in mind mainly model-
checking algorithms, which in recent years – due to intensive research efforts and
tool development – have scaled nicely in terms of the size of the models they can
handle. Nevertheless, the models that can be treated even using state of the art
technologies are still limited in size and much more work is needed here to make
synthesis a practical approach.

In our current work, one of the main principles we apply is that the specifier
of the requirements provide enough detail and knowledge of the design to make
the job easier for the synthesis algorithm. The algorithm tries to prove that a
certain synthesized model satisfies all requirements; if it manages to do that it

Synthesis Revisited: Generating Statechart Models 313

can safely synthesize the model. This approach is not complete, since some other
model may be correct and the synthesis algorithm will fail to find it. However,
our hope is that for many interesting cases the synthesis will succeed.

2.5 Integration with Existing Code and System Modification

In order to make a new system development approach practical, an important
requirement is that it should fit in nicely with other existing approaches. In our
context of designing complex embedded software, the synthesized statechart-
based model may need to interact with other software that was developed in
other diverse ways. By synthesizing into a UML-based framework, we attempt
to address this issue and thus to take advantage of the integration capabilities
of existing commercial UML tools.

Related to this issue is the recent work on InterPlay [3]. InterPlay is a simu-
lation engine coordinator that supports cooperation and interaction of multiple
simulation and execution tools. It makes it possible to connect several Play-
Engines to each other, and also to connect a statechart-based executable model
in Rhapsody to the Play-Engine. A model synthesized using algorithms de-
scribed in this paper can thus be linked to the Play-Engine, allowing the sce-
narios to be monitored as they occur. It also supports an environment in which
some subsystems run a statechart or code-based model and others execute LSCs
directly, say, by play-out.

3 Transferring the Structure

Scenario-based inter-object specifications (via LSCs) and state-based intra-
object specifications (via statecharts) are two complementary ways for speci-
fying behavioral requirements. In our synthesis approach we aim to relate these
different styles for specifying requirements.

According to the play-in/play-out approach the user specifies behavioral re-
quirements by playing on a GUI representation of the system, as this is being
done the Play-Engine automatically constructs corresponding requirements in
LSCs.

3.1 The Play-Engine Object Model

We now introduce the object model used by the Play-Engine, which is the basis
for the LSC specifications. We later explain how this object model is related to
standard UML models, allowing our prototype tool to connect to models in exist-
ing UML tools, and allowing to synthesize statechart-based UML models. For a
detailed explanation of the Play-Engine framework and object model see [13, 14].

An object system Sys is defined as

Sys = 〈D, C,O,F〉
where D is the set of application types (domains), C is the set of classes, O is
the set of objects, F is the set of externally implemented functions. We refer to
the user of the system as User and to the external environment as Env.

314 David Harel, Hillel Kugler, and Amir Pnueli

A type D ∈ D is simply a (finite) set of values. The basic types supported
are range, enumeration and string.

A class C is defined as:

C = 〈Name,P ,M〉

where Name is the class name, P is the set of class properties and M is the set
of class methods.

An object O is defined as:

O = 〈Name,C,PV, External〉

where Name is the object’s name, C is its class, PV : C.P →
⋃

i Di is a func-
tion assigning a value to each of the object’s properties and External indicates
whether the object is an external object. We define the function class : O → C
to map each object to the class it is an instance of. We also use V alue(O.P) =
O.PV(O.C.P) to denote the current value of property P in object O.

An object property P is defined as

P = 〈Name,D , InOnly,ExtChg,Affects ,Sync〉

where Name is the property name and D is the type it is based on. InOnly ∈
{True, False} indicates whether the property can be changed only by the user,
ExtChg ∈ {True, False} indicates whether the property can be changed by
the external environment, Affects ∈ {User ,Env ,Self } indicates the instance to
which the message arrow is directed when the property is changed by the system,
and Sync ∈ {True, False} indicates whether the property is synchronous.

An object method M is defined as:

M = 〈Name(D1, D2, . . . , Dn), Sync〉

where Name is the method name, Di ∈ D is the type of its ith formal param-
eter and Sync ∈ {TRUE,FALSE} indicates whether calling this method is a
synchronous operation.

An implemented function is defined as:

Func = Name : D1 ×D2 × . . . ,×Dn → DF

where Name is the function name, Di ∈ D is the type of its ith formal parameter
and DF ∈ D is the type of its returned value.

3.2 Importing a UML Model into the Play-Engine

The usual work-flow in the play-in/play-out approach as supported by the Play-
Engine is that the user starts by building a GUI representation and the corre-
sponding object model. As part of our current work we support an alternative
starting point, in which a UML model is imported into the Play-Engine, (say,
from Rhapsody), and can then be used while specifying the behavior using

Synthesis Revisited: Generating Statechart Models 315

LSCs and the play-in process. This shows the relation between the Play-Engine
object model and a standard UML model, and also from the more practical point
of view it provides an easy link to models developed in existing UML tools and
a good starting point for applying our synthesis approach.

The import procedure is quite straightforward, we describe here only its gen-
eral principles. Types in the UML model are converted to Play-Engine types, as
defined in the previous section. Currently the Play-Engine supports only simple
type definitions – range, enumeration and string. A type that cannot be defined
in terms of these basic type definitions is declared as EngineVariant, the de-
fault Play-Engine type. The Play-Engine currently does not support packages,
the UML construct for grouping classes, so that when importing UML classes
they all appear in a flat structure. UML attributes are mapped to Play-Engine
properties, preserving their corresponding type. For each UML class, the opera-
tions are imported as Play-Engine methods, with the arguments preserving their
corresponding types.

Instances in the UML model are defined as internal objects, preserving their
base class. In the Play-Engine, internal objects are visualized using something
resembling class diagrams, and play-in is supported by clicking and manipulat-
ing this kind of diagram in a convenient way. This allows rapid development of
requirements without a need to construct a GUI. Building a GUI has many ben-
efits in terms of visualizing the behavior, but as a first approximation importing
the model and playing-in using internal objects works fine.

3.3 Synthesizing a Skeleton UML Model

Complementary to the UML to Play-Engine import described in the previous
subsection, we also support the synthesis of a skeleton UML model from the Play-
Engine; that is, a UML model containing the object model definitions, but with-
out taking the LSC specifications into account and without synthesizing any stat-
echarts. This skeleton synthesis can be useful if we have a complex Play-Engine
model we have developed, and now want to go ahead and build a corresponding
UML model. We can apply the synthesis of the skeleton model, thus automating
the straightforward part, and then proceed to do the interesting and creative
part, regarding dynamic behavior, by defining the UML statecharts manually.
We may want to use this approach when we have special motivation to create the
statechart model manually (see, e.g., [9] for an example), or when the automatic
synthesis algorithms do not work properly. Using the InterPlay approach [3]
mentioned earlier, we can then execute the statechart-based UML model linked
to the Play-Engine, allowing the scenarios to be monitored as they occur.

4 Consistency of LSCs

Before being able to synthesize a statechart based model we must ensure that the
LSCs are consistent. Consider the two charts OpenAntGrad1 and OpenAntGrad2
in Fig. 2. When the user opens the Antenna both charts are activated. However,

316 David Harel, Hillel Kugler, and Amir Pnueli

Fig. 2. Inconsistent LSCs.

there is no way to satisfy them both since after changing the reception level
of the Chip to 0 (as required by both charts), the first chart requires that the
reception level change to 2 and only later to 4, while the second one requires
that the reception level change first to 4 and only later to 2. These are clearly
contradictory. While this is a very simple example, such contradictions can be
a lot more subtle, arising as a result of the interaction between several charts.
In large specifications this phenomena can be very hard to analyze manually.
Our tool can automatically detect some of these inconsistencies and provide
information to the user. After the relevant LSCs are fixed the synthesis algorithm
can again be applied. This can lead to an iterative development process at the
end of which a consistent LSC specification is obtained, and a statechart model
can be synthesized.

4.1 A Game View

In the study of synthesis of reactive systems a common view is that of a game
between two players [6, 22]. One of the players is the environment and the other

Synthesis Revisited: Generating Statechart Models 317

is the system. The players alternate turns each one making a move in his turn,
and the requirements define the winning condition. If there exists a strategy for
the system under which for any moves the environment makes the system always
wins, we say the specification is realizable (consistent) and we can attempt to
synthesize a system implementation.

In the Play-Engine tool while using LSCs as the requirement language, the
environment can be a User object, as in the prechart of Fig. 1, or a more
explicit environment object, as represented by the ENV object appearing in
the main chart of Fig. 1, or an external object, an object that is designated as
being implemented outside the Play-Engine specification. In principle, the clock
object, which represents global time, should also be considered external, but
the treatment of time is beyond the scope of this paper. All other objects are
assumed to be part of the system.

The game is played as follows: the environment makes a move, consisting of
performing a method call or modifying the value of an externally changeable
property. The system responds by performing a superstep, a finite sequence of
system events, and then it is again the environment’s turn. The system is the
winner of the game if all LSC requirements are satisfied, otherwise the environ-
ment is the winner.

For the finite state case, when the number of objects is finite, all types are
of finite domain, and the number of different simultaneously active copies of a
chart is bounded, the game can be solved using model-checking methods. An
implementation of the game problem is now part of the Weizmann Institute
model-checker TLV [23]. The computation complexity of the algorithms is still
a major limitation in applying this game approach.

In our current work, one of the main principles we apply is that the specifier
of the LSCs provide enough detail and knowledge of the design, to make the job
easier for the synthesis algorithm. LSCs as a declarative, inter-object behavior
language, enables formulating high level requirements in pieces (e.g., scenario
fragments), leaving open details that may depend on the implementation. The
partial order semantics among events in each chart and the ability to separate
scenarios in different charts without having to say explicitly how they should
be composed are very useful in early requirement stages, but can cause under-
specification and nondeterminism when one attempts to execute them.

In play-out, if faced with nondeterminism an arbitrary choice is made. From
our experience in several projects, by providing a detailed enough LSC require-
ment play-out can get very close to solving the game problem, and sometimes
can even solve it directly. Assuming the user provided enough knowledge for
the synthesis algorithm, the algorithm tries to prove that a certain synthesized
model will satisfy all requirements, and if it manages to do this it can safely syn-
thesize the model. This approach is not complete, thus a different synthesized
model may be correct and the synthesis algorithm may fail to find it, but our
hope is that for many interesting cases the synthesis will succeed. In a situation
where for a synthesized model we have not managed to prove it correct or to

318 David Harel, Hillel Kugler, and Amir Pnueli

find some problem with it, synthesizing a state-based model opens possibilities
to try to prove its correctness using other tools and techniques, e.g., [25, 2].

5 The Synthesis Approach

In order to apply the synthesis approach we encode play-out in the form of
a transition system and then apply model-checking techniques. We construct
a transition system which has one process for each actual object. A state in
this system indicates the currently active charts and the location of each object
in these charts. The transition relation restricts the transitions of each process
only to moves that are allowed by all currently active charts. We now provide
some more of the details on how to translate LSCs to a transition system. The
encoding of the transition relation was developed as part of our work on smart
play-out [11].

An LSC specification LS consists of a set of charts M , where each chart
m ∈ M is existential or universal. We denote by pch(m) the prechart of chart
m. Assume the set of universal charts in M is MU = {m1,m2, ...,mt}, and the
objects participating in the specification are O = {O1, ..., On}.

We define a system with the following variables:

actmi determines if universal chart mi is active. It gets value 1 when mi is active
and 0 otherwise.

msgs
Oj→Ok

denoting the sending of message msg from object Oj to object Ok.
The value is set to 1 at the occurrence of the send and is changed to 0 at
the next state.

msgr
Oj→Ok

denoting the receipt by object Ok of message msg sent by object Oj .
Similarly, the value is 1 at the occurrence of the receive and 0 otherwise.

lmi,Oj denoting the location of object Oj in chart mi, ranging over 0 · · · lmax

where lmax is the last location of Oj in mi.
lpch(mi),Oj

denoting the location of object Oj in the prechart of mi, ranging over
0 · · · lmax where lmax is the last location of Oj in pch(mi).

We use the asynchronous mode, in which a send and a receive are separate
events, but we support the synchronous mode too. The details of encoding the
transition relation are rather technical, for more information see [11].

Given this encoding we claim that play-out is correct if the following property
holds.

¬(EF (AG(
∨

mi∈MU

(actmi = 1))))

The property specified above is a temporal logic property [8]. The operators
E, A are the existential and universal path quantifiers respectively, while F
and G are the eventually and always temporal logic operators. Intuitively, this
formula claims that it is not the case that eventually play-out may get stuck,
not being able to satisfy the requirements successfully.

We now apply the model-checker to prove this property, and if it is indeed
correct we can go on and synthesize the system. The basic synthesis scheme

Synthesis Revisited: Generating Statechart Models 319

generates a statechart for each of the participating objects, using orthogonal
states for implementing different scenarios and making use of additional events
to guarantee synchronization of the distributed objects along each behavioral
scenario. More details are given in the next section. If the property does not hold
we can apply model-checking to a variation of this property and can sometimes
obtain more information on how the LSCs can be fixed so that play-out will be
correct.

6 An Example of Statechart Synthesis

We use an example of a cellular phone system to illustrate our synthesis algo-
rithms. A GUI representation of the system appears on the right-hand side of
Fig. 2. The system is composed of several objects, including the Cover, Display,
Antenna and Speaker. We consider a specification consisting of several universal
charts.

Fig. 3. Open Cover.

The chart OpenCover, appearing in Fig. 3, requires that whenever the user
opens the Cover, as specified in the prechart, the Speaker must turn silent.

The charts OpenAnt, CloseAnt, appearing in Fig. 4, specify that whenever the
user opens the Antenna the Display shows that the reception level is changed
to 4, and whenever the user closes the Antenna the Display shows that the
reception level is changed to 1.

The resulting statecharts for the Antenna and the Display obtained by ap-
plying the synthesis algorithms appear in Fig. 5 and Fig. 6 respectively. Consider
the Antenna statechart of Fig. 5. The and-state named Top contains two orthog-
onal states OpenAnt and CloseAnt, corresponding to the scenarios of opening
and closing of the Antenna.

The orthogonal state OpenAnt has three substates, P0, P1 and S0, where
P0 is the initial state entered, as designated by the default transition into P0.

320 David Harel, Hillel Kugler, and Amir Pnueli

Fig. 4. Opening and Closing the Antenna.

The states P0, P1 and S0 correspond to progress of the Antenna object along
the OpenAnt scenario, where we use the convention that P states correspond
to prechart locations while S states correspond to main chart locations. If the
Antenna object is in state P0 of the OpenAnt orthogonal component, and it
receives the event Open, it takes a transition to state P1 and performs the action
written in the label of the transition. The action has the effect of telling the other
objects that the scenario of opening of the Antenna has been activated. This is
done by sending the event activeOpenAnt to the other objects, i.e., the command
getItsDisplay C()->GEN(activeOpenAnt) generates an event activeOpenAnt
and sends it to the Display object. In a similar way the event activeOpenAnt
is generated and sent to the Cover and Speaker objects. The Antenna object,
which is now in the sub-state P1 of the OpenAnt component, takes the null
transition to state S0. Null transitions are transitions with no trigger event, and
are taken spontaneously.

The Display object is originally in state P0 of the OpenAnt orthogonal state.
It receives the event activeOpenAnt (sent by the Antenna), causing the transi-
tion to state S0 to be taken, meaning that now the object has progressed to the
main chart of the scenario. From state S0 a null transition to state S1 is taken,
and the reception level of the Display is set to volume level 4. This is done by
performing the method setReception(V 4), which sets the value of the attribute
reception to V 4. As part of the action of the transition from state S0 to state S1
the other objects are notified that the scenario of opening of the Antenna is over,
this is done by performing the command getItsAnt C()->GEN(overOpenAnt),
and similarly for other objects. The Display object then takes the null transition

Synthesis Revisited: Generating Statechart Models 321

Fig. 5. Synthesized Antenna statechart.

back to state P0. The Antenna object on receiving the event overOpenAnt takes
the transition from state S0 back to state P0. At this point the scenario of open-
ing the Antenna has completed successfully. The statechart synthesis algorithm
implements the scenario of closing the Antenna in a similar way, as reflected by
the CloseAnt components of the Antenna and Display objects.

There are several points were the synthesis algorithm can be optimized to
produce more efficient and readable models, and indeed we have a first version of
such an improved algorithm. When sending an event to all other objects to notify
them of some occurrence (for example when taking the transition from state P0
to state P1 in orthogonal component OpenAnt of the Antenna) it is enough in
our case to send the event only to the Display object, since the objects Cover
and Speaker do not participate and are not affected by the opening Antenna
scenario.

A related issue is the architecture of the synthesized model: In this exam-
ple, we allow each object to communicate directly with each of the other ob-
jects in the system, and we synthesize the relations in the UML model to allow
this. Thus, for example, the Antenna object can relate to the Speaker by the
getItsSpeaker C() command. Using an optimized algorithm, if this commu-
nication is not used the corresponding relations will not be synthesized. For
improved readability, if an action contains several commands of similar nature,
e.g., sending an event to various objects, an optimized synthesis algorithm will
define a method performing these related commands, and the label of the tran-
sition will include a call to this method, thus resulting in more readable and
elegant statecharts than those of Fig. 5 and 6.

As mentioned earlier, an important part of the synthesis is to apply the play-
out consistency check, as described in Section 5, which guarantees the correctness
of the synthesis algorithm.

322 David Harel, Hillel Kugler, and Amir Pnueli

Fig. 6. Synthesized Display statechart.

7 Related Work

The idea of deriving state-based implementations automatically from scenario-
based requirements has been the subject of intensive research efforts in recent
years; see, e.g., [17, 18, 20, 19, 29]. Scenario-based specifications are very useful
in early stages of development, they are used widely by engineers, and a lot
of experience has been gained from their being integrated into the MSC ITU
standard [21] and the UML [28]. The latest versions of the UML recognized the
importance of scenario-based requirements, and UML 2.0 sequence diagrams
have been significantly enhanced in expressive capabilities, inspired by the LSCs
of [7].

There is also relevant research on statechart synthesis. As far as the case
of classical message sequence charts goes, work on synthesis includes the SCED
method [17] and synthesis in the framework of ROOM charts [20]. Other relevant
work appears in [4, 26, 1, 19, 29]. In addition, there is the work described in [16],
which deals with LSCs, but synthesizes from a single chart only: an LSC is
translated into a timed Büchi automaton (from which code can be derived).

While the work in [10, 5] addressed the synthesis problem of LSCs from a the-
oretical viewpoint, the current paper applies new verification-based techniques
and also reports on a prototype implementation. Other aspects special to our
approach were described in Section 2 above. In addition to synthesis work di-
rectly from sequence diagrams of one kind or another, one should realize that
constructing a program from a specification is a long-known general and funda-
mental problem. For example, there has been much research on constructing a
program from a specification given in temporal logic (e.g., [22]).

Synthesis Revisited: Generating Statechart Models 323

References

1. R. Alur and M. Yannakakis. Model checking of message sequence charts. In 10th
International Conference on Concurrency Theory (CONCUR99), volume 1664 of
Lect. Notes in Comp. Sci., pages 114–129. Springer-Verlag, 1999.

2. T. Arons, J. Hooman, H. Kugler, A. Pnueli, and M. van der Zwaag. Deductive
Verification of UML Models in TLPVS. In Proc. 7th International Conference on
UML Modeling Languages and Applications (UML 2004), Lect. Notes in Comp.
Sci., pages 335–349. Springer-Verlag, October 2004.

3. D. Barak, D. Harel, and R. Marelly. InterPlay: Horizontal Scale-Up and Transition
to Design in Scenario-Based Programming. In Lectures on Concurrency and Petri
Nets, volume 3098 of Lect. Notes in Comp. Sci., pages 66–86. Springer-Verlag,
2004.

4. A.W. Biermann and R. Krishnaswamy. Constructing programs from example com-
putations. IEEE Trans. Softw. Eng., SE-2:141–153, 1976.

5. Y. Bontemps and P.Y. Schobbens. Synthesizing open reactive systems from
scenario-based specifications. In Proc. of the 3rd Int. Conf. on Application of
Concurrency to System Design (ACSD’03). IEEE Computer Science Press, 2003.

6. J.R. Buchi. State-strategies for games in Fσδ ∩Gδσ. J. Symb. Logic, 48:1171–1198,
1983.

7. W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. Formal
Methods in System Design, 19(1):45–80, 2001. Preliminary version appeared in
Proc. 3rd IFIP Int. Conf. on Formal Methods for Open Object-Based Distributed
Systems (FMOODS’99).

8. E.A. Emerson. Temporal and modal logics. In J. van Leeuwen, editor, Handbook
of theoretical computer science, volume B, pages 995–1072. Elsevier, 1990.

9. J. Fisher, D. Harel, E.J.A. Hubbard, N. Piterman, M.J. Stern, and N. Swerdlin.
Combining state-based and scenario-based approaches in modeling biological sys-
tems. In Proc. 2nd Int. Workshop on Computational Methods in Systems Biology
(CMSB 2004), Lect. Notes in Comp. Sci. Springer-Verlag, 2004.

10. D. Harel and H. Kugler. Synthesizing state-based object systems from LSC specifi-
cations. Int. J. of Foundations of Computer Science (IJFCS)., 13(1):5–51, Febuary
2002. (Also,Proc. Fifth Int. Conf. on Implementation and Application of Automata
(CIAA 2000), July 2000, Lecture Notes in Computer Science, Springer-Verlag,
2000.).

11. D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart play-out of behavioral
requirements. In Proc. 4th Intl. Conference on Formal Methods in Computer-Aided
Design (FMCAD’02), Portland, Oregon, volume 2517 of Lect. Notes in Comp. Sci.,
pages 378–398, 2002. Also available as Tech. Report MCS02-08, The Weizmann
Institute of Science.

12. D. Harel, H. Kugler, and G. Weiss. Some Methodological Observations Resulting
from Experience Using LSCs and the Play-In/Play-Out Approach. Proc. Scenar-
ios: Models, Algorithms and Tools, Lecture Notes in Computer Science, Springer-
Verlag, 2005. To appear.

13. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine. Springer-Verlag, 2003.

14. D. Harel and R. Marelly. Specifying and Executing Behavioral Requirements: The
Play In/Play-Out Approach. Software and System Modeling (SoSyM), 2(2):82–
107, 2003.

15. Rhapsody. I-Logix, Inc., products web page. http://www.ilogix.com/products/.

324 David Harel, Hillel Kugler, and Amir Pnueli

16. J. Klose and H. Wittke. An automata based interpretation of live sequence chart. In
Proc. 7th Intl. Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS’01), volume 2031 of Lect. Notes in Comp. Sci., Springer-
Verlag, 2001.

17. K. Koskimies and E. Makinen. Automatic synthesis of state machines from trace
diagrams. Software – Practice and Experience, 24(7):643–658, 1994.

18. K. Koskimies, T. Mannisto, T. Systa, and J. Tuomi. SCED: A Tool for Dynamic
Modeling of Object Systems. Tech. Report A-1996-4, University of Tampere, July
1996.

19. I. Krüger, R. Grosu, P. Scholz, and M. Broy. From MSCs to Statecharts. In Proc.
Int. Workshop on Distributed and Parallel Embedded Systems (DIPES’98), pages
61–71. Kluwer Academic Publishers, 1999.

20. S. Leue, L. Mehrmann, and M. Rezai. Synthesizing ROOM models from message
sequence chart specifications. Tech. Report 98-06, University of Waterloo, April
1998.

21. ITU-TS Recommendation Z.120 (11/99): MSC 2000. ITU-TS, Geneva, 1999.
22. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th

ACM Symp. Princ. of Prog. Lang., pages 179–190, 1989.
23. A. Pnueli and E. Shahar. A platform for combining deductive with algorithmic

verification. In R. Alur and T. Henzinger, editors, R. Alur and T. Henzinger, edi-
tors, Proc. 8th Intl. Conference on Computer Aided Verification (CAV’96), volume
1102 of Lect. Notes in Comp. Sci., Springer-Verlag, pages 184–195, 1996.

24. Rational Rose Technical Developer. Rational, Inc., web page.
http://www-306.ibm.com/software/awdtools/developer/technical/.

25. I. Schinz, T. Toben, and B. Westphal. The Rhapsody UML Verification Envi-
ronment. In 2nd Int. Conf. on Software Engineering and Formal Methods. IEEE
Computer Society Press, 2004.

26. R. Schlor and W. Damm. Specification and verification of system-level hardware
designs using timing diagram. In European Conference on Design Automation,
pages 518–524, Paris, France, 1993. IEEE Computer Society Press.

27. Telelogic TAU. Telelogic, Inc., web page.
http://www.telelogic.com/products/tau/.

28. UML. Documentation of the unified modeling language (UML). Available from
the Object Management Group (OMG), http://www.omg.org.

29. J. Whittle and J. Schumann. Generating statechart designs from scenarios. In
22nd International Conference on Software Engineering (ICSE 2000), pages 314–
323. ACM Press, 2000.

Main Concepts of Networks
of Transformation Units

with Interlinking Semantics�

Dirk Janssens1, Hans-Jörg Kreowski2, and Grzegorz Rozenberg3

1 University of Antwerp,
Department of Mathematics and Computer Science,

Antwerp, Belgium
Dirk.Janssens@ua.ac.be
2 University of Bremen,

Department of Mathematics and Computer Science,
Bremen, Germany

kreo@tzi.de
3 Leiden University,

Leiden Institute of Advanced Computer Science,
Leiden, The Netherlands

rozenber@liacs.nl

Abstract. The aim of this paper is to introduce a modelling concept
and structuring principle for rule-based systems the semantics of which
is not restricted to a sequential behavior, but can be applied to various
types of parallelism and concurrency. The central syntactic notion is that
of a transformation unit that encapsulates a set of rules, imports other
transformation units, and regulates the use and interaction of both by
means of a control condition. The semantics is given by interlinking the
applications of rules with the semantics of the imported units using a
given collection of semantic operations. As the main result, the inter-
linking semantics turns out to be the least fixed point of the interlinking
operator. The interlinking semantics generalizes the earlier introduced
interleaving semantics of rule-based transformation units, which is ob-
tained by the sequential composition of binary relations as only semantic
operation.

1 Introduction

In this paper, we introduce networks of transformation units with interlinking se-
mantics as a modelling concept and structuring principle for rule-based systems
the semantics of which may be non-sequential. The key concept is a transforma-
tion unit encapsulating a set of local rules and importing other transformation
units. Moreover, each transformation unit has a control condition that regulates
� Research partially supported by the EC Research Training Network SegraVis (Syn-

tactic and Semantic Integration of Visual Modeling Techniques) and by the German
Research Foundation (DFG) as part of the Collaborative Research Centre 637 Au-
tonomous Cooperating Logistic Processes – A Paradigm Shift and its Limitations.

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 325–342, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

326 Dirk Janssens, Hans-Jörg Kreowski, and Grzegorz Rozenberg

the application of the local rules and the interaction with the imported compo-
nents. If a set of transformation units is closed under import, its import structure
forms a network. In this way, large sets of rules can be organized and structured
in such a way that each local unit may contain only a small set of rules while
the effects of other units can be used by importing them.

In [4–7] transformation units have been introduced for graphs as well as for
more general configurations as underlying data structures and provided with a
purely sequential semantics. It is obtained by interleaving rule applications and
the semantics of the imported components in such a way that the control con-
dition is obeyed. In this paper, we generalize the framework of transformation
units such that also non-sequential systems can be specified. For this purpose,
we replace the underlying domain of binary relations on configurations by a do-
main of more general semantic entities and the sequential composition of binary
relations by a set of arbitrary operations on semantic entities. But to be able to
use set-theoretic operations and their properties, we assume that the domain of
semantic entities is the power set of a set of semantics items.

The operations on semantic entities may be chosen as sequential, parallel or
concurrent compositions or as any other operations one wants to use to model
the type of semantics one is interested in. We show that the new framework
covers nicely elementary net systems with their non-sequential processes as well
as rule-based systems with sequential and parallel derivations, covering Chomsky
grammars and various types of graph grammars in particular. This means that
not only these approaches can be seen in a unified framework, but are also
provided with a common structuring principle as a novel feature.

The paper is organized in the following way. In the next section, the ba-
sic notions and notations of transformation units with interlinking semantics
are introduced. Networks of transformation units and their iterated interlinking
semantics are studied in Section 3. Finally, the main result of this paper is for-
mulated in Section 4. It states that the iterated interlinking semantics is the least
fixed point of the interlinking operator if the used semantic operations and the
control conditions are continuous. As running examples, we discuss elementary
net systems and binary relations as semantic entities of grammatical systems of
various kinds. Because of lack of space, the proofs are omitted.

2 Transformation Units with Interlinking Semantics

In this section, we introduce the notion of transformation units with interlinking
semantics, which generalizes the formerly defined interleaving semantics.

The basis is the notion of a semantic domain (2.1) consisting of a set of se-
mantic items together with operations on semantic entities being sets of seman-
tic items. Typical semantic items are derivations, computations, and processes;
typical operations are sequential and parallel compositions of derivations, com-
putations, and processes or their embedding into larger context. To be able to
deal with semantic entities, a semantic domain is first equipped with rules yield-
ing a rule base (2.2) where a rule is some abstract syntactic feature that specifies

Main Concepts of Networks of Transformation Units 327

a semantic entity. In many examples, rules rewrite some kind of configurations
defining direct derivations and computation steps or rules are actions and events
that describe elementary processes. Therefore, a set of rules provides a set of
semantic entities the union of which may be closed under the operations of
the semantic domain. For example, if one applies the sequential composition to
direct derivations and computation steps, one gets all derivations and computa-
tions resp. Or if one applies certain kinds of parallel composition to elementary
processes, one obtains all parallel processes of a set of actions or events. Often
this is not enough to describe the behavior of a system. In addition, one may
like to choose certain initial and terminal configurations or to regulate the rule
applications by imposing a certain order or in some other way. For this purpose,
a rule base is additionally equipped with control conditions (2.3) that allow one
to restrict semantic effects. Formally, a control condition specifies a semantic
entity depending on some environment which associates semantic entities to a
given set of identifiers. The idea of this is the following. A control condition as a
syntactic feature may use the identifiers to demand or forbid the applications of
certain operations to the semantic entities associated to the identifiers and may
restrict the free operational closure of these entities in this way.

2.1 Semantic Domains

While interleaving semantics is based on the sequential composition of binary
relations, the generalization employs an arbitrary set of operations on arbitrary
semantic entities. But to keep the technicalities simple, we assume that the
semantic entities are the subsets of a set of semantic items such that we have
union, intersection, inclusion and all other set-theoretic operations and all their
properties for free.

A semantic domain D = (X,OP) consists of a set X of semantic items and
a set OP of (partial) operations on the power set 2X of X.

The arities of the operations can vary. The set of operations with arity k ∈ N
is denoted by OPk. The elements of 2X are called semantic entities.

Such a semantic domain provides the operational closure for every set of
semantic entities, which can be defined in the usual recursive way.

Let M ⊆ 2X . Then the operational closure of M, OP∗(M) ⊆ 2X , is recur-
sively defined by

(i) M ∪OP0 ⊆ OP∗(M), and
(ii) op(t1, . . . , tk) ∈ OP∗(M) for op ∈ OPk and t1, . . . , tk ∈ OP∗(M).

Starting from the nullary operations and the given semantic entities, the oper-
ations are applied repeatedly to all semantic entities that are obtained in this
way ad infinitum. The operational closure yields a set of subsets. If one wants
to consider the union of them, this may be denoted by

⋃
OP∗(M).

Examples

As running examples, we discuss elementary net systems with processes as se-
mantic items (see, e.g., [3, 8, 13]) and binary relations on configurations like words
and graphs as the semantic entities of grammatical rules (see, e.g., [12, 9]).

328 Dirk Janssens, Hans-Jörg Kreowski, and Grzegorz Rozenberg

Elementary Net Systems. Let N = (B,E, F) be some contact-free ele-
mentary net where B is a set of conditions, E is a set of events, and F ⊆
(B ×E) ∪ (E ×B) is a flow relation. Then one may consider all processes on N
as semantic items. More formally, PROC (N) is the set of all pairs proc = (N, p)
where N = (B,E, F) is an occurrence net, i.e. an acyclic and conflict-free net,
and p : N → N is a net morphism which is injective on cuts.

In particular, each acyclic and conflict-free subnet N of N together with
the inclusion inclN : N → N yields a process. As a case C ⊆ B can be seen
as a subnet sub(C) = (C, ∅, ∅) with the empty set of events and the empty
flow relation, C induces a particular process proc(C) = (sub(C), inclsub(C)).
In this way, the set of cases can be seen as a subset of the set of processes.
Moreover, an event e ∈ E (together with its pre- and post conditions) induces a
subnet sub(e) = (•e∪ e•, {e}, (•e×{e})∪ ({e}× e•)) which is acyclic due to the
contact-freeness of N and conflict-free by definition. Hence each event provides
an elementary process proc(e) = (sub(e), inclsub(e)).

There are two natural binary operations on processes: parallel and sequential
compositions. Given two processes proc = (N, p) and proc′ = (N ′, p′) with
p(N) ∩ p(N ′) = ∅, then the parallel process is given by proc + proc′ = (N +
N ′, <p, p′>) where N +N ′ is the disjoint union of N and N ′ and <p, p′> is the
induced net morphism defined as p on N and as p′ on N ′.

To define the sequential composition, we need the notion of input and output
conditions of an occurrence net N. The set of conditions with indegree 0 is de-
noted by in(N) and the set of conditions of outdegree 0 by out(N). Then the se-
quential composition of two processes proc = (N, p) and proc′ = (N ′, p′) requires
that p(out(N)) = p′(in(N ′)) and that there is no further overlap between p(N)
and p′(N ′). The result is given proc◦proc′ = (N+N ′/out(N) = (in(N ′), <p, p′>)
where the occurrence net is the disjoint union of N and N ′ which is merged in
each condition c of N and c′ of N ′ with p(c) = p′(c′). The net morphism <p, p′>
is defined as in the parallel case by p on elements of N and by p′ on elements
on N ′. It is a mapping as p and p′ coincide on the merged conditions. Note that
the sequential composition of processes proc and proc′ is only partially defined
by proc ◦ proc′ if this is a process again.

Based on these preliminaries, we can consider sets of processes on N as
semantic entities and extend the binary operations elementwise to such sets.
Moreover, each condition c ∈ B provides a nullary operation ĉ = {(proc({c})} =
{(sub({c}), inclsub({c}))} containing as only semantic item the process induced
by {c}. Altogether we get the semantic domain D(N) = (PROC (N),OP(N))
with OP(N) = {+, ◦}∪ {ĉ | c ∈ B}, which is associated to the given elementary
net N.

It should be noted that the set of processes corresponding to cases C ⊆ B is
just the closure of the nullary operations under parallel compositions. Moreover,
this set is trivially closed under sequential composition because we have obviously
in(sub(C)) = C = out(sub(C)) such that the only defined sequential composition
is proc(C) ◦ proc(C) and yields proc(C). Another significant operational closure
is considered in the next subsection.

Main Concepts of Networks of Transformation Units 329

Binary Relations. Let K be a set of configurations like strings, trees, or graphs.
Then the subsets of K × K can be considered as semantic entities describing,
for example, input/output relations.

There is always the sequential composition R◦R′ of relations R,R′ ⊆ K×K
given by R ◦R′ = {(x, z) | (x, y) ∈ R, (y, z) ∈ R′ for some y ∈ K}.

If K has got some binary operation · : K×K → K, this gives rise to a parallel
composition R ‖ R′ given by R ‖ R′ = {(x · x′, z · z′) | (x, z) ∈ R, (x′, z′) ∈ R′}.

A typical example is the concatenation of strings if K is the set A∗ of all
strings over an alphabet A. In this case, we also get an interesting unary op-
eration context that embeds a given relation R into all possible contexts, i.e.
context(R) = {(xuy, xvy) | (u, v) ∈ R, x, y ∈ A∗}.

2.2 Rule Bases

A rule base equips a semantic domain with rules as a first syntactic feature. A
rule provides a semantic entity describing basic computations.

A rule base DR = (X,OP ;R,=⇒) consists of a semantic domain (X,OP),
a class of rules R, and a rule application operator =⇒ being a mapping =⇒:
R→2X which assigns a semantic entity =⇒

r
∈ 2X to each r ∈ R.

As a rule specifies a semantic entity, a set of rules, P ⊆ R, provides a set of
semantic entities, {=⇒

r
| r ∈ P}, which can be closed under the operations of the

semantic domain. Accordingly, we denote OP∗({=⇒
r

| r ∈ P}) by OP∗(P) for

short. In this way, a set of rules P specifies a semantic entity
⋃

OP∗(P), which
contains all semantic items that are obtained by the operational closure of all
applications of rules in P.

Examples

Elementary Net Systems. The events of N may be considered as rules. Each
event e ∈ E induces a basic process proc(e) such that the singleton set {proc(e)}
is a suitable semantic interpretation of an event as a rule. In other words, there
is a rule base DR(N) = (PROC (N),OP(N);E,Proc : E → 2PROC (N)) with
Proc(e) = {proc(e)} for all e ∈ E.

As proc(e) ∈ PROC (N) for all e ∈ E and as the processes on N are closed
under the operations in OP(N), we get⋃

OP(N)∗(Proc(E)) ⊆ PROC (N)

for Proc(E) = {Proc(e) | e ∈ E}.
Conversely, let proc = (N, p) with N = (B,E, F) be a process on N. If

E = ∅, then proc equals proc(B) which is the parallel composition of all ĉ for
c ∈ p(B).

For E �= ∅, we show by induction on the number of elements in E that
proc ∈

⋃
OP(N)∗(Proc(E)).

If E = {e}, then proc is the parallel composition of proc(p(e)) with all ĉ for
c ∈ p(B)− in(sub(p(e)). This case can be used as induction base.

330 Dirk Janssens, Hans-Jörg Kreowski, and Grzegorz Rozenberg

If E has more than one element, then it is well-known that proc is the sequen-
tial composition of two subnet processes proci = (Ni, pi) with Ni = (Bi, Ei, Fi)
for i = 1, 2 and E1 �= ∅ �= E2. In particular, E1 and E2 are smaller sets than E
such that we may assume by induction that proc1 and proc2 are in the opera-
tional closure of Proc(E). Because of proc = proc1 ◦ proc2, proc is also in the
closure.

Altogether, we have proved⋃
OP(N)∗(Proc(E)) = PROC (N).

Binary Relations. Grammatical rules and all rules like these can be applied
to some kind of configurations and derive configurations from them. Such a rule
provides one with a binary relation of configurations the elements of which are
often called direct derivations or computation steps.

A well-known explicit example of this type is the rule of a semi-Thue system
or Chomsky grammar p = (u, v) for u, v ∈ A∗ and some alphabet A. This rule
specifies a binary relation −→

p
⊆ A∗ ×A∗ which is defined in infix notation by

xuy−→
p

xvy for all x, y ∈ A∗.

Similarly, all kinds of graph transformation rules define a binary relation on
the proper kinds of graphs by means of direct derivations.

If a rule r is composed of a pair (L,R) of configurations as in the case of the
rules (u, v) with u, v ∈ A∗, then there is a simple alternative to the relation of
direct derivations. This is the singleton set simple(r) = {(L,R)}.

Let us first consider the rule bases DR1(A) = (A∗ ×A∗,OP1;A∗ ×A∗,−→)
with OP1 = {◦} and DRi(A) = (A∗ × A∗,OP i;A∗ × A∗, simple) for i = 2, 3
with OP2 = OP1 ∪ {context} and OP3 = OP2 ∪ {‖}.

Then the following holds for a set of rules, P ⊆ A∗ ×A∗ :⋃
OP∗

1(P) =
⋃

OP∗
2(P) =

⋃
OP∗

3(P).

Note that the first operational closure is done for the direct derivations of
P while the other two start from the simple relations simple(p) for p ∈ P.
The first equality follows from the obvious fact that context(simple(p)) = −→

p

for all p = (u, v) ∈ P. The second follows from the well-known fact that the
parallel composition can be expressed by context embeddings and sequential
composition, i.e.

(xx′, zz′) = (xx′, zx′) ◦ (zx′, zz′.)

Given a set P of rules, the derivability relation ∗−→
p

is the sequential closure

of all applications of rules in P, i.e. {◦}∗(−→
P

) with −→
P

=
⋃

p∈P

−→
p

which equals⋃
OP∗

1(P). In other words, all three rules bases DRi(A) for i = 1, 2, 3 describe
sequential derivability through sets of rules.

Main Concepts of Networks of Transformation Units 331

2.3 Rule Bases with Control Conditions

A rule base may be additionally equipped with control conditions that allow to
regulate computations. For this purpose, its semantics depends on the environ-
ment given by semantic entities for a set of identifiers.

A rule base with control conditions DRC = (X,OP ;R,=⇒; ID , C,SEM) con-
sists of a rule base (X,OP ;R,=⇒), a set ID of identifiers, a class of control con-
ditions C, and a semantic interpretation SEM which associates each condition
C ∈ C and each semantic mapping Env : ID → 2X , called environment, with a
semantic entity SEM (C,Env) ∈ 2X .

Depending on the environment Env, a control condition C can be used to
restrict the operational closure of a set M of semantic entities by means of the
intersection

⋃
OP∗(M) ∩ SEM (C,Env).

Examples

Elementary Net Systems. An elementary net becomes an elementary net
system if an initial case is added. The idea of an initial case is that semanti-
cally only processes starting in this case are considered. Initial cases are typ-
ical examples of control conditions. Let Cin ⊆ B be some initial case. Then
its semantics SEM (Cin) consists of all processes (N, p) with p(in(N)) = Cin.
Therefore, the process semantics PROC ((B,E, F ,Cin)) of the elementary net
system (B,E, F ,Cin) coincides with the intersection of the operational closure⋃

OP(N)∗(Proc(E)) and SEM (Cin), i.e.

PROC ((B,E, F ,Cin)) = (
⋃

OP(N)∗(Proc(E))) ∩ SEM (Cin).

Let ID be a set of identifiers and Env : ID → 2X some semantic mapping.
Then the semantics of an initial case can be extended to the environment Env
in a trivial way as a case does not refer to any identifier:

SEM (Cin, Env) = SEM (Cin).

Each elementary net N = (B,E, F) induces a rule base with cases as control
conditions DRC(N) = (PROC (N),OP(N);E,Proc; ID , 2B,SEM) where SEM
is defined as above. We have shown that this rule base describes elementary net
systems with their processes starting in the initial case as semantics by using the
events as rules and the initial cases as control conditions. In 2.4 the notion of
a basic transformation unit is introduced as a syntactic modelling concept that
allows one the use of rules and control conditions explicitly.

Binary Relations. In grammatical systems, the most frequently used kind
of control condition is the choice of start symbols or some other configura-
tions as axioms to begin derivations and the choice of terminal alphabets to
describe the configurations at which derivations may end. For example, given
an alphabet A, each pair (S, T) with T ⊆ A and S ∈ A \ T specifies a binary

332 Dirk Janssens, Hans-Jörg Kreowski, and Grzegorz Rozenberg

relation SEM ((S, T)) = {S} × T ∗ ⊆ A∗ × A∗. The intersection of this relation
with the derivability relation of a set of rules, P ⊆ A∗ × A∗, contains pairs
(S,w) where S derives w and w is terminal. In other words, the intersection
(
⋃

OP∗
1(P)) ∩ SEM ((S, T)) = ∗−→

P
∩({S} × T ∗) represents the generated lan-

guage of the Chomsky grammars G = (N,T, P, S) with N = A \ T in a unique
way. This type of control condition is independent of any environment in the
same way as initial cases above:

SEM ((S, T), Env) = SEM ((S, T))

for all Env : ID → 2A∗×A∗
where ID is some set of identifiers. The same remains

true if S is replaced by an arbitrary start word or axiom z ∈ A∗.
In other words, we may extend the rule bases DRi(A) for i = 1, 2, 3 into rule

bases with control conditions:

DRCi(A) = (DRi(A); ID , A∗ × 2A,SEM).

As shown above, they allow one to describe Chomsky grammars and their gen-
erated languages within our framework.

Using a more sophisticated type of control conditions, one can also specify
Lindenmayer systems (see, e.g., [10, 11]) as grammatical systems with a mas-
sively parallel mode of rewriting. We introduce this mode in a general way to
demonstrate the role of identifiers and environments.

Let M ⊆ 2A∗×A∗
be a set of binary relations on A∗, which may be some

kind of basic computations. Then the sequential closure of the parallel closure of
M, {◦}∗({‖}∗(M)), describes massive parallelism on the semantic level as each
step of a sequence consists just of parallel computations. To express this on the
syntactic level of control conditions, one needs access to the members of M for
which we offer two ways. The first possibility is given by a set P ⊆ R of rules
and the second one by a set U ⊆ ID of identifiers together with an environment.
Formally, we introduce the control condition mp(P,U) with

SEM (mp(P,U), Env) = {◦}∗({‖}∗({simple(p) | p ∈ P} ∪ {Env(id) | id ∈ U})),

where mp refers to the term massive parallelism. If P is a set of context-free
rules, i.e. P ⊆ A×A∗, and U is empty, mp(P, ∅) describes the derivation mode
of 0L systems.

In order to combine massive parallelism explicitly with the rule based features
for binary relations, one may consider the rule bases with control conditions
DRCi(A,mp) for i = 1, 2, 3 which are obtained from DRCi(A) by adding the
control conditions {mp(P,U) | P ⊆ R, U ⊆ ID} with SEM (mp(P,U), Env) as
defined above and the combined control conditions A∗ × 2A × {mp(P,U) | P ⊆
R, U ⊆ ID} with SEM ((z, T,mp(P,U)), Env) = SEM (z, T) ∩ SEM (mp(P,U),
Env).

Instead of massive parallelism, there are other derivation modes that allow
one to control the application of grammatical rules. Further typical examples are
≤ k (= k,≥ k) for some k ∈ N requiring that the number of rule applications

Main Concepts of Networks of Transformation Units 333

for a given set of rules is not greater than k (equals k, is not less than k) and t
(for terminating) requiring that the given rules are applied as long as possible
(see, e.g., [1] for more details).

2.4 Transformation Units

A rule base provides the computational framework in which rule-based speci-
fications can be defined. The most elementary kind of such a specification in
our framework is a transformation unit that comprises a local set of rules, a
set of identifiers, and a control condition. The identifiers refer to used or im-
ported components. The control condition regulates the interaction of rules and
imported components.

Let DRC = (X,OP ;R,=⇒; ID , C,SEM) be an arbitrary, but fixed rule base
with control conditions. Then a transformation unit (over DRC) is a system
tu = (P,U,C) where P ⊆ R is a finite set of rules, U ⊆ ID is a finite set of
identifiers, which is called the use or import interface, and C ∈ C is a control
condition.

The unit is called basic if U is empty.
Examples are discussed together with the interlinking semantics at the end

of the next subsection.

2.5 Interlinking Semantics of Transformation Units

Given a semantic entity for each import identifier, i.e. a mapping Imp : U → 2X ,
the transformation unit tu specifies a semantic entity which is constructed as the
operational closure of the semantic entities given by the local rules and the im-
port as far as it meets the control condition. Because the rules and the import
are interlinked with each other through the semantic operations, the resulting
semantic entity is called interlinking semantics which is formally defined as fol-
lows:

INTERImp(tu) = (
⋃

OP∗(P, Imp)) ∩ SEM (C, Imp+)

where OP∗(P, Imp) is the operational closure of the semantic entities given by
the rules and the import mapping, i.e.

OP∗(P, Imp) = OP∗({=⇒
r
| r ∈ P} ∪ {Imp(id) | id ∈ U}),

and where the environment Imp+ : ID→2X is the trivial extension of Imp to
ID , i.e. Imp+(id) = Imp(id) for id ∈ U and Imp+(id) = ∅ otherwise.

Altogether, the interlinking semantics interlinks the semantic effects of the
local rules of the transformation unit with the imported semantic entities accord-
ing to the control condition. It should be noted that the notion of interlinking
semantics of transformation units generalizes the interleaving semantics intro-
duced in [5, 6]. The interleaving semantics concerns binary relations on graphs
or configurations resp. as semantic entities and the sequential composition of
binary relations as only semantic operator.

334 Dirk Janssens, Hans-Jörg Kreowski, and Grzegorz Rozenberg

Examples

In this subsection, only examples of basic transformation units are presented.
Examples of units with import can be found in 3.2 and 3.3.

Elementary Net Systems. Consider the rule base with control conditions
DRC(N) = (PROC (N),OP(N);E,Proc; ID , 2B,SEM) for a given elementary
net N = (B,E, F). Then an elementary net system (N,Cin) with a subnet
N = (B,E, F) of N and an initial case Cin can be interpreted as a basic transfor-
mation unit tu(N,Cin) = (E, ∅, Cin) such that the process semantics of (N,Cin)
coincides with the interlinking semantics of tu(N,Cin) using the empty mapping
Empty : ∅ → 2X as the only import mapping.

PROC (N,Cin) = INTEREmpty(tu(N,Cin)).

This follows directly from the definition of the interlinking semantics and the
considerations in 2.3.

Conversely, a basic transformation unit tu = (E, ∅, Cin) induces an elemen-
tary net system N(tu) = (B,E, F (tu), Cin) with F (tu) = F ∩((B×E)∪(E×B))
where the underlying net is the subnet of N induced by E.

Binary Relations. Consider the rule base with control condition DRC1(A) as
given in 2.3. It is shown there that the language L(G) = {w ∈ T ∗ | S ∗−→

P
w} gen-

erated by the Chomsky grammar G = (N,T, P, S) corresponds one-to-one to the
binary relation (

⋃
OP∗

1(P)) ∩ SEM ((S, T)) = ∗−→
P
∩({S} × T ∗). In other words,

the grammar G gives rise to the basic transformation unit tu(G) = (P, ∅, (S, T))
over DRC1(A) such that its interlinking semantics coincides with the gener-
ated language L(G) up to representation. According to 2.2, this remains true if
DRC1(A) is replaced by DRC2(A) or DRC3(A).

Similarly, many other kinds of grammars, like for example tree and graph
grammars, can be seen as basic transformation units such that the generated
languages correspond to the interlinking semantics if one chooses the set of con-
figurations, the set of rules, the rule application operator, single configurations
as axioms and terminal configurations properly.

As a Chomsky grammar, an 0L system G′=(A,P, z) with P⊆A×A∗ and
z ∈ A∗ can be modelled as the basic transformation unit tu(G′) = (P, ∅, (z,A,
mp(P, ∅))) over one of the rule bases with control conditions DRCi(A,mp) for
i = 1, 2, 3 such that the generated language L(G′) corresponds again to the
interlinking semantics of tu(G′).

2.6 Monotony of the Interlinking Semantics

The interlinking semantics depends on the imported semantic entities. If they
are replaced by larger sets, the environment of a transformation unit increases
automatically. The interlinking semantics and the operational closure are also
increasing if the control condition and the operations are monotone. This helps
to show in the following sections that the interlinking semantics is a fixed-point
semantics.

Main Concepts of Networks of Transformation Units 335

An operation op∈OPk for some k is monotone if op(t1, . . . , tk)⊆op(t′1, . . . , t′k)
for all ti, t′i ∈ 2X with ti ⊆ t′i and i = 1, . . . , k. Accordingly, a set of operations
is monotone if each of its elements is monotone. A control condition C ∈ C is
monotone if SEM (C,Env) ⊆ SEM (C,Env′) for all environments Env,Env′ :
ID → 2X with Env(id) ⊆ Env′(id) for all id ∈ ID .

Observation 1 Let tu = (P,U,C) be a transformation unit over a rule base
with control conditions DRC = (X,OP ;R,=⇒; ID , C,SEM), and let Imp, Imp′ :
U → 2X be import mappings with Imp ⊆ Imp′. Then the following hold:

(1) Imp+ ⊆ Imp′
+.

(2)
⋃

OP∗(P, Imp) ⊆
⋃

OP∗(P, Imp′) provided that OP is monotone.
(3) INTERImp(tu) ⊆ INTERImp′(tu) provided that C is monotone in addition.

Examples

If an operation on the powerset of a set X is the natural elementwise extension of
an operation on the underlying set X, then the extension is obviously monotone.
All operations considered for elementary net systems and binary relations are
of this kind. Moreover, all control conditions considered in the examples are
monotone because they control the composition of semantic entities independent
of their size such that the results get larger if the arguments are replaced by
larger sets.

3 Networks of Transformation Units
with Iterated Interlinking Semantics

A transformation unit is a rule-based system with a generic import. An import
identifier represents a semantic entity, but it is not fixed how it is specified. A
simple way to specify the import is to assume that the identifiers name again
transformation units. In this case the import structure forms a directed graph
leading to the notion of a network of transformation units. If the network is finite
and acyclic or if the network has no infinite path, the interlinking semantics can
be defined for all transformation units in the network. If the network has a
cycle or an infinite path, one may start with the empty semantic entity for each
transformation unit and then iterate the interlinking semantics ad infinitum.

3.1 Networks of Transformation Units

A network of transformation units over a rule base with control conditions
DRC = (X,OP ;R,=⇒;ID , C,SEM), is a system N=(V, τ) where V is a set of
nodes and τ is a mapping assigning a transformationunit τ(v)=(P (v),U(v),C(v))
to each node v ∈ V with U(v) ⊆ V.

A network of transformation units can be seen as a directed graph where
the elements of V are the nodes and the ordered pairs of nodes (v, v′) with

336 Dirk Janssens, Hans-Jörg Kreowski, and Grzegorz Rozenberg

v′ ∈ U(v) the edges. A network of transformation units is well-founded if it does
not contain an infinite path.

Note that a finite network is well-founded if and only if it is acyclic. In case
of a well-founded network, the set of nodes can be divided into pairwise disjoint
levels Vk for k ∈ N which are inductively defined by

(i) V0 containing all nodes with basic units and

(ii) Vk+1 containing all nodes u ∈ V \
k⋃

i=0

Vi with U(v) ⊆
k⋃

i=0

Vi.

3.2 Interlinking Semantics of Well-Founded Networks

The interlinking semantics of transformation units is easily extended to well-
founded networks because it can be defined inductively level by level.

Let N = (V, τ) be a well-founded network of transformation units. Then the
interlinking semantics INTER : V → 2X is inductively defined in the following
way:

(1) for v ∈ V0, we have U(v) = ∅ such that the empty mapping Empty is the
only choice for the semantics of the import part. Therefore, the interlinking
semantics of tu(v) with Empty is defined yielding

INTER(v) = INTEREmpty(tu(v)).

(2) Let us assume that INTER(v) is defined for all v′ ∈
k⋃

i=0

Vk for some k ∈ N.

(3) Consider v ∈ Vk+1. Then we have U(v) ⊆
k⋃

i=0

Vk such that Impk(v′) =

INTER(v′) is defined for all v′ ∈ U(v). Therefore, the interlinking semantics
of tu(v) with Impk is defined yielding

INTER(v) = INTERImpk
(tu(v)).

Examples

The first examples of networks of transformation units are well-founded and have
all the same simple structure with n nodes v1, . . . , vn at level 0 and one node
v0 at level 1, i.e. there is a main unit importing the other units. The examples
differ only in the choices of transformation units for the nodes.

Elementary Net Systems. In 2.5, an elementary net system (N,Cin) with
N = (B,E, F) is transformed into the basic transformation unit tu(N,Cin). But
as each event gives rise to a basic transformation unit separately with the event
as the only rule, the elementary net system can be seen as a transformation
unit that imports its event units, i.e. τ(N,Cin)(v0) = (∅, {v1, . . . , vn}, Cin) and
τ(N,Cin)(vi) = tu(ei) = ({ei}, ∅, all) for i = 1, . . . , n and E = {e1, . . . , en}. The
control condition all is a void condition the semantics of which is always the set
of all processes so that the intersection with any other semantic entity has no

Main Concepts of Networks of Transformation Units 337

effect. Hence, the interlinking semantics of tu(ei) is the closure of the process
proc(ei) and the processes proc(c) for each c ∈ B under parallel and sequential
composition. Because the sequential composition with proc(C) for C ⊆ B has no
effect and the event ei is not enabled directly after its occurrence, the sequential
compositions can be ignored, and one gets as interlinking semantics of tu(ei) all
cases and all single occurrences of ei, i.e.

INTER(vi) = INTEREmpty(tu(ei)) = 2B ∪ {proc(ei) + C | C ⊆ B \ (•ei ∪ e•i)}.

This provides also the import mapping Imp0 for the interlinking semantics
of the level-1 node v0 consisting of all sequential and parallel compositions of
the imported processes that start with Cin yielding the process semantics of the
elementary net system (N,Cin), i.e.

INTER(v0) = INTERImp0
(τ(N,Cin)(v0)) = PROC (N,Cin).

Binary Relations. Grammar systems (see, e.g., [1]) are typical examples of the
same form. The system becomes the main unit, and its components are imported.
More formally, a cooperating distributed grammar system Γ=(N,T, S, P1, . . . , Pn)
consists of a set of nonterminals N , a set of terminals T , a start symbol S ∈ N,
and a collection of finite sets of rules P1, . . . , Pn with Pi ⊆ (N ∪ T)∗ × (N ∪ T)∗

for i = 1, . . . , n. Choosing a derivation mode f (according to examples in 2.3),
Γ generates the language Lf (Γ) which contains all terminal words w that are
derived from the start symbol S by a sequence of derivations in the mode f of
the form

S
f−→

Pi1

w1
f−→

Pi2

. . .
f−→

Pim

wm = w

with m ≥ 1 and 1 ≤ ij ≤ n for j = 1, . . . ,m. The corresponding transformation
units are defined by τ(Γ)(v0) = (∅, {v1, . . . , vn}, (S, T)) and τ(Γ)(vi) = (Pi, ∅, f)
for i = 1, . . . , n. The interlinking semantics of the latter units coincides obviously
with the derivation relations with respect to the derivation mode f. And the
interlinking semantics of τ(Γ)(v0) imports these, constructs the closure under
the operations including sequential composition, and intersects the result with
{S}×T ∗ due to the control condition. Consequently, a word w is in interlinking
relation to S if and only if w ∈ Lf(Γ).

Similarly, a T0L system G′′ = (A,P1. . . . , Pn, z) with an alphabet A, a start
word z ∈ A∗ and a collection of finite sets of context-free rules Pi ⊆ A×A∗ gives
rise to a network of transformation unit. The network structure is the same as
in the last two examples, and the transformation units of the nodes are defined
by τ(G′′)(v0) = (∅, {v1, . . . , vn}, (z,A)) and τ(G′′)(vi) = (Pi, ∅,mp(Pi, ∅)) for
i = 1, . . . , n. Accordingly, the language generated by G′′ corresponds to the
interlinking semantics of the root node v0.

3.3 Iterated Interlinking Semantics of Arbitrary Networks

The problem of networks which are not well-founded is that the semantics of the
import parts of some units at the network may not be known at the moment

338 Dirk Janssens, Hans-Jörg Kreowski, and Grzegorz Rozenberg

when one wants to apply the interlinking semantics. But if one assumes to have
at least a preliminary semantics for all nodes, i.e. some semantic mapping Sem :
V → 2X , then the interleaving semantics is defined for the unit of each node wrt
to Sem restricted to the import part, i.e. Sem′(v) = INTERSem(U(v))(tu(v)) for
v ∈ V with Sem(U(v))(v′) = Sem(v′) for all v′ ∈ U(v).

The resulting semantic mapping Sem′ is denoted by INTER(Sem), and the
operator INTER, that yields semantic mappings from semantic mappings by
interlinking them with the semantic entities of the respective rules, is called
interlinking operator.

In this way, one gets another semantic mapping, which may be used as a
next preliminary semantics such that this process can be iterated ad infinitum
whenever one starts from some semantic mapping. An obvious candidate to
start is the mapping that assigns the empty set to each node of the network.
Therefore, the iterated interlinking semantics ITERATE : V → 2X of a network
of transformation units N = (V, τ) may be defined for all v ∈ V as follows:

ITERATE (v) =
⋃
i∈N

ITERATE i(v)

with ITERATE 0(v)=∅ and ITERATE i+1(v)=INTERITERATEi(U(v))(tu(v)).

Examples

The concept of networks of transformation units beyond the examples in 3.2
provide new possibilities of cooperation and distribution in the framework of
elementary net systems and of grammar systems. The examples of 3.2 may be
reconsidered. Instead of a main unit which imports all others, the main unit
imports only one of the other units which import each other. While the main
unit takes care of the global control condition only, the other units do the com-
putational work interactively.

Elementary Net Systems. Let (N,Cin) be an elementary net system, let E =
{e1, . . . , en} be its set of events, and let V = {v1, . . . , vn}. Then the second net-
work τ̂ (N,Cin) associated to (N,Cin) is given by τ̂(N,Cin)(v0) = (∅, {v1}, Cin)
and τ̂ (N,Cin)(vi) = ({ei}, V, all) for i = 1, . . . , n. Starting with the empty set of
processes at each node, the first application of the interlinking operator yields
the singleton set {Cin} as semantics of v0 and all cases and all single occurrences
of the event ei as semantics of vi for i = 1, . . . , n. As the import is empty at the
first step, the unit at vi behaves as tu(ei). The second application of the inter-
linking operator yields the set of all processes as semantics at vi for i = 1, . . . , n
as all single occurrences of all events are imported and closed under sequential
and parallel composition. The semantics at v0 contains, besides Cin, the sequen-
tial compositions of Cin with single occurrences of e1, i.e. the single occurrence
of e1 under Cin if •e1 ⊆ Cin. The third application of the interlinking operator
yields the processes of N that start in Cin at the node v0. The other semantic
entities are kept. Further iteration is not changing the semantics.

Main Concepts of Networks of Transformation Units 339

Binary Relations. Analogously, grammar systems and T0L systems can be
reconstructed as networks of transformation units of the given form.

The same remains true if the subnetwork induced by v1, . . . , vn is not com-
plete, but there is a path from each node to v1. In this case, the interlinking
operator must be iterated m + 2 times if m is the length of the longest shortest
path of a node vi to v1 for i = 1, . . . , n.

3.4 Iterated Interlinking Semantics of Well-Founded Networks

If one applies the iterated interlinking semantics to well-founded networks, the
result coincides with the ordinary interlinking semantics. This is a first indication
that the interlinking semantics is meaningful.

Observation 2 Let N = (V, τ) be a well-founded network of transformation
units. Then we have

INTER = ITERATE .

3.5 Monotony and Continuity of the Interlinking Operator

Given a semantic entity for each node of a network of transformation units,
the interlinking semantics is defined for each node yielding another semantic
entity. This is the basic operator which is iterated in the iterated interlinking
semantics. This operator turns out to be monotone and even continuous if the
used operations and control conditions are monotone resp. continuous.

An operation op ∈ OPk for some k is continuous if⋃
i∈N

op(t1, . . . , tj−1, tji , tj+1, . . . , tk) = op(t1, . . . , tj−1,
⋃
i∈N

tji , tj+1, . . . , tk).

for each j with 1 ≤ j ≤ k and each increasing chains of semantic entities tj0 ⊆
tj1 ⊆ . . . ⊆ tji ⊆ Accordingly, a set of operations is continuous if each of its
elements is continuous.

A control condition C is continuous if⋃
i∈N

SEM (C,Envi) = SEM (C,
⋃
i∈N

Envi)

for each increasing chain of environments Env0 ⊆ Env1 ⊆ . . . ⊆ Envi ⊆ . . .
with Envi : ID → 2X for i ∈ N.

Examples

All operations in the examples of this paper are operations on semantic items,
which are extended elementwise to semantic entities. Such operations are obvi-
ously monotone and continuous. The same applies to the control conditions as
they restrict the application of semantic operators independent of the content of
the semantic entities.

340 Dirk Janssens, Hans-Jörg Kreowski, and Grzegorz Rozenberg

Observation 3 Let DRC = (X,OP ;R,=⇒; ID , C,SEM) be a rule base with
control conditions and N = (V, τ) be a network of transformation units over
DRC such that OP and C(v) for all v ∈ V are continuous. Let INTER be the
corresponding interlinking operator. Then the following hold:

(1) The interlinking operator is monotone, i.e.

INTER(Sem) ⊆ INTER(Sem′)

for all semantic mappings Sem, Sem′ : V → 2X with Sem ⊆ Sem′.

(2) The interlinking operator is continuous, i.e.⋃
i∈N

INTER(Semi) = INTER(
⋃
i∈N

Semi)

for all increasing chains of semantic mappings Sem0 ⊆ Sem1 ⊆ . . . ⊆
Semi ⊆

4 Fixed-Point Theorem

Let N = (V, τ), be a network of transformation units N = (V, τ), and INTER the
corresponding interlinking operator on the semantics mappings Sem : V → 2X

defined by
INTER(Sem)(v) = INTERSem(U(v))(tu(v))

for all v ∈ V. Because their domain is a power set, it is a well-known fact
that the set of semantic mappings is a complete partial order with respect to
the argumentwise inclusion where the union of every increasing chain is the
least upper bound. In Observation 3, the interlinking operator is shown to be
monotone and continuous with respect to this complete partial order such that
Kleene’s fixed-point theorem applies. This means that the iterated interlinking
semantics is the least fixed point of the interlinking operator.

Theorem 1. Let DRC = (X,OP ;R,=⇒; ID , C,SEM) be a rule base with con-
trol conditions, and let N = (V, τ) be a network of transformation units over
DRC such that each operation is continuous and C(v) as well for each v ∈ V .
Then the iterated interlinking semantics ITERATE : V → 2X is the least fixed
point of the interlinking operator INTER, i.e.

INTER(ITERATE) = ITERATE .

It should be noted that this result generalizes the fixed-point theorem in [7],
which deals with binary relations on some set of graphs as semantic entities
and with the sequential composition of binary relations as the only semantic
operator.

Main Concepts of Networks of Transformation Units 341

5 Conclusion

In this paper, we have introduced the notion of interlinking semantics of networks
of transition units generalizing the purely sequential interleaving semantics of
earlier work. We have demonstrated that the new concept covers parallelism and
concurrency of elementary net systems and various types of grammars. The main
result is a fixed-point theorem stating that the iterated interlinking semantics is
the smallest fixed-point of the interlinking operator.

Future work should shed some more light on the significance of this ap-
proach in two respects at least. On one hand, it should be investigated how
the fixed-point theorem can be used to analyze rule-based systems and to prove
their properties. On the other hand, further case studies would be helpful to fit
in further approaches to parallelism and concurrency into our new framework.
In particular, we would like to relate parallelism and concurrency in the area
of graph transformation, which have been intensively investigated by Hartmut
Ehrig and others in the last three decades (see, e.g., the Chapters 3 and 4 in [9]
and [2] for an overview), with interlinking semantics.

Acknowledgement

We would like to thank Peter Knirsch and Gabriele Taentzer for the helpful
comments on an earlier version of this paper.

References

1. Jürgen Dassow, Gheorghe Păun and Grzegorz Rozenberg. Grammar systems. In
G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, Vol. 2.
pages 155–213, Springer, 1997.

2. Hartmut Ehrig, Hans-Jörg Kreowski, Ugo Montanari and Grzegorz Rozenberg,
editors. Handbook of Graph Grammars and Computing by Graph Transformation,
Vol. 3. World Scientific, 1999.

3. Cesar Fernandez. Non-sequential processes. In W. Brauer, W. Reisig and G. Rozen-
berg, editors. Petri nets: Central models and their properties, Advances in Petri
nets, Part I. Lecture Notes in Computer Science, vol. 254, pages 95–115, Springer,
1986.

4. Hans-Jörg Kreowski and Sabine Kuske. On the interleaving semantics of transfor-
mation units – A step into GRACE. In Janice E. Cuny, Hartmut Ehrig, Gregor
Engels and Grzegorz Rozenberg, editors. Proc. Graph Grammars and Their Appli-
cation to Computer Science. Lecture Notes in Computer Science, vol. 1073, pages
89–108, Springer, 1996.

5. Hans-Jörg Kreowski and Sabine Kuske. Graph transformation units with inter-
leaving semantics. Formal Aspects of Computing, vol. 11, no. 6, pages 690–723,
1999.

6. Hans-Jörg Kreowski and Sabine Kuske. Approach-independent structuring con-
cepts for rule-based systems. In Martin Wirsing, Dirk Pattison, Rolf Hennicker,
editors. Proc. 16th Int. Workshop on Algebraic Development Techniques (WADT
2002). Lecture Notes in Computer Science, vol. 2755, pages 299–311, Springer,
2003.

342 Dirk Janssens, Hans-Jörg Kreowski, and Grzegorz Rozenberg

7. Hans-Jörg Kreowski, Sabine Kuske and Andy Schürr. Nested graph transformation
units, International Journal on Software Engineering and Knowledge Engineering,
vol. 7, no. 4, pages 479–502, 1997.

8. Grzegorz Rozenberg. Behaviour of elementary net systems. In W. Brauer, W. Reisig
and G. Rozenberg, editors. Petri nets: Central models and their properties, Ad-
vances in Petri nets, Part I. Lecture Notes in Computer Science, vol. 254, pages
60–94, Springer, 1986.

9. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 1. World Scientific, 1997.

10. Grzegorz Rozenberg and Arto Salomaa, editors. The Book of L. Springer, 1986.
11. Grzegorz Rozenberg and Arto Salomaa, editors. Lindenmayer Systems. Springer,

1992.
12. Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages,

Vol. 1–3. Springer, 1997.
13. R.S. Thiagarajan. Elementary net systems. In W. Brauer, W. Reisig and G. Rozen-

berg, editors. Petri nets: Central models and their properties, Advances in Petri
nets, Part I. Lecture Notes in Computer Science, vol. 254, pages 26–59, Springer,
1986.

Embeddings and Contexts for Link Graphs

Robin Milner

The Computer Laboratory, University of Cambridge,
Cambridge, UK

Robin.Milner@cl.cam.ac.uk

1 Introduction

Graph-rewriting has been a growing discipline for over three decades. It grew
out of the study of graph grammars, in which – analogously to string and tree
grammars – a principal interest was to describe the families of graphs that could
be generated from a given set of productions. A fundamental contribution was,
of course, the double-pushout construction of Ehrig and his colleagues [4]; it
made precise how the left-hand side of a production, or rewriting rule, could
be found to occur in a host graph, and how it should then be replaced by the
right-hand side. This break-through led to many theoretical developments and
many applications. It relies firmly upon the treatment of graphs as objects in a
category whose arrows are embedding maps.

A simultaneous development was Petri nets [13], with a quite different moti-
vation; it was the first substantial mathematical model of concurrent processes,
and gives strong emphasis to the causality relation among events. Although Petri
nets are graphical, their study has been largely independent of graph-rewriting;
after all, a Petri net does not change its shape – only the tokens placed upon
the net actually move.

A little later came the development algebraic calculi such as CSP [1] and
CCS [12] to represent interactive concurrent processes. The key concept dis-
tinguishing them from (Petri) net theory was the emphasis upon modularity.
Initially at least, net theory focussed upon complete systems, developing pow-
erful techniques such as linear algebra to analyse them. In contrast, process
calculi focussed upon assembling larger systems from smaller ones using a va-
riety of combinators, and upon defining the behaviour of the whole in terms
of abstract entities that can be constructed from the behaviours of the parts
by algebraic operations corresponding to the combinators. This approach was
inspired by the modularity present in all good programming languages, and by
the categorical formulation of algebraic theories by Lawvere [9]; in contrast with
graph-rewriting methodology, here the graphs are the arrows in a category whose
objects are interfaces.

A recent development in process calculi by Leifer and Milner [10] is the
demonstration that labelled transition systems can be derived uniformly for a
wide variety of calculi, using the notion of relative pushout (RPO), in a category
where the arrows are processes. In the particular case of graphical process calculi
such as mobile ambients [2] or bigraphs [8], where graph-rewriting is used to

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 343–351, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

344 Robin Milner

model various kinds of mobility among processes, this naturally leads to the
need for a rapprochement between graphs-as-objects and graphs-as-arrows.

Connections between these two approaches have recently been surveyed by
Ehrig [5]. In one of these connections, previously explored for example by Gad-
ducci et al [7], graphs-as-arrows are obtained as cospans I→G← J of graphs-
as-objects, where the interfaces I and J are graphs of some simple form (e.g.
discrete). A second connection goes the other way; graphs-are-objects arise in a
coslice category of a category, or s-category, of graphs-as-arrows. This connec-
tion was first proposed by Cattani, and was exploited technically in the theory
of action calculi [3].

The purpose of the present paper is to examine this latter connection more
closely, in the context of link graphs [11], which are a constituent of bigraphs. It
is shown that, for link graphs, the coslice category is isomorphic to the natural
category of embeddings (as arrows) between so-called ground link graphs. The
connection almost certainly extends to full bigraphs. More generally, it is an open
challenge to characterise the classes of graphs (or other entities) and interfaces
for which this elegant isomorphism exists. I suggest that the existence of the
isomorphism is a valuable test of probity for any proposed class of graphs.

Preliminaries. IdX will denote the identity function on a set X , and ∅X the
empty function from ∅ to X . We shall use X � Y for union of sets X and
Y known or assumed to be disjoint, and f � g for union of functions whose
domains are known or assumed to be disjoint. This use of � on sets should not
be confused with the disjoint sum ‘+’, which disjoins sets before taking their
union. We assume a fixed representation of disjoint sums; for example, X + Y
means ({0} ×X) ∪ ({1} × Y), and

∑
v∈V Pv means

⋃
v∈V ({v} × Pv).

If f : X→Y is an arrow in a category or s-category C, we denote its domain
X and codomain Y by dom(f) and cod(f). The set of arrows from X to Y , called
a homset, will be denoted by C(X,Y).

An s-category is like category except that every arrow f has an associated a
finite set |f |, its support ; the composition gf : X→Z of f : X→Y and g : Y →Z
exists iff |f | ∩ |g| = ∅, and then |gf | = |f | � |g|. Furthermore, for f : X→Y and
an injection ρ whose domain includes |f |, there is an arrow ρ � f : X→Y called
a support translation of f , with support ρ(|f |). Support translation preserves
all structure. A general treatment of s-categories can be found in Leifer and
Milner [10], but we shall only be concerned with the special case of link graphs
where the details are obvious.

2 Link Graphs

A link graph is essentially an ordinary graph, but it carries a little more infor-
mation and each edge may link any number of nodes. A family of link graphs is
determined by the kinds of nodes it has, and these are specified as follows:

Definition 1. (signature) A signature K provides a set whose elements are
called controls. For each control K the signature also provides a finite ordinal
ar (K), its arity. We write K : n for a control K with arity n.

Embeddings and Contexts for Link Graphs 345

inner names

outer names . . .

e1

e0

v0

v2

v1

v3

y zx

K

L

L
M

x y

Fig. 1. A link graph G : {x, y}→{x, y, z}.

We now proceed to define link graphs over a signature K. Every node in a link
graph has an associated control K : n, and has n ports. Informally, the graph
consists essentially of an arbitrary linking of these ports, together with inner
and outer names, which provide access to some of the links. Figure 1 shows a
simple link graph, whose nodes have controls K, L and M with arities 1, 2 and 4
respectively. Assuming an infinite vocabulary X of names, we now give formal
definitions.

Definition 2. (interface) An interface X,Y, . . . is a finite set of names drawn
from X . We call the empty interface as the origin, and denote it by ε.

Definition 3. (link graph) A link graph

A = (V,E, ctrl , link) : X→Y

has interfaces X and Y , called its inner and outer names, and disjoint finite sets
V of nodes and E of edges. It also has a control map and a link map, respectively
ctrl : V →K and link : X � P →E � Y , where P

def=
∑

v∈V ar (ctrl(v)) is the set
of ports of A.

A ground link graph is one with no inner names, i.e. with inner interface ∅.

We shall call the inner names X and ports P the points of A, and the edges E
and outer names Y its links. Thus the link map sends points to links.

The support of a link graph consists of its nodes and edges; in terms of the
definition, |A| = V � E. If ρ is an injective map on |A|, the support translation
ρ � A is obtained by replacing each v ∈ V by ρ(v) and each e ∈ E by ρ(e)
everywhere in A.

The link graph in Figure 1 has nodes V = {v0, . . . , v3} and edges E =
{e0, e1}; note that a link can either be an edge like e0 or and outer name like z.

Definition 4. (s-category of link graphs) The s-category Lig(K)1 over a
signature K has name sets as objects and link graphs as arrows. The composition
1 The s-category Lig(K) involves concrete link graphs, whose nodes and edges have

identity. Elsewhere we have denoted this s-category by ´Lig, reserving the notation
Lig for the category of abstract link graphs in which this identity is factored out.
Here we drop the accent, since we are not concerned with abstract link graphs.

346 Robin Milner

A1A0 : X0 →X2 of two link graphs Ai = (Vi, Ei, ctrl i, link i) : Xi →Xi+1 (i =
0, 1) is defined when their supports are disjoint; then their composite is

A1A0
def= (V0 � V1, E0 � E1, ctrl , link) : X0→X2

where ctrl = ctrl0 � ctrl1 and link = (IdE0 � link1) ◦ (link0 � IdP1).
The identity link graph at X is idX

def= (∅, ∅, ∅K, IdX) : X→X .

To clarify composition, here is another way to define the link map of A1A0,
considering all possible arguments p ∈ X0 � P0 � P1:

link(p) =

⎧⎨⎩ link0(p) if p ∈ X0 � P0 and link0(p) ∈ E0

link1(x) if p ∈ X0 � P0 and link0(p) = x ∈ X1

link1(p) if p ∈ P1 .

We often denote the link map of A simply by A.
Note that the link map treats inner and outer names differently. Two inner

names may be points of the same link, but each outer name constitutes (the tar-
get of) a distinct link. The effect is that we do not allow ‘aliases’, i.e. synonymous
outer names.

Figure 2 shows an example of composing two link graphs; controls are not
shown. The shape of nodes has no formal significance. It can be seen how the
notion of s-category allows composition to preserve the identity of nodes and
edges; we can tell exactly which nodes and edges in the composite came from
each component. It is this feature that ensures the existence of RPOs, which is
essential for the dynamic theory.

yx z

w

x y z

A

B

B ◦A

v0

u0

v1

u1 u2 u3

w

u0 v1

v0

u1 u2 u3

e0

e1

e2

e0 e1e2

Fig. 2. Composing two link graphs.

Embeddings and Contexts for Link Graphs 347

3 Inclusions

In what follows we pay particular attention to ground link graphs G : ε→X , for
which we write simply G : X . We shall denote the components of an arbitrary
pair of ground link graphs Gi : Xi (i = 0, 1) by Vi, Ei, ctrl i and link i.

Definition 5. (inclusion) Let Gi : Xi be two ground link graphs with |G0| ⊆
|G1|. Then an inclusion η : G0→G1 is an injective map η : |G0|�X0→|G1|�X1,
where η = ηv � ηe � ηn satisfies the following conditions:

(1) ηv : V0 ↪→ V1 is an inclusion map
(2) ηe : E0 ↪→ E1 is an inclusion map
(3) ηn : X0→E1 �X1 is an arbitrary map
(4) ctrl1(v) = ctrl0(v) (v ∈ V0)
(5) link1(p) = η(link0(p)) (p ∈ P0) .

Thus the structure of G0 is preserved by the inclusion, except that named links
may be coalesced since ηn need not be injective. Later we shall generalise inclu-
sions to embeddings, where the two inclusions maps are replaced by injections.

Definition 6. (inclusion category) The category Inc has as objects the
ground link graphs. Its arrows are inclusions, composed as functions, with iden-
tities Id|G|.

The question immediately arises: how is Inc related to Lig? after all, both
categories insert link graphs into bigger link graphs; in Lig this is done by com-
posing them as arrows, and in Inc by maps between them as objects. Following
the idea of Cattani, we use the standard notion of a coslice for turning arrows
into objects.

Definition 7. (coslice) Let ε be any object in an s-category C. The coslice
category ε/C has as objects the arrows of C with domain ε. Each of its arrows
B : G0 →G1, for Gi : ε→Xi (i = 0, 1), consists of an arrow B : X0 →X1 in C
such that BG0 = G1. Composition and identities are defined by those of C.

We define CxtI
def= ε/Lig, whose objects are the ground link graphs.

Note that CxtI is not only an s-category but a category. Also its objects are
those of Inc. We shall now prove that these two categories are isomorphic.

Construction 8. (link graph from inclusion) For Gi : Xi (i = 0, 1), we
define a function

C : Inc(G0, G1)→Lig(X0, X1) .

For this purpose, given an inclusion η : G0 →G1 we define the components of
the link graph C(η) = B : X0→X1 as follows.

Set VB
def= V1\V0, EB

def= E1\E0 and ctrlB
def= ctrl1 �VB . Then define the link

map linkB : X0 � PB→EB �X1, where PB =
∑

v∈VB
ar(ctrlB(v)):

(1) linkB(x) def= η(x) for x ∈ X0

(2) linkB(p) def= link1(p) for p ∈ PB .

348 Robin Milner

Proposition 1. (context functor) Construction 8 yields a functor C : Inc→
CxtI.

Proof (outline) Let η : G0→G1 and B = C(η) be as in the construction. We
first establish B as an arrow in CxtI, i.e. to verify that BG0 = G1 in Lig; this
is simple case analysis, using the definitions. Then by a routine case analysis
we verify the functorial properties, i.e. that C(Id|G|) = idX for G : X and that
C(η1η0) = C(η1)C(η0).

We now proceed to show that the categories Inc and CxtI are isomorphic. For
this purpose it is enough to show that a functor between them – in this case the
functor C – is both full and faithful, i.e. bijective on each homset. To achieve
this we need only show that the function C on each homset has an inverse.

Definition 9. (inclusion from context) For Gi : Xi (i = 0, 1), we define a
function

I : CxtI(G0, G1)→Inc(G0, G1) .

Foir this purpose, given a link graph B : X0 → X1 such that BG0 = G1, we
define an inclusion η = I(B) : G0→G1 as follows:

(1) η(v) def= v for v ∈ V0

(2) η(e) def= e for e ∈ E0

(3) η(x) def= linkB(x) for x ∈ X0 .

It is a routine matter to show, using BG0 = G1, that η satisfies the five conditions
of Definition 5. Thus our function I is well-defined.

We are now in a position to prove the main theorem:

Theorem 1. (inclusions are contexts) Inc and CxtI are isomorphic cate-
gories.

Proof (outline) It only remains to prove that, as functions between the homsets
Inc(G0, G1) and CxtI(G0, G1), the two functions I are C are inverse; that is,
I ◦C = Id and C ◦I = Id. Again, the argument is a routine case analysis.

The above definitions and proofs are so natural that we may expect to find this
close tie between contexts and inclusions to hold for any natural species of graph.
We defer discussion of this to the concluding section.

An earlier instance of the close tie was found in shallow action graphs [3]
where – due to Cattani’s insight – we proved an analogous result. There, the
definitions were harder, and the proof correspondingly less obvious. The theorem
also served useful purpose: We needed to prove the existence of RPOs for a
contextual category of shallow action graphs, and we observed that an RPO in
the contextual category (or s-category) corresponds exactly to a coproduct in
the coslice category. Therefore, via the isomorphism of categories, it corresponds
to a coproduct in the category of inclusions; so we conducted the proof in the
latter category.

Embeddings and Contexts for Link Graphs 349

4 Embeddings

The category Inc of inclusions is rather thin, in the sense that, given G0 and
G1, there is often at most one way to include G0 in G1. This is not surprising,
because there is at most one inclusion map between two given sets. Indeed, for
G0 : X0, it can be shown that if the link map of G0 is surjective on X0 (in link
graph terminology, G0 has no idle names) then Inc(G0, G1) has at most one
member.

Let us now consider graph embeddings. In normal graph theory, an embed-
ding of G0 in G1 is naturally understood to be a defined as a pair of maps,
mapping respectively the nodes and the edges of G0 into those of G1, with the
proviso that they respect the graph structure. Here, unless otherwise stated, we
consider embeddings to be injective.

Injection maps are more numerous than inclusion maps. We can reflect this
for link graphs by deriving embeddings from inclusions, as follows:

Definition 10. (embeddings of link graphs) An embedding φ : G0 → G1

is a pair φ = (η, ρ) of a bijection ρ on |G0| and an inclusion η : ρ �G0→G1.
The category Emb of embeddings has ground link graphs as objects and

embeddings as arrows. The identity embedding on G is (Id|G|, Id|G|), and the
composition (η1, ρ1)(η0, ρ0) is the unique pair (η, ρ) of an inclusion and a bijec-
tion such that ηρ = η1ρ1η0ρ0.

Can we extend our correspondence between contexts and inclusions to a cor-
respondence between contexts and embeddings? Clearly we need a more generous
notion of context, one that permits support translation of a ground link graph
G before composition with a context B. This is captured by defining a thicker
form of coslice:

Definition 11. (thick coslice) The thick coslice category ε//Lig has as ob-
jects the ground link graphs. Each arrow takes the form (B, ρ) : G0→G1, where
ρ is a bijection on |G0| and B(ρ �G0) = G1 in Lig. Composition is given by

(C, σ)(B, ρ) def= (C(σ �B), σρ)

and identities take the form (idG, Id|G|). We shall denote ε//Lig by CxtE.

Corollary 1. (embeddings are contexts) Emb and CxtE are isomorphic
categories.

Proof We easily find that (B, ρ) : G0→G1 is an arrow in CxtE iff B : ρ �G0→
G1 is an arrow in CxtI. The rest follows from Theorem 1.

This is the most important consequence of our main theorem. It shows that
a natural class of injective embeddings can be ‘defined’ from an s-category of
graphs-as-arrows.

As mentioned earlier, the notion of support in s-categories keeps track of
the identity of nodes and edges through composition, thus ensuring the exis-
tence of RPOs for link graphs, as required by the dynamic theory. Sassone and

350 Robin Milner

Sobocinski [14] have proposed G-categories (G for groupoid) as an alternative
way to keep track of this identity. The above programme can also be followed in
G-categories; the natural approach is as follows (a familiarity with 2-categories
is helpful here).

A 2-category C is an enriched category where each homset C(X,Y) becomes
a category itself; that is, there are second-order arrows called 2-cells between the
ordinary first-order arrows. The two compositions obey a simple structural law.
Sassone and Sobocinski specialise 2-categories to G-categories, those in which
every 2-cell is an isomorphism; they have also verified the existence of generalised
RPOs, called groupoid RPOs, in suitable cases.

This leads to treating link graphs as first-order arrows in a G-category Lig2;
composition is fully defined (unlike in an s-category) via suitable renaming of
nodes and edges, and the 2-cell isomorphisms keep track of the identity of nodes
and edges.

2-categories also possess a generalised form of coslice (yielding a category,
not a 2-category). So the previous programme can be followed, coslicing at the
origin to form ε/Lig2. It then appears that the programme can be completed by
proving this category isomorphic to a category of embeddings between ground
link graphs.

5 Conclusion

The coslice correspondence between graphs-as-arrows and graph-as-objects is
rather straightforward in the case of link graphs, and this suggests that for
other graphical structures it may be equally straighforward. As mentioned in
the introduction, we would like to find conditions on a graphical structure that
will guarantee an isomorphism between the coslice category and the embedding
category.

A related question arises from the observation that the coslice construction
goes from graphs-as-arrows to graphs-as-objects, while the cospan construction
goes the other way. Could these constructions be inverse to one another?

It would be natural to look at this question first for link graphs; here, the
cospans I →G← J are simple because the interfaces are just discrete graphs.
Thereafter the question can be investigated for more complex graphical struc-
tures with more complex interfaces.

The rationale of this paper is that, as graphical models of computing be-
come more important – as they must do with the increasing emphasis on spatial
structure and mobility in real systems – so it becomes more important to knit
together different graphical formulations into a single theory.

References

1. Brookes, S.D., Hoare, C.A.R. and Roscoe, A.W. (1984), A theory of communicating
sequential processes. J. ACM 31, pp560–599.

Embeddings and Contexts for Link Graphs 351

2. Cardelli, L. and Gordon, A.D. (2000), Mobile ambients. Foundations of System
Specification and Computational Structures, LNCS 1378, pp140–155.

3. Cattani, G.L., Leifer, J.J. and Milner, R. (2000), Contexts and Embeddings for
closed shallow action graphs. University of Cambridge Computer Laboratory, Tech-
nical Report 496. [Submitted for publication.] Available at http://pauillac.

inria.fr/~leifer.
4. Ehrig, H. (1979) Introduction to the theory of graph grammars. Graph Grammars

and their Application to Computer Science and Biology, LNCS 73, Springer Verlag,
pp1–69.

5. Ehrig, H. (2002) Bigraphs meet double pushouts. EATCS Bulletin 78, October
2002, pp72–85.

6. Ehrig, H. and König, B. (2004), Deriving bisimulation congruences in the DPO
approach to graph-rewriting. Proc. FOSSACS 2004, LNCS 2987, pp151–156.

7. Gadducci, F., Heckel, R. and Llabrés Segura, M. (1999), A bi-categorical axiomati-
sation of concurrent graph rewriting. Proc. 8th Conference on Category Theory in
Computer Science (CTCS’99), Vol 29 of Electronic Notes in TCS, Elsevier Science.

8. Jensen, O.H. and Milner, R. (2004), Bigraphs and mobile processes (revised). Tech-
nical Report 580, University of Cambridge Computer Laboratory. Available from
http://www.cl.cam.ac.uk/users/rm135.

9. Lawvere, F.W. (1963), Functorial semantics of algebraic theories. Dissertation,
Columbia University. Announcement in Proc. Nat. Acad. Sci. 50, 1963, pp869–
873.

10. Leifer, J.J. and Milner, R. (2000), Deriving bisimulation congruences for reactive
systems. Proc. CONCUR 2000, 11th International Conference on Concurrency
theory, pp243–258. Available at http://pauillac.inria.fr/~leifer.

11. Leifer, J.J. and Milner, R. (2004), Transition systems, link graphs and Petri nets.
Forthcoming Technical Report, University of Cambridge Computer Laboratory.

12. Milner, R. (1980) A Calculus of Communicating Systems. LNCS 92, Springer Ver-
lag.

13. Petri, C.A. (1962), Kommunicaten mit automaten. Schriften des Institutes für
Instrumentelle Mathematik, Bonn.

14. Sassone, V. and Sobocinski, P. (2002), Deriving bisimulation congruences: a 2-
categorical approach. Electronic Notes in Theoretical Computer Science, Vol 68
(2).

Towards Architectural Connectors for UML

Fernando Orejas1 and Sonia Pérez1,2

1 Departament LSI,
Universitat Politècnica de Catalunya,

Barcelona, Spain
2 Instituto Superior Politécnico José Antonio Echevarŕıa,

Havana, Cuba
{orejas,sperezl}@lsi.upc.es

Abstract. The notion of architectural connector was developed by Allen
and Garland [1] as an important concept for the design of software ar-
chitectures. In this paper, based on previous work introducing a generic
approach for the definition of component-based concepts, we study how
architectural connectors and components can be defined for class and se-
quence diagrams as a first step for applying this approach to full UML.
In particular, the case of sequence diagrams is studied with some detail.
A case-study of a lift system is used to illustrate these ideas.

1 Introduction

The development of component-based systems is nowadays an important area
in software engineering. In this context, a lot of work has been dedicated to
different issues related to approach, such as the development of methodologies
and the implementation of middleware and other related tools. However, much
less work has been dedicated to the modelling and specification phase of this
kind of systems. In this sense, an approach that we consider very interesting
is based on the use of architectural connectors [1, 8]. In this approach archi-
tectures are built in terms of two kinds of units: components and connectors.
Components are not connected directly, but through connectors. Components
offer some functionality and connectors describe policies of interaction of the
connected components. Originally work, the language used for the specification
and modelling of components and connectors was CSP [6]. The work using this
approach was followed by Fiadeiro (e.g. see [5]), who generalized in some sense
the approach by putting it into a categorical context in the framework of the
coordination language COMMUNITY.

In [3], we developed a very generic approach for the definition of components
whose aim was to allow the definition of component concepts associated to arbi-
trary formal or semiformal specification methods. The idea was that one could
instantiate this generic approach to any arbitrary method, as long as one could
prove that it satisfied certain properties. In particular, different instantiations
were sketched in terms of Petri Nets, graph transformation systems or algebra
transformation systems. We also studied how the approach in [3] could be used

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 352–369, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards Architectural Connectors for UML 353

to define generic architectural connectors. In particular, preliminary results, in-
cluding an instantiation to Petri Nets, were presented in [4].

In the case of UML [7], a de facto standard for many industrial applications,
the notion of component [2] has a very limited nature, being essentially a kind
of syntactic package. In this paper, we present some basic ideas for the instan-
tiation of our approach to the case of UML. In particular, we study how we can
define architectural connectors and components in the case of class and sequence
diagrams.

In particular, with very little detail in the case of class diagrams and more
detail in the case of sequence diagrams, we study how the notions of embedding
and transformation (which are key notions in our approach) can be defined.
And we show that these notions satisfy the required properties. Especially, the
so-called extension property.

The paper is organized as follows. In the next section we review our generic
approach to components and architectural connectors. First we describe the
approach presented in [3] and then, in the second subsection, we see how this
approach can be adapted to define architectural connectors. The third section is
the main one. First, we sketch the instantiation of our approach to the case of
class diagrams and, then, we study sequence diagrams in some detail. In section
4, we present a small case study, a lift system, to show how these concepts can
be applied in practice. Finally, in the last section, we draw some conclusions.

2 A Generic Framework
for Architectural Components and Connectors

In this section we will describe the generic component framework introduced in
[3], including some variations and extensions needed in this paper. More pre-
cisely, in the first subsection we will introduce our generic approach to architec-
tural components and, in the second subsection, we will show how to represent
architectural connectors in this framework.

2.1 Generic Components

Components are self-contained units, where some details are hidden to the exter-
nal user. This is achieved by providing a clear separation between the interfaces
and the body of the component. There are two kinds of interfaces: import and
export interfaces. The export interfaces describe external views of the behavior
of the component including the services that a component offers to the outside
world. On the other hand, the import interfaces describe what the component
assumes about the environment, including the services used inside the compo-
nent that are assumed to be provided by other components. The interfaces are
used to interconnect components. In particular, we can connect or compose two
components by matching an import interface of one component with an export
interface of the other component [9]. In [3] we assumed that each component
had just one import and one export interface. On the contrary, in this paper we

354 Fernando Orejas and Sonia Pérez

will consider components including more than one import or export interface. In
this way one component can be interconnected to several other components.

Our approach is generic in several senses. The first one is that we do not
establish, a priori, the kind of specification or modelling technique that has to
be used to describe the interfaces or the body of a component. On the contrary,
the idea is that the same concepts can be used in connection with different
techniques or formalisms.

Obviously, the import and export interfaces should be connected to the body
in some well-defined way. However, we are also generic here. We leave open
the kind of connectors used to relate the interfaces and body. Intuitively, we
assume that the import connections (binding the import interfaces to the body)
are some kind of inclusion or embedding, in the sense that the functionality
defined in the body is built upon the import interfaces. We also assume that the
export connections (binding the export interfaces to the body) are some kind of
transformation describing a refinement of each export interface.

Now, to define an adequate semantics, ensuring the compositionality of the
interconnection operations, we must impose some requirements on the kinds
of inclusions and transformations considered for the given specification formal-
ism (for more details see [3]): we assume that a transformation framework
T consists of a class of transformations, which is also closed under composi-
tion and includes identical transformations and a class of embeddings, which
is a subclass of the class of transformations and that is closed under composi-
tion and includes the identical embeddings, and such that the following exten-
sion property is satisfied: For each transformation trafo : SPEC1 ⇒ SPEC2,
and each inclusion i1 : SPEC1 ⊆ SPEC′

1 there is a selected transformation
trafo′ : SPEC′

1 ⇒ SPEC′
2, with inclusion i2 : SPEC2 ⊆ SPEC′

2, called the ex-
tension of trafo with respect to i1, leading to the following extension diagram:

SPEC2

SPEC1

SPEC4

SPEC3

�

�

� �

trafo trafo′

i2

i1

It must be pointed out that, in a given framework T , given trafo and i1
as above, there may be several trafo′ and i2, that could satisfy this extension
property. Our assumption means that only one such trafo′ and i2 are chosen,
in some well-defined way, as the extension of trafo with respect to i1.

Essentially, this extension property means that if one can apply a transfor-
mation on a certain specification, then it should be possible to apply the “same”
transformation on a larger specification.

As said above, we consider that the import interfaces of a component must
be, in some sense, independent. More precisely, we characterize independence in
terms of three conditions. The first one states that if two (or more) specifications
are embedded into a given one SPEC, then we can transform or refine in parallel

Towards Architectural Connectors for UML 355

each of these specifications and obtain a new specification SPEC′ which includes
all these refinements and is a transformation of SPEC. The second condition
states that extensions are a special kind of parallel extensions. Finally, the last
condition states that we can iterate this kind of parallel transformations. In
particular, the last two conditions imply that all these refinements may be done
not in parallel, but sequentially, leading to the same result.

Definition 1. A family of embeddings ij : SPECj → SPEC, (j = 1..n) is
independent if the following properties are satisfied:
– For every family of transformations tj ∈ Trafo(SPECj), (j = 1..n), there

exists a selected transformation t ∈ Trafo(SPEC) and selected independent
embeddings i′j , (j = 1..n) such that the diagram in figure 1 commutes.
t is called the parallel extension of {tj}j=1..n with respect to {ij}j=1..n and
is denoted as PE{ij}j=1..n

({tj}j=1..n)
– For any SPECj , 1 ≤ j ≤ n, given the extension diagram of figure 2 and

any SPECk, 1 ≤ k ≤ n, we have that the diagram in figure 3 is a parallel
extension diagram, where i′′k is the composition of ik and t′′. Note that, in
this case, we are asking that the composition of the embedding ik and the
transformation t′′ should be an embedding

– Parallel extension diagrams can be composed vertically.

In this context, we can define our generic notion of component:

Definition 2. A component consists of a body specification with a list of import
specifications together with the corresponding embeddings, which are pairwise
independent, and a list of export specifications together with the corresponding
transformations into the body specifications. Thus, a component will have this
general form

(B, 〈b1 : I1 → B, ..., bn : In → B)〉, 〈e1 : E1 =⇒ B, ..., en : En =⇒ B〉)
A possible graphical representation is given in figure 4.

2.2 Architectural Connectors

The notion of architectural connector was developed by Allen and Garland [1]
as an important concept for the design of component systems. This approach
was then used in a more categorical context by Fiadeiro and Lopes [5] as the

SPEC1

t1

��

i1

������������
. . . SPECn

tn

��in������������

SPEC′
1

i′
1

������������ SPEC

t

��

SPEC′
n

i′
n������������

SPEC′

Fig. 1. Parallel Extension.

SPECj

tj

��

ij �� SPEC

t′′

��
SPEC′′

j

i′′
j �� SPEC′′

Fig. 2. Extension Diagram.

356 Fernando Orejas and Sonia Pérez

SPECj

tj

��

ij �� SPEC

t′′

��

SPECk
ik

��

id

��
SPEC′′

j

i′′
j �� SPEC′′ SPECk

i′′
k

��

Fig. 3. Extension as parallel extension.

I1

b1

���
��

��
��

� E1

e1

�� ��
��

��
��

��
��

��
��

... B ...

In

bn

		��������
Em

em

��������

��������

Fig. 4. Diagram of a component.

basis for their COMMUNITY approach. In this approach architectures are built
out of two kinds of units: components and connectors. Components are not
connected directly, but through connectors. Components offer some functionality
and connectors describe policies of interaction of the connected components. For
instance, in the example used as a case study in this paper (a system to control
a lift, or a set of lifts, of a building) a component describes the functionality of
a lift, another component describes the set of buttons that we have in the floors
and another component describes the set of buttons that we have inside the lift,
In this context, a connector used to interconnect these three components may
describe the policy to satisfy the existing calls at a given moment.

In our generic approach, Allen and Garland’s components can be seen as
components having just export interfaces, called ports in [1], while connectors
can be seen as components having just import interfaces, called roles in [1]. More
precisely, this means that, in this context, a component COMP = (B, 〈e1 :
E1 =⇒ B, ..., en : En =⇒ B〉) for n ≥ 0 is given by the body B and a family of
export interfaces Ei with export transformations ei : Ei =⇒ B for i ∈ {1, ..., n}.
A connector CON = (B, 〈b1 : I1 → B, ..., bn : In → B〉) for n ≥ 2 is given by the
body B and a family of import interfaces Ii with body embeddings bi : Ii → B
for i ∈ {1, ..., n}.

Now we can define formally how a connector connects different components.
Given a connector CON = (B, b1, ..., bn) of arity n, and n components COMPi

= (Bi, ei1 , ..., eimi
) of arity mi with connector transformations coni : Ii =⇒ Eik

with 1 ≤ k ≤ mi for i ∈ {1, ..., n} then we obtain the connector diagram in
Figure 5:

Towards Architectural Connectors for UML 357

B

I1

b1

�����������

con1

��

. . . In

bn

��									

conn

��
E1k1

e1k1

��

Enkn

enkn

��
E1j1

e1j1 B1
. . . Bn Enjnenjn

��

Fig. 5. Connector Diagram.

Now we are able to define the composition of components.
The composition of n components by a connector of arity n is defined

as follows: Given the corresponding connector diagram (see Figure 5, where,
for every i, ti = eiki

◦ coni) we construct the corresponding parallel exten-
sion diagram (1) in Figure 6. The result of the composition of the components
COMP1, ..., COMPn by the connector CON with the connection transforma-
tions con1, ..., conn is again a component.

Based on this kind of connector diagrams, we could define a notion of con-
nectors architecture as a diagram involving several components and connectors
interconnecting them in a non-circular manner. In [4] we proved that such archi-
tectures denote, after the evaluation of all the composition operations involved, a
component which is independent on the order of evaluation of these operations.

I1

t1

��

� �

b1

��

. . . In

tn

��

��

bn����
��

��
��

B1 � �

b′
1

��

 B

t

��

Bn��

b′
n����

��
��

��

B′

Fig. 6. Composition.

3 Architectural Connectors for UML Diagrams

An UML specification is a set of diagrams of different kinds. Therefore, an obvi-
ous approach for defining an instantiation of our generic notion of connectors and
components for UML is to instantiate the corresponding concepts for each kind
of diagram. In this paper we will only consider the cases of class (with not much
detail) and sequence diagrams, but similar ideas can be used in the definition of
components and connectors for activity, state and collaboration diagrams. One
may consider this approach in some sense insufficient. In particular, we may think

358 Fernando Orejas and Sonia Pérez

that these concepts (e.g. the notion of refinement) should consider all kinds of
diagrams at once and not separately to avoid inconsistencies between the various
refinements involved. This is certainly true. However, the inconsistency between
the different parts of an UML specification is a general problem of UML spec-
ifications that we think that should be studied independently. Nevertheless, at
some points below, when defining the notion of refinement for sequence diagrams
we may mention some additional conditions related to class diagrams.

Now, defining these instantiations for a given class of diagrams means to
define notions of embedding and transformation or refinement and showing that
they satisfy the required properties (e.g. the extension property). In the follow-
ing subsections we will define embeddings and transformations for each kind of
diagram considered. However, we will study these diagrams without full detail.
We think that considering all kinds of details and variations associated to a
given class of diagrams will make the paper too boring and would not add any
interesting insights to the problem.

3.1 Class Diagrams

We will consider that a class diagram C1 is embedded in a class diagram C2 if C1

is a subdiagram of C2 up to the renaming of some of the labels (e.g. the names
of a class, a method, etc.). This means that, obviously, the requirements for
embeddings are satisfied. In particular, embeddings are closed under composition
and the identity is an embedding.

Now, in order to define a notion of transformation between class diagrams we
must first provide some intuition. We consider that a class diagram is, essentially,
the definition of a signature. In particular, in a class diagram we define (we
give name to) classes, methods, attributes, etc. This is essentially syntax. The
semantics of these elements is given by means of other kinds of diagrams or by
an associated OCL specification (not considered in this paper). Only some of the
existing relations between classes of a given diagram provide some semantics. In
this context, we consider that a refinement of a class diagram is just another
class diagram where the latter involves some new elements (classes, methods,
relations, etc.) that may be used to refine some elements of the former or that
they are just considered hidden when going into a higher level of abstraction. But
we think that no additional “semantic” relation is needed to define a refinement.
In this sense, we consider that a transformation of class diagram is also just an
embedding.

As a consequence, all the required conditions to instantiate our generic con-
cepts to the case of class diagrams are trivially satisfied. In particular, extensions
would just be defined in terms of pushouts (unions with some possible renamings
to avoid name clashes).

3.2 Sequence Diagrams

In the case of sequence diagrams components would typically consist of several
diagrams and not just of a single one. As a consequence, we will first define

Towards Architectural Connectors for UML 359

embeddings between single diagrams and, then, extend this notion to sets of
diagrams. In particular, we will consider that a sequence diagram is embedded
into another one if the latter describe the same set of interactions (up to renam-
ing) in the same partial order, perhaps intertwined with some other additional
interactions. To be more precise:

Definition 3. A sequence diagram S over a set of messages M is a triple
(L, LocL, I), where L is the set of lifelines corresponding to the objects that are
shown in the diagram; for each l ∈ L Locl is the totally ordered set of locations
corresponding to the lifeline l; and I is a set of interactions, where an interaction
ε is a triple (loc1, loc2, m) where loc1 and loc2 are locations associated to some
lifelines in L and m is a message in M and such that two interactions never occur
simultaneously, i.e. if (loc1, loc2, m), (loc3, loc4, m

′) ∈ I, with (loc1, loc2, m) �=
(loc3, loc4, m

′) and loci, locj ∈ Locl, i ∈ [1, 2], j ∈ [3, 4] then i �= j.
Moreover, we assume that sequence diagrams must satisfy that the precedence

relation defined over the set of interactions of the diagram, precI , is a partial
order, where precS is the reflexive and transitive closure of the least relation sat-
isfying that given (loc1, loc2, m), (loc′1, loc

′
2, m

′) ∈ I if loci, loc′j (i, j ∈ [1, 2]) are
in the same lifeline and loci < loc′j then (loc1, loc2, m), (loc′1, loc

′
2, m

′) ∈ precI .

A sequence diagram may involve any number of “useless” locations, i.e. lo-
cations that do not take part in any interaction.

Definition 4. A sequence diagram S = (L, LocL, I) is minimal if for every
location loc ∈ LocL there is an interaction (loc1, loc2, m) ∈ I such that loc = loc1

or, loc = loc2.

In what follows, we will assume that all diagrams are minimal.

Definition 5. A message renaming h : M → M ′ is an injective mapping on
sets of messages.

Let S be a sequence diagram over M , the renaming of S = (L, LocL, I)
through h : M → M ′, denoted h(S) is the sequence diagram (L, LocL, I ′), where
I ′ is the set of interactions:

{(loc1, loc2, h(m))/(loc1, loc2, m) ∈ I}

Let S = (L, LocL, I) be a sequence diagram over M , S′ = (L′, Loc′L′ , I ′) a
sequence diagram over M ′ and h : M → M ′ a message renaming such that
L ⊆ L′. An h-based embedding i : S ⇒ S′ is an L-indexed family of injective
mappings t = {il : Locl → Loc′L′}l∈L preserving the order relations (i.e., they
must be poset monomorphisms), such that:

1. For every (loc1, loc2, m) ∈ I, with loc1 ∈ Locl1 and loc2 ∈ Locl2 , we have
that (il1(loc1), il2(loc2), h(m)) ∈ I ′.

2. If m′ ∈ h(M) then for every (loc′1, loc
′
2, m

′) ∈ I ′ there is (loc1, loc2, m) ∈ I
such that (il1(loc1), il2(loc2), h(m)) = (loc′1, loc

′
2, m

′) ∈ I.

Note that, according to this definition, all the interactions in the diagram
S must be present in the diagram S′ exactly in the same order (up to message
renaming, but S′ may include additional interactions. However, we consider that

360 Fernando Orejas and Sonia Pérez

these additional interactions should be new, i.e. should not be in h(M). The
intuition is that the embeddings should preserve in some sense the behavior.
In particular, let us suppose that a diagram describes that, after sending the
message a, an object sends a message b and then a message c. We think that this
behavior would not be preserved by a diagram describing that the same object
sends first the message a, then c, then b and then c. However, we could consider
this behavior preserved if in between the sequence a,b,c, another message d is
sent which could be considered not visible in S.

Now, we can extend this definition to deal with sets of sequence diagrams.
The most obvious extension would be to define embeddings of sets of diagrams
in a pointwise manner, i.e. as a family of embeddings between the two sets where
each diagram in the first set is embedded into another diagram in the second set.
However, we think that this may be insufficient. It must be possible to embed
a diagram in terms of a set of diagrams, or rather, in terms of the composition
of a set of diagrams. Probably, several kinds of composition of diagrams may be
sensible, however we have chosen just a simple kind which we feel that should
be enough for most purposes. In particular:

Definition 6. Given two diagrams S = (L, LocL, I) and S′ = (L′, Loc′L′ , I ′)
over a set of messages M, we define the composition S + S′ as the diagram
over M (L ∪ L′, Loc′′L∪L′, I ∪ I ′) where for each l ∈ L ∪ L′, Loc′′l is the poset
Locl + Loc′l,

1 where + denotes disjoint union and all the elements in Locl are
considered smaller than all the elements in Loc′l.

It may be noted that this composition operation is associative, but not com-
mutative. Now, we can define embeddings on sets of diagrams:

Definition 7. Let S be a set of sequence diagrams over M , S′ be a set of se-
quence diagrams over M ′ and h : M → M ′ a message renaming. An h-based
embedding i : S ⇒ S′ consists of an h-based diagram embedding for each diagram
S ∈ S: i = {iS : S ⇒ S′/S′ is the composition of a set of diagrams in S′}S∈S .

Obviously, if we consider full UML specifications, including (at least) class
diagrams and sets of sequence diagrams, then the renamings corresponding to
the embeddings defined for each class of diagrams must be consistent.

It should be obvious that the requirements for embeddings are satisfied. In
particular, embeddings are closed under composition and the identity is an em-
bedding.

Now, as we did for the embeddings, we will define transformations for sets
of sequence diagrams, extending a definition of diagram transformation. In our
opinion, when considering refinement relations between sequence diagrams we
may consider two different kinds of intuitions. A straightforward one is to con-
sider a refinement relation as an implementation relation, i.e. a sequence diagram
is refined by another one if the latter can be seen as an implementation of the
former. In particular, if we consider that single interactions (sending messages)

1 If l is not in L we assume Locl to be the empty set and, similarly, if l is not in L′

we assume Loc′l′ to be empty.

Towards Architectural Connectors for UML 361

are refined or implemented by other sequence diagrams, then we could define
that a sequence diagram D1 is refined by another sequence diagram D2 if D2

is the composition of diagrams implementing the interactions in D1. However,
this is not the only intuition in our context. In particular, if D2 is a refinement
of D1, the latter diagram may be just an abstraction of D2, in the sense that
some of the interactions described in the body are hidden in D1 because they are
considered irrelevant detail. In particular, this means just that D1 is embedded
in D2. Putting these two intuitions together, we have that a transformation is a
combination of an “implementation” and an embedding:

Definition 8. Let L and L′ be sets of lifelines such that L ⊆ L′, M and M ′

sets of messages and S a set of sequence diagrams whose sets of lifelines are
included in L′. Let T be a set of L-typed interactions over M , i.e. a subset
of L × L × M . An implementation I of T by (L′, S) is a pair of mappings
(ILines : L → 2L′

, IMess : T → S), such that:

1. For every lifeline l in L, l ∈ ILines(l)
2. If l0 �= l1 then ILines(l0) ∩ ILines(l1) = ∅
3. If IMess(l0, l1, m) = (L1, Loc1L, I1) then L1 = ILines(l0) ∪ ILines(l1)

If I is an implementation and ε = (loc0, loc1, m) is an interaction in the
diagram S = (L, LocL, I), we define I(ε) as follows: if loc0 ∈ l0 and loc1 ∈ l1 and
IMess(l0, l1, m) = S′ then I(ε) = S′; otherwise, I(ε) is the diagram consisting
only of the interaction ε.

Let S = (L, LocL, I) be a diagram over M and I an implementation by (L′, S)
of a set T of L′′- typed interactions over M , where L ⊆ L′′ then the application
of I to S, denoted I(S) is defined as follows. Let 〈ε1, . . . , εn〉 be a sequence of
interactions, with I = {ε1, . . . , εn}, such that (εj , εk) ∈ precI then j < k; then
I(S) = I(ε1) + . . . + I(εn).

Finally, if S is a set of diagrams over M and I an implementation by (L′, S′)
of T , then the application of I to S, denoted I(S), is the set of all diagrams I(S)
such that S ∈ S.

The intuition of implementations is, on one hand, that in the refinement of
each lifeline other lifelines may be involved, which are considered hidden at a
higher abstraction level. In this sense, the first condition states each lifeline is
part of its own refinement. The second condition states that a given lifeline can-
not be involved in the implementation of two different lifelines. On the other
hand, the third condition, states that if a given (typed) interaction is imple-
mented by a certain diagram, then this diagram includes only the lifelines which
implement the lifelines occurring in the interaction. Then, applying an imple-
mentation to a diagram means replacing all the interactions by the corresponding
diagrams defined by the implementation. Note that we allow to apply an imple-
mentation to diagrams whose sets of lifelines do not coincide, but are included,
in the set of lifelines implemented by I.

Note also that, given a message renaming h : M → M ′, the translation of a
sequence diagram D over M and an h-based refinement associated can be seen
as a special cases of implementations.

362 Fernando Orejas and Sonia Pérez

It may be proved that the definition of I(S) is independent of the specific
sequence of interactions chosen. In particular if ε and ε′ are independent interac-
tions then I(ε)+I(ε′) = I(ε′)+I(ε). The reason is that, if the two interactions
are independent then the lifelines involved in the interactions are disjoint and,
as a consequence, the sets of lifelines involved in the diagrams I(ε) and I(ε′)
are also disjoint. In this context, we can define a notion of transformation or
refinement over sequence diagrams.

Definition 9. Let S = (L, LocL, I) be a sequence diagram over M and S′ =
(L′, Loc′L′ , I ′) a sequence diagram over M ′. A transformation t : S ⇒ S′ is
a pair (I, i), where I is an implementation by (L′, S′) of a set T of L-typed
interactions over M and i is an embedding of I(S) into S′.

Now, we can extend this definition to deal with sets of sequence diagrams
in a similar way as we did with embeddings, i.e. by allowing a diagram to be
refined in terms of the composition of several other diagrams. However, to be
consistent in the refinement of the different diagrams we will assume that the
implementation used is always the same one:

Definition 10. Let S be a set of sequence diagrams over M and S′ a set of
sequence diagrams over M ′. A transformation t : S ⇒ S′ is a pair (I, i), where
I is an implementation by (L′′, S′′) of a set T of L′′-typed interactions over M
and where L′′ includes all the sets of lifelines of the diagrams in S, and i is an
embedding of I(S) into S′.

It should be clear that this notion of transformation satisfies that is closed
under composition and that the identity is a transformation. Therefore, we just
have to prove that the the two notions of embedding and transformation satisfy
the extension property. We will do this in four steps. First, we will show that if
i1 : S0 → S1 and i2 : S0 → S2 are embeddings then we can define a diagram S3

that embeds S1 and S2. Actually, the construction is a pushout in a category
of embeddings, although we will not prove it. The second step will be to show
that if i1 : S0 → S1 is an embedding and I2 is an implementation such that of
I2(S0) = S2 then we can define an implementation I1 such that I1(S1) embeds
S2. From these two properties, we can easily conclude the extension property
for single diagrams. Finally, we will prove the extension property for sets of
diagrams.

Proposition 1. Let Sj = (Lj , Locj
Lj

, Ij), be sequence diagrams over Mj, for
j = 0, 1, 2, respectively. Let h1 : M0 → M1 and h2 : M0 → M2 be message
renamings, i1 : S0 → S1 and i2 : S0 → S2 are h1 and h2-based embeddings,
respectively. Let M3 be the pushout (on the category of sets) defined on figure 7.

Let L3 be L2 + (L1 \ L0) (i.e. the pushout in the category of sets of L2 and
L1 sharing L0) and let Loc3l, for each l ∈ L3 be the pushout (on the category of
posets) defined on figure 8.

Finally, let S3 be the diagram (L3, Loc3L3, I3) over M3, where the set of
interactions

Towards Architectural Connectors for UML 363

M0

h2

��

h1 �� M1

h′
1

��
M2

h′
2 �� M3

Fig. 7. Definition of M3.

Loc0l

i2l

��

i1l �� Loc1l

i′1
l

��
Loc2l

i′2
l �� Loc3l

Fig. 8. Definition of Loc3l.

I3 = {(i′1(loc), i
′
1(loc

′), h′
1(m)/(loc, loc′, m) ∈ I1}

∪ {i′2(loc), i
′
2(loc

′), h′
2(m)/(loc, loc′, m) ∈ I2}

Then, i′1 : S1 → S3 and i′2 : S2 → S3 are h′
1 and h′

2-based embeddings,
respectively.

By construction, the proof of this proposition should be obvious.

Definition 11. Let h1 : M0 → M1 be a message renaming, Lj sets of lifelines,
for j = 0, 1, such that L0 ⊆ L1, T a set of L0-typed interactions over M0, and I
an implementation of T by (L,S) for given sets L of lifelines and S of diagrams
over a set of messages M . Then, we define T ′ and I ′, called the extensions of T
and I with respect to h1 and L1, as follows: T ′ is the set of L1-typed interactions
over M1:

T ′ = {(l1, l′1, h1(m))/(l1, l′1, m) ∈ T0

and I ′ is the implementation of T ′ by (L′ + (L1 \ L0), S) be defined as follows:

– For every l ∈ L0, I ′
Lines(l) = ILines(l) and for every l ∈ (L1\L0), I ′

Lines(l) =
{l}

– For every (l1, l′1, h1(m)) ∈ T ′, I′
Mess(l1, l

′
1, h1(m)) = IMess(l1, l′1, m)

Proposition 2. Let Sj = (Lj , Locj
Lj

, Ij) be sequence diagrams over Mj, for
j = 0, 1, respectively. Let h1 : M0 → M1 be a message renaming, i1 : S0 → S1

an h1-based embedding, I an implementation of a set T of L0-typed interactions
over M0 by (L, S), and let T ′ and I ′ be the extensions of T and I with respect
to h1. Then, the diagram I(S0) is embedded into I ′(S1).

Proof. According to the definition of I ′, we have that if 〈ε′1, . . . , ε′n〉 is an ordered
sequence of the interactions in I1 then:

I ′(S1) = I′(ε1) + . . . + I ′(εn)

On the other hand, by definition, we know that for every interaction (l0, l′0, m0)
∈ S0, I(l0, l′0, m0) = I′(i1(l0), i1(l′0), h1(m0)). This means that I(S0) is the sum

I′(S1) = I′(εj1) + . . . + I ′(εjm)

of a subset of {I′(ε1), . . . , I ′(εn)}. This directly implies the embedding.

Proposition 3. Let Sj = (Lj , Locj
Lj

, Ij), be sequence diagrams over Mj, for
j = 0, 1, 2, respectively. Let h1 : M0 → M1 be a message renaming, i1 : S0 → S1

an h1-based embedding, and t2 : S0 → S2, t2 = (I2, i2) a transformation.

364 Fernando Orejas and Sonia Pérez

S0

I
��

h1 �� S1

I′

��
S2

i2

��

i′
2 �� S′

3

i′
3

��
S′

2

i′′
2 �� S3

Fig. 9. Extension of diagram transformations.

Let S′
3 be I′(S1) where I′ is the extension of I with respect to h1 and let i′2

be the embedding whose existence was proved in the previous proposition.
Let S3 be the the diagram associated to the embeddings i2 and i′2, defined

according to proposition 1, which embeds S′
2 via i′′2 and S′

3 via i′3 (for a graphical
explanation, see figure 9).

Then, S3 embeds S2 via i′′2 ◦ i′2 and refines S1 via t1 = (I ′, i′3)

Proof. The proposition is a direct consequence of the previous two propositions.

Theorem 1. Let Sj be sets of sequence diagrams over Mj, for j = 0, 1, 2, re-
spectively. Let h1 : M0 → M1 be a message renaming, i1 : S ⇒ S′ an h1-based
embedding and t2 : S0 ⇒ S2 a transformation, (I, i2). Then, there is a set of
diagrams S3, such that S2 is embedded into S3 and S3 refines S1.

Proof. Let S3 be h′2(S2) ∪ I′(S′
1), where S′

1 = S1) ∪ {i1(S0)/S0 ∈ S0 and I ′ is
the extension of I with respect to h1.

Now, by construction, S3 obviously embeds S2 since S3 includes a renaming of
the diagrams in S2. On the other hand,S3 refines S1 since I ′(S1) is included in S3.

4 An Example

In this section we will present a small example of the use of this kind of com-
ponent system. For brevity we will only use sequence diagrams, which means
that the corresponding class diagrams will remain implicit. The example de-
scribes a lift system including just one lift. However, a system including several
lifts would not be difficult to describe using the same components, but a more
complex connector.

We consider that a lift system can be built (at a certain level of abstraction)
out of three kinds of components: the elevators themselves, including the doors
and the engines to move the lift; the buttons that are located inside the lift; and
the set of buttons which are located in each floor (for simplicity we will consider
that there is only one button per floor and not two, as it usually happens). Also
for simplicity, will only describe the normal scenario describing the system, i.e.
we will not consider abnormal situations. Now, let us model these components.

The body of the elevator can be described by the diagram in figure 10.

Towards Architectural Connectors for UML 365

Doors Engine

MoveTo(X)

Close

Open

MoveTo(X)

Scheduler Elevator

{elevator at floor X}

Fig. 10. Elevator Body.

This diagram describes the following scenario. Someone, which we have called
the scheduler, tells the elevator to move to floor X. This causes the doors to close
and when they are closed (an ack is received), the elevator sends a message to
the engine to move to floor X. When the elevator is at floor X, the doors open
and the scheduler is acknowledged that the operation has been completed. Now
for the interface there are details that can be abstracted from this diagram. In
particular, for the use (as a component) of the elevator, we do not need to know
about how doors are opened or how the engine works. So, the elevator interface
is just the diagram in figure 11.

Scheduler Elevator

{elevator at floor X }

 Goto(X)

Fig. 11. Elevator Interface.

Obviously, this interface is refined by the body of the component (actually
the transformation is just an embedding). Now, the body of the component
describing the buttons inside the lift is presented in figure 12.

In particular, when a user presses the button to go to floor X, the light
associated to that button is switched on and a message is sent to the elevator
to move to floor X. When the elevator is at that floor the light will be switched
off. We have considered that it is the elevator who sends the message to switch
off the light. Instead, we may have considered that when elevator is at floor X,

366 Fernando Orejas and Sonia Pérez

Press(X)

{elevator at floor X}lightOff(X)

lightOn(X)

 User Button Lights Elevator

Goto(X)

Fig. 12. Buttons Body.

it will send an acknowledgement to the button object who, then, will switch
off the light. Now, according to this body diagram, the interface describing the
connection to the interacting components can be seen in figure 12.

Again, the refinement between this interface and the body of the component
is just an embedding. The component associated to the set of buttons which are
located in each floor could be described exactly in the same way as the previous
one. Note that this would not have been true if there would be two buttons per
floor.

Now, if we want to build a lift system, including just one lift, we need to
connect these three components. The body of this connector would consist of
three diagrams, where two of them would be almost identical. In particular the

{elevator at floor X}lightOff(X)

Goto(X)

 Button Lights Elevator

Fig. 13. Buttons Interface.

Towards Architectural Connectors for UML 367

Goto(X)

 C_buttons Scheduler

Fig. 14. Connector Body 1.

first diagram (see figure 14) describe that, when a request is received from some
set of buttons (for instance the cabin buttons located inside the elevator, C-
buttons), this request is received by a scheduler (which will probably store the
request in some queue). A similar diagram would be needed to describe the
situation when the request is received from the buttons located in the floors. We
have not shown this diagram. The third diagram (see figure 15) describes that,
when the first request to serve refers to floor X, the scheduler sends a message
to the elevator to go to that floor. When the elevator acknowledges that the
elevator is at floor X, then the scheduler asks the two sets of buttons to switch
off the lights corresponding to that floor.

Now, the connector would have three interfaces, the first two which are again
almost identical would consist of two diagrams. The first one would coincide with
the first body diagram (figure 14). The second one, see figure 16, describes the
interaction for switching off the lights upon arrival at a given floor. The third
interface describes the interaction with the elevator and would be identical to
the elevator interface (figure 11).

The composition of the connector with the three components would provide
the expected global specification of the lift system. The connection of the eleva-

{elevator at floor X}

goto(X)
{first = X}

lightOff(X)

 C_buttons F_buttons Scheduler Elevator

lightOff(X)

Fig. 15. Connector Body 2.

368 Fernando Orejas and Sonia Pérez

lightOff(X)
{elevator at floor X}

 C_buttons Scheduler

Fig. 16. Connector Interface 2.

tor interface with the corresponding connector’s interface is trivial, since both
interfaces are equal. In the case of the buttons, the connection must be made via
a transformation. In particular, we would need to say that the C-buttons life-
line in the connector’s interface is implemented in terms of the lifelines Button
and Lights from the button component; and, similarly, the lightOff(X) message
is implemented by a diagram that includes only one interaction, consisting of
sending the message lightOff(X) from the Scheduler to the Lights lifeline.

5 Conclusion

In this paper, we have presented some basic ideas for the definition, in the context
of UML, of connectors and components for the architectural design of software
systems, following the approach presented in [1]. This was done by adapting and
instantiating the generic approach presented in [3]. In particular, we studied
how we can define architectural connectors and components in the case of class
and sequence diagrams, defining and studying the notions of embedding and
transformation, which are needed for the application of the approach presented
in [3].

It must be said that, yet, there is much work to be done for the complete
definition, in the context of UML, of the framework presented in [1]. On one
hand, other kinds of diagrams have to be considered. Although, we think that
the ideas presented in this paper could be useful when dealing with these other
diagrams. On the other hand, we just studied the foundations for the definition of
connectors and components for the kinds of diagrams considered, but we did not
want to present a specific constructions for this aim. Finally, the development of
new tools (or the customization of existing ones) for providing support for this
kind of architectural design would also be needed.

Acknowledgements

This work is partially supported by the Spanish project MAVERISH (TIC2001-
2476-C03-01) and by the CIRIT Grup de Recerca Consolidat 2001SGR 00254,
and by the European RTN project SegraVis (RTN2-2001-00346). The stay of
Sonia Pérez in Barcelona was supported by the European Alfa Net CORDIAL
(AML/B7-311-97/0666/II-0021-FA).

Towards Architectural Connectors for UML 369

References

1. R. Allen, D. Garlan. A Formal Basis for Architectural Connection. In ACM TOSEM
’97, pp. 213–249.

2. J. Cheesman, J. Daniels. UML Components. Addison-Wesley, 2001.
3. H. Ehrig, F. Orejas, B. Braatz, M. Klein, M. Piirainen. A Generic Component

Framework for System Modeling. In Proc. FASE 2002, Springer LNCS 2306 (2002),
pp. 33–48.

4. H. Ehrig, J.Padberg, B. Braatz, M. Klein, M. Piirainen, F. Orejas, S. Perez, E.
Pino. A Generic Framework for Connector Architectures based on Components and
Transformations. Proc. FESCA 2004, Barcelona.

5. J.L. Fiadero, A. Lopes Semantics of Architectural Connectors. Proc TAPSOFT ’97,
Springer LNCS 1214 (1997), pp. 505–519.

6. C. A. R. Hoare: Communicating Sequential Processes Prentice-Hall 1985
7. J. Rumbaugh, I. Jacobson, G. Booch. The Unified Modeling Language Reference

Manual. Addison Wesley (1999).
8. Mary Shaw and David Garlan Software Architecture: Perspectives on an Emerging

Discipline Prentice Hall, 1996
9. A.M. Zaremski, J.M. Wing. Specification Matching of Software Components. In

ACM TOSEM ’97, pp. 333–369.

Loose Semantics of Petri Nets�

Julia Padberg1 and Hans-Jörg Kreowski2

1 Technische Universität Berlin,
Fakultät IV, Informatik und Elektrotechnik,

Berlin, Germany
padberg@cs.tu-berlin.de

2 Universität Bremen,
Fachbereich für Mathematik und Informatik,

Bremen, Germany
kreo@tzi.de

Abstract. In this paper, we propose a new,loose semantics for place/tran-
sition nets based on transition systems and generalizing the reachability
graph semantics. The loose semantics of a place/transition net reflects all
its possible refinements and is given as a category of transition systems
with alternative sequences of events over the net. The main result states
that each plain morphism between two place/transitions nets induces a
free construction between the corresponding semantic categories.

1 Introduction

Petri nets are one of the most thoroughly investigated approaches with a multi-
tude of extensions and variants. They are one of the most prominent specification
techniques for modeling concurrency and have a wide range of application areas
in practice. In this paper, we introduce a new semantics for Petri nets which is
based on transition systems. The semantics of a net is given by a class of mod-
els corresponding to all possible refinements of a net with respect to transition
refinement. In this sense, it is a loose semantics as known and well accepted in
the area of data type specification (see, e.g. [24]).

The semantics we define here is developed in view of system specification. It is
suitable for relating different stages of refinement. This is obviously important for
the vertical structuring, but as well for horizontal structuring with abstraction
mechanisms like parameterization and modularization.

The reachability graph is a standard model of a place/transition net describ-
ing all possible sequences of firings of transitions starting from an initial marking.
Our new semantics generalizes this net semantics in such a way that a firing of a
transition can be refined by sequences of events. Moreover, we allow alternative
possibilities for each such refinement. Typical examples of alternative sequences
are the interleavings of independent events. Altogether, the loose semantics of a
place/transition net consists of the class of transition systems with alternative
sequences of events including the reachability graph. This class forms a category
� Research partially supported by the EC Research Training Network SegraVis.

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 370–384, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Loose Semantics of Petri Nets 371

in a natural way. As the main result of the paper, we show that each plain mor-
phism between two place/transition nets induces a free construction between
the corresponding semantic categories. This is the key result that allows one to
consider Petri nets as building blocks of parameterization and modularization.

We continue this paper by introducing state transition systems that capture
our idea of alternatives and refinement. In Section 3, we show that transitions
systems over Petri nets can be considered as a loose semantics of the correspond-
ing Petri net. Next we show that we obtain a free functorial construction of the
place/transition net semantics, based on contravariant forgetful functor. Subse-
quently in Section 5 we treat the relation to other approaches in some detail and
discuss at last the impact of a loose semantics for Petri nets in Section 6.

2 Transition Systems with Alternative Sequences

In this section, we recall the notion of state transition systems and add a new
feature to them: a relation of alternative sequences of events. Transition systems
with alternative sequences will be combined with place/transition nets in the
next section.

A state transition system STS = (S, E, TS, ŝ) is given by a set of states S,
a set of events E, the set of transitions TS ⊆ S × E × S, and the initial state
ŝ ∈ S.

If one reads the events along the paths in state transition systems, one gets
sequences of events. More formally, we write s0

w−→ sn if there is some sequence
of transitions (si−1, ei, si) ∈ TS for i = 1, .., n and w = e1e2...en ∈ E∗ or if
w = λ and s0 = sn.

Next we want to consider some of these sequences of events as alternatives
to each other. To make this precise, let AS ⊆ E∗ × E∗ be some relation on E∗

and ASCon denote its congruence closure, i.e. the closure of AS that is reflexive,
symmetric, transitive, and congruent with respect to concatenation. Moreover,
let E� denote the quotient factoring E∗ through ASCon and [] : E∗ → E� the
canonical function with [](w) = [w] for all w ∈ E∗ where [w] = {w′|(w, w′) ∈
ASCon} is the congruence class of w ∈ E∗.

Definition 1 (Transition Systems with Alternative Sequences). A tran-
sition system with alternative sequences TSA = (S, E, TS, ŝ, AS) is given by
a state transition system (S, E, TS, ŝ) and the relation of alternative sequences
AS ⊆ E∗ × E∗ subject to the following consistency condition:

∀w′ ∈ [w] : s
w−→ s′ ⇐⇒ s

w′
−→ s′

The consistency condition ensures that alternatives are alternatives at all states.
So, they are global alternatives in the following sense: Whenever there is a state
where the sequence w occurs the alternative sequence w′ ∈ [w] has to occur as
well.

Next we examine morphisms between transition systems with alternative
sequences. We allow mapping one event e1 ∈ E1 to a congruence class of se-
quences of events by a morphism fE : E1 → E�

2 with fE(e1) = [w]. This

372 Julia Padberg and Hans-Jörg Kreowski

denotes the refinement of one event by alternative sequences of events. The
morphism fE : E1 → E�

2 can be extended uniquely by fE
� : E�

1 → E�
2 defined

for w = e1 · ... ·en ∈ E∗
1 by f�([w]) = f(e1) · ... ·f(en), where the concatenation of

congruence classes is defined by the congruence class of the concatenation, i.e.
[u] · [v] = [uv].

Definition 2 (TSA-Morphisms). Given transition systems with alternative
sequences TSAi = (Si, Ei, TSi, ŝi, ASi) for i = 1, 2, then a TSA-morphism is
given by f : TSA1 → TSA2 with f = (fS , fE) and fS : S1 → S2 and fE : E1 →
E�

2 such that the following conditions hold:

1. Existence of a path: For all (s1, e1, s
′
1) ∈ TS1 and for all e1

2 ·e2
2·...·en

2 ∈ fE(e1)

there is a path fs(s1)
e1
2−→ s1

2

e2
2−→ s2

2
∗−→ sn

2

en
2−→ fs(s′1).

2. Reachability of initial state: We have ŝ2
∗−→ fS(ŝ1).

3. Preservation of alternatives: Given (w, w′) ∈ AS1 then we have f�
E([w]) =

f�
E([w′]) for the unique extension fE

� : E�
1 → E�

2 and w ∈ E∗
1 .

Then we obtain:

– Composition g ◦ f : TSA1 → TSA3 of the morphisms f : TSA1 → TSA2

and g : TSA2 → TSA3 is given by the composition of its components with
(g ◦ f)S = gS ◦ fS and (g ◦ f)E : g�E ◦ fE, where gE

� : E�
2 → E�

3 is the unique
extension.

– Identity idTSA : TSA → TSA is given by idTSA = (idS , []E).

Hence, we have the category TSA of transition systems with alternative se-
quences.

Note, condition 3 obviously implies f�
E([w]) = f�

E([w′]) for any w′ ∈ [w] ∈ E�
1

(see [21]) and the composition is well-defined as we have congruence with respect
to concatenation.

Example 1 (Transition Systems with Alternative Sequences). Here we give a
short example of some transition systems with alternative sequences, where we
concentrate on the events and depict the states merely as •, and the initial state
by → •. The numbers adjacent to the states are merely used to illustrate mor-
phisms later on. First, we investigate the examples in Fig. 1 to illustrate our
notion of morphisms and subsequently we give an interpretation of the example.

All states are mapped injectively. TSA1 is mapped to TSA2 by f , where
fE(s) = [s] = {s} and fE(d) = [d] = {d}. Preservation of alternatives is satisfied
as AS1 = ∅. The TSA morphism g : TSA2 → TSA3 is defined for the events
by gE(s) = [t] = {t, uv}, gE(s′) = [s′] = {s′}, gE(d) = [d] = {d}, and gE(d) =
[d] = {d}. Preservation of alternatives is satisfied since we have g�E([sd]) =
[td] = {td, uvd, s′d′} = [s′d′] = g�E([s′d′]). The composition g ◦ f is for the
events obviously given by g�E ◦ fE(s) = g�E([s]) = [t] = {t, uv} and g�E ◦ fE(d) =
g�E([d]) = [d] = {d}. Again preservation of alternatives is satisfied since (gE ◦
fE)�([sd]) = g�E ◦ f�

E([sd]) = [td] = {td, uvd, s′d′} = [s′d′] = (gE ◦ fE)�([s′d′]).
The interpretation of this example is that the transition system TSA1 describes
a simple system with the following events s for start, d for distribute, r for

Loose Semantics of Petri Nets 373

�

�

�

	

TSA1 with AS1 = ∅

s d

q r

s d

q r

s d

q r

s d

q r
....1

2

4

5

7

8

3 6 9

g◦f

��

f

��

g

��

�

�

�

	

TSA2 with AS2 = {(sd, s′d′)}

s d

q r
....

s d

q r

s d

q r

d’s’d’s’ d’s’

s d

q r

d’s’

�

�

�

	

TSA3 with AS3 = {(td, s′d′), (t, uv)}
d’s’

d

q r
....

d

q r

d

q r

d

q r

t t

d’s’d’s’

t

d’s’

t
u

v
u

v
u u

vv

Fig. 1. Transition systems.

receive, and q for quit. These events follow each other as depicted in Fig. 1.
The transition system TSA2 states that the sequences of events sd and s′d′ are
alternatives. Whenever one of both occurs at a certain state the other does so
too. This describes independently of the syntactic specification that a system has
different, but equally desired sequences of events. As in the case of our example,
they need not be induced by single events. In TSA2 two alternatives for starting
and distributing namely sd or s′d′ result in the same state, and they do that
in any case. Nevertheless neither s and s′ nor d and d′ are alternatives. By the
morphism g : TSA2 → TSA3 we refine the event s by [t] = {t, uv}, that is s can
be expressed either by the event t or the sequence uv.

3 Transition Systems with Alternative Sequences
over Net Systems

In this section, we associate place/transition systems with transition systems
with alternative sequences. We use place/transition nets in the usual way with
weighted arcs so that the pre- and post-domains of transitions as well as the

374 Julia Padberg and Hans-Jörg Kreowski

markings are multisets over the sets of places (as the algebraic notation in [14]).
Given a set P , let the set of finite multisets over P be denoted by P⊕.

Then a place/transition net is given by N = (P, T, pre, post, m̂) where P is
the set of places, T the set of transitions, pre, post : T → P⊕ are mappings
associating a pre- and a post-domain to each transition, and m̂ ∈ P⊕ is the
initial marking.

The set of finite multisets over P is the free commutative monoid over P. An
element w ∈ P⊕ can be presented either by the natural function w : P → N or
as a linear sum w =

∑
p∈P λp · p, and we can extend the usual operations and

relations on N as ⊕, �, ≤, and so on to P⊕. Moreover, we need to state how often
is a basic element with in an element of the free commutative monoid given. We
define this for an element p ∈ P and a linear sum w =

∑
p∈P λp · p ∈ P⊕ with

w|p = λp for p ∈ P⊕ and w|Q =
∑

p∈Q λp · p for a subset Q ⊆ P .
The pre-set •x and the post-set x• are defined as usual, and so is the set of

reachable markings [m̂ >.
The set of enabled transitions is [T > = {t ∈ T |m[t> m′ for some m ∈ [m̂>}.
We now define transitions systems that can be viewed as models of a net,

where a refinement of the enabled transitions and the representation of the states
relate the net to the transition system. In particular, we allow refinements of
transitions to be equivalence classes of alternative sequences.

Definition 3 (Transition Systems with Alternative Sequences over
Place/Transition Nets). A transition system with alternative sequences TSA
over a place/transition net N = (P, T, pre, post, m̂) consists of a transition sys-
tem with alternative sequences TSA = (S, E, TS, ŝ, AS, rep, ref) and two func-
tions rep : [m̂ > → S and ref : [T > → E� subject to the following conditions:

1. Representation of markings: The function rep : [m̂> → S represents the
reachable markings.

2. Refinement of transitions: The function ref : [T > → E� refines the transi-
tions.

3. Reachability of initial marking: We have ŝ
∗−→ rep(m̂).

4. Existence of a path: For all m[t> m′ with m ∈ [m̂> we have a path for all
w ∈ ref(t) so that rep(m) w−→ rep(m′).

Note that we may have ref(t) = [λ] only for transitions where for all m, m′ ∈
[m̂> with m[t> m′ we have rep(m) = rep(m′). Next we establish the category
of transition systems with alternative sequences over N . Hence, this category is
the loose semantics of a net N .

Definition 4 (Category TSA(N) of Transition Systems with Alterna-
tive Sequences over N). The category TSA(N) of transition systems with
alternative sequences over the place/transition net N = (P, T, pre, post, m̂) is
given by the class of transition systems TSA = (S, E, TS, ŝ, AS, rep, ref) over
N , and by TSA-morphisms f : TSA1 → TSA2 with rep1 : [m̂1 > → S1 and
ref1 : [T1 > → E�

1 (resp. rep2 : [m̂1 > → S2 and ref2 : [T1 > → E�
2) satisfying

the following conditions:

Loose Semantics of Petri Nets 375

1. Preservation of representation: fS ◦ rep1 = rep2.
2. Preservation of transition refinement: f�

E ◦ ref1 = ref2.

Now we have a class of transition systems for each net. Moreover, it is a cate-
gory so we have morphisms, that denote refinements of events with alternatives.
To illustrate this new type of net semantics, we now present the well-known
producer-consumer net and discuss its loose semantics.

Example 2 (Producer-Consumer).
In Fig. 2 we have the well-known
producer-consumer net with the
transitions s for start, d for dis-
tribute, r for receive, and q for
quit. This net is obviously closely
related to the transition systems in

p1

p2

d b r

c2

q

c1

s

Fig. 2. Producer-Consumer net PCN .

Fig. 1. This producer-consumer net PCN denotes a part of the category
TSA(PCN) of transition systems over this net.

The transition system TSA1 is extended by the representation function
rep1 : [m̂ > → S1 with rep1(p1 ⊕ c1) = 1, the follower marking is mapped
by rep1(p2 ⊕ c1) = 2, rep1(p1 ⊕ b ⊕ c1) = 3, and so one, where the numbers
denote the states of transition system TSA1 in Fig. 1. The transitions are re-
fined trivially by themselves, ref1(s) = [s] = {s}, ref1(d) = [d] = {d}, and so
forth. The transition systems TSA2 and TSA3 with suitable representations and
refinements are clearly transition systems over PCN .

The transition system TSA1 is isomorphic to the reachability graph of PCN
and hence it is initial in this category (see Section 5).

The loose semantics for some place/transition net N comprises all possible re-
finements, where we use refinement in a very broad sense: A transition can be
refined by various alternatives of event sequences including the empty sequence.
The only requirement is that the source of these event sequences needs to be
the representation of the marking before firing the transition, and the target
of the sequence needs to be the representation of the marking after firing the
transition. The initial object is the usual reachability graph R(N) of a net N
(see Section 5). So, the classical semantics of a net is a distinguished member of
the loose semantics and any transition system TSA in TSA(N) is a refinement
of R(N), as there is a unique morphism from R(N) to TSA.

4 Free Construction of the Loose Semantics
over Plain Morphisms

Based on the algebraic notion of Petri nets [14] we use simple homomorphisms
that are generated over the set of places. These morphisms map places to places
and transitions to transitions. Morphisms are the basic entity in category theory;
they can present the internal structure of objects and relate the objects. So they
are the basis for the structural properties a category may have and can be used
successfully to define various structuring techniques.

376 Julia Padberg and Hans-Jörg Kreowski

Definition 5 ((Plain) Morphisms). A plain morphism f : N1 → N2 is given
by f = (fP , fT) with fP : P1 → P2 and fT : T1 → T2 so that pre2◦fT = f⊕

P ◦pre1

and post analogously.
Moreover, for the initial marking we have for all p ∈ P1:

m̂1(p) ≤ m̂2(fP (p)) for the natural function associated to a multiset.

Lemma 1 (Plain morphisms preserve firing). Plain morphisms f : N1 →
N2 preserve firing in the following sense:

m[t > m′ implies f⊕
P (m)[fT (t) > f⊕

P (m) for m, m′ ∈ P⊕
1 and t ∈ T1.

Then we define f̂P : [m̂1 >→ [m̂2 > with f̂P (m) = f⊕
P (m) ⊕ mR

2 where we have
m̂2 = f⊕

P (m̂1) ⊕ mR
2 .

Note, by induction over the length of the firing sequence we can show that f̂P

is well-defined and preserves firing as well: m[t > m′ with m ∈ [m̂1 > implies
f̂P (m)[fT (t) > f̂P (m′)

Theorem 1 (Forgetful Functor of Transition Systems with Alternative
Sequences over N). A plain morphism f : N1 → N2 induces the following
forgetful functor (if necessary subscripted with the corresponding net morphism)
V = Vf : TSA(N2) → TSA(N1). This functor V (TSA2) = TSA1 is defined
by TSA2 = (S2, E2, TS2, ŝ2, AS2, rep2, ref2) with rep2 : [m̂2 >→ S2 and ref2 :
[T2 > → E�

2 , where TSA1 = (S2, E2, TS2, ŝ2, AS2, rep1, ref1) and we have

– the following representation
rep1 := rep2 ◦ f̂P : [m̂1 >→ S2, and

– the following refinement
ref1 := ref2 ◦ fT : [T1 > → E�

2 .

A TSA-morphism h : TSA2 → TSA′
2 is mapped by V (h) = h.

Proof. TSA1 is a transition system over N1:

1. Representation: rep1 is well-defined.
2. Refinement: ref1 is well-defined.
3. Reachability of of initial state: ŝ2

∗−→ rep2(m̂2) = rep2(f̂P (m̂1)) = rep1(m̂1)
4. Existence of a path:

for any m[t > m′ with m ∈ m̂1 > we have f̂P (m)[fT (t) > f̂P (m′) and

hence there is the path rep2(f̂P (m))
ref2◦fT (t)−→ rep2(f̂P (m′)) that is the path

rep1(m)
ref1(t)−→ rep1(m′) .

Given TSA-morphism h : TSA2 → TSA′
2 then V P (h) : TSA1 → TSA′

1 with
V (h) = h is well-defined:

1. preservation of representation :
hs ◦ rep1 = hS ◦ rep2 ◦ f̂P = rep′2 ◦ f̂P = rep′1

Loose Semantics of Petri Nets 377

2. preservation of transition refinement:
h�

E ◦ ref1 = h�
E ◦ ref2 ◦ fT = ref ′

2 ◦ fT = ref ′
1 See the diagrams below:

[m̂1 >

bfP

��
rep1

��

rep′
1

��

[m̂2 >

rep2

��

rep′
2

����
���

���

S2
hS

�� S′
2

[T1 >

fT

��
ref1

		

ref ′
1

��

[T2 >

ref2

��

ref ′
2

���
��

��
��

�

E�
2

h�
E

�� E′�
2

√

Theorem 2 (Free Functor of Transition Systems with Alternative Se-
quences over N). A plain net morphism f : N1 → N2 induces the follow-
ing free functor F = Ff : TSA(N1) → TSA(N2). This functor F (TSA1) =
TSA2 is defined by TSA1 = (S1, E1, TS1, ŝ1, AS1, rep1, ref1) and TSA2 =
(S2, E2, TS2, ŝ2, AS2, rep2, ref2) as given in the proof.

A TSA-morphism h : TSA1 → TSA′
1 is mapped by F (h) = h.

Proof. 1. First we give the construction for TSA2.
In Set we construct the pushout PO1
below and obtain S2, and hence rep2 :
[m̂2 >→ S2. We define ŝ2 = uS(ŝ1).
The construction of E2 is given by E2 =
E1 � [T2 > \ fT ([T1 >) in Set.
Then we define AS2 = AS1 � {(w1, w2)|
fT (t1) = fT (t2) for some w1 ∈ ref1(t1)
and w2 ∈ ref1(t2)}.

[m̂1 >

rep1

��
��

��
��

�
bfP

����
��

��
���

S1

uS

����
��

��
��

�
(PO1) [m̂2 >

rep2
�����

��
��

��
�

S2

Then we have E�
2 , and we define uE := [] ◦ incE : E1 → E�

2 and hence
u�

E : E�
1 → E�

2 . This is well-defined as E1 ⊆ E2 and AS1 ⊆ AS2.
We now define ref2 : [T2 > → E�

2 by

ref2(t) :=

{
[t] t /∈ fT ([T1 >)
u�

E ◦ ref1(t′) t = fT (t′) and t′ ∈ [T1 >
.

[T1 >

ref1

��
��

��
�� fT

����������

E1
[] ��

uE

��

incE1

��

E�
1

u�
E

		��
��

��
��

(2) [T2 >

ref2

��		
		

		
		

	

E2 = E1 � [T2 > \ fT ([T1 >)
[] �� E�

2

The square (2) commutes due to the quotient construction, since we have
E�

2 = E∗
2 |ASEq

2
.

We define TS2 ⊆ S2×E2×S2 using the transition system TS1, all new firing
paths of N2 and then construct all alternatives event sequences inductively:

378 Julia Padberg and Hans-Jörg Kreowski

(a) If (s, e, s′) ∈ TS1

then (uS(s), e, uS(s)) ∈ TS2.
(b) If m[t> m′ in N2 and t /∈ ft([T1 >)

then (rep2(m), t, rep2(m′)) ∈ TS2.
(c) If m[t> m′ in N2, m /∈ f̂P (m̂1), t = fT (t1), and with some m1[t1 > m′

1
then for all w = e0....en ∈ ref2(t)
with rep1(m1)

e0−→ s1...sn
en−→ rep(m′

1) ∈ TS1

we have (rep2(m), e0, uS(s1)) ∈ TS2 and
(uS(sn), en, rep2(m′)) ∈ TS2.

So, we have TSA2 = (S2, E2, TS2, ŝ2, AS2, rep2, ref2).
It is obviously well-defined.

2. We have a free construction:
There is u : TSA1 → V ◦ F (TSA1).
Note that, V ◦ F (TSA1) = V (TSA2)

= (S2, E2, TS2, ŝ2, rep2 ◦ f̂P , ref2 ◦ fT).
So we define u = (uS , uE) where uS and
uE are given in PO1 and (2) above.
u is well-defined as uS ◦ rep1 = rep2 ◦ f̂P

and u�
E ◦ ref1 = ref2 ◦ fT .

TSA1

g

��

u

��

V ◦ F (TSA1)

V (g)�������������

V (TSA′
2)

Given g : TSA1 → V (TSA′
2) in TSA(N1) defined by g = (gS , gE) with gS :

S1 → S′
2 and gE : E1 → E′�

2 then we have to construct g : TSA2 → TSA′
2

in TSA(N2). We have gS induced by PO1.
And we obtain gE : E2 → E′�

2 due to the coproduct E2.

[m̂1 >

rep1

��
��

��
��

�
f̂P

�����
��

���
�

S1

uS
����

��
��

��
�

gS

��

(PO1) [m̂2 >

rep2
�����

��
��

��
�

rep′
2

��

S2

gS

��

(3) (4)

S′
2

E1

incE1

		�
��

��
��

�

gE

		

T2

incT2

ref ′
2

E2

gE

��
E′�

2

E2

gE

��

[] �� E�
2

g�
E��

E′�
2

g is well-defined in TSA(N2), as (4) commutes,
and we have g�E ◦ ref2 = g�E ◦ [] ◦ incT2 = gE ◦ incT2 = ref ′

2.
Now we prove that g = V (g) ◦ u:
We have gS = gS ◦ uS due to (3).
And we have g�E ◦ uE = g�E ◦ [] ◦ incE1 = gE ◦ incE1 = gE

√

Loose Semantics of Petri Nets 379

Example 3 (Refining the Producer-Consumer).

In Fig. 3 we again have the
producer-consumer net PCN .
This net is refined by the mor-
phism f : PCN → PCN ′ to the
producer-consumer net PCN
where we can directly feed and
empty the buffer. The morphism
f maps the states and transi-
tions injectively. Now, we have
the categories TSA(PCN) and
TSA(PCN′) that are related
by the forgetful and the free
functor as given in the Theo-
rems 1 and 2. In Fig. 4 we il-
lustrate the two functors, that
form the adjunction F � V .

p1

p2

d b r

c2

q

c1

s

PCN

PCN’

p1

p2

b r

c2

q

c1

s d

a e

f

Fig. 3. PCN and PCN ′.�

�

�

�

p1+c1

p2+c1

p1+c2

p1+b+c1

p1+b+c2

p2+b+c1

p1+c1

p2+c1

p1+c2

p1+b+c1

p1+b+c2

p2+b+c1

a

e

a

e
f

s d s

g f

....

d

g

V(R(PCN’))

x
y

x
y

x
y

x
y

4
gf

1 3
a
e

a
e

a
e

a
e

2 5

7

8

6 9

d

f g
....

d d

f g

d

f g

x
y

V(TSA)4

f

s d s

g f

....

d

g

R(PCN)

TSA(PCN)

F

��
�V

��

�

�

�

�
p1+c1

p2+c1

p1+c2

p1+b+c1

p1+b+c2

p2+b+c1

a

e

a

e
f

s d s

g f

....

d

g

R(PCN’)=F(R(PCN))

x
y

x
y

x
y

x
y

4
gf

1 3
a
e

a
e

a
e

a
e

2 5

7

8

6 9

d

f g
....

d d

f g

d

f g

x
y

TSA4

TSA(PCN’)

Fig. 4. Free and Forgetful Functor.

380 Julia Padberg and Hans-Jörg Kreowski

We have the transition system R(PCN) in TSA(PCN), that is the reach-
ability graph of the net PCN . This transition system R(PCN) is mapped by the
free functorF :TSA(PCN)→TSA(PCN′) to the transition systemF (R(PCN)).
This is isomorphic to the transition system R(PCN ′). F (R(SynPCN)) is con-
structed by adding the reachable markings and the new transitions in the net
N2. The forgetful functor V : TSA(PCN′) → TSA(PCN) maps the transition
system TSA4 to the transition system V (TSA4) and R(PCN ′) to V (R(PCN ′)
by keeping the transition system and redirecting the representation and the re-
finement functions.

5 Related Work

In the course of the last 40 years there has been developed a lot of different Petri
net semantics: reachability or marking graph [23, 6], event structures [17, 3, 18],
trace languages [13, 10, 15], partial orders semantics [2, 12], and others more. All
these semantics have in common that they relate a Petri net to one semantic
object.

In this section we relate our loose semantics to the two closest Petri net
semantics, namely reachability graph and trace languages, in a provisional way.
Since most of the above semantics are related to each other in a significant way
(see [25, 19]) the results from the discussion below can be adopted accordingly.

Reachability Graph of Place/Transition Net Systems. The reachabil-
ity graph of a place/transition net is given by the reachable markings and the
firing transitions in-between. Hence, a suitable definition of the reachability
graph is a transition systems with the empty alternative sequence of events.
So, more formally the reachability graph R(N) = ([m̂ >, T, TS, m̂, ∅) with
TS ⊆ [m̂ > ×T × [m̂ > defined by TS = {(m, t, m′)|m[t > m′ for any m ∈
[m̂1 >} of a place/transition net N is a TSA over N , where rep(m) = M and
ref(t) = [t] = {t}. Moreover, the reachability graph R(N) is initial in the cat-
egory TSA(N) for the proof see [21]. This means, that every transition system
over N is TSA(N) can be considered a refinement of the reachability graph
along a unique morphism.

Trace Equivalences. The relation to trace equivalences is the following.
Local trace equivalences [10, 15] denote the set of independent events follow-

ing a sequence of events. So in a sense the interleaving of independent events are
alternative sequences. But our approach states alternatives globally (in Defini-
tion 1).

Let us denote with | |e : E∗ → N the family of functions, that counts the
number of times an event e ∈ E occurs in a sequence.

So given a transition system with alternative sequences, we can compute
multisets of independent events. A multiset m ∈ E⊕ consists of independent
events, if for any linearization v ∈ Lin(m) = {w ∈ E∗|m|e = |w|e for all e ∈ E}
we have Lin(m) ⊆ [v].

Loose Semantics of Petri Nets 381

The other way round we can consider for the set of alternatives AS the
set of linearization Lin(m) of each multiset m ∈ M , the set M of multisets of
independent events i.e. AS =

⋃
m∈M Lin(m) × Lin(m).

6 Discussion of the Impacts of a Loose Semantics

Parameterized Petri Nets
Based on the ideas of pa-
rameterization for data types,
Petri nets can be parameter-
ized by distinguishing a subnet
as the parameter. Analogously
to algebraic specifications, we
map the formal parameter net
PAR by an inclusion to the
target net TAR. In Fig. 5 we
have the formal parameter net,
that denotes the transition s
can be replaced by an actual
parameter net.

b

p1

p2

s

s1s2 s1s2

value net

p1

p2

s d

d

actual parameter

formal

g f

p1

p2

b g

c2

f

c1

c2

c1

parameter
target net

p1

p2

Fig. 5. Actualization.

The semantics of a parameterized Petri net (PAR, TAR) maps each transi-
tion system over the PAR to the corresponding transition net over TAR. The
semantics is given by the free functor F : TSA(PAR) → TSA(TAR). In Fig. 5
the net is refined by the actual parameter, where the transition s is substituted
by the subnet containing the transitions s1, s2.

Constructor Semantics for Petri Net Modules. Most attempts to Petri
net modules (among others [4, 5, 11]) do not provide Petri nets as interfaces.
For a not so recent survey see [1]. There are either places or transitions, but
no full Petri nets in the interface. When modeling software components these
notions of Petri net modules are not powerful enough, since they do not allow
specifying behavior in the interfaces. Our approach to Petri net modules [20] has
been achieved by a transfer from the concept of algebraic module specifications
presented in [7]. The main motivation for our approach to Petri net modules is
the modeling of component-based systems. The component concept as suggested
in [16, 26] for Continuous Software Engineering (CSE) is the underlying concept
for our approach.

A Petri net module MOD = (IMP, EXP, BOD)
consists of three Petri nets, namely the import net
IMP , the export net EXP and the body net BOD.
Two Petri net morphisms m : IMP → BOD and
r : EXP → BOD connect the interfaces to the body.

EXP

r

��
IMP

m �� BOD

The import interface specifies resources which are used in the construction of
the body, while the export interface specifies the functionality available from the
Petri net module to the outside world. The body implements the functionality

382 Julia Padberg and Hans-Jörg Kreowski

specified in the export interface using the imported functionality. The import
morphism m is a plain morphism and describes how and where the resources in
the import interface are used in the body. The export morphism r is a substitution
morphism and describes how the functionality provided by the export interface
is realized in the body. The class of substitution morphism is as generalization
of plain morphisms, where a transition is replaced by a subnet. Nevertheless, the
forgetful functor constructions can be given for substitution morphisms as well
(explicitly in [21]).

In [22] a transformation-based semantics for Petri net modules has been
introduced based on the transformation-based approach to generic components
[8]. There the semantics is defined based on all transformations the import may
undergo. The advantage of our approach is that it is constructive: The semantics
of a module is based on the loose semantics presented in this paper. It gives for
each possible transition system over the import net the according transition
system over the export net.

So we obtain a functor mapping the
category of transition systems over the
import net TSA(IMP) to the category
of transition systems over the export net
TSA(EXP).

TSA(EXP)

TSA(IMP)
Fm ��

Sem

��������������

TSA(BOD)

Vr

��

This semantic functor naturally depends on the morphisms that relate the in-
terfaces to the body of the module. We define the functor Sem : TSA(IMP) →
TSA(EXP) by Sem = Vr ◦Fm. Vr and Fm are constructed using the morphisms
r and m. Now, we have the constructive semantics of a Petri net modules analo-
gously to [7]. Each model of the import net is mapped to the corresponding model
of the export. This module semantics takes some transition system over the im-
port net and then constructs freely along the plain morphism m : IMP → BOD,
yielding a transition system over the body net BOD. Then it forgets along ’ the
forgetful functor Vr the internal details of the body and only represents the part
specified by the export net EXP . Based on this notions we then obtain directly:
internal and model correctness, compositional semantics with respect to module
operations as union, composition (as given for Petri net modules [20]) or general
module operations, based on schemes.

References

1. L. Bernadinello and F. De Cindio. A survey of basic net models and modular net
classes. Advances in Petri Nets 1992, LNCS 609,pp: 304–351, Springer, 1992.

2. E. Best and J. Desel. Partial order behaviour and structure of Petri nets. Formal
Aspects of Computing, pages 123–138, 1990.

3. A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. An event structure
semantics for safe graph grammars. In Proc. PROCOMET’94, IFIP TC2 Working
Conf., San Miniato 1994, pages 417–439. IFIP TCS, 1994.

4. S. Christensen and L. Petrucci. Modular analysis of Petri nets. Computer Journal,
43(3):224–242, 2000.

Loose Semantics of Petri Nets 383

5. J. Desel, G. Juhás, and R. Lorenz. Petri Nets over Partial Algebras. In H. Ehrig,
G. Juhás, J. Padberg, and G. Rozenberg, editors, Advances in Petri Nets: Unifying
Petri Nets, volume 2128 of LNCS. Springer, 2001.

6. J. Desel and W. Reisig. Place/transition Petri nets. In W. Reisig and G. Rozenberg,
editors, Lectures on Petri Nets: Basic Models, pages 122–173. Springer Verlag,
LNCS 1491, 1998.

7. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module Specifica-
tions and Constraints, volume 21 of EATCS Monographs on Theoretical Computer
Science. Springer Verlag, Berlin, 1990.

8. H. Ehrig, F. Orejas, B. Braatz, M. Klein, and M. Piirainen. A Generic Component
Concept for System Modelling. In R. Kutsche, H. Weber (Eds.)Proc. FASE 2002:
Formal Aspects of Software Engineering, LNCS 2306, pages 33–48. Springer, 2002.

9. P. Huber, K. Jensen, and R.M. Shapiro. Hierarchies in Coloured Petri Nets. In
G. Rozenberg, editor, Advances in Petri nets 1990, LNCS 483, pages 313–341.
Springer, 1991.

10. P. W. Hoogers, H. C. M. Kleijn, and P. S. Thiagarajan. A trace semantics for Petri
nets. Information and Computation, 117(1):98–114, 1995.

11. G. Juhás and R. Lorenz. Modelling with Petri modules. In B. Caillaud, X. Xie, and
L. Darondeau, Ph.and Lavagno, editors, Synthesis and Control of Discrete Event
Systems, pages 125–138. Kluwer Academic Publishers, 2002.

12. E. Kindler. A compositional partial order semantics for petri net components. In
Azéma, P. and Balbo, G., editors, 18th Int. Conf. on Application and Theory of
Petri Nets, LNCS 1248, pages 235–252. Springer-Verlag, 1997.

13. A. Mazurkiewicz. Basic notions of trace theory. In de Bakker, J.W. et al., edi-
tors, Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency., LNCS 354, pages 285–363. Springer, 1989.

14. J. Meseguer and U. Montanari. Petri Nets are Monoids. Information and Compu-
tation, 88(2):105–155, 1990.

15. R. Morin and B. Rozoy. On the semantics of place/transition nets. In CONCUR
99, LNCS 1664, pages 447–462. Springer, 1999.

16. H. Müller and H. Weber, editors. Continuous Engineering of Industrial Scale
Software Systems. IBFI, Schloß Dagstuhl, Dagstuhl Seminar Report #98092, 1998.

17. M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains,
Part 1. Theoretical Computer Science, 13:85–108, 1981.

18. M. Nielsen and V. Sassone. Petri nets and other models of concurrency. In
W. Reisig and G. Rozenberg, editors, Lectures on Petri Nets I: Basic Models,
LNCS 1491, pages 587–642. Springer, 1998.

19. M. Nielsen, V. Sassone, and G. Winskel. Relationships Beween Models of Concur-
rency . In G. Rozenberg, J.W. de Bakker, W.-P. de Roever, editors, A Decade of
Concurrency, pages 425 – 476. LNCS 803, 1993.

20. J. Padberg. Petri net modules. Journal on Integrated Design and Process Tech-
nology, 6(4):105–120, 2002.

21. J. Padberg. Transition systems with alternatives: an approach to a loose semantics
of place/transition nets. Technical Report 2003-18, Technical University Berlin,
2003.

22. J. Padberg and H. Ehrig. Petri net modules in the transformation-based component
framework. Journal of Logic and Algebraic Programming, 2003. submitted.

23. W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical Computer
Science. Springer Verlag, 1985.

384 Julia Padberg and Hans-Jörg Kreowski

24. H. Reichel. Specification semantics. In E. Astesiano, H.-J. Kreowski, and B. Krieg–
Brückner, editors, Algebraic Foundations of System Specification, IFIP State–of–
the–Art Reports, chapter 5, pages 131–158. Springer Verlag, 1999.

25. B. Rozoy. On distributed languages and models for concurrency. In G. Rozenberg,
editor, Advances in Petri Nets, LNCS 609, pages 267–291. Springer, 1992.

26. H. Weber. Continuous Engineering of Communication and Software Infrastruc-
tures. In J.P. Finance (ed);Fundamental Approaches to Software Engineering
(FASE’99), LNCS 1577, 1999, pages 22–29. Springer Verlag, Berlin, Heidelberg,
New York, 1999.

A Formal Framework for the Development
of Concurrent Object-Based Systems�

Leila Ribeiro1, Fernando Lúıs Dotti2, and Roswitha Bardohl3

1 Instituto de Informática, Universidade Federal do Rio Grande do Sul,
Porto Alegre, Brazil
leila@inf.ufrgs.br

2 Faculdade de Informática, Pontif́ıcia Universidade Católica do Rio Grande do Sul,
Porto Alegre, Brazil

fldotti@inf.pucrs.br
3 International Conference and Research Center for Computer Science

Schloss Dagstuhl, Germany
rosi@dagstuhl.de

Abstract. In this paper we present a framework for developing concur-
rent object-based systems. The framework is based on graph grammars
and includes techniques for specification, simulation, animation and ver-
ification.

1 Introduction

The development of methods and techniques to aid the construction of correct
concurrent software systems has been a challenge for computer scientists for
many years. In particular with the boom of intra- and Internet systems as well
as the development of highly parallel and vectorial computer architectures, the
commercial importance of software applications for distributed and concurrent
systems increased significantly and the need for correctness gained a new per-
spective. This triggered a lot of research activities in the areas of semantical
models (e.g. CCS [30], event structures [39], I/O automata [28] – see [40] for an
overview), formal specification languages (e.g. LOTOS [37], Estelle [24], TLA
[26], Petri nets [32, 33], graph grammars [20, 18]), verification techniques and
tools (e.g. SMV [29], SPIN [23]). Many of such activities resulted in quite power-
ful models that were able to express and reason about concurrent and distributed
systems, and were applied successfully to protocol specifications (system states
are quite simple because usually they do not have any structure, and important
events are state changes triggered by signals or messages). However, software
engineers often use (semi-formal) languages like the UML [6] to specify real-life
systems with complex states that cannot be captured easily and naturally by ex-
isting formal techniques. The formal background of users in industry was rather
� This work was partially sponsored by GRAPHIT (CNPq/DLR), ForMOS

(FAPERGS/CNPq), PLATUS (CNPq), IQ-Mobile II (CNPq/CNR) and DACHIA
(FAPERGS/IB-BMBF) Research Projects, and partially developed in collaboration
with HP Brasil.

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 385–401, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

386 Leila Ribeiro, Fernando Lúıs Dotti, and Roswitha Bardohl

poor, and they were not familiar with the required mathematical notation for
using formal specification languages to describe systems and their properties.
Due to the size and complexity of distributed and concurrent software applica-
tions nowadays, the costs of finding and correcting bugs in the implementation
are even higher in this kind of systems. Thus, the software development process
would be greatly improved with a comprehensive analysis of functional as well
as performance requirements during the specification phase. For such an anal-
ysis a formal model of the application would be useful. The development of a
formal model, however, is not supported by most of the UML languages used in
industry.

With the aim of bridging the gap between the semi-formal languages used
in practice and the formal notation required to prove correctness, an interna-
tional cooperation project between Brazil and Germany, leaded by Prof. Hartmut
Ehrig, started in 1994: the GRAPHIT project (DLR/CNPq) [3]. Originally, the
project involved two universities (TU-Berlin and UFRGS) and two industrial
partners (MSB and Nutec); later further partners joined the project (Universiẗt
Stuttgart and PUCRS). The idea was to develop a formal specification language
with a graphical layout, preferably following the object-oriented style used in
practice, and relying on few simple and powerful concepts. This would allow
users to easily understand and build specifications with this language. Graph
grammars seemed to be a perfect basis due to some of its inherent characteris-
tics: graphical description of states (even complex ones can be better understood
using a suitable graph representation), changes of states can be easily specified
via relationships between graphs (rules), concurrency is naturally described (im-
plicitly, through parallel applications of rules). In the following years a lot of
research activities took place in order to define a suitable specification language
as well as structuring and analyzing techniques for distributed and concurrent
object-based systems in the GRAPHIT and in follow-up projects. In this pa-
per we will review the main results we obtained for specification, simulation,
animation and verification of concurrent object-based systems, and present the
necessary steps to be followed in order to improve the software development
process.

One of the results of the GRAPHIT project was the development of the spec-
ification language Object-Based Graph Grammars (OBGG) [12]. This language
has been strongly influenced by the composition operators for graph grammars
presented in [34] (a Ph.D. thesis advised by Prof. Hartmut Ehrig). The main
idea is that a system is constructed by composing objects belonging to different
classes. Each class is specified with a graph grammar (with special characteris-
tics giving the language an object-based style natural for non-academic users).
In section 2 we present the main concepts of Object-Based Graph Grammars.

To be really useful in practice, there must be techniques (and possibly tools)
for the analysis of a specification. With this aim we have built a simulation tool
for OBGG (the PLATUS tool1). With this tool it is possible not only to execute

1 The underlying concepts of the simulator as well as a prototype of the tool were
developed in the PLATUS project (CNPq).

AFormal Framework for the Development ofConcurrent Object-Based Systems 387

the system for validating strategies, but also to make quantitative analysis (e.g.
count the number of messages exchanged in the system, the number of created
objects). In section 3 we describe how OBGG specifications are simulated.

Another result of the GRAPHIT cooperation was the development of the
GenGED concepts and environment [4] (a Ph.D. thesis advised by Prof. Hart-
mut Ehrig). GenGED is a visual environment based on graph grammars for
the visual definition of visual languages and the generation of language-specific
visual environments. In section 4 we show how to use GenGED to provide
animation of specifications written in OBGG2.

The possibility of analyzing specifications was one of the main aims since the
beginning of GRAPHIT. After defining the specification language OBGG it was
possible to define verification techniques that could make use of existing model
checking tools in a suitable way (due to the restrictions imposed in OBGG, ver-
ification of many properties became feasible – see [27] for examples). We have
used different approaches for verification: translation to PROMELA (the input-
language of the SPIN model checker [23])3, translation to π-calculus [31]4 and
we use unfolding semantics to verify properties directly for the OBGG specifi-
cation [2]. The results about verification5 are presented in section 5.

2 Object-Based Graph Grammars

In this section we propose a formal method to describe concurrent object-based
systems. The main characteristics of this formalism are: it has a graphical lay-
out, it is based on rules, it allows for a natural description of complex states,
concurrency and non-determinism are inherent to the formalism, and it supports
an object-based style.

The specification of each kind of object (class) that will be part of the compo-
sition of an object-based system is done via an (object-based) graph grammar.
Before detailing the description of a class, we will present the kind of graphs
and rules that are used for the specification of object-based systems (Sect. 2.1).
These graphs are called object-based graphs and were introduced in [12].

2.1 Object-Based Graphs and Rules

Each graph in an object-based graph grammar is composed of instances of the
vertices and edges shown in Figure 1(a). The vertices represent object identi-
ties/classes and abstract data types, whereas messages and attributes of ob-
jects are modeled as hyperedges (edges with one destination and many source
vertices). We defined a distinguished graphical representation for these graphs to
2 The use of GenGED for animation of OBGG was a result of the German-Brazilian

cooperation project DACHIA (IB-BMBF/FAPERGS), involving the universities
TU-Berlin, Universität Stuttgart, UFRGS and PUCRS, and the company MSB.

3 Investigations on this topic were carried out in the scope of the ForMOS
(FAPERGS/CNPq) and CASCO (in collaboration with HP-Brazil) projects.

4 Results obtained in the IQ-Mobile (Italian-Brazilian cooperation CNPq/CNR) and
ForMOS projects.

5 Investigations on verification were obtained in the scope of the ForMOS, CASCO,
IQ-Mobile and and DACHIA projects.

388 Leila Ribeiro, Fernando Lúıs Dotti, and Roswitha Bardohl

increase the readability of specifications (see Figure 1(b)). Elements of abstract
data types are allowed as attributes of classes and/or parameters of messages.
Note that the graph in Figure 1 defines a scheme only, indicating which kinds
of vertices and edges may occur in a specification, and does not oblige classes
or messages to have attributes. For example, this graph specifies that, if a class
has attributes, they must be either of type ADT or of type Class.

par1

par2Attributes

Message
atr1

atr2:ADT

ADT

Message

atr1 atr2

par1

par2

ADT
(a) (b)

Obj−Id/ClassObj−Id/Class

Fig. 1. (a) Object-Based Graph Scheme (b) Graphical Representation.

A rule expresses the reaction of an object to the receipt of a message. A rule
of an object-based graph grammar consists of:

– a left-hand side L: describes the items which must be present in the current
state to enable the rule application. The restrictions imposed by left-hand
sides of rules are:

• There must be exactly one message vertex, called trigger message (this
is the message treated by this rule);

• Only attributes of the class which is the target of the trigger message may
appear (in the graphical representation, not all attributes of this class
must appear, only the ones necessary for the treatment of this message);

• Items of type ADT may be variables, which will be instantiated at the
time of rule application. Operations defined in the ADTs may be used.

– a right-hand side R: describes the items which will be present after the
application of the rule. It consists of:

• Objects: all objects and attributes present in the left-hand side of the
rule, as well as new objects (created by the application of the rule). The
values of attributes may change but attributes cannot be deleted;

• Messages to all objects appearing in R are allowed.
– a condition: that must be satisfied for the rule to be applied. This condition

is an equation over the attributes of left- and right-hand sides.

Formally, we use typed attributed hypergraphs, and rules are (partial) graph
homomorphisms with application conditions. See [19] for more details on this
graph transformation approach.

2.2 Specification of Classes
A class is composed of a type graph, a set of rules and an initial graph.

Type Graph: a graph containing information about all attributes of this class
(either ADT types or references to other classes) and messages sent/received
by objects of this class. This graph can be seen as an instantiation of the
object-based graph scheme described above.

AFormal Framework for the Development ofConcurrent Object-Based Systems 389

Set of Rules: these rules specify how objects of this class will react to mes-
sages. For the same kind of message, there may be many rules specifying the
intended behavior. Depending on the conditions imposed by these rules (con-
ditions on attribute values and/or parameters of the message), they may be
mutually exclusive or not. In the latter case, one of them will be chosen non-
deterministically to be executed. Note that the behavior of an object when
receiving a message is not specified as a series of steps that shall be executed,
but rather as an atomic change of the values of the object attributes together
with the creation of new messages to other (or the same) objects. That is,
there is no control structure to govern the application of the rules specifying
the behavior of an entity. Our approach is data driven, and therefore un-
necessary sequentializations of computation steps are avoided because the
specifier only has to care about the causal dependencies between events.

Initial Graph: this graph can be seen as a template for the creation of objects.
It specifies initial attribute values for objects of this class, as well as messages
which must be sent to these objects when they are created. These values can
be either concrete or variables. If they are variables, they shall be seen as
instantiation parameters (see discussion on object creation below).

There are two ways of creating objects in an object-based system: either they
are created in the beginning (initial state) or they are created during the exe-
cution of the system. These are called static and dynamic creation, respectively.
In both cases, the created objects must use the initial graph template of the
corresponding class.

Static Object Creation: This situation occurs when the user composes the
initial state of a system by creating instances of various different classes
and linking them. To create an object one must instantiate the attributes
which correspond to variables in the definition of the initial graph of the
corresponding class, as well as assign concrete objects to the attributes which
are references to other objects. All messages belonging to the definition of
the initial graph of the class will be automatically sent to this object in the
initial state of the system.

Dynamic Object Creation: During the execution of the system, new objects
may be created. Objects of any class may request the creation of objects of
other (or the same) class. The only requirement is that the the structure of
the creation message of the class of the newly created object is known by
the object that requests the creation. Each class has an associated creation
message, which is a message that has the values needed to create the ini-
tial state of an object of that class as parameters (instantiation parameters).
Moreover, there is a rule, called creation rule, which treats this creation mes-
sage: it removes the message and creates the internal structure of the object
according to definitions of the initial graph of the class and the parameters
of the creation message. Only after the application of this rule the object is
executable (that is, before the application of this rule, the vertex correspond-
ing to the object may be part of the system, but messages will be neither
treated nor sent by this object). The creation message and creation rule are

390 Leila Ribeiro, Fernando Lúıs Dotti, and Roswitha Bardohl

automatically obtained from the definition of the initial graph of each class,
and cannot be changed by the user.

2.3 Specification of Object-Based Systems

To build an object-based system, the user shall choose all classes that will com-
pose his/her system, connect them in a suitable way, and create an initial state
for the system consisting of objects of these classes. More concretely, the steps
to be followed are:

Step 1: Choose the classes that will compose the system.
Step 2: Connect the classes chosen in step 1. This is accomplished by relating

the class vertices and message edges in the type graphs of the involved graph
grammars (classes). This is necessary because the names of classes/messages
in each type graph may not be syntactically the same. With this relationship
we say which items are semantically equivalent and are different, regardless
of the names used in the specification of the classes.

Step 3: Generate a grammar that corresponds to the whole system, using the
grammars chosen in step 1 and the connection defined in step 2.6 Note that
the relationship among the type graphs defined in step 2 induces a relation
on the initial graphs and rules of the involved classes.

Step 4: Create the desired objects of each of the classes that compose the sys-
tem. This corresponds to the static creation of objects discussed above.

2.4 Behavior

Each state of a computation described with a graph grammar is a graph con-
taining objects (with their internal structure) and messages to be treated. A
rule r is enabled in a state S by a message m if m is the message that trig-
gers r (the message deleted by r), each attribute which appears in the left-hand
side of r has the necessary value in S,7 and the condition required by the rule
is true in S. The effect of this rule application is that all attributes of object
which are not preserved will receive new values as defined in the rule, message
m will be deleted and the new messages that appear in the right-hand side of
the rule will be created (new objects may be created as well). Nothing else in
the state is modified by this rule. Formally, this corresponds to a pushout in the
corresponding category [12].

At each execution state, several rules may be enabled (and therefore are
candidates for execution at that moment). Rule applications only have local
effects on the state. However, there may be several rules competing to update
the same portion of the state. To determine which set of rules will be applied at

6 Formally, this step is implemented as a composition (via a universal construction)
of the corresponding graph grammars using the morphisms induced by the relation-
ship defined in step 2. More details about this composition operator can be found
in [34, 35].

7 A rule may require that an attribute has a certain value, for example, rule SymStart
of Figure 2 can only be applied if acquire has the value true in state S.

AFormal Framework for the Development ofConcurrent Object-Based Systems 391

each time, we need to choose a set of rules that is consistent, that is, in which
at most one rule has write access to the same resources (non-conflicting rule
applications). Due to the restrictions imposed in object-based graph grammars,
conflicts can only occur among rules of the same class. When such a conflict
occurs, one of the rules is (non-deterministically) chosen to be applied. The
semantics of the whole system is the set of all possible computations [25] (or,
equivalently, a tree containing all computations [34]).

2.5 Example: Dining Philosophers

In this section we model the dining philosophers problem using OBGGs. Tradi-
tionally the dining philosophers problem is described by the following scenario:
There are N philosophers sitting at a table with N forks (one fork between each
philosopher). The philosophers spend some time thinking, and from time to time
a philosopher gets hungry. In order to eat a philosopher must acquire exclusively
its left and right forks. After eating a philosopher releases both forks and starts
thinking again. Using OBGGs we modeled the problem with the two classes
Fork and Phil, depicted in Figures 2 and 38. Each Fork object is composed of
a boolean attribute (acquired) determining if the fork is currently in use by a
philosopher (acquired true) or not (acquired false). Each Phil object is composed
of two reference attributes to Fork objects (modeling its left (leftFork) and right
(rightFork) forks) and five boolean attributes: acquire (the philosopher is trying
to acquire the forks), eat (the philosopher is eating), release (the philosopher is
releasing its acquired forks), asym (indicates if the philosopher starts getting the
left fork (false), or the right fork (true)), and forks (used to control the number
of acquired forks). The rules for the Phil and Fork objects represent the behav-
ior of these objects (creation rules are omitted). A philosopher starts executing,
rules (rules AcquireLeft and AcquireRight). If the philosopher can acquire the
fork (rule Acquire), he tries to acquire the other fork (rules SymLeft or Asym-
Right). If the philosopher can acquire it too (rules SymRight or AsymLeft), he
starts eating (rule Eating). After eating the philosopher releases his forks and
starts all over again.

When building a model for the dining philosophers using OBGG, after choos-
ing the two classes above (step 1) and suitably connecting them (step 2), we can
generate a grammar for the complete system (step 3), and choose an initial graph
for this system (step 4). In Fig. 4 we show an initial graph for an asymmetric
solution for the problem. This solution is asymmetric because the philosopher
Phil2 has its asym attribute set to true, meaning that he will try to acquire the
right fork first, differently from the other philosophers.

8 The numbers inside the circles (indexig each class of the type graph) are used to
allow a clearer graphical representation of the type graph (preventing arrows which
would cross the picture) as well as to indicate how objects appearing in rules and
initial graphs are mapped to the type graph.

392 Leila Ribeiro, Fernando Lúıs Dotti, and Roswitha Bardohl

Phil – Type Graph Phil – Initial Graph

Phil – Rules

Fig. 2. Phil Class.

3 Simulation of OBGG Specifications

One of the main advantages of using simulation models while developing an ap-
plication is the possibility to validate strategies as well as control algorithms
even before their implementation. For instance, simulation models may be used
to: check if the components of an application behave as expected; if they are
independent from each other such that the replacement of a simulated compo-
nent by a more sophisticated version becomes possible; check the application
behavior under various environment conditions (e.g. failure simulation); obtain
quantitative results such as the number of messages exchanged, number of rules
applied for each object, number of objects created dynamically, among others.

The simulation of OBGGs must ensure that the formalism is faithfully repre-
sented. Analyzing the model characteristics we conclude that an OBGG model is
a discrete-state system: the state of the objects changes as rules are executed in
response to the messages. Thus, the use of discrete-event simulation is a natural
approach to evaluate such systems.

AFormal Framework for the Development ofConcurrent Object-Based Systems 393

Fork – Type Graph Fork – Initial Graph

Fork – Rules

Fig. 3. Fork Class.

Fig. 4. Initial Graph for an Asymmetric Solution.

An OBGG specification is mapped to a simulation model in two main parts:
one is the simulation kernel, the other is the representation of internal activities
of objects. The kernel is responsible for passing messages among objects (i.e. dis-
patching events to simulation entities) and managing the global simulation time.
The simulation time is needed to ensure the progress of the simulation process
and to simulate the parallel execution of rule applications. OBGG messages are
not timed or ordered in any way. The chosen kernel algorithm follows a conser-
vative approach and the simulation time has a centralized control. The kernel
keeps a list of messages (or events), known as event list. The simulation process
consists of selecting event(s) (message(s)) according to the OBGG semantics;
delivering those events (messages) to the target simulation entities (objects);
awaiting each recipient entity (object) to handle the message; advancing the
simulated time and starting selecting events again.

In an OBGG model we may have concurrent activities in different objects or
within a same object. A multi-threaded approach is natural to model concurrency
among objects. Each object will have an associated thread to independently pro-
cess messages (events) from its input buffer. The internal thread of each object is
responsible for processing the incoming messages and applying appropriate rules,
according to the OBGG semantics. Within an object, all non-conflicting enabled

394 Leila Ribeiro, Fernando Lúıs Dotti, and Roswitha Bardohl

rules may be applied in parallel9. For more details on the internal behavior of a
simulation entity (representing an OBGG object) see [7, 10].

Based on the ideas discussed above, a simulation environment for OBGGs
was constructed [8, 7, 10] and used in various applications. The simulation envi-
ronment is composed of a library that offers: the kernel functionality; the basic
internal behavior of an object; the basic structure for a rule; the basic struc-
ture for a message. More concretely, this library is offered in an object-oriented
language (Java) and these are the main classes comprising the library. OBGG
models are mapped to simulation models in Java as follows: i) each OBGG class
maps to one class specializing class Entity from the library, which will have the
corresponding attributes and an internal thread performing as discussed above;
ii) each rule specifying part of the behavior of an OBGG class is mapped to
a class specializing class Rule; iii) messages handled by OBGG classes map to
specializations of class Message; iv) the initial graph is mapped accordingly to
a initial state of the simulation environment through the creation of the appro-
priate entity instances, messages and attributes initialization.

With this, to simulate an OBGG specification we have the following steps:

Step 1 – Translation of the OBGG to a Simulation Model: According
to the ideas discussed above, an algorithm is used to translate an OBGG
specification to a Java program extending pre-defined classes and interact-
ing with the simulation kernel;

Step 2 – Simulate: Once the initial state is built, the simulation takes place
generating a log with all messages exchanged among instances and the kernel
and rules applied in each instance, along with the simulation time these
events occurred.

Step 3 – Analysis of Results: The user may then use the log to analyze the
phenomena of interest. Simulation was shown to be very useful to find spec-
ification errors (e.g. missing behavior (missing rules), wrong left-hand side
specification, etc.) as well as to estimate the communication behavior in
terms of total number of exchanged messages and helping to estimate the
number of messages in a round (number of causally-dependent messages gen-
erated/deleted to complete a service). Alternatively, the simulation log may
be submitted for animation using the ideas described in the next section.

4 Animation

In order to have a better visualization of the states and behavior of a system, it
is useful to define an animation for the specification, if possible, using symbols
that are close to the application domain to ease the understanding. To animate
the specification of an object-based system OBSys using OBGGs, there are 4
steps to be followed:

Step 1 – Construction ofAnimationGrammars: The specification of each
class C of OBSys is extended by animation information given by attributes
used during the animation and/or by messages that trigger animation events.

9 The encapsulation of object-based modeling prevents conflicts among objects.

AFormal Framework for the Development ofConcurrent Object-Based Systems 395

This new kind of grammar is called animation grammar for class C (AnimC).
Note that this information shall not interfere with the behavior of the original
OBGG C (just extra attributes may change and extra messages may be sent
with each rule application).

Step 2 – Definition of Animation Interfaces: Now the user must define
the attributes/messages that shall be visible for the one that will define
the concrete animation module for the application. This is an abstraction
process, resulting in a grammar for each class, called animation interface.
This interface is a tool for the users of this class: they do not have to know
the internal structure and behavior of objects of this class to choose the de-
sired graphical representation (this guarantees encapsulation). In fact, the
same class may have many different graphical representations, depending on
the way it is used (see next step).

Step 3 – Definition/Choice of Animation Modules: An animation mod-
ule consisting of concrete graphical representations for the items in each class
must be defined (or chosen, if a library of animation modules is available).
An animation module can be specified using GenGED, an approach with
tool support for the visual definition of visual languages based on graph
grammars and graph transformation, respectively. Using GenGED, the an-
imation of each class is considered as visual language. Note that, in order to
build the animation of a class, only the information present in the animation
interface is necessary (other attributes and messages can only be seen by the
developer of a class).

Step 4 – Animate: For the animation, we first generate the initial visualiza-
tion of the system according to the initial state of the object-based system.
This means, we automatically generate visualizations for all objects of the
initial system graph (cf. step 4 in sect.2.3). Then, while simulating the OBGG
corresponding to the whole system, animation messages shall be sent to the
animation view generated by GenGED(these messages trigger the changes
in the graphical representation).

In general, the specification of a visual language using GenGED [4, 5] is
given by an alphabet and a grammar. The alphabet defines the language vocab-
ulary, i.e. the symbols and how they are connected: symbol descriptions consist
of a textual name and a corresponding graphic, connections between symbols
are associated to graphical constraints. The type graph of a class can be used
to generate an alphabet, i.e. it establishes a type system for all instances: ver-
tices are modeled as attributed graph nodes where the attributes describe the
graphics and arcs are modeled as graph edges. The animation using GenGED
will be triggered by message passing. For this purpose, messages vertices be-
come symbols in the alphabet. Since messages should not be visualized, message
symbols have no associated graphical representation. The initial graph and the
rules defined using GenGED have to fit to the corresponding components of
the interface. Each rule describes how the animation shall change when receiv-
ing messages defined in the animation interface of the module. Other rules may
be defined for animation purposes.

396 Leila Ribeiro, Fernando Lúıs Dotti, and Roswitha Bardohl

(a) (b)

(c) (d)

Fig. 5. (a)(c) Animation Grammar (b)(d) Animation Interface.

Figure 5 shows an example of animation components for the dining philoso-
phers. In (a) we can see the the animation grammar type graph for the Phil class
(this type graph consists also of all messages that appear in Figure 2, but these
were omitted here). A rule of this grammar is depicted in (c) – it is an extension
of the corresponding rule of the Phil grammar. The animation interface type
graph is presented in (b), consisting only of items that shall be visible for the
users of the class and animation module developers. The animation interface
rule that corresponds to the concrete rule (c) is shown in (d).

5 Verification of OBGG Specifications

Although simulation is a useful analysis method, it does not allow one to make
definitive assertions about the behavior of a system. Specially when building
concurrent systems, it is not obvious that certain properties hold. In order
to guarantee the desired behavior, verification techniques can be used. Model
checking is an appealing verification method since it does not require advanced
users know-how during the verification process (in contrast to theorem proving).
Methods and tools to allow the model checking of OBGG specifications were
developed. Instead of developing a model checking tool for graph grammars or
OBGGs we focused on translating our models to formal languages that serve as
input for existing model checking tools. Our approach seeks to reuse the existing
implementations of model checkers, as well as take immediate advantage of their
enhancements.

Starting with [22], efforts were made to translate OBGG specifications to
π-Calculus. The π-calculus [31] is a well known and established formalism for
description of semantics of concurrent systems. There are some automatic check-
ers for this formalism, for example, HAL [21] and MWB (Mobility Workbench)
[38]. Objects and messages are defined as processes of the π-calculus (agents)
that communicate through local channels. The source object and the parameters
of each message are represented as parameters of message agents. The objects
reactions when receiving a message are described by rule agents that compose
the object agent. A rule describes the procedure to treat a message. Each kind of

AFormal Framework for the Development ofConcurrent Object-Based Systems 397

message can have several procedures for treating it, so we may have several rule
agents that describe the treatment of the same kind of message. The choice of
procedure to be executed is non-deterministic. This is described by composing
rule agents (for the same kind of message) with the Sum operator (+) without
guards. The concurrency between objects is modeled by parallel composition of
object and message agents. So, each object can treat its messages in parallel. The
internal concurrency is modeled by recursion of object agents. Although the se-
mantic compatibility of the translation could be shown, two main problems were
faced: i) models had to be abstracted/restricted such that OBGG objects had
no internal state (there is a great overhead to model attributes in π-calculus); ii)
when using existing π-Calculus model checkers, there are some limitations, spe-
cially to support the replication operator of the π-Calculus. Moreover, π-calculus
tools were not very optimized, and thus only small examples could be translated.

A second translation was proposed in [11], translating OBGG to PROMELA
(PROcess/PROtocol MEta LAnguage) [1], the input language of SPIN (Simple
Promela INterpreter) [23]. PROMELA is based on processes and provides shared
memory as well as (CSP-like) channels for interprocess communication. Accord-
ing to the proposed translation, OBGG objects are mapped to PROMELA pro-
cesses. For verification purposes, attributes of OBGG objects are restricted to
the types supported in PROMELA (boolean, char, int, array). Moreover, OBGG
messages are translated to PROMELA messages, and the receipt of messages is
done through an asynchronous channel (that is defined for every object), which is
also used as reference of translated objects. Rules for OBGG objects are mapped
to a condition structure inside the translated object, and the OBGG initial graph
becomes the initial process in PROMELA. Concurrency among objects is natu-
rally preserved by the concurrency between translated objects (processes). More
details about the translation can be found in [11], including a discussion of the
semantic compatibility for the generated PROMELA model and the original
OBGG model.

Complementary to the model translation to the input language of a model
checker, an approach for the specification of properties using a given temporal
logic is needed. Up to now, we have considered properties about the history of
rule applications starting from the initial state. In [11] and [36] we define how to
specify properties over OBGG models using Linear Temporal Logics (LTL) – the
same temporal logic used in SPIN. LTL properties are defined over events of the
model, where an event is a rule application. Moreover, a graphical presentation
of counter-examples in terms of OBGG abstractions, instead of the translated
PROMELA model, is provided.

Considering the above discussed ideas, we have the following steps for model
checking of OBGG specifications:

Step 1 – Translate the OBGG Specification to a Verification Model:
An OBGG specification is translated, following an algorithm, to a PRO-
MELA model which serves as input to the SPIN model checker;

Step 2 – Definition of Properties in Temporal Logic: LTL formulas can
be defined taking into consideration rule applications (that are the events);

398 Leila Ribeiro, Fernando Lúıs Dotti, and Roswitha Bardohl

Step 3 – Model Checking: The model checking tool can be initiated with
the model and the properties to be verified;

Step 4 – Analyze Results: Step 3 may have different outcomes: i) the model
satisfies the property; ii) the model does not satisfy the property and a
counter example is generated which can be visualized in terms of OBGG
abstractions (instances, messages and rule applications); iii) the verification
terminates abnormally due to insufficient size of channels. To respect the
OBGG semantics, channels must always have room for incoming messages
since otherwise the sending process would block and this would mean block-
ing an OBGG instance while sending a message. In such cases the specifier
may define larger channels and try again; and iv) the verification termi-
nates due to insufficient resources, such as memory. It is known that model
checking techniques can be very time and space consuming.

For the dinning philosophers example the following properties were shown:

– Liveness: the asymmetric version is shown to be deadlock free while deadlocks
may occur in the symmetric version. To prove this, an LTL formula was used
to specify that “it is always possible that some philosopher will eat”. More
concretely, it is proven that it is always possible, in the future, to apply the
Eating rule.

– Safety: in a setting with up to three philosophers it is sufficient to prove that
“two philosophers will not be eating at the same time”. The approach taken
is to prove that, if a philosopher starts eating (rule Eating) then until he
releases the forks (rule ReleaseForks) no other philosopher will start eating
(rule Eating).

6 Conclusions and Future Work

The development of concurrent and distributed systems is challenging. This pa-
per presented how to use OBGG for modeling and analyzing such systems. Be-
yond the basic abstractions provided by the language, OBGG is attractive due
to the diversity of development methods and tools supported (see [9] for a de-
scription of the tools). To validate this specification language, we carried out a
series of case studies. Using simulation, we analyzed mobile code applications
[12], active networks [17], and a pull-based failure detector [13]. With verification
we checked the readers and writers problem [36], where it is shown that writers
can starve while readers proceed; the distributed election in a ring algorithm
[14], where we have shown that “eventually there will be one element of the ring
elected” and “there cannot be two elements of the ring simultaneously elected”;
and message ordering [15], where it could be shown that a message ordering
mechanism delivers the messages in the expected order.

In order to allow the specification and reasoning about distributed systems
in the presence of faults, in [16, 13] an approach for the insertion of classical
fault behaviors in OBGG models of distributed systems has been presented. It
was shown that, due to the abstractions provided by OBGGs, it is possible to

AFormal Framework for the Development ofConcurrent Object-Based Systems 399

transform an OBGG model to embed the behavior of a given fault model. We
have analyzed distributed systems in the presence of faults using simulation,
and are currently investing efforts in analyzing such systems using the model
checking approach.

The object-based nature of the language and its application to open dis-
tributed systems naturally calls for verification methods for reasoning over par-
tial systems. Thus, efforts are being made towards methods for the verification
of partial systems described using OBGGs (first results can be found in [15]).

Moreover, the OBGG language itself can be improved, for example, by adding
inheritance and module concepts. This would greatly simplify an integration with
UML, in the sense that OBGG can be used as a semantical model for many UML
languages, integrating in a smooth way the different views provided by UML.
For this, translations from these UML languages into OBGG should be defined.
In this way, we could use all techniques and tools available for OBGG also for
specifications using the UML languages.

Acknowledgments

Altogether the series of achievements (and cooperation projects) presented in
this paper were influenced (directly or indirectly) by the ideas and stimulus of
Hartmut Ehrig. Besides his own technical contributions to Computer Science and
qualified technical advisoring, Hartmut is also concerned with the academic ma-
turity of his students, encouraging them to present their results to the academia
and giving them the opportunity to work in cooperation projects to learn how
to combine efforts to reach more relevant contributions to Computer Science.
We would like to thank him heartily for the technical discussions (that led to
many results presented here), carrier advices (that helped us to continue the
work started in Berlin) and friendship (encouraging us to pursue our ideas).

References

1. Promela language reference. http://spinroot.com/spin/Man/promela.html, 2003.

2. P. Baldan, A. Corradini, and B. Koenig. Verifying finite-state graph grammars: an
unfolding-based approach. In Proc. of CONCUR 2004, LNCS. Springer, 2000.

3. B. Bardohl, R. Bardohl, P. Castro, B. Copstein, H. Ehrig, M. Korff, A. Martini,
D. Nunes, L. Ribeiro, and H. Schlebbe. GRAPHIT: Graphical support and integra-
tion of formal and semi-formal methods for software specification and development.
In 6th German-Brazilian Workshop on Information Technology, 2000.

4. R. Bardohl. Visual Definition of Visual Languages based on Algebraic Graph Trans-
formation. PhD thesis, Technical University of Berlin, Germany, 2000.

5. R. Bardohl, C. Ermel, and I. Weinhold. Specification and Analysis Techniques for
Visual Languages with GenGED. Technical Report 2002–13, Technical University
Berlin, Dept. of Computer Science, September 2002. ISSN 1436-9915.

6. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language user
guide. Addison-Wesley, 1998.

400 Leila Ribeiro, Fernando Lúıs Dotti, and Roswitha Bardohl

7. B. Copstein, M. C. Móra, and L. Ribeiro. An environment for formal modeling
and simulation of control systems. In 33rd Annual Simulation Symposium, pages
74–82, USA, 2000. IEEE Computer Society Press.

8. B. Copstein and L. Ribeiro. Specifying simulation models using graph grammars.
In 10th European Simulation Symposium, pages 60–64, UK, 1998. SCS.

9. F. L. Dotti, L. Duarte, L. Foss, L. Ribeiro, D. Russi, and O. Santos. An envi-
ronment for the development of concurrent object-based applications. Electronic
Notes in Theoretical Computer Science (International Workshop on Graph-Based
Tools), 2004.

10. F. L. Dotti, L. M. Duarte, B. Copstein, and L. Ribeiro. Simulation of mobile
applications. In 2002 Communication Networks and Distributed Systems Modeling
and Simulation Conference, pages 261–267, USA, 2002. The Society for Modeling
and Simulation International.

11. F. L. Dotti, L. Foss, L. Ribeiro, and O. M. Santos. Verification of object-based
distributed systems. In 6th International Conference on Formal Methods for Open
Object-Based Distributed Systems, volume 2884 of LNCS, pages 261–275, France,
2003. Springer.

12. F. L. Dotti and L. Ribeiro. Specification of mobile code systems using graph
grammars. In 4th International Conference on Formal Methods for Open Object-
Based Distributed Systems, volume 177 of IFIP Conference Proceedings, pages
45–64, USA, 2000. Kluwer Academic Publishers.

13. F. L. Dotti, L. Ribeiro, and O. M. Santos. Specification and analysis of fault
behaviours using graph grammars. In 2nd International Workshop on Applications
of Graph Transformations with Industrial Relevance, volume 3062 of LNCS, pages
120–133, USA, 2003. Springer.

14. F.L. Dotti, L. Foss, L. Ribeiro, and O.M. Santos. Specification and formal
verification of distributed systems (in portuguese). In 17th Brazilian Symposium
on Software Engineering (SBES), pages 225–240, 2003.

15. F.L. Dotti, F. Pasini, and O.M. Santos. A methodology for the verification of partial
systems modelled with object based graph grammars (in portuguese – accepted for
publication). In 18th Brazilian Symposium on Software Engineering (SBES), 2004.

16. F.L. Dotti, O.M. Santos, and E.T. Rödel. On the use of formal specifications to
analyse fault behaviors of distributed systems. In First Latin-American Symposium
on Dependable Computing, volume 2847 of LNCS, pages 341–360. Springer, 2003.

17. L. Duarte and F.L. Dotti. Development of an active network architecture using
mobile agents – a case study. Technical Report TR-043, PPGCC-FACIN-PUCRS,
Brazil, 2004.

18. H. Ehrig. Introduction to the algebraic theory of graph grammars. In 1st Interna-
tional Workshop on Graph Grammars and Their Application to Computer Science
and Biology, volume 73 of LNCS, pages 1–69, Germany, 1979. Springer.

19. H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic Approaches to Graph Transformation II: Single Pushout Approach
and Comparison with Double Pushout Approach. In G. Rozenberg, editor,
Handbook of Graph Grammars and Computing by Graph Transformation, Volume
1: Foundations, chapter 4. World Scientific, 1997.

20. H. Ehrig, M. Pfender, and H. J. Schneider. Graph grammars: an algebraic
approach. In 14th Annual IEEE Symposium on Switching and Automata Theory,
pages 167–180, 1973.

21. G. Ferrari, S. Gnesi, U. Montanari, M. Pistore, and G.Ristori. Verifying Mobile Pro-
cesses in the HAL Environment. In International Conference on Computer Aided
Verification, volume 1427 of LNCS, pages 511–515, Vancouver, CA, 1998. Springer.

AFormal Framework for the Development ofConcurrent Object-Based Systems 401

22. L. Foss and L. Ribeiro. A translation of object-based hypergraph grammars into
π-calculus. Electronic Notes in Theoretical Computer Science, 95:245–267, 2004.

23. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–295, 1997.

24. ISO. Information processing systems – Open systems interconnection – Estelle –
a formal description technique based on an extended state transition model, 1989.

25. M. Korff. Generalized graph structure grammars with applications to concurrent
object-oriented systems. PhD thesis, Technical University of Berlin, Germany, 1996.

26. Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, 1994.

27. A. B. Loreto, L. Ribeiro, and L. V. Toscani. Decidability and tractability of a
problem in object-based graph grammars. In 17th IFIP World Computer Congress
– Theoretical Computer Science, volume 223 of IFIP Conference Proceedings,
pages 396–408, Canada, 2002. Kluwer Academic Publishers.

28. N. Lynch and M. Tuttle. An introduction to input/output automata. CWI-
Quarterly, 2(3):219–246, 1989.

29. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
30. R. Milner. Communication and Concurrency. International Series in Computer

Science. Prentice Hall, London, 1989.
31. R. Milner. Communicating and mobile systems: the π-calculus. Cambridge

University Press, USA, 1999.
32. C.A. Petri. Kommunikation mit Automaten. PhD thesis, Schriften des Institutes

für Instrumentelle Mathematik, Bonn, 1962.
33. Wolfgang Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical

Computer Science. Springer, 1985.
34. L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.

PhD thesis, Technical University of Berlin, Germany, 1996.
35. L. Ribeiro. Parallel Composition of Graph Grammars. Applied Categorical

Structures, 7(4):405–430, 1999.
36. O. M. Santos, F. L. Dotti, and L. Ribeiro. Verifying object-based graph

grammars. Electronic Notes in Theoretical Computer Science (Proc. 2nd Graph-
Transformation and Visual Modeling Techniques), 2004.

37. P.H.J. van Eijk, C. A. Vissers, and M. ((editors) Diaz. The formal description
technique LOTOS. Elsevier Science Publishers, 1989.

38. B. Victor and F. Moller. The Mobility Workbench – a tool for the π-calculus. In
David Dill, editor, Proc. International Conference on Computer Aided Verification,
CAV, volume 818 of LNCS, pages 428–440. Springer, 1994.

39. G. Winskel. An introduction to event structures. In Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency, pages 364–397.
Springer, 1989.

40. G. Winskel and M. Nielsen. Models for concurrency. Technical Report BRICS
RS-94-12, University of Aarhus, 1994.

A Formal Description of the Basic Concepts
of System Theory for Transportation

Eckehard Schnieder and Jörg R. Müller

Technical University of Braunschweig,
Institute for Traffic Safety and Automation Engineering,

Braunschweig, Germany
{schnieder,mueller}@iva.ing.tu-bs.de

Abstract. In this paper some of the basic concepts of system theory
are presented in a formal way. This is done with the help of the formal
modeling language petri-nets. An example out of the transportation is
used to illustrate the discussed concepts.

1 Introduction

There are models, principles and laws that apply to generalized systems or their
subclasses, irrespective of their particular kind, the nature of their component
elements, and the relations or “forces” between them. So it seems legitimate to
ask for a theory not for systems of a more or less special kind, but of universal
principles applying to systems in general. The aim of this paper is to give a
general formalization of some of the basic concepts, such as “boundary of a
system”, or “emergent property” used in systems of different kinds (see [5]).
The formalization of some fundamental concepts of system theory shall provide
a common basis for all branches of science. In each of these branches the common
(abstract but formal) definitions made here can be instanciated with domain-
specific terms.

In chapter 2 we introduce some of these concepts in an informal way. After-
wards, in chapter 3 we use petri-nets as a formal modeling language to formalize
the concepts presented in the second chapter. Chapter 4 focusses on an example
from the transportation to clarify the introduced concepts.

2 Basic Concepts of System Theory

In this chapter we’ll outline the basic concepts of system theory in an informal
way (see [1]). An idea of these concepts is the basis for the following chapters.

2.1 What Is a System?

To start with the beginning: One can imagine, that in the beginning there ex-
isted only a totally homogenious and unformed primary-matter. In order to cre-
ate something, one has to establish a distinction. Where these distinctions come
from (whether from some kind of mystic creator or likewise an observer), does

H.-J. Kreowski et al. (Eds.): Formal Methods (Ehrig Festschrift), LNCS 3393, pp. 402–411, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Formal Description of the Basic Concepts of System Theory 403

not matter here. But how can these distinctions be made? The primary-matter
elements are ordered in some way. Due to this ordering they can be distinguished
from other elements. So, these ordered elements fulfil special relations and con-
ditions (in contrast to the non-ordered elements) – as a consequence, the ordered
elements can be separated from the non-ordered ones. The established relation
between the ordered elements is also called organisation or structure. This or-
ganisation itself determines, how the system operates and which processes can
be performed. One must not misunderstand “organisation” as a static concept;
here an organisation consists of operations and processes – the organisation of
a system determines, how the system operates, depending on a concrete order
of system elements. The set of all conditions that are fulfilled by an element is
called the element’s state. The state of the system is defined as the state of all
the system’s elements. As a consequence, the organisation and the state of the
system determine, how the system operates.

So, a system consists of (a set of) elements (selected from all possible ele-
ments), that are related in a special manner and therefore enable certain pro-
cesses.

2.2 A System and Its Environment

That, whereof a system can be distinguished (that, what is beyond the system), is
called environment – the system embeds its own elements, thus the environment
is excluded. The effect is: Environment is environment only in relation to a
special system; there is no environment without a system. As a consequence, the
unformed primary-matter in the beginning is not an environment in our sense.

All the parts of a system’s organisation that depend directly on its envi-
ronment or that affect directly its environment form the boundary of a system.

2.3 Subsystems and Emergence

If one examines a system without taking its environment into account, it is
apparent that the system is divided into functional parts: For every operation
there are components or subsystems. These subsystems are achieved due to dif-
ferentiations: “The establishment of new system/environment-differences as part
of the initial system.”([2])1 The above mentioned elements can be regarded as
subsystems, if they form a functional part.

Interdependencies between subsystems may lead to a new organisation on the
system level. If this transformation of organisation is not deducible from only the
subsystems but with taking into account the interdependencies between them,
we call these transformations emergence.

3 Formal Modeling with Petri-Nets

In this chapter the basic notations of petri nets [3] are outlined. We use petri
nets here, as an instrument to formalize the concepts introduced in chapter 2.
1 “Etablierung neuer System/Umwelt-Differenzen innerhalb des Ursprungssystems.”

([2], translation J. R. M.).

404 Eckehard Schnieder and Jörg R. Müller

After each formal definition, we try to work out a point to point correspondence
between the informal definition made in chapter 2 and the formal counterpart
made here.

In chapter 4 we’ll use petri-nets as a modeling language to illustrate the
concepts introduced so far on a concrete transportation-oriented example.

Definition 1 (Place/Transition-Net)
A place/transition-net (p/t-net) is a quadruple N = (P, T, F, L), with:

P : is a set of places,
T : is a set of transitions with P ∩ T = ∅,

F ⊆ (P × T) ∪ (T × P) is a flow relation
L : F −→ N.

For every arc (a, b) ∈ F L(a, b) is called the label of the arc (a, b); especially in
the context of p/t-nets the labels are called (arc) weights.

Remark 1. A petri-net N = (P, T, F, L) models the organisation of the systems
taken into account:

– the elements in the set P , model the possible (local) states of
the considered systems,

– the elements in T and F model relations and operations and
so provide the basis for processes,

– the elements in L are just used to refine relations and opera-
tions.

(see example in chapter 4.1)

Remark 2. In definition 1 only the organisation (or: structure) of a system is
defined. Note that a system’s-structure may exist without any system-elements.

Definition 2 (Marking)
M is a marking of a p/t-net N = (P, T, F, L), iff

M : P −→ N.

Remark 3. M(p) specifies the number of elements that are in a defined local
state p. So, each element is in a defined local state and related to other system-
elements due to the system’s-structure.

Definition 3 (Marking of a P/T-Net)
Let N = (P, T, F, L) be a p/t-net; the marking of all places of a net M(P) is
specified with a column vector

M(P) =

⎛⎜⎜⎜⎝
M(p1)
M(p2)

...
M(p3)

⎞⎟⎟⎟⎠ .

A Formal Description of the Basic Concepts of System Theory 405

For every place p ∈ P , it is

M(p) =
(
M(P)

)
(p).

Remark 4. M(P) gives for each local state p ∈ P the number of elements in that
state. So, we can call M(P) the global state of a system.

Definition 4 (Activated, Firing, Follower Marking)
Let N = (P, T, F, L) be a p/t-net and M be a marking; we say t ∈ T is activated
or enabled under M , if

∀p ∈ ·t : M(p) � L(p, t).

If t is activated under M (in symbols M [t〉), t may fire and transfer the marking
M to a follower marking M ′ (in symbols M [t〉M ′), with

M ′(p) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M(p), if p �∈ ·t ∪ t·
M(p) − L(p, t), if p ∈ ·t \ t·
M(p) + L(t, p), if p ∈ t· \ ·t
M(p) − L(p, t) + L(t, p), if p ∈ ·t ∩ t·.

Remark 5. Definition 4 defines the firing-rule. The firing rule defines how a sys-
tem’s state changes to a follower state, due to some kind of atomic process (the
firing of a single transition). Each system process, determined by the system’s or-
ganisation (see definition 1) and the system’s state (see 2), consists of a sequence
of atomic processes.

Definition 5 (Firing Sequence)
Let N = (P, T, F, L) be a p/t-net with t1, t2, . . . , tn ∈ T .

σ = t1, t2, . . . , tn is a firing sequence iff there exist markings m0, m1, . . . mn

such that
m0[t1〉m1[t2〉 . . . [tn〉mn

holds.
The set {M | ∃σ: M0[σ〉M} of all reachable markings is symbolized with [M0〉.

Remark 6. The correspondence between system-processes (as described in chap-
ter 2) and the concept of firing sequences as introduced here, is obvious (see
example in chapter 4.1).

Definition 6 (P/T-System)
Let N = (P, T, F, L) be a p/t-net and M0 be a marking of N . We call (N , M0)
a p/t-system. M0 is called the initial marking.

Remark 7. So, we define a system as a pair, consisting of a structure or organi-
sation (of ordered elements) and a global state (see example in chapter 4.1).

406 Eckehard Schnieder and Jörg R. Müller

Definition 7 (Subnet)
We call N ′ = (P ′, T ′, F ′, L′) a (finite) subnet of the p/t-Net N = (P, T, F, L), if

P ′ ⊆ P,

T ′ ⊆ T, und
F ′ ⊆ F ∩

(
(P ′ × T ′) ∪ (T ′ × P ′)

)
,

L′(f ′) := L(f ′) ∀f ′ ∈ F ′.

Additionaly we require the sets P ′, T ′ and F ′ to be finite.

Remark 8. With a p/t-net we model the structure of a system (see definition 1).
So, a subnet specifies some kind of substructure or suborganisation – that means
nothing but the organisation of a subsystem:

Definition 8 (Subsystem)
Let (N , M0) be a p/t-system and N ′ a subnet of N ; let further be

M ′
0(p

′) := M0(p′) ∀p′ ∈ P ′.

Then we call (N ′, M ′
0) a subsystem of (N , M0).

Remark 9. So, a subsystem is a system itself. It consists of a suborganisation
and a substate. In general there are (in relation to the surrounding system) both,
less (local) states are selected and less relations are forced. As a consequence, a
more approximate look is forced: not all elements of the surrounding system are
taken into account when looking at the subsystem.

Definition 9 (Union of Systems)
Let (N 1, M1) := ((P1, T1, F1, L1), M1) and (N 2, M2) := ((P2, T2, F2, L2), M2)
be p/t-systems. If P1 ∩P2 = ∅ and T1 ∩T2 = ∅, then the union of the systems
(N 1, M1) ∪ (N 2, M2) is defined as follows:

(N 1, M1) ∪ (N 2, M2) := ((P1 ∪ P2, T1 ∪ T2, F1 ∪ F2, L1 ∪ L2), M)

with the function M defined as follows:

M(p) :=

{
M1(p), if p ∈ P1

M2(p), if p ∈ P2.

Definition 10 (Reachability Graph)
Let N = (P, T, F, L) be a p/t-net and M0 a marking of N . The reachability graph
RG(N , M0) = (V, E) of (N , M0) is a directed graph with

V = [M0〉 as set of nodes
E = {(M, t, M ′)| M ∈ [M0〉 ∧ t ∈ T ∧ M [t〉M ′}

as set of labelled arcs.

L(E) = {t ∈ T | ∃(M, t, M ′) ∈ E}

is the set of labels. Usually the labels (M, t, M ′) are abbreviated by t.

A Formal Description of the Basic Concepts of System Theory 407

Remark 10. The reachability graph is used to visualize all reachable states and
executable firing sequences (processes).

Definition 11 (Emergence)
Let (N , M0) := ((P, T, F, L), M0) be a p/t-system, with subsystems (N 1, M1) :=
((P1, T1, F1, L1), M1) and (N 2, M2) := ((P2, T2, F2, L2), M2) such that

P1 ∩ P2 = ∅, P1 ∪ P2 = P and
T1 ∩ T2 = ∅, T1 ∪ T2 = T.

Let further be Σ the set of all firing sequences in the system (N , M0) starting
at M0 and Σ12 be the set of all firing sequences in the union of the systems
(N 1, M1) and (N 2, M2) starting at M0, too. If

∃σ ∈ Σ12 ∧ σ �∈ Σ

the set of firing sequences Σ in (N , M0) differs from the set Σ12. We call this
difference emergence.

Remark 11. We speak about emergence, if the behavior of a system (that means
the set of all processes) cannot be deduced from its subsystems. When a system
is divided into subsystems the interdependencies between them get lost. Merging
the subsystems does not retrieve them. This “new behavior” yields in a different
reachability graph (see example in chapter 4.3).

Definition 12 (Preset, Postset)
Let N = (S, T, F) be a petri-net. For all x ∈ P ∪ T we call

·x := {y| (y, x) ∈ F} the preset of x and
x· := {y| (x, y) ∈ F} the postset of x.

Definition 13 (Boundary of a System)
Let (N , M0) be a system with a subsystem (N ′, M ′

0). The boundary B((N ′, M ′
0))

of the system (N ′, M ′
0) is defined as follows:

B((N ′, M ′
0)) := (Pb, Tb), with

Pb := {p′ ∈ P ′| ∃t ∈ T \T ′: p′ ∈ ·t ∨ p′ ∈ t·},

Tb := {t′ ∈ T ′| ∃p ∈ P\P ′: p ∈ ·t′ ∨ p ∈ t′·}.

Remark 12. So, the boundary of a (sub-)system consists of all possible states
(here Pb) and relations or functions (here Tb) that belong to that system and
are directly influenced by (or dependent from) the system’s environment (see
example in chapter 4.2).

4 Application

In this chapter we apply the concepts introduced in chapter 2 and 3 to a trans-
portation system.

408 Eckehard Schnieder and Jörg R. Müller

4

1

2

3

opening

closingopened

closed

train enters approaching area

train in approaching area

train enters dangerzone

train in dangerzone

train leaves dangerzone

train behind dangerzone

Fig. 1. Model of the level-crossing system.

Our model of a level-crossing (see figure 1) consists of a gate-model with the
set of local states {opened, closing, closed, opening} and of a train-model with
the set of states {train in approaching area, train in dangerzone, train behind
dangerzone}. To allow a train to enter the approaching area, it’s necessary that
the gate is in the state “closing”. A train in the approaching area enables the
gate to get closed. The gate itself has to be in this state, to admit the train to
enter the dangerzone. Until the train is behind the dangerzone, the gate stays
closed and can then change to state “opening”. In the initial state, the gate is
open.

Note that the only intended purpose of this model is to apply the concepts
introduced so far – the model therefore was kept very easy.

4.1 System, Subsystem, Process and Organisation

As mentioned above, our system consists of the subsystems “gate” and “train
(see figure 2). In the global system, these subsystems are related (or ordered) in
a special way – for example: The train only may enter the approaching area, if
the precondition “gate is in state closing” is fulfilled – this relation is specified

A Formal Description of the Basic Concepts of System Theory 409

4

1

2

3

opening

closingopened

closed

train enters approaching area

train in approaching area

train enters dangerzone

train in dangerzone

train leaves dangerzone

train behind dangerzone

Fig. 2. Model of the gate (left) and model of the train (right).

in the model with the arrows (closing, train enters approaching area). Due to
this relations between the system’s elements, certain processes are enabled: The
operation “train enters approaching area” has to take place before transition t3
fires and the gate gets close. The operations “train enters dangerzone” and “train
leaves dangerzone” have to take place before transition t4 fires and the gate can
change to state “opening”. So, the special organisation of the two subsystems
lead to certain system-processes.

4.2 Environment and Boundary

The only environment of the subsystem “gate” taken into account is the sys-
tem of the train (in our model, only the behavior of the gate is modeled, its
physical parts are irrelevant here). The boundary Bg of the gate is defined as fol-
lows Bg := ({closing, closed}, {3, 4}). These are the only relations/operations
and local states of the subsystem “gate” that are affected by or that affect its
environment.

4.3 Emergence

Assume that a system consists of the two subsystems “gate” and “train”, but
this time these subsystems are completely independet (one can regard the two

410 Eckehard Schnieder and Jörg R. Müller

opening

closing

opened

closed

train in approaching area

train in dangerzone

train behind dangerzone

closing

train in approaching area

closed

closed

2

train enters approaching area

3

train enters dangerzone

train leaves dangerzone

4

1

Fig. 3. Reachability Graph of the global system (see fig. 1).

systems in figure 2 as one global system). As the four local states of the gate
are independent reachable from the three states of the train, there are twelve
global states reachable (the number of states in the cross-product). As it appears
in the reachability graph of our level-crossing-system (see fig. 3) there are only
seven global states reachable. So, without looking at the processes, it’s obvious,
that there exist processes in the union of the two subsystems, that are not exe-
cutable in the level-crossing-system. Due to new restrictions (on account of new
relations between the two subsystems) the level-crossing system fulfils certain
properties – for example: When the train is in dangerzone, the gate is closed.
This condition can’t be deduced neither from the subsystem “gate” nor from the
subsystem “train”, but with the interdependencies between these two systems
and is therefore called an emergent behavior.

5 Conclusion

In this paper some of the basic concepts of system theory (as “system”, “bound-
ary of a system” and “emergence”) were presented. After the informal introduc-
tion of these in chapter 2, they were defined in a formal way in chapter 3 with
the help of petri-nets. In doing so, we kept in mind the correspondence between
the informal and the formal specification. In the last chapter, an example from
the transportation was used to exemplify the presented concepts.

A Formal Description of the Basic Concepts of System Theory 411

We hope that this article leads to the insight, that an abstract but formal
definition of the central concepts of system theory may have a promising ad-
vantage: the abstract but unique and formal definition may serve as a kind of
template to be instanciated with domain specific terms in each branch of science.

References

1. David J. Krieger. Einführung in die allgemeine Systemtheorie, 2. Auflage. Wilhelm
Fink Verlag, UTB für Wissenschaft: Uni-Taschenbücher; 1904, München, 1996.

2. Niklas Luhmann. Soziale Systeme. Grundriß einer allgemeinen Theorie. Frankfurt
am Main, 1984.

3. C. A. Petri. Kommunikation mit Automaten. Schriften des Institutes für instru-
mentelle Mathematik, Bonn, 1962.

4. E. Schnieder. Prozeßinformatik - Einführung mit Petrinetzen. Vieweg-Verlag,
Braunschweig, 2. erweiterte Auflage, 1993.

5. Ludwig von Bertalanffy. General System Theory: Foundations, Development, Ap-
plications. George Braziller, 1976.

Author Index

Arbib, Michael A. 153
Astesiano, Egidio 167

Bab, Sebastian 204
Baldan, Paolo 3
Bardohl, Roswitha 64, 385
Baresi, Luciano 24

Cherchago, Alexey 38
Corradini, Andrea 3

Dotti, Fernando Lúıs 385

Engels, Gregor 38
Ermel, Claudia 64

Gadducci, Fabio 84

Habel, Annegret 293
Harel, David 309
Heckel, Reiko 38
Hoffmann, Berthold 101

Janssens, Dirk 325

König, Harald 190
Kreowski, Hans-Jörg 325, 370
Kugler, Hillel 309

Löwe, Michael 190

Mahr, Bernd 204
Meseguer, José 220
Milner, Robin 343
Montanari, Ugo 84
Müller, Jörg R. 402

Orejas, Fernando 352

Padawitz, Peter 236
Padberg, Julia 370
Pennemann, Karl-Heinz 293
Pérez, Sonia 352
Pezzè, Mauro 24
Pnueli, Amir 309

Reggio, Gianna 167
Ribeiro, Leila 385
Rosselló, Francesc 116
Rozenberg, Grzegorz 325

Schneider, Hans J. 134
Schnieder, Eckehard 402
Schulz, Christoph 190

Taentzer, Gabriele 64

Valiente, Gabriel 116

Wagner, Eric G. 259
Wolter, Uwe 275

	Frontmatter
	Graph Transformation
	On the Concurrent Semantics of Algebraic Graph Grammars
	From Graph Transformation to Software Engineering and Back
	Flexible Interconnection of Graph Transformation Modules
	Simulating Algebraic High-Level Nets by Parallel Attributed Graph Transformation
	Graph Processes with Fusions: Concurrency by Colimits, Again
	Graph Transformation with Variables
	Graph Transformation in Molecular Biology
	Changing Labels in the Double-Pushout Approach Can Be Treated Categorically

	Algebraic Specification and Logic
	Modules, Brains and Schemas
	From Conditional Specifications to Interaction Charts
	Algebraic Properties of Interfaces
	\in<Subscript>{\itshape T}</Subscript>-Integration of Logics
	Functorial Semantics of Rewrite Theories
	Expander2
	Relationships Between Equational and Inductive Data Types
	Cofree Coalgebras for Signature Morphisms

	Formal and Visual Modeling
	Nested Constraints and Application Conditions for High-Level Structures
	Synthesis Revisited: Generating Statechart Models from Scenario-Based Requirements
	Main Concepts of Networks of Transformation Units with Interlinking Semantics
	Embeddings and Contexts for Link Graphs
	Towards Architectural Connectors for UML
	Loose Semantics of Petri Nets
	A Formal Framework for the Development of Concurrent Object-Based Systems
	A Formal Description of the Basic Concepts of System Theory for Transportation

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

